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Unipotent Representations for Real Reductive Groups 

Dan Barbasch 

Cornell University, Ithaca, NY 14853 and 
Rutgers University, New Brunswick, NJ 08903, USA 

1. Introduction 

The classification of the unitary dual of a real reductive group is an important 
problem in Representation theory. Typically one proceeds as follows. Given the 
Levi component of a parabolic subgroup, there are certain constructions such 
as unitary induction, derived functors and complementary series that preserve 
unitarity. Thus, given a group G it is reasonable to ask for a set °U(G) such that 
the unitary dual is obtained by unitarity preserving constructions from all such sets 
on Levi components of the group. Such a set is provided in the case of integral 
infinitesimal character by the special unipotent representations. In particular the 
question of the unitarity of this set of representations arises, 

The purpose of this lecture is to describe the proof of the unitarity of a 
particular subset of special unipotent representations. The precise result is as 
follows. 

Theorem 1.1. The representations in the Arthur L-packet in the special unipotent 
case (see Section 2) for the classical groups are unitary. 

Themain idea of the proof of this theorem is the same as for the corresponding 
fact for the complex classical groups in Section 10 of [B]. The question of unitarity 
of complicated representations on a group is reduced to the same question for 
simpler representations on larger groups. The techniques are general, so that they 
apply to all special unipotent representations. For (serious) technical reasons, I 
can only carry out the proof for the aforementioned case. 

Many of the more abstract results about unipotent representations can be 
phrased in a more general setting. This work, joint with J. Adams and D. Vogan 
will appear in [ABV]. 

In the case of a split classical group, [M] and [MW] have shown that the 
spherical unipotent representations actually occur in the residual spectrum, 

In Section 2,1 introduce the packet n(L&) of special unipotent reprsentations 
and give a definition of the Arthur L-packet. Section 3 is devoted to a computation 
of the size of 77 (L0), Combined with the constructions in Section 4, this gives all 
the special unipotent representations. Theorem 4.4 states that for the unitarity 
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of the representations in the Arthur L-packet it is enough to consider only 
smoothly cuspidal (definition at the start of Section 4) nilpotent orbits. The 
main result is contained in Theorem 5.3 where 77 (L(9) is broken up according 
to WF-sets in the Lie algebras of the group and the dual group. In Section 
6, I sketch the proof of the unitarity of the spherical representations in the 
Arthur L-packet for Sp(2n,M). The idea is the following. We do an induction 
on how close n is to being obtained by unitarity preserving functors (unitary 
induction from a real parabolic subalgebra and derived functor construction in 
the appropriate range) from a strictly smaller parabolic subalgebra. Let g(n) be 
the Lie algebra sp(2n,lR.) of rank n and n(L(9) be the spherical representation 
in II(L(9). Assume that it cannot be obtained by unitarity preserving functors. 
from a strictly smaller parabolic subalgebra. Then, for a well chosen value r, 
we embed g(n) x gl(r + 1) as a Levi component of a real parabolic subalgebra 
p(R) in g(n + r + 1). We then form I(iz) = Indp^j [77(L(9) ® Triv]. Since II(L(9) is 
hermitian, the induced representation inherits an induced hermitian form. On the 
other hand, it decomposes into a sum of two irreducible representations which 
can be seen to arise earlier than %(&) in the induction. To finish the proof we 
need to see that the two factors have the same signature in the induced form of 
I(n). This is a simple direct calculation of a signature on one K-type in I(n) and 

n (Lo). 
Unless mentioned otherwise, I will use the following notation. The complex 

group Sp(2n, C) and its Lie algebra will be denoted by G and g. The real form 
Sp(2n,lR) will be G(R) and its real Lie algebra g(R). The dual Lie algebra 
so(2n + 1) will be denoted Lg, its various real forms so(p, q) by g(IR), and the 
corresponding groups by LG and G(R). 

Complex nilpotent orbits in g will be denoted by (9, in the dual Lg by L(9. 
6 will denote the complexification of the Cartan involution for Sp(2n,lR). 

Similarly 8 will be the complexified Cartan involution of one of the real forms 
of Lg. The corresponding decompositions are g = I + s and g = I + s. 

Real forms of the orbit 0 will be denoted by 0(R). Similarly for real forms of 
L(9. By [S], (see also [V4] Section 4), real forms of 0 are in 1-1 correspondence 
with nilpotent orbits of Kc on s. We will use this identification without explicit 
mention. 

Acknowledgements. This research was partially supported by NSF grant DMS-8803500. I 
also wish to thank David Vogan for several very valuable comments on the material of 
this talk. 

2. Special Unipotent Representations 

In [Al] and [A2], Arthur introduces a Langlands parameter attached to a 
homomorphism 

V : WK x SL(2, C)—+LG, (2.1) 

where FPR is the Weil group for IR. He conjectures that there should be an 
entire packet 77 (xp) of representations attached to xp, satisfying various properties 
relevant to the study of automorphic forms via the trace formula. 
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Because the group we are dealing with is split, hG is a direct product, 
Therefore maps as in (2.1) are determined by homomorphisms into LG°, the 
connected group. We will only consider the case of ip's that are trivial on the 
identity component of Wu and such that xp\sL(2,ty determines an even nilpotent 
orbit in the dual algebra. This case is called special unipotent, 

Let L(9 be the even nilpotent orbit determined by xp and 0 be the dual orbit 
in g in the sense of [L]. Let E, 77, F, be the standard generators of si (2) and 
write 

Le = dxp(E), Lh - dxp(H), Lf = dxp(F). (2.2) 

The infinitesimal character of the Arthur parameter is given by 

l(xp) = l=yy>(H)- (2.3) 

This depends only on V>|M,(2,C). 

Definition 2.4. The extended packet 77 (L(9) corresponding to xp is the set of 
irreducible representations with annihilator in the universal enveloping algebra 
equal to the special unipotent primitive ideal attached to L(9, 

In particular, Ad G • WF(n) = 0, for n e II (L&) as well as Ad G • sJ(%) = 0, 
where sé denotes the associated variety defined in [V4], 77 (L@) corresponds to 
the union of the 77 (xp) giving the same nilpotent orbit L&. 

If j G WJR is the element representing complex conjugation, then let m = y>(j)-
This is an element of order 2 in CLG(Le,Lh,Lf). Then 

8m = Ad(m • einX) (2.5) 
V j V V 

is an involution. Let Gm(R) be the real form of G with 8 = 8m. The parabolic 
subalgebra determined by X is 0-stable. Denote it by p(/l) and fix a 0-stable 
Cartan subalgebra I) containing X and a Borei subalgebra I) <= b for which X is 
dominant. Then L(9 meets § D n(X), so this also determines a real form L@QR) of 
L&. 

The representations in the Arthur L-packet attached to xp can then be con
structed as follows. 

Let &(xp) = sé$ be the irreducible representations (the Levi component may 
be disconnected) with infinitesimal character Q which are obtained by derived 
functor construction from a character of p(X), as in [VI, VZ]. [V3] attaches to 
each such &(xp) a standard modules XTCg(xp) with regular integral infinitesimal 
character on a quasisplit real form Gqs(lR) of G. Let X(xp) be the standard 
module obtained from XIGg(xp) by applying the translation functor to infinitesimal 
character X. Then the Arthur L-packet is the set of irreducible quotients of the 
X(xp). This coincides with the usual definition of L-packet used in [Al] and [A2]. 

Example. Let L(9 be the nilpotent orbit with Jordan blocks 312 in so(5). In the 
standard coordinates coming from embedding sp(2n) in gl(2n) the infinitesimal 
character is (1,0) and 0 is the nilpotent with Jordan blocks 22. The centralizer of 
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the Lie triple corresponding to LG is isomorphic to S [0(1) x 0(2)], so it has three 
conjugacy classes of elements of order 2. They correspond to two real orbits 
in so(3,2) and one in so(4,1). The most split Cartan subgroup of Sp(4) is of 
the form MA where M = Z2 x Z2. If we assume that the first TL2 corresponds 
to the coordinate containing the 1 in the infinitesimal character, then the three 
principal series have M-characters Triv ® Triv, Sgn <8) Sgn and Triv <S) Sgn. The 
Arthur: L-packet of the first one contains one irreducible representation namely 
the spherical, the other ones two irreducible representations each. 

3. The Coherent Continuation Representation 

The results in this section hold for general reductive groups. 
Fix a regular integral infinitesimal character %reg. Denote by ^fceg) the 

Grothendieck group of the category of (g, K) modules with infinitesimal character 
Xveg. Recall from [VI] that there is an action of the Weyl group on ^(xreg)5 called 
the coherent continuation action. Then (̂Xreg) decomposes into a direct sum 
according to blocks ^ , 

^reg) = 03WXreg). (3.1) 

Let \)a cz g be an abstract Cartan subalgebra and let 77a be a set of (abstract) 
simple roots. For each irreducible representation S£(y), denote by x(y) the tau-
invariant as defined in [VI]. Given a block <% and disjoint orthogonal sets 
Su Si <= 77fl, define 

ïi, S2) = {ye a\Si c T(7), S2 n T(y) = 0}. (3.2) 

If in addition we are given a nilpotent orbit G c g, we can also define 

a(Sl9 S2, (9) = {ye a(Su S2)\ WF(2(y)) cz &}. (3.3) 

Consider the case of g viewed as a real Lie algebra. Then the case Si, S2 = 0 is 
called the double cone <%((9). The double cell corresponding to G will be denoted 

Let Wt = W(Si), and define 

ms(a) = [a : Ind^lX^2(Sgn ® Triv)], 

» = [o- : ^(Zreg)] • 

Theorem 3.5 (Vogan). 

i, S2, G) | = Y, m®(a)ms(a). 

A sketch of the proof can be found in [BSS]. 
Recall X = X(xp) from Section 1. Then X defines a set S2 by 

S2 = S(xp) = {oce na\(oc,X)=0}. (3.6) 
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Then 
n(LG) = {J<%((fr9S(xp)9G). (3.7) 

a 
In the classical groups case, m@(o) is explicitly computable. For the special 
unipotent case, m$(o) equals 0 except for the representations occurring in the 
corresponding left cell ^€h(G) when it is 1 (see [BV]), 

Theorem 3.8. 

4. Induction from Parabolic Subgroups 

Recall that a parabolic subalgebra p = nt +11 is called real for g(R) if 0(p) = p, 
0-stable for g(R), if 0(p) = p. 

A nilpotent 0 is called induced from Gm if 0 D (Gm + n) is dense in Gm + n, It 
is called smoothly induced if it satisfies Hypotheses 8A and 8B in [BV], 

Let p(£) cz g be be real or 0-stable. Let Gm(K) <= m(IR) be a real form of Gm. 
We define the real induced set from 0m(lR) to be 

md*[Onmi - U A d G ( ^ ) ' ('« + ®nt(R))\UAdGW ' CÉ + 0m(R)) • (4.1) 

In the case of p real, this set is the closure of Ad G[GmQR) + n(!R)]. 
In the case of 0-stable parabolic subalgebra in a classical group, this can be 

computed using unpublished results of D, Peterson. It is the closure of a single 
real orbit. 

We give two constructions that yield special unipotent representations from 
special unipotent representations on Levi subgroups of proper parabolic subal-
gebras. 

Induction. Let p(^) be real or 0-stable. Assume that LGm and hG are such that 

A|[w,m)=^t, 0 = ind§[0m]. (4.2) 

Denote by Xc the character of m determined by X on the center. 

I. Let p(0 be real. Then 

has composition series formed of irreducible representations in 77 (LG) only. 

II. Let p(£) be 0-stable. Assume that n e 77(0m) is such that WF(nm) contains 
an orbit GmQR) such that indj^[0m] meets the orbit 0. Then 
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ffil
vinm®Xc] 

are not all zero and their composition series consists of irreducible representations 
in77(L0). 

Coinduction. Let p = lift + ft be a parabolic subalgebra, 0-stable for some real 
form of g, such that p(l) c p, Let p be the dual real parabolic subalgebra. Let 
%m e 77(0m) be such that ind|[L0m(R)] meets the orbit LG. Then the irreducible 
representation 

kp = Px([^(%m)]y) (4.3) 

is in 77 (L0). Recall that 0 is dual in the sense of [L] to the even nilpotent orbit 
L 0 . The same holds for 0m and L 0 m . 

Theorem 4.4. Assume that G is smoothly induced from 0m. Let % be in the Arthur 
L-packet determined by LG. Then there is nm in the Arthur L-packet determined by 
LGm such that n is the lowest K-type subquotient of lndp^[7im]. 

In view of this, we say a nilpotent orbit is smoothly cuspidal if it is not 
smoothly induced from any proper parabolic subalgebra. They are as follows. 

Type B. The largest Jordan block is odd size and occurs an odd number of times. 
All smaller odd sizes occur, and they each occur an even number of times. 

Type C. The largest Jordan block is even size and occurs an even number of 
times. All smaller even sizes occur and they each occur an even number of times. 

Type D. The largest Jordan block is odd size and occurs an even number of 
times. All smaller odd sizes occur, and they each occur an even number of times. 

For the unitarity of representations in the Arthur L-packet, we can restrict to 
these cases. 

5. The Main Result 

The main result concerns the WF-set of the special unipotent representations. It 
is used to compute the decomposition of unitarily induced representations. 

Recall the quotient of the component group ^4(0) from [L]. For a real form 
0(R), let A(GQR)) denote the component group of the correponding Kc-orbit in 
5. 

Lemma 5.1. If 0 is smoothly cuspidal, then A(G) can be identified with the full 
component group A(G). 

For each finite dimensional representation F, recall the translation functors 

TF :X^PX[X®F] (5.2) 

defined in [BV] Lemma 6.3. 
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Theorem 5.3. Assume that G is smoothly cuspidal, and let 0(R) be a real form. 
1. The WF-set of any % E 77 (L0) is the closure of a single orbit. Denote 

by J7(0(R)) the set of representations with WF-set 0(R), and by 9(OCR)) the 
corresponding (complexified) Grothendieck group. 

2. The number of irreducible representations with WF-set G(R) is \A(OQR))\, 
3. A(GQR)) maps onto A(G). ^(0(R)) decomposes under the (simultaneous) 

action of Tp in (5.1) into a direct sum of isomorphic subspaces, each of dimension 
\AW\- ' 

Given % e 77 (L0), we can attach to it a pair of (unions of) real nilpotent 
orbits, (WF(n), WF(%)). This is an invariant for the action of Tp. The theorem is 
a consequence of the nontrivial computation of the behaviour of this invariant 
under induction and coinduction. 

6. Unitarity 

The proof of the unitarity of the distinguished representations attached to cuspidal 
nilpotent orbits proceeds by induction as in the complex case. Recall that the 
group is Sp(2n,TR). To conform to [B], we will write g(w) for the Lie algebra 
sp(2n,W) of rank n. 

Recall that LG is an even nilpotent and 0 is its dual. Assume that 0 is 
smoothly cuspidal. Let n(&) be the special unipotent spherical representation in 
the Arthur L-packet attached to L0, 

Proposition 6.1. The WF-set of n(G) is the closure of the unique 0(R) for which 
there exists a Levi component of a real parabolic subalgebra m such that GQR) Din 
is a principal nilpotent in m. 

Proposition 6.2. Assume that G is induced (not smoothly). Then the spherical rep
resentation in the Arthur L-packet is unitary. More precisely, it occurs as derived 
functor module from a unitary character on a 8-stable parabolic subalgebra satis
fying the condition of Theorem 7.1(b) in [V2]. Its unitarity can also be seen from 
the fact that it occurs at the endpoint of a complementary series of an induced 
from a spherical distinguished representation on a Levi component of a real proper 
parabolic subalgebra. 

Proof of Theorem 1.1. Let 0 with Jordan blocks lr i2? '2... (2k)r2k be a special 
cuspidal nilpotent as at the end of Section 4 (so that r/ are all even). We do an 
induction on the number of odd sized Jordan blocks. Assume that none of the 
7-2/—l = 0, for otherwise the representation is already unitary by Proposition 6.2, 
The case when k = 1, r\—2 can be done by direct calculation. 

Let r = r2jc. Denote the spherical distinguished representation attached to 0 
by n(LG). Embed the Lie algebra m = g(/i) x gl(r + 1) as a Levi component in 
g(w + r + 1) and consider the unitarily induced reprsentation 

file:///AW/
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The WF-ssi is the real form of 

ìn2n ... (2fe - 2)r2k~2(2k - l)l'2fc-1-2(2fc)2(2fe + 2f2k, (6.5) 

which is the support of the spherical distinguished representation corresponding 
to this nilpotent. The induced representation has two irreducible factors. They are 
both derived functor induced representations from a parabolic subalgebra with 
Levi factor g(n + 1) x gl(r). The representation being induced is %(&) ® x, where 
n(Gf) is the spherical distinguished representation correponding to the nilpotent 
orbit 

Vl2r2 ...(2k- 2)^-2(2fe- i)^-i-2(2fe)r2fc+2 (6>6) 

and x is a unitary character so that the conditions of Theorem 7.1 in [V2] are 
satisfied. By induction (the occurence of r2k-\ has been reduced by 2 !) both 
factors are unitary. We only have to show that the signature on the lowest K-type 
of the other factor is the same as for the spherical K-type. If we write the highest 
weights of K-types as decreasing sequences of integers, this lowest K-type is 

. . ,1,0,. . . , 0 , - U ^ l ) . (6.7) 
v 

r+l 

The signature in the induced representation in (6.4) comes from K-types in n(G) 
of the same type with the number of l's < r +. 1. Repeating the same argument 
using g(n) x gl(r + r2k-\+r2k-2 +1) as in [B] Section 10, completes the proof. D 
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Eisenstein Cohomology of Arithmetic Groups 
and Its Applications to Number Theory 

Günter Harder 

Mathematisches Institut, Universität Bonn 
Wegeierstraße 10, W-5300 Bonn, Fed, Rep. of Germany 

In this note I want to discuss some questions concerning the cohomology of 
arithmetic groups. They concern the structure of the cohomology and especially 
the Eisenstein cohomology as a module under the Hecke algebra. My exposition 
here is rather vague and imprecise, But in a series of papers I investigated these 
questions in various special cases. Sometimes I proved theorems which give an 
answer to one of the questions in special cases, sometimes I discuss the conjectures 
in special situations and make them more precise. I will refer to these papers 
later on. 

My main objective here is to show that a good understanding of these 
questions will have interesting applications in number theory, especially for the 
theory of special values of L-functions. 

1. The General Setup 

We start from a reductive group G/Q, let G^/Q be its derived group, let Z/Q 
be its centre. We denote the adele group of G by G(A), and we decompose it into 
its finite and infinite part 

G(A) = G(R) x G(Af) = G«, x G(Af). 

We choose a closed subgroup Kœ c G^ whose connected component of the 
identity is of the form 

where JQ, is the connected component of the identity of a maximal compact 
subgroup of G$. Moreover we choose a compact open subgroup Kf c G(Af) 
(the level subgroup), and we consider the space 

Goo/TCoo x G(Af)/Kf = Zoo x G(Af)/Kf. 

The space Zoo is a disjoint union of symmetric spaces (the centre contributes by 
a flat euclidean space). The group G(Q) acts upon this space. We pass to the 
quotient and get a space 

G(Q)\XœxG(A /)/K / = ^ G . 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
© The Mathematical Society of Japan, 1991 
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The quotient space &"£ is a locally symmetric space. It is a finite disjoint union 

[J ^-'\*oo, 
gfeG(<®\G(Af)/Kf 

where g runs over a set of representatives in G(A/) of the double coset space 

and where T -/ is the arithmetic subgroup 

r^f^GmngjKfgj1. 

We call this space the locally symmetric space attached to G/Q (of level Kf). 
Finally we choose a rational representation 

Q : G —-• GL(M) 

which is defined over Q or over some number field (if we want it to be absolutely 
irreducible) or over Q (see [Hal], 1.3). This representation provides a sheaf Jk 
on £f£ by a standard construction. 

Our object of interest are the cohomology groups of £f£ with coefficients in 
this sheaf 

H-(#£,J?). 

These cohomology groups are finite dimensional vector spaces over the field of 
definition of Q and they have some very important extra features (1.1 and 1.2). 

1.1 The Borei-Serre Compactification 

In general the quotient space £f£ is not compact. There is a natural construction 
of a compactification i : £f£ —• «9^, this is the Borei-Serre compactification (see 
[B-S]). It is known that £f£ is a manifold with corners (provided Kf is small 
enough). It is stratified by manifolds dP^£ which are labelled by the conjugacy 
classes of parabolic subgroups over Q. The closure of a stratum dp&£ consists 
of the strata ôQ^^ where Q runs over the conjugacy classes of rational parabolic 
subgroups g c P. One knows that the sheaves M extend nicely to £f£, the map 
i : Sffl —• £f£ is a homotopy equivalence and we get an isomorphism 

Hm(&£, J?)-^>H-(&£, Jt). 

We also consider the cohomology with compact supports H*(&£,Jk), we get a 
long exact cohomology sequence 

- • H&9§9Jk) -> Hm(?g9Jk) -^ H-(d#g,J?) -+ . 

Let M/Q± be the Levi quotient of the parabolic subgroup P/Q, let Up/Q be 
the unipotent radical of P and let Up be its Lie algebra. Then one knows that the 
cohomology groups H*(dP&£,Jfc) can be expressed in terms of the cohomology 
of the locally symmetric space attached to M with coeffients in the the Lie 
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algebra cohomology H'(up,J£) (which is a module for M). We write without 
further explanation 

H-(dpS$9Jlt) = lnd$H-(yMM,H'(u^)). 

(See for instance [Hal], Theorem 1, [Ha5], 1.5-1,7) . The stratum dpSfg has 
codimension d(P) — corank of P this is the increase of the split rank of M 
against the split rank of G. The covering of dSf£ by the dp&£ yields a spectral 
sequence with Bf^-term 

0 77« (dp £fg9 Jt) => Hp+q (S5f, J?), (Ss) 

The exact sequence above induces a two-step filtration on the cohomology, 
but since the cohomology of the boundary will also be filtered, we get a many 
step filtration on the cohomology. 

1.2 The Hecke Operators 

Let JfKf - %c(G(Af)//Kf) be the space of Q (or Q) valued functions on G(A/) 
which have compact support and are biinvariant under Kf. These functions form 
an algebra under convolution; this is the so called Hecke algebra. It is a restricted 
tensor product of local Hecke algebras JfKp if Kf is a product of local groups. 
We can construct an action of this algebra on all the groups 

77c( <̂
G, Jt\ H-(9g9 Ji\ H*(dF£, Jf) 

which is compatible with the maps in the cohomolgy sequence. (To see this we 
pass to the limit for smaller and smaller level subgroups Kf, then the cohomology 
becomes a G(A/-)-module and the cp e J^Kf act by convolution on 

H*(¥£9Jt) = HmH'^g^fO. 

H f 

The fundamental problem is to understand the structure of these cohomology 
groups as modules under the Hecke algebra. 

A Digression. I will try to make a little bit more precise what it means to 
understand these modules. To do this I have to explain some ideas which go 
back to Eichler, Shimura, Deligne, Serre, Langlands and others. The picture that 
I will give is oversimplified and can only be true in simple cases, 

We extend our coefficient system to Jk& = JK ® (C. Then we can compute the 
cohomology groups &(&*£> Jt®) by using differential forms. Within this space 
of differential forms we have the space of cusp forms which allows us to define 
a subspace 

iW^xA) 
in the cohomology (see [Bo] 5.5, [Schw]). To this space we can apply Hilbert 
space techniques and get an isotypical decomposition 
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n 

where H'usp(£f£, jk^jln] = H^ is the sum of m(%) copies of the irreducible Jf-
module H%. Then % will be the finite component of certain cuspidal automorphic 
representation K* = %co ® %. 

Let us assume that this subspace descends to a subspace H'USJ?(&£ 9Jt) defined 
over Q (or even Q if M is a Q-vector space), this is true in special cases (see 
[Hal], 3.2.5 and [CI]). Then we get for this subspace 

ffcusp(^> X) ® Q = 0 tfcuspO^G> -*c) [«]. 
n 

where the isotypical components are now Q vector spaces (if Ji is a Q-vector 
space, we will get an action of Gal(Q/Q) on the set of the contributing n, it will 
permute the summands.) 

There is some general belief that one can attach an arithmetical object M(7i) 
(something like a motive or a motive with coefficients) to such an isotypical 
component. 

It is not quite clear what such a thing is, but is should have different 
cohomological realizations, especially it should have /l-adic cohomology groups 

7f(M(7ü)xQ,QA) 

which will be modules for Gal(Q/7£), where E is some specific number field. 
Then one expects some kind of reciprocity law: For almost all places p 

the local module Hnp under the local component J^p of the Hecke algebra 
"is strongly related" to the structure of the H'(M(n) x Q,Q^) as a module under 
Hpjp Gal(Qp/Ep). Another way of saying this is the following: Langlands attached 
to any cuspidal automorphic form n* a series of L-functions 

L(n*,r,s) 

where r is a parameter (a representation of the dual group) and where s is a 
complex variable (see [La]). These are the automorphic L-functions. 

On the other hand a motive M is also a thing which yields an L-function 

L(M,s) 

these are the arithmetic L-functions. One hopes that the above "strong relation
ship" says that for a suitable ro we have 

L(M(7u),s)~L(7u*,r0,s) 

where ~ means equality in simple cases. 
For more precise information I refer to [Ko, Cl]; this problem has been 

investigated for Shimura varieties. For the classical case of GL2/Q the existence 
of M(7c) has been proved by Eichler, Shimura, Deligne and Scholl. In some 
other cases partial results are known ([Wi, Bl-Ro, Ta]). There exists also some 
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numerical evidence for the truth of such an assertion in the case where £?£ is not 
a Shimura variety ([Cr, E-G-M, A-P-T|). 

Even if this is rather vague I think we should have this in the back of our 
mind if we say we want to "understand" the structure of the cohomology as a 
module under the Hecke algebra. I point out that for the case of the multiplicative 
group over a number field k i.e. for G/(Q = R^/Q(G„,) the above is the content of 
class field theory. 

1.3 Integral Cohomology 

If we fix the level subgroup Kf, and if we choose a Xj-invariant lattice Jt& c Jt, 
then it is not difficult to define a sheaf MQ on Sf£, and we can define the 
cohomology groups 

77- (Srg, M®\ &(&>£, M&), H-(d#g, Jt&), 

and we have the same exact sequence as above. Now we can consider the 
subalgebra ^ of % valued functions in Jf and with some modification we can 
define an action of $?% on these integral cohomology groups (see [K-P-S], [Ha5], 
1.3). It is certainly also of interest to study the integral cohomology groups as 
modules under the action of ,#z. 

2. The Eisenstein Cohomology 

The aim of the Eisenstein Cohomology is to provide an understanding of the 
maps 

H-(yg,Jt) - U H\dF£,Jt) - ^ H^x(^l,Jt) 

as maps for modules under the Hecke algebra. Actually this of course also 
requires that we understand the cohomology H'(d^,J^) as a module under the 
Hecke algebra and hence at least a full understanding of the cohomology for 
lower dimensional groups. 

We pick a parabolic subgroup P and look at the associate class £P = {P = 
P\,P2,...}. (Two parabolic subgroups are associate if and only if their Levi 
subgroups are conjugate.) Let M and up be as in 1.1, Let us assume that 
H'(&$d,H

m(up,Jf))[nM]<E is an isotypical contribution to the cuspidal cohomol
ogy H'cusp(6^M, (u^J£)e). We consider the group ffM = NG(M)/M, this group 
gives us a collection of conjugate contributions 

H'(5gi,H-(w^4r))[w-7iA#]c 

(see [Hal], IV, [Ha3], 1.1,2 for examples) and this gives us a contribution 

0 0 lnd%H-(^M,H\u^J£))[w • nM]c c 0 H-(dPvtf£,JZv). 
Pve^ w Pve&> 

We now want to solve two problems : 
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The first problem is to attach to our orbit [nM] a Jf-submodule 

H-(d3%9Jkc)[nM] czH'{d^9JKc) 

which should be considered as the contribution of [%M\ to the cohomology of 
the boundary. This is easily done in the case where & consists of maximal 
parabolic subgroups. In the general case it requires already the solution of the 
second problem below for groups of smaller semi simple rank. Sometimes this 
contribution satisfies an extra condition 

zj.fcfcpG j * \r -i is a direct summand and does not weakly /uiwni 
v K> <cn MJ intertwine with the complement ^ ' 

where no weak intertwining means that the two summands do not have any 
Jordan-Holder quotient in common. 

If the condition (bMD) is satisfied, then it follows easily that the subspace 

H'(dS?£,J?v)[nM] c Hm(dâg,Jk) ® C 

is rational, this means that it is defined over Q and behaves nicely under the 
action of Gal(Q/Q) (see [Hal], 4.3). 

The second problem is to understand the intersection 

1m(r)(H-(&g9jkc)) nH-(^G ,^(c)[7üM] = H;[oh(d^, J^€)[nM] 

I will call this the image of FIm(^,jk^) in the subspace Hn(d^,Ji(^[nM\' 

To attack this second problem we use the theory of Eisenstein series. 

As I explained earlier the datum [TCM] yields a collection of spaces 

i I n d G 7 J c - u s p (&>&,H-(UP^J?V)) [w • T C M ] 1 

I J w e W ( M ) , v = l , . . . , s 

Attached to the w • %M are isotypical spaces ^"(w • %M) of automorphic forms 
on M which "induce" certain spaces Ind£v(^(w • %M)) c %œ(Pv(<$)\G(A)/Kf) 
The classes in our spaces can be represented by differential forms œ%ipv e 
Homxoo(^l'(g/ï),Indpv(1^*(w • TLM)) ® Jt<s£). These forms conypv are invariant un
der PV(Q)- By a process of infinite summation over PV(<S$\G(<Q) we can try to 
make them invariant under G(Q). But this summation may diverge. We introduce 
a complex parameter A e (Cd^ and multiply our functions in Indpv(iF(w • %M)) 
by dp . Then our summation converges for Re(^4) in a certain positive cone and 
defines a holomorphic function in A which extends to a meromorphic function 
for all A (see [H-C]). These functions suitably evaluated at A = 0 provide a space 
of automorphic forms 

Eis*[7cM]c=^(G(Q)\G(A)/K/) 
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and a space (see [Ha3], 1.2.1) 

Eis"[7cM]c = Im(77-(9,K,Eis*[7iM] ® ^<c) —• H'(^,J^)). 

We state the assertion 

r : Eis-[71M]C —• Hm\oh(dS^,Jk(c)[nM] is a surjective map (Hope) 

The general philosophy expressed by (Hope) is that the entire cohomology 
Hm(&K,Jkv) is built up out of the cuspidal cohomology and the EìS[TCM]C-

3. Arithmetical Applications 

The structure of the module EìS[TCM]C as a module under the Hecke algebra 
will depend in a subtle way on the individual %M< TO be a little more precise: 
I explained earlier (Section 1) that we can attach various L-functions L(n*M,r,s) 
to the automorphic form n*M. Certain products of some of these L-functions will 
occur in the computation of the constant term of the Eisenstein series (see [La]). 

The module EìS[7UM]C resulting from the above construction will depend on 
the behavior of the occuring L-functions at s = 0 (vanishing, poles, special 
values, for a first subtle case see [Ha3], 3.3). It is my main goal to understand 
this behavior. 

The same also applies to the contribution Hm(d&K9JV)[iiM]> for instance it 
will be interesting to investigate the influence of the L-values on the (higher) 
differentials in (Ss). 

I want to explain how such an understanding may have arithmetical conse
quences. 

3.1 Special Values of /.-Functions 

We assume that our [%M\ satisfies condition (bMD). As I explained earlier we 
know in this case that 

H'(d^,J/)[nM] 

is defined over Q, and it is even a rational subspace in the sense of [Hal], 1,3. 
Let us assume we have proved that (Hope) is true, then we know that the space 

r(Eis-[7cM]c) c H'(d&g9jK)[nM] ® C 

is a rational subspace. But this subspace can be described in terms of ratios of 
special values of L-functions and hence we get rationaltiy results for these values. 

The typical result under good circumstances will be that 

L(n*M,r,v-l) 
L(n*M,r,v) 

x 7c x discriminant factor e Q* 

where v, v — 1 are critical values on the sense of Deligne [De]. This gives us a tool 
to reduce the proof of Deligne's conjectures to the extreme critical values (for 
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special examples see [Hal], Theorem 2, (3), Corollary 4.2.2 and [Ha3], Corollary 
3.5.1, it is clear that there will be many more examples where this works). 

3.1.1 The Manin-Drinfeld Principle. Let us now fix the degree v of the cohomo
logy, for a given [%M\ we assume (bMD) and (Hope). If the map 

Eisv[7CM](C^^Im(r(Eisv[7CM]€)) c H-(d~F£;Jt)[nM] ® <C, 

is an isomorphism and if EìSV[7CM](C does not weakly intertwine with its comple
ment, then we say that the Manin-Drinfeld Principle (MD) holds (In the classical 
situations it just follows from the fact that the eigenvalues of the Hecke operators 
on cusp forms are different from the eigenvalues of Eisenstein classes (multiplicity 
one)). (The assertion (bMD) is something like (MD) for the cohomology of the 
boundary). 

If we know (MD) then we can conclude that the space EìSV[7CM]<C5 which is 
constructed by transcendental means, descends to a subspace defined over Q and 
it is actually rational. (See [Hal], Corollary (4.2.1), (note the subtle point (c)), 
and [Ha3], Theorem II). 

This is an interesting fact by itself, but in some cases we may evaluate these 
rational classes on certain cycles (modular symbols constructed from subgroups) 
and if we are lucky we may express the result in terms of special L-values. Hence 
we get rationality results for these L-values (see [Hal], 5.7.1). As we explained 
in [H-S] this implies - combined with the results of Don Blasius [Bl] - the truth 
of Deligne's conjecture [De] in the case of algebraic Hecke characters. (See also 
[Ha3]). 

3.1.2 Integrality. We go one step further. Let us assume for the given [%M\ that 
(bMD) is true, then we can say: If we invert a finite number S = {pi,p2,... ,ps} 
of rational primes then we even get a decomposition 

H-(dy£,Jk&s)= complement ®H'(d^,Jk&s)[nM]. 

We assume moreover that (in a fixed degree v) (MD) holds. Then we may try 
to define an isotypical subspace 

E ì S V [ T U M ] ^ C = 7 / V ( ^ G , ^ S ) 

(There are some problems with torsion which I cannot discuss here), and we may 
ask for the image 

r : Eisv[7cM]0s —• f 7 ^ l o b ( 5 ^ , ^ ) [ 7 c M ] • 

If we have (Hope) then the cokerriel of this map will be a finitely generated 
d^-torsion module. It will be interesting to ask for the structure of this module. 
It will be nontrivial in many cases, this indicates a failure of an integral version 
of (MD). In general I hope that the structure of this cokernel may be related 
to the arithmetic of certain special values of L-functions of the form L(n*M,r, v). 
(The conjectures of Deligne on special values say that these values divided by 
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a suitable period Q are rational numbers. But by construction ß itself is only 
defined modulo Q*. To give sense to an assertion of the form above one has to 
define the periods modulo G*s which is already a problem in itself. Moreover we 
have to assume that for %u the problem discussed in Digression has been settled.) 

An example is discussed [Ha6] in detail: There I take for G = GL2/Q, 
Kf = GL2(È), the coefficient system is obtained from the module Mn^ of 
homogenous polynomials in two variables of degree n (n even) with coefficients 
in TL. We invert the primes p dividing n + 2 and those for which p — l\n + 2. 
Then the structure of the above module is given by a value of the Riemann Zeta 
function: it is equal to %$/£(— 1 —n)%s- (The value of the Zeta function is integral 
in Zi). A generalization of this result to a ramified situation will be discussed in 
the Bonn Diplom-thesis of Ch. Kaiser. 

In [Ha2], IV, [Ha4], II, Beispiel PGSp2 I discuss some other situations where 
the investigation of this question is of interest. 

If our cokernel turns out to be cyclic, i. e. it is isomorphic to Gs/a(nM)&s> then 
we can interprete a(%M) as the denominator of the Eisenstein class. This number is 
of great interest for several reasons. If we pick a class œ G Hgoh(d^,Jtç)s)[%M] 
and we look at 

Eis(ûj) e Eisv[nM] c Hv(£f£,Jt), 

then fl(7tM)Eis(co) will be integral. This will give integrality results for special 
values of L-functions for instance those discussed in 3.1.1. In our example above 
this denominator is £(— 1 — n) we get integrality results for L-values of Dirichtlet 
series over real quadratic fields which are well known. The analogous problem 
for Gl2/F for an imaginary quadratic extension of Q will be discussed in the 
Bonn dissertation of H. König. 

3.2 The Mixed Motives 

This is even more speculation. As I said already the structure of the space 
EìS[7CM]CC will depend on the behavior of certain L-functions L(n*M,r,s) at s = 0, 
this argument s = 0 is the central point (for the functional equation). In [Ha3] 
I showed that in some cases (GL3/F, F totally imaginary) this dependence may 
be quite subtle. The structure of EìS[TCM](C depends on whether these L-values 
vanish or not and on the sign of the functional equation. I express the hope 
that for more complicated groups also the order of vanishing will influence the 
structure of the module (see [Ha3], 3.5.3). It would be exciting if we could read 
off the order of vanishing of L-functions in their central point from the structure 
of certain cohomology groups. 

On the other hand one has the Beilinson-Deligne conjectures (originating 
from the Birch and Swinnerton-Dyer conjectures) which say that these special 
L-values should contain arithmetical information (see [R-S-S, Sch]). The order of 
vanishing should predict the rank of certain Ext-groups in the category of mixed 
motives. The arithmetic of the values (see remark above) should predict the order 
or structure of certain finite groups (X-groups, ideal class groups). 

There is some hope to get information of this kind if we take the following 
detour: 
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We investigate the structure of Eis [TCMIC in dependence of the special value 
and let the module tell us something about the arithmetic. 

Basically the following principle should be adopted in first approximation: 
The vanishing of certain values L(n*M, r, 0) may create a failure of the Manin-

DrinMd-principle for Eis [TUM] C 
This failure has the following effect. To our given %M there should exist a 

module $[%M\ C H'(&K> <%) which is filtered (see 1.1), which is a direct summand 
in the cohomology and for which no non trivial subquotient occurs in the Jordan-
Holder series of its complement and where finally the top quotient of the filtration 
maps isomorphically to H^oh(d^,Jk)[%M\ 

Now we try again to attach a motive M(S,[KM]) to this module as we did it 
in our Digression (for instance if £f£ is a Shimura variety). But now this motive 
is also filtered because it inherits the filtration of the cohomology. In contrast to 
the cuspidal motive which is a pure motive this motive will be an extension of 
pure motives and we have (hopefully) constructed a mixed motive whose origin 
lies in the vanishing of an L-value. 

This is discussed in greater detail and for special cases in [Ha4]. For instance 
in Section II, Beispiel PGSp2 I show that such a failure of the Manin-Drinfeld 
principle is created by the Saito-Kurakawa lifting (see [PS]): We start with a 
modular cusp form for Sl2(2£) of weight 2mod4 which is an eigenform for the 
Hecke operators. In this case we see a mixed motive which is an extension of the 
Tate motive Q(—2) (which is obtained from the contribution of our modular form 
to the cohomology of the boundary) by a motive attached to the Saito-Kurakawa 
lifting of our form. This lifting contributes to the cuspidal cohomology of the 
group PGSp2. It should be isomorphic to the motive attached to the original 
modular form (if we believe the Tate conjecture). In this example I am not able 
to compute any kind of extension class, i.e. I am not able to decide under which 
conditions this extension is nontrivial (for a further discussion see [Ha4]) but I 
can check certain neccessary consistencies, especially it is clear the the extension 
is predicted by the Beilinson-Deligne conjectures. 

There is another such construction of a mixed motive for Hilbert modular 
surfaces (where I can prove nontriviality of the extension). I hope to include into 
a revised version of [Ha4]. 

In some sense the above principle has an integral analogue: If certain L-values 
are divisible by a prime p or a power of this prime then the Manin-Drinfeld 
principle should fail modulo p or a certain power p3 of p. This failure is related 
to the fact that the. Eisenstein class picks up a denominator (see 3.1.2). If we 
multiply it by its denominator to make it integral its restriction to the boundary 
becomes zero modulo the denominator and hence in a rather imprecise sense it 
becomes cuspidal modulo the denominator. This gives us congruences between 
Eisenstein classes and cuspidal cohomology classes which in the classical case of 
Sl2(Z) are related to the classical congruences. 

Let us assume that p3 is the exact divisor of O(TUM)- Then we get representations 
of Galois groups mod p3 which contains the above class fl(7CM)Eis(co)mod p3 as 
an invariant vector by construction but which is bigger. Hence it is an extension 
of a rank one representation by another representation. This representation 
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has controlled ramification (this requires deep results from the theory of p-adic 
representations of Galois groups) and hopefully it does not split. I discuss this in 
detail for the values £(—1 — n) (for even positive n) in [Ha6], Chap VI. We get a 
different approach to some of the results of Mazur-Wiles [M-W] and of Ribet in 

[Ri]. 
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Crystallizing the q -Analogue 
of Universal Enveloping Algebras 

Masaki Kashiwara 

Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa 
Sakyo-ku, Kyoto 606, Japan 

§0. Introduction 

The notion of the ^-analogue of universal enveloping algebras is introduced 
independently by Drinfeld and Jimbo in their study of exactly solvable models in 
statistical mechanics. This algebra Uq(§) contains a parameter q and it becomes 
the universal enveloping algebra when q = 1. This parameter is the one of 
temparature in the context of statistical mechanics and q = 0 corresponds to the 
absolute temparature zero. Therefore, we can expect that the theory of L (̂cj) will 
be simplified at q = 0. We call the study of Uq(o) &t q = 0 crystallization. Of 
course, we cannot deform Uq(^) at q = 0. However, we can construct the bases of 
representations of Uq($) at "q = 0", and the l/g(g)-module structure is described 
by combinatrics among them. This gives a purely combinatorial description of 
the tensor category of Uq(^)-modules (and hence £/(g)-modules). 

§ 1. Crystal Bases 

1.1 Definition of Uq(ç^) 

Let us consider the following data: 

(1.1) a finite-dimensional Q-vector space t, 
(1.2) an index set J, 
(1.3) a linearly independent subset {af;/ e 1} oft* and a subset {h\\i e 1} oft, 
(1.4) an inner product (, ) on t* and 
(1.5) a lattice P of t*. 

We assume that they satisfy the following conditions : 

(1.6) {(hj,ocj)} is a generalized Cartan matrix (i.e. (h/,a/) = 2, (fy,a/) G Z<# for 
i ì j and (hf, Uj) = 0 <=> (hJ9 a,-) = 0), 

(1.7) (a/,aOGZ>o, 

(1-8) M = » 
(1.9) af e P and 1y eP* = {h€t; (h,P) a Z}. 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
(ë) The Mathematical Society of Japan. 1991 
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The Q(g)-algebra Uq(o) is then the algebra generated by the symbols e^fi (i G 
/) and qh (hG P*) with the following fundamental relations: 

(1.10) qh = 1 for h = 0 and qh+h' = qhqh\ 
(1.11) qheiq-

h = qMet and qhfiq~h = q~{KcCi)U 
(1.12) [eu fj] = Stjitt - if1)/(ft - ft"1) w h e r e * = 1 { a u a ù a n d U = iMht> 
(1.13) E n ( - l ) ^ ! n ) ^ ^ " n ) = 0 and Zn(-l)

nfln)fjftn) = 0 for Ì + j and ft = 
l-(hi,ocj). 

Here we used the notations [n]t = (q" — q[n)/(qi — qi'1), [n]j! = FCUiM* a n d 
ef = enJ[ri\i\, fln) = f?/[n]i\. We understand ef = / f° = 0 forn < 0. 

1.2 Operators 2/ and /,-

For a t/g(g)-module M and X G P, we set Mx = {u G M; tzw = # ^ w } and call it 
the weight space of weight X. We say that M is integrable if M = ©xepMx and if 
M is a union of finitely dimensional sub-Uq(qt)-modules for any i. Here Uq(Qt) is 
the subalgebra of Uq(o) generated by eÌ9 ft and tt. 

By the representation theory of Uq(sl2)9 any element u of Mx is uniquely 
written in the form 

(1.14) u = Ysfi^Un (resp. = ^eì^vn) where un G kerej n MA+nai and un = 0 
except when n + (/ij,/l) > 0 and n > 0 (resp. u„ G ker/j n M^-,,«, and 
vn = 0 except when n > (/if, A) and n > 0). 

We define the endomorphisms 2; and / ; on M by 

and 

Then ^ and /,- satisfy the relations symmetric to this: e(U = X e i ü« a n d 

1.3 Crystal Base 

Let A be the subring of Q(q) consisting of the rational functions regular at q = 0. 
Let M be an integrable Uq(s)-module. 

Definition 1.1. A crystal base of M is a pair (L,B) satisfying the following 
conditions. 

(1.15) L is a free sub-y4-module of M such that M = Q(q) ®A L. 
(1.16) B is a base of the Q-vector space L/qL. 
(1.17) L = ®xepLx and ß = UXepBx where L* = L n M / i , f t = 5 n (Lx/qLj). 
(1.18) êjL <= L and /jL c: L. Hence ëf and fi operate also on L/qL. 
(1.19) ëiB c 5 u {0} and ftB aBU {0}. 
(1.20) For ft, ft' eB,b' = fib if and only if ft = efft'. 
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For a crystal base (L,B), the crystal graph is the oriented colored (by i G J) 

graph with B as the set of vertices and ft —> ft' if ft' = fib, 
The crystal graph describes completely the action of e\ and fi on B U {0}. 
For b G B9 we set 

and 

For ft G Bx, we have 

ß/(ft)=max{fc>0;gfft^O} 

^•(f t )=max{/c>0; / f f t^0} ( 

(hi,X) = Cpi(b)^8i(b). 

Example 1.2. When g ;= s/2, Uq(sl2) is the algebra generated by e,f,t9t
 x with the 

commutation relation tet~l = q2e,tft~1 = g - 2 / and [e,/] = (t — t~l)/(q — g - 1). 
Then any irreducible (/ + 1)-dimensional representation is isomorphic to Vj = 
©i=oQ(#)w/c with fuk = [k+ 1]M/C+I, euk = [1 + 1 - /c]w/c_i and tUk = qJ~2hUh Then 
L = ©À/fc and ß = {Mft;0<fc<!}c L/qL. Then (L,J3) is a crystal base of V\. 
Its crystal graph is 

Mo —* wi —*• * ' ' —• w/_i —• U\. 

1.4 Stability by Tensor Product 

Let us define the comultiplication of t/g(g) by 

A(qh) = qh®q\ 

A(ej) = ei®tf1 + 1 ® eÌ9 

A(fi)=fi®l + ti®fi. 

Then £/g(g) has a Hopf algebra structure with A as a comultiplication. By 4, the 
tensor product of two Uq(§)-modules has a structure of l/9(g)-module. 

Theorem 1 (Stability by ®). Let M\ and M2 be two integrable Uq(Q)-modu1es and 
let (Lj9Bj) be a crystal base ofMj (j = 1,2). Set L = L\®AL2 and B ^= {b\®b2e. 
L/qLibjeBj}. 

(i) Then (L,B) is a crystal base of M\ ®Q(q) M2. 
(ii) For bj G Bj (j = 1,2), we have 

L ö I ® / , ' & 2 if (pm) <,Si(h 
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1.5 Existence and Uniqueness 

We set P+ = {XeP; (huX) > 0}. For X G P+, let V(X) be the irreducible integrable 
Uq (Q) -module generated by a vector ux of weight X satisfying e^ux = 0. Then 

V(Q = Uq(Q)/( ^(C/g(g)ei + Uq(Q)fl+M) + £ Uq(Q)(q" ~ <Z<M>)) • 
/ \ i hep* / 

Let L(X) be the smallest sub-^-module of M such that L(X) contains ux and L(X) 
is stable by the fi. 

Let 5(2) be the subset of L(X)/qL(X) consisting of the non-zero vectors of the 
form/^ '-fuux. 

Theorem 2 (Existence). (L(X),B(X)) is a crystal base ofV(X). 

Let G[nt be the category of integrable Uq(Q)-modules such that there exists 
a finite subset F of P such that M = ®xeF+Q_Mx. Here, ß - = X Z<oO/- Then 
$int is a semi-simple abelian category and any irreducible object is isomorphic to 
V(X) for some X e P+ ([L], [R]). 

Theorem 3 (Uniqueness). Let (L,B) be a crystal base of an object M in G{nt. 
Then there exists an isomorphism M = @jV(Xj) by which (L,B) is isomorphic to 
®j(L(Xj),B(Xj)). 

Combining the Theorems 1, 2 and 3, we can describe completely the tensor 
category Gint. 

First note that the crystal graph of V (X) is connected. Hence the irreducible 
decomposition of an object in G\nt is equivalent to the connected component 
decomposition of the crystal graph. Then Theorem 1 tells us the crystal graph of 
tensor products 

Example. Take the case g = 5/3 (see §4 for the notation). Let {Ai} be the dual 
base of {hi}. Then the decompositions V(Ai) ® V(A{) = V(A2) 0 V(2Ai) and 
V(Ai) ® V(A2) = V(A1 + A2) © V(0) are described as follows. 

1 2 1 2 
— > • > • • > • — 

1 2 

•1 . ' i i U ' i L . I s 

i L'i' '1 .''Ul-
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§2. Crystal Base of [/"(g) 

2.1 Operators 2/ and // on t/̂ ~(g) 

Let £/~(g) be the subalgebra of Uq(o) generated by the //. Then U~(Q) has the 
unique endomorphisms e\ and e" such that 

[e,,P] = (î,ef (P) - tr'e{(P))/(«, - ft"1) for any P e t / -(g). 

Then e| and /,• satisfy the commutation relations : 

(2.1) ^,fj = q;{f"A,)fM5i}. 

Here we consider /;- as the left multiplication operator. Then any element w 
of £/~(g) can be uniquely written as 

w = Z^" )w» with 4W"=°-

We define the endomorphisms e,- and // of t/~(g) by 

Kz/.-")«»)=2:/.-""1)"« 

Then e,-/,- — 1 holds. Let L(oo) be the smallest sub-y4-module of Uq (g) that 
contains 1 and that is stable by /,-. Let J5(oo) be the subset of L(oo)/qL(ao) 
consisting of the vectors of the form f^ • • •//, • 1. Then (2?(oo),L(oo)) has a similar 
property to crystal bases. 

Theorem 4. (i) e,-L(oo) c L(oo) and //L(oo) c L(oo). 
(ii) ë,jB(oo) c5(oo)U {0} and fiB(oo) c fl(oo). 
(in) B(oo) is a base of L(oo)/qL(co), 
(iv) Ifbe B(co) satisfies ejb ^ 0, then ft = f{e\b. 

The relation of (L(oo), 5(oo)) and (L(X),B(X)) is given by the following theorem. 

Theorem 5. For X G P+ , let %x : L^~(g) -> V(X) be the U~(§)-linear homomorphism 
sending 1 to ux. 

(i) 7CAL(OO) = L(X). 

Hence %x induces the homomorphism %x '• L(oo)/'gL(oo) —> L(X)/qL(X). 
(ii) {ft G B(có);nx(b) ^ 0} is isomorphic to B(X) by %x. 
(Hi) fi o%x = nxo fu 

(iv) For ft G B(oo) such that lïx(b) ^ 0, eî%x(b) = nxfâb). 
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§ 3. Global Crystal Base 

Let U~(Q)Z be the sub-Zfogr1]-algebra of Uq($) generated by the, f\n\ For 
X G P+, we set Vx(X) = U~(Q)Z ' ux. Let — be the ring automorphism of U~(Q) 

such that q = q~l and ft = ft. This induces the automorphism — of V(X) by 
Pux = Pux for P G C/-(g). 

Theorem 6. (i) (Q ® C/~(g)z) nL(oo) nL(oo)~ —> L(oo)/qL(oo) is an isomorphism. 
(ii) For any X G P+, (Q®FzW)rïL(/l)nL(yl)~ -> L(X)/qL(X) is an isomorphism. 

Let G denote the inverse of these isomorphisms. Then we have G(b) = G(b) 
for ft G L(X)/qL(X) with A G P+ U {oo}. Moreover, we have G(b)ux = G\%xb) for 
any ft G L(oo)/qL(oo). 

Theorem 7. Por anj; n > 0 and i, 

iïu;(z)nu;(Q)z= 0 zfe^Mft), 

ffV(X)nvz(X)= 0 z ^ M f t ) . 
bG/;'B(A)\{0} 

W e call G(b) global crystal base. 

It is proven by Lusztig ([L3]) that the canonical bases introduced by himself in 
[L2] in the case An, Dn and En coincide with the global canonical bases introduced 
here. 

§4. Example 

This example is a joint work with T. Nakashima. Let us take g = sln. Hence 
I = {1, • • •, n - 1}, (ah aj) = 1, -1/2,0 according to i = j , \i - j \ = 1, \i - j \ > 0. 
Let Ai G t* be the dual base of hi and take ®ZAi as P. 

Then the crystal graph of B(A\) is 

m-4a n— 
n-1 >H 

For A = Xf=i A (1 <• h < • • • ^ ìN) we embed B(X) into B^O®'1 ®ß(^i)®''2 ® • • • 
by u\ !->• f [T]® • • • ®[jT] ) ® ( [T]® ' " ' ® \h\ ) ® " ' "• Then B(X) is parametrized 
by 

( 
mu ® Wl2 mlh ) • ( 

™21 m2ï-2 ) 

in 5(y i i )®^ ® • • •. W e assoc ia te t o th is b a s e t h e Y o u n g d i a g r a m Y(X) w i th a 
positive integer in each box as follows 
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mm 

mN}iN 

m2\ 

m2h 

win 

• 

mu 

Here Y(X) is the Young diagram with the columns with length i\, • • -,/#• 

Theorem. By this correspondence, B(X) is equal to the set of semi-standard tableaux 
with shape Y(X) (i.e. {my} satisfies my < myj ifi > i and my < my if j < f). 

§5. Remarks 

The notion of crystal base is introduced in [Ki] under the form dual to the one 
given here. Theorem 2,3 in the case of AmBn,Cn and Dn and Theorem 1 are 
proven there. In [M], the crystal graph of basic representation of Uq(sln) is given, 
The results here have been announced in [K2]. Independently, Lusztig introduced 
the notion of canonical bases in the case >4„,D„,E„ ([L2]) and he showed that 
they coincide with global canonical bases ([L3]). 
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Introduction 

Conventions; The ground field is (C. By LA we mean Lie algebra. 

Let us start with a few definitions. 

• A LA 3? endowed with a decomposition 

is called a graded LA if we have [J£n,J£m] £ jSf„+m. Moreover we will always 
assume that dim if„ < oo for any n < co. With our convention any graded 
LA is an ordinary LA and the notion should not be confused with super LA 
which are often called graded LA as well. 

• A subspace V of 3? is called homogeneous if we have 

V = ®„ezVn 

(where Vn = V n if n). The LA if is called simple graded if any homogenous 
ideal is trivial (i.e. 0 or if) and if dim if > 2. 

• Say that if has finite growth if 

dim if „ <P(n) 

for some polynomial P. 

We have recently proved the following theorem [M2]. 

Theorem (1990). Let 3? be a simple graded LA of finite growth. Then S£ is 
isomorphic to one of the following LA: 

1. A simple finite dimensional LA 
2. An affine LA 

* Work done under the hospitality of IAS at Princeton. I thank IAS for its support (DMS 
Grant 8610730). 
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3. A LA of Cartan typé 
4. W (Virasoro-Witt LA). 

The previous theorem has been conjectured by V.G. Kac. Alltogether there are 
14 infinite series and 13 exceptional LA. In part 1 (zoology) we will give precise 
definitions of the involved LA. Before we would like to make a few remarks. The 
origin of Kac conjecture comes from the following result [K]. 

Theorem (V. G. Kac, 1967). Let if 'be a simple graded LA of finite growth. Assume 
(*) 3? is generated by its "local part" if_i © ifo © if i 
(**) the J^Q-module if_i is irreducible. 
Then ££ is isomorphic to 

1. a finite dimensional LA, 
2. an affine LA or 
3. a Cartan type LA. 

Moreover it follows from 1967 Kac paper the existence of "continous families" 
of simple graded LA. Thus there are no hopes for a classification without the 
growth hypothesis. Note also that in characteric p ^ 0 the classification of finite 
dimensional simple L 4̂ is still open. * 

Part 1: Zoology 

In the section we will describe some species i.e. the LA involved in the Theorem. 
Altough each of them admit infinitely many different gradings we can describe 
all of them. For the simplicity of the exposition we will describe theses gradings 
in one case only. 

(1.1) Finite Dimensional Simple LA 

Recall that finite dimensional simple Lie algebras have been classified around 
1900 by Killing and Cartan. Four infinite series and five exceptional Lie algebras 
occur in their classification. The LA of the four infinite series are called classical 
LA. They are the following one. 

An or %\(n + 1) 
Bn or so(2n + 1) 
Cn or sp(2n) 
Dn or so (2n) 

It is not easy to give a simple description of the five exceptional simple LA 
E6,El9Es,F4a.ndG2 

1 At ICM conference G. Seligman tells us that H. Strade and R. Wilson have rencently 
announced the classification of finite dimensional simple LA over field of characteristic 
p > 7 . 
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(1.2) Affine (Kac-Moody) LA 

Let g be a finite dimensional simple LA, let œ be an automorphism of g of 
finite order £ and let r\ be /-root of unity. Set L(g) = g ® <L[t9t~

x], Define the 
automorphism œ of L(g) by: 

œ(g®f) = rjncû(g)®t11. 

Let L(Q,œ,rj) be the LA of fixed points under fà. A LA isomorphic to some 
L(g, œ, r\) is called affine. The definition is not accurate because there are many 
non-trivial isomorphisms between various L(g,co,?j). Fortunately V.G. Kac found 
a one to one parametrization of these isomorphism classes [K]. Actually he proved 
that affine LA are exactely parametrized by automorphisms of Dynkin diagrams. 
All together there are 6 infinite series and 7 exceptional affine LA. With the usual 
notation affine algebras are 

AV) »W r w /)W A® DP) D(3) P(1) P(2) F (1) F(1) G{1) P(1) 

Affine LA are also called loop algebras because any element of L(g) can be 
identified with a g-valued map on Sl whose Fourrier decomposition is finite. 

(1.3) Cartan Type LA 

Let Wn be the LA of derivations of the ring of polynomials (C[Zi, •• •, Xn]. Thus 
an element d of W„ is a vector field with polynomial coefficients, Note Lie(S) be 
the Lie derative action on spaces of differential forms. 

Set S„ = {d G W„|L/e(9) • v = 0} where v is the usual volume form 
dXiA'"/\dXn. 

For n = 2m let œ = ^T dXi A dXm+i be the usual symplectic form and 
set H„ = {de Vfn\L1e(d) • œ = 0}. 

For n — 2m + 1 let a = dXn + V XidXm+i — Xm+idXi be the usual 
contact 1-form and set K„ = {d e W„|a A Lie(d) • a = 0} . 

The LA W„,S,„H„,Kn are called Cartan type LA. These four infinite serie 
have been discovered by Cartan around 1910 [C]. 

(1.4) The Virasoro-Witt LA 

Let W be the LA of derivations of (C[T, T"1]. 

Remarks: 1, Each of the previous LA admits infinitely many gradings but only 
finitely many of them satisfy the hypotheses (*) (**) of Kac theorem. 

Example for ^ — Ww. Let a = a\9 ' ' ' > an be a sequence of non zero integers of 
same sign. There is a unique grading of !£ such that the element Z"n • • • X™nd/dXj 
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is homogeneous of degree a\m\ -\ \- anmn — aj. For any G e Sn (where Sn is the 
symétrie group) the gradings associated with a\9 • • •, an and with aa{\), • • •, aa{n) are 
obviously isomorphic. It is easy to prove that the induced map from (Z^uZ!L)/Sn 

to the set of isomorphism classes of gradings of S£ is one to one and onto . But 
the grading associated with (1 , . . . , 1) is the only one satisfying Kac's hypotheses 
(*) (**) (n > 2). 

Example: No grading of W,Wi satisfies (*). 
2. The terminology "affine LA", "Virasoro LA" is often used for central 

extension of LA considered here. 
3. Affine LA are "simple graded" but not simple (because of evaluation maps 

L(g) —> g). Conversely a simple graded LA which is not simple is affine (it is a 
statement). 

Table I. Simple graded LA of finite growth 
dim if < oo 

Affine 

Cartan type 
Virasoro-Witt 

An nn Cn Dn 

#6 Ei E^ F4 G2 

A® 5(1) CW Z)W 
^ n "n ^n *^n 

Df E« Ef £<» 
E« F® Gf 
W„S„H„K„ 

W 

Part 2: About the Proofs 

In this section we will describe the general plan of the proof. The proof divides 
into 3 Steps. 

Step 1 : Define 4 abstract classes of graded LA. 

Step 2: Lemma: Any simple graded LA belongs to one of the 4 previous classes. 

Step 3: Show 4 classification theorems (i.e. one for each class). 

Step 1. 4 Definitions: To meet step 1 we will define four abstract classes of graded 
Lie algebras. 

Let h be a finite dimensional nilpotent LA and let M be a finite dimensional 
/z-module. Recall that M decomposes as 

M = ®MX 

where X runs over h* and Ml is the generalized eigenspace associated with X 
(Engel Theorem). Let g be a finite dimensional LA. A Cartan subalgebra (or 
CSA) is a nilpotent subalgebra equal to its normalizer. It is classical that CSA 
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do exist. Moreover any two CSA are conjugated under a product of elementary 
automorphisms. Let if be a graded LA. Pick a CSA h of S£0 and consider each 
S^n as an /i-module. Thus we have: 

cp __ (T\ cpk 

m% 

Set:A = {(n,X)/&*^0}. 
Let Q be the subgroup of TL x h* generated by A . 

Definition 1. S£ is called without roots iff A ^ TL x 0 

Definition 2. if is called weakly integrable iff 
1) z l ^ Z x O 

2) p|ads(if;j).if = 0 

for any (n9X) e A,X ^ 0, 
Set: JS?+ = ©s>o^s,if~ = ®s<o^s-

Definition 3. Say that ^ is of type V iff dim ^ or dim S£~ is finite but dim ^ 
is infinite. 

A subset X of Q is called quasi-order iff 

Va G ß3JV £ OVm ^ NVJSi,.. ft„ e X we have 8 +f t + • • • + ßm e X. 

Let a e Q. The LA if is called ä-deep if we have \y?x>&\ = ^ for any 
quasi-order X such that X U {a} is still a quasi-order (by definition we set 

&x = 0 ^). 
(n,A)eX 

Definition 4. if is called deep if if is a-deep for some a = (n9X) € A with 
7 Î ^0 ,A^0 . 

Thus Definitions 1, 2, 3, 4 define 4 abstract classes of graded LA. Moreover 
any two CSA of £t?o are conjugated under a degree 0 automorphism of ^. Hence 
the definitions do not depend on a choice for h. 

Step 2 
Lemma 1. Any simple graded LA S£ satisfies exactely one of the following asser
tions. 

1) if is without roots. 
2) ^£ is weakly integrable. 
3) ^ is of type #. 
4) 3? is deep. 
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Step 3. 4 Classification Theorems 

The previous lemma splits the category of simple graded LA into four subcat
egories. Each of the following four theorem is a classification theorem for each 
of the four classes. Thus The main theorem is an obvious corollary of these four 
theorems. 

Theorem 1. Let S£ be a simple graded LA without roots. Then S£ has infinite 
growth. 

Theorem 2. Let S£ be a weakly integrable simple graded LA. Then dim S£ < oo or 
££ is affine. 

Theorem 3. Let 3? be a simple graded LA of type C. The ££ is of Cartan type. 

Theorem 4. Let S£ be a deep simple graded LA of finite growth. Then S£ is 
isomorphic to W. 

Theorem 1 has the following consequence. Any simple graded LA S£ with 
S£o = 0 has infinite growth. The growth hypothesis in theorem 1 is crucial 
because there are simple graded LA £^ with if0 = 0 . However there are no 
growth hypotheses for Theorems 2, 3. 

Thus Theorems 1, 2, 3, 4 and the Lemma implies the classification of simple 
graded LA of finite growth. 

Some References: 
Say that I£ has growth < 1 if we have dim S£n<C for some constant C. In a 
previous paper [Ml] we classify simple graded LA of growth < 1. 

1) The proof of Theorem 1 follows the same line as Theorem 1 in [Ml]. 
2) 90 % of Theorem 2 was already proved in [Ml]. 
3) The proof of Theorem 3 essentialy uses homological Kostant formula, Kac 

theorem and a calculation of characteric variety (following a nice trick of V. 
Guillemin). 

4) The proof of Theorem 4 is the main difficulty. At some point we use Gabber-
Kac theorem. Otherwise it is elernentary. 

Part 3: More About the Proofs 

The proof of the theorem is quite long. The main "tools" are the following ones: 

1) Basic Tool: We get informations from any "formal construction" of ideals. 
Obvious examples are centers, derived algebras... We can also use the notion of 
"quasi-order" for that purpose. Another typical example is the following. Let J^ 
be any graded LA. 
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Lemma 2. Assume that S£ = sé + $ where \sé, j / J g r f and \sé, SS\ £ $. Then 
a + [a90\ is an ideal. 

The lemma is obvious but it is used many time to construct subalgebras which 
behaves like si (2) or like an Heisenberg algebra. 

2) Another Tool: Partial LA. Let a < 0, b > 0 be integers, A partial LA is a 
graded vector space 

r=©r ( 

endowed with partial brackets P/ X Py -» P?+^ (for a < /, j , i + j < b) satisfying 
partial Jacobi identities , For a graded LA X, its partial part 

Part &= ®a^i<b &\ 

is a partial LA. Conversely any partial LA P is the partial part of some graded 
LA S£. Among such if's there is a minimal model ifminCO-

Lemma 3. Let if be a graded LA and P be a partial LA, If P is a subquotient 
of Part ^ then if minCH is a subquotient of J^, 

Especially if ifmin(P) does have infinite growth, J27 does. It allows us to 
restrict the possible partial part of graded LA of finite growth because we prove 
that for particular 6 series of partial LA P their models ifmin(f ) have infinite 
growth. 

3) Another Tool: Ranks. The rank of a graded LA ^£ is the dimension over Q of 
Q ®z Q. In the proof of Theorem 4 we study two cases : 

1) rank Se = 1 

2) rank if > 2 

Actually the rank > 2 case is by far easier. 

4) Last Tool: Coadjoint Estimates. Let S£^ = ®£f?*n be the graded dual of the 
graded LA 3^, For a homogenous Ç G J£* the space ^ • ( £ S£* is homogenous. 
For a simple graded LA S£ it is easy to show that the growth of if • Ç is 
indépendant of Ç =£ 0, The following lemma is very crucial in proving Theorem 4. 

Lemma 4. Assume ^ deep, simple graded and of finite growth. Then S£ • Ç has 
growth exactly 1. 
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Table li. Simple graded Lie algebras 

Type 
Without root 
Weakly integrable 
Type# 
Deep 

Finite growth 

0 
Finite dim. or Affine 

Cartan type 
Virasoro-Witt 

Infinite growth 
A lot [Continous families] 

0 
0 

A lot [Continous families] 
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Orbits on Flag Manifolds 
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College of Liberal Arts and Sciences, Kyoto University, Kyoto 606, Japan 

1. //-Orbits on X = G/P 

Let G be a connected real semisimple Lie group and X the flag manifold of 
G. X is a homogeneous space of G and the isotropy subgroup P = Px of each 
point x of X is called a minimal parabolic subgroup of G. Let a be an involutive 
automorphism (a2 = id.) of G and if a subgroup of Ga = {x e G \ GX = x} 
containing the identity component Gg of G0". Irreducible pairs (g5I)) of Lie algebras 
of G and H are classified by [Be]. 

The following are special cases of if-orbit decompositions of X = G/P. 

(i) Let a be a Cartan involution of G, g = ï © s the Cartan decomposition 
of the Lie algebra g of G for <J and X = H = Ga. Then P = M 4 N where 
i = P f i exps, M = ZK(A) and N is the unipotent radical of P. The Iwasawa 
decomposition G = KAN(= KxAxN) implies that #(K \ G/P) = 1. 

(ii) Let G = Gi x Gi, P = Pi xPi and o(x,y) = (y,x) for (x,y) G Gì x G\. Then 
H = Ga = {(x,x) e G j x € Gi}. Since H\G ^ Gi by the map H(x,y) i-> x_1y, the 
double coset decomposition H \ G/P is identified with the Bruhat decomposition 
Pi \ Gi/Pi. 

(iii) When G is a complex semisimple Lie group and a is a conjugation of G, 
H-orbits on X are studied in [A]. This study suggested the formulation for the 
following general cases. 

Let 0 be a Cartan involution of G such that od = OCT, g — ï © s the Cartan 
decomposition of g for 0 and K = G°. 

Definition. An element x of X is called "special" when Ax = P^nexps is cr-stable, 
Put 

U = {x E X I x is special } . 

Theorem 1 [R, Ml]. K n if \ U s* if \ X foj; tfie inclusion map U <-• X 

There exists a unique subgroup iffl of G such that Gg0 <= ffa c= Ga0 and that 
KnHa=KnH. (Note (if*)* = if.) 

Corollary [Ml]. Pfrere exists a one-to-one correspondence D h-• Da between H-
ortòs arcd Ha-orbits on X given byKnH\U^H\X and KnH\U^Ha\X. 

Proceedings of the International Congress 
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Example 1. Let G = SL(29 £). Then X = P1^) = (C U {oo}, 

ax + fe 

Toshihiko Matsuki 

where 

Then 

The if-orbits on X are {0}, <CX and {oo} and the corresponding if a-orbits are 
{|x| < 1}, {|x| = 1} and {|x| > 1}, respectively. (U = {0} U {|x| = 1} U {oo}.) 

2. Expression by Symbols 

Remark 1. If if = Gg, then H\X depends only on the pair (Q,G) because 

X = the set of minimal parabolic subalgebras of g 

and 

if \ X = Ad(ff)-conjugacy classes of minimal parabolic subalgebras of g . 

Theorem 2 [M-O]. Let G and H be as in the following list (complex classical cases). 
Then we can express H\X (and Ha\X) by symbols, (p+q = n,[H: Gg] = 1 or 2.) 

Type 

AI 
All 
AIII 
BI 
CI 
CII 
DI 
DI' 
DIU 

G 

GLfa <C) 
GL(n,<n) 
GL(n,<ty 

SO(2n + l,C) 
Sp(n,<£) 
Sp(n,V) 

SO(2n,<£) 
SO(2n,<ü) 
SO(2n,<E) 

H 

0(n,C) 
Sp(n/2, C) (n even) 
GL(pX) x GL(qX) 

S(0(2p + 1,(D) xO(2qX)) 
GL(nX) 

Sp(p,<n) x Sp(qX) 
S(0(2p,<£) x 0(2q,<£)) 

S(0(2p + l,<U)xO(2q-l,<E)) 
GL(n,<D) 

Ha 

GL(n,M) 
U*(n) 

U(p,q) 
SO(2p + l,2q) 

SpfaR) 
Sp(p,q) 

SO(2p,2q) 
SO(2p + l,2q-l) 

SO*(2n) 

Note. In [M-O] p.155, we should read GL(n,(C) for Cx x PSL(n,<U) on the line 
of DIU in Table 1. 
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Precise description of symbols and many examples are given in [M-O]. But • 
we can explain shortly the essencial part as follows. 

Let x £ U a X. Then ax p= Lie(Px) n s is c-stable by the definition of U, 
Let Ex be the root system of the pair (g, ax) and £+ the positive system of Ix 

corresponding to Px. Let Wx denote the set of simple roots in £+, Then we can 
take an orthogonal basis {ei,.,,,en} of the dual a* of ax such that 

Vx 
{ai,.,,,a„_i} if G = GL(n,€), 
{ai,..',,a„} otherwise, 

where ai = e\ — ß2> • - > fyj-i = e„_i — en and a„ = e„, 2e„ or e„_i + en if G = 
SO(2n+ 1,(C), Sp(w,C) or SO(2w,(D), respectively, 

To the left coset (K D H)x in 17, there corresponds a sequence fijß2,..fi7J 

consisting of the following four kinds of letters. 
(±) If Gej = *n then e, = + ("a boy") or - ("a girl"). When ef = ± and sj = ± 

fi/ = fi; <=> fl(ox,ß/ - ej) c Lie(if) . 

(a) If Gej = ej with z ^ j , then we put a small letter ("a family name") to the 
couple (fi/, fi;). 

(A) If Gei = —ej with / T̂  7, then we put a capital letter to the "old" couple 
(fi/, fi;). 

(O) If Gei = -en then e/ = 0 ("the aged" or "dead"?). 
Let Wi be the reflection with respect to the simple root a/ and P/ = P U Pw/P 

(P = Px) the parabolic subgroup of G for a,-. Let 7U/ denote the projection of 
X = G/P onto G/Pn 

Notation. For two H -orbits Di and Z>2 on X, we write 

Di -> f>2 <=> 7C/(Di) = 7C/(D2) and dimDi < dimf>2 . 

We put here two examples. (You can see 23 figures of examples in [M-O].) 

++ +- -+ 

Fig. 1. G = GL(3,(C) 

H = GL(2,Q xGL(l,€) Fig. 2. G = Sp(2,(D), if = GL(2,C) 
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Remark 2 ([S], [M2]). In complex cases, we can find all the closure relations 
among if-orbits on X from the following two properties. 

(a) Di-^D2=>Dicz Dc
2
l. 

(b) Di -^ D2,D3 -^ D4 and Dx c Df => D2 c DJ*. 
This is proved by the same argument as that of the Bruhat ordering since 

Di -^ D2 and Di -U D3 => D2 = D3 

in complex cases. To find all the closure relations in general real cases, we should 
follow a rather complicated procedure given in [M2]. 

Remark 3. These diagrams of orbits are useful to the study of the asymptotic 
behavior of spherical functions on semisimple symmetric spaces ([O]) and em-
beddings of Harish-Chandra modules into principal series ([M-O]). 

Remark 4 (Problem). If Z" = £(g5a) is classical, then there exists (in principle) 
a similar (sometimes the same) expression of the H -orbits on X as that in a 
complex case. Give a complete list of such expressions by symbols. (For example, 
it is proved in [M2] that the diagram of Ha \ X is upside-down to that of H \ X.) 

Example2 (= Exercise). When G = GL(n,F) and H = GL(p,F) x GL(n - p,F) 
for a division algebra F of characteristic =£ 2, the diagram of the if-orbits on X 
does not depend on F . 

Problem. Give good symbols for H -orbits on X when E is exceptional. 

3. Uzawa's Function / and Vector Field v on X (Related to 
Intersections of lï-Orbits and //a-Orbits on X) 

Recently, T. Uzawa discovered the following function / and vector field u o n l 
which have very nice properties with respect to H -orbits and if fl-orbits. 

Let YQ be a generic element of s. Then YQ defines a minimal parabolic 
subgroup Po of G such that YQ e ùQ = Lie(Po) fis and that Yo is dominant for the 
positive system of the root system Z(q, cto) corresponding to Po. By the natural 
identification 

G /Po^K/Mo = Ad(K)Y0 

(K n Po = M0 = the centralizer of Yo in K), X = G /Po is embedded into s. Let 
Yx denote the element in Ad(K) Yo corresponding to x e X. 

Definition, (i) We define a function / on X by f(x) = |7+|2 = B(Y+9 Y+) on X 
where 7X

+ = \(YX + GYX) and B(,) is the Killing form on g. 
(ii) A vector field v on X is defined by vx = the (infinitesimal) Y^-action at x 

for x G X. 
(iii) <I>t (t G R) is the one-parameter group of transformations of X for the 

vector field v. 
(iv) #+oo(x) = linv+±00 $t(x) for x e X. 
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Remark 5. The vector field v is the gradient of the function / with respect to 
the K-invariant Riemannian metric on X = K/Mo induced from the inner 
product (Z9Z

f) = B([Z, Yo],Z^) on I11"0 where Z'% is the element in s such that 
Zg — Z' G Lie(Po) and I1™0 is the orthogonal compliment of mo = Lie(Mo) in I. 

Remark 6. If the real rank of G is larger than one, then / and v depend essentially 
(not constant multiple) on the choice of Yo-

Example 3, (continued to Example 1) Take 

»-(S-i)«-{G-fr *-/)'—*}• 
Since Po is the subgroup of G consisting of upper triangular matrices, ePo 
corresponds to oo in P̂ CC) = (CU {oo} and 

kPo^( \ 5 W ^ for k-(\ ì)eK. 

On the other hand, 

b a J — b \—b a 

a b\ f 1 0 \ f a b\ (a —b\(a—b 
-b 5 7 10 —1 y V —fc a) \-b -aJ \b a 

aa — bb —2ab 
—2cd) —aa + bb 

So Ad(X) Yo is the sphere given by x2 + y2 + z2 = 1 and the function / is given 
by z2, Two points {oo}, {0} and the unit circle in P1^) correspond to (0,0,1), 
(0,0,-1) and the circle defined by z = 0, respectively, in Ad(X)Yo-

Theorem 3 [U]. (i) v is tangent to H-orbits and Ha-orbits. 
(ii) (df)x = 0 <=> vx = 0 <=> x is special. 
(iii) Let D be an PL-orbit on X. Then there exists m = min^D/(x) and for 

xeD, 
f(x) = m <=> x is special . 

(iv) #_oo(7>) = D nUfor H-orbits D on X 

Corollary 1 [M3]. (a) D O Da = (K n H)x for anxeU, 
(b) For two H-orbits D and E on X, 

Dcl ^E < = > D n £ f l ^ < = > D f l c (Ea)ci . 

Proof ([U]). (a) Let x G D nD*. We have only to show that x G U by Theorem 1. 
Let m be the value of the function / at the points in D D U (= Da D U). Suppose 
that x ^ 17. Then f(x) > m by (iii). Since the function for the if fl-orbit structure 
is |Yo|2 — /(x), we have also f(x) < m by (iii), a contradiction. 

(b) Since (Ha)a = H, we have only to prove the left <=> . 
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The assertion Dd r> E => D n Ea =f= (j) is clear since 

TX(E) + Tx(E
a) = TX(X) 

f o r a n y x e £ n £ f l ( [ M 3 ] ) . 
Suppose that D n £ a ^ 0 and let x e D n £". Then 

<PooW = Km $t(x) <E Dcl CiEa nu = Dcl n E nu 
£-»00 

by (i) and (iv). Hence D c / n £ ^ and therefore Dcl => E. D 

Corollary 2. Let D be an H-orbit on X and x G D Pi Dfl. 77ien 

(i) D^(KnH)xL&zUx) 

where L = KnHnPx and 

(ii) DCiEa^(KnH)xL (0Zi(x) n Pfl) 

/or any Ha-orbit Ea on X. (Moreover it is clear that the fibers ^ZIQ(X) and ( P l ^ ^ n 
Ea are contractible to the point x.) 

4. Remarks on Spherical Subgroups 

Suppose that G is a complex semisimple Lie group. A complex Lie subgroup H 
of G is called "spherical" if there exists an open H -orbit on X. Such pairs (G, H) 
are classified by [K] when G is simple and if is reductive, and by [Br2] in general. 

Theorem 4 [Bri, V]. H c G is spherical <=> #(H \ X) is finite. (Note that <= is 
clear.) 

There is a simple proof of => using "rank-one sections" as follows. 

Proof We may assume that HP is open in G. Write G = PßiPß2 • • • Pßm where the 
jS/'s are simple roots and Pßi = P U PwßiP. Put pW = PßiPß2 • • -PA "(P(0) = ^)-
We will show 

# ( # \ i f P ( V P ) < oo for z = 0, l , . . . ,m 

by induction on i. 
By the hypothesis of induction, we may assume that 

ffpC-D = HgiP U • • • U ffgfeP . 

Then we have 
HP®=HgiPßiV~'VHgkPßl . 

We have only to show that #(H \ HgjPßi/P) < oo for j = 1,.. .,fe. Since Jf P ( i _ 1 ) 

is open in G, (gjPß.jP) n (HP^^/P) is (Zariski) open in the one-dimensional 
sub variety gjPßJP of the complex algebraic variety X. Hence the compliment 
of (gjPßJP) n (JfP ( l_1)/P) in gjPßJP consists of finte points and therefore 
#(H\HgjPfr/P)<œ. D 
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Let G be a real semisimple Lie group and H a Lie subgroup of G. 

Conjecture 1. If the real rank of G is one and there exists an open H-orbit on 
X = G/P, then #(H \X)<oo. 

By the same argument as above for spherical subgroups, Conjecture 1 implies 
the following Conjecture 2. 

Conjecture 2. If there exists an open H-orbit on X, then #(Jf \ X) < oo, 

Remark 7. In general, f(H \ G/P) < oo does not imply #(ifc \ Gc/P<c) < oo. For 
example, if G — S U(n, 1) (n > 2) and if = 9N (where N is the unipotent radical 
of P), then f(H \ G/P) - 2 and f(H€ \ G«c/J>c) = oo. 
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Sur les Formes Automorphes de Carré Integrable 

Colette Mœglin 

URA 748, UFR de Mathématiques, Université de Paris VII, 2, place de Jussieu 
F-75251 Paris Cedex 05, France 

1. Définitions et notations 

Soit k un corps global, pour simplifier de caractéristique 0, i.e. une extension 
algébrique finie de Q. On note A l'anneau des adèles de k c'est-à-dire la /c-algèbre 
formée des éléments Y\v xv où v parcourt l'ensemble des places de k et où xv est 
un élément du complété k» de k en la place v9 entier pour tout v sauf un nombre 
fini. 

Soit G un groupe algébrique affine connexe, défini sur k que l'on suppose 
réductif. Les exemples classiques s'obtiennent en considérant un espace vectoriel 
de dimension finie V défini sur k et une forme bilinéaire 0 sur V (définie sur 
k); on prend alors pour G le groupe des automorphismes linéaires de V qui 
respectent #. Pour toute fc-algèbre, k', on note G(/c') les points de G définis sur 
k'. 

On appelle forme automorphe sur G, une fonction (j) à valeurs complexes sur 
G(fc)\G(A) qui vérifie un certain nombre de propriétés pour lesquelles je renvoie 
à [3]. On appelle forme automorphe de carré integrable modulo le centre, une 
forme automorphe, (/), pour laquelle il existe un caractère unitaire œ du centre 
Z(A) de G(A) tel que: 

(0 (f>(zg) = œ(z)(j>(g), VzeZ(A) , VgGG(A), 

(") / (ß(g)^(g)dg< oo, 
7 G ( / C ) Z ( A ) \ G ( A ) 

où dg est une mesure de Haar sur G(/c)Z(A)\G(A). 
Dans cet exposé, on s'intéresse à la détermination des formes automorphes 

de carré integrable. L'article de base pour cette question est [5] (cf. aussi [8]). 
On appelle sous-groupe parabolique de_ G, un sous-groupe fermé P de G tel 

que G(/c)/P(/c) soit une variété projective (k est une clôture algébrique de k). Ces 
groupes sont (comme G) connexes et jouent un rôle privilégié dans la théorie. 
Si P ^ G, P n'est plus un groupe réductif mais comme tout groupe algébrique 
affine connexe, il contient un unique sous-groupe fermé normal, noté MP tel que 
P / MP soit réductif et WP est minimal avec cette propriété. On pose 

M P : = P / M P . 

On note Xp le groupe des caractères de Mp(A), à valeurs complexes, engendré 
par les caractères du type \x\s où 11 est la valeur absolue adélique, où x est 
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un caractère rationnel de Mp et où s est un nombre complexe. Tout caractère 
appartenant à Xp est évidemment trivial sur Mp(fe). On vérifie que Xp est un 
espace vectoriel. 

Par exemple si G = Aut(F, #) avec # = 0, i.e. G ~ GL(F) alors les sous-
groupes paraboliques de G sont les stabilisateurs des drapeaux: 

Vo = 0 c Vi c Vi c • • • c Vd = V 

de V. Ici Mp ~ Ili<î<d GL(Vi/Vi-i) et XP ~ <Ed isomorphisme donné par 
l'application qui à (zi,---,Zd) G <Dd associe le caractère x((mW"9md)) = 
|detmi|Zl---|detmd|

Zrf. 
Soit P un sous-groupe parabolique de G; on généralise la notion de formes 

automorphes en notant ^4(P(fc)"P(A)\G(A)) l'ensemble des fonctions à valeurs 
complexes sur ce quotient qui vérifient les mêmes propriétés que les formes 
automorphes. En fait pour tout 0 G A(F(k)uF(A)\G(A)) et pour tout g G G(A) 
la fonction 0g sur Mp(A) définie par: 

(j)g(m) = (j)(mg)öp(m)~1/2 

est une forme automorphe pour Mp (Sp(m) est le Jacobien de l'automorphisme 
de MP(A) qui envoit u G MP(A) sur mum*1. 

On aurra aussi besoin de la notion de formes automorphes cuspidales; soit 
(j) comme ci-dessus, on demande en plus que l'on ait pour tout sous-groupe 
parabolique propre P' de Mp : 

VgGG(A), / (j)(ug)du = 0. 
>P'(fc)\«P'(A) 

Cela revient à dire que la représentation de Mp (A) engendrée par 0g (aux places 
à l'infini, c'est un g — K module) est une représentation automorphe cuspidale. 

2. Séries d'Eisenstein 

Les séries d'Eisenstein fournisse un procédé pour transformer un élément (/> e 
^4fP(fc)"P(A)\G(A)) en une famille, P(0,A) de formes automorphes dépendant 
meromorphiquement de A G Xp. Toutefois l'existence de P(0,A) n'a de démons
tration écrite que si (j) est de carrée integrable modulo le centre (cf. [5], Chapitre 
6 et 7) (Le résultat général est annoncé par Bernstein et dans le cas, que nous ne 
considérons pas d'un corps global de caractéristique > 0, résulte de résultats de 
[11] et [15]). 

Dans ce qui suit, on supposeque 0 G A(P(k) MP(A)\G(A)) vérifie la condition 
(i) ci-dessus (i.e. à un caractère central unitaire) pour l'action du centre de Mp(A) 
et est cuspidale. Alors 0 est de carré integrable modulo le centre de Mp(A). On 
sait que les pôles de E((j),X) sont de nature très simple: soit Xo G Xp, alors il 
existe un ensemble fini E d'hyperplans de XP passant par Xo et pour chacun de 
ces hyperplans H G E un entier nu (E et nu peuvent être choisi indépendamment 
de 0) tels que: 

H P? E[<I>,X) 
HeE 
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soit holomorphe en Xo où PH est l'équation de l'hyperplan H. On peut définir les 
résidus successsifs de E((j),X) le long d'un ensemble fini ordonné, Ef, d'hyperplans 
linéairement indépendants. On obtient une famille de formes automophes sur 
G(A) dépendant méromorphiquement de X appartenant à HHEE'H. 

Nature des pôles des Séries d'Eisenstein 

Admettons que l'on sache normaliser les opérateurs d'entrelacements (cf. [5], 
appendice 2 et [14]); on sait en particulier le faire si G ~ GL(F). Les pôles des 
séries d'Eisenstein sont alors de 3 types différents : 

- le premier type est de nature locale, il correspond aux pôles des opérateurs 
d'entrelacements normalisés locaux; 

- les deux autres types sont de nature globale: les facteurs de normalisations des 
opérateurs d'entrelacemetns sont des quotients de fonctions L. Le deuxième 
type correspond aux zéros des fonctions L qui apparaissent aux dénominateurs 
et le troisième type correspond aux pôles des fonctions L qui apparaissent 
aux numérateurs. 

Forme faible des résultats de Langlands 

Théorème (Langlands). Toute forme automorphe de carré integrable modulo le 
centre est un résidu de séries d Eisenstein. 

En fait la théorie de Langlands [5] donne beaucoup plus de renseignements 
puisque elle limite très sérieusement les hyperplans qui peuvent fournir des résidus 
de carré integrable. 

Conjecture. Soient (j),X,E((j),X) comme ci-dessus. Les seuls hyperplans singuliers 
pour E((/),X) qui peuvent fournir des résidus de carré integrable sont les hyper
plans singuliers provenant des pôles des fonctions L des numérateurs des facteurs 
de normalisations. 

3. Le cas de GL(F) 

La conjecture est vraie et on démontre alors aisément le théorème suivant (cf. 
[9], conjecturé et démontré dans des cas particulier par Jacquet [4] (la partie (i) 
avait été obtenue par Speh [13]): 

Théorème. Soit V un espace vectoriel de dimension n sur k; on suppose que G = 
Gun 

(i) Soit n = da une décomposition de n et soit 

V0 = 0 c - • • c Vf c • • • c: Va = V 

un drapeau tel que dim Vi = id, pour 0 < i < a. On note P le stabilisateur de ce 
drapeau et alors MP ~ tli^^a GL(rf). Soit (j) G ,4(P(fc)wP(A)\G(A)) telle que 
pour tout g G G(A) la représentation automorphe de Mp(A) engendrée par c/)g soit 
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irréductible isomorphe à Q<&-- -®Q Où Q est une représentation automorphe cuspidale 
fixée de GL(d)(A) de caractère central unitaire. On rappelle que Xp ~ Cfl. Alors 
Vensemble des hyperplans siuguliers pour E((j),X) passant par le point: 

(a-l)/2,...,(a-2i+l)/2,...,-(a-l)/2 

est Vensemble des hyperplans Si — Si-i = 1 pour 1 < i < a. Le résidu obtenu 
successivement le long de ces hyperplans rangés dans n'importe quel ordre (l'ordre 
est indifférent) est une forme automorphe sur G(A) de carré integrable modulo le 
centre. 

(ii) Toutes les formes automorphes de carré integrable modulo le centre sont 
obtenues de cette façon. 

Sur la preuve, (i) C'est un problème combinatone peu profond (déjà résolu dans 
l'appendice 3 de [5] pour n = 4) que de montrer que les zéros des fonctions L 
des dénominateurs des facteurs de normalisations n'interviennent pas. 

(ii) C'est un problème de décomposition de certaines induites (du moins il 
faut calculer leurs quotients irréductibles) qui permet de régler le cas des pôles 
des opérateurs d'entrelacements locaux. 

4. Interprétation d'Arthur 

Dans [6] Langlands suggère que les classes d'isomorphie de représentations au
tomorphes tempérées se regroupent en paquets qui devraient être paramétrés 
par les classes de conjugaison d'homomorphismes "admissibles" d'un groupe 
(dont l'existence devrait provenir de la théorie des catégories tanakiennes), noté 
Lp, dans le L-groupe associé à G. Admettant cela, Arthur suggère que les 
classes d'isomorphie de représentations automorphes de carré integrable se re
groupent en paquets que devraient être paramétrés par les classes de conjugaison 
d'homomorphismes "admissibles" du produit direct de Lp par SL(2, (C) dans le L-
groupe. Arthur donne aussi une paramétrisation (conjecturale) des représentations 
intervenant dans un paquet donné ainsi que de la multiplicité avec laquelle elles 
devraient intervenir. 

En admettant la conjecture de Ramanujan, i.e. que l'ensemble des formes 
automorphes cuspidales de GL(n), de caractère central unitaire, est exactement 
l'ensemble des formes automorphes tempérées, le résultat cité pour GL(n) prouve 
les conjectures d'Arthur dans ce cas (chaque paquet est ici réduit à un élément et 
la multiplicité est un). 

Un cas particulier intéressant des conjectures d'Arthur est de considérer les 
homomorphismes "admissibles" triviaux sur Lp. Les paquets qu'ils devraient 
paramétriser sont appelés, par Arthur, unipotents. Supposons pour simplifier 
grandement que G est un groupe classique déployé. L'ensemble des paquets 
unipotents devrait alors être en bijection avec l'ensemble des orbites unipotentes 
du groupe complexe dual, G*, associé à G (i.e. la composante neutre du L-groupe) 
ne rencontrant aucun sous-groupe de Levi propre de G*. La méthode employée 
pour GL(rc) devrait conduire aisément au résultat suivant: 

soit G un groupe classique déployé de centre fini; alors les résidus de carré 
integrable des séries d'Eisenstein construites à partir des caractères non rami
fiés d'un sous-groupe de Borei de G doivent réaliser avec multiplicité un les 
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représentations automorphes de carré integrable de G(A) paramétrées par les or
bites umpotentes, 0, de G* ne rencontrant aucun sous-groupe de Levi propre de G* 
et par les produits, 

n j«" 
V 

indexés par l'ensemble des places de k, de_caractères du groupe, A(0), introduit par 
Lusztig ([7], chapitre 14, où il est noté A(u)), vérifiant: _ 

pour presque tout v, Xv est le caractère identité et le caractère de A(0) que l'on 
obtient en faisant le produit de tous les Xv est le caractère identité. 

Pour un résultat dans ce sens, confer [10]. Ce qui me manque pour obtenir 
toutes les représentations d'un paquet unipotent est une construction générale 
des représentations automorphes cuspidales unipotentes; les séries thela en four
nissent dans certains cas (cf. [12]). 
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In this lecture I shall report on the recent results, and open questions, related to 
the congruence subgroup problem, computation of the covolume of S-arithmetic 
subgroups, bounds for the class-number of simply connected semi-simple groups 
and state the finiteness theorems of [3]. We shall also briefly mention the recent 
work on super-rigidity of cocompact discrete subgroups of Sp(w, 1) and the R-rank 
1 form of type F4, which implies arithmeticity of these discrete subgroups. 

Notation. Throughout this report k is a global field, that is either a number field 
(i.e. a finite extension of the field Q of rational numbers) or the function field of 
an algebraic curve over a finite field. Let V be the set of places of k, V^ (resp. 
Vf) be the set of archimedean (resp. nonarchimedean) places. For v e V, k» will 
denote the completion of k at v with the natural locally compact topology and 
I \v the normalized absolute value on fc». For v e Vf, ov will denote the ring of 
integers of kv, fw the residue field, pv the characteristic of f„ and qv its cardinality. 
In the sequel It» is assumed to carry the "normalized" Haar measure, see [26, 
0.1]. For any finite set S of places of k containing Koo, Os will denote the ring of 
S-integers of k, i.e. 

os = {x e k\ \x\v ^ 1 for all v <£ S}. 

A will denote the ring of adèles of k. For a finite set S of places of k, let A$ 
be the ring of S-adèles i.e. the restricted direct product of the /ĉ 's for v $ S. 

Let G be a connected semi-simple algebraic group defined over k. We fix an 
embedding of G in SL„ defined over k and view G as a /c-subgroup of SL„ in terms 
of this embedding. Let S be a fixed finite set of places of k containing V^. Let 
Gs = HvesG(kv) with the locally compact topology induced by the topologies on 
kV9v e S. We shall let L denote the group G(k) D SL„(os). Note that L depends 
on the embedding of G in SL„ fixed above. Embedded diagonally in G$, L is a 
discrete subgroup of finite covolume. A subgroup of G s is said to be S-arithmetic 
if it is commensurable with T. 
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1. The Congruence Subgroup Problem 

For any non-zero ideal a of os, we have the "reduction mod a" 

na : SLn(os) -> SL„(os/a). 

The kernel of 7za\r will be denoted by La, it is by definition the principal S-
congruence subgroup of T of level a. Since Os/a is finite, SL„(os/a) is finite and 
hence La is of finite index in L. An S-arithmetic subgroup is an S-congruence 
subgroup if it contains a principal S-congruence subgroup of r of some level. 
It is not difficult to see that this notion (of S-congruence subgroups) does not 
depend on the choice of the fc-embedding of G in SL„. 

Henceforth, G will be assumed to be absolutely almost simple and simply con
nected. We shall assume further that Gs is noncompact or, equivalently, for some v 
in S, G is isotropic at v ([24]). 

The congruence subgroup problem in its simplest form asks whether any S-
arithmetic subgroup is an S-congruence subgroup. If the answer is in the affir
mative, we say that G has the congruence subgroup property (for S-arithmetic 
subgroups). In general the answer to the above question is in the negative. For 
example, as has been known since 1880, the group SL2/Q does not have the 
congruence subgroup property for S = Vœ (but the group SLn/Q has the congru
ence subgroup property for all n > 2 - this was proved by Bass-Lazard-Serre and 
Mennicke independently in 1963). If k is a totally imaginary number field, the 
group SLn//c fails to have the congruence subgroup property for any n (S = Vœ) ; 
see [2]. To give a precise measure of the failure, J-P. Serre introduced "the S-
congruence kernel" which is a profinite group defined as follows. On G(k) we 
introduce the following two translation invariant topologies : 

(1) The S-congruence topology: In this the S-congruence subgroups constitute a 
neighborhood base at the identity. It is obvious that this is the same topology 
as the one induced on G(k) from G(A$). By strong approximation ([23], [14], 
[21]), the completion of G(k) with respect to the S-congruence topology is 
G(AS). 

(2) The S-arithmetic topology: In this the S-arithmetic subgroups contained in 
G(k) constitute a neighborhood base at the identity. Completion of G(k) with 
respect to this topology will be denoted by Gs. 

As every S -congruence subgroup is S-arithmetic, the S-arithmetic topology on 
G(k) is finer than the S-congruence topology and therefore there is a continuous 
homomorphism Gs —> G(As). It is not difficult to show that this homomorphism 
is surjective and its kernel, denoted C(S,G), is a profinite group. C(S,G) is by 
definition the S-congruence kernel. It is clear that C(S,G) is trivial if, and only 
if, G has the congruence subgroup property (for S-arithmetic subgroups). In the 
more precise formulation due to Serre, the congruence subgroup problem is the 
problem of determining the S-congruence kernel C(S, G). 

We have the following topological extension 

(*) 1 -> C(S, G)^GS-+ G(AS) -> 1 
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of G(As) by C(S,G). The natural inclusion of G(k) in Gs provides a splitting of 
this extension over G(k)(<-> G(As)). It has been conjectured that, under a fairly 
general hypothesis, (*) is a central extension i.e., C(S,G) is central in Gs, see 
Section 4 below. We shall devote the next two sections to topological central 
extensions. 

2. Topological Fundamental Group 

A topological extension 

(+) 1 -> <t - • g - • 9 - • 1 , 

of a locally compact and second countable topological group 0 by #, with <f 
locally compact and second countable, is a universal topological central extension 
(u.t.c.e.) of 0 if it is a central extension i.e., ^ is a closed central subgroup of i, 
and given any topological central extension 

l - > C - * E - > â f - > l , 

with E locally compact and second countable, there is a unique continuous 
homomorphism cp : ê —• E making the following diagram commutative 

I i * II 
1 -+ C - > E - > » - > 1 . 

It is clear that if 0 admits a u.t.c.e., the latter is unique upto natural equivalence. 
In case (+) is a u.t.c.e. of ^ , # is by definition the topological fundamental group 
of ^ and it is denoted by %i(^). If 0 is a connected real semi-simple Lie group, 
then 7Ci(̂ ) coincides with the usual (algebraic topological) fundamental group 
of ^. It follows from certain results of Moore [20], that if ^ is perfect i.e. if 
it is its own commutator, and the cohomology group H^(^,R/Z), based on 
measurable cochains, is finite, then 9 admits a u.t.c.e. and ni(@) is isomorphic to 
the dual of H^(^,R/Z). It is also known that if 0 is totally disconnected, then 
the cohomology theory of ^ based on measurable cochains is identical with the 
theory based on continuous cochains [37]. 

If v is a nonarchimedean place where G is isotropic, then G(kv) is perfect 
(in fact any proper normal subgroup is central) and the cohomology group 
i72(G(/cu),R/Z), defined in terms of continuous cochains, is essentially known: 

Theorem 1. Let v be a nonarchimedean place of k such that G is isotropic at v 
(or, equivalently, G(kv) is noncompact), then H2(G(kv),R/Z) is isomorphic to a 
subgroup, of index at most two, of the dual j&(/cy) of the finite group p,(kv) of roots 
of unity in kv. Moreover, if at least one of the following three conditions holds, then 
it is isomorphic to ju(/cy). 

(i) G is quasi-split over an odd degree extension of Iq, ; 
(ii) liv is not an extension of Q2; 
(iii) It» contains a primitive fourth root of unity. 
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As a consequence, if G is isotropic at o, then G(fc„) admits a u.t.c.e. and 
%i(G(kl})) is isomorphic to the dual of H2(G(k0),R/Z). 

It is expected that for any nonarchimedean place v where G is isotropic, 
H2(G(kv),R/Z) is isomorphic to p,(kv). For the spin group of a quadratic form 
over k which is of Witt index at least 2 at v, this is proved in [27, 1.9] and the 
same proof would take care of some other classical groups. 

For the group SL2.the above theorem is due to Moore [19]. For other 
Chevalley groups (i.e. groups which split over k) he proved that H2(G(kv),R/Z) is 
isomorphic to a subgroup of #(fcy), and about ten years later Deodhar [7] showed 
that this holds also when G is quasi-split over kv (i.e. contains a Borei subgroup 
defined over kv). Soon after Moore proved his result, Matsumoto showed, by 
constructing a suitable topological central extension of G(kv), that if G is a 
Chevalley group, the above cohomology group is actually isomorphic to fi(kv), 
and an observation of Deligne implies that this is also the case if G is quasi-split 
over fcy, see [28, §5]. Bak and Rehmann [1] have proved the above theorem, as 
well as Theorem 3 stated below, for groups of inner type A of relative rank ^ 2 
using K-theoretic methods. 

In the generality stated above, the theorem is proved in [28] using the results 
of Moore, Matsumoto, Deodhar and Deligne and the Bruhat-Tits theory of 
reductive groups over nonarchimedean local fields. The complete proof of the 
above theorem is quite long and difficult and involves some case considerations. 
It is desirable to have a shorter and simpler proof. 

The known results on H2(G(kv),R/Z) in case G(kv) is compact (or, equiva
lent^, G is anisotropic at v) are summarised below. 

Theorem 2. Let v be a nonarchimedean place such that G(kv) is compact (then, as 
is well known, there is a central division algebra Dv over k» such that G(kv) is 
isomorphic to the group SLi (Dv) of elements of reduced norm 1 in Dv, and) the 
cohomology group H2(G(kv), R/Z), based on continuous cochains, is a finite group 
of order a power of pVi where.pv is the characteristic of the residue field of fcy. It 
is cyclic if Dv is not the quaternion central division algebra over Q2 and is trivial 
if fc„ does not contain a primitive pv-th root of unity and Dv is not the quaternion 
central division algebra over Q3 . 

This theorem is proved in [30]. The precise computation of if2(SLi(Dy),R/Z) 
has not yet been .done» We conjecture that it is isomorphic to Z/2Z ® Z/2Z if 
Dv is the quaternion central division algebra over Q2, it is isomorphic to Z/3Z 
if Dv is the quaternion central division algebra over Q3, and is isomorphic to the 
Py-primary component of the dual /*(fcy) of the group of roots of unity in fcy in 
all other cases. 

Remark. Theorems 1 and 2 imply that, for any finite set S of places of fc, 
H2(G(AS),R/Z) is the direct product of the H2(G(kü),R/Z),v $ S. If moreover 
G(AS) is perfect, then it admits a u.t.c.e. and its topological fundamental group is 
the direct sum (with discrete topology) of the 7Ci(G(fcy)),u ^ S; see [27, Theorem 
2.4]. This implies that if C(S, G) is central in Gs, then it is actually finite [27, §2]. 
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3. The S-Metaplectic Kernel 

Let ffl be a subgroup of a locally compact second countable topological group 
^. Assume that ffl is perfect and ^ admits a u.t.c.e. Then there is a topological 
central extension 

l - * C - * E - > 0 - > l , 

with E locally compact and second countable, which splits over ^f and which is 
universal with respect to this property. The relative topological fundamental group 
%\ (9, ffl) is then by definition the group C. 

The S-metaplectic kernel is the group 

M(S, G) = Kn(H2(G(As),R/Z) ^ H2(G(k),R/Z)) ; 

where H2(G(k), R/Z) denotes the second cohomology of the abstract group G(fc) 
with coefficients R/Z. The topological central extensions of G(As) by R/Z, which 
split over the subgroup G(k), are classified by the S-metaplectic kernel. It is 
obvious that if G(k) is perfect, then M(S, G) is isomorphic to the Pontrjagin dual 
of the relative fundamental group %\(G(As)9G(k)). 

We now come back to the congruence subgroup problem. Assume that G(k) 
is perfect and C(S,G) is central in Gs (see Section 4 below). Then adapting 
an argument of [2, §15] and using Theorem 1, it can be proved that (*) is the 
universal extension in the category of topological central extensions of G(As) 
splitting over G(k), see [27, §2]. In particular, C(S9 G) is isomorphic to the relative 
fundamental group ni(G(As), G(k)) and so it is isomorphic to the Pontrjagin dual 
of the S-metaplectic kernel M(S9G). Thus to determine the S-congruence kernel, 
it is enough to compute M(S, G). Also, in the theory of automorphic forms (of 
fractional weights) it is of critical importance to know the topological central 
extensions of G(A) which split over G(fc); these are determined by M(0, G). Now 
we state the following theorem which "determines" M(S, G) for all fc-isotropic G. 

Theorem 3. Assume that G is isotropic over k. Let S be an arbitrary finite set of 
places ofk. Then M(S,G) is trivial if S contains either a nonarchimedean place, or 
a real place v such that the group G(kv) is not topologically simply connected. In 
general M(S9G) is isomorphic to a subgroup of the dual ju(fc) of the group of roots 
of unity in k. 

For Chevalley groups this theorem was proved by Moore [19] and for groups 
which are quasi-split over fc, it was proved by Deodhar [7]. For the group G = SL2, 
Moore in fact proved that M(S,G) is trivial if S contains a noncomplex place 
and it is isomorphic to p,(k) otherwise *. Soon after this, Matsumoto proved that 
for all Chevalley groups G, M(S, G) is isomorphic to p,(k) if S does not contain 
any noncomplex place. The same holds for any group which is quasi-split over 
fc as was observed by Deligne. If either S => VOD or fc is a totally imaginary 
number field, the precise computation of M(S, G) for the groups $Ln(n ^ 3) and 

1 This result is equivalent to his theorem on the "uniqueness of the reciprocity law of 
global class field theory" - see [4] for an elegant proof of the latter. 
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Sp2«(ft = 2) is already in [2], and following the ideas of this paper, Vaserstein 
[35] computed the metaplectic kernel for many other classical groups. In 1981, 
Bak, in a Comptes Rendus note, outlined a proof of this theorem for all groups 
of classical type of relative rank at least two which uses the results of [1]. 

For arbitrary simply connected fc-isotropic groups, the above theorem was 
proved by Prasad and Raghunathan in 1980 [27], and besides the results of 
Moore and Deodhar for split and quasi-split groups, the proof uses the results of 
[28] on topological central extensions of G(k0). Note that for a real place v, the 
condition that G(kD) is not topologically simply connected is equivalent to the 
condition imposed in [27, 3.4(h)]. 

It is likely that if G is fc-isotropic, S c Vœ, and for every v in S, G(k0) is 
topologically simply connected, then M(S9 G) is isomorphic to /t(fc). This has been 
verified for many of the classical groups and some groups of exceptional types. 

A variant of Moore's theorem on the "uniqueness of the reciprocity law", 
announced in [25], together with the results of [28, 30], can be used to compute 
M(S,G), modulo 2-torsion, for all fc-anisotropic G. For some results in this 
direction see [32]. 

4. Projective-Simplicity of G(k) and Centrality of C{S, G) 

It has been conjectured by Kneser, Platonov and Margulis that if G is isotropic at 
each nonarchimedean place, then G(k) is projectively-simple i.e. it does not contain 
any proper noncentral normal subgroup, and if it is anisotropic at some nonar
chimedean place, then (as is well known, G is of type A and) any noncentral normal 
subgroup ofG(k) is the intersection ofG(k) with a normal subgroup of Y[ve#>G(kv), 
where £f is the (finite) set of nonarchimedean places of fc where G is anisotropic. 
This conjecture is known to hold for all fc-isotropic groups except possibly for 
certain outer forms of type E6 of fc-rank 1 which require division algebras of 
degree 3 for their construction. For anisotropic groups, the results are much less 
complete. In 1980, inspired by [22], Margulis [16] proved the above conjecture for 
groups of type Ai. This implies the projective-simplicity of the spin group of any 
quadratic form in 3 or 4 variables which is isotropic at all nonarchimedean places 
of fc. Projective-simplicity of the spin group of any quadratic form in at least 
five variables was proved already in 1956 by Kneser [9] by an ingenious method. 
Borovoi and Chernousov have recently proved the projective-simplicity of G(fc) 
whenever G is of absolute rank at least two and it splits over a quadratic exten
sion of fc (this class includes all groups of type B, C, E7, Eg, F4 and G2); and now 
Sury and Tomanov have independently established this for G of type A3, which 
is isotropic at all nonarchimedean places - this implies the projective-simplicity 
of G(fc) for all groups G of type D (except the triality forms). But the anisotropic 
groups of (inner and outer type) A„ (n arbitrary) pose a serious challenge. 

It may be of interest to note here that it follows from the well known result 
of Margulis [15] on normal subgroups of lattices 2 in semi-simple groups, and 

2 A lattice in a locally compact unimodular group is a discrete subgroup of finite covolume 
(with respect to any Haar measure). 
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the strong approximation property, that any noncentral normal subgroup of G(k) 
is of finite index in G(k) (see, for example, [23]). Moreover, it is easy to show that 
if G is isotropic at all the nonarchimedean places of fc and has the congruence 
subgroup property for some S, then G(fc) is projectively-simple. 

Based on the results of [2, 33] on SL„ and Sp2„, and [18], where the centrality 
of the S-congruence kernel was proved for all Chevalley groups of rank ^ 2, it 
has been conjectured that for arbitrary (simply connected) G, C(S,G) is central 
in Gs //,^uGSfcy-rank(G) ^ 2 and G is isotropic at all nonarchimedean veS. Using 
some of the ideas of [2, 33], Vaserstein [35] showed that this conjecture holds 
for all classical groups of fc-rank at least two. Raghunathan has proved the 
above conjecture for all fc-isotropic groups [31]; his proof does not require any 
case-by-case analysis. 

For the spin group of an arbitrary (not necessarily isotropic) quadratic form 
in at least five variables the above conjecture on the centrality of C(S,G) was 
proved by Kneser [10]. Refining and using his ideas, Rapinchuk and Tomanov 
have recently proved the conjecture for all anisotropic groups of type B,.(r ^ 2), 
Cr(r ^ 2), D,.(r ^ 5), E7, Eg, F4, G2, and the groups of type 2A,.(r 5: 3) which split 
over a quadratic extension of fc. The question of centrality of the S-congruence 
kernel for anisotropic groups of type A is a very interesting open problem-its 
solution may require new insight into the structure and geometry of central 
division algebras over global fields. 

5. The Hasse Principle and Tamagawa Number 

If fc is a global function field, then the Galois cohomology Hì(k, G) is trivial (this 
was proved by Harder). On the other hand, if fc is a number field, it has been 
known for quite some time that the "Hasse principle" i.e., the assertion that the 
natural morphism 

Hi(k,G)-+ n ^ ( ^ G ) 

is injective, holds for all (simply connected) G of type other than Eg. The Hasse 
principle has now been verified for groups of type Eg by Chernousov [5]. 

If fc is number field, let D^ be the absolute value of the discriminant of fc/Q 
and if fc is a global function field, let qjc be the cardinality of its field of constants, 
g/c the genus of fc and Dj< = qlgk~2-

Let œ be an invariant exterior form on G, of maximal degree, defined over 
fc. Then for each place v, the form œ , and the normalized Haar measure on fcy, 
determine a Haar measure on G(fcy) which we denote by cov. 

Let P = (Pv)veVf be a fixed coherent collection of parahoric subgroups: 
for each v e Vf,Pv is a parahoric subgroup of G(lcv) such that the product 
TlveVnGfav) * TlveVfP» *s a n ° P e n subgroup of G(A). (Recall that a subgroup of 
G(/cy) is said to be an Iwahori subgroup if it is the normalizer of a maximal pro-py 

subgroup of G(kv) or, equivalently, it is the stabilizer of a chamber (i.e. a simplex 
of maximal dimension) in the Bruhat-Tits building of G(fcy). Any subgroup 
containing an Iwahori subgroup is called a parahoric subgroup.) It is known that, 
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as G is semi-simple, the product Ylœ'v(Pv) is absolutely convergent and so there 
is a Haar measure \i on G(A) which on the open subgroup HveVooG(kv) • J\veV Pv 

coincides with thè measure D^1 m YiveVaocov ' Ylvevf
œv\p0-1* is obvious from the 

product formula (i.e. ]Jv\x\v = 1 for xek* ) that the measure p is independent 
of the fc-form œ and it is called the Tamagawa measure. The Tamagawa number 
of G/fc, to be denoted Tfc(G), is the positive real number p,(G(A)/G(k)). It was 
conjectured by Weil that for all (simply connected absolutely almost simple) 
G,tk(G) = 1. This conjecture has recently been proved by Kottwitz, over number 
fields, without any case-by-case considerations (see [11], and also [26, 3.3]). Using 
Arthur's trace formula and the Hasse principle, he has in fact shown that if fc is 
a number field and ^ is the unique quasi-split inner fc-form of G, T&(G) = i\fâ)\ 
this result was conjectured by Langlands. Now since the Tamagawa number of 
any simply connected quasi-split group is 1 [12, 13], Weil's conjecture follows. 

Weil's conjecture remains unproven for groups defined over global function 
fields. It is still unknown, for example, if over such a fc, the Tamagawa number 
of every outer fc-form of type A is 1. 

6. Covolumes of ^-Arithmetic Subgroups, Bound for Class 
Numbers and the Finiteness Theorems 

We shall now describe a formula for the covolume of S-arithmetic subgroups 
with respect to a natural Haar measure on Gs. We begin by describing a natural 
Haar measure fiv on G(k^) for any place v of fc. For a nonarchimedean place v of 
fc, let p,v be the Tits measure on G(kv) i.e. the Haar measure with respect to which 
the volume of any Iwahori subgroup of G(kv) is 1. If v is archimedean, then k0 

is either R or C and p,v is the Haar measure on G(kv) such that, in the induced 
measure, any maximal compact subgroup of Rko/R(G)(C) has volume 1. Now on 
Gs = TlvesG(kv) we take the product measure ps := Ylves^v-

Let ^ be the unique quasi-split inner fc-form of G. For each nonarchimedean 
place v, we fix a parahoric subgroup âPv of @(kv) of maximal volume such that 
Hvev^ikv) ' UveVf^v is an open subgroup of &(A). 

As in Section 5, let P = (Pv)vevf be a.fixed coherent collection of parahoric 
subgroups. Let S be a finite set of places containing Vœ and let A = G(k) n Y[v^s

pv-
In its natural embedding in Gs, A is an S-arithmetic subgroup. Let Gv denote 
the smooth affine Oygroup scheme associated with the parahoric subgroup Pv by 
the Bruhat-Tits theory ([34, 3.4]). Let Gv := Gy®0ufy be the reduction mod pv of 
Gv. Let Tv be a maximal f„-torus of Gv containing a maximal fy-split torus and 
Mv be the maximal reductive fy-subgroup containing Tv. Note that Mv depends 
on the choice of Pv. Let %9 $1 and M» be similarly defined fu-groups associated 
with ^ and the parahoric subgroup 0>v. 

If ^/fc is not a triality form of type 6Ü4, let / be the smallest extension of 
fc over which ^ splits. If 0/fc is of type 6D4, let *f be a fixed extension of fc of 
degree 3 contained in the Galois extension of degree 6 over which ^ splits. Let 
Df be the absolute value of the discriminant of *f/Q if -fc is a number field and 
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Df = q]g*~2 if fc is a global function field, where qj is the cardinality of the finite 
field of constants in { and gt is the genus of {. 

The integer s(0): If ^ splits over fc, let s(^) = 0. If 0 is a fc-form of type 
2 A,., with r even, let s>(0) = \r(r + 3); if ^ is a fc-form of type 2A?. (r odd), 2Dr 

(r arbitrary) or 2E6, let s(0) = j(r - l)(r + 2),2r - 1 or 26 respectively. If 0 is a 
triality form of type 3D4 or 6D4, then let s(^) = 7. 

The following theorem provides a "computable" formula for the volume of 
S-arithmetic quotients of Gs. It is proved in [26] . 

Theorem 4. Let m\ ^ • • • ^ mr be the exponents of the Weyl group of the absolute 
root system of G. Then 

Hs{Gs/A) = Dl iäbaa(D,/D%*i)l«*> n 
\veVœ 

m/! 
J J ( 2 T O ' " < + 1 T * ( G ) W ; 

where 
(rv+6im Jfv)/2 

n^-=—n 
1 I J IT* (K\ 1 1 uefy #T.(f,) ü^S 

(dim M„+dim ^ „ ) / 2 
^ 

#M„(f„) 

Sf = S n Vf, and for v E Vf, rv(= dim Tv) is the rank of G over the maximal 
unramified extension of fcy. 

The results involved in the proof of this theorem provide the following lower 
bound for the class number of simply connected anisotropic groups (see [26, 
Theorem 4.3]). 

Theorem 5. Assume that G is anisotropic over k and moreover Gœ := I L E F « , ^ ^ ) 

is compact. Then the class number #(G00]^[i;eF Py\G(>4)/G(fc)) ofG/k with respect 
to P is at least 

Z) | d i m G m,/nK : k M^) w^rr* n 
KveVaz 

ntj ! 

1 1 (2TC)HI/+1 
7 = 1 

tk(GK(P) ; 

where 

dp)=n 
veVf 

<iì 
(dim M„+dim J£v)/2 

#My(fy) 

In [3, §7] this theorem is used to prove the following finiteness theorem. 

Theorem 6. Given a positive integer c, let ̂ c be the set of pairs (fc, G) consisting of 
a number field k and a connected, simply connected absolutely almost simple group 
G such that G is anisotropic over k, G^ := Y\veV G(kv) is compact, and the class 
number #(GaoY[veV PV\G(A)/G(k)) °fG/k with respect to some coherent collection 
of parahoric subgroups (Pv)vevf is less than c. Then (up to natural equivalence) ^c 

is finite. 
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The formula for the volume of S-arithmetic quotients given above and certain 
number theoretic estimates have been used in [3] to prove that in characteristic 
zero, there are only finitely many distinct S-arithmetic subgroups T of covolume 
5: c, where c is a given positive number. Also, there are only finitely many S-
arithmetic T with 0 ^ \x(r)\ < c, where x(T) is the Euler-Poincaré characteristic 
of T in the sense of C. T. C. Wall. For precise results, see [3]. 

7. Super-Rigidity and Arithmeticity of Lattices 

According to a celebrated theorem of Margulis (annonced at the ICM held in 
1974), irreducible lattices 3 in real semi-simple groups of R-rank > 1 are super-
rigid4. It follows rather easily from this that such lattices are arithmetic. On the 
other hand, it has been known for almost thirty years that the groups SO(n, 1) 
contain non-arithmetic lattices for n £ 5. In 1986, Gromov and Piatetski-Shapiro, 
employing a nice geometric construction, showed that for each n, SO(n, 1) contains 
plenty of non-arithmetic lattices ([8]). Mostow has constructed non-arithmetic 
lattices in SU(2,1) and SU(3,1); however, whether lattices in SU(n, 1) are all 
arithmetic if n is sufficiently large is still an open question. 

Corlette [6] has now established the super-rigidity of real representations of 
cocompact discrete subgroups in the remaining semi-simple groups of R-rank 1, 
namely the groups Sp(w, 1) and the R-rank 1 form of type F4, using his basic 
theorem on the existence of a harmonic map in any given homotopy class of 
maps from a compact riemannian manifold into a locally symmetric space; and 
just a few weeks ago I have learnt that Gromov and Schoen have proved that 
any representation of such a discrete cocompact subgroup over a p-adic field is 
bounded by developing an analogue of the theory of harmonic maps for maps 
from a riemannian manifold into a Bruhat-Tits building. Now, as in the case 
of groups of R-rank > 1, arithmeticity of cocompact discrete subgroups of the 
groups Sp(n, 1) and the R-rank 1 form of type F4 follows. 
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Introduction 

The Rankin-Selberg method in the theory of L functions gives explicit integral 
representations of certain L functions of automorphic representations of reductive 
algebraic groups. This allows one to determine the analytic continuation and 
functional equations of such L functions. Moreover the poles of these L functions 
can be determined explicitly. The major applications of this method include (i) the 
determination of how much of the complementary series contributes to cuspidal 
representations of GL2 and (ii) the strong multiplicity one Theorem and the 
classification of automorphic representations of GL„. 

In recent years Rankin-Selberg integral representations have been found for 
several new classes of L functions [PS-R-II, PS-R-S]. We are concerned here 
with the standard L functions of the classical groups. The method of doubling a 
classical group (which is essentially a compactification of the group) is used in 
this case. The doubling method has the extra advantage that the special values 
of such L functions at integral points can be related to certain 6 integrals arising 
from specific dual reductive pairs. 

This leads to our second theme. Namely as a generalization of the classical 
Siegel-Weil identity, there exist, for dual reductive pairs, identities between certain 
regularized 6 integrals and certain special values of Siegel type Eisenstein series. 
The point of such identities is to give criteria about the existence of a pole of the 
L functions mentioned above at a specific value in terms of the nonvanishing of 
a certain 9 lift between groups of a given dual reductive pair. 

The work in this lecture represents joint work (as specified below) with Ilya 
Piatetski Shapiro and Steve Kudla. For a survey of earlier related works, and a 
more extensive bibliography of the field, see [G-S]. 

§0. Notation 

(1) Let G be a reductive group over fc, a number field. Let Gv the associated 
group at the place v of fc. Let G(A) be the corresponding adelic group. 

Let K = Y[VKV be a good maximal compact group where Kv is a special 
maximal compact subgroup of Gv (for all v). 
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Let n = Ç§unv be an irreducible automorphic cuspidal representation of 
G(A). Define Sn = the set of places of fc consisting of the Archimedean places 
together with all finite places at which nv is not spherical. For v $ Sn let Dv(nv) 
be the conjugacy class in the L group of Gv associated to nv via the Satake 
isomorphism. Then for a representation Q of the L group LG let 

Lv(s,nv,Q) = det (1 - Q(Dv)q-srl 

be the usual Langlands Euler factor with s E C and qv = cardinality of residue 
field of kv. Moreover let 

Ls(s,n,Q) = Y[ Lv(s,nv,Q) 
v$Sn 

be the corresponding global restricted L function. 
We let Cü(-S) be the usual zeta function associated to a local field fc„. 
(2) We let SpM x O(ß) be a dual reductive pair, where Sp„ is the symplectic 

group of 2n x 2n matrices and 0(g) is the orthogonal group of the quadratic 
form g with dim g even. The oscillator representation of this pair is denoted by 
(OQ,y,(y) an additive character) and is realized on the space S(Mmn(k))(m = dimg) 
(See [W]). The construction works locally and globally (where the local field fc is 
replaced by A^ = A = adeles of the number field fc). Following the work of [W] 
it is possible to define the space of 6 kernels 

0* (*» y) = X œQ,v> fa y) (cp) (£) 
{6AfM(fc) 

where cp E S(Mmn(A)) and (x,y) E Spn x 0(g)(A). The kernel Q<p is left invariant 
by Spn x 0(g)(fc) and slowly increasing on Sp„ x 0(ß)(fc)\Sp„ x 0(g)(A). In 
particular this allows one to define for any / , which is rapidly decreasing on 
0(g)(fc)\0(g)(A), the B integral 0„(f) as 

/ 
Ocp(x,y)f(y)dy. 

0(ö)(/c)\0(ß)(A) 

A similar O^F) can be defined for F rapidly decreasing on Spn(fc)\Sp„(A). 
(3) Given a reductive group G we let <stf(G(A)) be the space of slowly increasing 

automorphic functions on G(fc)\G(A) as given in [B-J]. Let LcUsp(G(A)) and 
Lres (G(A)) be the space of smooth cusp forms and smooth residual forms in 
L2(G(fc)\G(A)). A function / belonging to one of these spaces is smooth if / is 
fixed by a compact open subgroup K' of G(Afin) and / is a C00 vector relative to 
Goo component of G(A). 



Poles of Standard L Functions 835 

§1. The Doubling Method 

We describe a setup generalizing the construction of [PS-R-II]. We let K be 
a 2 dimensional semisimple commutative algebra over a number field fc. Then 
K is either a quadratic extension of fc or K = fc © fc. We let V be a finite 
dimensional fc vector space provided with a nondegenerate e symmetric bilinear 
form (, )(e = ±1). We consider the extension of scalars functor ~ applied to V, (, ). 
Then (,)~ = (, ) ®fc K is a K valued bilinear form on the space V ®k K = W. If 
trjc/k is lhe canonical trace form on K then there exists an element Ç E Kx so 
that the form ((,)) = trK/k(l;(,)~) is a totally split e symmetric bilinear form on 
W over fc (if K is a quadratic field k(<Jd) then we let £ = V^ and if X = fc © fc 
we let e = (1,-1)). 

We let G = U(W, ((,))) be the group of fc linear isometries of W, ((,)). If 
2*f = dimk(W), let W = tf^. We let H = UK(W9 (, )~) be the group of K linear 
maps of W which preserve (, )~. Then H £ G. 

Moreover if K = fc©fc then H = H\XH\ where LTi is t / (F, (, )), the fc isometry 
group of F,(,). 

We let Xr = variety of r-dimensional ((, )) isotropic subspaces of W (as a fc 
space). Then there is a parabolic subgroup Pr of G so that Xr = Pr\G. The set of 
double cosets Pr\G/H in general is not finite. However it is finite precisely when 
e = —1 (for all r) and when e = 1 with r = ^ dimk(W) = dim/^F). 

We are interested in determining the orbits of H in Pr\G which are negligible. 
Namely an H orbit (9 in Xr is negligible if the stablilizer in H of a subspace 
T E 0 contains as a normal subgroup the unipotent radical of a proper parabolic 
subgroup of H. Then in the case Pr\G/H is finite the number of nonnegligible 
orbits is exactly one in the cases r = 2,3, dim V — l,dim V(e = —1) and r = 
dim V(s = 1) ([Rab]). 

Since the form ((,)) is totally split the group Pr = MrUr where Ur is the 
unipotent radical of Pr and Mr = GL,.(fc) x U(W2s-2r, ((, )>2/-2r) with ((,»2^-2r 
a totally split e symmetric bilinear form on W2t-ir with V̂ 2«f-2r £ W^. Then 
we consider the one dimensional character öpr : Pr —• fcx defined by öpr(g) = 
det(Ad[/r(m)) with g = mu relative to the decomposition above. 

For each place v of fc we define the quasi-character Xstv of (Mr)v by 

zvW = i<5p»r 

with /c"1 = 2*f - r + 1(2^ - r - 1 resp. ) if e = - l ( e = 1 resp.) 
Then define the induced representation 

Iv(s) = lnd$r)v(xStV) 

where the induction is normalized. The global induced representation is given by 

/(S) = Ind^j((g)Zs,„)^(g)/B(S). 
V V 

Starting with a section cj)( 9s) E I (s) we form the Eisenstein series 
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E}(g,s,cß)= £ (j)(yg9s). 
yePr(k)\G(k) 

For a fixed good maximal compact subgroup K = Y[vKv of G(A) we say 
(/)( ,s) E I(s) is standard if the restriction of $( 9s) to K is independent of s and 
(j)( ,s) is KQO finite for each Kœ,oo an Archimedean prime. 

We let Y[ = (8)ü ^0 be an irreducible automorphic cuspidal representation of 
the group H (A). We let / n e 71. . 

Then we form the Rankin-Selberg integral 

Zrifn, 0G 5)) = j fn (h)E$(h, s, <j>) dh 

H(k)\H(A) 

relative to some choice of suitable Tamagawa measure dh on H(k)\H(A) and (j) 
standard. 

Lemma 1.1. In the case Pr\G/H admits one nonnegligible orbit (see conditions 
above) 

( . \ 
Zrifn, H, s)) = J <l>(yg,s) J fn(hg)dh 

\Hv((c)\H°(A) / H»(A)\H(A) 

dg 

where Hy(k) is the stabilizer of the point Pry in the unique nonnegligible orbit of 
H in Pr\G and Hy(A) is the group of norm one elements of Hy(A). 

Proof. The proof is the usual method of unwinding the series expansion of Er 

relative to the H(k) orbits in Pr\G. We note that a negligible orbit contributes 
zero since (i) the stabilizer contains a normal subgroup which is the unipotent 
radical of a proper parabolic of H and (ii) the form fn is cuspidal. Thus we are 
left with one term as above (with the hypotheses of the Lemma). D 

Remark. 1.1. We consider now the case where dim(F) = r. In fact in these 
examples 

##) = j { (g ,g ) | g£ i J l }^ t f l ifK=fc©fc 

the fc rational points of H ~ H\ if K is quadratic over fc. 

The inner integral in Lemma 1.1 can be calculated. We discuss the two cases 
separately. 

(i) If K = fc © fc and 77 = i7i ® 772, # i automorphic cuspidal irreducible 
representation of 77i (A), the inner integral is 

j fnMfnMdh. 



Poles of Standard L Functions 837 

Such a term is zero unless 771 = 77^ = the contragredient of 772. Moreover, the 
integral (with data defining fni and fn2 suitably normalized) then becomes a 
matrix coefficient of (fHl * g\\fn~) of 77i. 

(ii) If K is a field, the inner integral is 

J fn(hgi)dh. 
H!(*)\#i(A) 

This represents the period of fn over the subgroup 77i cz H, A fundamental 
question is to determine for which 77 such an integral is nonvanishing. We note 
that a similar problem exists in the doubling for the GL„ case ([PS-R-II]). In fact 
in that case the set of automorphic representation 77 which have nonvanishing 
period should be the set of 77 which arise by quadratic base change from 
an appropriate unitary group (care must be taken in that case for the correct 
condition on central characters). 

§2. Factorizability Properties 

The point of expressing Zr as an integral in Lemma 1.1 above is to determine 
whether the inner integral can be factorized as an infinite product (Euler Product) 
of local factors. 

Indeed in the case K = fc © fc the general matrix coefficient of 77i factors as 

(fiii*g|//7r> = n^*8»lO(iii 

provided there exists an embedding 77 -& L;:USp(77i(fc)\77i(A)) (which is H\(A) 
intertwining) in such a way that ini(®£v) = fn19in~(®£v) = fn~* The point here 
is that there is for each prime v E k exactly one Hi = Hy(kv) invariant form on the 
space (77i)y ® (77f)i; for each irreducible admissible representation 77i (Schur's 
Lemma). 

This example illustrates the very general principle of uniqueness that explains 
when a global Rankin integral (such as the general Zr above) has an Euler 
product (independent of making the usual un windings of the integral). Indeed in 
the example of Zr we look at the following local problem. The global integral 
defining Zr determines for each place v a bilinear functional on (77i)y ® Iv(s) 
which is Hv invariant. Thus we consider the space HomHv((ni)v ®Iv(s), 1) for all 
s. 

If the dimension of such a space is at most 1 (for all s) and if this holds for all 
primes v, then Z,.( ) can be factorized as an infinite product of local factors. This 
is just the simple principle that local multiplicity one (for all primes v) implies 
global multiplicity one. The main problem here is that in order to express Zr as 
such a factorizable product we need to know for some a priori reason that in 
fact the global Rankin integral is nonvanishing. However in the case Zr given 
in Lemma 1.1 the nonvanishing property is determined by the nonvanishing of 
a certain period (see (ii) in Remark 1.1). What is known is that the principle of 
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local uniqueness implies also the existence of the local functional equation and 
thus the determination of a local s factor of a representation (see [PS-R-I] for 
the consideration of these matters in the doubling case). 

Remark. 2.1. A typical Rankin-Selberg integral leads to the following type of 
uniqueness question of models. Namely let M ^ N be reductive groups. Let 77i 
be an irreducible admissible representation of M(kv) and Indp^ (GV) an induced 
representation from a standard parabolic PNo of N0 with cry,a character on 
PN0/NV. Then we consider the space Yv = HomM„(77i ® Indp^ (cv), 1). In the 

particular case 77i = I n d ^ f e ) (where Bv is a Borei subgroup of Mv and Xv 
any quasicharacter on Bv), then the determination of Yv reduces by the usual 
Bruhat theory to finding certain quasi-invariant distributions on Nv relative to 
the left action of Bv and the right action of PNv. The importance of using such 
a 77i is that "generically" 77i is an unramified spherical representation and thus 
will be a local constituent of a global representation of M(A). In any case the 
relevant local analysis is concerned with the set of double cosets Bv\Nv/PNo. If 
the set BV\NV/PND is finite then we might expect that Yv above is at most one 
dimensional (for "generic" values of av and Xv)- We note the following analogy 
from the category of algebraic group representations that makes such a statement 
at least plausible. From [Kim] if the set B(<n)\N(<D)/PN(<L) is finite then every 
finite dimensional irreducible representation of iV(C), whose highest weight vector 
is fixed by Pjv(^) projectively, is multiplicity free when restricted to M((D) (with 
the assumption that N(<E) and M((C) are connected and semisimple). This is a 
multiplicity one Branching Rule. It is not clear at this point whether such a 
multiplicity one Branching Rule determines when Yv is one dimensional but such 
a possibility bears future investigation. 

Remark. 2.2. The Rankin-Selberg integral given in [PS-R-S] is a special case of 
the data in Remark 2.1. Namely M = G2 and N = SO (7) and the embedding 
of G2 into SO (7) is given by the standard action of G2 on the space of trace 
zero elements of the 8 dimensional space of octonions. Here PN is the parabolic 
subgroup of SO (7) which stabilizes a 2 dimensional isotropic flag. The L function 
represented in this example is the tensor product of G2 x GL2. 

In the case K = fc © fc the zeta integral Z/ in Lemma 1.1 (with / = dim V) 
equals the product (with 0(,s) = (g) (ßv(,s)) 

V 

V 

where Zs}V(Çv, Ç~,s) is the local zeta integral given by 
/ (€v * gv\t7)<l>v(yu(gv, i),s) dgv. 

Hi (ft.) 

Then from [PS-R-I, PS-R-II] we have 
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Proposition 2.1. Let K = fc © fc and fix an arbitrary point SQ E C It is possible to 
choose data (j) = ®0v,//ji, and fn~ so that 

7« <** M*\ Lsii + ^n^z^s) 

where 
(i) Ls(s,n,r) is the restricted L function associated to the standard represen

tation r of the L group of U(V, (, })o (= the connected component of U(V, (,))). 

OV hs(s) = IL* {Ut? U2s + S + 1 - Ik) { 1»{S + ^ £ ï ^ 
(̂ ///̂  Zoo(s) /s a meromorphic function in s which is nonvanishing at the arbi

trarily chosen point SQ. Note that the choice of data above depends on SQ. 

Remark. 2.3. The functional equation of Ls(s9n,r) is given in [PS-R-I]. In fact it 
is possible to define local Lv factors at the bad primes of 77 (those v which are 
finite and 77„ is not spherical). Using then an extended definition of L we give 
the functional equation of the new L in [PS-R-III]. There we use the notion of 
local e factors mentioned above. 

Remark. 2.4. We note that if Ls(s,n,r) admits a pole at s = SQ then 
b^is(s)Ej(g,s, (j)) admits a nonzero pole at s = 2SQ — 1 for some section (j). In fact by 
(iii) of Proposition 2.1 and for suitable choice of data b^s(s)Z^(fni ®fn~>(t>( ,s)) 
has a pole at s = 2SQ — 1 and this pole comes from the pole of the normalized 
Eisenstein series. 

§3. Poles of Eisenstein Series 

To determine information about the possible poles of L functions associated to 
the doubling method we require knowledge about the poles of £"(• • •). As we 
shall see the residues are explicitly describable and generically square integrable. 

For the remaining 2 sections we assume that the number field k is totally real. 
For the discussion below we adopt a slightly more general convention. Namely 

we let Go be the isometry group of the form 

0 In 
ein 0 

= Sp7J if e = —1 
0 ^ 0(n,n) if B = +1 . 

Thus 

- { 
We consider the parabolic Pn = GL„ IX Un of Go with Un, the unipotent radical of 
Pn. We form the family of induced representations I„(s) = Indp°;J (|det g|^®li/„) 
(normalized induction) where | |A* = the usual adelic norm on Ax. We form the 
family of Eisenstein series E^g.s, cj)) where cj) is a standard section. 
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Theorem 3.1 [K-R-IV]. Let S be the set of primes v of k where v is Archimedean 
and all finite places v at which <pv( 9s) is not Kv invariant. 

Then the normalized Eisenstein Series bn}s(s)E%(g,s9 (/)) has at most simple poles 
and these may occur only in the set Xn = {—Qn,l—Qn->'" ,0,• • • ,Qn — 1,Qn} where 

i i A 

Qn = j(w +1) (^,(n~ 1) resp.) ifs = —l (s = +1 resp.) Here 0 means 0 is omitted 
in the case when n is odd. 

Corollary. We leVH be an automorphic irreducible cuspidal representation ofH\(A) 
defined in §1. We let G = Go be the doubled group and S(77) = S as given in §0. 

The poles of Ls(s,n,r) are at most simple and these may occur only in the set 
1/2 + Xf(Xs defined relative to the doubled group G = Go with £ = dim V). 

Thus to determine whether the poles of bnjs(s)E%( ) actually occur we must 
study what the residue representation is. That is we must determine the subspace 

Res bniS (s)En
n(g, s, 0) = (£*)* (g, s0, <t>) 

S=SQ 

(with so E Xn) as (j) varies. 
We now consider the group Sp„ = Go- Much of the discussion remains 

valid for 0(n,n) but since we have not checked all the details we restrict Go 
just to Spa. We consider the oscillator representation COQìV} (defined in §0) of 
Spn x O(g) on the space S(Mmn(k))(m = dimg). In the case where kv is non 
Archimedean, we determine the space of 0(g) coinvariants in S(Mmn(k))9 which 
is given by S(Mmn(fc))/{the span of q> — coQiV}((,y))(p as cp varies in S(Mmn(k))} = 

S(Mmn(k))o(Q). Then we know that the functional cp -~» cp(0) has the property 
that f<p(pg) = (à\œQilp(pg,y)(p) = |detm'|^;(:ô(detm')(<5|(p) (where p = mf • v 
with ml E GLn). Thus f<p E Iv(j — ^ , % Q ) - Here IV(S,XQ) denotes the local 
representation of Sprt given by Ind^P" (|detg|s ® XQ ® li /J (normalized induction), 
where XQ is the quadratic character given by the Hilbert symbol ( \AQ) with AQ = 
discriminant of g. In fact the structure of S(Mmn(fc))o(g) as a Sp„ module is 
governed by the space of fç. 

Proposition 3.1 [R-I, K-R-III]. Every O(g) invariant functional on the space 
S(Mmn(k)) factors through the map S(Mmn(k)) —> lv(^ - ^ , ^ Q ) given by cp™> j 9 . 
In the case fc = k» is non-Archimedean then S(Mmn(k))o(Q) is equivalent as an 
Spn module to {Span/ç,|<p E S(Mmn(k))} = Rn(Q). In case k» = IR we let 
^"(Q) = {Span/pl^ E S(Mmn(R)) and cp is U(n) finite}, U(n) = maximal 
compact subgroup of Spn(lR). Moreover for each place v, Rn(Q) is irreducible if 
dimg < n + 1. 

Remark, 3.1. This is the local version of the Siegel-Weil formula. 
Then given a global quadratic form g over fc we define Rn(Q) = ®uR"(gu), 

which is an admissible representation of Spw(A). 
The representation Rn(Q) has the following automorphic structure. 
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Theorem 3.2 [K-R-VI]. 
Let dimg < n + 1. Then 
(i) dimHomSpH(A)(R»(g),^(Sp„(A))) < 1; In fact 
(ii) there exists a nonzero embedding r1^ of Rn(Q) into j*/(Sp„(A)). Moreover 

the image r£(R"(g)) ^ L^s (Sp„(A))J the residual spectrum of L2(Sp„(A)), except 
in the case when g /s the split 2 dimensional form. 

At this point we say two global quadratic forms g and g' are complementary 
if dim g + dim g' = 2n + 2 and if g = X © 772,-, where A is anisotropic and 772,. is 
a direct sum of r hyperbolic planes, then g ' = A © 772,.'. We note that g uniquely 
determines g ' and vice-versa. 

We note that if dim g > n + 1 and g admits a complementary form g' then 
for each place v,R]i(Qv) admits a unique quotient representation Rn(Qv) (this is 
basically just a simple case of the Howe duality conjecture for dual reductive 
pairs). 

Thus we can describe the residue representation for so E Xn and so > 0. 
Indeed we note that b1hs(s) is analytic and non vanishing at such SQ. Thus we 
unambigously have that 

Subspace spanned by (E")*(g,so, <j>) = 

Subspace spanned by ResE"(g>5>0) = Rn(so) 
S=SQ 

This makes it possible to give a simple characterization of Rn(so) in the 
following terms. 

Theorem 3.3 [K-R-VI]. Let s = SQ E Xn and SQ > 0. Then as a Sp„(A) module 
Rn(so) is isomorphic to the direct sum ©R"(g') where the direct sum ranges over 
all classes of quadratic forms g ' with dim g' = (n + 1) — 2so and XQ = 1-

Remark. 3.2. We note that in case so = ^ j R , ^ ^ ) is the identity representation 
if x = 1 and {0} otherwise. In case s0 = u=1, then R „ ( ^ ) = 7*"(772) if x = 1-
Otherwise in the remaining cases RU(SQ) is a direct sum of infinitely many Rn( ) . 

Using Theorem 3.3 it is possible to show consequences concerning the exis
tence of the poles of standard L function of the group Sp„. 

Theorem 3.4. Suppose Ls(tn,r) admits a pole at s = \ + so where so E Xin and 
so > 0. Then there exists a form Qf where dim g' = 2n+l—2SQ and XQ' = 1 w/tfc the 
property that relative to the dual pair Sp„ X 0(g7) we can find cp E S(MdimQ',„(A)) 
and a function fn En so that the 9 integral Qytfn) ^ 0. 

Remark. 3,3, We show in §4 that the actual set of possible poles of Ls(s,n,r) for 
Re(s) > 0 is the set s E {1,2, • • • , [f] + 1}. 

Remark. 3.4. If Ls(s,n,r) admits a pole at s = \ + so, then there may be more 
than one g' so that 9<p(fn)=h °-
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§4. Siegel-Weil Formula 

We consider the global version of Proposition 3.1. This constitutes a generalized 
Siegel-Weil formula, describing the residue of Eisenstein series in terms of 6 
series. First we recall the well known version of this formula established in [W] 
and extended in [K-R-I] and [K-R-II]. 

We define a particular type of global section built from f<p for q> E S(Mmn(k)). 
We consider /„(g) = IL/*(fo) w h e r e <P = ®<P»- T h e n U e *(f ~ ^ X ß ) - Then 
we consider the character on Pn given by p = mf • u -~> |detm'|M°(so = f — ^ ) . 
We define the function on Sp„(A) 

^ ( g ) = | d e t m / | S - 5 0 

where g = mfuk relative to the Iwasawa decomposition. Then we form 

Now F* is a standard 0(,s) section defined in §1. Hence we may form Eisenstein 
series having certain remarkable properties as given by the Siegel-Weil formula. 

Theorem 4.1 [W, K-R-I, K-R-II]. 
Let either g be anisotropic or dim g — Witt index (g) > w+1. Then the integral 

/ 6(p(x,y)dy 

0(Q)(fc)\0(Q)(A) 

is absolutely convergent. The Eisenstein series E^(g,s,F^) is holomorphic at s = 
so = y — ^ and defines an intertwining map of Rn(Q) into stf(Spn(A)). Moreover 
we have the identity 

EZ(X,S0,F;)=CQ J 9(p(x,y)dy 
o(G)(*)\o«2)(A) 

with CQ=/=0 depending only on g. 

The point in extending the Siegel-Weil formula is to have a procedure of 
regularizing the 9 integral above. 

At this point we look at the dual pair Sp„ x O(g) with dim g < 2n and XQ = I-
Let v = oo be an Archimedean real place. Then the local form Qœ is equivalent 

to 772r © VQ where Vo is anisotropic and 772r = a direct sum of 2r hyperbolic 
planes. We consider the family of oscillator representations coH2i®Vo,y> (with i < r). 

We let f̂spn = & be the center of the universal enveloping algebra of Spn(lR). 
We define the support ideal IQ^ of œQœ as 

{<* E ar|û)jTB©7o,vK)(9oo) = 0 for all p«, E S(Mdim{H2i®v0),n(ß)) for i = r - 1} . 

Then it is straightforward to verify that lQœ ^ ^ (since dimg < 2n). Moreover 
it is also easy to check that the space of 9 kernels on the group Spn x O(g) 
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{ö«cw«>(UM(*> J0l6x) e IQJ 

is rapidly decreasing in the 0(g) variable (dimg < 2/7 and g ^ 772 split form). 
Then as a substitute for the 0 integral we use the regularized 9 integral with 

an element ^ e 7gœ. That is, 

U,Q(<P) = J ecoQ^(u(<p)(x>y) dy • 

0(ß)(*)\0(ß)(A) 

Then /̂ jQ G HomSpyi(A)(7^"(g),^(Sp„(A)). But we also have 

Lemma 4.1. If dim g — Witt index (g) < /7 + 1 flwd 2/7 ̂  dimg > n + 1 tften f̂ g 
factors through the space R"(g')> g' = t/ie complementary form to g. 

Moreover if dim g < w + 1 flflrf Q ^ H2 , then the map s -~> E"(g,s,7^) /s 
analytic at s = so = f — ^ . >4/so ç? —> valE,"(g,s,7^) defines an element in 

Homsp„(A)(7^(g),^(Sp„(A)). 
7/ 2/7 > d img > n + 1 and dimg— Witt index (g) < n + 1 t/îe/7 <p —» 

Res£"(g,s,F") fvWf/? so = 7 — ^ ) defines a intertwining map which factors 

through Rn(Qf). This determines a nonzero element in Hornsp„(A)(7*"(g')><^(Sp,i(A)). 

By the Uniqueness Principle of Theorem 3.2 we have the following Siegel-Weil 
type identity. 

Theorem 4.2. Let sQ = ^ - *±i. 
(1) Let dim g < n + 1, with g =/= H2. Then there is a constant c% so that 

czE%(g,SQ9F%) = iç,Q(a)Q,y,(g)(p) 

(2) Let 2/7 > dim g > n + 1 and dim Q-Witt index (g) < n + 1. TTicn there is 

4 res £ » fe>s> F P = ^ ß (PQM (S) <P) 

ûf constant c'^so that 

The goal then is to use Theorems 4.1 and 4.2 to glean information about 
special values of the L functions discussed above. 

We indicate one type of result in this direction. 
We fix a "Witt tower" of quadratic forms g0, go©772 = g2, • • • , go©772, = Qir 

where go is anisotropic (even dimensional) and 772,. is a direct sum of r hyperbolic 
planes. 

We let XQ2i = {/ E L2usp(Sp„(A)|0ç,(J) = 0 for all cp E S(Mdimß2,,„(A))}. 
Then XQ2V is a Sp„(A) module and we define inductively the spaces YQ2J = the 
perpendicular complement of the space XQ2/nXg2/_2n- • -n-Xgo i*1 ^W-2n" ' ' n ^ßo-
Here perpendicular complement is taken relative to the Hermitian pairing given 
by the Petersson inner product on LcUSp(Sp„(A)). Then we have an orthogonal 
direct sum decomposition of Sp„(A) modules of LcUsp(Sp„(A) = YQQ © YQ2 © 
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• • • © YQ4II. The space YQli = {0} if dim g2l- < n ([PS-R-IV] ). Also, if fn E 77, an 
irreducible automorphic cuspidal representation which occurs in YQ2.9 then there 
exists cp E S(Mmn(A))(m = dimg2ï) ([R-I]) so that 9^^ ± 0. In fact, 9<p(fn) is 
a cusp form on 0(g2/)(^)-

On the other hand if f E YQ2. © ••• © YÔ4H then whether 0«p(/) (for cp E 
S(Mmìn(A)) is zero or not is measured by the inner product formula developed 
in [R-II] and [R-III]. Indeed, using Theorems 4.1 and 4.2 we show the following 
identity: 

Proposition 4.1. Let fn E 77 be chosen as in the beginning of §2 where 77 c 
YQli®--®YQ4n. 

(1) Then if either dim g2l < 2n + 1 or dim g2î - i > 2n + 1 

ll^(fn)llo(e,)(A) = cf
Q2iv3lZ2n(fni *fni9F%{ ,*)) 

where cp\ is a canonically determined function (coming from q>\) in S(M^\mQ2ii2n(A)) 
(the doubled Weil representation space of Sp2« x 0(g2i)). Here SQ = dm^Qo + i — 
(n+ \). Here || llo(ß2i)(A) represents the Petersson norm of a function relative to a 
suitably normalized measure on 0(g2i(fc)\0(g2i)(A). Also CQ2. is a nonzero constant 
independent of cp and fn-

(2) The inner product formula of (1) is also valid in the case where dim Qu—i < 
2/1+1 and 2n + 1 < dim g^ < 4n, but now val is replaced by Res. 

S=SQ S=SO 

Thus, using Proposition 2.1, it is possible to relate the Petersson norm of 
Ö^C/TJ) to the special value of the L$ function defined in §2. The main problem 
that remains in getting an exact relation is to have control on the bad local 
factors, i.e. where the data is not spherical in Zv(--). The point here is to be 
able to determine the local factor Zv(- • • ) when the local data has the form fq, as 
given above. 

However in any case using Proposition 2.1 and a much simpler version of 
the identity in Proposition 4.1 we deduce the statement about the poles of the L 
functions given in Theorem 3.4. Moreover Remark 3.3 follows from the fact that 
YQ2ì = 0 for dim Qu < n. 
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Iteration of Polynomial Automorphisms of C2 

Eric Bedford 

Department of Mathematics, Indiana University, Swain Hall East 
Bloomington, IN 47405, USA 

§ 1. Introduction 

We will consider mappings / = (/h/2) : C2 —• C2 such that f\ and fi are 
holomorphic polynomials. A polynomial automorphism is a polynomial mapping 
which is 1-to-l and onto; it follows that the inverse / - 1 is also polynomial. We 
will discuss such mappings from the point of view of dynamical systems. That 
is, we will be primarily concerned with the forms of limiting and/or recurrent 
behavior that the iterates {/,/2 = / o/} . . . , /°", . . .} of such mappings can exhibit. 
Our purpose here is to present some work that we have done on these problems 
in collaboration with J. Smillie and which has been written up in [BS1, 2, 3], 
Lack of time prevents us from discussing more recent work on entropy, Lyapunov 
exponents, and ergodicity (see [BS4]). 

Analogous problems have been studied for polynomial mappings p : C —> C 
in one complex variable. The starting point is the Julia set Jp, which is the 
complement of the set where the iterates {pn : n = 1,2,3...} are well behaved, i.e. 
C— Jp is the complement of the largest open set where {p11} forms a normal family. 
Jp turns out to be the boundary of K+ = [z : pn(z) is bounded for n = 1,2,3,...} 
is a nonempty, compact, invariant set which carries all of the interesting dynamics 
of p. The fundamental properties of p on Jp were developed in the classical work 
of Fatou and Julia. One of the basic results of the theory is : 

The repelling periodic points for p are dense in Jp. (1) 

Here we will consider the potential theoretic approach to the dynamical 
properties of a polynomial p (cf. [Br, T]). This approach is well adapted to 
obtaining results of a more precise quantitative nature. The equilibrium measure 
\x of Jp, which is fundamental in potential theory, turns out to coincide with the 
unique measure of maximal entropy. Two results of Brolin [Br] show that \i arises 
as the limit of two sequences of sets of points. First, it is the limit of averages of 
point masses on the preimages of a point, i.e. 

/*=l im (deg)-" V 5a, (2) 
H->00 *—' 

flG{p-"(Z0)} 

where the limit is taken with respect to the weak topology of measures. Second, 
it is the limit of the average of point masses of periodic points, i.e. 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
(c) The Mathematical Society of Janan. 1991 
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Ai = lim (#Per(n))"1 Y òa, (3) 
n->oo t—* 

aePer(n) 

where Per(n) = {z E C : pn(z) = z} is the set of periodic points whose periods 
divide n. 

While the potential theoretic approach gives useful and powerful tools, it 
applies only to polynomial mappings. Although much of the theory of Fatou 
and Julia applies also to rational mappings, potential-theoretic methods do not 
apply in this case. The equilibrium measure of Jp is not equal to the measure 
of maximal entropy unless p is a polynomial (see [Lo]). Although problems of 
iteration have been studied for some classes of entire functions, the theory is 
quite different; for instance, Jp is not the boundary of 7C+. 

A prototypical example of the polynomial automorphisms which we will 
consider is the mapping / : C2 -> C2 given by 

f(x,y) = (y,p(y)-ax), (4) 

where p(y) is a one-variable polynomial of degree d > 1. In fact, as will be shown 
in §2, there is no essential loss of generality in considering only these maps. 

There are several sources of motivation for studying the iteration of auto
morphisms of C2. One is to generalize to the 2-dimensional case the results that 
have been obtained for complex polynomial maps. The two basic properties of a 
1-variable map: that it is d-to-1 (d > 1) and that it is conformai, do not hold for 
automorphisms of C2. However, the fact that a 1-dimensional map p : C -> C is 
a proper mapping of degree d generalizes to the observation that the mapping 
on homology given by (10) below is multiplication by d. Conformality of p is 
partially replaced by the fact that / is conformai when restricted to leaves of the 
stable/unstable foliations. 

We define the stable set of a point p as 

Ws(p,f) = {z E C2 : lim dist(T(z),f (p)) = 0} . (5) 
n->oo 

We say that p is â periodic point for / if fm(p) = p for some m > 1, and we call 
the smallest such m the period of p. For a periodic point p, we let X\9 X2 denote 
the eigenvalues of Dfm(p). If \X\\, IA2I < 1, then p is a sink, and it is well known 
that Ws(p,f) is an open set containing p, which is called the basin of attraction of 
p. A proper open subset Q c C2 which is biholomorphically equivalent to C2 is 
called a Fatou-Bieberbach domain. It is classically known that if p is a sink, then 
the basin B = Ws(p,f) is biholomorphically equivalent to C2, and in many cases, 
e.g. if/ has more than one sink, B is a Fatou-Bieberbach domain which is not 
dense in C2. Basins of attraction were the original examples of Fatou-Bieberbach 
domains. The geometry of Fatou-Bieberbach domains in general is intriguing but 
not well understood, and the ones that arise as basins of attraction seem to be 
the most approachable. For instance, it was shown in [BS2] that a polynomial 
basin B = Ws(p,f) cannot be "small" enough to avoid an algebraic variety, or 
"large" enough to contain one. In other words, if V is a 1-dimensional algebraic 
variety, then 

BnV^Q and V£B. 

Another motivation comes from polynomial automorphisms of R2. Hénon 
[Hnl, 2] showed that the automorphism g : R2 —» R2 given by 



Iteration of Polynomial Automorphisms of C2 849 

g(*>y) = (y,y2 + c-ax) (6) 

can possess complicated dynamics. The stable set of a subset A <=. C2 is given by 

WS(A, g) = {PEC2: lim dist(g"(p), A) = 0}. (7) 
H—>00 

Let us call a set A an attractor for g if A is compact and invariant, and WS(A) 
contains a neighborhood of A. It was shown recently (see [BC]) that g has a 
"strange attractor" for certain values of the parameters a and c. "Strange" implies 
that the attractor A is not a union of sink orbits. One difference between the real 
and complex cases is worth pointing out here. Although this set A is an attractor 
for g in R2, it is not an attractor, when considered in C2. In fact a normal families 
argument shows that any attractor for g in C2 is a union of sink orbits. Although 
it is not clear exactly what relationship holds between the mapping g and the 
corresponding mapping extended to C2, it is felt that the study of the map in C2 

should be analogous to approaching the study of polynomial maps p : R —> R 
by the study of the same polynomial in the complex domain. When the theory is 
pursued in the complex domain, it seems to be more complete and show a more 
stable or continuous dependence on parameters. 

§ 2. Elementary Mappings 

The map / and a conjugate ft-10/0/7 will have the same properties under iteration. 
Friedland and Milnor [FM] have shown that the set of polynomial automor
phisms naturally divides into two sets of equivalence classes under conjugation 
by polynomial automorphisms. One of these classes is called the "elementary" 
automorphisms, and the other consists of finite compositions of the form 

/ = / i o . . . o / m , (8) 

where 
fj(x>y) = (y>Pj(y)-<*jx) (9) 

and pj(y) = ydj + cjn2ydj~2 + . . . is a monic polynomial of degree dj > 1 in which 
the ydi~x coefficient vanishes. 

The dynamics of the elementary maps has been studied in detail by Friedland 
and Milnor. They have shown that an elementary map / has rather simple 
dynamics; / has periodic points of only finitely many periods, the nonwandering 
set is quite simple, and / is conjugate to an isometry on the nonwandering set. 

Thus the rest of this talk will be concerned with mappings of the form (8). If 
we define the sets 

V± = {(x,y) E C2 : |x|*|y|,max|xUy| > /c} 

V = {max |x|, \y\ < K} 

then for /c large enough 

^ ( 7 ^ 7 + and / _ 1 ( F + U V) <= V+ U V 

f(V~) c V~ and f(V~ U F ) c F U F . 
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It is evident, then that for a point p in V+ (or V~) fn(p) tends to infinity as n 
tends to —oo (or +00). Thus all recurrent behavior off takes place in the bounded 
set V. (This is useful, since there does not seem to be a natural extension of / 
to a compactification of C2 ; the one point compactification of C2, for instance, 
cannot be given a complex structure.) 

Although / is an automorphism, the behavior of p in the large is reflected by 
the fact that the mapping on homology 

/* : H2(V~ U V, V~) -+ H2(V~ U V, V~) (10) 

corresponds to multiplication by d, i.e. /*(T) = (d)x. 

§3. The Sets JT* 

The approach adopted by Hubbard and Oberste-Vorth [HO] is to consider the 
sets 

K± = {qEC2 : f±n(q) is bounded for n = 1,2,3,...} 

where the iterates stay bounded in forward/backward time. Also of interest are 
the sets 

J± = ÔKï 

K = K+nK~ and J = J+nJ~. 

It is evident that with V-9 V as in the previous section, then K^ c F U V-. 
A sequence {qn} is said to be an s-orbit if dist(qn+i, f(qn)) < e holds for all 

n = 1,2,3,.... A point q is chain recurrent if for any e > 0 there is an ß-orbit {qn} 
with q = q\ = qi+jN for some N and all j = 1,2,3,.... The set of chain recurrent 
points is denoted by R(f). Since the iterates of any point outside of K tend to 
infinity in either positive or negative time, we see that R(f) a K. 

In contrast to the case of mappings of one variable, where the Julia set can 
be either connected or a Cantor set, the sets K^1 and J± are always connected 
(cf. [BS1], Theorem 7.2.) The set J = J+ n J~, on the other hand, may be either 
connected or disconnected. 

Hubbard and Oberste-Vorth [H, HO] have studied U± := C2 - K± in some 
detail for mappings of the form (6) with a and c complex. For all a, c, the sets U± 

are homeomorphic to (S3 — Z) x R, where E is a solenoid, and the fundamental 
group 7Ti(Z7±) = Z[^] is not finitely generated. [HO] also makes a detailed study 
of the topology of K*1 for mappings of the form (6) and certain values of a, e E C 

If (x,y) £ K+, then the iterates (xn,yn) := fn(x,y) become unbounded with 
asymptotic behavior like yn ~ p(xn). In the potential theoretic approach, we study 
K* and C2—K± in terms of the rate at which the points (xn,yn) escape to infinity. 
From the specific polynomial form of / , we see that for fixed x 

\fn(.x,y)\ = \y\d"+0(\yf-2) (11) 

as | j ' | —>oo. This motivates the definition 

G±(x,30 = limsup(rf-")log(|x+n| + \y±n\). 
n—>+oo 
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Using (11) we may derive the facts 

• {G± = 0}=K±. 
• G^ is pluriharmonic on K±. 
• G+ (x,y) = log"1" \y\ + o(l) for x fixed and y —• oo. 
• G~(x,y) = log+ \x\ — log \a\ + o(l) for y fixed and x —• oo. 

It is immediate from the definition that 
• G ± o / = (d±n)G±. 

Further, G* is continuous on C2; and by a more subtle argument it may be 
shown to be Holder continuous (see [FS]). 

From these observations, we see that G* is the pluriharmonic Green function 
of K±. In fact, if T denotes any complex line (i.e. a 1-dimensional subspace of 
C2), then the restriction G^\T is the classical Green function of K^ n T inside 
the Riemann surface T (which may be identified with C). 

§ 4. Potential Theory in C2 

Although the Laplacian A is sometimes useful in problems of several complex 
variables, it is not an invariant operator. The defect of this lack of invariance 
shows up in problems of iteration, so we will use ddc, which is a biholomorphi
cally invariant version of A. Similarly, the usual subharmonic functions, which 
are defined by the condition Av > 0, are not preserved under holomorphic 
transformations. The class of subharmonic functions which remain subharmonic 
under holomorphic changes of coordinates is the class of plurisubharmonic or psh 
functions, and it is this class which will be useful to us. 

By @(piq) we will denote the set of test (p,g)-forms, i.e. the forms which may 
be written as 

a = Z Z *ii*~J,Ji*.Jidzh A • • • A dzb A dh A • • • A dh 
l^U<...<ip<n l</i<...</g^n 

where each ^iiyjpju...jq is a smooth function with compact support. The dual 
of this space is the space of (p9q) currents, which is denoted as 2^Ay For an 
example of a (1,1) current on C2 let us consider a 1-dimensional closed complex 
submanifold (or subvariety) M. The current of integration [M] acts on a (1,1)-
form cp by integration : [M] (cp) = fM (p. A current may be thought of loosely as a 
(p, #)-form with distributions as coefficients. In case the current is positive, then 
the coefficients may be shown to be regular Borei measures. (See [LI] for further 
details.) 

We consider the operator 

which is given by 

ddc\&m-*&{U)l 

d2u 
ddcu = 2 \ / - ï V „ „_ dz\ A dzj. 

A dzid*i 
A function u is psh if it is upper semicontinuous and if ddcu is a positive (1,1) 
current. The functions G^ defined above are psh, and p,- := ddcG± are positive, 
closed currents which satisfy 
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We will call pr1 the stable/unstable currents. It it easily seen that the support of 
pr1 is exactly dK^. 

Since pr1 are (1,1) currents, they, unlike measures, do not act directly on sets. 
But if T is a locally closed 1-dimensional complex manifold, then we may obtain 
a measure on T by restriction: JJL-\T := (ddc)r(G±\T)' That is, we let G^\T denote 
the restriction of G± to T, and we let (ddc)T denote the induced Laplacian on 
T, so p^lr acts as a measure on subsets of T. 

The first Theorem of Brolin mentioned above concerns the preimages of a 
point under iteration. Our way of adapting this to our situation is to work 
with (1,1) currents. We consider, instead of points, an algebraic variety V of 
codimension 1, so that [V] is a (1,1) current. The pullback of the current of 
integration corresponds to the preimage under fand is given by fn*[V] = [f~nV]. 
Brolin's Theorem in this case becomes : 

Theorem [BS 1,2]. IfV is an algebraic variety of codimension 1 in C2, then 

lim(d-n)fn*[V]=cv+ (12) 
n—»00 

holds for some constant c > 0, with the convergence being taken in the sense of 
currents. 

(Another version of this Theorem was recently given in [FS].) The proof of 
this Theorem is based on the Poincaré-Lelong formula for currents 

[{x = 0}] = ^ c l o g | x | . 

Similarly, if V = {h = 0} is an algebraic variety defined by a polynomial h, then 
ddclog\h\ is a constant (positive) multiple of the current of integration on V. In 
vague outline, the proof of the theorem proceeds by showing that 

lim log |h(fn(x9y))\ = const. G+(x,y) (13) 
n—»oo 

holds locally in L1. It follows, then, by applying the Poincaré-Lelong identity, 
that we obtain the convergence of the desired currents. 

N. Sibony proposed working directly with invariant measures. If S is a 
positive, closed, (1,1) current on C2, and if u is a bounded, psh function, then we 
may form the wedge product ddcu A S, which will be a (2,2) current, and which 
acts on a test form <p according to the formula 

(ddcuAS)(q>) := uddccpAS. 

This formula is, formally, just an integration by parts, and the integral on the 
right hand side is justified by representing S as a form with measure coefficients 
and performing a (usual) wedge product with the smooth (1,1) form ddc<p. In 
this way, we define 

fi:=fi+AfT9 (14) 

and it is immediate that 
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/
* 
p = li. 

The two sets of main importance from the dynamical point of view are the 
chain recurrent set and the nonwandering set. A point p is wandering if there is a 
neighborhood U of p such that U DfnU = 0 for all n ^ 0, and the nonwandering 
set Q(f) is the set of all nonwandering points. It is generally true that Q(f) c R(f). 
It is easily seen, too, that the support of an invariant, finite measure is contained 
in the nonwandering set, i.e. sptjU c Q(f). 

It has been conjectured by N. Sibony that the analogue of (3) holds for the 
measure \i in (14) and mappings of the form (8), i.e.: 

lim<T" £ <5Z = T V - (15) 
zePer(n) 

With N. Sibony, we have developed the following formal argument which makes 
(15) plausible. First G := max{G+, G~} is the psh Green function of the set 
K. (See, for instance [Be] for relevant information.) A calculation shows that 
(ddcG)2 = \x. If we set 

un = (dr»)log\f»(x,y)-f-»(x,y)\, 

then 
lim w„ = G (16) 
71—»00 

holds a.e. Further, a standard calculation (cf. [BT1]) shows that 

(ddcun)2 = d-2»(2n)2 £ öa, (17) 
{a:/''(fl)==/-«(«)} 

which may be interpreted as 

(ddcun)
2 = (# Per(2/7))"1

 (2TI)2 £ öa. (18) 
{aePer(2n)} 

This information, however, is not sufficient to obtain (15), because (16) does not 
in general imply that the measures (ddcun)

2 converge to (ddcG)2. (See [CI,2] and 
[L2] for examples of bad behavior of (ddc)2.) For this approach to work, the 
limit (16) needs to be taken in a stronger sense. 

§ 5. Iteration of Disks 

We let M denote a 1-dimensional, locally closed, complex submanifold of C2, 
and we study with the current of integration [M] under pull-backs by the iterates 
of / . In order to remove any technical problems that might be introduced by the 
boundary of M, we let ^ b e a test function such that spt % n M is compact, and 
we work with x[M]. The following was obtained in [BS3, Theorem 3]. 

Theorem. Let M be as above, and suppose that one of the following holds: 
(i) M is an open subset of an algebraic curve X. 
(ii) M a J+. 
If we set c = SMlir\M, then 
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]im(d-")f"(x[M]) = Ai«+ • 
n—>oo 4TC 

This result has two interesting consequences for the study of X + . The first is 

Theorem. Let Q be a connected component of int K^. IfQnJ~ =/= 0, then dQ = J+. 

In particular, if p is a sink for / , then p E J~. 

Corollary. Ifp is a sink for f, and ifB is the basin of attraction ofp, then dB = J+. 

The second application concerns hyperbolic periodic (saddle) points. Let us 
note that Smillie [Sm] has shown that the map / has positive topological entropy, 
so by a result of Katok [K], / always has saddle points. Such points have stable 
and unstable manifolds which are complex submanifolds of C2. The following 
result confirms a conjecture of J.H. Hubbard. 

Theorem. Ifp is a saddle point for f, then the stable manifold Ws(p) is a dense 
subset of J+. 

§6. Recurrence 

Let us make some remarks on the behavior of / on int K+. A connected 
component Q of int K+ is said to be a wandering component of int K+ if 
Q n fn(Q) = 0 for n ^ 0. It is an interesting open question at this time whether 
there can be a wandering component for / (cf. the hst of questions of Milnor in 
[Bi]). If there are no wandering components, then all components are periodic. 
The proof of Sullivan [Su2] that there are no wandering domains in dimension 
one uses quasiconformal methods, and analogous techniques are not available in 
the present case. 

Here we consider a component Q which is recurrent, i.e. there is a point 
z E C2 such that Q contains a point of the co-limit set co(z), which is the set of 
accumulation points of the forward iterates of z. It, is easily shown that if Q is 
recurrent, then fm(Q) = Q for some m > 1. 

Let A a C denote either the unit disk or an annulus {ri < |£| < fy}. We say 
that an imbedding cp : A —> C2 is rotation if there is an irrational number a such 
that 

/MO) = rt^C) 
holds for all f E A. In this case we call cp(A) a rotation domain. 

Theorem. Suppose that Ü is a connected component of int X + and that f decreases 
volume. If Q is recurrent, then either 

(i) Q is the basin of attraction of a sink. 
(ii) Q is the basin of a rotation domain, i.e. Q = Ws(cp(A)) = \J^eA Ws((p(Q). 

The possiblity of case (ii) was also shown in [FS]. In the second case, it is 
in fact possible to linearize f on Q. That is, there is a biholomorphic mapping 
h:AxC^>Q such that hoL = foh, where L(Ç, w) = (eia%^,ßw). 
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We remark that in either case it is evident that Q fi J~ ^ 0, so by §5 we have 
dQ = J+. 

The remaining possibility is that a component of Q is periodic but not 
recurrent. Not much is known about this case. T, Ueda [Ul,2] has analyzed such 
domains which occur at a parabolic fixed point. 

§ 7. Hyperbolic Mappings 

Up to now our discussion has applied equally well to all choices of / . Now we 
see what extra information we can derive in the special situation of hyperbolicity. 
This should be an interesting special case, much in analogy with the case of 
uniformly expanding polynomial mappings in one variable. We say that a set 
A c C2 is a hyperbolic set for a mapping / : C2 —• C2 if there are constants 
C < oo and X < 1 and for each z E A there is a splitting of the tangent bundle 
into stable and unstable directions, i.e. C2

Z = Es
z © Eu

z, and 

\Dfn(z)v\ < CXu\v\ for zEEs
z 

\Df-n(z)v\<CX"\v\ forzEEu
z. 

For our class of mappings satisfying (8), we will say that / is hyperbolic if J is a 
hyperbolic set for / . Not all of these mappings are hyperbolic, and it would be 
of interest to have criteria for hyperbolicity. Examples of hyperbolic maps are 
given by maps of the form (4) if p is uniformly expanding on the Julia set, and 
\a\ is small. These mappings are rather easily seen to be hyperbolic (see [HO, 
FS], and [DN] for the real case). The only examples known at the moment are 
for \a\ small or \c\ large. See [HO] and [FS] for further properties of these maps. 

The choice of J as the set on which / should have a hyperblic splitting is 
justified by the following result [BS3, Theorem 6]. 

Theorem. The following are equivalent: 
(i) f has a hyperbolic splitting over the chain recurrent set. 
(ii) f has a hyperbolic splitting over the nonwandering set. 
(iii) f has a hyperbolic splitting over J. 

Using elementary properties of hyperbolicity and the fact that the iterates of 
/ are a normal family on intK+, we obtain 

Theorem [BS1]. Iff is hyperbolic, then the interior of K+ consists of the basins 
of finitely many hyperbolic sink orbits {si,...,Sk}. 

One of the reasons for considering the case of hyperbolic mappings is that 
stable manifolds always exist. The following holds for a smooth (not necessarily 
holomorphic) hyperboic mapping. 

Stable Manifold Theorem. Let A be a compact hyperbolic set for a smooth diffeo-
morphism f. For every point x E A, Ws(x) is an immersed submanifold of dimension 
equal to that of Es. Further, TxW

s(x) = Es
x, and the intersection of Ws(x) and 

Wu(x) at x is transverse. 
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In the holomorphic case, we obtain more. 

Theorem. If / is hyperbolic, then the leaves of the stable and unstable foliations 
are complex submanifolds which are biholomorphically equivalent to C. 

The relation between J± and the stable/unstable foliations is as follows. It is 
not hard to show that WS(J) — \JxeJ W

s(x) c J+, and similarly for J~. We even 
have: 

Theorem [BS1]. / / • / is hyperbolic and | det £)/| < 1, then WS(J) = J+. If 
si, S2,... Sk are the sinks off then WU(J) = J~ — {s\... Sk}. 

The unstable foliation cannot be extended through the sinks. In fact, Fornaess 
and Sibony [FS] show that there is no germ of a .variety Vj with Sj E Vj <= J~. 

We let #"s (#"") .denote the stable (unstable) foliation, and we describe what 
the local situation looks like. We may cover J + with open sets U c J + such 
that there is a coordinate system (x,y) such that U = J+ n {|x|, |^| < 1}, and 
each leaf of #"s C\ U is a graph {y = cp(x) : |x| < 1} for an analytic function 
cp. If we let T denote a transversal to the leaves of #"s n U9 then the leaves are 
parametrized by the set E := T n U. We note that with this choice of transversal, 
the measure p+\r gives a measure on the space of leaves of #"s n U. If Tf and 
T" are two transversals, then we may describe the space of leaves as Ef and £"; 
and we have a homemomorphism % : E' -> E", which is given by following a 
leaf from T' to T". Following Ruelle and Sullivan [RS], we say that the family 
of measures {^+|r} defines a transversal measure on #"s n 1/ if it is consistent 
with the homeomorphisms {%}, i.e. if X*P^\T' = P^W"- In [BS1, Theorem 6.5] it is 
shown that when / is hyperbolic, then the family {p+\r} does define a transversal 
measure on 1FS. This yields the following structure for ^ + restricted to U, which 
may be written as p+[_U: 

p+l_U= j [Mt]fi+\T(dt), 
JteE 

where [Mt] = [{y = cpt(x)}] denotes the current of integration over the leaf of 
^s nU passing through the point t E E c T. 

Using this local representation for pr1 and the fact that the wedge product of 
currents of integration gives the current of integration over the intersection, i.e. 
[Ms] A [Mu] = [Ms n Mu], we obtain 

ß+ A pr = f p,+\TS(dlf) [ ii-\T»(dt?f) [Ms
t, n M£,], 

which gives a sort of product structure to the measure p,. 
As a consequence, we obtain the result that if f is hyperbolic, then the support 

of p is J. This property of the support of p. yields the existence of periodic points: 

Corollary. / / / is hyperbolic, then the periodic points for f are dense in J. 

Thus the conjecture of J.H. Hubbard that the periodic points for / are dense 
in J is verified in the special case of hyperbolic mappings. 
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Further applications of the theory of hyperbolic mappings yield the following 
(see [BS1, Corollary 7.9]) p is mixing, p is the unique measure of maximal entropy, 
and p describes the distribution of periodic points. In fact mixing has recently been 
shown to hold for all maps (see [BS4]). It would be interesting know whether the 
other two properties continue to hold for more general mappings. 
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Precise Analysis of dt and d on Domains 
of Finite Type in <D2 

Michael Christ* 

Department of Mathematics, University of California, 405 Hilgard Ave. 
Los Angeles, CA 90024, USA 

0. Introduction 

In the past four years or so marked progress has been achieved in understand
ing precise regularity properties of solutions of the d equation on smoothly 
bounded two-dimensional complex manifolds, and of db on three-dimensional 
CR manifolds, under hypotheses of pseudoconvexity and finite type. Holder and 
LP Sobolev estimates, sharp nonisotropic estimates in I? norms, and pointwise 
bounds for Szegö and Bergman kernels have been obtained in partially overlap
ping works by a number of authors. This article represents a summary of those 
developments, and of two applications. 

The approach taken is that of canonical solutions and L2 theory. Important 
developments have also occurred in the method of explicit solution via integral 
kernels, but are neglected here because of the author's lack of expertise. See [Be, 
Fo, Raj. 

Some notation: LPS denotes the Sobolev space of all functions having s 
derivatives in LP, for 1 < p < oo and s > 0. Au denotes the space of functions 
Holder continuous of order a > 0, with the usual convention when a is an integer 
[St]. 

1. Definitions 

The setting for our first group of results is a C00, compact (real) three-dimensional 
manifold M without boundary. A CR structure on such a manifold is a smooth, 
complex one-dimensional subbundle T0'1 of the complexified tangent bundle of 
M, satisfying T^1 n T^0 = {0} for all x E M, where T1-0 = T°ä. Let 50 '1 be the 
bundle dual to T0'1. Canonically associated to the CR structure is a first-order 
partial differential operator 3/,, mapping functions to sections of J30,1, defined by 

h(f)(v) = v(f) 

for v E T^'1 for some x. Thus d\>f is a portion of the usual differential df. 

* Alfred P. Sloan fellow. Research also supported by the Institut des Hautes Etudes 
Scientifiques and National Science Foundation. 
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Although the problems to be considered here have also a global aspect, the 
bulk of the analysis will take place in a small coordinate patchy about an arbitrary 
point XQ. Then B0'1 trivializes and db may be regarded as a complex vector field, 
which we write as db = X + iY, where X, Y are smooth real vector fields, linearly 
independent at every point. Since M has dimension three, db is not elliptic. 

Fix a real vector field T which is linearly independent of X, Y at Xo. Define 
the Levi form X as a real-valued function by 

[X9Y](x) = X(x)T + 0(X9Y). 

Definition 1.1. M is said to be pseudoconvex at XQ if X does not change sign in 
some neighborhood of XQ. 

The usual distinction between pseudoconvexity and pseudoconcavity is lost 
here; by replacing T by — T if necessary, we may assume henceforth that X > 0. 

Definition 1.2. M is said to be affinité type at XQ if X9 Y satisfy the Hörmander 
condition that they, together with all their Lie brackets of all orders, should span 
the tangent space to M at xo. 

M is said to be pseudoconvex (respectively of finite type) if it is pseudoconvex 
(respectively of finite type) at every point. Both definitions are independent of 
various arbitrary choices involved - for instance the choice of T. XQ is a point 
of type m if commutators of length m, but no smaller length, suffice to span the 
tangent space. ([X, Y] is said to have length two, [X, [X, Y]] length three, and 
so on.) M of of type m = maxXGM type (x). An equivalent condition is that some 
differential monomial D in X, Y should satisfy DX(xo) ^ 0. 

The principal examples of CR manifolds are boundaries of open domains 
in (C2; Tx

}1 is taken to be the space of anti-holomorphic tangent vectors to (C2, 
which are tangent to M at x. Globally real analytic boundaries are always of 
finite type. In this case \f may be computed by extending / smoothly to (C2, 
applying d to the extension, and restricting the resulting (0,1) form to M. Thus \ 
annihilates the restriction to M of any holomorphic function, hence has globally 
an infinite-dimensional kernel Consequently 3& cannot satisfy any subelliptic 
estimate, despite the Hörmander condition. 

It is necessary to choose a particular solution of dbU = / in order to have any 
regularity theory; one candidate is the solution of minimal norm (after fixing a 
Hermitian metric on B0,1 and a volume form on M) [K3]. Thus one studies 

dbU = / with u L Kernel (db). 
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2. L2 Theory 

Having fixed a metric and volume form, we may speak of L2 sections of B0>1 ; 
henceforth we shall use the symbol L2 to refer either to sections or to functions. 
In order to have any satisfactory existence theory, one requires 

Hypothesis 2.1. db is assumed to have closed range in L2. 

More explicitly, if / E I? is in the closure of db(L2) n L2, then / = \u for 
some u E L2, and upon choosing the solution w orthogonal to the kernel, one has 
\\u\\ < C\\f\\} This hypothesis is violated generically; see §7. However: 

Theorem 2.2 [K2]. Suppose that M is pseudoconvex and may be realized as the 
boundary (in the C00 sense) of a complex variety in some CC". Then db has closed 
range in L2(M). 

For the case of the boundary of an open domain see [BS]. 
The principal result in the L2 theory is then 

Theorem 2.3 [K3]. Suppose that M is a three-dimensional CR manifold, pseudo-
convex and of finite type < m, on which db has closed range in L2. Then for any 
C00 functions cp, \j) satisfying cp\p = xp, for any s ;> 0 and any f E L2, the unique 
solution u of dbU = f orthogonal to Kernel (db) satisfies 

Wwhi^Mhi + UW-

In this theorem and the next, ö = m -1. 
Indeed being orthogonal to the kernel, u = d*hv where ||u|| <> \\f\\, so this 

follows from the fundamental local result: 

Theorem 2.4. Suppose that U ê U ' are open sets and that dbd*hv = / on Uf. Then 

l i b i l i » ( i / ) ^ I I / I I L ? ( [ / ' ) + \ \ v \ \ m u ' ) • 

A well-known analogue is that (X2 + Y2)v = / implies the same conclusion 
for Xv and Y v. 

The fundamental innovation in the proofs of Theorems 2.2 and 2.3 was a 
rather simple microlocal analysis2. In brief: Choose coordinates (x, y, t) in which 
x0 = 0, X(0) = d/dx, 7(0) = d/dy, and T = d/dt. Let (£' ,T) E M2 x IR be 

dual variables. Near 0, db is elliptic where |T| < C|£'|. Let P+,P~ be classical 
pseudodifierential operators of order zero, with symbols supported where T > 0 
and |T| à: C|£'|, or where T < 0 and |T| > C|^| , respectively. 

1 || • ||, with no subscript, will always denote the L2 norm. 
2 The same idea is found in [HN], in the context of D&. 
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| | ô , P - W | | 2 ;> | | X P - W | | 2 + | |7P-W | | 2 - C||W||2, 

modulo some error terms, by Gârding's inequality. The right-hand side controls 
||M||22 — C|M|2, by the result of [H] and [Kl], so db is subelliptic in the support 

of the symbol of P~. db is not subelliptic in the support of the symbol of P + , 
but a similar application of Gârding's inequality demonstrates that instead, dbd*h 

is subelliptic there. Thus one studies P+v, where u = d*bv. One cannot eliminate 
the microlocalization by simply analyzing the equation dbd*bv = / , as dbd*b fails 
to be subelliptic in the support of P~. 

3. Underlying Geometry 

Of fundamental importance in the refined analysis of db is a second geometric 
structure induced on M by the CR structure [FS, RS, NSW, Sa, FP]. A curve 
y : [0,r] i—> M is said to be admissible if y is absolutely continuous, | / ( t ) | < 1 
for almost every t, and if for almost every t, yf(t) E T0>1 © T1>0. Henceforth M is 
always assumed to be connected. Define: 

g(x,y) = inf{r : 3 an admissible curve y : [0,r] i-> M 

with y(0) = x and y(r) = y} • 

It is an easy theorem that under the hypothesis of finite type, any two points 
can be joined by an admissible curve. Then Q becomes a metric, in the sense of 
point-set topology. However it is not a Riemannian metric, and g(x,y) may be as 
large as c[dist (x,y)]1/m

9 where dist is a Riemannian distance and M is of type m. 
Let B(x, r) denote the open ball centered at x, with respect to Q. Let Bo denote 

the unit ball in R3 . Given x E M and r > 0, define # : B0 »-> M by 

@x,r(u) = Gxp(rU{X + ru2Y + ò(x,r)uìT)(x) 

where 
ö(x,r)= £ rW+2\DX(x)\ (3.2) 

0<|D|^m-2 

and D ranges over all differential monomials in X, Y, with \D\ defined to be 
the number of factors of X, Y. Then <PXìì. is a diffeomorphism for all small r. 
Define B(x9r) = <Px,r(Bo) <= M. Then there exists c such that B(x,cr) <= B(x,r) cz 
B(x,c~1r) for all x,r. 

Proposition 3.1 [NSW]. \B(x,r)\ - r2ö(x,r). 

Corollary 3.2. The ordered triple (M, Q, volume forni) is a space of homogeneous 
type, in the sense of the theory of singular integral operators. 

/ 
See [CW] for the definition, and also [Ch7] for a recent exposition. 
Fixing x, r, pull X, Y baqj£ to Bo by 

(Xf)(u)=r-(Xf)(^x,ru) 
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where / = / o $-£, and similarly for Y. Pull db back in the same way. 

Theorem 3.3 [NSW]. 
• The coefficients of X, Y are C00 functions of uE Bo, uniformly in x9r. 
• The CR structure on BQ associated to (dbP is of finite type, uniformly in x, r. 

The last assertion means that X, Y satisfy the Hörmander condition in a 
uniform way, hence satisfy a subelliptic estimate completely independent of x, r. 
Thus after pulling back to Bo, one has both upper and lower bounds on (ô/,)", 
uniformly in x,r; the "rescaling" maps #Xj,. thus provide a way to analyze db 
uniformly at all points and all scales, and the geometry defined by Q is precisely 
adapted to the study of operators such as db and X2 + Y2. 

Define V/ = (Xf, Yf) and define Va analogously. Combining Theorems 2.4 
and 3.3 yields 

Corollary 3.4. For any N there exists Nf with the following property: for any 
x E M, any 0 < r < 1, and any v,g satisfying 

l|Vag||L2(S(x/ ) )<r-'a ' V|a|<iV', 

dbS*bv = g in B(x,r), 

\\dbv\\iß{EM) ^ r > and 

\\v\\LHË(X,r))^r2> 

one has d*bv E Cco(B(x,r)) and 

l|Va5^||Loo(S(x,/2)) < CNrl-W\B(x,r)\-V2 V|a| < N. 

Let it be stressed that CN is independent of x, r. This result is one of the 
principal ingredients in the proof of Theorem 4.1 below, and explains why that 
theorem should hold. 

4. Main Results for CR Manifolds 

Throughout this section M is assumed to be a smooth, compact three-dimensional 
CR manifold without boundary, pseudoconvex and of finite type not exceeding m, 
and db is assumed to have closed range. In addition to regularity results for db, a 
goal has been to elucidate the nature of certain operators associated to db, as had 
been done previously in the strictly pseudoconvex case [FS, Fel, BSj]. These are 
principally the Szegö projection, that is, the orthogonal projection of L2(M) onto 
the kernel of db, and the relative solving operator G, which is bounded and linear 
on L2 and is uniquely defined by the relations \Gf = nf and Gf J__Kernel (db), 
where nf denotes the orthogonal projection of / onto the range of db. 3 Denote 

It can be shown that the kernel and cokernel of db both have infinite dimension. 
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by S(x, y), G(x9y) their distribution-kernels, which are C°° off of the diagonal as 
a consequence of Theorem 2.3. 

Define V(x9y) = \B(x9g(x9y))\. Let D denote any differential monomial in 
X, Y, acting in either or both of the variables x,y9 and let S be the number of 
factors of X9 Y. 

Theorem 4.1 [Ch2, FK2, Ch5]. \DG(x,y)\ <> Q(x,y)1^V(x,y)~i \/x ^ y. 

On the level of operators S = ï — G o db, so one has also : 

Corollary 4.2 [Chi, NRSW2, FK2]. \DS(x,y)\ ^ Q(x,y)-^V(x9y)~l Vx + y. 

The estimates for S and its derivatives, together with its L2 boundedness, imply 
that it is a singular integral operator in the sense of the Calderón-Zygmund theory, 
with respect to the geometric structure on M imposed by Q and the volume form. 
One of the fundamental results of that theory is that I? boundedness implies Lp 

boundedness. 
In the same way, LP boundedness of X o G, Y o G would follow from L2 

boundedness. A second fundamental result of singular integral theory is the 
T(l) theorem [DJ], which provides a necessary and sufficient condition for L2 

boundedness, and whose hypotheses are often checkable in practice. In the 
present instance the main condition to be verified is "weak boundedness", and 
this follows from some of the ingredients of the proof of the pointwise estimates 
for the kernels. Thus one has the case s = 0 of : 

Theorem 4.3 [Chi]. Let p E (l,oo) and s > 0. Then X o G and Y o G are bounded 
from LPS to Lf. Moreover G : L% i-> Lp

s+m_u and S : Lf i-> Lf. 

For s > 0 one needs also to commute differential operators past G and S ; this 
may be accomplished via microlocal arguments using standard pseudodifferential 
operators as in [FK1, Chi, Ch5] or by the formalism of [CNS2]. Singular and 
fractional integral operators such as S, G are studied systematically in [NRSW2, 
CNS2]. 

Corollary 4.4 [Chi, Ch5]. IfU^U'aM are open, dbU = f and u = d*bv in U' 
for some v'EL2, and iff E Lf (£/')> then u E ^^(U). 

There are analogous results in the scale of Holder spaces : 

Theorem 4.5 [FK1]. If U C Uf c: M are open, dbU = / and u — d*bv in Uf for 
some vEL2,ifa>0 and if f E A^JJ'), then u E Aa+mri(U) 4. 

4 This is proved with a nonstandard definition of Aa for a E Z in [FK1], but follows with 
the usual definition [St] from the machinery of [NRSW2, CNS2]. 
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Another fundamental operator is Db = dbdl; associated to it is a relative 
solving operator whose distribution-kernel satisfies estimates like those for G, but 
with a power of r2~{ [CNS2]. It has mapping properties like those of G, but gains 
two derivatives in the X, Y directions instead of one. 

Basic difficulties in the proofs of these results are : 

• There is no standard pseudodifferential calculus which permits inversion 
(modulo the kernel) of operators such as db ; one is led into classes S^ö with 
Q < ö. 

• There is no single model by which one may approximate, as by the Heisenberg 
group in the strictly pseudoconvex case; and the natural model hypersurfaces 
{Im(z2) = P(z\)} where P is a subharmonic, nonharmonic polynomial seem 
practically as difficult to analyze as the general case. 

• The nonexistence of good holomorphic support functions [KN] renders the 
construction of explicit parametrices difficult. 

• The lifting technique of [RS, NSW] and [Sa] is not (directly) applicable. 
• The operators P± of the microlocal analysis sketched earlier do not preserve 

the type of estimates sought, thus introducing spurious singularities. 5 

The first proofs of these results were rather involved, but subsequently sub
stantial simplification has occurred. See [Ch5], 

5. The d-Neumann Problem 

Let Q ^ <C2 be pseudoconvex and smoothly bounded. Q is said to be of finite 
type if dQ is of finite type in the sense already defined; an equivalent notion of 
finite type (in C2) is that dQ should have a bounded order of contact with all 
complex curves. 

Fix a Riemannian metric on a neighborhood of Q, let r be the signed geodesic 
distance to dQ, and set D = dd* + d*d, on (0,1) forms. The d-Neumann problem 
is the boundary value problem 

f ußr = 0 

\ dUjdr = i 

. ..,_. 0 on dQ 
Du = f on Q with < - _ 

^ *- *- 0 on dQ 

for (0,1) forms on Q, where _, denotes the interior product of forms with respect 
to the Riemannian metric. D is an elliptic second-order system, but the boundary 
conditions are non-coercive. Let N be the Neumann operator, which inverts D on 
(0,1) forms, modulo its finite-dimensional kernel. N sends L2(Q) to L2

+/2/m^(ß) 
[Kl, RS] for all s ^ 0, assuming dQ to be of finite type m. 

Precise results on the regularity properties of N in various function spaces 
have been obtained by [CNS2], generalizing previously known results for the 
strictly pseudoconvex case [GS]. One of the main steps is a computation of N 
in terms of simpler operators, as follows. Let 0)1,0)2 be C00 and constitute an 
orthonormal basis for the space of (0,1) forms at each point in a neighborhood 

This is particularly evident in [Chi] and [FK1]. 
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of dQ, with CÖ2 — s/2dr. Let {Li,!^} be a dual basis of anti-holomorphic vector 
fields. Let G solve for (0,1) forms / : 

UGf = f on Q with Gf = 0 on dQ; 

write Gf = G1/+G2/ where Gif is a scalar multiple of cot. Let R denote restriction 
to dQ. Let P solve for (0,1) forms / defined on dQ (that is, / is a scalar multiple 
of œi) 

( D P / = 0 on Q to infinite order at dQ 

\Pf = f on dQ. 

Finally let K denote the relative solution operator for dbd*b — Db on dQ. By a 
xpdo of order n we shall mean a classical pseudodifferential operator with symbol 
in Sfa 

Theorem 5.1 [CNS2]. TV = G + P o (D~Kr+ + Q) o R o L2Gi plus lower order 
terms. 

Here 

• g is a xpdo on SO of order —1 
• T+ is a. xpdo of order 0 which microlocalizes to the region in phase space in 

which db is not subelliptic 
• D~ is a xpdo of order +1 which may be explicitly computed modulo a symbol 

of order —1. 

The "lower order" terms are of a form similar to the principal one, so 
that in practice, any mapping property which one can establish for the main 
term, may also be proved for the lower-order part. The only ingredient which 
is not computable and quite well understood is K, and one must make do with 
properties established for it using the results of §4. 

Combining Theorem 5.1 with results on K, plus commutation properties of 
K with vector fields, results in 

Theorem 5.2 [CNS2], Let q be a polynomial of degree at most 2 in L\,L\. Then 

q(LuU)°N : Lf(fl) » US(Q) Mp E (l,oo), s > 0 

TV : Aa »-> Aa, 2 V a > 0 . 

Also TV : L00 h-> A for all a < \. 
Let B : L2(Q) H-> L2(Q) be the Bergman projection onto the holomorphic 

functions. If df = 0, then d(d*Nf) = f, so that d*N solves the d equation and 
thus is of much interest. 
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Corollary 5.3 [CNS2]. 

d*N, Li o d*N, U o d*N : Lf(ß) i-> Lf(fì) Vp E (l,oo), s > 0 

d*TV : Aa(0) »-• Aa+m-! (Q) Va > 0 

d*N : L°°(ß) i-> Aß(Q) Vß < m"1 

B : Lp
s(Q) H» Lf(ß) Vp G (l,oo), s > 0. 

In order to formulate pointwise estimates on the Bergman kernel B(z, w), 
extend Q to Q x Q by: 

Q(Z,W) = max [Q(%(Z)9%(W))9 p(z), p(w)j, 

where p is defined by the relation 

ö(n(x),p(x)) = r(x), (5.1) 

and where n (x) denotes the point of dQ closest to x, and ö is the invariant 
defined in (3.2). In the strictly pseudoconvex case, p ~ r1/2, but on domains of 
finite type m one has only cir1/2 < p < C2r1/"\ Let D be any differential monomial 
in Li,Li,L2,L2, with each factor permitted to act in either of the variables z,w, 
with k factors of Li,Li, and *f factors of LI,Lï. 

Theorem 5.4 [Me, NRSW2]. \DB(z,w)\ < Ck/Q(z,w)-2-kö(n(z),Q(z,w))-2-'. 

6. Higher Dimensions 

The question of Holder and LP estimates and the nature of the Szegö and 
Bergman kernels is at present poorly understood in higher dimensions; what is 
clear is that everything is more subtle. The notion of finite type is itself more 
recondite. A boundary point x is said [D] to be of finite type m if no one-
dimensional complex variety in the ambient space has order of contact greater 
than m with the boundary at x. 6 It is a theorem that the set of boundary points 
of finite type is open [D]. Given pseudoconvexity, finite type is a necessary [CI] 
and sufficient [C2] condition for the ô-Neumann problem to satisfy a subelliptic 
estimate. The proofs of these assertions are several orders of magnitude more 
difficult than in the two-dimensional case. 

Question. Let Q be pseudoconvex and of finite type. Does there exist e > 0 such 
that the Neumann operator maps Aa(Q) to y4a+c(ß) and U° to AJ 

The principal difficulty in higher dimensions stems from the nature of D& 
as a system, rather than a scalar equation. There has been definite progress in 
the simpler case where the Levi form of Q is diagonalizable [Ml, M2, FKM]. 

In CD" for n > 2, this is not equivalent to the natural condition in terms of vector fields. 



868 Michael Christ 

However certain negative as well as positive results have been obtained, so that 
even the diagonalizable case is more subtle than might have been anticipated. 

In <C3 consider a domain {Im(z3) > |zi|2k + |z21
2}, for k = 2 ,3 , . . . . Identify the 

boundary with £ 2 x R via the map (zi,Z2,t) h-> (zi,Z2,t + i(\zi\2k + |Z2|2))- Set 

dzi dt dz2 dt dt 

Then after being pulled back to (C2 x R, Db := dbd*b + d*bdb on (0,1) forms 
becomes 

D f c = ( " o 1 ) where J^ = - (L 1 L 1 +L 2 L 2 ) . 

Thus one need only analyze J£?_1. 
What geometric structure should underlie the analysis? Write Lj = Xj + iYj. 

Let Q denote the metric defined in terms of Xu Yi,X2, Yi as in (3.1); one might 
hope that J5?"1 should behave as an operator smoothing of order two with 
respect to the balls associated to Q, as for the relative fundamental solution 
for Dfc in the two-dimensional case. This is false. Let X(zi,Z2,t) = \zi\2k~2 be 
the degenerate eigenvalue of the Levi form, up to a constant factor. Let Q be 
the metric associated to the weaker, but still subelliptic, second-order operator 
££ = -(Xl + Y? + X2XX2 + Y2XY2) according to the theory of [FP]. One has 
Q > Q, but no majorization Q < CQ near where X vanishes. Denote by BQ and 
B$ the balls with respect to the two metrics. Define V(z,w) = \B(Z,Q(Z,W))\, 

V(z,w) = \B(Z,Q(Z,W))\. Let K(z,w) denote the distribution-kernel for JSf"1, and 
S the Szegö kernel. Here z, w E <C2 x IR. 

Theorem 6.1 [Ml]. 

• |K(z,w)| < C(Q(Z,W)2/V(Z,W)) -log ( 2 + « g g ) . 

• The last estimate becomes false if the logarithmic factor is removed. 
• \S(z9w)\<CV(z,wr1. 
• \L2L2K(z,w)\<CV(z,w)-1. 

It is primarily Q, rather than Q, which figures in the first two estimates. Two 
further surprises : the extra singularity present in K disappears when appropriate 
derivatives are applied to it to yield S, while application of L2L2 yields a kernel 
which satisfies natural estimates with respect to Q rather than Q. 

Consider a pseudoconvex domain Q C Cn + 1 of finite type, on, which the 
Levi form has at most one degenerate eigenvalue at each boundary point. Fix 
smooth anti-holomorphic vector fields Li, . . .L„ which form a basis for the anti-
holomorphic tangent space to dQ in some open set, with respect to which basis 
the Levi form is diagonalized, and such that the Levi form restricted to the span 
of Zi2,...L„ is nondegenerate. Let Q be the metric associated to the [FP]-type 
operator & = — (X2-\-Y2+J]j>2\.Xj^xj + Yj^Yj]), where X denotes the degenerate 
eigenvalue. Define V in terms of Q as usual. 
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Theorem 6.2 [M2]. Let Q be pseudoconvex and of finite type, and suppose that 
its Levi form has at most one degenerate eigenvalue. Then the Szegö kernel on dQ 
satisfies 

\S(z,w)\ < CV(z,w)-x Vz^wEdQ, 

Moreover the appropriate bounds hold for derivatives, so that S is a singular 
integral operator with respect to the structure of a space of homogeneous type 
defined by Q. Thus it extends to an operator bounded on LP for all p E (1, oo) ; it 
also improves Holder classes. 

It is easy to see via microlocal analysis why two different geometric structures 
ought to come into play. Let ((, T) E IR4 x IR be dual variables. Then microlocally 
where T > 0 and |T| > C|Ç|, one has for any / : 

(J?P+f, P+/) = l|LiP+/ll2 + II^P+/II2 

- IILiP+ZII2 + l l ^ + / l l 2 + (X\T\P+f, P+/> + \\L2P+f\\2 

modulo lower-order terms. One might also hope to estimate L2P+/, but 

\\L2P+f\\2 - II^P+/H2 = ([L2,L2]P+f, P+f) ~ -(\T\P+f, P+f) 

(modulo a constant factor and zero-order terms) is potentially large and nega
tive, and is not controlled by (J£P+f, P+f). The best that one can control is 
(X[L2,L2]P+f, P+f), so that 

(J2T+/, P+f) ~ HLjP+ZII2 + l | ïiP+/ | |2 + \\V~XL2P+ff + \\L2P
+ff 

~(&P+f,P+f) + \\L2P
+f\\2, 

again modulo lower-order terms. Thus J? enters the picture. On the other hand, 
in any compact subset of (D2 x R, X is bounded above and one obtains 

(JZP'f, P-f) ~ (-(X2 + Y2 + X2 + Y2)P~f, p-f). 

At first the estimates of Theorem 6.2 for S might appear improbable, given 
the extra singularity exhibited by K. However, the Szegö projection is equal 
to the orthogonal projection onto the intersection of the kernels of Li and 
\[XL2, and is thus heuristically expressible also as I — db Ü^S/, where \f = 
(Lif)cbi + vX(L2f)cÒ2 and db »Ü^1 are the associated operators. (The same holds 
with db defined to be (Li/)ö)i + y(L2/)ö)2, for any constant y E IR.) Thus the 
Szegö kernel can be described entirely in the "Q - category", and Theorem 6.2 
becomes less surprising; this is part of the idea in [M2]. 

Concerning Holder estimates one has the following: 

Theorem 6.3 [FKM]. Let Q be smoothly bounded, pseudoconvex and of finite type 
m. Assume that its Levi form is (smoothly) diagonalizable in a neighborhood of 
each boundary point. Then for any 0 < a,ß E R\Z satisfying ß < a + 2m~l, for 
any (0, l)-form f on dQ, 
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11/11/, ^ P f c / l k + ll/lltf • 

Moreover for ß < 2/m, \\f\\Aß <S | |D6 / | |L- . 

The proof is far too involved to be summarized here. Corresponding results 
hold for the 3-Neumann problem, and for the Szegö projection. 7 

7. Two Applications 

A. Characterization of Zero Varieties for the Nevanlinna Class 

Let ß C C2 be smooth, pseudoconvex and of finite type. Let r be a defining 
function, Q = {r < 0}. Let QE = {r < —s}. The Nevanlinna class is the set of all 
holomorphic functions on Q satisfying supe fdQ log+ | / | < oo. The zero variety 
Z c Q of a holomorphic function is said to satisfy the Blaschke condition if 
fz \r(z)\da(z) < oo, where er is the induced volume element on Z. 

Theorem 7.1 [CNS2], Let Z c Q be a complex subvariety of codimension one, 
which satisfies the Blaschke condition. Then Z is the zero variety of a function in 
the Nevanlinna class. 

The converse was previously known and follows from Green's theorem. In 
the strictly pseudoconvex case this was proved earlier [Hel, He2, Sk].8 

The proof proceeds by the method of [L], in which one solves idd© = [Z] 
where [Z] denotes the (1,1) current defined by integration over Z. The desired 
Nevanlinna class function / will satisfy © = log |/ | , so that one seeks a solution 
© E L1(dQ). Control of the L1 norm at the boundary comes from: 

Theorem 7.2 [CNS2]. fd*Nf\\LHdQ) < C\\f\\LHQ) + | |*/A3r| |Li ( f l ) . 

The invariant p > r is defined in (5.1). 
In order to apply Theorem 7.2, one needs an estimate of [BC] to the effect that 

the Blaschke condition automatically implies a formally stronger estimate for [Z], 
generalizing a result of [Mai] for the strictly pseudoconvex case. Moreover the 
higher is the type of a given boundary point, the stronger becomes this estimate 
near that point, in such a fashion that the second term on the right-hand side in 
the theorem is exactly under control. The full strength of the precise estimates 
for the Neumann operator is used; no loss of e in regularity can be afforded. 

B. Embeddability of Compact Three-Dimensional CR Manifolds. 

Throughout this section M denotes a smooth, compact three-dimensional CR 
manifold without boundary. A CR embedding of M in <CW is a smooth embedding, 

7 It is not known to this author whether one may take ß = a + 2m_1, nor whether similar 
LP estimates hold. 
8 An additional hypothesis imposed on Z in [Sk] is satisfied in this case since 772(ß, <C) = 0. 



Precise Analysis of db and d on Domains of Finite Type in C2 871 

all of whose component functions are CR, that is, are annihilated by db. There 
exist arbitrarily small, real analytic perturbations of the standard structure on S3 

which are not globally embeddable [Ro]. There exist strictly pseudoconvex CR 
structures, with the property that every function which is CR in a neighborhood 
of the origin is constant there [Ni]. 

There has been some interesting recent work in the negative direction. [BE] 
have proved that generic small perturbations of the standard structure on S3 are 
non-embeddable, even in the real-analytic category. D° = 3£d& is a self-adjoint 
operator which has (in the embeddable case) 0 as an eigenvalue of infinite 
multiplicity; the set of all positive eigenvalues is a locally discrete subset of 
the open interval (0, oo). Closed range fails if and only if there is a sequence 
of nonzero eigenvalues tending to 0, and [BE] show that generic perturbations 
create such eigenvalues. 

[F] has given a simple construction of non-embeddable structures. One finds 
a simply connected, strictly pseudoconvex two-dimensional complex manifold 
Q, whose boundary admits a nontrivial finite cover, M, and one pulls the CR 
structure from dQ back to M. If embedded, M must bound a complex manifold, 
and the key is to prove that such a manifold would then be a nontrivial cover of 
Q.9 

A very simple construction of non-embeddable (global and local) examples is 
in [R]. Further pathologies are exhibited there. 

A combination of results of [Bu] and [K3] yields embeddability provided db 
has closed range in L2. Closed range would be a consequence of a subelliptic 
estimate for D£; but D£ is not subelliptic in dimension three.10 In view of Theorem 
2.2, closed range is equivalent to embeddability for strictly pseudoconvex three-
dimensional CR manifolds. This result extends to the case of finite type: 

Theorem 7.3 [Ch4]. A compact, pseudoconvex three-dimensional manifold without 
boundary and of finite type is embeddable, provided db has closed range in L2. 

To prove this one must show that there exist sufficiently many CR functions 
to provide local coordinates, and to separate points. In the strictly pseudoconvex 
case the latter is proved as follows: given x =/= y E M, one first constructs a 
one-parameter family {gt : 0 < t < 1} of functions satisfying gt(x) = 1, gt(y) = 0, 
and ||^gr||cjv —> 0 for any N. This is easily done by a formal power series 
argument, which relies on the existence of holomorphic support functions. From 
[K3] it follows that for sufficiently large £, one can solve dbUt = dbgt with 
||ut||co < C\\dbgtHe'- Then ft = gt~ ut is CR, and ft(x) -* 1 while ft(y) -> 0. 

There exist [KN] real analytic pseudoconvex hypersurfaces of finite type in 
(C2 for which any local holomorphic support function at a point x must vanish 

9 There do not exist complex manifolds of dimension greater than two with the required 
property. 
10 It is in higher dimensions, given strict pseudoconvexity, so that higher-dimensional 
compact, strictly pseudoconvex CR manifolds without boundary are always embeddable 
[Bt]. 
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to infinite order; such functions cannot be used to construct adequate gt. To 
circumvent this the strategy was to : 

• show that on model hypersurfaces (Im(z2) = P(z\)}> where P is any homoge
neous subharmonic, nonharmonic real-valued polynomial, there exists a CR 
function cp in the Schwartz class such that cp(0) ^ 0, 

• show that at any point of a pseudoconvex CR manifold of finite type, there 
exists a close approximation by one of the model domains, 

• pull back a one-parameter family of dilates of cp from the model^ to {gt} on 
the given manifold, in such a way that gt(x) = 1, gt(y) = 0, and || 3&gjL* -> 0 
for some finite q, and 

• solve dbut = dhgt with \\ut\\ç* < C\\dbgt\\u-

Then gt — ut again does the job, for small t. In the last step one does not 
know how to make || c^gjc* small for large TV, and the U regularity theory is 
required to complete the proof. n 

8. Analytic Hypoellipticity 

In analogy with the C00 theory we say that \ is (relatively) analytic hypoelliptic 
on M if whenever \u is real analytic in an open set V and u = d*bv for some 
v E L2 in V, u must be analytic in V. 

Theorem 8.1 [G]. Let Q C (C2 be strictly pseudoconvex with real analytic boundary. 
Then db is (relatively ) analytic hypoelliptic, and the Szegö kernel is analytic off 
of the diagonal on dQ x dQ. 

This issue is not currently well understood for domains of finite type, but 
there are some counterexamples: Let Q = {Im(w) = [Re(z)]m} for m = 4,6,8, . . . . 

Theorem 8.2 [CG], db is not (relatively) analytic hypoelliptic on dQ. Moreover the 
Szegö kernel is not analytic off the diagonal, nor is the,Bergman kernel, restricted 
to dQ x dQ minus the diagonal. 

In fact one has only Gevrey regularity of order m for general u as above, 
and in particular for the Szegö kernel. The proof rests on an explicit, though not 
entirely transparent, formula for the Szegö kernel in [N]. 

In higher dimensions we retain the standard definition of analytic hypoellip
ticity. Let n > 2 and adopt coordinates (z',(,w) E (C"~2 x C x (C. 

Theorem 8.3 [CG]. Ub is not analytic hypoelliptic on {Im(w) = |z'|2 + [Re(Ç)]m} 
for m = 4,6,8, Nor is the Szegö kernel analytic off the diagonal. 

11 The existence of continuous peak functions may also be inferred from this argument; a 
stronger result was obtained some time ago in [BF], and another proof has been obtained 
in [FSi]. 
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Various subelliptic second-order differential operators with analytic coeffi
cients are known not to be analytic hypoelliptic, but these examples seem to be 
new. An equivalent formulation is that the second-order operator db o d*b fails to 
be analytic hypoelliptic, in the standard sense, microlocally in a cone in which it 
is C00 hypoelliptic. 

Conjecture 8.4 [CG], On a hypersurface {Im(z2) = P(Zì)}, where P is a subhar
monic, nonharmonic polynomial, db is (relatively) analytic hypoelliptic if and only 
if all zeroes of AP are isolated in (C1. 

9. Weighted Estimates for d 

The same philosophy as for the main results concerning db may be applied in 
other situations. Let cp : (Ci—• R be subharmonic. Let p = A<p, a positive, locally 
finite measure. Assume that 

(1) p is a doubling measure: p(B(z,2r)) < Cp(B(z,r)) Vz E (C, r > 0. 
(2) There exists Ö > 0 such that p(B(z, 1)) > ö > 0 for all z. 

(1) should be viewed as a finite type condition; (2) replaces the usual assumption 
that Acp > Ö. Then for each / E L2(C, e~2(P) there exists u E L2((C, e~2(P) satisfying 
du = f [Ch4, Ch6]. Let R be the bounded linear operator which assigns to each 
/ the solution u with minimal norm in L2((C,e~2(p), and denote also by R its 
distribution-kernel. 

Let X : (C i-> R + be C00 and satisfy p(B(z,X(z)) ~ 1 for all z. Define a 
Riemannian metric by do2 — X~2 ds2 where ds2 is the Euclidean metric. 

Theorem 9.1 [Ch6]. Assume that cp satisfies (1) and (2), Then there exist C < oo, 
e > 0 such that for all z ^ C € (C, 

|R(z,C)| < C\z - £ | - V ^ 0 ^ ( 0 - P ( Z ) B 

Moreover C,e depend only on the constant in (1). 

Corollary 9.2 [Ch6]. Let cp satisfy (1) and (2). Let p E [l,oo] and assume that f E 
Lp((C,e~(p). Then there exists u satisfying du = f, such that u, k~lu E Lp((^,e~lp). 

These results are closely related to the analysis of db on the model hypersur-
faces (Im(z2) = P(zi)}; if P is a subharmonic but nonharmonic polynomial, then 
cp = P satisfies our hypotheses. Taking a partial Fourier transform in Re(z2) re
duces db to d+t-Pz on (C1, where T is a real parameter; this last equals e~xP odoexP, 
so that studying it on L2((C) with respect to Lebesgue measure is equivalent to 
studying the ordinary d operator with a weight. The counterexamples of the last 
section become entirely natural from this perspective. 

LP solvability of d on bounded domains in (C1, with arbitrary subharmonic 
cp, has been studied in [FiS2, Ber] and [A]. 
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Adapted Multiresolution Analysis, Computation, 
Signal Processing and Operator Theory 

Ronald R. Coifman 

Department of Mathematics, Yale University, New Haven, CT 06520, USA 

We would like to describe recent developments, relating signal processing, nu
merical analysis and harmonic analysis. 

Some of the main tasks of these fields involve efficient description of var
ious classes of functions or transformations on functions. The usual problems 
encountered require handling of smoothness, oscillation or scaling patterns, and 
obtaining efficient representations (or coding) in a small number of parameters. 

As for transformations on functions, some of the main problems concerning 
harmonic analysts involve preservation of various function spaces, spectral theory 
and operator calculus. The numerical analyst is mostly concerned with efficient 
algorithms for computing the effect of an operator, or of its inverse. 

Both activities require a detailed understanding of the action of an operator 
on functions. In order to prove estimates or compute efficiently a good knowledge 
of the geometry and cancellation effects are necessary. 

We will start by describing various methods for efficient analysis or description 
of functions. In the second part this analysis will be used to obtain fast numerical 
algorithms linking ideas and problems from classical analysis, such as Littlewood-
Paley theory, to the ability to compute. 

In conclusion, it will become evident that efficient compression methods, i.e. 
methods in which an operator or functions are described by as small a number 
of parameters as is possible (for a given precision), are directly related to our 
ability to compute fast, as well as to our analytic understanding. Most of the 
results discussed in this talk were obtained in collaboration with Yves Meyer, 
Vladimir Rokhlin, Gregory Beylkin, and Victor Wickerhauser. 

§ 1. Data Compression, Orthonormal Bases, and Best Basis 

We describe various constructions of orthonormal bases in function spaces (or 
sample spaces) which will permit an adaptation of bases to given functions or 
signals. 

Over the last fifty years we have seen within mathematics, the need to modify 
the Fourier transform by permitting regions or bands of frequencies to be lumped 
together. The most common analysis of this type, the so-called Littlewood-Paley 
theory, (as developped by Marcinkiewicz, Zygmund, Calderon, Stein and many 
others)in which frequencies are grouped in dyadic intervals, has proved to be a 
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powerful and flexible tool. This method permits a blend of analysis in space and 
frequency simultaneously. 

The recent discoveries by Stromberg [S], Meyer [M], Mallat and Daubechies 
[D] of various orthonormal wavelet bases has opened the door for using these 
methods (Littlewood-Paley analysis) in signal processing and numerical compu
tation and, stimulated a range of discoveries and constructions of other classes 
of orthonormal bases. We refer the reader to Meyer's talk in these proceedings 
for further detail. 

Definitions of Modulated Waveform Libraries. We now introduce the concept of 
a "Library of orthonormal bases". For the sake of exposition we restrict our 
attention to two classes of numerically useful waveforms, introduced recently by 
Y. Meyer and the author. 

We start with trigonometric waveform libraries. These are localized sine trans
forms associated to covering by intervals of R (more generally, of a manifold). 

We consider a cover R = (J-œ U, h = [<%i&i+i) «ì < «i+i» write t\ = OCJ+I — at = 
\Ii\ and let pt(x) be a window function supported in [af — ^_1/2,aj+i +^-+i/2] 
such that 

00 

—00 

and 
p2(x) = 1 — p2(2ai+i — x) for x near ai+1 

then the functions 

2 
Si,k(x) = -7==Vi(x)sm (2* + l ) ^ ( x - « 0 

form an orghonormal basis of L2(R) subordinate to the partition p,-. The collection 
of such bases forms a library of orthonormal bases. 

It is easy to check that if Hit denotes the space òf functions spanned by 
Si,k k = 0,1,2,... then H^ +Hii+l is spanned by the functions 

P(x) . , „== sin 
, ^ + 1 ) 2 ( r a ) ( X ^ . 

where 

is a "window" function covering the interval It U Jf+i. 
Another new library of orthonormal bases called the Wavelet packet library 

can be constructed. This collection of modulated wave forms, corresponds roughly 
to a covering of "frequency" space. This library contains the wavelet basis, Walsh 
functions, and smooth versions of Walsh functions called wavelet packets. 

We'll use the notation and terminology of [D], whose results we shall assume. 
We are given an exact quadrature mirror filter h(n) satisfying the conditions 

of Theorem (3.6) in \D]9 p. 964, i.e. 

£ h(n - 2k)h(n - 2/) = <5fc/, £ h(n) = V2. 
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We let gk = hj-k(~l)k and define the operations Fj on /2(Z) into '72(2Z)" 

Fo{sk}(f) = 2Yskhk-2i 

*l{5*}(0 =22]sitgjk-2/ • 

The map F(sk) = F0(sk) © Fi(sk) E ̂ 2(2Z) © /2(2Z) is orthogonal and 

(1.1) 7^0 + 7 ^ = 7 . 

We now define the following sequence of functions. 

f W2n(x) = V2ZhWn(2x - k) 

\ W2n+i(x) = V2ZëkWn(2x - k). 

Clearly the function WQ(X) can be identified with the scaling function cp in [D] 
and W\ with the basic wavelet \p. 

Let us define mo«) = ^^he~ik^ and 

mi«) = - Ä n o « + «) = - ^ X **«** • 

Remark. The quadrature mirror condition on the operation F = (Fo,Fi) is 
equivalent to the unitarity of the matrix 

= [ m0«) mi«) 1 
Lm0« + n) mi« + TU) J _m0« + n) mi« + TE) . 

Taking the Fourier transform of (1.2) when n = 0 we get 

^ o « ) = m 0 « /2 )^o« /2 ) 

i.e., 
OO 

^o«)=rimo^/2j") 
7=1 

and 

^ i « ) = mi«/2)#o«/2) = mi(^/2)mo«/4)m0«/23) • • • 

More generally, the relations (1.2) are equivalent to 

oo 

(1.3) #n(o = n m ^ / 2 ; ) 
7=1 

and n = Y!JLi ^j~H^j = 0 or 1). 
The functions Wn(x — k) form an orthonormal basis of L2(Rn). 
We define a library of wavelet packets to be the collection of functions of 

the form Wn(2*x — k) where /,/c E Z,n E N. Here, each element of the library is 
determined by a scaling parameter £, a localization parameter k and an oscillation 
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parameter n. (The function Wn(2*x — k) is roughly centered at 2~*k, has support 
of size « 2~* and oscillates « n times). 

We have the following simple characterization of subsets forming orthonormal 
bases. 

Proposition. Any collection of indices (/, n) such that the intervals \2en9 2*n + 1) 
form a disjoint cover of [0,oo) gives rise to an orthonormal basis of L2. 

Motivated by ideas from signal processing and communication theory V. 
Wickerhauser and the author were led to measure the "distance" between a basis 
and a function in terms of the Shannon entropy of the expansion. More generally, 
let H be a Hilbert space. 

Let v E H, \\v\\ = 1 and assume 

# = ©£#; 

an orthogonal direct sum. We define 

s2(v,{Hi}) = - 2 NI 2'"IMI2 

as a measure of distance between v and the orthogonal decomposition. 
e2 is characterized by the Shannon equation which is a version of Pythagoras' 

theorem. 
Let 

H = © £ > ' ) © £ > , ) = H+@H-

W and Hj give orthogonal decomposition 77+ = ]T 7r,7jL- = Y,Hj- Then 

62M#U;}) = e
2Mtf+,#_}+||M V ( ^ 

This is Shannon's equation for entropy (if we interpret as in quantum mechanics 
l|7°i?+ü||2 as the "probability" of v to be in the subspace JÏ+). 

This equation enables us to search for a smallest entropy space decomposition 
of a given vector. 

In fact, for the example of the first library restricted to covering by dyadic 
intervals we can start by calculating the entropy of an expansion relative to a 
local trigonometric basis for intervals of length one, then compare the entropy 
of an adjacent pair of intervals to the entropy of an expansion on their union. 
Pick the expansion of minimal entropy and continue until a minimum entropy 
expansion is achieved. 

In practice, discrete versions of this scheme can be implemented in CN log N 
computations (where N is the number of discrete samples N = 2L.) 

For voice signals and images this procedure leads to remarkable compression 
algorithms (see [CMQW]). 

Of course, while entropy is a good measure of concentration of an expansion, 
various other information cost functions are possible, permitting discrimination 
and choice between various special function expansion. 

Other possible libraries can be constructed. The space of frequencies can 
be decomposed into pairs of symmetric windows around the origin, on which 
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a smooth partition of unity is constructed. This and other constructions were 
obtained by one of our students E. Laeng [L]. 

Higher dimensional libraries can also be easily constructed (as well as li
braries on manifolds), leading to new and direct analysis methods for linear 
transformations. 

§ 2. Wavelets, Wavelet Packets and Numerical Algorithms 

The usual way to analyze an integral operator relies on the Fourier transform. 
In principle, for convolution operators the problem is solved, although as we 
well know it is essentially impossible to rely solely on the Fourier transform to 
understand the effect of the operator on various classes of functions (such as 
Holder, LP etc.). 

For operators which are not of convolution type even the problem of proving 
L2 boundedness (for example), can be extremely difficult. We claim that good 
methods for fast computation of such operators shed light on their analysis and 
provide new approaches. 

Initially the relations between computation and Calderón-Zygmund theory 
was pointed out to the author by V. Rokhlin who in his design of the Fast Mul-
tipole algorithm for computing potential interactions has essentially reinvented 
many of the ingredients of Calderón-Zygmund theory. 

Rokhlin constructed a fast algorithm of order N to compute all sums 

N 

Pj = Y,\ gigJ w h e r e * / e R 3 i = l , . . . ,N 
/=1 lx' — xj\ 

although, naively it would seem to be impossible to do this calculation in less 
than AT2 computations, since this is the number of interactions. He observed 
that the effect of a cloud of charges located in a box can be described to any 
accuracy by the effect of a single multipole at the center of the box, requiring 
only a few numbers (Taylor coefficients of the field at the center of external 
boxes removed from the source). He organized all boxes in a dyadic hierarchy 
enabling an efficient 0(N) algorithm. (This algorithm is 0(N) independently of 
the configuration of the charges providing therefore a substantial improvement 
over FFT). 

As we know, Littlewood-Paley and Calderón-Zygmund theory can achieve 
similar goals. Wavelet based algorithms providing an elegant reformulation and 
generalization of the multipole algorithms, were developed by Beylkin, Rokhlin 
and the author [BCR]. 

Before describing these methods in detail we return to the basic question of 
efficient computation of an integral operator. 

Tf(x)= f k(x9y)f(y)dy x e [0,1]. 
Jo 

Clearly, if we can write 

k(x,y) = Yja*ßw«(x)wß(y) 
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where the number of aaß is small, we would reduce the computation to 

f(y)wß(y)dy = dß 

and to 

]T X) a«ßdß | w«(*) • 

If we choose ŵ  to be the eigenvectors of T (say if T is self adjoint) at least 
the matrix aaß would be diagonal. The price of course would be to compute dß 
and the sum efficiently (say like FFT). Such algorithms of course are not known 
in general. Instead, we can compromise. View k(x,y) as an image (i.e. k(x,y) 
would represent the light intensity at pixel (x, y)) and try to compress the image. 
We are naturally led to consider a library such as the wavelet packets and to a 
selection of an orthonormal basis of L2((0,1) x (0,1)) such that the matrix aaß 
has highest concentration (or lowest entropy). 

Of course, when the kernel under consideration satisfies estimates invariant 
under translations and dilations. In particular, if k(x9 y) is a Calderón-Zygmund 
operator or a pseudo differential operator we expect the best basis to have a 
similar behavior i.e., we are forced to consider the wavelet basis. Remarkably, 
this algorithm (see [BCR]) corresponds on the one hand to the FMM methods of 
Rokhlin [R] and, on the other hand, to the so-called Pt, Qt analysis of Calderón-
Zygmund operators and the T(l) theorem of David and Journé (see [DJ]). 

Concretely these methods can be most simply described by using the Haar 
functions hAx) where hAx) = - r o n the left half of the dyadic interval 7 and 

| / |2 

hi(x) = —V on the right half, and zero elsewhere. We also let 
| / |2 

Xi = —r on I xi =0 x i l . 
\I\2 

We expand k(x,y) in terms of the two dimensional Haar functions hi(x)hr(y), 
hi(x)xi'(y), Xi(x)hr(y) as 

k(*,y) = Xa//,ÄJMfc/,M + X^'^Wx/'M + Xy/j';aMMj>) 

where auf = / / k(x,y)hi(x)hr(y)dxdy 

ßiv = k(x,y)hi(x)Xr(y)dxdy 

y i r = k(x,y)xi(x)hr(y)dxdy. 

Introducing this representation of k we obtain 

(1.3) Tif)(x) = X h i M X aii'dr+YJ hiW S ^n'si' S #M YJ yirdi' 
I V V I V 

where each sum in T7 involves only dyadic intervals of length \1\ and where 
si = ixi,f), di = (hi,f). The matrix realisation of this computation (Fig. 1) does 
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not correspond to the ordinary realization of the operator in terms of the Haar 
basis. In fact the s/ are dependant on the coordinates d\\ by doubling the size 
of the matrix we gain a block decomposition by scale (all interscale interactions 
occur through s;). When applied to specific classes of operators such as C-Z or 
pseudo-differential operators this procedure yields banded matrices, with band 
width depending on the desired precision and the choice of wavelet. If we let Pj 
denote the orthogonal projection on the space of functions constant on dyadic 
intervals of length 2~̂  and approximate T by T„ = PnTPn. 

d\ 
a1 

yl 

ß1 

y2 

ß2 

a3 

V3 

P 

3 

di 

4 

Fig.l 

We can rewrite 
n n 

Tn = YP"l - Ti-0 + 7b = X(ÖyTß, + QJTPJ + PJTQJ) + T0 
; = l 7=1 

where Qj^Pj- Pj-i-
This decomposition relates the previous expansion to the Littlewood Paley 

approach and the proof of the "T of 1" theorem of David and Journe', see also 
[Se]. 
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In general; we might hope for decompositions permitting us also to handle 
oscillatory integrals or higher singularities such as the one arising from wave 
propagation, Fourier integral operators, Radon transforms, and others. 

It now seems4 clear .that at least for some of these problems-where previ
ously microlocalizatiön was the tool of choice for obtaining estimates, adapted 
orthonormal bases may become thé tool for numerical computation. 

Another class of examples relate to the Cauchy integral on chord arc curves. 
Here we study " 

where s is the arclength parameter and it is assumed that 

\z(s) — z(t)\ > ö\s — t\ for some ö > 0. 

Again, the problem of computing C(f) rapidly as described before seems at 
first impossible since the curve is not assumed to be more than once differentiable, 
and rapid decay reflects smoothness. Here however, z'(t)dt is a complex measure 
relative to which everything is smooth. Choosing an orthogonal basis relative 
to the complex measure dz with sufficiently many dz vanishing moments leads 
one to a rapid algorithm as well as to a simple, beautiful proof of the L2(ds) 
boundedness of the Cauchy integral (see [CJS]. This fact is easily proved because 
the Cauchy operator becomes almost diagonal in this basis. In this problem 
we see a natural tie between the geometry of the curve and operator theory. 
Moreover the existence of a "good" basis in L2(ds) is equivalent to the chord-arc 
condition. 

Equivalent relations between the geometry of the curve and operator theory 
can be seen through the size of the wavelet expansion coefficients of z'(t). These 
coefficients measure the deviation from flatness on various scales of the curve. 
Analogous methods, initiating nonlinear Littlewood-Paley theory, studying the 
deviation, from flatness of general sets in Rn have been introduced by P. Jones 
[PJ] in his beautiful characterization of subsets of rectifiable curves and by G. 
David and S. Semmes [DS], in their work on operator theory on surfaces. 
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Rational Maps and Kleinian Groups 

Curt McMullen 
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1. Introduction 

There are many parallels between the theory of iterated rational maps / and that 
of Kleinian groups T, considered as dynamical systems on the Riemann sphere 
(C.1 In this paper we will survey three chapters of this developing theory, and the 
Riemann surface techniques they employ: 

1. The combinatorics of critically finite rational maps and the geometrization 
of Haken 3-manifolds via iteration on Teichmüller space. 

2. Renormalization of quadratic polynomials and 3-manifolds which fiber over 
the circle. 

3. Boundaries and laminations — Teichmüller space in Bers' embedding and 
the Mandelbrot set. 

2. The Theme of Short Geodesies 

What are the possible topological forms for a conformai dynamical system? 
Part of the answer is provided by two theorems, due to Thurston, which employ 

iteration on Teichmüller space to construct rational maps and Kleinian groups of 
a given topological form. More precisely, the iteration either finds a geometric 
model or reveals a topological obstruction to its existence. This dichotomy stems 
from : 

Theorem 1 [Mum]. Let Xn be a sequence of points in the moduli space Mg^ of 
hyperbolic Riemann surfaces of genus g with k punctures. After passing to a sub
sequence, either 

• Xn converges to X in Mg^t or 
• there is a collection of disjoint simple closed geodesies Sn on Xn such that the 

hyperbolic length of Sn tends to zero. 

1 See [Sul2] for part of the dictionary. 
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2.1 Critically Finite Rational Maps 

Let / : S2 -> S2 be a branched covering of the sphere of degree greater than one, 
and let P denote the post-critical set of / , i.e. 

00 

P = {Jf"{B), 
n=l 

where B denotes the branch points (at which / is locally many-to-one). If \P\ < oo 
we say / is critically finite. Two such maps / and g are combinatorial^ equivalent 
if there is a homeomorphism h : (S2, Pf) —> (S2, Pg) such that hfhr1 and g are 
isotopie rei Pg. 

A critically finite map is a generalization to the complex domain of the 
kneading sequence for maps of the interval. 

The following theorem provides a topological characterization of critically 
finite rational maps. 

Theorem 2 [Th3, DH3]. Let f : S2 —> S2 be critically finite with hyperbolic orb-
ifóld. Then either. 

• / i*5 combinatorial^ equivalent to a rational map g : (C —> (C, unique up to 
automorphisms o /C , or 

• there is an f-invariant system of disjoint simple closed curves T in S2 — P 
providing a topological obstruction to such an equivalence. 

The technical condition "with hyperbolic orbifold" rules out certain elemen
tary cases (which are also understood). It is satisfied, for example, if \P\ > 4. 

Sketch of the proof. The space of Riemann surface structures on (S2,P), up to 
isotopy rei P is exactly the Teichmüller space of the sphere with \P\ distinguished 
points, denoted Teich(S2,P). Given such a structure, pull it back by / to obtain 
a new structure on the same space: this defines a map 

Tf :.Teich(S2,P) -^ Teich(S2,P). 

A fixed point for Tf gives an invariant complex structure and therefore a rational 
map g combinatorially equivalent to / . 

This iteration has two fundamental features : 

• Tf contracts the Teichmüller metric (for some fixed iterate k) ; and 
• the contraction at a point X in Teich(S2,P) is less than c[X] < 1 where c[X] 

is a continuous function depending only on the location of X in moduli space. 

Now try to locate a fixed point of Tf by studying the sequence of iterates 
Xn = Tf(Xo) of an arbitrary starting guess XQ. If [Xn] returns infinitely often to 
a compact subset K of moduli space, then due to uniform contraction over K, 
the sequence converges to a fixed point and / is equivalent to a rational map. 
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Otherwise, by Mumford's theorem, the length of the shortest geodesic on Xn 

tends to zero. Set F = {isotopy classes of very short geodesies on Xu} for « 
sufficiently large. Since the Teichmüller distance from Xn to X„+i is bounded, 
lengths change by only a bounded factor. Therefore F is /-invariant, in the sense 
that any geodesic representing a component of f"x (y) is again in r. 

Let A : JRf —> R r be defined by Asy = £ a deg(/ : a —• y) - 1 , where the sum 
is over components a of f~x(y) nomotopic to ö. By analyzing the geometry of 
short geodesies, one shows the leading eigenvalue of A is > 1. This provides the 
desired topological obstruction. 

Indeed, if / is equivalent to a rational map g, then one can thicken the curves 
in r to disjoint annuii, with conformai moduli my > 0. By considering inverse 
images of these annuii under g, one finds the same curves can be represented by 
annuii with moduli m'a > ^ A$ymr It follows that some curve can be thickened 
to an annulus of arbitrarily large conformai modulus, a contradiction. D 

2.2 Haken 3-Manifolds 

There is a parallel theory of iteration in Thurston's construction of hyperbolic 
structures on Haken manifolds. For simplicity we stick to closed manifolds. 

To a Kleinian group F one associates the 3-dimensional Kleinian manifold 
N = (M3 U Q)/r, where ß c ( C i s the domain of discontinuity. Then N has a 
hyperbolic structure on its interior and a conformai structure on its boundary. 

Theorem 3 [Thl, Mor]. Let M3 be a closed Haken 3-manifold. Then either 

• M3 is diffeomorphic to a unique hyperbolic manifold H 3 / r , or 
• there is a map of a torus into M3, injective on %\, providing a topological 

obstruction to a hyperbolic structure on M3. 

Sketch of the proof. We combine Thurston's original approach with the Riemann 
surface techniques of [Mc2] and emphasize the parallel with the geometrization 
of rational maps. 

A 3-manifold is Haken if it can be constructed by starting with 3-balls, 
and repeatedly gluing along incompressible submanifolds of the boundary. The 
idea of the proof is to carry out the construction geometrically, at each stage 
providing the pieces with hyperbolic structures. An orbifold technique [Mor, Fig. 
14.6] reduces the problem to the case of gluing along the entire boundary. 

Iteration enters at the inductive step : given a compact 3-manifold M3 and glu
ing instructions encoded by an orientation-reversing involution T : dM3 -> dM3, 
we must construct a hyperbolic structure on M 3 / T . By induction M3 is diffeo
morphic to a Kleinian manifold N3. Unlike the case of a closed manifold, which 
admits at most one hyperbolic structure by Mostow rigidity, the manifold N3 is 
flexible. The set of possible shapes for N3 is parameterized by the Teichmüller 
space of the boundary of M. 

Which structure descends to M / T ? The answer can be formulated as a fixed 
point problem on Teichmüller space. Using the topology of M3, Thurston defines 
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the skinning map 
a : Teich(SM) -• Teich(ôM) 

by forming quasifuchsian covering spaces for each component of the boundary, 
and recording the conformai structure on the new ends which appear. The gluing 
instructions determine an isometry 

T : Teich(3M) -» Teich(SM), 

and a fixed point for 
T = ( J O T 

solves the gluing problem. 
Here the parallel with the construction of critically finite maps emerges. The 

completion of the proof will follow [Mc2]. 
Assume M3 is not an interval bundle over a surface (this special case is dis

cussed in the next section). Then some fixed iterate Tk contracts the Teichmüller 
metric; in fact: 

• The contraction of Tk at a point X in Teich(3M) is bounded by c[X] < 1 
where c[X] depends only on the location of X in moduli space. 

As before, this reduces the proof to an analysis of short geodesies. Let 
Xn = Tn(Xo) be the forward orbit of a starting guess XQ in Teich(dM). If 
[Xn] returns infinitely often to a compact subset of moduli space, the sequence 
converges and the gluing problem is solved. 

Otherwise Xn develops short geodesies. With further analysis one finds these 
short geodesies bound cylinders in M3, joined by % to form an incompressible torus 
in M 3 /T . A closed hyperbolic manifold contains no such torus (it must correspond 
to a cusp), so we have located a topological obstruction to a hyperbolic structure. 

a 

The bound on contraction c[X] comes from a general result in the theory 
Riemann surfaces. 

Let Y -> X be a covering space of a hyperbolic Riemann surface X of 
finite area. Then there is a natural map 6 : Teich(X) —• Teich(7), defined by 
lifting complex structures from X to Y. Consider the case of the universal 
covering A —» X where A is the unit disk; G denotes the Fuchsian group of deck 
transformations. 

Theorem 4 [Mel]. The map 6 : TeichpT) —> Teich(zl) is a contraction for the 
Teichmüller metric. Moreover \\d0\\ < c[X] < 1 where c depends continuously on 
the location of X in moduli space. 

This theorem is related to classical Poincaré series, as follows. For any Rie
mann surface R, let Q(R) denote the Banach space of integrable holomorphic 
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quadratic differentials cf)(z)dz2 with \\(j)\\ := fR |0| < oo. Starting with 0 in Q(A), 
we can construct an automorphic form for G by the Poincaré series [Poin] : 

©wo = !>*(<«• 
G 

Since ®((j)) is G-invariant, it determines an element of Q(X). 
In Teichmüller theory, Q(X) is naturally identified with the cotangent space 

to Teich(X) at X, its norm is dual to the Teichmüller metric, and the operator 
0 : Q(A) —> Q(X) is the coderivative d9*. This gives: 

Corollary 5 (Kra's Theta Conjecture). ||<9|| < 1/or classical Poincaré series. 

On a global level the theorem says that lifts of Teichmüller mappings can be 
relaxed (isotoped to mappings of less dilatation) : 

Corollary 6. Let f : XQ —> X\ be a Teichmüller mapping between distinct points in 
Teich(X). Then the map f : A —• A obtain by lifting f to the universal covers of 
domain and range is not extremal among quasiconformal with the same boundary 
values on S1. 

More generally, these contraction principles apply to a covering Y —> X iff 
the covering is nonamenable; see [Mel]. 

Now for a typical (acylindrical) M3 the skinning map a can be described as 
follows. Given a Riemann surface X in Teich(SM), 

(1) form countably many copies of its universal cover X, then 
(2) glue them together in a pattern determined by the combinatorics of M3 to 

obtain a new Riemann surface o(X). 

The surface o(X) contains a dense full measure set of open disks each of 
which is canonically identified with the universal cover of X. By the results 
above, step (1) is a contraction for the Teichmüller metric. Step (2) is at worst 
an isometry, so ||da|| < ||rf0|| < c[X] < 1. (A more detailed expository account 
appears in [Mc5].) 

3. Renormalization and 3-Manifolds Which Fiber over the Circle 

For the special case of Haken manifolds presented as surface bundles over the 
circle, the construction of a hyperbolic structure is different in spirit and finds 
parallels with the construction of fixed points for renormalization. 

3.1 Surface Bundles 

Let S be a closed oriented surface of genus g > 1, and let (j) : S —> S be a 
mapping class, that is a diffeomorphism determined up to isotopy. From this data 
one can construct a 3-manifold by starting with M3 = S x [0,1] and gluing the 
ends together by (j). Every 3-manifold which fibers over the circle admits such a 
description; 0 is the monodromy of the fibration. 
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Theorem 7 [Th2]. A 3-manifold M3 which fibers over the circle admits a hyperbolic 
structure iff the monodromy (j) is pseudo-Anosov. 

As in the preceding section, the construction of a hyperbolic structure can be 
formulated as a fixed point problem. There are two essential differences: (1) the 
desired fixed point lies on the boundary of Teichmüller space, rather than in its 
interior, and (2) it is dynamically hyperbolic rather than attracting. 

Construction of the Hyperbolic Structure. We will work in the representation 
variety if — Horn(7Ci(S),Isom(H3))/conjugation. Let AH(S) c y denote the 
closed subset of discrete faithful representations. The idea is to find in AH(S) 
the Z-covering space of M3 carrying the fundamental group of a fiber. The deck 
transformation acts by isometry on this covering space, so it is characterized as 
a fixed point in AH (S) for the map 

$ : ir _» ir 

given by 0(g) = Q O 7CI(0). 

The construction of the fixed point can be organized into two steps. Let 
QF(S) cz AH(S) be the open subset of quasifuchsian groups; it is holomorphically 
parameterized by Teich(S) x Teich(S) (here S indicates reversal of orientation) 
and we denote by Q(X, Y ) the marked group corresponding to a pair of Riemann 
surfaces X and Y. 

Step 1: Form the limit Qœ = ]imn-^aoQ(X,(l)~n(Y)). Here X and Y are arbitrary 
Riemann surfaces and 0(7) denotes the action of the mapping class on Te
ichmüller space. The representations Q(X, (j)~n(Y)) range in a Bers' slice, which 
has compact closure in AH(S), so the existence of some accumulation point 
is clear. Logically one can work with any accumulation point g^; in fact, the 
sequence converges [CT, §7]. 

Step 2: Form the limit g = lim $n(Qao)l this is a fixed point for 0. Existence of 
this limit depends on 

Compactness: The double limit theorem of [Th2], which assures there is some 
accumulation point g; and 

Rigidity: Sullivan's quasiconformai rigidity theorem [Sull], which gives 0(g) = g 
for any accumulation point. 

The first step produces a point on the stable manifold of a fixed point of 0, 
and the second iterates it to find the fixed point. 

The limit in (Step 2) can be lifted to the level of marked groups Gn c Aut(JH3) 
(rather than groups up to conjugacy) such that Gn tends algebraically to G = 
Image(^). The groups Gn (conjugate to Image(cPn(0oo))) are all isomorphic; we 
are viewing a single dynamical system from a changing perspective. As n -> oo 
the Unfit set of Gn becomes denser and denser, and the limit set of G is the full 
sphere. 
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The group G„+i is obtained from G„ by a K-quasiconformal deformation with 
uniform K. By compactness of K-quasiconformal maps, one obtains a quasicon-
formal map \p equivariant with respect to G and inducing the automorphism 0. 
Since the limit set is the whole sphere, \p is conformai by Sullivan's result. The 
group generated by G and 1/; together is then a Kleinian group isomorphic to 
m(M3). 

3.2 Quadratic-Like Maps 

This discussion parallels the emerging complex viewpoint on renormalization of 
quadratic-like maps. For concreteness we will discuss the case of period doubling; 
see [Cvi, Milnor, Sul3] and [Sul4] for background and more details. 

Consider the family of quadratic maps z i ->z 2 +cas the parameter c decreases 
along the real axis, starting at c = 0. One finds a sequence of parameter values 
c(n) for which the attractor of fu(z) = z2 + c(n) bifurcates from a cycle of order 
2" to 2"+1 ; at c(oo) = lim c(n) the attractor becomes a Cantor set. This cascade 
of period doublings was observed by Feigenbaum to have many universal features 
around foo(z) = z2 + c(oo). For example 

c(n)-c(oo) , 1 = 4 6 6 9 2 0 1 6 0 9 . . . 
c(n + 1) — c(oo) 

and this value of X (as well as the fine structure of f^, such as the Hausdorff 
dimension of its attracting Cantor set) is the same for other families of smooth 
mappings with the same topological form as z2 + c. 

This universality is part of a larger renormalization picture proposed by 
Feigenbaum and established rigorously by Lanford and others. We present a 
version with the complex quadratic-like maps of Douady and Hubbard [DH2] ; 
cf. [Sul3]. 

A quadratic-like mapping f : U —> V is a proper degree two holomorphic map 
between open disks with V cz V <= C. Its filled-in Julia set K(f) is fl? f~n(V). 
When K(f) is connected, there is a unique quadratic polynomial 1(f) (the inner 
class) conjugate to / near K(f) by a quasiconformal map which is conformai on 
K{f). Thus 7 takes values in the Mandelbrot set M of polynomials z2 + c with 
connected Julia sets. 

Let Ê be the space of all analytic maps / : Qf —> (C defined on a region 
Qf containing the origin, such that /'(0) = 0 and / is quadratic-like on some 
neighborhood of zero. We identify f(z) and g(z) if some rescaling af(z/a) agrees 
with g(z) on their common domain of definition. Finally /,- —• / if there are 
representatives of // which converge to / uniformly on compact subsets of Qf. 

The renormalization operator M : 3! —• J is given by t%(f) = f of .It is defined 
on an open set 3! such that f of is still quadratic-like near the origin. 

Central to the picture is the existence of a unique fixed point g for 0t. 
Since g and 0t(g) are equivalent, g satisfies the Cvitanovic-Feigenbaum functional 
equation agog(z) = g(az). The universal constant X above is the unique expanding 
eigenvalue for 01 at g. 
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We will sketch a construction of this fixed point g which parallels the 
geometrization of surface bundles. 

Douady and Hubbard define a tuning map % : M -> M such that I(^(f)) = 
T - 1 (1(f)) when defined. Thus x describes the inverse of renormalization as it 
acts on the inner class. One finds that T(/„) = / n + i and x fixes the Feigenbaum 
polynomial f^. This accomplishes: 

Step 1 : Form the limit fœ = lim T"(/O). 

Now let Joo denote those / with inner class 1(f) = f^. Then ^(Joo) c J ^ 
and / and 01(f) are quasiconformally conjugate near K(f) for any / in «2a,. 

Step 2: Form the limit g = lim 0ln(fao)- This is a fixed point for ^2, and in fact 
all / in Joo are attracted to g. 

The proof of (Step 2) again appeals to two principles. 

Compactness: For any / in 3^, <0ln(f) > ranges in a compact subset of 3. This 
is a fundamental result of Sullivan [Sul4]. Thus there is a subsequence of n such 
that ®n(f) - • go, 0tn~l(f) -> gu ...Rn~k(f) -> gk and the tower < g0,gi,... > 
satisfies âi(gk) = gfc-i. We can then apply: 

Rigidity: Such a tower admits no quasiconformal deformations [Mc4]. 

Since < go,gi,... > is conjugate to < gi,g2,... > by a suitable limit of a 
quasiconformal conjugacy between / and 02(f), these towers are conformally 
identical, and in particular 0l(go) — go- By rigidity of all limiting towers, the full 
sequence 0ln(f) -> go and this fixed point is unique. 

Geometric Limits. The fixed point of renormalization g is not itself rigid. Its 
universal structure is a result of being embedded deep in the dynamics of / . The 
tower < go,gi,.-. > can be thought of as a geometric limit of the dynamical 
system generated by / as one rescales about its critical point. The limiting 
dynamic is divisible (gn = gn+i o gn+i), and its Julia set fills the whole plane. 
If we set g-n = the 2nth iterate of go, then renormalization acts as a shift on 
the bi-infinite tower < ...g-i,go,gi••• > in a manner reminiscent of the deck 
transformation acting on the Z-covering space of M3 constructed before. 

Self-Similarity in the Mandelbrot Set and in Bers' Slice. In the polynomial
like setting, one can actually define countably many renormalization and tuning 
operators 0lc, xc, one for each c such that the critical point of z2 + c is periodic. 
Milnor has made a detailed computer study of these operators, supporting 
many conjectures [Milnor] ; among them, that xc has a unique fixed point and 
is differentiable there, with derivative given by the inverse of the expanding 
eigenvalue of Mc at its fixed point. 

Similarly, we conjecture (in the case of one dimensional Teichmüller spaces) 
that Bers' boundary is self-similar about the point goo constructed in (Step 1), 
with similarity factor given by the expanding eigenvalue of the mapping class 0 
at the fixed point of (Step 2). Dave Wright's computer study of the closely related 
Maskit boundary for the Teichmüller space of a punctured torus supports this 
conjecture [Wr]. In this case the mapping class group is SL2Z, and the expanding 
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1,6331702 

897 

1.6143001 
0.6805515 

1.6169179 

1.6168823 
0.7056263 0.7056973 

Fig. 1. Self-similarity at the edge of Teichmüller space 

eigenvalue is algebraic (but different from the eigenvalues of the matrix). For 

example, when 0 = I .. ], the boundary scales by A = 4.79129... = ^ ^ j see 

Fig. 1 for two blowups around g<x> computed by Wright. 

Remark. Sullivan has established a compactness theorem for arbitrary composi
tions of a finite number of renormalization operators 0tc, with the condition that c 
is real. Our rigidity argument applies whenever such a compactness result is avail
able. Much progress on a conceptual understanding of the full renormalization 
picture, including a different approach to rigidity, appears in [Sul4]. 

4. Boundaries and Laminations 

We conclude with a very brief account of progress on the boundary of Teichmüller 
space and the boundary of the Mandelbrot set. 
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Conjecture (Douady-Hubbard). The Mandelbrot set M is locally connected. Its 
boundary is homeomorphic to a quotient of the circle by an explicit combinatorial 
equivalence relation. (Cf. [DH1, Dou, Lav, Th3]) 

Conjecture (Thurston). Bers' boundary for Teichmüller space, modulo quasicon
formal equivalence, is homeomorphic to the space W<M£g of projective measured 
laminations, modulo forgetting the measure. 

Both conjectures express the hope that certain geometrically infinite dynamical 
systems can be uniquely described by a lamination on the circle — invariant under 
z2 in the first case, and under the action of a surface group in the second. 

Measures supported on maximal systems of disjoint simple closed curves are 
dense in P ^ i f ; these correspond to maximal cusps in Bers' boundary, that is 
geometrically finite limits of quasifuchsian groups where these curves have been 
pinched to form rank one cusps. Thus Thurston's conjecture is supported by: 

Theorem 8 [Mc3]. Maximal cusps are dense in Bers boundary. 

This result was conjectured by [Bers]. The proof is by via an explicit estimate 
for the algebraic effect of a quasiconformal deformation supported in the thin 
part. 

Also relevant is Bonahon's result: a general geometrically infinite surface 
group admits an ending lamination [Bon], supporting the conjecture that geo
metrically finite groups are dense in AH(S). 

Progress on the Mandelbrot set includes the following breakthrough: 

Theorem 9 (Yoccoz). M is locally connected at every quadratic polynomial which 
is not in the image of a tuning map. 

Yoccoz's result brings us a step closer to resolving the well-known: 

Conjecture. Hyperbolic dynamics is open and dense in the space of complex 
quadratic polynomials. 

It seems likely that Yoccoz's theorem generalizes to the case of polynomials 
lying in the image of only finitely many tuning maps. If so, by [MSS], the density 
of hyperbolic dynamics is equivalent to the quasiconformal rigidity of infinitely 
renormalizable polynomials. 
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Analytic Capacity for Arcs 

Takafumi Murai 

Department of Mathematics, School of Science, Nagoya University, Nagoya, 464-01 Japan 

1. Introduction 

For a domain Q in the extended complex plane C u {oo}, Hco(Q) denotes the Banach 
space of bounded analytic functions in Q with supremum norm ||- ||H0D. For Ç G Q, 
we put c(C; Q) = sup|/'(OI> where the supremum is taken over all f e H°°(Q), 
l l / l ln-^ 1, and /'(oo) is defined by limz_œz{/(oo) - f(z)}. Given f e H°°(Q)9 

II/HH- < 1, we take g(z) = {/(*) - /(Ç)}/{1 - /(z)/(C)}- Then ||ff ||HiD < 1, »(C) = 0 
and \g'(0\ ^ l/'(OI- Thus, for the computation of c(Ç;Q), we may restrict our 
attention to functions vanishing at f. For p > 1 and a domain ß bounded by a finite 
number of analytic Jordan curves, HP(Q) denotes the Hp-space of analytic functions 
/ in ß with norm ||/| |HP = {(ìl2n)\dCÌ\f\

p\dz\YÌP, where dQ is the boundary of 
Q. The condition \^a(Mf)p\dz\ < oo is required for each f E HP(Q), where Jtf 
is a non-tangential maximal function which controls the behaviour of / near 
the boundary. The analytic capacity of a compact set E in C is defined by 
y(E) = c(oo; QE), where QE is the component of Ec containing oo. Analytic capacity 
plays an important role in the theory of conformai mapping [SO], the 2-dimensional 
fluid dynamics [Mi], approximation theory [Ga, V2, Z] and singular integrals 
[Ch, J, Mu3]. Ahlfors [A] shows that a compact set E satisfying Riemann's theorem 
on removable singularities is characterized by y(E) = 0, and Garabedian [G] studies 
y(-) from the point of view of the dual extremum problem. Basic properties are 
mentioned in [AB, Ga, Z]. Here is the classical method of the computation of y(E) 
in the case where Ec = QE and ÔE consists of a finite number of analytic Jordan 
curves. 

The Ahlfors-Garabedian method [A, G]: Construct a pair (f0, IJ/Q) of functions 
so that f0 G 7f°°(£c), U/ollH» ^ 1, /0(oo) = 0, fa e &(&), ^0(oo) = 1 and 

(1) T/O^O dz = l^ol \dz\ almost everywhere (a.e.) on ÔE, 
ì> 

where the orientation of dz is chosen so that Ec lies to the left. Once such a pair has 
been constructed, we have 

(2) y(E)=fi(ao)=\\iP0\\Hl. 
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In fact, 

= sup0 |/ '(oo)| = supo 

= sup0 
1 

2% m 
fijj0dz 

ÔE 

^ • A o l l * - ^ 

-J-
2nij 

/o 
dE 

dz = 

l 
2n t 

fo&o dz 
dE 

/ó(« >), 

dE 
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(by ^o(oo) = 1) 

Cby(l)) 

which yields (2). Here sup0 is the supremum over all f e Hco(Ec), | |/ | | f l- < 1, 
/(oo) = 0. Thus it is essential to construct the pair (f0, ij/0). For any compact set F, 
there exists uniquely / ( • ; QF) e Hço(QF) with norm 1 such that / ' (co; QF) = y(F) 
[Ga, p. 24]. This is called the Ahlfors function of F. Let {&„},?= i be an increasing 
sequence of domains BOO with smooth boundaries such that {J™=1 Qn — QF. Then 
there exists uniquely \jjneHl(Qn) such that 1/̂ (00) = 1 and H ^ J H 1 = ?(^«)- The 
sequence {^„}£=i converges in QF and the limit \j/(-; QF) is called the Garabedian 
function of F; \j/(-; QF) is determined independent of {Qn} [Sm, Sul, 2]. Note that 
fo = f('\ Ec) a n d \jj0 = \)J("9 E

c). Our main theme is the study of y(-), /(•; •) and 
ij/(-9 •). The study from the point of view of Green's functions and harmonic 
measures is classical. In this talk, we focus on an approach based on the singular 
integral operator ^f defined by Calderón [C]. Let sé denote the totality of sets E 
such that E consists of a finite number of mutually disjoint closed arcs {C,}"=1 and 
each arc Cj is a finite union of analytic arcs. For the computation of y(-), we restrict 
our attention to sets in sé. Here are two motivations to deal with sets in sé. For a 
compact set F with a smooth boundary, we can discuss the Hadamard variation 
and the Schiffer variation [S2] of y(F). Then we can express y(F) as a perturbation 
from y (E) for a set E in sé. Thus, in order to get global properties of y (•), it is necessary 
to study y(E), E e sé. Another motivation is as follows. Given a compact set F, we 
can find a finite union G of closed disks such that \y(F) — y(G)\ is arbitrarily small. 
Note that y(G) = y(dG). Removing some arcs on dG, we can find E e sé such that 
I y (G) — y(E)\ is arbitrarily small. (In this approximation, E can be chosen so that the 
connectivity of E is less than or equal to that of F.) Thus it is sufficient to study 
y(E), E e sé. For E e sé, dE denotes the boundary of E having two sides. The 
/7p-space HP(EC) of analytic functions in Ec is analogously defined as above. 

2. The Singular Integral Operator Jtf 

For E e sé, L2(E) denotes the L2-space of functions on E with respect to the 
arc-length \dz\. The singular integral operator fflE from L2(E) to itself is defined by 

1 
*EHZ) = -p.v. 

n JE C 
-h(Ç)\dÇ\, 
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where p.v. is the principal value. There are many articles about ffî [C, Ch, CJS, 
CMM, D, Me, Mu3]. The operator 3^E is defined by J^Eh = J^Eh and the inverse 
operator of Id — J^EJ^E is denoted by ZTE, where Id is the identity operator. Here 
are fundamental expressions of i//(' ; Ec), / ( • ; Ec) and y(E) in terms of JfE [Mu4]: 

^(z9E
c) = \\ + 

1 
71 

1 
- • « W K M I 

2 

/(*;£•) = - [ j^—SrEm\di\ls/*l>(z\Ec\ 
K JE ± ~ Z 

(3) y(E) = WCMI-

The proof is founded on Garabedian's duality theorem [G]: y(E) = inf{||^||2/2; 
(j) G 772(£c)> 0(oo) = 1}. This shows that 

y(E) = inf { -
71 

(\l+JfEh\2 + \h\2)\dz\;heL2(E) 

Using the standard variational method, we obtain the required formulae. The 
following formula plays an important role to compute y(E) practically: 

(4) jeE{uJ^Ev + J^Eu • v] = 3tfEu - 2tfEv - gEuv (u, v e L2(E), gE := dz/dz). 

The other relations between y (E) and J^E are mentioned in [Mu3]; roughly speaking, 
y(E) is comparable with l / | | ^ | | i i W , where | |^ | | i> M , denotes the norm of J^E as an 
operator from the L1 space to the weak L1 space. If E is contained in the real line 
IR, JtE is called the Hilbert transform and denoted by 77£. Formula (4) yields that 

3TEh = \h + \{xEHE(hxE
x) - xE'HE(hxE)}, 

HE^Eh = H^EHE^Xë1) + Tï 'UWAT*)} (h G L2(E), E c= IR), 

where xE = exp{(7c/4)77£l}. Thus 0~E and HE0~E handle easily in the case of E c IR. 
As application of our method, we obtain the following formulae: 

y(E)=\E\/4 ( £ c R ) [P], y(E) = sin(\E\/4) (E c= T), 

ö(E;0, oo) = 2tan(|£|/8) (E a T) [Mu6]. 

Here T is the unit circle, | • | is the 1-dimensional Lebesgue measure and S(E; 0, oo) 
denotes the supremum of |/(0) - /(oo)| over all / G H°°(£C), \\f\\H„ < 1. Using (4), 
we can find the concrete forms of (/(•; •), \j/(-; •)) in various cases; once a pair has 
been found, the check is very easy as stated in the introduction. 

3. Null Sets 

The 1-dimensional Hausdorff measure is also denoted by |-| [F, p. 7]. We have 
y(E) < \E\/n (Painlevé). This shows that y(E) = 0 if the Hausdorff dimension 
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[F, p. 7] dim(E) is less than 1. On the other hand, y(E) > 0 if dim(£) > 1. Thus the 
case of dim(Ti) = 1 is critical. Vitushkin [VI] constructed a planar Cantor set Pœ 

such that y (P«,) = 0 and |PJ > 0 (cf. [Ga, p. 87]). We are interested in the geometric 
structure of sets of Vitushkin-Garnett type. Here is a deformation of Pœ which 
handles easily: 0«, = H"=o {\Jn=k 0*}*', where ß 0 = [0,1] and 

Qk = \x + i E ( - 1)J'2~J" sign(sin nX^x); 0 < x ^ 11 (k>l). 

(The notation Ec* denotes the closure of E and sign 0 = 1.) Then y(QO0) = 0 and 
\Qœ\ > 0. There are two methods of the proof of y(QO0) = 0- The first method is as 
follows: Supposing that the nontrivial Ahlfors function of Qœ exists, show a contradic
tion [J, Ml ] . Mattila applies Besicovitch's set theory [F], and Jones uses the BMO 
norm {(i/2) supZ 6 ß J J QG(z, w)\f'(w)\2 dw A dw}1/2 (Q = ßcJ, where G(z, w) is the 
Green's function of Q. The second method is based on the construction of the 
approximate Garabedian function [Mul] : For e > 0, construct a pair (\j/, R) of a 
function \jj e 7ï1(R) and a domain R so that co e R cz Q^, \j/(co) = 1 and ||^||Hi ^ e-
Once such a pair has been constructed, we have y(QO0) < y(Rc) < libili/1 ^ e> which 
gives y(QO0) = 0. The following dipole function plays an important role in the 
construction of such a pair: 

- } 
-a] 

p(z) = e x p ^ ^ - ^Qt (a, be<D, j ^ — > 0 

Wehavep(oo) = l,p(z) = 1 + 0(\z\~2)(z -> oo)and|p(z)| < l in the strip with width 
\b — a\ which is perpendicular to the segment with endpoints a, b and contains it. 
The required function ij/ is expressed as a product of dipole functions. This method 
works for non-homogeneous Cantor sets. Next we show some estimates of y( • ) from 
below Calderón, Havin and Marshall [Ma] show that y (E) > 0 if E is a compact 
set on a rectifiable curve satisfying |J5| > 0; this theorem was formerly called the 
Denjoy conjecture [Ga, p. 36] and, in the proof, Calderón's theorem [C] on ffl plays 
an important role. Let Bu(-) denote the Buffon needle probability (the Favard 
length). Since y(-) < |-|/7iandBu(-) < Const] -|, it is interesting to compare y(-) with 
Bu( • ) (Vitushkin's problem [Ma, V2] ). Jones and Murai [JM] show that there exists 
a compact set E such that Bu(£) = 0 and y(E) > 0 (cf. [M2, Mu2, 3]). This theorem 
suggests that Bu( • ) < Const y ( • ). There are many problems about this topic [HHN, 
pp. 485-514]. We here note two problems: (I) Suppose that \E\ < oo. Does Bu(£) = 0 
imply y(E) = 0 [HHN, p. 491]? (II) Construct a compact set E so that y0(E) = 0 and 
y(E) > 0 [Ga, p. 55], Here y0(E) denotes the supremum of \\dp\ over all Cauchy 

potentials <&p(z) = dp of measures ponE such that ||^u||Hoo < 1. Problem 
J C - 2 

I originates in Besicovitch's set theory. A Borei set E satisfying |£ | < oo is regular 
if d(z, E) = 1 | • |-a.e. on E, and E is irregular if d(z, E) < 1 | • |-a.e. on E, where 
d(z, E) = l i m i n g |{f G E; |Ç - z\ < r}\/(2r). If |E| < oo, then Bu(£) = 0 is 
equivalent to the irregularity of E [F, p. 89]. Problem II is posed to clarify the 
difference between {bounded Cauchy potentials} and 7J°°(-)- Take a bad arc E (like 
a snowflake) such that dim(£) = 1 and the diameter is equal to 1. Note that 



Analytic Capacity for Arcs 905 

y(E) > 1/4 [Ga, p. 9]. 7s y0(E) smalli Study Ahlfors functions which cannot be 
expressed as Cauchy potentials of measures. 

4. Projection 

Let JS?0 ( — n/2 < 9 < n/2) denote the straight line x sin 9 = y cos 9 and let preE 
denote the projection of E to j*?0. As is well known, a regular set is contained in a 
countable union of rectifiable graphs [F, p. 45]. Thus CHM's theorem [Ma] shows 
that y(E) > 0 if E is a regular set satisfying |JE| > 0. A set E satisfying \E\ < oo is 
irregular if |prflE| = |pr0*E| = 0 for two distinct numbers 9, & [F, p. 90]. From this 
point of view, it is interesting to estimate y(E) in terms of the projection of E to one 
direction. Recall that y(QO0) = 0 and pr fiœ = [0, 1], where pr = pr0. To understand 
the geometric meaning of gœ , we begin with ß l t Let r(z) = [—1/2, 1/2] u 
(z + [—1/2, 1/2]) and y(z) = y(r(z)). In hydrodynamics, r(z) is regarded as a 
biplane wing section [Mi, Chap. VII] and there are many articles about r(z) 
[Fe, Gar]. In order to practically compute y(z), we introduce the lift coefficient i f (z) 
of r(z) [Fe, Mi, p. 203]. There exists uniquely fz G 771 (r(z)c) such that fz is 
real-valued continuous on dT(z) — {±1/2, z ± 1/2}, /z(oo) = — / and fz satisfies 
Joukowski's hypothesis [Mi, p. 199] "|/«(0I < °o (Ç = 1/2, z + 1/2)". Taking 
account of Blasius' formula [Mi, p. 173], we define the lift coefficient JSf(z) of r(z) by 

m=\ i 
271 m? di 

un*) 
=\\s:^)\ 

It is sufficient to study y(z) in P = {Re z > 0, Im z > 0} - [0, 1]. Then the following 
assertion [Mu5] holds: 

where X(z) denotes the arc in P with endpoints z and a positive number such that (the 
modulus [SO, p. 199] of r(Ç)c) is invariant on X(z) and, z is chosen as the starting 
point of the curvilinear integral. The inequality 3?(z) < y(z) holds, and the equality 
y?(z) = y(z) holds if and only if lm z = 0. Using (5), we obtain the following equality 
[Mu5]: 

min y(x + iy)/y(x) = min y(l + z»/y(l)(0.9...). 
x^O.y^O y>0 

Note that y(x) = \r(x)\/4r(x)\/4 (x e R) and the projection of T(l + iy) to R over
laps only at 1/2. This is a reason why we take Q1 as the first step to construct a 
compact set Qœ of Vitushkin-Garnett type. Even 7"(z), the behaviour of y(z) is not 
simple. If 0 < x0 < 1 is sufficiently near to 1, then y(x0 + iy) has at least two local 
extrema in (0, oo) as a function of y. From this fact, we conjecture that there exists a 
compact set E such that y(E) = 0 and y(T(E)) > 0, where T(x + iy) = x -j- i2y 
(or = x + (iy/2)). The following theorem gives the geometric information about 
compact sets E such that y(E)/\pr E\ is small. 
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Theorem 1 [Mu2-4]. If E is a compact set on a graph r such that ITH <; 1, then 
y(E) > C|pr Ê|3/2, where C is an absolute constant. The power 3/2 is best possible. 

This is a generalization of CHM's theorem with a quantitative estimate and an 
interpretation, in terms of y(-), of the optimal estimate of | |C[-]| | defined later. 
Dilating the coordinate axes, we obtain y(E) > C|pr E|3/2|r|~1/2 for any compact 
set E on a rectifiable graph T containing E. Thus, if |pr E\ > 1 and |7"| < M, then 
y(E) > C/y/M. We have y(Qn) > Const/^/n, for example. The first half assertion in 
this theorem is rewritten in the following form also: If y(E) < e, then a graph of 
length less than C2ö3e~2 does not contain any subset F of E satisfying |pr F\ > ö. In 
order to prove the inequality in Theorem 1, it is necessary to investigate J f in 
detail. Let BMO denote the Banach space of functions on R, modulo constants, 
of bounded mean oscillation. For a real-valuêd function a G BMO, the singular 
integral operator C[a] from the L2-space of functions on R to itself is defined by 

C[a]h(*) = -P-v. | ^ . ( \ t \ M uMy)fo, 
rc J-„ y - x + i(A(y) - A(x)) 

where A(x) = Jga(0 dt. This is a version of J^r, r = {x + iA(x); x e R } by Cal-
derón [C], The following inequality [Mu3, p. 53] is established: ||C[a]|| < 
Const {1 + V M B M O } - The proof in [Mu3] is not short, however, the method is 
founded on only one principle "the Calderón-Zygmund decomposition". Using the 
separation theorem and the Calderón-Zygmund decomposition, we can deduce the 
required inequality. In order to see the exactness of the power 3/2, it is sufficient 
to construct a compact set ß* and a graph r* containing ß* so that y(ß*) < 
Const/^/w, |pr Q*\ = 1 and \r*\ < Const n. Our example is related to David's 
example [D]: For any M > 1, there exists a real-valued function aM e BMO such 
that || aM II BIVIO ̂  M and | |C[aM]| | > Const^/M. In the construction of (ß*, r*)9 

the following fact [Mu4] is important: limfM_00 y(R(m)) < 1/4, where R(m) = 
{x + i2~msign(sin n2mx); 0<x< \}a. (Note that {R(m)}%=1 converges to [0, 1] 
and y ( [0 ,1] )= 1/4.) Put 

r n w 
R(ml9..., mn) = <x + i ^ 2"mi mk sigh(sin n2mi+'"+mkx); 0 < x < 1 

Choosing a sequence {mjf}^=1 of positive integers so that {mf+1/mf}^=1 is rapidly 
increasing, we put ß* = R(mf,..., m*) (n > 1). Then (3) yields that y(ß*+i) < 
y(Qn) - ^oy(Qn)3 (» ^ 1) with a small constant ö0. Thus y(ß*) < Const/^n (n > 1). 
Connecting endpoints of ß* by segments parallel to the y-axis, we obtain an arc r* 
of length less than Const, n, which we can regard as a graph. Thus the power 3/2 is 
best possible. It is interesting to try to deduce the exactness of 3/2 by the dipole 
functions. 

5- The arc-Length Variation 

Let J* denote the totality of domains Ü such that Qc G sé. For Ü e 3F, let K(z, C; O) 
denote the reproducing kernel of H$(Q) = { / G H2(Q);f (CO) = 0} with respect to 
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|rfz|/(2u), i.e. 

™-5 K(z, C; Q)f(z) \dz\ ( / e J/ftfl)), K(œ, C; fl) = 0. 

This is called the Szegö kernel of H&Q) [B, Fa]. We have 

K{z,l;Q)dzdl>. y{Qc) = c(oo; ß) = 2 
1 

(2K)2 
dQ J du 

Thus it is important to study the Szegö kernel of HQ(Q). There are many articles 
about the variational approach to various Szegö kernels [GS, HS, SI, 2, Sm, SS]. 
We here show a variational formula for y(E)9 E e sé with respect to the arc-length. 
This is the variation of degenerate boundaries and related to Löwnefs differential 
equation. There exists uniquely a pair (g(-\ Q), (/>(•; Q)) of functions in H2(Q) 

such that 0(00; fl) = 0, ^(00; fl) = 1 and -(/>(z; fl) dz = g(z; Q)\dz\ a.e. on dQ. We 

have \\t(z\ fl) = </>(z\ Q)2 and f(z; fl) = g(z; Q)/(/>(z\ fl) [G], For C G fl - {00}^ there 
exists uniquely a pair (K(-, (; fl), L(-, (; fl)) of functions such that K(-, Ç; fl) G 

772(fl), (• -()L(-, C; fl) G 772(fl), L(z, Ç; fl) = —!— -f (regular terms) near f and 
1 - z ~ £ 
TL(z, C; fl) rfz = K(z, C; fl)|rfz| a.e. on dQ [B]. The function K(z, Ç; fl) is none other 

than the Szegö kernel defined above. Here are two functions Dc and D2c necessary 
for our variation. For three distinct numbers w,z,Ç e fl, we define 

Dc(z, C; fl) = |L(z, C; Q)\2 - \K(z, f; fl)|2, 

D2c(w, z, C; fl) = 2 Re{7)L(w, z, C; fl)L(z, C; fl") - M ( w , z, C; fl)7C(z, C; ß)}, 

where 

DK(w, z, C; fl) = L(w, z; Q)L(w, C; fl) - 7C(w, z; fl)X(w, Ç; fl), 

7)L(w, z, C; fl) = L(w, z; fl)K(w, C; fl) - X(w, z; Q)L(w, (; fl). 

In the definition, we replace K(-, GO; fl) = 7C(oo,~; A) by —g("9 fl), and replace 
L(-, 00; fl) = —L(oo, •; fl) by —(/>(•; fl) if one of w, z, ( is 00. Let T be a closed 
analytic arc such that r a Qc\ Q — re 3F and Tn flc is at most a singleton. A 
continuous function wt G r on [0, |T|] is called the arc-length representation of r 
if Wo, W|/*| are endpoints of r and |/^| = t (0 < ^ < \r\)9 where /^ = {ws\ 0 < s < t}\ 
we define w, so that rnQc = {w0} if T n f l c ^ 0 . We write Qt = Q - Tt 

(0<t< \r\). 

Theorem 2 [Mu7]. 
(6) For any 0 < t < \r\, the derivative dc(co; Qt)/dt, the limit limu^ Dc(wu, 00; Qt) 

(= Dc(wt9 00; fl,), say) exist and dc(oo; Qt)/dt = Dc(wt, 00; Ar)/4. The right-derivative 
dc(oo; Q0)/dt att = 0 exists and dc(co; Qt)/dt is continuous on [0, |T|] . 

(7) For any 0 < t < \T\ and ze Q - (Tu {00}), the derivative dDc(z, 00; Qt)/dt, 
the limit lim,4f D

2c(wu, z,co;Qt)(= D2c(wt, z, 00; flr), say) exist and dDc(z, 00; Qt)/dt = 
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D2c(wt, z, oo; A,)/4. For any ze A — ( fu {oo}), the right-derivative 
dDc(z, oo; Q0)/dt at t = 0 exists and dDc(z9 oo; Qt)/dt is continuous on [0, | / " | ] . 

In the case of £ = 0 and vv0 G A, the above formulae correspond to the variation 
by cutting a hole [HS, Sm, SS, p. 283]. Our method is based on the comparison 
(by the aid of conformai mappings) with the variation of segments. This theorem is 
applied as follows. Given E e sé, we can write E = C1 u • • • u Cn with mutually 
disjoint closed arcs {CjjLi. Using the arc-length representations of Cj (j — 1,..., n), 
we define a right-continuous arc-length representation Wt (0 < t < \E\) of E. Then 
(6) shows that 

(8) y(E) = c(co; E<) = 1 
rm Dc(Wt, oo; Ec

t) dt, 

where Et = {Ws; 0 < s < t}. (The equality y(Fu{w}) = y(F) is important in our 
argument.) Recall that Dc(Wt, oo; Ec

t) is defined by the limit lim„±tDc(Wu, oo; ££). 
Given 0 < t < \E\ and z e Ec

t — {oo}, we take a right-continuous arc-length repre
sentation W* (0 < s < t) of Et; W* may not be equal to Ws. Then (7) shows that 

1 P 
(9) Dc(z, oo; £0 = Dc(z, oo; fs

c) + - | D2c(W*, z, oo; J£) du, 

where FM = {W*; 0 < x < u). Using (8) and (9), we can study y(E). To investigate 
Dc and 7)2c, we introduce a class 0 of domains. Let 0 denote the totality of domains 
A with the following property; A is expressed as A = A* — E with E e sé and a 
domain A* => E bounded by a finite number of Jordan curves {Cj"=1 such that each 
Cj is a finite union of analytic arcs. The functions Dc and 7)2c are defined for domains 
in ^. We see that Dc(z9 Ç; Q)\dz\ |d(| and 7)2c(w, z, Ç; A)|dw| |dz| |df| are conformally 
invariant. Thus we may discuss these differential forms in canonical domains. Now 
we show an application of Theorem 2. It is unknown whether y(-) is subadditive 
[Da, D0, V2]. Suita [Su3] shows that y(A u B) < y(A) + y(B) if A and B are 
disjoint continua. Equalities (8) and (9) yield that y(-) is subadditive if D2c < 0 for 
any domain. 

Theorem 3 [Mu7]. The inequality D2c < 0 holds for simply and doubly connected 
domains. 

Applying this theorem to simply-connected domains, we see that Cap(>4 u 5 ) < 
Cap(̂ 4) + Cap(J3) if A and B are two continua with an intersection, where Cap(-) 
is logarithmic capacity [Z, p. 134]. Note that Cap(-) is not subadditive. The 
case of doubly-connected domains shows Suita's subadditivity and yields that 
y(Av B) <y(A) + y(B) if A is a union of two continua and B is a continuum 
intersecting with A. If A is simply-connected, then we may assume that A is the 
open unit disk D and w = 0. We have 

7)2c(0,z,C;lD) = 
(l + |z{|)4 |l+z{|2 

(l-|z|2)(l-|C|2)K|2|z-C|2 

"M + ICI 
1 + l*CI 1+zÇ 

M +Kl 
l + K l 1 - * C 

(<0). 
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The hyperbolic distance in D is defined by d(z, C) = arctanh(|z — £|/|1 — zC|) 
(z, CeD). We have d(z, 0) + d(0, 0 = arctanh{(|z| + |{|)/(1 + |zC|)}. Thus the 
inequality D2c < 0 is related to the triangle inequality with respect to d(-, -).lî Q 
is doubly-connected, then we may assume that A is a ring RQ = {Q < \z\ < 1}. We 
have 

D2c(w, z, C; RQ) = 
2X3 

n \wz£\ 

x Im 
~fdnj£ - fi) <fa(£ - v) dn(£ - u) dn(Ç - v)\ dn(u - v) 
\sn(Ç - u) sn(^ - v) sn(£ - u) sn(t - v)J sn(U - v) 

(dn(^ — u) dn(£ — v) dn(Ç — u) dn(£ — v)\ dn(ü — v)l 

\sn(Ç - u) sn(Ç - v) sn(Ç - u) sn(^ - v)J sn(ü - v)j 

K K K 
Ç = — log w, u = — log z, v = T- log £ K = K(k), 

m m m 

where the modulus k is defined by log# = —nK(^/\ - k2)/K(k). The following 
expression is also applicable to compute D2c\ Let A* = {(Jj!=i [ak, fck]}

c 

(a1<b1<-" <an< b„). Then 

(10) 7)2c(w,z,C;A*) = 
1 

4|M(w)M(z)M(C)| 

M(w) + M(z) Mjw) - M(C) 
x Re 

w • w — C 

M(w) - M(z) M(w) + M(C)\M(z) + M(C) 

w • 

M(w) + M(z) M(w) + M(C) 

w — z w — C 

M(w) - M(z) M(w) - M(£)\ W?) - M(Q 

w-X ) z-C w • 

M ( O = n J&-«/(«*-0 tf = w,*,0-
fc=l 

The ring Re is conformally mapped to a domain of this type with n — 2. To see 
7)2c(w, z, C; A*) < 0 in the case of n = 2, we may assume that w = x e R, z/i > 0 
and CA < 0. Then (10) shows that 

7)2c(x,z,C;A*) ; 
>lx2 + Bx + C 

|M(z)M(C)||(x-z)(x-C)|2 (A, B,Ce R). 

By an inequality of Möbius type in elementary geometry, we obtain A < 0 and 
B2 - AAC < 0. 
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Recent Applications of L2 Estimates for the Operator d 

Takeo Ohsawa 

Department of Mathematics, Nagoya University, Nagoya 464-01, Japan 

1. In the theory of holomorphic functions of several variables, boundaries of 
complex manifolds arose as the singularities of analytic objects. Geometric structure 
of manifolds with boundaries of this sort is therefore of interest in function theory. 
As for the singularity of holomorphic functions, a general picture was given by the 
solution of the Levi problem given by Oka [39] over C" and by Grauert [16] on 
complex manifolds, which characterized Stein manifolds by the existence of strictly 
plurisubharmonic exhaustion functions. The latter's work was based on the co
homology finiteness theorem and was generalized by Andreotti-Grauert [2] to 
noncompact complex spaces that admit certain exhaustion functions. As is well 
known, a method of partial differential equation is available to study the coho
mology groups of Riemannian manifolds (cf. [7]). Importance of this method in 
function theory became apparent by the works of Andreotti-Vesentini [4] and 
Hörmander [19]. The latter is already a penetrating work that recovers main results 
of [39, 16] and [2] in a completely different way. The method consists in establishing 
an à priori L2 estimate for a given d-closed form, which is usually a direct con
sequence of commutator relations in a graded operator algebra generated by several 
co variant exterior differential operators like d9 d and their adjoints. By and by it 
has turned out that this approach, namely the L2 theory, has an advantage in 
obtaining more detailed information about the analytic cohomology groups and 
functions on noncompact complex manifolds (cf. [21, 25, 17, and 43]). The basic 
problems in this context are therefore to clarify the specific properties of the L2 

objects, like L2 cohomology groups and harmonic forms, and relationship between 
the L2 and the ordinary cohomology groups. We shall report below on recent results 
about the L2 cohomology groups of noncompact manifolds with emphasis on the 
extension of the classical Hodge theory which turned out to have an application to 
intersection cohomology theory. 

2. Basic technical devices are summarized here. Let (X, ds2) be a connected 
Hermitian manifold of dimension n, and let (L, li) be a Hermitian line bundle over 
X. For any square integrable L-valued (p, g)-form u, \\u\\h will denote the L2 norm 
of u with respect to ds2 and h. The fundamental form of ds2 will be denoted by œ 
and the curvature form of h by Oh. 
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© The Mathematical Society of Japan, 1991 
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Theorem 1. / / ds2 is a complete Kahler metric on X and i@h = co, then for any L-valued 
(resp. L - 1 -valued) (p, q)-form v with dv = 0 deg v (:=p + q) > n (resp. deg v <n) and 
\\v\\h < oo, there exists an L-valued (resp. L^-valued) (p, q — l)-form u satisfying 
du = v and \\u\\h ̂  ||u||A. Moreover the range of the maximal closed extension of 
d\C0(X, L - 1) is closed in the degrees ^n. 

The proof of Theorem 1 is based on the complex Weitzenböck's formula which 
we recall briefly. Let C0(X, L) denote the set of L-valued C00 differential forms with 
compact support on X, let dh* denote the Hilbert space adjoint of d\C0(X, L) with 
respect to ds2 and h, and let A be the (pointwise) adjoint of exterior multiplication 
by the fundamental form of ds2. Then we have 

[3, V ] * - *_1 IS, c\*]gr * = [i9k9 A\r (1) 

on C0(X9 L), where [a, ft] := ab - (- l)degfldegbfea, * denotes the Hodge's star opera
tor and iOh is identified with the corresponding exterior multiplication. The à 
priori estimates needed for the above existence theorems follow directly from (1). 
Originally, Theorem 1 was stated only for compact manifolds for it was thought of 
as an analytic counterpart of Lefschetz's hyperplane section theorem on nonsingular 
projective varieties (cf. Akizuki-Nakano [1]). The above noncompact version is 
due to Andreotti-Vesentini [3] and recently it was used in an essential way in 
the proof of Cheeger-Goresky-MacPherson's conjecture for varieties with isolated 
singularities, as we shall see later. The following looks very likely to be a corollary 
of Theorem 1, but it was discovered much later by Donnelly-Fefferman [14] in the 
study of Schwartz kernels on strongly pseudoconvex domains, and the proof is 
actually independent of Theorem 1. 

Theorem 2. Under the situation of Theorem 1, assume particularly that L is the trivial 
bundle so that the connection form d log h is identified with a (1, 0)-form on X, and 
that \d log h\ is bounded. Then for any d-closed (p, q)-form v with p + q + n which is 
square integrable with respect to the trivial fiber metric h0, there exists a(p9q— 1)-
form u satisfying du = v and \\u\\ho ̂  \\v\\ho. Moreover the range of the maximal closed 
extension of d with respect to the metric hQ is closed. 

The proof of Theorem 2 is immediate from the equality 

[3, (d log h)*\t + *-'& (d log /t)*]gr * = [iGh, A\t. (2) 

Another important machinery in the L2 theory is the following. 

Theorem 3. Assume that i@h = co for given Hermitian metrics ds2 and h. If X admits 
a complete Kahler metric, then for any L-valued (n, q)-form v with dv = 0, q ^ 1 and 
\\v\\h < oo (with respect to ds2 and h) there exists an L-valued (n, q — \)-form u 
satisfying du = v and \\u\\h ^ ||u||h 

Theorem 3 contains Hörmander's theorem (cf. [19]) whose applications are 
already widespread. The above formulation is given by Demailly [11] and Ohsawa 
[27, 31] independently, aiming at applying Hörmander's method to more geometric 
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questions related to holomorphic n-forms and Bergman kernels (see also [30, 13, 
15]). It is also regarded as a noncompact version of Kodaira vanishing theorem. 

3. We are going to sketch how to apply the above mentioned tools to relate the 
ordinary and L2 cohomology groups of Hermitian manifolds^, ds2). Let C0(X) 
be the set of C00 forms on X with compact support and let 3max be the maximal 
closed extension of d\ C0(X) to the space of square integrable forms L(2)(X). Namely 
the domain of dmax, denoted by Dom <3max, consists of square integrable forms u for 
which du is also square integrable. The (p, ^-component of Li2)(X) will be denoted 
by Lp'q(X), and we call the space Ker dmax n Lp>q(X)/lm dmax n Lp>q(X) the L2 d-
cohomology group of type (p, q), denoted by Hfef(X) or Hfâ(X)ds2. For any compact 
subset X c l w e set 

Lp'g(X/K) := {u e Lp>q(X); supp u c= X\K} 

and 7/f2f (JtyTq := Ker ^ Then we have 
a long exact sequence 

• • • -• Inn Hpif(X/K) -• H[if(X) -+ Hp>q(X) -• firn Hfcf+^X/K) -• • • • 
K€X K€X 

where Hp,q(X) denotes the ordinary d-cohomology group of type (p, q). As for the 
3-cohomology groups with compact support H$q(X\ we have 

• • • -> lim Hffl-\X\K) -+ Hfrq(X) -+ Hgf (X) -+ lim Hffl(X\K) -+ • • • 
K€X K£X 

Hence we have the following criterion. 

Proposition 4. The canonical homomorphism 0Lp,q (resp. ßp,q) is surjective if 
lim H[if+1(X/K) = 0(resp.ifiimH[if(X\K) = 0)andinjectiveif limHfâ(X/K) = 0 
(îesp. if lim Hffl-\X\K) = 0)7" 

In case the boundary of X is "small", conditions of Proposition 4 are actually 
satisfied. 

Proposition 5. Suppose that X is the regular part of a projective variety Z such 
that dim(Z\X) = 0. Then there exists a complete Kahler metric on X for which 
lim H[if(X/K) = 0ifp + q<nand\im H[if(X\K) = 0ifp + q>n. 

We note that the à priori estimates for the (p, g)-forms o n I \ X imply the finite 
dimensionality of Hf^(X) and the separatedness of H[2

,q+1(X), so that we have 
the following straightforward consequence of Proposition 5. 

Theorem 6 (cf [32]). Let X be as in Proposition 5. Then there exists a complete Kahler 
metric on X such that 

1) The canonical homomorphisms ap,q (resp. ßp,q) are bijective if p + q <n — 1 
(resp. ifp + q>n+ 1) and injective (resp. surjective) ifp + q = n—I (resp. p + q = 
n + 1). 
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2) Hfâ(X) are finite dimensional if p + q^ n and separated if p + q — n. 

The above metric is constructed as the sum of the Fubini-Study metric (restricted 
to X) arid the complex Hessian of a C00 exhaustion function with values in (—00, 0], 
say </> which behaves like — log(—log 3) near the points of Z\X, where 8 denotes 
the distance to Z\X. Theorem 2 is then applied for a sufficiently small sublevel set 
of (/) equipped with a complete Kahler metric of the form ddX((fi) for a suitable convex 
increasing function X. 

By weakening the assumptions of Theorems 1 and 2 one has a more general L2 

vanishing theorem that yields the following in a similar manner. 

Theorem 7 (cf. [33]). If X is the regular part of a projective variety Z such that 
dim(Z\ X) ^ fc, there exists a complete Kahler metric on X such that 

1) ap'q (resp. ßp'q) are bijective if p + q <n — fc— 1 (resp. p + q>n + k+l) 
and injective (resp. surjective) if p + q = n — fc— 1 (resp. p + q = n + k+l) 

2) Hffi(X) are finite dimensional if \p + q — n\>k+l and separated if 
p + q = n — k— 1. 

Let W(X) and Hr
0(X) denote respectively the r-th cohomology group of X and 

that with compact support. Then Theorem 7 implies an extension of Hodge theory 
to quasiprojective varieties. Namely, as a corollary of Theorem 7 we obtain 

Theorem 8. Under the situation of Theorem 7, 
1) Hp'q(X) s Hq'p(X) for p + q<n-k-l and H%q(X) s H%P(X) for 

p + g>n-f-fc + l. 
2) Hr(X) (resp. Hr

0(X)) is canonically isomorphic to ©p+q=rH
p'q(X) for 

r < n — fc — 1 (resp. isomorphic to @p+q=rH^,q(X) for r > n + fc + 1). 

Remark. There are different proofs of Theorem 8. Namely Bauer and Kosarew [6] 
use characteristic p method and Arapura [5] the technique of logarithmic differen
tial forms. 

4. The preceeding discussion says nothing about the properties of Hp,q
i2)(X) for 

\p + q — n\ ^ fc. Since there is little hope to get any simple relation between the I? 
and the ordinary cohomology in this range, we must compromise at the moment 
to study the L2 cohomology groups of (AT, ds2) for the exterior differential d instead 
of d, which shall be denoted by H[2)(X) or Hr

{2)(X)ds2. Cheeger-Goreski-MacPherson 
[10] posed the following fundamental question for the L2 cohomology with respect 
to the Fubini-Study metric. To fix our notation we set H[2)(U) := H[2)(X n U)ds2 
for open subsets U of Z if ds2 is the Fubini-Study metric. 

Cheeger-Goresky-MacPherson's Conjecture. Let Z c= PN be any irreducible projec
tive variety and let X a Z be the set of regular points. Then H{2)(Z) are canonically 
isomorphic to the intersection cohomology groups IHr(Z) of the middle perversity (for 
the definition of IHr(Z), see [10]). 
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In case dim(Z\X) = 0, the conjecture is equivalent to saying that 

'W(X) if r<n 

H[2)(Z) s i lm(H'i(X) -+ H»(X)) if r = n (3) 
Hr

0(X) if r>n9 

which has been verified in this case by Cheeger [9] Hsiang-Pati [18] and Nagase 
[24] for dim Z ^ 2 and by the author in April of 1990, and we_are going to sketch 
the idea of the proof. As we have seen in the case of the L2 d-cohomology, (3) is 
equivalent to saying that lim77[2)(Z/X) = 0 for r < n and lim H[2)(Z\K) = 0 for 
r ^ n. It is more or less routine that these vanishing follow from Theorem 1 except 
for the case r = n (cf. [32, 35]). Direct approaches to prove UmH"2)(Z\K) = 0 
require subtle analysis as in [18] and [24]. Instead we take an indirect way. Namely 
we aim at proving the following. 

Proposition 9. There exists a Hermitian metric do2 on X such that dim H[2)(X)da2 — 
dim H[2)(Z) and dim H[2)(X)da2 = dim 777r(Z) for r = n±\,n. 

A candidate of do2 is given by a result of Saper [41] (see also [23]): 

Theorem 10.Ifdim(Z\X) = 0, there exists a C°° exhaustion function (/> : X -* (—oo, 0] 
such that da2 := ds2 + dd(/> is a complete Kahler metric on X satisfying 

1) The length of d(/> is bounded 
2) H[2){X)da, s IH'{Z). 

In order to establish the required equalities for the L2 cohomology groups, we 
compare the spaces of harmonic forms by applying the approximation method of 
Runge-Hörmander. Namely let do2 = ds2 + sdd^ for e ^ 0 and let jtf? be the set 
of harmonic r-forms with respect to do2. Then 3tFE ^ 3tf[ for c > 0 so that it 
suffices to show that dim Ĵ J" = dim 2tf[, for the range of dmax (w.r.t. ds2) is closed 
(cf. [35]). Let || ||E and rfE* denote respectively the L2 norm and the adjoint of d with 
respect to da2

E. Then the approximation argument proceeds as follows. 

Lemma. There exists a family of positive functions &E on X for s \ 0 such that 
1) ||#,i/||a ^ const(||ii||. + ||</u||, -f K*w||J uniformly in B for all u E C0(X) with 

deg u^n. 
2) From any sequence of locally square integrable forms f with deg fE ^ n satis

fying \\&cfe\\E = 1 and \\(d -f d*)fE\\E < oo one can choose a subsequence fE. such 
that {fE{} converges to a nonzero element of Dom(<7max + dmax*) strongly on compact 
subsets of X. 

As &E, we may take the length of ed(/> — d log(log((5_1 -f 1)) with respect to da2. 
Here ö is as before. The required property of <PE follows from the non-integrability 
of <5_1 log ö on (0, 1/2) and an L2 estimate 

| |*.M||. ^ constfllfciiL + \\dul + ||d,*u||.X 

file:////dul
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which is valid uniformly in s \ 0 for some compact set K c X and all u e C0(X) 
with deg M / n, where %K stands for the characteristic function of K. 

Suppose that dim J^x
n+1 > dim J^0

n+i. Let [ / c l b e any relatively compact 
open subset which contains K. Then, by hypothesis there must exist fa e J^E

n+1 for 
e > 0 such that 

1) (Xufe, g)e = 0 for all g e œ0»
+1 

2) | | ^ / f i L = l . 

Here ( , )ß denotes the inner product associated with || ||g. But Lemma says then 
there exist / e Jtf0"

+1 with / V 0 satisfying (xvf, f)0 = 0, which contradicts the 
unique continuation theorem since fis harmonic. Since dim HQ+1(X) ^ dim JP0

n+1, 
we may conclude that dim ^ i n + 1 = dim Jf0

w+1 in virtue of Saper's theorem. The 
proof for the case r = n — 1 is similar. If r = n, suppose that dim J^0

n > dim 2tf". 
Then there exists a finite dimensional subspace 2tf ' c j ^ 0

n from which we can choose 
gE ( e \ 0 ) satisfying ||^||E = 1 and (xvgE, g'\ = 0 for any g'e M?. Since J^E

n±1 

approximate J^0
n±1 in the above sense* it follows from (4) that there exist (ue, ve) 

satisfying duE + d*ve = Xu9e such that ||<PBuJB and ||#Ei;E||E are uniformly bounded 
in e. Taking Lemma into account, this implies the existence of g ^ 0 in ^f ' such that 
Xvg belongs to the range of dmax + dmax*, which is an absurdity. Thus we get 
dim tfçf ^ dim Wf. Clearly dim ^0

W ^ dim \m(Hl(X) -> T^"^)). Therefore one 
must have dim 3tfQ

n = dim 2tf" by Saper's theorem. 
Concerning the L2 cohomology with respect to the Fubini-Study metric, a 

more advanced question is whether there also exist geometric interpretation of the 
L2 3-cohomology groups 7Jf2f(Z) (:= H[if(X)ds2). Recently Pardon-Stern [40] 
obtained the following. 

Theorem 11. Let Z be an irreducible projective variety of dimension n with isolated 
singularities. Then 

Z-(2)(Z) := £;_o(-1)* dim Htf(Z) 

is a bimeromorphic invariant of Z. 

Remark. There are variations of C - G - M conjecture arising from the theory of 
variations of Hodge structures. In this decade there have been fruitful works 
appearing on this topic (cf. [44, 42, 22, 8, 20]). As for the statement of the results, 
see Saper's exposition in this volume. 

5. Let us mention other results on the L2 cohomology groups, which are on 
pseudoconvex manifolds and therefore more directly related to function theory. 

i) Let (M, ds2
M) be a Kahler manifold of dimension n and D c M a relatively 

compact pseudoconvex domain with C00 smooth boundary. Then the Hodge theory 
extends to D as follows. 

Theorem 12 (cf. [38]). Let D be as above and let Q be any C00 defining function of dg. 
If the Levi form of Q along the holomorphic tangent vectors of dD has everywhere at 
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least n — k positive eigenvalues, there exists a complete Kahler metric on D such that 

^JH^q(D) ifp + q£n-k 
HP'9(D\ • ( 2 ) l r~ {H™{D) ifp + q^n + k. 

Corollary. Under the above situation, 

1) FT0(D)s 0 Hg-«(D) ifr^n-k 
p+q=r 

Hp
0>

q(D)^Hq
0>

p(D) ifp + q^n-k. 

2) Hr(D)^ 0 Hp>q(D) ifr^n + k 
p+q=r 

Hp'q(D) s H q>p(D) ifp + q^n + k. 

3) The restriction homomorphisms Hp,q(D) ->lirn Hp,q(D\K) are surjective if 
p + q < n — fc. 

Remark. Under somewhat stronger assumptions, results in the above corollary can 
be proved by different methods, (cf. [28, 29, 26, 12 and 6]). 

ii) Donnelly-Fefferman [14] determined the L2 cohomology of strictly pseudo-
convex domains in C" with respect to the Bergman metrics. 

Theorem 13. Let D c C" be a bounded strictly pseudoconvex domain. Then, with 
respect to the Bergman metric, 

dim^(D) = {° VP + **» 
(2)V [oo ifp-{-q = n 

We note that the infinite dimensionality of the L2 cohomology can be proved 
by an elementary method (cf. [36]), but few things are known about the properties 
of the L2 harmonic forms. In case p = n, the following is known. 

Theorem 14 (cf. [37]). Let X be a Stein manifold of dimension n, f a bounded 
holomorphic function on X such that S ;= {z G X; f(z) = 0} has no singular points 
and df\S i- 0, and let QS : H

n'°(X\S) -• Hn~lt0(S) be the residue homomorphism. Then 
there exists a bounded linear operator Is: H"2)

1,0(S)-^ H"if(X) such that 
Qs- (/-%) = id. 

Corollary. Let D c C" be a bounded pseudoconvex domain and let H a C" be a 
complex hyperplane. Then, every L2 holomorphic function f on H r\D has an L2 

holomorphic extension to D, say F that satisfies \\F\\ ^ cD | |/| |. Here cD is a positive 
number that depends only on the diameter of D. 

We leave two open questions related to the above results. 
1. Under the situation of Theorem 12, let x and y be two distinct points in D. 

Does there exist an L2 harmonic (p, g)-form that separates x and y if p + q / n? 
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2. Under the situation of Corollary to Theorem 14, let g be a holomorphic 
function on H n D which admits a C00 extension to D, say G, such that ||3G|| < oo. 
Then does there exist an L 2 holomorphic extension of gr to D? 

References 

1. Akizuki, Y., Nakano, S.: Note on Kodaira-Spencer's proof of Lefschetz theorems. Proc. 
Japan Acad. 30 (1954) 266-272 

2. Andreotti, A., Grauert, H.: Théorème de finitude pour la cohomologie des espaces 
complexes. Bull. Soc. Math. France 90 (1962) 193-259 

3. Andreotti, A., Vesentini, E.: Sopra un teorema di Kodaira. Ann. Sci. Norm. Sup. Pisa 15 
(1961) 283-309 

4. Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace-Beltrami equation on 
complex manifolds. Pubi. Math. IHES 25 (1965) 81-130 

5. Ar apura, D.: Local cohomology of sheaves of differential forms and Hodge theory. 
Preprint 

6. Bauer, I., Kosarew, S.: On the Hodge spectral sequence for some classes of non-complete 
algebraic manifolds. Math. Ann. 284 (1989) 577-593 

7. Bochner, S.: Curvature and Betti numbers, I, II. Ann. Math. 49 (1948) 379-390; 50 (1949) 
77-93 

8. Cattani, E., Kaplan, A., Schmidt, W.: Degeneration of Hodge structures. Ann. Math. 123 
(1986) 457-535 

9. Cheeger, J.: On the Hodge theory of Riemannian pseudomanifolds. Proc. Symp. Pure 
Math. 36 (1980) 91-146 

10. Cheeger, J., Goresky, M., MacPherson, R: L2 cohomology and intersection homology 
for singular algebraic varieties. Seminar on differential geometry. (Ann. Math. Stud. 102.) 
Princeton Univ. Press 1982, pp. 303-340 

11. Demailly, J.P.: Estimations L2 pour l'opérateur d d'un fibre vectoriel holomorphe semi-
positif au-dessus d'une variété kahlérienne complète. Ann. Sci. Ec. Norm. Sup. 15 (1982) 
457-512 

12. Demailly, J.P.: Cohomology of ^-convex spaces in top degrees. Math. Z. 204 (1990) 
283-295 

13. Diederich, K., Ohsawa, T.: On the parameter dependence of solutions to the d-equation. 
To appear in Math. Ann. 

14. Donnelly, H., Fefferman, C : L2 cohomology and index theorem for the Bergman metric. 
Ann. Math. 118 (1984) 593-619 

15. Forster, O., Ohsawa, T.: Complete intersections with growth conditions. (Adv. Stud. Pure 
Math. 10.) Algebraic geometry, Sendai, 1987, pp. 91-104 

16. Grauert, H.: On Levi's problem and the imbedding of real-analytic manifolds. Ann. Math. 
68 (1958) 460-472 

17. Grauert, H., Riemenschneider, O.: Kählersche Mannigfaltigkeiten mit hyper-g-konvexen 
Rand. Problems in Analysis. Symp. in Honor of S. Bochner. Princeton Univ. Press, 1970, 
pp. 61-79 

18. Hsiang, W.C., Pati, V.: L2-cohomology of normal algebraic surfaces. Invent, math. 81 
(1985) 395-412 

19. Hörmander, L.: L2 estimates and existence theorems for the 3-operator. Acta Math. 113 
(1965) 89-152 

20. Kashiwara, M. Kawai, T.: The Poincaré lemma for variations of polarized Hodge 
structure. Pubi. RIMS, Kyoto Univ. 23 (1987) 345-407 

21. Kodaira, K: On Kahler varieties of restricted type. Ann. Math. 60 (1954) 28-48 



Recent Applications of L2 Estimates for the Operator d 921 

22. Looijenga, E.: L2-cohomology of locally symmetric varieties. Comp. Math. 67 (1988) 
3-20 

23. Looijenga, E., Rappoport, M.; Weights in the local cohomology of a Baily-Borel com
pactification. Preprint 

24. Nagase, M.: Remarks on the L2-cohomology of singular algebraic surfaces. J. Math. Soc. 
Japan 41 (1989) 97-116 

25. Nakano, S.: Vanishing theorems for weakly 1-complete manifolds, II. Pubi. RIMS (1974) 
101-110 

26. Navarro-Aznar, V.: Sur la théorie de Hodge des variétés algébriques à singularités isolées. 
Astérisque 130 (1985) 272-397 

27. Ohsawa, T.: On complete Kahler domains with C1 boundary. Pubi. RIMS 10 (1980) 
929-940 

28. Ohsawa, T.: A reduction theorem for cohomology groups of very strongly qr-convex 
Kahler manifolds. Invent, math. 63 (1981) 335-354 

29. Ohsawa, T.: Addendum to: A reduction theorem for cohomology groups of very strongly 
^-convex Kahler manifolds. Invent, math. 66 (1982) 391-393 

30. Ohsawa, T.: Boundary behavior of the Bergman kernel function on pseudoconvex 
domains. Pubi. RIMS 20 (1984) 897-902 

31. Ohsawa, T.: Vanishing theorems on complete Kahler manifolds. Pubi. RIMS 20 (1984) 
21-38 

32. Ohsawa, T.: Hodge spectral sequence on compact Kahler spaces. Pubi. RIMS 23 (1987) 
262-274 

33. Ohsawa, T.: Hodge spectral sequence and symmetry on compact Kahler spaces. Pubi. 
RIMS 23 (1987) 613-625 

34. Ohsawa, T.: Cheeger-Goreski-MacPherson's conjecture for the varieties with isolated 
singularities. Math. Z. 206 (1991) 219-224 

35. Ohsawa, T.: Supplement to "Hodge spectral sequence on compact Kahler spaces". To 
appear in Pubi. RIMS 

36. Ohsawa, T.: On the infinite dimensionality of the middle L2 cohomology of complex 
domains. Pubi. RIMS (1989) 499-502 

37. Ohsawa, T. Takegoshi, K: On the extension of L2 holomorphic functions. Math. Z. 195 
(1987) 197-204 

38. Ohsawa, T. Takegoshi, K: Hodge spectral sequence on pseudoconvex domains. Math. 
Z. 197(1988)1-12 

39. Oka, K: Domaines finis sans point critique intérieur, Jap. J. Math. 27 (1953) 97-155 
40. Pardon, Stern, M.: L2 — d-cohomology of complex projective varieties. Preprint 
41. Saper, L.: L2-cohomology of Kahler varieties with isolated singularities. Preprint 
42. Saper, L., Stern, M.: L2-cohomology of arithmetic varieties. Ann. Math., to appear 
43. Skoda, H.: Morphismes surjectifs de fibres vectoriels semi-positif. Ann. Sci. Ec. Norm. 

Sup. 4e série 11 (1978) 577-611 
44. Zucker, S.: L2-cohomology of warped products and arithmetic groups. Invent, math. 70 

(1982) 169-218 





Differentiability and Measures in Banach Spaces 

David Preiss 

Department of Mathematics, University College London, London WC1E 6BT, UK 

The purpose of this contribution is to give information about new results con
cerning natural questions about differentiability and measures in real Banach 
spaces (of infinite but also of finite dimension) and, possibly more importantly, 
to point out some of the many open problems we are still faced with in this area 
of research. 

1. Differentiability 

We recall two well known notions. 

1. A real valued function / defined on an open subset G of a Banach space 
E is said to be Fréchet differentiate at a point x G G if there is f(x) e E* such 
that 

l im \f(x + u)-f(x)-(f(x),u)\ = 0 
«-0 ||u|| 

f(x) is called the Fréchet derivative of/ at x. 

2. A real valued function / defined on an open subset G of a Banach space E is 
said to be Lipschitz on G if there is a constant C such that \f(x)— f(y)\ < C\\x—y\\ 
whenever x,y G G. The smallest such constant C is denoted by Lip(/). 

From the work of Lebesgue (in the one dimensional case) and of Rademacher 
(in the finite dimensional case) we know that Lipschitz functions on finite di
mensional spaces are (Fréchet) differentiate almost everywhere with respect to 
the Lebesgue measure. Infinite dimensional results of similar nature are known 
for Gateaux differentiability. (See [1,3,5,6]). These extension are obtained by a 
linear approximation of the infinite dimensional situation by finite dimensional 
spaces. However, the question of Fréchet differentiability seems to need a differ
ent approach. This might be also seen from many examples of nowhere Fréchet 
differentiable Lipschitz mappings of a separable Hilbert space into itself, since for 
such mappings the Gateaux differentiability results mentioned above still hold. 

Thus our first result answers a natural question. 

Proceedings of the International Congress 
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Theorem 1. Every Lipschitz function defined.on a separable Hilbert] space is Fréchet 
differentiate at least at one point. 

Hilbert spaces are, of course, not the most general spaces in which one would 
hope for such a result. Indeed, from the extensive investigations of differentiability 
questions for continuous convex functions (e.g., [13,14]) we know that the result 
may hold in all Asplund spaces. (A Banach space is said to be an Asplund space 
if the dual of every its separable subspace is separable.) This generalization of 
Theorem 1 is given in the following statement. 

Theorem 2. Every locally Lipschitz function defined on an open subset of an Asplund 
space is Fréchet dijferentiable on a dense subset of its domain. 

The method we use need not be confined to Fréchet differentiability. It 
applies also to so called & derivatives, in the definition of which we require 
the uniform convergence on the members of a given family ^ of bounded 
subsets of the Banach space satisfying some mild additional assumptions. (The 
details can be found in [10].) This gives the most general form of the above 
differentiability results. (However, a recent Haydon's example of an Asplund 
space without equivalent smooth norms shows that the deduction of Theorem 2 
from Theorem 3 is not straightforward.) 

Theorem 3. Let E be a Banach space admitting an equivalent norm which is M 
dijferentiable away from the origin. Then every locally Lipschitz function defined 
on an open subset G of E is & differentiable on a dense subset of G. 

These statements, as given, are not satisfactory from the point of view of 
possible applications. For example, suppose that a Lipschitz. function / on a 
separable Hilbert space has derivative zero at every point at which it is Fréchet 
differentiable. We would like to be able to deduce that / is constant. This can be 
done, since in all the above results the mean value theorem holds. For example, in 
case of Theorem 3 we prove that the increment of the function over any segment 
[u, v] c: G is majorized by the supremum of the derivatives in the direction v — u 
at points at which the function is & differentiable. 

The proof of the above results requires new information about Lipschitz 
functions in finite dimensional spaces. Thus, as a byproduct, we get the following 
curious statement. 

Theorem 4. There is a piarle set N of Lebesgue measure zero such that every Lip
schitz function defined on the plane is differentiable at some point of N. 

To describe a set having such a property is quite easy: Any Gs plane set of 
Lebesgue measure zero containing all lines passing through two different points 
with rational coordinates will do. This particular example also suggests the 
reasons why our proof of Fréchet differentiability results is not straightforward. 
It combines in some way two notions of smallness of a set: First category (hence 
the G s part) and measure zero (hence the lines). It seems to be intuitively clear 
that a similar mixture is impossible on the line. That this is true has been shown 
in [2] and [15] : Theorem 4 is false on the line.. 
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1.1 Construction of a Point of Fréchet Differentiability 

The details of the proof can be found in [10]. Here we just point out the main 
observations. Because of that we restrict our attention to the proof of Theorem 1 
only. 

We introduce the directional derivatives of/ by 

f'(x,e) = limf{x + re)-f{x\ 
r->0 r 

and we denote by M the set of all pairs (x,e) e E x E* such that \\e\\ = 1 and 
ff(x,e) exists. 

The first basic observation is that if (x,e) e M and f(x,e) = Lip(/) then 
/ is Fréchet differentiable at x. Even though such a pair need not exist, this 
suggests that we might attempt to use a maximizing procedure. Thus our plan is 
to construct inductively a sequence (xk,eu) G M so that: 

1. The sequence Xk converges to some x. 
2. The sequence e/c converges to some e. 
3. The directional derivative f(x,e) exists. 
4. For the pair (x, e) some variant of the above observation can be used. 

To achieve 1, we simply choose x^+i close to x*. This is based on a local 
form of our observation, namely, that the equality of f'(x,e) to the limit of the 
Lipschitz constants on balls around x suffices for Fréchet differentiability of / at 
x. 

Unfortunately, to get 2 is not so simple. Since requirement 4 forces us to 
take /'(xfcjß/c) as large as possible, we cannot at the same time prescribe how 
close should ek be to e^-\. There is also a different objection we should take 
into account: If our method worked, we would construct not only a point of 
differentiability, but also a point at which gradient vector exists. This causes no 
problem in Hilbert spaces, but is impossible in non-reflexive Asplund spaces. 
(Every liner functional not attaining its maximum on the unit ball gives an 
example.) Thus an idea suggests itself: We should change the norm (and the 
change should depend on / ) , at least in the general case. Recalling that we are 
constructing a sequence e^ of unit vectors, and observing that a small change 
of the norm can drastically change the set of pairs considered for the choice of 
(x/c+i,e/c+i), we find that 2 can be achieved by constructing, together with the 
sequence (x/c, ej(), a sequence of norms p/c, where pu+i is the (e.g., h) sum of pk 
and of a (small) multiple of the distance to the one dimensional subspace of H 
generated by ejc. Then the conditions p*+i(e/H-i) = 1 (= p(eu)) and f(xk+uek+i) > 
/'(^/CJ^/C) already imply that ej<+i is close to ejc. 

The requirement 3 seems to be the most difficult. To get it, we observe that the 
problem is essentially one dimensional and requires some method of interchange 
of limit and derivative. Since we cannot hope to be able to use anything like 
the uniform convergence of the derivatives, the only possibility seems to be to 
choose the points at which the increment of the function is approximated by the 
derivative globally. The following one dimensional lemma says that this can be 
done. 
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Lemma 5. Suppose that a < Ç < b, 0 < a < 1/4, and L > 0 are real numbers, h is 
a Lipschitz function defined on [a,b], Lip(/i) < L, h(a) = h(b) — 0, and h(Ç) ̂  0. 
Then there is a measurable set A c (a, b) such that 

1. The Lebesgue measure of the set A is at least a\h(t;)\/L, 
2. h'(x) > (T\h(Ç)\/(b -v- a) for every % e A, and 
3. \h(t) — h(n)\ < 4(1 + 2a)^h'(x)L\t — T| for every % e A and every t e [a,b]. 

The most important third statement of the lemma says that the approximation 
of the increment of the function by its derivative at the point % is "globally good" 
in the whole interval [a,b]. The second statement just says that the derivative at 
T increased as much as we could hope for. From the first statement we just use 
that T can be chosen sufficiently far from the end points. This is needed in order 
to get a bilateral approximation. 

Because in the first statement of Lemma 5 we do not have to speak about 
measure, the Lemma can be formulated without the notion of the Lebesgue 
measure. We can then try to prove it without any use of measure theory. This 
sounds difficult, since we also claim that h is differentiable at x. But we can also 
replace the derivatives by lower derivatives and get a version of the lemma that 
really can be proved without any use of measure theory. Surprisingly enough, 
this statement then easily implies that Lipschitz functions on the real line have at 
least one point of differentiability. Though I did not follow this way, since to use 
the Lebesgue measure and maximal operator technique turned out to be much 
easier, these remarks suggest that the proof of differentiability discussed here is 
different from the usual measure theoretic proofs. 

Having done this, we can already imagine how to construct the sequence 
(x/c,ßfc) so that 3 holds: We will choose (xk+uCk+i) so that the approximation of 
the the increment of the function by its directional derivative at the point xĵ +i 
in the direction e^i is "globally good" on the whole Une through Xfc+i in the 
direction ek+\. 

However, the previous choice implies that our construction will lead to a pair 
(x,e) for which the equality f'(x,e) = Lip(/) is quite far from being true. Hence 
to achieve 4 we need to improve upon our main observation. We first reformulate 
this observation as: 

A Lipschitz function / on a Hilbert space is Fréchet differentiable at x if 
there is a unit vector e such that f(x,e) exists and 

lim sup{/'(x, e); (x, e) e M and ||x — x|| < 3} < f(x, e). 

A simple proof of this statement together with Lemma 5 gives the following 
differentiability criterion, which we formulate in the most general situation. 

Theorem6. Suppose that E is a Banach space, xy G E, eo e E, \\eo\\ = 1, and that f 
is a Lipschitz function defined on E such that f'(xo, eo) exists. Let M denote the set 
of all pairs (x,e) E Ex{e G E;\\e\\ = 1} such that f(x, e) exists, f(x, e) > f(xo, eo), 
and 



Differentiability and Measures in Banach Spaces 927 

\(f(x + teo) -f(x)) - (/(xo + too) - / (*>))! < 6\tW(ff(x,e)-f'(xo,e0))Liv(f) 

for every t G R. 

Then, if the norm is & differentiable at eo, and if 

\imsSlQsup{f,(x,e);(x,e) G M and | | x - x 0 | | < ö} </'(xo,ßo), 

/ is $ differentiable at xo. 

Now, the way of constructing the sequences (xk, e^) and Pk is more or less 
clear. We always pick up the next pair from the set M described in the previous 
Theorem. The additional requirement is only that / '(x/c+i^+i) is very close to 
the supremum of the directional derivatives f'(x,e) for (x,e) G M. Then we define 
the norm pk+i and continue our construction. Though we still have to be quite 
careful and make some technical estimates, since, for example, the set M from 
the previous Theorem depends upon the choice of the norm, this construction 
leads to a sequence satisfying all our requirements. 

1.2 Problems 

From the previous discussion it is clear that the theory of differentiability still 
abounds with open problems. I would just like to point out the following two. 

Problem 7. Does every pair of Lipschitz functions on a separable Hilbert space 
have a common point of differentiability? 

Problem 8. For which finite Borei measures in separable Banach spaces is it true 
that every Lipschitz function is differentiable almost everywhere? 

The second problem is purely finite dimensional since such measures do not 
exist in infinite dimensional spaces. (See [12].) The answer is not known in the 
plane (or in any higher dimensional space). In the one dimensional case the 
required measures are precisely those that are absolutely continuous with respect 
to the Lebesgue measure. In spite of Theorem 4 I do not know any example that 
would show that this is not true in all finite dimensional spaces. 

2. Measures 

The question whether measures on separable Banach spaces are determined 
by their values on balls has been around since R. O. Davies [4] published his 
beautiful example of two different probability measures on a compact metric 
space that agree on all balls. Together with J. Tiser [11] we recently answered it 
by proving: 

Theorem 9. Whenever two finite Borei measures in a separable Banach space agree 
on all balls, then they agree. 
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To prove this statement, we first use the Fourier transform to reduce the 
problem to showing that the measures agree on all halfspaces. Then, by blowing 
up balls, we come to the situation when the halfspace contains a nonempty 
open cone C on every translate of which the measures agree. An approximation 
argument (or a differentiability result from [7]) reduces the problem further to 
the case when C n—C is a subspace of finite codimension. Thus we can pass 
to the factor space and we have to solve the corresponding problem in finite 
dimensional spaces : Do we know the measure of a halfspace provided we know 
the measure of each translate of a nonempty open cone contained in it? Since 
this turned out to be true, our approach has been successful. 

Instead of giving further details, it might be more interesting to point out 
some examples. The motivation for them comes from the Besicovitch-Morse 
differentiability theorem, which is a much stronger statement than that measures 
in finite dimensional normed spaces are determined by their values on balls : 

For every (locally) finite Borei measure p in a finite dimensional Banach space 
and for every p integrable function / the limit 

lim * xx / f(u)dp(u) (1) 
r^p(B(x,r))JB{Xir)

JK) ^ ' K) 

exists and equals f(x) for p alrnost every x. 
As a corollary of this statement one can prove that, if p and v are two finite 

Borei measures in a finite dimensional Banach space satisfying p(B) > v(B) for 
every ball B then p>v. 

Example 1 ([9]). There is a Gaussian measure y\ in fe and a yi integrable function 
/ such that the limit in (1) is infinite uniformly for x G h, i.e., 

lim inf ——-—— / f(u) dyAu) = oo. 
' r^oxzi2y1(B(x,r))JB{Xir)

JK) m ' 

Example 2 ([8]). There is a Gaussian measure 72 in h and a bounded y2 measurable 
function / such that, for p almost every x, the limit in (1) does not exist. 

Example 3 (J. Tiser). There is a non-degenerated Gaussian measure y3 in fe such 
that (1) holds for every / G Lp(y3), p > 1. 

Example 4. In a separable Hilbert space the statement "p(B) > v(B) for balls with 
radius less than one implies p > v" holds if and only if the dimension of the 
space is finite. 

Example 5. In a separable Hilbert space the statement "p(B) > v(B) for balls with 
radius greater than one implies p>v" holds if and only if the dimension of the 
space is infinite. 

Example 6. In the Zoo sum of a separable Hilbert space with the line there are 
measures p and v such that p ^ v but p(B) > v(B) for all balls. 
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However, in spite of the above result and examples, the investigation of the 
behaviour of measures on balls cannot be considered as finished. For example, 
the following question is still far from being answered. 

Problem 10. Are finite Borei measures in separable Banach spaces determined by 
their values on balls with radii less than one? 
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§1. Introduction 

(1.1) We construct certain infinitely generated Hopf algebra, which we call the 
configuration algebra. The algebra is generated by isomorphism classes of colored 
oriented finite graphs and is completed with respect to an adic topology filtered 
by the cardinality of graphs. Therefore certain limit process is admitted inside 
the algebra, which is absolutely necessary for the application explained in (1.2). 

(1.2) The original attempt of the work, which is under investigation, is to 
apply the algebra for a construction of certain modular function on the moduli 
of discrete groups [8]. Let us explain this. Consider a finitely generated group r. 
By fixing a generator system, r gets naturally colored oriented graph structure, 
the Caylay graph. Let f„ be the subgraph of F consisting of elements of length 
< n and let stf(Fn) be the formal sum in the algebra of all non-void subgraphs 
of rn. Then the following limit process is justified in the configuration algebra: 

cor :=Bmlog(( l+j / ( r n ) ) 1 / # r ") 

Namely, we show that these elements log(l + stf(Fn)) becomes Lielike in the 
algebra. By a use of certain basis {cp(S)}s (where S runs the set of isomorphism 
classes of connected graphs) for the space J5?]R of Lielike elements (§8), the above 
limit element cop is developed as follows. 

* â f o ^PM(pt,t) 

Here PM(S,t) := Y<n=oA(s>rn)tn i s t h e generating function for A(S,Tn) := 
# {subgraphs of T„ isomorphic to S}, pt = the graph of one vertex, and r > 0 
is the radius of convergence of PM(pt,t). For a wide class of groups F, in
cluding hyperbolic groups and certain automatic groups (cf. [4, 2]), the ratio 
PM(S,t)/PM(pt,t) extends to a rational function in t which is regular at t = r 
(see §10). So one obtains a final formula, 
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v PM(S,t) 

where r := l/limsup^^oo^r^ls^he first^place ofpole^rPl\T(p^)^onrthe real 
axis and hence is a real algebraic number and cop G JS?Q(r). 

To obtain the modular function, we need further study of representations of 
the Configuration algebra, which is a subject of another paper. 

The §§2-4 treat generality on graphs and construct the configuration algebra. 
The §§5-9 treat Lielike elements and grouplike elements of the algebra. The §10 
treats the limit elements in the agebra. 

§2. Graphs and Covering Coefficients 

Some basic combinatorial rules for graphs are discussed in this paragraph. 

(2.1) Definition. 1. A pair (F ,B) is called a graph, if F is a set of vertices and 
B (called the set of edges) is a subset of F x r\A with a(B) = B, where a is 
the involution a(a,ß) = (/?,a) and A is the diagonal. A graph is connected, if it is 
connected as a simplicial complex. A graph infinite, if %F < oo. 

2. An isomorphism of graphs is a bijection of vertices inducing a bijection of 
edges. Any subset S of F is a subgraph by taking 5 n ( S x § ) as edges for S. The 
word "subgraph" i? used only in this sense. 

3. A graph is called colored oriented, if there exists a finite set G, callçd a 
coloring set, with an involution OQ : G —> G and a map c : B —> G which is 
equivariant with the involutions: c o o = G G ° c., Isomorphisms and subgraphs of 
colored oriented graphs are defined as compatible with c. 

Example. A group r with a finite generator system G with G = G-1 and e ^ G 
carries a colored oriented graph structure: B := {(y,(5) G F 2 : y^ö G G}, 
c(y,ô) = y -1 ö and o"G(g) = g-1- The graph is called a Caylay graph. 

(2.2) In all what follow, we fix an increasing sequence {Gp}pe^ of coloring set. 
Associated to that the set of configurations is defined by 

ConfM := {§ : S is a finite colored oriented graph for Gp such that 
number of edges at a vertex is at most #.}/isomorphism. 

Conf := UM Confpq, 
Confo := {S G Conf : S is connected}, Conf + := Conf \{[0]}. 

An isomorphisms class of a graph S is denoted by [S], The set of vertices of S 
is denoted by |S|. 

(2.3) The Conf has an abelian semigroup structure with a partial ordering: 

[S] • [W\ := [SHTT] for [S], \T\ G Conf, 



Limit Element for Discrete Group 933 

def 

S <T <=> There are graphs S and T with S = [S], T = [T] and S c T. 
Here 1 = [0] is the minimal element in Conf, One has Conf ~ Conf0*°. 

(2.4) For S\,'- ,Sm and S G Conf, we define a numerical invariant, which we 
call the covering coefficient : 

(Su ' s ' S m ) := #{(Si, • • • ,S,„) : g, ci S s.t. [S,] = S, (/ = 1, • • • ,m) and .u | 

Here S is a graph s.t. [§] = S. The definition does not depend on S. 

(2.5) We list some elementary properties of covering coefficients. 

i) [U
 s

 ,Sm) = 0 unless Si < S for i = l,...,m and £ # 5 , ^ #S. 

ii) I ' m j is invariant by the permutation of Si's. 

iii) For 1 < vf < m, one has an elimination rule : 

s»i = is 

(• 

Si, • • • ,Sj-i,<j>,Sf+i, • • • ,S„A _ /Si,• • • ,S/_i,S(+i, ' 

v) For the case S = cj) 

if S = T 
iv) For the case m = 1, [ \ \ = 1 

Si,---,Sm \ f 1 ifUSt^h 
4> / t o e/se. 

(2.6) Composition Rule. For Si, • • • ,S,„, T\, • • • , T„ and S G Conf, one has 

Si, • • • , S,„\ / U, T\, - • • , Tn\ (Su ' ' ' ? Sm, Ti, • • • ,Tn 

z r „ • , v s / V s 
1/eConf v ' v 7 v 

(2.7) Decomposition Rule. For Si, • • • , S„„ U and F G Conf, one has 

Here R/ and T/ run over Conf for all possible decompositions of S/ (/ = 1,... , in). 

§3. Configuration Algebra 

(3.1) Algebra Structure. The free abelian group Z • Conf generated by Conf 
carries an algebra structure by a use of the semigroup structure on Conf (2.3) 
as the product (recall that [0] = 1). It is isomorphic to the free polynomial 
algebra generated by Confo. The algebra is graded by taking deg(S) := #(S) for 
S G Conf, since the aditivity: #(S • T) = #(S) + %(T). 
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(3.2) Adic Topology. For n > 0, let us define an ideal in 2£ • Confpq 

fp
n
q := the ideal generated by{S G Confpq : #(S) > n}. 

Taking Jpq as a fundamental system of neighbourhoods of 0, we define the adic 
topology. The completion w.r.t. the adic topology is denoted by 

Z[[Conf^]] := lnn(Z; • Confpq)/fpq. 
n 

We put Z[[Conf]] := limZ[[ConfM]], even it is a confusing notation. For a 
commutative algebra A with a unit, we put A[[Conf ]] := A ®z Z[[Conf ]] 
and call it the configuration algebra with coefficient in A. Since A[[ConfP(?]] ~ 
nseConfp<* A • S, any element / of the algebra is expressed by a formal sum : / = 
ZsGConf™ S • fs for a suitable p, q > 0 and constants fs G A. Put, Supp(/) := 
{S G Conf : fs ^ 0}. A series / is said to be of finite type, if Supp(/) is contained 
in a finitely generated subsemigroup of Conf. 

(3.3) A subset P of Conf is called saturated, if its saturation P := {T G Conf : 
3 S G P s.t. T < S} coincides itself. A subalgebra generated by a saturated subset 
is called a saturated subalgebra of the configuration algebra. Let T be a Caylay 
graph of an infinite group and let Pr be the set of isomorphism classes of all 
finite subgraphs of F. Then Pr is a saturated semigroup contained in Confpg for 
some p,q > 0. A[[P r]] is the configuration algebra for (F,G). 

(3.4) Exponential and Logarithmic Maps. Assume Q c A . We define maps : 

oo . oo / _ ^ n - l 

expGJf) := £ — Mn and log(l + srf) := £ ^—'-—sén 

«=0 " n=\ 

for M and sé G A[[Conf ]]+ := the augmentation ideal generated by Conf+. 

§4. The Hopf Structure on the Configuration Algebra 

(4.1) Coproduct <Pm. For an m G N and U G Conf, define a map 

E -• E (Su"u'Sm)s19...9Sm 
cPrmF S Cfnnf \ ' SiSConf S,„eConf 

Owing to the decomposition rule (2.7) and (2.5) i), one has 

*m(U-V) = *m(U)-*m(V) for 17, F S Conf, 

<M/T)«= Z / £ ® - " ® / £ for ^«.".'«eZio. 

Thus (Pm extends to a homomorphism from the configuration algebra to its 
completed m-tensor product, denoted by (Pm again, which we call the coproduct. 
The symmetric group <Bm acts on the range of ^ m by permutation. The image 
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of $m is Sm-invariant, because of (2.5) ii). We shall call this property the co-
commutativity of &m. 

The composition rule (2.6) implies, for m, n G N, 

(1 <g) • • • <g> 1 ® <Pm) o &n+1 = <Pm+11, 

Combining this fact with the cocommutativity, we see that any composits of # 
is expressed again by some <Pm. We call this the co-associativity of &m. 

(4.2) The augumentation map for the algebra is defined as Z[[Conf]] —> Z, 
(S G Conf + f-> 0, [(j)] h-> 1). It is a co-unit in the sense: (aug • id) o $ 2 = id. 

(4.3) The involution map i. The following Lemma is nontrivial. 

Lemma (Existense of Co-inverse). There exists a unique algebra automorphism 

i : Z[[Conf]] - • Z[[Conf]] 

such that 
i) J is involutive. That is: i2 = id. 

H) i is the co-inverse map w.r.t. the coproduct $2- That is: (1 • id) o <p2 = aug. 
in) 1 leaves any saturated subalgebras of Z[[Conf]] invariant. 
iv) i is continuous w.r.t. the adic topology. In particular, aug 07 = aug. 

Remark. There is other coalgebra structure studied in combinatorics (Rota [5]). 

§5. The Growth Functions for Configurations 

In this and next paragraphs, we introduce some basic elements 1 + jtf(T) and 
Jt(T) (T G Conf) of the configuration algebra, which turn out to be grouplike 
or Lielike respectively. 

(5.1) Growth Functions. Let S and T G Conf be given. Fix a graph T with 
[W] = T and put 

A(S,T) := #{S : S c= T such that [S] = S}, 

A(S,T) :=#A(S,T). 

We call A(S, T) the growth function. By definition A(S, Ti • T2) = A(S, T{) + 
A(S, T2) for S G Confo and T/ G Conf. 

Let us introduce an element of Z • Conf : 

1 + J / ( T ) : = 1 + £ S-A(S,T)=^\S\, 
5GConf+ SG2 T 

where 2T := {subgraphs of T}. Obvious from definition, for T\ and Ti G Conf 

(1 + jé(Tx • T2)) = (1 + ^(Ti) ) ( l + j / (T 2 ) ) . 
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(5.2) A numerical approximation of the growth function. 

Lemma. For S G Conf and for T G Confpq, one has 

^ ( s , T ) -# is ) ' ( * T ) " ( S ) '^ S _ M ( S ) -
(Here n(S) := # of connected component of S.) 

(5.3) Product expansion formula for growth functions. The following basic 
formula can be shown by a combinatorial method. 

Lemma. Let Si, . . . ,Sm (m > 1) and T G Conf be given. Then, 

f[A(Si,T)= X (Sl'"s'
Sm)A{S,T). 

i=l SeConf ^ ' 

(5.4) Grouplike property of the growth function. 
An element g G A[[Conf]]\{0} is called grouplike [8], if it satisfies $m(g) = 

g ® • • • ® g for vm G N. We put 

GA := {all grouplike elements in A[[Conf ]]}, 

Genite := {g G GA : g is of finite type}. 

The (5.3) Lemma implies the following Lemma. 

Lemma (Grouplike Property). For all T G Conf, one has 1 + ^(T) G Genite-
That is: for any m G N and T G Conf, one has 

(1 + st{T)) (8) • • • ® (1 + si(T)) = *m(l + sf(T)). 

Corollary. (1 + i{st(T))) (1 + st(T)) = 1 for T G Conf, 

$ m o i = (i ® ••• (g) i) o0m for m G N . 

§6. The Logarithmic Growth Function 

(6.1) For S G Conf, define the logarithmic growth function by: 

M(T) : = l o g ( l + j / ( T ) ) 

(cf. (3.4). Develop JK{T) in a series 

Jt(T)= YJ S'M(S,T). 
SeConf 
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By definition M(<j>, T) := 0 for T G Conf and A(S, T) = M(S, T) for S G Conf 0. 
The multiplicativity of srf(T) (5.1) implies the additivity: 

Jt(Ti • T2) = JK(Ti) + JH(T2) 

for Ti G Conf and hence the additivity : 

M(S, Tx • T2) = M(S, Ti) + M(S, T2) 

for S and T, G Conf. 

(6.2) 77îe /znear dependence relations on logarithmic functions. 
The polynomial relation (5.4) Lemma implies a linear relation; 

Lemma (Lielike Property). For T G Conf and m > 1, 

7-th 

1 ® • • • ® 1./ 
i=i 

2^ 1 ® • ' ' ® l^#(T) <8) 1 <g) •• • (g> 1 = *m(.^r(T)). 

Corollary. Let Si, • • • ,SW, G Conf + /or m > 2 ûwd T G Conf be given. Then, 

E (Su"s'
Sm)M(S,T) = 0. 

SeConf 

Remark. The linear dependence relations among M(S, T)'s for S G Conf is the 
key fact in all this paper. The Hopf algebra structure is introduced to deduce the 
relation. We shall solve this linear relation in (8.2) by a use of kabi coefficients 
introduced in §7. 

(6.3) An element Jt of the configuration algebra satisfying the relation (6.2) 
is called Lielike ([7]). Let us fix notations: 

&% := {all Lie-like elements in A[[Confpq]]}, 

and 
^finite := {M G J2?A : M is of finite type}. 

We denote also: JSPA := U M J2^ and Affinité := UMJ^ f i n i t e . 

§7. Kabi Coefficients 

(7.1) Definition. 1. A pair (S,U) of a graph ÏÏJ and its subgraph S is called a 
kabi over S, if any vertex of U \ S is connected to a vertx of S through an edge. 

2. Let U G Confo and let U be a graph with [U] ~ U. For S G Confo, put 

K(S,Ü) :={S : S cz U s.t. [S] - S and (S,ü) is a kabi}, 

K(S,[ / ) :=#K(S,Ü). 
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We call K(S, U) a Kabi-coefficient. Its definition does not depend on a choice of 
ÏÏJ. From definition, K(S, U) = 0 for S £ U, and K(S,S) = 1 for S G Conf0. The 
word "kabi" means "mold" in Japanese. 

(7.2) Lemma (The Inversion Formula of Kabi). For S,T G Confo, one has 

(1) X (-1)#C/"#5K(S, I/) - A(U, T) - <5(S, T) . 
C/eConfo 

(2) E (-1)*U-*TA(S,V)-K(U, T) = 5(S,T). 
t/eConfo 

Specializing (2), one gets: Y.ueCo^S-1)^^ ' K(U> T ) = ~0^ T ) -

(7.3) We remark the boundedness of non-zero entries of K. 

Assertion. Let T G Conf p
0
q. Then K(S, T) = 0, unless %T < #S • (q - 1) + 2. 

§8. Lielike Elements J5?A 

(8.1) Basises of ^A,finite and J£?A-

Lemma. Let A èe an algebra containing Q. TTien, 
ij The system {^(T)}reConf0 &ve a A-free basis for Ĵ A,finite-

^ f i n i t e ^ ©SGConfoA ' ^ ( S ) . 

EKe introuduce another system {(p(S) G infinite H ̂ #s}seConf0 o / A basis o/ 
^A,finite (recall the inversion formula (7.2)) : 

Jt(T)= £ <P(S)-A(S,T) 
SeConfo 

q>(S)= £ ^(r)-(-i)*r-*sK(r,s). 
TeConfo 

ii) {(p(S)}seConfo is a topological basis of J£?A- That is: 

^A^lim( n A-<p(S)). 
M SeConfo 

This means that any J( G J2?A is express uniquely as an infinite sum 

= E VW-** 
SeConfg* 

for some p,q G Z^o and as G A for S G Conf^. 

(8.2) An explicite formula for cp(S). For S G Conf0, let us develop cp(S) = 
Ilc/GConf u ' <P(U,S) for cp(U,S) G Q. By a use of (3.4), (5.3), (7.2), one obtain: 
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m , r 7 V , v (fei + • • • + fc„, - 1)|(-l)*.+-+*.-i (UU..., Um\ 

Here (U\,... , Um) means a sequence of Uj where each Uj appears with multiplicity 
kj. Let Jt = Xi/GConf ^ " - ^ ü ^ e a n element of J^A. Then, 

M t / = X <P(U,S)-M;s. 
SeConfo 

So combining both formula, one is able to determine all coefficients of M from 
the knowledge ofthat for Ms (S G Confo). 

Remark. In general, an element of JS?A cannot be expressed by an infinite sum 
of M(T) (T G Confo). 

§9. Grouplike Elements GA 

(9.1) Let A be an algebra with char=0 without an idempotent element and 
Q c A. Then one has isomorphisms: exp : J£?A — GA and J£?A,fmite — GA,fimte-

(9.2) Generators for GA,fmite and G A-

Lemma. Let A be a commutative Z-torsionfree algebra with a unit element and 
without an idempotent element. 

i) Any element g of Gannite is uniquely expressed as 

g=n(i+j/(s'))ci 

iel 

for a finite index set I and S, G Confo and c, G A for i G I. Therefore the 
correspondence: S H* 1 + sé (S) induces an isomorphism: 

< Conf > <g)ZA ~ Genite 

where < Conf > is the group generated by the semigroup Conf. 
ii) The set {exp((p(s))}sGconf0 <= Genite form a system of free topological genera

tors of GA-

§10. Limit Elements in JS?R 

We finaly introduce the limit element cor for a finitely generated group r with 
fix generators. A further study of a>r is beyond the scope of the present paper. 

(10.1) We equip a classical topology on the ^.-vector space 3?^ by: 

seg:=im&g/sFri&R= U R-<P(S), 
» SeConfg* 
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the projective limit topology of R-vector spaces. J£?R,finite is dense in JS?R. Samely, 
we put a classical topology on R[[Conf ]] by 

R[[Confpq]] = lim R • Confpq IJpq = J\ R • S. 
« SeConîpq 

i) The product and coproduct on R[[Confpq]] are continuous w.r.t. the classical 
topology. 

ii) The classical topology on S£^ is homeomorphic to the topology induced from 
that on R[[Conf]]. 

iii) Let us equip on GR a classicial topology induced from R[Conf ]] as a subspace. 
Then exp : JSf̂  —> G{̂  is a homeomorphism. 

(10.2) Limits of equally dividing points. 
The correspondence 1 + stf(T) G Gz i—> %T G TL extends continuously as 

an additive character from GR to R, which we denote by Xpt. For S G Conf, 
(1 + J ^ ( S ) ) 1 / * ^ is called an equaly dividing point, where the exponent 1/#(S) is 
chosen to get the equality: Xpt((l + J ^ ( S ) ) 1 / * ^ ) = 1. By a use of logarithm map, 
we define the set of log-equaly dividing points log(EDP^) := {Jt(T)/#T : T G 
Confpq} in J£?<Q and its closure \og(EDPM) w.r.t. the classical topology in J£R. 
The numerical approximation (5.2) will be repeatedly used to show the following 
Assertion and the next (10.3) Lemma. 

Assertion. 1. The log(EDP^) is a compact convex set. 
2. Let us develop any element œ of\og(EDPw) as XseConf0 <P(S) • as- Then i) 

0 < as < q*s-{/# Aut(S) for S G Confo, ü) ifasj=0 then as< j* Ofor Sf < S. 

(10.3) Residual representation of the elements oflog(EDPM). 
Let co = liniH-KXj M(Tn)/#Tn be an element of log(£DP^) for a sequence 

{Tn}n2:0 of Confpq for some p and q. We introduce formal power series 

P(t):=Y,#Tn'tnGZ[[t]], 
n=0 
oo 

PJt(i) := £ -*{Tn) • tn G J2PQ[W] . 

«=o 

Lemma. Suppose that the radius r of convergence of P(t)is positive. Then, 
i) PM(t) converges in the same radius r. That is: for any S G Confo, 

oo 

PM(S, t) := dsFM(t) = £ M(S, Tn) • tn G Q[[t]] 
n=0 

converges in the radius r as for P(t). 
ii) The value of the proportion PJ£(t)/P(t) converges to co in J£?R as t tends to 

the radius r along real axis from 0. That is : 
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co = \ìmPJt{t)IP(t) = V «(S) • limPM(S,t)/P(t). 
t—>r *-^ i—>?• 

SeConfo 

Hi) IfP(t) and PM(S,t) extend to meromorphic functions at t = r, then PM(S,t)/ 
P(t) is regular at t = r and 

lim PM(S,t)/P(t) =PM(S,t)/P(t)\ . 
f—>00 ' l~1 

(10.4) The limit element a>r for a discrete group F. 
Let F be a group and let G be a finite set of generators of F such that 

G = G -1 and e ^ G. We regard F as a Caylay graph. For y G F, put *f(y) := 
inf {n : y = g\ • • • g„ for some g,- G G, / = 1, • • • , n). Define a sequence of increasing 
graphs F„ := {y G T : £(y) < n} for n G IN and associated generating functions, 

(1) Pr(0:=£#/Vt», 

00 

(2) PrJt{t) : = ^ ^ ( P „ ) - t " . 
n=0 

Here P r (0 is well known in literature as growth power series for F relative to 
the generator system G. We have following facts i) and ii). 

i) For any finitely generated group F, the series Pr(t) and PrJtif) converge in 
a positive radius. 

ii) For a wide class of group F with a generator system G, PM(S,t)for S G Confo 
becomes a rational function in t. This includes examples : 
a) an automatic group F ([2]) such that the regular language L(W) accepted 

by the word accepter contains at least one shortest word for every element 
of the group F. 

b) Hyperbolic or negatively curved groups F [5]. Then Pr(t) and PrJtif) are 
rational functions with a common denominator. (D. Epstein et al [3]). 

Owe to i), we introduce the limit element for (F, G) : 

œr :=limlog(l + jaf(r„))1/#r" 
PrM(S,t) 

SeConfo ™ PpMfat) 
= £ cp(S)-lim 

If F belongs to the case ii), owing to (10.3) Lemma iii), the limit process is 
replaced by a residue calculation of rational functions. 

PrM(S,t) 
°>r = YJ VW G Jg? Q ( r ) , 

t=0 

Here r = 1/ lim sup,, .^ ^/#F„ is the first place of pole of Pr (t) on the R + , and is 
a real algebraic number. We know little about a>r except that it is defined. 
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(10.5) A Kabi-kernel condition on a*r. The kabi coefficients induces a map: 

£ A-q>(S)^ £ A-M(T),cp(S)^ £ M(T)-(-lfT~*sK(T,S) 
SGQonff PeGonff TeGonff 

for fix p and q G Z>Q. By completing the map, we obtain a map: 

K :
 ^A -* I l A ' M ( T ) • 

reconfj9 

Since K is bijective on ^'.finite' o n e S e t s amazingly ker(X)nlog(EDPM) = 0. Let 
us give a characterization of an element of ker(K) n log(EDP^) : 

Assertion. For an element co = Umn_>00e#(Tn)/#Tn of log(EDP^), co belongs 
to ker(K), if and only if lim„_>005(S, Tn)/$Tn = 0 for any S G Confo, where 
ö(S,T) := ^{connected components of T, which are isomorphic to S}. 

Corollary. The cop for an infinite group F belongs to ker(X). 
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Some Recent Results on Weakly Pseudoconvex Domains 
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F-91405 Orsay Cedex, France 

We give here a survey of some recent results concerning analysis in weakly 
pseudoconvex domains in C" with smooth boundary. 

Let Q C (C" be a smoothly bounded domain with defining function r, more 
precisely r is a smooth function defined in a neighborhood U of Q such that 
Q = {z G U ; r(z) < 0} and dr ^ 0 on dQ. 

The domain Q is pseudoconvex iff for z G dQ and t G C" 

(Lr(z)t, t) = Ys Ta^W* ^ ° whenever ]£ - Ä , = 0. 
Ik jüZk ;=i ^ 

If the inequality is strict for t ^ 0 the domain is said to be strictly pseudo-
convex. Pseudoconvex domains with smooth boundary are just the domains of 
holomorphy with smooth boundary. 

The analysis on strictly pseudoconvex domains received much attention in 
the late sixties and in the seventies, the explicit construction of kernels in order to 
solve 3-equation was one of the main tools to solve function theoretic questions 
in these domains, see [HeL]. The fact that a strictly pseudoconvex domain is 
locally biholomorphic to a strictly convex domain is crucial in this approach. 
Such a simple local model does not exist when the Levi form L is not positive 
definite. We give first few examples to show the type of difficulties we have to 
face. 

1. Examples 

a) The Kohn-Nirenberg example [KN1]. Let Q = {(z,w) G (C2 ; Re w+ | z \2k 

+t | z |2 Re(z2/c~2) < 0}. If | t \< 2£ZT then Q is pseudoconvex. If | t |> 1 and 
k > 3 then there is no supporting analytic set to Q at the point 0. Hence Q is not 
biholomorphically equivalent in a neighborhood of 0 to a convex domain. 

b) Non embeddability into convex domains. There exists a smooth pseudo-
convex domain ß € C 3 and p G dQ, such that for any N and any convex domain 
U C <EN there is no proper holomorphic map from Q n B(p,r), r > 0, into U, 
[Sil]. 

c) The "worm" domain. Diederich and Fornaess [DF1] have exhibited a 
pseudoconvex domain fì^C2 with smooth boundary such that Q does not have 
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a Stein neighborhood basis. Moreover given e > 0 it is possible to construct a 
"worm" domain Qe such that there is no plurisubharmonic (p.s.h.) function Q in 
Qe satisfying — Ade < Q < —Bde with positive constants A, B. Here d denote the 
distance to the boundary of Qe, see [DF1] and [Ki]. This last property implies 
the non existence of a V1 plurisubharmonic defining function for Q8, if e < 1. 

Despite the smoothness of dQ, the structure of the set W(dQ) — {z G dQ ; 
there exists t G <C", t ^ 0, < dr(z),t >= 0, < Lr(z)t,t > = 0} can be quite wild. 
Even when W(dQ) is reduced to one point, most of the sharp results obtained in 
the strictly pseudoconvex case either do not generalize or require a more subtle 
analysis. Depending on the property under consideration one has to introduce 
specific classes of pseudoconvex domains. 

2. ß-Regular Domains 

Let U C (C" be a bounded domain. The boundary dU is 5-regular iff for every 
p GdU there exists a function xp G ^(U) p.s.h. in U with xp(p) = 0 and xp < 0 
on U\{p}. See [Cal] [Si2] [Si3] for this notion. The following result is proved in 
[Si2] [Si3]. 

Theorem 2.1. Let Q C C " be a pseudoconvex domain with smooth boundary. Assume 
dQ is B-regular. Fix 0 < s < 1. There exist two defining functions r\,rifor Q such 
that QI = — (—ri)1_e is p.s.h. in Q and Q2 = fa)14"6 is p.s.h. in a neighborhood of 
Q. Hence Q has a Stein neighborhood basis. 

The existence of a Stein neighborhood basis has been proved in many special 
cases by Diederich-Fornaess [DF2, DF3]. 

The assumption in the Theorem is the existence of a p.s.h. barrier at every 
point of the boundary.' This is a stronger assumption than the non existence of 
analytic structure on dQ. It can be shown that if such barriers exist except on a 
"small" set then they exist everywhere [Si2]. 

When W(dQ) is a countable union of closed sets where continuous functions 
can be approximated by p.s.h. ones, then dQ is U-regular. This is the case when 
dQ is real analytic [DF2] or of finite type [Cai], in these cases W(dQ) is of 
Hausdorff dimension In — 2. However B-regularity of dQ allows the set W (dQ) 
to be of positive Lebesgue measure in dQ. 

3. d-Problems 

Many of the most natural problems that arise for weakly pseudoconvex domains 
are connected with the question of solving the 3-equation in the standard spaces 
U, H\ As. 

The most fundamental result in this context is probably the following theorem 
due to Hörmander [Hol]. 

Theorem 3.1. Let Q ê C " be a pseudoconvex domain. For every g G L2
01)(ß) such 

that dg = 0 there exists a function u such that 
i) du = g ; 
ii) fQ\u\2<C(dmmQ)fQ\g\2. 
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The result holds_ without any assumption on the smoothness of dQ. The 
question of solving d-equation is Sobolev spaces has been settled by Kohn, see 
[Kl]. 

Theorem 3.2. Let Q <C (C" be a pseudoconvex domain with smooth boundary. Given 
SQ > 0 there exists a constant C(SQ,Q) such that for every closed form a G H*Q^(Q) 
with s < So, there exists u G HS(Q) such that 

du = a 

and 

| |w| | s<C(s0 ,ß) || a ||5 . 

Similar results for the 3&-equation have been proved by Kohn [Kl], Shaw [S] 
and Boas-Shaw [BoS]. 

Theorem 3.3. Let Q C C" be a pseudoconvex domain with smooth boundary. Then 
for any s ^ 0, db has closed range in H^(dQ). 

Let AS(Q) denote the space of Holder continuous functions of order s > 0, 
with the usual convention when s is an integer, for s = 0 we identify A°(Q) and 
^°(ß). It is not in general possible to solve the d-equation with As estimates as 
the following result shows, [Si3, Si4]. 

Theorem 3.4. Let m > 3. There is anQ C (Cm, pseudoconvex with smooth boundary, 

such that for every 0 < s < oo, there exists a d-closedform a G AS(0^(Q)nH,Q ^2 (Q) 

such that the equation du = a has no solution in AS(Q). 

Remark. For s fixed the domain can be made strictly pseudoconvex except at one 
point. 

Concerning LP estimates the problem was studied by Fornaess-Sibony [FSil]. 
First of all there is no analogue of Hörmander's result for p > 2. 

Theorem 3.5. There exists a pseudoconvexdomain U <C (C2 and a d-closed (0,1) 
form a, real analytic in a neighborhood of U, such that the equation du — a has no 
solution in LP(U) for any p > 2. 

Observe that dU is not smooth. The example is based on the fact that the 
holomorphic functions in LP (U), p > 2, extend holomorphically to a domain Ü 
which is not contained in U. Such phenomenon cannot happen when U is Runge. 

If one tries to solve the d-equation in a Hartogs domain U = {(z,w) G (C2 ; 
z G Q cz C, | w \< exp(—cp(z))} where cp is subharmonic in an open set fiC(C, 
one is led to the problem in one complex variable : solve du/dz = / in Lp(Q,cp) 
with the estimate 

i/p / r \ V P 

<C 
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When 1 < p < 2 and Q C (C the above estimate holds. The proof is based on 
the fact that Hörmander's estimates work with the same constant on a domain 
in <Cn and on any covering of this domain regardless of the number of sheets. 

The situation is differenrtor p > 2. There exists a subharmonic function cp 
in the unit disc A and / G f)p>2LP(A9<p) such that for any p' > 2 the equation 

du/dz = / has no solution in Lpf(A, cp). Using these one variable results, we prove 
the following theorem. 

Theorem 3.6. There exists Ö ^ C 4 pseudoconvex with smooth boundary, strictly 
pseudoconvex except at one point with the following property : for every p > 2 
there exists a d-closed form ß G LP

Q^(Q) such that the equation du = ß has no 
solution u G LP'(Q) if pf G ]y/i + 9 p - 3,p]. 

The result is probably not sharp. There is also a smooth pseudoconvex domain 
flc£3 such that d : LP(Q) -> LP

0^(Q) does not have closed range. 

The following questions are then quite natural. 

i) Suppose Q C (Cw is pseudoconvex with smooth boundary. Let s > 0, for 
which sf < s does the operator d : AS'(Q) -> A^(Q) has closed range ? 

ii) Let 1 < p < oo, for which p1 < p, does the operator d : LP'(Q) -> LP
0^(Q) 

has closed range ? 

The following partial answer due to Bonami-Sibony [BoSi] is a consequence 
of Kohn's result and of a Sobolev embedding theorem which basically says that 
if du G L*(Q) for t large enough then the dimension 2n in the usual Sobolev 
embedding theorem may be replaced by (n + 1). 

Theorem 3.7. Let Q ^ (ST be a pseudoconvex domain with smooth boundary. Let 
a G ifg),i) 0^) a à -closed form. 

a)IfO<s< ^ and a G Lj01)(ß), with 7 = 5 — ^44 3 ^en the equation 
du = a has a solution in U(Q), with 7 = 5 — ^ • 

b) If ^ < s < *±2 and a G L[01)(Q), with \ = \ - ^ ^ p , then du = a has a 
solution in Aa(Q), with G = s — ^ ì . 

c) If s > *^r and a G ^J~i) (̂ )> ^ e n 3w = a ftas a solution in Aa(Q), with 

as-*?. 

Remarks, i) In ail cases the solution u belongs to HS(Q). 

ii) The examples mentioned in Theorem 3.4 show that there is necessarily a 
loss in the regularity of the solution. 
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4. 8 -Neumann Problem 

Let Q C (C" be a pseudoconvex domain with smooth boundary. Let a be a 
<9-closed (0,1) form with L2 coefficients. An aspect of the 3-Neumann problem 
consists in studying the regularity of the solution u of the equation du = a, 
where w is orthogonal to the holomorphic I? functions. This solution is called 
the canonical solution. 

Let us say that Q satisfies (Rk) if the canonical solution u is in Hk(Q) 
whenever a G HJfo^(Q) ; Q satisfies (R) if the canonical solution w belongs to 
^°°(ß) whenever à G %C§A)(Q). 

It is known that property (Rk) holds for all k, whenever dQ is B-regular, see 
Catlin [Cal]. Very recently, it was proved by Boas-Straube [BoS] that (Rk) holds 
for all k if the domain Q has a p.s.h. defining function. 

On the other hand, inspired by ideas of Kiselman [Ki], Barrett has shown in 
[Ba] that worm domains do not have property (Rk) for k large enough, depending 
on the domain. It seems likely that property (R) fails in general. 

Property (R) is connected with the boundary behavior of biholomorphic map
pings. Indeed Bell-Ligocka have shown, in [BL], that a biholomorphic mapping 
between two smoothly bounded domains in C", satisfying property (R), extends 
smoothly up to the boundary. 

It is not known whether a biholomorphism between two smoothly bounded 
domains in (C" extends smoothly to the boundary. 

5. Domains of Finite Type 

A class of domains for which one can hope to generalize the results obtained for 
the strictly pseudoconvex domains is the class of domains of finite type. 

Let M be a real hypersurface in C" with defining function r. Let p G M and 
i/p the space of germs at p of irreducible one-dimensional analytic subvarieties. 
For X Gi/p define 

{ I r(z) I 1 

a > 0 : lim sup TT-L J L-^— < oo > . 
zex\{p};-+p\\z-p\\« J 

The type of M at p is defined as z(M,p) = snp{z*(X),X G i^p}. M is of finite type 
if sup/3GM T(M,P) < oo. This notion has been studied by D'Angelo who showed 
that p —> T(M,P) is not uppersemicontinuous but that the set of points of finite 
type is open, [Dani], [Dan2]. A point in M is a point of strict pseudoconvexity 
iff it is a point of type 2. Bounded pseudoconvex domains with real analytic 
boundary are of finite type, [DF2]. 

Let U be a neighborhood of p G dQ. A subelliptic estimate of order e holds 
for (0,1) forms supported in U n Q iff there exists a constant C > 0 such that 

|| | u I ||?< C(|| du ||2 + || g'ii ||2 + || u ||2) 

for u G ̂ (U) = {u ;u smooth (0,l)-form supported in UnQ, d*u G Dom(5*)}, 
where || | | ||c denotes the tangential Sobelev norm of order e. 

Following the work of Kohn [K2] on subelliptic estimates for domains with 
real analytic boundary, Catlin has proved the following result, [Ca2], [Ca3]. 
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Theorem 5.1. Let Q <S C" be a pseudoconvex domain with smooth boundary. Subel
liptic estimate for the d-Neumann problem holds for some s> 0 in a neighborhood 
ofpGdQ iff dQ is of finite type at p. 

The existence of a subelliptic estimate of order s > 0 near a point p implies 
that the canonical solution to du = g is smooth near p if g is smooth in a 
neighborhoof of p, [KN2]. 

The best e in the subelliptic estimate is known only for domains of finite type 
in C2, [FeK, Ca4, FSi2] and for convex domains of finite type in C" [FSi2]. 

Real progress has been made recently in the understanding of regularity 
properties of the canonical solution of the d and dt equation for domains of 
finite type in (C2, see the survey paper by Christ in these proceedings [Ch]. 

The understanding of the local geometry of domains of finite type in <CM 

is still incomplete. The following notion of type connected with p.s.h. barriers 
should be compared to the type x. 

For p G dQ let 0>v = {cp ; cp p.s.h. continuous in Q, <p < 0, cp(p) = 0}. Define 
for (pG0>p 

T+(cp) = hmsup y v , T (cp) = hminf - — ^ 
z-weß log || z - <p || v r ' X-W6Û log || z 

and 
T+(<p) 

<p(z)\ 

P\ 

P(p,dQ) = inf 
cpe&p T~(cp) 

It is shown in [FSil] taht x(p,dQ) < P(p,dQ). The converse is proved in [FSil] 
when Q is pseudoconvex in (C2 or convex in (C*. The invariant P is connected 
with sharp subelliptic estimate. 

It would be of interest to compare P(p,dQ) and x(p,dQ) for smooth pseudo-
convex domains in Cn. 

6. Spectral Questions and Approximation Problems 

For 0 < fc < oo, let Ak(Q) denote the algebra of holomorphic functions in ^k(Q). 
Let Hœ(Q) denote the algebra of bounded holomorphic functions in Q with 
uniform norm. 

When ß C Cn is a pseudoconvex domain with smooth boundary, then the 
Gelfand spectrum of the algebra Ak(Q), 0 < k < oo, can be identified with Q, 
[HaSi]. The case of Hœ(Q) is different. It is not known whether Q is dense in the 
Gelfand spectrum of Hco(Q) even when Q is the unit ball or the unit polydisc in 
<C", n > 1. However there exists a pseudoconvex domain Û € C 3 with smooth 
boundary, strictly pseudoconvex except at one point of dQ, such that Q is not 
dense in the spectrum of Hœ(Q), [Si5]. 

Very little is known about approximation problems of holomorphic functions 
defined on a smoothly bounded pseudoconvex domain ß c C " . Because of the 
existence of domains Q such that Q does not have a Stein neighborhood basis 
it is not possible, in general, to approximateuniformly functions in Aœ(Q) by 
holomorphic functions in a neighborhood of Q. If we assume that Q has a Stein 
neighborhoof basis, it is still not known if functions in Aco(Q) are uniform limits 
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of functions holomorphic in a neighborhoof of Q. This is however true if we 
assume that dQ is ^-regular [Si2]. 

When Q C (C" is pseudoconvex and smoothly bounded, it is not known if 
y4°°(ß) is dense in Ar(Q) for the <€* norm when 0 < r < oo. 

For a more detailed discussion of these questions we refer to [Si3]. 
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Analysis and Geometry on Groups 

Nicholas Th. Varopoulos 

Mathématiques, Université de Paris VI, 4 place Jussieu, F-75230 Paris Cedex 05, France 

The results that I shall survey here can be seen from several different angles. There 
is a discrete point of view related to discrete finitely generated groups; there is also 
a C°° point of view related to connected Lie groups. One can, to a certain extent, 
unify the above two settings by considering general compactly generated locally 
compact groups but I shall not do so here. Both in the discrete and in the C00 case 
we can put forward either the Geometric formulation, such as Sobolev inequalities, 
or the analytical formulation that examines the behaviour of natural semigroups of 
operators on L2(G). What makes the theory hold together, in a final analysis, is that 
equivalence of all these different aspects. To explain how this comes about I have 
to start with some definitions. 

1. Distance and Volume Growth 

Let G be a discrete group generated by a finite number of generators yi,...,ykeG. 
One defines then a distance d(., .) on G by requiring that d(gx, gy) = d(x, y) 
(x, y,g e G) and that d(e, x), the distance of x e G from the neutral point e e G is, 
by definition, the smallest n > 0 for which we can write x = y*1...y[n (i1,..., in = 
l,...,k;sj = 0,±l). 

Let G be a connected Lie group and let Xu ..., Xk E S£(G) be a finite number 
of generators of the Lie algebra of G; in other words Xu . . . , Xk are left invariant 
C00 fields on G that together with their successive brackets {X^[XÌ2,..., Xis]...] 
generate the tangent space. We say that an absolutely continuous path l(t) e G 

(0 < t < T) is of length less or equal to T if its speed vector l(t) = dli — J (with 

respect to Xl9..., Xk) is almost everywhere of length < 1: This means that l(t) = 
YJ=I ajXj (p.p. t^af < 1). We then say that d(x, y)<T(x,ye G) if we can join x 
to y with a path of length < T. 

The growth function y(t) (t > 0) of G is in either of the above two cases defined 
to be y(t) = The Haar measure of a ball of radius t. For large t (t > 1) the above 
function y(t) is essentially independent of the particular choice of the generators 
used: y(t) (t > 1) is thus a group invariant. For Lie groups and 0 < t < 1 the 
behaviour of y(t) does depend on the choice of Xl9 . . . , Xk but we always have 
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y(t) « t* with ò = Ò(G, X1,X2,...,Xk) = ì,2,.... (This is a theorem of Nagel-Stein-
Wainger). For t > 1 and a Lie group we have either y(t) « tD with D = D(G) = 0, 
1, ... or y(t) > Cect (This is a theorem of Guivarc'h). In the discrete case we have 
either y(t) « tD (D(G) = 0, 1, 2,...) if G is a finite extension of a nilpotent group or 
yMC"4 -? °o, for all A > 1 in all other cases (this is a theorem of Gromov). 

2. The Diffusion and the Random Walks 

Let G be a unimodular Lie group with Xl9 ..., Xke 3?(G) as above, we can then 
consider A = —Y,Xf which can be identified with a self adjoint (positive) operator 
on L2(G) and we can also consider Tt = exp( — tA) the corresponding submarkovian 
semigroup. The kernel of that semigroup will be denoted by pt(x, y) = pt(x~xy) 
(t > 0; x, y E G). The discrete analogue of the above diffusion is of course the random 
walk defined oh a discrete group by the transition matrix M(x, y) = p(x_1y) 
(x, y E G) where p E P ( G ) is a symmetric probability measure on G. We shall consider 
in" what follows, essentially, only random walks that are defined by symmetric 
measures that have generating supports (: Gp (supp p) = G). What we shall examine 
then is the convolution powers pH of that measure or equivalenti/ Tt = 
Gxp( — t(ö — p)) the continuous time Markov semigroup that it generates. 

3. Analytic and Probabilistic Formulation 

One of the main accomplishments of the present methods is that it allows us 
to study the convolution powers of a finitely supported symmetric measure as 
considered in the previous section. 

Theorem 1. Let G be a discrete finitely generated group and let p be a measure 
as above. Let us also assume that y(t) > ctD for some c, D > 0. We then have 
ß'\{e}) = 0(n-D'2). 

The above theorem allows us in particular to classify the discrete groups for 
which the series J]jU"({e}) = +oo. Such groups are called recurrent groups, the 
reason being that the random walk with transition matrix M(x, y) = p(x~ly) is a 
recurrent random walk (and this fact is independent of the particular choice of p): 

Corollary. The only recurrent groups are the finite extensions of the following three 
groups: {0}, TL, Z2 . 

Theorem 1 easily generalizes to convolution products Pi*"m*p„ provided of 
course that the measures p> satisfy the appropriate conditions uniformly in j . 
Theorem 1 is a typical result of the discrete version of our theory. The continuous 
variant of the same result is the following. 
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Theorem 2. Let G be a unimodular Lie group and let X1,..., Xk E S£(G) be as before. 
Let us assume that the induced growth function satisfies y (t) « t&(t -*0)andy(t) >ctD 

(t> 1) for some Ö, D = 0, 1 , . . . . 

We then have ||p,L = 0(ra>2) (t -+ 0) and ||p,L = 0(rD'2) (t -> oo). 
The small time behaviour of HpJI«, described in the Theorem is contained in a 

previous more general result of A. Sanchez-Calle. The group structure is not 
essential for this small time behaviour of pt. The above two theorems can of course 
be unified to a single result on locally compact groups and the methods of the proofs, 
as we shall see, have very little to do with "real analysis". 

The metric ds2 = cp(y)(dx2 + dy2) on R 2 where cp(y) = y~2 for \y\ > 1 gives an 
example of a Riemannian manifold that has exponential volume growth (since for 
|y| > 1 it is just the hyperbolic plane) but has "slow" decay for its canonical p1 

as £-> oo. Indeed the above metric is conformai with the Euclidean metric and 
therefore has no Green's function i.e. Jf pt = +oo. This shows that the group 
structure in Theorem 2 is essential for the behaviour of pt as t -> oo. 

4 Geometric Formulation 

Let G be a unimodular Lie group and let Xu ..., Xk E 3?(G) be as before. We shall 
denote the corresponding gradient by: Vf = (XJ,..., Xkf) E IR* ( / e C£(G)). The 
main Geometric Theorem is 

Theorem 3. Let G and Xx,..., Xk be as before and let ö, D > 0 be as in Theorem 2. 
Let also n > 1, ö < n < D we then have 

imu-D^cnr/n,; /e Cf. 
Conversely if the above Sobolev inequality holds for some n then n > ö and y(t) > ctn 

it > i). 

(All the || \\p norms in what follows are taken in LP(G) for the Haar measure). 
The above Sobolev type estimates are usually reformulated by the Geometers 

in terms of isoperimetric inequalities of the type | A \ J""1 )/n < C\dA\r_1(A c G) where 
| |s refers to the appropriate s-dimensional Hausdorff measure and r is the topo
logical dimension of G. The discrete analogue of the above theorem states: 

Theorem 4. Let G be a discrete finitely generated group, then the Sobolev inequality 
ll/L/o,-!, < C\\rf\\i ( / e C0(G)) holds for some l O i e R i / and only if y(t) > ctn 

(t > 1). 

In the above theorem the L^norm of the gradient is of course \Vf^i = 
Y,d(X,y)=i \f(x) — f(y)\- Once more the above result can be stated in terms of discrete 
isoperimetric inequalities. 
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5. The Connection Between Analysis and Geometry 

What unifies the Geometric and the Analytic point of view and what is, in a final 
anafysis^he^votr^fHhe^proofs^s^he^M 
Analysis: 

Let A be the generator of an appropriate semigroup Tt = e~tA of operators 
on LP(X; dx) (the spaces of p-integrable functions on an abstract measure space 
(X; dx)). Let n > 2, the following two conditions are then equivalent: 

(i) 11/112,„(„-2) < C{Af, Z)1'2; / e Dom(^). 
(ii) \\TtfL<cr'»2\\f\\1;t>0,feL1. 

For the semigroups associated to our random walks on discrete groups the 
generator is: A = 5 — p and the Dirichlet form satisfies Dß(f) = (Af,f) « D0(f) 
where we denote by D0(f) = Y,d(X,y)=i \f(x) — f(y)\2 t n e "standard" Dirichlet form 
on G. This equivalence Dß « D0 is trivial to see if p has finite support but what is 
important is that it remains true for a more general class of measures; namely 
for all symmetric Probability measures on G with generating support and whose 
"variance" is finite: 

E(p)= E d2(e,x)p({x})< +00. 
xeG 

This observation although not very difficult to prove is absolutely crucial for us. 
In the case of a Lie group the Dirichlet form of our semigroup Tt = e~tA is of 

course the familiar expression 

(4/;/)= 11*7115 = I IVI2 

Observe finally that the L1 -> U° operator norm ||e~fJ||ij00 on a Lie group is 
pt(e) and similarly ||e~w(<5~'i)||i,00 ~ pn(e) for a discrete group (This last ~ has to 
be interpreted correctly but it certainly implies pn(e) = 0(n~a)o ||e~f(<5_/i)||i œ = 
0(r*)). 

With the above facts in mind the connection between the Geometric and the 
Analytic theory becomes obvious. Another thing that becomes apparent (and this 
is the single most important feature of all the proofs) is that changing the measure 
p, say in Theorem 1, makes no difference as long as we restrict ourselves to measures 
of finite variance. Indeed such changes leave invariant (up to equivalence) the 
Dirichlet form Dß(f). What remains to be done to complete the proof of, say 
Theorem 1, is to produce one symmetric probability measure with finite variance 
and with convolution powers that decay optimally: pn({e}) = 0(n~D/2). 

This last step is done "by hand". We simply try out a measure of the form: 
p = ^/l^-where Ay > 0,^/ly = 1 and where Xj denotes the normalized characteristic 
function of the 7-ball in G. The condition E(p) < +00 is easy to express in terms of 
the A's and the convolution powers pn can be estimated by an elementary argument. 
The above construction does not seem to work if we restrict ourselves to measures 
of finite support and this is something that to this day I cannot really explain to 
myself in a satisfactory manner. 
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6. Further Development and Open Problems 

In the interaction between the Geometric and Analytical results there is one point 
that remains obscure. Indeed what is natural to consider from the semigroup point 
of view is the norm M1/2/llp ( / e QJ0 (A is a self adjoint positive operator) and what 
occurs naturally in the Geometric formulation is the norm || Vf\\p. It is only for p = 2 
that the two norms are obviously equivalent and it is an open problem whether we 
have in general \\Ff\\p » l|41/2/llj,. That this is the case in the real variable situation 
G = IR" is the content of the classical M. Riesz theorem (for p ^ 1, oo). This 
equivalence holds when G is a group of polynomial growth (This is a recent theorem 
of G. Alexopoulos). It also holds when G is non amenable e.g. a classical non 
compact semi-simple group (this is a result of N. Lohoué). The problem for a general 
unimodular group remains open and seems difficult. The above problem has an 
obvious discrete formulation that contains, no doubt, the essence of the difficulty. 

When the group G is not unimodular then, as we already pointed out, the 
geometric aspect of our theory goes through in a very satisfactory fashion. What 
remains very much open is the analytical theory. Indeed the long time behaviour 
of the appropriate heat kernel remains untractable by the above methods. The 
problem is very much connected with the analysis of the canonical heat kernel on 
symmetric spaces. Indeed any symmetric space of non-compact type can be realized, 
by the Iwasawa decomposition KAN, as the non-unimodular group AN. 

The last problem that I shall consider consists in obtaining a finer analysis of 
the behaviour of pt as t -> oo, for Lie group, or p" for a discrete group. Assume that 
G is a unimodular Lie group. If G is not amenable, and only then, we have 
pt(e) = 0(e~Xt) where X > 0 is the spectral gap of A and depends on the particular 
choice of the fields Xl9 . . . , Xk. There are good reasons to suspect that in fact 
pt(e) ~ ta/2e~Xt where a is some integer or possibly "4-oo" that only depends on the 
group and not on the choice of the fields (just as for amenable groups where we 
have X = 0). The analogous conjecture for discrete groups is false (the counter 
example is due to D. Cartwright). If G is semi-simple this is, once more, related to 
the heat kernel on symmetric spaces (Ph. Bougerol has examined this case). 

For a Lie group of polynomial growth G. Alexopoulos has proved a "local 
Central Limit" theorem: pt(e)tD/2 —̂—• a0 > 0. The following asymptotic develop
ment pt(e) ~ t~DI2\a0 -h o^t"1'2 + •••] should hold, but this is an open problem. 
Similarly for semi-simple groups and symmetric spaces G Herz conjectures that 
pt(e) ~ e~kttal2\ß,0 + a^112 + •••] (as t -• oo). Some logarithms could possibly 
appear in these asymptotic developments. 

Let G be a discrete group and let p, v E P(G) be two symmetric probability 
measure of finite variance. Let us also assume that pn(e) = 0[exp( — a(n))] where 
oc(t) > 0 is an increasing positive function of (t > 0). By a slight variance of the 
previous methods (here we make essential use of E.B. Davies work in the subject) 
we can then show that: vn(e) = 0 [exp( — ca(cn))] for some 0 < c, where we denote 
by 

m = ìf 
1 Jo 

a(t) dt. 
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The analogous result for unimodular Lie groups also holds. What makes this fact 
interesting is that for many natural functions e.g. a(t) = ta, ta Log(l + t) e.c.t. we 
have a « a. This fact is used to analyse the groups that have superpolynomial growth: 

Assume that G (discrete or Lie, amenable or not, but unimodular) satisfies the 
growth condition y(t) > Gxp(ct"), t>\, for some 0 < a <, 1 [cf. R. Grigorchuk's 
paper in these proceedings]. Using our methods then we can easily establish that, 
say for a discrete group, we have y(n + 1) — y(n) > exp(cna) with possibly a different 
c> 0 but the same 0 < d: <> 1. Using this fact and refining our methods further (we 
use in particular here an idea of L. Saloff-Coste) we can then prove that (again for 
a discrete group) we have: 

pn({e}) = 0[exp(-cna/(a+2))] 

The analogous result when G is a Lie group and a = 1 also holds. The above 
estimate is optimal. Indeed for any non virtuelly Nilpotent polycyclic group and 
every finitely supported symmetric p e P(G) we have p2n(e) > C exp[ —cn1/3] (this 
was shown by G. Alexopoulos) and for all these groups a = 1. The details of the 
above result will appear elsewhere. 

A decay of the type exp(—cnß) for pt(e) gives rise of course to Orlicz type Sobolev 
inequalities of the form ||/||LiogyL < C||F/||x where y = y(ß). In terms of iso
perimetric inequalities for discrete groups for instance, we can say that if pn = 
0[exp(-cn_/?)] (0 < ß < 1) then we have: 

|5ß| > ClßKloglßl)^ 

for all finite Q c G with \Q\ > 2 where | | denotes the cardinality of a finite set. 
For exponential groups this gives: 

\dQ\>C\Q\(\og\Q\Y2. 

A final result that I shall mention concerns pt(x, y) the canonical heat kernel on 
a Riemannian manifold that covers normally some compact manifold with deck 
transformation group G. With the present methods we can show that the behaviour 
°f llPtlloo (as t -> oo) is "identical" with the behaviour of pn(e) for p E P(G) (as in 
Section 3). The term "identical" means for instance that pn(e) = O(n~a)o HpJÎ  = 
0(t~a) or more generally that we have the: 

O [exp( - a(. )] <± 0 [exp( - ca(c. )] 

correspondence that we considered above. This is one of the very first results that 
I obtained in the subject and it is this that convinced me of the fundamental 
connection that existed between the discrete and the continuous theory. 

In this survey I have said nothing about the Gaussian estimates of the heat 
kernels. It would take a different paper to do that. The interested reader could 
consult the literature below. 

Literature 

The theory that we surveyed in this paper is the subject matter of a forthcoming book [1]. 
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Asymptotically Holomorphic Functions 
and Certain of Their Applications 
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1. Introduction 

In one-dimensional complex analysis the essential part is played by approximation 
results and by dual uniqueness theorems. One of the general problems of rational 
approximation may be state as follows. Let X be a linear topological space of 
functions, A be & subset of (C such that fractions z -> (z — X)~l, X G A, lies in 
X. How one can find out what subsets A1, A' a A, will bring us a complete in X 
family of rational fractions {(z — X)~i}zeA'7 Quite often it turns out that functions 

fx>(X) = (x*,(z — A)-1), X G A, x* G X*, are "holomorphic" in A in a certain 
(sometimes pretty weak) sense. Thus we are dealing with a description of zero-sets 
of the class {fx*}x*ex* of "holomorphic" functions. According to this it seems 
important to understand the nature of this "holomorphicity." The appropriate 
notion may be grasped by the conception of asymptotically holomorphic (AH) 
functions. These are (very roughly speaking) the functions defined in subdomains 
of (C with vanishing d-derivative on the boundary. More precisely (and we will 
see it below) only functions with some critical rate of decreasing of d deserved 
to be called AH. 

To begin with we state here two typical results of AH function theory. Then 
we are going to show how to apply these results to 

1. Problems in harmonic analysis (ideal description in the spirit of Domar); 
2. A problem in dynamical systems (finiteness of number of limit cycles for QA 

vector fields) ; 
3. Problems in approximation theory. 

Perhaps, it is worthwhile to mention that 3 is the place, where the AH 
technique appeared. In what follows ID is the unit disc, <C+ is the right half-plane. 

Theorem 1. Let w be a positive increasing function on (0,1) such that 

xlog — - t o o , x J O ; (Rl) 
W[X) 

I 
1 1 

log log —-—dx = oo. (1) 
o w(x) 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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And let f G Cl(JD) n LC0(E>) and ^ 

\df(z)\<w(l-\z\). (2) 

Then either there exist constants C\,c-i such that 

\f(x)\<c,w(c2(l-\z\),zGT> (SI) 

or 

f log \f\dm >-oo. (Bl) 
JdlD 

Theorem 1.2. Let f G C1((C+) n L™^) be such that 

| 5 / ( z ) l ^ w ( ^ ) " ( 3 ) 

where w is a positive increasing function on (0,1) which satisfies 

„2 l°g W) 
P - î o o , x 4 0. (R2) 

l og^ö 

Then either there exist constants c\,cj such that 

l/MI < clW (J^j (S2) 

or there exists n such that 

lim \f(x)\enx>0. (B2) 
X—>+00 

Theorem 1.3. Let w be a positive increasing function on (0,1) such that for a positive 

1 
xelog - j - too, x 1 0 . (R3) 

w(x) 
^4nd let f G CX(JD\ {0}) and /iaue estimates 

"win*)) (4) 

and 
|5/(z)l<w(|z|) . (5) 

Then either there exist constants c\ and c2 such that 

\m\ < cMcM) (S3) 

or there exists a function f* holomorphic in a punctured neighbourhood of the origin 
such that 

Vc23Cl \f(z)\>\f(z)\-clw(c1\z\)). 

file:///f/dm
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Now let us discuss these results. These are theorems of "forced behaviour" 
of AH functions. They serve as a kind of the substitute for the uniqueness 
theorems for holomorphic function. In fact, a typical uniqueness theorem tells us 
that a holomorphic function either vanishes identically or is quite big. For AH 
functions we have a similar alternative : an AH function is either as small as its 
3-derivative ((SI), (S2), (S3)) or is substantially big ((Bl), (B2), (B3)). To obtain 
such a dichotomy one obviously has to have w in \df\ < w fast decreasing, which 
is indicated in conditions (1), (R2), (R3). The rate of this decreasing is sharp only 
in Theorem 1.1 and here we must impose an auxiliary conditions (Rl) which is 
a regularity condition. (By the way, (Rl) is indispensible in a sense.) (R2), (R3) 
are certainly too strong. But these actual versions of Theorems 1.2 and 1.3 have 
the advantage that regularity conditions and "rate-of-decay" conditions on w are 
united. 

Assumption (4) deserves a separate comment. It singles out Theorem 1.3 from 
the row. Actually this is not the case. We could state Theorems 1.1, 1.2 in more 
general form, namely with / not bounded but with a mild growth (toward dlD in 
Theorem 1.1 and towards oo in Theorem 1.2). The reason why we chosed these 
wordings is that we will use results only in this form. Also it is worthwhile to 
mention that Theorem 1.3 is absolutely trivial in the case of bounded / . As for 
Theorems 1.1, 1.2 all technical difficulties are here even for the case of bounded 

2. Harmonic Analysis Applications 

Our main object here is a weighted I2 space, namely 

'2(P) = {(««)»6Z: 2>„|V<"'<cx)}, 
neZ 

and the right-shift operator T, 

T : W -• K - i } . 

We will consider only weights with some regularity, and, for instance, 

limJ^f^oo. (6) 
log |n| 

JJ—>00 

Moreover we will say that p is of concave type if n —• pn, n > 0, is concave and 
nonnegative, n —• pn, n < 0, is convex negative. We will say that p is of convex 
type if n —> pn, n > 0, is convex and nonnegative, n -* pn, n < 0, is concave 
and negative. Our weights will be only either of concave or convex type. The 
description of i-invariant subspaces in l2(p) is one of the model problems in 
harmonic analysis. Substantial contribution is made by Y. Domar [1], [2], [3] and 
A. Borichev [4], [5]. The idea of using AH function to these problems is due to 
A.Borichev. We follow his ideas here.This problem is still not fully understood 
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in spite of considerable efforts undertaken since the classical Beurling description 
in the case 

_ J 0, n > 0 
°n~~\-oo,n<0. (V) 

It is natural to expect that if {pn} is pretty close to (7) then the structure of 
invariant subspace lattice is also classical. To state one positive result in this 
direction let us consider the sequence p = (pn) of concave type and such that 

pn = 0, n > 0 ; 

\P-n 
A/2 î oo, n —> +00 ; 

i 
n> l 

|p-»l 
= 00 . 

(8) 

Let c(p) = (J/2(cp) be the projective limit of spaces l2(cp), c > 0. 
c>0 

Theorem 2.1. Under the assumptions (8) all c(p)-closed invariant subspaces E of % 
such that xE ^ E are of the type IH2, where I is a unimodular function, I G c(p). 

The Hilbert space setting is supposed to be much more difficult. For l2(p) with 
pn = 0, n > 0; pn = e~cn c > 0, n < 0, the investigation of x-invariant subspaces 
was started in [6] and finished in [7]. 

Remind that for a given space of sequences S is a subspace (k G Z) 

Sk = {{sm} e S : sm = 0, m < k} 

is called standard. Any standard subspace is t-invariant. When is the converse 
true? This seems to be interesting as operators with small amount of invariant 
subspaces naturally attract attention. 

We need the result that follows for illustration. This result is weaker than 
similar results in [1], [2]. 

Let p = (pn), p-n = —Pn, be of convex type and 

lim Pn 
= 00 

(9) 
n->co n log n 

lim (u±n — u±2n) > 0, where un = pn— p„+i 
n-*oo 

and l(p) = {(an) : Vci > 0^|aw |2er c^» < oo, 3c2 > 0^ | a n |V C 2 * ' < oo}. 
n<0 

Theorem 2.2. Under the assumption (9) all l(p)-closed x-invariant subspaces E of 
l(p) such that xE^E are standard. 
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The proofs are based on results of the first section. We outline briefly these 
proofs. In both theorems we need to solve convolution equation 

(a * b)n = 0, n < 0, 
(10) 

a G c(p) (or l(p)), b G c(p)Y(or 1(p)* = l(p)) 

The usual Fourier transform (a) - • ^ tf»z" turns out to be unappropriate in 
the case of c(p) and even unapplicable in the second case ((an) grows too fast). 
Now we are going to define the generalized Fourier transform as follows. 

Let 
p*(v) = inf (p(x) — xv), if p is of concave type; 

x<0 

p*(v) = inf (p(x) — xv), if p is of convex type, 
x>0 

and we define a function r(v) by the equality 

p*(v)=p(r(v))-r(v)v. 

Then for a G c(p) 

for a G 1(p) 

+00 
def fra(z)^ £ anz\ \z\<\ 

»=r(log 4r) 

Klog ft) 

&a(z)d=r £ fl»z"> \z\<1' 

Lemma 2.3. 1) For a G c(p) 

Vc23ci \d(&a)(z)\ < de-f^-W», \z\ ~ 1. 

2) For a G l(p) 

\fc23c1 \d(fra)(z)\ < Cle~pt{C2log A>, \z\ - 0. 

Let us remark that for concave-type p the function p* grows near v = 0 and 
for convex-type p its p* grows towards v = oo. Conditions (8) and (9) guarantee 
that &a satisfies either conditions of Theorem 1.1 or conditions of Theorem 1.3. 
In other words ÜFa is AH in the disc near the circle in the first case and AH near 
the origin in the second case. 

Now suppose that 

a,b G l(p), (a * b)n = 0, n < 0, (a * b)0 = 1. (10) 

& is asymptotically multiplicative, which means that 

~ (a*b)(z)-&a(z)-&b(z)\-+0, | z | - > 0 . (11) 
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def ~ def ~ 

Denoting / = /Fa, g = #"& and taking into account (10) and (11) we see that 
(S3) cannot occur neither for / nor for g. 

Thus (B3) holds and so holomorphic /* and g* exist such that 

^ < | / W ( z ) | < 2 , | z | ~0 

3cuc2 : |log f(z)\ + |log g'(z)| <: a ^ c - ^ l z l - , |z| ~ 0. (13) 
n>0 

We need to prove that there exists k G TL such that am = 0, n < k and 
bn = 0, n < —k. This a reformulation of the desirable standardness of all x-
invariant subspaces. Suppose this is not the case. Then / or g is not bounded. 
It is easy to see that /* or g* is not bounded either. Suppose this for /*. Then 
denoting #(z) = log f*(z) we can assume that \$(z)\ > c\z\~l and taking (13) 
into account we see that 

cr'1 <]TVC2*'r-". 

Now the second condition in (9) allows to show (see [4] e.g.) that 

Pn <nC H n log n 
ci 

which contradicts the first condition in (9). 
The proof of Theorem 2.1 is based on the "inner-outer" factorization in c(p). 

It turns out that every / G c(p), f =fc 0, can be represented in a form 

/ = /*, 

where h G H2 and J is a unimodular function in c(p). 

3. Dynamical System Application 

Here we consider the system of differential equations 

x = a(x, y) <*,y) Ì a 4 ) 

ß(x,y), (x,y)GR2] ["V 

where a,ß are real functions belonging to a very smooth Carleman class C{Mn}. 
A limit cycle means that there are no other cycles in a neighbourhood. It is 
proved now by Yu. S. Il'yashenko [8], J. Ecalle and J. Martinet, R. Moussu, J.-P. 
Ramis [9], [10], [11], that for real analytic a,ß in a domain Q there is only a 
finite number of limit cycles of (14) in any compact part of Q. 

The AH technique allows to prove a similar result for quasianalytique vector 
fields (14), at least if all the singular points of (14) are non-degenerate. To state 
the result we need some notations. 

For a given sequence {Mn} the Carleman class C{Mn} is defined by 

C{Mn} = {f€Cco: 3Bf,Cf : |/w(x)| < BfÔ?MH}. 

Here n = (n\, ni), \n\ =n\+ n2. We consider only Carleman classes with regular 
sequences {Mn}, namely if mn = Mn/n\ then we assume that 
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1) ml < m„_im„+i, 

3) lim m» = co. 

Under these assumptions the properties of C{Mn) can be reflected adequately by 

, v def . r n Mn 
w(x) = m i r — - , 

net) n\ 

For instance, C{Mn} is quasianalytique (QA) iff 

i log log -—-dx = oo (15) 
o w(x) 

Adopting the ideas of Il'yashenko [12] to this new situation it is not hard to 
prove the following result [13]. 

Theorem 3.1. Let a,ß belong to CQ{M1}} and 

w(x) < e x p ( - e x p ~^), (16) 

then in any compact part ofQ there is only a finite number of limit cycles providing 
that all singular points of (14) are non-degenerate. 

Proof repeats the one in [12] and proceeds by extending the monodromy 
transform to an AH function in a complex domain. Then Theorem 1.2 is applied. 
It is very likely that (16) can be weakened to (15). 

4. Weighted Polynomial Approximation 

Much interesting analysis has resulted from attempts to understand the structure 
of P2(p), the closure in L2(p) of the set &>A of all analytic polynomials, where 
p is a positive finite Borei measure with compact support in the complex plane 
<C. The greatest achievement in this field due to J. Thomson [14] asserts that 
P2(p) ^ L2(p) if and only if there is a point cG(C such that 

|p(c)|</c||p||L^)5 V p e ^ i -

Such points are called points of bounded point evaluation. In other words 
Thomson has solved a problem of Mergelyan-Brennan. He even has achieved 
more: a description of P2(p) in terms of points of bounded evaluation. 

But unfortunately this does not help much when one is interested in a 
description of P2(p) in terms of p itself. Here are two examples. The first is a 
so-called splitting problem. In this problem 

dp = w(l — r)rdrdO + h(0)dm(9) = pro + PT 
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is a sum of a radially symmetric measure p^> in the disc D and a measure pi on 
T = 31D. What are the conditions on the pair (w, h) necessary and sufficient for 
the splitting: 

P2(p)=P2(pJD)®L2(pr)fi 

This problem was solved in [15], [16] and the next result is nothing more than 
another form of Theorem 1.1. 

Theorem 4.1. 1) Suppose that (Rl) holds. Then the following conditions are suffi
cient for the splitting 

/ log hdm = —oo, / log log ——dx = oo. (17) 
h Jo w(x) 

2) Conditions (17) are also necessary if there exists an arc I, I e T, such that 

h~ldm < oo. I-
In our second example we deal with a problem of weighted polynomial 

approximation in an arbitrary simply connected domain. Let Q be such a domain, 
w is a positive continuous function in Q vanishing towards the boundary. It is 
always the case that 

P2(udm2) c L2
a(udm2) = L2(udm2) n Hol (Q). 

Keldysh was the first who investigated when the equality 

P2(udm2) = L2
a(udm2) (18) 

holds. He considered u(z) = w(dist(z, dQ)). This is not convenient as the conditions 
on U depend heavily on the smoothness of dQ and vary from 

u(x) < exp 

to 

u(x) < exp 

(~exp h) 

( - e x p ^ ) -

J. Brennan considered the case u(z) = w(G(z)) where G is the Green function of 
Q. The result of Brennan [17] is the following. 

Theorem 4.2. 1) Let Q be an arbitrary simply connected domain, G be its Green 
function, 

u(z) = w(G(z)), 

where w satisfies (Rl). Then the condition 
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I log log ——dx = oo 
w(x) 

is sufficient for (18). 
2) / / dQ is smooth enough, then this condition is also necessary. 

The proof is based on Theorem 1.1. Under some auxiliary conditions on Q 
this theorem was proved in [18]. 
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Cyclic Cohomology and /^-Homology 

Joachim Cuntz 

Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288 
W-6900 Heidelberg, Fed. Rep. of Germany 

Cyclic cohomology, as introduced by A. Connes (and independently by Tsygan), 
can be viewed as an algebraic version of X-homology in the sense of [BDF], [Kas]. 
In [Cui], the author gave a description of K-homology for a complex algebra A 
using the free product algebra QA = A*A and its ideal qA obtained as the kernel 
of the multiplication map QA —> A. The even l£-homology group K°A can be 
defined as the set [qA, K] of homotopy classes of homomorphisms from qA into 
the elementary algebra K of compact operators (the completion of the algebra of 
complex matrices of arbitrary size). This set is an abelian group in a natural way. 
To describe the odd iC-homology group KlA one can use the universal extension 
0 —• QA -> RA —> A —• 0, where RA is the free non-unital tensor algebra over A, 
described below in Section 1. In contrast with the situation for qA, the algebra QA 
admits several different C*-algebra completions if A is a C*-algebra. Two natural 
completions QA , gAcp can be defined by the condition that the maps RA -» A, 
RAcp - • A admit a linear, resp. completely positive splitting of norm 1. With these 
completions, [QA , K] is a version of the Brown-Douglas-Fillmore group ExL4, 
while [QA°P,K] is the Kasparov group KlA. The set [QA ,K] is only a semigroup 
in general. More generally, these algebras can be used to define the Kasparov 
groups KK*(A,B) as KK0(A,B) = [qA,K ® B], KK{(A,B) = [ p c p , K ® B]. The 
algebra gAcp is in fact isomorphic to the subalgebra of even elements in the 
natural C*-completion of qA (it is a hereditary subalgebra of the algebra eA 
used by Zekri in [Zek]). The basic result of KK-thcory - the existence of the 
Kasparov product - is in this setting the homotopy equivalence between K ® qA 
and K®q(qA) [Cui]. 

We now come to the connection with cyclic cohomology. It was shown in 
[Co-Cu] that cyclic cocycles, viewed as cocycles in the bicomplex of Tsygan-
Loday-Quillen or in the B — b bicomplex of Connes, correspond exactly to 
traces or supertraces on a power (qA)11 of the ideal qA or to supertraces on QA 
that vanish on (qA)11. In [Cu-Qu], among other things, it is shown that such a 
supertrace corresponds to a cyclic coboundary if and only if it is of the form T'od 
where d : QA —• QlQA is the universal derivation into the bimodule of abstract 
1-forms over QA and T" is a supertrace on this bimodule. In fact, composition 
with d basically is the coboundary operator. Thus a cyclic cohomology class is 
roughly speaking a "homotopy class" of supertraces on QA or (qA)11. 

For this correspondence between supertraces and cocycles-coboundaries to 
be natural one has to introduce certain constants into the basic bicomplex (see 
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3.A and 3.B below). These constants become important when constructing cyclic 
cycles in the bicomplex. By what has been said above, such a cycle determines 
a "closed" element of QA, i.e. an element x, that varies under homotopies only 
by sums of commutators or, formally, for which dx is a jum oXixanmutatorsJrL 
QlQA. The natural cycles associated with idempotents or invertible elements in 
A are represented by certain power series in QA (whose coefficients are computed 
using the constants in the bicomplex) that have quite natural interpretations. 

The exposition below is largely based on joint work with D. Quillen [Cu-Qu] 
and also on [Co-Cu, Cu2]. Needless to say, much of the material refines and 
continues ideas of A. Connes [Col, Co2]. 

1. Universal Algebras Associated with an Algebra A 

Let A, B be algebras and E a bimodule over B. We will see below that multilinear 
maps œ : An —• E satisfying 

P(XQ)0)(X1, . . . ,Xn) - CO(x0Xi,.. . ,Xn) + CO(x0, X\X2,. .. ,Xn) M . , 

- ... + (-l)nco(*0j... ,xn-ixn) + (-l)n+lco(x0,... ,xn-i)p(xn) = 0 

where p : A -* B is a linear map, together with a similar multilinear map œ' into 
the dual of E lead to cyclic cocycles on A. Let us see first how such maps may 
arise: 

0. An example for n = 0 is given by a central element z G B and a linear map 
p : A-+ B. One has p(x)z — zp(x) = 0, 

1. In the one-variable case the main example is given by a quasihomomorphism, 
that is a pair of homomorphisms a, ä : A —> Bf into some algebra B! that contains 
B as an ideal such that a(x) — a(x) G B,Vx G A. Putting p(x) = \ (a(x) + a(x)), 
q(x) = \(a(x) —ot(x)) we have q(xy) = p(x)q(y) + q(x)p(y). More generally, for 
a,ä we may take two linear maps whose curvatures (see 2. below) coincide. 

2. For the canonical example with 2 variables let cp : A —> B be a linear map 
between two algebras. Let co(x,y) = <p(xy) — (p(x)(p(y) be its "curvature", cf. [Qu]. 
Then (p(x)co(y,z) — co(xy,z) + m(x,yz) — co(x,y)cp(z) = 0. 

Finally, if E = B and œ\,œ2 are multilinear maps of n\ resp. n2 variables 
satisfying (LA) then the product œ\œ2 is a function of n\ +n2 variables satisfying 
(1.A). 

We now introduce, given an algebra A, algebras RA, QA with a linear map 
p : A -> RA c QA in which these examples are universally realized. The algebra 
RA is simply the free tensor algebra over A, RA = ©n>i 4̂®" or, in other words 
the universal algebra generated by symbols p(x), x G A which are linear in x 
with no further relations ( p(x\)... p(xn) corresponding to x\ ® x2 ®... ® xn in the 
tensor algebra). Let 

co(x,y) = p(xy) - p(x)p(y) 

denote the curvature of the universal linear map p and QA the ideal in #^4 
generated by co(x,y), x,y G A. There is a short exact sequence 

O - ^ - ^ ^ - ^ - ^ O -
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This is a (uni) versai extension of ,4 :if0-»J—•£—>y4—»Ois any extension with 
a linear splitting cp : >4 —• B then the map p(x) H* <p(;c) induces a homomorphism 
tp : Ry4 —> 5 that maps g>4 into J. Also, the algebra RA is contractible via 
the homotopy (pt, cpt : p(x) \-> tp(x) so that RA may be thought of as a non-
commutative cone over A, the ideal QA corresponding to the suspension. 

The algebra QA now is defined as the universal algebra generated by symbols 
p(x), q(x), x G A which are linear in x and satisfy 

q(xy) = p(x)q(y) + q(x)p(y) 

q(x)q(y) = P(xy) - p(x)p(y). 

There are two natural homomorphisms 7,7 : A -> QA mapping x to p(x)±q(x) 
and a natural Z/2-grading of QA with grading automorphism ~ defined by 
(p(x) + q(y)) = p(x) — q(y)- In fact, QA is isomorphic to the free product A * A 
with the grading automorphism that exchanges the two copies of A. 

Proposition 1.1. The natural map RA -> QA is injective and induces an isomorphism 
between RA and the algebra QA+ of even elements in QA. 

In QA, let qA be the ideal generated by q(x), x G A. There is a short exact 
sequence 

0-+qA-+QA-+A-+0 

with two different splittings A -> QA. The map in 1.1 maps QA onto ((qA)2)+. 
There is a simple argument showing that QA is homotopy equivalent in 2 x 2-
matrices to the direct sum A © A (cf. [Cul]). If we filter QA by the powers of the 
ideal qA, then the associated graded algebra is simply the algebra QA of abstract 
differential forms over A, i. e. the universal algebra generated by symbols cp(x) 
and d(x) where q>,d are linear in x and satisfy the relations 

(p(xy) = (p(x)cp(y) 

d(xy) = (p(x)d(y) + d(x)cp(y). 

Just as QA is the universal ideal in an extension of A, qA is universal for 
quasihomomorphisms as in 1. above: given a pair of homomorphisms a,a : A —> 
Bf where Bf contains B as an ideal, we get a homomorphism QA —> B1 mapping 
p(x), q(x) to \(VL(X) +ä(x)), ^(a(x) — ä(x)). This homomorphism sends qA into 
the ideal B. Quasihomomorphisms arise for instance from even Fredholm or 
Kasparov modules. 

2. Transport of JT-Theory and Cyclic Cohomology Classes 
by Certain Linear Maps 

K-Theory elements may be transported not only by homomorphisms but also 
by certain linear (or even multilinear) maps between algebras. Let, for instance, 
cp : A —> B be a linear map and œ(x,y) = (p(x,y) — cp(x)(p(y), x,y G A its 
curvature. If cp is a *-respecting map between C*-algebras, e = e2 = e* is a 
projection, and ||co(e,e)|| < \ then cp(e) is close to a projection in B that can be 
obtained from <p(e) by functional calculus, cf. also [CGM]. Similarly, if A, B are 
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arbitrary algebras and co is small algebraically e.g. nilpotent, then cp can be used 
to transport algebraic X-theory classes. 

As a second examplp, consider a bounded linear map cp : A -> B of two 
C*-algebras for which cp(x)co(y,z), co(y,z) for x,y,z G A lie in some closed 
subalgebra BQ cz B.To show that cp induces a map K*A -> K*+I(BQ) we use the 
algebras QA, RA completed with respect to the maximal C*-norm for which p is 
of norm < ||<p||. We obtain an exact sequence of C*-algebras 

0->QA^>RA-+A-+0 

where RA is contractible. The long exact sequence of K-theory yields an isomor
phism _ 

K*(A)-=+K*+I(QA) . 

Since (p induces a homomorphism q> :QA-* BO, we obtain the desired map 

K*(A)!*K.+1(QA)-+K.+1(BO). 

If cp is completely positive then it induces even a XK-element since then, for an 
appropriate completion, QA becomes a hereditary subalgebra of the C*-algebra 
completion of sA = qAx 7L/2 on which cp is defined. 

Consider further a quasihomomorphism, i.e. a pair a, ä : A —> B such that 
a(x) — â(x) G J, x G A for some ideal J of B. We assume that A,B,J are 
C*-algebras, even though part of the discussion goes through more generally. 
This quasihomomorphism induces a homomorphism QA —> B restricting to 
a : qA —> J. By split exactness of K*, K*(QA) = K*(qA) © K*(̂ 4) and the map 
K*(i)— K*(i) : K*(A) -> K*(Q^4), where z,T are as in Section 1, sends K*(A) into the 
first factor K*(qA). Composing with K*(5) yields a map IC(^) —> K*(J). We note 
that Kasparov or Fredholm modules usually give rise to quasihomomorphisms, 
thus can be used to transport K-theory classes. 

We will see below that cyclic cocycles can be described as traces on RA or QA. 
Since quasihomomorphisms or linear maps from A into some algebra B induce 
homomorphisms QA, RA -> B it will follow that traces on B can be transported 
under such maps to cyclic cocycles on A. The pairing between a trace and a 
transporte K-theory class corresponds to the pairing between the X-theory class 
and the transported trace. 

3. Traces on RA, Supertraces on QA and 
Their Homotopy Classes 

Let QA+, QA- denote the sets of even and odd elements with respect to the Z/2-
grading QA, respectively. Wè have seen above that QA+ = RA as an algebra. QA+ 
and QA- are RÄ-bimodules. Recall that a supertrace on a Z/2-graded algebra 
or bimodule is a linear functional T satisfying T(xa) = ( - l ) ^ * ) ^ « ) T(ax). 
Every even (resp. odd) supertrace on QA gives a bimodule trace T with T(aœ) = 
T(coa) for a G RA, œ G QA+ (resp. co G QA-). Conversely, a bimodule trace T 
comes from a supertrace if and only if T(qxo... qxn) = T(qxnqxo... qxn-\) for 
Xo, • •. ,Xn G A.. 

A linear functional on {(qA)2m)+ = (gA)m (an important special case is of 
course (QA)° = RA) is given by its components Tn,n > 2m, defined by 
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(T(qx0qxì...qxn) n odd 
Tn(xo,...,xk) = < 

I T (pxoqxi... qxn) n even. 

Proposition 3.1. T represents a (bimodule )-trace if and only if for all even n > 2m 

bTn = (l+X) T"+1 

y T""1 = (1-A) T" 

(here X,b,V are defined as in [Col]J. Every bimodule trace can be modified canon
ically so as to extend to an even supertrace T on (qA)2m. 

To prove Proposition 3.1, consider the map ö : QA± —> QA+ defined by 
ö(coq(x)) = \p(x),co], co G QA. The image of ö consists of all commutors in the 
bimodules QA+, QA- and one checks easily for ö : QA- -> QA+ 

(T o ö)2k+] = -b T2k + (1 + X) T2k+l 

(T o ö)2k = -bf T2k-{ -(1-X) T2k. 

Since (1 - X2)Tk = (1 - X)bTk~l = b'(\ - X)Tk-x = Vb'T^2, the relations 
of Proposition 3.1 imply that (1 - X2) Tk = 0 for odd k > In + 1, so that 
(1 + X) Tk = J^JN Tk where N = 1 + X + ... + Xk. Thus T is a trace if and only 
if (1 — A2) Tk = 0 for such k and T is a cocycle in the total complex of the 
bicomplex 

(3.A) 

It is obvious that every cocycle T in this bicomplex is cohomologous to one 
for which (1 — X) Tk = 0 for all odd k. This procedure to obtain cyclic cocycles 
admits the following generalization : 

Let A be an algebra and E, Ef two i^-bimodules which are in duality, i.e. there 
is a bilinear pairing (x,x') \-+ (x\x') G <E,x G E,x' G E' such that (ax\xf) = (xlx'a) 
and (xa\xf) = (x\ax'} for a G RA. Denote as above by p : A —• RA the universal 
linear map and by co its curvature. Suppose further that we are given two 
multilinear maps c : A1' —• E, cf : As —» E' satisfying 

p(xo)c(xu... ,xr) - C(XQXU ... ,xr) + . . . 

+ (-l)rc(xo,^l5...5Xr_iXr) + (-l)r+1c(Xo5...5X,-l)p(^r) = 0 

and similarly for d with r replaced by s. Then the following family {Tn}n^r+S of 
multilinear functions defines a cocycle in the bicomplex 3.A resp. 3.B: 

Tn, x _ {{^(xQ,xi)..œ(xk-uxk)c(xk+u^xkjt1)\d k odd 

l(p^oco(xi,X2)..cü(x/c_i,x/c)c(x/c+i,..,xfc+r)[c
/(x/c+r+i,..,xn)) k even 

i+l 2"+2 , 

2n±2iJ 
2 ° 

N 

b 

nln X~X . 
r 

-lib 

-n( l -A) 
> 

} . , 
C2n-\ 
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where k = n — r — s. In fact, by the same computation as above we find that 
bTn = (l + X) Tn+X for k even, and V Tn = (l- X) Tn + 1 for k odd. 

Applying this with c(xi,...,X2n+i) = q(xi)q(x2) ...q(x2n+i) we see that for 
bimodule traces on ((^)2n+i)^,J^opositiorjL3J[JiQlds withLadd and evenJnter-^ 
changed. A linear functional on {(qA)2n+i)_ is a trace if and only if (1—X2) Tk = 0 
for even k > 2n + 1 and if T is a cocycle in the bicomplex 

£2n+2 2 H + 3 i y 

\^y 

JL^ c2»+l - t ± > 

- (2»+i) f 

(3.B) 

-è' 
-(2H+1) /« ,x 

2 V c2« 
The question of which traces correspond to coboundaries now admits a 

very natural answer which is a basis for many different homotopy invariance 
results for cyclic cohomology. We form the algebra QQA of abstract differential 
forms over QA. An important fact which is easily checked is that the map 
d(p(x)), d{q(x)) i-> p(dx), q(dx) induces an isomorphism (of bigraded algebras) 
between QQA and QQA. Let QlQA be the ßy4-bimodule of 1-forms over QA and 
d : QA —> QlQA the universal derivation. If Tf is a (bimodule) supertrace on 
QlQA then T" o d is a supertrace on QA. 

We now determine the supertraces T" on ^ ( M and show that the cocycles 
corresponding to T1 o d are coboundaries. We restrict to the case of even su
pertraces. The odd case is quite similar but there are some slight complications 
in dimension 0 and 1 (an odd supertrace T corresponds to a cocycle in the 
bicomplex 3.B only if T(q(x)) = 0,Vx) which we want to avoid. 

Proposition 3.2. There is a bijection between even supertraces Tf on QlQA and 
cochains a = {otk}k>o given by 

a2n(x0,... ,x2n) = T'(dx0qxi... qx2n) 

a2n+1 (XQ, ... ,x2n+i) = T /(x0dxi^x2 . . . tfx2w+i) 

Let d^\ d® denote the two coboundary operators in the bicomplex 3.A, i.e. 

<t> = N + (n + 1)1/, d^l, = -n(b + (1 - A)) 

One has d^d^ = d^d® = 0 and we already have seen in 3.1 that a cochain 
T represents an even supertrace on QA if and only if d® T = 0 and T is 
normalized, i.e. (1 - X) T2n+1 = 0, Vn. 

Every cochain a can be modified canonically to a cochain Pa such that 
3 ^ (Pa) is normalized. One has 
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(Pa)2" = a2" 

(Pa)2»-1 = ^JVa2""1 + (1 - X)-\\ - ^-N)bfa2"-2 

If d^a is already normalized then Pa = a so that P2 = P. We can now formulate 
the main result of this section. 

Theorem 3.3 [Cu-Qu]. Let T' be an even supertrace on QlQA corresponding to the 
cochain a. Then the cocycle corresponding to T' o d is given by 5 ^ (Pa). 

The analogous result holds for even supertraces on (qA)211 and for even 
supertraces on the (qA)2li-bimodule generated in QlQA by p(Q1A). Theorem 3.3 
contains of course as a very special case the fact that cyclic cohomology is 
invariant under derivations of A [Go] and has many applications. We list here a 
few examples: 

1. The cyclic cohomology classes associated with an n-summable Fredholm 
module or with a 0-summable Fredholm module, [Col], [Co2] are (in the first 
case upon application of S) invariant under homotopies of the homomorphisms 
and of the operators appearing in the module. In fact, these classes are obtained 
from homomorphisms of (qA)11 or of QA into an algebra with a trace. 
2. A normalized cyclic cocycle is a coboundary if and only if it comes from 
a supertrace of the form T' o d, Tf & trace on QlQA. Thus elements of cyclic 
cohomology can be described as homotopy classes of supertraces on QA or 
on (qA)n. This applies to all different versions of cyclic cohomology (ordinary, 
periodic, entire). For instance, the periodic cyclic cohomology HCper is given 
as 
{even/odd supertraces on QA}/{Tf od \ T1 an even/odd supertrace on QlQA} 

where QA = lim QA/(qA)n is the algebraic completion of QA. 
n 

3. Let cp : A —> B be a linear map with nilpotent curvature (co(xo,xi)co(x2,xi)... 
w(x2k,x2k-[.i) = 0 for k > n) and z a trace on B. We obtain a homomorphism 
cp : RA —> B and a trace T = % o cp on RA/(QA)ì1'J~ì and thus an element [T] 
of HC2n(A). Let (pt '• A —• B be a differentiable homotopy of such maps and 
cpt its derivative. Consider the linear map Wt : QA —• B sending xo^xi.. . dxn 

to cpt(xo)cpt(x\) ...cpt(xn) and the corresponding homomorphism Wt : RQA —• B. 
We obtain a trace T[ on RQA which we can modify to an even supertrace still 
denoted by T\ on QQA = QQA (see 3.1). T[ o d gives an even supertrace on 
QA/(qA)2llJt2 inducing a coboundary. This shows that the classes [Tr] induced by 
cpt remain constant. 

4. Characteristic Classes as Elements of RA and QA 

The idea of interpreting characteristic classes associated with idempotents or 
invertible elements as differential forms, elements of QA [Ka] or even as elements 
of QA [Co2] is of course not new. The description of these classes that we are 
now going to give is however at least partly new and will clarify their meaning. 

Let e be an idempotent in A. With e we want to associate odd elements 
ch2n(e) G (qA)2n+1 such that d (ch2n(e)) is a sum of supercommutators in QlQA and 
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such that ch2n+2k(e) differs from ch2n(e) by a sum of supercommutators. Second, 
we associate an element Ch(e) (an even element of QA) of the algebraic completion 
RA = lim RA/(gA)n such that d(Ch(e)) is a sum of supercommutators. The ele
ments ch2n+2k(e) represent cyclic cycles in HC^A) which may be paired with odd 
traces T on (qA)2n. The identities T (ch2n+2k(e)) = T(ch2n(e)), (T'od)(cÄ2n(e)) = 0 
mean that we have a pairing with ([T],ch2n(e)) = (Sk[T],ch2n-2k(e)). The el
ement Ch(e) represents a cycle for HC^Gr(A) (or for the entire cyclic homology 
HCGV(A) in the sense of [Co2] or for other versions of cyclic cohomology for 
locally convex algebras - we only need Ch(e) to converge in the completion of 
RA) and the pairing with a periodic cocycle represented by a trace T on RA is 
given by T(CA(e)). By functoriality, to construct chk(e), Ch(e), we may assume 
that A = (Ce S <C. 

The first part is easily achieved taking ch2n(e) — (2qe)2n+1. These are elements 
of (qA)2n+i differing from the class in dimension 0, given by 2q(e), only by sums 
of supercommutators by 3.1 (the difference is a boundary in the bicomplex dual 
to 3.A). 

The element Ch(e) is given by a series of the form 

Ch(e) = £ c2k p(e) q(e)2k + £ c2k-{ q(e)2k. 
fe>0 fe>l 

The fact that 5Q£ c/-e®c/+1)) = 0 in the bicomplex dual to (3.A) leads, given co = 1, 
immediately to 

c2k = —c2k-\ 
(2k) I 
(fc!)2 

whence, formally, 

cm= ,v{e) -\[ , 1 - i 

which gives, using (qe)2 = p(e) — p(e)2 

Ch{e) 
l -2p (e ) 

\ / ( l - 2 p ( e ) ) 2 

This slightly surprising formula has a very natural interpretation: If we replace 
p(e) by the complex variable z (or by an element of a Banach algebra) then 

2' Ch(z)2 = Ch(z) and CA(z) is the characteristic} function of the half-plane Rez > -
the power series representing Ch(z) converging for \z — z2\ < ^. This formula 
for Ch(e) as an element of the algebra of differential forms on the algebra of 
differential forms on the cotangent bundle with modified multiplication) was used 
already by Fedosov [Fed] in his version of the index theorem. It was also known 
to A. Connes (private communication) and is more natural and useful than the 
one given in [Co2]. 

Let us turn now to the case of an invertible element u of the unital algebra A. 
To simplify the formulas for ch2n+i(u), Ch(u) we work in the completions of the 
reduced algebras QA! = A * A, (QlQA)', RÄ, (QlQA)' with additional relations 

g(l) = d(l) = co(l,x) = co(x, 1) = 0. Again we easily can define (this time even) 
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elements ch2n+\(u) G (QA')11 as co(u,w-1)" — co(u~l,u)n such that d(ch2n+\(w)) is 
a sum of supercommutators in (QfRA)f and such that cA2«+i(w) differs from 
ch\(u) = co(u,u~]) — co(u~\u) by a sum of supercommutators. 

The construction of the odd element Ch(u) is more involved and we have to 
pass to 2 x 2-matrices. Put 

/ 0 u~xqu\ Ä _ .—j. 

Using the identity u~~l q{u)u~l q(u) = —q{u~x)q{u) one finds 

v2»+i = r - i y ( _ ° « - > ( « « - » " \ 
J V ; VM_1«M('?M_Vw)" o y ' 

Given co = 1, there are unique coefficients Ck such that 3(i)<p = 0 in the 
bicomplex dual to 3.B for the chain 

(p = X c2» C1 ® (M_1 ® M)®" - 1 ® (« ® «_1)®") + E C2»+1 (w_1 ® M^"+1 

n>0 »SO 

and one computes 
2 2 > ! ) 2 

C 2 " = ( 2 7 T T ) ! ' C 2»+1 = C 2»-
Thus, putting 

/(w) = Y^C2»ql ( ( ^ " V ) " - ^ ^ - 1 ) " ) +X!C2»+^M~1^W(^W~1^W)"' 

d(/(w)) is a sum of supercommutators and the first term is 0 if we impose 
q(i) = 0. To express f(u) by a known power series one needs a square root for 
q(u~l)q(u), which is given by y, and we put 

Ch{u) = £ ( - l ) " C 2 n + i y2n+i. 

Given an odd trace T on QA we extend T to M2(QA) by 

We then have f(Ch(u)) = T(f(u)) where this number is the product ( [cp], [T] ) 
of the class of the cycle (p associated with u and the cyclic cohomology class [T] 
associated with T. 

Since the power series Z ( - l ) / c § f j £ z2k+1 represents the function l n ( zt1
N^P ) 

feO 
we formally have 

_ l n ( y + V l + y 2 ) 
Ch(u) 

VT+? 
To understand the meaning of this formula, suppose that u differs from u by an 
exponential: ü = ueh. Then 
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2_fsmh2(§) 
y = V 0 sinh2(§) 

This gives 

'^+^K-tr T) 
T(CA(u)) = T 

-\(<r*+eì) 
cosh(|) 

= -T(h). 
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X-theory is by now such an established subject that it hardly needs any intro
duction. Recall however that if A is an associative ring with unit, Grothendieck 
defined KQ(A) as the group generated by the semigroup of finitely generated, 
projective >4-modules. Depending on the nature of the ring A one gets entirely 
different theories, one of the most vivid differences appearing for example when 
trying to define the higher iC-groups. 

One of the first achievements of K-theory, due to Atiyah, was in topology, 
in the case A = C(X), the algebra of continuous complex valued functions on 
a compact topological space X. In this case the finitely generated projective A-
modules are precisely the locally trivial vector bundles, so the whole theory admits 
a purely topological description. Due to Bott periodicity one gets a Z /2 graded 
generalized cohomology theory K*(A) (Atiyah 1967). This is a consequence of 
the topology (and of course of the fact that the ground field are the complex 
numbers), so it is not really surprising that one gets more or less the same theory 
for complex Banach algebras (see e.g. Karoubi 1978). 

However if A = C(X) the theory is much richer, since along with JC-theory 
comes another dual theory K*(A), called K-homology, that has deep connections 
with elliptic operators (Atiyah 1970), and that may be described either in terms of 
extensions as (Brown Douglas and Fillmore 1977) did it, or in terms of abstract 
elliptic operators as (Kasparov 1975) did it. The relevant fact for such a theory to 
exist is the fact that À is a C*-algebra. Moreover in this case the two dual theories 
can be glued together. This was first done in (Pimsner, Popa, and Voiculescu 1979 
and 1980) in the particular case when one variable is still commutative (and finite 
dimensional), motivated by the study of the homotopy invariance of extensions, 
and soon later (Kasparov 1980) came with what looks now to be the final theory. 
This is a functor of two (not necessarily commutative) C*-algebras A and B, 
(which we will assume from now on for simplicity to be separable), with values 
in the 1L/2 graded abelian groups, denoted KK*(A,B), such that 

K*(A)=KK*(<C,A) 
and 

K*(A) = KK*(A,<L) 

((C stands as usual for the complex numbers). The most important feature of 
this theory is the product introduced by Kasparov, which is the analogue of the 
various cup, cap, slant... products in cohomology theory. In its simplest form it 
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may be described as a map 

KK*(A,B) x XX*(B, C) —• KK*(A, C) 

denoted (x, y) -> X®B y-
The central theorem of KK-thQOxy gives the construction of the product 

and asserts its associativity. For example the pairing between X-theory and 
X-homology is just the Kasparov product 

XX (<C, A) <g) KK(A, <C) —> XX (C, <C) 

since the latter is isomorphic to the additive group of integers Z. 
Another important consequence of the Kasparov product is the fact that one 

can regard the elements of KK*(A,B) as natural maps from K*(A) to K*(B), 

KK*(<E,A) x KK*(A,B) —> KK*(<D,B) 

with composition given by the product. So even if one is interested only in 
X-theory, it is unnatural to discard XX-theory, since most of the interesting 
maps are not given by *-homomorphisms from A to B but by elements from 
KK*(A,B). An improvement of this aspect of XX-theory was recently proposed 
by Connes and Higson (1990). 

Another consequence of the Kasparov product is the fact that KK*(A,A) 
becomes a (graded) ring with unit 1^, given by the class of the identity map from 
A to A, and that KK*(A,B) has a left XX*(A, A) (and a right KK*(B,B)) module 
structure. 

It should be stressed at this point that to show that the product of two given 
elements equals a third one is often a deep theorem. It is enough to mention for 
example that the Atiyah-Singer theorem (Atiyah and Singer 1968) can be put 
into this form (Kasparov 1975, Connes and Skandalis 1984, Baum and Douglas 
1982). 

Of course XX-theory did not appear just for the sake of generalizing topo
logical X-theory from spaces to general C*-algebras. Already in the seventies 
X* and X* proved to be powerful invariants for certain classes of C*-algebras 
(Elliott 1976, Pimsner and Popa 1978). One of the turning points in applying 
X-theory to C* -algebras was probably the discovery (Pimsner and Voiculescu 
1980), that the irrational rotation C*-algebras AQ are essentially nonisomorphic 
for different 9fs. These are the C*-algebras generated in L2 of the unit circle by 
multiplication operators with continuous functions and by the rotation operator 
by the angle 2nd. Their importance lies in the fact that they are the most simple 
nontrivial C*-algebras of several classes of C*-algebras. One can look at them 
as crossed products by TL, as the group C*-algebra of 2? with a 2-cocycle (see 
e.g. Pedersen 1979) or as stably isomorphic to the C*-algebra of the Kronecker 
foliation (Connes 1982). The computation of their X*- and X*-theories was done 
in (Pimsner and Voiculescu 1980) by proving a general six terms exact sequence 
for every crossed product by TL. In the particular case of the irrational rotation 
algebras one gets: 

Theorem (Pimsner and Voiculescu 1980). 

KQ(Ae)~Z2 
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with generators [1] and [R], the class of the identity and respectively that of the 
Riejfel projection. 

KX(AQ)^TL2 

with generators [u] and [v], the unitaries corresponding to the rotation and respec
tively to multiplication by z. 

Surprisingly enough the same techniques could be used to solve the conjecture 
of Kaplansky-Kadison, that the reduced C*-algebra of the free group on two 
generators (which was proved to be simple by (Powers 1975) ) had no nontrivial 
(i.e. different from 0 and 1 ) projection. This was done (Pimsner Voiculescu 1982), 
again by proving a six terms exact sequence for reduced crossed products by free 
groups on any number of generators (not just one). In particular one gets: 

Theorem (Pimsner and Voiculescu 1982). 

X0(C;(F„))~Z, 

with generator [1], the class of I. 

K{(C; (Fn))^Z" 

with generators [gi],..., [gn], the classes of the generators oflFn. 

As a corollary of this theorem one gets also that the reduced C*-algebra of 
free groups are nonisomorphic if the number of generators are distinct. This 
may be just one hint of why the corresponding question for the von Neumann 
algebras of the free groups is so difficult. 

Another motivation for studying the X-theory of crossed products by discrete 
groups came from topology. I won't pursue this any further, I will just mention 
that some knowledge of the X-theory of %\(M) (the fundamental group of 
the manifold M ) gives a positive answer to the Novikov conjecture about 
the homotopy invariance of higher signatures for manifolds with prescribed 
homotopy group (Kasparov 1988). 

It is quite clear that the X-theory of crossed products is important both 
for the study of C*-algebras and for geometric applications. The basic tool for 
this problem is the equi variant XXG -theory developed by Kasparov. Unlike the 
compact group case that can be obtained quite easily by taking only equivariant 
elements in the definition of the XX-groups, the general noncompact case is 
much more difficult and shows one of the advantages of XX-theory. Relevant 
for our purposes is the induction map 

j : KK?(A, B) —> XX* (A x G, B X G) 

that commutes with the Kasparov product and sends the unit of KK*(A,A) to 
the unit of XX*(A X G, A X G). In particular it transforms XXG-equivalence into 
XX-equivalence, where we have the following natural definition. 

Definition. The C*-algebras A and B are XX-equivalent if there exist oc G 
KK(A,B) and ß G KK(B,A) such that a ®ß ß = 1Ä and ß®Äa= U-

(The XXG-equivalence is defined in the same way using XXG-theory). Up to 
now there are two ways of studying the X-theory of crossed products by discrete 
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groups. One way, emphasized by Connes and Kasparov, takes the point of view 
that it is easier to deal with Lie groups, which then in turn will provide results 
for all their discrete subgroups. The second one treats the discrete group on its 
own right. Both methods are of geometric nature the main ingredient being the 
study of "spaces" on which the groups act naturally. 

To show how this works let me describe, at least at a formal level, the Connes-
Kasparov conjecture. Let G be a connected Lie group, X its maximal compact 
subgroup and X = G/K the corresponding homogeneous space of dimension 
n. The class of the Dirac operator defines an element a G KKG(CQ(X),(E). The 
needed ß G KKG(<E,C0(X)) is the element defined by Kasparov (1973) and 
Mishchenko (1973) out of the negative curvature of the homogeneous space X. 

Theorem (Kasparov). 

1. a®cj8 = lcbW GKKG(C0(X),C0(X)) 

2. ß®Co{x)OL = yG eXX0
G(C,C) 

is an idempotent. 

So if one can prove that yG = l<c for the group G, then Co(X) is XXG-
equivalent to C and taking crossed products one gets that C*(G) is XXn-
equivalent to CQ(X) X G. Since this latter C*-algebra is strong Morita equivalent 
(in the sense of Rieffel (1974); this is a particular, more easy, XX-equivalence) to 
C*(K) one gets in particular 

X*(C*(G))~X*+n(C*(X)), 

the isomorphism being natural. 
Moreover if T is a discrete subgroup of the connected Lie group G, with 

yG = le , then the same holds: CQ(X) being XX^-equivalent to <C, one gets by 
taking crossed products by T that C*(T) —KKH Co PO XT and again the latter 
C*-algebra is strongly Morita equivalent to Co(X/T) XX. Still better, we can 
start with C0(X) ® A —KK£ A to get the X-theory of A X T, for any C*-algebra 
on which T acts. However this depends on yG = l(c (or at least yr = l c for the 
discrete subgroup T). This is known for a large class of groups, including the 
amenable groups, SO(n, 1) (Kasparov 1984), SU(n, 1) (Julg and Kasparov 1990). 
It is also known to fail for groups having property T of Kazhdan. Note however 
that it would be enough to have C*(T) ^KKn Co(X) X T. In order to study this 
question Cuntz (1983) introduced the notion of X-amenability. But even this is 
not true in general as has been shown in a remarkable paper by Skandalis (1988). 

Thus in general we can compute only what is called the "y-part" of the 
X-groups, which is a direct summand of what we really want, since y2 = y. If 
yr = l c (for the discrete subgroup of the Lie group G), we shall say that we 
know the K-theory for the group T. Note that this is really much more than 
knowing the X-groups of the crossed products. 

Let us stop here this very incomplete presentation of the Lie group case and 
turn now to the case of groups that act on some oriented tree X, that is on a 
one-dimensional simply connected simplicial complex X = (X{,X0), where X1 

will be the set of edges and X° the set of vertices (see Serre 1977). Since the tree 
is oriented there are two maps t,o : X1 —> X°, which are thought to be the 
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terminus and respectively the origin of the edge. An action of the group G on 
X is then an action of G on both X] and X°, such that the maps t and o are 
G-equivariant. 

The case of the discrete groups that act on some tree is well understood 
due to the Bass-Serre theory of graphs of groups (see Serre 1977). These consist 
of an oriented graph E = (E\E°) and of a collection {Gy}yeSi and {GP}PEEO 
of groups, together with embeddings t : Gy —> Gr(3,) and o : Gy —> G0(3,) for 
every y G I1. Out of a graph of groups one gets a group by constructing the so 
called "fundamental group of the graph of groups", that acts on the "universal 
cover of the graph of groups" which is a tree. The inverse construction is more 
straightforward: I is simply the orbit (homogeneous) space G\X, while the G/s 
(respectively the Gp's) are the stabilizer subgroups of the edges (resp. of the 
vertices) modulo some automorphism coming from the choice of a representa
tive. The simplest graphs of groups, having only one edge, yield well known 
constructions in the theory of discrete groups, namely amalgamated products (if 
there are 2 vertices) and HAW-extensions (if there is only one vertex). 

The nondiscrete groups that act on some tree are as interesting as the discrete 
ones (Serre 1977). The most interesting seem to be the reductive groups over local 
fields with one dimensional Bruhat-Tits building (see Tits 1979), e.g. SL2((f±p). 

Since the computation of the X-groups of the reduced crossed products by 
free groups (Pimsner and Voiculescu 1982), partial results on the X-groups of 
free and amalgamated products and of HAW-extensions of groups have been 
obtained. Thus Lance (1983) introduced condition A, in order to use the methods 
of (Pimsner Voiculescu 1982) to compute the X-groups of the reduced C*-algebra 
of certain free products of groups. This has been extended by Natsume (1985) to 
certain amalgamated products and finally Anderson and Paschke (1986) combined 
the above results with those of (Pimsner Voiculescu 1980) to get results for the 
X-groups of the reduced C*-algebra of certain iJAW-extensions. However the 
action of the group G on the tree X allows us to get much more, namely the 
knowledge of the K-theory for the group G. I will describe the original Toeplitz 
Extension approach of (Pimsner 1986), which is the generalisation of the methods 
of (Pimsner and Voiculescu 1980, 1982) to the general tree case. It is based on 
a rough analysis of actions of groups on trees due to Julg and Valette (1984). 
To this end one fixes a vertex 0, called origin, and one denotes by xo the set of 
all edges that point to 0. By adding to the continuous functions on the discrete 
space X1 that vanish at infinity the characteristic function of io> one gets one 
point at infinity that is fixed by the action of G. Denoting by X\. the space thus 
constructed one gets the following G-equivariant exact sequence: 

0 - ^ Cot*1) —-> CQ(X\_) —• <C —• 0 

which we call the (G-equivariant) Toeplitz extension. The name comes from the 
case of % acting on its obvious tree, since after taking crossed products one gets 
the exact sequence 

0 —> X(L2(T)) —• T —-> C(T) —» 0 

and where io corresponds to the Hardy projection onto H2(W). With these 
notations in mind we have the following theorem. 

Theorem. The C*-algebra C0(X\_) is XX0
G-equivalent to the C*-algebra CQ(X°). 
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This really means that there are elements a G KKG(Co(X°),Co(X+)) and 
ß G XX0

G(Co(X|), Co(X0)) and that one is the inverse of the other in XXG. This 
theorem together with the Toeplitz extension gives the X-theory for groups acting 
on trees. Por example to compute the X-groups of crossed product^ one tensors 
the Toeplitz extension with the C*-algebra A, takes crossed products with G and 
applies the X-theory functor. Replacing in the periodic six-terms exact sequence 
the XX-equivalent terms one gets the following theorem 

Theorem (Pimsner 1986). Let G be a second countable group that acts on some 
oriented tree X and on the C*-algebra A. The following six terms periodic sequence 
is exact: 

®yeziK0(AxGy) -U ®PeIoK0(AxGp) - U X0(,4xG) 

Î« " 1' 
Ki(AxG) ^— ®PeZ*Ki(AxGp) <^- ©j^ iXi t^xGj , ) 

where a = t* — o* is the obvious map given by the difference of the terminus and 
origin maps, i is the map given by the inclusion maps Gp -» G and ö are the maps 
induced by the boundary maps associated to the Toeplitz extension. 

This is the generalisation of the six terms exact sequence for the free groups 
(Pimsner and Voiculescu 1982). Note that the above result is expressed in terms 
of the graph of groups associated to the action of G on X, so that one gets 
explicit exact sequences that express the X-groups of the group by the X-groups 
of the corresponding graph of groups. In particular one gets exact sequences for 
amalgamated products and for fflViV-extensions of groups. Of course the same 
reasoning gives also the X*-groups and more general the XX*-groups of crossed 
products by groups acting on trees. 

There is one technical point concerning crossed products which we did not 
mention at all, namely the difference between the reduced and the full ones. 
One reason is that the exact sequence exists for each of them, provided we fix 
one of the cross-norms. This has however an interesting corollary, which is a 
generalization of a result of Julg and Valette (1984) 

Corollary. / / the countable discrete group G acts on some tree X, then G is X-
amenable if and only if every stabilizer is K-amenable 

As we already mentioned, the Toeplitz extension together with the XXG-
equivalence of the Toeplitz algebra with CQ(X°), give us in fact more than just 
the above exact sequences. To illustrate this let us consider T = Ti x ...Tn 

the direct product of groups, each of them acting on some tree Xim Then one 
still can express the XX-groups of the crossed product by T in terms of the 
the XX-groups of the crossed products by the stabilizer subgroups. This time 
one gets a spectral sequence associated to the simplicial decomposition of the 
n-dimensional simplicial complex X = X\ x ... Xn. This is due to the following 
obvious consequence of the theorem 

e l W H C 0 ( . • • x X\u+ X ... X X} + X ...) ~KKr Co(Xn~P) 
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where the sum in the left hand side of the formula is taken over all direct products 
that have on exactly p positions the edges with the point at infinity added and 
just the edges on the other ones. 

This remark brings us to the last topic, namely the generalization to groups 
acting on buildings due to Kasparov and Skandalis (1989). Their approach makes 
the analogy with the Lie groups and with the Connes Kasparov conjecture even 
more transparent. Regarding the building X as a non Hausdorff manifold of 
negative sectional curvature they construct the C*-algebra stfx> which is the 
right analogue of the C*-algebra of continuous functions on X and under the 
additional assumption that the building is locally finite, the "Dirac" element 
a G KK.r(jtfx,<E) and the "dual Dirac" element ß G KK£(<C,s/x). Moreover 
they prove the following theorem. 

Theorem (Kasparov Skandalis). 

1. a ®<rj 0 = Iséx 

2. ß ®tfx a = yr 

is an idempotent. 

The idempotent yr has been previously constructed by Julg and Valette (1988). 
They also showed (1984) that it equals l^ in the tree case. As in the case of Lie 
groups, if yr = le , we know the X-theory for T. In this case the crossed products 
by T are expressed in terms of a spectral sequence of the crossed products by 
the stabilizer subgroups. In general only the y-part is known. This brings the 
study of the X-theory of groups acting on buildings at the same level as that of 
connected Lie groups. On one hand there is the y-obstruction, on the other hand 
we know the positive answer to Novikov's conjecture for such groups (Kasparov 
1988, Kasparov and Skandalis 1989). 

However the one dimensional case, that is the case of a tree, is special. For 
first of all one does not need the locally finiteness of the tree, and second in this 
case y = 1 for geometric reasons. 
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0. Introduction 

While initially introduced to study quantum mechanics and representations of 
groups, in recent years von Neumann algebras started to play a major role in 
many areas of mathematics. The class of von Neumann algebras that proved 
to be more important and of most physical significance are the ones that can 
be approximated by finite dimensional algebras, called hyperfinite. By 1985, 
as a result of 45 years of work initiated by Murray and von Neumann and 
culminating with the work of Connes and Connes-Haagerup, hyperfinite algebras 
were completely classified. The fundamental steps in accomplishing this proved 
to be the uniqueness of the hyperfinite type lloo factor (the hyperfinite factor 
with an infinite trace) and the classification of its automorphisms, both settled 
by Connes. Starting with his work on automorphisms, the problem of classifying 
actions of more general groups on the hyperfinite factors became an important 
trend of research in von Neumann algebras ([Jl, Ocl, JT]). 

In 1983, motivated by his study of actions of finite groups on hyperfinite von 
Neumann algebras, Jones initiated a Galois theory for von Neumann algebras by 
studying pairs of factors N <= M with finite index [M : N] < oo, i.e. with M a finite 
N module. He proved the striking result that if the index of N c M is less than 4, 
then it has to be equal to the square norm of a matrix with nonnegative integer 
entries, and must be of the form 4 cos2 - for some n > 3. Jones' results and ideas 
gave a new insight into the theory of operator algebras. It also brought together 
many other subjects and had an unexpected and far reaching impact in a number 
of fields of research such as statistical mechanics, quantum field theory, knot 
theory. Methods and results in either of these subjects proved to be inspiring for 
the others. Most of the intrinsic problems from the theory of subfactors, such as 
their classification, the construction of examples, the characterization of the values 
the index may take, seem to have physical significance. We will describe in this 
article the solution to some of these problems. We will present a classification 
result for a certain class of subfactors, called strongly amenable subfactors, a 
class that contains all subfactors of index < 4. We will show that the index of an 
irreducible subfactor N <= M of the hyperfinite factor must always be the square 
norm of a (possibly infinite) matrix of nonnegative integers. In particular this 
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shows the existence of a gap in the set of indices, from 4 to 4.026.... Finally we 
will show that in striking contrast with the hyperfinite case, in the nonhyperfininte 
case any value > 4 may appear as the index of an irreducible subfactor. We will 
also explain how the theory of subfactors provides the natural framework and 
the necessary techniques for a unified approach to both subfactors problems 
and the classical operator algebra problems mentioned before: classification of 
hyperfinite von Neumann algebras and of their automorphisms. 

1. Index for Subfactors 

Let M be a type Hi factor with a normalized trace T and i V c M a subfactor. 
The Jones' index of N in M, denoted by [M : N], is defined as dimjv L2(M), the 
Murray-von Neumann coupling constant of N in its representation on L2(M), 
L2(M) being the completion of M in the Hilbert norm ||x||2 = T(X*X)1/2, X G M. 
The definition of [M : N] is in fact independent of the Hilbert space on which 
N c M act, as [M : N] = dinijv Jf/dimM 3ft for any M-Hilbert module #e. But, 
surprisingly enough, although each of dim^ ^f, diniM $P may take any value 
from 0 to oo (a remarkable fact in itself!), Jones proved in [J2] that [M : N] may 
only take the values {4 cos2 \ \ n > 3} U [4,oo). The key idea in his proof is the 
so called basic construction. It later proved to be the fundamental construction 
of the theory. This construction associates to JV c M a new pair of factors 
M c Mi, with the same index [Mi \ M] = [M : JV], and with a projection 
e\ G Mi that generates Mi together with M and implements by compression the 
trace preserving conditional expectation of M onto N. By iteration one can thus 
produce a whole "tower" of factors J V c M c M i c . . . together with a sequence 
of projections e\ G Mi, i > 1, satisfying the remarkable axioms: 

1.1.1 [euej]=0, \i-j\>2. 
1.1.2 eiei±iei = [M : N]" 1 ^ ,* > 1. 
1.1.3 T(wen+i) = [M :iV]-1T(w),w G Alg{l,ei,...,e„}. 

Conditions 1.1.1-1.1.3 is what forces s = [M : N] to be in the set {4 cos2 \ \ 
n > 3}, if less than 4. Moreover, for each s G {4 cos2 ^ | n > 3} U [4,oo) Jones 
proved the existence of such a sequence of projections with a trace satisfying 
1.1.1-1.1.3. Then R = A l g ^ - } ^ is isomorphic to the hyperfinite type Hi factor 
and Rs = Alg{ßi}^2 is a subfactor of R of index [R : Xs] = s. So one has: 

1.2 Theorem [J2]. a) [M : N] G {4 cos2 \ \ n > 3} U [4,oo). 
b) Given any s G {4 cos2 | | n > 3} U [4, oo) there exists a pair of hyperfinite type 
Hi factors Rs a R with index s. 

Beside the above Jones' subfactors, we mention few other important classes 
of examples: 

1.3.1 If M = MnXn(N) is the algebra of n by n matrices over N, then [M : N] = 
„2 



Subfactors and Classification in von Neumann Algebras 989 

1.3.2 If a is a properly outer action of a finite group G on a type Hi factor JV 
then JV c M = JV xff G satisfies [M : JV] = |G|. If /j is another action of G on JV 
then JV cz JV Xff G is isomorphic to JV X^ G if and only if <r is cocycle conjugate 
to p. The classification of the actions a is thus equivalent to the classification of 
the corresponding pairs of algebras, i.e. subfactors. 

1.3.3 Let G be a finitely generated discrete group and fix gi,...,g,„ some gener
ators. Let G be an outer action of G on a type Hi factor P or, more generally, 
an injective morphism of G into Au tP / In tP , Let M = M(„+i)X(„+i)(P) and 
NG,(J = {x ® (®/ö"(g/)M) | x G P} <= M be the "diagonal" subfactor (in general 
o(gi) are lifting automorphisms). Then [M : NG,O] = (n + l)2. The isomorphism 
class of NGì(T <= M doesn't depend on unitary perturbations of o. In fact, NQ^ <= M 
is isomorphic to NQ^ <= M iff CT is cocycle conjugate to /-j, i.e. o and /i are conjugate 
in Au tP / In tP (for all this see [Po4]). 

1.3.4 The Jones subfactors Rs cz R in 1.2 come from certain positive Markov 
traces on the infinite Hecke algebras H^q) and are related to the Jones' polyno
mial invariant for knots. The general form of such a type of subfactor, obtained 
by investigating all possible positive Markov traces on Hœ(q) (found by Oc-
neanu, see [J3]), were constructed by Wenzl [Wei], who computed their indices 
and proved that they are irreducible when q and the parameters describing the 
trace correspond to roots of unity. 

1.3.5 Let G be a compact group acting minimally on a type Hi factor M (i.e. 
such that the fixed point algebra MG is irreducible in M). Let % be a unitary 
representation of G on a finite dimensional space V. Then MG cz (M ® End V)G 

is an inclusion of type Hi factors of index (dim V)2 which is irreducible if it is. Its 
basic construction is obtained by tensoring recursively with End V and by taking 
fixed point algebras. This example of subfactors is due to Wassermann [Wa]. 

1.3.6 Let {An cz Bn}n^\ be an increasing sequence of inclusions of finite dimen
sional algebras, i.e. An cz A1]+\, Bn cz JB„+I, with a common trace T. Assume the 
consecutive steps of these inclusions satisfy the so-called commuting square condi
tion: EAn+1EBn = EAn,n > 1. Then, under suitable conditions on the trace, one has 
that JV = ÜÄn c ÖJB„ = M are factors and [M : N]= lim[Bn : An], with [Bn : An] 
appropriately defined ([PiPol, PiPo2]). Moreover if T„ denotes the inclusion ma
trix for An cz Bn, and T is extremal in some sense then [M : N] = lim ||T„||2 

([PiPo2]). 

2. Classification of Amenable Subfactors 

The problem of classifying the subfactors of the hyperfinite type Hi factor is of 
most importance for the theory of subfactors. Moreover, the example 1.3.3 shows 
that a classical problem such as the classification of actions of groups on factors 
can be translated into a classification problem for subfactors. 

The classification of JV cz M we are interested in is up to conjugacy of JV by 
automorphisms of M. We will present now a result that classifies an important 
class of subfactors in terms of certain canonically associated combinatorial data. 
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2.1 Definition of the Invariant. Let {Mj n M& cz M' n M/J^ be the sequence of 
inclusion of finite dimensional algebras of the higher relative commutants in the 
Jones' tower of factors. Consecutive steps of these inclusions satisfy the commut
ing square condition 1.3.6. The isomorphism class of this sequence depends only 
on the isomorphism class of JV cz M, so it is an invariant for JV cz M. We call it 
the sequence of canonical (or standard) commuting squares associated to JV cz M. 
The finite dimensional inclusions M ' n M f c c M ' n Mk+u k ^ 1> are all described 
by a unique irreducible matrix of nonnegative integers A, called the standard 
matrix of JV cz M, and respectively by its transpose (for k even resp. odd), see 
[GHJ, Oc2, Wei, Po2]. 

The standard matrix A can alternatively be regarded as a diagram or a graph. 
As first noted by Jones, for small values of the index (< 4) such a graph is 
necessarily a Coxeter graph of type An, Dn, E$9 E7> E8. Although the matrices 
(or graphs) A capture a great deal of information on the canonical sequence, in 
general it doesn't uniquely determine it. For the class of subfactors for which A 
is finite, a condition introduced by Ocneanu [Oc2] and that he calls finite depth, 
the canonical sequence of commuting squares is uniquely determined by just one 
of the commuting squares, involving two consecutive steps of the sequence 

M[nMk+i 

u 
M[nMk 

cz M'n Mfc+i 

u 
cz M'CiMk 

with k large enough. Moreover k, the isomorphism class of the algebras, the trace 
and the inclusion matrices are all determined by the standard matrix of JV cz M 
and M cz Mi ([Po2, Oc2]). An axiomatisation of such canonical commuting 
squares, in the finite depth case, describing them as paragroup type objects, was 
obtained in [Oc2]. In the case of the examples NQ^ cz M in 1.3.3 with o an action 
of the group G, the matrix A is just the Cayley matrix of G and it does describe 
completely the canonical invariant of the inclusion ([Po4]). In particular, if G is 
infinite, then A is infinite and so JV cz M has infinite depth. 

We mention that the basic construction can also be performed in a reverse 
way, this way obtaining a decreasing "tunnel" of subfactors M => JV ZD JVI => • • • . 
The existence of each subfactor JV +̂i in this tunnel is however unique only up to 
conjugacy by a unitary in Nk ([PiPol]). But the isomorphism class of the sequence 
of finite dimensional inclusions {N'k CiN cz N'kn M}& as well as their resulting 
closures Po = U(JV£ fi JV) cz U(N'k nM) = R depends only on the class of JV cz M 
and is an obvious candidate for a model for JV cz M ([Po2]). 

Classifying JV cz M by their canonical invariant amounts to proving the 
existence of a choice of a tunnel M ZD JV => JVi =3 • • • for which the higher 
relative commutants N'kC\M generate M. We prove such an exhaustion result for 
subfactors for which the higher relative commutants satisfy a certain "amenable 
growth" condition. 

2.2 Definition [Po3]. JV cz M is strongly amenable if the fc'th higher relative 
commutant for Po cz R is isomorphic to the fc'th higher relative commutant for 
JV cz M, for each k > 1. This condition is also equivalent to the similar one 
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obtained by considering the inclusion M[ n M^ cz M' fi Mœ instead of RQ cz R, 
where M«, = UMjt. We mention that in fact dim R^ n R = dim Nf n M (or 
equivalently dim (M\ n Moo)' H M' n M^ = dim JV' n M) is sufficient for the strong 
amenability condition to hold true. 

2.3 Theorem [Po3], Assume N cz M are hyperfinite type Hi factors with finite 
index. The following conditions are equivalent: 
2.3.1 JV cz M is strongly amenable. 
2.3.2 N cz M is isomorphic to Ro cz R, 
2.3.3 The bicommutant of M in Mœ = UM/C is equal to M. 
2.3.4 H(M | JV) = H(R \ R0), where, for A cz B, H(B \ A) denotes the Connes-

Stornier relative entropy [CS] as used in [PiPol]. 
Moreover, the isomorphism class of a strongly amenable inclusion is completely 

determined by its canonical commuting squares. 

Condition 2.3.4 in the above theorem can be interpreted as a Shanon-
McMillan-Breiman type condition on the random walk with transition matrix 
AL A (A being the standard matrix for JV cz M) and transition probabilities pro
portional to the local indices of JV cz M/c : this random walk must have the largest 
possible entropy. The bicommutant property 2.3.3 is similar to the one stated 
for subfactors with finite depth and trivial relative commutant in [Oc2] and first 
pointed out in the case [M : JV] < 4 by Skau [GHJ]. 

The proof of the theorem uses much of the subfactor techniques developed in 
[PiPol], especially the probabilistic characterization of the index [M : JV] as the 
best constant s for which the inequality E^(x) > s~xx holds true for all x G M+ , 
EN being the trace preserving conditional expectation of M onto JV. The proof 
also uses in a crucial way the noncommutative local Rohlin theorem in [Pol]. 

The finite depth condition dim>4 < oo (equivalently sup dim ^(M'nM/c) < oo, 
££(B) being the center of B) is easily seen to imply the strong amenability 
condition. The particular case of Theorem 2.3 showing that subfactors with finite 
depth are classified by their canonical commuting squares was already settled in 
[Po2, Oc2]. 

All subfactors of index < 4 have finite depth. They are thus classified by their 
canonical invariants. A full list of the combinatorial objects arising this way from 
subfactors of index < 4 has been given in [Oc2] (for the case E^ see also [BN]). 

Condition 2.3.4 implies that all subfactors of index 4 are strongly amenable, 
although some do not have finite depth. A full list of the combinatorial objects 
that classify them, and thus of all subfactors of index 4 is given in [Po3]. 

2.4 Corollary. Subfactors of index < 4 are all strongly amenable and are thus com
pletely classified by their canonical commuting squares. A full list of these subfactors 
can be given. 

Another important class of subfactors to which 2.3 applies are the Wenzl 
subfactors 1.3.4, which have finite depth and are thus strongly amenable, and 
the Wassermann subfactors 1.3.5, which are strongly amenable but have infinite 
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depth. AU these subfactors are thus uniquely determined by their combinatorial 
data. 

3. Other Applications 

Due to example 1.3.3 the classification Theorem 2.3 implies the classification, up 
to cocycle conjugacy, of actions a of finitely generated discrete groups G on the 
hyperfinite factor, in the case when the associated subfactors NQ^ C M result 
strongly amenable. In fact, 2.3 translates into : 

3.1 Theorem [Po4]. Let P be the hyperfinite type Hi factor and a an outer action of 
a finitely generated discrete group G on P. With the notations of 133 the following 
are equivalent. 
3.1.1 NG,<T <= M is strongly amenable. 
3.1.2 If gi are some generators of G and a = ^^(Z gi + e + X g^1) then \\g*an — 

an\\i -+0for all g G G. 
3.1.3 The group G has 0 entropy, in the sense of [KV]. 

Moreover, the class of NQ^ <= M depends only on G and not on the cocycle 
conjugacy class of G. Thus, there is a unique action, up to cocycle conjugacy, of the 
group G on the hyperfinite type Hi factor. 

Note that the groups G satisfying 3.1.2 or 3.1.3 are automatically amenable. 
The above theorem thus implies a particular case from Ocneanu's theorem on the 
uniqueness of actions of amenable groups (in fact, with a slight modification, for 
IIoo factors as well). The class of groups with 0 entropy contains all groups with 
subexponential growth and thus most classes of important amenable goups. In 
particular 3.1 (and thus the general Theorem 2.3) does cover Connes' results on 
the classification of single automorphisms, which is essential for the classification 
of hyperfinite von Neumann algebras. 

The relation between the ergodic properties of the inclusion of NG <= M and 
of the random walk on G are investigated in [B]. 

Another application of 2.3 is the classification of minimal actions of compact 
groups. 

3.2 Theorem [PoWa]. Given any compact Lie group G there exists a unique outer 
minimal action of G on the hyperfinite factor. 

To prove this result one shows that, up to conjugacy, a minimal action of 
G is uniquely determined by the isomorphism class of the inclusion of factors 
MG cz (M ® End V)G of 1.3.5, with n a finite dimensional representation of G 
containing a generating set of irreducible representations. This inclusion follows 
strongly amenable by the Wassermann's invariance principle ([Wa]) and so 2.3 
applies. 

The subfactor techniques can also be used to give a simple elementary proof 
to an old standing problem on cocycle actions : 
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3.3 Theorem [Po4]. Let G be a discrete group with 0 entropy (e.g. with subexpo-
nential growth). Then any 2-cocyle action of G on an arbitrary type II factor can 
be perturbed to a genuine action. 

We mention that one can prove Theorem 2.3 by using only the injectivity 
property of the ambient factor M (i.e. for M having a certain invariant mean, 
called hypertrace). If one takes JV cz M = M2x2(N) then such a general form of 
2.3 implies the hyperfiniteness of the injective factor M and thus the uniqueness 
of the hyperfinite type IIoo factor, the other major result of Connes that led to 
the classification of hyperfinite algebras. 

One can furthermore obtain an equivariant version of Theorem 2.3, involving 
an automorphism 0 acting on M and leaving JV globally invariant. The result 
shows that, aside from a commonly splitted part, 8 acts only on the combinatorial 
part of JV cz M, resulting from the higher relative commutants. Due to the work 
in ([L]) this implies the classification of strongly amenable subfactors of type IIIj, 
0 < X < 1, in terms of their combinatorial data. 

4. Gaps for the Index of Hyperfinite Subfactors 

Theorem 2.3 shows that not all hyperfinite type Hi subfactors can be approxi
mated (and thus classified) by finite dimensional subalgebras coming from higher 
relative commutants. It is in fact likely that not all hyperfinite type Hi subfactors 
can be obtained by approximation with finite dimensional commuting squares 
like in example 1.3.6 (see 0.3 in [Po4]). For such subfactors though, one may hope 
that a classification can still be completed by establishing necessary and sufficient 
conditions for two increasing sequences of finite dimensional commuting squares 
(1.3.6) to give isomorphic subfactors, and then by classifying such sequences. 

Approximation by finite dimensional commuting squares is also important 
for investigating the set of indices of irreducible subfactors, as subfactors with 
such approximation properties have index equal to square norms of matrices (cf. 
1.3.6). 

There is a rather general class of hyperfinite subfactors for which such 
approximations can be obtained. The key ingredient is the existence of certain 
special hypertraces cj) for JV cz M, called symmetric hypertraces, for which both M, 
M' and the expectation of M onto JV, e^, are contained in the centralizer of cj). To 
prove existence of such hypertraces one needs JV cz M to have certain ergodicity 
properties, much weaker though than the Shannon-Mc Millan-Breiman condition 
in 2.3.4. 

4.1 Definition. JV cz M is called weakly amenable if the random walk associated 
to it is ergodic, i.e. if the higher relative commutants generate a factor. 

Note that all subfactors of sufficiently small indices (< 2 +y/5 will do) follow 
automatically weakly amenable. 
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4.2 Theorem [Po6], If N cz M is a weakly amenable inclusion of hyperfinite type 
Hi factors and N' n M = (C, then N cz M has a symmetric hypertrace. 

aiquesJn^([PaT])^Qne-therLprave^^ 

4.3 Theorem [Po6]. If N cz M is a weakly amenable inclusion of hyperfinite type 
Hi factors with JV' n M = (C, £/ien N cz M can be locally approximated by finite 
dimensional commuting squares. 

By [PiPo2] (see 1.3.6) and taking into account that subfactors for which 
[M : JV] < 2 -|-\/5 are all weakly amenable and that any number > 2 +\ß is the 
square norm of an integral matrix ([GHJ]) one gets: 

4.4 Corollary [Po6]. IfNczM are hyperfinite Hi factors with JV' n M = (C, tfcen 
[M : JV] zs egwfl/ to £foe square of the norm of a (possibly infinite) matrix with 
nonnegative integer entries. 

The set of square norms of (possibly infinite) matrices with nonnegative integer 
entries is known (see e.g. [GHJ]) : besides containing the half line [2-H/5, oo], it has 
only countable accumulation points below 2 +y/59 which converge to 2 +v^5. So 
it has plenty of gaps below 2 +y/5. The first gap arises between 4 and the square 
norm of the matrix corresponding to the Coxeter graph Eio, ll^ioll2 = 4.026..., 
as this is the first matrix with square norm larger than 4. We mention that 
the existence of irreducible hyperfinite subfactors of such index was proved in 
[HOcS]. 

4.5 Corollary. The set of indices of irreducible subfactors of the hyperfinite type Hi 
factor has a gap between 4 and 4.026. 

In order to characterize completely the set of indices of irreducible subfactors 
of the hyperfinite Hi factor one should be able to construct examples as well. Some 
examples were obtained by constructing commuting squares of finite dimensional 
algebras, like in 1.3.6, in [GHJ, Wei, We2, HOcS, Ch, Su]. 

We mention that the inclusion matrices for the finite' dimensional approx
imations of the weakly amenable hyperfinite type Hi factors N cz M can be 
interpreted more "canonically", by introducing the universal graph (or matrix) of 
JV cz M, a general invariant that we will not explain here. 

5. The Nonhyperfinite Case 

Quite surprisingly, unlike the hyperfinite case when, as we have seen, the situation 
is quite rigid and the universal matrix of the subfactor is forced to have square 
norm equal to the index, for general irreducible pairs of type Hi factors any 
index s > 4 may occur ([Po5]). 

We will briefly discuss here a general method for constructing subfactors of 
finite index, which is quite different from the ones discussed before in 1.3 (e.g. 



Subfactors and Classification in von Neumann Algebras 995 

by producing finite dimensional commuting squares). The method consists in 
constructing Markov traces on certain universal algebras associated to an algebra 
Q and to the Jones' sequence of projections {e,},-, zfa) = s~l. In particular, for 
certain extremal such traces, this produces one parameter families of irreducible 
inclusions of factors Ns cz Ms of index [Ms : Ns] = s,s ranging over the whole set 
{4 cos2 * | n > 3} U [4,oo). For these extremal traces the resulting factors Ms are 
always non T (in the sense of [MvN]) and thus nonhyperfinite. The subfactors 
Ns cz Ms are not only irreducible, but also their higher relative commutants 
(NSY D M| are in some sense minimal, as they are generated by just e\, e2, • • • , e^. 

5.1 Theorem [Po5]. Given any s > 4 there are irreducible inclusions of nonhyperfi
nite factors of index s. 

The construction of Ns cz Ms can be briefly described as follows: Let Q 
be an algebra. Consider the universal algebra Us generated by Q and by the 
Jones' projections {e,}/ of trace %(e\) = s~\ subject to the commutation relation 
[Q^i] = 0, for / > 2. Define on Us a trace by letting tr(w) = 0 for all words 
with alternating letters Xj G Q, yj G Alg{l,ßi,e2, • ' "}> for which T(X,-) = 0 and 
for which the projection of yj onto Alg{l, e2, • • •} is 0 ([V]). Then Ms is defined 
as the smallest algebra of Us/tr containing Q and on which e\ implements by 
compression a conditional expectation and W is defined as the commutant of e\ 
in Ms. The fact that [Ms : Ns] = s results from a certain remarkable property of 
the above trace, called the Markov property. 

In fact, any pair of factors arises this way, from some Q and some ap
propriate Markov trace on Us = US(Q). The free Markov trace defined before 
correspond to an extremal situation when no "information" is exchanged from 
Q to Alg{ei,e2} " *} through the "window" e\. How to practically construct some 
others, especially hyperfinite ones, irreducible and with a prescribed index, is an 
open problem. This however may turn out to be a better method for construct
ing hyperfinte subfactors than the construction of finite dimensional commuting 
squares. 
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Operator Algebras and Duality 

Georges Skandalis 

Report on joint work with Saad Baaj 

Université Paris 7, UFR de Math., URA 212, Tour 45-55, 2, place Jussieu 
F-75251 Paris Cedex 05, France 

The Pontrjagyn duality associates to an abelian locally compact group a dual group 
and studies the properties of this correspondence. A natural idea is to try and 
generalize this duality to nonabelian groups, in particular to define an object dual 
to a group. Such dual objects were defined, first for compact groups [45, 19] then 
for locally compact groups ([38], [46]). Up to a large extent, it was the search of 
such a dual object for general locally compact groups that led to the theory of 
C*-algebras. Then appeared the need of objects generalizing groups as well as their 
dual objects. These general objects can be called in a modern language "quantum 
groups". These "groups" can be studied as abstract groups, Lie groups, deforma
tions of true groups . . . . It is certainly beyond our goals to review all aspects of the 
theory of "quantum groups" (see [3] and references therein). We will in fact concen
trate our attention to the operator algebra approach, in other words to the study 
of the "locally compact quantum groups". 

In terms of operator algebras Pontrjaygn duality takes the form of Takesaki-
Takai duality [43, 40] based on the construction of W*- and C*-crossed-products. 
Along the years, under conjugated efforts of many specialists a set of axioms was 
built [11, 12,42,47, 16, 5] and duality was obtained [43, 20,21, 30, 39,4, 10, 6] for 
von Neumann algebras obeying these axioms called Kac von Neumann algebras. 
In a recent fundamental work [51-54], Woronowicz defined some objects that 
he called "compact matrix pseudogroups". Although they aren't Kac algebras, 
Woronowicz' "pseudo-groups" enjoy duality properties. Further examples with the 
same properties were given by Majid [26] and Podles-Woronowicz [32]. One of 
the motivations of this report is to describe a setting including both the Kac von 
Neumann algebras and these new examples, in which the duality results still hold. 

Let H be a Hilbert space and V e L(H (g) H) a unitary operator. Let us say V is 
multiplicative if it satisfies the pentagon equation V12V13V23 = V23V12. This rela
tion appears in the framework of categories with associative tensor product (cf. [24, 
25]); it is the one satisfied by the fusion operator (cf. [29]). It is also very similar to 
the Yang-Baxter equation and in some sense more primitive. In many papers 
concerned with operator algebras possessing duality properties, a multiplicative 
unitary plays a fundamental role (e.g. [12, 42, 16, 5, 18, 10]...); it is clear and more 
or less explicit in these papers that this unitary describes the whole situation. 
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It is therefore very natural to look for additional conditions that a mutliplicative 
unitary should satisfy in order to correspond to a "locally compact quantum group". 
Studying this problem, we were led to consider two conditions that we call regularity 
and irreducibility. We show how two pairwise dual Hopf C*-algebras can be 
associated to a regular multiplicative unitary. When moreover this unitary is 
irreducible, we establish Takesaki-Takai duality results generalizing the previous 
ones. 

An advantage of our approach is that a "quantum group" and its dual play 
completely symmetric roles. Also, it treats simultaneously the C*- and ^ -a lgebra 
point of view. In fact, in our approach it is clear that for "locally compact quantum 
groups" the measure theory determines the topology. In some sense this can be 
thought of as a generalization of the famous theorem of Weil ([50], see also [23]): 
a "measurable quantum group" with an invariant (class of) measure (s) carries a 
unique structure of "locally compact quantum group". 

Let us also mention that many algebraic constructions can be performed in our 
setting. In particular, we may associate a "quantum double" to any (irreducible) 
multiplicative unitary, and together with it, comes a solution of the quantum Yang 
Baxter equation (cf. [3]). 

The question of the minimality of our axioms remains still unanswered: is a 
multiplicative unitary automatically regular? irreducible? Does one of these prop
erties imply the other? Partial solutions to these questions were obtained: when the 
Hilbert space H is finite dimensional and when the unitary V satisfies a commuta-
tivity condition, regularity and irreducibility are both automatic; if the unitary V is 
of compact or discrete type (in other words if the associated quantum group is 
compact or discrete) its regularity implies its irreducibility. 

In this report, we will first present some examples of occurrence of multiplicative 
unitaries, then explain the conditions of regularity and irreducibility and their 
consequences; we will finally construct the multiplicative unitaries associated with 
the examples of [26, 32] and discuss possible future developments. All the proofs, 
as well as more precise statements of the results given here can be found in [2]. 

1. Multiplicative Unitaries and Hopf Algebras 

Let H be a Hilbert space. We will say that a unitary operator V acting on the tensor 
square H ® H is multiplicative if it satisfies the pentagon equation: 

v23v12 = v12v13v23 

Here, by V12, V23 and V13 we denote the operators V®lH, 1H®V and 
(1H ®Z)(V® iH)(\H ® E) acting on H ® H ® H, where E is the "flip" operator 
defined by Z(Ç ® rj) = rj ® £ (£, rj e H). 

Note that the identity operator lH(g)H is a multiplicative unitary. The importance 
of multiplicative unitaries in connection with operator algebras possessing duality 
properties was shown by many authors [12,42,16,5,10]. The multiplicative unitary 
associated with a locally compact group is constructed as follows: 
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Let G be a locally compact group and let m denote its right Haar measure. Let 
H = L2(G\ m) be the Hilbert space of square integrable functions on G with respect 
with the measure m. Identify H ®H with the space L2(G x G; m x m). Let then V 
be the operator acting on H ® H by the formula V(f)(s, 1) = f(st, t) for every square 
integrable function / on G x G and s,t E G. This operator is clearly unitary and its 
"multiplicativity" follows from the associativity of the composition law of G. 

Operators satisfying this pentagon equation are naturally associated with Hopf 
algebras. Recall that a Hopf C*-Algebra is a C*-algebra A endowed with a co-
product which is a *-homomorphism ö : A -> A ® A{1) satisfying the associativity 
condition: (<5 ® id) o ö = (id ® ö) o ö. Let us describe three different ways for inter
preting the pentagon relation: 

a) Haar States and GNS Representations 

A Haar state on a Hopf C*-algebra is a state (/> E A* such that for any form ij/ E >4* 
we have (<f>®\l/)oö = (\l/®</>)oö = \j/(ì)</>. Let then (H^, n^, Ç+) be the GNS con
struction associated with cj). Then the operator V^ defined by V^(n^(x)^®r)) = 
(n+ ® n(ft)(ö(x))(^ ® rj) is an isometry of H^ ® H^ satisfying the pentagon equation. 
In particular, if V^ is surjective, it is a multiplicative unitary. 

b) Covariant Representations 

Let (A, ö) be a Hopf C*-algebra. A corepresentation of A in a Hilbert space H 
is a unitary u E L(H ® A) of the Hilbert >4-module H® A satisfying the relation: 
(id ®ò)(u) = u12u13. 

A coaction of A on some C*-algebra B is a *-homomorphism 6B : B -> B ® A 
satisfying the associativity condition: (öB ® id) o SB = (id ® ö) o öB. A covariant 
representation of A, B on a Hilbert space H is a pair (n, u) where n: B-+ L(H) is a 
^representation and u E L(H ® A) is a corepresentation of A such that Vfc G B, 
(TE ® id) o öB(b) = u(n(b) ® l)u*. 

The coproduct ö is a coaction of A on itself. Let (n, u) be a covariant representa
tion on the Hilbert space H. Then V = (id ® n)(u) is a multiplicative unitary. 

c) The Canonical Element 

Let A be a finite dimensional Hopf algebra. Let E be the algebra of endomorphisms 
of the vector space A. Let us denote by v the canonical element of A* ® A: through 
the identification of A* ® A with E, v is the identity of A. Denote by L the action 
of A on A by left multiplication. If x E A* and a E A, set g(x)a = (id ® x)ö(a). 
Consider L and Q as homomorphisms from A and A* into the algebra E. Simple 
computations then show: 

1 This is the C*-algebraic "min" tensor product. If A has no unit, Ò takes its values in the 
multiplier algebra M(A (g) A) of A ® A. 
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- For a e A we have in E ® A, (Q ® id)(u)(L(a) ® 1) = (L ® id)(ö(a))(g ® id)(u). 
- We have the equality (id ® ö)(v) = v12vl3. 

Therefore, the operator V = (Q ® L)(v) satisfies the pentagon equation. 

2. Algebras Associated with Multiplicative Unitaries 

Let V E L(H ® H) be a multiplicative unitary. If co is a continuous linear form 
on L(H), we may form the operators L(co) = (co® id)(V) EL(H) and Q(CO) = 
(id® co)(V) EL(H). Let L(H)H! denote the predual of L(H) i.e. the set of linear 
mappings of the form x -> Tr(xT) where T spans the space of trace class operators. 

2.1. Proposition. The sets A(V) = {L(m)/co E L(H)*} and A(V) = {Q(CO)/CO E L(H)^} 
are subalgebras of L(H). 

Indeed, L(co)L(co/) = (co ® co' ® id)(F13 V23) = L(\j/) where \l/(x) = (co® co') x 
(V*(l®x)V) 

since V12V13 = V23 V12V23*; in the same way, ^(co)^(co7) = (id® co® Cü')(K12 V13) = 
Q(ì//') where \j/'(x) = (co® co')(V(x® 1)V*). In fact, all properties which may be 
proved for A(V) are automatically proved for A(V) since ZV*Z is a multiplicative 
unitary. 

There is a natural duality between A(V) and A(V) expressed by the equalities 
(L(co), Q(co')y = CO(Q(CO')) = co'(L(co)) = (co® co')(V). 

It is also natural to consider the norm closures of the algebras A(V) and Â(V) 
that we denote by Sv and Sv. It is not clear whether these are always C*-algebras 
ie. if they are closed under the involution x -> x* of L(H). For this reason, we are 
led to make, in the next sections, some extra assumptions. 

In the case of the multiplicative unitary associated with a group, the algebras 
A(V) and A(V) are respectively the Fourier algebra A(G) acting by multiplication 
on L2(G) and LX(G) acting by (right) convolution on L2(G). Also Sv is the abelian 
C*-algebra C0(G) of continuous functions vanishing at infinity and Sv the reduced 
C*-algebra of the group G. In particular the Gelfand spectrum of Sv is G: we already 
have recovered G out of the associated multiplicative unitary. In fact, we get a 
converse to this statement: 

2.2 Theorem. / / the associated algebra A(V) is commutative, the multiplicative uni
tary V is (up to multiplicity) the multiplicative unitary associated with a locally 
compact group. 

This theorem is a generalization theorem of [50, 23, 12, 41, 42, 47, 5, 52]. Of 
course, this theorem also classifies the multiplicative unitaries for which A(V) is 
commutative, since this is equivalent to saying that A(EV*Z) is commutative. 

Let us mention another case where no extra assumptions are needed: 
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2.3 Theorem. A multiplicative unitary acting on a finite dimensional Hilbert space 
is (up to multiplicity) the multiplicative unitary associated with a finite dimensional 
Kac von Neumann algebra. 

3. Regularity; the "Compact" Case 

Let us begin with a rather easy fact: 

3.1 Proposition. Theset^(V) = {(id ® CO)(ECû)ICû E L(H)*} is a subalgebra of L(H), 

Studying this algebra in the case of locally compact groups and more generally 
in the examples to be discussed below, we find that this algebra is formed of compact 
operators and is norm dense in the algebra of compact operators. This leads to the 
following definition: 

3.2 Definition. We will say that the multiplicative unitary V is regular if the norm 
closure of ^(V) coincides with the algebra K(H) of compact operators of. H. 

Regularity turns out to be extremely efficient in proving nice properties of the 
associated algebras: 

3.3 Theorem. Let V be a regular multiplicative unitary. Then the algebras S and S 
are Hopf C*-algebras with coproducts given by ö(x) = V(x® 1)7* and o(y) = 
V* (1 ® y) V (x E S, y E §). The operator V is a multiplier of the (spatial) tensor product 
S®S. 

This last property means that the closed subalgebra of L(H ® H) generated by 
y ® x, x E S, y E S is closed under left and right multiplication by V. It is quite natural 
and helpful. In particular, it allows us to consider S and S as abstract C*-algebras 
and still make sense of V in every representation. 

We are also in position to form crossed products for algebras with coactions of 
the Hopf algebra S: if a C*-algebra A is endowed with a coaction ôA : A -> A ® S 
of S, the (reduced) crossed product A x Sis the C*-algebra of operators acting on 
the Hilbert A -module A® H generated by the products of the form öA(a)(l ® y), 
a E A, y E S. For a E A, y E S, öA(a) and (1 ® y) are multipliers of A x S. We thus 
get homomorphisms n and Ò from A and S respectively into the multiplier algebra 
of A x S. Still our set of axioms is not complete in order to allow us to prove the suit
able duality. On the other hand, this duality may now be proved in the "compact" 
case. 

3.4 Definition. A multiplicative unitary is said to be of compact type if the unit 
operator belongs to the algebra A(V). 

If V is a multiplicative unitary associated with a compact group or with a Haar 
state of a unital Hopf algebra, it is of compact type. In a recent fundamental work 
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[51-54], S.L. Woronowicz introduced a set of axioms for "quantum groups" 
generated by a finite dimensional unitary representation. Woronowicz initially 
called his objects "compact matrix pseudogroups" but they are referred to as 
"compact quantum Lie groups". Nice and tractable examples were produced [51, 
53]. It is natural to define "compact quantum groups" as projective limits (this 
corresponds to inductive limits for the Hopf algebra of functions) of "compact 
quantum Lie groups". It was shown in [52] that "compact quantum groups" 
possess a Haar state. It is quite clear that the corresponding operator is unitary. Its 
regularity is also easy. The converse to these facts is true, namely: 

3.5 Theorem. A regular multiplicative unitary of compact type is (up to multiplicity) 
the multiplicative unitary associated with a "compact quantum group" of Woronowicz. 

4. Irreducibility and Takesaki-Takai Duality 

In order to introduce the last condition needed for the duality, let us examine again 
the case of locally compact groups: we have been able to produce out of the 
multiplicative unitary associated with a locally compact group, the multiplication 
operators and the right regular representation. On L2(G) acts moreover the left 
regular representation; moreover, left and right regular representations are equiva
lent and intertwined by a unitary operator U given by (U£)(g) = A(g)i/2^(g~i), 
where A is the module of the group. 

This leads us to assume the existence of an operator U satisfying some equations: 

4.1 Definition, a) A multiplicative unitary V E L(H ® H) is said to be irreducible if 
there exists a unitary U E L(H) such that U2 = 1H, (V(U ® 1)E)3 = 1H®H

 and suc^ 
that the unitary V = E(U ® l)V(U ® 1)27 is multiplicative. 

b) A Kac system is a triple (H, V, U) where H is a Hilbert space, V E L(H ® H) 
is a multiplicative unitary and U E L(H) satisfies the requirements of a); moreover, we 
require that V and V be regular. 

If (H, V, U) is a Kac system, (H, V, U) is also a Kac system and V = 
(U®U)V(U®U). Taking the dual again, we find V= 27(1 ® U)V(l ® U)Z; 
a fourth time will give us back V. This is the well noticed but still somewhat 
mysterious period 4 periodicity. (Note that as V = (U ® U)V(U ® U) and V = 
(U ® U)V(U ® U) they are regular multiplicative unitaries). 

We now have two representations of S and S in H: we will denote by L : S -> L(H) 
and Q:S^>L(H) the inclusions considered up to now as identity representations; 
we will then set R(x\ = UL(x)U and X(y) = Ug(y)U (xES,yE §). 

Replacing V by V we may now form crossed products for algebras with coactions 
of the Hopf algebra S: if a C*-algebra A is endowed with a coaction òA : A -» A ® S 
of S, the (reduced) crossed product A x S is the C*-algebra of operators acting on 
the Hilbert ^-module A® H generated by the products of the form 

(id®l)öA(a)(l®L(x)), a E A, x E S. 
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We still have homomorphisms n and 6 from A and S respectively into the multiplier 
algebra of A x S, and A x Sis spanned by products n(a)6(x) a E A, XE S. 

Let the C*-algebra A be endowed with a coaction öA of S (resp. S), then the 
crossed product A x S (resp. A x S) is endowed with a coaction oA of S (resp. S) 
given by ôA(n(a)Ô(y)) = (71(0) ® l)(d ® \6)&{y\ a E A, y E S (resp. <^(H(<ï)0(X)) -
(n(a) ®l)(6® id)<5(x), a G A, x E S). 

4.2 Theorem (Takesaki-Takai Duality Theorem). Let (H, V, U) be a Kac system. 
Then for any algebra A endowed with a coaction2 öA of S the double crossed product 
A x S x S is naturally isomorphic with A ® K(H). 

Remark. Replacing (H, V, U) by (H, V, U) we may exchange the roles of S and S. 
It is transparent in many papers (cf. eg. [21], [22], [39], [4], [10]) that Takesaki 

duality only relies on the "fundamental" operator; our proof is therefore just an 
adaption of methods used by these authors. 

A first step to this duality is the case A = C: 

4.3 Lemma. Let (H, V, U) be a Kac system. Then the closed vector span of 
{L(x)Q(y)/x E S, y E S} and the closed vector span of {L(x)X(y)/x E S, y E §} are the 
algebra K(H). 

This lemma, which can be thought of as a generalization of the famous Weyl-von 
Neumann theorem, explains the terminology of irreducibility. 

Remark. It is also quite easy to prove a Takesaki duality theorem in the von 
Neumann algebra setting for Kac systems. In fact the regularity can be replaced by 
the weaker condition: the weak closure of ^(V) is L(H). The proof (if not the precise 
statement) of the main theorem of [10] applies in this context. 

Also, one may generalize results of [1] and prove a Takesaki-Takai duality 
theorem for equivariant KK-theory with respect to the Hopf C*-algebras S and S. 

5. Examples of Majid and Podles-Woronowicz 

In [26] and [32] appeared a series of new constructions of interesting "quantum 
groups". These "quantum groups" are not in general Kac von Neumann algebras 
but they can still be expressed by a multiplicative unitary; in this way Takesaki-
Takai duality is just an easy check. 

The algebraic setting in the examples of [26, 27] and [32] is that of matched 
pairs of Hopf algebras (cf. [23,28]). To such a matched pair are associated two new 
Hopf algebras: the one "generated by the matched pair" and the "bicrossproduct". 
These constructions were given in [37] and [28] in purely algebraic terms but may 
be performed in the multiplicative unitary setting. Examples of such matched pairs 

2 Provided a technical assumption called non-degeneracy in [21] is fulfilled by SA. 
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are given by any (locally compact) group G with two (closed) subgroups H and K 
such that every element g of G admits a unique decomposition g = hk(hE H,kE K 
- [44, 26]). Other examples are given by the "quantum double" construction^" 
Drinfeld [3], The examples of Podles and Woronowicz [32] are in fact based on 
this "quantum double" construction. 

Let (A, öA) and (B, öB) be two Hopf C*-algebras. Consider the *-homomorphism 
öA®öB:A®B^A®A®B®B. In order to put a Hopf C*-algebra structure 
on A®B, we use a isomorphism x:A®B-+B®A and wish to put ö = 
(idA ® x ® id f l)(^ ® öB). For ö to be coassociative it is enough that the following 
condition be satisfied: 

(C) (T ® id J (idA ® x) (öA ® idB) = (idB ® öA)x and 

(idB ® x)(x ® idB)(id^ ® öB) = (ÖB ® i d j i 

Condition (C) is stated in [32] and, from a dual point of view, in [37] and [28] 
(in purely algebraic terms). 

5.1 Definition. Let (A, öA) and (B, öB) be two Hopf C*-algebras. An inversion on A, 
B is a ^-isomorphism x:A®B-*B®A satisfying the conditions (C). 

Let (A, B, x) be as in definition 5.1. Note that b -» T(1 ® b) is a (right) coaction, 
called ß, of the Hopf C*-algebra A on the C*-algebra B and a -> x(a ® 1) is a (left) 
coaction, called a, of the Hopf C*-algebra B on the C*-algebra A. 

Let X E L(H ® H) and Y E L(K ® K) be two regular multiplicative unitaries. 
Denote by Sx, Sx, SY and SY the associated Hopf C*-algebras associated with X and 
Y and by öx, öY the coproducts of Sx and SY. Let x:Sx® Sy -> SY® Sx be an 
inversion on (Sx, SY). 

5.2 Proposition. The unitary operator T = (T ®id)(Y23)(id®z)(X23) acting on 
K® H ® K® H is multiplicative. It is called the bicrossproduct of X and Y with 
respect to x. 

Let (H, X, u) and (K, Y, v) be two Kac systems. It is more natural to assume that 
x is an inversion on (Sx, SY). Of course, in this case, we may form the bicrossproduct 
of X and Y In order to form the twisted and bicrossproducts of the Kac systems, 
we need the inversion x to be suitably implemented. 

5.3 Definition. A matched pair of Kac systems is given by two Kac systems (H, X, u) 
and (K, Y, v) together with a unitary operator Z E L(H ® K) such that 

a) There exists an inversion x : Sx ® SY -» SY ® Sx such that for all x e Sx, y E SY 

we have Zx~l(y ® x)Z* = x® y. 
b) (H ® K, V, U) is a Kac system where V = (Zf2X13Z12) Y24 and U = (u ® v)Z. 

5.4 Theorem. Let ((H, X, u); (K, Y, v)\ Z) be a matched pair of Kac systems. Define 
the unitary operator W = (Z34*Y24.Z34)(Z12*X13Z12) acting on H ® K ® H ® K. 
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Then (H ® K, W, U) is a Kac system. The Hopf algebra S associated with V is 
(Sx ® SY, Sx). The algebras S and S associated with W are isomorphic respectively to 
Sx xa SY and SY xp Sx. 

Moreover, the multiplicative unitary operator T of proposition 5.2 is equivalent 
to W. 

5.5 Definition. With the notation of the above theorem, the Kac system (H ® K, V, U) 
is called the product of (H, X, u) and (K, Y, v) twisted by Z; the Kac system 
(H ® K, W, U) is called the bicrossproduct of (H, X, u) and (K, Y, v) relative to Z. 

5.6 Examples 

a) Let (H, X, u) be a Kac system and G be a locally compact group acting by Hopf 
C*-algebra automorphisms on Sx. Let x : C0(G) ®SX-+SX® C0(G) be given by 
T(f)(x) = M / M ) XE G, f E C0(G; Sx) where we have identified C0(G) ® Sx and 
Sx ® C0(G) with the C*-algebra C0(G; Sx) of continuous S^-valued functions 
vanishing at oo on G. In this case, G acts naturally on the Hopf C*-algebra Sx and 
the twisted and bicrossproducts are both obtained by the well known crossed-
product constructions. 

b) Let Gx and G2 be two locally compact groups. An inversion on 
(Q)(Gi), C0(G2)) is given by a homeomorphism x : G2 x G1 -> Gx x G2; then the 
product (xl9 x2)(y1, y2) = (x1z1, z2x2) where (zl9 z2) = x(x2, y j is associative on 
G1 x G2 and, endowed with this product, Gx x G2 is a locally compact group G. 
Then, the twisted product of the associated Kac systems is the Kac system of the 
group G. The bicrossproduct construction gives new examples of Kac systems. In 
general, these examples are not associated with Kac von Neumann algebras [26, 27] 
and the antipode K is unbounded. However, many computations may still be 
performed in this context. 

Another way of understanding this example, is to start with a locally compact 
group G and assume that it has two closed subgroups Gx and G2 such that the map 
(*i J ̂ 2) -* x\*i i s a homeomorphism from Gx x G2 onto G. In this case, the actions 
of Gx on G2 and of G2 on Gx are the restrictions of the actions of G on G2 = Gj\G 
and on G1 = G/G2 and it is easy to compute the corresponding crossed products 
and thus the algebras S and S associated with W. Also, it is quite easy to construct 
groups with these properties: 

- the Iwasawa decomposition G = KP (P = AN) of semisimple Lie groups; 
- let G be a locally compact group acting by homeomorphisms on a locally compact 

group G2 and containing the right translations of G2; let then Gx be the set of 
elements of G fixing the neutral element of G2; 

- in the above example, we may take G2 to be any finite group and G be the group 
of all permutations of the set G2 . . . 

A third way of interpreting this example (cf. [2] Appendix C) is the search of 
measure spaces X and transformations o f l x l satisfying the pentagon relation. 
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It is then natural to add cocycles and form new multiplicative unitaries. In this way 
one recovers examples of Kac and Paliutkin [14,15]. 

c) Let (H, X, u) be a Kac system and set Y = sX*s where-,rei(fr®^f)4s 
the flip operator; then (H, Y, u) is a Kac system and SY = Sx, SY = Sx

{3). Let 
then x : Sx ® SY -> SY ® Sx be given by x(x) = XsxsX*. Since X is a multiplier of 
SY®SX this is well defined. It turns out that x is a non degenerate inversion 
and that ((H, X, u); (K, Y, v); Z) is a matched pair of Kac systems, where 
Z = sX(u ® u)X*(u ® u)s. The corresponding twisted product (H ® H, V, U) is the 
quantum double of the Kac system (H, X, u). Let Sv and Sv denote the corresponding 
Hopf C*-algebras. There is a unitary operator R which is a multiplier of Sv ® Sv 

which satisfies the algebraic properties of [3] and in particular R is a solution of 
the quantum Yang-Baxter equation. 

Note that the construction of this twisted product was used by Podles and 
Woronowicz to build the "quantum Sl(2, C)" out of the "quantum SU(2)" ([32]). 

In this case, the bicrossproduct is just a direct product. 

6. Concluding Remarks 

We developed here one point of view: find conditions easy to check on the "funda
mental operator" that ensure Takesaki-Takai duality. However, we do not know if 
these conditions may turn out to be automatic. 

Maybe one should look for a counterexample to regularity in transformations 
satisfying the pentagon equation. 

The operator U defining irreducibility, is usually the product J J of the Tornita 
operators associated with Haar measures. Therefore, to prove irreducibility one 
would need to prove the existence of these Haar measures. Note that, in our context, 
this problem doesn't seem too difficult since we are given the regular representations 
and therefore the class of the Haar measures. 

Once the Haar measures are found one needs to perform modular theory on 
them. Concerning this, we may formulate the following conjecture: 

Call cj>, \j/, cj> and y) the left and right Haar measures of S and S. Then there should 
exist positive unbounded operators F and F affiliated with the centralizers of ^ and 
<j> such that for all x e S and y e S,\l/(x) = (j>(FxF) \j/(y) = <j>(FyF). The Hilbert spaces 
H^, H^, H# and Hj, are naturally identified. The weights (j>, \j/, <ß and $ are faithful 
when extended to the bicommutants, therefore Tornita theory can be performed. 
Call J and J the Tornita operators associated with cj) and cj), and put U = J J = J J. 
Let L and X be the GNS representations associated with cj) and $; then form JR and 
Q using L, X and U. Since V is a multiplier of S ® S, (Q ® L)(V) acts naturally on 
Hfl, ® H<i>. Then (H^, V, U) is a Kac system. Moreover, the operators F and F are 
representations of the Hopf algebras, therefore they are unbounded multipliers of 
S and S. Moreover, the operators L(F), R(F), X(F) and Q(F) commute pairwise. The 
modular operators are computed in terms of F and F. We find: 

1 Note however that the coproducts of SY and SY differ from the ones of Sx and Sx by the flip. 
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0. Introduction 

Consider a product of measure spaces, provided with the product measure. 
Consider a subset A of this product, of measure at least one half. An important 
fact (the so-called concentration of measure phenomenon) is that even a small 
"enlargement" of A has measure very close to one. The inequalities we present 
describe this phenomenon for several notions of "enlargement". 

1. The Isoperimetric Inequality for Gaussian Measure 

We denote by Sn the Euclidean sphere of R"+1, equipped with the geodesic 
distance Q and a rotation invariant probability pn. For a (measurable) subset A 
of S,„ consider the set Au of points of Sn within geodesic distance u of A. The 
isoperimetric inequality for the sphere, discovered by P. Levy, is of fundamental 
importance. It states that p„(Au) > p„(Cu), where C is a cap (intersection of the 
sphere and of a half space) of the same measure as A. 

We denote by y„ the canonical Gaussian measure on IR", of density 
(27c)-"/2e~"x'" /2 with respect to Lebesgue measure. Observe the simple, but essen
tial fact that y„ is the product measure on IR" when each factor is endowed with 
yi. It is an old observation, known as Poincaré lemma (although it does seem to 
be due to Maxwell) that, as N —• oo, the projection of the normalized measure 
on T/NSN onto IR" has y„ as a limit. Therefore, it should not come as a sur
prise that Levy's isoperimetric inequality on the sphere implies an isoperimetric 
inequality for yu. This was discovered independently by G Borell [Bl], and V. N. 
Sudakov and B. S. Tsirelson [S-T]. If we denote by Au the set of points within 
Euclidean distance u of A, then y„(Au) > yn(Hu), where Hu is a half space with 
yn(H) = yu(A). Taking this half space to be orthogonal to a coordinate axis, and 
remembering that y„ is a product measure shows that if yn(H) = yi((—oo, a]), then 
y„(HM) = yi((-oo,fl + w]). 

The author is also affiliated with the Ohio State University, Columbus, OH 43201, USA 
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For simplicity, we set &(u) = yi((—oo, u]) =* -4= / " ^ e~x /2dx. Thus we have 

if yn(A) = 0(a), then yn(Au) > &(a + u). (1.1) 

It is important to state this inequality, not only for the measure yn, but 
also for its infinite dimensional version y, the product measure on R N when 
each factor is endowed with y\ (the result for y follows from the result for 
yn and an obvious approximation). We denote by B the unit ball of ê1, i.e. 
B = {x G IR^JX/C^I

 xl ^ !}• The Gaussian isoperimetric inequality can then be 
stated as follows 

If y (A) = ^(a) then y*(A + uB) > &(a + u). (1.2) 

There A-{- uB = {x + uy;x G A, y G B}; the inner measure is needed as A + uB 
might not be measurable. As became customary, we call (1.1) and (1.2) Borell's 
inequality. Levy's inequality is usually proved using symmetrization (see e.g. the 
appendix of [F-L-M]). A. Ehrhard [El] has developed a symmetrization method 
adapted to the measures y„ that yields a direct proof of (1.2) as well as of the 
following remarkable inequality of Brunn-Minkowski's type: For two convex sets 
A,B of IR", a n d O < A < 1, 

0-Hyn(XA + (1 - X)B)) > X0-l(yn(A)) + (1 - X)0-1(7n(B)). (1.3) 

(It is still open whether this inequality holds for non convex sets.) 
Borell's inequality is a principle of remarkable power. It can be argued that, 

concerning applications, this inequality is used in two different forms. 
The first type of use consist of rewriting (1.1) as u~1yn(Au\A) > u~ly\([a,u+a\) 

so that 

I a2 

liminf u'^AuXA) > —= e x p - — . (1.4) 
"-•o ^J2% 2 

thereby recovering what is the more classical formulation of the isoperimetric 
inequality [O]. In this spirit (and using his symmetrization methods) A. Ehrhard 
has proved a number of interesting inequalities, that are versions for the Gauss 
measure of classical results [E2]. 

Inequality (1.4) for functions rather than sets [L] yields in particular that a 
function on R" whose gradient belongs to L1(yn), belongs to the Orlicz space 
L^logL)1/2 of this measure, connecting with logarithmic Sobolev inequalities and 
hypercontractivity. 

The second type of use of Borell's inequality is for "large" values of u (while 
Borell's inequality for large values of u follows from (1.4), the spirit of application 
is very different). It is mostly used in the following forms 

If yn(A) > 1/2, then yn(Au) > yi((-oo, u\) (1.5) 

If y04) > 1/2, then y*(A + uB) > yi((-oo,u]) > 1 - - exp(-u2/2). (1.6) 
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In the terminology of V. Milman [M2] (1.5) is a "concentration of measure 
phenomenon". An immediate consequence of (1.5) is that if / is a Lipschitz 
function on IR", we have 

y„({\f-Mf\>u})<2yi 
u2 

w^j^v-m^ {L7) 

where Mf is a median of/, i.e. y„({f > Mf}) = y„({f < Mf}) = 1/2, and where 
||/||Lip = sup X 7 t j , | / (x) - / (^) | / | | x -y | | . 

It has been discovered by V. Milman [Ml] that (1.7) (or, equivalently, a 
corresponding inequality on the sphere Sn) is at the root of the celebrated 
Dvoretzky's theorem. Actually, the following inequality is sufficient to prove 
Dvoretzky's theorem: There is a numerical constant K such that if / is a 
Lipschitz function on R", then 

^-/^I^B^apf^). (1.8) 

A very simple proof of this inequality (1.8) was discovered by B. Maurey and G. 
Pisier (cf. [P] ; in that same reference is included a different proof due to Maurey 
using stochostic integrals which yields K = 2). 

To understand better the relationship between (1.7) and (1.8) one should note 
that either of these inequalities imply the fact that \Mf — f fdyn\ < X||/||Lip-
Here, as in the sequel, K denotes a universal constant, not necessarily the same 
at each occurence. It is not our purpose here to enter the topic of local theory of 
Banach spaces, that was covered by Milman's paper [M2], and we turn towards 
the application of (1.6) to probability theory. The importance of (1.6) stems from 
the fact that y is the prototype for all Gaussian measures. To stress the point, 
we now outline the "canonical" way to look at Gaussian processes, that was put 
forward in [D] and that turned out to be of crucial importance. Given a point t 
in /2 , the series Xfo>i ^xk converges y a.e. (since (x/c) is a sequence of independent 
r.v.) and thereby defines an element Xt of L2(y), of law N(0, \\tW2). Any subset T 
of/2 thus defines a Gaussian process (Xt)tET- For many purposes all Gaussian 
processes can be reduced to this type. We say that the process is bounded if 
supfGT Xt < 00 y a.e. (to avoid technicalities, we assume from now on that T is 
countable). 

A problem of historical importance was, given a Gaussian process (that 
is, in our setting a subset T of t1), to understand, under the conditions that 
G is bounded, what are the tails of Y = supteT \Xt\, i.e. the behavior of the 
function y({Y > u}) as u —> 00. It was proved by Landau and Shepp [L-S] and, 
independently by Femique [F], that E(eaY ) < 00 for some a > 0, where for 
simplicity, we write Ef for J fdy. Interestingly, the proof of Landau and Shepp is 
isoperimetric in nature. In [Bl], C. Borell use (1.5) as follows. Set CJ = suptET \\t\\2. 
It is then clear that Y(x) < Y(y) + au if x e y+ uB. Thus by (1.5) 

y({Y >:MY+CTU}) <y i (koo) ) . 

file:////tW2
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This implies that 

Y2 

oc > er => E exp —-̂  < oo. (1.9) 

C. Borell also used the same approach to obtain sharp integrability results for 
homogneous chaos [B2, B3]. 

It turns out that, when more information is available on T (e.g. information 
about entropy numbers) results sharper that (1.10) can be obtained by specific 
methods. This has unfortunately lead some researchers to doubt the power of 
(1.6); the issue is that the usefulness of (1.6) is greatly enhanced by an appropriate 
use of A. This point was brought in particular to light in [Tl], where the following 
is proved. Given a bounded process T c /2 , set 

x = M{u > 0;y({sup \Xt\ < u}) > 0}. 

Then 

x' > x => E exp - ^ (Y - x')2 < oo. (1.10) 

This result should be compared to (1.9). It can be interpreted as a tail 
estimate. It means that the function f(u) = # _ 1 (?({}> < u})) (that is concave by 
(1.3)) satisfies 

0 > l i m (f(u)--)>--. (1.11) 
u->oo \ a J G 

Thus, f(u) has an asymptote (u/cr) + / with —x/o < / < 0. This result is 
optimal in the sense that / can approach this asymptote arbitrarily slowly. We 
refer to [L-T2], Chapter 3, for an extension of this result to homogeneous chaos, 
and to [G-K] for further developments of the same idea. 

While (1.10) is optimal for general processes, it can be improved when one 
has more information about T. In [T3] a method was introduced relying on (1.6) 
to improve the tail estimate (1.10) in the specific case where T is compact and 
there is a unique t G T with \\t\\ = cr. The method has been developed further 
in [D-M-W]. It could also be used in many other situations, e.g. to simplify the 
results of [B-K]. 

While (1.10) uses in a rather precise form the information provided by (1.6), 
it is often sufficient (e.g. for the proof of Dvoretzky's theorem) to have a weaker 
information of the type 

y(A) > 1/2 => y(A + uB) > 1 - K exp ( - ~ J (1.12) 

without precise information on the constant K. It is this principle, rather than 
(1.5) that we now on call the concentration of measure phenomenon (for the 
Gauss measure). 
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2. The Concentration of Measure Phenomenon 

It seems rather unlikely that (1.6) could at all be improved, but it could come 
as a surprise that on the other hand (1.12) can be improved, in the sense that 
a similar inequality holds when the set A + uB is replaced by a smaller (and, in 
some cases, much smaller) set. The central result of this section is that, in the 
class of product measures, the natural setting for the concentration of measure 
phenomenon is not the Gaussian measure y but rather the product measure v on 
RN obtained by providing each factor with the measure vi of density je"'*' with 
respect to Lebesgue measure. We set 

* = {*£ I R N ; £ \xk\ < l} ;B2 = {x G 1 R N ; £ 4 ^ l} . 

Theorem 2.1 [T6]. There exists a universal constant K such that for all subsets A 
o / R N , all u>0,we have 

V(A) = Vi((-oo,fl]) => v*(A + </ÜB2 + uBi) > vi ( ( -oo ,* + £ ] ) • (2.1) 

In particular 

v(A) > 1/2 => v*(A + y/ÜB2 + uBi) > vi ((oo, - | ] ) = 1 - - exp ( - - | ) . 
(2.2) 

A striking difference between this inequality and (1.6) is that the set A is 
enlarged by the mixture ^JuB2 + uB\ of the fi and f1 balls, whose shape changes 
with the value of u. To understand the reason for the strange set y/uB2 + uB2, 
it is instructive to derive from (2.1) the size of the tails v({Xt > u}), where 
Xt(x) = Yjt^k ana* t e ^2 (these can of course be obtained by a simple direct 
argument). The set A = {Xt < 0} satisfies v(A) > 1/2 by symmetry. Thus by (2.1), 
we have v*(A + <s/üB2 + uB{) > 1 - ^e~u/K. But obviously Xt < y/ü\\t\\2 + u\\t\\œ 

on A + sJuBi + uB\ (where \t\^ = sup^! |tfc|). Thus we get 

^i{Xt>^\\t\\2 + u\\tU})<^K 

which can be formulated as 

(and gives the correct order for —logv({Xt ^ w}). 
Another difference between (2.1) and (1.6) is the unspecified constant K on 

the left side, that actually makes (2.1) closer to (1.12) than to (1.6). An interesting 
problem would be to find an "exact" version of (2.1). One could ask for example 
if there is a natural "smallest" set W(u) (whose shape would depend on w in a 
possibly complex way) that could be used instead of y/uB2 + uB\ in (2.1). The 
resulting inequality should give sharp estimates for v({Xt ^ u}); the variety of 
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competing estimates for this quantity [Hoe] might indicate the difficulty of the 
task. 

The proof of Theorem 2.1 is made complicated by the fact that, in constrast 
withr^he^auss^easure^^Lebesguenrn^ v hapless symmetries-

(in particular is not invariant by rotations) and thus that this restricts the use of 
rearrangements. The method of proof is to consider a statement similar to (2.1) 
(the set ^/UB2 + uB\ being replaced by a more amenable set C(u) of comparable 
size) and prove it by induction over n, when the set A is assumed to depend on 
n coordinates only. The key observation is that the proof of the induction step 
can be deduced from a two-dimensional statement. While the proof in (2.1) is 
not simple, it is beyond doubt that the important part of (2.1) is (2.2) for large 
values of u (u > K). Fortunately, this is much simpler to prove. The idea is to 
prove, again by induction over the number of coordinates of which A depends, 
that, if one sets 

hA(x) = inf{w > 0;x G A + C(u)} 

then Ecxp(hA(x)/K) < 1/P(A), so that, by Chebyshev inequality, 

v ( . + C M ) £ 1 - ^ M p ( - | ) , 

that recovers (2.2) for u large enough. 
We now explain why (2.2) is an improvement over (1.12). The argument that 

we will present will be referred to in the sequel as the "contraction argument". 
The precise form we use was introduced by G. Pisier [P, Ch. 2] and played an 
essential role in the discovery of the correct formulation of Theorem 2.1. (A 
similar idea occurs earlier in [G-M], Section 2-1). 

Consider the increasing map \p from R to R that transforms vi into y\. It is 
a simple matter to see that 

Mx) - VUOI < Kmin(\x - y\, \x - y\^2). (2.3) 

Consider the map W from R N to R N , such that T((xk)k>{) = (\p(xk))k>i. Thus 
W transforms v into y. 

Consider a Borei set A of R N such that y (A) > 1/2. Then 

y(¥(W-{(A) + JAB2 + uBi)) = v(W~l(A) + ^B2 + uB{) (2.4) 
1 
2{ ^-rx phl) 

However, it follows from (2.3) that 

Au = T(W~l(A) + JuB2 + uBx) ^A + K^B2 (2.5) 

and thus (2.4) improves over (1.12). To illustrate the improvement of (2.4) over 
(1.12), consider the case where A = {x; Vfc < n, \xk\ < an}, where an is chosen so 
that y(A) = 1/2 (and hence is of order v^ögn). Then, for u < logn, the set Au is 
easily seen to be contained in 
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\y logn 2 yjlogn) \\ogn) 

where u/\ogn < 1. 
One intriguing aspect of Theorem 2.1, when used as an improvement over 

(1.12), is that it breaks the rotational invariance of the Gauss measure. Indeed, it 
not only tells us that y„(Au) > 1 — exp(—u/K) (where Au is defined in (2.5)) but 
also that yn((RA)u) > 1 — exp(—u/K) for any rotation R of R". 

A natural question is whether (2.2) is the correct formulation of the concen
tration of measure phenomenon. This seems to be the case, at least in the setting 
of product measures. Indeed, consider a probability measure Q\9 on R, and its 
product 9 on RN. Suppose that the following holds (that is much weaker than 
(1.2)). There exists K > 0, such that 

9(A) > 1/2 => 9(A + KBœ) > 3/4 

where B^ = {x G RN,V/c > l,\xk\ < 1}. Then the tails f(u) = 0({|x| > w}) 
must decay exponentially [T6], Note that, if these tails decay exponentially in 
a smooth enough way, 9\ is the image of vi by a contraction, and Pisier's 
contraction argument presented before shows that (2.1) will also hold for 9. 

Consider now 1 < a < oo and the measure va on RN, obtained as the product 
measure when each factor is endowed with the probability measure aae~^adx 
(where a« is a normalizing constant). The contraction argument presented above 
shows that 

\ *(*)) 
va(A) > 1/2 => v?(A + [/«(«)) > 1 - exp ——• . (2.6)« 

where Ua(u) = u^2B2 + u^aBa for a < 2, Ua(u) = u^2B2 n w1/«^ for a > 2, and 
Ba = {x G R N ;X W ^ 1}. For « > ß> (2.6)« is a consequence of (2.6)̂  (by the 
contraction argument). 

As in the Gaussian case, to each point t e fi one can associate the random 
variable Xt = Xtei tkxk o n (RN»va); and each subset T of fi thus defines a 
stochastic process. The main motivation for proving (2.6)« was the discovery [T7, 
T8] of a new approach to the problem of finding lower bounds for E supfGT Xt that 
makes (2.6)« an essential step. This new approach eliminates the use of Slepian's 
lemma [S], which is a specific property of Gaussian processes. It replaces it by 
the use of (2.6)«, combined with a Sudakov-type minoration [Su]. It enables to 
describe E swptET Xt in terms of the geometry of T, thereby extending the results 
of [T2] for the Gaussian case a = 2. But due to limitations of space we cannot 
discuss this point further. 

file:////ogn
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3. Concentration of Measure for Bernoulli Random Variables 

Pisier used his contraction argument mentioned above to conclude from (1.2) that 
Tfi^rdenotes^the product measure on R"^whenrR^s equippeo^^thrth^liruform 
measure X\ on [—1,1], then 

Xn(A) = 0(a) => Xn(Au) > 0 [a + | ) . (3.1) 

Closely related to Xn, but of somewhat greater importance in Probability 
(since it corresponds to random signs) is the probability pn on {—1,1}" that gives 
mass 2~n to each point. The problem arises whether a concentration of measure 
principle as strong as (3.1) holds for pn. This is not the case (as follows from the 
example given after (3.3)). The appropriate formulation for a substitute to (3.1) 
requires to think to {—1,1}" as a subset of Rw. For a non-empty subset A of 
{—1,1}", we set CPA(X) = inf{||x — y\\2',y G conv A}, where conv A denotes the 
convex hull of A in R". 

Theorem 3.1 [T4]. Eexp(cp2
A/8) < l/pn(A). 

Using Chebyshev inequality gives 

For u > 0, pn({cpA > II}) < —^<T" 2 / 8 . (3.2) 

We first explore the consequences of this result. Consider a convex function 
for R". Then one can deduce from (3.2) that if Mf is median of / (for pn), we 
have 

fin({\f-Mf\ > u}) < 4exp ( -g jyj jH • <3-3) 

This inequality should be compared to (1.7). A major difference with (1.7) is 
however that this result is really specific to convex functions. To see it, consider 
n even, and let A = {x G {—1, l } " ; ^ ^ * * ^ 0}, s o t n a t Mnt̂ ) ^ 1/2. Define 
f(x) = inf{||x — y\\2 : y G A}, so that | | / | |L ì P = 1, and Mf = 0. It is easy to 
see that for y G ( - 1 , l}n, we have f(y) = - ^ ( ( E ^ » ^ ^ ) 1 7 2 - But the central Hmit 
theorem shows that pn({f > en1/4}) > 1/4 for some constant c independent of n. 
(Note then that pn(Acni/4) < 3/4 and that (3.1) fails.) 

Consider now a Banach space E and vectors (xk)k<n in E. 
Set 

(T = sup |^x*(x f e ) 2 ;x*GE*, | |x* | 
I ten 

< 1 

The function on Rn given by f(y) = || ̂ ^y^x/c l l^ is convex and satisfies ||/||up = 
a. Consider a sequence (£k)k<n of (symmetric) Bernoulli random variables; that 
is, the sequence is independent identically distributed and P(si = 1) = P(e,- = 
-1 ) = 1/2. Then (3.3) implies 
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Y£kXk 
ten 

M > U \ < 4e-u
2ßa (3.4) 

where M is a median of || Y<k<nekxk\\' F r o m (3-4) and elementary computations 
follows that 

ten 
^£kxk 
ten 

+ W / 2 , 

a precise form of the so called Khintchine-Kahane inequalities. 
It is not known whether the exponent 1/8 in (3.2) can be improved; the 

best possible exponent would be 1/2. Another problem of interest would be the 
determination of min{pn({cpA > u});pn(A) = u). It is likely that the sets which 
achieve this minimum depend on A,u; thus the problem might be difficult. 

It is of interest to compare Theorem 3.1 with the classical results concerning 
Hamming distance. The Hamming distance d(s, t) of two points s,t of a product 
of sets is the number of coordinates where s,t differ. For a subset A of {—1,1}", 
we set dA(x) = inf{d(x,y),y G A}. It follows from an isoperimetric inequality of 
Harper [Ha] that for pn(A) > 1/2, we have 

Pn({dA > uy/n}) < exp(—2w2). (3.5) 

On the other hand, it is simple to see that 2d A < \ß<$A- Thus {dA > u^/ri} c 
{çA ^ 2w}. Now (3.2) provides the estimate 

pn({cpA > 2u}) < 2exp(-w2/2). 

Compared with (3.5), this provides a weaker bound (but of the same essential 
strength) for a larger set. The most important difference is however that (3.2), in 
contrast with (3.5), is independent of the dimension. 

We now present an "abstract" extension of Theorem 3.1. Consider a sequence 
(Qk,pk)ten of probability spaces and denote by P the product measure on Q = 
Y[k<n f̂c- Consider a subset A of Q. For x G Q, consider the set 

UA(x) = {te {0,1}" ; 3y eA,tk = 0=>xk = yk). 

We consider UA(X) as a subset of R"; we denote by VA(X) the convex hull of 
UA(x). 

For a > 1, 0 < u < 1, we consider the function 

ci; (a, u) = a(l — u) log(l — u) — (a + 1 — aw) log ( 1 — aw 
1 + a 

Elementary calculus show that this function increases in a,w5 and is convex in w. 
We set 

v v i M = inf \ YJ èfaydiy = (ydi<n e vA(x) I. 

Theorem 3.2 [T9]. Eexp w < (1/P*(,4))a. 
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Calculus shows that £(l,w) > w2/4; thus Theorem 3.2 implies Theorem 3.1, 
but only with the worse exponent 1/16 instead of 1/8. An essential improvement 
of Theorem 3.2 over Theorem 3.1 is that for a large and u close to 1, £(a,w) is of 
order Ç(a, 1) = log(l +a) . The following bound seems to be of particular interest. 
For t > 1, 

PX(A) > 1/2 => P({ipu > t}) < (21 éf. 

It has been observed in [J-S] (using the method of [T4]) that if 0 < r\ < 1, 
and if pn denotes now the measure ((1 — rj)öo + rjöi)n on {0,1}", then for a set 
A a {0,1}", we have E vvp{cp2

A/A} < l/pn(A) (this also follows from Theorem 
3.2). An interesting fact in that direction is that the tails of çA do not improve 
when rj is small. This is somewhat unexpected. To see it, consider the case where 
A = {x e {0, l}n; Yuten xk ^ *7n)' s o t n a t ^n(^) *s °f order 1/2 by the law of large 
numbers. On the other hand, it is simple to see that (for rjn integer) cpA(y) < u 
if and only if ]T yk = p where y/p(l — rjn/p) < u, so that p < rfn-\- u^fp. For 
u < (rjn)1^2, this implies p < 2rjn, so that p < r\n+u^/2r\n. Thus for p > Y\n+u^2r\n 
we have cpA(y) > u. It follows from the central limit theorem that if 0 < rj < 1/2, 
then for n large enough, we have pn({(PA(y) > u}) > exp(—cu2) for some c 
independent of n,r\. 

4. An Isoperimetric Inequality for Product Measure 

An important concentration of measure phenomenon for product measures is as 
follows. Consider a sequence (Qk, pk)k<n of probability spaces. Denote by P the 
product measure on Q = Y[k^n Qk. Then 

P(,4) > 1/2 => P({dA > u}) < 2exp(-u2/Kn). (4.1) 

where the Hamming distance dA has been introduced in Section 3. This is an 
extension of (3.5) (with worse constants). It is easy to prove using the martingale 
approach introduced by B. Maurey and developed by G. Schechtman (see [M-S]). 
It also follows from Theorem 3.2 the way (3.5) follows from Theorem 3.1. (This 
approach gives a constant K = 4 in the exponent.) 

For a set A c Q, and k,q>0, consider 

H(A,q,k)= lyeHüi<>3xi>'" >xq€Ä> card{i;W < q,yx ± x{) < k I . 
I ten J 

For q = 1, this is exactly the set {dA < fc}. The set H(A,q,k) can be thought of 
as an "enlargement" of A, although it does not seem possible to define it as a 
neighborhood of A for a distance. 

Theorem 4.1 [T5]. For some universal constant K, and all k,q>l, we have 

P(A)> 1/2 ^P,(H(A,q,k))> l - ( T + ~^—) • (4-2) 
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As stated, this theorem gives information only when k, q are large. However 
it is also possible to show that if q > 2, k > fco, then 

P(A) > 1/2 => P*(H(A,q,k)) ^l-rik 

where rj < 1 is universal. In contrast with the case q = 1 (4.1), the estimate (4.2) 
is independent of the number of coordinates (and thus can be extended to the 
case of an infinity of factors.) 

To gain some intuition about (4.2), it is useful to consider the case where 
O, = {0,1}, W({0}) = 1 - l/n,Pi({l}) - l/n, and 

I Hn J 

In that case, P(A) > 1/2 and 

H(A,q,k) = < (x/);^x/ <q + k 

For fc of order q log q, simple estimates show that 

«^»^-(i)' 
which should be compared to (4.2). 

Theorem 4.1 has strong implications about the behavior of sums of inde
pendent random variables valued in a Banach space. Consider such variables 
Xu-- ,Xn valued into a separable Banach space F. We now outline a method to 
obtain bounds on the tails of || ̂ ^ n X, | | . (These bounds can now also be derived 
from Theorem 3.2, which has a considerably simpler proof than Theorem 4.1. Tail 
estimates are in particular at the root of classical theorems like strong laws of 
large numbers and laws of the iterated logarithm.) While this method might look 
complicated at first glance, it seems to capture the size of these tails in essentially 
all the situations; see e.g. [T5, L-Tl]. Without essential loss of generality, one can 
assume that the variables are symmetric, i.e. X\ has the same distribution as — X\, 
Consider a sequence (e,-)^„ of Bernoulli random variables, that can be assumed 
to be independent of (X\)\^n. Thus J ^ n 8,-Z,- has the same distribution as J^^n X\. 
We then write 

(4.3) 

where EE is the conditional expectation given PQ),^„. Denote by p\ the law of X\ 
on F; Consider a set A cz P",and suppose that 

Ze<-X< 
JSn 

= Ea 

: = (I) 

Z e * 
+ (II) 

• ( 
V 

Ze'*< 
/£n 

-Et Z e < * 
i<n 

(xh---,x„)eFn,Es Z E'x'' 
te« 

<M (4.4) 
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Then it is easy to see that 

{xw- ,xn) €H(A,q,k) ]Tei*i 
i<Jfi 

where ||x,-||* is the i-th largest term of the sequence (||xi||)^n. Suppose now that 
P((XU- • • ,Xn) G A) > 1/2 (e.g. if M = 2E\\ E^«£Äll a n d there is equality in 
(4.4)). It then follows from (4.2) that, if fc ̂  q 

P((I)>^M + ^ | | X z | r ) < ( | ) . (4.5) 
i<k \ ^ / 

On the other hand, if we set 

4 = s u p j j y ( X 0 2 ; x * G £*,||x*|| < 1 

it follows from (3.4) that, conditionally on X\, ' • • ,Xn 

P((II) > X(l + u)ox) < 4e~u2. (4.6) 

To make (4.5), (4.6) usable, it remains to control Y,i<n \\xi\\* (which is a 
problem about real-valued random variables) and ox- Several methods have 
been developed for that purpose; adjusting the various parameters involved has 
allowed to get bounds of the right order in all the problems studied to date; cf. 
[L-T2], Chapters 6 to 8. 
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Random Walks and Diffusions on Fractals 

Martin T. Barlow 

Statistical Laboratory, University of Cambridge, 16 Mill Lane 
Cambridge CB2 1SB, England 

1. Introduction 

The field this paper will survey could be called analysis on fractals: more specif
ically it is the study (by analytic or probabilistic means) of the fundamental 
second order PDEs on fractal spaces. The original motivation came from mathe
matical physicists working on the properties of disordered media, and interested 
in questions such as heat conduction, vibration modes etc. There is experimental 
evidence that fractals can provide a good model for certain kinds of disordered 
media; and it is hoped that the study of PDEs on fractal spaces would give 
at least some information about PDEs in disordered media. See [AO, RT] for 
early work by mathematical physicists, and [HBA] for a survey of the now very 
extensive physics literature. 

Let F £ Rrf be a connected self-similar fractal with Hausdorff dimension 
df = df(F), and let pp denote Hausdorff xdf -measure on F. (See Hutchinson [H] 
for a construction of such sets via families of linear maps.) The heat equation on 
F should take the form 

Z I ì ì - M = — , u(x,0) = uo(x), X G F, (1.1) 
dt 

where u : F x R + —• R, UQ G C(F), and Ap is a 'Laplacian' operator (i.e. self-
adjoint with respect to p, local, non-positive, satisfying zli?l = 0) acting on a 
subspace @(Ap) c C(F). The following problems arise immediately: 

(a) Existence. The construction of a suitable Ap which is P-isotropic, that is, 
locally invariant with respect to local isometries of F. 

(b) Uniqueness. Is Ap characterised (up to a scale factor) by the property of 
being P-isotropic? 

(c) Properties. The form of the functions in @(AF), and the properties of solutions 
to the Laplace, heat etc. equations associated with P. 

Although the questions stated above are purely analytic, a natural approach 
(and historically the first one) is to approach them probabilistically, and seek to 
construct an P-isotropic diffusion process Xt, t ^ 0 on P. Then the infinitesimal 
generator of X is a natural candidate for the Laplacian Ap, and the transition 
density of X is a solution to the heat equation. Of course the process X is an 
interesting object, worthy of study in its own right. 
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In this survey I will concentrate on the probabilistic approach, on the con
struction and behaviour of diffusion processes on some specific classes of fractals. 
The subject is still quite young, and though some general patterns and unifying 
approaches are beginning to emerge, it still consists to a considerable extent of a 
collection of specific examples. 

I will also concentrate on rigorous results in the mathematical literature. 
However, many of the key concepts, and in particular the indices df, dw and ds 

were introduced earlier in physics papers. 

2. The Sierpinski Gasket 

This is the simplest non-trivial connected fractal, and is the natural starting point 
for any investigation of fractal spaces. Hutchinson's theory ([H, F]) provides 
a convenient description. Let a\ = (0,0), a-i = (1,0), as = ( y v ^ ) , let Go = 
{«1,02,03}, AQ be the closed convex hull of Go, and let 0,-, 1 < i < 3, be the linear 
contractions defined by cj>i(x) = \(x + aì). For any set B ^ R 2 set 

$(B) = U<l>i(B), (2.1) 
i 

and let <&n be the «-fold convolution of <P. The Sierpinski gasket G may be defined 
by 

OO / CO \ 

G=C\0n(Ao)=cll[J0n(Go)) . (2.2) 
n=0 \n=0 / 

Note that $n(Ao) consists of 3" triangles each of side 2~n. Following the terminol
ogy of Lindstem [L] we call any set of the form BnG (respectively B fl <&n(Go)) 
an n-complex (respectively n-cell), where B is any triangle of side 2~n in 0n(Ao). 
Write Gn = $n(GQ). 

By [H] the Hausdorff dimension of G is given by dim G = log 3/ log 2 = 
df(G) = df. Let PQ be the multiple of Hausdorff-x^ measure on G which assigns 
mass 1 to G. The key property of G used below is that it is finitely ramified: 

(FR) if Hi and Hi are two adjacent «-complexes, with common point x, 
then any continuous path in Hi U H2 from H\ to #2 passes through x. 

The natural approach to the construction of a diffusion X on G is to approximate 
X by a sequence of random walks on the discrete sets Gn. Call any pair of points 
x,y £ Gm neighbours if x and y belong to the same m-cell, and write Nm(x) for 
the set of neighbours of x: note that #Nm(x) = 4 for x G Gm \ G0. Let Ym(r), 
r > 0 be a simple symmetric nearest-neighbour random walk on Gm. Initially we 
will take Ym(0) = 0 for each m. 

Define the sequences of stopping times 

S m = m i n { r > 0 : Y m ( r ) G G o \ { 0 } } , 
Tf+1 = min{r > Tf : Y » G Gm_! \ {Ym(T^)}}, Tg1 = 0. 

Set 

Yfe
m-X = Ym(Tf), k > 0 ; 
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we call 7 '" - 1 the decimated random walk on Gm-\, The following lemma, which is 
crucial in the analysis of the walks Ym, is any easy consequence of the geometry 
of G, and in particular of (FR). 

Lemma 1 ('Decimation invariance' [G, Kul, BP]). 
(a) The random walks Ym~l and Y'""1 are equal in law. 
(b) The r.v. (T^ - T^,k > 0) are i.i.d. and equal in law to Si. 

A straightforward calculation gives ES\ = 5, and using Lemma 1(b) it follows 
that ESm = 5m. This suggests that, to obtain a weak limit, one should consider 
the processes 

X\m) = Ym([5mt]) t^O. (2.3) 

Theorem 2 [G, Kul, BP]. The processes S^m\ m > 0, converge weakly to a non-
trivial continuous G-valued process X. 

The tightness of the sequence X^ follows from the estimates on the crossing 
times Sm, and similar estimates on the crossing times of smaller n-complexes. The 
decimation invariance of the random walks Ym provides the necessary connection 
between Ym and Y"1"1 to prove convergence of the entire sequence X^m\ rather 
than just a subsequence. 

A similar argument can be used to define X with Xo = x G |J G„. Let 
Xt(w) = w(t) be defined on the canonical space Q = C(R+ , G), and let Px be 
the law of X started at x. Then the law Px for any x G G may be defined by 
considering the limits Px", as x„ —> x. Set 

Ptf(x) = Exf(Xt), feC(G) xeG. (2.4) 

Theorem 3 [Kul, BP]. (a) The process (Px,Xt) is a continuous Strong Markov 
process on G. 
(b) Pt is a Feller semigroup. 
(c) Pt is p-symmetric, that is 

Jg(x)Ptf(x)p(dx) = JPtg(x)f(x)p(dx) for all f,geC(G). 

The proofs of (a) and (b) use no really new ideas, but do involve a number of 
somewhat messy technicalities. It would be nice to see a really clean construction. 
(c) is an immediate consequence of the symmetry of the random walks Ym. 

Let ($£,$)(<£)) be the infinitesimal generator of the semigroup Pt\ then ££ 
is a Laplacian operator on G, so taking AQ = 3? gives a solution to the exis
tence problem (2.1)(a). Write $(f,f) for the Dirichlet form associated with the 
semigroup Pt - see [Fu]. 

We now consider the second problem, that is, the uniqueness of X and JSP. 
A local isometry of G is a triple (H,J,cj)), where H,J are subsets of G, and 
(j) : H —> J is an isometry in the intrinsic metric do- (dc(x>y) is the Euclidean 
length of the shortest path between x and y in G : it is easily seen that the intrinsic 
and Euclidean metrics are equivalent.) Let III be the set of local isometries of the 
form (H, J, (j)) where H, J are «-complexes, and cj) is the restriction to G of a linear 
isometry in R2. Let 772 be the set of isometries of the form (Hi U H2, Hi U Hi, cp), 
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where Hi,H2 are a pair of adjacent n-complexes, with common point x say, and 
cp fixes one of the Hi and reflects the other in the axis of symmetry which passes 
through x. 

It is easy to see from the^eorresponding^property^of^the—Y^^thatJ^is^loeally^ 
invariant under local isometries. By analogy with the case of R d (where standard 
Brownian motion is the unique diffusion invariant with respect to translations 
and rotations) it is therefore reasonable to call X Brownian motion on P. 

Theorem 4 [BP, Theorem 8.1]. Let (Y(t),Px) be a diffusion process on G, and for 
H czG write TH = inf{t > 0 : Yt $ H}< Suppose that, whenever (H,J, cj)) G Ì7iUJ72 

is a local isometry of G, and x G H, the Px law of cj)(Y(TA-)) and the P ^ law of 
Y(Tj A •) are equal. Then there exists a constant a G [0,oo) such that the Px law 
of (Y(t), t > 0) equals the Px law of (Xat, t > 0). 

Remark. The class of isometries required to ensure uniqueness is slightly larger 
than one would initially expect. The isometries in the class 772 are necessary to 
exclude the process (similar to some discussed in [G]) which moves along the 
edge of the largest m-complex it lies in. 

We now turn to the properties of the process X. Set 

4 = d w ( G ) = l o g 5 / l o g 2 ; (2.5) 

this number governs the space-time scaling of the process X. Set 

<P(t,x) = t~df/dw e x p t - ^ r 1 ) 1 7 ^ - 1 * ) . (2.6) 

Theorem 5 [BP, Theorem 1.5]. There exists a continuous symmetric function Pt(x,y), 
(t, x, y) G (0, oo) x G x G such that 
(a) pt is the transition density of X with respect to p: 

Ptf(x) = jf(y)Pt(x>yMdy), xeG, febG, 

(b) there exist constants ci,...,C4 such that 

c^(t,c2\x-y\)<pt(x,y)<c^(t,cA\x-y\) for x,yeG,0<t<l, (2.7) 

(c) u(t,x) = Pt(xo,x) is the fundamental solution of the heat equation on G with 
pole at XQ: 

du 

Tt 
= &u; u(0,') = oXo. (2.8) 

Remarks. 1. In [BP] this was actually proved for the process on the unbounded 
gasket G = |J£L0 2"G, and in this case the estimate (2.7) holds for t G (0,oo). 
2. Setting x = y in (2.7) one obtains 

pt(x,x)&rdf/d» 0<t<l. (2.9) 

(Here « means 'bounded above and below by constants'.) 
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Let —Ai > — ki > ... be the eigenvalues of if, let <p\ be the corresponding 
eigenfunctions, and set N(X) = #{/l/ : X\ < X}. Then the transition density pt(x, y) 
has an expansion 

Pt(x>y) = ^,e-Xltcpi(x)cpi(y) ; 

setting x = y and integrating over G one obtains for t < 1 

r*si**ç* [pt(x,x)p(dx) = Yse~*it= [ e~XtNWX), 

and inverting the Laplace transform it follows that 

N(JL) f* Xd*/d» as X ->oo. (2.10) 

The quantity ds = 2df/dw is referred to as the 'spectral dimension' of G; from (2.9) 
and (2.10) one sees that it governs the short-time asymptotics of the transition 
function, and the frequency of small eigenvalues of if. 

There is now a well developed 'machine' for obtaining estimates on the 
transition functions of symmetric Markov processes from geometric properties 
of the underlying space - see [CKS, V] and the papers cited therein. However, 
this method does not appear to work well in the context of fractal spaces : 

(a) It does not seem to be easy to obtain the correct L1-Sobolev inequality as a 
starting point. In particular, using an isoperimetric inequality does not give 
the correct value of ds - see [O, BBS and BB4]. 

(b) Even when one has on-diagonal estimates for pt, there are problems in ap
plying E.B. Davies' method (see [CKS]) for obtaining off-diagonal estimates. 
One major difficulty is that the measures v\f)g] associated with the Dirichlet 
form #(/,g) are singular with respect to pc - see [Ku2]. 

The proof of Theorem 6(b) proceeds as follows, and it is probable that a 
similar approach will work for other fractals with ds < 2. 

(1) Obtain estimates on the potential kernel density UA(x,y) for the process X 
killed on leaving the region A <= G. In particular, one finds that if Bm(x) = {y G 
G : | x - y | < 2 - m } then 

^H(x)(x,x)«(f)'" = (2-»y»-^. (2.11) 

(2) Obtain estimates on 
(a) the PMaw of the times Tm to leave the region Bm(x), 
(b) the density fxy(s)ds = Px(Ty G ds). 

(3) Combine (1) and (2)(a) to obtain bounds on ux(x,y), the /l-potential 
density. If X = 2mdw then the stopping times Tm and R), (an independent negative 
exponential r.v. with mean k~l) are of the same order of magnitude, and therefore 
so are ux(x,x) and UBm(x)(x,x), One has 

ux(x,x) « X*d*-1, X>1. (2.12) 

(4) Applying a Tauberian theorem, and using the fact that since X is symmetric 
t -> pt(x,x) is decreasing, (2.12) implies that 
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Pt(x,x) & rds/2, 0 < t < l . (2.13) 

(5) The off-diagonal bound follows by using the first entrance decomposition 

Pt(x,y)= / fxy(s)Pt-s(y,y)ds, (2.14) 
Jo 

and substituting the bounds given by (2.13) and (2)(b). 
Many properties of the process X follow from Theorem 6, or the estimates 

used in the proof. For example, integrating (2.7) over G one obtains 

Ex\Xt - x\2 « tdw , 0<t<l, (2.15) 

while the estimates on the tail of the distribution imply the Levy Holder law 

c < hm sup sup . \Xt - Xs\/h(t -s) <c', (2.16) 
(U0 0<s<£<l 

\t-s\<ö 

where h(u) = w1/rf,v(log(l/w))(rfw'_1)/rfw. The estimates on ux imply that X has a 
jointly continuous local time (Lx,x G G,t > 0) which is Holder continuous 
of order ±(dw — df) — s in the space variable. From this it follows that X is 
space-filling: 

{Xt,0 < t < T} = G for all sufficiently large T, a.s. 

I conclude this section with a brief account of further work on the Sierpinski 
gasket. 

A purely analytic approach to the potential theory on G is given by Metz [M] 
and Kigami [Kil]. Kusuoka [Ku2] gives a description of the Dirchlet form ê(•, •) 
associated with X as an infinite matrix product. Two noteworthy consequences of 
this are, firstly, the result (mentioned above) that the measures vjyjg] are singular 
with respect to p, and secondly, that the natural filtration of X is one-dimensional, 
in the sense of [DV]. 

Fukushirria and Shima [FS], [S] give an explicit description of the eigenvalues 
Xi of the operator if: a particular consequence is that 

X~ds/2N(X) oscillates boundedly as X - • oo. (2.17) 

Most attention has been given to the Brownian motion on G. However, a 
more complete analysis of the analytic behaviour of G would involve a study of 
diffusion processes with drift. Kumagai [Kum] has recently studied an interesting 
class of non-symmetric diffusions on G, the 'p-stream diffusions'. 

3. Other Finitely Ramified Fractals 

It is natural to ask whether the results of the previous section extend to other 
regular fractals. [G] discusses one other fractal, the Vicsek set, and Krebs [Kr] 
gave a fairly complete analysis. Lindstem [L] defined a large class of self-
similar finitely ramified fractals, called 'nested fractals', and gave a construction 
of 'Brownian motion' on them. For a full description of this class, see [L] ; to 



Random Walks and Diffusions on Fractals 1031 

simplify the exposition here I will restrict myself to a subfamily which, however, 
seems large enough to capture the essential features. 

Let Po = {ûfi,..., fl/J be the vertices of a regular fe-sided polygon in R2 , and 
let AQ be the closed convex hull of Po. Let X > 1, M > k, û^+I, . . . , au be points 
in >4o and let c\>\, 1 < / < M be linear contractions with scale factor X such that 

(a) fa(x) = ai + X~l (x - a,) for 1 < / < M (3.1) 

(b) cj)i(A0) c AQ for 1 < / < k, 

(c) the sets cj)j(Ao) are disjoint apart from their vertices, 

(d) the set Ai = (J/Üi <ì>ì(M) is connected, 

(e) A\ satisfies the same symmetries as A$. 

The set 
oo M 

F=n*B(4>). where *o=uwo, 
is a nested fractal. Note that the condition (c) ensures that P is finitely ramified. 
The definition of the n-complexes and w-cells is the same as for the Sierpinski 
gasket; let also F„ = 0n(FQ). 

An example is the Vicsek set, where M = 5, X = 3, ai,...,a4 are the corners 
of the unit square, and as = \Za\ is its centre. 

The first major difficulty in constructing a Brownian motion X on P is in 
finding a sequence of decimation invariant random walks. One's first thought 
might be to take Ym to be a nearest neighbour random walk on P„„ where x and 
y are 771-neighbours if x and y are adjacent vertices of a polygon in some m-cell. 
However, the example of the Vicsek set shows this will not work: if Ym is chosen 
as above then Ym_1 will make diagonal transitions, while Y"1_1 can only make 
horizontal or vertical ones. 

As the random walks Ym on Fm are to be symmetric, it is easiest to define them 
by choosing a symmetric conductivity matrix am(x,y), x,y G P„, and defining the 
transition matrix pm by 

Pm(x9y) = am(x,y)/am(x), am(x) = ^ am(x,y). (3.2) 
y 

Let OLI,...,a/c-i satisfy Xa,- = 1, a,- G [0,1], a,- = â -,-, and define 

{ OLì if x, y belong to the same m-cell and x and y 
are / steps apart on the circumference ; (3.3) 

0 otherwise. 
Let Px be the law of the random walk Y1 defined by (3.2) and (3.3) with 
m = 1. Let T = min{r > 0 : Y G P0 - {ai}}, and set //(a) = P^(YT = at), 
/ ( a ) = (fi(a)»---j//c-iW)- It is not hard to verify that if Ym has transition 
probabilities given by a = (ai,...,a/c_i), then Ym~l has transition probabilities 
f(a), so that the search for a decimation invariant walk corresponds to the study 
of the fixed points of the map a —> f(a). Let £ = [k/2]. 

Theorem 6 [L]. Set K = {a : ai > ai > ' ' ' i> <v}- Then f : K -> K, and is 
continuous. Hence f has at least one fixed point in K. 
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Let a G K be a fixed point off and Ym, m > 1 be the associated random walks. 
Then there exists a number % = T(<X,P) such that the processes Xm(t) = Ym(%mt) 
converge weakly to a process X on P. 

Theorem 7 [L]. (a) X is a pp-symmetric Feller diffusion on P. 
(b) X is invariant with respect to local isometries of P. 
(c) Let AttiF be the infinitesimal generator ofX, —Xi > —X% > ...be the eigenvalues 
ofAa,F and N(X) = f{X{ : Xt < X}. Then N(X) « X^F\ where 

ds(a,F) = 2\ogi/\ogX. (3.4) 

Remarks. 1. Lindstem actually uses nonstandard analysis to construct X, and 
the weak convergence is an immediate consequence. 

2. If a ^ K is a fixed point, a hmiting process can still be constructed, but it 
is no longer invariant. 

Following Lindstem, let us call the numbers X, M, % the length, mass and time 
scale factors for the fractal P. Then 

dim(P) = df (F) = log Ml log X. (3.5) 

As in the case of the Sierpinski gasket, the number 

dw (F) = log T/ log X = 2df/ds (3.6) 

governs the space/time scaling of X. 
The three 'dimensions' df, ds, dw have been known to mathematical physicists 

for some time [RT, AO]. Together they appear to summarise fairly completely the 
behaviour of the process X. In view of the final relation in (3.6) (which seems to 
hold in great generality) there are really only two independent quantities, df(F) 
(called the 'fractal dimension') and the spectral dimension ds(F). Of these df is a 
'geometrical' quantity and for self-similar fractals can be calculated immediately 
from the length and mass scale factors. On the other hand T and ds are 'analytic': 
it appears necessary to solve some equation on F (or its approximations) to 
obtain their values. 

The relation ds < df (or equivalently dw > 2) holds for nested fractals [L], for 
graphs [Kul] and for Sierpinski carpets [BB3], and it is probable that it holds in 
general. No other relation between these dimensions seems likely. 

One problem left open by [L] is the uniqueness of the fixed point. That this 
cannot be altogether straightforward is shown by the case of the Vicsek set, where 
a = ( j , ^ ) and ß = (0,1,0) are both fixed points. However ß £ K is unstable, 
and, as remarked above, does not give rise to an invariant process on the fractal. 
Theorem 7 shows that each fixed point in K gives rise to a Laplacian A^F, which 
in turn determines an 'analytic structure' on P. The uniqueness of fixed points 
therefore corresponds to the question as to whether a nested fractal carries only 
one natural analytic structure. 

Conjecture 8. The map a -» f(a) has exactly one fixed point in K, and this fixed 
point is stable. 
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Very recently I have proved this in the case k = 4 for the subfamily of nested 
fractals described above. 

As far as the probabilistic properties of the process X are concerned, less is 
known than in the case of the Sierpinski gasket. However, there is little doubt 
that Theorem 5 holds for many nested fractals, with the single change of d (F) 
for d,(G) in (2.6). 

A much wider class of finitely ramified fractals (pcf self-similar sets) has 
been introduced in [Ki2]. Kigami uses analytic methods, and the question of 
the existence of a decimation invariant walk is replaced by the existence of a 
'harmonic structure'. Kigami proves that, if a harmonic structure on P exists, then 
a Laplacian Ap and Dirichlet form $p(-, •) can be constructed. However, there are 
at present neither existence nor uniqueness theorems for harmonic structures on 
general pcf self-similar sets. 

4. Sierpinski Carpets 

These are the simplest examples of infinitely ramified fractals, and have been 
studied in [BB1, BB2, BBS, BB3, and BB4]. I will restrict attention here to the 
basic Sierpinski carpet (SC) - the methods and results are the same for more 
general SCs. Let HQ be the closed convex unit square, and Hi = HQ\ (|,f)2. 
Repeating this operation (of removing the central square) one obtains a sequence 
of closed sets Hn (77„ consists of 8" squares each of side 3~"); the Sierpinski 
carpet H is defined by 

oo 

H=f)Hn. 

It is fairly clear that the methods of Sections 2 and 3 will not work here. 
Instead, as each 77„ has a connected interior, it is natural to consider continuous 
approximating processes. Let Wn be Brownian motion on Hn, with orthogonal 
reflection on 3Hn, and let a„ be the maximum mean crossing time of Hn by Wn, 
defined by 

a„ = sup Ex(inf{t > 0 : Wn(t) eJn77„}), (4.1) 
xeHn 

where J = {z = (x,y) G R2 : x = 1 or y = 1). Let X? = W"(oLnt); the processes 
Xn are tight, and so if (n^) is a subsequence such that Xnk converges weakly, 
the limiting process X is a continuous 7f-valued process. By using tightness of 
resolvents rather than processes (and, possibly, using a different subsequence), 
one can ensure that the limiting process is in fact a diffusion. 

The length and mass scales of H are given by XH = 3, MH = 8. There exists 
a number T (T ~ 10.0118) such that a„ « (±T)" : T is the time scale for 77. Let 

A m \ l o S 8 * m \ 2 1 o g 8 • 

df(H) is the Hausdorff dimension of 77, while the following result ensures that 
ds(H) is the spectral dimension of any Brownian motion constructed in this 
fashion. 

Theorem 9 [BB4]. Let (nk) be any subsequence such that the processes X"k converge 
weakly to a diffusion process (Xt,P

x). Then X is Feller, and pn-symmetric, and has 
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a transition density with respect to pn which satisfies the conditions (a)-(c) of 
Theorem 5. 

Remark. The main gap in the theory for the SC is the lack of any kind of 
uniqueness result: it is possible (though rather unlikely) that the laws of the Xn 

have more than one limit point. 

The main steps in the construction of X, and the proof of Theorem 9, are as 
follows. Set Kn = Hn n [0, ï]2, and let L{, 1 < i < 4 denote the 4 edges of H0. 

(1) Using a reflection principle, and a path-crossing argument, one can prove 
the following Harnack inequality [BB1, Theorem 3.1]: 

There exists a constant c > 0 such that if u : Hn —> R + is harmonic in Hn — J 
then 

sup u(x) < c infueKH u(x). (4.2) 
ueKn 

(2) Let 

R-1 = inf{fHn \Vu\2dx : u = 0 on L0, u = 1 on L2} ; (4.3) 

thus Rn is the resistance of Hn when two opposite edges are short-circuited, and 
a potential difference is applied between them. Using the Harnack inequality 
to construct a feasible function for the variational problem one obtains [BB2, 
Sect. 2] 

<Xn*(l)nRn- (4.4) 

(3) Further comparison arguments, of Hn with associated wire networks, give 
[BBS, BB3] 

i P n P m < P „ P m < 4 P n P m . (4.5) 

Standard subadditivity results now imply that there exists a number Q such 
that Rn& Qn. The time scale T# is defined by 

xH = SQ = MHQ . (4.6) 

(4) The proof of the analogue of Theorem 5 for H now proceeds in a fashion 
very similar to the proof in the case of the Sierpinski gasket. 

The Equation (4.6), relating the resistance growth of the Hn with the time and 
mass scales, is called in the physics literature an Einstein relation, and has been 
known to physicists for some time - see [RT]. The use of ideas from electrical 
theory (or, equivalently, from a mathematical viewpoint, the theory of Dirichlet 
forms) seems to be a powerful tool in this area. 
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Abstract 

Many problems in routine statistical analysis can be interpreted as the decomposi
tion of a representation into irreducible components and the computation and 
interpretation of the projection of a given vector into these components. Examples 
include the usual spectral analysis of time series and the statistical analysis of 
variance. Recently, non-commutative representations have emerged as a practical 
tool. A variety of approaches have come together to give a unified theory. 

1. Introduction 

The study of a function through the size of its coefficients in an orthogonal 
expansion is a standard tool. This paper shows that expansions arising from the 
action of a group on a set occur naturally in a variety of statistical problems. 

Example (Time Series Analysis). Let f(0), f(\), ... f(N — 1), be the observed value 
of a series of events. For example, the f(k) might be the number of children born in 
New York City on successive days. Data collected in time often exhibit periodic 
behavior; New York City birth data looks like this: 

411, 430, 418, 396, 401, 320, 322, 

the pattern of 5 high values followed by two low values persists. This seems 
surprising until one realizes that about 20% of all births are induced and physicians 
don't like to work on weekends. Izenman and Zabell (1978) discuss these data. 

To find and interpret such periodicities, data f(k) is often transformed as 

f(j) = "i *2"w7(*). 
fc=0 

The data can be recovered by the inversion theorem 

JM j=o 
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If the transform f(j) is relatively large for only a few values of j , the inversion 
theorem shows fis well approximated by these few periodic components. This gives 
a simple description off and one can try to go back and understand why the few 
components are large. 

This "bump hunting" part of spectral analysis is fully explained in books by 
Brillinger (1975) and Bloomfield (1976). It is only one part of the story - continuous 
spectra is the other part (see Tukey (1961) - but it, and its generalizations will 
dominate the present treatment. 

The generalizations presented here involve a finite group G acting on a finite set 
X. Let / : X -> IR be a given function. In the example above, G is a cyclic group of 
order N acting on itself by translation. The function f(k) is the number of children 
born on day k. In the example of the next section, G is the symmetric group acting 
on itself and f(%) is the number of people in an election who ranked candidates in 
the permutation n. 

Let L(X) — {/: X -> <C}. This is a vector space on which G acts by sf(x) = 
f(s~lx). Mashke's theorem implies that L(X) splits into a direct sum 

L(X) = V0®V1@-"®VJ 

where each subspace is invariant under the group (so g G VI implies sg e Vt) and the 
pieces are irreducible, so no further splitting is possible. Clearly / G L(X) can be 
written as / = Yfx=ofi w i t n A t n e projection into Vt. 

The empirical finding, to be explored further, is that the subspaces often have 
simple interpretations and the decomposition of / into its projection into the V^ 
"makes sense". 

Definition. Spectral analysis consists of the computation and interpretation off and 
the approximation off by as few pieces as do a reasonable job. 

This necessarily vague definition encompasses a number of areas of classical 
statistics. In the next section an example is presented in some detail. Section 3 gives 
a group-theoretic version of the classical analysis of a variance as spectral analysis. 
Section 4 describes modern work on ÀNOVA of orthogonal designs as developed 
by Bailey, Neider, Speed, Tjur, and their co-workers. That these two approaches 
lead to the same analysis in nice cases is an important recent result of Rosemary 
Bailey, Chris Rowley, and their co-workers. This is developed in Section 5. The final 
section gives pointers to the many topics which couldn't be covered in this brief 
review. 

Spectral analysis as outlined here is a data analytic variation of ideas suggested 
earlier by Alan James and Ted Hannen. Hannen's (1965) monograph is filled with 
innovative ideas and treats continuous problems as well. Peter Fortini's (1977) thesis 
is also an important source of inspiration for the treatment presented here. 

Only the rudiments of group representations are needed. The beginning of the 
books of Ledermann (1987) or Serre (1977) are ample background. I have tried to 
lay out the background in Diaconis (1988). 
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2. An Example 

This section presents data on S5 the symmetric group on 5 letters. The data arise 
from an election of the American Psychological Association. This organization asks 
its membership to rank order 5 candidates for president. Here G = S5 and f(n) is 

(\ 2 3 4 5\ 
the number of voters choosing rank order 7T. For example,/1 1 = 29 

so 29 voters ranked candidate one 5th, candidate two 4th and so on. The data is 
shown in Table 1. 

Let Q:S5-+ GL5(U) be the usual 5-dimensional permutation representation. 
Thus Q(TL) is a 5 x 5 matrix with (/, ;) entry 1 if n(i) = j and zero otherwise. The 
Fourier transform of / at Q is the matrix 

Table 1. American Psychological Association election data 

Ranking 

54321 
54312 
54231 
54213 
54132 
54123 
53423 
53412 
53241 
53214 
53142 
53124 
52431 
52413 
52341 
52314 
52143 
52134 
51432 
51423 
51342 
51324 
51243 
51234 
45321 
45312 
45231 
45213 
45132 
45123 

No. of 
votes cast 
of this 
type 

29 
67 
37 
24 
43 
28 
57 
49 
22 
22 
34 
26 
54 
44 
26 
24 
35 
50 
50 
46 
25 
19 
11 
29 
31 
54 
34 
24 
38 
30 

Ranking 

43521 
43512 
43251 
43215 
43152 
43125 
42531 
42513 
42351 
42315 
42153 
42135 
41532 
41523 
41352 
41325 
41253 
41235 
35421 
35412 
35241 
35214 
35142 
35124 
34521 
34512 
34251 
34215 
34152 
34125 

No. of 
votes cast 
of this 
type 

91 
84 
30 
35 
38 
35 
58 
66 
24 
51 
52 
40 
50 
45 
31 

• 23 
22 
16 
71 
61 
41 
27 
45 
36 
107 
133 
62 
28 
87 
35 

Ranking 

32541 
32514 
32451 
32415 
32154 
32145 
31542 
31524 
31452 
31425 
31254 
31245 
25431 
25413 
25341 
25314 
25143 
25134 
24531 
24513 
24351 
24315 
24153 
24135 
23541 
23514 
23451 
23415 
23154 
23145 

No. of 
votes cast 
of this 
type 

41 
64 
34 
75 
82 
74 
30 
34 
40 
42 
30 
34 
35 
34 
40 
21 
106 
79 
63 
53 
44 
28 
162 
96 
45 
52 
53 
52 
186 
172 

Ranking 

21543 
21534 
21453 
21435 
21354 
21345 
15432 
15423 
15342 
15324 
15243 
15234 
14532 
14523 
14352 
14325 
14253 
14235 
13542 
13524 
13452 
13425 
13254 
13245 
12543 
12534 
12453 
12435 
12354 
12345 

No. of 
votes cast 
of this 
type 

36 
42 
24 
26 
30 
40 
40 
35 
36 
17 
70 
50 
52 
48 
51 
24 
70 
45 
35 
28 
37 
35 
95 
102 
34 
35 
29 
27 
28 
30 
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A?) = !<?(*)/(«). 

This has (i, j) entry the number of people ranking candidate i in position j . This 
natural summary is shown in Table 2 where entries are divided by the total number 
of voters to give proportions. 

Table 2. Percentage of voters ranking 
candidate i in position j 

Candidate 

1 
2 
3 
4 
5 

Rank 

1 

18 
14 
28 
20 
20 

2 

26 
19 
17 
17 
21 

3 

23 
25 
14 
19 
20 

4 

17 
24 
18 
20 
19 

5 

15 
18 
23 
23 
20 

The largest number 28 in the (3,1) position shows 28 percent of the voters ranked 
candidate 3 first. Candidate 3 also had some "hate vote": 23 percent ranked 3 last. 
This first order summary is the first thing anyone analyzing such data would try. It 
is natural to ask if it captures the essence of the voting pattern or if there is more 
to be learned. 

The data is summarized by / G L(S5). This last vector space splits into 7 invariant 
subspaces in its isotypic decomposition shown in Table 3. 

Table 3. Decomposition of the regular representation 

M = vx e v2 e v3 e v4 

Dim 120 1 16 25 36 
SS/120 2286 298 459 78 

e v5 

25 
27 

© v6 

16 
7 

© Vn 

1 
0 

Table 2 amounts to looking at the projection off into V1®V2. If L(S) is treated 
as an inner product space with </|gf> = £/(rc)0(rc) the function / decomposes into 
the pieces of its orthogonal projection. The norm square off decomposes into the 
norm squared of its projections by Pythagoras's theorem. These squared lengths are 
shown in the last line of Table 3. As usual the largest contribution comes from the 
projection onto the constant functions. There is also a large projection onto the 
space V3. This projection is not captured in the summary of Table 2. 

The space V3 is made up of "2nd order functions", a typical such being 
n*->ô{jj>}{7c(i), n(i')} which is 1 if the unordered pair {n(i)9 n(i')} = {j, j ' } . The span 
of all 2nd order functions, orthogonal to Vx ® V2 make up V3. In group representa
tions language, V3 is the isotypic subspace corresponding to the partition 3, 2. This 
V3 is 25-dimensional. To understand the projection o f / in to V3 a device of Colin 
Mallows was used. The function / corresponding to the data is projected onto V3. 
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The inner product of this projection with functions ö{jJ.}{n(i), n(i')} is then reported. 
The pairs {/, / '} , {;', ; '} can be chosen in 10 ways each. The 100 inner products are 
shown in Table 4. 

Table 4. Second order, unordered effects 

Candidate 

1,2 
1,3 
1,4 
1,5 
2,3 
2,4 
2,5 
3,4 
3,5 
4,5 

Rank 

1,2 

-137 
476 

-189 
-150 
-42 
157 
22 

-265 
-169 
296 

1,3 

-20 
-88 
51 
57 
84 

-20 
-44 
-7 
10 

-24 

1,4 

18 
-179 
113 
47 
19 

-43 
7 
72 
88 

-142 

1,5 

140 
-209 

24 
45 

-61 
-25 
15 
199 
70 

-130 

2,3 

111 
-147 
-9 
43 
30 

-93 
-117 

39 
78 
-5 

2,4 

22 
-169 

98 
49 

-16 
-76 
69 
140 
44 

-163 

2,5 

4 
-160 
99 
56 
82 

-56 
25 
85 
47 

-128 

3,4 

6 
107 
-65 
-48 
-76 

8 
62 
19 

-51 
38 

3,5 

-97 
128 
23 

-53 
-39 
38 
99 

-52 
-36 
-9 

4,5 

-46 
241 

-146 
-48 
72 
112 

-138 
-233 
-80 
267 

To explain, consider the {1, 3} {1, 2} entry 476. This is the largest number in the 
table. It means that there is a large positive effect for ranking candidates one and 
three in the first two positions of the ballot. The last entry in row {1,3} shows that 
these candidates also had a lot of hate vote. 

A very similar picture occurs for the last row of the table. With these observations, 
the tables pattern becomes apparent. The American Psychological Association 
consists of two groups, academicians and clinicians who are on uneasy terms. 
Candidates {1,3} are from one group, {4, 5} from the other. Very few voters cross 
ranks so there is a large negative effect for ranking, say {1,4}, first and second (or 
fourth and fifth). These observations are the main structure not revealed by the first 
order analysis. 

In studying data as we have above it is natural to ask if the data were collected 
again, would the same patterns arise. I will not go into the details here, but a variety 
of stochastic analyses suggest that the natural scale of variability in Table 4 is ± 50, 
so the patterns observed are believable. 

Further details of this analysis are given in Diaconis (1989). Diaconis and Smith 
(1989) give a different set of applications for these group-theoretic decompositions. 

3. Analysis of Variance (ANOVA) 

Consider data cross classified by I levels of one variable and J levels of a 
second variable. The observed data is then a function f(i, j) from 
X = {(/, j) : 1 < / < I, 1 < ; < J} into R. The product Sj x Sj acts on X and L(X) 
splits into 

L(X) = V0® V, ® V2 ® V3 

dim 7 x 7 1 7 - 1 J - \ (I - \)(J - \) 
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where V0 is the space of constant functions, V1 is the space of row functions 
f(U j) = f(U j ' ) , V2 is t n e space of column functions, and V3 is the space orthogonal 
to V0 ® V± ® V2. The projection of / onto V0®Vl® V2 can be interpreted as. the 
least squares approximatiorrto/of form f(i, j) = a -i^ßf^yjfor constantsar^ yjr 

This, and many more complex variants are known collectively in statistical 
literature as the Analysis of Variance. The classical book by Sheffe (1959) is still the 
best treatment of this widely used subject. 

The group-theoretic treatment of ANOVA was pioneered by Alan James and 
Ted Hannen with important later work by Peter Fortini. Group theory is useful in 
analyzing more complex designs where the appropriate decomposition is not so 
easy to guess at. The dimensions and projections of various subspaces can be 
computed by character theory. Diaconis (1988) reviews these topics. 

Even in the simple example given above, thinking group-theoretically has some
thing to offer: Instead of 5Z x Sj one can consider 57 x Cj or Cl x Cj, with CI a. 
cyclic group of order I. These groups act transitively and their use would be 
appropriate if the order of the corresponding rows or columns matters. For example, 
if the rows of the table were birds, and the columns months of the year, with (i, j) 
entry the number of birds of type i cited in month j (all in a given location) the 
decomposition by Sj x C12 would be appropriate. 

Carrying out the projections involves calculating the Fourier transform at many 
different irreducible representations. In Diaconis and Rockmore (1990) a non-
commutative analog of the fast Fourier transform has been developed and used 
to make these computations efficient. Similar work is being developed by Beth 
(1984) and Clausen (1989a, b). Historically, the FFT on C{ was first developed by 
Yates (1937) to analyze multi way tables. 

4. Modern ANOVA 

Analysis of variance has developed along non group-theoretic lines. In this section 
a survey of works by Rosemary Bailey, Chris Rowley, John Neider, Tue Tjur, Terry 
Speed, and their co-workers is given. The next section shows how the present 
treatment and group-theoretic treatment interact. 

Begin with a finite set X. Let L(X) be the real-valued functions on X. A design 
^ is a set of partitions F of X. For example, in ANOVA with repeated observations 
in a cell X = {(i, j , k) : 1 < i < I, 1 < j < J, 1 < k < nu} the design might be taken 
as 9) = {U, R, C, R A C, E} where U is the universal partition with one block. R is 
the row partition (i, j , k) ~ (i', / , k') iff i = V, C is the column partition, R A C, the 
minimum of R and C, has indices equivalent if they are in the same row and column, 
and E is the partition into singletons. 

For each partition F G 9, let LF = {/ G L(X) which are F measurable}. The 
projection PF : L(X) -> LF is defined by the averaging matrix 

( P ) = {Vl/I x, y G / w i t h / a block in F 
F xy \0 otherwise. 
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Two partitions, F,G e 9 are called orthogonal if their subspaces are geometri
cally orthogonal, or if PFPG = PGPF- F ° r t n e ANOVA example, R and C are 
orthogonal provided nu — \X\ni+n+j with ni+ = X/"(/- An orthogonal design has 
all factors orthogonal. 

In recent years, orthogonal designs with the set of factors closed under maxima 
have come to be seen as a useful class with a unified theory. Adding maxima of 
orthogonal factors preserves orthogonality, so a design can always be completed 
in this way. Such designs are called Tjur designs because of the following basic result. 

Theorem (Tjur (1984)), A Tjur design admits a unique decomposition 

L(X) = © VB 
GeS) 

with the property that 

LF = © VG. 
G>F 

The projection of a given / G L(X) onto the various VG constitute the analysis 
of variance for a Tjur design. The point of the decomposition is this: it is easy to 
complete the projection PF of / onto LF. The partially ordered set of factors then 
allows the computation onto the VG by subtraction which amounts to Möbius 
inversion in the poset. 

In the basic ANOVA example, the factors can be diagrammed as: 

R' 

U^ 

R A C 

Given / G L(X) one computes the projection onto the constant functions by Pv. The 
projection onto the row effects space VR is given by PR — Pv. The projection onto 
the column effects space Vc is given by Pc — Pv. The projection onto the residual 
or interaction space VRAC is given by PRAC — PR — Pc + Pu-

More generally, the projection onto VG is given by Y^F^GVÌF* G)PF with p the 
Möbius function of the partially ordered set of factors. 

This is an easy algorithm which is used by many large computer programs (e.g., 
Genstat) to analyze designed experiments. A splendid treatment of this point of view 
appears in Tjur (1984). 
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5. Groups and Modem ANOVA 

Sections 3 and 4 above present two different approaches to the analysis of designed 
experiments. In both, data are represented as / G L(X). In the group case, a group 
G is found acting on X and the analysis consists of decomposing L(X) and comput
ing projections. In the second case, a collection of partitions is produced and one 
uses the splitting of L(X) into parts indexed by these partitions. 

It is natural to ask about the relation between these approaches. This problem 
has been solved for a large class of examples in recent work of Bailey, Prager, 
Rowley, and Speed (1983). Their work intertwines the two approaches. It is also 
important group-theoretically in providing examples where the Fourier transform 
can be computed using the simple averaging and difference algorithm outlined 
before. 

To describe their result, let X be a finite set and <3 = {F} a design, or set of 
partitions of X. Assume that the blocks of each F e § have uniform size, that all 
partitions F, G in Si are orthogonal, that @) is closed under max and min, and finally 
that 3) forms a distributive lattice under max and min. 

These assumptions include many complex classical cases. However, adding the 
minimum of two partitions to an orthogonal design can destroy orthogonality. 

As automorphism of a design 3) is a 1-1 map % : X -» X such that for each F e 3, 
if x and y are in the same block of F thçn n(x) and %(y) are in the same block of F. 
The set of all automorphisms of 3) is called the automorphism group of 3. 

Bailey, Prager, Rowley, and Speed (1983) did three main things: 

I) They identified the automorphism group of 3 as a generalized wreath 
product of symmetric groups indexed by a partially ordered set. These generalized 
wreath products have been extensively developed because of their role in the 
algebraic theory of semi-groups (Krohn-Rhodes theory). A marvelous introduction 
to this theory appears in Wells (1976). The result also builds on previous work by 
Silcock (1977). 

II) They identify the characters of the automorphism group that appear in the 
representation L(X). 

III) They show that the group-theoretic and partition based analysis agree. 

Much further work is not reported here. For example, they determine the 
commuting algebra of L(X), give a natural language for describing the groups and 
decomposition, and finally they make the link with the large body of statistical work 
in a useful way. 

Each approach has problems where it seems to be the superior mode of analysis. 
The approach by partitions works for some designs without enough symmetry to 
permit a useful group-theoretic analysis. For example, consider a 2-way array with 
ny entries per cell where ntj are as shown: 
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Here it does not make sense to permute the rows or columns. However, the design 
is orthogonal and permits a straightforward analysis. 

In the other direction, block designs are a widely used class of design which are 
not orthogonal. As an example, consider an experiment in which v levels of vanilla 
are to be compared to help decide how much to put into ice cream. If one asks 
people to taste many ice cream cones, they all taste like colored sugar water. Thus 
suppose people are asked to taste k < v flavors. A complete block design involves 

v\ 
people each of whom tastes k levels of vanilla. Suppose the response is a 

rating between 0 and 100. This yields fc( I responses in total. The underlying set 

X = {(/, s) : 1 < / < v, \s\ = k, i G s} the responses give / : X -> R. 
T 

The two natural partitions are for treatments and blocks. Thus (/, s) ~ (/', s') if 
/ = /' and (/, s) ~ (/', s') if s = s'. These two partitions do not yield an orthogonal 
design. Indeed, here T A B = U and the condition for orthogonality can be stated 
as nis\X\ = n{ns where 
- nt is the number of elements in X receiving treatment /1 so n{ = ( 

- ns is the number of elements in X in block s (so ns = k) 
- nis is the number of elements in X with x = (i, s) (so ns = 1 if / G S, 0 if i fi s). 

It follows that nis\X\ ^ nx • ns for / fi s. 
The group-theoretic analysis of this kind of data is straightforward but picks up 

aspects not developed in earlier analysis. The automorphism group can be identified 
with Sv. The representation L(X) decomposes into a treatment space and a block 
space, but it also includes new pieces which may be interpreted as the effect of taster's 
rating by comparison. Fortini (1977) or Diaconis (1988) give further detail. 

6. Other Topics 

This section gives pointers to closely related research which cannot be adequately 
covered due to space limitations. 

6.1 Stochastic Models 

The approach to spectral analysis outlined above begins with data and a group. 
Almost all of the statistical literature begins with a probability model and presents 
the projections as estimates of parameters in a model. For example, for two way 
analysis of variance with one observation per cell the model would be written as 

/(/, j) = P + a, + ßj + fiy 

where p, af, ßj are parameters to be estimated (and £ a f = Y,ßj = 0 t o yi^ld identifi
able parameters). The ey are errors, or disturbance terms, which are usually assumed 
to be independent random variables with mean 0 and constant variance. The least 
squares estimates of these parameters are the projections described earlier. 
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Assuming a model leads to well understood ways to quantify standard errors 
for the estimates. It also allows analysis of data with no symmetry at all. Further, 
if more careful specifications are made on the distribution of the error terms, a 
variety of other estimates of the parameters become available. 

One of the nice results of the past 10 years is a complete understanding of all 
possible covariance structures for the error terms which lead to the original projec
tions being efficient estimators. This, and the closely related subject of general 
balance are treated by Speed (1987), or Bailey and Rowley (1990). 

Rosemary Bailey has developed a more elaborate theory which allows incor
poration of the randomization aspect of many designed experiments. Her treatment 
provides separate provision for treatment and design aspects. The theory makes 
extensive use of group theory and is well related with statistical practice. A recent 
survey with extensive pointers to other work is Bailey (1990). 

There has also been an extensive development which assumes that the errors 
are Gaussian. The leading work here comes out of the Danish school. Andersson 
and Perlman (1989) is an important paper with pointers to other work. 

6.2 Bayesian Methods and Shrinkage Estimators 

Once a model is specified, the Bayesian approach to statistics proceeds by putting 
a prior distribution on the parameters and then using observations to get a posterior 
distribution. There has been very little work on analyzing the kind of data discussed 
above from a Bayesian perspective. Dawid (1988) presents some results as do Box 
and Tiao (1973) and Diaconis, Eaton, and Lauritzen (1991) but much remains to 
be done. 

One of the exciting findings of recent statistical research has been the under
standing that when many parameters must be estimated, the classical projection 
estimates can be uniformly improved. The improvement depends on the assumption 
of a model. Our current understanding of a reasonable way to go after the improve
ment involves a Bayesian (or empirical Bayesian) treatment of the problem. Again 
there has not been much work on shrinkage estimates for designed experiments but 
Bock (1975) and George (1986) are good starts. 

6.3 Messy Data 

Real data often contains a few stray or wild values that will foul up the classical 
linear estimates. There is a growing theory of robust statistics surveyed in Huber 
(1981) or Hoaglin, Mosteller and Tukey (1983,1985). Much remains to be done in 
specializing the results available for robust regression to the demands of a complex 
designed experiment. 

Tukey (1977) has developed robust analyses in much the same data analytic 
spirit as presented here. He supplements these with an extensive residual analysis 
for ferreting out non-linearities and wild values. He also gives techniques for fitting 
non-linear models such as 

f(i, j) = a + ft + yj + ößft + Gij. 
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There is active work on non-linear substitutes for classical least squares 
estimates. Projection pursuit, as developed by Friedman, Stutzle, and Schroeder 
(1984) or Huber (1985) is one of many varieties. Again, the adaption to analysis of 
designed experiments is largely open. 

Finally, missing data is an annoying part of real statistical analysis. A neat design 
can become a nightmare with symmetry destroyed. The E.M. Algorithm is now a 
standard tool for beginning to deal with this problem. Dempster, Laird, and Rubin 
(1977) is a good reference and Little and Rubin (1987) is a comprehensive guide to 
the state of the art. 

6.4 Final Words 

The problem with a model based analysis is that usually the model is simply made 
up out of whole cloth, from linearity through stochastic assumptions. While in 
principle assumptions can be checked, in my experience they are wildly misused. 
See Freedman (1986, 1987) for an extensive discussion. 

Complex models have the further disadvantage that their parameters are not 
simple-to-interpret averages but estimates of rather complex quantities whose inter
pretation depends crucially on the correctness of the model. The spectral estimate 
proposed in the first sections of this paper are relatively easy to understand averages. 

Finally, as for block designs, group-theoretic considerations can lead to different 
analyses and new models. There is clearly much to be done in combining the best 
features of the various theories and then confronting them with reality. 
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Stochastic Models of Growth and Competition 

Richard Durrett 

Department of Mathematics, White Hall, Cornell University, Ithaca, NY 14853, USA 

In this paper we will describe recent results on four interacting particle systems 
that model the growth and competition of plant species or the spread of an 
epidemic or forest fire. In each system there is a collection of sites, the d-
dimensional integer lattice, that at each time t G [0,oo) can be in one of a 
finite number of states, so the state of the process at time t is a function 
Çt : Zd —» {0,1,..., k}. The time evolution is described by declaring that each site 
changes its state at a rate that depends upon the states of a finite number of 
neighboring sites. Here, we say that something happens at rate r if the probability 
of an occurrence between times t and t + h is rh + o(h). 

1. The Basic Contact Process 

In this model £f : Zd -> {0,1}, we think of 0 as vacant and 1 as occupied by a 
"particle," and the system evolves as follows: 

(i) Particles die at rate one, give birth at rate ß. 
(ii) A particle born at x is sent to a y chosen at random from the 2d nearest 

neighbors {y :\\x-y\\i = 1}. 
(iii) If y is occupied then the birth is suppressed. 

Rule (iii) says that there can be at most one particle per site. This is a 
reasonable constraint if you are thinking of the spread of a plant species but this 
realism makes the model very difficult to analyze. Let Çf be the state at time t 
when initially £$(x) = 1 if and only if x G A, and let %A = inf{* : Çf = 0}. If 
there are no particles then none can be born, so Çf = 0 for all t > xA. In words, 
the "all 0" state is an absorbing state and we say the system dies out at time xA. 

The first question to be addressed is "When does the system have positive 
probability of not dying out starting from a single occupied site?" or "When 
is P(z^ = oo) > 0?" It suffices to use a single occupied site as an initial 
configuration since P ( T ^ = oo) = 0 implies P (xA = oo) = 0 for all finite A. Now, 
increasing ß improves the chances for survival, so it should be clear that there is 
a critical value 

ßc = inf{ß : JP(tf # 0 for all t) > 0}. 
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If we delete rule (iii) from the definition, the resulting system is called a branching 
random walk and has ßc = 1. That is, in order for a branching random walk to 
survive it is sufficient to have a birth rate larger than the death rate. Since in 
the contact process some of the birth rate will be wasted on occupied sites, this 
proves the easy half of the following result. 

Theorem 1A. 1 < ßc(Z
d) < 4. 

The lower bound is due to Harris (1974), the upper bound to Holley and 
Liggett (1978). Both bounds are reasonably accurate. Numerical results (see 
Brower, Furman, and Moshe (1978)) suggest that ßc(Z) « 3.299 and ßc(Z

2) « 
1.645, and it has been shown (see Holley and Liggett (1981) or Griffeath (1983)) 
that ßc(Z

d) -> 1 as d - • oo. 
Once it was established that ßc G (0,oo), attention turned to "What does the 

process look like when it does not die out?" To answer this question we begin 
by introducing a special property of the contact process called duality 

P(£f(x) =0fovxeB) = P(tf(x) = 0 for x e A). 

An immediate consequence of duality is that if we start from ÇQ(X) = 1 then 
£t ^ £<xr Here, => is short for converges weakly and means that 

P(tf(x) = 0 for x G B) -> P(ÇUX) = 0 for x G J3) 

for all finite sets B. To prove the weak convergence we set A = TLd in the duality 
equation to get 

P{£\ (x) = 0 for x G B) = P(ff (JC) = 0) 

which increases to a limit as t —• oo, since "all 0" is an absorbing state. It 
follows from standard results (see Chapter 1 of Liggett (1985)) that Q is a 
stationary distribution for the contact process, i.e., if we start the process with 
this distribution it has this distribution for all time. 

At the other extreme, the point mass on the "all 0" state, <5o, is a trivial 
stationary distribution. Letting B = {y} and t —> oo in the duality relation gives 

i ' ( & G ' ) = 0 ) = P(Tp'}<oo), 

so £*, = öo if the contact process dies out, but is a nontrivial stationary dis
tribution if the contact process survives. The next result, called the complete 
convergence theorem implies that £*, is the only nontrivial stationary distribution. 

Theorem IB. ft1 => P(xA < oo) <50 + P(xA = oo) &. 

In words, when the process dies out it looks dead, but when it survives and t 
is large it looks like the system starting from all sites occupied. 

The last result took fifteen years to evolve to its current form. Harris (1974), 
Griffeath (1978), Durrett (1980), Durrett and Griffeath (1982), and Durrett and 
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Schonmann (1987) proved increasingly more general results before Bezuidenhout 
and Grimmett (1990) finished the problem and in addition proved 

Theorem 1C. When ß = ßc, P(T<°> = oo) = 0. 

In words, the contact process dies out at the critical value. For applications 
(including some we will make in this paper) it is worthwhile to note that all the 
results in this section hold if (ii) is replaced by 

(ii) A particle born at x is sent to a y chosen at random from x + Jr. 

if we assume Jf is (a) symmetric with respect to reflection in any coordinate 
plane, and (b) irreducible, i.e., the group generated by J\r is 7Ld. 

2. Multitype Contact Processes 

It is well known, even to mathematicians, that there is more than one type of 
plant, so it is natural to generalize the contact process to have two (or more) 
types of particles. In this model, the state at time t 6 : Zd -> {0,1,2} and we 
think of 0 as vacant and 1 and 2 as occupied by pine and maple trees respectively. 
With this in mind we formulate the evolution as follows : 

(i) Particles of type / die at rate one, give birth at rate ß\. 
(ii) A particle born at x is sent to a y chosen at random from x + Jr where Jr 

is symmetric and irreducible. 
(iii) If y is occupied then the birth is suppressed. 

When only one type of particle is present the system reduces to the basic 
contact process so if ßußi > ßc(Z

d) then there are three trivial equilibria: öQ, p\ 
and pi, where p\ is the limit starting from Çt(x) = i. The main question to be 
answered about the new system is: "Is there a nontrivial stationary distribution?", 
i.e., one that concentrates on configurations that contain both l's and 2's. The 
first result is a negative one. 

Theorem 2A. If ß\ > ßi then there are no nontrivial translation invariant stationary 
distributions. 

Here translation invariant means that that the distribution is invariant un
der spatial shifts. This result and the others in this section are from Claudia 
Neuhauser's (1990) thesis. We conjecture that Theorem 2A holds without the 
assumption of translation invariance but that assumption is often difficult to 
remove. Note that Harris proved Theorem IB for translation invariant initial 
distributions in 1974 but the general case was settled 15 years later. 

Restricting our attention now to the special case ß\ = ßi > ßc(Z
d), we have 

Theorem 2B. In dimensions d < 2, for any initial configuration, we have P ( 6 W = 
1>&(3>) = 2) —• 0/or all x,y G Zd, so all stationary distributions are trivial. 
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Theorem 2C. In dimensions d > 3, there is a one parameter family of stationary 
distributions VQ, 8 G [0,1], and all translation invariant stationary distributions are 
convex combinations of the VQ. 

As in the voter model, (see Liggett (1985) Chapter V or Durrett (1988) 
Chapter 2), the dichotomy between the behavior in d <, 2 and d > 3 comes 
from the fact that random walks are recurrent in the first case and transient in 
the second. The stationary distributions are constructed by starting the system 
from an initial product measure in which l's have density 8 and 2's have density 
1 — 8, i.e., £o(x) are independent and take values 1 and 2 with probabilities 6 and 
1 — 0. The reader should note that while the basic contact process has a single 
nontrivial stationary distribution, the two color version has a one parameter 
family in d > 3. 

3. Successional Dynamics 

In this model we again have Çt : Z
d -> {0,1,2} but this time we think of 0 

as vacant and 1 and 2 as occupied by a bush or tree respectively. With this 
interpretation in mind the dynamics are formulated as follows: 

(i) Particles of type i die at rate one, give birth at rate /?*. 
(ii) A particle born at x is sent to a y chosen at random from {y : \\x—y ||i < M}, 

where M is an integer. 
(iii) If Çt(y) > Çt(x) then the birth is suppressed. 

In words, trees can give birth onto sites occupied by bushes but not conversely. 
In biological terms the two species are part of a successional sequence. When 
only one type of particle is present, the system reduces, as in the last example, to 
a contact process so if ßußi > ßc then there are three trivial equilibria: <5o, pi, 
and pi, where p\ is the limit starting from Çt(x) = i 

Again, the main question to be answered is: "Are there nontrivial stationary 
distributions?" or more briefly "Is coexistence possible?" Our first answer is 

Theorem 3A. Ifd = l and M = 1 then for any initial configuration we have 
P(E>t(x) = U£t(y) = 2) —> 0 as t —> oo for all x,y eZ so there is no coexistence. 

This result can be proved by drawing a picture of a "typical" realization of 
the process starting with a single 2 

0010102022020002101001 

and checking that since M = 1 there can never be a 1 between the leftmost and 
rightmost 2's. If the 2's do not die out, then the ends of the interval of 2's go 
to —oo and oo respectively (see Durrett (1980)) and the l's get crowded out. In 
general either (a) all the 2's die out, or (b) some 2 starts an interval that grows 
forever. In either case P(£t(x) = l>£t(y) = 2) —> 0 as t —> oo. 

We believe that coexistence is possible in all other cases 
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Conjecture 3A. If d > 1 or M > 1 then coexistence is possible when ßi — ßc + z 
and ß\ is large. 

The main trouble with proving this conjecture is that coexistence can only 
occur near the critical value. It is not hard to show that if ßi > ß(d,M) then 
there is no coexistence for any ß\ < oo. Somewhat surprisingly, this problem 
which is difficult to solve when d = 1 and M = 2, or d = 2 and M = 1 turns 
out to be more tractable when M is large. In addition to proving Theorem 3A, 
Durrett and Swindle (1990) have shown 

Theorem 3B. If ß\ > ß\ > 1 then coexistence occurs for large M. 

To explain the last conclusion we need to introduce the long range contact 
process, a modification of the basic contact process in which (ii) is changed to : 

(ii) A particle born at x is sent to a y chosen at random from {y : ||x —j>||i < M}. 

If we write ßc(M) to indicate the dependence of the critical value on M and use 
£*, to denote the limit starting from all l's then we have 

Theorem 3C. As M —> oo, ßc(M) -> 1. Furthermore, ifß>l then £*, converges 
weakly to a product measure with density (ß — l)/ß. 

This result (for the neighborhood {y : ||x — y\\œ < M}) was proved by 
Bramson, Durrett, and Swindle (1989) who identified the rate at which ßc(M) 
approached 1. A simpler and more general proof, which does not give the right 
rate, can be found in Durrett (1989). 

To explain the condition in Theorem 3B, observe that r}t = {x : t;t(x) = 2} 
is a long range contact process, so if M is large and we are in equilibrium, n_t 

is approximately a product measure with density (/?2 — l)/ßi- If the 2's were 
exactly that product measure, a 1 would die at rate 1 + %-^2> (the second term 
representing births onto the site by 2's) and give birth at rate ß\/ßi (the site must 
not be occupied by a 2 for a successful birth to occur). So for coexistence to 
occur we need 1 + %^/?2 < ßi/ßi or ß\ > ß\. The careful reader will have noted 
that we have just argued the condition is necessary while Theorem 3B proves it 
is sufficient. Having faith in the heurisitc argument we make 

Conjecture 3B. If ß\ < ß\ then there is no coexistence for large M. 

Remark. The heuristic argument generalizes easily to show that if the two particles 
die at different rates then we need 

<5i + —^ ß2>ßij-
\h Ih 

and the proof of Theorem 3B generalizes to show that this condition is sufficient. 
It is natural to generalize the multitype contact process in this way but we do 
not know how to prove any results in that generality. The naive guess is that 



1054 Richard Durrett 

ßi/<5i > ßi/oi is right hypothesis for Theorem 2A. We believe this is correct but 
have no idea how to prove it. 

Having discussed the existence of nontrivial stationary distributions, we turn 
to the question of uniqueness. Durrett and M0ller (1991) have proved a "complete 
convergence theorem." To state their result let So, p\, and p2 be the trivial 
stationary distributions mentioned at the beginning of this section. Let pn be 
the nontrivial stationary distribution constructed in Theorem 3B. Let rjt = {x : 
6 W = 1}, Ct = {x : tt{x) = 2}, TI = inf{t : rjt = 0}, and t2 = inf{t : G = 0}. 

Theorem 3C. If ßi > ß\ > 1 and M is large then 

Çt =>P(X{ < GO, X2 < O0)(5o + P ( l i = 00, T2 < °o) p\ 

+ P(X\ < 00, T2 = CO) P2 + P(X\ = 00, T2 = co) pi2 . 

In words if the l's and/or 2's die out we end up with a trivial stationary 
distribution in which one or zero types of particles are present. If both the l's and 
2's survive and t is large, the system looks like pn so that is the only nontrivial 
stationary distribution. The value of M required for Theorem 3C is larger than 
that for Theorem 3B which is enormous. With more work this difference might 
be eliminated but the interesting problem is to show 

Conjecture 3C. The complete convergence theorem holds whenever coexistence oc
curs. 

4. An Epidemic Model 

Our fourth system is a process £t : Z2 —> {0,1,2} that has been used to model the 
spread of epidemics and forest fires. In the epidemic interpretation 0 = healthy, 
1 = infected, 2 = removed = immune or dead. In the forest fire interpretation, 
0 = alive, 1 = on fire, and 2 = burnt. With these interpretations in mind, we 
formulate the dynamics as follows : 

(i) A burning tree sends out sparks at rate ß. 
(ii) A spark emitted from x flies to one of the four nearest neighbors {y : 

|| y — x||i = 1} chosen at random. If the spark hits a five tree, the tree catches 
fire and begins immediately to emit sparks. 

(iii) A tree remains on fire for an exponential amount of time with mean 1 then 
becomes burnt. 

(iv) Burnt trees come back to fife at rate a. 

At first glance, the spontaneous re-appearance of trees may not seem rea
sonable. In the epidemic interpretation this is quite natural, however. Consider a 
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disease like measles that upon recovery confers lifetime immunity. New suscepti
bles are born and immune individuals die. We combine the two transitions into 
the one in (iv) to keep a constant population size. 

When a = oo, sites change instantaneously from 2 to 0 and the result is the 
contact process. At the other extreme, a = 0, is the so-called "spatial epidemic 
with removal" in which regrowth is impossible. We begin by considering the 
behavior of our processes starting with a single burning tree at the origin in 
the midst of an otherwise virgin forest, i.e., £o(0) = 1, £Q(X) = 0 for x =̂  0. Let 
?7? = {x '• £?(*) — 1}> le t C? = ix '• £t(x) = 2}> and define a critical value by 

ßc(a) = inf{iS : P(fr° ^ 0 for all t) > 0} . 

Cox and Durrett (1988) considered the case a = 0 and showed 

Theorem 4A. If ß > ßc(0) then there is a nonrandom convex set D so that on 
{Vt =£ 0 for aH *} we nave C? Ä C2>^tG, and rjf « tdG. To be precise, for any e > 0 
the following inequalities hold for large t 

(£n(l -ß)*Gc=e r
0c=(l + ß)tG 

IJ°c:(l + e ) t G - ( l - f i ) t G . 

In words, this result says that the fire expands linearly and has an asymptotic 
shape. The statement is made contorted by the fact that the set of trees that will 
ever burn, Ç ,̂ is not all of Zd. Thus what we prove is that when t is large, £f° is 
contained in (1 + e)tG and (if nonempty) contains all the points of C^ in (1 — fi)*G. 

When a = 0 the system cannot have a nontrivial stationary distribution but 
Durrett and Neuhauser (1991) have shown 

Theorem 4B. If ß > ßc(fy and a > 0 then there is a nontrivial stationary distribu
tion, i.e., one that assigns no mass to "all healthy" state. 

The last result illustrates some of the frustrations in "applied probability." 
The proof is intricate and required several months to put down on paper, but 
we have been repeatedly told by physicists and biologists that the conclusion is 
obvious. In view of our difficulties in proving existence the reader should not be 
surprised to learn that we have little to say about uniqueness. 

Conjecture 4C. If ß > ßc(<x) then there is a unique nontrivial stationary distribution. 

In the first three examples we have had varying degrees of success in identi
fying the set of stationary distributions. In each of those cases however there is 
a useful "duality equation" and we have not been able to find one here. 
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Recurrent Ergodic Structures and Ramsey Theory 
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Introduction 

Ramsey theory is best defined by example and the classic example of a Ramsey 
type theorem is the result of van der Waerden: if the integers Z are partitioned into 
finitely many sets, one of these contains arbitrarily long arithmetic progressions. 
An equivalent version states: given natural numbers r, 1, 3N(r,l) so that if 
N > N(r} 1) and the integers {1,2,...,N} are partitioned into r sets, one of these 
contains an /-term arithmetic progression. Erdös and Turân realized that this 
result would follow if it were the case that any subset of {1,2,..., N} comprising 
ON elements contains an /-term arithmetic progression provided N is sufficiently 
large. This result, conjectured in 1936 [ETI] was proved by E. Szemerédi in 
1973 [Szl], and was reproved using ergodic theoretic methods in 1976 [Fui]. 
The theorems of van den Waerden and Szemerédi illustrate the two sides of 
Ramsey theory: coloring - or partition - results, and density results. The latter 
are clearly stronger than the former, and the proofs are typically more recondite. 
The role of ergodic theory in density theorems of this type stems from the fact 
that in a number of situations theorems about patterns found in sets having 
"density" bounded from below are equivalent to theorems about the "return", 
or "recurrence", patterns for measure preserving transformations acting on a 
measure space. It would appear that the ubiquity of certain patterns in the 
combinatorics of large sets reflects the phenomenon of recurrence in ergodic 
theoretic contexts and the latter has to be studied to gain insight into the former. 

We shall be examining three different contexts for recurrence results in ergodic 
theory. We shall mention the combinatorial (Ramsey theoretic) equivalents of 
these results, although we shall have to refer the reader elsewhere for the proof 
of the equivalence. Our purpose here is to display the common features of these 
recurrence phenomena. We shall find that in each setting there is a notion of 
rigidity and the notion of a special system constructed from scratch by a finite 
succession of rigid extension. For these systems (distal and quasi-distal) it will 
be possible to deduce recurrence properties directly, the key tool being Ramsey 
theory of the van der Waerden sort. For arbitrary systems we shall find a method 
to "factor out" the "independent" component, reducing the recurrence property 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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for a general system to that of a factor system, which will be one of the special 
systems for which the result has been established. 

To motivate the ergodic theoretic discussion we list here some of the combi
natorial consequences. For more details, particularly as regards the connection 
between the ergodic theoretic formulation and the Ramsey theoretic results, we 
refer the reader to [Fu2, FK2, FK4, and GRS1]. 

Theorem A. There is a function N(ö, I) for ö > 0 and l G M so that if N > 
N(ö,l) and S cz [1,2,...,N} with \S\ > ON then S contains an l-term arithmetic 
progression. (\S\ denotes cardinality ofS.) 

Theorem B. Let P denote a finite subset o/R r f. There is a function R(ö,P) so that 
ifR> R(S,P) and B is a ball of radius R in Rrf and S a B is a measurable subset 
with m(S) > öm(B), then S contains an integral dilation of P, i.e., a set of the form 
u + nP, ueM.d,ne¥l. 

Theorem C. There exists a function D(ö,d,q) for ö > 0,d € ¥1, q = a prime 
power, so that if V is a vector space over lBq of dimension > D(ö,d,q) and S cz V 
is a subset with \S\ > ö\V\, then S contains a d-flat (translate of d-dimensional 
subspace). 

Theorem D. If A is a finite set (alphabet) let W^(A) denote words of length N in 
A. Let Wx(A) = WN(A U {t}) \ WN(A) so that cp(t) G W^(A) is a word in which 
the variable t appears. There exists a function L(ö, \A\) so that if N > L(ö, \A\) 
and S cz WN(A) with \S\ > ö\WN(A)\, then there exists cp(t) G W^(A) so that the 
words cp(a),cp(b),...,cp(s), a,b,...,s G A are all in S. 

Theorem A is Szemerédi's theorem. Theorem B is equivalent to a multidimen
sional version of Szemerédi's theorem. It was proved first in [FK1]. Theorem C 
is a density theoretic version of a coloring theorem first conjectured by Roth and 
proved by R.L. Graham and B. Rothschild [GR1]. The latter also follows from 
the theorem of A.W Hales and R.I. Jewett [HJ1]. A special case of Theorem C 
was proved by T.C. Brown and J.P. Buhler [BB1], and in generality it was proved 
in [FK2]. Theorem D was conjectured by R.L. Graham and proved in [FK4]. 

By interpreting the letters of A as the digits for writing numbers to a base b, 
we can see that D => A. On the other hand, interpreting A as a vector space over 
a finite field, we can see that D => C. It is also not difficult to show that D => B, 
so that Theorem D holds the key to a number of results of Ramsey theory. 

We remark that the major part of what is presented here is joint work with 
Y. Katznelson. 

1. Classical Systems 

In the classical setting for ergodic theory we speak of a measure preserving system 
(m.p.s.) (X, &, p, T) where T : X -> X is a measurable, measure preserving map, 
and p is a probability measure on the sets of 0i. It is useful to distinguish between 
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ergodic and non-ergodic systems. (X,$,p,T) is ergodic if T~lA = A implies 
p(A) = 0 or 1. There is a rather general decomposition theorem for measure 
preserving systems to ergodic components, and the recurrence phenomena we 
shall study here follow for arbitrary systems once they are established for ergodic 
systems. We also can assume without loss of generality that T is invertible. 

If T is a measure preserving transformation on X then T induces an operator 
on functions on X: T~1f(x) = f(Tx). (The notation corresponds to the fact that 
S'^T^f) = (TS)~{f.) T'1 defines a unitary operator on L2(X,ffl,p) and we 
can study spectral properties of T"1. In particular ergodicity is equivalent to 1 
being a simple eigenvalue, and if, in addition, there are no other eigenvalues, we 
say that T, or (X,8ß,p, T), is weak mixing. 

The mean ergodic theorem for L2-functions is a special case of a general 
theorem for contraction operators in Hilbert space: 

Theorem 1. If (X,3S,p,T) is an ergodic system and f G L2(X,@,p), then 

f + T"1/ + T~2f + • • • + T~Nf 
N+l 

in the norm of I?(X,@l,p). 

J fdp 

V. Bergelson has given a far reaching generalization of this in the case of a 
weak mixing system [Bel]. 

Theorem2. Let (X,tffl,p,T) be a weak mixing system. Let Pi(t),P2(t),...,Pk(t) be 
polynomials with integer coefficients with deg p\ > 0 and deg(p,- — pj) > 0 for i =£ j . 
Then if fufi,--.,fk e L°°(X,<%,p) we will have 

N 

1 £ T -P . (») / l T - f t ( - ) / 2 . . . T -P*W / t _ j h d l i fhdfi... ffkdli (1) 

in the norm of L2(X,&,p). 

One consequence of this theorem is that if (X, &, p, T) is weak mixing and 
A\,A2,...,Ak are any k subsets of positive measure, we will have for some (in 
fact, most) n : 

p(A{ n T-»A2 n---n T^k-l)nAk) > o , (2) 

and, in particular, if p(A) > 0, 

p(A n T~"A n • • • n T-{k~l)nA) > o . (3) 

The foregoing property, that points of A return to A along arithmetic progres
sions, is the recurrence phenomenon we have in mind in the case of a classical 
system. In the weak mixing case we have found that it follows from a generalized 
ergodic theorem. 

The proof of Theorem 2 is based on the following lemma for convergence of 
averages in Hilbert space to 0. 
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Lemma 3. Let {un} be a bounded sequence of vectors in a Hilbert space. Assume 
for each m, that 

1 N 

N->ao JS t—' 
«=1 

exists, and that 

then 

1 M 

m=l 

N 
1 

Using the lemma and the ergodic theorem, one proves (1.1) for progressively 
more complex situations, beginning with 

JV 

1 N 1 N 

- T T Z T-mfT-bng, ^^-««fT-^gT-^h, 
n=0 n=0 

We refer to [Bel] for details. 
When (X, &, p, T) is not weak mixing the result of Theorem 2 cannot be 

expected to be valid. For example assume cp is an eigenfunction, T~{cp = Xcp, and 
set f = cp2,g = cp'1, then T-nfT~2ng = (X2ncp2) (A"2"^"1) = cp and 

^Enr^g^, 

which is not constant. In the weak mixing case we would have obtained 
/ fdpf gap as the limit. 

2. Isometric Extensions and Distal Factors 

If (X,$,p,T) and (Y,@,v, T) are two systems ( it is convenient to use the 
same letter for the transformation), we say that a map % : X -> Y defines 
(Y,<3,v,T) as a factor of (X,$,p, T) if % is measurable, measure preserving, and 
%(Tx) = T(nx). We lift functions from Y to X, f -» / o n and since this imbeds 
L2(Y,9,v) isometrically into L2(X,@,p), we shall identify / G L2(Y,S),v) with 
f on e L2(X,^,p). It will be convenient to denote the conditional expectation 
operator / h-> E(f \ %~l^f) by /1—> E(f \ Y) and we regard E(f \ Y) either as a 
function on Y or on X. Note that T~l commutes with E(\ Y). 

We call a m.p.s. Kronecker if it has the form (Z, S), m, T) where (Z, +) is 
a compact abelian group with a dense cyclic subgroup Za, @ = Borei sets, 
m = Haar measure, and Tz = z + a. For a Kronecker system, L2(Z,@,m) is 
spanned by eigenfunctions (each character is an eigenfunction). It follows that if 
a system (X, ffl, p, T) possesses a non-trivial Kronecker factor then it cannot be 
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weak mixing. The converse is also true: if (X,0$,p, T) is not weak mixing it has 
a non-trivial Kronecker factor. 

We describe a relativized notion of a Kronecker factor, representing a certain 
relationship between a system and a factor. 

Definition 1. (X,&,p,T) is an isometric extension of a factor (Y,@,v,T) if it 
can be represented - up to isomorphism - as follows: X = Y x M, M is a 
homogeneous space of a compact group G, p = v xm where m is the G-invariant 
measure on M, and there exists a measurable function Q : Y —• G so that for 

T(y,W) = (Ty,e(y)u) . 

An ergodic isometric extension of the trivial one-point system is a Kronecker 
system. 

Definition 2. A m.p.s. (X, 39, p, T) is (n-step) distal if it has a succession of factors 

(X,@,p,T) = (Xx,®upuT)-^ • (Xn,amPn,T) - • 1-point (4) 

where each extension is isometric. 

The terminology comes from topological dynamics where distal systems are 
defined by the property that for x j= x', the distance d(Tnx,Tnx') is bounded 
from below. It is easily seen that for metric spaces, a succession of isometric 
extensions leads to a distal system in this sense. 

We now formulate the generalization of V. Bergelson's theorem 1.2 to the 
general ergodic situation. Note that weak mixing systems have only trivial distal 
factors. 

Theorem3. Let (X,@i,p,T) be an ergodic m.p.s. Let pi(t),p2(t),...,Pk(t) be poly
nomials with integer coefficients with deg p\ > 0 and deg(p,- — pj) > 0 for i ^ j . 
There exists a distal factor % : X —• Y so that for any fufiy-'fk £ L°°(X,^,p) 

1 N 
_ _ £ T-PMfl T-P2(n)h . . . T-pMfk 

1 N 

i__ £ T-»ME(fi | Y) • • • T-*®E(fk | Y) -> 0 (5) 
N + ~ n 

w L2(X,@,p). 

We call (7 ,0 , v, T) a characteristic factor for (T~^n\..., T~Pk^). We use the 
indefinite article here because any extension of a characteristic factor is again a 
characteristic factor. We do not know if there exists a "smallest" one. 

For special cases the information is more specific [Fu3] : 
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Theorem4. For any ergodic m.p.s. (X,&,p,T) there exists a "largest" Kronecker 
factor (Z,3),m, T) and for f,g€ L™(X,@,p), a,b G Z, a ^ b, 

^ ]vTT S T-^T-^ = lim ^ - X T-°»E(f | Z)T^(g | Z) . (6) 

Here we are also guaranteed existence of the limits in question (in L2(X,^,p)). 
If we write f = E(f \ Z),g = E(g \ Z) and regard the right hand side of (2.3) as 
a function xp(Q on Z, then it can be rewritten as 

y>iO = Jf(C + aß)g(C + be)de 

We can also be more explicit regarding characteristic factors for (T~an, T~bn, 
T~cn). To formulate this result we need the notion of a 2-step nilpotent system. 
This is a system for which the underlying space has the form N/T where JV is 
a 2-step nilpotent group, T is a closed cocompact subgroup and JV possesses a 
sequence of closed subgroups JV/ so that N/Ni is locally compact, T jT n JV,- is 
discrete and cocompact in N/Ni, the measure on JV/r is the (unique) iV-invariant 
probability measure (lifted from (N/Nt) / (T/T HNÌ)) and the measure preserving 
transformation is T(gT) = (Tg)T for some T G JV. 

Theorem 5. For any ergodic (X, ffl, p, T) there exists a 2-step nilpotent factor 
(Y,@,v, T) so that for f,g,h G U°(X,@i,p) and a,b,c distinct integers, we have 

lim ~^—~ Y T~anfT-bngT-cnh = 
N->oo N + 1 ^ 

n=0 

1 * 

i im ^XT Z T"™Etf I m~òn£(g I Y)T~cnE(h | 7) 
V-»oo JV + 1 '*—' N-*oo _ , _ 

n=0 

Theorem 5 was obtained jointly with B. Weiss and overlaps results of Conze 
and Lesigne [CL1]. It may be conjectured that similar results are valid for more 
general expressions with 2-step nilpotent systems replaced by arbitrary nilpotent 
systems. 

3. Multiple Recurrence 

We begin this section by formulating a version of (1.3) for distal systems. 

Theorem 1. Let (Y,@,v, T) be a distal system, let f G U°(Y,^,v) be non-negative 
but not vanishing a.e. Then for any l G N, 

1 N f 
lTJ£ jv+î ^ y T~J T~2J ' ' ' T'(l~i)nf dpL > ° " (7) 
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To explain the role of distality in this result we shall prove here by way of 
illustration that for 1-step distal systems one has the weaker statement: With 
(Y,<2>,v, T) and / , / as above, 3n such that 

ffT-tfT-^f • • • T~V-])l1fdp > 0 . (8) 

A refinement of the argument will show that (7) is valid. Moreover a relativized 
version of this argument can be reapplied successively to handle the general distal 
case. 

If M is a homogeneous space of the compact group G, then G acts continu
ously on L2(M,m) : xp(u) —> xpg(u) = xp(gu). In particular, if xp G Lco(M,m), its 
orbit under G, Y = {y)g \ g e G}, is compact in L2(M,m). Suppose xp > 0 and 
that xp is not 0 a.e. For any /, 3e > 0 so that if xp\,y)2,..:,y)i G U°(M,m) satisfy 
\\y)j — xj)\\ < s then f xp\xp2...xpjdm > 0. Since Y is compact we can partition Y 
into finitely many subsets of diameter < e. So we can write Y = Y i U • • • U Yr so 
that if xp\,y)29...,xpi G Yj then Jxpixp2' • -xpjdm > 0 . 

Now consider a 1-step distal system, i.e., a Kronecker system, (Z,Q), v, T). 
Z plays the role of G as well as M. Take / as in the theorem and set i/; = 
/ . By van der Waerden's theorem there is an /-term arithmetic progression, 
a, a + n, a + 2n,..., a + (1 - l)n such that each T~^in)f, i = 0 , 1 , . . . , / - 1, belongs 
to the same Yj. Then 

/ 

or 
fT-nf-'-T-{i~i)nfdp>0 J< 

as claimed. 
We now combine Theorem 1 with Theorem 2.1 to obtain 

Theorem 2. If (X,$,p, T) is any ergodic m.p.s., f G Lco(X,^,p) is a non-negative 
function not vanishing a.e., then 

« i v T T tjfT~nfT~2"f • • • r _ ( ' _ 1 ) " ' * " > ° • 

Decomposition to ergodic components gives the result for arbitrary measure 
preserving systems. Finally taking / = 1A we obtain the 

Theorem (Multiple Recurrence). Let (X,0S,p,T) be any m.p.s., let A G ^ with 
p(A) > 0. Then for any I there exists n with 

p(An T~nAnT~2nAn---nT~{]-l)nA) > o . (9) 

As we show in [Fui] and [Fu2] this is equivalent to Theorem A of the 
Introduction. 
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4. IP-Systems 

We denote by #" the collection of all finite subsets of N = {1,2,3,...}. If a, ß G f 
we write a < ß if max a < min/?. 

Definition 1. An IP-subset of SF consists of a sequence ai < «2 < . . . in SF together 
with all finite unions of these. 

The elements of an IP-subset of SF may be placed in one-one correspondence 
with #": ß = {ii, i2,... ik} <-• a«! U a*2 U • • • a/fc = aß. 

Definition 2. An #-sequence is any sequence {xa} labelled by a G #". Ah #"-
subsequence of {xa} is the subsequence corresponding to an IP-subset of SF: 
Xß = xa/J. 

Definition 3. If X is a topological space, {xa} an «^"-sequence in X, we say that 
*a —• ̂ o ^ ^ 5 or lim xa = xo, if for any neighborhood F of xo, 3oco so that for 

<X->00 

a > <x0 we have xa G F. 

The following theorem is equivalent to N. Hindman's theorem on finite sum 
sets [Hil] : 

Theorem 4. If X is a compact metric space and {xa} is an #-sequence in X, then 
{xa} has a convergent SF-subsequence. 

If X is finite this can be reformulated as : if SF = # i U • • • féV then some %>j 
contains an IP-subset of #". This latter formulation is due to Hindman. 

The next definition describes the principal concept of this section. 

Definition 5. An «^"-sequence {ffa} with values in a semigroup is an IP-system if 
a < ß implies that 

OaUjS = Ga<*ß • (10) 

Writing G{ for <r^ we see that 0-fa^...^} = o^Ofe ' " " °"fc when i'i < k < " ' • < *fc-
We note that in the commutative case (4.1) is valid whenever a n /? = 0. 

Lemma 6. ^4n SF-subsequence of an IP-system is an IP-system. 

We call this an IP-subsystem. 
The classical notion of a m.p.s. will now be replaced by that of an IP-system 

of measure preserving transformations (m.p.t). Inside a classical system we can 
form numerous IP-systems, taking Ta = TWa where na = £ i G a n,- is an IP-system 
in (Z ,+ ) . In addition to providing more information regarding classical systems, 
the analysis of IP-systems provides recurrence results for situations where the 
classical setup doesn't prevail - or is trivial, because as might be the case Tp 

could equal the identity for some p and all T under consideration. 
The main theorem of this section is 
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Theorem (IP-Recurrence). Let (X,@l,p) be a measure space and let {T^}, •-, 
{T^} be k IP-systems ofm.p.t. of (X£,&,p) where all the T^ commute with one 
another. Then if A e ^9p(A) > 0, 3a G & so that 

P(T^-XAnTP~{An---nT^-U) >o . (ii) 

We remark that this theorem implies Theorems B and C of the Introduction. 
We refer the reader to [FK2] for details. 

The proof of the IP-recurrence theorem depends on a development of ergodic 
theory for IP-systems analogous to classical theory. We proceed to outline the 
salient points of such a theory. One important point should be made at the outset. 
Since in the recurrence theorem we are looking for one index a for which we 
have a multiple intersection, we may pass from the IP-systems to IP-subsystems 
that may be more convenient. Since on account of Theorem 4, an #"-subsequence 
of an J^-sequence in a compact metric space converges, we shall often find it 
convenient to deal with an appropriately chosen ^-subsequence, which means 
we are really dealing with IP-subsystems of the initially given systems, 

If {Ta} is an IP-system ofm.p.t. of (X,@,p) then writing as before T~lf(x) = 
f(Tax) we obtain, in the commutative case, an IP-system of isometry operators 
{T"1} on L2(X,^,p). Let Jf be the semigroup of linear operators on L2 with 
norm < 1, endowed with the weak operator topology. JT is a compact metrizable 
space. Using Theorem 4 we can find a subsystem so that T~l converges in Jf. 
We now have 

Proposition 7. / / {K^} cz X' is an IP-system and Ka -* Q then Q is a self-adjoint 
projection operator. When K^ = T~l for m.p.t. {Ta}, then Q is the conditional 
expectation operator relative to a subalgebra 3 <= J1, 

Proof. If Q = lim Ka then Q2 = lim lim KaKß = lim lim KaUn = Q. The 
a—>oo et—*co ß-*co a—>ooß—K» 

functions in the range of Q are characterized by: Kaf -> / weakly. Since ||/|| > 
ll^a/ll» weak convergence implies strong convergence. For strong convergence 
KJ -* f,Kag - • g=> KafVKag^ / V g. Now T - 1 / V T~lg = T~{(f V g) 
and so if / , g G range Q also f \/ g e range Q. This characterizes conditional 
expectation operators. D 

For an IP-system {Ta} we now suppose having passed to a subsystem for 
which lim T~l = QT exists. For IP-systems this operator QT plays the role of 
the ergodic average. Since QT is self-adjoint and the T"1 are isometric this 
convergence will generally not be in the strong topology, and certainly not 
point wise. In the extreme case when QT = identity then the convergence is strong 
and we speak of {Ta} as a rigid system. An example of a rigid system is one 
obtained from the Kronecker system (Z,$,p,T) setting Ta = T"a for {na} an 
IP-system in Z. if Ta —• QT it is not hard to show, applying Ta to eigenfunctions 
of T, that QT =identity. In IP-theory rigid systems play the role of Kronecker 
systems. 

The opposite extreme to rigidity occurs when QTf = E(f). This means that 
f fT^gdp -> J fdpf gdp so that / and T~xg are asymptotically independent. 
We call this case mixing. 
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Let (X,$,p) be a measure space, (Y,@,v) a factor of (X,S,p) such that a 
system {Ta} is defined both on X and on Y, that is to say, we have % : X —> Y 
with 7cTa = Tan. A subspace ^ cz L2(X,&,p) is called a Y-module if it is 
closed under multiplication by U°(Y,^,v). A 7-module is of finite rank if it is 
spanned by finitely many functions over U°(Y,@,v). Finally Jt is called {Ta} 
quasi-invariant if for each g G J and 8 > 0, 3ao so that for a > oto the L2 distance 
satisfies 

dist(Ta
_1 g,M) < e . 

Definition8. (X,@,p,{Ta}) is a rigid extension of (7,^,v,{Ta}) if L2(X,@,p) is 
spanned by {Ta} quasi-invariant 7-modules of finite rank. 

Now consider commuting IP-systems {Ta
(1)}, • • • {Ta

(fe)} of m.p.t. on (X,@,p). 
We call (X,^,/i , {TP}, • • • {T^}) a fe-/o/d IP-system. 

Definition 9. (X,Siï,p, {Ta
(1)}, • • • {Ta

(fe)}) is quasi-distal if there is a sequence of fc-
fold IP-systems (Xu^ußu^PV ' ' {T^}\ I = 0,1,2,...,n, with (X0,@o,Po) = 
(X,SS,pi), and with Xn =point, and with maps m : X\ -> X/+i which are measure 
preserving and satisfy %\ Ta = Ta%i and such that for each /, (Xi, $&\, Pu {T® T^ - 1 }) 
is a rigid extension of (X/+i,â?i+i,/j/+i, {T^T^ - 1 } ) for some i ^ j . 

We now have 

Theorem 10. Given a k-fold IP-system (X,@,p, {Ta
(1)}, • • • {Ta

(k)}) there is a subsys
tem and a factor (Y,@, v, {T^}, • • • {T$®}) such that the latter is quasi-distal and 
for any fuf2,---,fk e Lœ(X,S,p) we have 

lim J T^-lh ' • • T^-'fkdp = lim j r J ^ J E t f i | 7) • • • T^E(fk \ Y)dv . 

The implication of Theorem 10 for us is that the IP-recurrence theorem will 
follow in general if we can show that for quasi-distal systems and / > 0 with / 
not vanishing a.e., 

lim fT^-lfT^f...T^fdß>0 
a-ooj 

This can indeed be shown in a manner analogous to the proof of Theorem 3.1, 
by successively lifting the desired property via the rigid extensions that constitute 
the links of the quasi-distal system. This outlines the proof of the IP-recurrence 
theorem. 

5. W(A)-Systems 

In this section we describe the ergodic structure whose recurrence properties lead 
to Theorem D, the density version of the Hales-Jewett theorem. The structure 
will be similar to that of the previous section except that now the operators are 
no longer assumed to commute. 
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We take A = {1,2,...,k}. Suppose we are given k sequences of m.p.t 
{T^{r,p)}, . . . ,{TW} of a measure space (X,@,p). Given a word w G W}(A) we 
can form the transformation 

r(w) = T1
w(1)T2

w(2)---T/
w(,) . (12) 

Definition 1. A W(A)-system consists of a family of m.p.t. of a measure space 
(X,$,p) corresponding to w G W(A) and formed in accordance with (12). We 
denote the system (X,$,p, {T(w)}w£w{A))-

We can now state the 

Theorem (W(A)-Recurrence). Let (X,&,p, {T(w)}wew(A)) be a W(A)-system. If 
f G U°(X,@i,pL) is non-negative and not 0 a.e. then 3cp(t) G W*(A) so that 

J 7 (^ (1) ) - ' / T(<p(2)r7 • • • TicpWr'fdfi > 0 . (13) 

The proof of this theorem is patterned after the proof of the IP-recurrence 
theorem of §4. There is a new feature which arises on account of the non
commutati vity. This feature also reflects an aspect of Ramsey theory for W*(A) 
as opposed to SF. 

We use the following notation. If w G W^(A) and a cz {1,2,...,JV}, we 
designate by wa the word of W*(A) in which the letters at positions of a are 
replaced by the variable t. If we write cp(t) for wa then we denote cp(i) by w[, 
i G A. Finally set G = AN. We regard Q as part of the "boundary" of W*(A); 
namely for sequences w ^ G W(A) of increasing length, and a^ G SF, we say 
wj$ —> œ G Q if a„ —> oo and w^(p) = œ(p) for each p G N and n > n(p). 

We next define subspaces of W(A) and W*(A). Let E = {cp\(t),cp2(t),...} 
be a sequence in W*(A). We define W%(A) as consisting of words of the form 
<Pi(wi)ç>2(w2) ' ' ' /̂i(w/i), h arbitrary, with u\ G A or u\ G A U {t} respectively. It is 
clear how to define Q^. 

By analogy with «^"-sequences we have 

Definition 2. A function x(wa) is called a W*(A)-sequence. Its restriction to a 
subspace is a W*(A) -subsequence. 

Definition 3. If x(wa) takes values in a metric space M. Then we say x(wa) is 
coherent if there exists a function x* : Q —> M such that x(wa) —• x*(a;) uniformly 
as wa —• co G ß . 

The following theorem is a far reaching extension of the Hales-Jewett theorem. 
It includes Hindman's theorem. See [Cal, FK3]. 

Theorem 4. A W*(A)-sequence with values in compact metric space has a coherent 
W* (A)-sub sequence. 
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Given a W(A) -system we will restrict to appropriate subspaces in order to 
achieve coherence of certain expressions. Note that the expression in (5.2) is a 
W* (A) -sequence. 

ThennexHemma^howsixowrfl^syste^ 

Lemma5. Let w G W^(A),a,ß cz {1,2, • •-,JV},a < ß and suppose that for n G 
aUß,w(n) = i. Then for any W(A)-system {T(w)} 

T(wi)T(wi
ar

iT(wj
ß)T(wiß)-{ = T(wiuß)T(wi

aUßr
1 . (14) 

Using Theorem 4 we pass to a subsystem for which all 

ßy(a>) = lim T(w'a)T(Wirl 
a—»oo 
w-*co 

exist uniformly. On account of Lemma 5 and Proposition 4.7 these define con
ditional expectation operators E( \ @ij(co)) provided each i G A occurs infinitely 
often in co. These QìJ(Cù) represent the "ergodic averaging" operator in the W(A) 
context. Note that we obtain a "field" of operators. In a similar way we can form 
rigid extensions, and quasi-distal factor systems, except that the entire structure 
will vary (continuously) with co G ß . The cr-algebras would not be invariant but 
for a far out the operators 

Tftw.) = T ( w ' ) T K ) - 1 

will move @ij(co) to @ij(co') with cof close to co. With this apparatus we can 
proceed as in Sect. 4. 
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Random Schrödinger Operators 

Shinichi Kotani 

Department of Mathematics, University of Tokyo, Hongo, Tokyo 113, Japan 

1. Introduction 

As for the present subject of random Schrödinger operators, two articles had already 
appeared in the proceedings of the last ICM at Berkeley presenting various view
points (Pastur [13], Spencer [15]). Since then several important works have been 
done for Schrödinger operators with certain quasi periodic potentials in the one 
dimensional case. There does not seem to be much to add in this note to what 
already exists in the literature; however, we would like to mention several open 
problems in the case where random potentials are nearly almost periodic. We focus 
our attention only on the one dimensional case. 

2. Setup of Random Schrödinger Operators 

Let 

— A-eal IR, -'real 

For q 6 Q set 

dx 
l + |x| 

dx2 
L(<?) = - r i + 9-

It is not difficult to see that L(q) defines a selfadjoint operator in L2(R, dx). We 
consider a family of operators {L(q) ;qeQ} under a probability measure P on Q. 
We impose the following conditions on P: 

(1) Shift invariance: For any A e S(ß) and x e R it holds that 

P(TXA) = P(A) 

where Tx is the shift operator on Q. 

(2) Ergodicity: TXA = A a.e. with respect to P for every x e R implies P(A) = 0 or 1. 
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(3) Integrability: 
p c r i 

q(x)2 dx\P(dq) < oo. \ q(x)2dx>i 
Q (Jo J 

There are many examples satisfying these conditions such as periodic potentials, 
almost periodic potentials and any stationary ergodic process with finite second 
moment. 

Now we introduce quantities related to the operator L(q), which are necessary 
for subsequent discussions. For any 1 e C\R3 there exist unique solutions f±(x, X, q) 
of 

L(q)u = Xu, with u(0) = 1 and u e L2(1R±, dx), 

respectively. Define 

d 
h±(X, q) = ±—f±(x9 X, q)\x=0. 

It is of some interest to see 

f±(x, X, q) = exp ( ± j h±(X, Tyq) dy). (2.1) 

The Green function of L(q) is given by 
0x(x9 y9 q) = -(h+(X, q) + h_(X, q))~lf+(x, X, q)f-(y9 X, q) 

if x > y. The importance of h± in the study of almost periodic Schrödinger operators 
was first recognized by R. Johnson and J. Moser [3]. 

3. Fundamental Theorems and Open Problems 

Define a holomorphic function w(X) on <C\R by 

w(X)=-1-^gx(0,0,q)-'P(dq) 

for P e &>(Q). This function was first introduced by R. Johnson and J. Moser [3] in 
the almost periodic case. Without difficulty we find 

Ja 
w(X)= h+(X,q)P(dq) = h_(X, q)P(dq). 

The function w has a positive imaginary part on the upper half plane <C+ and such 
a holomorphic function is called a Herglotz function, which has appeared often in 
the spectral theory of differential operators and the classical theory of moment 
problems. Our w has more special properties by which we see the existence of the 
finite limit w(£ + zO) for any £ e R. We set for £ e R 
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Then it is known that y(Ç) is non-negative and n(£) is continuous, non-negative 
and non-decreasing. y(£) is called the Lyapunov exponent and n(£) is called the 
integrated density of states. nn(^) is called the rotation number. The readers will 
find a suitable explanation of y, n in R. Johnson and J. Moser [3] or S. Kotani [5], 
Now we can state 

Theorem (S. Kotani [4]). Set 

JV = { { G R ; y ( O - 0 } . 

Then for almost all q e Q with respect to P 

Mf+ '0)= -Mf + '0) 
holds for almost all £ e N. 

This theorem has several interesting implications, among which we see that, by the 
reflection principle, h±(X, q) have analytic continuation from <C+ to the lower half 
plane (C_ through the interior N. Therefore this combined with the formula (2.1) 
implies that L(q) has generalized Bloch solutions ifXeN, and in particular L(q) has 
pure absolutely continuous spectrum on N. A more careful study shows 

Theorem (K. Ishii [2], L.A. Pastur [12], S. Kotani [4]). With probability one the 
absolutely continuous spectrum of L(q) coincides with N^ := {£, e R; p(U n i V ) > 0 
for any neighbourhood U of £}, where p denotes Lebesgue measure. 

Therefore we can tell everything about the absolutely 'continuous spectrum by 
looking at the function w alone. Then the following question naturally arises: 

PL Can we determine the pure absolute continuity of the spectrum from w alone? 

The above argument shows that if (dn)(ïït\N) = 0, then L(q) has only absolutely 
continuous spectrum with probability one. However this condition is far from the 
necessity. In this respect, S. Kotani, M. Krishna [6] gives more recent information. 
It gives a more delicate sufficient condition which was essentially introduced by 
B.M. Levitan [7] 

Once this problem was solved, the next question would be 

P2. Does the absolute continuity of the spectrum imply the almost periodicity of the 
random potentials? 

It is well known that if the spectrum of L(q) coincides with the set N and N consists 
of only finitely many closed intervals, then q must be a quasi periodic potential 
(S.P. Novikov [11], H.P. McKean and P. van Moerbecke [9]). We have also 
several papers treating potentials having infinitely many gaps of certain types 
in the spectrum (H.P. McKean and E. Trubowitz [10], V.A. Marchenko and 
I.V. Ostrovskii [8], L.A. Pastur and B.A. Tkachenko [14]). Among them B.M. 
Levitan [7] is very closely related to our purpose and is restated in our framework 
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in S. Kotani and M. Krishna [6]. W. Craig [1] provides a non-probabilistic 
treatment of this problem and gives a simpler proof of the trace formula. Although 
much effort has been made to clarify the relationship between the spectrum and the 
potentials, it seems that we have not grasped a key point yet. 
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De Rham Cohomology of Wiener-Riemannian Manifolds 
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0. Introduction 

In the study of Riemannian manifolds, we often observe operators in L2-spaces. The 
study of infinite dimensional manifolds had started a long time ago, but we did not 
think of such L2-spaces because of a lack of good Riemannian volumes. However, 
some people (e.g. Gross, Kuo, Eells, Elworthy, Ramer [7]) had tried to study infinite 
dimensional manifolds which possess a good Hilbert-Riemannian metric and a 
good measure which is modeled after the Wiener measure. Let us call such an infinite 
dimensional manifold a Wiener-Riemannian manifold. 

After Malliavin introduced stochastic calculus of variation, which is called 
Malliavin calculus now, there was a great progress on stochastic analysis. (If we 
made a list of contributors, it might be very long). And this progress enables us to 
challenge the study of Wiener-Riemannian manifolds again. Such challenge started 
already by some people (e.g. Malliavin, Airault, Biesen [1, 2], Watanabe, Kazumi, 
Aida). 

In this paper, we focus on the de Rham cohomology of Wiener-Riemannian 
manifolds and explain what the purpose of this topic is and what we can prove at 
the moment. 

1. Preliminary Facts and Motivation 

We say that a triple (p, H, B) is an abstract Wiener space, if 
(1) B is a separable real Banach (or Fréchet) space, 
(2) H is a separable real Hilbert space continuously and densely embedded in 

the Banach space B, 
and 

(3) p is a probability measure in B such that 

I e x p o y - lB(z, u)B*)p(dz) = exp ( - - ||w||H*2 

for any u G B* C H*. 
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Here B* and H* are the dual space of B and H respectively. Often the dual space 
H* is identified with the Hilbert space H itself. However, we will not take this 
convention here. 

Arrimportant example of abstract Wiener spaces is an ordinary Wiener 
space (p0, H0, W% where Wd = {we C([0,1]; Rd); w(0) = 0}, H0 = {h e Wd; h(t) 
is absolutely continuous in t and }J |Ä(t)|2 dt < oo}, and p0 is the Wiener measure 
onWd. 

Now let E be a separable Hilbert space. For any bounded measurable map 
f:B-+E,WQ define a measurable map Ptf:B->E, t ^ 0, by 

i Ptf(z) = I f(e-tl2z + (IH - e~*yi2w)p(dw), z e B. 

Then it is easy to see that {Pt}t^0 can be regarded as a strongly continuous contrac
tion semigroup in LP(B; E, dp), p e (1, oo). Let J£? = ^pE denote the infinitesimal 
generator of the semigroup {Pt}t^0 in LP(B; E, dp). For any separable real Hilbert 
space E, s ^ 0 and p e (1, oo), we define a Banach space DS

P(E) by 

Bs
p(E) = Image(/ - J%>JBp'2 in LP(B; E, dp), 

and 

IMI n; = IK' - ^ . ^ « I I L F C M . « . M e D P ( £ ) -

Also, we define Dp(E), s < 0, p e (1, co), to be the dual Banach space of D~s(£*), 

where - + - = 1. As usual, we identify the Banach space LP(B; E, dp) with the dual 
P <1 

space of Lq(B; E*, dp). Then we see that 

Ds
p(E) => DS

P.(E) if 1 < p ^ p' < oo and -oo < s ^ s' < oo, 
and 

NI D-w = IK7 - ^)S / 2"HL,(B ; £ ,^), W e L*(ß; E, du), 

if s e (—oo, 0] and p e (1, oo). 
We define B™(E), p e (1, oo) and D£_(£), p e (1, oo], by 

D-(E)= Q E W * 
se(O.oo) 

and 

qe(0,p) 

Then they become Fréchet spaces naturally. 
Also, we have the following. 

Proposition 1. For any separable real Hilbert space E, if ue T)\(E), there is a 
Du e D%(H* ® E) such that 
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-(u(z + th) - u(z)) - Du(z)h > E } } - • 0 , t - » 0 , pUzeB; 

for any heu and e > 0. 

The following is due to Meyer. 

Theorem 2. For any separable real Hilbert space E and p e (1, oo), the linear operator 
D from B\(E) into D^tf* ® E) can be extended (or restricted) to a bounded linear 
operator from T)p(E) into D*"^//* ® E) for any s e R and p e (1, oo). 

Therefore the dual operator D* of D is a bounded linear operator from 
Bs

p(H ® E)into D*_1(E)for any s G R and p e (1, oo). Let iH :H*->H be an isometry 
given by (iHu, h)H = H*(u, h}H, h e H. Then we have 

i f = -±D*iHD. 

The following is due to Malliavin and Watanabe. By virtue of it we can consider 
hypersurfaces in abstract Wiener spaces. 

Theorem 3. Let F = (Fu ..., Fn) e D£_(R") and assume that 

dtt({{DFi9DFj)H.}u^ J " 1 e fl U(B;dp). 
pe(l,co) 

Then the linear map SF : y(R") -• D£_(R) given by SFf(z) = f(F(z)), z e B, is exten
sible to a continuous linear map from 9"(R") into (J D* (R). 

s < 0 
p e ( l , o o ) 

In particular, we can think of a generalized Wiener functional 3(F) if F satisfies 
the assumption of Theorem 3. 

For any separable real Hilbert space E, we denote by E®" the completion of the 
algebraic tensor product £ ® £ ® - - - ® J E , n^ 1. Then E®" is a real Hilbert space 
and {eki ® ek2 ® • • • ® ekn}ki kn=1 is a complete orthonormal basis if {ek}k=x is a 
complete orthonormal basis of E. We also use the convention that E®° = R. For each 
n è 1, let An : E®" -• E®" be a bounded linear map given by An(h^ ® h2 ® • • • ® hn) = 

-f Eaes^gnto-)^!) ® ha{2) ® • • • ® ha{n), hu...,hneE, Here Sn is a set of permuta

tions of {1 , . . . , n}. We define a closed subspace /\"E of E®" by /\"E = {XG E®"; 

An(x) = x}. 
Now we define a continuous linear operator dn : D£_(/\"//*) -• D£_(/\"+1tf*) 

by dnu = (n + l)>ln+1 Du. Then we have d^d, , = 0. We also define an inner product 
(•,*),, on D-_(A"tf*) by 

(u, v)n = (ni)'1 • j (u(z), v(z))H^np(dz), u, v G D £ _ ( A " H * ) -

Then we see that the formal adjoint operator d* is a continuous linear operator 
from D£_(/\' ,+1/J*) into D£_(/\"H*). 

The following is due to Shigekawa [8]. 



1078 Shigeo Kusuoka 

Theorem 4. (1) Ln = dn*dn + dn^dn^ has a natural self-adjoint extension in 
L2(B; f\nH*, dp), n = 0 , 1 , . . . . 

(2) dim(ker Ln) = dim({M G B^(A"H^ l u = ty/il-i* ^ D ^ A " " ^ *)}) 
fl n = 0 

~jo n^r 
Our main purpose is to show similar results for curved spaces. 

Hypersurfaces in Wiener Spaces 

Let M be a compact Riemannian manifold of finite dimension embedded in the 
Euclidean space Rd. Then for each xe M, the tangent space TX(M) is regarded as 
a subvector space in Rd. Let Px denote the orthogonal projection in Rd onto TX(M) 
for each xe M. Let us think of the following stochastic differential equation. 

dX(t, x; w) = PXittXiW) o dw(t), t e [0,1] 
X(0, x;w) = xeM 

Here {w(t); t e [0,1]} is a d-dimensional Brownian motion. This is the Stroock's 
representation of Brownian motion on the manifold M. 

Now let us take x,ye M and fix them throughout. Let us think of a subset Mxy = 
{w G Wd; X(l, x\ w) = y}. This is not a closed set in Wd in general. Let v = v^ be a 
measure on Mxy given by . , 

v(dw) = öy(X(l, x; w))p(dw). 

Let N(w) = iHDX(l, x; w)*(DX(l, x; w)DX(\, x; w)*)_1D^(l, x; w\w e Wd. Then 
N e D^_(#* ® H). If w G Mxy, then N(w) gives normal direction of Mxy in principle, 
and so IH — N(w) is the orthogonal projection in H on to Tw(Mxy) in principle. 

Now we introduce an equivalence relation ~ on D™_(/^H*) by the following. 
u ~ vifu(w)(h, -N(w)hu ...,hn-N(w)hn) = v(w)(h, -N(w)h l 9 ...,hn-N(w)hn)v-
a.e.wjor all hl9 ..., hn e H. Also, let Jn = n™-(/yH*)/~. We can define a map 
dn : ^n -> rifn+1 by dn(u/~) = (dn+1u)/~. Then obviously dn+idn = 0. 

We can introduce an inner product on srfn by (u/~, v/~)n = (n!)-1 \Mxy((A
n((IH 

- N(w))*)u(w), (f^((IH - N(w))*)v(w))Ho*®nv(dw), u, v eJn. Then we can see that 
the formal self adjoint map d„* is a map from <stfn+1 into stfn. So we have an operator 
Ln = dn*dn -f d„_1d„_1* in the Hilbert space which is the completion of J /„ . It is not 
difficult to see that Ln is closable. So let us denote by the same Ln the Friedlichs 
extension of Ln. 

Our main interest is to study ker Ln. It is a quite natural guess that there is a 
relation between ker L„ and the topological cohomology of Mxy. However, the 
topology of Mxy is not well-defined. So we have to modify this guess as follows. 

Let us think of the following ordinary differential equation. 

d 
j Y(K x; h) = PYittXih) • h(t), t G [0, 1], 

7(0, x;h) = xeM 
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for each h e H0, and let 

Mxy = {heH0;Y(l,x;h) = y}. 

Then Mxy is a closed Hilbertian submanifold in H0. A natural guess is that there is a 
natural isomorphism between ker L„ and Hn(Mxy\ R), nth-topological cohomology 
of the space Mxy. 

The results which we can prove at the moment is the following. 

Theorem. (1) There is a natural mapj„ : ker Ln -> Hn(Mxy; R), n ^ 0. 
(2) j n , n = 0, 1, 2 , . . . , is surjective. 
(3) j n , n = 0 or 1, is injective. 

Let us give some remarks on this theorem. First, it is well-known that vxy(Mxy) = 
0. So even the construction of the map7„ is not trivial. Also, let 

Path^ = ^y : [0, 1] -> M; y(t) is absolutely continuous in t and 

\m\rJM)2 dt < oo] 
f l 

y(Dv 

0 

Then we have a natural map TT : Mxy -> PathXJ, given by n(h)(t) = Y(t, x; h). It is easy 
to see that (M^, n, PathX),) is a vector bundle. So we have a natural isomorphism 
between Hn(Mxy, R) and HM(PathX3,; R). Since the topological cohomology of 
path spaces have been studied by topologists, we can use their results to study 
H»(Mxy, R). 

The strategy to show our theorem is the following. If we think of a finite 
dimensional compact manifold M, it is well known by the name of de Rham-Hodge-
Kodaira theory that there is a natural isomorphism between ker(dM*d„ + dn_j d„_!*) 
and Hn(M\ R), and this isomorphism is usually constructed via de Rham cohomo
logy. So we have to define de Rham cohomology for Wiener-Riemannian manifolds. 
To compare ker (d*dn -f- d^d,^*) and de Rham cohomology, the hypoellipticity 
of the operator d,*dn -f dn^1dn^ plays a key role. Also, to compare de Rham 
cohomology and Hn(M; R), we use Cech-de Rham's argument which requires the 
existence of partition of unity and the cohomology vanishing theorem of Poincaré 
type. 

In the rest of this paper, we explain in what sense we have the definition of de 
Rham cohomology, the existence of partition of unity, the cohomology vanishing 
theorem and the hypoellipticity. 

3. Tools 

Let X be a separable metric space and let 0>(X) denote the set of all subsets of X. 

Definition 1. We call a function a : 0>(X) -> [0, oo) a finite capacity on X if the 
following are satisfied. 

file:///m/rJM)2
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(1) a(<f>) = 0 . 
(2) a(A) ^ a(B) for any A, Be 0>(X) with A c B. 
(3) oc(A1 u A2) ^ «(^i) + a(A2) for any X l3 A2 e 0>(X). 
(4) For any A e 0>(X), a(A) = inf{a(G); A c G, G is an open set in X}. 
(5) There is a sequence {K„}£=i of compact sets in X such that a(X\K„) -» 0 as 

n-> oo. 

We denote by ^^(X) the set of finite capacities on X. 

Definition 2. Let a e <€sé&(X). 
(1) We say that an element A e 0>(X) is a-quasi-closed, if there is a sequence 

{XM}^=1 of compact sets in X such that Kn c A,n^l, and a(/l\J£J -> 0, n -> oo. 
(2) We say that an elememt A e 0>(X) is oc-quasi-open if X\>4 is a-quasi-closed. 

Definition 3. We say that an a G Cap(X) is countably dominated if a satisfies the 
following. 

/ oo \ oo 

« U An H I «(4.) for any {An}^ c ^(X). 
\ / i= l / «=1 

Example 1. For each 5 G (0, oo) and p e (1, oo), let 

CSJG) = inf{||W||D*(R)'; u e Df(R), u(z) ^ 1 A*-a.e. z G G} 

for any open set G in 5, and 

Cs p(C) = inf{Cs>p(G); G is an open set in B and C c G} 

for any subset C in B. Also, let us define Q, : ̂ (5) -> [0, 1] by 

def 
O j e ) = X! 2~" • Q « ( c ) f o r a n y s u b s e t c i n 5 -

« = i 

Then,Csp, Cœ are countably dominated finite capacities in B. These capacities 
were first introduced by Malliavin. 

Example 2. For any s e (0, oo), p e (1, oo), we define 

Cap£p(G) = inf{||u|| Dj(R)P; u e D£_(R), u(z) ^ 1, p-^.z e G} 

for each open set G in ß, and 

Cap£s(C) = inf{Cap-s(G); C c G 5 G i s open} 

for any subset C in B. Also, let us define Cap00: 0>(B) -• [0, 1] by 

Cap°°(C) =f £ Cap£w(C) for any subset C in B. 
n=l 

Then Capp3
 s and Cap00 are finite capacities on B. 

Definition 4. Let LT be a Cœ-quasi-open set. For any p e (1, oo] and a separable 
Hilbert space E, we say that f:U-+E belongs to @Pt\oc(U; E) if for any n ^ 2 + 
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[l/(p -f 2)] and a compact set K with K c: U, there is cp e DJj(R) such that 

(1) 0S(P^ l,(p(z) = 0,zeB\U, 
(2)cpfeDìÌAp)_lfn(E), 

Sind 

(3) CJK\{cp = I}) < 1/n. 

Then we have the following ([4, Lemma (5.24)]). 

Theorem 5. Let Un,n — 1,2,..., and U are Cap00-quasi-open sets, and assume that 
00 

(i) U U„ c v, 
M = l 

and 

(ii) for any compact set K with K cz U, Cap00 ( K\l (J Uk I I -• 0 as n -• oo. 

Then there are cpn G ^t\QC(U\ R) such that 
(1) cpn(z) = 0,U\Un,n^l, 
(2) O^cp,^ 1, 
(3) cpj G a;%Xw{U\ E) for any f e ^loc(Un; E),n^\, 

and 

(4) for any e > 0 and compact set K with K cz U, there are m ^ 1 and a compact 
set K' cz U such that 

(i) (pn(z) = 0, z G K', n ^ m + 1, 
m 

(ii) ] > > „ ( z ) = l ) 2 e X ' , 

flfld 

(iii) C a p 0 0 ^ * ' ) < e. 

Now let [/ be a C^-quasi-open set in Wd. We give an equivalence relation ~ in 
^ ioo(y ; A"#o*) n ^ 0, p G (1, oo], by the following: 
a ~ ßif 

a(w)(^ - Ar(w)fclf..., K - N(w)hn) = ß(w)(h, - N(w), ...,hn- N(w)hn) 

v-a.e.w G U for any hl9 ..., hne H0. Now we define a vector space J^P(U), n ^ 0, 
p e (1, co], by J*p

n(U) = @Zi0C(U; /\nH0*)/~. Then d„ : sé"p(V) -> ^ ; + 1 ( ^ ) is well-
defined and dn+1d„ = 0. 

For any y G C°°([0, 1]; M) and e > 0, let U(y, e) be a Cap°°-quasi-open set given 
by 

U (y, e) = <j w G Wd; max disM(X(t, x; w), y(t)) < e 
I te[0,l] 

Then we can prove the following. 

Theorem 6. There is an e0 > 0 satisfying the following. If yk e C°°([0, 1]; M), ek G 

(0, £0), fc = 1,.. . , n, and vxy f fl U(yk, ek)J > 0, then for any a e sé™ ( fl U(yk, ek)J, 
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m ^ 1, with dma = 0, there is a ß e sép~
x ( fl U(yk, ek) ) such that dm_lß = a. 

For any y G C°°([0, 1]; M) and e > 0, let Ü(y, e) be an open set in H0 given by 

U(y, s) = <he H0; max disM(Y(t, x; h), y(t)) < s 
( te[0,l] 

Then the support theorem tells us the following 

Proposition 7. Let yk e ^ ( [ 0 , 1]; M) and sk e (0, e0), k = 1, . . . , n. Then 

vxy f fl u(y^ <*) J > 0 if and only if Mxy n Mfl C/(yfc, £ft) J / ^. 

Then by using Cech-de Rham's argument, we have the following. 

Corollary 8. {a G ^l(Wd); dnoc = 0}/{dn_J; b e jf^iW)} ä Hn(Mxy; R) for any 
n ^ 0 and p e (1, co]. 

Also, we have the following hypoelliptic result 

Theorem 9. Ker Ln cz sé2
l(Wd), n^0. 
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Some Recent Results in the Asymptotic Theory 
of Statistical Estimation 

Lucien M. Le Cam * 

Department of Statistics, University of California, Berkeley, CA94720, USA 

1. Introduction 

One of the simplest results in asymptotic theory of estimation is the Hajek-Le 
Cam asymptotic minimax theorem. Besides being simple, it has many applications. 
We review the theorem and give brief indications on some applications. 

The theorem is called Hajek-Le Cam because it was proved by Hâjek (1972) 
for the asymptotically normal (more precisely LAN) case. There was a previous 
theorem by Le Cam (1953). Hajek's result was substantially extended in Le Cam 
(1979). 

Section 2 below gives a summary of definitions and notation. Section 3 reviews 
the asymptotic minimax theorem. Section 4 indicates how the theorem can be 
applied to problems recently studied by Donoho and Liu (1990), by M. Low 
(1989) and by Golubev and Nussbaum (1990). For further applications of the 
asymptotic minimax theorem, see Millar (1983). 

2. Definitions and Notation 

We shall use the definitions of Le Cam (1986) with indication of conditions under 
which these definitions reduce to the more usual ones. 

An experiment ê — {PQ; 9 e 0} will be given by a cr-field sé carried by a set 9£ 
and a family {PQ',6 e ©} of probability measures on sé. The set © is usually called 
the parameter space. The L-space L(S) of an experiment ê is the set of all finite 
signed measures defined on sé and dominated by some convergent sum £ 0 CQPQ, 

CQ > 0, YJOCO < °°- Let S and SF be two experiments, with ê = {Po',Q G ©} on 
a or-field sé and SF — {QQ\Q G ©} on some other <J-field Sft. A transition T from 
L(S) to L(SF) is a positive linear map from L(S) to L{&) such that ||7>|| = \\p\\ 
if p > 0. Here \\p\\ is the Li-norm \\p\\ = supy{| f fdp\; \f\ < 1, / measurable}. 
The deficiency ö(i,SF) is the number b(89&) = infT sup0 \\Qe - TP0\\ where the 
inf is over all transitions. The distance A{ß9&) is mdix{ö(e,SF),o(^,S)}. Two 
experiments ê and SF are equivalent if A ($, SF) = 0. 

* Research supported by NSF grant DMS-8701426. 

Proceedings of the International Congress 
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The reader who would prefer working only with transitions given by Markov 
kernels can satisfy himself or herself that all transitions from L(i) to L(SF) are 
given by Markov kernels if 1) the family {PQ} is dominated and 2) the QQ are 
Borei measures on a Borei subset of a complete separable metric space. 

An estimation problem consists of an experiment $ = {PQ;8 G 0} together 
with a set Z and a loss function W defined on © x Z to (—oo, +oo] such that 
infz WQ(Z) > —oo. The set Z will also be assumed to carry a vector lattice F of 
bounded numerical functions, complete for the sup norm and such that 1er. 

A decision procedure Q is then a transition Q from L(i) to the dual F'ofF (for 
the sup norm). Such a transition has a value yQP for y G r and P GL(ê). (This 
is a contraction of f[f y(z)K(dz,x)]P(dx).) The risk of Q at 8 is R(6,Q) = WQQPQ 

= sup{ygP0;y GT,y < We}. 
Here again the reader who prefers to work with Markov kernels (K, as above) 

can assume that 1) the {PQ} are dominated 2) Z is compact, F = C(Z) and each 
WQ is lower semicontinuous. 

An estimation problem given by an experiment S = {PQ',8 e 0} and a loss 
function W has a set SH(êt W) of possible risk functions, the set of functions 
/ from 0 to (—oo,+oo] such that there is a decision procedure Q for which 
WQQPQ <f(6) for allô G 0. 

Often we shall need to work with subsets F a 0. Then Sp will be gF = 
{PQ\8GF}. 

3. The Asymptotic Minimax Theorem 

The distance defined in Sect. 2 gives a topology on the set of (equivalence classes) 
of experiments indexed by a set 0. Another topology is the weak topology: A 
directed set {êv}\ Sv = {PQìV : 8 G 0} converges weakly to #" if for every finite set 
F a 0, the distances A(Svj?,SFF) tend to zero. This is equivalent to convergence 

in distribution of the vector of likelihood ratios j -^, t G F \ for all s G F. 

To state the theorem call a loss function V special if VQ G F for each 8 e 0. 

Theorem 1. Let f be a function that does not belong to 0l(SF,W). Then there is 
a special V < W, a number a > 0, a finite stet F and an e > 0 such that if 
A($F,SFF) < e then f + a restricted to F does not belong to $&($?, V). 

For a proof, see Le Cam (1979) or Le Cam (1986) pp. 109-110. 

Remark 1. There is a weaker version of the theorem that might be easier to 
visualize. Let {S'y} be a directed family of experiments Sv = {PQ,V',8 e 0}. 
Assume that the Sv converge weakly to SF and that for each v the function fv 

belongs to <%(SV, W). If fv converges pointwise to / then / G 0l(SF, W). This easy 
version is not sufficient for applications where one wants to truncate W. The fact 
that the finite set F the special V and the e of Theorem 1 depends only on the 
triplet (#", W,f) is also lost in the weaker version. 
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Remark 2. Theorem 1 has been stated in the general framework of Sect. 2 with 
procedures that are "transitions". If one wants to restrict oneself to transitions 
representable by Markov kernels it is sufficient to put restrictions on the limit SF 
and the loss W. Call 0l(SF, W, Markov) the set of functions defined as in Sect. 2 
for 0l(SF, W) but for transitions that are Markov kernels. It is enough to assume 
that 8%(SF, W) = 0l(SF, W, Markov) for the limit experiment # \ Assumptions that 
insure this are given in Sect. 2 and in Le Cam (1986) pp. 11-14. No assumptions 
need to be placed on the experiments S such that A(S,SF) < e. 

Theorem 1 uses only weak convergence to SF of the experiments ê. There is 
another mode of convergence that is usually available at very little cost. It is as 
follows. 

Take a fixed SF = {Qo;0 e 0} and call a set S c 0 compact if the set 
{Qo; 0 G S} is compact in L(&) for the Li-norm, Let {Sv} be a directed family of 
experiments, Sy = {PQ>V',8 G 0}. It is said to converge to J^ on compacts if for 
each compact set S the restrictions gViS are such that A(gVts9#

rs) tends to zero. 
The standard LAN conditions of Le Cam (1960) imply convergence on 

compacts. (Hajek's 1972 do not.) According to Lindae (1972) convergence on 
compacts follows from pointwise convergence plus some tail equicontinuity of 
differences \\PStV — Pt,v\\> s,t e S compact. In many cases one would wish to 
consider convergence on precompact sets instead of compacts. The precompact 
convergence can be reduced to the compact one by completing J*. This can be 
achieved without any difficulty. 

Now if Sv converges on compacts to SF9 Theorem 1 is certainly applicable, 
but can one say more? In the direction of lower bounds for the risk, perhaps 
very little can be said. However here are two results, that are of some interest. 

Theorem 2. Assume that, for compacts defined as above, Sv converges to SF on 
compacts and that W is bounded (that is sup{|W^(z)|; 6 e 0, z G Z} < coj Then 
if f G 9t(&9 W) there is for each v an fv G 9t(gV9 W) such that fv -> / uniformly 
on the compact subsets of 0. 

This is easy to see. It tends to indicate that some results that can be achieved 
on the limit SF can also be achieved asymptotically on the directed set {Sv}. 

Another result extends the lower bound of Theorem 1. To state it, let Wjj = 
c AWQ for c > 0. For risk functions WQCTVPQ>V that might not be measurable, let 
/* Wß(TvPotV p(d8) be the lower integral, supremum of integrals of measurable 
functions not exceeding WQCTVPQìV. Consider an experiment SF = {QQ',8 G 0} and 
loss functions satisfying the following assumption: 

(A) If 0 is pseudometrized by the distance d(s,t) = | |ßs — ß/|| then the risk 
functions WQQQQ are Borei measurable in 8 for all c and all procedures Q 

available in # \ 

We shall state our next theorem assuming that d(s,t) = \\QS — Qt\\ is in fact a 
metric on 0. Modifications for a more general case are easy. 
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Theorem 3. Suppose that condition (A) above is satisfied for the experiment SF and 
that d(s,t) defined above is a metric. 

Let p be a finite Radon measure on 0 (metrized by d). Assume that W > 0, 
and let A = infe / WQQQ,Qp(dd) be the Bayes risk for p and SF. 

Then for each b < A there is a c < oo, a compact K c 0 and an a > 0 such 
that if A($K,SFK) < a then infff f* lK(8)WljcrPQp(d8) > b, the infimum being over 
all procedures a available for ê = {PQ; 8 G 0} 

Proof. Let go be a Bayes procedure for SF, W and p. Let nK the class of special 
loss functions V with V <, W. Then, by definition, WQQOQQ = s u p F e r VQQOQO = 
supc sup,f VQQOQQ — supc WQQOQQ. Thus if the WQQQQQ are measurable 
/ WQQoQ,Qp(d8) = supc / WlJQoQoKdö)' Since W > 0, this implies that for any 
number b', b < bf < A there is a finite c and a compact K cz 0 such that 
IK W$QoQQp(dd) > V. Let a > 0 be such that b+\\fi\\ca < bf. lfA(SK,SFK) < a/2 
there is a transition T from L(^K) to L(êK) such that \\PQ - TQe\\ < a for 
all 8 G K. This T extends to a transition from L(^) to L(ê). Thus, if a 
is any procedure on S, the procedure Q = CTT defined for SF is such that 
\W§(aT)Qo - WC

QOPQ\ < ca for all 8 G K. This implies 

j(WQöPQ)pd(8) ^ jjK(8)W6aPQp(dQ) 

> JjK(8)Wc
QoPQp(d8) 

> j Wc
Q(oT)Qep(d8) - \\p\\ca > b. 

JK 
Hence the result. • 

Remark 1. It should be noted that the measurability requirement (A) is imposed 
only on the limit experiment #", not on the approximating experiments è. In the 
cases considered in the literature the functions 8 ~> WQQQQ are in fact continuous. 
Thus measurability is not a serious problem. However it seems to be needed for 
the validity of Theorem 3. 

Remark 2. Let M be a class of Radon probability measures on 0. The conclusion 
of the theorem can be replaced by: Let b denote any number strictly inferior to 
sup^infg / WQQQop(d8). Then there is a compact J ( c 0 and numbers d > 0 and 
c < oo such that if A($K,SFK) < a one has 

sup inf fw$crPQp(d8) > b. 
ii a J* 

This can be seen as in Theorem 3 taking a Bayes procedure QQ for a p that almost 
achieves the sup^ for procedures on #". 

Remark 3. One might ask whether the conclusion of Theorem 3 would remain 
valid under only weak convergence of the experiments instead of compact con
vergence. This is perhaps not so. The difficulty arises from the fact that pointwise 
convergence of a bounded directed set of functions does not imply convergence 
of their integrals. 
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4. Some Applications 

A) Let us start by an example of M. Low (1989) since it is very simple. Consider, 
on the line R, a fixed probability density /o (with respect to Lebesgue measure) 
such that /o(0) > 0, supx/(x) < oo and such that /o be continuous at zero. 
Let {a„} and {/?„} be nondecreasing sequences of positive numbers such that 
0Ln —• oo and (aj}j8n)(/o(0)w)"'1 —• 1. Consider the class H of functions from 
IR to R such that J h2 < oo, / \h\ < oo and supx|Ä(x)| < oo. Let hn be the 
number hn = f oc~1h(ß11x)fo(x)dx. Define fn(h,x) = [1 + a"1/?(/?„*) - h„]fo if 
1 + a~lh(ßnx) — hn ^ 0. Let fn(h,x) = fo(x) otherwise. The standard Gaussian 
shift experiment 0 of H is one where one takes under 0 = 0 the distribution Go 
of a Gaussian linear process Z indexed by H and such that E(Z,h) = 0 and 
E\(Z,h)\2 = ||/7||2 = fh2(x)dx. For another value h G H one takes for Gh the 
measure dGh = exp{(Z,/?) - ±||/7||2}dG0. 

Now let ên = {Pfilh G H} be defined by taking for Pjf the joint distribution 
of n independent observations from the density fn(h,x). Low shows that in 

converges weakly to the Gaussian ^ as n —> oo. 
By restricting oneself to subsets of H one can obtain a variety of results from 

Theorem 1 (or 2). For instance Low considers a set of densities subject to a 
condition sup^ |/fc(x)| < M and estimates of f(0). By selecting a„ = Cl77/c(2fc+1)~ 
he shows that the appropriate rate of convergence of the estimate is in nk^2k^ . 
This was known otherwise but Low obtains the exact limit of the risk for several 
loss functions. 

The technique of rescaling through coefficients a„ and ßn had been previously 
used by Has'minskii (1979) to study estimation of a mode. For ßn = 1, it has 
been used extensively. 

B) A more complicated example appears in a paper by Golubev and Nuss-
baum (1990). They consider the problem of estimating a signal t ^f(t), t G [0,1] 
when the observations are of the form 7/ = f(xj}11) + £,•, / = l,...,n with, for 
instance x,;„ = i/n and with noise £ where the £,• are independent, mean zero, 
fixed variance a2 and fourth moment E£f less than a fixed constant c. The 
problem has been studied by many authors. A major breakthrough is due to 
Pinsker (1980) who considered the case where the £/ are Gaussian. Pinsker 
and subsequent authors consider the Sobolev class W™ = {f G L2\Dmf G L2} 
where L2 is the Hilbert space of the Lebesgue measure on [051]. For the subset 
W$(B) = {f G Wf; \\Dmf\\2 < B} let A = lim„ infj supr n(

2m)(2'"+1)"1 EfJf~f\\2 

where the sup is on / G W™(B) and the inf is over all estimators depending on n 
observations. The papers of Pinsker (1980) and Nussbaum (1985) give the result 

A = y(m)BrcT4mr for r = (2m + l )" 1 

and y(m) = (2m + l)r[m/n(m+ l)]2mr. The fact that the & were Gaussian was 
essential in the proofs. Golubev and Nussbaum use only the restrictions ££/ = 0, 
E£i = a2, E£f < c and obtain a similar result. 

The proof is full of ingenious devices. The relation with Theorems 1, 2 and 
3 is obtainable through a series of arguments that go about as follows. Consider 
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a particular /o, for instance /o = 0 and deviations from it. Let W™'0 on [0,1] be 
that part of W™ formed by functions whose derivatives of order 0,1,...,m vanish 
at 0 and 1. For / G W^ one can obtain an orthogonal expansion / = YJJ0]^] 

with \\cpj\\ = 1 and ||Z>m >̂J-1|2 = Xj increasing in j . Now take an integer q and for 
k = 1,2,..., n let I^q == ((k — l)/q, k/q]. Transport W™'0 to J ^ , by proper scaling. 
Look at deviations of the type X/cHJ=i feMWfe where (p^A is cpj transported 
to hA and put equal to zero outside Ik>q. Take only deviations that remain in 
W^(B)- This allows to separate the observations by classes, the fe-th class yielding 
a model yt = Xj=i <PjM(xUn)fj,k + & f o r t h o s e xw that fall in hiq. 

Golubev and Nussbaum let q depend on n, so it becomes q(n) of the order 
òf nr. They then proceed to show that the part of the regression model restricted 
to one of the intervals hA converges to a Gaussian shift one. 

Selecting the parameters fjtk independently according to some measure v one 
can try to find a lower bound on the Bayes risk. 

The bound in the limit is given by Theorem 1 or 3 for each of the subintervals 
h,q', k = l,2,...,q. Since the Bayes risk for the entire problem is q(n) times the 
risk on each I^q the global lower bound can be computed for each fixed s. Then 
one will let s tend to infinity. Of course this is only a brief sketch of the method 
of proof. There are many other difficult steps on the way. One of them is to 
make sure that the product measure vsq on Rsg concentrates on the Sobolev ball 
W^(B). This was also crucial in Pinsker (1980). 

In Low (1989) or Golubev and Nussbaum (1990) Theorems such as Theorems 
1, 2 and 3 are used to reduce a complex problem to one in which the distributions 
are Gaussian and where one can often get more precise information. 

C) The estimation problem treated by Donoho and Liu (1990) differs consid
erably from the one described in (B) above. Yet the two are closely connected. Let 
#" be a class of probability densities with respect to Lebesgue measure X on an 
interval [—a, +a] of the line. Assume that J5" is convex, closed and bounded for 
the L2-norm, ||/||2 = f f2dX. Donoho and Liu study the problem of estimating 
the value T(f) of a real valued linear function T defined on #" when one takes 
n independent observations X\,...,Xn from some / G SF. For example one may 
want to estimate the value at zero of the fe-th derivative of / subject to a local 
constraint on the m-th derivative, with k <m. 

Let vn be the empirical measure of the first n observations. One can either 
limit oneself to estimates T that are linear affine in vn (with risk RA indicated 
by a suffix A) or use any arbitrary measurable function T of v„ (with risk RM, 
indicated by a suffix M). A first remark is that, for affine estimates and square loss 
the problem of estimation of T is not more difficult than the estimation problem 
for a certain Gaussian shift experiment where one observes Y = f + onW, f G #", 
W a white noise or a Gaussian process defined on subsets of [—a,+a], with 
expectations zero and a given covariance function. This is quite analogous to (B) 
above, but now we need tò estimate only the value of T(f) instead of the whole 
/ as in (B). 

Let @n be the Gaussian experiment with observations Y = f + crnW, f G # \ 
Donoho and Liu proceed as follows 
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1) SF being as described, there is a worst pair (/o,n>/i,n) of elements of J^ such 
that the minimax risk for affine estimates and for the one dimensional system 
Sn = {/ö,,, = (1 — 8)fo,n + 0f\,nl 0 G [0,1]} is the same as the minimax risk for 
affine estimates for the entire 0„. Furthermore the estimate for the worst pair is 
minimax for ^„ among affine estimates. It is given by an explicit formula. 

2) Consider the problem of estimating 6 for the segment Sn described above 
and observations 

/ 
u(t)Y(dt) where u = (fhn -/o,„)ll/i,„ ~foA 

By sufficiency, this is equivalent to the problem where all of Y would be observed. 
For the problem the risk RA for affine estimates is a certain function a ~~>RA(CT) 

of the standard deviation a of fu(t)Y(dt). Similarly for the minimax risk RM(<?) 

for all measurable estimates. From Ibragimov-Has'minskii (1984) one knows 
that supff RA(CT)/RM(G) is bounded by a constant p*. From Donoho, Liu and 
McGibbon (1989) one knows that p* < 5/4. This essentially solves the problem 
for the Gaussian case, at least if one considers a 25% margin acceptable. 

The method "almost" solves the initial problem of estimation of T defined on 
#" for the independent observations X\,...,Xn at least if one selects an and the 
white noise W properly, since for affine estimates the two problems are essentially 
asymptotically equivalent. (Asymptotically only because to get exact equivalence 
one has to select the Gaussian set function W with a covariance that depends 
on the true fo). However that is for affine estimates. Would there be a possibility 
of doing much better for estimation of T(f) by general measurable functions of 
theX l 5 . . . ,X„? 

Donoho and Liu resolve the difficulty, at least for usual cases, by an appeal 
to a theorem similar to Theorem 2, Sect. 3 above. 

Let Pet„ be the joint distribution of X\,...,Xn for the densities /ö,,, = (1 — 
8)foin + 8fi)„, 6 G [0,1]. Consider the experiments Sn = {PO,„;0 G [0,1]}. Consider 
also a Gaussian experiment 

^ n = {ß0,,I;0G[O,l]} 

where ßöj?? is J^(8,a2) on the line. One can prove the following 

Proposition 1. Assume that the Levy distance between the distribution under Po,n 

°f Z!"=i f (X) ~ * and a normal distribution JT(fò, T2) tends to zero as n —• oo. 

Assume that T„ stays bounded. Then if i\o2 —> 1 the distance A($n,SFn) between 

the experiments ên = {PQ^',8 G [0,1]} and the Gaussian J*,, tends to zero. 

This is easy to see. It follows then that the difference between the minimax 
risk RM(^ìì) for $n and RM(^H) for J^„ tends to zero. 

Of course, the bulk of the argumentation of Donoho and Liu takes place 
on the Gaussian experiment. Donoho and Nussbaum have now extended these 
arguments to the estimation of certain quadratic functional of the density / 
instead of linear ones. That the problem can be very different can be seen from 
an article of Bickel and Ritov (1990). The subject is still progressing. 
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The theory of the Anderson localization was developed for a long time in the 
initial probabilistic framework for the operators of the form 

H = A + V(x, w), xe Rd(Zd), w G (Q,F,P). (1) 

Here A is the Laplacian (continuous or on lattice) and V(x,w) is the random 
homogeneous field (or process) on a probability space (Q,F,P). The central 
achievement of one-dimensional theory was a series of S. Kotani's articles [l]-[3], 
where he discovered deep connections between Ljapunov's exponents y(X), the 
structure of the prediction of the potential V(-) and the spectral localization of 
H. 

Techniques of the cluster resolvent expansions, developed by Fröhlich and 
Spencer [4], together with generalization of Kotani's idea [2], proposed almost 
simultaneously (in different forms by Souillard et al. [5] and Simon-Wolff [6]) 
made it possibile to solve the point spectrum problem for Anderson's tight-
binding model (1) in the multidimensional lattice case Zd, d > 1. 

These results are summed up in the review article of Martinelli-Scoppola [7]. 
Simplifications and generalizations were proposed recently in this field by Dreifus 
and Klein [8]. 

Probabilistic approach, nevertheless, did not clear up the central physical idea 
of localization—the absence of resonance between a quantum particle with a 
given admissible energy X and some (rich enough) family of the blocks of the 
potential. It's natural to attempt to formulate the direct geometric conditions for 
the individual potential V(-), which will lead to the localization of the spectrum. 
The first and a very important step in this direction was made in the paper 
Simon-Spencer [9]. They proved (in the one-dimensional case) that unboundness 
of potential V gives us the singular spectrum. 

Moreover, in a multidimensional situation (d > 1), even in the lattice case, 
there are many open problems on the thin structure of the spectrum H, and on 
the existence of bifurcations with respect to some parameters of the model, etc. 
It's related, for example, to the simplest functional of o(H), namely the integral 
density of states N(X) (the so-called problem of Lifshitz tails). 

In this lecture I'll give an account of some recent results in this direction. It 
is based on the papers, which I wrote together with my friends and colleagues, 
especially J. Görtner, A. Gordon, L. Pastur and B. Simon. 

This lecture was prepared at the time of my visit to Caltech (spring 1990) and 
I am very grateful to Barry Simon for his hospitality, to A. Klein, R. Carmona, 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
(c) The Mathematical Society of Jaoan. 1991 
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B. Simon and T. Wolff for their useful discussions and to M. D'Elia, V. Jaksic, S. 
Katok and J. Madow for their support and assistance. 

§ 1. One-Dimensional Localization. Lattice Case 

The next group of results can be obtained by the combination of the ideas of 
Simon-Spencer [9] (appearance of the family of non-resonant blocks), Fröhlich-
Spencer [4, 7] (cluster expansions of resolvent) and some new considerations, the 
principal of which is a randomization of energy. 

Theorem 1. Consider in l2(Z+), Z+ = {0,1,...} the Schrödinger operator H9 = 
A + V(x), x G 7L\. A is a discrete Laplacian, A\p(x) = ip(x + 1) + ip(x — 1) 
and the parameter 8 is a boundary phase connected with the boundary condition 
xp(— 1) coso + ip(0) sino = 0. Assume, that for some energy interval I c R1 there 
exists the sequence of the "nonresonant blocks" [xn,yn], n = 1,2,..., that is a 
sequence of points 0 < x\ < y\ < x% < yi ... such that for every X G I 

\Rf(xn,yn)\<ön; <5n-»0, n ^ o o . (2) 

Here Ry = (H^ — A)-1 is the resolvent of the operators on the block [xn, yn] : 
H$ =A\p + V(x)ip(x), xn<x< yn, xp(xn - 1) = y(yn + 1) = 0. 

Suppose that there exists a nondecreasing sequence of constants An > 1 and 
constant c > 1 such that 

] £ Anön <oo , Ln = \yn+i-xn\ + l<Â1...An-c
n. (3) 

Then cr(HB) ni = app(H
e) C\I almost everywhere (a.e.) in 8. 

In the particular case, which is important for many applications, when xn < cn 

(coordinates of blocks do not increase faster than exponential) conditions (2) and 
(3) become simple. It is enough to require ]£n ön < oo. 

Effective verification of (2) and (3) gives the next result. It is based on the 
physical idea of the absence of resonance. 

Theorem 2. Suppose (under the conditions of Theorem 1) that for every X G R1 

there exist a positive constant Q = Q(X) and a sequence of non-resonant blocks 
[Xn9yn](fy, such that dist{A,cr(#(n))} > Q(X) and ln = \xn — yn\ + 1 > A(g)ln n 
where the function A = A(Q) could be specified. Then, if xn < cn, c> 0, 

a(He) = cTpp(H
e) a.e. in 8. 

Theorems 1 and 2 include all well-known mechanisms of localization: high 
barriers, long bumps, gaps in periodic potentials, etc. (See for comparison [9].) 

The typical examples where Theorems 1 and 2 could (and will) be applied are 
random (usually nonhomogeneous) potentials V(x, w), x G Z{. 

Example 1 (Independent Random Variables). Let V(x) = Çx(w)9 x > 0,w G 
(Q,F,P) be i.r.v and £x(w) = a(x) +f7x(w),x > 0, where a(x) is an arbitrary 
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nonrandom function and {)7x(w), x ^ 0} is uniformly non-degenerate in the 
following sense: There exist positive constants eo,<5o such that 

P{nx > 1 + oo} > fio, P{rçx<-l-<5o}>fio5 x = 0, l , . . . . 

Then o(HQ = A + £x) = opp(H°) a.s. P and a.e. in fl. 

Example 2 (Gaussian Potentials). Let V(x) = £x, x ^ 0, be a nonstationary 
gaussian sequence, (<JX) = 0, 0 < ci < (£*) < c2 < oo, cov(fx, fj,) = (ÇxÇy) ^ 
mi+c(

C|3._ ,n> \x — y\ ^ C4. The last condition is well known in the theory of 
gaussian fields and processes : if correlations decay only logarithmically, then the 
structure of the high peaks suffers from bifurcations. It's possible to prove that 
in our case, P-a.s. in any interval [2",2"+1), n > no(w), there exists a "triplet" 
Ifxl > àyfn> IÉx+i| > S y/fi 9 IÉx+21 > à y/fi of the high peaks. It's enough to allow 
us to apply Theorem 2 and so o(H°) = vpp(H

e) a.e. in 8 and P-a.s. 

Example 3 (Unbounded Quasiperiodic Potentials). Let f(t) = f(t+ 1) be periodic 
function on the unit circle Sl for which there exists at least one point to of 
logarithmic singularity : 

l / W l ^ ^ l n l t - t o l " 1 ) 1 ^ . tGS1, 8>0. (4) 

Then for quasirandom potentials of the form 

V(x)=f(ax), V(x)=f(ax2 + ß) (5) 

for almost all values of parameters a, (a, ß) we do have a pure point spectrum 
(a.e. in 0). The second of these potentials (for the case f(t) = ctg nt) is the popular 
model of "quantum chaos" (see [18]). 

For the case of entire axis Z1, the treatment for the operator 

H = A + V(x), —00 < x < 00 

is more subtle. Of course, if conditions of Theorems 1 and 2 are satisfied for 
x > 0 and x < 0, then it's possible to prove (as in Theorems 1 and 2) that for a.e. 
X G / (or X G R1) 

Rx(0,x) = (H- X)-l{09x) G l2(%}). 

In this spectral problem there is no exterior random parameter (such as 8 in the 
case Z{

+) and (following [5] and [6]) the randomness must be included in the 
potential. The next lemma generalizes the one-dimensional results of [5] and [6]. 

Lemma 1. Let Ha = A + Vo(x) + acp(x), x G 7Ll,for a.e. A < R1 and denote by 

R°x(0,x) = (A + Vo- X)-l(0,x) = (H° - A)"1^,*) G l2(Zx). 

If perturbation cp decays "sufficiently fast", then for a.e. X any two Weyl's so
lutions y>f(x) of the equation (H° — X)\p = 0 satisfy 

X IV~llvftx)ll<P(*)l <°o 
xeZ' , 
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Then, a.e. in a, <r(Ha) = crpp(H
a). The typical xp is the one which satisfies \cp(x)\ < 

exp(—e|x|). 

In [5] and [6] similar results were proved for functions cp with finite support. 
We will give two examples of the above lemma. 

Example 4. Let V(x) = Çx, x G Z1 be i.r.v. which satisfy the conditions of Example 
1. If, in addition, one of them, say £o, has absolutely continuous distribution, 
then 

ö(A + ZX) = OPP(A + 1;X) P-a.s. 

Example 5. Let Çx, x G Z1 be i.i.d.r.v. with common absolutely continuous 
distribution (Çx) < oo and cp(x), such that \cp(x)\ < exp(—s\x\), be the elementary 
potential. Consider a homogeneous random potential of alloy type 

+00 

M=00 

It's not very difficult to verify the application of Theorem 2 in this case (see 
[17], where similar problems were analyzed in a more complicated situation). 
Application of Lemma 1 to the "partition" 

v(x) = Y ^n^x ~ ") + £o<p(x) = Vo(x) + 5O<PM 
n=£0 

shows that the Schrödinger operator H = A +^n^nç(x — n) under the above 
conditions has P-a.s. p.p. spectrum in /2(Z1). Earlier (see [17]) it was known only 
that CT(H) = <7sing(#) P-a.s. 

§2. Some Generalizations 

The main idea of Theorems 1 and 2 can be extended to more general one-
dimensional lattice systems: Jacobi operators of the form H\p(x) = l(x — l)ip(x — 
1) + l(x)xp(x + 1), operators where the Laplacian A is replaced by nonlocal 
convolution J^yl(x — y)ip(y) = Axp(x) and kernel l(x — y) decays fast enough off 
the diagonal and so on. 

Let us formulate two theorems of this type. The first result about the "random 
string" has a clear mechanical meaning. 

Theorem 3. Let He\p(x) = l(x - l)ip(x - 1) + l(x)xp(x +1), l(x) > 0, x>0be the 
operator of the lattice string with boundary condition \p(— 1) coso + ip(0)sin6 = 
0, 8 G [0,7c). Assume that for some sequence of blocks [xn,yn] : ln = \xn—yn\ + l > 
c ln1+en,£, c > 0; xn < c\, c\ > 1 we have l(x) < Xo, x G [xn,yn], n = 
1,2,... . Then a.e. 8 G [0,n) 

c(He) f | (|A| > Ao) = Gpp(H
e) f l (|A > X0). 
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Physically this means that "long, not very elastic inclusions in an elastic 
medium" lead to localization of short waves. In some cases it is possible to prove 
that for \X\ < \XQ\ there is no p.p. spectrum. 

The following is connected with nonlocal Laplacian. 

Theorem 4. Let H = A + V(x), where Axp(x) = ^yez^(x ~~ jOvKy)» l'(z)l ^ 
-—ĵ Tjf, ß > 8 and V(x) is i.i.d.z.v. with common a.e, distribution. Then P-a.s. 

a(H) = a„(H). 

Other generalizations referred to increasing the dimension. 

Schrödinger Operator in the Strip. Let D = Z+ + %N> where ZN = (0 ,1 , . . . , JV — 
1), N = 0, is a group of residue mod JV and hamiltonian H in l2(D) has a form 

HB — A + V(x,z), (x,z) G D, Aip(x,z) = \p(x + l,z) +y)(x — l,z) 

+ xp(x,z + 1) + xp(x,z — 1), x > 1, z ±1 = z ± l(modJV), 
cos 8zy)(—l,z) + sin 8zy)(0,z) = 0 , z G ZJV , 

fl = (flo,...,fljv-i)e[0,7c)JV. (6) 

It is well known, that for homogeneous fields V(x,z) (with group of shifts 
x —> x + h9 x,h G Z1) the localization theorems may be proven by the classical 
method of Ljapunov exponents. This method in the case of the strip is more 
complicated than for Z1 . On the contrary, the cluster method of Section 1 doesn't 
feel the difference between Z1 and Z1 x Zjv-

Theorem 5. Assume that for given operator H° and energy interval I c R1 there 
exists a system of blocks Bn = {(x,z) : (xu < x < yn, z G Z„), n = 1,2,... and 
constants h„9Q„, such that 

a) V(x,z)\ >hn, (x,z) GBn 

b) dist(/i„,J) = 4 + e„, e „ > 0 . 

Ifxn < c", c > l , /„ = |x„ - y„| + 1 and £ n ( l + Qn)~
hi < oo, then 

c(He) f | / = <JPP(H°) f | / a.e. 8 G [0, n)N . 

Note that the central conditions 

dist(A„,7) ^ 4 + Q„, Q„>0, n = l,2,... 

have a slightly different form with respect to "pure one-dimensional" theory. 
Early on we used dist(/i„,J) > 2 + Qn. This is because o(A) = [—2, +2] in /2(ZX) 
and o(A) = [-4,4] in /2(Z ! x Zy). 

In virtue of Theorem 5 and its generalization to the case of (Z1 x ZN), which 
uses simple variants of Lemma 1, all previous examples (1-5) automatically 
transfer to the corresponding examples in the strip (half-strip). (The number of 
a.e. conditions now equals JV. For example, in the analog of Lemma 1 we must 
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consider JV perturbations: Çicpx(x,zi),Ç2Ç2(x,Z2),• • •,£N(PN(X,ZN)>(ÇU • - -, £N) has 
a.e. distribution.) 

Multidimensional generalizations (d > 1) of Theorems 1 and 2 of Section 
1 exist, but are noneffective in the case of homogeneous potentials. They 
act as follows: For any n = 1,2,... in Z^ let there exist two 1-connected 
(in the sense of percolation theory) surfaces F+,F~, Dn = d iamP", dn = 
m i n l x - y l ^ ^ ^ - , I n t P f c I n t P ^ c I n t P f c Intr2

+ c ... . Let | r ± | = 
QCDjJ""1), |Int r ± | = g(Dd), n -> oo and for potential V(x), x G Zd the next 
estimation takes place: 

\V(x)\ > c(Dd
n-

in^e)i/dn, xGBn = lnt P + \ I n t p - . 

Under these Conditions the cluster expansion of resolvent R®(0,x) = (A + 
V(x))~1(0,x), with respect to non-resonant families of blocks Bn(dBn = F+,F~), 
shows that 

Rx(0,x)Gl2(Zd) a.e. A. 

Using the Simon-Wolff theorem under some additional technical conditions 
it is possible to prove a few concrete results about the p.p. spectrum. 

Example 6. Let V(x) = Çx\x\a, x G Zd, a > 0 and Çx is i.i.d.r.v. with some 
moments properties and a.e. distribution. For example, Çx G [—1,1] or [0,1] and 
is uniformly distributed. Another case is where Çx is standard JV(0,1) gaussian 
r.v. Here P-a.s. for all a > 0 

<T(A + V(X)) = CTPP(A + V(X)). 

The corresponding eigenfunctions decay superexponentially. The structure of 
the cress in the case Çx G [0,1] is not trivial and dependent on a. Note that 
G(A + V(x)) = odiscv(A + V(x)) if a > d. 

Example 7. There exist potentials V(x, w), x G 7Ld, d > 1 such that 

a) V(x, w) is homogeneous and ergodic with "good" mixing properties. For 
example it has strong mixing condition with respect to the family of bounded 
subsets Z^. 

b) (\V(x,w)\p) < oo for every p > 0. 
c) Operator H = A + aV(x) has p.p. spectrum for all positive coupling 

constants a. 

Note, however, that in this "counterexample" to the Anderson's hypothesis 
the correlations of V(x,w) decay (in any sense) very slowly. Potentials V(x,w) 
of this example do not percolate from above. That is, for any A > 0 the set 
A~(X) = {x : \V(x,w)\ < A} is the union of finite components. Typical potentials 
(in physical applications) have a finite level of percolation [16]. 
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§3. Continuous One-Dimensional Case 

In the transition from the results of Section 1 for lattice Laplacians to their 
analogs for the operator 

H6y>(x) = \ + V(x), x > 0 ; v>(0) cos 8 + y'(0)sin0 = 0 

there are a few technical obstacles connected with unboundness of — A = —d2/dx2 

in /2(P|) . If V(x) > 0 the methods and results are similar to Theorems 1-3 but 
seem stronger. 

Theorem 6. Let potential V(x) > 0 for some So > 0 have a next estimation from 
below. For some sequence xn | oo, xn+\ — xn Î oo 

V(x) > hn, x G [xn, xn + So]. (8) 

If _ 
l i m ^ o o - ^ txp(—5oy/h„) < 1, ^T exp(—öoVhn) < oo (8') 

then 
a(H°) = (TPP(HG) a.e. 8 G [0,n). 

A. Gordon has analyzed in detail the particular case V(x) = 0, x ^ U„ [xn, xn+ 
ô]> V(x) = hn î oo, x G [xn,xn +Sn] (rear high scatterers). He proved that in 

this case under condition 

M„^r^- expi-öoVK) > 1 (9) 
nn xn 

SpH° = SpscH° fora.e. infl. 

The next result is a variant of Kotani's theorem [3], but for p.p. spectrum (but 
not singular as in [3]). 

Theorem 7. Let FQ(X) = FQ(X + T) be a continuous periodic function and [xn,yn] 
be a sequence of blocks such that supxe[Xni)l^\V(x) — FQ(X)\ = e„ —• 0 „_>oo»̂ ;» < 
c", c > 1, ln = \x„ — y„\ > ln1+E?i, e > 0, n ^ no. / / A is one of the gaps in the 
cTGSS(—d2/dx2 + FQ(X)), then for a.e. in 8 

a(HB)f]A = crpp(H
e)f]A. 

If potential V(x) is unbounded from below, but has a logarithmic estimation 
of the form V(x) > —c\ ln(|x| + 1) + C2, then it is possible to prove variants of 
Theorems 5 and 6 under stronger assumptions on the increase of {hn} in Theorem 
5 or {/„} in Theorem 6. 

In the case of the entire line R1 (that is in ^(R1)) the continuous analog of 
Lemma 1 (Sect. 1) can be used. It makes it possible to prove the theorems on the 
point spectrum for many physically interesting models. 
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Example 8. Let V(x) = Y^=-^n<P f 2 ^ ) b e a " s h o t noise" potential. Here {xn} is 

the Poissonian points flow, \cp(x)\ < exp(—e|x|) the elementary potential, {8n,Çn} 
i.i.d.r. vectors with finite exponential moments: (exp(z£)) < oo, (exp(flz)) < 
oo, (exp(z^) < oo, \z\ < zo, zo > 0 and the distribution of Çn is a.c. Then P-a.s. 
in ^(Ä1) 

c(H) = a (-d2/dx2 + V(x, w)) = GPP(H) . 

This example is closely connected with the paper [17] in which the authors 
proved that in the same situation CT(H) = crsing(H) P-a.s., but under additional 
restrictions, the elementary potential cp is not the solitoti. Although this condition 
is not essential and the spectrum is p.p., the appearance of the soliton in this 
context is not accidental. 

Theorem 8. There exists potential V(x, w), x G R1 and large parameter L > 0 for 
which 

a) V(x,w)- £ - ' ^ 
A=—co ch^„(x - /„) 

<e~ÖL, ö>0, XGR1. (10) 

Here {£n} is i.i.d.r.v. (for instance uniformly distributed in [0,a], a > 0), {/„} is 
a homogeneous random point process in R1 (dependent on {£n}) with good mixing 
properties. Note that cp(x) = —2/ch2x is the simplest soliton (1-soliton). 

b) cr(H) f | [0, oo) = aac(H ) f | [0, oo), cr(H) f | [-œ, 0] = app(H) f | [-oo, 0]. 

This potential is one of the realizations of "soliton's gase". It is closely 
connected with the problem of statistical solutions of the KdF-equation. 

§ 4. Parabolic Problems for the Anderson Model. 
Intermittency and Related Topics 

Evolution problems for the physical fields in the random medium (chemistry 
kinetics, hydrodynamics, etc.) very often have the form of a parabolic equation 
with random coefficients, in particular, with random potential. The simplest 
example is 

dc/dt = DAc + l;(x)c 

c(0,x) = l . (11) 

Function c(t,x), t > 0 has the meaning of the concentration of the particles 
at moment t in the point x. The kinematic part of the hamiltonian DA describes 
its diffusion (D-diffusion coefficient) and potential Ç(x) its transformation. If 
Ç(x) > 0, then Ç(x)dt is the probability that in the time interval (t, t + dt) any 
particle in the point x will split (birth of a particle). If Ç(x) < 0, then Ç(x) is the 
intensity of the death process in the point x. We will consider problem (11) in 
the discrete case where x G 7Ld, DAxp(x) = D^x'-x^iiwi*') ~~ ^ W ) is ^ lattice 
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Laplacian (which is the generator of the symmetrical random walk xt, t > 0 in 
continuous time) and Ç(x, w) is the homogeneous ergodic random field. 

If V(x) = Çx, x G Z* are i.i.d.r.v., then H — DA + I; is the hamiltonian of the 
tight-binding Anderson model. The diffusion coefficient D is the inverse coupling 
constant D — I/o. It's well known [7], [8], that for o > 1 (strong disorder) or 
for small o, but A > 1 (fluctuation part of the spectrum) under some technical 
restrictions P-a.s. o(H) = app(H). 

Asymptotic Properties. The solution c = c(t, x), t —> oo can be represented in the 
spectral terms. It allows investigation by direct probabilistic methods. This gives 
us essential information about the structure CT(H), A > 1. 

The central qualitative property of the field c(t,x), t —• oo is its intermittency 
- that is, informally, the existence of strongly pronounced spatial structures (in 
this case sharp and high peaks). The definition of intermittency is given in terms 
of statistical moments c(t,x). 

Remember that c(0,x) = 1. This means that c(t,x) is a homogeneous ergodic 
field for every t > 0. It is not very difficult to prove that the condition (exp(^)) < 
oo, t > 0 is necessary and sufficient for the existence of (cp(t,x)), t > 0, p = 
1,2,... . 

Definition 1. We will say that the family of the fields c(t,x), x G Zd, t > 0 is 
the asymptotic intermittency parameter of the family when t -> oo, if for the 
functions 

Ap(t)=ln(cP(t,-)) 

the following relations take place as t —> oo 

Here A(t) < B(t) means B(t) - A(t)-+t-+ao + °o-

Theorem 9. If potential £(x) is unbounded from above and G(t) = (exp(^(-))) < 
oo, t > 0, then the solution c(t,x) is asymptotically intermitted in the sense of 
Definition 1. The logarithmic asymptotics of the statistical moment has a form 

Hcp(t,0)) Ap(t) G(pt) 

— P — = ~7"~^œ_r- (2) 

The more exact asymptotics depends upon the structure of the tails of the 
one-dimensional distributions of potential £(•). 

Theorem 10. Let Ç(x), x G iß be i.i.d.r.v. (Anderson model) and P{£(1) > 
t j -^ooexpt-c^) , ß > 1. Then 

Ml=
(^_2dDpt + 0(0 = c(^)t/?//?"1 - 2d Dpt + 5(0, t-*oo. (13) 

But ifP{£(-) >t}~ exp(-cexp(c,^)), ß > 1, then 

Ml = ^ M + 0(0 = C(ß,p) l nh + 0(0 - (14) 
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The difference between these two formulas are due to physical reasons. In the 
first case "strong centers" of the potential £(•), which contribute mainly to the 
growth of the number of particles, have the form of a single high peak. In the 
second case it is wide but not very high islands. The second term of asymptotics 
of Ap(t)/p describes the probability of "keeping" particles by "strong óenters". 

It is possible to observe the same effect in the results about the almost sures 
(a.s.) behavior of c(t, x), t —» oo. 

Theorem 11. Let lnln(P{£ > t})~x < c\tß, ß < l,c\ > 0 (roughly speaking, 
P{£, >t}> exp{-c exp(ci^)},jS < 1. Then P-a.s. t -• oo 

! i ^ = 6 o g ( ^ ) ) (dlnO-2dD + Ü(l). (15) 

(Here, H(t) = P{^> i], ( )_ 1 means inverse function.) 
If however, 

In ln#(0 > c2t
ß, ß>l, c2 > 0 (16) 

then P-a.s. 

t^-^)-^. (17) 
Consider now the initial parabolic Anderson problem (11) for the localized 

initial condition c(0,x) = öo(x). Assume, that Ç(x) > 0 is an i.i.d.r.v. with "expo
nential tails". For simplicity let P{£ > t} = exp(—ctß), ß > 1. In the beginning 
we have only one particle but birth and diffusion processes lead to thé "occupa
tion of the space". This problem of the quantitative description of this phenomena 
is similar to the famous problem KPP (Kolmogorov-Petrovski-Piskunov). 

It is not very difficult to show that the boundary of "occupied" region in 
moment t is given by a sphere 

St = {x : |x| <, t ln1//? t] 
P 

in the following way: if |x| > t ln1//?+e t, then c(t,x)^>0 and if |x| < tln1/ß~et, then 
p 

c(£,x)—>oo. 
However, the set crt is extremely nonuniformly occupied, as is a typical effect 

of intermittency. 

Theorem 12. For every t > 0, e > 0 it's possible to find (random) points 
x\ (t, w),..., Xk(t, w), k < ln t, such that 

k 

^ ^ ^ ^ ( l - e ) ^ ^ , ^ ) . (18) 
xeZd i=l 

It is likely that k = k(t, w) is bounded in probability. This theorem shows that 
it is necessary to be very careful in the applications of the results on the averaging 
description of the propagation front of concentration in random media. The field 
of concentration inside the front has an extremly non-uniform structure. 
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§ 5. On the Basic States in the Anderson Model. 
Precision of the Asymptotical Formulas for "Lifshitz Tails" 

The limit theorems for the boundary part of the spectrum, that is for the basic 
states will be considered in finite, but big volume V when V —• oo. The integral 
density of states N(X) can be studied in the framework of the same procedure. 

Let S$ = [—N,N]d, where points N,—N are identified, be the d dimensional 
lattice torus of the volume VN == (2N)d and H — A + £(x) be the operator of the 
tight-binding Anderson model. This means that Ç(x), x G S$ is an i.i.d.r.v. We 
will consider a typical one for the theory of "Lifshitz tails" case 

p{£x >t} = Gxp{-ctß}, t>0, ß>0. 

We are interested in the structure of higher eigenvalues and corresponding 
eigenfunctions. It's easy to understand that they are closely connected with the 
higher peaks of the potential Ç(x), x G S$. Consider the two variational series: 

ÇJV ^ wv >••••> <*N 

Ajy > Ajy > . . . > Xjy 

The limit distribution of any fixed number k of the first r.v. in the <!;-series is 
described by the Weibull's type low: 

f * ( 1 ) _ J : ( 2 ) JrP)_ ir (3 ) 

V/'-» ̂ e ( ' t + ^ » | <i9) 

-+jv-*a>P*Cxi>. •.,**) = exp(-xi - 2x2. •. - kxjc — e^Xk), xi,...x/c ^ 0. 

It seems very reasonable, that the corresponding (or near) formulas are valid 
for A$, / = 1,2,..., k. In some sense it is true. 

Theorem 13. For some positive A^N\...,A]/,BN, 

f o(l) 2 ( 2 ) ^ ( 1 ) ;(2) ;(3) M) ;(*) _ Ak) 
r< > xi, > x2> 

[ BN BN 

J
roo reo 

' ... / exp(-yi - 2y2 - .•. - kyk 
X\ Jxk 

xu ..., xk>0. 

The structure of normalizing constants, however, depends on ß. There exist 
many bifurcations with respect to /?, The nature of these bifurcations is very 
simple. It is obvious that only Speaks which have an order ^(ln1^ V), for 
example, bigger then (1 — e) ln1^ V can contribute to the initial part of the A-
series. But #{x G S# : £(x) > (1 - e)ln1/ßV} = fì(P'M) ; 0(B) -+ 0, s -* 0 and the 
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distances between these £-peaks have an order N1-(5l(8); öi(e) -> 0, e -> 0. The 
interaction between peaks is very small and any of them as shown by standard 
perturbation calculations gives an eigenvalue 

A(xo) = £(xo) - ^ + C l g 2 ( x o ) +0(p^) • (21) 

If p < 2, then the second and all other terms are small enough with respect to 
the "gaps" between neighboring £(z) and we can use formula (19), changing £® 
by A®. If 2 < p < 3, then the second term of expansion (21) is essential. It is 
necessary to slightly change constant A$. However, as in the case p < 2, we have 
the correspondence £(1) <-> A(1), £(2) <-* A(2),..., £(/c) <-> A(fe). If p > 3, then the gaps 
between <!; W — &2\... are smaller than ^f-r, this correspondence is destroyed and 

s \xi) 

all normalized constants are new. It is not possibile to write out explicit formulas 
for A$,BN as functions of ß and dimension d. 

The same analysis applies to the problem of "Lifshitz tails" as to the high 
energy asymptotic of AT (A) = 1 — N(X) = l imp-wo^^w^L ^ *s wen< known that 

P{Z>X + 2d) < N*(X) <P{Ç>X-2d}. 

(Of course, 2d = |M||/2). It follows from these estimations that 

-lnN*(X)~^+ODXß. 

What is the more precise form of this asymptotics? The answer depends primarily 
on ß and contains information on the structure of corresponding eigenfunctions. 

Theorem 14. 
a) Ifp < 2, then 

- I n N*(X) = Xß -j-0(1). 

b) Ifp = 2 (gaussian case), then 

c) If2<p<3 

d) If3<p<4 

and so on. 

- In N* (A) = Xß + ci (d) + 0(1). (22) 

- ln N* (X) =Xß+ c2X
ß~2 + Ü(l). (23) 

• ln AT (A) = Xß + c2A^-2 + c^'2^ fc (1 + 0(1)) (24) 

There is no room here to discuss other types of bifurcations of N(X) in the 
case of "double exponential" tails of the distribution £(•). The situation here is 
similar to the results of Theorems 10 and 11. 
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The Laws of Some Brownian Functionals 
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Laboratoire de Probabilités, Université P. et M. Curie, Tour 56, 3ème étage 
4, place Jussieu, F-75252 Paris Cedex 05, France 

Thanks mainly to the relationship between the heat equation, newtonian potential 
theory and Brownian motion, the laws of a large number of Brownian functionals 
have been obtained during the last fifty years, at least via explicit expressions of 
their Laplace and Fourier transforms. Much pioneering work in this area was done 
by Paul Levy. 

Gradually, with the development of Itô's stochastic calculus, excursion theory, 
path decompositions and the technique of enlargement of nitrations, these studies 
of individual distributions on IR, sometimes exhibiting identities between two laws, 
which looked a priori to be mere "coincidences", have been understood in a deeper 
way, in fact often by showing that two processes are identical in law; see Biane [3], 
for a recent survey in that spirit. 

The most elementary examples of Brownian functionals are linear functionals: 
iff e L2(JR+, dt), and (Bt, t > 0) is a real-valued BM, the Wiener integral $ f(t) dBt 

is a centered Gaussian variable, with variance Jo / 2 (0 dt. Quadratic functionals of 
BM represent the next level of complexity; those functionals are of great interest as, 
somewhat surprisingly, they occur in a number of very different studies of Brownian 
motion, such as the Ray-Knight theorems for Brownian local times, the Ciesielski-
Taylor identities, some limiting laws of planar BM, and principal values of Brownian 
local times. 

We shall take here, as a prototype of a quadratic Brownian functional, the 
stochastic area of planar BM, and it will be shown how Paul Levy's formula for 
this stochastic area appears again and again in most of the above mentioned studies 
of Brownian motion. 

1. On Levy's Area Formula 

Consider a two-dimensional Brownian motion Z, = Xt + iYt91 > 0, starting from 
0, and the stochastic area process 

-i: (X.dY.-Y.dX,), t ;>0. 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
© The Mathematical Society of Japan, 1991 
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Levy's formula: 

ECexpfttSJIZi =z] = \-^j) exp - ^-(X coth X-l) (1) 

has played some important rôle in recent years, for example in the Bismut approach 
[7, 8] to the Atiyah-Singer theorems. 

To prove formula (1), Levy [14] used a diagonalization procedure. A different 
approach (Williams [25], Yor [28]) is to use a change of probability method, which 
reduces the computation of the law of the quadratic functional Sl to that of the 
variance of a Gaussian variable. 

First, by the rotational invariance of the law of BM, and independence prop
erties, we have, for any X e IR: 

Elexp^XS^Z, =z] = EUxp - y J ds\Zs\
2\\Zx\ = 

Next, we introduce the new probability PA: 

^ U = expH(|Z(|
2-20-y 

(2) 

ds\Zs\
2}-P\^ (3) 

0 

under which (Zt, t < 1) is a Gaussian process (more precisely: an Ornstein-Uhlenbeck 
process) for which the variance at time 1 is easily computed. Formula (1) now follows 
from formulae (2) and (3). 

We note a simple consequence of formulae (1) and (2): 

E 
X2 

exp-[a\Z1\
2+ — 

•i 
ds|Z,12 

o 

. , „ sinh X\ * ... 
= cosh A + 2 a — — . (4) 

Many variants of Levy's formula (1) have now been developed; in particular, 
Biane-Yor [5] obtained a sequence of extensions of Levy's formula by decomposing 
(Zu, u < 1) into the sum of the Brownian bridge (Zu — uZu u <1) and (uZu u < 1), 
then developing the left-hand side of (1) with respect to this decomposition, and 
finally iterating this procedure. The Levy formulae obtained in this way are closely 
connected, on the one hand, with the linear decomposition of BM along (the 
orthogonal basis of the Legendre polynomials and, on the other hand, with the 
continued fraction: 

, , , , X2 X2 X2 

X coth X — 1 = -— -— -— • • •. 
3+ 5+ 7 + 

2. Squares of Bessel Processes and Ray-Knight Theorems 

Let ò > 1 be an integer, and (qt, t > 0) be the square of a BES(<5) process, that is the 
square of the euclidean norm of a <5-dimensional BM (Bt, t > 0); then, q satisfies the 
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SDE: 

4, = <7o + 2 Jqsdßs + Öt, (5) 
Jo 

where (ßs, s > 0) is a real-valued BM. 
It is well-known that this equation, with q0 = x > 0, and ö any positive real 

number, has a unique pathwise solution in R + , hence a unique law on C(R+, R+) , 
which we shall denote by Qx. 

Shiga and Watanabe [23] remarked that 

Qi * Gî' = GÎÎÎ', for any 5, 3', x, x' > 0 (6) 

(where P * ß is the convolution of P and Q), thus extending to all starting points 
and dimensions the obvious additivity property for integer dimensions. 

From (6), Qx is an infinitely divisible probability distribution on C(R+, R+) , 
which admits the following Lévy-Khintchine representation (Pitman-Yor [18]): 
there exist two a-finite > 0 measures M and JV on C(R+ , R + ) such that: 

ßi(exp - (co, / » = exp - (xM + ÖN)(1 - exp - <co, / » (7) 

(we use the notation: (co, /> = j£ dt co(t)f(t), for / > 0). 
This representation may be obtained, including an explicit description of M and 

N in terms of the Ito characteristic measure n(dco) of the Poisson point process of 
Brownian excursions, with the help of the Ray-Knight theorems on Brownian local 
times (La

t\ a e R, t > 0), which are now presented: 

(RKJ if Ti = inf{t : Bt = 1}, the law of (L 1^; 0 < a < 1) is Q2
0 

(RK2) if TX = inf{t : L? - x}9 the law of (L\x\ h > 0) is Q°x 

(after the original proofs of Ray [22] and Knight [12], several different derivations 
of (RKJ and (RK2) have been given; see, for example, Jeulin [11] for a recent survey 
based on Tanaka's formula). 

Conversely, we may now deduce from the Lévy-Khintchine representation (7) 
some extensions of the Ray-Knight theorems; here is one (Le Gall-Yor [13]): for 

ô > 0, the law of the process (C^}; a > 0) of the local times of ( \Bt\ + -L?; t > 0 
is ßg- ^ 6 

In the particular case ö = 2, we recover (RKJ, using the representation of 
BES(3) as (\Bt\ + L?; t > 0), due to Pitman ([17]), jointly with a well-known time-
reversal relation between BES(3) and Brownian motion (see Williams [26]). 

3. An Explanation of the Ciesielski-Taylor Identities 

Ciesielski-Taylor [9] obtained the following puzzling identity in law: 

1 dsW^i)°=TM, (8) 
0 
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where Rô resp. Rô+2, is a BES process, with dimension <5, resp. 5 + 2, starting from 
0,andTl(Rô) = inf{f.R0(t)=l}. 

In the case ö = 1, the identity (8) can be understood by time-reversal, but 
no such pathwise explanation has been obtained for other dimensions. Below, a 
spectral-type explanation and extensions are presented, following [29]. 

Writing both sides of (8) as integrals of the local times of the two BES processes, 
and using the Ray-Knight theorems, (8) then appears as a particular case of the 
identity in law: 

- f ' daf\a)B2
m **> \1 da g'(a)B}(a) (9) 

Jo Jo 

where f,g : [0, 1] -> R + , are C1, with /decreasing, # increasing, and f(\) = g(0) = 0. 
In fact, a more general identity in law holds: 

dxf(x)B2
g{x) + f(h)B2

m
 {la=] g(a)B2

{a) + j & dx g'(x)B2
(x) (10) 

where /, g : [a, b] -> R + , are C1, with / decreasing, and g increasing. In turn, this 
implies some extensions of the C-T identities. 

Now, it is easily shown that (10) is a particular case of the following Fubini-type 
identity in law: 

foo / f oo \ 2 f oo 
dsl\ dBucp(s,u)) (^w) ds dBMu,s))2 (11) 

0 

where <p e L2([0, oo[2 ;R) 
A striking application of (11) is the following identity in law, obtained with C. 

Donati-Martin: 

J: ds(B s -G) 2 ( = w ) 
dsM-sBtf, (11') 

0 

where G = JJdw Bu. 
The general identity (11) is an infinite dimensional extension of the elementary 

identity in law: if Xn = (Xl9..., Xn) is an n-dimensional sample of the N(0, a2) law, 
then, for any n x n matrix: 

Hitìfi, || (1=) \\A*Xn\\, where A* is the transpose of A. (12) 

The above arguments may be developed to give an explanation of the large class 
of extensions of the C-T identities obtained by Biane [4], between functionals of 
pairs of diffusions which satisfy a certain duality property. 

4. Some Limiting Laws of Planar BM 

Let (Zt, t > 0) be a planar BM starting from z0, and consider (6t, t > 0) a continuous 
determination of the argument of (Zu, u < t) around zx ^ z0. 
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Spitzer [24] showed that: 

2 ft-g^Q (13) 
log* 

where Cx is a standard Cauchy variable. 
This may be refined by decomposing 0, into: 0f~ + 0+, where: 

0~ = d0.1<|z.-*,|<;in a n d ör+ = ^ W ^ l ^ ) 1 

Jo Jo 
Then, considering moreover (At, t > 0) an integrable additive functional, we have 
(Messulam-Yor [16]): 

2 -(e-,et\At)-^(w-,w+,cAA) 
log 

where: W~ = fgrfy.Wo), ^ + = j o ^ W o ) * ^ = '°> <U i s a constant depending 
only on A, ß and y are two independent linear BM's starting from 0, cr = inf {t : ßt = 1}, 
and (/°, u ^ 0) is the local time of ß at 0. The law of (W~, W+, A) is characterized by: 

£[exp(-flyl -f ibW~ + icW*)'] = (cosh c + J L L U s i n n c j (14) 

a formula which is very similar to (4), this being easily explained thanks mainly to 
the Ray-Knight theorem (RKX). 

The convergence in law (13) may be further extended by considering (0 / , . . . , 6"; 
t > 0), the winding numbers of (ZM, u < t) around n distinct points zl9..., zn. 

One obtains (Pitman-Yor [19, 20]): 

^,...,en^^(w1,...,wn) 

and the characteristic function of (Wl9..., Wn) is: 

E exp t(j£ XjW^J = ( c o s h ( è X^j + Ç ^ l s i n h ( t X^j \ (15) 

5. Arc sine Laws for Linear Brownian Motion 

Let (Bt, t > 0) be the linear BM, starting from 0. Levy [15] showed that: F+ = 
J J ds 1(BS>O) follows the arc sine distribution, that is: 

P(r+ed0 = - ^ 4 = v (16> 
7iy/t(i - o 

(Notice that, in paragraph 4, we considered \a
0ds 1(BSZO)> where a = inf{t : Bt = 1}; 

now, G is replaced by 1). 
The r.v. gx = sup{t < 1 : Bt = 0} is also arc sine distributed, but this is easier 

to prove. 
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Here is a recent proof of (16), obtained with M. Barlow and J. Pitman [1], using 
excursion theory; one can show: 

l<r.(t\ r w(hlw) 
^ ( A « , 71(0) = (T+9T-\ (17) 

where T+ and T_ are two independent stable (^) variables. 
It now follows that: 

r+ = r+{l)^jr^> which proves (16). 

Several infinite dimensional extensions of (17) have now been obtained, jointly 
with J. Pitman [21]. Here is one: let V(t) be the infinite sequence of lengths of 
excursions of B away from 0, during the time interval (0, t), including the last 
unfinished excursion, arranged in decreasing order, so that: 

v(t) = (v,(t),..., VM.--1 with vx(t)> v2(t)> > vn(t)> •••. 

Then, for every t > 0, and s > 0, 

where (TS, S > 0) is the inverse of the local time (lt,t> 0). 

6. Cauchy's Principal Value of Brownian Local Times 

Consider again (Bt, t > 0) a linear BM starting from 0, (lt, t > 0) its local time at 0, 
and (xt, t > 0) the inverse of /. As a consequence of the regularity of Brownian local 
times, 

lds 
-^\\BS\>&) 

0 Ds 

ds 

i*t
d=lim 

e->0 m 

exists a.s., uniformly in t in a compact set I whereas: -^ - = oo a.s. ). From the 
\ JO \Bs\ 

scaling property and the Markov property of BM, it follows that: (HZt, t > 0) is a 
symmetric Cauchy process (with parameter n\). 

Independently, it was remarked by Spitzer [24] that if (Xu, u > 0) is a linear BM 
independent of (nt, t > 0), then (Xtt, t > 0) is a symmetric Cauchy process. 

However, this identity in law does not extend to the two 2-dimensional processes: 

-HXt, Tt; t > 0J and (XXt, zt; t > 0) 

since we have the formula: 

EUxM^HZt-
B-xA = e x p f - a c o t h Q j J . (19) 

From this formula, we deduce: 
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E exp( i-HT }\lT = x 
X 

exp - x(X coth X - 1) (20) sinh X 

where T is an exponential variable (with parameter (^)) independent of B. From 
Levy's formula (1), we deduce: 

1 „ , . ( l a w ) / « . l.rj ,2 ^ / f ^ W ^ M S ^ - I Z J 2 ) (21) 

which has not yet received a simple direct explanation. 
As a consequence, we obtain, for fixed t > 0: 

2 \1 / 2 Ä , . . . / / l V x ' 
P(HtedX) = [^t) Z(-ir^-{n + -) ~)d, (22) 

The fact that some relation between the laws of the processes (Ht,t > 0) and 
(St,t> 0) exists may be understood, at least in some sense, via easier identities in 
law, such as: 

dS(law)9 

R " 

•1 \ - l / 2 

QdsR2) , (23) 

where (Rt,t> 0), resp: (Rt, t > 0) is a BES process with dimension ö > 2, resp: 
S = 20 - 2. 

All the results presented in this paragraph are taken from Biane-Yor [6]. 
Principal values of Brownian local times have been studied in depth by Yamada 
(see, in particular, [27]) and Bertoin [2]; they have also been investigated, for 
physical purposes, by Ezawa et al [10]. 

Note added in proof: Further results about Cauchy's principal value of local times 
have now been obtained by Bertoin [30] and Fitzsimmons and Getoor [31]. 
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The Stability of Minkowski Spacetime 

Demetrios Christodoulou 
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According to Einstein, spacetime is a 4-dimensional manifold M with a metric gßV 

of signature (3, 1). General relativity is a unified theory of space, time and gravitation 
in which the connection of g^ is identified with the gravitational force and the 
Einstein equations 

hold, where R^ and R are respectively the Ricci curvature and scalar curvature of 
g^ and T̂ v is the energy tensor of matter. In the absence of matter the equations 
reduce to the Einstein vacuum equations for the spacetime manifold: 

R„v = 0. 

These equations are at first sight a degenerate differential system. That is, the null 
space of the symbol o^ at a given covector £ is nonzero for all covectors £. This is 
due to the fact that the equations are generally covariant; proper account must be 
taken of the geometric equivalence of metrics related by diffeomorphism. This is 
done by considering ô  not on the space of 2-covariant symmetric tensors at a point 
but rather on the quotient of this space by the equivalence relation induced by the 
symbol of the diffeomorphisms; two such tensors are equivalent if they differ by f 
X + X Ç for some covector X. The null space of a^ is then found to be nonzero if 
and only if £ belongs to the null cone defined by the metric g. The Einstein 
equations are therefore of hyperbolic character. 

The central mathematical problem of the theory is the initial value problem. An 
initial data set is a 3-dimensional manifold E with a positive definite metric gtj and 
a 2-covariant symmetric tensorfield fcy. The problem is to find a 4-dimensional 
manifold M with a metric gßV of signature (3, 1) satisfying the Einstein vacuum 
equations and an imbedding of 27 into M such that gtj and fcy are respectively the 
first and second fundamental forms induced on E by the imbedding. The Einstein 
vacuum equations impose on the initial data set the constraint equations: 

V% - Fj tr k = 0 

R^\k\2 + (trk)2 = 0 

where R is the scalar curvature of gVy These are respectively the Codazzi and Gauss 
equations of the imbedding of E in M. 
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The local existence of solutions of the initial value problem was proven by 
Choquet-Bruhat [1] by introducing a harmonic system of coordinates, thereby 
reducing the equations to a differential system for the metric components in these 
coordinates which is hyperbolic in the standard sense. By a global solution of the 
initial value problem we mean a spacetime (M, gßV) which is geodesically complete. 
Penrose [2] found a basic obstruction to global existence in his singularity theorem: 
the spacetime cannot be geodesically complete if E is non-compact and contains a 
trapped sphere, namely a surface S diffeomorphic to S2 such that the divergence of 
the outgoing future directed null normals to S in M is everywhere negative. 

An initial data set is called asymptotically flat if the complement of a compact 
set in E is diffeomorphic to the complement of a ball in R3, gy is a complete metric 
on E and the curvature of gu as well as ktj tend to zero at infinity in an appropriate 
way. Since the formulation of general relativity, the Minkowski spacetime has been 
the only known global solution of the vacuum Einstein equations arising from 
asymptotically flat initial data. A basic problem in the theory is the question of 
stability of Minkowski spacetime, that is, whether any asymptotically flat initial 
data set which is sufficiently close to the trivial one gives rise to a global solution 
of the vacuum Einstein equations. In a recent joint work Sergiu Klainerman and 
myself have answered this question in the affirmative. We have also studied in detail 
the asymptotic behaviour of the solutions. 

Before giving an outline of our proof I wish to give an indication of the difficulty 
involved. The naive approach to the problem would be to try to extend the solution 
obtained by Choquet-Bruhat of the system of equations for the metric components 
in harmonic coordinates, to a global one. It turns out that this approach would 
work if the space dimension were greater than 3. However, it fails in 3 space 
dimensions, a fact already recognized by Choquet-Bruhat. 

Our proof uses two main ideas. The first is the relationship between conserved 
quantities and symmetry and the second is the relationship between symmetry and 
the causal structure of spacetime. The first idea goes back to Noether. Consider a 
field theory in a given spacetime whose field equations are derivable from an action 
S. The energy tensor is then defined by: 

_ ÖS 
V - Sgß* 

and the invariance of S under diffeomorphisms implies that TßV is divergence-free: 

VT^ = 0. 
Now suppose that X is a vectorfield generating a 1-parameter group of isometries 
of (M, g) (killing vectorfield). Then the 1-form 

is divergence-free: 

It follows that the integral 

Pß — — T/lvX
v 

VP^ = 0. 

J. *P 
E 
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on a Cauchy hypersurface E is a conserved quantity, that is, its value is the same 
for all Cauchy hypersurfaces. If the action is invariant under conformai transforma
tions of the metric then the energy tensor is trace-free tr T — 0 and the above 
considerations extend to the case where X generates a 1-parameter group of 
conformai isometries of (M, g) (conformai killing vectorfield). An important require
ment on a physical theory is that the energy tensor should satisfy the positivity 
condition 

T(XuX2)>0 

for any two future directed timelike vectors X1, X2 at a point. If the vectorfield X 
above is timelike and future directed then the quantity 

J E 
T(X, N) dp-g 

is nonnegative, N being the future directed unit normal to E. As its value is the same 
as that on the Cauchy hypersurface on which the initial data is given, it provides 
an estimate for the solution in terms of the initial data. 

In the case of gravitation the energy tensor, defined as above, 

c = - ^ 
"v ög<"' 

vanishes, as this expresses the Euler-Lagrange equations of gravitation, namely the 
Einstein equations. Thus the above considerations fail at first sight. The way out of 
this impasse is to consider the Bianchi identities 

^[aRßy]ÖE — 0 

(where [ ] stands for cyclic permutation). We define a Weyl field Waßyö, in a given 
spacetime, to be a 4-covariant tensorfield possessing the algebraic symmetries of the 
Weyl or conformai curvature tensor. The natural field equations for a Weyl field 
are the Bianchi equations 

which we write simply as 

Ma Wßy]ÖE — Ü 

DW=0. 

In a spacetime satisfying the vacuum Einstein equations the curvature is an example 
of a Weyl field satisfying the Bianchi equations. In a 4-dimensional spacetime the 
dual * W of a Weyl field Wis also a Weyl field and if W satisfies the Bianchi equations 
so does *W. The operator D although formally identical to the exterior derivative, 
is not an exterior differential operator and D2 ^ 0. As a consequence, the Bianchi 
equations imply an algebraic condition: 

K;ßy*Wvaßy-Rfv*Wßaßy = <). 

The Bianchi equations are conformally covariant. If / is a conformai isometry of 
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(M, g), that is / * g = Q2g for some positive function Q, and W is a solution of the 
Bianchi equations then so is ß" 1 / * W. 

Associated to a Weyl field Wisa 4-covariant tensorfield Q, quadratic in W, 
called the Bel-Robinson tensor [4]: - , 

ï 

Q«0ys = w w w / / + * * W * **//• 

It is totally symmetric and trace-free and satisfies the following positivity condition 

Q(Xi,X2,X3,X^)>0 

for any four future directed timelike vectors Xi,X2,X3, Z4 at a point, with equality 
if and only if W vanishes at that point. Furthermore, if W satisfies the Bianchi 
equations then Q is divergence free: 

r*Q«ßyö = o. 

It follows that if Xl9 X2, X3 are three vectorfields each generating a 1-parameter 
group of conformai isometries of (M, g), then the 1-form 

P=-Q(;XUX2,X3) 

is divergence-free, consequently the integral 
i 

*P 
E 

on a Cauchy hypersurface 27 is a conserved quantity, which is positive definite in 
the case that Xu X2, X3 are all timelike and future directed. 

Given a Weyl field W and a vectorfield X the Lie derivative <£XW of W with 
respect to X is not in general a Weyl field. However we can define a modified Lie 
derivative &x W which is a Weyl field: 

^xKßys = XxKßye - i tr nWaßy3 

~ ïfâfia Wfißyo + Äfiß Wafiyô 

where nßV = S£xg^ and it is the deformation tensor of X, namely the trace-free part 
of 7ü. The modified Lie derivative commutes with the Hodge dual: 

As a consequence of the linearity and the conformai covariance of the Bianchi 
equations, if W is a solution of these equations and X is a vectorfield generating a 
1-parameter group of conformai isometries ft, then 

&xw = jt(Q;1ft*W)\„0 

is also a solution of the same equations. Therefore the above considerations regard
ing conserved quantities can be applied to the Weyl field Êx W as well. 
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Minkowski spacetime has a 15 dimensional conformai group 0(4, 2) consisting 
of the abelian subgroups of translations and inverted translations, the scalings and 
the Lorentz group 0(3, 1). The generators of time translations and inverted time 
translations are the only timelike conformai killing vectorfields. A general spacetime 
will not have a nontrivial conformai group. If the condition that the vectorfields in 
the above considerations are conformai killing is dropped, then, although the 
quantities 

/» 

JE 

will not be conserved, their growth shall be determined by the spacetime integrals 
of expressions which are quadratic in W and linear in it, the deformation tensors of 
the vectorfields. The idea is to find a subgroup of 0(4, 2) and an action of this 
subgroup on the spacetime manifold having the following property: the deformation 
tensors of the vectorfields generating the action should decay at infinity in such a 
way that the growth of the corresponding quantities is bounded in terms of the 
quantities themselves. It turns out that the subgroup consisting of time translations, 
scalings, inverted time translations and the rotation group 0(3), leaving the total 
energy vector invariant, suffices. 

The problem is then how to define the action of these groups on a general 
spacetime arising from asymptotically flat initial data in such a way as to satisfy 
the above requirement. Now the group of time translations is the simplest to define 
and is related to the choice of a time function t. As our argument is one of continuity 
starting from the initial Cauchy hypersurface, a time function seems to enter the 
problem naturally. A canonical choice is that of a maximal time function, namely 
one whose level sets Et are maximal spacelike hypersurfaces. The second funda
mental form ktj of Et is then trace-free: tr k = 0. There is a unique such function t 
with the property that the total momentum vector relative to Ex, that is, the 
projection to Et of the total energy vector, vanishes. To define the action of the other 
groups we consider the fact that the spacetime is expected to be asymptotically flat. 
Since these groups act canonically on Minkowski spacetime, there is a canonical 
action defined at infinity. What we need is a way to extend this action to the 
spacetime. This is provided by the causal structure. The causal structure on a 
manifold M is the fundamental structure defined on M by a metric of signature 
(dim M — 1, 1). The causal future J+(S) of a set S c M is the set of points q which 
can be reached by a future directed causal curve initiating at S. Similarly J~(S) is 
the set of points q which can be reached, from S, by a past directed causal curve. 
The specification of J+(p) and J~(p) for every pe M defines the causal structure, 
which is equivalent to the conformai geometry of M. In our problem we consider 
the boundaries of the causal pasts of a 1-parameter family of surfaces at "infinity" 
which are related to each other by a time translation. However we cannot quite 
start from "infinity" since the existence of a global solution is precisely what we wish 
to establish. Nevertheless, following our continuity argument we can assume that 
a spacetime slab has been constructed. The role of "infinity" is then played by the 
final maximal hypersurface Eu. We construct a 1-parameter family of surfaces 
diffeomorphic to S2 on Eu by solving a certain equation of motion for 2-surfaces 
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on a 3-dimensional manifold. We then consider the inner boundaries of the causal 
pasts of these surfaces in the spacetime slab. These null hypersurfaces Cu are the 
level sets of what we call the optical function u. Let SttU be the surfaces of intersection 
of the Cu with the Et. Let / and / be respectively the outgoing and incoming null 
normals to SitU whose component along T, the generator of time translations, is 
equal to T. Then we have 

T = W + l) 

and we define the generator of scalings by 

S = \{ul + ul) 

and the generator of inverted time translations by 

K = \(u2l + u2l) 

where 

u = u + 2r, 

and A is the area of Stu. An action of the rotation group 0(3) on Et* is defined 
starting from the standard action on the sphere at infinity in such a way that the 
group orbits are the level surfaces of u on Et*. The action is then extended to the 
spacetime slab by conjugation: Given an element 0 e 0(3) and a point p e Stu, to 
obtain the point Op we follow the generator of Cu through p toward the future until 
p^, the point of intersection with Et*. We then move to Op^ and follow the generator 
of Cu through that point toward the past until the point of intersection with Et. This 
point, which again lies on SUu, is the sought for point Op. The three rotation 
vectorfields (fl) Q, a = 1, 2, 3, generating this action satisfy: 

[<">ß,/]=0, 

^(Wfl,i) = ̂ û , r ) = o 
and, of course, the commutation relations of the Lie algebra of 0(3): 

The group orbits are the surfaces SUu. 
By the above construction, the deformation tensors of the generating vectorfields 

depend entirely on the geometric properties of the hypersurfaces Cu and Et. These 
properties differ significantly from those in the case of Minkowski spacetime. 
Consider for example, on a given Cu, the second fundamental form 6 qf SttU relative 
to Et, in particular the ratio 

(tr 0)2 

where 6 is the trace-free part of 9. This ratio, in contrast to the case in Minkowski 
spacetime, does not tend to zero as t -> oo. In fact, lim^^f measures the flux of 
energy radiated to infinity. Another example is the area of Stu on a given Cu, which 
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in Minkowski spacetime verifies r — t = 0(1) as t -> oo, while in general we find 

r-t= - 2 M 0 l o g f + 0(1), 

where M0 is the initial total mass. These differences, which are absent in the case of 
space dimension greater thean 3, are the reason for the failure of the naive approach 
I mentioned earlier. 

In carrying out the plan outlined above we encounter a certain difficulty. The 
positive mass theorem of Schoen-Yau [5] and Witten [6] implies that the curvature 
of any nontrivial initial data set decays not faster than d~3 where d is the distance 
from a given point. However, general initial data with d~3 decay lead to a logarith
mic divergence in the construction of the optical function. The difficulty is overcome 
by observing that the leading terms at infinity in the initial data correspond to the 
Schwarzschild solution which is both spherically symmetric and static and is there
fore annihilated by both the rotations and the time translations. We therefore take 
as our basic Weyl fields not the spacetime curvature R but rather &TR and È^R, 
where 0 stands for the collection {(fl) Q : a = 1, 2, 3}. Due to the fact that there are 
no nontrivial solutions of the vacuum Einstein equations which have a Cauchy 
hypersurface diffeomorphic to R3 and are either spherically symmetric or station
ary, we are able to control R itself in terms of J?0R and ÈTR. 

The proof of the theorem is by the method of continuity and it involves a 
bootstrap argument. Using an appropriate version of the local existence theorem 
we can assume that the spacetime is maximally extended up to a value t% of the time 
function. This value is defined to be the maximal one such that certain geometric 
quantities defined by the level sets of the time function and the optical function 
remain bounded by a small positive number c0. These quantities control in partic
ular the isoperimetric constant of the surfaces SUu, on which the Sobolev inequalities 
depend. It then follows that a certain norm of the deformation tensors of the 
vectorfields T, S, K and 0 in the spacetime slap bounded by E0 and Et* is less than 
another small positive number e^ We then consider the 1-form P, where 

P = Pi+ P2, 

Pi = - ß ( i&/0 ( - , K* K, T) - Q(£TR)(-, K, K, K), 

Pi = -Q(^R)(-, K, K, T) - Q(Ê>QÈTR)(', K, K, K) 

- Q{£S&TR){'9K9 K, K) - Q(È2R)(-, K, K, K) 

and 

K = K + T. 

We define the quantity E = ma,x{E1, E2} where 

E1 = sup *P, E2 = sup 
Et u 

*P 

and everything is restricted to the spacetime slab under consideration. The crucial 
point is the estimate of the error terms which control the growth of J^ *P and JCu *P. 
Using the bound for the deformation tensors we are able to estimate the integral in 
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the spacetime slab of these error terms by ce x E and thus arrive at an inequality of 
the form 

E < c(D + e±E) 

where D stands for initial data. When e1 is chosen sufficiently small, which is 
achieved by choosing e0 suitably small, this implies E < cD. On the other hand we 
are able to show that the aforementioned geometric quantities associated to the 
level sets of t and u are bounded by cE. Thus, if D is suitably small this bound does 
not exceed e0/2, which by continuity contradicts the maximality of t^9 unless of 
course t^ = oo, in which case the theorem is proved. 

The estimate of the error terms would fail if it were not for the fact that the worst 
error terms vanish due to a simple algebraic identity: if A, B, C are any three 
symmetric trace-free 2-dimensional matrices then tr(ABC) = 0. The reason why 
such matrices appear here can be traced back to the symbol of the Einstein 
equations. As I mentioned at the beginning the null space of ô  is nontrivial if and 
only if £ is a null convector. But we can say more; when Ç is a (nonzero) null covector, 
the null space of a^ is in fact isomorphic to the space of symmetric trace-free 
2-dimensional matrices. This is therefore the space of dynamical degrees of freedom 
of the gravitational field at a point. There is no product in this space because for 
any two such matrices A, B we have AB + BA — I iv(AB) — 0. This implies the 
identity mentioned above. 

It remains for me to state the smallness condition on the initial data which is 
required. Take a point pe E0 = E and a positive real number a. Let dp be the 
distance function on E from p. Set: 

D(p, a) = sup {a~2(d2 + a2f\Ric\2} 
E 

+ f X(dp+«2)'+3|J7'lJ|2%( 
J E 1=0 ) 

here Rie is the Ricci curvature and B the Bach tensor or conformai curvature of 

(*, 9)' 

B = curl Rie, 

where Rie is the trace-free part of Rie. Then it is the dimensionless invariant 

inf D(p, a) 
pe E,a>0 

which must be sufficiently small. 
In concluding I would like to emphasize that many deeper and more difficult 

mathematical problems remain in general relativity. Among these are the formation 
of trapped surfaces, the nature of the singularities and the so called cosmic censor
ship question: whether or not singularities are generically proceeded by a region of 
trapped surfaces. All these are aspects of the initial value problem in the large. 
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Harmonie Maps with Values into Spheres 
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0. Introduction 

Let (M, g) and (N,h) be two compact Riemannian manifolds of dimension m and 
n; the manifold M may have a boundary but not JV. Without any loss of generality 
we may assume, using Nash's theorem, that JV is isometrically embedded in Rfc. 
Associated with a map u from M into JV is the Dirichlet energy 

E(u) = [ e(u)(x)dM(x) (0.1) 
JM 

where e(u)(x) is the square of the Hilbert-Schmidt norm of u'(x) : TXM —• TU(X)N. 
Let us note that E is defined on the Sobolev space H1(M;N) = {u e ^ (MjR^) ; 
u(x) G JV for a.e. x}. The critical point of E on H1^;^ are called harmonic 
maps. The Euler-Lagrange equation satisfied by a harmonic map is 

^ M ' ' = g ° " 4 ( * ) ( | ^ ) forie{l....,m} (0.2) 

where Au is the second fundamental form of JV. This generalization of the usual 
harmonic functions is due to J. Eells and J. Sampson [ES]. Since their pioneer 
work, the subject of harmonic maps between manifolds has drawn the attention 
of many analysts, geometers and physicists. For quite complete surveys on that 
subject we refer to two papers by J. Eells and L. Lemaire: [ELI] and [EL2]. 

When JV is the unit sphere S" of R"+1 and M = Q, where Q is a smooth 
bounded open set of R'", the energy of u is (with standard notations) 

E(u) = [ | Vu \2= [ wX (0.3) 
JQ Jn 

and w : M —> N is harmonic if and only if w e H1(M;N) and satisfies, in the 
sense of distributions, 

-Au = u\ Vu |2 . (0.4) 

A first natural question is the regularity of harmonic maps in the interior of 
M. One easily checks that if m = 1 any harmonic map is smooth. This is an 
open question for m = 2 but quite interesting partial results are known (Section 
1). For 777 > 3 a harmonic map needs not to be smooth on the interior of M 
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(e.g. u : Bm = {x e R m ; | x |< 1} -» Sm~\ u(x) = */ I * |). On the other hand 
S. Hildebrandt, H. Kaul and K.O. Widman have proved in [HKW] that if the 
image of u is included in a "small" ball then u is smooth; for JV = Sn a ball 
included in an open hemisphere is "small"; in that case their result is optimal 
since u : B3 —> S3 defined by u(x) = (x/ \ x |,0) is harmonic. Unfortunately there 
is no general result on the singular set S(u) of a harmonic map u. Much more 
is known on S(u) if u is a minimizing harmonic map. A map u : M -> JV is a 
minimizing harmonic map if for any v : M —> JV such that u = w on 3 M then 
£(w) < £(u). In that case R. Schoen and K. Uhlenbeck have proved in [SUI] and 
[SU2] (see also M. Giaquinta and E. Giusti [GG] if the image of u is included 
in a chart) that S(u) is a compact set of dimension less or equal to (m — 3) and 
that, near a singular point, u behaves like a singular homogeneous minimizing 
harmonic map from Bm into JV. Such maps are called minimizing tangent maps 
(MTM). R. Schoen and K. Uhlenbeck have proved in [SU3] that there are no 
MTM from Bm into Sn if m < d(n) where d(3) := 3 and d(n) := 1 + min{n/2,5} 
otherwise. A classification of the MTM for m = 3 and JV = S2 is given in 
[BCL] - see Section 2 -. Moreover in [BCL] a sharp lower bound of E(u) for 
u : Q c R 3 -> S2 with prescribed singularities is given (Section 3). In Section 4 
we give examples of MTM due to F.H. Lin [L] and [CG] for JV = Sn. 

When n = m — 1 and JV = Sm then if the degree of u restricted to dM is 
not zero, S(u) cannot be empty. On the other hand R. Hardt and F.H. Lin have 
proved in [HL1] that S(u) may be not empty even if u restricted to dQ is of 
degree zero. More precisely they have in particular constructed smooth maps 
y : dB3 —> S2 of degree zero such that (gap phenomenon) 

Min{'£(i;) ; v G H^B3^2)} < lnf{E(v) ; v e H^(B3;S2) n C 1 ^ 3 ; ^ 2 ) } (0.5) 

where H^(B3;S2) = {u e Hl(B3;S2); u = y on dB3}. Inequality (0.5) implies that 
H^(B3;S2) nCœ(B3;S2) is not dense in H](B3\S2). More generally one may ask 
under which condition Cco(M;N) is dense in the Sobolev space WliP(M;N). In 
Section 5 we will describe recent results concerning this problem. 

Inequality (0.5) leads also to the question: is the infimum in the right hand 
side of (0.5) achieved ? The answer is not known but it is proved in [BBC] that a 
positive answer to that question is equivalent to the smoothness of a minimizer 
for a relaxed energy associated to E. Moreover, using various relaxed energies, 
it is possible to prove - see [BBC] - that, if the degree of y is not zero or if 
(0.5) holds, then the Dirichlet problem with boundary data y has infinitely many 
solutions. 

Our paper is organised as follows: 

1. Regularity of Harmonic Maps from a Surface. 
2. Classification of MTM for m = 3 and JV = S2. 
3. Lower Bound of E(u) for Q c R3 , JV = S2 when S(u) is Known. 
4. Example of MTM for JV = Sn. 
5. Gap Phenomenon and the Problem of the Density of Smooth Maps. 
6. Relaxed Energies. 
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1. Regularity of Harmonic Maps from a Surface 

In this section we assume m = 2. Let us first mention that the following question 
is still open 

Question 1,1. Let u be a harmonic map from M into JV. Is u smooth in the interior 
of Ml 

A positive answer has been given under some extra assumptions. One has 

Theorem 1.2. Assume u : M -> JV is harmonic; then u is smooth in the following 
cases : 

(i) u is a minimizing harmonic map (C.B. Money [M]); 
(ii) there exists XQ in the interior of M such that u is smooth on M\{XQ] (J. Sacks 

and K. Uhlenbeck [SaU]J; 
(iii) (f> \= (\u{\ — |w2|2 —2/ < t/i,«2 >) (dxi +idx2)2 is holomorphic (M, Griiter 

[G] if cj) = 0, R. Schoen [Sc] in the general case); 
(iv) JV is a sphere (F. Hélein [H2]J. 

Case (iv) is a quite recent result. Let us briefly sketch the proof of (iv). F. 
Hélein first notes that 

Vw1' = wVVw* - « W ) , for 1 < / < 3. (1.1) 

Next, using (0.4), one has (see [C, KRS and Sh]) : 

div(w/Vw/ - w W ) = 0 for 1 < / < 3 and 1 < ; < 3 ; (1.2) 

hence there exists BiJ such that (at least locally) 

curl Bij = ujW - w W for 1 < i < 3 and 1 ^ j < 3. (1.3) 

From (1.2) and (1.3) F. Hélein gets 

Ayi = det(Vw;', VBy) for 1 < / < 3. (1.4) 

Finally the continuity of rf - hence the smoothness of u (see [LU] Chap. 8) -
follows from (1.4) and a result due to H. Wente [We]. 

We end up this section by mentionning two recent results slightly related to 
Question 1.1 or Theorem 1.2. 

Theorem 1.3 (F. Hélein [HI]). Let ube a quasi-conformal homeomorphism between 
two Riemannian surfaces. Then, if (\u\\2 — \u2\2 — 2i< u\,u-i >) (dx\ + idxi)2 is 
holomorphic, u is a smooth harmonic map. 

Theorem 1.4 [CH]. Let u be a smooth harmonic map from M into N and let cp : 
M —• M be a continuous map homotopic to the identity map, then E(u) < E(uocp). 
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2. Classification of the MTM for m = 3 and N = S2 

In this section m = 3 and JV = S2. Then a MTM u is a non-constant minimizing 
harmonic map from B3 into S2 such that w(x) = co(x/ \ x |) for some harmonic 
map co : S2 -* S2. Let us recall that these maps are important since they give the 
behavior of a minimizing harmonic map from a 3-dimensional manifold into 5 2 

(see [SUI, Si and GW]). 
The classification of MTM is given by the following theorem proved in [BCL]. 

Theorem 2.1. The map u : B3 -» S2 is a MTM if there exists R in 50(3) such that 
u(x) = ±Rx/ | x \. 

Sketch of the proof of Theorem 2.1. Let u be a MTM from B3 into S2. We have 
w(x) = co(x/ | x |) where co is a harmonic map from S2 into S2 and therefore 
there exist two polynomials P and Q prime together such that, if we denote by 
7T the stereographic projection n : S2 —> (R2 U {oo} x {0} ~ (C U {oo} with pole 
(0,0,1) 

either %co%-l(z) = P(z)/Q(z) or %co%-l(z) = P(z)/Q(z) (2.1) 

- see [ELI (10.6)] -. One first notices that, since u is a minimizing harmonic 
map, then for any smooth vector field X on B3 with compact support 4;E(u(x + 
eX(x))\e=o = 0 which leads to 

R 3 3 [ S\Wco\2dS = 0. (2.2) 
Js2 

Then one checks that, if d := Max(deg P,deg Q) = 1, (2.2) implies that co = ±R 
for some R in 50(3). In the case \d\ > 2 it is proved in [BCL] that one can 
decrease the energy of u by splitting the singularity {0} into \d\ distinct points. 

It remains only to verify that Rx/\x\ is a MTM. There are now a lot of proofs 
available for that - see [BCL, L and CG] -. The shortest method is perhaps to 
say that since there are singular harmonic maps B3 -> S2 there exists at least a 
MTM from B3 into 5 2 ; such a MTM needs to be of the form ±RQX/\X\ for some 
RQ in 50(3) ; but clearly, if ±RQX/\X\ is a MTM, then ±Rx/\x\ is also a MTM 
for any R in 50(3). 

Remark 2.2. In an earlier paper [HKL] R. Hardt, D. Kinderlehrer and F.H. Lin 
had proved that the degree d of a MTM is bounded by a universal constant. 
Moreover, R. Cohen, R. Hardt, D. Kinderlehrer, S.Y. Lin and M. Luskin had 
proved numerically that if nco7i~1(z) = z2, u is not a MTM ([HKLL]; see also 
some recent numerical studies by F. Alouges [A]). 
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3. Lower Bound of E(u) for Q œ R3 and JV = S2 

when S (ü) is Known 

We start with the special case Q = R3. Let (tf/)^/^ be / points in R 3 and 
(^/)i</<^ De ^ integers. We are interested in the value of 

/ = i n f / / |Vw|2; « ê C ^ V I fl^};S2) 
U R S (3.1) 

and deg(w, «/) = rf/ for 1 < / < ^ 

In (3.1) deg(w,fl/) denotes the degree of u restricted to a small ball centered at a\. 
One easily checks that, if m < oo, then 

5> = 0. (3.2) 
/=i 

So we will assume that (3.2) holds true. In order to give an explicit formula for 
/, we construct with the points a\ such that d\ > 0 a family of points (P/) x .< 
(called "positive" points) in the following way : each Pj belongs to the set 
'a\ ; dj > 0} and each a\ with d\ > 0 is repeated exactly d\ times in the family 
P ;) ; we do the same with the set [a\\d\ < 0} and get the family of "negative" 

points (Nj)1<j<n. It follows from (3.2) that p = n. Let L be defined by 

f " Ì 
L = Min < V \Pj — Nafj) | ; G is a permutation of {1,2,..., p] > . (3.3) 

U=i J 
Then we have [BCL] 

Theorem 3.1. The infimum in (3.1) is never achieved and I = 87cL. 

Sketch of the proof of I = 8rcL. a) / < 87iL. This part relies on the following 
lemma (dipole construction). 

Lemma 3.2. Let P and JV be two points in R 3 and let e > 0. There exists a sequence 
of maps (u„)„ in C1(R3\{P,JV};S2) such that 

E(uu) - • 8rc|P — JV| as n -> oo * 

deg(w„,P) = 1, deg(w„,JV) = - 1 

u„ = North pole on {ß G R 3 ; dist(Q5 [P9N]) > s} . 

Lemma 3.2 gives / < 8TüL if n = p = 1. The general case is obtained by gluing 
together dipoles for the pairs (P,-,JVff(/)). 

b) / > 871L. Two different proofs are known. 
a) See [BCL]. Let, for u e {v e C 1 ^ 3 ^ « ! , . . . , ^ } ; 5 2 ) ; deg(u,af) = df}, 

D(u) = (u ' (t/2 X W3), U ' (W3 X Wi), U • (Uj X U3)) . 
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Then one has 

div D(u) = 4% ( ]T (öPi - öNi) j and |Vw|2 > 2\D(u)\. (3.4) 

From (3.4) one gets 

E(u) > 8TT Min I ^({(Pt) - C(Nt)); Ç : R 3 -+ R such that 
[i=l , (3.5) 

|{(JC) - {(y)| < \x - y\ \/x G R3 , Vy G R3 I . 

Finally, using Kantorovitch's theorem on min-max and the characterization due 
to G. Birkhoff of the extremal points of the set of doubly stochastics matrices, 
one can prove that the right-hand side in (3.5) is 87iL. 

ß) This proof is due to F. Almgren, W. Browder and E.H. Lieb [ABL]. It relies 
on the co-area formula and goes as follows. Let u be in C 1(R 3 \{ai , . . . ,^};5 2) 
with deg(w, aì) = di for any iin {1, . . . , / } . One has 

E(u) > 2 / J2(u)dx = 2 [ M>l(u-\S))do(S), (3.6) 
JJR? Js2 

p 

3(u-1(S)) = ^ ( ^ - ^ j ) - (3-7) 
1=1 

Finally from (3.6) and (3.7) one gets E(u) > 8nL. 
Two entensions of Theorem 3.1 to the case Q ^ R 3 are possible. We assume 

that the points at are in Q. Let 

/ !=Inf{£( W ) ; ueCi(Q\{au...9a,};S2), 

deg(w, aì) = dt for 1 <i<£ and u is constant on dQ] 

h = Inf{E(u); u G Cl(Q\{au...,a/};S2), deg(w,at) = dt for 1 < i < £}. 

Let us denote by D the geodesic distance in Q. Let 

L2 = Min< ^D(Pi,JVff(i)); G is a permutation of {!,...,p]> 

if p = n; Li — +00 if p =fc n. Let us define L\ for p < n by 

{ p n 

^D(PuNff{Q)+ Y, dist(Nff{{),dQ) ; 
i=i i=P+i ( 3 8 ) 

G is a permutation of {1 , . . . , n} > . 

For p > n L\ is defined by replacing in (3.8) n by p, p by n, JV by P and P by JV. 
Then one has (see [BCL]) I\ = 8TCLI and Ii = 871L2. 
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Remark 3.3. a) The analogous of Theorems 3.1 for the liquid crystals energy 
has been obtained by M. Giaquinta, G. Modica and J. Soucek in [GMS3]. 
b) F. Almgren, E.H. Lieb in [AL] and R. Hardt, F.H. Lin in [HL2] have obtained 
estimates on the number of singularities of minimizing harmonic maps from 
QczB3 into S2. 

4. Examples of MTM 

The following maps have been proved to be MTM: 
a) w0 : £"+m <= R"+m = R"+1 x R'""1 - • S", uQ(x',x") = x'/\xf\. 
b) w0 : B2n - • S", w0(x) = Jï(x/|x|) where H : S2""1 -* S" are the Hopf maps 

related to the multiplication of complex numbers (n = 2), quaternions (n = 4) 
and Cayley numbers (n = 8). Example a. for m = 1 is due to F.H. Lin [L]. 
Example a) for m > 2 and Example b) are proved in [CG]. 

Lin's proof relies on the null Lagrangian method. It can be divided into three 
steps. 

Step L Let w : R"+1 -> 5" then 

|Vw|2 > (n - I ) - 1 {tr(Vw)2 - (div w)2} with equality if w = w0. (4.1) 

Step 2. Let w : B»+1 - • R"+1 then 

tr(Vw)2 - (div w)2 = div{(div u)u - w.Vw}. (4.2) 

Step 3. Let w G if1(Bn+1;Sn) with u = w0 on dBn+\ Inequality (4.1) gives 

/ |Vw|2 > (n - I)"1 / (tr(Vw)2 - (div w)2). (4.3) 

Using (4.2) one gets 

/ (tr w)2 - (div w)2 = / (tr wo)2 - (div w0)
2. (4.4) 

Finally using (4.3), (4.4) and (4.1) for w = w0 one has / |Vw|2 > / |Vw0|
2. 

The proof in [CG] relies on the co-area formula as in [ABL] and on a 
projection-averaging procedure. Let us explain the method for Example b) with 
the quaternionic Hopf map. Let u : B* —• 5 4 such that w = wo on dB . We want 
to prove that 

E(u)>E(u0). (4.5) 

For \p in G3CR5), write ny) : 54 -> S2 for the nearest point projection. One first 
checks that 

E(u) = \ / E(TCV,OW). (4.6) 

Let v — ny) o u and VQ = ny) o wo. Inequality (4.5) is a consequence of (4.6) and 

E(v)>E(v0). (4.7) 
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The proof of (4.7) goes as follow 

E(v) > 2 / J2(v) = 2 / J^6(v-x(S)) = f M>6(v^(-S)Vv-l(S)) ; (4.8) 
JB* Js2

 JS2 

Note that, at least if v is not too singular - see [CG] for more details -, 

d(v~l(-S) U v-l(S)) = (H o H)-l(S) - (*„ o Hr\-S) 

= 5(i;0-
1(-5)Ut;0-

1(5)). 

One can prove that, for some complex structure on R8, VQ1(—S) U VQ1(S) is a 
complex variety; hence, by (4.9) and [F, p. 435 and 652], 

^6(v-l(-S) U iT^S)) > ^(vöH-S) U völ(S)). (4.10) 

Inequality (4.7) follows from (4.8), (4.10) and 

E(v0) = 2 [ J2(vo) = j M\vt(-S) U vt(S)). (4.11) 
JB* JS2 

5. The Gap Phenomenon and the Problem 
of the Density of Smooth Maps 

Let us start with a quite interesting theorem proved by R. Hardt and F.H. Lin in 
[HLl]. 

Theorem 5.1 (Gap Phenomenon). The exist smooth maps y : dB3 -> 52 of degree 
zero such that 

Min{£(w); u G H\B3;S2) and w = y on dB3} 
(5.1) 

<Inf{£(u); ueC^B3-^2) and u = yondB3}. 

Sketch of the construction of y. We follow a method proposed by H. Brezis in 
[Br]. Let £ be a small positive number. Let Pi = (0,0,1 — e), JVi = (0,0,1 + e), 
JV2 = (0,0, -1+e), P2 = (0,0, - 1 -s). By Lemma 3.2 there exists a map uE : R3 -• 
52 smooth on R3\{JVi,Ni,P\,Pi) such that the degree of ue at the Ni (resp- Pt) 
is —1 (resp. +1) and 

/ |Vue|
2 <87u(2e + 2e)+£. (5.2) 

One_takes for y the restriction of u£ to dB3. The degree of y is zero. For v in 
Cl(B3;S2) with v = y on dB3 let w : R3 -• 52 be defined by w = v on B3 and 
w = ue on R3 \£3 . That map is continuous on R3\{JVi,P2} and has degree +1 at 
P2, —1 at JVi hence by Theorem 3.1 

JM 
|Vw|2>87c(2 + 2e) (5.3) 
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which implies, with (5.2), 

/ | V i f > 1 6 7 r ( l - e ) - s . (5.4) 

The gap phenomenon follows from (5.2) and (5.4). 

Note that the gap phenomenon implies that even if y is of degree zero 
C](B3\S2) = {v; v G C^B3'^2) and v = y on dB3} may not be dense in 
H*(B3;S2) = {v G H1(B3\S2); v = y on dB3}. Similar non-density had been 
observed previously by R. Schoen and K. Uhlenbeck; they had proved in [SU2] 

Theorem 5.2. The map wo in Hi(B3\S2) defined by wo(x) = x/\x\ cannot be ap
proximated in the H1-norm by maps in C 1 ^ 3 ^ 2 ) . 

Proof of Theorem 5.2. Assume w" G C{(B3;S2) satisfy w" -> w0 in H^B3;^3). This 
implies that D(w") -* D(w0) in L ^ j R 3 ) but div D(u") = 0 and div D(u0) = 4TK50. 
A contradiction. 

This leads to the question raised by J. Eells and L. Lemaire in [EL2] : let p 
be in [l,oo), is ^(MjN) dense in the Sobolev space Wì'p(M;N)fì The answer is 
now known. One has 

Theorem 5.3. Ifp > m, then ^(MiN) is dense in Wlp(M;N). If p < m then 
^(MiN) is dense in W1,P(M;N) if and only if the homotopy group n[p](N) is 
trivial (\p] is the largest integer less or equal to p). 

Theorem 5.3 is easy if p > m since in that case, by the Sobolev embeddings, 
WltP(M;N) c C(M;N). The case p = m has been proved by R. Schoen and 
K. Uhlenbeck in [SU2] and [SU3]. When p < m and TTM(JV) ± 0, F. Bethuel 
and X. Zheng have constructed in [BZ] a map in WliP(M;N) which cannot be 
approximated in the W1,p-norm by maps in ^(MiN); their proof uses previous 
arguments due to B. White [Wh]. The fact that n\p\(N) is trivial implies density 
is a difficult theorem due to F. Bethuel [B2]. 

When one does not have density we may ask for a characterization of the 
closure W^P(M,N) of Cœ(M,N) in W1'P(M;N). Only partial results are known. 
One has 

Theorem 5.4. Assume that JV is ([/;] — 1) connected, H\p\(N) is torsion free and that 
7i\(N) is abelian if [p] = 1. Then the two following conditions are equivalent 

ueW^P(M,N) (5.5) 

the pullback by u of any closed \p\-form on N is (weakly) closed. (5.6) 

The implication (5.5) => (5.6) has been noticed by R. Schoen and K. Uhlenbeck 
in [SU3] - it holds without any topological assumption on JV -. The converse 
has been proved by F. Bethuel in [Bl] for p = 2, M = B3 and JV = 52, by F. 
Demengel in [D] for 1 < p < 2, M = Bm and JV = 51 ; the general case is proved 
in [BCDH]. 

file:///p/-form
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Theorem 5.3 leads also to the question: which size of singularities one has to 
allow in order to have density ? F. Bethuel has proved in [B2] - see also [BZ] for 
M = Bm,N = Sm-\ 2<p<m-, 

Theorem 5.5. Assume p < m. The maps from M into JV which are smooth except 
on a manifold of dimension m — [p] — 1 are dense in W1,P(M;N). 

6. Relaxed Energies 

The gap phenomenon leads naturally to the following question 

Question 6.1. Let y_ : dB3 —> 52 be a smooth map of degree zero. Is the infimum 
Inf{E(u); u G C{(B3;S2) andu = y on dB3} achieved? 

The answer to this question is still not known but in [BBC] it has been 
proved that a positive answer to that question is equivalent to the regularity 
of a minimizer for a relaxed energy Ex associated to E. In order to define E\ 
we need some notations. Let H$(B3;S2) = {u G Hl(B3\S2)', u = y on dB3}, 
C$(B3;S2) = {ue Cl(B3',S2)', u = y on dB3}, Ry(B

3;S2) = {u G H$(B3;S2); u 
is C1 except at a finite number of points}. Recall - see Theorem 5.4 - ([B2] or 
[BZ]) that Ry is dense in HJ(B3;S2) for the i f 1 -norm. For u in Ry let 

L(u) = Min < ^ \Pi — Nff(f)\ ; G is a. permutation of {1,...-,n} > (6.1) 

where the Pt (resp. Nt) are the singularities of u of positive (resp. negative) degree 
counted according to their degree. By a result of [BCL], for any u in Ry, 

L(u) = -L Sup U D(u) • VÖ - J 0Jac(y); \6(x) - 6(y)\ <; |x - y| \/x,\/y\ 

from which it follows that L(w) makes sense for u in Hy(B3;S2). Let now 
£i : H$(B3;S2) - • [0,+oo) be defined by 

Ei(u) =E(u) + %%L(u). 

Note Ei = E on C](B3\S2). The following properties of Ex are proved in [BBC]. 

Ei is weakly lower semicontinuous (6.2) 

Min{Ei(w); u G Hl
y(B

3;S2)} = Inf {E(u)\ u G C)(B3;S2)} (6.3) 

Ei(u) = Inf {hm E(un) ; un e C](B3 ; 52) and un -> u a.e.} . (6.4) 

In particular a positive answer to question: is any minimizer of Ei smooth ? will 
give a positive answer to Question 6.1. Recently M. Giaquinta, G. Modica and J. 
Soucek have proved in [GMS2] that the (eventual) singular set of any minimizer 
of Ei has Hausdorff dimension less or equal to 1. 

Even if this approach does not give, for the moment being, the answer to 
Question 6.1 it allows to prove 



Harmonie Maps with Values into Spheres 1133 

Theorem 6.2. Let y : dB3 —> S2 be a smooth map. Assume that either the degree 
of y is not zero or the degree of y is zero and (5.1) holds. Then there are infinitely 
many harmonic maps in Hy(B3;S2). 

Let us give the main steps of the proof of Theorem 6.2 when the degree of y 
is zero and (5,1) holds. Let for X in [0,1], E^(w) = E(w) + 8nXL(u), From (6.2) we 
get 

Ex is weakly lower semicontinuous ; (6.5) 

hence 
the infimum mx of Ex on Hy(B3;S2) is achieved. (6.6) 

Using the gap phenomenon one can prove, see [BBC], 

mx > mo for any X > 0. (6.7) 

Note also that clearly 
limm^ = mo. (6.8) 
A-*0 

The infinitely many harmonic maps in Hy(B3;S2) follows from (6.6), (6.7) and 
(6.8) and 

any minimizer of Ex is a harmonic m a p . (6.9) 

It remains to prove (6.9). Let w be in Ry and let cp be in C Q ( 5 3 ; R 3 ) ; then the 
singularities of (w + scp)/\u + ecp\ are the same as those of (w + £cp)/\u + ecp\ if 
NI<PIL°° < 1 hence, see (6.1), 

L((w + 8cp)/\u + ecp\) = L(u) if |e||<p|L. < 1. (6.10) 

By the density of Ry in HUB3;S2), (6.10) also holds for w in HhB3;S2); it gives 
(6.9). 

Remark 6.3. a) F. Bethuel and H. Brezis have proved in [BB] that any minimizer 
of Ex for X G [0,1) is smooth on B3 except at a finite number of points, b) A 
quite interesting different approach to relaxed energies have been given by M. 
Giaquinta, G. Modica and J. Soucek in [GMS1] and [GMS2]. 

Note added in proof. In a very interesting paper (to appear in C. R. Acad. Sci. 
Paris) F. Hélein has given a positive answer to Question 1.1. 
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Isometric Embeddings of Riemannian Manifolds 
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1. Explanation of the Problem 

Let M be an rc-dimensional manifold of class C°° and g any given Riemannian metric 
on M. We will consider the following classical problem motivated by differential 
geometry. Does there exist an embedding u = (w1,..., uq) : M -> R9 such that the 
usual euclidian metric of R9 induces on the submanifold u(M) the given metric gl 
In other words, w must satisfy 

E(w) := du-du = g, (1) 

or in local coordinates 

9 du1 du1 _ 

, t îâ?â?"Q i j ' 

The dot in (1) denotes the usual scalar product of R9. The notion embedding means, 
that w is locally an immersion and globally a homeomorphism of M onto the 
subspace u(M) of R*. If an embedding w : M -• R9 satisfies (1) on the whole M, we 
speak of an isometric embedding. If w is an immersion and a solution of (1) in a 
(possibly small) neighbourhood of any point of M, we speak of a local isometric 
embedding. A further question is the regularity of the embedding in dependence on 
the regularity of the metric. And finally, what can be said about the minimal value 
of <?? 

We will give some historical remarks. There exists a great number of beautiful 
papers which handle the isometric embedding problem (local or global) under 
further assumptions on the manifold M or the metric g (e.g. special values of 
dimension n, positivity assumptions on the curvature), but we are interested only 
in the general problem. Janet (1926), Cartan (1927) and Burstin (1931) proved the 
existence of a local isometric embedding with q = n(n + l)/2 in the analytical case; 
the essentials of their proofs are suitable applications of the Cauchy-Kowalewski 
theorem. Up to date a corresponding result (with the same value of q and without 
further assumptions) is unknown in the nonanalytical case, even for the dimension 
n = 2. Nash (1954) and Kuiper (1955) proved the existence of a (global) isometric 
embedding of class C1 with n < q < 2n -f 1 (in fact their results are more subtle), 
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provided that the metric g is continuous. In an outstanding paper Nash (1956) 
showed the existence of a (global) isometric embedding u e CS(M, Ra)(s > 3, s = oo) 
if g e Cs and q = 3n(n + l)/2 + An in the compact case, q = (n + l)qCQm

 m t n e 

noncompact case. Note the surprising difference of the value of q in the case C1 

and Cs, s > 3, respectively. Nash's paper (1956) is fundamental not only for the 
problem under consideration, but also because of the applied method, which gives 
the foundation of the so-called hard implicit function theorems or Nash-Moser 
technique. The latter plays an important role in the modern theory of nonlinear 
partial differential equations. There are many papers concerning this technique, 
see e.g. Moser (1961, 1966), Jacobowitz (1972), Zehnder (1975), Hamilton (1982) 
and Hörmander (1985,1988). Finally we mention the book "Partial Differential Rela
tions" by Gromov (1986), which contains many material and references belonging 
to our problem. Gromov gives q = (n + 2)(n + 3)/2 as best value in the smooth case. 

One of the main steps in Nash's demonstration (1956) is the solution of the 
perturbation problem associated to (1), i.e. the determination of v : M -> R* such 
that F(u + v) = g + / , if a solution u of F(u) = gis known and/small in some sense. 
The linearized equations F'(u)v = h of our nonlinear problem (1) are 2du • dv = h or 
locally written 

dtu • djV + djU • d{v = htj. 

Here the embedding u : M -> Rg and a symmetric covariant 2-tensor field hon M 
is given and v : M -> R* is unknown. This is a linear first order system of partial 
differential equations for v. The system seems to be very simple, but it does not settle 
down in a standard class. Now the idea is as follows. Additionally we demand 
dtu • v = 0. Then we find the relations 

diU-v = 0, dtdjU • v = — hij/2. (2) 

which form an algebraic system of n(n + 3)/2 equations for v. Following Gromov 
and Rohlin (1970) a C2-mapping u : M -> R^ is called free, if for each x G M the 
n(n + 3)/2 vectors dtu(x), dtd]U(x) of R* are linearly independent. Now let u be free, 
then we have a unique solution v of (2) with minimal pointwise R^-norm, which 
we will denote by 

v= -E(u)(0,h)/2. 

We have the following mapping properties 

Fie-**?-1, E(u):Cs-+Cs if ueCs+2. 

This shows the loss of differentiability; therefore we cannot use simple successive 
approximations in order to solve the nonlinear equations. One way out is given by 
the above mentioned method of hard implicit function theorems consisting in a 
complicated combination of successive approximations and smoothing operators. 

2. A New Method to Solve the Perturbation Problem 

In this section we give another and short way to handle the perturbation problem, 
which gives moreover somewhat better results. Let M be compact. We use certain 
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Holder spaces Cs* of functions or sections of vector bundles over M with non-
negative integers s and Holder exponent X, 0 < X < 1; the latter is fixed once for all. 
S^M denotes the bundle of symmetric covariant 2-tensors on M. Let ||£(W)||2,A be 
the norm of the linear mapping 

E(u) : C2'\M, T„M) x C2>\M, S{2)M) -+ C2>\M, R«), 

if w is a free and smooth mapping. Now we can formulate the following 

Theorem 1. Let u e Cœ(M, R9) be a free mapping and f e CS^(M, S{2)M) with s>2 
ors = oo. Thereis a positive number 6(independent of'u, s and f)with the property: If 

\\E(u)\\2JE(u)(0J)\\2a<6, (3) 

then there exists ave CS,X(M, R*7) such that one has 

d(u -f v) • d(u -f v) = du • du -f / on M. 

Remark. Our solubility condition (3) contains two factors coming from the linearized 
problem taken at the given initial mapping w. The first depends only on the 
coefficients of the unknowns of the linearized problem, the second depends only on 
the solution of the linearized problem with the given perturbation term / . These 
two influences must keep a certain balance. 

We only sketch the proof here. In order to explain the idea, let M be the 
ji-dimensional torus. For this special case see also a recent paper of Hörmander 
(1988), where a much more complicated technique is used. We write our nonlinear 
equations as 

dfU • djV + djU • d{v + d{v • djV — f{j = 0. (4) 

It is well known, that 

(A- \)\CS+2>\M)-+CS>X(M) 

is an isomorphism. Therefore we can apply the operator {A - 1) to (4) and obtain 
after some rearrangement the crucial relations 

dt{(A - l)(dju-v) + Avdjv} + dj{(A - l)(d{u-v) + Avdtv} 

- 2{(A - IWidjU-v) + fàvdjV - didtvdjdjv 

+ Avdtdjv + &A-I)fu}=0. (5) 

Hence it suffices to solve the new system 

dtwv = — (A — iy1 (Av • dtv)9 

d{djU-v = ~^fij + (A — l^fóidjV'djdjV — Avdfyv — ^d^'d^v). 

The properties of (A — l)"1 guarantee that there is no loss of differentiability, hence 
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we can solve the system by simple successive approximations if/fulfils the smallness 
condition (3). The only difficulty is to treat the C°°-case. We must take care of the 
constants arising in the inequalities and their dependence on the number s. 

Now some words to the general case. We equip M with an auxiliary Riemannian 
metric g0 of class C00. The covariant derivatives, the Laplacians as well as the 
occuring curvature tensors are meant always with respect to g0. We have to use the 
Lichnerowicz-Laplacians for vector fields and symmetric 2-tensor fields 

A{1)tt = At, - R*tl9 A = VlVx, 

d(2)tij = dty — 2Ri.j.tkl — Ri.ty — Rj.tu. 

If a is a sufficiently large real number, then the mappings 

(zf(1) - a) : CS+2'\M, T*M) -> CS'X(M, T^M), 

(A{2) - a) : CS+2'\M, Si2)M) -> CS>\M, S{2)M) 

are isomorphisms. We define a vector field N(v) and a symmetric 2-tensor field L(v) 
by the formulas 

Nt(v)= -AvV{v, 

L^v) = VlV{v• VxVp - Av• V{FjV - Rik}ykv'V\V-\V{v• V}v. 

One has instead of (5) the identity 

(Ai2) - a) {Vtu • Fjv + FjU • V<o + Vtv • Fjv} 

= Ft{(A{1) - aWjU-v) - Nj(v)} + 7}{(A{1) - a)(V^v) - Nt(v)} 

- 2{(A{2) - a)(Ft7jWv) - L^v) - (rtRf. + P,*,! - V'R^V^-v)}. 

These equations are shown by a straightforward calculation with repeated use of 
the Ricci identity. This procedure leads to the final system 

Viu-v = ((Aa)-oc)-1N(v))i, 

Vftu• v = - i / „ + ((Ai2) - « r ^ W l ö (6) 

with 

Mtj(v) = I » + (rtRji + FjRl - r%)({A{1) - a)1^))*. 

Again we can solve (6) with the help of simple successive approximations. For details 
see Günther (1989a). D 

We give another variant of the perturbation result, which is important for 
applications in Sect. 3. 

Theorem 2. Let ß c R " f c the open unit ball and B1,B2^ R" open sets with 5X ^ B2, 
B2 c B. Further, let u e Cœ(B, R9) be a free mapping andf = (/y) e CsX(B, R"<"+1>/2) 
with s>2ors = co. There exists a positive number 0 (independent ofu, s andf) with 
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the property: If 

s u p p / ç= Bx and \\E(u)\\2tX\\E(u)(09f)\\2tX < 0, 

then there exists ave CS'*(M, R9) with 

supp v e B2 and d{(u -f- v) • dj(u + u) = d,-w • djU + /,- /« B. 

We indicate the proo/ of Theorem 2. We choose a cut-off function a e C°°(B) 
with fl(x) = 1 for all x e 5 j and A(X) = 0 for all x e B\B2. Further, the Dirichlet 
problem 

Aw — h in B, w = 0 on dB 

possesses a unique solution w =: A~xh e CS+2'X(B) if h e Cs'k(B). The definition of 
Ni(v), Mtj(v) is now modified as follows 

N{(v) = 2d(a(Av • v) + a(Ji; • 3, u), 

My(y) = A(4diadja(vv) + 2adia(djvv) + ladjafâvv) + a2(diV'djv)) 

- A(adiA~1Nj(v) + adjA^N^v) + idfiA^N^v) + 3djaA~xNt(v)). 

Then My(i;) is a linear combination of terms 

d^ad^A^Nfiv) with | a i | + |a2| = 3, |a2| < 2, 

5aia3a2o(oa3t;-5a4i;) with | a j + ••• + |a4| = 4, |a3|, |a4 | < 2 

and therefore we have JV,(u), My(u) eC s , A if v e cs+2,A. Let v be a solution of the 
system 

dfU-v= —aA^N^v), 

didju-v = U-fij + 4-1Mij(v)) (7) 

then after some easy calculations it follows that 

dt(u + a2v) - dj(u + a2t;) = 3fw • 5,-w -h 0 % in ß. 

The properties of N^'M^v) and ^ - 1 guarantee that (7) can be solved by simple 
approximations too. 

3. A Result Concerning the Value of q 

Now It M be any C00-manifold, not necessarily compact. We have the following 

Theorem 3. Let g be of class C00, let w0 e C^iM, R9) be a free embedding with 
q i> n(n -f 3)/2 -f 5 and du0 • duQ < g. Further, let ö be any positive continuous func
tion on M. Then there exists an embedding u e C°°(M, R*) such that 

du-du = g and \u(x) — u0(x)\ < ö(x) for every xe M. 

Concerning the existence of free embeddings w0 we have the following proposi
tion. Its proof is based on the well known theorem of Sard, see e.g. Gromov 
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and Rohlin (1970, Sect. 2.5). The condition du0 • du0 < g can be reached by easy 
manipulations. 

Proposition. / / g is a continuous metric on M, then there exists a free embedding 
u0 e ^(M, R«) with q = n(n + 5)/2 and du0 -du0< g on M. 

Combining Theorem 3 and the Proposition, we obtain the 

Corollary. Every smooth Riemannian manifold possesses a smooth isometric embed
ding into R* with 

q = max{n(« + 5)/2, n(n + 3)/2 + 5}. 

Remark. In general, we have for our q, that q = qG — 3 and in special cases, i.e. 
M = Sn (n-dimensional sphere), that q = qG — (n — 2). Here qG means that value of 
q, which was given by Gromov (1986, Sect. 3.1.7). The main restriction for our q 
comes from the existence of a free embedding and not from our method to construct 
the isometric embedding. 

We will give a brief sketch for the proof of Theorem 3. Firstly, one can write 

g = du0- du0 + £ hil). 

Thereby hil) are symmetric covariant 2-tensor fields on M, such that in suitable local 
coordinate systems x : u(l) -> R" 

Ä« (x) = a*(x), h$(x) = 0 (l<i<j<n,j*l) (8) 

with a e CQ(U(1)); hence supp h{l) ç U{1). Only the one-one-coordinate is different 
from zero! The family {Uil)} are to be a locally finite covering for M. Hence it suffices 
to show: u0 can be changed into a free embedding w0 with 

dü0 • dü0 = du0 - du0 + h{1) in U{1), 

ü0 = u0 in M\U{1), 

\ü0(x) — u0(x)\ < ö(x) for all xe M. 

The construction of such a u0 will be done in the steps two and three. 
Secondly, identifying U{1) with the open unit ball_jB of R", we choose to every 

integer k > 2 and e e (0, 1) a free mapping uEtk e Cœ(B, R9) with 

duEìk-duEìk = du0-du0 + ha) + 0(efc+1), 

uEtk = u0 in B\Bt. 

Bl ^ R" is an open set with Bx ^ B. The construction of wEfc is made in form of a 
series 

uek(x) = u0(x) + ew^e, x) + • • • + skuk(s, x). 

(9) means equality up to powers ek. The proof offers certain technical difficulties; 
one must take advantage of the special form of h{1) in (8) as well as the assumption 
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q > n(n + 3)/2 + 5. We note, that uEik has in some sense a singular behaviour as 
c -• 0. For details see Günther (1989b, Sects. 3, 4). 

Thirdly we apply Theorem 2 with the initial mapping u = uEy, the tensor field 
f = fE,k *s determined by the remainder term 0(ck+1) in (9). From the properties of 
the uEtk we obtain 

\\E(uc,k)\\2,x = 0(8-«°), ||/..»||2iA = 0(C*-2) 

with an integer fc0 independent offe. If we choose fe sufficiently large and e sufficiently 
small, then we can satisfy the solubility condition of Theorem 2. This finishes the 
proof of Theorem 3. 
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On Scattering by Obstacles 
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1. Introduction 

Let n be an odd integer > 3, and let 0 be an open bounded set in R" with 
smooth boundary r. We assume that 

Q = R" - 0 is connected. 

Consider the following acoustic problem 

d2u 
Dw = -—? — Aw = 0 in fix (—oo, oo) 

otz 

w = 0 on T x (-00,00) (1-1) 
du 

u(x ,0)=/ 1 (x) , - ( x , 0 ) = / 2 ( x ) . 

It is known that every solution u(x,t) of (1.1) with finite energy approaches to a 
solution UQ(X, ì)(UQ(X, t)) of the wave equation in the free space as t —> oo(t —> 
—oo). The mapping from the initial data of w5"(x,t) to those of u$(x,t) is called 
scattering operator, and the scattering matrix ^(a) (CT e R) is a representation of 
this mapping (for the definition, see for example Lax-Phillips [10, p. 170]). ^(o) 
is a unitary operator in L2(Sn~1) for all a e R where S"-1 = {œ G R"; \co\ = 1}, 
and is of the form 

Pip) =1 + Jf(ff) (1.2) 

where / denotes the identity operator and Jf (<x) is an integral operator. The 
kernel K(CD,6;CT) of X(a) is given in the following way: 

Let V-(X,Cû,G) be the solution of 

Av + a2v = 0 in ß , 

v = — exp(—iaco) on T , 

• v satisfies the incoming radiation condition. 

Then u_ has an asymptotic expansion 

eiar 

v-(r6, œ,a) ~ (n_1)/2s(g,o);g), as r ->oo . 
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Then the kernel K(co,6;cr) is given by 

/ er \ («-i)/2 
K(CO,9;CT)=(—) s(-e,co;c). 

Roughly speaking, the kernel K(co,9;cr) represents the rate of the wave reflected 
by G in the direction 0 for the incident plane wave of frequency cr propagating 
in the direction co. 

Concerning ^(o), the following fact is known: 

£f(o) is the restriction to the real axis of an J£(L2(Sn~~1))-valued function y(z) 
that is analytic for Imz < 0 and meromorphic in the whole complex plane C ([10, 
p. 166]). 

It is an intrinsic subject of scattering theory to consider relationships between 
the geometry of the obstacle and the analytic property of the scattering matrix. 
Concerning this subject, the following theorem is fundamental: 

Theorem 5.6 of Chapter V of [10]. The scattering matrix uniquely determines the 
scatterer. 

The above theorem shows that all the geometric informations of the obstacle 
are contained in the scattering matrix. Indeed, all the informations of (9 are in 
£f(z), but how do we extract the geometric informations from the scattering 
matrix? This is one of the most important and interesting problems of scattering 
theory. 

In this note we would like to consider scattering matrices in connection with 
the above problem. In Section 2 we present several results on scattering matrices. 
In Section 3 we propose a conjecture which was given originally by Lax and 
Phillips in [10]. In Section 4 the validity of this conjecture will be considered for 
obstacles consisting of several strictly convex bodies. 

2. Several Results on Scattering Matrices 

As to the geometry of obstacles, we introduce the following notion. 

Definition 1. Suppose that G is contained in {x\\x\ < Q}. We say that (V is 
nontrapping if there exists T > 0 such that every broken ray in Q according to 
the geometric optics starting from a point in Q(Q) = Q n {x; \x\ < Q} necessarily 
goes out from Q(Q) within time T. We say that 0 is trapping if, for any T > 0, 
there is a broken ray staying in Q(Q) for a period longer than T. 
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2.1 Asymptotic Behavior of the Scattering Phase 

Since JT(O-) is of trace class, de iner ) is well defined, and the unitarity of ^(o) 
implies that Idet^er)! = 1. The scattering phase s(a) is defined by 

s(a) = - / l o g d e t < 9 » f o r o - e R . (2.1) 

Melrose [13] proved that 

s(a) = cnNo\((9) er11 + 0(G1ì~ì) as a -> ±oo. (2.2) 

Analoguous to the Weyl formula which is an asymptotics of the distribution 
of eigenvalues of the interior problem, the volume of the obstacle can be got 
from the asymptotic behavior of the scattering phase. For nontrapping obstacles 
Petkov-Popov [17] obtained the full asymptotic expansion of s(a). 

2.2 On the Poles of the Scattering Matrix 

As mentioned in the Introduction, the scattering matrix is meromorphic in the 
whole complex plane. Thus, it is very natural to pose the question: 

How does the geometry of (9 relate to the distribution of poles of ^(z)? 

Purely Imaginary Poles. Lax and Phillips showed in [11] that there are an infinite 
number of purely imaginary poles. 

For Nontrapping Obstacles. By combining the general result in [12] with the 
results on the propagation of singularities for the problem (1.1) due to [15], we 
have that, if (9 is nontrapping, there are positive constants a and b such that 

{z;lmz ^ fllog(|z| + 1) + b} is free from poles of ^(z). (2.3) 

Obstacles Consisting of Two Convex Bodies, (i) The existence of non-purely 
imaginary poles was proved for the first time by Bardos-Guillot-Ralston [1]. 
They considered the case that 

0 = 0 i U 0 2 , ~G[r\W2 = ^, (2.4) 

(9\ and (92 are strictly convex, (2.5) 

and showed that, for any e > 0, the logarithmic domain {z;Imz < e log \z\} 
contains an infinite number of poles of ^(z). 

(ii) This result was improved by Ikawa [4] as follows: Let 0/ G Fj = d(9j, j = 
1,2, be the points such that \a\ — ai\ = dis(tf?i,$2) = d. Then, £f(z) has poles at 
approximately the points 

^ + ic, keZ (2.6) 
a 

where c is a positive constant determined by d and the curvatures of Fj dit 
ah j= 1,2. 

Later, Gérard [3] gave more precise descriptions of poles. 
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(iii) Ikawa [6] considered (9 c R 3 of the form (2.4) such that the principal 
curvatures Kjk(x), j = 1,2, of Tj at x vanish only at aj of order 21,1 > 1, that is, 
for j = 1,2 

C"1 |x - aj\21 ^ Kjik(x) ^ C\x - aj\21 for xeTj, k = 1,2. 

In this case there is a sequence of poles {zj}f=1 such that 

Im Zj —> 0 as 7 -> oo. 

Poles for Convex Obstacles. For nontrapping obstacles, as (2.3) shows, all the 
poles of the scattering matrix are over a logarithmic curve. Bardos-Lebeau-Rauch 
[2] considered strictly convex obstacles with analytic boundary, and showed that, 
under a certain additional condition, there is a positive constant c > 0 such 
that {z;lmz < c|z|1/3} contains only a finite number of poles and {z;Imz < 
(c + e)|z|1/3} contains an infinite number of poles for any e > 0. 

Upper Bound of Distribution of Poles. Melrose showed in [13] the following 
estimate: 

#{z; poles of £f(z) such that \z\ < X} < CXn for all X > 0. (2.7) 

Remark. Zworski considered in [18, 19] the same problem for scattering by 
potentials, and showed that (2.7) holds also in this case. Moreover, he showed 
the estimate (2.7) is optimal in general. 

3. Modified Lax-Phillips Conjecture 

Consider the boundary value problem with parameter p e C 

((A-p2)w(x) = 0 in Q 
\ w(x) = g(x) on F 

for g(x) e Cœ(r). It is well known that for Rê u > 0 (3.1) has a unique solution 
w(x) in H2(Q). Denote by R(p) the operator defined by 

w(x) = (R(p)g(-))(x). 

Then R(p) is an i?(L2(r),L2(ß))-valued holomorphic function, in R e ^ > 0. 
By the regularity theorem for elliptic operators, R(p) can be regarded as an 
operator in ^ ( C ^ F ^ C 0 0 ^ ) ) . As an ^ ^ ( F J ^ ^ ^ J - v a l u e d function R(p) 
can be prolonged analytically to the whole complex plane as a meromorphic 
function. Concerning the poles of Sf(z) and R(p) we have from Theorem 5.1 of 
Chapter V of [10] 

z is a pole of 9>(z) if and only if p = iz is a pole of R(p). 

Let z be a pole of £f(z). Then p — iz is a pole of R(p). The above Theorem 5.1 
asserts also the existence of a non-trivial ^-outgoing solution w(x;p) of (3.1) for 
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g = 0. Therefore u(x,t;p) = w(x;p)e^ satisfies (1.1) for fi(x) = w(x;p), f2(x) = 
pw(x;p). Thus, if Imz = —Re/i is very small, u(x,t;p) decays very slowly as 
t —> oo. This suggests us that, if poles of £f(z) appear near the real axis, we have 
probably solutions of (1.1) with finite energy decaying very slowly as t —> oo. 
Thus, we suspect that the stronger solutions to (1.1) are trapped by obstacle (9, 
the nearer to the real axis the poles of ^(z) will appear, and we suspect also that 
the stronger rays of geometric optics in Q are trapped, the stronger solutions to 
(1.1) will be trapped by 0. 

Thus, we would like to propose the following conjecture : 

Modified Lax-Phillips Conjecture. / / (9 is trapping, there exists a > 0 such that 
£f(z) has an infinite number of poles in {z;Imz < a}. 

Recall that, for nontrapping obstacle (9, all the poles of y(z) are over a 
logarithmic curve Imz = alog(|z| + l) + b. Then, for any a > 0 there are only a 
finite number of poles in {z;Imz < a}. Thus, if the above conjecture is true, the 
existence of such a becomes a characterization of trapping obstacles by means of 
distribution of poles of scattering matrices. 

Hereafter, we say that MLPC (abbreviation of the Modified Lax-Phillips 
Conjecture) is valid for obstacle G when there is a > 0 such that the scattering 
matrix £f(z) corresponding to G has an infinite number of poles in {z;Imz < a}. 

Even though it is more than 20 years since the original conjecture was given, 
the examples of obstacles for which the validity of MLPC is proved are few. As 
presented in Section 2, obstacles consisting of two convex bodies were known as 
these examples. 

4. Obstacles Consisting of Several Strictly Convex Bodies 

As mentioned in the previous section, MLPC is valid for G consisting of two 
strictly convex bodies. In this section we consider an extension of this result 
to obstacles consisting of several strictly convex bodies. Here we would like to 
mention about the geometrical difference between G consisting of two strictly 
convex bodies and G consisting of more than two bodies. For G consisting of two 
strictly convex bodies, there is only one primitive periodic rays in Q. On the other 
hand, when G is consisted of three convex bodies for example, there are infinitely 
many primitive periodic rays in Q in general. The infiniteness of the number of 
primitive periodic rays in Q makes the problem difficult to treat. In this case 
we have to control the complexity caused by the infiniteness of the number of 
primitive periodic rays in Q. It seems to us that the asymptotic behavior of 
periodic rays is closely related to the ergodic property of rays in Q. Actually 
we can control the complexity of periodic rays only for obstacles consisting of 
several small balls. 

Now we shall state our theorem. Let Pj, j = 1,2,... ,L (L > 3), be points in 
R3. For s > 0 we set 

GE = uf^Ojj, GjtE = {x; \x - Pj\ < s} . 
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Theorem 4.1. Assume that Pj, j = 1,2,... , L (L > 3), satisfy the condition 

any triple of Pfs does not lie on a straight line. (A) 

Then, there is a positive constant £o such that, for all 0 < e <; eo, MLPC is valid 
for Ge. 

The proof of Theorem 4.1 will be devided into several steps. 

4.2 General Theorem 

We present a theorem given in [8]. Let Gj, j = 1,2,... ,L(L > 3), be bounded 
open sets R 3 with smooth boundary Fj satisfying 

every Gj is strictly convex, (H.l) 

for every {j\,j2,73} G {1,2, . . . , L}3 such that ji £ > if l£l'9 

(convex hull of ß^and ß ^ ) CiGj3 = cj). 

We set 
G = uf=iGj, Fj^dGj. (4.1) 

Denote by y an oriented periodic ray in Q = R 3 — G, and we shall use the 
following notations: 

dy : the length of y, 
Ty : the primitive period of y, 
iy : the number of the reflecting points of y, 
Py : the linearized Poincaré map of y. 

We define a function FD(s) (s G (C) by 

where the summation is taken over all the oriented periodic rays in Q and \I — Py \ 
denotes the determinant of I — Py. 

Concerning the periodic rays in Q we have 

#{y; periodic ray in Q such that dy < r} < ea°r (4.3) 

and 
\I - Py\ > e2aidy, (4.4) 

where ao and a\ are positive constants depending on G. The estimates (4.3) and 
(4.4) imply that the right hand side of (4.2) converges absolutely in {s G <C; Res > 
flo — a\). Thus FD(s) is well defined in {s G C; Res > OO — fli}, and holomorphic 
in this domain. 

Now we have 
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Theorem 4.2. Let G be an obstacle given by (4.1) satisfying (H.l) and (H.2), If 
Fj)(s) cannot be prolonged analytically to an entire function, then MLPC is valid 
for G. 

The proof is based on the trace formula due to Bardos-Guillot-Ralston [1]. 
The essential part of the proof is given in [8, Section 2]. 

4.3 Zeta Functions of Symbolic Flows 

In order to consider singularities of FD(S) we shall use the fact that FD(S) has a 
close relationship to a zeta function of a symbolic flow. Denote by vo the abscissa 
of the convergence of the right hand side of (4.2), that is, 

Vo = inf{v; the right hand side of (4.2) converges absolutely for Res > v}. 

We shall show the following 

Proposition 4.3. Let £(s) be the zeta function defined by (4.6). Then, we have that 

FD(S) — (— -j- l°g C(s)) is holomorphic in Res > vo — a2 

where a2 is a positive constant depending on G. 

Proposition 4.3 implies that singularities in Res > vo — a2 of FD(S) coincide 
with those of £(s). Therefore, in order to apply Theorem 4.2 it suffices to show 
the existence of singularities of ((s) in Res > vo — a2. 

We introduce some notations of symbolic flows. Let A = (>4(I,7))/J=I,2,-,L 

be the L x L matrix defined by A(i,j) = l(i ^ /) and A(j,j) = 0. Following 
Parry-Pollicott [16] we set 

IA = {Ç = (• • • ,£-i,Éo,Éi,- ' •); Zj G {1,2,- • • ,L} and A(Cj,t;j+1) = 1 for all j]. 

Denote by G A the shift transformation defined by 

( C T A O J = £ ; + i • 

We consider relationships between I A and bounded broken rays in the outside 
of G. Let (• • • ,l-i, Zo, h9 • • • ) be the reflection order of a bounded broken ray in Q. 
Then, as was shown in [5], it is an element of HA- Conversely, for each element 
of f G li A there exists a unique broken ray with the reflection order £. Note that 
a periodic ray in Q corresponds to a periodic element f G EA> that is, G\^ = Ç 
for some n. 

We shall define real valued functions / and g on I A- We set 

f(t) = \XQX1\ 

where Xj denote the ;-th reflection point of the broken ray corresponding to £. 
Suppose that f G EA satisfies on

A^ = £ for some n. Set i = (£o5..- ,6i-i)> and let 
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cp™0 be the phase function defined in [5, Section 5]. Denote by Xi(Ç) and X2(Ç) thè 
eigenvalues of Py greater than 1, and by KI(£),1 = 1,2, the principal curvatures 
at X0 of the wave front of the phase function cp™0. Then we have 

• n 
hWWO = Y[(l +/(o-^)/q(c7^))(l +f(oJ

ÄZ)K2(°
i
Ät)). • (45) 

Define g(Ç) for an periodic element £ by 

' • g«) = -~log(l +/(£)Kltë))(l +/«)K2(0). 

By using the fact that the periodic elements are dense in I A, we can extend g(£) 
for all Ç G ZA by the continuity. 

Define £(s) by 

C(s) = exp [ £ ^ £ exp S„(-s/(£) + g«) + TH) ] (4.6) 

where we set 

n - l 

$,(-*/«) + g«) + 7TZ) = £ ( - s / t ò ) + g(<7^) + ff0 . 
fc=0 

It is easy to see that the right hand side of (4.6) converges for Res large. We call 
£(s) a zeta function of the symbolic flow (EA,CTA). Then, we have the following 
relation for Re s > vo : 

' FD(S)-(—log Us)) 
V dS J (4.7) 

= £ Ty(-1)H\I - Py\-1'2 - ( W 1 / 2 J exp(-sdr). 
y 

Note that the following estimate holds : 

| |/ - Py\~i/2 - (XiX2)-
i/2 \< C(X1X2)~

i/2 e~a^ (4.8) 

where a2 is a positive constant depending on 'G. Then, we have immediately 
Proposition 4.3 by substituting (4.8) in the right hand side of (4.7). 

4.4 Singular Perturbations of Symbolic Flows 

It is likewise difficult in general to show the existence of singularities of the zeta 
function £(s), because there is no s G (C such that —sf(Ç) + g(£) + ni is real 
for all £ G EA- Namely, this fact makes impossible to apply the Ruelle-Perron-
Frobenious theorem to get the existence of poles of £(s). 

When the bodies composing G are small in comparison with the distances 
between each other, Ç(s) can be approximated by a zeta function of a graph, which 
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is much easier to treat. To this end, we use theorems on singular perturbations 
of symbolic flows proved in [7, 9]. Denote by ÇË, f€, gE the (, / , g attached to 
GB respectively. If we set 

/o«) = IP&P«, i, MO = \ log Q cos opj 

where &{t) denotes the angle P^P^P^, it holds that 

| logß | | | | /Wo| | | f l , |||gc — (log e + go)|||ö -> 0 as £ ^ 0 

for every fixed 0 > 0 (For the definition of the norm ||| • \\\e, see [16]). By using 
the above relations we have the following expression of Çc(s): 

Ç„(s) = Ze(s - (log E + ni)/dmax). 

Here dmax = max^t \PjPk\ and ZC(S) is a function defined by 

Z,(S) = exp [ £ - 2 expSnre(Ç,s) , 

r.(£, S) = -S/.ß) + A.«) + m log £, 
fc(É) = l-/o(ê)AUx, 

where /ifi(e > 0) satisfies 

|Äc-Äo|||0 - ^ 0 as e - > 0 , 

Äo(0 is real if k ( f ) = 0 . 

Then Theorem 1 of [9] guarantees that ZB(s) has a pole near so G R when e is 
small.1 Thus, we have the existence of pole of Ça(s). Thus Theorem 4.1 is proved. 
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Interaction des Singularités Faibles 
Pour les Équations d'Ondes Semi-linéaires 

Gilles Lebeau 
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I. Introduction 

Soit D = df — Ax l'opérateur des ondes, où t G IR, x G JRJ, et Q un ouvert de 
R1+rf qui est un domaine de détermination pour œ = QC\{t = 0}. 

Soit u(t,x) une fonction réelle continue sur Ü appartenant localement à 
l'espace 

C°(Rf, JJs+1(lRrf)) n C^tH'fß*)) 

où Hs est l'espace de Sobolev usuel et vérifiant dans Q l'équation des ondes 
semi-linéaires 

{ Dw = F(t, x, u, Vu) Vw = (dtu, Vxu) 

I 1 du\ 
u\t=0

 = u ° e H& M Yt L=o = Wl G H^œ) 

où F est une fonction C00 de ses arguments et où s > d/2 (ou s > (d/2) — 1 si F 
ne dépend pas de Vw). 

On s'intéresse à déterminer les singularités de la solution u de (1) dans 
ß + = Q n {t > 0} en fonction de ses données de Cauchy UQ et u\ [ou encore 
en fonction de U\Q_, Q- = Q n {t < 0}]. Plus précisément si p G T*Q+ \ ß + , on 
cherche à déterminer pour quelles valeurs de o a-t-on 
(2) u e Hp (espace de Sobolev microlocal). 

Depuis les travaux de pionnier de J.-M. Bony [8-13] ce type de problème a 
été intensivement étudié, et son contenu s'est avéré très riche. 

Rappelons les résultats généraux sur les solutions du (1). 

(3) Théorème 1 (J.-M. Bony [13]). Soit u solution de (1) vérifiant u G Hj^(O), 
so = (1 + d)/2 + 1 + Q, Q > 0. Si p est non caractéristique, on a u e H*0+e+1. 
Si p est caractéristique et si la bicaractéristique de D passant par p est issue de 
q = (xo,£o) £ T*œ \CD, on a u e Hp pour o < so H- Q si les données vérifient 
uj e H«-i. 

En d'autres termes, il n'y a pas d'effets non linéaires juqu'à la régularité SO + Q. 
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(4) Théorème 2 (M. Beals [4], J.-Y. Chemin [17]). Sous les mêmes hypothèses, si 
y est une bicaractéristique de D, pi,P2 deux points de y, on a u G H^ ssi u G Hp2 

pour a < 3so — (1 + d) — 2 = so + 2Q. 

Les Théorèmes 1 et 2 ont leur analogue pour les équations totalement non 
linéaires d'ordre quelconque à linéarisé strictement hyperbolique (voir [8, 17]). 

Dans ce cadre, le Théorème 2 exprime que jusqu'à la régularité so + 2Q les 
effets non linéaires se réduisent à une opération de somme fibre à fibre sur le 
front d'onde. 

Pour les régularités plus élevées, il n'y a pas de théorème de nature purement 
géométrique sur le front d'onde. Dans [4], M. Beals a construit une solution 
u G Hs de Dw -|- ß w3 = 0 (ß G C00), dont les données de Cauchy sont C00 hors, de 
l'origine et w ^ H3s~d+2+e à l'intérieur du cône d'onde, avec d > 2. [Le cas de la 
dimension 1 d'espace a été élucidé par J. Rauch et M. Reed [36], et J.-Y. Chemin 
[16] qui donnent un résultat complet jusqu'à G = oo.] 

Il est toutefois possible d'obtenir des résultats de localisation du front d'onde 
de w jusqu'à G = oo en faisant des hypothèses de conormalité sur les données 
de Cauchy ou sur la solution u dans le passé ß_. Dans ce cadre, le théorème 
d'interaction de trois ondes progressives a été obtenu simultanément par J.-
M. Bony [11] et R. Melrose et N. Ritter [32] et [33], puis généralisé et amélioré 
par J.-Y. Chemin [18] et Sa-Baretto [41]. 

La difficulté principale de ce type de problème provient du fait que la géométrie 
qui porte les singularités de la solution est elle-même singulière. Les techniques 
utilisées font intervenir soit des microlocalisations d'ordre supérieur (J.-M. Bony) 
soit des espaces de distributions conormales définis par éclatement (R. Melrose). 

On se propose ici de décrire certains résultats qu'on peut obtenir en faisant 
des hypothèses d'analyticité sur la géométrie qui porte les singularités. Dans cette 
direction, on a: 

(5) Théorème 3 [26] (d = 3). Soit u G HS(Q), s > 2 vérifiant (1) où F(t,x,u) est 
polynomial en u et où les données UQ, U\ sont des distributions intégrales de Fourier 
C00 swr A, lagrangienne analytique réelle lisse de T*co. Pour tout réel G, il existe 
un ensemble sous-analytique, homogène isotrope La de T*Q tel que WFa(u) a La. 
En particulier, pour tout k, u est de classe Ck sur un ouvert dense de Q. 

La preuve du Théorème 3, qui utilise le théorème de désingularisation de 
Hironaka, ne fournit pas d'estimation sur Lü. Les résultats qui suivent fournissent 
pour les solutions de (1) une majoration de La et comme corollaire, la preuve 
d'une conjecture de J.-M. Bony sur le pincement d'une onde progressive en 
dimension 2 d'espace. (Démontré dans [27] pour F polinomiale en w.) 

(6) Théorème 4 (d = 2). Soit u solution de (1) avec UQ et u\ conormales classiques 
sur A = Tyco, où V est une courbe analytique lisse possédant un minimum non 
dégénéré de son rayon de courbure en A e IR2. Soit S la queue d'aronde issue de V 
et Q+ le demi-cône d'onde d'avenir issu du point de pincement B de S. Alors près 
de B, on a WF(u) c Ts*uQ+. 
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Qo = CD 

t = —to | f - to i petit t = 0 

Fig. 1. Pincement d'une onde progressive 
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t > 0 

Ce résultat a été amélioré par J.-M. Delort [23] qui prouve en particulier que 
w est conormale aux points lisses de T^uQ+. 

On n'abordera pas ici les travaux relatifs aux équations totalement non 
linéaires (voir Alinhac [1, 2, 3]), ni les problèmes aux limites ([6, 7, 21, 30, 43, 44, 
45, 46]). Signalons à cet égard que R. Melrose, Zworski, Sa-Baretto ont obtenu 
le théorème de diffraction non-linéaire d'une onde conormale par un obstacle 
convexe. 

IL Calcul Multilinéaire 

La première étape pour obtenir par exemple le Théorème 4 est de majorer le front 
d'onde de w par le front d'onde de distributions construites explicitement à partir 
des données wo,wi, et qui décrivent les phénomènes de propagation-interaction. 

On appelle diagramme D la donnée d'un ensemble fini / = {l?...,iV} muni 
d'une partition et d'une application / : J —> I U {0} telle que f(h) <= Ik_u 

f(I{) = {0}. On définit le degré de D par degZ) = card J, J = {i G / , f~l(i) = c/)}. 
Soit e+(z), (z = (t,x)) la solution élémentaire de D à support dans l'avenir. Pour 
(zo 5 z i 5 . . ,Z iv )eR ( 1 ^ ( i V ^ on pose: 

f [D] = TiitJ VA c+(z/(o - zi) UieJ M*/(0 - *Ù 
(8) < 

l W = n,e>?feK=o + v}(Xi)öti=Q). 

Ici fit vérifie |ft| < 1, v? G vect{wi,V'w0, \fi\ < 1} et vj G vecl{V/,wi,Vyw0,li8| < 
1, |y| < 2}, et on omet dans la notation la dépendance en ß\, vf. Avec les techniques 
de [27, 29] on prouve : 

(9) Théorème 5. Soit u vérifiant (1) avec s = (d/2) + Q, Q > 0. Powr M > 1 et 
G G [s + 1 + (M - ï)Q9S+ 1 + MQ[ on a: 

WF°(u)\t>0^ 

HO) i (zosCo) ; il existe un diagramme D avec deg(D) < M 

et (zo,zu...,zN,ÇoA..;0)eWF[[D]-{D}]}. 
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La base de la preuve du Théorème 5 consiste à utiliser une modification du 
paraproduit de Bony. L'idée est d'utiliser des décompositions d'une fonction f(y) 
de la forme 

(H) / = fu + fu ; fu = (2n)-n f é^J(n)dri 
J\n\<cQx& 

où le grand paramètre X est la fréquence du phénomène qu'on observe. Si 
/ G HsQR.n), s = (n/2) + Q, Q > 0, on a alors à la fois, avec G = s — v, v G]0,Q[ 

(12) \\d*fi\\s<CaXWô \\f2\\a<CX-vô. 

(Le paraproduit correspondrait à <5 = 1 et Co petit.) 
Pour une distribution f(y, X) dépendant d'un paramètre X > 1, telle que 

l<P/(*M)l ^ polynôme(rj,X) pour tout cp G Cg0, on définit le X-WF de / par 

(yo,*7o) ^ X-WF(f) o3cp localisant près de yo, 

^ ' V voisinage de rç0 tels que / \cpf(rj,X)\2drj G G(X~co). 

Si Cp = {2P-1 <\ri\< 2p+1}, et u G IR on pose 

(14) a2
p(f) = f \f(ri,2p)\2dri \f\* = ^ 2 ^ ^ ) . 

^CP p>0 

Alors si t > n/2 et a(x,X) vérifie pour un ô G]0,1[ \\d*xa\\t < CaX
w, on a 

X-WF(af) c X-WF(f) et pour v(x) G H», \av\p < ctelM^ pour tout p, et on a: 

(15) Lemme 1. Supposons donné pour tout X une décomposition g(y) = gi(y,/l) + 
g2(y,X) avec (y0,^o) £ ^-^F(gi) , \ft>0et \g2\ß < oo. Alors g G ffg^. 

D'où on déduit par exemple par la formule de Taylor en choisissant 5 = 1 — 0 
et G = (n/2) + 0 dans (12). 

(16) Proposition 1 [29]. Soit u G Hs(Kn), s = (n/2) + Q, Q > 0 et F G C00. Powr 
N>let pe [(d/2) + A/0, d/2 + (AT + l)g[ on a 

N 

WF^(F(u)) cz ( J WF^ui). 

III. Deuxième Microlocalisation 

La difficulté à pouvoir tirer de l'information à partir du Théorème 5 est que le 
produit [D] -{D} est caractéristique, c'est-à-dire le front d'onde du produit tensoriel 
[D] ®{D} rencontre le fibre conormal à la diagonale. C'est à ce stade qu'intervient 
la deuxième microlocalisation. C'est M. Kashiwara qui, dans les années 70, a l'idée 

file:///av/p
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d'introduire les 2-microfonctions associées à une sous-variété involutive du fibre 
cotangent. Dans ce cadre, le calcul symbolique des opérateurs 2-microdifférentiels 
a été développé par Y. Laurent [25]. Toujours dans la théorie analytique, mais en 
utilisant ses propres outils, plutôt que la théorie cohomologique de Kashiwara, les 
définitions de seconde microlocalisation et de microlocalisation d'ordre supérieur 
dans le cas lagrangien sont dues à J. Sjöstrand [42]. Un peut plus tard, et 
pour traiter le problème d'interaction non linéaire de trois ondes progressives, J-
M. Bony introduit la seconde microlocalisation C00 sur une variété lagrangienne. 
Ce type de théorie a par ailleurs eu d'autres extensions: théorie isotrope [28], 
microlocalisations C00 d'ordre supérieur associées à des métriques de J.-M. Bony 
et N. Lerner [15], deuxième microlocalisation simultanée de J.-M. Delort [22]. 
Le champ d'application de la seconde microlocalisation ne se limite d'ailleurs 
pas à la compréhension des phénomènes non-linéaires : cet outil s'est révélé très 
performant pour l'étude des phénomènes de diffraction d'ondes linéaires. 

On se limitera ici au cas de la deuxième microlocalisation analytique à 
croissance sur la lagrangienne T*Â, où A est une sous-variété de R", en théorie de 
J. Sjöstrand. 

Soit x = (x',x") G R", x' G R"', x" G R"", n' + n" = n et A la sous-variété 
d'équation x" = 0. On note (x, £) = (x',x",l;f,l;'f) les points du fibre cotangent 
T*R". Le fibre conormal à A, a, pour équation T*Â = [x" — 0, £' = 0}. On note 
(x!,i",x'\Ç'*) les points du fibre cotangent T*(T*A). Le fibre cotangent à A, T*A 
s'identifie à un sous-espace de T*(TA) par l'injection 

(17) TA 3 (x',x'*)^ (x',0;x'*,0) G T*(T*A). 

Soit / une distribution à support compact dans R". Pour w G C", X G [l,oo[, 
p e]0,po], po < 1 on pose 

(18) T2f(w,X,p)= f e-W2^-y?Tif(y,X)dy, p2 = p2/l-p2 

où Tlf(y,X) est défini pour y G (C", X G [l,oo[ par 

(19) Tlf(y, X) = f e-(V2)/*-A/2(/-*<)2-W-*")2
 / ( x ) dx. 

La transformation / \-* T1f est une transformation de Fourier-Bros-Iagolnitzer 
usuelle [42] qui envoie le complexifié (T^)c sur la section nulle. Les transformées 
T1 / et T2f vérifient des estimations uniformes d'espaces de Sjöstrand 

(20) 
|T7(y,A)|<cleA / 1e^ I m^; 

\T2f(W,l,ri\ < c t e ^ Ä " ' 2 ^ 2 ^ 1 1 ™ ' 2 -
Àfl1 

Pour a = (x', £";*'*,£"*) on pose 

(21) X(a) = (w',w") w' = x ' - i x ' \ w" = - £ " + *£" 
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(22) Définition 1. Soit a0 G T*(T*Â) et / G ̂ '(R"). On dit que a0 n'appartient 
pas au deuxième micro-support à croissance de / le long de TJ, et on note 
ao £ WF\*(f) ssi il existe W voisinage de wo = %(ao), A,B, C, po>0 tels que 

A 

Vß e]0,mì, v w e w, MX, Xß2 > l 
( } ^\T2f(w,X,n)[<AXBe^'2^l^-cK 

Alors WF\.{f) est un fermé homogène de T*(T2) et si P est un opérateur 
différentiel sur'R\ on a WF\.{Pf) c WF2.(f). 

(24) .Proposition 2 [27]. Soit f e <£"(R"), dont la transformée de Fourier vérifie 

(25) BM, Ö > 0 t.« y*(l + iri) ' !?«' ,*")!«" =£ cte(l + l«?'l)M-

La £raçe /U est ôien définie et vérifie 

(26) " SS(f\A)ŒWF2.(f)nT*A. 

Soit à présent w solution de (1), telle que ses données de Cauchy UQ et 
u\ soient conormales classiques sur A = Ty(Kd) où V est une hypersurface 
analytique réelle. Si D est un diagramme, on définit A\p\ et 4{D} comme les 
lagrangiennes complexes naturellement associées aux distributions [D] et {D}, à 
savoir 

(27) 
AW = {(ZO>ZU~->ZN,CQ>CU--',CN),CQ = 0,6 = 0 siigJ 

U = 0, fa, 6) e T^C* ou 6 = 0 si i G J} . 

[̂D] = {(20,2i, •. •,zN, Co, Ci, - • •, CN), tel qu'il existe 

3U...,3N avec fa - z/(0,St) G vlD, Co = ^ S ' ' 
(28) /(0=o 

Ci = -Et + ]T Sy si i =£ 0} 
/(/)='• 

où Au = T/c U {C = 0}, r c étant le complexifié du cône d'onde (T0* c T*c). 
SiA est la diagonale de, M x M, M = R(1+d)(iV+1)j on montre alors (en utilisant 

des résultats de finitude en géométrie sous-analytique réelle) : 

(29) Proposition 3 [27]. WF2.([D] ® {D}) c C{T^(A[D] ® A{D]). 

Ici CA(A) désigne le cône réel de A le long de A, sous ensemble du fibre 
normal à A, identifié au fibre conormal à A via la structure symplectique du fibre 
cotangent ambiant. 

On déduit alors des Propositions 2 et 3 le résultat suivant, qui permet de 
rendre effectif le Théorème 5. 
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(30) Proposition 4. WF([D]-{D}) c (A[D]+A{D]) n 71*R(1+«(JV+1> où + est 
Yopérateur de M. Kashiwara et P. Schapira [24] 

(x, C) £ S1+S2 ss/ /Z existe des suites (xj,,£„) £ 5/ 

telles que x!n -> x, C,î + ^ -> 6 I*,1, - x\\ |C„| -» 0. 

IV. Estimations Géométriques des Singularités 
d'Ondes Non Linéaires 

Soit u une onde semi-linéaire solution de (1) qui vérifie: 

les données de Cauchy wo, wi soni conormales classiques 

sur A = Ty Rrf où F est une hypersurface analytique réelle. 
(32) . „ , . _ , 

Le Théorème 5 et la Proposition 4 fournissent des estimations géométriques 
des singularités de w à partir de l'ensemble des points limites d'ensembles de suites 
tracées dans le fibre cotangent complexe T*(C^d\ comme suit. 

On note i des ensembles de suites fa„C„) G T*(E1+d, z = (t,x), n G N, qui 
vérifient: 

(33) la suite z„ converge vers un point de Q, 

(34) 
il existe une suite convergente rç„ e (C1+rf, |^„| = 1 et 

une suite X„ e C* telles que Ç„ = X„ r\„, 

(35) 

(36) 

la suite (z„, C«) est caractéristique, 

i.e. Ç„ = (T„, C«), ^ = C*. 

On suppose en outre que ê est stable par extraction de sous-suites, et vérifie: 

ê contient toute suite fa„ Cn) satisfaisant 

(33), (34), (35) et limC„ = 0, 

(37) 
si fauCn) £ S et z', vérifie limz,' = limz„ et 

lim|z„ -z'n\ |C„| = 0 alors (*)(4CII) G ê, 

si (z„,Cn) G (f et si z,' est telle que limz', G ß 

appartient au demi-cône d'onde de sommet limz„ 

(38) qui ne rencontre pas l'hyperplan t — 0 et si fa„Cn) 

et (z„, Cn) sont sur la même bicaractéristique complexe 

de D, alors (*)#„£,) G * . 

[(*) signifie: il existe une suite extraite telle que.] 
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Soit à présent 

(39) ê_ = {ft, ft, • • •, ftf, • • • } 

une suite (croissante) de tels ensembles de suites telles que 

(40) si (zn,CÌ) G ft, sont N suites (j = 1 JV) 

possédant le même point de base zn et si Cn est une suite telle que (zn,Çn) 
vérifie (33), (34), (35) et lim«;* + . . . + tf - C) = 0 alors (*)fa,C„) G ft avec 
fc = fci + . . . + fcjv-

On définit alors ZM(£j par: 

ZM(l) = { f a ü G T*(C1+rf|ß, ü existe N suites 

(41) fa,,Cj() e ft,, z = limzn, C = limtf + . . . + C«7 

et fci + . . . + kN < M } 

[le point (z, C) n'est pas caractéristique en général.] 
Enfin on note séy l'ensemble des suites (zn, C«) vérifiant (33), (34) et (35), 

zn = (0,xn), C« = faï,Cn), fai, En) G T*c où Ve est un complexifié de V. 

Théorème 6. Soit w une onde semi-linéaire solution de (1) avec s = (d/2) + Q, 
Q > 0, vérifiant (32). Pot/r M > 1 et G G [S + 1 + ( M - 1)£,S + 1 + Mg[ on a 
WFa(u)\t>0 a ZM(l) H T*JQ+ dès ^ e £ = (ft, ft,... ) uén/ze ja/F c ft. 

On obtient alors le Théorème 4 comme conséquence du Théorème 6 dans 
[27] en construisant explicitement un £ de la forme (ft, ft, ft,... ) tel que Z($) n 
T*ß+ = T;U Q + près de B. 

Le Théorème 6 a été amélioré depuis par J.-M. Delort [22], [23]. 
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Static and Moving Defects in Liquid Crystals 

Fang Hua Lin 
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1. Introduction 

There have been many recent activities in the analysis of defects (or singularities) 
of solutions of partial differential equations. In these solutions defects often 
reveal crucial facets of certain nonlinear problems which they model. Here I shall 
survey some recent studies on static and moving defects in liquid crystals. One 
may find references [1], [2] and [3] useful for the discussion below. 

Liquid crystals are optically anisotropic, even when they are at rest. Scien
tifically, defects of the optical director in liquid crystals have long been of interest. 
One can resolve, in experiment, individual defects and details of configurations 
near them, with relatively simple optical (polarizing) microscopes. Often, such 
configurations are not static but, in many cases, they change very slowly with 
time. Thus it is useful to first consider defects in static liquid crystals. 

In the classical Oseen-Frank model, energy minimizing static configurations 
of liquid crystals can be described by unit vector fields on a 3-dimensional 
domain. They are closely related to the theory of harmonic maps into the sphere. 
The latter also provides us with precise information concerning those isolated 
point defects such as bounds on the number of point defects and behavior of 
configurations near each such isolated point. 

It was observed, at least experimentally [4], that line and surface defects 
do occur in liquid crystals. Following the general order-parameter theory of 
Ginzburg-Landau, J. Ericksen posed a new mathematical model to tackle these 
phenomena. It turns out the study of Ericksen's model is related to the study of 
harmonic maps to singular spaces (in this case the singular spaces are circular 
cones in R4 or Minkowski space IR3,1). Problems of harmonic maps into singular 
spaces arise also in the study of super rigidity and other geometrical or topological 
problems for which we refer to a recent work of M. Gromov and R. Schoen [5]. 

In studying line and surface defects, we introduced a new mathematical device 
which was based on H. Federer's dimension reduction principle (see [6] and [3]). 
It is a useful tool also to study level sets of solutions to elliptic and parabolic 
equations [7]. Defect sets can be characterized as preimages of the vertex of 
the circular cone under these maps, or equivalently, the vanishing sets of the 
orientational order of liquid crystals. We can use this device to estimate the 
Hausdorff dimension, as well as the Hausdorff measure of defects of static and 
moving liquid crystals. Moreover, local behavior of liquid crystal configurations 
near these defects may also be described rather precisely. 

Proceedings of the International Congress 
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2. Oseen-Frank Model and Point Defects 

2.1 In the Oseen-Frank model, the energy minimizing static configurations of 
liquid crystals can be described by maps n : Q ç IR3 -> S2 which minimize the 
energy functional: 

W(n,Vn)dx, (2.1) 
a 

where 

W(n, Vn) = fei|div n\2 + k2(q + n • curl n)2 + fc3|n A curl n\2 

+ (/c2 + fe4)[tr(Vn)2-(divn)2], 
(2.2) 

the fci's and q are material constants. The defect set is defined to be the disconti
nuity set of the map n. 

It was shown by Hardt, Kinderlehrer and myself [8] that for any bounded 
lipschitz domain Q in IR3 and any no G H1/2(dQ,S2), there is a minimizer n of (2.1) 
with n = nQ on dQ provided that ki,k2,ki > 0. Moreover, n satisfies the following: 

(i) for any compact K c ß , 

b |Vn\2 dx < c(K, Q, ku k2, k3) ; (2.3) 

(ii) Vn e Lfoc(Q)for some q>2; 
(iii) the defect set lofn has Hausdorff dimension strictly less than one, and n 

is analytic in Q ~ I. (See [9].) 
In the special case k\ = k2 = k3 = 1 and k^ = q = 0, 

W(n,Vn) = \Vn\2 (2.4) 

which is the integrand for harmonic maps from Q into S2. Schoen and Uhlenbeck 
[10] have shown, in this case, that the defect set of n consists of isolated points. 
Moreover, when du and no : dQ -> S2 are smooth, n is also smooth near dQ. 
This is unknown for minimizers of (2.1). 

2.2 Much has been learned recently about defects of an energy minimizing 
harmonic map from a 3-dimensional domain to the sphere S2. First of all, at 
each such isolated defect, there is a unique tangent map, which follows from a 
general theorem of L. Simon [11]. Second, these energy minimizing tangent maps 
are classified by Brezis-Coron and Lieb [12]. They are of the form ±R o ^ for 

some rotation R of R3 . Moreover, by a theorem of L. Simon [13] and Gulliver-
White [14], there are two positive constants C and a (independent of maps) such 
that if n is energy minimizing from B 3 to S2 and 0 is a defect of n, then 

W X ) - * ( R ) 
< c|x|a (2.5) 

for some <£(•) = ±R(-). 
An interesting application of the classification of energy minimizing tangent 

maps is the following a priori estimate on the number of defect points which is 
shown by Almgren-Lieb [15] and, independently, by Hardt and myself [16] : 
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For each compact K a B3 there is a universal constant C(K) such that 

# of defects of n in K < C(K) 
. 9 (2-6) 

for any energy minimizing map n from B to S . 

Related to (2.6) is the following stability theorem [16]: 

If g : S2 —• S2 is such that \\g — W||ci(s2) ^ £o (for some eo > 0), then any 
energy minimizing map n : B3 —• § 2 with n = g on S2 has a unique defect point a 
so that 

»"W - R" ° TTT^T Hc»(B3) < CeJ
/4 (2.7) 

\x a\ 
and 

\a\<Csl/2, \\Ra-id\\<Csl/A (2.8) 

for some rotation Ra ofJR3 and for some positive constants C and oc. 

The classification of energy minimizing tangent maps in higher dimensions or 
target spheres with nonstandard metrics remains as a difficult open problem. 

When the domain is four-dimensional and the target is S2, one deduces from 
a recent theorem of L. Simon [17] and Hardt and myself [18] the following: 

Theorem A. Let u : BA —> S2 he an energy minimizing map, then the defect set ofu 
is locally a finite union of a finite set and a finite family of Cl,(l curves with finitely 
many crossings. Moreover, the 1-dimensoinal Hausdorff measure of the defect set 
is locally finite. 

2.3 Continuous non energy minimizing harmonic maps are of interest: from 
both analysis and differential geometry aspects. For example a classical problem 
is to represent a homotopy class of maps between compact Riemannian manifolds 
by harmonic maps (see [19], [20]). Some partial results related to the theory of 
liquid crystals have been found by Bethuel, Brezis and Coron [21] and Giaquinta, 
Monica and Soucèk [22]. 

It should be noted also that solutions to harmonic map systems with the 
Dirichlet boundary condition are not unique (see [21], [23] and [24]), and the 
defect sets of these maps can be much more complicated [24]. 

3. Line and Surface Defects 

3.1 To explain line and surface defects in liquid crystals, one uses Ericksen's 
model. In this new models, the energy minimizing configuration of liquid crystals 
is described by a pair, (s,n), where 5 : Q —• [—1/2,1] is a real function which 
denotes the variable degree of orientation and n : Q —• S2 dentoes the axis 
of optical director. Thus (s,n) minimizes a bulk-energy functional which, for 
particular choices of material constants involved, reduces to 

/ [/c|Vs|2 + s2|Vn|2 + V(s)]dx (3.1) 
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with k > 0, where the potential function xp is a positive (C2-function defined on 
(-1/2,1) (cf. [25] and [3]). 

.Since s may be zero somewhere in Q, (3.1) is a rather degenerate variational 
integral. However, the change of variables u== sn reduces (3.1) to 

/ 
JQ 

[(k - l)|Vsr + |Vw|2 + ip(s)] dx . (3.2) 
Q 

The variational integral (3.2) is, essentially, the energy of the map (s,u) : Q -> 
(C/c where C^ is the circular cone {(t,u) e R x R 3 -\t\ = Vk~ l\u\}, for k > 1, in 
the Euclidian space R4 , or, the circular cone {(t,u) x R x R 3 : \t\ = i/l — k\u\}, 
for k < 1, in the Minkowski space R3'1. Now the direct method in the calculus 
of variations implies the existence of a minimizer of (3.2) under the Dirichlet 
boundary condition that CM)|3ß £ Hi/2(dQ,<Ek)- Moreover, when 0 < k < 1, and 
xp = 0, the minimizer of (3.2) is unique (see [25]). 

Regarding the regularity of the map (s, u), one has the following result, see 
[25]: 

Theorem B. Let Q be a bounded C1,a domain in IR3 and let (SO,UQ) 6 Ci,a(dQ,lR4), 
with \SQ\ = \UQ\ on ÔQ. Suppose (s,u) is a minimizer of (3.2) which satisfies the 
constraint \s\ = \u\ a.e, in Q. Then (s,u) e C&(Q). Moreover, when 0 < k < 1, both 
s and u are lipschitz continuous in Q. 

It should be pointed out that (s, u) is analytic (if \p is) or smooth (if xp is) on 
the open set {x G Q : s(x) > 0}. This follows from standard elliptic regularity 
theory. 

We also note that the existence and partial regularity of minimizers of (3.2) 
were also established by L. Ambrosio in [26] and [27]. 

3.2 Having seen the regularity of the minimizers of (3.2), one is then interested 
in the defect sets of the optical director n. It is shown in [3] and [25] that 
defect sets are precisely the nodal set of the orientational order s, i.e., the set 
{x e Q : s(x) = 0}. 

Theorem C. Let (s,u) be a minimizer of (3.2). Then the set {s = 0} is either all of 
Q or is of Hausdorff dimension < 2. If, in addition, fc > 1 and s ^ 0, then the set 
{s = 0} has the Hausdorff dimension < 1. 

One notices that, for any 0 < fc < 1, examples of minimizers (s,u) of (3.2) 
with s > 0 and with {s = 0} being 2-dimensional were explicitly constructed in 
[28]. 

The proof of Theorem C is based on the dimension reduction principle of 
H. Fédérer [6] and the monotonicity of the function N(r) defined below (see also 
[3], [7] and [25.]). 

For a e Q, r e (0,da), da = dist{a,dQ), Br(a) = {x 6 Q : \x—a\ < r}, we define 

D(r) = [ [{k- l)|Vs|2 + |V«|2 + s • rp'(s)] dx , 
JBM 

H(r)= f (fc-l)|5|2 + |M|2 

JdBr{a) 

(3.3) 
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and n , v 

W-'-$ (3-4) 

provided that H(r) ^ 0. Then one has the following 

Lemma D. There are two positive constants ro and C depending only on xp such 
that the function 

N(r) eCr (3.5) 

is a monotone increasing function ofrE (0,ra), ra = min[da,ro]. 

The monotonicity of N(r) is also a useful fact in the work [5]. In fact, suppose 
u is a harmonic map from R" to JV with curvature of JV ̂  0. Then the function 

r L M |Vw|2 dx 
N(r) = ìMa»' ' (3.6) 

}dBMàl2(0,u) 

is a monotone increasing function of r. Where d(0,w) is the intrinsic distance 
from a fixed point 0 to u in JV. The proof of (3.6) is based on the monotonicity 
formula for energy and the fact that 

,dd2(0,u)>2|Vw|2 (3.7) 

for any harmonic maps u : R" —• JV. 
As a consequence of (3.6) u is locally uniformly lipschitz continuous (inde

pendent on JV). 
Finally we also note that, by combining Lemma D and [18], one can estimate 

2-dimensional (or 1-dimensional in some special cases) Hausdorff measure of 
{s = 0} and describe the structure of {s = 0}. 

4. Moving Defects 

4.1 Equations adequate for the treatment of both static and dynamic phenom
ena in liquid crystals, called the Leslie-Ericksen theory, were developed during the 
1960's [1]. In [29], Ericksen derived a full set of dynamic equations for nematic 
liquid crystals with variable degree of orientation. Since motions of liquid crystals 
are generally slow, the motion of the optical directors is our main concern. After 
neglecting the small velocity of the fluid, the motion of the optical director can 
be described as evolution of harmonic maps from Q to (Ĉ  (a circular cone in R 4 

or R3»1). More precisely, we let v = (s,u) : Q —• (Cfc and let 

t(v) = 0 in G (4.1) 

be the equations for harmonic maps from Q to (D .̂ Then the evolution of the 
optical director satisfies 

—v = z(v) , for (x,t) eQx (0,oo) (4.2) 
ot 

with initial Cauchy data 
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v(x,0) = Vo(x) , x€Q (4.3) 

and Dirichlet boundary condition 

v(xyt) = vo(x) for x G dQ . (4.4) 

The problem (4.2), (4.3), (4.4) was first studied by Eells-Sampson [20] and 
more recently by Struwe and Chen [30] arid many others. The main difference 
between our problem and those studied earlier is that the target manifold contains 
singularities. Nevertheless one has the following 

Theorem E. Ifvo is uniformly lipschitz continuous on Q and vo\dQ e C1,a(dQ), then 
(4.2), (4.3), (4.4) has a global weak solution v e Lco((0,oo), H1^)). Moreover, for 
k < 1, v is unique and satisfies 

sup \Vxv\(; t)<csup \Vxv0(x)\ , (4.5) 
Q Q 

and for fc > 1, 
IMIc/»(S)('>*) ^ CSUP l v ^oMI . (4.6) 

Here c and ß are constants depending only on Q and fc. 

The proof of (4.5) is based on the observation that (C/c in R3'1 is a negatively 
curved Riemannian submanifold. Even when fc > 1, s2 is a strictly convex function 
on (Cfc. This geometrical fact can be used to show (4.6). 

4.2 Since the moving defects are precisely the set {(x, t) : s(x, t) = 0} in Q x R + , 
the problem reduces to studying the nodal set of a solution to certain parabolic 
systems. In general it is still an interesting subject for future studies. However, 
there are several recent works by C. Fefferman and H. Donnelly [31] and by Hardt 
and Simon [32] concerning nodal sets of solutions to elliptic equations. In [7] 
we studied the corresponding question for a class of heat equations. Interestingly 
enough, the function N(r) introduced in (3.4) can also be used to control not 
only the local behavior of solutions near nodal sets but also global Hausdorff 
measure of nodal sets. Generalizing those arguments in [7] to the problem (4.2) 
will be an interesting problem for future researchers* 
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On Kinetic Equations 

Pierre-Louis Lions 

CEREMADE, Université Paris-Dauphine, Place de Lattre de Tassigny 
F-75775 Paris Cedex 16, France 

I. Introduction 

We will review some recent progress on various kinetic equations which include 
the well-known Boltzmann equation and also Vlasov models like Vlasov-Poisson 
or Vlasov Maxwell systems. Before describing more precisely these mathematical 
results, we would like to recall first a few of the basic physical notions underlying 
these models. 

First of all, kinetic models are a branch of Statistical Physics. And they arise 
in a large number of different physical contexts like, for instance, in the study 
of the dynamics of electrons or ions in plasmas, in the study of the dynamics 
of nucléons in Nuclear Physics, in the modelling of semi-conductors, in the 
modelling of the reentry of various aircrafts in a rarefied atmosphere, in the 
study of the formation and stability of planetary rings or even in the study of the 
formation of galaxies. It is worth noting that this list, by no means exhaustive, 
includes different physical interactions on very different scales. Of course, each 
of these applications reveals specific mathematical questions that we will not 
address here. Instead, we will concentrate here on the main mathematical issues 
raised by all these applications. 

In spite of these extremely different physical backgrounds, the main principle 
underlying these models can be summarized as follows. Let us suppose we want 
to study the evolution of a large number of particles that we take to be identical 
in order to simplify the presentation. The reader should be aware that the word 
particle above is used here in a vague sense and might be rather misleading since 
in the applications listed above the "particles" may be electrons, ions, nucléons, 
molecules, rocks or stars ! Therefore, in order to be more precise, we consider 
these objects as classical point-particles. 

Next, we observe that when we deal with a large number of particles, it is 
impossible to study the evolution of each particle and we wish to look instead for 
a statistical description of this evolution. In other words, the unknowns which 
would have been otherwise the positions and velocities of each particle "reduce" 
to a function / of (x, v, t), (x, v e RN , t > 0) which is the density of particles 

* Dedicated to the memory of R. J. DiPerna. 
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at position x, time t and with velocity v. Of course, / is nonnegative. Next, we 
simply indicate that many kinetic models, but not all of them, take the following 
form 

~ + ü ' V X / + J F ' V „ / = C i n R N x R * x ( 0 , o o ) . (1) 
dt 

Here and everywhere below, V x / and V„/ denote respectively the gradient of / 
with respect to x and v. Variants involve different velocities than v or convolution 
terms instead ofF-Vvf ... In (1), F stands for a, force acting on the particles while 
C is a term which takes into account the possible collisions between particles. 

Let us now give a few specific examples : we begin with collision-less models 
that is we set C = 0. These models are called Vlasov models. In the case of 
charged particles thus obeying the electromagnetic interaction, one uses two 
models namely the Vlasov-Maxwell system and the Vlasov-Poisson system. The 
Vlasov-Maxwell system consists of (1) (with C = 0 and JV = 3) and of 

F(x,v,t) = E(x,t)+vxB(x,t) in R^ x R^ x (0,oo) (2) 

dE 1 t „ . dB 1 , ^ „ 
— - - curl B = -j, — + - curl E = 0, 
dt c dt c (3) 

div 5 = 0, div E = Q inR^ x (0,oo) 

jk= / fvkdv, Q= fdv. (4) 

Observe that (2) means that F is the Lorentz force associated to the electro
magnetic field (E,B) which of course satisfies the Maxwell equations (3). Finally, 
(4) means that the electromagnetic field is created by the particles. And this 
field creates a force (F) which acts on the particles - this is why one speaks of 
self-consistent forces for Vlasov models. 

The parameter c is the speed of light and one sees that, in the limit c —> oo, 
(2)-(4) becomes 

F(x, t) = E(x, t) = -Vx<P(x, t) in R* x (0, oo) (5) 

-A0 = Q in R*x(0,oo) (6) 

Q(x,t)= [ fdv. (1) 

This system coupled with (1) (with C = 0, JV = 3) is called the Vlasov-Poisson 
system. 

It is important for the analysis we will present to observe two facts. First, in 
Vlasov models or more specifically in collisionless models (C = 0), the equation 
(1) simply means that / is constant along particle paths. Of course, these paths are 
given by Newton's law (x = v, v = F). Next, a general feature of Vlasov models 



On Kinetic Equations 1175 

illustrated by the two examples above is the particular dependence of the force 
upon / : indeed, F depends in fact only on macroscopic quantities that is averages 
of / in v like 

/ f(x,v,t)xp(v)dv 

for some given xp. 
We now give one example of collision models or in other words one example 

for the term C. This is a famous nonlinear term introduced by J.C. Maxwell [35] 
and L. Boltzmann [6] which is given by 

C = Q(f,f) = f dv, f dœ B(v-v„œ) {ff,-ff,} (8) 
JR3 JS2 

where /* = f(x, v„ t), f = f(x, vf, t), f = f(x, vf
t, t) and we have 

v1 = v — (v — v*, œ)œ, vi = v* + (v — v*, œ)œ . (9) 

The collision operator C determines the rate at 'which the density / is modified 
by collisions taking place at (x, t), between two particles with velocities v and v+ -
in other words, one makes a statistical balance of all possible collisions affecting 
the density f(x, v, t). Now, if we assume these collisions to be elastic, the velocities 
vf, vi after the collision satisfy 

vf + v[ = v + v*, \v'\2 + K|2 = \v\2 + \v,\2. (10) 

All possible solutions of (10) are given by (9), where œ is a parameter allowing 
a simple description of the set of solutions of (10). 

Finally, B is always assumed to be a nonnegative function of \v — v*\ and 
(v — v*, œ) only. It depends on the interactions between the particles and the 
simplest (and most famous) example is the so-called hard-spheres case where 
B(z,co) = \(z,co)\. 

Let us mention that the Boltzmann equation is the equation (1) with F = 0 
and C given as above. 

Other models for the collision term C exist: some are modifications of 
the Boltzmann model like the so-called Boltzmann-Enskog or Boltzmann-Dirac 
models while others are, in some vague sense, simplifications like the Fokker-
Planck or the Landau models. We refer to G Cercignani [8], S. Chapman and 
T.G. Cowling [10], C. Truesdell and R.G. Muncaster [40] for more details and 
also for derivations of the Boltzmann model from first principles. 

After this brief description of three famous examples of kinetic models, we 
now turn to a quick presentation of the numerous mathematical problems raised 
by these models. Let us mention immediately that we shall concentrate on the 
main mathematical issues forgetting many specific questions of interest for one 
or several of the physical applications listed above. 

The first category of problems is the study of the Cauchy problems for these 
models, prescribing (f,E,B) (or / depending on the model) at time t = 0 with the 
usual questions regarding existence, uniqueness, regularity, approximation and 
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numerical analysis, special solutions, steady states, stability, long-time behavior, 
boundary conditions ... 

But there is much more at hand. In fact, it seems fair to say that Boltzmann's 
equation is not only famous because of its fascinating mathematical structure but 
also because of its formal relations with other famous mathematical physics mod
els like hydrodynamical models (compressible Euler equations i.e. gaz dynamics 
systems, incompressible Navier-Stokes or Stokes or Euler equations ,., ). It is 
worth recalling Hilbert's goals to solve Boltzmann equation and to recover from it 
the Fluid Dynamics equations. Therefore, an important category of mathematical 
problems concerns the systematic study of the numerous links between kinetic 
models and other models in Physics. We just mentioned hydrodynamical limits 
and the link with Fluid Dynamics but one has to add to that theme {he derivation 
of MHD equations, combustion models, reaction-diffusion systems and in fact 
hyperbolic systems of conservation laws. Indeed, arbitrary (symmetric) systems 
of conservation laws can be formally approximated by ad hoc kinetic models. 

Other limits involve the derivation of kinetic models from "large number of 
particles limits" and the study of statistical solutions or hierarchies of equations 
and the propagation of chaos. Another example of a connection with another 
physical regime is the derivation of kinetic models from Quantum models via 
Wigner transforms and semi-classical limits ... 

We will concentrate here on the first category of problems namely the analysis 
of the Cauchy problem for kinetic models even if it is quite clear that progress 
on this theme should and has already yielded progress on the second theme as 
well. And even if we restrict our attention to the basic existence and uniqueness 
questions, three types of results have been obtained: 

- smooth and unique solutions in thé small that is locally in time or globally 
with smallness restrictions: for the Boltzmann equation alone, many important 
works have been given in that direction and we can quote only a few of them 

' (complete lists of references can be found in the references given in the 
bibliography here) like H. Grad [27], C. Cercignani [8], R. Illner and M. 
Shinbrot [30], T. Nishida and K. Imai [36], S. Ukaï [41], K. Hamdache [28] 

- existence and uniqueness of special solutions : a famous example is given by 
the study of space-homogeneous solutions, i.e. x-independent solutions of 
Boltzmann equation, study initiated by the work of T. Carleman [7] ... 

- global existence of weak solutions. 

This last category of results has been obtained in a series of works for all 
kinetic models by RJ . DiPerna and the author [14-18] (see also the survey [19]). 
And we are going to give one sample of these results by specializing our attention 
to the Vlasov-Poisson-Boltzmann model in the next section, Finally, in the last 
section, we will indicate what are the main tools of independent interest that are 
being used in the proofs of these results. 
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II, Global Existence of Weak Solutions 

As we said before, we concentrate on the Vlasov-Poisson-Boltzmann (VPB in 
short) system: 

% + V'Vxf-Wx<P-Vvf = Q(f,f) in R 3 x R ^ x ( 0 , o o ) (11) 
dt 

-A0 = Q in R*x(0,oo) (12) 

and in order to make 0 well-defined by (12) we prescribe 0 = 0 at infinity in a 
weak sense (like for instance 0 e L°°(0,oo;L6(R^)). And we recall 

ß(/,/) = ß+(f,/)-ß-(/,/), 
Q~(f,f)=fL(f), L(f)=f*A 

V 

Q+(f,f)= I dv. f dcoB(v-v.,co)f'f:, 

Q~if,f)= [ dv. f dcoB(v-v.,a>)ff., 

(13) 

(14) 

v' = v — (v — v*, m)co, vi = v + (v — v*, m)co. (16) 

Finally, X is a nonnegative parameter: when X = 0, the (VPB) system reduces to 
the standard Boltzmann equation, while when X > 0 and B = 0 the (VPB) system 
becomes the Vlasov-Poisson system. 

We will make the following assumptions 

B(z,m) is a function of z and (z,co) only, B ;> 0 (17) 

/ / Bdzdœ <oo , -—J-TT / / Bdvdœ —• 0, 
J\z\£R JS2 1 + W J\v-z\<.R JS2 (18) 

as \z\ -> oo, (for all R < co). 

These assumptions are clearly satisfied in the case of the hard-spheres model 
B(v,œ) = |(u,a))|. Let us also mention that (18) corresponds to the classical 
angular cut-off assumption. 

Let us now recall the known a priori estimates (when B ^ 0) which have all 
a physical origin (conserved quantities or decay of entropy) : formally, a solution 
of (11)—(12) satisfies 

fxpdvdx is independent of ^ 0 , 
R3xR3 (19) 

where xp = 1, ua (a = 1,2,3), 
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f \ v \ 2 dx dv + X / |Vx0\2 dx is independent of t > Ó, (20) 
J R 3 

^ / / f\x-vt\2 = -Xt [ \Vx0\2dx. ' -(21) 
« t J j R 3 x R 3 JR3 

Finally, the decay of (the mathematical) entropy which is a crucial part of the 
famous Jï-théorem is expressed by the following formal identity: 

— / / f logf dxdu+ - / dx 11 dvdv* 
dt 77R 3 XR 3 4 J ^ 77R 3 XR 3 

i Biff. - . / / • ) log f£dco = 0. 
s2 JJ* 

(22) 

Notice that the second tennis clearly nonnegative. 
From this, one deduces easily that, if the initial condition / ° satisfies for some 

AG (0,oo) 

[f f(l + \x\2 + \v\2 + \logf°\)dxdv + X f \Vx0°\2dx<R, 
J 7 R 3 X R 3 JR 3 

then, formally at least, a solution of (11)—(12) satisfies for all t > 0 

II f(l + M2) dxdv + X I \VX0\2 dx<R 
J J R 3 X R 3 JR 3 

(23) 

JJjR R3xR3 
/(W2 + iog|/|)<i<:(i + f)2 

I ds I dx 11 dvdv* 
J0 JJR? JjM?xM? 

(24) 

ff* I B(ff -ff*) log J-± dco < K(l + t)2 

Js2 J J* 
for some positive constant K which depends only on R. In fact, if X = 0 (the case 
of the pure Boltzmann equation), the factor (1 +1) 2 can be omitted in the last 
inequality. In the collisionless case (Vlasov-Poisson system) i.e. when B = 0, the 
Liouville conservation is translated by the following a priori estimate (formally) 

J JM R3xR3 
ß(f) dx dv is independent of t (25) 

whenever ß G C([0,oo); [0,oo)) and ß(f°) G L 1 ^ x R-J). 
However, all these bounds are not enough to allow to define Q(f,f) in a 

meaningful way. It only allows to define Qr(f,f) as an a.e. finite function on 
(0, oo) x R^ x Ry (L1/2 in fact). In particular, it is not clear how one should define 
a solution of (11)-(12). 

To circumvent this difficulty, we introduced in [14, 15] the notion of renor-
malized solutions. The first step is to prove that an additionnai bound can be 
obtained: 
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/ dt I dx I {Q+(fJ) + QT(fJ)} — dv<C for all M > 0 (26) 
Jo JR 3 J\V\<M L ~T J 

where C is a positive constant depending only on M and on R (in (23)). 
In particular, ß ± ( f , / ) ( l + / ) _ 1 makes sense in L/oc. We may now give the 

Definition. / G C([0,oo);L1(R^ xRj) ) fe a renormalized solution of (11)-(12) if it 
satisfies (24), (26), (12) in the sense of distributions, and 

jtßif) - divx(vß(f)) - X div,(*jB(f)) = Q(f,f)ß'(f) in & (27) 

for all ß G C([0,oo);R) such that ß'(t)(l +1) is bounded on [0,oo). 

Remarks. 1) (27) is nothing else than writing formally the chain rule using (11). 
2) It is enough to consider a single function ß provided it is one to one, like 

for instance ß(t) = log(l + t). 
3) One can show (see [15]) that the notion of renormalized solution for 

Boltzmann equations (X = 0) is stronger than the more standard notion of mild 
solution (an integrated form of the equation along almost all particle paths). 

4) It is worth recalling that in the collision-less case (B = 0), the physical 
law behind the equation is that / should be constant along particle paths, a fact 
which is clearly equivalent to the fact that ß(f) is constant along particle paths 
(for all ß or for a single 1-1 ß ... ) . This is precisely what we request in the above 
definition. 

5) In the collision-less case (B = 0) i.e. in the case of the Vlasov-Poisson 
system, renormalized solutions are stronger than the classical weak solutions as 
built by Arsenev [4]. In particular (see [18]) they satisfy the Liouville conservation 
(25) and are continuous in time (with values in L£„ ... ). 

Our main existence result is the 

Theorem 1. Let (17)—(18) hold and let f° satisfy (23), then there exists a renormal
ized solution f of (11)-(12) in C([0,oo) ; L 1 ^ x R*)) which satisfies f\t==0 = f° 
on IR-l x R^ and 

— / / f logfdxdv+- / dx I i dvdv* 
"t J jRjxR3 4 ,/R3 JjR3XR3 

r B(f'f-ff*) log f-^dœ (28) 
S2 JJ* 

< 

•L 

Il f log fdxdv. 
J 7 R 3 X R 3 

Remarks. 1) Uniqueness and regularity of solutions are major open problems. 
Also, the equality in (28) is another important open question. In some vague 
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sense, this result is analogous to the existing results (essentially due to J. Leray 
[31]) on three-dimensional incompressible Navier-Stokes equations. 

2) Theorem 1 and its proof has been applied, adapted or extended to various 
other kinetic equations and related questions: K. Hamdache [29] (boundary 
conditions); B. Perthame [37] (BGK model); J. Polewczak [39], L. Arkeryd and 
C. Cercignani [3] (Boltzmann-Enskog model) ; M.J. Esteban and B. Perthame [23] 
(inelastic collisions); J.M. Dolbeault [13] (Boltzmann-Dirac model); L. Arkeryd 
[2], L. Desvillettes [11], C. Cercignani [9] (long time behavior); L. Desvillettes 
[12] (convergence of splitting methods); C. Bardos, F. Golse and D. Levermore 
[5] (convergence to some incompressible Fluid Dynamics models when the mean 
free path goes to 0). 

The main ingredient in the proof of Theorem 1 is the following "stability 
under weak convergence" result taken from [15, 16]. 

Theorem 2. Let f% satisfy (23) and let (17)-(18) hold. Let fn G C ^ o o ^ L ^ x 
Ry)) be a renormalized solution o/(ll)-(12) satisfying fn\t=o = fn- Without loss of 
generality, we may assume that f%fn converge weakly in L1 to f°,f respectively. 
Then, we have 

1) | R 3 fnW(v) dv A JR3 fxp(v) dv in Lx((0, T) x R^)) for all T G (0,oo) and for 

all xp G L°° (R^) . 

2) JR3 Qr(Jnifn)ty(v)dv -> JR3 Qr(f,f)xp(v)dv locally in measure on (0,oo) x 

M-lfor all xp G L°°(Ry) with compact support. 

3) liminft-,ooffWi3x]R3dvdv*Js2Bdœ(fnfn, - / „ /„*) log g ^ > J/R3><R3 dvdv* 

fs2Bdco(f'f - / / , ) log g f , a.e. t,x. 
4) / G C([0,oo);L1(R^ x R^)) is a renormalized solution of (11)-(12) which 

satisfies / U = / ° o n ^ x R j . 

As we said in the above remarks, uniqueness and regularity of solutions are 
not known in general. However, in the special case of the Vlasov-Poisson system 
that is when B == 0, these questions are solved in [33] and follow from the 
following new a priori estimates. 

Theorem 3. Let B = 0 (Vlasov-Poisson system) and let f° G L1 n L°°(R2 X R^) 
satisfy for some fe > 3 

JJTR 
f°\v\m dv dv < oo for all m G [0, fc). (29) 

R3xR3 

Then, there exists a renormalized solution f G C([0,oo);L1(R^ x R„)) satisfying 

sup / / f(x,v,t)\v\mdvdx < oo, 
t€[0,T] J J R 3 X R 3 (31 

for all me [0,fc), T G (0,oo). 
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Remarks. 1) We prove in fact in [33] a bound on ff^3xiR3f(x,v,t)- \v\m dvdx 

which depends only on the bounds on / ° . 
2) Some uniqueness and regularity results have been independently proven by 

K. Pfaffelmoser [38]. 

III. Mathematical Tools for the Global Existence 
of Weak Solutions in Kinetic Models 

In this last section, we briefly present the three tools of independent interest 
that we use in the proofs of the global existence results (like Theorem 1) for 
weak solutions of kinetic models. These tools are 1) the notion of renormalized 
solutions and their properties, 2) a theory of a.e. flow-solutions of ordinary 
differential equations, 3) velocity-averaging lemmata. 

We already described above the first tool (and its physical interpretation): 
we just want to mention here that this notion can be useful even for nonlinear 
equations involving second-order terms like Fokker-Planck-Boltzmann equations 
[14] or Landau equations [19] or like nonlinear elliptic equations (see P.L. Lions 
and F. Mural [32]). Let us emphasize the elementary fact that this notion consists 
essentially in writing down the equation formally satisfied by a nonlinear change 
of unknown. 

The second tool is a theory of a.e. flows developed by RJ . DiPerna and the 
author [20, 21] that can be illustrated by the following example. Let Q be a 
bounded smooth domain of R^, (JV > 1), let B(x) be a vectorfield on Q whose 
regularity will be discussed below. We want to study the flow associated to the 
following ordinary differential equation 

^=B(X) f o r t G R , X(0) = xeQ. (31) 
dt 

We consider here only a homogeneous equation to simplify the presentation. This 
is also why we assume that Q is an invariant region, i.e. 

B(x)-v(x)=0 on dQ (32) 

where v is the unit exterior normal on dQ. Of course, X is a function of t and 
x G Q and we expect X(t, x) to belong to Q for all t G R, x G Q. We shall say 
that X is an a.e. flow associated to (31) if X G C(R; Ll(Q)) and if X satisfies 

X(t,x)eQ a.e. x G ß , V t G R (33) 

X(t + s,x)= X(t, X(s, x)) a.e. X G O , V é , S G R (34) 

X({X<EQ / X(t,x) GJV})=0 if A(JV)=0, V t G R (35) 

— =B(X) in &(RxQ) (36) 
dt 

where X denotes the Lebesgue measure restricted to Q. 
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We also denote by Y o X the image measure of X by an application Y from Q 
into Q i.e. the measure on Q defined by 

M(peC(Q), I <pd(YoX)= lcp(Y(x))dx. (37) 

We also introduce the following condition 

XtoX<eCoìtìX, V * G R (38) 

where C0 > 0 and Xt(x) = X(t, x). Of course, (38) implies (35). Then, we have the 

Theorem 4. Let B G W u (ß ) . We assume div B G U°(Q) and (32). We denote by 
C0 = ||div5||Lco. 

1) There exists a unique a.e. flow associated to (31) satisfying (38). 

2) In addition, X G ^ ( R j L ^ ß ) ) nL^^QiW^fJR)) and, for almost all 
xeQ,Xe ^ ( R ) , B(X) G C(R), (31), (33) and (34) fco/rf. 

3) The a.e. flow X satisfies also 

— = divJBX) - (div fl)Jf in 0 ' (R x O) , Z | ,= 0 = x a.e. in Q (39) 
ot 

and for all UQ G L1(Q), u(X(t,x)) is the unique renormalized solution in C(K;L1(Q)) 
of 

du 
— = divx(Bu) — (div B)u, u\t=o = uo a.e. in Q. (40) 
at 

Ifu° G Lœ(Q), u(X(t,x)) is also the unique solution of (40) în L°°(R x Q) of (40) 
in t/ie senese of distributions. 

4) Lei 5 n G ^ l j l ( ß ) satis/y (32) and div Bn G U°(Q) for alln>l. We assume 
that Bn converges to B in L1(Q) and that div Bn converges to div B in Ll(Q). We 
denote by Xn the a.e. flow satisfying (38) corresponding to Bn. Then, Xn converges to 
X in C([-T9+T];L*{Q)), (V q < oo); ^ converges to f in C([-T,+T];Ll(Q)) 
for all T < oo and Xn(-,x) converges to X(-,x) uniformly on compact sets o / R 
for almost all x G Ü. Finally, if u„ converges in LP(Q) to u° (1 < p < oo), then 
un(t,x) = ul(Xn(t,x)) converges to u(t,x) = u°(X(t,x)) in C([-T,+T];LP(Q)), 
(V T < oo). 

Remarks. 1) Analogous results hold for time-dependent vector fields B(t,x) G 
Ll((-T9+T)\WX'\Q)) with d iv£ G L{((-T,+T);Lœ(Q)), (V T < oo) or for 
flows in the whole space. 

2) In [20], we show by a counterexample that the W1'1(Q) regularity is in 
general optimal. 

The very definition of renormalized solutions of (11)—(12) requires to be able 
to build an a.e. flow as above for the vector field B(t,x,v) = (v,—Vx0(x,t)). 
Of course, we have div(Xi0) B = 0. Therefore, in order to prove Theorem 1 and 
in view of the sharpness of the W1'1 regularity, we have to show that B is in 
(say) Lioc(Wtoc) or in other words that 0 G L\0C(W2^.). But, this is not clear in 
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view of the estimates on / and Q which are basically L1 estimates. However, 
classical results from Harmonic analysis indicate that a rather sharp condition 
for this regularity to hold is to check that Q G Ll0C(J^l0C) where ffll denotes 
the multi-dimensional Hardy space. But, since / and Q are nonnegative, this is 
known to be equivalent to Q G L\QC(LX log Lj^) where we denote by L1 log L/oc 

the set of functions cp such that \<p\ log \<p\ is in L/oc. Again this integrability of Q 
is not clear and requires some careful analysis. In fact, this integrability of Q is a 
consequence of the estimates (24) and again this is a sharp statement making thus 
a rather remarkable chain of sharp statements in order to produce the desired 
a.e. flow (that is the particle paths). Indeed, one can show that if f\v\2 G Lxv, 
f log / G Lx0 then Q log Q G Lx, a striking fact in view of the following classical 
interpolation result: if f\v\2 G Lx

xv, f G Lxv, (1 < p < oo) then Q G Lq
xv with 

q = ffiffi. Observe that q < p if p > 1 and that, in some sense, this loss of 
integrability vanishes "before L1 at the L1 log L1 level". 

The final tool that we use in the proof of Theorem 1 is the improved regularity 
of macroscopic quantities that is velocity averages. The first indications of such 
a phenomenon were some results by V.l. Agoshkov [1] and by F. Golse, B. 
Perthame and R. Sentis [26]. The first general and sharp results were obtained 
in F. Golse, P.L. Lions, B. Perthame and R. Sentis [25] and partially extended 
in R.J. DiPerna and P.L. Lions [17], P. Gérard [24]. A complete theory is now 
available (RJ. DiPerna, P.L. Lions and Y. Meyer [22]) and we now present one 
example of such results. 

Theorem 5. Let 1 < p < 2, let % G [0,1), let m>0,letxp G Cff(KN) and let f(x,v) 
(resp. f(x,v,t)) G LPQR% x R*) (resp. L^(R^ x l f x R,)J satisfy 

(-Ax + i p / 2 (-Av + l)-'"/2 {v • Vxf} G LXiV (41) 

(resp. 

(-AXit + l ) - / 2 (-Av + I)"'"/2 j g + v • Vx/} G LJUr •) (42) 

Then, fKN f(x,v)y)(v)dv (resp. f^N f(x,v,t)y)(v)dv) G BS/(JR^) (resp. B%P(JR* x 
R t ) J w k n = ( l - T ) j ^ i . 

This result proved by careful Fourier analysis admits various variants or 
extensions (see [22]). 

We would like to conclude by indicating that these tools and the methods 
of proofs we used for the construction of global weak solutions admit various 
applications not only to the study of kinetic models and to the two categories of 
problems listed in the Introduction but also to other fields of Nonlinear Partial 
Differential Equations. One example of this fact is a recent work by P.L. Lions, 
B. Perthame and E. Tadmor [34] on conservation laws. 
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Sheaf Theory for Partial Differential Equations 

Pierre Schapira 
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0. Introduction 

In order to analyze the singularities of hyperfunction solutions of systems of 
partial differential equations, M. Sato introduced in 1969 the microlocalization 
functor and, more fundamentally, the microlocal point of view. Then began an 
intense activity, in what is now called "microlocal analysis", and in the field of ana
lytical partial differential equations the main tools, microdifferential operators and 
quantized contact transformations, were developed in Sato-Kawai-Kashiwara's 
paper [S-K-K]. However, after their study of micro-hyperbolic systems [K-Sl], 
M. Kashiwara and the author realized that for many problems these analytical 
tools were not really necessary on the condition to work with the complex of 
holomorphic solutions of the system, Rj&m@x(J£, Ox), and only to keep in mind 
the codirections of non-propagation of this complex, here the characteristic vari
ety of Jt. In other words one simply works with a complex of sheaves F on a 
real manifold X, and what we defined as its micro-support, SS(F), a closed conic 
involutive subset of T*X. 

This was the starting point of the "microlocal study of sheaves", developed 
in [K-S3, K-S4]. 

It is not our purpose to discuss this theory here, but we need to recall a few 
basic facts in order to introduce the new notion of an elliptic pair (obtained 
in collaboration with J.-P. Schneiders), a generalization of that of an elliptic 
system, the real manifold M on which the system is elliptic being replaced by 
an R-constructible sheaf. We construct a characteristic class associated with an 
elliptic pair, and prove that when the pair has compact support, the complex of 
its holomorphic solutions has finite dimensional cohomology and the index is 
calculated as the integral of the characteristic class. 

1. Microlocal Study of Sheaves 

In this section we fix some notations and recall a few results of [K-S3, K-S4]. 
Let X be a real C00-manifold. One denotes by T : TX —> X and by n : 

T*X -> X its tangent and cotangent bundles, respectively. If M is a submanifold, 
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one denotes by TMX and T^X the normal and conormal bundles to M in X, 
respectively. In particular TxX is the zero-section of T*X. 

One denotes by 5 : A c-> X x X the diagonal embedding and we identify X 
with A and T*X with T^(X x X) by the first projection defined on X x X and on 
T*(X x i ) - T*X x T*X, respectively. If A is a subset of TX, Aa will denote 
its image by the antipodal map on T*Z. 

If X and Y are two manifolds, one denotes by q\ and #2 the first and second 
projection, defined on X x Y. 

Let A be a commutative unitary ring with finite global homological dimension 
(e.g. A = Z). One denotes by D(X) the derived category of the category of sheaves 
of ,4-modules on X, and by Db(X) the full subcategory consisting of objects with 
bounded cohomology. If Z is a locally closed subset of X, one denotes by Az 

the sheaf on X which is constant with stalk A on Z and zero on X\Z. One 
denotes by or# the orientation sheaf on X, and by a>x the dualizing complex on 
X. Hence: 

cox — orx[dimX], 

where dimX is the dimension of X 
The "six operations" (as says Grothendieck), that is, the operations ®L, 

Rjfàm, Rf*, Rf\, f~l, fl, are now classical tools that we shall not recall. We 
simply introduce some notations. For F e Ob(Db(X)) and G e Ob(Db(Y)), one 
sets: 

FMLG = qï1F®LqïiG, 

D'F = R3föm(F,Ax), 

DF = R3fö*n(F,CDX). 

There are other operations of interest on sheaves. If M is a closed submanifold 
of X and F e Ob(Db(X)), the specialization of F along M, VM(F), is an object of 
Db(TMX) and the microlocalization of F along M, PM(F), an object of Db(T*MX). 
Sato's functor PM has been generalized in [K-S3] as follows. For F and G in 
Db(X) on sets: 

phom(G, F)=pAR ^m(q^1 G, q[F). 

Then: 
Rn*p hom(G, F) ^ R M*n(G, F), 

juhom^M,^) ~pM(F). 

After the introduction of the functor pM it became natural to work in T*X, and 
M. Kashiwara and the author introduced in 1982 (cf. [K-S2]) the micro-support 
SS(F) of an object F of Db(X). This is a closed conic subset of T*X which 
roughly speaking describes the set of codirections of non-propagation of F. More 
precisely: 

Definition 1.1. We say that an open subset U of T*X does not meet SS(F) if for 
any real C1-function cp on X and any XQ G X such that (xo;d(p(xo)) e U, one 
has: 
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Rr{x-Mx)*<p{xo)}(F) ) = 0 . 

An important property of the micro-support is given by : 

Theorem 1.2. Let F G Ob(Db(X)). Then SS(F) is an involutive subset of TX. 

(For the precise definition of "involutive", cf. [K-S4, Ch. VI].) . 
One can evaluate the micro-support of sheaves after the main operations 

described above. For example one proves that for F and G in Db(X)\ 

SS(phom(G,F)) c C(SS(F),SS(G)), (1.1) 

where C(A\,Ai) is the normal cone of A\ along Ai9 a closed subset of TTX 
that we identify with a subset of TTX by the Hamiltonian isomorphism. In 
particular: 

supp(/ihom(G,iO) <= SS(G) n SS(F). (1.2) 

Let / : Y —• X be a morphism of manifolds. One associates the maps; 

TY < Y x TX > TX (1.3) 
'/' x fn 

and one sets: 
TYX = tf~i(TYY). (1.4) 

Using (1.1), one can evaluate the micro-support of f~lF or f]F (cf. [K-S3]). 
In particular if / is non-characteristic for F, that is 

rYX n/-»(SS(F)) c Y x T'XX, (1.5) 

one gets : 
SS{f~1F)c:ff-l(SS(F)). (1.6) 

Similarly, if G G Ob(Db(Y)) and / is proper on supp(G), one proves: 

SS(Rf*G)czfny-i(SS(G)). (1.7) 

Remark that formulas (1.6) and (1.7) are similar to classical formulas obtained 
when calculating the wave front set of distributions or hyperfunctions or when 
calculating the characteristic variety of ̂ -modules, after non characteristic inverse 
images of proper direct images. 

2. Constructible Sheaves (cf. [K-S3, K-S4]) 

In this section we assume all manifolds are real analytic and the base ring 
A is noetherian. An object F of Db(X) is called weakly R-constructible(w-R-
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constructible for short) if there exists a subanalytic stratification X = UaXa such 
that for all a, all j G Z, the sheaves Hj(F) \xtt are locally constant. If moreover 
for each x G X, each j G Z, the stalk Hj(F)x is finitely generated, one says F is 
R-constructible. One denotes by D^_R_C(X) (resp. D^_C(X)) the full subcategory 
of Db(X) consisting of w-R-constructible (resp. R-constructible) objects. 

The involutivity Theorem 1.2 allows us to characterize microlocally w-R-
constructible objects. 

Theorem 2.1. Let F G Ob(Db(X)). The following conditions are equivalent. 
(a) F is w-R-constructible. 
(b) SS(F) is contained in a closed conic subanalytic isotropic subset of TX. 
(c) SS(F) is a closed conic subanalytic Lagrangian subset of TX. 

By this result one proves easily that the category of w-R-constructible (resp. 
R-constructible) sheaves is stable by the main operations on sheaves (Rf* when 
/ is proper, f~\ f, <g)L, R2ffcm, pM, vM, phom). 

If I is a complex manifold one defines similarly the notions of w-C-
constructible and C-constructible sheaves, by assuming that the stratas of the 
subanalytic stratification X = UaJfa are complex analytic submanifolds. Then the 
link between R- and C-constructibility is given by: 

Theorem 2.2. Let F G Ob(D^_n_c(X)). Then F is w-C-constructible if and only if 
SS(F) is conic for the action ofCx on TX. 

Remark 2.3. Note that the microlocal study of constructible sheaves was initiated 
by Kashiwara [Kl]. 

3. ^-Modules 

We shall not review this theory here and refer to [S-K-K, Kl , SI] for detailed 
expositions. We shall only fix a few notations and make the link with the micro-
support. 

From now on the base ring A is the field C of complex numbers. 
Let (X, &x) be a complex manifold of complex dimension n. One denotes by 

@x (resp. £Pg) the sheaf on X of finite order (resp. infinite order) holomorphic 
differential operators and one sets Qx = &x ® orx> where 0y is the sheaf of 
holomorphic n-forms. One denotes by D(ßx) (resp. D(@x)) the derived category 
of the abelian category of left (resp. right) ^-modules , and by Db(@x) (resp. 
Db

oh(@x)) the full triangulated subcategory of D(@x) consisting of objects with 
bounded (resp. bounded and coherent) cohomology. One defines similarly Db(^) 
a n d D c

6
o h ( ^ ) . 

If Ji is an object of Db
oh(<&x), its characteristic variety denoted char(^), is 

a closed conic analytic subset of TX, which is involutive ([S-K-K]). In fact one 
has: 
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Theorem 3.1 ([K-S2]). Let M G Ob(Db
coh(@x))- Then: 

SS(R J&mSx(J(9 0X)) = char (^ ) , 

Note that the inclusion cz in Theorem 3.1, which is the most useful for appli
cations, is easily deduced from the Cauchy-Kowalevski theorem, in its precised 
form due to Leray [L]. The converse inclusion makes use of the sheaf of rings 
$x of [S-K-K], Also note that this result, combined with Theorem 1.2, gives a 
new proof of the involutivity of the characteristic variety of ^-modules. 

Let / : Y -> X be a morphism of complex manifolds. One denotes by @y->x 
the sheaf G y ®/-i% f~l@x endowed with its natural structure of a ( ^ y , / - 1 ^ ) -
bimodule. 

Let M G Ob(Db(@x)). One sets: 

rlM = ®Y^x®)-^xr
xJi. 

Let Jf G Ob(Db(@°yP)). One sets 

f_^ = Rf«(Jr®%Y®Y->x). 

If M G Ob(Db(@x)) and Jf e Ob(Db(@Y)) one sets: 

M^Jf = @>XXY ®>@X®9y (Jt^Jf), 

and there is a similar formula for right modules. 
Finally one sets : 

I? M = R 3fé»m@x (M, ®x) > 

FUt = R 3fâ>m®x (J4, Qx ®&x @x [n]). 

(In this last formula, Jt is a right module.) 

4. Microfunction Solutions of ^-Modules 

Let M be a real analytic manifold, X a complexification of M, M a left coherent 
^x-module. By considering the complex R&fi>mg)X(Jt,(9x) and using Theorem 
3.1, one may recover many classical results. For example, applying (1.2) with 
G = Z>'(CM) one gets: 

supp(# ^m^M, <êM)) C T*MX n cha r (^ ) , 

where <é>M is the sheaf of Sato microfunctions. In particular this shows that the 
analytic wave front set of a hyperfunction solution of a system of linear differ
ential equations is contained in the characteristic variety of the system ("Sato's 
principle"). More generally, the inclusion (1.1) immediately implies that the mi
crofunction solutions of the system M extend in the micro-hyperbolic directions, 
and one recovers the results of [K-Sl] in the differential case. Microdifferential 
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systems can be treated similarly, once the microlocal action of i \ on &x is 
defined as in [K-S3]. 

These techniques can also be applied to the study of boundary value problems 
and diffraction, including the case of non smooth obstacles. It is then useful to 
introduce new sheaves of microfunctions (using the functor p horn) and new wave 
front sets. We refer to [S2] for details. 

5. Elliptic Pairs 

In this section we expose new results obtained in collaboration with J.-P. Schnei
ders. Let X be a complex manifold of complex dimension n. If there is no risk 
of confusion, we identify X with the real underlying manifold. 

Definition 5.1. An elliptic pair (M,F) on X is the data of M G Ob(Db
oh(ßx)) and 

F G Ob(D£_c(X)) satisfying: char(^) nSS(F) cz TXX. 

We use the same terminology for objects of Db
oh(^). 

Theorem 5.2 (cf. [S-Sc]). Let (Ji,F) be an elliptic pair. 
(i) Regularity. The natural morphism: 

R 3>%>m®x (M, D'F ®0X)-+R 2tä><m<2>x (M ® F, (9X) 

is an isomorphism. 
(ii) Assume supp(^) fi supp(10 is compact. 
(a) Finiteness. For all j G Z, the Q-vector spaces 

WRF (X; R Jßxm^ (M ® F, 0X)) 

are finite dimensional. 
(b) Duality. The pairing 

R M*n®x(J( ® F, Ox) ® (®x ®%x Jt®F) —> Qx ®%x 0X 

and the integration morphism Hc(X;Qx ®%x Ox) — H2n(X;orx) —> C induce 
a perfect duality on the spaces HìRr(X;R3fébwi@x(Jt ® F,Ox)) and 
Hn~JRr (X; Qx ®%x M ® F). 

(c) Parameters. Let Y be another complex manifold. Then the- natural morphism 

(Rq^.q^RMm^Ji ® F,0X)) ® ®y —• Rqï*R2të^q-^x(qt(Jl ® F),Ox*y) 

is an isomorphism. 

Sketch of Proof, (i) follows from a general result of [K-S4] which asserts that the 
natural morphism 

R #fom(F, Ax) ®LG^>R Mm(F, G) 

is an isomorphism as soon as SS(F) n SS(G) is contained in TXX. 
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(ii) Using techniques of [Sc] one can reduce the problem to the case where Jt 
admits a free presentation. Next by adding the Cauchy-Riemann system to M, one 
can assume F is supported by a real analytic manifold M whose complexification 
is X. Then one represents F by a bounded complex whose components are direct 
sums of sheaves Cu, U open, relatively compact, subanalytic in M and such 
that Df

MCu = C-jj, (here D'M is the duality functor on M). Then (ii) is proved by 
similar arguments as those in [B-S] or [R-R], D 

By adapting Kashiwara's construction of the characteristic cycle of R-
constructible sheaves (cf. [K-S4, Ch. IX]) we shall now construct a characteristic 
class associated with an elliptic pair. 

Let (Ji,F) be an elliptic pair and assume Jl is a right module. Sato's iso
morphism ®3f — àl®xxx[nì induces a morphism: 

R MmQx (M®F,M®F)-±b' (D_(Jt ® F)M(Jf ® F) ®%XxX 0Xxx) • (5.1) 

Moreover the natural morphism : 

Qx ®&x @x[n] ®%xmx à-lOXxx -> Qx ®%x 0x[n] 

induces a morphism: 

ö~l(D(Jt ® F)MJt ® JO ®^XxX Oxxx) -> cox. (5.2) 

Set for short: 

H = D(M ®F)W(Jt®F) ®%xxx Oxxx . (5.3) 

We get the chain of morphisms : 

R2/fom®x(J( ®F,Jt®F) -+ ölH 

-+cox. 

Hence setting: 
S = chav(J/) n supp(F), • (5.4) 

we get a morphism : 

H o m ^ ( j r ® F, Jt ® F) - • E\(X\ œx). (5.5) 

In fact this construction can be made "microlocal". Set : 

A = cbav(Jt) + SS(F)a. (5.6) 

Since the micro-support of H is contained in A x Aa, we have the isomorphisms : 

ölH ~ Rn*pAH 

<^-R%*RFApAH, 
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and we get the morphism: 

Hom^x(Jt ® F,Jt ® F) -* HQ
A(TX;%-loox) • (5.7) 

Definition 5.3. We call the image of 1 in H$(X;cox) (resp. in H\(TX;%-l(Dx)) 
by the morphism (5.5) (resp. (5.7)) the Euler class (resp. the microlocal Euler 
class) of the elliptic pair (Jt,F) and we denote it byQu(Jt9F) (resp. pQ\x(Jt,F)). 

Of course Qu(Jt,F) is the restriction of ps\x(Jt, F) to the zero-sectiori of T*X 

Definition 5.4. Let (Jt, F) be an elliptic pair such that supp(^) n supp(F) is 
compact and assume Jt is a right module. One sets : 

X(X; Jt, F) = £ ( - l )Mim(J^ (RF (X;F ® Jt ®%x Ox))). 

By adapting to the case of ^-modules Kashiwara's proof of the index theorem 
for constructible sheaves (cf. [K-S4, Ch. IX|), we can prove: 

Theorem 5.5. In the situation of Definition 5.4, one has: 

X(X;Jt,F)= [ eu(Jt,F). (5.8) 
Jx 

Examples and Comments 5.6. (a) Assume X is the complexification of a real 
analytic manifold M, and let «J be a coherent ^ -modu le . Then Jt is elliptic 
on M in the classical sense if an only if (Jt, CM) is an elliptic pair, which simply 
means that: 

c h a r M O n T ^ X c T ^ X . 

In this case the isomorphism of Theorem 5.2 applied to the elliptic pair (Jt, D'CM) 
gives the isomorphism: 

R J^m^x (Jt, séM) — R #fi><mg)x (Jt, &M) 

where séM (resp. &M) denotes the sheaf of real analytic functions (resp. hyper-
functions) on M. If M is compact, one recovers the classical finiteness theorem 
for elliptic systems, and the index is calculated by the Atiyah-Singer theorem 
[A-S]. 

(b) Let Q be an open subset of X with real analytic boundary. Then (Jt, CQ) 
is an elliptic pair if and only if dQ is non-characteristic for Jt, that is: 

c h a r ( ^ ) n T ; ß X c z r ^ X . 

If Q is relatively compact, one gets the finiteness of the spaces ^xt3
3x(Q,Jt, Ox), 

a result of Bony and Schapira [B-S] (in case Jt = @x/@x-P, cf. Kashiwara [Kl] 
and Kawai [Ka] for various generalizations), extended to the relative case by 
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Houzel and Schapira [H-S], the index being calculated by Boutet de Monvel and 
Malgrange [B-M]. 

(c) For any Jt G Ob(D^o h(^)), (Jt,Cx) is an elliptic pair. In this case the 
duality theorem is due to Mebkhout [M]. If M has compact support one recovers 
many classical results. In particular if ^ is a coherent Ö?A'-module with compact 
support, one can apply the theorem with Jt = <2>x ®&x ^

 anc^ recover theorems of 
Cartan and Serre (cf. [C-S, Se]). Concerning the index, let us recall that O'Brian, 
Toledo and Tong [O-T-T], generalizing the Hirzebruch-Riemann-Roch formula 
[H], constructed the Chern class of coherent ^-modules with compact support, 
and proved an index theorem in this case. For the case of ^ - m o d u l e s with 
compact support, cf. Angéniol-Lejeune [A-L]. 

(d) For any F G Ob(D^_c(X)), (Ox,F) is an elliptic pair and its microlocal 
Euler class coincides with the Lagrangian cycle of F defined by Kashiwara in 
[K2]. Remark that if G is an R-constructible object on a real manifold M, one 
can associate to it an elliptic pair, namely (Ox,i*G) where / : M -̂> X is a 
complexification of M. In this case the index is calculated by Kashiwara (loc. 
cit.) (cf. also Dubson [D] and Ginsburg [G] in the complex case). 

(e) Let B(XQ;B) denote the open ball (in a local chart at xo) with center xo 
and radius s and let Jt be an holonomic ^ -module . Then for a small enough, 
(Jt,CB(XolE)) is an elliptic pair (cf. [Kl]). 
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The Evolution of Harmonic Maps 

Michael Struwe 

Mathematik, ETH-Zentrum, CH-8092 Zürich, Switzerland 

1. Let M and JV be compact Riemannian manifolds of dimensions m and i 
and with metrics y and g, respectively. We may assume that JV is isometrically 
embedded in some Euclidean R". 

For C^maps u : M -• JV cz ]R» let 

1 1 m " p ^ 

•M-W-ïII'*^"' (U) 

be the energy density and - with dM = ^Jdti(y^)dx - let 

E(u)= f e(u)dM 
M 

be the energy of u. If M cz R'" carries the Eulidean metric, E is nothing but the 
standard Dirichlet integral 

£(M) = i f\Vu\2d> 

M 

A map w is harmonic if E is stationary at u, which for w G C2 is equivalent to 
the condition that the vector (AMu) (x) at all points x G M is orthogonal to the 
tangent space TU(X)N to JV at u(x) G R"; that is, 

AMu±TuN. (1.2) 

(zlM is the Laplace-Beltrami operator on M.) In local coordinates on JV, (1.2) 
takes the form 

AMu = r(u)(Vu,Vu) (1.3) 

with a bilinear form T involving the Christoffel symbols of the metric g on JV. 
Again, if M cz Rm and if, in particular, JV = Ŝ  cz R" (n = £ + 1), (1.3) takes the 
following simple form 

Au = u\Wu\2. 

The notion of harmonic map generalizes the concepts of closed geodesic (for 
M = S{) and harmonic function (for JV = R). 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
© The Mathematical Society of Japan, 1991 
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The study of harmonic maps was initiated by Fuller, Nash, and Sampson; 
see Eells-Lemaire [12] for further background material and references. The first 
general existence result is due to Eells and Sampson. Since standard variational 
techniques fail, in their pioneering work Eells and Sampson [13] introduce the 
evolution problem 

dtu-AMu±TuN on Mx]0,oo[ (1.4) 

with initial condition 
U = UQ at t = 0. (1.5) 

Upon multiplying (1.4) by dtu G TUN and integrating by parts, we at once obtain 
the energy inequality 

E(u(T)) + / / \dtu\2dMdt < E(u0), VT > 0 (1.6) : ( M ( T ) ) +jf / 
M 

for any solution u of (1.4), (1.5). That is, (1.4) is the L2-gradient flow for E. In 
local coordinates again, (1.4) takes the form 

dtu - AMu = F(u)(Vu, Vu). (1.7) 

Upon differentiation the latter expression and multiplying by Vu, we moreover 
obtain the following Bochner-type differential inequality for the energy density 

(dt - AM)e(u) + c\V2u\2 < KNe(u)2 + CMe(u), (1.8) 

where KN denotes an upper bound for the sectional curvature of JV, c > 0, and 
CM depends on (the Ricci curvature of) the metric y. (1.6), (1.8) and Moser's weak 
Harnack inequality for parabolic equations now lead to the following result. 

Theorem 1 (Eells-Sampson [13]). Suppose KN < 0. Then for any smooth map 
UQ : M —» JV problem (1.4), (1.5) admits a unique, smooth solution u(t) which, as 
t —> oo suitably, converges to a smooth harmonic map WQQ homotopic to Mo-

Theorem 1 was extended to manifolds with boundary by Hamilton [17]. 
Moreover, in this case the curvature restriction KN < 0 can be weakened if the 
initial and boundary data have small range (Jost [21]). However, for general data, 
the curvature restriction KN < 0 is in some sense optimal as Eells and Wood [14] 
show that Theorem 1 ceases to be true for M = T2, N = S2 and an initial map 
UQ of topological degree 1. 

2. Nevertheless, in two dimensions (m = 2) Lemaire [23] and Sacks-Uhlenbeck 
[29] independently showed that also the topological condition 7U2(JV) = 0 suffices 
to find harmonic representatives for all homotopy classes of maps MO : M —• JV. 
In fact, a new proof of this result, using the evolution problem (1.4), can be given 
[35]. (Since by the result of Eells and Wood we must expect singularities, we 
consider also maps in the Sobolev space 

Hl2(M;N) = iue Hl2(M;lRn); u(M) cz N\ 

of measurable, finite energy maps u : M —> JV; that is, with distributional 
derivative in L2.) Then we have the following generalization of Theorem 1. 



The Evolution of Harmonic Maps 1199 

Theorem 2 ([33; Theorem 4.2]). Suppose m = 2. For any w0 e # l j2(M;JV) there 
exists a global weak solution u : Mx]0,oo[—• JV 0/(1.4), (1.5) which satisfies (1.6) 
and is (C00—) regular away from finitely many points (x^tu), 1 < k < K. The 
solution u is unique in this class. 

At a singularity (x,t) a "harmonic sphere" ü : S2 = R 2 —> JV separates in the 
sense that for suitable xm -> x, Rm \ 0, tm /* t we have 

um(x) := u (exp^ (Rmx), tm) —• Ü in H2^(K2 ; JV), (2.1) 

where u ^ const, is harmonic, has finite energy and extends to a smooth harmonic 
map ü : S2 = R 2 - • JV. 

Finally, as t —> oo suitably, u(t) —* u^ weakly in Hl'2(M;N), where u^ : M —• 
JV /5 smooth and harmonic. Convergence is strong away from finitely many points 
(x>t>U = °o)51 < t < L, where harmonic spheres separate in the sense (2.1). 

Remark. Let eo = inf{£(w);w : S2 -> JV is non-constant and harmonic} > 0. 
Then by (2.1) we can bound K + L < E^E^Q). In particular, for initial data such 
that E(UQ) < £o the solution u constructed in Theorem 2 is smooth and converges 
uniformly to a harmonic limit. 

Theorem 2 was extended to 2-manifolds M with boundary dM ^ 0 by Chang 
[3] with applications to results by Brezis-Coron and Jost on the Dirichlet problem 
for harmonic maps into the sphere, and by Chen-Musina [7] to the case of target 
manifolds with boundary. 

Moreover, variants of (1.4) arise if one attempts to solve free boundary 
problems for minimal surfaces by a deformation method and results completely 
analogous to Theorem 2 hold; see [34]. M. Li [24] has recently generalized these 
results to free boundary problems for harmonic maps. 

To this day it is not known whether in general (in two dimensions) the flow 
(1.4) will encounter singularities in finite time. (Of course, the result of Eells and 
Wood provides us with an example where either such singularities exist or the 
flow fails to converge asymptotically.) However, some recent results of Chang 
and Ding [4], respectively work by Grayson and Hamilton [16] lend support to 
the conjecture that for m = 2 the flow (1.4) does not develop singularities in finite 
time. 

3. The situation is quite different in higher dimensions, as there are energy 
minimizing harmonic maps with singularities. An example is given by the well-
known map u(x) = | | : £i(0) cz R»1 - • S"'"1 cz R'" (Brezis-Coron-Lieb [2], Lin 
[26]); if m > 1, u is minimizing even if we regard u as a map u : J?i(0) —• 
Sm cz R"1+l (Jäger-Kaul [20]). For energy-minimizing maps therefore only partial 
regularity results can be expected. Such a regularity theory was developed by 
Schoen and Uhlenbeck [30] - and independently by Giaquinta-Giusti [15] in the 
case that the image is covered by a single chart. A crucial role is played by a 
subtle monotonicity estimate. 

Similarly, progress on the evolution problem (1.4) for m > 3 and general 
targets came as a consequence of a peculiar monotonicity formula for (1.4), 
discovered in [36; Lemma 3.2] for maps u : R"1 x [0, T] —• JV and extended to 
curved domains by Chen-Struwe [8]. Let 
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G«M = ( M t o - ^ e x p ( " ^ o ) ' ift<t0 (3A) 

be the fundamental solution to the heat equation on Rm x R with singularity 
at zo = (xo,£o)} and let <p G Co°(Rm) be a smooth cut-off function such that 
cp = 1 in a neighbourhood of 0 and such that the support of cp is contained 
in a ball of radius Q less than the injectivity radius QM of M. For a solution 
w : M x [0, T[-> JV and K2 < *0 < T let 

4>(K;z0) = ^R2 y \Vu\2q>2GZQdxìt==tQ_ 

in local normal coordinates around xo on M. 

Theorem 3 (Chen-StruWe [8; Lemma 4.2]). There exists a constant C depending 
only on M and JV such that for any T > 0, any 0<R2<R^<to<T and any 
regular solution u : Mx]0, T[—• JV of (1.4) there holds 

$(R;z0) < exp(C(i?o - R))$(Ro;z0) + C£(u0)(l*o - R) • (3.2) 

A particular consequence of the monotonicity formula (3.2) is the following. 

Theorem 4 ([36; Theorem 5.1]; Chen-Struwe [8; Lemma 4.4]). There exists a 
constant eo > 0 depending only on M and N such that for any solution u : M x 
[0, T[-> JV of (1.4) the following is true: 

If 0(R;zo) < eo for some zo = (xo,£o), 0 < R2 < to < T,R < IM, then 
|Vu(z0)| < C, with a constant C = C(M,N,R). 

Theorem 4 at once leads to a new proof of Mitteau's [27] global existence 
result for initial data with small energy density. More important, Theorem 4 
together with a penalization device to obtain approximate solutions for (1.4), due 
to Chen [5], Keller-Rubinstein-Sternberg [22], and Shatah [31] led to a global 
existence and partial regularity result for (1.4) in higher dimensions (m > 3). 

Theorem 5 (Chen-Struwe [8; Theorem 1.5]). For any (smooth) map UQ : M —> JV 
there exists a global weak solution u : Mx]0,oo[—> JV o/(1.4), (1.5) satisfying (1.6) 
and regular off a set of co-dimension > 2. (In fact, this dimension estimate holds 
for all t > 0; see Cheng [9].) As t -> oo suitably, u(t) —* uœ weakly in Hli2(M,N) 
where Moo : M -> JV is harmonic and regular off a set of co-dimension > 2. 

Moreover, u satisfies a variant of the monotonicity formula (3.2). This fact 
was used by Coron [10] to prove that the solution obtained in Theorem 5 is in 
general not unique - even among partially regular solutions satisfying (1.6). 

The estimate on the co-dimension of the singular set very likely can be im
proved to 3, as for energy-minimizing (stationary) harmonic maps; see Giaquinta-
Giusti [15] and Schoen-Uhlenbeck [30]. However, as was first observed by 
Coron-Ghidaglia [11], in higher dimensions singularities may appear in finite 
time. Subsequently, Chen and Ding [6] gave an argument relating singularities to 
the fact that in higher dimensions the infimum of the energy in certain non-trivial 
homotopy classes of maps may be 0, an observation due to B. White [37]. 
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In fact, their reasoning can be considerably simplified by combining The
orem 4 with Moser's weak Harnack inequality for parabolic equations. First 
note: 

Theorem 6. For any T > 0 there exists cj > 0 depending only on T, M and JV such 
that any smooth solution u : M x [0, T] -> JV of (1.4), (1.5) with E(UQ) < e\ can 
be extended to a global, smooth solution u : M x [0, ooj—• JV, converging, as t —• oo 
suitably, to a constant harmonic map. 

Proof. Let Jjg = inf{i2
M, T}. For 0 < R$ < to < T, xo G M we can estimate with 

constants C depending on M, N, and T only 

$(Ro;zo) <: CRtmE(u(to - R$) < CE(U0) < e0? (3.3) 

if ei > 0 is sufficiently small. Hence by Theorem 4 we have 

|Vw(x, t)\<C uniformly for t^R$,xeM, 

and u can be extended as a smooth solution of (1.4), (1.5) on M x [0, oo[. 
By (1.8) and Moser's [28] supremum estimate for weak sub-solutions of linear 

parabolic equations, moreover we obtain 

|Vw(x,t)\2 < CE(u(t-R$)) < CE(u0) for t > 2R$,xeM. (3.4) 

From this uniform estimate, asymptotic convergence follows as in Eells-Sampson 
[13] or Jost [21]. Finally, if ei > 0 is sufficiently small, by (3.4) the image of any 
map u(t),t > 2R%, and hence also of the limiting harmonic map uœ is contained in 
a strictly convex geodesic ball on JV. It follows that Woo = const. ; see Jäger-Kaul 
[19]. D 

By Theorem 6, of course, for homotopically non-trivial initial data wo with 
E(uo) < ei(T) the flow (1.4), (1.5) must blow up before time T. In fact, blow-up 
time approaches 0 as the initial energy decreases to 0. 

Finally, we remark that in dimensions m ^ 3 singularities - as in the case 
m = 2 - seem to be related to harmonic spheres or to self-similar solutions 

u(x,t) = w (T|=ZF) of (1.4); see Struwe [36; Theorem 8.1]". (The work of Coron-

Ghidaglia strongly suggests that solutions of the latter kind in dimensions m ^ 3 
actually exist.) 

The approach of [8] in general cannot be extended to initial maps belonging 
to H1,2(M;N), only. A different approach via time-discrete minimization was 
proposed by Horihata-Kikuchi [18]. Based on their ideas, Bethuel et al. [1] 
recently established global existence of distribution solutions to (1.4) for finite 
energy maps into spheres. 

Further directions of present research into (1.4) include the study of (1.4) on 
complete, non-compact manifolds; see Li-Tam [25] for some recent work in this 
regard. 

A subject related to (1.4) is the Cauchy problem for harmonic maps into 
Minkowski space. See Shatah [31], Sideris [32]. 
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Integrable Systems in Gauge Theory, Kahler Geometry 
and Super KP Hierarchy -
Symmetries and Algebraic Point of View 

Kanehisa Takasaki 

Research Institute for Mathematical Sciences, Kyoto University 
Sakyo-ku, Kyoto 606, Japan 

1. Introduction 

The following nonlinear systems all provide valuable material to search for new 
"nonlinear integrable systems". 

• self-duality equation in Yang-Mills theory 
• self-duality equation in Kahler geometry 
• super Kadomtsev-Petviashvili (KP) hierarchy. 

From these equations, one will be able to imagine several types of extensions of 
so called "soliton equations" such as the celebrated Korteweg-de Vries (KdV) 
equation etc. The first two cases are in a sense "higher dimensional" (or "multi
dimensional") nonlinear integrable systems; the last case will be interesting as an 
extension of M. Sato's work on the KP hierarchy [SS] and background ideas [S] 
referred to under the key words "algebraic analysis." 

This lecture is a summary of my recent work on these equations, in particular, 
the self-duality equations, with focus on their symmetry properties. It is nowadays 
widely recognized that symmetries of soliton equations can be described by 
representation theory of Kac-Moody Lie algebras [DJKM]. A similar observation 
to the self-duality equation of Yang-Mills theory has been known for years [UN, 
CGW, D, Tl]. The case of the self-duality equation in Kahler geometry seems 
to have remained less obscure [BP]. Recently I obtained an explicit description 
of infinitesimal symmetries, which exhibits a Poisson algebra structure [T2]. 
Very recently? inspired by a work of Leznov et al. [LMS], I noticed that these 
infinitesimal symmetries can be "exponentiated" by a simple method [T3]. This 
leads to a kind of "perturbative" construction of a class of general (local) 
solutions. To stress underlying symplectic structures, I will illustrate these results 
for a 4JV-dimensional generalization of the self-duality equations rather than in 
the original form. 

The basic standpoint of my work largely relies on the philosophy of "algebraic 
analysis," which understands differential equations as a differential algebra, i.e., 
a set of abstract symbols and differential-algebraic relations among them. This 
language has turned out to be particularly useful [T4] in the case of the super 
KP hierarchy of Manin and Radul [MR] as well as the original KP hierarchy. 
For the treatment of the self-duality equations, we shall not specify such a 
differential-algebraic interpretation; however, its spirit is included therein. 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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2. Generalized Self-Duality Equations 

2.1 The Case of Yang-Mills Theory 

We consider a 4JV-dimensional space-time with coordinates 

(x,p) = (xl,...,x2N,p\...,p2N) (1) 

and a generalized self-duality equation of Yang-Mills theory on this space-time. 
This equation, as in the four dimensional case, has two equivalent expressions 
[C]. As we shall see later on, these two expressions have analogues in Kahler 
geometry. The first expression is given by the equations 

d2K d2K [ÔK dK 

dx^dpi dxidp1 [dx* dxJ 

ÏÔK 
= 0, (2) 

where the unknown function K = K(x,p) takes values in the Lie algebra LieG of 
the structure group G. The second one is given by 

dx1 \dpJJ J dxJ \d/ ) u ' (i) 

where the unknown function J = J(x,p) now takes values in G. 
As well known, these equations are the integrability condition (in the sense 

of Frobenius) of the linear system 

(l?->e+-4<)y«=o- (4) 

The gauge potentials Ai are combined with the previous unknown functions J 
and K as : 

dx1 dp1 K } 

We consider, in particular, a special pair of solutions 

W(X) = W(X), W(X) = 1 + X WnX
n, 

n<-\ 

v(i) = v(X), v(X) = YJvnr (6) 
n>0 

connected with J and K by the relation 

K = -W-u J = V0. (7) 

The linear system, with these expressions inserted, gives rise to a nonlinear system 
with the new unknown functions Wn and Vn. Symmetries are to be constructed 
for this nonlinear system rather than the original equation. 
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2.2 The Case of Kahler Geometry 

We now turn to Kahler geometry. Our notational conventions are as follows. Let 
/, j , . . . be symplectic indices with values in integers 1,...,2JV. G'-7' and G/;- denote 
the standard symplectic G-symbols normalized as G2/-i,2/= — £2/,2/-i = * anu< 

G2f-i,2i== _ G2/,2/-i= i ^he ßjns^ejn summation convention is understood only 
for symplectic indices. Symplectic indices are raised and lowered as £/ =Gy £} 
and r\i = iy Gy. 

A 4JV-dimensional generalization of the self-duality equation in Kahler ge
ometry is provided by hyper-Kähler geometry. As pointed out (or re-discovered) 
by Plebanski [P] in the four dimensional (self-dual) case, hyper-Kähler geometry 
(also called "JP-space") has two equivalent local pictures based upon the first and 
second "heavenly equations." The "second" picture consists of a 4JV-dimensional 
coordinate system (x,p) = (x1,...^™ ,pl,...,p2N), a scalar unknown function 
© = 0(x,p), and the "second heavenly equation" 

d2® d2® J 5 0 d0\ 
dx^dpJ dx/drf + \dx^ dx! J M " ' ( } 

where { , }(x) stands for the Poisson bracket in x, 

In the "first" picture, one has a 4JV-dimensional coordinate system (p,p) = 
(px,...,pw ,px,...,p2N), a scalar unknown function Q = Q(p,p), and the "first 
heavenly equation" 

(dQ dQ\ , i m 

where we use another Poisson bracket, 

Geometrically, Q represents a Kahler potential, and p1 and pt correspond to 
complex coordinates and their complex conjugates. In the following, however, 
we understand (p,p) or (x,p) as 4JV independent complex variables and consider 
formal aspects of the above differential equations. 

The role of W(X) and V (X) is now to be played by two sets of functions (or 
formal Laurent series) 

u\X) = £ u[X}i + xf + pjX (1 < 7 < 2N), 

ti[X) =P + ]T tinX\ (l<i< 2JV) (12) 

subject to the exterior differential equations 

Ejj du\X) A duj(X) =GV du\X) A duj(X), (13) 

and 
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d® =Gy ul_2dpj+ Gy ul_xdxl, 

dQ = - Etj u[odp?+ Gy u\dp?, (14) 

Here ul
n and ul

n are understood as unknown functions of (x,p) (in the second 
heavenly picture) or of (p,p) (in the first heavenly picture); X is considered 
a constant under the total differential d, i.e., dX = 0. Symmetries are to be 
constructed for this nonlinear system. 

3. Infinitesimal Symmetries 

3.1 The Case of Yang-Mills Theory [Tl] 

For the (W(X), V(X))-system, a one-parameter family of transformations 

(W(X), V(X)) H-» (W(e,X), V(s,X)) (15) 

of solutions is defined by the Riemann-Hilbert factorization 

W(e, X)e~eX{l) W(X)-{ = V(s, X)e~eYW V(X)~l. (16) 

Here X(X) = X(X,x,p) and Y(X) = Y(X,x,p), the data of transformations, are 
Lie G-valued functions of 4JV + 1 variables of the form 

X(X) = X(X, x1 + p{X, ...,x2N+ p2NX), 

Y (X) = Y(X, x1 + plX,..., x2N + p2NX), (17) 

where X and Y are arbitrary LieG-valued functions of 2JV + 1 variables with 
Laurent expansion 

00 oo 

X(A,u) = £ X„(M)A", Y(X,U) = £ Y„(M)A". (18) 
n=—oo n=—oo 

[In fact, some restriction on these data is required for the Riemann-Hilbert 
factorization to work well; a prescription is to put upper and lower bounds to 
the range of n as —oo < n < nx for X(X) and — ny <> n < co for Y(X). A similar 
remark also applies to the hyper-Kähler case. This is a somewhat technical issue.] 
The associated infinitesimal transformations 

OX,YW(A) = 

àxjV{X) 

ds 

dV(s,X) 

c=0 

(19) 
8=0 OS 

h a v e t h e f o l l o w i n g s t r u c t u r e . 

P r o p o s i t i o n 1 . The infinitesimal symmetries act on W(X) and V{X) as follows. 

SX,YW(X) • WiXy1 = (W(X)X(X)W(X)-1 - VWYiXWiXy1)^, 

ÔX,YV(X) • ViXr1 = (V(X)Y(X)V(X)~l - W(X)X(X)W(X)-1)^, ( 2 0 ) 
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where ( )̂ o and ( )«-_i are linear maps on the space of Laurent series of X 
defined by 

( ho : Xn K> 0(n ;> 0)Xn, 
( ) ^ ! : Xn h+ 6(n < -l)Xn. (21) 

Further, these infinitesimal symmetries obey the commutation relations 

[àxltYl9Sx2tY2] = öpiMmw i22) 

Thus, in particular, the infinitesimal symmetries give rise to a nonlinear real
ization of a direct sum of two loop algebras (with extra 2JV variables u1,..., u2N). 
The associated infinitesimal transformations of J = Vo and K *= — W~\ can be 
readily derived from the above result. 

3.2 The Case of Kahler Geometry [T2] 

The case of (u(X),u(X)) -system requires a more involved factorization, i.e., a 
factorization with respect to composition of maps. Let us consider this issue 
within the (x,p)-coordinate system. [A fully parallel treatment is possible with 
the (p,p)-coordinate system.] u(X) and u(X) are now interpreted as maps 

u(X) : x n u(X,x,p), 
u(X) : x\-+u(X,x,p) (23) 

from the x-space into the w-space or «-space respectively. A one-parameter family 
of transformations 

(u(X),u(X)) »-• (u(e,X),û(e,X)>) (24) 

of solutions can be defined by the Riemann-Hilbert factorization 

u(s, X)'1 o e~EW) o u(X) = Û(s, X)'1 o e**® o Û(X), (25) 

where £j?(A) and £p(X) are Hamiltonian vector fields of the form 

_ y ÔF(X) d 

The generating functions F(X) = F(X,u) and F(X) = P(X,u) are arbitrary functions 
of 2JV + 1 variables with Laurent expansion 

00 00 

F(X) = £ F„(u)X\ F(X) = £ F(Û)Xn. (27) 
jj=—oo n=—oo 

The infinitesimal transformations 
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ds 

have the following structure. 

e=0 

e=0 
(28) 

Proposition 2. The infinitesimal symmetries act on u(X) and u(X) as: 

òFìPiÌ(X) = | [F (X, 11(A)) - F (X, Ù(X))] <_ i , u
l(X) | , 

àFpùl(X) = ( LF(A,Û(A)) - F(X,u(X))] 96f(X)\ . (29) 
IL • J >o J w 

Further, the infinitesimal symmetries obey the commutation relations 

[SFji>SF2&\ = 3{Fl,F2}{uh{FuF2}çl)- (3°) 

Thus the infinitesimal symmetries give a nonlinear realization of a direct sum 
of two Poisson (loop) algebras. 

Remarkably, the above infinitesimal symmetries can be extended to ® and Q 
without modifying the Poisson algebra structure. 

Proposition 3. The infinitesimal symmetries can be consistently extended to ® and 
Q by the following rule. 

SFP® = res F(X,u(X)) +resF(X,u(X)), 

öFpQ = - res X~2F(X,u(X)) - res X~2F(X,u(X)), (31) 

where the residues are normalized as 
res Xn = -ön_i, res Xn = önM. (32) 
A=oo ' A=0 

These extended infinitesimal symmetries obey the same commutation relations as in 
Proposition 2. 

4. Perturbative Method [T3] 

The infinitesimal symmetries, as we have seen, have a considerably simple and 
beautiful structure. The Riemann-Hilbert factorization problems in general are 
hard to solve explicitly. For the case of Yang-Mills fields, several solution methods 
are developed; for the hyper-Kähler case, only existence theorems are known 
(except for a few very special families of solutions). The method presented here, 
so to speak, "exponentiate" the infinitesimal symmetries by expanding everything 
in powers of e. As Leznov et al. [LMS] pointed out, the parameter s plays the role 
of "coupling constants" in field theory; therefore we call the following method 
"perturbative." 
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4.1 The Case of Yang-Mills Theory 

Let us consider the previous Riemann-Hilbert factorization in case where 

W(X) = V(X) = 1 (trivial solution), Y(X) = 0. (33) 

Let us define 
SC(E,X) = W(E,X)X(X)W(E,X)~1 (34) 

Since d/de corresponds to the action of ôx,o on (W(E,X), V(e,X)), one can readily 
find a closed differential equation satisfied by 2£(E,X) with respect to e. 

Proposition 4. <%(B, X) satisfies the differential equation 

8^(e,X) [(#M))^#M)] (35) 
de 

and the initial condition 

%(e = 0,X)=X(X,x + pX). (36) 

Further, 

Proposition 5. K(s) = — W-\(E) and J(e) = VO(E) obey the differential equations 

^ = r e s < F M ) , 
OE A=oo 

^ ^ J ( e ) - 1 = res XT^faX). (37) 
OE A=oo 

Substitution of the Taylor expansion ("perturbation series") 

00 

<FM) = £<r(fc)(A)eVfc! (38) 
fc=0 

into the above equation yields a set of recursive relations 

%<-0)(X) = X(X) = X(X, x + pX), 

grik+i) = £ ^ [(^-^{X))^V^{X)] . (39) 

The unknown functions K(E) and J(E) of the generalized self-duality equations, 
too, can be determined by expansion into powers of c. 

In the original formulation of Leznov et al. [LMS], the projection ( )^_i is 
represented by an integral operator; they exploit its algebraic properties to check, 
by brute force, the validity of their formula. 
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3.2 The Case of Kahler Geometry 

We now start from the Riemann-Hilbert factorization with 

u\X) = vi(X) = xl + p*X (trivial solution), F(X) = 0, (40) 

and derive differential equations satisfied by 

^(e,X) = F(X,u(e,X)) (41) 

and ® (e) with respect to e. 

Proposition 6. J* (e, X) satisfies the differential equation 

^ ^ = {[^M)] s _i , # - M ) } w (42) 

and the initial condition 

&(e = 0, X) = F{X, x + pX). (43) 

Proposition 7. One can obtain 0(e) by solving the differential equation 

^^-= vessie, X) (44) 
OE A=oo 

under the initial condition 
0(e = O) = O. (45) 

These equations can be solved by the same "perturbative method" as illus
trated in the case of Yang-Mills fields. 

The above construction is not suited for the first heavenly picture based upon 
(p,p, Ü). To give a similar construction for the first heavenly picture, we just have 
to restart from the situation where 

ul(X) = ti(X) = pl + plX, F(X) = 0, (46) 

and consider equations satisfied by Q(E) and 

&(E,X) = F(X,U(E,X)). (47) 

5. KP and Super KP Hierarchies [T4] 

In the differential-algebraic approach mentioned in the introduction, a nonlinear 
system is represented by a commutative algebra sé with a set of derivations 
di,Ô2,.... If one is not interested in a particular choice of such derivations, it is 
convenient to understand a differential algebra as a pair (sä, A) of a commutative 
algebra and an j/-module A of derivations in sé. Infinitesimal symmetries are 
then, by definition, derivations b : sé —> sé that satisfy the condition 

[ô,d] G A (MdeA). (48) 
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In most applications, the derivations d\, d-i,..., are chosen to be commutative, and 
symmetries are characterized as extra derivations of sé that commute with these 
derivations. (The super KP hierarchy is somewhat distinct; not only sé being a 
supercommutative algebra, the set of derivations are neither commutative nor 
supercommutative. One can however see that its basic structure is almost parallel 
to the case of the KP hierarchy.) 

The generalized self-duality equations, too, can be formulated as such an 
abstract differential algebra. Its algebraic part sé should be a commutative 
algebra (over a suitable differential subalgebra that specifies in which domain to 
seek for solutions) generated by the Laurent coefficients of W(X) and V(X), or of 
u(X) and u(X). In the latter case, one may also add ® or Q. This certainly provides 
an umbiguous framework for the notion of infinitesimal symmetries; however, 
one will gain nothing practically new from this reinterpretation. 

The situation is considerably different for the case of the KP and super KP 
hierarchies. For these equations, the differential-algebraic language seems to have 
a substantial meaning. Of particular importance is a ^-module structure hidden 
in the formulation of the KP and super KP hierarchy. (This observation for 
the case of the KP hierarchy is due to Sato, who stresses the relevance of the 
notion of ^-modules even in more general perspectives [S].) With the aid of this 
^-module structure, one can find a new set of generators wy (/ > 0,j < —1) in 
sé. This is the most direct way to see a connection with the geometry of infinite 
dimensional (super) Grassmannian manifolds; wy's can be identified with affine 
coordinates on an open subset therein. This also leads to : an explicit description 
of infinitesimal symmetries ÖA parametrized by elements A of an infinite matrix 
Lie algebra g/(oo) (for the KP hierarchy) or of its super-version g/(oo|oo) (for the 
super KP hierarchy), a differential-algebraic characterization of the T function, 
its symmetry contents related to central extensions of g/(oo) and g/(oo|oo), etc. 

In fact, ® and Q may be in a sense considered an analogue of the T 
function. This analogy becomes quite reasonable if we consider a hierarchy 
of the generalized self-duality equations discussed here. Their representation-
theoretic and geometric properties are however considerably different from the % 
function. 
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Introduction 

Historians interested in the evolution of Science will probably be very surprised 
when they will analyse all the strange fashions that have struck the scientific 
community in the second part of this century. They will certainly be aware of the 
political orientation of those who had launched many of these fake new ideas 
and wonder why mathematicians had not been more rational in their behaviour. 
Will they find another example of political censorship than the one that had 
suppressed two pages of the introduction of an article where I had described my 
scientific ideas [1] ? Will everyone agree that it was indeed slanderous that I had 
thanked there two of my teachers, Laurent Schwartz and Jacques-Louis Lions 
and that this part should definitely be cut? Had the censors thought that they 
could suppress the mention of other political facts and avoid me describing them 
elsewhere [2] ? Historians may wonder at the stupidity of these censors and ponder 
if they had even understood the meaning of the few lines that they had spared 
at the beginning: "Il y a une différence énorme entre l'étude des singularités 
d'équations aux dérivées partielles (linéaires ou non) et celle de leurs oscillations: 
c'est la différence entre la physique classique et la physique quantique". 

In this article I had described my point of view that the study of oscillating 
solutions of partial differential equations was the key mathematical question to 
investigate in order to shed some light on the strange rules invented by physicists 
for explaining natural phenomena. Every specialist of differential equations is 
aware of the distinction between finite and infinite dimensional effects and it is 
only the result of an intensive propaganda that so many have adopted a point 
of view about mechanics which was adequate in the eighteenth century when 
partial differential equations had not yet found their place and that continuum 
mechanics and electromagnetism were not even thought of. However, even if all 
the extensive knowledge about linear partial differential equations contained in 
the treatise of L. Hörmander [3] had been available at the beginning of the 
century, it would not have helped so much the physicists puzzled as they were 
by the spectroscopic measurements of light absorbed and emitted in some gases. 
One cannot blame then those who have invented the strange rules of quantum 

1 There is a huge difference between the study of singularities of partial differential 
equations (be them linear or not) and that of their oscillations : it is the difference between 
classical and quantum physics. 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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mechanics for their lack of knowledge of partial differential equations but one 
should blame those who have transformed these rules into dogma. As R. Penrose 
once wrote "Quantum theory, it may be said, has two things in its favour and 
only one against. First, it agrees with all the experiments. Second, it is a theory of 
astonishing and profound mathematical beauty. The only thing to be said against 
the theory is that it makes absolutely no sense" . In order to give a rational 
explanation of the puzzling measurements made in these experiments one needs 
an increased knowledge of partial differential equations and there are a few new 
mathematical questions that should be understood for that purpose. 

As light is involved we know that there will be some hyperbolic equations, the 
wave equation or Maxwell's system or some even larger system, and we expect 
that the linearised system will only have the velocity of light as characteristic 
speed so that we may reasonably restrict our attention to semilinear systems. Even 
standard questions as the relation between the wave equation and geometrical 
optics needs to be thought again. Fifteen years ago it was already clear why the 
mathematical results now found in [3] were not adapted to the goal that I was 
pointing at and a first reason was that one cannot expect to understand the partial 
differential equations of continuum mechanics without accepting discontinuous 
coefficients; even if one was ready to make smoothness assumptions and stay 
away from interfaces one definitely had to avoid assuming the coefficients to be 
infinitely differentiable or analytic. There is however a more important drawback 
of the linear theory of propagation of singularities which became more apparent 
once I had obtained my personal version of propagation using the tool of H-
measures [4] which I will describe in a moment. What the linear theory is really 
interested in is the propagation of regularity and this leads to a quite negative 
concept of a singularity which is not defined as a quantitative object; of course, 
measuring the propagation of Hs regularity instead of C00 regularity does not 
correct this defect in any way. The physically intuitive idea of a beam of light 
is then absolutely not described by the theory of "propagation of singularities" 
for partial differential equations and the inadequacy is hidden by the fact that 
the bicharacteristic rays which have appeared in the linear theory are precisely 
those which physicists had thought important in their formal computations. One 
should then criticise this approach of propagation of singularities for describing 
the properties of light as not making more sense than some physicists' rules; a 
better test for a mathematical tool than making the bicharacteristic rays appear 
is to be able to measure what is transported along them and tell what happens 
along the bicharacteristic rays to important quantities for physics like energy and 
momentum. 

As matter is also involved we face much more trouble because the question 
of what matter could be is at stake anyway and, even if the rules of quantum 
mechanics are indeed wrong, one cannot forget about the real defects of the 
classical concepts of light and matter. A probably good mathematical model to 
understand is the coupled Maxwell-Dirac system where matter is described by a 
complex four dimensional vector field and light is described by the electromagnetic 
field, the coupling, involving quadratic terms with the famous Planck constant 
h appearing as a coupling parameter between light and matter and not as this 
mysterious parameter that the dogma wants to attach to every hamiltonian. 

2 This is the first paragraph of a review by R. Penrose of a book by J.C. Polkinghorne 
"The Quantum World" in The Times Higher Education Supplement, March 23, 1984. 
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If we were to follow this indication we would be interested in understanding 
some mathematical properties of semilinear hyperbolic systems with quadratic 
interaction and the special role played by the four dimensional space-time where 
we apparently live would probably be linked to Sobolev's embedding theorem, but 
before playing such a game which accepts too much of the physicists' dogmatic 
postulates, we should look at a more rational explanation of the mathematical 
difficulties encountered in the spectroscopic measurements. 

Even if we do not know what atoms really are they do appear as tiny obstacles 
and we have then to face the difficulty of working with at least two scales, a 
microscopic one and a macroscopic one. In some way the practical goal of 
quantum physics is to compute corrections in the effective equations satisfied by 
the macroscopic quantities from a fine and possibly wrong description of what 
equation the microscopic quantities do satisfy. As mathematicians we should 
describe a general framework in order to understand more of this question and 
there are indeed choices to make and difficulties to overcome. 

The first obvious choice that we have already made is to work with partial 
differential equations and not with ordinary differential equations; this can be 
considered a lesson learned from A. Einstein about the defects of I. Newton's 
classical approach. There has been much propaganda in recent years for works 
emphasising finite dimensional effects in partial differential equations and one 
may indeed be attracted by some of the difficult and interesting mathematical 
questions which had led H. Poincaré to introduce so many tools and ideas before 
the development of quantum physics. It was another great mathematician who 
formalised some of the rules followed by physicists in their quantic games but 
it is surprising that J. Von Neuman would show that no ordinary differential 
equation could produce the same results as the rules of quantum mechanics and 
forget to question the very nature of that set of rules. Certainly if one believed 
that one should create a game that will generate a sequence of numbers one 
might be tempted by the mathematical properties of spectra of linear operators. 
Was then the dogma already well accepted before it became obvious that the 
spectroscopic experiments were not generating mere lists of numbers? Were 
mathematicians so impressed by this apparent success of functional analysis? 
Had there been an intentional effort of propaganda around functional analysis 
in order to avoid that mathematicians study more relevant partial differential 
equations of continuum physics in the spirit of what S. Sobolev and J. Leray 
had already been doing in the 1930s? Certainly, and L. Hörmander [3] is right 
in pointing at some misconceptions created by L. Schwartz's approach, but some 
other misconceptions have been propagated by his own approach to partial 
differential equations. Is there indeed a classical treatise on partial differential 
equations which does mention these properties of partial differential equations 
related to the strange effects observed in spectroscopy or more simply which does 
quote the relation between microscopic and macroscopic levels which is such a 
crucial question in physics? 

The mathematical tool of H-measures which I have introduced [4, 5] is a 
new step toward a better understanding of these questions and I have chosen 
the prefix H as a reminder that these objects had arisen naturally in the theory 
of homogenisation, a term to which I attribute a more general meaning than 
which is usually given in the rare books related to the subject like those of A. 
Bensoussan, J.-L. Lions and G. Papanicolaou [6] or of E. Sanchez-Palencia [7] 
where periodicity assumptions often obscure the methods which I had developed 
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for more general situations [8], partly in collaboration with F. Murat [9] and as 
an extension of earlier results of S. Spagnolo [10, 11]. The H-measures added to 
my previous description of the role of oscillations in partial differential equations 
[1] that of concentration effects whose importance in continuum physics I had 
not foreseen before the work of P.-L. Lions, R. DiPerna and A. Majda [12-16]. 
My initial purpose for introducing H-measures was to derive small amplitude 
homogenisation theorems [4, 5, 17] in order to explain why some particular 
formula obtained by.physicists [18] was indeed accurate despite the fact that the 
arguments used in its derivation did not make any sense. I can trace back my 
intuitive understanding about these objects to some formula for computing an 
exact quadratic correction term [19] appearing in a model which I had introduced 
earlier in order to understand some averaging question in hydrodynamics. It was 
only later that I found a way to use the same H-measures for describing the 
propagation of oscillations and concentration effects in some partial differential 
equations [4, 5] obtaining then a quantitative transport property in the form of 
partial differential equations in x and Ç satisfied by the H-measures. I wanted 
to avoid the standard theory of pseudo-differential operators [3] and construct 
what I needed for my quadratic microlocal tool of H-measures in order to 
be able to study partial differential equations of continuum mechanics without 
making spurious hypotheses of smoothness for the coefficients. However even for 
those who have devoted a long time reading [3] H-measures may still appear 
to be natural as they have been introduced independently by P. Gérard [20, 21] 
although the name of microlocal defect measures which he has chosen for them 
may reflect a negative attitude inherent in [3]. 

Of course H-measures are only a step toward the mathematical understanding 
of these questions of physics which I had sketched at the beginning and there 
are other pieces of that scientific puzzle which should not be left aside like the 
apparition of memory effects by homogenisation, which seems the mathematical 
explanation of what physicists attribute to their strange rules of spontaneous 
absorption and emission; it must be emphasised that these homogenisation 
results are obtained without any postulate of a probabilistic nature. There are 
some more or less classical cases of memory effects induced by homogenisation 
like viscoelasticity which can be found in Sanchez-Palencia [7] but the effects 
which I was mentioning are related to hyperbolic situations and have not received 
much attention apart from my own tentatives [22, 23] and that of Y Amirat, K. 
Hamdache and A. Ziani [24, 25] and so a lot remains to be done. 

H-Measures 

Contrary to wave front sets which can be attached to general distributions but 
are mere geometric sets endowed with a negative property of lack of smoothness, 
H-measures are only defined for sequences of functions converging weakly to zero 
in L2(RN) and express in a quantitative way the limit of quadratic quantities, 
the H-measure being zero in the case of strong convergence in L2(RN) and, 
because they are measures on RN x S^-1, they can see the action of a class of 
pseudo-differential operators of order zero. 

Definition 1. An admissible symbol s is a continuous function on RN x SN~X 

admitting a decomposition s(x, Ç) = Znan(Ç)bn(x) with the functions an being 
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continuous on SN~l, thé functions bn being continuous on RN and converging 
to zero at infinity, and such that £„||fl„||.||b„|| < oo where the norms are sup 
norms. The standard operator S with symbol s is the continuous operator on 
L2(RN) defined by F(Su)(Ç) = Enan(£/\i\)F{bnu)(£) where F denotes the Fourier 
transform . A continuous operator L on L2(RN) is said to have symbol s if L — S 
is a compact operator on L2(RN) . 

The only technical point to check is that the commutator L1L2 — L2Z4 of two 
such operators is a compact operator on L2(RN). 

Proposition 2. / / Un is a sequence converging weakly to zero in (L2(RN))P, then 
there is a subsequence and measures p1,j on RN x S^ - 1 , i,j = l„.,p, such that for 
every operators L\, Li with symbols s\, Si the limit of Li(Uf)L2(U1j)* is a measure 
v on RN defined by < v,0 > = < pSJ9<j)S\S2* > for every test function $ continuous 
with compact support in RN . 

One immediately finds that p is hermitian nonnegative and has a few other 
obvious properties, one of them being the following localization principle for H-
measures, which is analogous to the information on the wave front sets derived 
from application of the stationary phase method. 

Proposition 3. / / a sequence Un converges weakly to zero in (L2(RN))P, corre
sponds to a H-measure p, and is such that Ijjd^bijU^) converges strongly to zero 
in Hfol(RN) where the functions by are continuous, then one has ZjjÇibjjp3'1* = 0 
for k = l,..,p. 

Before describing the more technical property of propagation let us give a 
few examples of what was just mentioned. 

Example 4. Let w"(x) = V(X,X/E) where e is a sequence converging to zero with 
v defined on RN x RN and v(x, y) having period 1 in each component y7-, j = 
1,..,N; denoting by Y the unit cube, we assume that v is continous in x with 
values in L2(Y) and decompose v in Fourier series in y, v(x,y) = Hmvm(x)e2in^hy\ 
assuming moreover that vo is zero. Under these hypotheses, without extraction 
of a subsequence, the H-measure p associated to w" is defined by < p, <P > = 
%m J \vm(x)\20(x,m/\m\)dx for every continuous function 0 on RN x SN~{ with 
compact support in x. 

Example 5. Let w"(x) = E~N^2V(X/E) where e is a sequence converging to zero 
and v belongs to L2(RN). Without extraction of a subsequence the H-measure 
p associated to w" is defined by < p, 0 > = J|Ft;(^)|2^(0, Ç/\Ç\)dÇ for every 
continuous function $ on RN x SN~{ with compact support in x. 

Example 6. Let w" be a sequence converging weakly to zero in L2(RN) and 
corresponding to a H-measure p; assume moreover that for some continuous 

3 I use L. Schwartz's notations so that F(Su)(Ç) = f s(x, t;/\£\)e~2in(x-®u(x)dx for u smooth 
with compact support. 
4 z* denotes the complex conjugate of z. 
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functions bj, j = 1,.-5N, Zjdj(bjUn) converges to zero in H^(RN) strong. Then p 
satisfies P(x, Ç)p = 0 with P defined by P(x, Ç) — Zjbj(x)Çj . 

Example 7. Assume that the sequence Un converges weakly to zero in (L2(RN))N 

corresponds to a H-measure p and satisfies dtUj = djUf for i, j = 1,..,N. Then 
there exists a scalar nonnegative measure v on RN x SN~X such that pi,j = ^jV 
for i, j = 1,..,N. 

Example 8. Let un be a sequence converging weakly to zero in Hx(RN+i) and 
assume that for some continuous functions Q and ay, i, j = 1,..,N independent of 
xo, gdlun - Iijdi(aijdjUn) converges to zero in #/~c

1(RJV+1) strong; assume moreover 
that Un defined by Uf = d{Un for i = 0,..,N, corresponds to a H-measure p. Then 
piiJ = ÇtÇjV for i, j = 0,..,N and v satisfies Q(x, £)v = 0 with Q defined by Q(x, Ç) 
= Q(*Ko - Zijaij(x)ÇiÇj . 

The propagation effects for H-measures are related to the existence of 
quadratic balance laws and they take the form of partial differential equations 
in (x, Ç) satisfied by the H-measures. This is more quantitative than what can 
be said for wave front sets where it is the complementary property of regularity 
which is actually propagated. A precise commutation lemma is needed. 

Proposition 9. Under additional regularity hypotheses, if S\ and S2 are the standard 
operators of symbols s\ and S2 then dj(S\S2 — S2S1) is a continuous operator on 
L2(RN) with symbol £j{si,S2} where {,} denotes the usual Poisson bracket. 

In particular if si = a(Ç) and S2 — b(x) then the formula is valid for a smooth 
and b merely of class C1, thanks to a result of A. Calder on [26]. In the case of 
the scalar equation of Example 6 one can obtain then a propagation result under 
some natural regularity hypotheses. 

Proposition 10. Let un be a sequence converging weakly to zero in L2(RN) and 
assume that EjbjdjUn + cun = fn with fn converging weakly to zero in L2(RN), the 
coefficients bj being assumed to be real and of class C1 while c is only assumed to 
be continuous. Assume moreover that (un,fn) corresponds to a H-measure p. Then 
p1'1 satisfies the following transport equation < piil,{^,P} — 4>divb + 2$Ree > 
= < 2 Re/11 '2,0 > for every function 0 of class C1 in (x,£) with compact support 
in x, with P defined by P(x,£) = Zjbj(x)Çj . 

In the case of the wave equation of Example 8 one finds a similar result. 

Proposition 11. Let un be a sequence converging weakly to zero in H 1(RN+Ì) and as
sume that QÔQU11 - Eijdi(aijdjUn) = / " with fn converging weakly to zero in L2(RN), 
the coefficient Q being real positive independent ofxo and of class C1, the matrix a 
with entries ay, i,j = 1,..JS[ being hermitian positive independent ofxo and of class 
C1. Let Un be defined by Uf = d^ for i = 0,..,N, and assume that (Un,fn) corre
sponds to a H-measure p. Then phj = &Ç/V1,1 for i,j = 0,..,N, and pl,N+1 = &v1,2 

for i = 0,..,N and v1,1 satisfies the following transport equation < vlfl,{4>, Q] > = 
< 2 Rev1 '2 ,0 > for every function 0 of class C1 in (x,Ç) with compact support in 
x, with Q defined by Q(x,Ç) = Q(X)Ç% - Zya^x)^. 
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One can complete Proposition 10 as in [4] by proving a trace theorem on a 
noncharacteristic hyperplane and from that deduce a result of change of variables 
for H-measures under local C1 diffeomorphism, so that a theory on manifolds 
could be developed. A more interesting question lies in understanding the effect 
of semilinearity, that is when / " does depend upon w" or U" in the framework 
of Proposition 10 or 11. The difficulty lies in the fact that H-measures are 
intrinsically quadratic objects and do not then predict anything about the limits 
of trilinear quantities for instance. H-measures do provide an improvement on 
the method of compensated compactness that I had developed with F. Mural 
[27, 28] but so far have not provided an alternative approach for quasilinear 
hyperbolic systems of conservation laws in order to replace the method that I 
had introduced [28] based on Young measures and compensated compactness, a 
method which had been successfully applied by R. DiPerna [29, 30, 31, 32]. Ron 
DiPerna had pointed out many years ago the defects of that old method and the 
need for a dynamic way of describing oscillations; H-measures is still the best 
answer to that quest and it is obviously not sufficient. It is important to point out 
that results like Proposition 11 correspond to the possibility of preparing initial 
data as a beam concentrated at a point and pointing in some direction and then 
follow where the energy goes; in the spirit of Example 4 one can also prepare 
initial data that correspond to a H-measure concentrated at a point in space and 
charging a countable number of points of the unit sphere and still follow the 
energy along each of these countably many small beams of light; as wave front 
sets are closed they cannot even see only a countable dense set of the sphere. 

Other Results 

It would be unfair not to point out that P. Gérard has introduced quite interesting 
variants which I cannot cover here [20, 21]. I cannot either discuss of other 
applications like the relation with homogenisation [4, 17]. 

Conclusion 

In conclusion I was quite wrong in that small paragraph spared by the political 
censors [1] where I associated the study of "propagation of singularities" with 
classical physics as much better mathematical results connected to the propaga
tion of light are like the above Proposition 11. I was also partly wrong in my 
previous ideas on quantum physics and oscillations as I had forgotten to include 
concentration effects in my description. Both these conclusions were learned from 
the possibilities created by the new mathematical tool of H-measures but a lot 
remains to be done on the way to a better understanding of physics through 
increased knowledge of some precise aspects of partial differential equations. 

Obviously none of these new results are difficult and they could have been 
proved a long time ago by any of the best specialists of partial differential 
equations had they been interested in Science. 
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1. Introduction 

Microlocal analysis has the dual foundation of the theory of singular integral 
operators, which arose originally to treat elliptic PDE, and geometrical optics, 
which arose to describe solutions to wave equations. It was forged into a powerful 
general tool for linear PDE a little over 20 years ago, through the efforts 
of at least five groups, including Calderon and Zygmund and their students; 
Kohn and Nirenberg; Sato and his collaborators; Maslov and Egorov and their 
collaborators; and Hörmander. 

The basic object of microlocal analysis is the Fourier integral operator, which 
can be written as an oscillatory integral 

Au(x) = fa(x,y,9)ei^yß)u(y)dyd9, (1.1) 

where \p is a real valued phase function, typically homogeneous of degree 1 in 9, 
and the amplitude a(x,y, 9) belongs to a symbol class, typically characterized by 
estimates on its derivatives, e.g., 

\D],DlDla(x,yM < c^(0)^M-*l/>r+Jlrl (1.2) 

to define S™0. If a is asymptotic to a sum of terms homogeneous of degree m — j 
in 9, j = 0,1,2,..., we say a E Sm. An important special case of (1.1) is 

Au(x) = / a(x, Oei(pM)û(Ç)dÇ, (1.3) 

where û is the Fourier transform of u; the phase function is xp = cp(x, Ç)—y/;. One 
imposes a nondegeneracy condition implying that (Vçcp, £) >-» (x,Vx<p) is locally 
well defined; this is the canonical transformation associated to (1.3). Under 
appropriate conditions on xp in (1.1), one obtains a Fourier integral operator 
associated to a more general sort of canonical relation. The identity canonical 
transformation arises from the phase function x-Ç—y-Ç, for which (1.3) specializes 
to the formula 

Au(x) = / a(x, Ç)eiHû(t)dÇ (1.4) 
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for a pseudodifferential operator. If a G S™ô, we say the operator A in (1.4) 
belongs to OPS™0. 

Other sorts of pseudodifferential operators and Fourier integral operators 
have also arisen over the past 20 years, as tools in the study of various problems 
in PDE. Some of them, useful for certain problems in spectral theory and in 
scattering theory, will be described below. 

2. Diffraction Effects 

Operators of the form (1.3) describe propagation of waves away from a bound
ary, and also transversal reflection of waves off a boundary. Following earlier 
formal developments, Melrose [Mel] and Taylor [Tl] made rigorous analyses of 
propagation of singularities along rays hitting a boundary at grazing incidence, 
producing Fourier-Airy operators of the form 

L(F) = j[gA(Q + ihÄ(Q\A&oYleiQF(£)di;, (2.1) 

in which A = A+ is an Airy function, A+(z) = Ai(e+2ni/3z), 9(x,Ç),Ç(x,Ç) is a 
pair of phase functions, and g(x, Ç),h(x, £) is a pair of amplitudes. The phase 
functions satisfy a system of eikonal equations and the amplitudes satisfy a system 
of transport equations. The parametrix (2.1) applies for example to solutions to 
the wave equation utt — Au = 0 on Q=È.x(9 where (9 = W1 \ K, K smooth and 
strictly convex, with lateral boundary dQ = IR x dK. The Dirichlet condition can 
be formulated as u = f on dQ with / E $f(dQ), and we require u = 0 for t « 0. 
Then L(F)\QQ is given by an elliptic Fourier integral operator J, acting on F, and 
the parametrix is given by (2.1) with F = J~{(f). 

An important associated operator is the Neumann operator N, defined by 
Nf = du/8v\dQ where ü solves the Dirichlet problem with data / . From (2.1) one 
obtains the fundamental formula 

N = J(AÌ<P + BÌ)J-Ì (2.2) 

for a certain elliptic A{ e OPS^,B{ e OPS0. Here 0 is defined by (^/)A(^) = 
^(Co)/(^)5 where Co = l£l~^n appears in (2.1), and &(z) = A!(z)/A(z) is an 
Airy quotient. The operator A1& + B1 belongs to OPSL3Q; some of its operator 
properties are discussed in §3 below. 

In [MeTl]-[MeT2] this parametrix construction was applied to produce some 
detailed results on scattered high frequency waves, relating to the behavior of the 
outgoing solution v(x, X) to 

(A + X2)v = 0 on IR" \ K, v = e~axcu on dK. (2.3) 

This included a corrected Kirchhoff approximation, describing the behavior of 
dvv(x,X) for x E dK. We obtained an expansion of the form K(œ,x,X)e~iXx'a} with 

K(co,x,X) - ]T X2^-k-^jbjk(oj,x)Wu)(X^Z), (2.4) 
j,k>0 
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Z being a smooth function vanishing at the shadow boundary, determined in a 
subtle fashion by the symplectic geometry (in particular, not generally equal to 
v • co). The function W is given by 

W (T) = e~h3/3 f A(s)~i e~is% ds ; (2.5) 

it is rapidly decreasing as z -> —oo and satisfies 

!P (T) ~ £ (XjT1-^, T -+ +00. (2.6) 

This appears to sharpen and extend some formulas of Fok. It demonstrates 
rigorously the often divined transitional layer of width ~ X~~* about the shadow 
boundary. Work on the corrected Kirchhoff approximation for solutions to 
Maxwell's equations was done in Yingst [Yi]. 

The asymptotic behavior of v(x, X) away from dK exhibits two transitional 
regions near the shadow boundary, one of width ~ A" and another of width 
~ X~2. Near the shadow boundary, it was shown in [MeT2] that 

v(pcX) ~ Jb{x,CA)(^)^k)eiMx'C)d( (2.7) 

where b has compact support in ( and an asymptotic expansion in powers of X. 
This has a further expansion of the form 

X* [ea^po(x, X) + ea^Pl(x,X) + ea^p2(x, X)] . (2,8) 

The first term captures the direct wave, the third term the reflected wave, and 
the middle term represents a diffraction effect confined very close to the shadow 
boundary. The amplitudes Pj(x,X) have the following form: 

po(x, X) = a0(x, X*SQ(X), X*) (2.9) 

where here and below Sj(x) are smooth functions vanishing simply on the shadow 
boundary. ao(x,i,p) is a symbol of product type in x,p. 

P2(x,X) = a2(x,xh2(x),X^), (2.10) 

and a2(x,%,p) is also a symbol of product type. The most subtle term is 

Pi(x,X) = ai(x,X*si(x),X~*) (2.11) 

where a\(x,z,p) is C00 away from (x,p) = (0,0), rapidly decreasing as T —> oo, and 
has a conormal singularity at (0,0), which can be approached as X —• oo due to 
the negative exponent on X in the last argument of a\. 

Zworski [Zwl] has extended the analysis of the asymptotic behavior of v(x,X) 
to be uniformly valid as x approaches dK. In [Zw2] a rigorous study of the shift 
in the shadow boundary predicted by Keller and Rubinow is made; the shift is 

2 

asymptotic to CQX~* , well inside the smaller transitional region, hence in a region 
where the asymptotic expansion (2.8) simplifies. 
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In [MeTl] • there is also a uniform analysis of the near peak scattering 
amplitude, extending earlier work of [MjT] and [Me3] on the on peak behavior. 
The expansion is somewhat like (2.8). Again there are two transitional regions 
and a subtle term connecting them. This time the widths of the transition regions 
are ~ A " and ~ X~x. 

A key ingredient in these analyses was a normal form for Fourier integral 
operators with folding canonical relations, namely 

Piséi + P2sèï, Pi E OPSm, P2 E OPSm-*, (2.12) 

where sèi is Fourier multiplication by Ai(Ço) and sèi! is similarly defined. Using 
this, Farris [Fa] found a microlocal model for solutions to boundary problems 
with grazing rays, namely 

Ki(^+/^_)K2 (2.13) 

where Kj are elliptic Fourier integral operators and (sé+jsé-) is Fourier multi
plication by Af.(Co)M-(Co). 

Gliding ray problems arise for example if one considers the wave equation 
utt — Au = 0 on IR x K rather than Rx(D, where as above K c R " has smooth 
strictly convex boundary. In such a case, one has a parametrix like (2.1) with 
A+(Q replaced by Ai(Q. Since Ai(z) has real zeros, it is convenient to make an 
almost analytic continuation of ^(x, £) and evaluate it at Cn + iT for some T =£ 0 
rather than at <!;„. Then one has instead of (2.2) a formula for the Neumann 
operator involving &i, Fourier multiplication by Aif(Co)/Ai(Co)- It is of great help 
that, thanks to Melrose's work on equivalence of glancing hypersurfaces, one can 
arrange that C = Co on the boundary, Co(£) = ICI~5£n- Not having this introduces 
complications, which however were tackled in [Esl]. One needs to resort to energy 
estimates rather than use symbol calculus, and hence produces a less explicit sort 
of parametrix. 

Having the replacement for (2.1)-(2.2) described above for gliding ray prob
lems does not end one's job here. The operator &i is a rather complicated 
operator, a singular sort of Fourier integral operator with an infinite number of 
canonical transformations accumulating along the leaf relation of the character
istic variety for the boundary. One key method for taming &i is described in the 
next section. 

3. Airy Operator Calculus 

Solving boundary problems other than the Dirichlet problem for wave equations 
with grazing rays involves, in addition to (2.1), the solution to an equation of the 
form 

(A$ + B)f = g, (3.1) 

with A E OPS%,B E OPS1. IfB is elliptic, one has an elliptic operator in OPSL, 
3>U 

while if A is elliptic and the symbol of B vanishes on {Co = 0}, one has a 
hypoelliptic operator. There is a special calculus of Airy operators, extending 
that of [Me2], sketched in [T5] and treated in detail in [MeT3], which provides 
more analytical detail on compositions and parametrices of such operators than 
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the Sy3Q calculus, based on some remarkable identities which follow from con
structing the Neumann operator (2.2) using different choices of solutions g, h to 
the transport equations for the amplitudes in (2.1). 

The full advantages of this approach are apparent when one treats the ana
logues that arise in problems with gliding rays, i.e., composition and parametrices 
for operators like 

Am + B, (3.2) 

with A and B as in (3.1). These are highly singular variants of Fourier integral 
operators, with a rather subtle operator calculus. Nevertheless, if B is elliptic, 
the operator (3.2) is shown to have a parametrix in the class stfi~ly±, where by 
definition sèi^h± consists of operators with asymptotic expansions of the form 

T ~ B + £ Aj<PiCj, B E OPSm, Aj E OPSm>, Cj E OPS0, (3.3) 

where ny + ^ = m — £j, {j > 0 is an integer, tj -> oo as j —> oo. The sign -f or — 
reflects the choice of sign of T, with Co evaluated at C„ + /T. If A is elliptic and 
B has vanishing symbol on {Co = 0}, the operator (3.2) has a parametrix of the 
form 

(C<Pi~l + D)R(1 + EQi^R)-1 (3.4) 

with C E OPS~\D E OPS~\R E OPS1* elliptic, E E OPS'1. Then 

E<Pi~lR : Hs —> # s + 5 , (3.5) 

so the Neumann series for the last factor is asymptotic. This affords a symbolic 
construction of parametrices for numerous boundary problems involving gliding 
rays. 

There are alternative approaches to many boundary problems, both in grazing 
and gliding cases, that involve applying energy estimates to such equations as (3.1) 
or its analogue using the operator (3.2). Information so obtained is less explicit 
than by a symbolic parametrix construction, but can be useful all the same. 
Energy estimate approaches also have a flexibility to apply to cases not amenable 
to explicit constructions. Eskin [Es2] has proposed a number of techniques along 
those lines. In [T6] the Fefferman-Phong inequality was brought to bear on a 
number of equations of the form (3.1). 

4. Functional Calculus 

Let A be a self adjoint elliptic operator in OPS1. It is convenient to analyze 
many functions of A via 

f(A) = Jf(t)ellAdt, (4.1) 

since eUA is a group of Fourier integral operators, of the form (1.3) for \t\ small. 
A 

If / belongs to a symbol space, f(t) is singular only at the origin, and is rapidly 
A A A A 

decreasing as \t\ —• oo. One can write f(t) = / i W+/2W where f\ has support near 
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t = 0 and J2 E ^(IR). We can use (1.3) to analyze f\(A) as a pseudodifferential 
operator. If A acts on functions on a compact manifold M, then /2(A) E OPS~œ is 
for many purposes negligible. If M is not compact, A= (c — A)*, (with c — A > 0), 
and / is even, one can replace (4.1) by 

- / 
f(A) = / f(t) cos tA dt, (4.2) 

and exploit finite propagation speed to get useful information on f2(A). 
Using (4.1) to evaluate the trace of f(A) and hence give sharp results on the 

spectral asymptotics of A was one of the early spectacular applications of Fourier 
integral operators. In Hörmander's paper [Hoi], a key point is to analyze the 
trace of (4.1) for f(X) = fT(X) = f(X - T) as T -> 00, given / E Cg°(R) having 
small support. [DG] extended this to any / E Cg°(R). In [T2] and Chapter 12 of 
[T3] a number of applications of the fact that f(A) E OPS§ when / E SffTR) 
were discussed. It was also shown how functional calculus applied to the Laplace 
operator on S2 led to a clean treatment of the problem of scattering of waves in 
R3 by a sphere, a special case of the general problem discussed in §1 which has 
been treated by many authors, generally with a heavier dependence on special 
function theory. About the same time, Colin de Verdiere [CV] discussed a similar 
theory of functions of pseudodifferential operators, emphasizing applications to 
semiclassical asymptotics for spectra of Schrödinger operators. 

The method of separation of variables, combined with a harmonic analysis 
on the base using the techniques described above, were used by [CT] to give a 
detailed analysis of diffraction of waves by a cone. 

The formula (4.2) was exploited in [CGT] to produce fine estimates on the 
heat kernel on a variety of complete Riemannian manifolds. Of particular interest 
were those for which the Ricci tensor was bounded from below; also stronger 
hypotheses, such as C°°-bounded geometry, yielded stronger results, such as LP-
boundedness of (4.2) for / E SfÇR) holomorphic in a strip of width related 
to the volume growth of M. In [CGT] we used this to recover known results 
on LP -boundedness when M is a symmetric space of rank 1. In [DST] a study 
was made of the Lp-spectrum of the Laplace operator on geometrically finite 
quotients of hyperbolic space. In [T8] the argument of [CGI] was honed and 
yielded results on general symmetric spaces of noncompact type, sharp enough 
to establish conjectures on what is precisely the Z/-spectrum of the Laplace 
operator. In such a case, as is well known, the L2-spectrum of —A is [|g|2,oo). 
Then the Lp-spectrum is shown to be precisely {|g|2 + z2 : |Imz| < ß — 1\ • \Q\}. 

Furthermore, with H = —A — \Q\2 > 0,L = Hï,f(L) is bounded on Lp provided 
1 < p < 00 and / is holomorphic on a strip |Imz| < ß — 1| • \Q\ and is a 
symbol of order 0 there. Recently, J.Anker [An], [An2] has further extended these 
arguments. 



Microlocal Analysis in Spectral and Scattering Theory and Index Theory 1231 

5. Semiclassical Asymptotics and Gauge Fields 

Let M be a Riemannian manifold, G a compact Lie group, P —> M a principal 
G-bundle. A gauge field is defined by a connection on P. Corresponding to each 
irreducible unitary representation X of G is a Hermitian vector bundle Ex —> M 
with connection, V ,̂ and a Hamiltonian operator H® = V^V .̂ If a scalar potential 
V is also given, a semiclassical analysis of the resulting quantum system involves 
study of the spectrum of 

Hx = h2H°x + V, h = \X + ö\-\ (5.1) 

as h —• 0. Thus X —> oo in a Weyl chamber. This problem was studied in [ST1]-
[ST2]. In particular, given / E ^ ( R ) , an asymptotic expansion was made of 
Tr f(Hx); it was shown that 

Tvf(Hx) = (K,xx)=dxß(X + S) (5.2) 

for a Weyl group invariant symbol ß, defined by the spectrum of a certain central 
distribution K on G arising from the operator /(—A^L) E OPS°(P), where 

L = A + {V-l)A
p

G-\ö\2V, A = -AP
G + \Ö\2, (5.3) 

A being the Laplace operator on P and AQ the vertical Laplacian. One arranges 
that V > 1. Methods of §4 were used to analyze /(—A^L). We have K = 
TrG f(—A~lL), where the 'G-trace' of an operator on C°°(P) with Schwartz 
kernel K(p,q) is defined to be 

Kfe) = JK(p-g>P)dV(p). (5.4) 

In [GU], using different techniques, a different sort of asymptotic study of 
the spectrum of (5.1) was made, as X —> oo along a ray. In [TU] a synthesis of 
these results has been achieved. We study the asymptotic behavior of 

Tr fih-'HpiHx-c)), h = \X + 5\-i (5.5) 
A 

as h —> 0, for a given e E R, a regular value of V, given / E CQ°(R). This is 
analyzed in terms of the G-trace of /(Q), where 

Q = ( - L ) - i ( - L - cA) E OPS{(P) • (5.6) 

Now Q is typically not elliptic, but it is an operator of principal type, with 
real principal symbol. A modification of the method of §4 shows that, for 
/ E C Q ° ( R ) , / ( 0 is a Fourier integral operator on Cœ(P) with a canonical relation 
given by the leaf relation on the characteristic variety of Q. Then Tre f(Q) is 
under reasonable geometrical conditions a central Lagrangian distribution on G, 
whose nature reflects the classical dynamics of the gauge and scalar field on the 
Wong bundle. Harmonic analysis of Tre f(Q) involves restriction to a maximal 
torus T , an operation for which clean intersection hypotheses often fail, if G has 
rank ;> 2. In the simplest cases there can arise distributions on T associated to 
transversally intersecting Lagrangians, thus giving rise to nonclassical asymptotics 
for (5.5). 
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6. Operator iST-Theory 

Atiyah proposed K-homology as an abstract setting for index theory, and this 
was developed by Brown, Douglas, and Fillmore and by Kasparov and others; 
see [Bl]. In [BDT] an investigation was made of cycles defined by elliptic dif
ferential operators. It was shown that every closed extension of a first order 
elliptic differential operator D, acting on sections of a vector bundle over a 
smooth Riemannian manifold M, not necessarily complete, defines a class [D] in 
KK(Co(M),<E), independent of the choice of closed extension. The proof involves 
a use of (4.1) and finite propagation speed. In case M is contained in M, compact 
with boundary, consideration of the boundary map d : KK(Co(M),<£) —> K\(dM) 
applied to cycles coming from different closed extensions leads to identities in 
K-homology. 

For example, if M = Q is a pseudoconvex manifold with the property that 
the ô-Neumann problem has compact resolvent on (0,p)-forms, for p ^ 0, then 
taking two natural closed extensions of D = d + d and applying the boundary 
map produces the identity 

[DdQ] = [zQ] in K,(dQ) (6.1) 

where Dga is the Dirac operator on dQ, with its natural spinc-structure, and [TQ] 
is the Toeplitz extension. This identity refines and generalizes Boutet de Monvel's 
index theorem for elliptic Toeplitz operators. It also leads to a number of other 
identities in J£-homology. 

Identities in Ki(M), including (6.1), can be used together with the Bott map 
to produce identities in KQ(M). 

In [T9] an examination was made of ways in which differential operators 
and pseudodifferential operators define elements of Kj(W°(M)), where W°(M) is 
the C*-algebra which is the L2-operator norm closure of OPS°(M), in case M 
is compact. It was shown that in some cases (6.1) has a further refinement as 
an identity in Kl(W°(dQ)). I suspect that in general the two elements differ by a 
quantity which can be described in terms of 

T : K°(M) -* Ki(W°(M)), (6.2) 

which arose in [T9] to describe an obstruction for an elliptic pseudodifferential 
operator acting on sections of a vector bundle to define an element of K°(W°(M)). 

The K-theory of *F°(M) can be thought of as a microlocal version of the K-
theory of M. Extra structure arises, partly due to the richer structure of ideals; in 
particular, if A c T * M \ 0 is a closed conic set, one can form W®(M), the closure 
of the set of elements of OPS°(M) whose principal symbols vanish on A. For 
example, if M has a contact structure, one can let A be the contact fine bundle 
(\0); then W^/W^ « C(M)®C(M). To give one example of a natural cycle arising 
in this context, if M = dQ is the boundary of a strongly pseudoconvex domain 
in (C2, db defines an element of KK(W^(M),(D). It is of interest to compute the 
(co)boundary map Ö : KK(W%<L) -* K1^0/^), isomorphic to KÌ(M)@KÌ(M) 
in this last case. It is noted in [T9] that, with DM as in (6.1), 

S[db] = ([DM],-[DM])- (6.3) 
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Problems on Limit Sets of Foliations 
on Complex Projective Spaces 

César Camacho 

Instituto de Matemàtica Pura e Aplicada, Estrada Dona Castorina 110 
CEP-22460, Rio de Janeiro, Brasil 

We consider differential equations 

q = P(x,y)dy — Q(x,y)dx = 0 

where P(x,y) and Q(x,y) are complex polynomials in the complex variables 
(x,y)EC2. 

The integrals of this equation are either open Riemann surfaces, passing 
through points where not both P and Q vanish, or singular points (xo,yo) € C2 

where P(xo,yo) = Q(xo9yo) = 0. These integrals define a foliation of C2 that 
extends naturally to a foliation with singularities, #", on CP(2) the complex 
projective 2-space. We assume from now on that singularities are isolated. 

The first to study these foliations from the local point of view around singular
ities were C.A.Briot and J.C.Bouquet in 1856 and later by H.Poincaré, P.Painlevé, 
H.Dulac. Nowadays this local theory is very much developed specially due to 
the contributions from the Soviet, French and Brazilian schools on this subject, 
despite the existence of several interesting problems, for instance the developing 
of a bifurcation theory. 

On the other hand, from the global point of view the dynamics of these 
foliations is far from being understood and it is really in the beginning. Here 
we wish to pose three problems concerning the most elementary concept of the 
dynamics of a foliation, that is, its limit set. 

As any leaf L of SF is open, we define the limit set of L as 

lim(L) : = f | r \ X n 

where Kn a K„+i <= L is a sequence of compact subsets of L such that (Jn^i &n — 
L. Then define 

lim^ r = |Jlim(L). 
L 

So l i m ^ is a closed, invariant subset of CP(2). 

Problem 1. Classify all foliations whose limit set is analytic. 

When lim SF is analytic and has dimension zero we have the following 

Proceedings of the International Congress 
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Theorem (G. Darboux). / / lim SF is finite then SF admits a meromorphic first 
integral, i.e. there are polynomials f and g such that the leaves of SF are given by 
f-cg = 0,cEC. 

Notice that by Remmert-Stein theorem lim(L) is finite if and only if L is 
analytic. 

A simple example where the limit set has dimension one is the linear foliation 
given by 

££ : Xxdy — ydx = 0, X £ R. 

Then lim i f is a union of three projective lines : the x and y-axes, and the line 
at infinity. The holonomy of each one of these lines is hyperbolic, i.e. it contains 
an element whose linear part is of the form z i-> Xz with |A| ^ 1. The following 
theorem shows that foliations with hyperbolic limit set of dimension one are 
essentially linear. 

Theorem (C. Camacho, A. Lins N., P. Sad). Let A = l imJ r be an analytic subset 
of dimension one such that: 

(i) The holonomy of each irreducible component of A is hyperbolic. 
(ii) The number of séparatrices at each singularity is finite. 
Then there is a rational map F of CP (2) and a linear flow ££ such that SF = 

F*se. 

Sketch of Proof. The proof consists of four parts. The first one contains all the 
dynamics of the problem. 

L Lemma. Let 0 E V c C be a neighborhood and f,g:V,0 —> C, 0 holomorphic 
local diffeomorphisms such that |/'(0)| < 1. Suppose that for any p E V the orbit 
0(p) of the pseudogroup generated by f and g satisfies 0(p) \ 0(p) c: {0}. Then 
f°g = g°f. 

Thus the holonomy group of each irreducible component of A is abelian and 
linearizable. 

II. The Resolution of ^ . Suppose that the singular set of SF is, sing SF = 
{pi>--->Pm}- The resolution of SF (Theorem of Bendixson-Seidenberg [1, 9]) con
sists of a proper holomorphic map n:M —> CP(2) which is obtained as a certain 
composition of finitely many quadratic blow upfs at the points ofsing SF, such that 
if D = n~1 sing SF is the divisor, then: 

(i) TC\M\D is a diffeomorphism onto its image. 
(ii) SF = %*SF is a foliation leaving D invariant with isolated elementary sin

gularities which in local charts (x, y) have one of the following forms 
a) simple: X\xdy — (^y + • • )dx = 0, ^ £ Q + 

b) saddle-nodes: (x + .. )dy — ypdx = 0, p > 2. 

Proposition. All components of D (and soofA=AUD) are hyperbolic and there 
are no saddle nodes in sing SF. 

This follows from the index theorem proved in [2] applied to the resolution 
of J*\ 
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III. Proposition. There is a closed meromorphic one form co in CP(2) such that: 
(i) The polar divisor of co, (co)oo, has order one and is contained in A. 
(ii) In CP(2) \ (û))QO, co induces &. 

The proof of this proposition consists in showing that once^ all singularities 
and holonomies of A are linearizable it is posssible to cover A by local^ chart 
neighborhoods (xa,ya) E Ua, a E A, such that if singSF n Ua = cj) then SF\Ua is 
defined by dya = 0 and if sinj> SF n £/« ^ cj) then this intersection is a point p EUa 

where x(p) = y(p) = 0 and SF\ua is given by x«dya — X^y^dx^ = 0. We assume also 
that if UKnUß ^ (j) then it is simply connected. A form to is then defined in UaUa 

as &„ := ^ in regular neighborhoods Ua and as &a := ^ — A«—* in singular 
neighborhoods l/a. If C/a n Up =fc cj) are two regular neighborhoods it is proven 
using the existence of a hyperbolic element of the holonomy that the change of 
coordinates yß = Lßa(ya) is linear, thus coa = cbß in Uap\Uß ^= cj). Similarly if 
Ua is singular, Uß regular and UanUß =/= cj) one can show that cbß = ga • œa in 
UariUß, where ga is holomorphic independent of ß. 

The form œ induces co = n*œ in a neighborhood of A a CP(2). Now, since 
CP(2) \ A is a Stein manifold this form a> extends to CP(2) by a generalization 
of Levi's theorem. 

IV. Construction of i f and F. Here we follow Cerveau-Mattei [4]. The differential 
form co restricted to C2 has the following polar divisor: 

m 

r = (œ)o0nC2 = \Jrj where P; = (fj = 0) 

and each fj is a polynomial. 
Since 

Then we can show that 

where 

dfo 
/ o ' 

Xj = 12ni / co / • 
Jyj 

and y; is a closed path making a simple tour around Fj in a small transverse 
cross section to Py. The holonomy group of Po is generated by {/if1,... ,/4"'} ^ C* 
where the ^/s are integers and pj = exp 2niXj/Xo. Since this group is discrete it 
is possible to find integers u\,...,um\ vo,...,vm such that for 0 = f \ l . . . / " ; " and 
¥=fo ••./»;" we have 

dW d<l> 
^ - + A ^ = 5o)|c2> A,<5eC*. 

Then the map is F = ($, T) and JS? : ä~f + X<% = 0. D 
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It was shown by Il'iashenko and his students [6, 8] that there are open sets 
of foliations exhibiting dense leaves, see also Cerveau [5]. 

The following problem concerns only those foliations which do not admit 
algebraic leaves. 

Theorem (A. Lins N. [7]). For an open and dense set of foliations ofCP(2) there 
are no algebraic leaves. 

When no algebraic leaves exist questions about limit sets are more subtle. 
Along this direction we have. 

Problem 2. Do nontrivial minimal sets exist? 

A minimal set of SF is a closed, invariant, nonempty subsets of CP(2) which 
is minimal with these three properties and nontrivial means it is not a singularity. 
Thus the problem above refers to the existence of a leaf of SF which does not 
accumulate on sing SF. What is known about this problem is the following 

Theorem (C. Camacho, A. Lins N., P. Sad [3]). If M is a nontrivial minimal set 
of &. Then 

1. Jl is unique. 
2. Any leaf accumulates in Jt. 
3. Any leaf in Jt has exponential growth, is a hyperbolic Riemann surface and 

has no parabolic ends. 
4. There is no SF-transverse invariant measure with support in Jt. 

Recently Bonatti, Langevin, Moussu, Tischler proved also that there is a leaf 
in Jl with nontrivial linear holonomy. 

Finally we have the following question which intends to establish a relation 
between these foliations and the iteration of endomorphisms of the Riemann 
sphere. 

Problem 3 (Sad's Conjecture). Assuming all singularities of #" generic then lim J^ 
is the closure of the séparatrices of SF. 
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The Dynamics of Non-uniformly Hyperbolic Systems 
in Two Variables 
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One of the most interesting aspects of dynamical systems is to try to understand 
the nature of 'chaotic' behavior and in particular to describe the 'strange' at-
tractors. This problem is in a natural way related to the nature of turbulence 
and there is an overwhelming mass of numerical information but the rigorous 
mathematical results only apply so far in very special situations. 

Nevertheless, there exists today a solid foundation and basic definitions. Let 
me first recall part of this. We consider a smooth mapping x —• T(x) of a compact 
domain @ into itself where 2 c IR" or T". As first realized by Pesin (see e.g. [12]) 
the starting point should be an invariant measure p, i.e. p > 0, p(T~x(E)) = p(E), 
p(<2)) = 1. The existence of such a measure is obvious, we can e.g. start from 
a point mass at a point, push this forward, take an average and a weak limit. 
The basic fact is now that Liapounov exponents exist a.e. with respect to such 
a measure. This means that we can split the tangent space ®Ej(x) so that for 
VEEJ 

hm — - ^-Li = Xi(x) 
n J 

exists a.e.(/i). In the case of Anosov-mapping this splitting is continuous and 
Xj(x) ^ 0, so that expanding and contracting directions are uniformly separated. 
This may be called the uniformly hyperbolic case. In this case the metric entropy 
hß of the pair (T,p) can be written 

'v = / (Z 4M + ) d ^ 
and the conditional measures along the unstable foliation Wu(x) are absolutely 
continuous with respect to Lebesgue measure in these directions. 

From the point of view of numerical studies a third property of (T,p) is 
relevant. Let's call p a physical measure if there exists A of positive n-dimensional 
Lebesgue measure so that for Lebesgue a.a. x E A and all cp E C^fô) 

;X>(T>(x))-> fcpdp. 
n 1 J 

This holds for every ergodic component of p in the Anosov case. 
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It turns out that all of the above can be generalized to non-uniformly hy
perbolic systems. For simplicity assume that Xi(x) ̂ = 0 a.e. (p). Briefly stated: 
the validity of the entropy formula and the absolute continuity of p in unstable 
directions are equivalent (Ledrappier, Young) [7]. p is in this case a physical 
measure (if it is ergodic) [13]. We call such a p a Sinai-Bowen-Ruelle-measure. 

In spite of the generality and completeness, the main question remains open: 
do (SBR)-measures exist? This question has to be addressed from the beginning 
and seems to mean that we must build unstable and stable manifolds by hand 
so that the constructions work Lebesgue almost everywhere. When this has been 
done one can then read off the Pesin properties of the implied measures. 

Let us first discuss the 1-dimensional case. At the previous congress Jakobson 
[6] gave a report and he also constructed an absolutely continuous invariant 
measure for the mapping T = 1 — acp(x) on (—1,1) into itself, cp(t) = t2, for a E 
set of positive Lebesgue measure [5]. The result applies to more general cp(t), e.g. 
cp = \t\p. It is well understood that once we know the increase of the derivative 
at the critical value 

Dn = \Tn'(l)\ 

then the existence of a (SBR)-measure follows. In fact, Nowicki-van Strien [10], 
have the following beautiful result: if 

^<p- 1 (ö- 1 )<c» 

then p exists. (This result should be optimal). 
Let us consider somewhat further how one can obtain the increase of Dn(a), 

now considered as a function of a for, say, T = 1 — ax2. Setting Xj(a) = Tj(l;a) 
we have Dn = Ylo~ \ — 2axj(a)\. If ao corresponds to a situation where 0 is strictly 
pre-periodic and the resulting cycle is repelling, Dn(ao) is obviously exponentially 
increasing (the simplest case is ao = 2; 1 —> —1 —> —1 —>•••). It is natural to 
study parameters a close to ao and use the parameter to avoid very small values 
for xn(a). It is easy to prove that |x'w(a)| ~ Dn(a) provided 

zi < oo 

and the larger Dn the more effectively we can avoid very small values of xn. It 
can be proved that Jakobson's result holds around every ao (see [2] for ao = 2). 

The basic property of a dynamical system — as opposed to purely random 
motions — is the quasi-periodicity. A return of xn to (—e, e) forces an especially 
strong repetition of orbits since |xw+i —1| < C-e2 and xn+j behaves as x7- as long as 
|xn+y— Xj\ < \xj\/j2 (say). Observe also that during this period \xn+j — Xj\ ~ DjX2. 
If we slightly weaken the sufficient condition DjX2 < 1/j2 to < 1 we obtain the 
following model (see [4]) for the amount of randomness in the sequence Dn(a). 

Let {An^oo)}™ be the following stochastic process. 

(a) Jo M = 1 ; 
(b) there exist stopping times {nj(co)}f, n\(co) = 1 ; 
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(c) If n is a stopping time, choose a number tn at random with uniform 
distribution in (0, A) and independent of the past and define 

An+j(co) = An-i(œ)tAj(<D) 

for j = 0,1, • • • , m — 1 as long as 

t2A,{(o) < 1. 

If m < oo the next stopping time is n + m. 
It is an easy fact that if A > e then 

limiHi^ >o 
n 

with probability 1. 
Interpreting parameter space as probability space and An = D„ this statement 

contains all the essentials of the chaotic behavior for these one-dimensional 
systems. 

Let us now turn to the two-variable case. J.Palis [11] has proposed the 
following scenario for the creation of strange attractors (i.e. an invariant set 
A, WS(A) 3) a neighborhood of A, with a dense orbit with positive Liaponov 
exponent). Let T(x;a) depend on a parameter and let 0 be a fixed point which 
is hyperbolic (one eigenvalue > 1, one < 1, the product < 1). Let Ws(a), Wu(a) 
be the stable and unstable manifolds through 0 and suppose Ws(ao) is tangent 
to Wu(ao) at some point po- Then, for a close to ao, T(x;a) has, for a set of 
positive measure of the parameter, a strange attractor. This has in fact been 
proved recently by Mora-Viana [8], see Fig. 1. 

Wu(a) 

Ws 

-**- Ao Wu 

Ws(ao) 

Fig. 1 

It turns out that the basic properties of T show up already for the special 
(Hénon) map 

f 1 — ax2 + y 0<b <bo 

\ bx ao < a < 2 
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with bo arbitrarily small and ao close to 2. The reason is that some suitable high 
iterate Tn of T maps a small box close to po into itself and the basic behavior 
of Tn is obtained from its second order terms and the eigenvalues at 0. Let us 
therefore try to understand the special case To, see Fig. 2. 

Ao 

-B0 

öi 

. vDT 

ßo 

) > « — Qn 

Ao 

Fig. 2 

Tb(x,y) has a fixed point F at ~ (^, | ) and the eigenvalues are ~ (—2, | ) . The 
unstable manifold Wu looks like Figure 3 (see next page), and it is easy to see that 
if an attractor exists it is c Wu. We would expect Wu to be the strange attractor. 
Since b is small we expect \\DTfi|| ~ Dn corresponding to the case b = 0. Most 
directions would then expand for Tß but since det (Tß) = (—b)n some very strong 
contracting direction must exist. We need to find this and to make a foliation 
along these directions. The expanding foliation is clearly Wu and we need most 
leaves to be long. The 'critical' values are those e E Wu for which the tangent 
direction of Wu = the contracting direction and this set is located in (—b, b) as 
indicated below (Only the intersection with Wu is relevant and this is formally a 
Cantor set). It now turns out that existence of contracting directions depends on 
the simultaneous existence of expanding directions but the accuracy is increased 
by powers in b and the situation therefore allows for a boot-strap-argument. 
We prove in the end [3] that all critical points are uniformly expanding after 
parameter exclusion. This amounts to using the 1-dimensional argument and to 
verifying, for the Cantor set of possible starting points c, 

\\DTS(c)\\>ey\ 

We now have the setup for a foliation and for the understanding of Wu. A 
(SBR)-measure can be constructed [1] starting from arc length on a sheet of Wu 

and pushing this forward. Most mass will be located on rather long arcs cz Wu. 

Let me elaborate some more on this constructive aspect of the Pesin theory. 

file:////DTfi
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D7o = 

Fig. 3 

—2axo 1 
b 0y 

transfers a vector (l,q) of slope q at (xo,yo) to a vector of slope q\ where 

and 

q = 2axo H 

\\DT(l,q)\\2 = (-2axo + q)2+b2. 

For q = qo = 2axo we have length b so this direction is almost maximally 
contracting. If we choose 

q\ = 2ax\ 

we again contract and get in the general case 

b 
q = 2axo H - . 

2axi + 
92 

It is natural to define 

qn = 2axo + 

2ax\ + • 

'•. +2ax„_i 

and call this the contracting direction and 

Vn- y' = qn(x,y) 

the n-th order contracting vector field. The qn are very unstable but if we have 
expansion along (xo, • • • ,xv_i) 

\qv(x>y)-Qv-i(x9y)\ < i v _ 1 . 
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We now obtain a stable foliation by integrating along the vector field Vn where we 
get contraction by bn. The expansion is preserved under this small perturbation 
and we obtain in the limit J^s(xo,yo) for Lebesgue a.a. points (xo,yo) along Wu. 
Whether this holds for Lebesgue (dxdy) a.e. point in 3 remains open but is 
probably true. 

Let me summarize what we now know in a theorem. 

Given b > 0, sufficiently small, there exists a set E of positive measure so that 
for a E E 

(i) To(x,y) has a strange attractor 
(ii) To(x,y) admits a unique (SBR)-measure 

(iii) for any a E E, there exists d £ E, so that any e > 0 \a — a!\ < s and T(x,y,ct) 
has an attractive cycle. 

It is still not known if for a E E almost all (Lebesgue) points in $) generate 
the (SBR)-measure but this seems very likely. 

Let me end by some comments. 
The original Hénon simulation concerned the parameter values (1.4,0.3). It 

is most likely that the Mora-Viana-result applies and we have strange attractors 
arbitrarily nearby. However, the most natural conjecture here is that the problem 
of proving existence of a strange attractor for a particular parameter value is in 
some rigorous sense undecidable. To develop this aspect of (even one-dimensional) 
dynamics seems an interesting task. 

The approach can be generalized to n dimensions when (n — 1) eigenvalues 
are very small and one eigenvalue is > 1, so that the unstable manifold is 1-
dimensional [9]. The case of > 1-dimensional Wu has not been studied. One can 
see possibilities of progress also then. 

It was perhaps not so clear from the presentation but it is of central im
portance for the argument that the Cantor set of critical points is very thin. 
This made it possible to consider every critical point independently and obtain 
uniform expansion. We could then disregard the distribution of the orbit in the 
"vertical" direction. However, for an interesting case such as the standard map 
o n T 2 : 

( x' = k sin x — 2x — y ( 

the critical set basically is two 'curves' (x ~ f, y ) a n d the distribution along 
these 'curves' must be understood. The problem here remains open even if k is 
very large. 
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The Acceleration Operators and Their Applications 
to Differential Equations, Quasianalytic Functions, 
and the Constructive Proof of Dulac's Conjecture 
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Mathématiques, Bâtiment 425, Université de Paris-Sud, Centre d'Orsay 
F-91405 Orsay, France 

We introduce (§§1,2) a general apparatus (resurgence, alien derivations, acceler
ation, etc.) that enables one to study and resum most divergent expansions of 
natural .origin. We then proceed to give three select applications (§§3-5). 

§1. Resurgent Functions, Alien Derivations and Medianization 

The Singularity Algebras ^(Se) and ^ i n t (5 ö ) 

Let Ç be the Riemann surface of log £ and So (resp. Solto2) the semi-axis arg( = 9 
(resp. the sector 9\ < arg£ < Ö2). A major cp on So is an analytic germ defined 
on So-2n,e close to 0 ("at the root of So-2n,o")' The minor cp of cp is defined at 
the root of SQ by cp(Ç) = cp(Q — <p(( • e~2nî). A singularity of direction 0 is a class 
cp of majors cp modulo the space of regular (i.e. holomorphic) functions at 0.-A 
singularity cp is said to be integrable iff: 

' Çcp(Ç) —> 0 as C —• 0 on So^nß and 
(1.1) 

[°mo\\dc\ 
Jo 

< +00 for Co £ SQ close to 0. 

Integrable singularities are fully determined by their minor. 
For any two classes $ i 5 $ 2

 G ^(Se) and u E So-2n close to 0, the class <p3 of 
the major <piiU defined by 

(1.2) h,«(0= [ V(Ci)fa(C-Ci)dC, 
Ju 

(u E S6-2n J C and ( - W G SG-2n,G-n) 

depends neither on u nor on the choice of fa in $,-. The convolution <p1 * cp2 = cp3 

thus defined turns £F(SQ) into a commutative algebra. The space SFmX(So) of 
integrable singularities is a subalgebra and its convolution reduces to : 

- / 
Jo 

(1.3) (pi*fa(0= fa(Ci)fo(C-Ci)<iCi (CCi.C-CionSfl and close to 0). 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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The Resurgence Algebras ffl(Se) and ffiint(SQ) 

The subspace &(SQ) C £F(SQ) of all $ whose minor cp can be analytically continued 
along any path that keeps close to SQ (without going back) and bypasses to the 
right or to the left all intervening singular points cot E SQ, is closed under 
convolution. For any sequence e* of + signs and any f in ]cor,œr+i[, denote by 
<pSi7.%r(0

 t n e determination of q>(Q obtained by starting from 0 and bypassing 
each cot to the right (resp. left) if e* = + (resp. —). The space of all cp in 
0£(SQ) whose minors cp have all their determinations cp%. integrable on their 
segment of definition ]cor9œr+i\j constitutes a subalgebra 0tmi(So). We call 0£(SQ) 

(resp. 0tmi(SQ)) the algebra of resurgent functions (resp. integrable resurgent 
functions) of direction 6. 

Alien Derivations and Medianization 

For any finite sequence st = + denote by p (resp. q) the number of + (resp. —) 
signs and consider the weights: 

(1.4) S- - = 3M = r - ^ 4 1 T T ; A — = XM = {2P) ! ™ ' 
(p + 4 + 1 ) ! ' M 4P+iplq\{p + q)\ 

For any m € Se the operator Aœ of ${Se) onto itself defined by: 

( 1 . 5 ) 4 „ : # . — • & , w i t h 3 U Q = Y , « " ^ W Ä i , « + û > ) 

(for C on SQ and close to 0) is a derivation of the algebra ^(S^) : 

(1.6) Acotâi * $2) = ( 4 ^ ) * q>2 + & * ( ^ # 2 ) . 

We call zdû, the alien derivation with index œ. On ^mt(Sû,) it reduces to: 

(1.7) Aœ :q>\—> <pœ 

with cpœ(o = £ a«-*-* {MÄ+,(C + œ) - %;^:^(C + ©)}. 

Along with the natural derivation d : cp H-> —Ç#, the zU finitely generate all 
continuous derivations of M(SQ). 

Similarly, the operator med ("medianization") : 

(1.8) med : q>(0 • - > med cp(0 = X ^ Ä ( 0 (if ^ < C < œr+i) 
e« 

is an homomorphism of the algebra $mt(So) into the algebra JLmt(S0) of univalued, 
locally integrable functions on SQ : 

(1.9) med (cpi * q>2) = (med pi) * (med cp2) with * as in (1.3). 

Medianization has the added advantage of preserving realness: if the germ cp is 
real, so is the function med cp. 
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The Resurgence Algebras M and MmX 

The convolution algebra of all classes q> which, along with their successive alien 
derivatives AŒr... A^cp (Vû>/ E Ç) belong to all 0t(So) (resp. all Mint(So)) is known 
as the general algebra M (resp. Mint) of resurgent functions (resp. integrable r.f.). 
Their majors cp are defined in spiral-like neighbourhoods of 0 on (Ç and their 
minors cp can be continued (starting from 0 and bypassing intervening singular 
points) along any split line on (Ç. 

Resurgent functions of natural origin tend to reproduce themselves at their 
singular points. This self-reproduction is exactly described by resurgence equations 
linking cp to its alien derivatives Awcp. By a slight abuse, we often extend the label 
of "resurgent function" to those power series whose Borei transforms (see §2) 
belong to @. See [1-3]. 

§2. The Acceleration Operators 

The Laplace Transform ££ and the Borei Transforms $ and ^ 

/•+00 

(2.1) JS?: 0(C) •—•?>(*)= / e**M)dC 
Jo 

1 rc+ico 

(2.2) » : cp(z).—> HO = ^-. / e*cp(z) dz 

The classical Laplace transform if is a homomorphism of the convolution algebra 
lLg"p(IR+) of all univalued, locally integrable functions on R + with (at most) 
exponential growth at +oo, into the multiplicative algebra IB of holomorphic 
germs bounded in half planes Rez > xo. Its inverse M is known as the Borei 
transform. For each formal series cp(z) = J]e„(z) whose general term e„ E IB has 
a Borei transform e„, we have a notion of formal (or term-wise) Borei transform : 

(2.3) £ : 0(z) = £e„(Z) —• HO = £ M 0 ( e * Z««^" —• X ^ " " 1 ) • 

The Acceleration Operators and Their Kernels 

An acceleratrix is a function F holomorphic in a neighbourhood of op E Ç, real 
positive on R + = So and such that for z —• oo: 

(2.4) x~1F(x) -+ 0 ; ÖF(z) ~ ÖF(x) ; ö2F(z) ~ ö2F(x) 

with 0 < x -> oo ; z = xeiB (9 fixed in R) and: 

(2.4bis) ÖF(z) = zF,(z)F(z) ; ö2cp(z) = 1 + zF,,(z)/F/(z) - zF'(z)/F(z). 

The co-acceleratrix G of F is the germ G defined on [+0,...] by: 

(2.5) G(f(z)) = F(z) - zf(z) with f(z) = F'(z) (G(Q -+ +oo as C -+ 0). 
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Borei-Laplace takes the multiplicative endomorphism %? : cp\(z\) \-> ^2(̂ 2) = 
cpi (F(z2)) of B into a convolution endomorphism <&F of 14"p(R+) : 

/•+00 
(2.6) % = a<ev.se : 9i(Ci)>— fe(C2) = / cF(f2,Ci)^i(Ci)dCi• 

Jo 

§> is known as the acceleration z\ -> Z2. Its integral kernel is given by: 
i rc+ico 

(2.7) CF(Ç2,Ci) = T-. exp(Ç2z2 - CiFfa)) dz2 

and it has faster-than-exponential decrease in Ci : 
(2.8) log CF(C2,Ci) ~ -CiG(C2/Ci) for 0 < C2 fixed and Ci -• +00. 
Therefore, the natural domain of definition of <gF is much larger than !Lj£p(R+); 
it is the convolution algbera !Lj?*acc(R

+) of all functions #i(Ci) with F-accelerable 
growth, i.e. for which there exists 0 0 such that: 

(2.9) |^i(Ci)|<Cst./CF(c,Ci) or log|<MCi)| < fiG(c/Ci) as Ci - +co. 

The largest such c is the acceleration abscissa of <pi. 

Strong, Moderate, Weak Accelerations 

Strong accelerations (logZ2/logzi -> +00) have kernels with slightly over-
exponential decrease in (1 and yield germs £2 (£2) which are defined in a 
spiral-like neighbourhood of 0 E Ç with infinite aperture. Moderate accel
erations (logZ2/logzi —> 1/a with 0 < a < 1) have kernels decreasing like 
exp(—caC\ C2 ) w ^ n ß = 1 — & and they yield germs cp2 (Ci) which are de
fined in a sector of aperture nß/a. Weak accelerations (logZ2/logzi —> 1 but 
Z2A1 -> 1) have very fast decreasing kernels but they yield germs fatti) which 
are defined only at the root of R + = So and are usually non-analytic, but only 
Denjoy-quasianalytic (cf. §4). Of great practical importance are the elementary 
accelerations z\ —> Z2 = exp(o-zi) and z\ —> Z2 = z\^ with their respective 
kernels : 

(2.10) CF&2, d) = ( k F ' - y r (Ci/cr) 

(2.11) cF(C2,Ci) = C2-
1ca(z) 

with X = Ci l/^2~
a/P (0 < a, ß < 1, a + ß = 1) 

(2.11bis) Ca(r) ~ (C/2TT)1/2.X1/2. exp(-cX) 

when X -» oo with Re X > 0 (c = a a / ^ ) . 
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Accelero-summability 

A formal series cp(z) — Xifi»(z) *s said t 0 be accelero-summable with sum cp(z) 
and critical times zi,Z2,...,z,. if it can be subjected to the following operations 
(algebra homomorphisms) : 

cpi(z\)= cp(z) > cp(z) =cpr(zr) multiplicative algebras 

v 
fa (Ci) —^ fatti) —^ fatti) - > • • • - • fattr) convolution algebras 

with arrows (i,i + 1) denoting the acceleration z\ —• z,+i. See [4, 5, 7]. 

§3. Acceleration Applied to Many-Levelled Differential Systems 

Resurgent functions are truly ubiquitous. They arise as formal solutions of 
differential equations (or difference equations, or general functional equations) 
with analytic coefficients, or of systems of such equations. They occur in the 
study (normalization, conjugacy, iteration) of local analytic objects, chiefly: local 
singular vector fields and local diffeomorphisms. Again, most expansions in a 
"singular parameter" (such as the Planck constant in the Schrödinger equation) 
turn out to be divergent and resurgent. Indeed, it is no exaggeration to claim 
that most divergent expansions met with in actual life are not only resurgent but 
also summable by ££0b (one critical time) or by S^^p^ ...^$ (r critical times; 
r ^ 2). The former case (r = 1) is by far the more common. Criticity r ^ 2 occurs 
only in connection with objects of a certain complexity. Thus it never arises with 
vector fields (resp. diffeomorphisms) in less than 3 (resp. 2) dimensions. 

We shall describe that phenomenon (namely, r > 2) in the case of a many-
levelled but formally separable differential system, because it illustrates all the 
relevant analysis while keeping formal complications down to a minimum. So, 
consider a local analytic system (3.1) that is formally conjugate to the normal 
system (3.2) under transformation (3.3). 

(3.1) — tl+PiXj + ÀjXi = fc/(t,xi,...,xv) E (C{t,x\,...,xv) (i = l,. . . ,v) 
Pi 

(3.2) -tHpiyi + fai = 0 (i = 1,.. . , v ; k E (C* ; p, E N*) 
Pi v / 

(3.3) Xi = hi(t, yi , . . . , yv) E (C[[t, x i , . . . , xv]] (i = 1,..., v) . 

Let q\ < q2 < ... < qr be the distinct values taken by the levels p\ and assume 
for simplicity's sake that the various X\ attached to any given level display neither 
resonance nor quasiresonance (i.e. the combinations £ n\X\ neither vanish nor do 
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they get abnormally close to 0). Under those mild genericity assumptions, the 
formal integral x(t,u) of system (3.1): 

(3.4) x(*,tO = Zwn£n(0<Pw(0 

(n E W ; un = Y[uini ; En(t) = e x p ^ - r * ; cpn E (€[[*]])v) 

obtained by plugging into (3.3) the elementary solution yt = u\ exp(A,-r~p') of 
(3.2), can be shown to be convergent in u and divergent in t, but resurgent 
and accelero-summable with critical times z\ = t~qi (i = 1,...,r). This compact 
statement translates into the following. Let 9 be a multipolarization, i.e. a choice 
of angles 9{,...,9r satisfying the self-compatibility condition: 

(3.5) 
2 \qt qi+ij 

<-[ (l<i<r~l; 9tETR). 

Further, let Qt be the set of all œ E (Ç whose projection co on (C is of the 
form Yunjh w ^ h Pj = & a n d nj e ^ (o r nj = ~~1 f° r o n e J a t most). Then 
each component q> (t) = cp\(z\) of x(t,u) has a Borei transform $i((i) with only 
isolated singularities and a growth rate not exceeding Gxp(cst.\Ci\q2^q2~~qi). Thus 
it has accelerable growth for the acceleration z\ —> Z2 taken along any axis 
argCi = 91 that avoids singularities. The corresponding accelerate fatti II 6) can 
be analytically continued within a sector S2 containing (at least) all directions 02 
linked to 9\ by (3.5). In that sector it possesses only isolated singularities and 
has accelerable growth for the acceleration Z2 —> Z3. Thus we get a succession of 
accelerates fatti || 9), the last of which (for i = r) has exponential growth and can 
be laplaced along any semi-axis 9r compatible with 0r_i, yielding the sought-after 
sum cpr(zr\\ 9) = cp(t\\ 9). 

Moreover, each i-th Borei transform x(C*,w||0) satisfies the so-called Bridge 
Equation, which reads : 

(3.6) Aœ xttu 111| fl) = Aw,qi t6. Stttu 111| 0) ( X = e-v'Aa, icoEQiH &) 

(3.6bis) AœiquQ = u<4 X KilqhQ(u).uj^- + £ < q i M ^ - \ 
(.Pi^qt J Pj«[i J ) 

(3.6ter) { Ai|l f t iö€C[[ttfcwithpjk<ft]] 

and which describes in compact form the resurgence properties of all the fa-tti || 0). 
The Bridge Equation holds, in some form or other, for all local objects. It says in 
effect that alien derivations Aœ act on formal integrals like ordinary differential 
operators Am, while at the same time enabling one to calculate those Aœ. 

Here, the components of the A^^Q relative to each level q\ are formal power 
series in all the parameters Uk attached to the lower levels pk < q^ For i — 1, 
they are scalar-valued. Lastly, and crucially, these differential operators, taken 
together, constitute a complete set of analytic invariants of the system (3.1). 
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The proof [6, 8] relies heavily on the study of the operators : 

(3.7) An = e^m{z).d-l.e+m(z) = (w'(z) + a ) " 1 

(d = d/dz ; z = 1/t; m(z) = CûQ + Cû\Z -\ + coqz
q J 

and their equivalents in the various £,• planes, for all three cases: precriticai 
(qi < q), critical (qj = q) and postcritical (q\ > q). 

§4. Acceleration and Quasianalyticity. Cohesive Functions 

Transfinite Denjoy Classes of Quasianalytical Functions. Cohesive Functions 

Let i f be a C00 automorphism of ] . . . , +oo] with if(x) < x. An iterator if* of 
^ is any C00 automorphism of ] . . . , +oo] such that i f * o if = — 1 -f i f *. For any 
transfinite ordinal a = œr.nr H + co.ni + no < cDœ (n\ E N) we put: 

(4.1) La = (L)°"° o (L*)oin o (L**)°"2 o • • • o (L*-*)°"' = a-th iterate of L = log . 

The function La is not uniquely determined (unless a < œ) but the algebra aD of 
all C00 functions on / = [xi,X2J with derivatives bounded by: 

(4.2) |«p(")(x)| < c". (jT^y (c = c(q>) = est ; Vx € /) 

depends only on a. We call it the Denjoy class of order a. Its elements cp are 
quasianalytic, i.e. they vanish if all their derivatives at a given point vanish. The 
classes aD increase with a and their union for all a < co03 is the algebra COHES 
of cohesive functions. 

Weak Accelerates are Cohesive and Cohesive Functions are Weak Accelerates 

It can be shown [4, 5] that any cohesive function fatti) on an interval [0,a] is a 
weak accelerate (i.e. the result of a weak acceleration z\ —• z2 with logZ2/logzi —> 
1) and, under very mild assumptions on the acceleration, the converse holds: each 
weak accelerate ^2^2) is cohesive on some interval ]0,cr], i.e. on each [e,cr] with 
£ > 0 . 

The cohesiveness of weak accelerates (just as the analyticity of moderate or 
strong accelerates) is truly providential, for each acceleration z\ —• Z2 is actually a 
two-stepped process -.first, we calculate #2 (£2) as a germ (for small (2) by means of 
integral (2.6) ; and then we must take its continuation (analytic or quasianalytic) 
to get fa as a global, multivalued function on R + . Of course, when singular 
points oj{ stand in the way of quasianalytic continuation, their "circumvention" 
(right or left) calls for a special construction [4, 5] since fatt2) is not defined 
outside R + . 

The direct statement (cohesive functions are weak accelerates) is also highly 
meaningful, as it leads to a new and fairly elementary procedure for quasianalytic 
continuation [4-6]. 
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§5. The Finiteness of Limit-Cycles. Analysable Functions 

I am indebted to J. Martinet, R. Moussu and J.-P. Ramis for drawing my attention 
to a conjecture by Dulac (long known as Dulac's theorem, but unproven by him) 
to the effect that the limit-cycles of a vector field on R 2 with polynomial or 
real coefficients, cannot possibly accumulate anywhere. Since accumulation could 
take place only close to a polycycle (or a point) and since polycyles, under 
repeated blowing-ups, can be brought down to a simple form, the problem may 
be rephrased as follows. Let ^ be a closed curve on R 2 consisting of r analytic 
arcs % intersecting at points Si = %n %+\. Let I b e a real analytic vector field 
defined on a neighbourhood of #, with the % as integral curves and with a non-
vanishing linear part at each summit St. Next, draw an analytic curve Fi across 
each % and endow it with an analytic abscissa x/ = 1/ZJ (x/ ~ +0 ; z{- ~ +co) 
positive towards the "interior" of c€. The integral curve crossing T\ at the point 
with inverse abscissa z* crosses I V i at the point zi+\. The germ Gi : Zi i-> Zj+i is 
the local map of summit Si and the germ F = Gr o • • • o G\ is the return map of 
X. Limit-cycles close to # clearly correspond to large fixed points of F. Thus it 
is all a matter of establishing the trichotomy: 

(5.1) F(z) ES z or F(z) > z or F(z) <z (z > 1). 

Due to reduction, the field X has, at each summit Si, either two non-zero 
eigenvalues of negative ratio — X\ £ Q (type 1) or —Xi E Q (type II) or only one 
non-zero eigenvalue (type III). For all three types, the local map Gi has a formal 
counterpart Gi which is an asymptotic or transasymptotic series of the form: 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

Gt 

Gi 

Gi 

Gi 

= KioPXloHi 

= ti0u; 
= KioEoU* 

= *VtoLoH{ 

with Pxi{z) = zki 

with E(z) = expz 

with L(z) s l o g z 

(type I) 

(type II) 

(type III+) 

(type HI") 
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with the Hj and K/ denoting ordinary real power series of the form az.{l + 
£<7„.z~~"} (a > 0, an E R) and with U* and *[// standing for the formal iterators 
(direct and inverse) of the "unitary" maps Uj which describe the holonomy of X 
at St\ 

(5.6) VoU(z)=z; Ü*o*Ü(z)=z; Ü* o U(z) = 2ni + U*(z). 

The Gi are usually divergent (except for type I and diophantine Xi) but can always 
be resummed by ££& with respect to a single critical time z\ — hj(z) of the form: 

( h\(z) = logz - clog log z ; c large (type I or II) 
I k(z) ~ log Gi(z) (type III+) /7,(z) - log z (type UT). 

As for the return map F = Gr o • • • o Gy, its formal counterpart F = Gr o • • • oGi 
is a transseries with a unique "pulled-down" expansion, 

(5.8) F(z) = z + £M„(z) (0 < zi < no < û)œ ; fl„ G R) 

with finite or transfinite ordinals n and decreasing transmonomials A1± that are 
irreducible concatenations of real coefficients and symbols +, x, log, exp. 

Like its factors G„ the transseries F is usually divergent, but always accelero-
summable with at most r critical times z,- associated with its irregular summits 
Sj (actually, the intrinsic notion is that of critical class {z,} regrouping all times 
equivalent to zi). For each z,-, only those transseries cp(z) = cpì(zì) that are carried 
by F(z) and formally subexponential in z/ possess a Borei transform fatti) in the 
d plane. The rest must provisionnally retain their status as symbols and bide their 
"times" to be actualized as true functions ! Of course, in order to preserve realness, 
it is the median functions med #>/(£/) which are being accelerated or Laplaced. 

Accelero-summability is proven by induction on q for Fq = Gq o • • • o G\. 
Crucial to the argument is the comparability of non-equivalent critical times z\ 
and Zj (one is either faster or slower than the other). Since the function Fß taking 
Zi to zj and its transseries Fß have the same factorization structure as F and F, 
but with a lesser number of factors, one and the same induction takes care of the 
accelero-summability of F and Fß. Despite descriptive and notational hurdles, 
the proof [4, 5] is amazingly simple *. It reduces to showing, by induction on q, 
that accelero-summing the factors Gq and Fq-\ to Gq and Fq-\ and composing 
them to get Fq = Gq o Fq-\, yields the same result as composing the transseries 
Gq and Fq-\ to get Fq and then accelero-summing it to get Fq. This, in turn, 
follows from a permutability of type / ]T = ]T / , due to absolute summability, 
with f representing an acceleration or Laplace integral and £ standing for the 
infinite sum which translates, in each model Ç/, the operation of composition o. 

* Another proof, apparently quite different and non-constructive in nature, has been announced by 
Y.S. Ilyashenko. 
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We end up with a formal trichotomy: 

J F(z) = z or F(z) = z + aoA0(z) + o (AQ(Z)) or 

\ F(z) = z - a0A0(z) + o(A0(z)) (a0 >,A0>0) 

which, after accelero-summation, translates into the wanted trichotomy (5.1). 

Analysable Functions 

The return map F is only a special instance of analysable functions. Those are real-
analytic germs on ] . . . , +00] that can be represented by an accelero-summable 
transseries F with critical times zt which are themselves linked by analysable 
functions Fß, e t c . , with a finite critical tree ziu_iir. Unlike analytic functions, 
the class of analysable functions enjoys extreme stability (under all common 
operations) while retaining the two essential properties of real-analytic functions 
(i) being locally comparable (ii) being totally reducible to a formal object, viz. an 
infinite set of coefficients. Analysable functions are of very frequent occurence. See 
[6, 8]. There, we also introduce an even more comprehensive notion of analysable 
function, which subsumes both complex-analytic and cohesive functions and 
seems to stretch the Analytic Principle to its farthest possible limit. 
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Finiteness Theorems for Limit Cycles 

Ju. S. IVyashenko 

Department of Mathematics and Mechanics, Moscow State University 
117234 Moscow, USSR 

1. Statement of Results 

Theorem 1. Polynomial vectorfield in the real plane has only finitely many limit cycles. 

Theorem 2. Analytic vectorfield in the closed two dimensional surface has only finitely 
many limit cycles. 

Theorem 3. A singular point of any analytic vector field has a neighbourhood free of 
limit cycles. 

Theorem 4 (Nonaccumulation Theorem). A polycycle of an analytic vector field in 
the closed two dimensional surface has a neighbourhood free of limit cycles. 

It is known from the time of Poincaré that the Theorem 4 implies Theorems 
1-3. The Theorem 3 is the direct consequence of the Theorem 4: The singular point 
is a particular case of a polycycle. It is distinguished because the wrong opinion 
that it was proved long ago is widely spread in mathematical literature and folklore. 

In the case when the polycycle is a cycle (contains no singular points) Theorem 
4 is an immediate consequence of the analytic dependence of solutions on the initial 
conditions and a uniqueness theorem for analytic functions, applied to the Poincaré 
map. In the case of the polycycle (separatrix polygone) an analog of the Poincaré 
map may be defined (Fig. 1); it is a germ of transformation of the semiinterval onto 
itself. Its natural form is (R+ , 0) -• (R+ , 0) 

Fig.l 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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Theorem 5 (Identity Theorem). If the monodromy map of the polycycle of an analytic 
vector field has an infinite set of fixpoints, then it is identical. 

Theorem 4 is a trivial consequence of the Theorem 5. 
The same results are independently and quite in a different way obtained by 

J. Ecalle (France). 

2. Problems Related to the Hubert's 16th 

The classical problem is "... the question on the maximal number and situation of 
the Poincaré limit cycles for the equation of the form 

dy/dx = Y/X (1) 

where X, Y are polynomials on x, y of degree n ..." 
The Hilbert number for the family of equations (in particular, for a single 

equation) is the maximum number of limit cycles for the equations of the family. 
By definition, the Hilbert number is finite or does not exist. Mark some versions of 
the Hilbert problem. 

Algebraic Versions 

1. The Dulac's problem. Prove the existence of the Hilbert number for the equation 

(i). 
2. Prove the existence of the Hilbert number for the whole family (1) (it is noted 

as H(n)). 
3. Give the (explict) upper estimate on H(n). 

Analytic Versions 

4. Prove the existence of the Hilbert number for the analytic vector field in the 
sphere S2. 

5. Prove the existence of the Hilbert number for any family of analytic vector 
fields in S2 with the finite dimensional compact base. 

Smooth Version (Hilbert-Arnold Problem) 

6. Prove the existence of the Hilbert number for a "typical" family of smooth 
vectorfields in S2 with the finite dimensional compact base. Here and below "smooth" 
is "infinitely smooth". 

Only the Problems 1 and 4 are solved up to now. There are the following natural 
implications: 

5=>4 

3=>2=>1 
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Remark, that even if the Problem 3 will be solved, it will not imply the solution 
of the Problems 4-6. The exact meaning of the word "typical" in Problem 6 is the 
part of the solution. The Hilbert-Arnold problem is the illustration of the heuristical 
principle: the smooth function behaves like an analytic one, when it is met in the 
finite dimensional typical family. 

3. Sources of the Proof 

The Dulac's problem concentrates many branches of the theory of differential 
equations, and the tools, used in its solution, have many other applications. These 
tools are the following: desingularization, Dulac's asymptotic expansion, complex 
extension in sense of Petrovskii-Landis, functional cochains, super exact asymptotic 
series. The main goal of this talk is to describe these tools. Other applications and 
further developments are briefly expressed in four Appendices. 

4. Desingularization 

The simplest variant of the desingularization is the polar change of coordinates with 
the subsequent division by the proper power of the distance to the pasted circle 
instead of the origin. In more details, let v be an analytic vector field with an isolated 
singular point 0. The map (r, cp)\-^(r + 1, cp), (r, cp) being polar coordinates, brings 
the initial vector field, defined in the neighbourhood of 0 to the vector field, defined 
in the exterior part of the neighbourhood of the unit circle. This new field may be 
analytically extended in the interior part of this neighbourhood. After the division 
by some proper power of r — 1 it becomes a field with a finite number of singular 
points, located on the unit circle pasted instead of the singular point. These new 
singular points are in some sense "simpler" than the previous one. It may be repeated 
several times. The simplest form of singular points obtained by this way is given in 
the 

Definition. A singular point of the vector field is called elementary, if the linearisation 
of the field at this point has at least one nonzero eigenvalue. 

These eigenvalues are called those of the singular point. 

Bendixson-Seidenberg-Dumortier Theorem. After a finite number of steps of the 
blowing-up process an isolated singular point of an analytic vector field can be split 
to a finite number of elementary ones. 

Using this theorem one may consider the polycycle in the Identity theorem as 
to be elementary, that is to say, with only elementary singular points. Other 
applications and developments of the desingularization method are described in the 
Appendices I and II. 
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5. The Dulac's Theorem 

Dulac (1923) found an asymptotic expansion of the monodromy of the polycycle 
up to any power of the distance from the polycycle. The more convenient chart is 
the logarithmic one: if x is a "natural" chart on the semiinterval (R+, 0), then 
£ = — ln x is a logarithmic chart. 

Dulac's Theorem. Let y be an elementary polycycle of an analytic vector field in the 
plane. Then the semitransversal to the polycycle may be so chosen, that the corre
spondent monodromy map Ay will be either flat, or inverse to flat, or admits an 
asymptotic expansion Ay having the following form in the logarithmic chart 

2y = uZ + ß + ZPj(o™p(-vjO, (2) 
a > 0, ß G R, Pj are real polynomials, 0 < v,- -> oo. 

Denote by Fix«, the set of germs (R+ , oo) -> (R+ , oo) with the infinite number 
of fixpoints. 

Dulac's Lemma. If Aye Fix^ then Ay = id. 

The proof, given in (Dulac 1923) uses only the properties of Ay, listed in the 
above theorem. For the maps only with such properties the lemma is wrong; 
counterexample: x h-> x 4- (exp( — 1/x)) sin 1/x. Note, by means of the theorem 5 that 
such a map cannot appear as a monodromy in the analytic case^ 

In fact Dulac proves, that the conditions of the lemma imply Ay = id. It is trivial, 
because the terms of the summation in the right hand side of (2) are nonoscillating, 
and each term tends to zero faster than the previous one. 

The Dulac's Theorem is proved by means of smooth, not analytic, theory 
(Il'yashenko, 1985). The recent development of this theory is described in the 
Appendix III. 

6. Complex Extension: The Hyperbolic Case 

Let the polycycle y have only hyperbolic singular points (having no eigenvalues in 
the imaginary axis). In this case the monodromy map in the logarithmic chart may 
be extended in the domain, which is "like the right halfplane" <C+ = {Re ( > 0} and 
has the form 

QC = 0cc
+, 0c:c^c + cyc+T 

On the other hand Ay may be decomposed in this domain in the asymptotic series 
(2). The germs with these two properties are called "almost regular". 

In the hyperbolic case the Identity Theorem may be easily proved (Il'yashenko, 
1984). Indeed, if Ay e Fix^, then Ay = id by the Dulac's lemma. Then Ay — id = 
o(exp( —v£)) for any v > 0 on (R+, oo). At the same time Ay — id is holomorphic 
and bounded in Qc. The theorem of Phragmen-Lindelöf type (namely, Watson's 
Theorem) implies then, that Ay — id = 0. This proves the Identity Theorem in the 
hyperbolic case. Pass now to the general case. 
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7. Semihyperbolic Singular Points, Functional Cochains and 
Reduction to Complex Analysis 

In the general case the polycycle in the Identity Theorem, assumed to be elementary 
without loss of generality (see Section 4) contains either hyperbolic, or semihyper
bolic singular points. These last points have, by definition, one zero and one nonzero 
eigenvalue. The monodromy of an elementary polycycle may be decomposed in the 
product 

Ay = ANo-'--oA1 (3) 

of the so called "correspondence maps" (Fig. 2) related to the vertices of the polycycle 
(Fig. 3). Semihyperbolic points bring in the composition (3) the maps of the three 
following kinds: exponents, logarithms and functional cochains. The appearance of 
exponents is easily seen in the example x = x2, y = — y. The correspondence map 
of the semiinterval x > 0, y = e onto the semiinterval y > 0, x = 1 is x i—• y(x) = 
exp(— 1/x). In the logarithmic chart it is £ i-> exp Ç. 

Fig. 2 Fig. 3 

The functional cochains appear in the description of the correspondence maps 
for the semihyperbolic singular points of real analytic vector fields. A field of this 
type has a holomorphic invariant curve, tangent in the semihyperbolic singular 
point to the eigenvector of the linearization with the nonzero eigenvalue. A mono
dromy transformation (named the monodromy of the singular point) corresponding 
to the loop on this curve, surrounding this singular point, is tangent to identity in 
zero. Such a transformation is formally equivalent to the time one shift along the 
orbits of the holomorphic vector field with the zero linearization in the singular 
point. The conjugating formal Teylor series (called also normalizing) is divergent 
in general. Yet it is asymptotic to some actual function. Namely, there is a covering 

of a pictured neighbourhood of ,he hxpoint 0 by sec,o,8 „r « * . „ ( ' - , * 
\P P 

invariant under the rotation by n/p with the vertex at 0. Here p + 1 is the multiplicity 
of the fixpoint. In each sector a chart is defined, conjugating the initial map with its 
formal normal form. This chart has an asymptotic expansion at the vertex, given 
by the normalizing series. The collection of these charts form a normalizing atlas 
or, in other words, a normalizing cochain. The transition functions of this atlas are 
called coboundary of the cochain and contain all the information on the geometric 
properties of the initial germ. They give also the complete invariant of the analytic 
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classification of the germs (C, 0) h-> (C, 0) tangent to identity. The difference between 
the maps forming the coboundary of the cochain, and identity, is decreasing expo
nentially and faster, than the nonzero holomorphic function in the sector with the 
angle, larger than n/p, can decrease. 

The correspondence map for the semihyperbolic singular point of a real analytic 
vector field in the natural map is given by the formula (Il'yashenko, 1986) 

A =goQxpohPtXoH, (4) 

Here H is a normalizing cochain for the monodromy of a singular point, g : (<C, 0) i-> 
(<C, 0) is a holomorphic germ, A is real on (R+, 0), h = pzp/(l — apzp ln z) 

The Identity Theorem is now reduced to the following problem of the complex 
analysis: prove, that a composition of almost regular germs and of germs, obtained 
from (4) by transition to the logarithmic map, and also of germs inverse to the 
previous ones, is either identical, or has no fixpoints near infinity. The ideas for 
getting a solution of this problem will be described below. 

8. Phragmen-Lindelöf Property of the Functional Cochains 

The class of the functional cochains defined in some domain Q containing (R+, oo) 
is called having a Phragmen-Lindelöf property, if any cochain of this class, decreasing 
on (R+, oo) faster than any exponent: exp( — v£), v > 0, is identically zero on (R+, oo). 

All the cochains, appearing in study of the compositions, defined in the end of 
the Section 7, have the Phragmen-Lindelöf property. 

9. Super Exact Asymptotic Series 

The plan of the further proof is the following: decompose the monodromy map 
in the asymptotic series with nonoscillating terms; using the Phragmen-Lindelöf 
Theorem prove, that if this series is equal to identity, then the map itself is identical. 
The following problem arises in this way. It is not difficult to construct a polycycle 
of an analytic vector field having the nonidentical monodromy map with the 
identical Dulac series. Thus the Dulac series does not uniquely determine the mono
dromy map of the elementary polycycle (though in the hyperbolic case it does). So, 
we have to construct series, describing both exponential and transexponential 
decreasing. At first glance it is impossible: any remainder term of the Dulac series 
may be larger than the transexponential terms. This difficulty can be overcome by 
the way, shown by the following example. Take two classes of germs of decreasing 
functions at infinity: M0 and Mx, both containing 0 and identity. Let the germs of 
these classes have the Phragmen-Lindelöf type property: the nonzero germ of the 
class M0 (Mx) cannot decrease faster than exp( — v£) (respectively, exp( —v exp <!;)) 
for any v > 0. Let the germs of class M0 be decomposed in asymptotic Dulac series 
and the germs of the class Mx be decomposed in the asymptotic series of the type 

«o + Z aj exP( - VJ
 exP £) (5) 
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0 < Vj -> co, a} E M0, j = 0, 1, . . . . The series (5) is called "super exact asymptotic 
series" (the Russian abbreviation is STAR). Its free term contains all the information 
of the exponential asymptotics of the germ, and the higher terms give the trans
exponential one. The terms of this series do not oscillate and the germs of the class 
M1 are uniquely determined by the corresponding STAR'S. Thus for such germs the 
Identity Theorem holds. 

10. Additional Decomposition Theorem 

In order to apply the previous ideas to the monodromy map, one must decompose 
it in terms each one of which will be uniquely determined by the corresponding 
STAR; this STAR is like (5), but much more complicated. The Decomposition 
Theorem will be stated here for the so called alternant case, when the maps exp and 
ln in the composition (3) arise in turn. 

Definition. Two germs / , g of functions (1R+, oo)h-»(R, 0) belong to the same class 
of Archimedian equivalence iff such positive a and b exist, that \f\a < \g\ and 
\g\b < l/l near infinity. 

Additional Decomposition Theorem. In the alternant case the monodromy map of the 
polycycle may be decomposed in the sum 

Ay = aLZ + ß + cp + Y,xv,3 (6) 

with \cp\ < C exp( — v£), |^-| < Cx exp( —C2 exp v£) for some positive v, vj9 C, Cu 

C2(vj < vj+i). If a = 1, ß = 0, cp 7e 0, then \cp\ belongs to the same Archimedian class 
as exp( — Ç); if oc = 1, ß = 0, cp = 0, then \\j/1 \ belongs to the same Archimedian class 
asexp( — exp vlt). 

This theorem implies the Identity Theorem in the alternant case. 

Remark. In fact, in the decomposition (6) cp has an asymptotic Dulac series, and 
possesses the Phragmen-Lindelöf property. The germs ij/j o yj"1 o In have also the 
same property; if a = 1, ß = 0, cp = 0, then the germ i//1 o v^1 may be decomposed 
in STAR with nonoscillating terms. 

11. On the Publications and References 

The Identity Theorem for the alternant polycycles is proved in full detail in 
(Il'yashenko, 1990). The complete proof is exposed in a book (Il'yashenko, to 
appear), which is four times larger than the previous paper forming the first part 
of the publication. The book contains a complete exposition of a proof with the large 
introductory chapter, planned for nonspecialists, and is independent of the first 
part. The first part contains almost all the ideas, used in the book, but is much 
simpler; it is a kind of digest of the general proof. 
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The reference list below in relation to Section 7 and Appendices is incomplete 
for the lack of space. I should mention here that an important contribution in this 
topic was done by Bogdanov, Bryuno, Denkowska, Dumortier, Ecalle, Elisarov, 
Malgrange, Martinet, Moussu, Ramis, Roussari, Trifonov Van den Essen, Voronin 
and others. 

Appendix I. Topological Classification of Nonmonodromic Singular 
Points in the Plane; the Order of Topologically Sufficient Jet 

Main Alternative. A germ of a smooth vector field in the singular point, which is 
nonflat, is either monodromic (that's to say, admits the Poincaré map, Fig. 4a) or has 
a characteristic orbit (Fig. 4b). The characteristic orbit is the phase curve, which enters 
into the singular point after infinite time, in positive or negative sense, tangent to some 
ray at this point. 

(b) 

Fig. 4 

The Bendixson-Dumortier Theorem guarantees that a finite number of blowing 
up steps allows to distinguish the two kinds of germs in the Main Alternative, if the 
singular point has finite multiplicity. By definition, the multiplicity of the singular 
point of a smooth germ of vector field v is the dimension of the local ring Q = G/(v), 
where G is the ring of all germs of the smooth functions at the origin, and (v) is an 
ideal, generated in this ring by the components of v. The jet of the vector field 
is Main-Alternative-sufficient, iff all its representators are simultaneously mono-

' dromic or have a characteristic orbit. It is said to be topologically sufficient if all 
its representators are orbitally topologically equivalent. This means, that the phase 
curves of any representator may be transformed by the fixpoint preserving homeo
morphism into the phase curves of any other representator. 

Dumortier proved, that the Main-Alternative-sufficient jet for a smooth germ 
with finite multiplicity always exists, and for the germ having moreover a charac
teristic orbit, a topologically sufficient jet also exists. 

Theorem (Kleban, to appear). The order of the Main-Alternative- and topologically 
sufficient jet, defined above, is not larger, than the triple multiplicity of the singular 
point. 
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Appendix II. Desingularization in the Families of Vector Fields 

An important step in understanding of the Hilbert-Arnold's problem is the de
singularization theorem for the families of vector (or line) fields. Explain the main 
statement, omitting the details. A family of complex analytic surfaces is a triple 
M A ß with holomorphic n + 2 and w-manifolds M and B, and a holomorphic map 
% with the constant rank n. A line field a on M is a section of the projective tangent 
bundle to M extended in the maximal possible domain Qa with the following 
property: the set E — M\Qa is analytic and dim E < dim M — 2. By definition, the 
singular points of the field a are all the points of 27. The family of the line fields, 
corresponding to the family M A B is the line on the total space M, tangent to the 
fibers of n. It may be proved, that the restriction of such a family on the fiber, having 
at least one nonsingular point (such a fiber is called noncritical), may be extended 
in all the points of the fiber, except some discrete set, called essential singular points. 
A blowing up of the family of surfaces M A B is the commutative diagram 

M —^—• M 

B —^-» B 

where the left column is the family of surfaces with the same dimension of the base, 
H and Q are holomorphic, and the restriction of H on each fiber of ft is the finite 
number of inverse blowing ups. If a is the family of the vector fields, corresponding 
to the right column, then the blown up field a*, corresponding to the left column, 
is: a = tf„.a*. 

Theorem (Trifonov, 1990). For any analytic family of line fields, corresponding to the 
family of surfaces M A 5 with the compact total space M with the boundary, having 
noncritical fibers only, a blowing up exists, giving a new family of line fields, for which 
all the essential singular points are elementary (that's to say, the extended restriction 
of the family of fields on each fiber is locally generated by the holomorphic vector 
field, having only elementary singular points). 

Appendix III. Smooth Normal Forms in Local Dynamics 

The formal equivalence of smooth vector fields is necessary for their smooth 
equivalence. The inverse implication 

Formal equivalence => smooth equivalence (7) 

takes place in the following cases: 

1°. Hyperbolic singular points (Sternberg, Chen). 
2°. Singular points with one zero eigenvalue (a saddlenode) or an imaginary 

pair; all other eigenvalues lie outside the imaginary axis (Belitsky, 1986). 
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For the singular points with the degeneration of the codimension two in the 
linear part the implication (7) is not proved; in the case of codimension three (for 
instance, three imaginary pairs) it is wrong (Takens). 

Similar results, are valid for the local families. In the following cases the families 
may be brought to the integrable normal forms by a finitely smooth change of 
coordinates and time (the formulas below give normal forms) 

1°. 

2Q. 

3°. 

Perturbation of the nonresonant hyperbolic 
singular point 

Perturbation of the one-resonant hyperbolic 
singular point (all the resonances are 
consequences of a single one (X, r) = 0 

Perturbation of a saddle-node of finite 
multiplicity p + 1 with all the resonances 
being the consequences of Xx = 0 

x = A(e)x 

x = (diag x)(X + P(u)) 
u = xr — a resonant 
monomial, x G R", P — a 
vector polynomial. 

x = xp+1(l + a x T 1 

y = (diag a(x, e))y 
x G R1, y e R" - 1 

(Rostov, 1984; Il'yashenko and Yakovenko, 1990) 

The finitely smooth classification of the perturbations of the germs with an 
imaginary pair of eigenvalues has functional moduli (Il'yashenko and Yakovenko, 
to appear). Parallel theory is developed for diffeomorphisms. 

Appendix IV. Nonlinear Stokes Phenomena 

In the general case local dynamics near a stable point gives a local chart near this 
point, defined up to a finite number of parameters. The genericity assumption is the 
Siegel condition, sufficient to the analytic equivalence of the germ of vector field or 
diffeomorphism to its linear part. The normalizing map is uniquely determined by 
its linear part. In the resonant case the normalizing chart is replaced by the 
normalizing atlas, formed by the sector-like domains, covering the punctured neigh
bourhood of the fixpoint with the point itself on the boundary. The map, conjugat
ing the resonant vector field or the diffeomorphism with its formal normal form is 
defined and biholomorphic in each sector. The transition functions give the com
plete invariant of the analytic classification of such germs and contain all the 
information on the geometric properties of the germ. This program is brought up 
for germs of maps (C, 0) -> (<C, 0) with the resonant linear part (the multiplicator is 
the root of unity) and for germs of vector fields in (<C2, 0): the resonant saddles and 
semihyperbolic singular points (giving rise to the Ecalle-Voronin and Martinet-
Ramis moduli). All this material with different extensions and applications is dis
cussed in the forthcoming book (Elisarov et al.) 
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Averaging and Passage Through Resonances 

Anatoly I. Neishtadt 

Space Research Institute, USSR Academy of Sciences, Profsoyuznaya 84/32 
Moscow 117810, USSR 

The problems, concerning averaging of perturbations in systems passing through 
resonances, are dealt with in this report. Such interesting phenomena as capture 
into resonance, probabilistic scattering of trajectories, destruction of adiabatic 
invariants, and delay of stability loss, appear to be connected with influence of 
resonances. 

1. Slow-Fast Systems, Systems with Rotating Phases, 
Averaging Method 

Slow-fast systems (systems having fast and slow variables) are systems of differential 
equations of the form 

x=f(x, y, E), y = eg(x,y,z), 0 < e « l . (1) 

Variables x are called fast variables, and variables y are called slow ones. If e = 0, 
the system is unperturbed. The equation for x with y = const, e = 0 is called the 
fast equation (system). The system (1) is investigated using various methods of the 
perturbation theory corresponding to various properties of the fast equation. 

The following case is of great importance for many applications: the fast vari
ables are angle variables (phases) on the m-torus Tm = lR.m/2nZm, and a trajectory 
of the fast system winds round the torus with frequencies œ which depend on slow 
variables. In this case the system (1) is called a system with rotating phases; it has 
the form 

cp = œ(I) + ef(I, cp, e), J = eg(I9 cp, e). (2) 

Below we suppose that right-hand sides of the system are smooth enough (infinitely 
differentiable for simplicity) functions of all the arguments when (cp, I, e) G Tm x 
D x [0, c0], where D is a compact domain in R". The classical averaging method 
gives a recipe for approximate description of the slow variable / evolution in a time 
interval of order 1/e. According to this method one should replace the system (2) 
with the averaged system 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
© The Mathematical Society of Japan, 1991 
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J = sG(J), G(J) = (2nYmO g(J,cp,0)dcp. (3) 

Jr 
It is supposed that solutions of (3) are good approximations of solutions of (2). 

"This principle is neither a theorem, nor an axiom, nor definition, but only a 
physical suggestion, in other words a vaguely formulated and, to put it strictly, 
wrong statement. Such statements often appear to be fruitful sources for mathe
matical theorems" [4]. 

We denote by J(t) the solution of the averaged system (3) with initial condition 
J0 e D0 c D at t = 0 and by (I(t), cp(t)) the solution of the slow-fast system (2) (the 
"precise system") with initial condition (J0, cp0) e D0 x Tm. So 1(0) = J(0) = J0. We 
suppose that the solution J(t) is defined and kept at the positive distance from the 
bound of the domain D for 0 < t < 1/e. The problem of estimating the difference 
between I(t) and J(t) when 0 < t < 1/e is traditionally called the averaging method 
justification problem [11]. 

If the system possesses only one frequence (m = 1) and this frequence co does 
not vanish, the following estimate is valid: \I(t) - J(t)\ < CE for 0 < t < 1/E, C = 
const > 0 (P. Fatou; L.I. Mandelshtam and N.D. Papaleksi; this estimate is the first 
result in the averaging method justification, see [21]). An analogous result holds 
for multifrequency systems with constant (co = const) nonresonant frequencies [11]. 

For Hamiltonian systems close to integrable ones, the averaging method justifi
cation was promoted in frames of the Kolmogorov-Arnold-Moser (KAM) theory 
[4] and estimates were obtained for an infinite or exponentially large (Nekhoroshev's 
theorem [4]) time interval. The averaged system in this case is of the form J = 0; 
there is no evolution of variables J and frequencies co(I) in the averaging method 
approximation. 

2. Averaging in Multifrequency Systems 

In a general case, slow variables J and, consequently, frequencies co(I) of the system 
with rotating phases (2) may change in time. In multifrequency (m > 2) systems at 
some moments of time a linear dependence of frequencies with integer coefficients, 
i.e. resonance, occurs. At the resonance a trajectory of the fast system fills a torus of 
lower dimension and there is no reason to expect that the averaging over the whole 
torus TTm in (3) describes the motion correctly. 

The resonance condition (k, co(I)) = 0 for each k e Zm\{0} defines a surface, 
called the resonant surface, in the space of slow variables (here ( , ) denotes the 
standard scalar product in Rm). The union of resonant surfaces for all k e Zm\{0} 
is called the resonant set. The averaging method estimates can be obtained basing 
on the following idea: if the set of points which are close to resonant surfaces is of 
small measure, the influence of motion within this set must be small for the majority 
of initial conditions. 

General results were obtained in this direction by D.V. Anosov [1] and T. 
Kasuga [18]. Let E(Q, E) be the set of initial conditions for which the error due to 
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the averaging method exceeds Q for time 1/c: 

% a ) = ( / 0 ) ^ 0 ) E D 0 X P : sup \I(t)-J(t)\>Q for 7(0) = J(0) = 70 

(4) 
(if I(t) is not defined on the whole time interval, we formally assume that supremum 
is equal to 1). According to the theorem by D,V. Anosov [1], if the resonant set is 
of measure zero, then mes E(Q, E) -• 0 as c -> 0. Really, the D.V. Anosov theorem 
has been proved for averaging in general slow-fast systems (1). The following 
estimate is obtained for system (2). 

Theorem 1 [27], Let at least one of the following two conditions be satisfied: 

rank(5cü/37) = m or co^O and rank(ô(co/||co||)/ô/) = m - 1. (5) 

Then the mean (over initial conditions) error of the averaging method does not exceed 
a quantity of order >ye: 

1 sup \I(t) - J(t)\ dl0 dcp0 < cly/E. (6) 

Here c1 and furthermore ct are positive constants. 

Corollary. Under the hypotheses of Theorem 1 

mes E(Q, fi) < clsfi/Q. (1) 

An equivalent formulation: outside of the set of measure K the following estimate 
of the averaging method error is valid: 

\I(t)-J(t)\<Cl^E/K. (8) 

The estimate (6) is unimprovable. The estimates (7), (8) are unimprovable within 
the class of power estimates. It looks reasonable, that these latter estimates can be 
improved if we confine ourselves to generic perturbations (see below Sect. 3). 

If m > n + 1, the condition (5) cannot be satisfied. In this case the frequency-
mapping I\-^co(I) defines the submanifold M = œ(D) in Rm, and to obtain some 
averaging method estimates one should use Diophantine approximations on this 
submanifold. The following results have been obtained in this direction. 

It is shown in [7] that for arbitrary m, n the estimates (6)-(8) hold for almost all 
members of a typical family of frequencies which depends on a sufficiently large 
number of parameters. 

The problem was considered in [16] under the following restriction on the 
curvature of the manifold M = co(D). Let XE M, vector y e TXMX (the normal space 
to M at x) and let hy be the second fundamental quadratic form of M with respect 
to y. It is assumed, that for every x, y there exists a two-dimensional subspace 
in TXM where the form hy is defined positively or negatively. For m < 2 4-
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(n — l)(n — 2)/2 this condition is satisfied for generic mappings co, and it is proved 
that the estimates (6)-(8) are valid. 

The estimates for any m, n and generic mappings co have been obtained. 

Theorem 2 (V.l. Bakhtin [7]). For systems with m fast and n slow variables and with 
a generic frequency mapping co the mean (over initial conditions) error of the averaging 

method, does not exceed a quantity of order E1IP+1, provided that ( 1 > n -f- m. 

Consequently, for such systems 

mes £(£,£)< Cie1/p+1/£-

The genericity condition is presented in the explicit form. The mappings co not 
subject to this condition belong to a set of codimension 1 in the functional space. 

3. Passage Through and Capture into Resonances 
in Two-Frequency Systems 

In two-frequency (m = 2, cp = (<pl9 cp2), co = (co1, co2)) systems resonant surfaces of 
different resonances do not cross each other if co ^ 0. So the influence of each 
resonance can be investigated apart from others. 

Definition [3]. The system (2) meets the condition A (A, respectively) if the ratio of 
frequencies co1/co2 changes with a nonzero speed along its trajectories (along the 
trajectories of the averaged system, respectively): 

A : (co1dco2/dI — co2dco1/dI)g > cj1, 

A : (co1dco2/dI — co2dco1/dI)G > c[l, 

Theorem 3 (V.l. Arnold [3, 5]). If the condition A is satisfied, then 

\I(t) - J(t)\ < C2J~E, 0 < t < 1/fi. 

Theorem 4 [24,26]. / / the system meets both the condition A and some other condition 
B (which is actually almost always satisfied), then for all initial points (IQ, cp0) with 
the exception of a set Uc of measure not greater than C2S/E, the following estimate 
holds: 

\I(t) - J(t)\ < c3%/e |ln e|, 0 < t < 1/E. 

For any K > c2yJe outside the initial point set of measure not greater than K the 
following estimate is valid (compare with (8)) 

im-J^lKc^Elinc^K]. 

The estimates are unimprovable. For the proofs of Theorems 3,4 see also [20]. 
For initial conditions belonging to the set Uc (c is for "capture") the capture into 

resonance takes place. The essence of this phenomenon is that the phase point 
reaches a resonant surface and begins drifting along this surface, resonance condi-
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tions being kept approximately. Therefore, solutions of the precise system and the 
averaged one diverge by a quantity of order 1 for a time interval 1/e. The initial 
conditions for captured trajectories tend to fill the phase space densely, as c -> 0. 
So, it is expedient to consider capture into resonance as a random event and to 
estimate its probability. At first these phenomena were studied in connection with 
problems of celestial mechanics [17, 22]. 

To describe both the capture phenomenon and the behaviour of the captured 
trajectories, we have to make some additional constructions. It can be shown that 
for a fixed resonance k1co1 + k2co2 = 0 variation of the resonant phase y = k^cpx + 
k2cp2 close to the resonant surface is described by the following equations: 

f = -dV(y, a)/dy + L(o) + 0(JE), y' = 0(^E). (9) 

Here o e R""1 are coordinates of the phase point projection onto the resonant 
surface, and prime denotes the derivative with respect to T = ^/ef [5]. This reduction 
of the problem was used in [14,22-24]. Putting in (9) e = 0 we obtain the pendulum
like system (shortly, the pendulum) describing the one-dimensional motion in a 
periodic potential under constant torque L, where L / 0 because of condition A: 

y" = — dV(y, o)/dy -f L(G), a = const. (10) 

Two possible types of this pendulum's phase portraits are shown in Fig. la, b. In 
Fig. la the capture into resonance is impossible. In Fig. lb there is a domain of 
oscillation corresponding to phase points captured into resonance. Under the 
influence of terms 0(S/E) in (9) the phase point can cross the separatrix in Fig. 1 b 
and transit from the rotational domain to the oscillational one. This is a capture 
into resonance. The backward transition is also possible. This is an escape from 
resonance. 

The oscillational domain of the portrait exists for a finite number of resonances 
only (because as the order of resonance | fc | = \kt\ + \k2\ grows, the purely periodical 
term dV/dy in (10) tends to 0 and the torque constant \L\ is separated from 0); such 
resonances are said to be strong. For every oscillational domain of a strong reso
nance the capture probability can be calculated [31] (this probability can be equal 
to 0 as well). To describe approximately the motion of captured points within a 

(a) (b) 

Fig.l 
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Fig. 2 

given oscillational domain we average the velocities of changing of G and that of 
the pendulum's energy h over unperturbed oscillations. So we obtain the set of 
equations for y, h, which can be called the internal averaged system for a given 
oscillational domain of the given resonance. Solving this system one can determine 
the moment of escape from the resonance if the moment of the capture is known 
(as the saying is, one can construct the in-out function). To describe approximately 
trajectories with capture into resonance we glue solutions of the averaged system 
(3) and the (7-component of solutions of the internal averaged system as it is shown 
in Fig. 2. It turns out that a finite number of trajectories of the internal averaged 
system is glued to a trajectory of the averaged system; each of them corresponds to 
a capture into some oscillational domain of one of strong resonances. It can be 
shown that under some conditions (satisfied almost always) for the majority of initial 
conditions in the set Uc the behaviour of I(t) can be described by one of the 
trajectories glued in this way with an accuracy 0(<S/E In e). The only exception is a 
subset which measure tends to 0 as e -> 0 faster than any given power of E. 

The condition B of Theorem 4 is that unstable singular points of the phase 
portraits are nondegenerate. If the condition Ä is satisfied (and B is not), outside a 
set of initial conditions with measure K > c2x/ë the following unimprovable esti
mate is valid 

\I(t) - J(t)\ < c3y/e/^, 0^t<l/s 

(the case n = 1 is considered in [24], n > 2, in [34]). _ 
The estimates in the case where the condition A is not satisfied seem to be 

unknown. Yet the model problem of estimates has been entirely solved in the case 
of a single resonance only or, which appears to be the same, for a one-frequency 
system with the vanishing frequency. 

Theorem 5 (V.l. Bakhtin [8,9]). In a generic one-frequency (m = 1) system outside 
a set of initial conditions of measure K > c2yjE the following estimate holds 

\I(t) - J(t)\ < c3x/e/V^, 0 < t < 1/E. 

If n > 2 this estimate is unimprovable. The genericity conditions are imposed on 
the functions co, G(I) near the surface {co = 0} and on the function dco/dl • g(I, cp, 0) 
considered at I e {co = 0}. 

In [35] the procedure is proposed, which allows to describe the evolution of 
slow variables with accuracy better than ^/e, for the case of a single resonance. 
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Captures into resonance can play the key role in the system's motion for time 
interval ~l/e3 / 2 . Let the averaged system have a periodic solution crossing the 
resonant surface. Then for time l/e3/2 phase points belonging to a set of measure of 
order 1 will be captured (not to pay attention to changing of the phase volume we 
deal with systems preserving phase volume). It seems reasonable, that quasi-random 
captures into resonance and subsequent escapes from resonance can give rise to 
chaotic dynamics. For examples of such systems see [33, 40]. 

These phenomena result in destruction of adiabatic invariants in multi-frequency 
systems (the problem which can be traced back to the paper by P.A.M. Dirac [15]). 
Let a Hamiltonian system depending on the parameter X be completely integrable 
and possess action-angle variables I, cp and frequencies co = co(I, X) for each fixed X. 
Let X be a slow periodic function of time: X = X(Et). Changing of I, cp is described 
by a system of the form (2), and the averaged system is of the form J = 0, so in the 
averaging method approximation I = const. In one-frequency systems, according 
to the theorem by V.l. Arnold [2], the action I remains eternally near its initial 
value or as the saying goes, appears to be a perpetual adiabatic invariant (provided 
that some nondegeneracy conditions are satisfied). In [32] an example of a two-
frequency system is constructed, where due to captures into resonance I changes by 
a quantity of order 1 for a set of initial conditions of measure of order 1 and for 
time interval l/e3/2. In systems passing through resonance without being captured 
(for example, under the condition A) adiabatic invariants seem to be also destructed, 
though slowly, for times of order 1/e2. 

The approach based on the analysis of joint statistical properties of different 
passages seems to be fruitful to study multiple passages through resonances. To the 
author's knowledge, there are no strict results obtained on this way yet. 

4. Passage Through a Separatrix 

Let us consider a slow-fast system (1) such that the corresponding fast system is a 
Hamiltonian system with one degree of freedom (on the plane for simplicity). In 
other words, we consider a system of the form 

p = - dE/dq + e/i, q = ôE/ôp + ef29 z = c/3, (11) 

E = E(p, q, z), f = f(p, q, Z,E\ 0 < e « 1, (p, q) E R2, Z E RW ' 

with fast variables p, q and slow variables z. Let us assume that for all values of z 
the phase portrait of the fast system is divided into regions Gt by séparatrices /,- of 
a saddle point C (as, for example, in Fig. 3). A perturbation causes the evolution, 
and the projection of a phase point onto the (p, g)-plane may cross the separatrix 
of the fast system. Far from séparatrices the system (11) can be transformed into the 
form of the system with one rotating phase and a nonzero frequency. To achieve this 
we have to choose as new variables E, z and the phase of the unperturbed motion. 
When phase point approaches the separatrix, the frequency tends to zero. Separatrix 
may be considered as a special type of resonance. 

Passage through a separatrix leads to probability phenomena discovered by 
I.M. Lifshitz, A.A. Slutskin and V.M. Nabutovskii [19]. Phase points, being initially 
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Fig. 3 

at the distance of order e from each other, can be captured after separatrix crossing 
into different regions, and their motions after crossing will be entirely different. Since 
initial conditions are known always with some finite accuracy, the deterministic 
approach to the problem fails when e -> 0. But it is possible to consider the captures 
into different regions as random events and calculate their probabilities. 

Let (p0, q0) e G3 for z — z0. Let Uô be the (5-ball around M0 = (p0, q0, z0) in 
R"+2. Let Ujf\ be the subset of Uö containing initial points, which will be captured 
into Gt, i = 1,2. By definition due to V.l. Arnold [2], the probability of capture into 
Gh i= 1, 2, of a point M0 is 

Qi(M0) = lim lim 
mes W. 

3^o fi-»o mes Uô 

(of course, it must be proved that this limit exists). 
Let Hamiltonian E = 0 at the saddle point C and, therefore, at the séparatrices. 

We will consider the problem under the assumption that the following quantities 
are different from zero: 

®i(z) -£( ~dph +Tqh + ~dz~J\ 

03(z) = 0x(z) + e2(z), 

dt, i = 1,2, 

the integrals being calculated along the unperturbed séparatrices, f° = fj(p, q, z, 0). 
These integrals are improper, because the motion along a separatrix takes infinite 
time. Our normalization of E ensures the convergence of the integrals. The value 
( — EGJ) approximates the change of energy E along the connected part of the 
perturbed trajectory, which lies near the unperturbed separatrix ljm The condition 
&j 7e 0 ensures sufficiently fast passage through the separatrix. Let, for certainty, 
0j > 0 and E > 0 into G3. In this case phase points from G3 will be captured either 
into G1 or into G2. 

For an approximate description of the evolution we can glue at the séparatrices 
the solutions of the averaged system from different regions. A solution terminating 
on the separatrix in region G3 must be glued with solutions beginning at the 
separatrix in the regions Gx and G2 (in Fig. 4 the behaviour of E for such glued 
solutions is shown). As is shown in [26], for the majority of initial conditions one 
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E .i 

Fig. 4 

of these glued solutions describes the evolution of E, z with accuracy 0(e In e) over 
time interval of order 1/c (an unimprovable estimate). The measure of the set of 
"bad" initial points, for which such estimate of accuracy is not valid, tends to zero 
faster than er for every given r > 1. The probability of capture into G, is calculated 
by the formula 

Qi(M0) = n ( * ! * * * , o ' = 1 . 2 (12) 

where z% is the value of variable z at the moment of separatrix crossing, calculated 
by the averaging method. It is easy to understand this formula for probability: the 
probability of capture into Gt is equal to ratio of the flux of the phase points in Gi 

to the whole flux in Gt u G2 for \z — z^ | < ö in the limit, when e -» 0 and then ö -• 0. 
Various particular cases of formula (12) were considered in [2, 10, 17, 25]. 

Analogous phenomena take place and analogous description of the evolution 
is applicable in the following more general situation. The unperturbed system of 
differential equations in R"+2 possesses n + 1 first integrals. A joint level of n 
integrals is a smooth 2-dimensional manifold. On this manifold the picture of the 
level lines of the (n + l)-th integral contains saddle points and séparatrices. A 
perturbation causes the evolution and a phase point crosses these séparatrices. 

Passages through séparatrices destroy adiabatic invariants. Let the system (11) 
be a Hamiltonian system, depending periodically on slow time z = Et,flt2 = 0. The 
averaged system possesses an integral (adiabatic invariant) in each region Gf. This 
integral is "the action" of the fast system I = I(E, z) [4], In the case of separatrix 
crossing the value of I along a trajectory changes. Through the period of the slow 
time this value in general does not return to its initial value even in the averaging 
method approximation (which is called here the adiabatic approximation). This is 
an important mechanism of the transport in the phase space of such systems. In 
addition to this "big" (~ 1) change of I there exists the "small" ( — c |ln e|) change, 
caused by the difference between exact and averaged solutions. The change of the 
adiabatic invariant due to the separatrix crossing was calculated through order e 
first in [38] for the specific case of the simple pendulum in a slowly varying gravity 
field (the problem considered by P. Ehrenfest) and then in [12, 28] in the general 
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case of a Hamiltonian system with one degree of freedom, depending slowly on time. 
The change of the adiabatic invariant strongly depends on initial conditions and 
must be considered as a random quantity. Apparently, accumulation of these 
random changes in the case of multiple separatrix crossings leads to diffusion of the 
adiabatic invariant (this conjecture is confirmed by numerical calculations for many 
cases). In absence of the separatrix crossing diffusion of the adiabatic invariant does 
not exist according to Arnold's theorem on perpetual adiabatic invariance [2]. 
Study of these phenomena requires investigation of the joint statistical properties 
of different separatrix crossings. Such investigation is now only at the beginning 
[13]. 

Similar phenomena take place also in more general Hamiltonian systems with 
fast and slow motions (the Hamiltonian is E = E(p, q, zl9 z2), where (p, q) and 
(z1,e~1z2) are pairs of conjugated canonical variables). These phenomena, for 
example, play an important role in J. Wisdom's theory of the origin of some gaps in 
the asteroid belt [39, 29]. 

5. Delay of Stability Loss 

Let the fast equation of a slow-fast system (1) have an equilibrium position or a 
limit cycle. Let us suppose that drift of the slow variables leads to a dynamical 
bifurcation: the equilibrium position (cycle) loses its stability but remains non-
degenerate. For an equilibrium a pair of conjugated eigenvalues leaves the left 
half-plane without passing through point 0, for a cycle multipliers leaves the unit 
circle without passing through point 1. In analytic systems the stability loss is 
inevitably delayed [30]: the phase points which moved near the stable equilibrium 
(cycle) for a time interval of order 1/e before the moment of bifurcation, remain near 
the unstable equilibrium (cycle) for a time of order 1/e after the bifurcation. For this 
time slow variables change by quantity of order 1. Such delay of stability loss is not 
in general found in nonanalytic systems: receding from the unstable equilibrium 
takes place near the bifurcation value of the slow variables. 

The delay of stability loss for an equilibrium was first discovered by L.S. 
Pontrjagin and MA. Shishkova [36] for some model equation system. For this 
system the asymptotic behaviour of the time of delay was calculated using analytic 
continuation of solutions in the plane of complex time. The existence of delay itself 
may be also derived from an earlier statement of Y. Sibuya [37]. 

The delay of the stability loss for an equilibrium is shown graphically in Fig. 5. 
It is assumed that the fast motion loses its stability softly, i.e. for T = T^ -f- 0 the 
stable limit cycle is emanating from the equilibrium, and the size of the cycle (the 
amplitude of selfoscillations) increases like ^/T — T^ (here r = Et). In the precise 
slow-fast system receding from this equilibrium and transition to the cycle occurs 
for T > T^ + const, when the cycle is already of size of order 1. The oscillation 
amplitude increases with a jump (for a time t of order ln e) from the order e to order 
1, i.e. the stability loss appears to be produced abruptly. 

This phenomenon is in a somewhat unexpected way connected with averaging 
and passage through resonances. It is convenient to explain this connection using 
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xi 

Fig. 5 

an example. Let us consider the slow-fast system which is written in a complex form; 

z — (T — i)(z — x), z = x1 4- ix2, 1 — Et (13) 

(the equation for the slow variable x has been already integrated, the example in 
[36] differs from (13) in nonlinear terms). The fast equation has an equilibrium 
position z = x, which is stable for x < 0 and is unstable for x > 0. Let us introduce 
the function W = (x — ïf/2 and consider, following [36], level lines Re W = const 
in the plane of the complex slow time x (Fig. 6). If time t is considered along the 
path Re W = const, then the equilibrium has purely imaginary eigenvalues. In the 
polar coordinates z = x + oei<p the system with the rotating phase cp is obtained. 
The value Q is an integral of the averaged system and an adiabatic invariant of the 
precise system. At the level lines Re W = 0, connecting the points — 1, /, -1-1 (Fig. 
6) the resonance occurs: the frequency of cp is equal to zero at the point /. The passage 
through this resonance changes the adiabatic invariant by the value of order ^/e. 
So it follows that the phase points which were attracted to the equilibrium at the 
moment of time x < — 1, will be ejected at x ~ + 1. The phase points, which were 
attracted at x = x0 E [— 1, 0], will be ejected at x ^ |T0 | . 

Analogous phenomena lead to the delay of stability loss of equilibria in the 
general case. For the motion along some paths in the plane of complex time the 
system has an adiabatic invariant, which prevents the departure from the equilib
rium position, and some critical path with passage through resonance determines 
the maximal time of delay. 

Fig. 6 

Rer 
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1. Introduction 

The topological entropy of a continuous dynamical system is now well established 
as an important invariant of the system. It was first defined by Adler, Konheim, 
and McAndrew [AKM] in 1965 using open coverings *. Nowadays it is convenient 
to think of the topological entropy as a limit of the number of the distinct orbits 
of a given length which can be obtained with a fixed small precision. Thus, it 
measures the orbit growth of the system. 

More precisely, suppose that / : M —• M is a continuous self-mapping of 
the compact metric space M with metric d. Given a positive integer n, and a 
small real number ö > 0, we say that a set E is an (7i,<5)-separated set if, for any 
x ^ y e E there is a j e [0,n) such that d(fJx,fjy) > ö. Let r(n,ö,f) be the 
maximum cardinality of an (n, ö)-separated set in M. Let 

h(ö,f) = lim sup - log r(n, ö9f) 
n—>oo n 

and 
h(f) = limh(ö,f) = suph(ö,f). 

<5-»0 ^>o 

This is the topological entropy of / . The most interesting properties of h(f) arise 
from its relation to set of invariant probability measures of / . Let us denote this 
set by Jt(f), and recall that it is a compact metrizable set. Given p e J4(f), 
the measure-theoretic or metric entropy, hfi(f)9 is defined as follows. For a finite 
Borei measurable partition a, let 

Given two finite partitions a, ß, set a V ß = {A f] B : A e a, B e ß}. Then, set 

1 n _ 1 

/7,(a,/) = lim-H,(Vr/(a)) 
i =0 

1 Adler recently pointed out to us that topological entropy generalizes Shannon's notion 
of channel capacity (see [SW, p.7]) 
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and 
hfl(f) = sup^(a,/) = lim Ma,/) . 

a diam a->0 

The following properties hold: 

1. h(fn) = nh(f), hfl(f
n) = nh,(f) for n e Z+ 

2. h(fl) = | 11/iC/1) if {f}teR is a continuous flow. 
3. h(f) = s u p ^ ^ h„(f) 
4. fr(f) = M#) if/ is topologically conjugate to g; i.e., there is a homeomorphism 

cj) with 0 / ^ _ 1 = g. 
5. /i(/) can be computed using (n, ö)— separated subsets of sets of large measure 

for various p e J?(f)(sQG [Nl]). That is, 

h(f)= sup lim inf ]imr(ö,A) 

where 
r(ö, A) = Hm sup - log f (ö, n, A) 

n—»oo n 

and r(ö,n,A) is the maximal cardinality of an (n,<5)-separated subset of A. 

The relationship between topological and metric entropies (statement 3 above) 
is a combination of the work of Goodman, Goodwyn, and Dinaburg. It is referred 
to as the Variational Principle for Topological Entropy. An elegant proof has 
been given by Misiurewicz (see [DGS], pp. 140-146 for a more general result). 
Statement 4 above states that h(f) is a topological conjugacy invariant of / . 
It is generally not a complete invariant of topological conjugacy. However, for 
certain important systems it is close to being complete. For instance, Adler and 
Marcus [AM] have shown that two mixing subshifts of finite type with the same 
topological entropy are almost topologically conjugate in the sense that each is 
a boundedly finite to one factor of a third mixing subshift of finite type. Also, 
Milnor and Thurston [MT] have shown that a piecewise monotone continuous 
map / of an interval with positive topological entropy is semi-conjugate in a 
simple way to a piecewise linear map g with the same number of turning points 
as / and such that the slope of each monotone piece of g has absolute value 
equal to eh^K 

It was known quite early that some form of regularity affected the finite
ness of the topological entropy. Embedding a sequence of larger and larger 
shift automorphims topologically in a homeomorphism of the two-sphere shows 
that homeomorphisms need not have finite topological entropy. However, Kush-
nirenko proved that every C1 self-map of a compact manifold has finite topo
logical entropy. A natural question arises: When are there measures p for which 
hpif) = h(f)l. Misiurewicz was the first to construct examples of Ck diffeo
morphisms of compact manifolds with no measure of maximal entropy. His first 
examples were on manifolds of dimension greater than three, but now it is known 
that such examples arise in small perturbations of diffeomorphisms having a de
generate homoclinic orbit (an intersection of stable and unstable manifolds of a 
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hyperbolic saddle point with infinite order contact) even on the two dimensional 
sphere. His construction worked for every finite k, but it failed in the C00 case. The 
question of the existence of measures of maximal entropy was quite important. 
One consequence of the results described here is that for every C°° self-map / of 
a compact smooth manifold, the function p -» h^if) is uppersemicontinuous on 
J4(f). Hence, / does indeed possess measures of maximal entropy. 

In this article we shall survey several recent results about topological and 
metric entropy, particularly as they relate to smooth systems. We view the results 
described here as part of the natural evolution of certain topological aspects of 
the qualitative theory of dynamical systems following the rieh development in the 
sixties due, in large part, to Anosov, Sinai, and Smale. The recent developments 
on quadratic mappings due to Carleson and Benedicts may be viewed as part of 
the evolution of certain quantitative aspects of this theory. In the case of uniformly 
hyperbolic dynamics, these two types of aspects come together beautifully in the 
theory of equilibrium states as described, for example, in [B2]. It is natural to 
search for a generalization of the Equilibrium State Theory which encompasses 
all of these results. 

2. Entropy and Volume 

To motivate the results, we first consider the case of mappings of the interval. 
Let M be the unit interval and let / : M —> M be a continuous map with finitely 
many turning points. Let log+(x) = max(logx,0). 

Let *f(/) = length of image of/ with multiplicities: 

m = [ I fix) I dx 

Theorem 1 (Misiurewicz-Szlenk [MS]). With f as above, the following results hold. 

1. /iCf)= lim,^œilog+ £{f>). 
2. p —> h^(f) is uppersemicontinuous on M(f). 
3. / —• h(f) is uppersemicontinuous for f C1 where one perturbs in the C1 topol

ogy keeping the same number of turning points. 
4. / —> h(f) is lowersemicontinuous for certain f. 

Theorem 2 (Misiurewicz [M2]). The map f -> h(f) is lowersemicontinuous for all 
c°f. 
Corollary 3. The map f —• h(f) is continuous for f in the set of C1 maps with a 
uniformly bounded number of turning points. 

This last corollary was also proved by Milnor and Thurston [MT] . 

We consider a direct generalization of the preceding results. A clue as to how 
to proceed comes from work of Margulis in the sixties on the geodesic flow on 
compact negatively curved manifolds. Following his work, it became known that 
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the topological entropy of the time-one map equals the maximum volume growth 
rate of compact disks in the unstable manifolds. 

Let Dk be the unit fc-disk in Rfe, and let M be a C00 manifold. Let Cr(M,M) 
be the space of Cr self maps of M , and let <®r(M,M) be the space of Cr 

diffeomorphisms of M where r is an integer greater than 1. 
A Cr fc-disk in M is a Cr map y : Dk —> M. 

Define the fc-volume of y by 

| y \k = / | AkTy \dX 
JDk 

where dX is Lebesgue measure on Dk, and ^ T y is the fc—th exterior power of 
the derivative Ty 

For / G Cr(M, M), let A be a compact /—invariant set, and let U be a compact 
neighborhood of A Given a positive integer n, set Ws(n, U) = C\o<j<nf~j(U). 
This is just the set of points whose iterates from time 0 through n — 1 remain in 
U. For a fc-disk y in 17, set 

Gk(y,f, U) = lim sup - log+(| f"1 o y | r W f a £/)) |fc). 
H->00 W 

This is the volume growth of the /n _ 1-st iterate of the part of y which remains 
in U from time 0 through time n — 1. 

A collection sé of fe-disks in U with 1 < k < dim M, is called ample for yl if 
it contains a subcollection J / I for which 3K > 0 such that 

1. K"1 < | Dxy(v) | < X and | D2
xy(v,v) \ < K 

Vx G domain y, | u | = 1 and y e i i 
2. For x e A, and for each fc-dimensional subspace H of TXM, there exists a 

sequence of fe-disks yi,y2,-..,€ sé\ whose tangent spaces at y,(0) approach H in 
the Grassmann sense as i -» oo. 

If M is complex analytic with a hermitian metric, A and 1/ are as above, and 
sé is a collection of holomorphic disks in U, then J?/ is holomorphically ample or 
h-ample if, in condition 2 above, if is assumed to be a complex subspace of the 
holomorphic tangent space of TXM. 

Clearly the family of all disks through points in A is ample for A. If M = RN, 
with the usual metric, then the collection sé of affine disks through points in A 
is ample. 

Theorem 4 gives an upper bound for entropy in terms of volume growth rates 
of smooth disks. An earlier upper bound in terms of the average (relative to 
Lebesgue measure) of the maximum growth of the norms of the exterior powers 
of the derivative had been obtained by Przytycki [P] for diffeomorphisms. 
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Theorem4 [Nl]. Suppose f e Cr(M,M), A is a compact invariant set, U is a 
compact neighborhood of A, and sé is an ample family of Cr disks for A, Iff and 
M are complex analytic assume that sé is h-ample. Then, 

h(f\A)<^suipG(y,f,U). 
yes/ 

Iffe@>r{M,M),then 

h(f\A)< sup G(y, f,U). 
yes/ 

dim y < dim M 

In particular, for f e @r(M2), h(f | A) < supcurves y G(y,f, U). 

Using Theorem 4, one can give simple proofs of the following results. 

Theorem 5. 1. Let f : RN -* RN be a polynomial map with coordinate functions 
of degree < d; i.e., for x G RN,f(x) = ( / I (X) , / 2 (X) , . . . , / JV(X) ) with //(x) a 
polynomial in x of degree < d. If A is a compact invariant set for f, then 

h(f \A)<Nlogd (Gromov). 

2. If f : S2 -* S2 is a rational map of degree d, then 

h(f) < log d (Gromov — Ljubich). 

3. If f : 0>N(C) - • &N(C) is globally defined and holomorphic, then h(f) < 
log(topological degree) (Gromov) 

S. Friedland [F] has obtained results on volume growth in quasi-projective 
varieties which generalize Theorem 5.1 . 

It is well-known (Misiurewicz-Przytycki [MP] ) that if M is compact and 
/ : M —> M is C1, then h(f) > log(topological degree). 

So, Theorems 5.2 and 5.3 above are equalities. 
From now on, we assume that M is a compact C00 manifold. 
The above theorems give an upper estimate of h(f) in terms of volume growth 

rates of disks. For the lower estimate we have 

Theorem 6 (Yomdin [Yl]). For f e ^(M,]^), and any C00 disk y in M, 

h(f)>G(y,f). 

Yomdin's results can be used to give a proof of a generalization of the 
Shub entropy conjecture in the C00 case. To recall this conjecture, first define 
the homology growth of a map / , HG(f), to be lim sup,, .^ \ log | / ï | where 
/* : if*(M,R) —• if*(M,R) is the induced map on the direct sum of the real 
homology groups of/ (given any norm). The entropy conjecture states that for 
a C1 diffeomorphism / of the compact manifold M, one has h(f) > HG(f). Of 
course, HG(f) is the same as the maximum logarithm of the absolute values of 
the eigenvalues of/* : #*(M,R) -> H*(M,R). Yomdin's results show that this 
holds for arbitrary C00 maps. 
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Corollary 7 (Yomdin) (C00 Entropy Conjecture). Iffe C°°(M, Af), then h(f) > 
HG(f). 

We note that the Entropy Conjecture fails in general for piece-wise linear 
homeomorphisms although it is true for "typical" piecewise linear maps. There 
is a large literature on various cases of the entropy conjecture (see [FS]). The 
general conjecture is still unproved for / G &'(M,M) with 1 < r < oo. 

The next result states that, for positive h(f), there always exist disks y for 
which G(y,f) assumes the maximum value. In addition, it can be shown that 
there are such disks for which G(y,f) is actually a limit and not just a lim sup. 

Theorem 8. For f G Cœ(M,M), sé, an ample family of C°° disks, we have 

h(f) = sup G(y,f)= max G(y,f). 
ye*/ y^ 

In general, the disks y for which G(y,f) = h(f) are not easily identifiable. 
However, for an area decreasing self-embedding of a surface with boundary, the 
entropy is just the growth rate of the length of the boundary. 

Theorem 9 [N2]. For f G Dœ(M2),dM2 ^ 0 , / area decreasing, we have 

h(f) = G(ÔM2,f). 

3. Continuity Properties of Entropy 

The methods used in the proofs of the above results concerning volume growth 
and entropy have local analogs by which we mean that one considers the growth 
rates of the cardinalities of (n,ô)—separated sets or of the volumes of disks 
which remain in small neighborhoods of the orbits of given points. These can 
be combined with general results estimating the defect in uppersemicontinuity of 
both topological and metric entropy to obtain various continuity properties of 
entropy for C00 systems. 

We begin with a description of the so-called local entropy of a dynamical 
system / : M -* M. 

Given A a M,x e A,ne Z+,s > 0, set 

Wx(n,E,A) = {yeA: dtfy,fx) < E VJ G [0,n)}, 

r(n,ö,E,A) = supmax{card E : E cz Wx(n,s,A),E is (n,8) — separated}, 
xeA 

r(E, A) = lim lim sup - log r(n, ö, E, A). 
<5-»o n n 

Ifp€ Ji(f), let 

and set, 

hfAOC(s,f) = lim inf r(£,A), 
ff->l fl{A)>G 

h\oc(E,f) = sup/^ioc(e,/). 
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The quantity h\oc(E,f) is called the E— local entropy of / , and h^\0C(E,f) is 
called the c—local entropy of / relative to p. 

The next theorem states that h\oc(E,f) gives an upper bound for the difference 
h(f) — h(E,f) while h^ocfaf) gives and upper bound for the difference h^(f) — 
hfl(ß,f) for any partition ß with diameter less than e. Earlier estimates of these 
differences were given by Bowen in [B]. 

Theorem 10 [N2]. For any continuous self map f of the compact metric space M, 
and e > 0, 

1. h(f)<h(E,f) + hÌ0C(E,f) 
2. If p G M(f) and ß is a finite Borei partition with diam ß < E, then 

h,(f)<h(i(ß,f) + h,loc(E,f) 

Next we consider local volume growth. 
Let Wx(n,E) = Wx(n,E,M). 
For a disk y, set 

ewe, y) =lim S U P - l o g + S ^ P I /"_1 ° y I 7"1 (Wx (w, e)) I 
H->OO n Xç-M 

and 

G\0C(EJ) = supG]oc(ß,y) 
y 

Theorem 11 [N2]. For f G Cr(M,M), r > 1, 

hoc(s,f) < Gioc(2E,f) 

Theorem 12 (Yomdin[Yl]). For f G ^(M,^!), 

lim G\0C(E,f) =0 

From Theorems 10,11,12 with some elementary arguments (see [N2]) we have 

Theorem 13. 1. For f G ^(M,!^)^ —> h^ff) is uppersemicontinuous 
2. / —• h(f) is uppersemicontinuous on C™(M,M). 

Yomdin [Yl] has an independent proof of Theorem 13.2. 
In general, / -> h(f) is not lowersemicontinuous, but Katok has proved that 

this does hold on surfaces. 

Theorem 14 (Katok). / —• h(f) is lowersemicontinuous on @2(M2) 

Corollary 15. / -> h(f) is continuous on ^°°(M2). 
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Question 16. Is the preceding map Holder continuous? 

Answer: No 
Yomdin [Y2] has examples of curves {ft} of real analytic maps on S2, t G [—e, e] 
with h(ft) = 0 for t G [-s, 0], and for t G (0, e), 

,log| logt I 
h(ft)~h(fo)>C-

logt\ 

In view of Corollary 15, we wish to point out some analogies between the 
entropy map / -> h(f) on ^(M2) and the rotation number map / —> g(f) G R/Z 
on Homeo+(Sx), the set of orientation preserving homeomorphisms of the circle. 
Both h(f) and g(f) are topological invariants which depend continuously on / . 
Moreover, g(f) is rational iff* / has periodic points for / G Homeo+(S{) while 
(as proved by Katok) h(f) is positive iff / has transverse homoclinic points for 
/ G ^°°(M2). 

Problems 

1. (Monotonicity of entropy) For fr(x) = r — x2, the function r -> h(fr) is 
monotone increasing (Douady and Hubbard). What about r -> /i(/?>&) for fixed b 
with frtb(x, y) = (r - x2 + fcy,x) ?. 

2. Let ^max(/) denote the set of measures of maximal entropy for a mapping 
/ . As a consequence of Theorem 13, for any C00 / , J?max(f) Ì 0- For / € ^°°(M2) 
with h(f) > 0, is ^maxt/) a finite dimensional simplex? 

Related to this problem, Hofbauer ([H]) has developed an interesting the
ory concerning piecewise monotone mappings of an interval with finitely many 
monotone continuous pieces. His theory can be described by introducing the 
notion of a zero-entropy set (0-entropy set). Hofbauer calls these small sets. 

Let / : X —> X be a Borei automorphism of a standard Borei space. A 
0-entropy set is an f-invariant subset I j c l such that for any ergodic p G J£(f), 
with p(X\) = 1, we have h^(f) = 0. By convention, if Jt(f) = 0, then, every 
invariant subset of X is a 0-entropy set. Periodic orbits are simple 0-entropy 
sets as are stable manifolds of hyperbolic periodic orbits in the smooth setting. 
There is a natural notion of isomorphism mod 0-entropy: Borei automorphisms 
(f,X), (g, Y) are isomorphic mod 0-entropy if there are 0-entropy sets X\ <= X, 
Y\ c Y, and a Borei isomorphism cj) : X \ X\ -> Y \ Yi, with gej) = cj)f. We say 
two Borei endomorphisms / : X -> X, g : Y —> Y are isomorphic mod 0-entropy 
if their natural extensions are isomorphic mod 0-entropy. Finally, we say that 
the Borei endomorphism (f, X) is Markov mod 0-entropy if it is isomorphic mod 
0-entropy to a finite or countable state topological Markov chain (cr, IA). We will 
say that a measure preserving endomorphism (X,f,p) is essentially Markov if its 
natural extension (X,f,p) is isomorphic to a Markov process. In this case we 
also say that p is essentially Markov. 

Theorem 17 (Hofbauer). Let f : I —> J be a piecewise monotone map of the inter
val. Then, (f, I) is Markov mod 0-entropy. Moreover, there are only finitely many 
ergodic measures of maximal entropy and each is essentially Markov. 
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Moving to general C°° maps of an interval with positive topological entropy, 
we can prove that there are at most a countable number of ergodic measures of 
maximal entropy, and that each is essentially Markov. 

In dimension greater than 1, it is not always true that positive entropy implies 
that Jtmax(f) is a finite dimensional simplex: take the direct product of the 
identity transformation and any transformation with positive entropy. However, 
it is possible that, generically, i.e. for elements of a residual set of diffeomorphisms, 
^max(f) is a finite dimensional simplex. 

3. For / G @r(M2),h(f) = 0, can / be C perturbed to be Morse-Smale? 
This is true if the limit set of / is finite and hyperbolic [MaP], but not even 
known if the non-wandering set is finite. 

4. For / G 3e0(M2), let %+(x) denote the positive characteristic exponent of x 
(defined for a total probability set of x). Let c/)(x) = — x+ (x). Then, c6 is bounded 
and Borei measurable. Define 

P(cj))= sup hfi(f) + Icj>dp. 

Is there always a po such that 

P{<t>) = hlia(S) + jwn«. 

This is true for continuous ç6. Such pf
0s are called co-equilibrium states. For 

a hyperbolic attractor A and any p supported in the basin of A and absolutely 
continuous with respect to Lebesgue measure, it is known that 

1 "-1 

lim-Yfk(p) 
k=0 

is the unique ^-equilibrium state on A (Ruelle). In general, one would expect 
^-equilibrium states to be related to weak limits of the measures {̂  Xl/c^o/*^)}-
In this connection, Pesin and Sinai have shown that the weak limits of the iterates 
of Lebesgue measure have absolutely continuous densities along unstable leaves 
for partially hyperbolic attractors [PS]. 
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Combinatorial Models Illustrating Variation of Dynamics 
in Families of Rational Maps 

Mary Rees 

Department of Pure Mathematics, University of Liverpool, P.O. Box 147 
Liverpool L69 3BX, UK 

I have been interested in a particular case of the following question: 

If ft (t G T) is a family of (rational) maps, how do dynamics vary with t ? 

There are a number of advantages in considering this question for families 
of rational maps. Variation of dynamics in such a family is usually extremely 
rich, and even the topological nature of the Julia set of a map - the invariant 
set on which all the interesting dynamics occur - often varies widely. There 
are usually many hyperbolic maps within such a family. A rational map / is 
hyperbolic if all critical orbits converge to attractive periodic orbits. In this case, 
the Julia set J(f) can be defined as the set of all z such that fn(z) does not 
converge to an attractive periodic orbit, and / is expanding on J(f). Such a map 
/ is relatively easy to analyse, and is dynamically stable in a neighbourhood 
U ID f~l(U) of its Julia set^that is, for all g sufficiently near / , there exists a 
homeomorphism cpg : U -> C with cpg(J(f)) = J(g) and cpgof = gocpg on / _ 1 ( ^ ) -
Thus, most families of rational maps contain both great variation in dynamics 
and open subsets - stable components - on which dynamics are constant. (It is 
still not known, however, whether all stable maps are hyperbolic.) Furthermore, 
a hyperbolic component usually contains a unique critically finite map, that is, 
one for which the critical forward orbits are finite. So dynamics on a hyperbolic 
component can be examined by examining this map. Finally, perhaps the most 
important advantage in considering rational families the classical work of Fatou 
and Julia ([F], [J]) implies that, in general, the dynamics of a rational map is 
much influenced by the behaviour of its finitely many critical points. This feature, 
that the dynamics should be rather dependent on the dynamics of finitely many 
distinguished points, is not unique to families of rational maps. 

A Particular Family 

Thanks to the work of Douady and Hubbard [DH1, DH2] and a reinterpretation 
of some of this by Thurston [T], the best understood family of rational maps is 

fa : z »-• z2 + a(a G C). 

The critical point oo is fixed throughout this family (as for any polynomial family, 
of course), and the most significant orbit is that of the other critical point, 0, or 
of its image, the critical value a = /fl(0). Since /„(oo) ^ 0, there is a holomorphic 
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map cpa of some set {z : z > ra} onto a neighbourhood of co and satisfying 
cpa(z

2) = fa° <Pa(z)- Moreover, a is in the image of cpa for large a. This very 
classical result is the key to the very detailed description of the global dynamics 
of the family fa. Douady and Hubbard showed [DH1], [DH2] that the map 

is a holomorphic bijection of {a : /^(0) —> 00} onto {z : z > 1}, which, sig
nificantly, can be rewritten as {z : f$(z) —> 00}. Thus, the critical value a and 
0(a) have isomorphic dynamics under the maps fa, /o respectively. The map 0 
extends continuously and with similar isomorphic-dynamics properties to map 
the Mandelbrot set (see Fig. 1) 

{a:fn
a(0)-f>œ}, 

not onto the closed unit disc {z : /Q(Z) •/» 00}, but onto a quotient space of this. 
This quotient space is interesting, but highly computable (as Thurston's work [T] 
makes particularly clear). If 0(a) < 1, 0(a) does not always take on under /o 
exactly the dynamics of a under fa (although it often does), partly because J(fa) 
moves with a. For instance, points on the unit circle (which is the Julia set of /o) 
come together, and that changes the dynamics of points inside the unit disc. It is 
not known if 0 is a homeomorphism, but recent progress has been made on this 
outstanding open problem, by Yoccoz. 

Other Families 

Local dynamics near 00 are also'significant in the study of other polynomial 
families, as in the work of Bratìner and Hubbard, for example ([BH1, BH2]). 
For other families of rational maps, it makes sense to take slices of one complex 
dimension by keeping the orbits of all but one critical point constant and finite 
- such slices are conjectured dense (since hyperbolic components are conjectured 
dense), and one can always examine later the question of how the slices intersect 
and fit together. A rational map of degree d has 2d — 2 critical points (up to 
multiplicity), all of multiplicity < d — 1. Thus, a degree two rational map / 
has exactly two critical points Ci, C2, which vary continuously with / . I have 
considered, for m > 1, the variety 

{/ : / is degree two, c\ has period m}/Möbius conjugation 

If m = 1, this gives the family fa : z 1—> z2 -\-a. For the purposes of discussion, I 
wish to consider the case m = 3, which gives 

( z - a ) ( z - l ) 
g f l:zi-> 2 ( f l ^ ° ) 

zz 

in which one critical point 0 has orbit 0 ^ c o f - > l i - » 0 o f period 3, and the 
• • -, • 2fl . , • - -, , x — (u — I)2 ml 

other critical point has image (or critical value) . There are 
obviously three values of a for which this second critical point is fixed, giving, 
up to Möbius conjugation, the three polynomials from the family {/&} with 0 of 
period 3. Again for the purposes of discussion, we fix one of these polynomials, p, 
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Fig. 1. The Mandelbrot set 

the anticlockwise rabbit polynomial for which the periodic attractive basins are 
rotated anticlockwise by p around the common fixed boundary point. To avoid 
confusion, (since p is identified with its Möbius conjugate within the family {ga}), 
we refer to the fixed critical point of p as ci, and the period 3 critical point as c\. 

Comparison of a Dynamical Plane and Parameter Space 

A crude, inaccurate, but extremely useful idea in analysing such a parameter 
space is that one should be able to describe the dynamics of any map in the 
family by movement of one critical value across the dynamical plane of one fixed 
map in the family, so that the critical value takes in turn the dynamics of all 
points of the fixed map. We have already indicated how this idea comes into the 
analysis of the family fa : z \-> z2 + a. For the purposes of discussion, we wish, 
now, to compare the parameter space {ga : a =^ 0} and the dynamical plane of 
the anticlockwise rabbit polynomial p. Within these spaces, the sets 

{z :f(z) - • {cupfalp2^)} 

and 

<a:*-'G^îHo' iooî î 

should obviously be compared, remembering that 0 and are the critical 

points of gfl. We refer to these sets as the white sets, for obvious reasons. See 
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Figs. 2 and 3. I should like to thank my colleague, F. Rayner, for producing the 
computer picture on which the parameter space picture is based, and Tan Lei, 
who wrote the original programme he adapted, and also my colleague R. Morris, 
for his contribution. Part of the parameter space white set does indeed resemble 
the dynamical plane white set, and, to a very large extent, this resemblance can 
be proved. One needs the concept of mating, due to Douady and Hubbard [D], 
and the concept of capture, which can be found in Wittner's thesis [W]. The 
complementary black sets are not homeomorphic, though we do not expect that, 
since there is no such homeomorphism for the family {fa}. Neither are they 
clearly dynamically related. So we need, at the very least, to be more precise 
about the way in which the moving critical value of ga can take on the dynamics 
of points in the dynamical plane of p. 

Fig. 2. The dynamical plane of p 

How to Take on the Dynamics of p 

If we do not try to produce rational maps, it is easy to produce maps taking 
on the dynamics of various points in the dynamical plane of p, and this turns 
out to be worthwhile. We restrict to critically finite branched coverings. If / is a 
branched covering, then we define 

X(f) = {fn(c) : c is critical, n > 0}. 

Then / is critically finite if # (X(f)) < oo. We are going to give some examples 
based on_the critically finite polynomial p with critical points c\, C2. Let ß : 
[0,1] —> C be a path, which for simplicity, we assume is simple, and let ß(0) = 
C2. Let Oß be a homeomorphism which is the identity outside a (small) disc 
neighbourhood of Image(ß), and maps ß(0) to ß(l). See Fig. 4. Obviously, Oß op, 
like p, has critical points c\, ci (provided ß(l) =fc p(c\)). Provided ß avoids the 
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Fig. 3. The parameter space of the ga 

forward orbits of ß(l), c\, 07? op is a critically finite branched covering, whenever 
ß(l) is a strictly preperiodic point under p. If ß(l) has period q > 1 under p, then 
C : [0,1] -> C is uniquely defined by p o £ = /?, Ç(l) = p9_1(/?(l)), and cr̂ "1 ooßop 
is a critically finite branched covering, with two periodic critical points. 

Obviously, the maps Oß op and u^1 o Oß o p are not rational, but they are 
equivalent to rational maps, in a sense yet to be explained. Indeed, we have the 
following theorem, which, for simplicity, is stated only for the set {ga : a ^ 0} 
and the polynomial p. See [Rl]. 

The Polynomial-and-Path Theorem. Any hyperbolic critically finite rational map 
ga is equivalent to o>ß o p or o^x ooßo p for some ß 

In the proof, the path ß is obtained from a path gat from ga to p. 

Equivalence of Branched Coverings 

This is a homotopy-type equivalence, due to Thurston [T]. The concept occurs 
in Thurston's theorem [T] about which critically finite branched coverings are 
equivalent to rational maps. I am avoiding stating this theorem, although it is 
crucial to the work I am describing. _ 

Let / g be critically finite branched coverings of C. Then / is equivalent to g, 
written / ~ g, if there exists an orientation-preserving homeomorphism cp, and a 
path gt through critically finite branched coverings, such that cp o f o cp~l = g0s 

g = g i , * ( g , ) = X(g)foral l t . 
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Fig. 4. The homeomorphism 

There are many situations in dynamics when some sort of homotopy equiv
alence between maps / and g implies semiconjugacy. Always, some sort of 
hyperbolicity is required for / . See, for example, Franks [Fr], where the case 
of (among others) / being an Anosov toral automorphism is dealt with. The 
theorem in the present context is as follows. (See, for example, [Rl].) 

The Semiconjugacy Proposition. / / / is a critically finite hyperbolic rational map 
and g is a critically finite branched covering with f — g, and f and g are conjugate 
in neighbourhoods of any periodic critical orbits, then there is a continuous map 
cp : C —• C such that cp o g = / o cp. 

So a description of a hyperbolic critically finite rational map up to equivalence, 
as in the Polynomial-and-Path Theorem, is useful. In fact, when the equivalence 
is to a map of the form Gß o p or er̂ "1 o Gß o p, the techniques can be extended to 
describe completely the topological dynamics of the hyperbolic map, and hence 
of all maps within that hyperbolic component [Rl]. 

The Information Obtained, and Problems with It 

In summary, the Polynomial-and-Path Theorem gives a multivalued map from 
the set of hyperbolic components within the family {ga} (the example we are 
discussing) into a set of paths in the dynamical plane of p. There are two large 
problems with this, which we shall refer to as the Existence Problem and the 
Uniqueness Problem. 

The Existence Problem. For what paths in the dynamical plane does there exist a 
corresponding critically finite rational map? The path space is certainly too large, 
as it stands (although, of course, no very precise definition has been given). 

The Uniqueness Problem. How can one decide when two paths give the same 
rational map? 
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In order to address these problems, one needs to work with a space obtained 
by modifying the space of paths, This can be done. See [Rl], (The space is 
obtained by adapting the ideas of Thurston's combinatorial description of the 
Mandelbrot set [T], where he also worked out the theory to a considerable extent 
for other polynomial families. I suspect that similar adaptations may have been 
made by others, since very substantial work has been done on polynomial families. 
An adaptation that I am aware of, for a different family, is due to my student 
D, Ahmadi [A]. Shishikura and Tan Lei [ST| work with a partial combinatorial 
description in their work on matings of degree 3 polynomials, but following the 
original Douady-Hubbard approach to the combinatorics,) The modified path 
space is a tree with balls. See Fig, 5 (which is not intended to be accurate). A tree 
with balls is a simply-connected space which is a connected union of a tree and 
pairwise disjoint balls, In this space, one considers paths from a base point in a 
ball, and one identifies these paths with their second endpoints, 

Fig. 5. The tree with balls 

All balls in the tree with balls represent critically finite degree two branched 
converings (with one critical point of period 3, for the example under discussion). 
Among them are represented all the hyperbolic critically finite maps with both 
critical points periodic (in the family {gfl}), and it makes sense to identify these 
balls with the corresponding hyperbolic components. Since the tree with balls is a 
model for the black set in parameter space, boundaries of hyperbolic components 
from the white set - with one critical point in the backward orbit of the other, 
periodic, one - are represented simply by points in the tree with balls. It should 
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be stressed that the tree with balls, and the nature of the balls in it, can be 
computed entirely from the dynamics of p, which, in turn, can be computed 
from the dynamics of z i-> z2. This is not surprising, since the tree with balls is 
derived from paths in the dynamical plane of p. Any hyperbolic component is 
represented in the tree with balls countably many times, giving countably many 
paths from the base hyperbolic component. This is rather curious, when there 
are uncountably many paths between any two hyperbolic components in the true 
parameter space. Nevertheless, I would hope that the paths in the tree with balls 
represent some of the real paths in parameter space. But little work has been 
done, as yet, on the relation between the topologies of the two spaces. 

Solution of the Existence Problem 

The Admissable Boundary Theorem ([RI], [R2]) can be interpreted as follows. 
Some balls in the tree with balls represent boundary rational maps. Their positions, 
like that of all other balls, can be computed. These boundary balls separate 
an open set called the admissible set from its complement. All balls in the 
admissible set represent hyperbolic components, and all hyperbolic components 
are represented there. Possible boundary points for the admissible set (one of 
which is accurate) are given by the cut-off lines in Fig. 5. 

For the family {ga}, there are two boundary rational maps, which can be 
associated with the missing points 0 and oo in the parameter space. Note that, 

z - 1 i 
in fact, go(z) = , and after conjugation by z i—> (—d)iz, ga converges, as 

z 

a —• oo, to z i—> - . The third and second iterates respectively of these Möbius 
z 

transformations are the identity. The corresponding boundary rational maps are 
degree two critically finite branched coverings. They are not equivalent to rational 
maps. Each has a critical point c\ of period 3. The second critical point ci is 
of period 3 and 2 respectively. In the first case, three circles bounding disjoint 
discs are cyclically permuted, with one of the discs containing the critical points, 
one the critical values, and one the images of these. The complement of the discs 
is invariant under the map. In the second case, there is a simple loop which is 
mapped to itself, with orientation reversed. It separates the critical values from 
the other 3 points in the critical forward orbits. See Fig. 6. 

The Uniqueness Problem 

One can define an equivalence relation on paths with eventually periodic end-
points in the dynamical plane of p simply by ßi ~ ft if apx ° p — Gß2 o p or 
G^1 o (Tßl o p ~ c^1 oaß2op (whichever is appropriate). This equivalence can be 
transferred to the tree with balls. The equivalence relation on the tree with balls 
is rather close to being a group orbit equivalence relation. 

Open Question. Is the equivalence relation sufficiently close to a group orbit 
equivalence relation for it to be possible to construct a fundamental domain? 

Such a fundamental domain would presumably be rather like a Dirichlet 
fundamental domain. 
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x fcx 

X C2 

Fig. 6. Boundary rational maps 

If v *= {ga : a £ 0}, then, for m ^ 0, 

K„ - {g. : g» ^ = f c i > ^ ) «Ê {0f 1 ,«» . 

The techniques of the Polynomial-and-Path Theorem give a natural isnomorphism 
of m(Vm) into a certain subgroup G(m + 1) of the group of homeomorphisms of 
C preserving p~m~l(X(p)), modulo the appropriate isotopies, namely, those which 
are constant on p~m~l(X(p)). Modulo these, the group G(m + 1) consists of all 
homeomorphisms cp for which there exists a closed loop a based at ci such that 

r-w-i/ (p,p~^(X(p))) ~, (aaoP,P^\X(p))) 

This notation means that there is a path gt through critically finite branched 
coverings such that go = cp o p o cp~^, g\ = <ra o p, gj-'"*-1 (X(gt)) is independent of 
t. (The relation c^ is only an equivalence relation when cp is allowed to vary,) 
The isomorphism is not surjective for m ^ 1. This seems to be because V sits in 
a natural larger space, which includes nonrational maps. 
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Abstract. The chiral Potts model in statistical mechanics is characterized by sets 
of variables a, b,c,d , lying on a high-degree algebraic curve. (Each such set 
being a "rapidity" vector.) Here we show how they can be parametrized by the 
hyperelliptic theta functions used by Sonya Kowalevski. 

Introduction 

Considerable progress has been made in the last three years in understanding the 
integrable chiral Potts model [1]—[27]. This statistical mechanical model was first 
formulated [4, 10] in terms of homogeneous sets of variables (a,b,c,d) satisfying 
the relations (only two of which are independent) 

aN + kfbN = kdN , kfaN + bN = kcN, (1) 

kaN + kfcN - dN, kbN + k'dN = cN. 

Here JV is an integer greater than one and k,kr are real constants satisfying 
k2 + k/2 p= 1 : it is convenient to introduce a parameter 0 such that 

k = sino, /s' = coso, O<0<7t /2 . (2) 

For JV := 2, the relations (1) are of genus 1 and can be uniformized using 
Jacobi's elliptic functions, For JV > 2 the relations are of higher genus and one 
needs hyperelliptic functions. Here we show how this can be done, 

It has been found convenient to introduce [5, 20] other variables v,u,x>y>p, 
related to a : b : c : d and satisfying 

k sin u «= sin v, (3a) 
x = ei(u~v)/N ^ y ^ c/(irt*W/Nf (3b) 

p" ^ k'/(i^kxN) = (l-kyN)/kf, (3c) 

a : b \ c \ d ~ xp : y : 1 : p. (3d) 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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Once N, 8 and any one of the variables v, u, x, y, p is given, the rest are deter
mined (to within a discrete set of choices). Here we regard v as an independent 
complex variable; u,x,y,p, and the ratios a : b : c : d , as functions thereof. 

We have shown [27] that low-temperature corner transfer matrix calculations 
introduce integrals of the form 

/ 

v i(N-2a)u'/N i i 

svr-- <4) 

where a = 1,..., N — 1 and 

A(v) = —ikcosu = ^/{sin2 v — sin2 8}. (5) 

Although these calculations were only for kf small, these are precisely the hyper
elliptic integrals that occur if we specialize the classic work of Kowalevski [28] 
to the function A(v), considering it as the square root of a Laurent polynomial 
in e2U)/N (or equivalently in cot[(u + TU - 8)/N]). 

Here we make this specialization and find, rather remarkably, that it provides 
a uniformizing parametrization, not just of A and e2w^N, but of all the variables 
v,u,...,d . Indeed, our main result (48) is that a,b,c,d can be normalized so that 
(to within elementary factors ) each is an hyperelliptic theta function. 

We hope this parametrization will be useful in pursuing the corner transfer 
matrix calculations. 

Kowalevski's Notation 

In §6 (pp. 217-221) of [28], take Q = N-1,A0<0, and define a0,..., a2e by 

a2j-i = - cot(nj/N), a2j = - cot[(nj + n — 28)/N]. (6) 

Then ao < a\ < • • • < a2Q . Changing the variable x in [28] to v, where 
x = — cot[(t; + n — 8)/N] , the expression ^/R(x) therein becomes 

y/R(x) = (-l)N~1c0A(v)/{sin[(v + n- 8)/N]}N, (7) 

where co = [—Ao/(Nsin28)]1^2 is a positive real constant. The values of v 
corresponding to x = ao,..., a2Q are v = bo,..., b2q , where 

by-i =nj-K + 8 , b2j =nj-8. 

The sign conventions in [28] are such that j2JV~-/
v/R(x) is real and positive 

for fly_i < x < aj. It follows that A(v) is negative imaginary for — 8 < v < 8 , 
positive real for 8 < v < % — 8 , and satisfies the anti-periodicity relation 

A(v + %) = -A(v). (8) 

The continuation of A(v) is therefore analytic in the lower half of the complex 
u-plane. When lm(v) —> —oo , then A(v) —> —ielv/2 . 
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The functions F\(x),..,,ify-i(x) of [28] are linearly independent polynomials 
of degree N — 2 , Allowing complex coefficients, we can choose them so that, for 

Ftt{x) _ eW-2»)»/* dv 
VR(xyX~ A(v) W 

which is proportional to the integrand that occurs in (4), 

Hyperelliptic Integrals 

With these notations, the definite integrals Kaß, Kaß of [28] are (for a,/? 
1,.,. ,JV-1) 

' '—JT\— dv> 
nß-n+0 A[P) 

(10) 
nß-n+O ei{N~2u)v/N rnp—n-

K«ß s= - / . / — dv 
Jnß^Q A(v) 

In [27] we defined the function 

M*)= / ' _ ay
2 x (H) 

J-e <\/{sm ö - sinz yj 

and showed that 1(6, a) = n F (a, 1 — a ; 1 ; sin2 8), where F(<x,ß;y;z) is the usual 
hypergeometric function. Define 

K = I ( | - 8, a/Jv) , L'a = 7(0, a/JV). (12) 

Then La and L'a are positive real and 

Ljv-a = La , L/y_a = La (13) 

Jfy = ico^e^L« , K«ß = © « ^ L ; , (14) 

where co ;= e27c//^ , 
The Gaß defined in [28] are the elements of the transposed inverse of the 

matrix (2Kaß)> and are given by 

Gap^i(l^co^)e'^N/(2NLa), 

while the K'aß are 

ß __ ieni«/N(co-*P — 1) 
** = L*-> = 2sin(7ca/JV)

 L « ' <15> 
?r=l V ' ' 
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From now on take sums and products over a, ß, y to be from 1 to JV — 1 unless 
otherwise indicated. Inserting some omitted primes in the relevant equation in 
[28], define 

taß = 2i 2 ^ GyaK'yß . (16) 

Using (13), this gives 

a v cos ^ ^ sin ^ sin ^ L ; 
Xaß = N f si^f^ • (17> 

for a,ß = 1,...,JV— 1 . The matrix with elements —haß is real, symmetric and 
positive-definite. 

Hyperelliptic Functions 

Write the variables u\,...,uQ\v\,...,vQ of [28] as w\,...,wQ;s\,...,se . Define new 
variables v\,...,vQ by xa = — cot[(t;a + 8)/N] , x\,...,xQ being as in [28] . Then 
for a = 1,..., N - 1 , 

cvß ei(N-2a)v/N fa 

Kß_n+e A(v) ^ = ZT TF-^-\ (18) 

Wa = 2 ]T KaßSß , Sa = YJ Gß«™ß * (I9) 
. ß ß 

Writing the ordered set of variables {s\,..., Sjv-i} simply as s , the hyperelliptic 
theta function is 

0 W = X exp{27ciXamasa + ni^aZß^^ßmß}, (20) 
m 

the outer sum being over all values of the integers m = {mi,..., mN-\} . 
More generally, let n = {n\,..., WJV-I} be a given set of rational numbers, and 

define 

0{s\n} = ] T exp{27CïXa(ma + nceK + KlLaLßi™* + na)T«/Kmj3 + ^ ) } • (21) 
m 

If n\,..., Wjv-i are all integers, then obviously <9{s|n} = @{s} . Allow one of them 
to be half an odd integer and define @{s}o,..., ®{S}2N-2 by 

0{s}2x = ®(sU---,sx,sM-\,...,sN-1-\\O,...,O,lO,...,O) (22) 

&{s}2X-i = G{sÌ9...9sx-.i9sx-\9...9sN-i - \ |0 , . . . ,0 ,±,0, . . . ,0) , 

the arguments n\,..., nN-\ on the RHS being zero except in position X, i.e. nx = \ , 
provided 1 < X < N . (For 0{s}o all the «i , . . . , n^-i are zero. ) 
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The Case N = 3 

To fix our ideas, for JV = 3 , ®{s\n} — ®(s\,s2 | ni,n2) and these last definitions 
become 

®(sUS2)o - 0(51-^52-5 I 0,0) , 0(sUSih - ö ( 5 l - £ , 5 2 - | | £,0) 

0(5i,52)2 - 0(5i,52-| | | ? 0) , 0(5i,52)3 = ®(sU S2-\ | 0, \) 

®(SUS2)A = 0(5l,52 | 0,1). 

In this case, setting Q*=%\2~ I2\ , we have Tn *= T22 — 2# and (20) simplifies 
to 

0(5} p= Y exp{27C7-(mi5i + m252) + 27iiQ(m:i + m\m2 + m2)}, (23) 

Changing the summation indices to mi + m2 and mi — m2 (both odd or both 
even), it follows that 

®{s}^=82(ns\Jr%s2,q^)82(%s\-%s2,q) + 83(ns\ + 7is2,q
3)6^(nsi -ns2 ,q) (24) 

where q = e2nie and 82(u,q), 8^(u,q) are the ordinary single-variable Jacobi elliptic 
theta functions; 

00 

62(u,q)= £ e(2,-l)-«€(2»-l)V4 
» = — 0 0 

OO 

w,4)= Z e2'"v2. 
TI——00 

(A similar decomposition of 0 {5} into sums of products of 82,83 functions occurs 
for JV s= 4, but not apparently for higher JV.) 

The case JV = 3 is further discussed in the Appendix, 

Identities 

Once more allowing JV to be an arbitrary integer greater than one, we can now 
write down the first two of the three identities given by Kowalevski at the end of 
§6 of [28], specialized to this case. They are, for all values (real or complex) of 
Ü 1 , , . . , Ü J V - 1 > 

nty-'r+^?-(-^'W>Mi'. 

where a s= 0,..,, JV — 1 in the first equation; 1,..,, JV — 1 in the second. 
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There is a wealth of information in just these identities. For instance, taking 
Vß = %ß — n + 8 (all ß ), we see from (18) and (19) that Sß = 0 , so the first 
identity gives 

- — ^ ^ . « • { . W « « ] » (26) 

for a = 0,. . . , JV — 1 , writing 0 for {0,..., 0} . Also, taking Vß = nß — 6, we obtain 
w« = HB K«ß , Sß = 1/2 , and the second identity gives 

sm[(«a-« + 20)/iV] ~ t ^ K - i / ^ } ] (27) 

for oc = 1,.. . , JV — 1 , writing ^ for {^,..., ^} . 

Symmetries of the 6> Functions 

Define 
_ j _ v sin2(rcay/JV)^; 

Ô a " J V ^ sin(7uy/JV)L, ' (^} 

Then ga = Qa+N = QN-* = Q-a I Qo = QN = 0 ; and from (17) 

t*ß =Qa + Qß- QoL-ß . (29) 

Given 8, we can regard either (26) or (27) as defining QI,...,QN-I • 
The definition (20) can be written more symmetrically by setting sa = ra — rN 

(rN arbitrary). Then 

0isi = Y exp{2ni^=1mara - niY^^Y!ß=\Q^-ßm^mß} > (30) 
m 

the outer sum now being over all values of the N integers m = {mi,...,m;v}, 
subject to the condition 

mi H h mjv = 0 . 

For a an integer other than 1,..., JV — 1, define sa by so = % = 0 , sa = sa+jv = 
sa_iv . (This is consistent with (19). ) Write 0{s} alternatively as ®{sa} , the index 
a being understood to range over all integers, in particular over 0,.. . , JV — 1 . 
Define öaß to be one if a = ß (mod JV), zero otherwise. Then from (20) we readily 
see that ®{sa} satisfies the quasi-periodicity and evenness relations 

®{sa + öaj-ö0j} = ®{sa}, (31a) 

®{sa + T«/} = exp{-27ri(5; + Qj)} ®{sa} (31b) 

0{-5 a } = 0{5a}, (31c) 

f o r 7 = 0 , . . . , J V - l . 
The RHS of (30) is clearly unchanged by cyclic permutations of r\,...,r^ 

(similarly permuting mi,. . . , m^), in particular by ra —> ra_i, so 

0{5a} = 0 { 5 a _ i - 5 j V - l } . (31d) 
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Also, replacing m«, ra in (30) by myy+i-a, rjv+î -a , we see that 

0{5«} = 0 { 5 ^ l ^ - 5 i } . (31e) 

The other functions ®{s}o>f.>®{s}2N-2 can be expressed in terms of ®{s} 
and satisfy similar symmetry relations. In particular, 

®{sa}x - -i exp {ni (51 + £gi)} 0 {5« + l((5«o - 1 + T«I)} (32) 

and is an odd function: 

»{-5,}i - -ö{5,}i , 0{O}i - 0. (33) 

Specialization to a Single Variable v 

Now we focus on the case which seems to be relevant to the chiral Potts model, 
namely when 

V\=V 

vß = %ß-% + 8, ß = 29,..,N-l. (34) 

Thus there is only one variable v, and the expression (18) simplifies to 

pv e1{N-2<*)v/N 

w«^ / C ' At\' , (35) 
Jo 

where a = 1,..,,JV — 1 . Obviously wi,...,wjv-i are not independent: once one 
(and JV, fc ) is specified, the rest are determined to within a discrete set of choices. 
Similarly, 5I,...,5JV-I are not independent, In fact, from (25), 

®{s}3 = 0{s}5 = ••• = 0{5}2iv-3 = 0, (36) 

which relations can be regarded as defining 52,..., sjv-i in terms of sx , 
The function 0{s}i does not vanish identically, but is zero when v = 0, i.e. 

when 5i = 52 t= • • • = sjyJ-i = 0 . 
Let $) be the region of the complex y-plane consisting of the lower half plane, 

together with the real axis except for the points v = rca ± 8 (for all integers a), If 
we use the above sign conventions for A(v), and take the path of integration in 
(35) to be a straight line, then the sa are analytic in 2 . So are u and /«t, but they 
are not uniquely defined by (3a)-(3c). 

We can fix the choice of u and \i by specifying them when v is real, between 
—0 and 8 . Then they can be chosen so that —%j2 <u< n/2 and fj,e~~iv/N is real 
and positive; each 5« is negative imaginary, between —TKI/2 and 0 . 

These conventions define the sa, u, \i uniqely for v e 3. We extend these 
definitions by analytic continuation beyond 3 . The points v — TEOC + 0 are branch 
points, and 5a, u, \i become multi-valued functions of v. A convenient tool for 
handling this multi-valuedness is the following set of automorphisms. 
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Automorphisms 

There are five mappings (or sets of mappings) that change u,v,\i (and hence 
x, y, a, b, c, d), but leave the relations (3a)-(3d) unchanged. Including the corre
sponding transformation of s i , . . . , sjv-i, they are 

Mf : v,u; JM« -> v,u; co\x, sa + öaj - S0j 

Mf : v,u;ii,sa -> v9u + 2jn; fi, sa + zaj 

M(3) :v,u;ii,sa -+ v,n-u; e^^fT1, -sa (37) 

M(4) :v,u\ii,sa ^v^n,u^n\œix,sa-.i—sN-i + \(oai-\-xa2-x0L{) 

M(5) :v,u;fj.,sa -> -v, -u; e~2iv/Nfi, s j v + i - a - s i - ^ a i . 

The mappings Mj\ My, M® manifest the fact that M,U,SI,...,SJV-I are 
multi-valued functions of v. By deforming the path of integration in (35) tö make 
an extra loop round the line segment (nj — n + 8,nj — 8), we increase wa by 2Kaj, 
resulting in the mapping MJX) of \i and sa . Here j can be any integer, but only 
the values 0 ,1 , . . . , JV — 1 give distinct mappings. 

Similarly, including one extra loop round each of the j line segments (—8,8), 
(n — 8,n + 8), (nj — n — 6,nj — n + 8) increases wa by 2iK'aj , and results in 

the mapping MJ2) . The mapping M(3) is obtained by negating A(v) in (35), i.e. 
moving onto the other Riemann sheet for A(v) . 

Incrementing v by n replaces wa by co~CL(wQL + Ka0 + iK'ai) and gives M (4); 
negating v replaces wa by — wN-a — iK'ai and gives M(5) . Once v, u, \i are known, 
then x,y and the ratios a :b : c : d are uniquely determined by (3b) and (3d). 
Hence we can normalize a, b, c, d so that 

Mf 
Mf 
M® 

M (4 ) 

M (5 ) 

x, y ; a, b, c, d —> x, y ; eoa, b, c, cod 

—> cojx, cojy ; co^a, co^b, c, d 

-> co/y, co/x; c,co1/2d,co~l/2a,co~1b (38) 

—> x, coy, a,b,co~lc,d 

—> x - 1 , co/y; d,co1/2c,co~1/2b,a. 

This makes it clear that the five mappings merely permute (and possibly negate) 
aN, bN, cN, dN : they leave the set of relations (1) unchanged. These automor
phisms are related to the R, S, T, U of previous papers [4], [10], [20] ; in particular 

R = M®M® 9 S = M®Mf]. (39) 

Zeros of a, b, c, d 

Take v G @ and choose u, pi as specified above. By applying Cauchy's theorem 
to the rectangle with corners — 8,n — 8,n — 8 — iR,—8 — iR (R large and positive), 
we can verify that in the limit v —• —foo , 

wa = (co«Kai+iK'al)/(co«-l). (40) 
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It follows that 5a is then 

$" = ~2fiT + ^(Q^x-Qi), a^l , , , . ,JV, (41) 

and u — v = / In k . 
Applying the mappings JVf̂  and M® , we deduce that if (for a = 1,..,, JV) 

^ A ^ + y t e ^ - e O , (42) 

where X>v — ±1, then u *-> Woo, v -> ivco , Writing the RHS of (42) as CAV«? the 
function ®{sa — Qv«}i Ihen vanishes. From (32), so therefore does 

®{s«-Ugv-ïfo>Qu}> 

where 

Define 

where 

g« ==a/JV , a p= 0, . , . , JV-1, 

= g«+tf , Va. (43) 

X = C®{S^ - 5ga + 5e«}/0{5« + |ga + 5Ö«} > 

j> = C1 0{5a - ^g«-|e«}/ö{5B + ±<lg«- £g«} , (44) 

ft = Cfle2^ ®{s, + ±g« + ±e«}/0{5a + ì g « - ^ « } , 

JV-1 

a = l 

and C, C, C" are some constants. Then from (3b), (3c) these functions x, p, p, have 
the same zeros and poles at v = + i oo as do x, y, \i9 respectively. 

Further, using (31a) and (31b), we find that x,y,p, transform under Mf and 
Mf in the same way as x,y,ii\ the ratios x/x, j>/y, \ij\i being invariant under 
these automorphisms. It follows at once that the ratios are only two-valued 
functions of v, being uniqely determined by v and A(v). They can be regarded as 
defined on two Riemann sheets of the complex tf-plane. 

By itself, (3Id) does not appear sufficient to establish the invariance of the 
ratios under M® : one presumably needs to also use the relations (36). However, 
the sa are invariant under M^ > so the ratios are periodic functions of v, of 
period Nn. 

The following statements have not yet been rigorously proved, but (guided by 
the small-fc' limit ) they appear to be correct: (i) The ratios x/x, j)/y, ju//x remain 
finite and non-zero as v -* ±ico on either sheet, (ii) The 0 functions in (44) are 
non-zero for all finite v. 

Assuming these statements to be true, it follows that x/x is bounded on both 
Riemann sheets; analytic except possibly at the branch points, where it is finite, 
By a straightforward extension of Liouville's theorem in complex variable theory, 

file:///ij/i
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it follows that x/x is a constant. We can choose C so that this ratio is one. 
Arguing similarly for y and \i, it follows that 

x = x, y = y, u = ju. (45) 

From the mapping M(3), the constants C,C,C" must satisfy 

CC = co, C = ei%iNCC"2. (46) 

Also, when v = 8 and SI,...,SN-I = 0, x\i = CC = e1*/^ j t f0uows that there 
exists a single constant % such that 

C = e ^ V 1 , C = e -^x , 

C" = e~in/2Nx, (47) 

and 

a :b :c :d = j«l™<p-^ 0 {Sa- fa + fa} : XJ*I» 0 {sa- fa -fa}: 

0 {sa + fa - fa} : xe-We2*™ 0 {sa + fa + fa} . (48) 

Thus, in this normalization, and to within factors that are constant or expo
nential in si,..., SJV_I, the variables a, b, c, d are hyperelliptic theta functions. (For 
the case JV = 2, which corresponds to the Ising model, they are proportional to 
the four Jacobi theta functions 6[, Ö4,83,62 , all with the same argument.) 

Expressions for k, k\ / 

We can evaluate % by taking sa = ±^(Qa-i — Q\)±^(N — a)/N, in which case one 
of a, b, c, d vanishes. Substituting the forms (48) into (1), we obtain three distinct 
relations: 

(kf/k)1/N = ze-*%+"--H?"-i)/" 0{ga}1/0{oa}i, (49) 

kVN=x®{Q«}i/®{Q*-ga}i, 
= rl®{Qa}l/®{Qa + ga}i- (50) 

We can regard these equations as defining x, and providing alternative ex
pressions for k,k! . In fact, for N = 2, 3 and 4 we have observed that 13-digit 
numerical calculations are fitted by (48)-(50), with 

X = iei(2-N)0,N} ( 5 1 ) 

As explained in the Appendix, we have also verified this formula to 201 terms in 
a series expansion for JV = 3. It seems likely that it is exactly correct, for all JV. 
Remembering that ga is real and Qa is pure imaginary, (51) is equivalent to 

arg 0{ga + e«}i = (JV - 2)0/JV (52) 

an intriguingly simple conjecture. 
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Appendix: The case N = 3 

Here we consider the case JV = 3, when the hyperelliptic ®{s} = ®(s\,s2) 
functions can be expressed, using (24), in terms of ordinary single-variable Jacobi 
theta functions of nomes q and q3, where q = e2niQ , 

Setting 0 = n/2 — 8, the relation (26), for a = 0, becomes 

and hence, using (2), 

fc'2 = 1-fc2 = sin2^ = 21q{l~15q + mq2 + --}, (A2) 

Here we regard these equations as defining c/),k,k' as functions of q , for \q\ < 1 . 
From these definitions, we should like to directly verify the above results (49), 

(50) and the conjecture (51), These can be written, using (32), as 

(k'/kf3 = - , : e * < W 0 ( - Ì + e, Ì + fa 10 (i, i + fa , (A3) 

k^ = Xe^0 m + fa /0 (l-l-fa , 
= jf1 e-W @ ( i f i + i e ) / 0 (Ì , _ i + i e ) , ( A 4 ) 

z = e'(»+«/3, (A5) 

Define 
OO 00 

Ö(«) = f id - 9") = E ( -1)V ' M / 2 . (A6) 
11=1 N=-O0 

and write Q(qr) simply as Qr. Then from (24) we can prove that 

0(0,0) + 6>(±,±) = 2(ß2ß6)5/(ßiß3ß4Öi2)2, 

0(0,0) - 0{\,\) = 8<z(ß4ß12)2/(ß2ß6), (A7) 

We also conjecture the following five identities 

6>(y)=(ßiß3) 2 / (ß2ß6), (A8a) 

&(0,0)3Q\Ql = Q\2 + 21qQl2, (A8b) 
0 H + ft 5 + k) = (1 - e-2"'73) of, (A8c) 

0 (Ï-Ï ± 5<?) = [Ö2ß3/(ßiß6)] + ' (3g)1 / 2[ßiß^/(ß2ß3)] , (A8d) 
0 (Ì-S + ÏQ) 0 Q-Ï - ÌQ) = 0 M ßi ß3 • (A8e) 

We have verified these conjectures to order q200 in series expansions in 
powers of q, using Fortran with integer arithmetic. The hyperelliptic ® functions 
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herein, as well as Q(q), have ^-expansions that are sparse, with the few non-zero 
coefficients being of order one. By writing the identities solely in terms of sums 
of products of such functions (with no divisions ), we avoided integer overflows: 
for instance, to this order the largest coefficient in the expansion of Q(q)12< is only 
5,187,456. 

The desired formulae (A3), (A4), (A5) follow from (Al), (A2) and (A6)-(A8e), 
so we have verified them to order q200. The equation (A3) becomes very simple: 

(fc'A)1/3 = 3 1 / 2 q1/6 {Q(q3)/Q(q)}2. (A9) 

Note 

A number of colleagues have pointed out that the conjectures (A8a)-(A8b) can 
be proved, either by the general theory of modular functions, or from specific 
identities already in the literature. In particular, the author is indebted to G.E. 
Andrews for showing their connection with the theory of generalized Frobenius 
partitions [29]. 
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Abstract Compact Group Duals, Operator Algebras 
and Quantum Field Theory 

Sergio Doplicher 

Dipartimento di Matematica, Università di Roma "La Sapienza", 1-00185 Rome, Italy 

1. Introduction 

In this report we will review joint work with J. E. Roberts on the existence of a 
unique compact group of internal symmetries, and of field operators, on which 
the group acts as global gauge transformations, which commute or anticommute 
in the normal way at spacelike separations [16], 

These results are deduced from first principles (essentially, the postulate of 
locality) involving solely the observable quantities, for local Quantum Theories 
without massless particles on the four dimensional Minkowski space. 

On the mathematical side, these results stem out of a new duality theory for 
compact groups which has been developed for this purpose. While the classical 
theory of Tannaka and Krein (cf. e.g. [22]) characterizes the dual of a compact 
group within the category of finite dimensional vector spaces, the new theory 
characterizes such a dual within abstract categories, 

More specifically, our abstract compact group duals will be strict symmetric 
monoidal C*-categories with conjugates, having subobjects and direct sums, where 
the selfintertwiners of the monoidal unit reduce to (C [15]. 

Each such category can be "locally" realized as a full subcategory of End 9Ï 
(cf. Sect. 2), i.e. as an action on a C* -algebra. 

Now if a category ZT with the mentioned properties acts as a full subcategory 
of End 91 on a C*-algebra 21 with centre (C • I, a key construction [14] provides 
a cross product 9Ï x 2T containing 91 as a C*-subalgebra with trivial relative 
commutant, and a compact group G of automorphisms of 9Ï x 2T having 9Ï as 
the fixed point subalgebra, such that the objects of 3T are the restrictions to 91 
of inner endomorphisms of 91 x ST, induced by Hilbert spaces with support I in 
91 x 8T\ these Hilbert spaces together with 91 generate 91 x F and are G-spaces. 

Assigning to each object of ZT the representation of G on the corresponding 
Hilbert space in 91 x F and to each arrow the G-module map given by multipli
cation in 91 x F defines a functor of ST into the category of G-Hilbert spaces in 
91 x F which is an isomorphism of strict symmetric monoidal categories of ST 
with a category of continuous unitary finite dimensional representations of G. 

These central results, when applied "locally" to an abstract category y in the 
earlier mentioned class, yield at the same time the existence of a unique compact 
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group G and of an isomorphism of 3~ with a representation category of G as 
strict symmetric monoidal categories [15, Theorem 6.1]. 

By completely different methods, a parallel result has been independently 
established by Pierre Deligne in a recent paper [7] characterizing as abstract 
categories the categories of representations of an algebraic group on finite di
mensional vector spaces over a field of characteristic zero. 

In the Quantum Field Theory context, we let 91 be the C*-algebra generated 
by all local observables (Sect. 3). The superselection structure associated to the 
given vacuum state coo on 9Ï is determined by 9Ï itself and can be described by a 
category 3T fulfilling exactly the axioms mentioned above. In the important case 
of "localizable charges", ZT is actually a full subcategory of End 91. The monoidal 
structure induced from End 91 is related to composition of superselection charges; 
the symmetry to the intrinsic notion of statistics of superselection sectors; the 
existence of conjugates is a consequence of particle-antiparticle symmetry of su
perselection quantum numbers. All these pieces of structure have been deduced, 
essentially from the locality principle, in earlier works [9, 10], and can be sum
marized saying that superselection structure is described by a full subcategory 
y of End 91 with the above properties. The corresponding cross product 9Ix^~ 
describes field operators and the dual action G on 91 x«f provides the compact 
group of internal symmetries. With some technical modifications needed to take 
care of "quantum topological charges" this construction yields the more general 
results described in Section 3. 

2. Abstract Compact Group Duals and Operator Algebras 

Which abstract categories can appear as the dual object of a compact group? 
The general answer can be summarized in the following theorem [15]: 

2.1. Theorem. Let &~ be a strict symmetric monoidal C*-category with conjugates, 
having subobjects and direct sums, such that the selfinterwiners of the monoidal 
unit are (C. There is a unique compact group G and an isomorphism of symmet
ric monoidal C*-categories of ZT with a category of finite dimensional continuous 
unitary representations of G. 

Rather than giving the formal definitions involved in this statement, it is 
easier to see how they arise naturally in an important model. 

Let 91 be a C*-algebra with centre C-f. We will denote by End 91 the category 
whose objects are the unital endomorphism of 91 and whose arrows (Q, Q') for 
object Q,Q' are their intertwiners in 91: 

(Q, Q') = {T e 91 | TQ(A) = Q
f(A)T ,AeSH}. (1) 

End 91 is a C*-category with the linear structure, norm and * induced by 91 and 
composition of arrows T oS, when defined, given by product in 91. Further, it is 
a monoidal C*-category, where the monoidal operations are composition in the 
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semigroup with identity / (the identity automorphism) of unital endomorphisms, 
and on arrows 

T e (ft g'), S e (G, a') -+ T x S e (QG,Q'G') ; 

TXS^TQ(S) = Q'(S)T. 

These operations are always defined, strictly associative, and fulfill obvious com
patibility relations with composition, so that End9t is a strict monoidal C*-
category. The selfinterwiners of the monoidal unit i are the elements of the centre 
of 91, i.e. (i, i) = C • I. 

We are interested in full monoidal subcategories ST of End9ï (i.e. &" is specified 
by a semigroup of unital endomorphisms with identity i and all arrows given by 
(1)) which are the model for a representation category of a group. The monoidal 
operations on !T should behave like the tensor product in a subcategory of Hilbert 
spaces where ® is strictly associative. This suggests the following 

2.2. Definition. A symmetry cfor a strict monoidal C*-category 2T is an assignment 
of a unitary S(Q9 G) e (QG, GQ) for each pair of objects ft G, so that ifR€ (ft G), 
Rfe(Q

f,Gf), 
B(G, G1) O R x Rf = R! x R o £(ft Q

f) (3) 

and 

S(G,Q)OG(Q,G) ;=IQa (4) 

e(i,Q) = e(Q,i)=Ie (5) 

E(QG, T) = e(ft T ) x / a o / e x B(G, T) . (6) 

The symmetry e defines canonical unitary representations ej^ of the permu
tation groups F(w) of n objects with values in (Q]î, Q"), n = 2,3, • • • , obtained 
assigning IQr-\ x G(Q, Q) X IQn~r-\ to the exchange of r with r + 1 (where IG e (G, G) 
is the identity interwiner), 

Crucial for compactness is the existence of conjugates. The following definition 
is modelled on the properties of complex conjugates of finite dimensional group 
representations. 

2.3. Definition. The strict symmetric monoidal C*-category (ST9é) has conjugates if 
to each object Q of ZT there is an object Q and arrows R, R fulfilling 

R£(I,QQ),R^B(Q,Q)OR, (7) 

R* xIQoIQxR = IQi (8) 

2T x % ° % x K = %' (9) 

Eventually we will say that F has subobjects if each non zero selfadjoint 
projection E G (Q9Q) is the range of an isometry W G (G,Q) for some object G; 
8T has direct sums if any pair of objects G, G' are subobjects of some object ft 
associated to complementary projections in (Q9Q). 
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Now the statement of Theorem 2.1 is explained. When y is actually a full 
subcategory of End 91, and 91 has centre (CJ, slightly more general axioms suffice, 
replacing existence of conjugates with abundance of objects with "determinant 
one". We can define determinants in an abstract category ST as above along the 
following fines. 

It can be shown [15, Sect. 2] that each object Q has an integer dimension d(o) 
given by 

R*oR = d(Q)-I (10) 

where R obeys the conjugate equations (7,8,9). The objects with dimension one 
are shown to form a group and their equivalence classes form an abelian group 
@o. The determinant map 

Objects F -> ^o 

assigns to Q the class of the subobject (automatically of dimension one) of Qd^ 
associated to the projection sd^(Ad(e)) G (Qd^,Qd^), where Ad(Q) is the totally 
antisymmetric projection in the group algebra of JP(d(o)) [15, Sect. 3]. 

The determinant map has the properties 

det Qi®Q2 = det QI • det Q2 (11) 

det^ = (detör1 (12) 
det QIQ2 = 1 if det gi = det 02 = 1. (13) 

Objects with determinant one are called special. An object Q of dimension d is 
special if and only if there is an isometry R G (i, Qd) such that 

RoR*=sW(Ad) (14) 

R*xIQoIQxR = (-l)d-l^Ie. 

We conclude that (̂ ~,fi) is specially directed in the sense that each finite set of 
objects Q\, - • - 9Qn are dominated by a special object Q: it suffices to choose 

Q = 01 e • • • e Qn © Qn ® ' " ' ® Ql > (15) 

which will be special by (11) and (12). 
Now we can state precisely in which sense 2T is locally described by a full 

subcategory of End 91 [15, Sect. 4]. 

2.4. Theorem. Let ZT be as in Theorem 2.1, Q a special object and 3TQ the full 
subcategory with objects {I,Q,Q2, • -}. There is a C*-algebra cVe with centre (C • J, 
a strict symmetric monoidal full subcategory 3T§ o/End (9Q with objects the powers 
of a special object Q, and a functor of $~Q onto 3\ which is an isomorphism of 
symmetric monoidal categories. 

To construct GQ one considers, for each k G Z, the inductive limit (9k
Q of the 

Banach spaces (Qr,Qr+k), r,r 4- k G No, under the maps 

T e (Q
r,Qr+k) -^TxIQe 0? r+V+fe+1). 
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The composition of maps and the adjoint in F make 0k, k G Z, into a ^-graded 
^-algebra which can be completed in a unique way into a C*-algebra 0Q such 
that the grading is given by a continuous action of T. 

Denoting by i:T —• i(T) the embedding of (QY
9Q

S) into <9Q we have 

i(TxIQ) = i(T), 

i(IexT) = $oi(T), 
(16) 

which defines the endomorphism ft 
Theorem 2.4 brings the abstract duality problem into its natural context, non 

commutative operator algebras. 
The main result, crucial both for the proof of Theorem 2.1 and for the 

application to QFT, deals with a monoidal full subcategory 3T of End 91 (hence 
3T is specified by its objects, a semigroup A of unital endomorphisms with identity 
ï) which has a symmetry e (but ZT does not need to have subobjects and direct 
sums: if it did, ZT would have conjugates if and only if it were specially directed, 
cf. the comments above and [12, 9, 10]). 

Such a category arises naturally if 91 is embedded in a C*-algebra 93 as the 
fixed points under a compact group G of automorphisms of 93 and 9I'n23 = (C-I. 
In this case a finite dimensional Hilbert space H in 23 (i.e. ip*y)' G ( 0 / if t/;,i// G H) 
with support J (i.e. the left annihilator of H is zero) induces an endomorphism 
QH of 91 if and only if if is G stable; then 

H = {xp G 93 | xpA = QH(A)y>9 A G 91}. (17) 

Then H carries a unitary representation UH of G given by £/#(g)y; = g(y>),ip e H. 
The representations so obtained and their intertwiners form a category denoted 
#(23, G). The linear operators (H9H

f) between Hilbert spaces H,Hf as above 
form a linear subspace of 23 (spanned by HfH*) and their G-invariant elements 
(H,Hf)G lie in 91 and are the arrows of #(93, G). Also ( H , # ' ) G C (QH,QW) and 
UH —• QH, T G (UH, UH>) - » T G (QH, QH1) sets up an isomorphism of monoidal 
categories of #(23, G) with the full subcategory ^(23, G) o/ End 91 with objects 
{QH,H a finite dimensional G-Hilbert space in 93 with support I}. The monoidal 
structure in #(23, G) is induced by the operator product in 23 which defines a 
strictly associative tensor product of Hilbert spaces in 23. 

This monoidal structure has a natural symmetry 8 defined by 

8Ew e(HH',HfH), 
, , (18) 

8H,H'ipip =ipip;xpeH9\peH9 

where actually 8HiH' e 91. Then (#(23,G),0) and (5^(83, G),0) are isomorphic as 
strict symmetric monoidal categories [13], Representations with determinant one 
correspond to special objects. 

Every category of finite dimensional continuous representations of a compact 
group G can be embedded in a category #(23, G) as above [13, Sect. 7], 

2.5. Definition. We will say that (2T9B) is a symmetric monoidal subcategory of 
(^(23, G), 8) if ST is a monoidal subcategory of "^(23, G) and E is just the restriction 
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of the symmetry 8 to objects in ZT. In this case we will denote by H(2T) the Hilbert 
spaces in 23 inducing the objects of ZT. 

The main result of [14] provides a converse construction given 91 and F. 

2.6. Theorem. Let 91 be a C*-algebra with centre (C • I and (&~,s) a symmetric, 
specially directed full monoidal subcategory of End 91. 

There is a C*-algebra 23 and a strongly compact group G of automorphisms of 
23 such that 

1) 91= 23G; 
2) 9I'n33 = ( l W ; 
3) (£T, s) is a symmetric monoidal subcategory of (^(23, G), 8) ; 
4) 93 is generated as a C*-algebra by 91 and H(&~). 

As a consequence, G is the stabilizer of SU in Aut23 and (%$,G) is unique up to 
isomorphisms that leave 91 pointwise fixed. 

The C*-algebra 23 may be called the crossed product 91 x ZT and G the dual 
action. The group G would be automatically compact provided we replace it by 
its strong closure if needed [13]. 

Note that the Theorem provides at the same time G and a representation 
category of G isomorphic to ST, namely the image in #(23, G) of the subcategory 
F of ^(23, G). 

The special case 3T = 3~Q, Q a special object yields a compact Lie group. 
Combined with Theorem 2.4 this yields a compact Lie group GQ for each special 
object of a category ST as in Theorem 2.1 ; the group G of Theorem 2.1 is obtained 
as the projective limit of the compact Lie groups GQ. 

The proof of Theorem 2.6 is reduced to the case ZT = &~Q. Indeed, if &Q is 
the full subcategory of End 21 with objects the objects of 2T dominated by a 
special object ft then 9Ï x ^ is easily constructed from 91 x 3~Q and 91 x ZT can 
be obtained as the inductive limit of the C*-algebras 91 x «^. 

The construction of 91 x 3TQ is then central, and we outline the main ideas 
involved. Being generated by a special G-Hilbert module H and by 91, 91 x 5^ 
will then contain both 91 and the Cuntz algebra [6] Gd generated by H, where 
d = d(o) = dim H, with intersection the fixed points (9G in @d under the action 
of G. This action is canonical in the sense that it is induced by the unitary 
representation of G on H, U(g)xp = g(ip), ip G H, g G G. Thus, if the system 
(23, G) is given, we have monomorphisms fx : (9Q —> 91, n : 91 -> 93, ( : 0d —• © 
such that 

Ç(ip)n(A) = nQ(A)i;(ip), AeK,ipeH (19) 

\i o G = Q o fi (20) 

(where G is the endomorphism of Od induced by the generating Hilbert space H) 
such that the following diagram is commutative 
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31 • 93 

y îC (2i) 

(Pa — * Od • 

As a consequence of 21' 0 9? = C • J, we have 

M K > 0 ) = teV);r,se]No. (22) 

But G and /̂  are not known a priori. The solution of the problem involves three 
steps. 

a) Since Q is special, identifying G with its faithful representations by d x d 
unitary matrices given by the action on H, we have G c SU(d). Then ®su{ä) c: ®G> 
Now fio = lA&sv(d) *s actually determined by the data, s$\n = 2,3,••• and JR 
fulfilling (14) for ft 

b) Assuming that G and \i are given fulfilling (20) and \X((GV, GS)) C 

(Q1',QS) ; r , sG No (cf. (22)), find a universal solution to the diagram (21) with 
condition (19). 

c) Apply this construction to SU(d), jio- We get a C*-algebra 23 with an action 
of SU(d) with 91 as fixed points but, since (22) does not hold for ßo in general, 
we will not have 9T n $ = C • 7. 
However 91' n 23 is commutative, and the system (23,SU(d)) can be obtained as 
the induced C* system from a unique system (23, G) where now 91 = 23G fulfills 
21' n 23 = <C • / . 

Then G and /x fulfilling (20),(22) are obtained and we can identify (23,G) with 
the universal solution of step b). 

Step a) involves the C*-algebraic version of the theory of invariants for SU(d) 
[12]. 

If S G Hd is a normalized totally antisymmetric vector, S G @su(d) and, 
together with 0("}(p),p G P(w), 77 = 2,3,-•• (where 0<")(p) e (#" ,#") permutes 
the factors in if" by p), generates &su{d) as a C*-algebra, and this C*-algebra is 
simple. 

Now if 0 is special symmetric, sj^ and R (cf. eq. (14)) will generate a C*-
algebra isomorphic to ®su{d), and we can define a unique monomorphism /Uo of 
0Si7(d) into 91, fulfilling (20), by 

^o(0 (" )(p))=4" )(p) îpePO7), /7=2 ,3 , . . . 

W)(S) = Ä. 

Step b) involves first an algebraic construction [14, Sect, 2]. With °&d the 
dense * subalgebra of (Dj generated by H, and °(9G its G invariant part, we can 
regard °&d and 91 as °0G-bimodules letting X G °&G act by multiplication in °&d 
and by multiplication with pi(X) in 91. The °0G-module tensor product 91®^°^ 
can be made into an algebra by requiring that J ®/i0 H induces Q on 2Ï® J, i.e. 
setting 

X ® , X • 5 a , 7 = 4>n(fl) ®„ 1 7 , 

i4, BG9Ï , X G # " , 7 G ° ^ . 
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To define the *-operation it is essential to use the fact that S G °(9G since 
G c SU(d). Since xp* = S*Stp* = S*j(\p), where j is the antilinear map of if into 
Hd-l,j(y)) = d(-l)d~l\p*S (as S*G(S) = ( - l ) ^ 1 ^ , cf. also (14)), we can define 
the adjoint map on the generators 91®^H by 

(A ®p tp)* = (A ®ji I • I ®n xp)* = I ®jt ip* • A* ®^ I = 

= I ®„ SV(V) • A* ®/t i = fi(S*)Qd-{(A*) ®/t j(y>). 
(24) 

Along these lines it is possible to make 91®^ °(9d into a *-algebra and there is 
a unique C*-norm extending the norm of 91 which is continuous for the action 
of G. The completion 91®^ öd in this norm is the desired universal solution to 
(19), (21) [14, Sect. 3]. 

Taking now [i = fio given by step a) in this construction we find a C* -system 
(23, SU(d)) with fixed points 91 such that, as a consequence of the conditions 
jUo(0(p)) = £Q(P) we have [13, Theorem 5.2] 

srnfi = fi'nfi. (25) 

The desired system (93, G) is now constructed in step c) noting that by (25) 
and 91' n 9Ï = C • I, SU(d) acts ergodically on 23' n 23, hence, by compactness, 
transitively on its spectrum. Picking cj) in that spectrum, G will be the stabilizer 
of 0; the smallest closed two sided ideal J in 23 containing ker cj) will be G stable 
hence G will act on 23 = 23/J providing the desired solution [11]. 

Now G is known and the identification of (9 G with 91 n @d in 93 defines \i, 
fulfilling (22) since 91' n 23 is now (C • I. The corresponding universal solution of 
(19), (21) (9Ï ®^ (9d, G) is now isomorphic to (93, G) [14]. 

Theorem 2.6 admits spatial versions of direct use in QFT. If m denotes the 
conditional expectation 91 x &" —> 91 given by integration of the action of G 
over the normalized Haar measure, a faithful representation TUO of 91 induces a 
representation % of 93 via m [14, Sect. 6]. 

If 7i0(9I) is a factor M, N = TT(93)" will be a factor with M' n N = C • i ; 
conversely if JV is a factor with separable predual and G ci Aut JV is compact for 
the strong topology of the action on the predual, such that M = JVG is infinite 
with trivial relative commutant, then JV arises from M as above [14, Theorem 
7.1]. 

We could generalize End 91 to Bimod 9Ï, a strict monoidal C*-category whose 
objects are homomorphisms Q of 91 into square matrix algebras over 91 and 
where an arrow in (ftö-) is a matrix over 91 intertwining Q and G [15, Sect. 1]. 

Bimod 91 can be locally identified with End9t for a suitable C*-algebra 91. If 
the object Q is a unital mapping of 91 into M„(9I), let 91 be the C*-tensor product 
of 91 with the UHF algebra M„((C) ® Mn(C) ®. . . , and define an endomorphism 
Q of & by 

Q(A ® Bi ® B2 ® B3 ® ...) = Q(A) ® Bi ® B2 ® ... , (26) 

BieMn(€), ,4 G 91. 

It can be proved that «^ is isomorphic to ^ [15, Sect. 5]. Actions described 
by Bimod 91 arise, e.g. if the C*-system (93, G) does not have G-Hilbert spaces. A 
unitary matrix X G © ® Mn((C) such that 
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g®i(X)=X-I®v(g), geG, (27) 

where v is a continuous unitary w-dimensional representation of G, defines an 
object of Bimod 91, 91= 23G, by 

Q(A)=XA®IX*9 AeW, (28) 

By the foregoing device this action could be equally well described by an 
action in End 21. 

On the other side, every category of continuous unitary finite dimensional 
representations of a compact group G can be embedded in End 91 for a simple 
C*-algebra 91, which is obtained as the fixed point subalgebra under a canonical 
action of G on an infinite tensor product of Cuntz algebras [13, Sect. 7]. 

As a variant of that construction one can consider the fixed points &u(G) in 
the Cuntz algebra 0«, under the action a of a group G defined by a unitary 
representation U of G on the infinite dimensional generating Hilbert space if, by 

ag(v>) = ufe)v ; v e i î , geG. 

It can be shown [5] that this action is ergodic if and only if U admits 
no non zero finite dimensional subrepresentation, and is prime if U(G) has 
compact strong closure. If furthermore U is the direct sum of finite dimensional 
subrepresentations with determinant one, @u{G) is simple [5], generalizing to 0^ 
the analogous result for (9d [12], 

By taking, for each metrizable compact group G, the representation U to 
be the doubled left regular representation X, we get a simple C*-algebra 0A(G)? 

and each continuous isomorphism G\ —• G2 induces a canonical isomorphism 
®X(G2) - > 0A(Gi)-

Current research deals with the question: when are the GX{G) non isomorphic? 

3. Operator Algebras and Quantum Field Theory 

Quantum Mechanics says that observables generate a C*-algebra 91 [31]; local 
quantum theory, providing a general basis to Quantum Field Theory, requires 
that 9Ï is generated by local observables [21]. Local observables are specified by 
an inclusion preserving map 0 —• 91(0) from the set J f of double cones (bounded 
set obtained intersecting past with future open light cones) in Minkowski space 
to von Neumann algebras acting on a separable Hilbert space Jfo- This map is 
extended to any S c R 4 defining 9I(S) as the C*-algebra generated by 91(0), 
0 c S, 0 G Jf ; so that 9I=9I(R4). 

The C*-algebra 91 is assumed to be irreducible, i.e. the defining representation 
7Co of 91 describes a single superselection sector, which should contain the vacuum 
state CDO induced by a unit vector Q G J^o-

Other superselection sectors will be described by other unitary equivalence 
classes of irreducible representations of 91. 

As a manifestation of Einstein causality, if the double cones (9\, &2 cannot be 
joined by any signal travelling at most with the speed of light, i.e. 0i is included 



1328 Sergio Doplicher 

in the spacelike complement 0'2 of (92, observables localized in <S\ and (92 should 
not interfere with one another. Quantum Mechanics says that they will commute; 
hence, for each 0 G Jf, the locality principle says that 

91(0) c9I(0 ' ) ' . (29) 

In QFT, fields are basically associated with points or, possibly, with loops or 
infinite strings. While a double cone is an appropriate neighbourhood of a point, 
an appropriate neighbourhood of a string is the cone joining a point to a double 
cone at spacelike infinity. The set of such spacelike cones is denoted by </. 

Locality is often sharpened to duality 

9IG9T = 2 I ( ^ y (30) 

where £f is a double cone (so that weak closure on the left-hand side is unneces
sary) or a spacelike cone. 

Duality is related to the absence of spontaneously broken gauge symmetries 
[29]. Otherwise, essential duality [30], requiring that the net 0 G Jf -> 9T*(0) = 
91(0')' fulfills (30) for each double cone, would hold quite generally, as a conse
quence of a result of Bisognano and Wichmann [1], whenever there are underlying 
Wightman fields. 

Our last assumption is Property B: if y , & are either double cones or 
spacelike cones such that ^ i / c ^ f o r some neighborhood Jf of the origin, 
non zero self adjoint projections in 9I(^)~ are equivalent to I mod 9I(e9

?)-, i.e. 

d)^E=E*Ee WLiPT => £ = WW*, W*W =1, We 9I(^)~. (31) 

If we would assume the basic requirements of translation covariance and 
spectrum condition in the vacuum sector, Property B would be a consequence, as 
discovered by Borchers [2]. 

These few axioms on the inclusion preserving map 0 —> 91(0) (irreducibility, 
duality and Property B), though too general on their own to characterize physi
cally the vacuum sector, turn out to be sufficient for a discussion of superselection 
structure tailored to theories without massless particles. 

In such a theory one particle excitations of the vacuum would be associated to 
(factorial) representations % of 9Ï which are translationally covariant, with energy 
momentum spectrum (the spectrum of the representation of the translation group) 
in the forward fight cone starting with an isolated hyperboloid of positive mass 
(massive particle representations). If % describes an excitation of the vacuum a>o, 
CDO can be obtained as a mean of % over translations. 

However, Buchholz and Fredenhagen [4] derived, from the above assumptions, 
a much stronger relation expressing that % can be localized in spacelike cones : 

w l« (V) - w ol« i O T , « € / . (32) 

The general definition and classification of statistics [9, 10] (cf. also J.E. 
Roberts contribution to [26], and comments below) can be extended to represen
tations fulfilling (32), ([4], cf. also [16, Sect. 4]) and moreover massive particle 
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representations have necessarily finite statistics [17] (so that in particular n is of 
type I). 

These basic facts motivate, in our general frame where covariance and spec
trum condition are not assumed, the following 

3.1. Definition. In a theory specified by the inclusion preserving irreducible map 
0 —• 21(0) fulfilling duality and Property B, the superselection sectors are the 
unitary equivalence classes of irreducible representations % of '91 fulfilling (32) with 
finite statistics. 

Superselection sectors are usually associated with charged field operators 
which connect the vacuum sector to the other sectors. These fields might be 
attached to points (Wightman fields) or to strings from points to spacelike 
infinity, in presence of "quantum topological charges". We can formalize these 
notions in the following definition [16]. 

3.2. Definition. An extended field system with gauge symmetry (n, G, g) consists 
of 

- a representation nofSH on a Hilbert space J f containing no as a subrepresen-
tation on Jfo <= 3tf ; 

- a strongly compact group G of unitaries on J f leaving Jfo pointwise fixed; 

- an inclusion preserving map g from spacelike cones to von Neumann algebras 
on ffl such that for each <€ e ß, the g e G induce automorphisms ag of^(^), 
with fixed points 7i(9t(^))~; moreover Jfo is cyclic for gf(#) and the union of 
%(<£ + a)for all a G R 4 is irreducible; g(*) commutes with TC(9I(0)) if 0 is a 
double cone spacelike to c€. 

The system (%, G, 3f) is normal // the map g obeys graded local commutativity 
for the Z2-grading defined by a central element k G G with square the identity. 

The system is complete if every irreducible representation % of '91 fulfilling (32) 
with finite statistics is a subrepresentation of %, i.e. n describes all superselection 
sectors. 

The main result of [16] states that such a system can be canonically con
structed from the net 0 -> 91(0) of local observables. 

3.3. Theorem. Let the irreducible, inclusion preserving map 0 —> 91(0) fulfill duality 
and Property B; there exists a complete, normal extended field system with gauge 
symmetry, and this system is unique up to unitary equivalence. 

Unitary equivalence of two systems (TE,-,G,-,gf/) acting on Jf/; i = 1,2, is 
expressed by a unitary operator W of Jfi, onto Jf2 intertwining n\ and %2, the 
maps gi and %2, and taking Gj onto G2 : 
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Wm(A)=n2(A)W, ,4 G 91; 

WGi = G2W. 

An important subclass of superselection sectors, carrying "localizable charges", 
is obtained by requiring (32) to hold for double cones: 

^ I î i ^ ) ~ n°^m ' ß e ^ • (33) 

This subclass is described by a unique complete normal local field system with 
gauge symmetry (TEJ, G\, gj), where now gfj is an inclusion preserving map from 
double cones to von Neumann algebras on a Hilbert space Jf/, with irreducible 
range and each 5/(0) is cyclic on Jfo-

There is a closed normal subgroup JV of G identifying Jf/ with the JV-fixed 
vectors in 2^ and %\ with 7u|^ ; the von Neumann algebra generated by the g/(0) 
with 0 c if is identified with the restriction to ^\ of the JV-fixed points in 3f(#), 
« e / [16]. 

Superselection sectors described by representations fulfilling (32) but not (33) 
are often said to carry "quantum topological charges". 

Superselection sectors are in 1-1 correspondence with the spectrum G of G. 
Quantum topological charges are carried by sectors corresponding to representa-

" tions which are non trivial on JV. 
The superselection structure of localizable charges is described by a full 

subcategory «T of End 91 [9, 10]. 
The objects of F are localized morphisms of 91 (i.e. they act trivially in the 

spacelike complement of some double cone which, by choosing an equivalent 
morphism, can be arbitrarily placed) with finite statistics in the following sense. 

The full subcategory of End 91 with objects the localized morphisms has 
a unique symmetry e which is I for spacelike separated morphisms [9]. The 
canonically associated representations e*") of P(w) describe the statistics of Q : they 
permute the factors in the product state vectors in the representation Qn which 
carry the "charges" of Q localized in n mutually spacelike double cones, whilst 
the induced product states are totally symmetric. 

If Q is irreducible, the irreducible representations of P(w) occurring in e*") are 
precisely those with at most d(g) e N antisymmetrizations (resp. symmetrizations) 
and Q is paraBose (resp. paraFermi) of order d(g), or everyone and Q has infinite 
statistics (d(o) = oo) [9]. 

Every representation n^ of 91 fulfilling (33) is unitarily equivalent to a localized 
morphism composed with no. In view of applications to massive theories on the 
four-dimensional spacetime we can disregard infinite statistics ([17]; see also [10; 
Appendix]). 

We can change e to a "Bosonized" symmetry s (differing from e on irreducible 
elements only by sign) so that (^~,s) is a strict symmetric monoidal C*-category 
with conjugates [10, 15]. The complete normal field system with gauge symmetry 
can be constructed from the covariant representation of the C*-system (91 xZT, G) 
induced from no via m [16, Sect. 3]. 
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If only essential duality holds, we can construct the complete normal local 
field system with gauge symmetry from the dual net 9Irf. The stabilizer of 7r(9Irf) 
in Aut 5 is G, the unbroken part of the gauge group. The full gauge group, 
possibly including broken symmetries, can be defined as the stabilizer ^ of % (91) 
in Aut 5 [16]. It can be shown that each y e <& leaves the local field algebras 
5(0) globally stable and 0 can be in part analyzed in terms of degeneracy of the 
vacuum, arising from different extensions of CDQ to 9Irf [3]. 

The duality theory reviewed in Sect. 2 suggests a natural generalization. If 
we drop the equation (4) in Definition 2.2 of a symmetry and we symmetrize the 
condition (6) adding 

e(ft GT) =I<rX B(Q, T) O e(ft or) x iT (6;) 

we obtain a strict braided monoidal category [25], 

Problem [15, 16], Wlvch class of mathematical objects has as abstract duals the 
strict braided monoidal C*-categories with conjugates, with subobjects and direct 
sums, such that (1,1) = (C? If such a category ZT acts on a C*-algebra 91 with 
centre (C • I as a full subcategory of End 91, can we generalize Theorem 2.6 to a 
construction of a cross product 91 xZTl 

This natural route to define a kind of "quantum groups" is required in order 
to extend the previous results to theories on low dimensional spacetimes. 

To describe statistics in this case we have to replace the permutation groups 
by braid groups [18, 19, 20]. The category ET describing superselection structure 
is strict monoidal with a unitary braiding. Solution to the problem above would 
clarify which "quantum groups" may appear as internal symmetries of low 
dimensional models [28] (cf. also most contributions to [26]). 

There are remarkable relations between the analysis of braid statistics of two 
dimensional theories and the Jones theory of invariant polynomials for knots and 
of index of W*-inclusions [23, 24]. These relations have been discovered by R. 
Longo who, extending the notion of Jones index to inclusions of type III factors, 
showed that [27] 

d(ö)2 = indfe(9I(0)),9I(0)) (34) 

when Q is localized in 0; in two dimensional theories d(o) need not be an integer 
but its values are limited by the equation (39). The same equation shows that 
d(o) is related to a quantum version of the Fredholm index of an endomorphism 
(cf. also the comments in [8]). 
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Introduction to Constructive Quantum Field Theory 

Joel Feldman 

University of British Columbia, Vancouver, BC, Canada, V6T 1Y4 

1. Introduction 

Quantum field theories (QFT) are used to model physical systems that share 
two common features. Firstly, they are of atomic or subatomic scale, so that 
they exhibit quantum mechanical behaviour. Secondly, they involve fields. To a 
physicist a field is an observable (i.e. something you measure) that is a function 
on space-time. Two examples are the electric and magnetic fields. Indeed the best 
known QFT is Quantum Electrodynamics (QED), which models the interaction 
of electrons with the electromagnetic field. 

In addition to the obvious fields, it is often wise to associate fields with 
particles. For example, at the high energies typical of QED electrons and positrons 
are continually being created and destroyed. So, rather than attempt to explicitly 
keep track of how many electrons there are at all times, one invents a field, called 
the electron field from which one may calculate the charge and current densities. 
The former tells you the positions of all electrons and the latter tells you their 
velocities. 

An electron field is also used in modelling another physical system that will 
appear later in this talk. The system is a crystal consisting of a large population 
of electrons interacting with each other and with a lattice of stationary or almost 
stationary ions. As there is a fixed number of electrons per ion and as the lattice 
is effectively of infinite size the population is really huge. Fortunately, almost 
all of these electrons do nothing of interest. They just sit there forming what is 
called the Fermi sea. However, there are small numbers of electrons continually 
jumping out of and back into the Fermi sea. Once again an electron field is 
introduced to keep track of them all. 

I will use the Gârding-Wightman axioms [SW] to tell you what a quantum 
field theory is from a mathematical point of view. These axioms are really designed 
for relativistic quantum field theories so some of them are not appropriate for 
our current purposes and I will just mention those in passing. 

The first axiom sets up the state space. 

1. State Space. There exists a separable Hilbert space F. 

The vectors (actually rays) of F are the states of our system. Next come the 
field operators. There are a couple of technical complications. First, fields are 
like distributions. They need not be well-defined at points, but instead have to 
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be smeared against nice test functions. Secondly, even after smearing, fields are 
often unbounded operators. So there are domain questions. Gârding-Wightman 
handles these by postulating the existence of a common dense domain. 

2. Field Operators. There exists a dense linear subspace D of F and for each 
/ e S(R*),j e {!,...,n), there exists an operator </)j(f) with domain containing D 
such that 

<t>j(f)*D cz D 

f -> (<£;(/>,w) e S'(R4) for each v,w e D. 

As with ordinary tempered distributions one writes 

ci>j(f) = j dtd3xcj>j(t,x)f(t,x). 

Time evolution is determined by a special self-adjoint operator, the Hamilto
nian. 

3, Hamiltonian. There exists a self-adjoint operator H such that 

eisHDc:D VseR 

eisHcl)j(t,x)e-isH = cl)j(t + s,x) 

H>0 

0 is a simple eigenvalue of H with eigenvector Ü e D. 

In practice the vector Q plays an important role. For example, in Quantum 
Electrodynamics, Q is the vacuum. That is, the state corresponding to a completely 
empty world. All physically interesting states are constructed by addirig small 
numbers of particles to the vacuum. 

In a relativistic QFT one wants covariance not just under time translations 
but also under the full Poincaré group. So there are axioms postulating the 
existence and basic properties of a unitary representation of (the covering group, 
inhomogeneous SL(2, C), of) the Poincaré group. One also wants causality, i.e. 
measurements made at space-like separated points better not influence each other, 
so there is an axiom imposing this. 

A constructive quantum field theorist is someone who tries, at least, to 
rigorously construct and determine properties of quantum field theories. 

Just as in classical mechanics the Hamiltonian H = if^of a physically 
interesting system invariably contains a parameter (or several parameters) X called 
the coupling constant. For a special value of X, normally 0, the Hamiltonian is 
trivial in the sense that one can determine its properties and, in particular, the 
time evolution it generates, explicitly. So it is natural to view Hx as a perturbation 
of Ho. However, for a QFT, this perturbation is extremely singular. I will discuss 
three symptoms of this singularity and how they are treated. 
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2. Change of Hilbert Space 

The first appears even in the models that are easiest to deal with. The construction 
of the, so called, weakly coupled Xcj>\ model can now be reasonably presented in an 
advanced undergraduate analysis course. This model is completely characterized 
by a measure d\ix on S'(R2). Even though not true, you might want to interpret 
S'(R2) as the space of possible values of the field cp(t,x) and the measure as the 
probability density for the field configurations when the coupling constant takes 
the value X. 

Theorem [Fr]. IfO<X=fcX' then d\xx and dji^ are mutually singular, 

This theorem is not as much of an impediment as you might think. It suffices 
to deal with the measure weakly. In terms of the field operators, you should 
attempt to construct inner products (ncj)j(fj)Q,Q) rather than to construct the 
field operators directly, 

3. Renormalization 

The second symptom is much more serious. It is the problem of renormalization 
[BS, H, FHRW]. I will illustrate it using the crystal model mentioned earlier [BG, 
FT], For simplicity I will even discard the lattice, leaving only the "electrons". 
Consider a system of JV particles each of mass m living in a periodic box of side L 
and interacting with each other through an even two body potential XV e S(R3). 
The Hamiltonian for this system is 

1 N 

2m . , 
ï = l KJ 

and acts on the Hilbert space 

FN = {ve L2((R3/LZ3)N)\v(xa{1),...,x(T{N)) = (-iy^v(xu.-,*N) 
for aÜG eSN}. 

The antisymmetry of the vectors v e FN reflects the hypothesized Fermionic 
character of the particles. We would now like to take the thermodynamic limit 
L, JV -> oo with the density Q == N/L3 fixed. In order to avoid having to introduce 
the electron field I will concentrate on the ground state energy density 

p(A)-l im i n f S P ^ W . 

Of course it is not easy to determine inf spec HL}N,X except when X *= 0. So we 
do some perturbation theory, Assume p(X) exists (even this is not obvious), is C°° 
and that we can move derivatives inside the limit sign. Then it is not so difficult 
to develop an explicit formula for j$ (0). This formula is conventionally stated 
in terms of Feynman diagrams 
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dnp 
IF (0)= £ Val(G). 

connected vacuum 
graphs of order H 

The sum is over roughly (n\)2 Feynman diagrams each of which is a mnemonic 
device for a specific integral, called Val(G). 

For example one diagram with n = 2 is given in Fig. 1. 

Fig.l 

/ 

It has the value 

(2TC)4 (2TT)4 (2Tî)4 w m - c(p) i(po - 9ö) - «(P - q) '(H) - «o) - e(r - q) 

x TT where p = (po,p), « = (go,q), r = (ro,r), 
fro — e(r) 

e(p) = ^ p 2 Mo 

It is not clear whether the integral giving the value of this (or for that 
matter any other) graph converges. There are two potential obstructions to 
convergence. Firstly the integrand decays rather slowly at infinity. This turns out 
to be harmless. All graphs turn out to be convergent (though not necessarily 
absolutely convergent) at infinity. Secondly the integrand has singularities. The 
factor ipo — e(p) is zero when po = 0 and |p| = ^2m\xo. More precisely 

const' 

y/pl + R2 
<\ 

1 

m - e(p) 
const 

y/ti + R2" 

R = |p| - ^2m\xo 

on \p\ < const. Hence [ipo — e(p)] -1 is locally L1 but not locally Ln for any n > 2. 
While the graph in the example converges there are tons of them, in fact 

infinitely many, that diverge. It turns out that, in this model, every single divergent 
graph has 

vMn - f d*k m 
n>2 

with n > 2. I have lumped all the other integrals into f(k). These integrals may 
also diverge if they have this same form. 
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I claim that all of these divergences arise, not because of any pathology in 
the model, but merely because we are trying to do the perturbation expansion in 
a stupid way. To see what I mean let's pretend that the exact 

PW = j d4k f(k,X) 

(27r)4/7co-^k2 + /i0 + 5/i(Mo,A) 

for some reasonable functions f(k,X) and öp(fio,X) with <5/x(/xo,0) = 0. The integral 
converges. Yet when we apply (dn/dXn)\x=o we get large powers of [/fco — ß(k)]-1 

and hence divergence. It is not wise to try to expand a function, [/fco—e(k)+öjj]̂ 1, 
with a singularity somewhere, in powers of a function, [/fco — e(k)]-1 with a 
singularity somewhere else. 

Once we know that this is the source of the divergences, the treatment 
is simple. Just parametrize our models, not by jio and X, but rather by p = 
/xo + öp,(ßo,X) and X. Then the position of the singularity in 

1 1 
ipo - e(p) + öfibio, X) ipo - 2^p2 + \i 

becomes independent of X and the source of divergence mentioned above dis
appears. Of course to implement this you still have to find the right öfj,(fio,X). 
But there is a renormalization algorithm which tells you how to choose öjj,(p,o, X), 
inductively in powers of X. 

Theorem [FT). There exists a formal power series (with finite coefficients), p>o(X,p) 
~ A* + XXi"7^)^1 ' 5WC'7 thtô every coefficient in the composite f p.s. 

converges as L —> oo. Furthermore 

\limp™{L)\<Zcomt"n\. 
L—»oo 

This phenomenon - the divergence of coefficients in a perturbation expansion 
unless parameters are carefully adjusted so as to hold some physical quantity 
fixed - occurs commonly. For example, in classical mechanics, when you perturb 
a periodic orbit in a system of one degree of freedom you must be careful to 
keep the period fixed. That is, it is not generally possible to find a symplectic 
map converting \(p2 + q2) + Xv(p,q) to \(P2 + Q2). One must use fx(\(P2 + Q2)) 
with a very carefully chosen fx as the target. 
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4. Symmetry Breaking 

The final symptom of the singularity of perturbations in QFT that I will discuss 
is the phenomenon of symmetry breaking. It is possible for all the input data 
used to specify a model to have a given symmetry without the resulting model 
having the symmetry. At first this may seem like a shocking, even inflammatory, 
statement. It is possible to rephrase it in an innocuous form but I feel that the 
above one gives a more realistic reflection of the impact of symmetry breaking. 

Once again my illustration uses the many-electron model [FW, S]. Recall that 
the space of JV-electron states in our periodic box is 

FN = {vsL2((R3/LZ3)N)\v(xff{1)...,xff{N)) = (-l)^(xi,...,XjY) Vo- e SN}. 

To avoid having to change Hilbert spaces every time we change JV we consider 

* = ©** 
JV 

with the modified "Hamiltonian" 

HL = HUx-iiN-c(L)l 

(c(L) is chosen to make inf spec HL = 0) defined by 

1 N 

HL\FN = -z— ^ — dXi + ^XV(Xi — x;) + interaction with ions — ßoN — c(L)l. 
i=l i<j 

As L —> oo, states with^the wrong density end up with "H = oo" and get pushed 
out of the domain of H. 

Now 
V(a) = el<N-d^ 

(d(L) is a normalization constant) is a unitary representation of R, the covering 
group^of 1/(1), which commutes with HL for every L since HL '. FN J > FN. Suppose 
that H = liniL^oo HL were some ordinary (e.g. strong) limit. If H has a simple 
eigenvalue at the bottom of its spectrum, then the corresponding eigenvector Q 
must also be an eigenvector of V(a) and in fact 

V(a)Q = Q 

if the normalization constant d(L) is chosen appropriately. 
The value (OQ, Q) of the observable (= operator) 0 measured in the state Q 

obeys (OQ,Q) = (V(a)*OV(a)Q,Q). There are whole orbits of observables that 
give the same answer when measured in the state Q. The symmetry U(l) is not 
broken. 

On the other hand if there is an eigenspace of dimension greater than one at 
the bottom of the spectrum of H, then each individual eigenvector Q need not be 
an eigenvector of F (a), though of course the eigenspace is still invariant under 
V(a). The value of 0 measured in the state Q need no longer be constant as O 
moves over the orbit. 

In a QFT the limit H = limL-K>o#L is not an ordinary (e.g. strong) limit. 
Instead of getting one model with a degenerate ground state one gets a whole 
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family [I, R] of independent models F^ each with a unique ground state. Each 
independent model no longer carries a represenation of 1/(1) because V(<x) tries 
to map Qß e F® to Qa+ß e F<a+^ ^ F®. 

This is symmetry breaking. It has important physical consequences. In the 
example we have been discussing superconductivity arises. It also has a big impact 
on any attempted construction. In practice one must always at tempt to construct 
the interacting broken symmetry model as a perturbation of a free model which 
also has the same broken symmetry, 
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Solvable Lattice Models and Quantum Groups 
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Our main concern in this survey is the following question. What is the rôle of 
quantum groups in solvable lattice models; more specifically, what is their rôle 
in building models and in solving models respectively? 

Building models amounts to constructing solutions to the Yang-Baxter equa
tion (YBE). Through the development of the last 4-5 years, the situation has 
been clarified relatively well. In the context of quantum groups, the theory of 
YBE is the theory of intertwiners of their representations. In the first half of this 
article we shall elucidate this statement on three constructions. 

In contrast, the rôle of quantum groups in solving models is very obscure. By 
'solving' the model thus constructed we mean to calculate physically important 
quantities in closed form. The one point functions are one of the few quantities 
which can be evaluated exactly, thanks to Baxter's corner transfer matrix method. 
In many cases they are expressible in terms of certain modular forms arising from 
representations of affine Lie algebras. In the latter half of this paper we shall 
explain these results in the light of Kashiwara's theory of crystal base for quantum 
groups. 

1. Yang-Baxter Equation 

Let F be a finite dimensional vector space over C, and let R(^r\) be a function 
of some variables £, r\ with values in End(F ® V). Then YBE is the following 
functional equation for R(£»r\), written in End(F ® V ® V): 

R2(£9 ti)Rt (£, o*2fo, 0 = Ri (fi, 0*2«, 0 * i & n) (1) 

where 
Ri (£, r,) = JR(f, r,) <S> 1, R2(L n) = 1 ® Ä « , n). 

Following the common terminology we call a solution of YBE an R matrix, and 
t;, \], ' - • spectral parameters. 

Throughout this article, by quantum groups we mean the quantized enveloping 
algebras Uq(o). For us the most important case is when g is an affine (rather 
than finite dimensional) Lie algebra. Let us fix notations. (fl,7)i</j</ signifies the 
Cartan matrix of g, di e Qx are such that d\a\$ = djüß, and q is a complex 
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number satisfying qf J= 0 with qt = qdi. Then Uq(s) is the C-algebra with the 
eufuif1 (1 <i< I) subject tc 

1(1 j = tjti, titj = i = t} %i, 

, [eu fil =Oij 
(li - (li 

generators eufÌ9 tf
1 (1 < i < I) subject to the following defining relations 

UejtT1 = qfej, Uffr1 = q^fj, [e,,fj] = « y ^ — ^ 

£ (-D'^-^e^ =0, J < - l ) ' / r ^ / ^ - a (i + j) 
J=0 /=0 

where ef = «{/[/]„ !, / » = ///[/]„ |, [J]t! = n j ^ - ^ ) / ( t - r 1 ) . The comulti-
plication is given by 

A(et) = ei®l + ti® ei9 A(ft) =fi®tyi + l® fi9 A(U) = U <g> U. 

1.1 Trigonometric R Matrices 

The first construction associates an R matrix with each pair (Uq(c^,n), consisting 
of a qauntum group and its finite dimensional irreducible representation. Here q 
is assumed to be 'generic', i. e. qn ^ 1 for all positive integers n. 

Let us take the simplest example of Uq($l(2,C)) corresponding to (ay) — 

( _o 9 ) ' anc* *ts t w o dimensional representation (TC,*, V = C2) depending on 

^ € C X given as follows. 

^(eo) = (? o ) , 7 ^ o ) = ( o V)'"« ( t o ) = s(V «)• 

An intertwiner #(£, rç) between nç ® TC, and TC, <g) TĈ  is a linear isomorphism 
V <g> V -+ V ® F such that 

*(£, *) ( ^ ® 7i,) o /l (Z) = (TC, <g> TĈ ) o A (X)R(Ç, n) VZ G Uq (ÎI (2, Q). 

Solving these linear equations for R one finds that up to a scalar 

R(t,n) = 

(a 0 0 0 \ 
0 c b 0 
0 b c 0 

VO 0 0 a / 

with a = £q — Y\q~l> b = Ç — rj, c = Ç(q — q~x) and c = ri(q — q~l). This is the well 
known R matrix of the 6 vertex model [1]. 

The left and right hand sides of YBE (1) are both intertwiners of the threefold 
tensor products 7ĉ  ® TC, ® 7C£ -> %^ <g) TC, ® TĈ . It can be checked that, if the spectral 
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parameters are generic, any intertwiner of TĈ  ® TC, ® rcç into itself must be a scalar. 
From this one deduces that R(Ç, ri) solves YBE. 

The explicit form of the R matrices are available for the vector representation 
of Uq($) of classical types [2,3] ; further results are given in [4-8]. In the general 
case the existence of the intertwiners is guaranteed by Drinfeld's universal R 
matrix [9], Irreducible finite dimensional representations of Yangians, which are 
certain degeneration of Uq($), are classified also by Drinfeld [10] (the results for 
Uq(oi) are almost the same; cf. [11]). In order to describe the corresponding R 
matrices in full generality, further work remains to be done. 

1.2 Chiral Potts-Type Models 

The second construction is related to R matrices whose spectral parameters live 
on certain algebraic curves. Here we take q to be a primitive iV-th root of unity: 
qN = 1 (we assume N is odd). For our purposes we enlarge the algebra Uq(o) 
slightly by adding central elements zfx, which modify the comultiplication as 

A (ej) = e, ® 1 + z,t, ® eh A (fi) = fi ® Ç1 + zf1 ® et, 

A (ti) = ti ® ti, A (zi) = Zj ® Zi. 

The resulting algebra Üq(o) is known as the quantum double of a Borei subalgebra 
of Uq(o). A characteristic feature of q being a root of 1 is that the elements 
eV,f?,t? lie in the center X of Üq(q). 

Again we take the example of g = si (2, C). We consider an N dimensional 
irreducible representation of Üq(Q) containing 5 parameters f = (ao, a\,xo,xi,c) e 
(C*)5. 

t{(eo) = x0F, n/;(fo) = xj^E, nt{to) = T~l, 

nç(ei) = x\E, n({fi) = x^F, ji£(ti) = T, 

Here 

and 

E = 

TL((Z0) = C0, 11Ç (Zi) = C, 

fl?Z-l 

- 1 

o • 

q-q-

1 

-X, F = (floaiX) 

\ 

q-q-l ' 

/ 0 1 

T=q—Z, 

Z = 

V „2N-2 

z = 
0 1 

V i 
1 

Suppose that %^ ® TC, is equivalent to TC, ® TC,*. Since ^(e^) = e?7 ® 1 + (zit^ ®ef e 
X ® ̂ f, one must have 
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and likewise for the ff. Hence £,rj are forced to lie on a common algebraic 
variety £fr with T = CH) being the moduli parameters. It turns out that £fr is 
essentially a product ^ x % of curves 

% = {(x,y,n) \xN + yN = fc(l + x V ) , ßN = ~ ^ } -

Conversely, if £ = (r,r')5 rç = (r,?) (r = (x,y5iu) G ^ etc.) lie on ^ r , then there 
exists an intertwiner and is given by the following formulas. 

R(£, n) = R'(r, r') (R"(r', rf) ® R"(r, r)) Rf(r, f), 
N-Ì N-Ì 

Rf(r,f) = ]T Wrf(a) (X'1 ® X)a, R"(r,f) = £ Wrf(a)Za, 
fl=0 a=0 

f* fix - ixxq21 ^ . y - yg2' 

The same reasoning as before shows that R(Ç,rj) solves YBE. The Wr?, Wr? 
are the Boltzmann weights (the former being Fourier transformed) of the chiral 
Potts model found by Au-Yang, Baxter, McCoy, Perk and others [12-13]. The 
connection with the quantum groups at roots of 1 was first noticed by Bazhanov-
Stroganov [14] in a different language. The formulation above follows [15]. 

The study of intertwiners at roots of 1 has begun only recently. The chiral 
Potts model has been generalized to the case corresponding to a class of repre
sentations of Uq($l (n, C)) [16,17]. In the general case the structure of irreducible 
representations at qN = 1 and the existence of intertwiners are the major open 
questions. We remark that, for simple finite dimensional g, irreducible represen
tations have been classified by De Concini and Kac [18]. 

1.3 Face Models 

The third construction deals with solutions of YBE (1) which are not of the form 
R(Ç,ri) e End(V®V). 

Let us return to the example of Sect. 1.1., q being generic again. Let Va denote 
the A dimensional irreducible representation of the subalgebra Uq($l(2,C)) c 
l/g(sI(2,C)). We consider the decomposition with respect to Uq(sl(2,C)) of the 
tensor product representation 

Va®Vfjr = ^Qfc ®VC, 
c 

0« = {v € Va ® Vf" | eiv = 0, hv = qc-xv). 

The R = R(Ç,rj) e End(^2 ® Vi) commutes with the action of Uq(ss\ (2,C)), hence 

Wi = id ® id ® • • • ® R ® • • • ® id e End(Ffl ® Vf") 

are well-defined operators on Q£ and satisfy YBE. 
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Repeated use of the Clebsch-Gordan decomposition gives rise to a basis of 
Q£ indexed by a sequence \x = (/-Jo,/^--. 9f*jir) (l*o = a*l*>jr ~ c) such that 
fjLi = /i/4-i + 1 for each /. In this basis the matrix elements of Wi look as follows. 

(WÙjiv ~ "Wo ' ' ' °\i\-u\\-\ V/ ( 1 ö W + 1 J V , + 1 • • • , 

fl±l fl±2y [1] ' lfl±l a J [A] 

w l a a + l\_ [u] /[fl+l][fl-l] 

a ± l a J [1]]] [a]2 

where qu = C/q and [w] = (gM — q~u)/(q — q~x)- Starting from the Verma module 
instead of Va, we obtain the same formulas with a being any complex number. 

In fact if one replaces the symbol [w] by the elliptic theta function 

ö 1 ( f ) P ) = 2 p ' / 8 s i n ^ n ( 1 _ 2 / C 0 S ^ + p ^ ( 1 _ / ) ) 

these formulas still solve YBE (L e Cx is an arbitrary parameter). Such elliptic 
solutions are known in correspondence to many of the representations of Uq(§) 
[19-23]. Pasquier [24] pointed out that their trigonometric degenerations (p -> 0) 
can be described as above in terms of quantum groups. It remains an open 
problem to explain the existence of elliptic solutions. 

2. One-Point Functions 

2.1 Formulation 

Let us now come to our second topic about the calculation of physical quantities 
called one point functions. The problem is set up as follows. We consider a square 
lattice S£ on the plane Z2. Each site i = (f 1,7*2) of the lattice has a random variable 
Si taking values in some set tf. A configuration is an assignment s = (sì) of the 
values for each 7. One also imposes the condition that the s,- for the boundary 
sites 7 e dû? are fixed to a given configuration s (which is to be chosen a 'ground 
state'; see below). 

A model is specified by giving a Boltzmann weight W ( , 1 for each 

quadruple (a, b, c, d) of elements of SP. Given a configuration s, to each Tace' 

(= an elementary square) of the lattice we attach a number W ( ' j ) where 

i,j,k,l are the NW, NE, SE, SW corner sites of the face. The probability of a 
given configuration s to occur is defined to be 

v(s) = z-iT\w(Si Sj 
w

 r
lL \Sj Sk 
faces N 
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where the product ranges over the faces of ££, and Z is a normalization constant 
to make the total probability = 1. Let us now fix s, a site 0 G if and a e SP. By 
definition the one point function is the expected value of öSQta : 

Pa(s) = Prob(s0 = a) = hm ]T öSoap(s). 
s 

Here the lim signifies the limit of lattice size tending to oo. 
Let us take again the R matrix of Sect. 1.1. Taking base vectors {vx}x=±i 

({±l}=the set of weights of Vi), we set JR(£, ri)vx ® v^ = £ vK ® vvR(Ç, ri)Kv,Xii- Let 
SP ~ Z be the set of level 1 integral weights of si (2, C). For a,b,c,d e SP we set 

W ( , j = 0 unless a — b,b — c,a — d,d —c all belong to {+1}, 

= R(Ç, ri)KVìXfi if a + X = b,b + \i = c,a + K = d,d + v = c. 

Hereafter we consider the region 0 < q <1 < x = £/?/. 
The boundary configuration s is so chosen as to maximize p(s). In the present 

case, s turns out to be in one-to-one correspondence with dominant integral 
weights of fixed level (= 1 here). For example we take s, = 0 or 1 according as 
h + h is even or odd. This corresponds to the fundamental weight Ao. 

Baxter's corner transfer matrix (CTM) is the only known tool to evaluate the 
one point function exactly. It is an infinite dimensional matrix whose trace gives 
the one point function up to a simple factor. In the sequel we shall focus on 
this trace. According to Baxter's argument based on YBE [1], it is completely 
determined by the trace at q = 0, where CTM becomes diagonal. We quote here 
the conclusion of the method. The CTM eigenvectors at q — 0 are labeled by 
an object called path. In the present example, it is a sequence u = (ßo,Hu^2,'") 
(fa e SP) such that 

\ii = fa-i + 1 for all i, fa = ßi for i > 0, 

where p,t = (0,1,0,1,0,1,... ) corresponds to the ground state s. The trace of CTM 
becomes the combinatorial sum (called the one dimensional configuration sum) 

00 

°>(M) = X Ì {Hfaj-uflbM/+i) - H(fij-ußh /i/+i)). (2) 
/=! 

Here H(X,fi,v)=0if2 + l = iu = v + l, = 0 otherwise, and the sum ranges over 
the paths whose 'initial point' ^o is fixed to a e SP. This is a counting problem -
counting the number of paths such that fio and œ(pi) are fixed. It is not hard to 
show that 

tfl2/4 

cAo(t) = -
ca(t) n co = i ( 1 _; ,y 
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The quantity on the right hand side coincides with the string function of the 
irreducible highest weight module M(Ao) of the affine Lie algebra si (2,C) in the 
sense of [25]. 

2.2 Crystal Base and One-Point Functions 

In the same manner each jR matrix of type (C/5(g), 7c) gives rise to a similar model. 
The theory of crystal base [26] provides a natural framework to deal with the sum 
(2) in general. According to [26], for any integrable highest weight representation 
M (A) of Uq(o) with highest weight A, there exits a unique canonical base B(A) 
(crystal base) 'at q = 0'. Moreover they behave extremely simply with respect 
to taking tensor products. For details we refer the reader to the exposition of 
Kashiwara [27] in these proceedings. 

Let us formulate the results in a generalized setting. We take 

Uqfa) = Vq(à(n9Q)9 

V f= /-th symmetric tensors S}(Cn) otn dimensional representation of Uq(c{), 
SP = the set of integral weights of level /. 

Let Aj denote the fundamental weights of si (n, C) and let e,- = A^i — Ai. The set 
of weights of V is identified with sei — {ß/i H + ß/, | 0 < 7*1, •••,/ /< 7î — 1}. Let 
P;

+ denote the set of dominant integral weights of level /. For A e P+, a y4-path 
is defined to be a sequence \i = (\io, 111,1*2,"') (fa e SP) such that 

m — fii-i e sé\ for all 7, \ii = a1 (A) for / > 0, 

where a signifies the linear automorphism such that o(A}) = Ai+\. Finally if 
\i — X = fi/j + • • • + £,-, and v — \i — e^ -\ h 8jf, then 

/ 
H(X, \x, v) = max V 6 (ix{k) - jk) (3) 

K = l 

with 6(x) = 0 if x < 0, = 1 if x ;> 0. With these notations we have 

Theorem 1 [28, 29]. There exists a bijective correspondence between the set of 
A-paths and the crystal base B(A) of M(A), such that each path \i has weight 
juo — co(/i)ö in the latter. Here ö signifies the null root. 

Corollary 2. The one dimensional sum (2) is the string function 

^w = SdimM^)«-»^"-

This result has been found first by a purely combinatorial method in [30], 
There is also a relative version of these results. Here one takes 
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W ( , j = elliptic solutions in Sect.1.3. corresponding to Sl(Cn). 

In this case s corresponds to a pair (A1, A) e Ptt x P , + , A sequence \i = 
(lio, jUi, \ii, • • • ) is called a (A!, ̂ t)-path if 

a) for any i there exists a pair (A1, A) e P^ x P+ such that p,t = Äf + Ä and 
A**+i =A' + G(A), 

b) m = A' + al(A) for î > 0. 

Theorem 3 [29], A vector u ® v e B(Af) ® B(A) is a highest weight vector if and 
only ifu is highest and v corresponds to a (Af,A)-path. 

Let 
M(Af) ® M (A) = 0 QA,Aa ® M (a) 

be the decomposition of Uq(sl(n,C)) modules where QA>Aa denotes the space 
of highest weight vectors of weight a. Let c$A denote the one dimensional 
configuration sum (3) where \i ranges over (À',A) -paths such that fio = a, and 
H(X,fx,v) is the same as (3). Then we have 

Corollary 4. 

c^A(t) = YJdim(QAfAa)a^nôt
n. 

The left hand side is called the branching function studied in [25, 31]. Similar 
results for other classical type algebras (for level 1) can be found in [6, 7, 32]. 

3. Summary 

We have seen two aspects of the interplay between solvable lattice models and 
quantum groups. Our conclusions are summarized as follows : 

1) The theory of intertwiners lead to solutions of YBE, and hence to con
struction of solvable lattice models. 

2) The one point functions are reduced to one dimensional configuration sums 
by CTM method. The theory of crystal base enables one to identify the latter 
with modular forms arising in the representation theory of affine Lie algebras. 

Although crystal base provides a powerful combinatorial tool, there is no direct 
explanation why these modular forms should arise at all. We feel the intrinsic 
understanding is still missing. 
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The Periodic Problems 
for Two-Dimensional Integrable Systems 

Igor Krichever 

Landau Institute for Theoretical Physics, Academy of Sciences of the USSR 
GSP-1, 117940 ul. Kosygina 2, Moscow, USSR 

1. Introduction 

Since the middle of the seventies algebraic geometry has become a very powerful 
tool in various problems of mathematical and theoretical physics. In the theory 
of integrable equations the algebraic geometrical methods provide a construction 
of the periodic and quasi-periodic solutions which can be written exactly in terms 
of theta functions of the auxiliary Riemann surfaces. 

All the integrable equations which are considered in the soliton theory can 
be represented as compatibility conditions of the auxiliary linear problems. One 
of the most general types of such representations has the form: 

[dy-L,dt-A]=0, (1.1) 

where L, A are differential operators of the form 

n m 

1=0 1=0 

with scalar or matrix coefficients. 
The most important example of these equations is the Kadomtsev-Petviashvilii 

(KP) equation 
3 / 3 1 \ 
-t72ww, + f ut - -uux + ~uxxx J = 0 (1.3) 

which is equivalent to (1.1), where 

3 
L = o(-d2

x + u(x,y,t)), A = d3
x- -udx-w(x,y,t). (1.4) 

The algebraic geometrical construction of the solutions of integrable equations 
is based on the concept of the Baker-Akhiezer functions which are definded by 
their very specific analytical properties on the auxiliary Riemann surfaces. For 
example, the Baker-Akhiezer functions in the case of the KP equation are defined 
for each smooth algebraic curve r (Riemann surface of finite genus g) with the 
fixed point Po on it, and the local parameter fc-1(P) in the neighbourhood of this 
point, /c~](Po) = 0. For any set of generic points jj, j = l,...,gs there exists a 
unique function W(x,y,t,P), Per, such that: 
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1°. It is meromorphic on P outside the point Po and has no more than simple 
poles at the points y7- (if they are distinct) ; 

2°. The function W has the form: 

W(x,y, t,P) = ( 1 + JT Q(x,y,O^"1 ) exp(zfex + a^k^y + ik3t) (1.5) 

k = k(P), near the point Po. 
For any formal series of the form (1.5) there exist unique operators L and A 

of the form (1.4) such that the following relations 

(dy - L)W = 0(k~l) exp(zfex + o'Wy + ikh) 

(dt -A)W = 0(k~1) Qxp(ikx + G~lk2y + ik3t) 

are valid. From (1.6) it follows that the coefficient u(x,y,t) of these operators is 
equal to 

u(x, y, t) = 2i£Ux(x, y, t). (1.7) 

The left hand sides of (1.6) define the functions which have the same analytical 
properties outside Po as ÎF, and have the form (1.6) near this point. From the 
uniqueness of the Baker-Akhiezer function W, it follows that they are equal to 
zero. Hence, 

(dy-L)W = 0, (dt-A)W = 0 (1.8) 

and u(x,y, t), which is given by (1.7) is a solution of the KP equation. 
The Baker-Akhiezer function W(x,y,t,P) can be exactly written in terms of 

the Abelian differentials and Riemann theta-function. From the corresponding 
formulae it follows that the above constructed solutions of the KP equation have 
the form 

u(x, y, t) = 2d\ ln 6(Ux +Vy + Wt + <P/x) + const. (1.9) 

Here, 6(z\, ..., zg) is the Riemann theta-function which is defined by the matrix 
ry of the fe-periods of the normalized holomorphic differentials on P . The 
vectors 2niU, 2niV, 2niW are the vectors of fc-periods of the normalized Abelian 
differentials of the second kind with the only poles at Po of orders 2, 3, 4, 
respectively. The vector 0 corresponds to the set of the points jj and can be 
considered in (1.9) as an arbitrary vector. 

The construction was proposed in [1, 2] and was developed in different ways 
for various types of integrable equations (see, for example, the reviews [3, 4, 
5, 6]. The analytical properties of the Baker-Akhiezer functions are the natural 
generalization of the analytical properties of Bloch functions of the ordinary 
periodic finite-gap differential operators which were obtained in the remarkable 
works by Novikov, Dubrovin, Matveev, Its in which the algebraic geometrical 
solutions of the KdV equation, sine-Gordon equation and some other Lax-type 
equations were constructed. 

In this report we shall present a brief review of the latest results obtained 
in the theory of periodic problems for the two-dimensional integrable systems. 
First of all, why is it algebraic geometry ? What is the meaning of the algebraic 
geometrical solutions for the general periodic (in x and y) initial value problem 
for such equations ? For the one-dimensional evolution integrable equations, the 
algebraic geometrical solutions are dense in the space of all periodic solutions 
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(though this statement has not been proved rigorously for all such equations). In 
the case of the two-dimensional integrable equations the situation is much more 
complicated. 

There are two real forms of the KP-1 (a2 = -1) and KP-2 (a2 = 1). It turns 
out, that the periodic problems for these equations differ dramatically from each 
other. 

The formal non-integrability of the periodic problem for the KP-1 equation 
was proved in [7]. The proof of the integrability of such problem for the KP-2 
equation was obtained by the author [8] and is based on the spectral theory of 
the operator 

M = ady-d
2
x + u(x,y) (1.10) 

with the periodic potential. 
The second problem which will be considered in this talk is the perturba

tion theory for two-dimensional integrable equations. We shall concentrate our 
attention on the so-called Whithem equation which is in our case a system of 
equations on bundles over the Teichmüller spaces. Finally, we shall demonstrate 
how the Whithem theory and other aspects of the perturbation theory of inte
grable equations will be married to each other in attemps to solve the Heisenberg 
relations 

[L»,Am] = i, (1.11) 

for the ordinary differential linear operators 

n m 
L» = XI M'(*)3i > Am = X Vi(X)dÌ > Un = Vm = 1 . (1.12) 

/=0 /=0 

The latter are the most popular subject in the field of string theory. 

2. The Spectral Theory of Two-Dimensional 
Periodic Linear Differential Operators 

The solutions $(x,y,Wi,wi) of the nonstationary Schrödinger equation 

(ady -d2
x + u(x, y)) *(x, y, wu w2) = 0 (2.1) 

with the periodic potential are called Bloch solutions, if they are eigenfunctions 
of the monodromy operators, i.e. 

W(x + au y, wu w2) = wi W (x, y, wu w2) ß 2) 

Vfay + a^wum) = w2ìP(x,y,wi,w2). 

The set of pairs Q = (wi, wi), for which there exists such a solution is called the 
Floque set, and will be denoted by P. The multivalued functions p(Q), E(Q) such 
that 

wi = exp(/ptfi), w>2 = Qxp(iEa2) 

are called quasi-momentum and quasi-energy, respectively, 
For the "free" operator with zero potential wo = 0, the Floque set is 

parametrized by the points of the complex fe-plane 
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w? = exp(zfcfli), wi, = Gxp(—(T~[k2ai) (2.3) 

and the Bloch solutions have the form 

W0(x, y, k) = Qxp(ikx - a^l^y). (2.4) 

It turns out that if Re er ^ 0, then the Floque set of the operator (2.1) with 
the smooth potential u(x, y) is isomorphic to the Riemann surface P (which has 
in a generic case infinite genus). The corresponding Riemann surface has such a 
specific structure that the theory of abelian differentials, theta-functions and so 
on can be constructed for it as well as for the finite genus case. 

The source of the difference between the two cases Re a = 0 and Re er ^ 0 
is the difference between the structure of the "resonant" points for the free 
operators. The resonant points are the points on the complex fc-plane which are 
the pre-images of the self-intersection points of the imbedding C -> C2, which is 
defined by (2.3). The points k and kf are resonant, if 

wf(fc) = w l V ) , 1 = 1 , 2 . (2.5) 

From (2.3) it follows that such points are parametrized be integers (N > 0,M) 
and have the form: 

k = kNtM, kf = k-N-M 9 (2.6) 

where 
nN . Mai 

kNM = — + W - T T " • ( 2 - 7 ) 

fli Na2 

In case Re a ^ 0, the resonant points tend to infinity and, hence, have no limiting 
points outside infinity. In case Re a = 0, the resonant points are dense on the real 
axis which makes it impossible (at least by means of our methods) to construct 
the global Riemann surface of the Bloch functions. 

For the real smooth potential u the Floque set can be described in the 
following form. Let us call the set of pairs of the complex numbers % = {ps,i,ps,2} 
(where s belongs to any finite or infinite subset of integer pairs (N > 0,M)) 
"adimissible", if 

RepSji = — , \ps,i-ks\ = 0 ( —- ) , î = l,2 

and the intervals \pSiuPs,i[ do not intersect each other. Let us define the Riemann 
surface P (%) for any admissible set %. It is obtained from the complex fc-plane by 
cutting it along the intervals \ps,ì,ps,2Ì and [—p̂ J,— p&] and by sewing after that 
the left side of the first cut with the right side of the second cut and vise versa. 

Theorem 1. For any real periodic potentials u(x,y), which can be analytically ex
tended in some neighbourhood of the real values x, y, the Bloch solutions of the 
Equation (2.1) with G = 1 are parametrized by the points Q of the Riemann sur
face r(n) corresponding to some admissible set %. The function W(x,y,Q) which is 
normalized by the condition W(0,0,Q) = 1, is meromorphic on P and has a simple 
pole y s on each cycle as which corresponds to the cut \ps,uPs,2Ì- If the admissible 
set % contains only a finite number of pairs, then P (7c) has finite genus and is com-
pactified by only one point Po(k = oo), in the neighbourhood of which the Bloch 
function W has the form (1.5). 
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The potentials u for which P (71) has finite genus, are called finite-gap potentials 
and as it follows from the last statement of the theorem that they coincide with 
the algebraic geometrical potentials. 

Theorem 2. Any smooth periodic potential u of the Equation (2.1) (with Re a ^ 0), 
which can be analytically extended in the complex neighbourhood of the real x,y, 
can be approximated uniformly with any number of the derivatives by means of the 
finite-gap (algebraic geometrical) potentials. 

The Floque set is the "integral" of the KP equation. From the previous 
theorems we have: 

Theorem 3. For any smooth periodic function v(x, y) there exists a unique solution 
of the KP-2 equation u(x,y,t), such that u(x,y,0) = v(x,y). This solution is regular 
for all t and quasi-periodic in t. Any smooth periodic solutions of the KP-2 equation 
can be approximated by means of the finite-gap solutions. 

3. The Perturbation Theory of the Finite-Gap Solutions. 
Whithem Equations 

The non-linear WKB (or Whithem) method can be applied to any non-linear 
equation which has the set of the exact solutions of the form 

uo(x, y, t) = u0(Ux + Vy + Wt + <P\h ,...,IN), (3.1) 

where uo(z\,..., zg\I]) is a periodic function of the variable z/- depending on the 
parameters h. The vectors U, V,W are also functions of the same parameters: 
U = U(I), V = V(I), W = W(I). 

In the framework of the non-linear WKB-method the asymptotic solutions 
of the form 

u(x,y, t) = MoOT1^*, Y, T)\Ik) + mx + . . . (3.2) 
are constructed for the perturbed or non-perturbed initial equation. Here X = ex, 
Y = ey, T = et are the "slow variables". If the vector S(X, Y, T) is defined from 
the relations 

dxS = U(I(X, Y, T) = U(X, Y, T) 
dzS = V(X, Y, T), dTS = W(X, Y,T) { ' ' 

the main term wo in the expansion (3.2) satisfies the initial equation up to the 
first order in e. After that all the other terms of the series (3.2) are defined from 
the non-homogeneous linear equations. The construction of such asymptotic 
solutions even for integrable equations is very important, because when using the 
slow modulation of the parameters of their exact solutions one can sometimes 
solve the integrable equation with "non-integrable boundary conditions". 

For the KdV equation and for some other Lax-type equations, the Whithem 
method was developed and applied to various problems in [9, 10, 11]. For the 
two-dimensional integrable systems the Whithem method was proposed in [12]. 
We shall present here only a part of the corresponding results. 

The asymptotic solutions of the form (3.2) can be constructed with an arbitrary 
dependence of the parameters 1^ on slow variables. In this case the expansion 
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(3.2) is valid on the scales of order 1. The right hand side of the non-homogeneous 
linear equation which defines the first order term u\ contains the first derivatives 
of the parameters J*. Therefore, the choice of the dependence of Ik on slow 
variables can be used for the cancellation of the "secular" term in u\. The 
corresponding equations on Ik are usually called the Whithem equations. 

Let us consider again the KP equation as an example of the two-dimensional 
integrable systems. Its finite-gap solutions have the form (3.1). The set of their 
parameters are the system of local coordinates of the manifold Mg which has 
dimension JV = 3g + 1. 

w,((r,p0[fc-1]2) • (3.4) 
(Two local parameters are m-equivalent if k\ = fc + 0(k~m); the corresponding 
equivalence class of the local parameter is denoted by [fc_1]m.) 

Let us consider the second kind differentials on P with the only poles at the 
point Po of the form 

dp = dk(l + 0(k~2), dE = ia^dk2^ + 0(k~3), dQ = dk3(l + 0(k~4) (3.5) 

which have the real periods for any cycle on P. Their integrals p(Q), E(Q), Q(Q) 
are multivalued functions on the manifold M* which is a bundle over Mg 

M*g = (r,Po,[k-l]2,Qer) . (3.6) 

If (X, Ii,..., hg+i) is a system of local coordinates on M* and h are functions of 
the variables X, Y, T then p = p(X, X, Y, T), E = E(X,X, Y, T), Q = Q(X,X, Y, T) 
become functions of these variables. 

Theorem 4. The necessary conditions for the existence of the asymptotic solutions 
of the equation 

3 3 1 
^(T2uyy + (ut - -uux + -uxxx)x + eK[u] = 0 (3.7) 

which has the form (3.2) with uniformly bounded first-order term are equivalent to 
the equation 

dp fdE_ _ ÔQ\ _ 3£ / dp_ _ dQ\ dQ f dp_ _ dE\ _ (WKW+)X dp 
dX \dT " df) dX \dT dX J + dX \dY ~ dX J ~ (!PÎP+)X dX ' 

(3.8) 

Here K[u] is an arbitrary differential polynomial; W, W+ are the corresponding 
Baker-Akhiezer function and its dual, respectively. 

Remark. It turns out that there are only 3g +1 independent equations among the 
Equation (3.8) which should be fulfilled for any point Q of the curve P. 

For the KdV equation and K = 0 the Equation (3.8) have the form 

dTp = dxQ (3.9) 

which was obtained in [11], The construction of the exact solutions of the 
Equation (3.8) with K = 0 was proposed in the work [12]. We shall present the 
particular case of this scheme in the next section where the Heisenberg relations 
would be considered. 
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4. The Heisenberg Relations for the Ordinary 
Linear Differential Operators 

Great progress has been made recently in non-perturbative two-dimensional grav
ity coupled to various matter fields. It was shown that the dependence of physical 
quantities (such as specific heat) on scaled coefficients of the models is described 
by the KP-hierarchy on the space of the ordinary linear differential operators 
LmAm such that the relations (1.11) are fulfilled. For pure two-dimensional gravity 
n = 2,m = 3 the Equation (1.11) is equivalent to the Painlevé 1 equation 

1 3 
~^uxxx--uux = 1. (4.1) 

The Equation (1.12) has a simple scaling transformation 

Wl (X) = fiC-Mfi; (e~ßx) , Vi = B^m^Vi (B-PX) (4.2) 

ß = (n + m) -1. For the operators Ln,Am with the coefficients %,% we have 

[L1ì,Am] = B. (4.3) 

The formal asymptotic solutions of the equation (4.3) can be constructed using 
any commuting operators [L^o, Amß] = 0 

L„ = Ln>0 + fiL,?ji + ... , Am = Am,o + 8Anl}i +... . (4.4) 

Unfortunately, these asymptotic solutions are well-defined only in the interval 
x ~ 1. For our purposes it is necessary to have the solutions for x ~ e - 1 /^ '") , It 
can be done in framework of the Whithem theory. 

The commuting operators of co-prime orders (n, m) = 1 are parametrized by 
the coefficients of the polynomial 

wn+Em+ YJ V , £ j = 0 (4-5) 
1n-\-jm<nm—2 

and by the points of the Jacobian of the corresponding algebraic curve [13]. In 
[1, 2] the exact formulae for the coefficients of the generic commuting operators 
in terms of the Riemann theta-function were found. For example, 

w„_2 = -ndl ln 6(Ux + $/x) + const. (4.6) 

Here the matrix T of b-periods of P depends on the values ay. The vector U is 
also a function of the variables ay. The phase vector <P is arbitrary. All the other 
coefficients have the same structure 

Uj = ui}o(Ux + $/z), Vi = Vif0(Ux + $/x). (4.7) 

Let me consider the operators Lf,Afj with the coefficients 

uf = uUo ßs(X)/T(X)\ , vf = t̂ o (~S(X)/T(X)\ . (4.8) 
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If the vector S(X) is defined by the relation dxS = (7(aypf)) then the operators 
Lf,A* commute up to the order s. As was shown in [12] in more general 
situation the requirement that the first order terms in the expansion (4.4) should 
be uniformly bounded for all x leads to the equations on the variables ay. They 
are particular cases of (3.8) and have the form 

dw(E,X) dp(E,X) ' 
dX dE ' K } 

It turns out that they are integrable and we present the construction of their 
solutions below. Our conjecture (which is partly proved now for n = 2, m = 3) is 
that all the other terms of the asymptotic solutions (4.4) are also bounded and 
the series (4.4) are convergent. If this is true, it is possible to make the inverse 
rescaling and find the limit for s —> 0. To begin with we shall give the final 
answer for the KdV equation with the "string" boundary conditions (1.12) n = 2, 
m = 2fc + 1. 

Let us consider an arbitrary hyperelliptic curve P 

2fc+l 2k 

y2=Y[(E- E) = E2k+i + H ci£i = R(E) • (4-10) 
ï=I i=i 

As is well-known, this curve defines the solutions of the KdV equation which 
have the form (1.9) (with V = 0). 

For any given set of the parameters: the complex constants c/C)o, Q+1,0, ..., c2k$, 
the real constants hi, hf

t,i = 1,..., fc, we shall consider the hyperelliptic curve which 
is defined by the polynomial R with the coefficients 

Q = c/,0, i = fc + 2,..., 2fc ; ck = x + ckio \ ck+i = t + c/cH-i>0 (4.11) 

and such that 

/*£2»+l i fun 

I m / VRdE = ht, I m / VRdE = H9 i=l,...,k. 
J E2i J Ei 

(4.12) 

The Equation (4.12) are the set of 2fc real equations which define fc unknown 
complex coefficients ct, i = 0, ..., fc — 1 of the polynomial R(E). They become 
functions of the variable x, t. The T matrix of the corresponding curve becomes 
a (known) function of the variables x, t. Let us define the vector 

i / pEii * fE2j+i \ 

Si(x,t) = - / VKdE - ^ T y / y/RdE . (4.13) 

The Main Conjecture. The functions 

u(x, t) = -2d\ln 0(S(x, t) + #/T(JC, t)) - 2n(x, t) (4.14) 

are the exact solutions of the KdV equation with the "boundary conditions" (1.12). 

Here r\(x,t) is the coefficient of the differential 
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2VR JE2ì 

Thus the Equations (4.12) are the only transcendental equations in the definition 
of u(x,t). 

Let us consider now the general Heisenberg relations. Any equation of the 
form (4.5) has the formal solution 

00 

w = km+ Y ^ r ' > kn=E. (4.15) 
/=-m+2 

This means that the affine curve (4.5) is compactified by a single point Po. Let us 
fix a first few coefficients of the expansion (4.15) and denote them by 

an-j = 3-tj, j = 1, ..., m + n-2. (4.16) 

They uniquely define the following coefficients of (4.5) 

ay, im + jn ^ (m - l)(n - 1) = 2g. (4.17) 

For any given real numbers hi,h\, i = 1,..., g, all the other coefficients of the 
polynomial (4.5) can be defined (at least locally) as functions of the parameters 
tj with the help of the relations 

Im f wdE=hi, Im / wdE = h\. (4.18) 
Ja\ Jbj 

They give 2g real equations on g complex variables ay,/*/i + jm < (n — l)(m — 1). 
Therefore, the curve P and the algebraic function w(E) become functions of the 
variables tj. 

Theorem 5. The function w(E,ti, ...) satisfies the Whithem equations (4.9) if h = x. 

Let us define the differentials dQj, j = 1, ..., m + n — 2, whose only poles at 
infinity have the form 

dQj = dkj (1 + 0(k"J'1)) (4.19) 

and such that 
Im [dQj = 0, ye H^r). (4.20) 

Jy 

Corollary. If the relations (4.18) are fulfilled, then 

dp dQj dQj dQj 

dtj dx dtj dti 

Remark. It can be shown that the conjecture which was proposed recently in [14] 
leads to one particular solution of the Painlevé 1 which belongs to our set of 
solutions. 
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Renormalization Group and Random Systems 
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Rutgers University, Department of Mathematics, New Brunswick, NJ 08903, USA 

1. Introduction 

Some of the most interesting and challenging problems in theoretical and mathe
matical physics have been the ones involving in an essential way several distance 
scales. Such problems include the theory of critical phenomena and phase tran
sitions, the problem of the existence of relativistic quantum field theories, the 
turbulent behaviour in hydrodynamic systems and many others. While many of 
these problems date back several decades (or, indeed, to the previous century), 
significant progress was made only in the 60s, mainly in the context of critical 
phenomena, using ideas stressing the role of scale invariance in such problems. 
This line of thought culminated with the creation of the theory of the Renormal
ization Group (RG) by K.Wilson (see [1] for the history) that provided a unified 
method of attack for multiscale problems. The 70s saw the RG-theory vindi
cated in approximative analytic treatments of a multitude of problems in critical 
phenomena, hydrodynamics and other many-body systems. With the increasing 
power of computers, the ideas entered numerical analysis of such problems in the 
80s. 

On the mathematical side, RG ideas lead to the rigorous theory of so-called 
renormalizable quantum field theories (and a non-renormalizable one too) and 
some critical statistical mechanics problems [2] (these works by no means exhaust 
the mathematical progress in these fields, nor even the RG inspired works, for a 
rather recent set of references, see [3]. In this talk I would like to review some 
recent attempts to develope a mathematical RG theory for the study of so-called 
random (or disordered) systems. Again, this field has seen plenty of beautiful 
mathematical work, some of it RG inspired too, but no attempt is being made 
here for a comprehensive review. 

2. Disordered Spin Systems 

The mathematical framework of the problems we are going to study is that of 
path space measures. This is a unified framework for classical statistical mechanics, 
Euclidean quantum field theory, diffusion processes and many other systems. One 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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considers measures on some space of maps 

where 9> is the "space" or "time" or "space-time" and Jt the "field-space". For 
QFT, £f is a manifold (Rn, a Riemann surface...), for statistical mechanics a lattice 
(e.g. Zn) and Jt can be a manifold, a group or just some set, depending on the 
concrete model. 

We will concentrate in this talk mainly on two examples of the above, which 
occur in a wide variety of physical contexts. The first is the Ising Model, where 
£f is Zd and Jt is Z2 = {1, — 1}. To define the measure on the set of such maps 
#" = (Z2)Zd, one first considers a subset of #", J^J = {<£ \ <j)(x) = ±l,x e Ac} 
and on this finite set (take A finite) the probability measure 

where x and y run through nearest neighbors on the lattice. The measures pP^-
are constructed as limits of (1) as A -> Zd. They describe symmetry breaking: for 
ß large and d > 1, 

lim f cj>(x)di/f(^) = [ <j>(xW>H<t>) = ±m (2) 

with m ^ 0 . The boundary conditions + in (1) select non-zero magnetization ±m 
at the infinite volume limit. 

Let us now present a disordered version of (1). The physical idea behind the 
disorder is that real materials, which are modelled by (1), have impurities, such as 
atoms of different kind randomly placed in the crystal structure. Mathematically, 
this translates into spatially varying randomness in the various parameters of the 
model. It turns out that a large class of disorder is modelled by replacing the 
exponent in (1) by 

ß( E J(x> y)(<K*)*<y) -1) + Z WW - Cti))*M) • (3) 
x,yeZjd xeZid 

The functions J and h are random with some prescribed probability distribution. 
Thus, as A -> Zd, we get random measures piJih(<j)) on !F and can ask whether 
the m in (2) is nonzero almost everywhere in J and h (this is, of course, only 
interesting if the randomness preserves the $ -> — 0 symmetry of the system). 

An example of (3) is the Spin Glass, where h = 0 and e.g. J(x,y) — 0, unless 
| x—y |= 1 and the non-zero J's are taken independent and identically distributed, 
with a J -> — J symmetric distribution. 

The example we will discuss below is the Random Field Ising Model, given by 
(3) with J non-random as in (1) and the h(x), x e Zd independent, identically 
distributed, with a distribution invariant under h(x) —> —h(x) and with variance 
Eh(x)2 = s2. 
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Theorem 1 [4, 5, 6]. Let d > 2. Then, there exists a ßo < oo and an eo > 0 such 
that for ß > ßo,ß < BO the limit (2) exists and m ̂ = 0 with probability 1. For d < 2 
the magnetization m vanishes for all ß and e. 

Remark. Let us define the lower critical dimension dh as the largest d where 
the magnetization vanishes for all ß. Then, the Theorem states that dh = 2. The 
corresponding dimension for the non-random system is 1. In the physics literature 
there was a long controversy on whether dh = 2 or dh = 3. Original arguments 
due to Imry and Ma [7] suggested that dh = 2. These were later challenged by 
arguments originating in quantum field theory, coined as "dimensional reduction", 
This was a rule, partially justified, stating that dh for the random system is two 
more than the one of the non-random one. Since the latter is 1, it was predicted 
that dh = 3. The controversy was solved, at ß = co, i.e. for the ground state of 
the Hamiltonian (3), in [4], and for large ß in [5]. The d = 2 result is due to [6]. 

We will outline below the RG proof of the d > 2 part of Theorem 1. 

3. Diffusion in Random Media 

Ordinary diffusion provides another example, where randomness brings inter
esting effects. Consider random walk on the lattice Zd described by transition 
probabilities p(x,y) from x e Zd to y e Zd : 

p : Zd x Zd -+ [0,1] (4) 

satisfying 

I?M = i. (5) 
yeZd 

p allows us to define measures \iT, T e N on the space QT of walks œ : 
{0,1,..., T} -> Zd starting from co(0) = 0 : 

liT({co}) = l\p(co(i-l),co(i)). (6) 
ï=I 

Diffusion is a property of the large T limit of such measures. It will be 
convenient to realize them as measures VT on C([0,1]), the space of continous 
paths œ : [0,1] -> Rd, by a simple rescaling. Thus, given an œ e QT> we obtain 
a piecewise linear path 

&(t) = T-V2(œ(i - 1) + (Tt - / + l)(co(i) - co(i - 1)) (7) 

where i — 1 = [Tt] and [ ] denotes the integral part. vT is the measure induced 
by (7) on C([0,1]) with its standard ^--algebra, and we will study the limit 
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lim VT (8) 
T->oo 

also called the scaling limit, and its properties. 
The walk is diffusive, if the diffusion constant 

Dip) = Bm D{T,p) = lim T"1 £ o)(r)2
JuT({û)}) (9) 

T—>oo T-*oo A- r f 

exists and is non-zero. In terms of the scaling limit 

D{p) = jdv(co)co(l)2. (10) 

• For random walks in homogenous environments, the matrix p is translationally 
invariant p(x,y) = p(x — y). If p has, say, exponential falloff, the scaling limit is 
given by the Wiener process. In the disordered system p is taken as a random 
matrix from some ensemble 0*. One then asks whether the scaling limit and the 
diffusion constant exist for almost all p. 

Let us now describe the ensemble dP . We take p a small random perturbation 
of the simple random walk: 

P(x,y) = — +b(x,y) (11) 

for \x — y\ = 1 and p(x,y) = 0 otherwise. Here b is taken as a random matrix 
such that 

a) b(x,-) and b(x',-) are independent if x ^ xf, and identically distributed. 
b) The distribution ofb(x, •) is invariant under the natural action of the subgroup 

of 0(d) fixing the lattice Zd. 
c) The generating function of b satisfies the bound 

Eetb(x,y) < ft 

where e is taken small. So, in particular, the variance of b is small. 
d) Prob(p(x,y) < e~N) < e~rN,for N > 1. T is taken large. 

Under these conditions we have the 

Theorem 2 [8]. Let d > 2. Then there exist eo > 0 and To < oo such that whenever 
e < so and r > To the diffusion constant D(p) exists and takes a constant value 
D ^ 0 a.s. in 0. The measures VT converge weakly to the Wiener measure with 
diffusion constant D, a.s. in 0. 

Remarks. 1. Theorem 2 holds for a much wider class of p's with exponential 
falloff in |x — y | [8]. It also holds for a continous time version of the problem, 
where the transition probability P(x, t) in time t from 0 to x satisfies the equation 

dtP = AP + V • (bP) (12) 

where b : Zd - • Rd is random [8]. 
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2. We expect Theorem 2 also to hold for d = 2 . If d = 1, the situation 
is completely different [9]. The walk is subdiffusive ; indeed, the mean square 
distance is proportional to (log t)A with probability tending to 1 as t —• oo. On the 
other hand, if b in (11) is taken symmetric i.e. b(x,y) = b(y,x), or, if the vector 
field b in (12) is a gradient (of white noise), then under quite general conditions 
the walk is diffusive in all d [10]. 

4. The Renormalization Group 

We sketch now the method of proof of Theorems 1 and 2 using the RG. Originally, 
the RG was developed for the study of (1) (and other similar measures) in 
a neighbourhood of the critical point ß = ßc at which / / , : t has long range 
correlations (at ß = ßc the magnetization m vanishes) : 

/ 
<j)(x)<j)(y)dii~C\x-y\-« . (13) 

as | x — y |—• oo. Here a > 0. Such long-range correlations make the analysis 
hard by conventional methods, such as the Taylor expansion in ß at ß = 0 or at 
ß = co, since ßc is a point of nonanalyticity of the correlation functions. In a nut
shell, the RG approach as applied to such critical situations consists of three steps: 

Coarse Graining. Choose an integer L and smear <j> suitably on scale L to get a 
(j)h, defined on LZ". 

Scaling. Set (j)'(x) = U(j)h(Lx). Then 0 —• c/>' = rh(/> defines a map in 8F (often 
one needs to enlarge 0*, i.e. allow for more general random fields than the GO one 
started with), which induces a map for the measures, pi —> pi = Sfchl*» $L is the 
RG map. 

Iteration. For L fixed, the control of 0th is a problem involving short-range 
correlations and thus often managable. The solution of the full problem is now 
translated to the iteration of 0th ' if A is, say, a cube of side LN in Z", the 
integral (2) is done after N iteration steps. The scale-invariance of the problem 
is in this approach seen as stabilization of 0tk

L\i\ this is expected to tend to a 
fixed point of the map 0th in a space of probability measures on 3F, provided the 
scale-parameter y is chosen properly. 

The disordered systems we are considering are not critical in the sense of 
(13). However, as we will see, they are problems involving several distance scales 
and the RG approach turns out to be the natural one here too. We first illustrate 
these steps for the random walks, where the RG will be especially simple. 

For coarse graining, given an co G QT, let COL be co restricted to LN. Then, 
for scaling, set 
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m'(t) = L-^2œL(Lt) = (rLco)(t). (14) 

Note that œf takes values in L~1^2Zd. We get the new measure 

»'({m'}) = »({œ | rLco = œ'}) (15) 

which is given in terms of new transition probabilities 

L~lT 

v'({o>'}) = u L"f *V(* - l),co'(0) (16) 
i = l 

with 

p'(x, y) = L-d/2pL(L1/2x, L1/2y) (17) 

where pL is the L-th power of the matrix p. Note that, since co(i) are summed 
over L~1/2Zd, the powers of L in (16) are natural. Thus the renormalized measure 
p! is described in terms of the new matrix pf, obtained from p via the non-linear 
map (17), which we shall call the RG map 0t. In particular we have the identity 
for the diffusion constants 

D(t,p) = D(L~h,0tp) = D(l,0tnp) (18) 

if t = Ln, which means that we have translated the study of the long time 
behaviour of the walks to the iteration of the RG map. 

In (18), 0lnp are transition probability densities for a walk on L~n/2Zd, and 
0t maps such densities to ones for a walk on the finer lattice L~(n+1)/2Zd. In the 
limit n -> oo, we have walks on R ,̂ and then 0t has a 1-parameter family of 
Gaussian fixed points 

pâ(x,30 = ( 2 ^ ) - d / V < ^ ' 2 / a > . (19) 

i.e. the transition probabilities of the Wiener process with diffusion constant D. 
For example, an exponentially decaying homogenous p is driven to this fixed 
point upon iteration of 0t, since in that case M is just convolution composed with 
scaling: 

R^p(k) = p(L-n/2kfl -+ e-Dk2'2d 

as L -> oo, where p is the Fourier transform and D is determined by p(k) = 
1 — Dk2/2d + (9(\k\4). This is of course nothing but a reformulation of the central 
limit theorem. 

The main part of the proof of Theorem 2 consists of showing that 0tnp -> p*D 

for ^-almost all p in a sufficiently strong sense as n —> oo. There are two aspects 
in this convergence. First, the derivative {D0t)f turns out to be contractive if 
d > 2, with largest eigenvalue L^2~d^2, Hence, it turns out that writing 0tnp — 
pn = Epn + bn, bn has variance proportional to 
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£2 = L(2-rf)/2£2 ( 2 0 ) 

The second aspect concerns the condition d) above. This is a condition for 
"traps" in the "environment" : it turns out that, if the bound is violated for T 
small enough, the walk is likely not to be diffusive. The renormalized p should 
also satisfy a similar bound (which describes the "traps" in longer distance scales), 
and indeed, one finds 

d"« Prob I / pn(x,y)dy < e~H J < L~nl e~l " (21) 

where ü is a unit cube centered at x. Thus the iteration of the RG "wipes out" 
the randomness in the matrix p. 

It should be mentioned that, if one starts with p having correlations with 
sufficiently slow decay in |x — y |, the bound (21) may be violated for some n and 
thus traps may occur in large scales. Indeed, it is possible to construct 0 where p 
have correlations with exponential decay (but slow enough), such that the walk 
is subdiffusive in all dimensions [11, 12]. 

Now we turn to the Ising model. It is convenient to represent $ e 0* as a 
(in general disconnected) closed surface S in the dual lattice: an (d — l)-cell cxy 

dual to a bond {xy} with |x — y\ = 1 is in S if c6(x) ^ c4(y). Thus, to 0 there 
corresponds a surface S and an assignement of signs + to the components of the 
complement of S. The measure pß>h (we drop the ±) corresponding to (3) can 
then be viewed as a measure on the set &* of all such surfaces 

//•*({s}) = arie-
ßVMmZy+ h~^-h) (22) 

where V± are the ± regions determined by S. 
If h = 0 and ß is large enough, the S's are suppressed in the typical config

urations of (22). Thus, the probability that the point x in (2) is in a different 
component of the complement of S than oo is small and the boundary condition 
determines the sign at x. If h is non-zero, let us consider the case of a connected 
S. Then, e.g. for + boundary conditions, 

K{S}) __ -^(Area(S)-2^x e /,(x)) 

with Vs the interior of S. Such an S will be probable if 

hs = 2 Y, H*) > Area(S) . (23) 
xeVs 

hs, being a sum of independent random variables, has variance Eh\ = \VS\E2, 

and thus (23) is unprobable if d > 2 since elF^I1/2 < Area(S') for all S. However, 
we see that disordering configurations, where (23) holds, occur in all scales of the 
problem. We translate now these observations to the RG language. 

file:///Vs/e2
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For the coarse graining, let S e ïf be S = U,-Si with S,- connected. We set 

SL = [ ( J Sii C24) 
d{St)>L 

where d(S) is the diameter of the set and [S] denotes the smallest union of 
L-sided cubes, centered at LZd, and covering S. 

For scaling, set S' = rLS = L~xSh. Note that S' is not any more in £f\ it is a 
"thick" surface. We set again 

li'({S'}) = ßP-h({S\rLS = S'}). (25) 

It turns out that pi is approximately of the form (22) with, however, a new h! 
having variance ~ L2~d times the variance of h, and a new ß! = Ld~lß. These 
powers are easy to understand: the Ld~l comes from the scaring of the area of 
surfaces of dimension d — 1, whereas the I?~d comes from the fact that 

Ä'M-L1-^^) 
with the sum having Ld independent random variables. The Ll~d is due to the ß 
in (22) multiplying h. 

Thus, approximatively 

«V•* ~ /"'*» (26) 
with ßn and the variance e2 of hn given by 

ßn = L«d-Vß , e2
n = LnV-dh2. (27) 

The proof of Theorem 1 thus consists in showing that, upon renormalizing, the 
measure (22) is driven to the trivial ß = oo fixed point with no randomness. 

In both cases discussed above, the reason why the disorder gets weaker under 
0t is simple: the linearized RG is contractive at the fixed point. However, it is 
contractive only in the probabilistic sense: e.g. the variance is contracted. There 
are regions in the space of disorder (in 0 or in the space of /z's) where 0t is 
expanding and the main mathematical problem is to show that such regions 
become more and more unprobable upon the iteration of 0t. These regions 
correspond to the "traps" in long distance scales or configurations of h that 
dominate in (22) the area term. 

5. Conclusions 

There are several problems in the theory of random systems where the RG 
approach is likely to be the natural one. Among such problems are the classical 
motion of a particle in the presence of randomly located scatterers (the Lorentz 
gas), the problem of extended states and diffusion for a Schrödinger operator 
with random potential and the Spin Glass mentioned above. 

For the first two problems it is conceivable that the methods used in [8] for 
the random walks are sufficient to prove the existence of diffusive behaviour. 

In the case of the Spin Glass, there presumably is a non-trivial ß = oo fixed 
point for the RG. However, here even setting up a useful RG-scheme constitutes 
a challenge. 
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Invariants of Links and 3-Manifolds Related 
to Quantum Groups 

Nicolai Reshetikhin* 

Department of Mathematics, Harvard University, Cambridge, MA 02138, USA 

Recent years were signified by "strong interaction" between various ideas coming 
from physics and mathematics. Operator algebra, representation theory, low-
dimensional topology, ^-analysis and others are some of the fields involved in 
this interesting area. Algebraic constructions distilled from the theory of quantum 
integrable systems are quantum groups. 

In the theory of quantum integrable systems it was found in [Ba, Ya] that a 
certain equation known today as the Yang-Baxter equation is playing the fun
damental role in integrability. The essential role of it becomes clear after works 
by Zamolodchikov's [Z] concerned with factorizable scattering and integrability 
and by Faddeev and Sklyanin [FS] where quantum inverse transformation meth
ods were developed as a method for studying quantum integrable systems [FT]. 
On the basis of these developments Drinfeld [Drl] and Jimbo [J] introduced 
the Hopf algebras Uq(@) which can be considered as deformations of universal 
enveloping algebras of the Kac-Moody algebras. The concept of quantization of 
Lie groups and Lie algebras was presented by Drinfeld in his address to Berkeley 
ICM [Drl]. The construction of quantum groups based on a given solution of 
the Yang-Baxter equation was presented in [FRT]. The general algebraic frame
work of quantum groups in terms of algebras with quadratic relations [S] was 
developed by Manin [M]. 

Applications of quantum groups to low dimensional topology are my subject 
today. The first results in this direction were obtained in the pioneering work by 
Jones [Jol] where he found a new invariant of links using certain constructions 
from operator algebras. Shortly after this invariant was generalized by a group of 
authors [HOMFLY] which is abbreviated now as HOMFLY. Another invariant 
similar to this was proposed by Kauffman [Ka]. The HOMFLY invariant is 
related to Hecke algebra, the Kauffman invariant to Birman-Wenzl algebra 
[BW]. Some results were generalized for invariants of graphs in R 3 ([Mi]). 

The relation of these invariants to solutions of the Yang-Baxter equation 
was explained by Jones [Jo] and Turaev [Tul]. The invariant of links related to 
quantum groups Uq(&) for any simple <è were studied in [Rei], where several 
new invariants were found. The relation between quantum groups and Hecke 
and Birman-Wenzl algebra was studied in [Jl, Rei]. Finally it becomes clear that 
all these invariants can be generalized to be considered as invariants of framed 
graphs in R 3 ([RT1]). 

On leave of absence, LOMI, Fontanka 27, Leningrad, 191011, USSR 
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Quantum groups produce interesting examples of tensor categories with non-
trivial square of commutativity morphism (quasitensor categories). Algebras 
Uq(ß) when q is a root of 1 give examples of semisimple tensor categories 
without fiber functor. The categorial explanation of invariants of links related 
to quantum group were given in [Tu2, TRI, Re2]. It is based on the notion of 
category of tangles [JS]. The general fact is that for any given tensor category 
[McL, DM] (with some special required properties which plays the role of ribbon 
element in ribbon Hopf algebra [RT1]) one can define invariants of framed links 
associated with these categories. 

The important fact about invariants of framed links associated with quantum 
groups (or with tensor categories) is [RT2] that one can formulate simple condi
tions under which these invariants produce the invariant of framed links which is 
invariant under Kirby moves [Ki]. The nontrivial fact is that the algebras Uq(<&) 
satisfy these conditions. It was proven for ^ = sl2 in [RT2]. 

The conditions mentioned above can also be formulated as conditions on 
corresponding tensor category. The categorial language seems most natural for 
the explanation of relations between these invariants and those which arise from 
topological field theory. For simplest values of q : q3 = 1, q4 = 1, q6 = 1 
invariants of 3-manifolds related to s^-algebra were computed in [KiM]. It was 
shown there that for these values of q the invariant can be reduced to known 
invariants. It seems that q5 = 1 should be the first value when it is not so. 

Topological field theory is another important branch of theoretical physics, 
close to the theory of integrable systems [A] [Sh] [Wi]. The most impressive results 
in the conception of topological field theory were the quantum field theoretical 
description of Donaldson's invariants, the description of new invariants of 3-
manifolds, and links in 3-manifolds obtained by Witten [Wi, Wil]. 

The relation between these invariants and those mentioned above is very 
natural in the language of category theory and essentially based on the concept 
of modular category of G. Segal [Se]. 
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Geometry of Fermionic String 

Albert Schwarz 

Department of Mathematics, University of California at Davis, Davis, CA 95616, USA 

Physicists hope that the Green-Schwarz superstring theory describes all inter
actions existing in the Nature. However the verification of this conjecture is 
connected with very difficult and very interesting mathematical problems. We 
consider here only some problems arising in the Polyakov approach to the 
fermionic string. (Fermionic string is closely related with the Green-Schwarz su
perstring.) We explain the connection between string theory and superconformai 
geometry, the origin of string measure on superconformai moduli space and 
analytic properties of this measure, the construction of universal moduli space 
and the expression of string measure in terms of super T-function etc. The lecture 
is based on the papers [1-10]. The results concerning the measure on the moduli 
space of JV = 2 superconformai manifolds are new. 

Superconformai Manifolds and Strings 

Let us consider a domain U in (l|JV)-dimensional complex superspace C1,JV. 
One can define JV-superconformal transformation of this domain as a complex 
analytic transformation preserving up to multiplier the 1-form 

u = dz + Y0id0i. (1) 
i 

Here (z,6i,...,d^) denote complex coordinates in U (z is even, 0I,...,0JV are 
odd). JV-superconformal manifold can be defined as a manifold pasted together 
from (l|JV)-dimensional complex superdomains by means of JV-superconformal 
transformations. The (super)space of classes of all compact JV-superconformal 
manifolds having genus p (JV-superconformal moduli space) will be denoted by 
Jt**. The most important cases are JV = 0,JV = 1 and JV = 2. In the case 
JV = 0 we obtain the moduli space of conformai manifolds (or moduli space 
of complex curves). This moduli space arises in bosonic string theory. JV = 1 
superconformai manifolds (or simply superconformai manifolds) arise in the 
superstring theory. Analogously JV = 2 superconformai manifolds are connected 
with JV = 2 superstrings. 

Let us explain the connection of string theory with moduli spaces following 
the Polyakov approach. The action functional of the bosonic string can be 
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represented in the form: 

S(X,g) = (dX,dX) = f g"ßdaX
adßX

adV (2) 
JM 

where M is a 2-dimensional manifold, X denotes a string field (i.e. a map of M 
into RD), g = (gaß) is a riemannian metric in M, dV denotes the corresponding 
volume element and (dX, dX) denotes the scalar square of 1-form dX with respect 
to the metric g. The functional (2) is invariant with respect to reparametrizations 
and to Weyl transformations (i.e. it remains intact if we make a diffeomorphism of 
M or replace the metric gajg by the metric Qgaß where Q denotes a non-vanishing 
real function on M). To calculate the partition function of bosonic string we 
must integrate exp(—S) over all string fields and over all riemannian metrics on 
compact two-dimensional surfaces. The contribution of surfaces having genus p is 
known as the p-loop contribution to the partition function. The action functional 
S is quadratic with respect to string field X and therefore the calculation of the 
integral over X can be reduced to the calculation of det zio where Ao = d+d is 
the Laplace operator on the scalars. Taking into account the reparametrization 
invariance by means of the Faddeev-Popov trick we reduce the calculation of the 
p-loop contribution to the partition function to the integration of 

(detzlor^detzlgfc (3) 

over the space Jkp. Here Jiv denotes the space of orbits of the group of 
diffeomorphisms in the space of riemannian metrics on two-dimensional compact 
surface M of genus p, det Agn denotes so called ghost determinant. The action 
functional S is Weyl invariant; but this is not true for, the expression (3) due 
conformai anomaly. However for D = 26 (critical dimension) conformai anomaly 
vanishes; this permits us to represent the p-loop contribution to the partition 
function for critical string in the form: 

/ 
JA 

(detzl0)~
13detzlg/Idv (4) 

Jt0 

where Mv denotes the space obtained from Jlv by means of factorization with 
respect to Weyl transformations. In such a way Jlv consists of classes of rieman
nian metrics; metrics connected by diffeomorphisms and by Weyl transformations 
are identified. By the construction of the integrand in (4) we have chosen one of 
metrics in every class. The det .do, detzfg/, and the volume elernent dv depend on 
this choice but the integrand in (4) is well defined on Jtv. The integrand 

dp = (det zl0)~
13det Aghdv (5) 

is known as the string measure on the moduli space Jtv. It is evident that the 
space Mv coincides with the moduli space of conformai manifolds Ji^={0. The 
constructions above can be generalized to the supercase. In this case one has 
to replace the riemannian metrics on 2-dimensional surfaces by supperrieman-
nian metrics on (212)-dimensional supermanifolds. By definition superriemannian 
metrics on a (212)-dimensional superdomain U is an odd vector field e on U 
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satisfying the conditions a) (anti)commutator of e and the complex conjugate 
field è is a linear combination of e and e (i.e. \e,e\+ = xe + m where a is an odd 
function), b) the vectors e,e,E = [e,é\+,Ë = [ë,e]+ form a basis in the tangent 
space. If e' = exp (ìX) e where X is 'a real function then e and e' determine the same 
superriemannian metric; if ef = exp(ü)e, where X is an arbitrary function, one 
says that e' and e are connected by Weyl transformations. The action functional 
of a fermionic string can be written in the form 

S(X,e) = (eX,èX) (6) 

where X denotes the string field (a map of a (212)-dimensional supermanifold M 
into RD) and e denotes the first order differential operator corresponding to the 
supperriemannian metric e. This functional is invariant under reparametrizations 
and Weyl transformations. Slight modification of the considerations above permits 
us to express the p-loop contribution to the partition function of critical fermionic 
string (D = 10) in terms of an integral over the space of classes of superriemannian 
metrics on (2|2)-dimensional supermanifolds of genus p. (We identify two metrics 
connected with reparametrization or Weyl transformations). One can check that 
this space coincides with the moduli space Ji^=i of superconformai manifolds. 
This follows from the assertion that for every superriemannian metrics on (2|2)-
dimensional manifolds M one can find a covering of M by charts Uj with complex 
coordinates (z®,0®) in such a way that in every chart superriemannian metrics 
takes the form ê(0 = $®(d/dO® + 0®d/dz®) (here #W denotes a non-vanishing 
function). We obtain a measure dp on the supermoduli space Jt^1 (one can give 
an expression of dp in terms of determinants of superLaplacians; this expression 
is similar to (5)). 

Superconformai Geometry 

Let us return to the consideration of JV-superconformal transformations of a 
(11JV)-dimensional complex superdomain U with coordinates Z = (z,6i,...,6^). 
The operators 

dot dz 

are called covariant derivatives. Let us suppose that by the transformation Z = 
f(Z) the operators D\ transform into operators Di. The transformation Z = f(Z) 
is JV-superconformal if and only if 

Di = Fij(Z)Dj (7) 

(the operators D\,...,D^ are linear combinations of D\,...,D^). This follows 
immediately from the remark that the vector fields corresponding to the operators 
Di are orthogonal to the 1-form (1). It is easy to check that the matrices Fij(Z) 
in (7) satisfy 

Fij(Z)Fkj(Z) = 0(Z)oik. (8) 
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In other words the matrix function Fij(Z) takes on values in the group G = 
0(N,C) x C* where 0(N,C) denotes the complex orthogonal group, C* denotes 
the group of non-zero complex numbers. In the case JV = 1 we have G = C* ; 
in the case JV = 2 the group G is disconnected and its connected part is 
isomorphic to C* x C*. The JV = 2 superconformai transformation is called 
untwisted if the matrix Fy in (7) belongs to the connected component of G. 
Recall that JV-superconformal manifold is pasted together from superdomains 
by means of JV-superconformal transformations; if in the case JV = 2 all these 
transformations are untwisted one says that JV = 2 superconformai manifold is 
untwisted. In the case JV = 2 it is convenient to introduce linear combinations of 
covariant derivatives: D+ = (2)~1/2(Di + iDi)', the behavior of D+ by untwisted 
superconformai transformations is given by 

2)+ = F+D+, 5_ = F_D_ . (9) 

The transformation law of the form (1) by JV-superconformal transformations 
can be written as 

a = <P(Z)a (10) 

where <P(Z) = (detFy)2/iV for JV > 1. (For JV = 0 the matrix Fy(Z) has no sense, 
but the function ®(Z) is well defined.) One says that a field Q on conformai 
manifold M has type k (or that Q is a fe-differential) if the transformation law of 
this field by conformai transformation connecting two charts in M is given by 
Q = $~kQ. The field Q on JV = i superconformai manifold M has type k if the 
transformation law of Q by superconformai transformations is Q = F~~kQ (in the 
case JV = 1 we have only one covariant derivative D and D — FD, i.e. the matrix 
F is simply a number.) The field Q on untwisted JV = 2 superconformai manifold 
has type (fc, I) if its transformation law is Q = F+kFllg. In other words the field of 
type k in the case JV = 0 is a section of a line bunde Kk, where K is a holomophic 
line bundle with transition functions <P(z) and in the case JV = 1 it is a section 
of a line bundle cok where holomorphic line bundle co is defined by means of 
transition functions F(Z). In JV = 2 case the field of type (fc, I) is a section of 
œ+œl_ where co+ and co- are defined by means of transition functions F+ and 
F- correspondingly. Note that the bundles K and co can be interpreted also 
as canonical line bundles. (Recall that for an arbitrary supermanifold one can 
define the canonical line bundle using as transition functions (super)Jacobians of 
transformations connecting different charts.) 

Let us denote by sé(L) the space of a holomorphic sections of holomorphic 
line bundle L over a supermanifold M. In the case JV = 0 we will use the notation 
sék for jtf(Kk) and in the case JV = 1 we will use the same notation for sé(œk). 
If M is a conformai manifold (a superconformai manifold) then the cotangent 
space at the corresponding point of Jtp=0 (of Jfp=i) can be identified with sé2 
(with FI sèi). Here FI denotes the parity reversion. Note that sé 2 and FI sé3 are 
complex linear spaces; this permits us to introduce complex structures in J£p=0 

and Ji^=i. It is well known that for p > 1 the complex dimension of Jtp=0 

is equal to 3p — 3. One can prove that J^^=1 is a (3p — 3|2p — 2) dimensional 
complex supermanifold for p > 1. Let us show that one can construct measures 
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on moduli spaces using the so called Mumford form and its generalizations. First 
of all we will introduce the notion of a function of weight fc on bases in linear 
space E by means of the condition f(e) = (det P)kf(e), Here e = {e,} and e = {e,} 
are two bases in E, and P denotes the matrix connecting e and e; i.e. e,- = Pfej. If 
£ is a linear superspace we use the same definition, but instead of determinants 
one has to considers superdeterminants (Berezinians). If £ is infinite-dimensional 
one has to consider only admissible bases (bases connected with a standard basis 
in E by a matrix P having well defined determinant in some sense.) The measure 
in linear space E can be defined as a function of weight 1 on the bases of E. 
We will denote the one-dimensional linear space consisting of measures in E by 
m(E). In the definitions above one can take E as a complex or real linear space; 
correspondingly m(E) will be complex or real too. However if E is a real linear 
space it is natural to modify the definition of a function of bases having weight fc. 
Namely one has to replace detP by |detP| in this definition. Then the measure 
in E can be defined as a positive function of bases having weight 1. If E is a 
complex linear space and £real corresponding real linear space then a hermitian 
metric on m(E) generates positive measures in ETGa] and in (£rea1)*. To determine 
a measure in a (super)manifold M one has to fix the measures in all tangent 
spaces (or functions of weight —1 on the bases of all cotangent spaces.) Let us 
consider a conformai manifold M and complex linear spaces 

Zk(M) = sék(M)+sé^k(M)* (11) 

Xk(M) = m(Ik(M)) = m(sék(M)) ® m(^i_k(M))*. (12) 

Mumford proved that there is a canonical isomorphism 

Afc(M)^Ai(M)6/c2-6fc+1, (13) 

i.e. the one-dimensional linear space Xk(M) is isomorphic to the (6fc2 — 6fc + 1)-
th tensor power of X\(M). (One can consider the spaces Xk(M) as fibres of 
a holomorphic line bundle Xk over J£p=0; then (13) can be interpreted as 
holomorphic equivalence of line bundles Xk and Xek ~6k+1.) Using (13) for fc = 2 
we obtain an isomorphism 

X2(M) = Xi(M)n; (14) 

this isomorphism is known as the Mumford form. In other words, the Mumford 
form can be interpreted as a function Ji(e,j\M) of bases in E2(M) and Z\(M), 
having weight —1 with respect to the basis e of Z2(M) and weight 13 with respect 
to the basis / of I\(M). There exists a natural scalar product in sé\(M) (in 
the space of holomorphic abelian differentials). This scalar product generates a 
hermitian metric in X\(M) = m(sé\(M))\ using this metric and the isomorphism 
(14) we obtain a hermitian metric in X2(M). If a conformai manifold M has 
genus greater than 1, X2(M) can be identified with m(sé2(M)). Remembering that 
sé2(M) can be considered as a cotangent space to Jf^=0 we obtain a measure in 
^P=0>P > 1- Using the Mumford form Jt(e,f) we can describe this measure as 
follows. Let t\,...,ts,s = 3p — 3, denote a basis in the complex tangent space at 
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the point of ^ ^ = 0 corresponding to the conformai manifold M and let e\, • • •, es 

be the dual basis in the cotangent space sé2(M) = Z2(M). Then the real measure 
in Jtp=0 can be defined by the formula 

p(h,.-.>tq,tu...,ts) = \Jt(e,f)\2 (15) 

where / is an arbitrary orthonormal basis in sé\(M). 
A. Voronov [11] generalized the Mumford construction to the case when M 

is a superconformai manifold. In this case one has to modify the definitions of 
Ek(M) and Xk(M) as follows: 

Zk(M) = sék(M) + nséi-k(MY, (16) 

Xk(M) = m(Zk(M)) = m(sék(M)) ® m(sé^k(M)). (17) 

Voronov proved that Xk(M) is canonically isomorphic to X\(M)2k~x; in par
ticular 

X3(M) « Xi(M)5. ' (18) 

This isomorphism is known as a super-Mumford form; it can be interpreted 
as a function J£(e,f) having weight —1 with respect to the basis e in Z3 (M) and 
weight 5 with respect to the basis / in I'i(M). We will say that M is a normal 
superconformai manifold if séo(M) = C (all holomorphic functions on M are 
constant). Then I\(M) = sé\(M) is provided with a natural scalar product. If 
the genus of M is greater than 1, we have Z?>(M) = sé?>(M) and remembering the 
description of the cotangent space to Ji®=l we obtain a measure on J?p=l, p > 1. 
Belavin and Knizhnik [12] proved that the measure on ^ ^ = 0 constructed by 
means of the Mumford form coincides with the string measure. A corresponding 
result for the measure on J£p=i, was proved in [3]. 

Let us describe similar constructions for the moduli space of untwisted JV = 2 
superconformai manifolds. First of all one has to mention that this moduli space 
is isomorphic to the moduli space Jtp of all complex (l|l)-dimensional super-
manifolds. (For definiteness we consider compact supermanifolds of genus p.) To 
explain the coincidence of these two moduli spaces it is useful to note that a 
JV-superconformal manifold can be considered as a (l|JV)-dimensional complex 
contact supermanifold; the converse assertion is also true. (Recall that the con
tact structure can be specified by means a of 1-form satisfying non-degeneracy 
condition; the form (1) entering in the definition of JV-superconformal transfor
mations specifies contact structure in a (l|JV)-dimensional complex superdomain.) 
For an (m\n)-dimensional contact supermanifold one can construct a (2m— l|2n)-
dimensional contact supermanifold PT*X by means of projectivization of the 
cotangent bundle T*X. If X is a (l|l)-dimensional complex supermanifold we 
obtain (l|2)-dimensional contact complex supermanifold, i.e. JV = 2 superconfor-
mal manifold. One can check that this construction gives all untwisted JV = 2 
superconformai manifolds. The fields on the (l|l)-dimensional manifold X can 
be identified with chiral fields on the JV = 2 superconformai manifold PT*X (i.e. 
with fields satisfying the condition D+& = 0). Let L denote a holomorphic vector 
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bundle over a (l|JV)-dimensional supermanifold R. We define a one-dimensional 
complex linear space X(L) by the formula 

X(L) = m(H°(L)) ® m(H\L)Y . (19) 
. V 

Here HK(L) are Cech cohomology groups. It is easy to check that the spaces Xk(M) 
defined above can be considered as X(œk) where a> denotes the canonical bundle 
over M. To define a measure on Jtp = Jt^=2 (untwisted) we must introduce 
hermitian metric in X(œ^.1œZl) for every untwisted JV = 2 superconformai mani
fold R. (The tangent space to Jt^1 can be interpreted as Hì(co+ìcoZì).) However 
X(œ^.iœZ1) is canonically isomorphic to X((9R) where OR is a trivial line bundle 
over R. (There exists a canonical isomorphism X(L\) = X(L2) for every two holo
morphic line bundles Li,L2 over a (l|JV)-dimensional manifold R where JV > 2.) 
Let us consider the (l|l)-dimensional manifold R! corresponding to R. If x e R* 
we denote by V(x) a (l|l)-dimensional linear space of holomorphic functions on 
the (O|l)-dimensional manifold n~1(x). (Here TI is a natural projection of R onto 
Rf.) The spaces V(x) can be considered as fibres of a (l|l)-dimensional vector bun
dle V over R'; one can check that W(V) = W(GR) and therefore X(V) = X(0R). 
From the other side one can identify X(V) with X((9R>) ® X(FIOIRI) = X((9R>)2. (The 
bundle (9R> can be considered as a subbundle of V and the corresponding quotient 
bundle is FIOJRI) In the normal case (H°(@R') = C) the natural scalar product 
in nH{((9R>) = H°(CûR>) induces a hermitian metric in X((9R>) and therefore in 
X^œZ1) = X((9RI)

2. 

Universal Moduli Space 

Let us consider the space H of square integrable functions on the supercircle 
(i.e. H consists of functions F(z,6) = f(z) + cp(z)6, where z is a complex number, 
\z\ = 1 and 9 is an odd variable). We introduce an odd bilinear scalar product 
(bilinear pairing) in H by the formula 

(F,F) = J) F(z,6)F(z,0)dzdQ = (f f(z)q>(z)dz + <f> cp(z)f(z)dz . (20) 

The functions zn,zn0 form the standard basis of H. (Here n is an integer.) The 
subspace of H spanned by the vectors corresponding to n < 0 (to n > 0) will 
be denoted by H- (H+). The natural projection of H onto H- (H+) will be 
denoted by %- (7c+). We will say that a linear subspace W of H belongs to 
the super-Grassmannian Gr, if the projection TC_ of W into H- is a Fredholm 
operator and the projection 7c+ of W into H+ is a compact operator. (Recall that 
in the bosonic case the Grassmannian Gr can be defined in a similar way but 
the role of H is played by the space of functions on the circle \z\ = 1.) Let us 
denote by F the supergroup of even invertible functions on the supercircle. The 
group F acts in Gr by means of multiplication operators. The subspace of Gr 
consisting of elements W e Gr satisfying W1 = FW, F e F will be denoted by 
UMS. (Here WL denotes the orthogonal complement to W with respect to the 
bilinear pairing (20).) All moduli spaces can be embedded in UMS by means of 
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the Krichever construction. More precisely, let us consider a (l|l)-dimensional 
complex manifold JV, a point n e N and a coordinate system (z,8), \z\ < 1, 
in the neighbourhood U of n. The space of triples (JV, n, (z, 9)) will be denoted 
by 0. For every point P e 0 we define a space W(P) as a space of functions 
on the supercircle admitting holomorphic extension to N\U (to the exterior of 
supercircle). One can prove that W(P) e UMS for every P e0 and therefore 0 is 
embedded in UMS. Let us consider for every element W e Gr finite-dimensional 
spaces sé(W),sé(W±) and I(W) defined by the formulas 

stf(W) = W n H+ = Ker TT5 (21) 

sé(W±) = W1 n H+ = 77(tf_/Im TC5) (22) 

I(W) = sé(W) + FI sé (W1-) . (23) 

Here n™ denotes the projection TI_ considered as a map from W into if_ and 
FI denotes the parity reversion. If W = W(P,L), P = (N,n,(z,8)) e 0, L is a 
holomorphic line bundle over JV, we can identify sé(W) with the space H°(L) 
of holomorphic sections of L over JV. In particular if JV is a superconformai 
manifold, L = û / , the space sé(W,P,œk) coincides with the space sék(N) of 
holomorphic sections of the bundle cok over JV (i.e. with the space of holomorphic 
fields of type k). The space I(W(P,cok)) can be identified with the space Ek(N). 
We will construct the extension of the super-Mumford form to UMS as a 
function Jt(w, W, W), where w denotes a basis in Z(F3W) and w' denotes a 
basis in Z'(FW) = E(W±) = Z(W). (Recall that for W e UMS we have 
W1- = FW, F e r.) The construction of this extension is based on the notion 
of super T-function. Let us first define the T-function x(W,P), where W € Gr, 
F e r in the case when the projections n™ and %FJY are isomorphisms. In this 
case we can consider the counterimages (7r^)_1e and (jiFJv)~~le of the standard 
basis e = {zn,zn9,n < 0} in H-. The T-function %(W,F) can be defined as the 
determinant of the matrix connecting two bases F(n™)~le and (Tü^^) - 1 ^ in FW. 
One can prove that this determinant is well-defined. (Note that the corresponding 
determinant in the bosonic case is ill-defined; therefore the definition of the super 
T-function is simpler than the definition of Sato's T-function.) In the general case, 
one can assign to every basis w of Z(W) a basis w of W e Gr, determined up 
to the unimodular transformation. For example, if sé(W±) = 0, I(W) = sé(W) 
to construct the basis w we add to the basis w a set u of the vectors in W 
satisfying the condition n^(u) = e. (In other words the set u is transformed into 
the standard basis e of H- by the projrction TC_.) We define the T- function 
T(W, w', W,F) where w is the basis in W, w' is a basis in FW as a determinant of 
the matrix connecting the bases Fw and w' in FW. 

T(W, W, W,F) = det (Fw|ivO . (24) 

This infinite-dimensional determinant is well-defined. We can now construct the 
extension of the super-Mumford form to UMS by the formula 

yy/ - un <IIw',w,W,F3) 
Jt(w, w, W) = _ ,—, w _ a . (25) 
• v } %(nw',wf,w,Fy v } 
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Here W GUMS, F e r, wis a basis in I(F3W), W is a basis in I (FW) and 77 w' 
is a basis in £( W) = IIE (FW). It is easy to check that the weights of Jt{w9 w

f, W) 
with respect to w and W are correct (—1 and 5 correspondingly). One can prove 
that for the case W = W(P), P = (N,n,(z,9)) e 0, JV is a superconformai 
manifold the function Jt(w,W,W) coincides with the usual super-Mumford 
form M(w,W,N). Using the expression of the super T-function through the 
Reidemeister torsion we can express Jt(w, w1, W(P)) through holomorphic fields 
on JV and their zeroes. The expression obtained in such a way coincides with the 
similar expression for M(w,W,N) given in [11]. This remark gives the simplest 
proof of the relation 

J£(w, W, W(P)) = M(w, w', JV) . (26) 

Note that the function J£(w,wf, W(P)) gives an extension of the super-Mumford 
form to 0. Moreover, it is easy to check that this function depends only on 
the complex manifold JV (i.e. does not depend on the point n e N and on the 
coordinate system (z,9)). Therefore the super-Mumford form can be considered 
as a function on the moduli space Jlx\l of compact (l|l)-dimensional complex 
manifolds. (More rigorously this function depends on the point JV e JK^1 and 
on the bases w,wf in £3(JV) = r(co3) and in I\(N) = r(co).) The same assertion 
can be obtained from [11]. The moduli space Jt^x coincides with the moduli 
space of untwisted JV = 2 superconformai manifolds and therefore the statement 
above permits us to assert that the super-Mumford form admits hidden JV = 2 
superconformal symmetry; see [10]. It is well known that the JV = 2 world-sheet 
superconformai symmetry is related with the JV = 1 space-time symmetry in the 
string theory. The remarks above show that the JV = 2 superconformal symmetry 
may play a fundamental role in the string theory. 
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Geometrie Aspects of Quantum Field Theory 

Graeme Segal 
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Quantum field theory has been the basic tool of particle physics for more than half 
a century, but unlike earlier such tools it has not been accompanied by a satisfying 
mathematical theory. Recently this has begun to change. One reason is that the 
ideas of quantum field theory have turned out to shed light on purely mathematical 
questions. These applications are my subject today. So far, nevertheless, the field 
theory has played either a heuristic or an explanatory role in the mathematics, and 
the actual theorems can, and often must, be proved by other means. I hope that 
this will be less true as the mathematics of field theory becomes better developed. 
Meanwhile I shall just indicate some areas where field theory and geometry have 
come together, trying to illustrate the point of view rather than formulate theorems. 
For the most part I shall be summarizing other people's work, predominantly 
Witten's. 

§1. The Framework 

In his address to the Berkeley ICM Witten described d + 1 dimensional quantum 
field theory as follows. One considers "fields" defined on some class of oriented 
rf -h 1 dimensional manifolds M. A "field" might mean a map from M to some 
auxiliary manifold X, or a section of some natural fibre bundle on M, or even an 
equivalence class of such sections. In any case one has a space F(M) of fields for 
each compact manifold M with boundary. A field / e F(M) has a boundary value 
f\dM which belongs to some space F0(dM) of fields on the boundary. We also 
suppose given an "action" functional S : F(M) -> R, defined uniformly for all M. 
Then field theory is the study of the functions XPM on F0(dM) of the form 

»V(/o)=[ e-™af, (1.1) 
JF(Mi/o) 

where F(M;f0) = {fe F(M) \f\dM = f0}. More generally, if the boundary dM = 
£0 II £t consists of an incoming part £0 and an outgoing part Z\ we are interested 
in operators WM : HEQ -• HSi9 where HZi is a space of functions on F0(Lt)9 on the form 
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(**V)(/i) = 

where 

^ M C / O J / I ) = 

KM{fo,fi)+ifoWo, 
F0(£0) 

e~™®f. (1.2) 
F(M; fo.fi) 

(A boundary component is 'outgoing' or 'incoming' according as its orientation 
agrees or not with that of M; and E0 denotes E0 with reversed orientation.) 

The preceding formulae are only schematic, and so far it has proved impossible 
to develop an integration theory of the type needed. But let us at least try to abstract 
the essential structure. It comprises 

(i) a vector space HE for each closed oriented d-dimensional manifold with 
whatever structure is appropriate; 

(ii) a bilinear pairing H^ x HE-* <C; 
(iii) an element *FM e HdM for each d + 1 dimensional manifold M with appro

priate structure. 
The most obvious properties these data should have are 

(a) HziUz2 = HLi®Hz2 

and 

^MiUMj = y M i ® ^M2i 

(in particular Hz = (C when E = 0 , and so WM e <C when M is closed.) 
(b) if two components Ex and E2 of the boundary of M are sewn together by 

an orientation-reversing diffeomorphism to form a new manifold M such that 
dM = E1UZ2UdM then the map HdM-+HdM defined by the bilinear pairing 
takes WM to ÎP^. 

In particular, when dM = 0 and WM is regarded as an operator HE^ -> HSj9 

property (b) asserts that 
t r a c e d ) =¥^e<C. 

I do not know how far an axiomatization of this kind is appropriate or helpful 
in traditional quantum field theory, but with some especially simple kinds of theory 
it works well and is a useful tool in geometry, rather like a new kind of cohomology 
theory. I shall mention some limitations of the framework in §§ 5 and 6 below. 

A feature of each of the examples I shall describe is that either the phase space 
is finite dimensional because of the presence of a large group of gauge symmetries, 
or else the path integral (1.1) reduces to a finite dimensional integral because the 
integrand is an exact differential form outside a finite dimensional submanifold of 
the space of fields (i.e. "the stationary phase calculation is exact"). One might take 
this to mean that genuine quantum field theory is not involved. A more optimistic 
moral, however, is that one can sometimes best study finite dimensional problems 
by the infinite dimensional methods of field theory. 

http://fo.fi
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§ 2. Index Theory and the Elliptic Genus 

A particle moving in a Riemannian manifold X affords the simplest example of the 
path integral idea, and can be regarded as a 0 + 1 dimensional field theory. The 
action for a path y : [0, T] -• X is S(y) = i J J ||y'(r)ll2 dt. For a point P the vector 
space HP is L2(X), and to the 1-manifold [0, T] is associated the heat operator e~TA 

in Hp, where A is the Laplacian of X. The formula (1.2) is then the usual path integral 
representation of the heat kernel; and if we replace [0, T] by a circle ST of length 
T we have a formula for trace(e_7M) as an integral over the loop space ££TX = 
Map(Sr; X). This path integral does not reduce to a finite dimensional integral. 

The position is different and more relevant if we replace the action S : 3?TX -• IR 
with the inhomogeneous differential form S = S + co, where œ is the 2-form on 3?TX 
which to two deformations <!;, q of a loop y assigns the number 

co(y; & ri) = 
T 

<«*), ij'(t)> A. 

(Here rç'(t) is the covariant derivative.) (*) Witten observed (see [2], [15]) that the 
action S corresponds to the 0 + 1 dimensional field theory for which HP is the mod 2 
graded space of L2 spinor fields on X, while the operator associated to [0, T] is the 
spinorial heat operator e~Tâ. The graded trace (or "supertrace") tr(e~TA) is now 
independent of T, and is the index of the Dirac operator on X. This is a topological 
invariant of X called its/-genus. On the other hand the top degree component of 
the differential form e~s on 1£TX is exact outside the finite dimensional manifold 
of point loops, so by Stokes's theorem the path integral can be reduced to an integral 
over X (identified with the point loops). The outcome is the Atiyah-Singer formula 
for the index of the Dirac operator. The elaboration of this idea was described by 
Bismut [8] at the Berkeley ICM. 

So far we have been dealing with well-known material. But we can go on to 
consider a 1 + 1 dimensional theory whose action is a differential form on the space 
F(E) of maps from a surface E to X. Then the vector space Hs associated to a circle 
S will be the space of L2 spinors on the loop space SâX. When E is a torus the path 
integral over F(E) is called the elliptic genus eE(X) oiX. (In fact there are a number 
of variants, applying in slightly different situations.) The 0 -h 1 dimensional result 
that the supertrace of e~TA was independent of T has the analogue that e£(X) 
depends only on the conformai structure of E, i.e. for each X it is a modular function 
on the upper ^-plane. The elliptic genus can be interpreted formally as the equi-
variant index of a version of the Dirac operator on the manifold X. As with the 
/4-genus the path integral defining eL(X) collapses to an integral over X, and this 
expresses it in terms of the characteristic numbers of X already familiar in algebraic 
topology. Nevertheless the elliptic genus has striking and unexpected properties, 
especially in connection with the topology of circle actions, and it stimulated the 
discovery of elliptic cohomology, a new theory whose true nature remains obscure. 
(An account of this subject can be found in [22]. Cf. also [1], [26]). 

* More accurately, we replace e S(y)@y by e s. The integral of an inhomogeneous form means 
the integral of its component of top degree. 
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§ 3. Topological Field Theories 

A field theory is topological if it is defined for smooth manifolds with no additional 
structure (apart from a question of fixing projective multipliers which I shall 
suppress in this talk.) The vector spaces HE must then be finite dimensional. A 
discussion of the formal properties can be found in [4]. 

(a) 1 + 1 dimensional Theories. These are completely described by giving a 
commutative ring A with a F together with a linear map 0 : A -> C such that the 
bilinear form (a, b)\-*9(ab) is non-degenerate. In fact A = Hsi, and the product 
A (g) A -> A is WM, where M is a disc with two holes. 

(b) 2 + 1 dimensional Theories. These are by far the most studied, and the 
structure is much richer: it appears to be roughly equivalent to a quantum group. 
A theory gives us an invariant for each closed 3-manifold, and a representation of 
the mapping class group of each closed surface. If we choose an element Ç e i/sixSi 
we get an invariant fa(K9 M) e C for each knot K in a 3-manifold M by defining 

^(X,M) = <^,'PM_t/>, 

where U is a tubular neighbourhood of K. In Reshetikhin's, Turaev's, and Feigin's 
talks at this Congress we heard how the same output arises from a quantum group. 
The relation between the two approaches does not seem completely understood, 
but I shall say a little more about it in § 4 below. 

2 + 1 dimensional theories are important because there is a supply of natural 
examples which lead to the knot invariants of Vaughan Jones and others. There is 
a theory for each compact Lie group G and choice of "level" k. The level is an element 
k e H4(BG; Z), i.e. an integer if G is simple and simply connected. Regarding fc as a 
characteristic class for G-bundles there corresponds to it a secondary Chern-Simons 
characteristic class Sk with values in R/2TCZ which is defined on the space F(M) of 
isomorphism classes of G-bundles with connection on a 3-manifold M. This, or 
rather iSk, is the action defining the theory [33]. But the theory can be constructed 
without mentioning path-integrals in the following way. 

The vector space HE associated to a surface E is the "quantization" of the 
symplectic manifold ME of flat G-bundles on E. (This is the symplectic quotient [5] 
of the space of all connections on E by the action of the gauge group.) The symplectic 
structure of JiE depends on the level: its class is the image of fc under the transgres
sion HAr(BG) -> H2(JtE). To obtain a definite quantization one method is to 

(i) choose a complex structure on E, 
(ii) identify ME with the moduli space of stable holomorphic G-bundles on E 

by the Narasimhan-Seshadri theorem [23], thereby giving JiE a Kahler structure, 
(iii) represent the symplectic form as the curvature of a holomorphic line bundle 

L on JtE, and 
(iv) define HE as the space of holomorphic sections of L. 

One must show that HE is essentially independent of the complex structure chosen. 
Even after that one must construct the vectors WM associated to 3-manifolds. No 
natural way of doing this is known, though in general terms one can say that if 
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E = dM then the boundaries of flat G-bundles on M form a Lagrangian sub
manifold in JfE, and this should define a vector in the quantization HE. But the 
connection of the spaces Jt E with 3-manifolds was a great surprise, for they arise 
more obviously from 1 + 1 dimensional conformai theories, as we shall see below. 

The application of this theory to the study of knots and 3-manifolds is discussed 
elsewhere at this Congress, so here I shall just emphasize that it has led to many 
new results about the geometry of the spaces J4E, notably Verlinde's beautiful 
formula [30] for the dimension of the space HE. By applying quantum field theory 
to JtE in a slightly different way Witten has recently been led to conjecture a formula 
for the volume of Jt.'E in terms of ÇG(2g — 2), where g is the genus of E, and 

Us) = 27(dim V)~s, 

the sum being over the irreducible representations V of G. 

(c) 3 + 1 dimensional Theories. For each compact group G there is an important 
3 + 1 dimensional theory [3, 13, 17] which assigns to a closed 4-manifold W its 
Donaldson invariant, i.e. (roughly) the number of "instantons" on. W. (An instanton 
is a solution of the self-dual Yang-Mills equations.) This theory was described in 
Floer's talk at this Congress. The vector space HM for a 3-manifold M is the Floer 
cohomology group defined by applying infinite dimensional Morse theory to the 
space F(M) of isomorphism classes of G-connections on M, the Morse function 
being the circle-valued Chern-Simons form already mentioned. A 4-manifold W 
with boundary M has a relative Donaldson invariant in HM. Unfortunately field 
theory, although strikingly exemplified here, has not so far helped much with the 
geometry, except insofar as it is a field-theoretic idea to study the instanton moduli 
spaces in terms of the space of all connections. 

I should say a word about Floer cohomology. The infinite dimensional mani
folds F which arise in field theory are usually polarized, in the sense that their tangent 
spaces are roughly decomposed into positive- and negative-energy halves. (Cf. [26] 
§ 4.) Floer's Morse function defines a decomposition of this kind, into the positive 
and negative eigenspaces of the Hessian. For such a manifold F one expects to be 
able to define "middle dimensional cohomology", by considering infinite dimen
sional cycles whose tangent spaces roughly fill the negative half of the tangent spaces 
to F. This idea goes back, of course, to Dirac's treatment of electrodynamics in terms 
of a sea of negative energy electrons. The same idea has been formalized by Feigin 
in his "semi-infinite" cohomology of Lie algebras [14]. Apart from the space of 
connections above, Floer cohomology has also been applied to the loop space of a 
symplectic manifold [12], and there too it arises as the state space of a field theory, 
the 1 + 1 dimensional topological <7-model of [32]. 

§ 4. 1 + 1 Dimensional Conformai Field Theory 

Conformai field theory is akin to topological field theory in the sense that, up to 
isomorphism, a compact surface has only a finite dimensional space of conformai 
structures. Conformai theories can be axiomatized in the same way as topological 
ones [27, 28]. They have been much studied since the influential paper [7], partly 
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for their relevance to string theory, but also because of their role in at least three 
areas of mathematics: 

(i) the representation theory of loop groups and of Diff^1), 
(ii) the study of the moduli spaces of Riemann surfaces and holomorphic 

bundles, and 
(iii) the construction of the monster simple group and its representations. 

For the third of these areas I refer to [15]. A slightly more conventional 
approach to conformai field theory is summarized in [18]. 

A conformai theory consists of a vector space H naturally associated to the 
standard circle S1, together with an operator WE : H®m -> H®n for each Riemann 
surface E with m incoming and n outgoing parametrized boundary circles. Thus 
Diffus1) acts (projectively) on H, and so does the semigroup sé of surfaces which are 
topologically cylinders. (The composition-law is sewing end-to-end.) The semigroup 
sé has twice the dimension of Diff̂ S1), and is a complex manifold. One of the 
important ideas of the theory is that sé plays the role of a complexification of the 
group Diffus1): more precisely, the relation between them is the same as that between 
the unitary group Un and the semigroup {g e GL„((C) : \\g\\ < 1} of contraction 
operators. (Cf. [28] and also Neretin [24].) 

Let us recall that the loop group S£G of a compact group G has an interesting 
class of irreducible projective representations {HktV} - the positive energy repre
sentations - which are parametrized by their level fc e H*(BG; Z), which describes 
the projective multiplier of the representation, and an irreducible representation V 
of G. (The image of fc in H2(J£G) is the class of the circle bundle defined by the 
central extension.) For a given level fc only a finite set of representations Fcan occur. 
An important fact about the representations Hkv is that they possess a canonical 
projective action of Diff^1) intertwining with that of «JSfG. This action extends to -
more accurately, is the boundary value of- an action of sé by trace-class operators 
iFA:H-^H. In fact WA is characterized by intertwining with the group GA of 
holomorphic maps A -» Gc, which acts on the source and target of WA via restriction 
to the two ends of A. The remarkable fact is that the irreducible representations of 
a given level constitute something very close to a conformai field theory. To state 
this precisely one needs the concept of a modular functor [27,28]. (In the literature 
modular functors are usually referred to as "conformai blocks" [7] or "solutions of 
the Knizhnik-Zamolodchikov equations". For the latter, see Varchenko's talk at 
this Congress.) 

A modular functor has a finite set 0 of labels. It assigns a finite dimensional 
vector space EE to each Riemann surface with boundary where each boundary circle 
is labelled with an element of #. The axioms are 

(i) EE = C when E is the Riemann sphere, 
(ii) EElUEi^EEi®EE2, 
(iii) E è = ® EEt<£ where (27, (j)) is obtained from È by cutting it along a simple 

closed curve and giving both new boundary circles the label <j>. 

For the application 0 is the set of irreducible representations of £t?G of a given 
level. There is a modular functor E such that when E is a Riemann surface with m 
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incoming and n outgoing boundary circles labelled with representations Hai,..., 
Ham and Hßi,..., Hßn there is an operator 

¥E^.Hai®--®Ham^Hßi®"-®Hßn 

for each £, e EE which intertwines with the action of the group GE of holomorphic 
maps E -> Gç. (In fact EE can be defined as the space of such intertwining operators: 
then the point to establish is property (iii) above, which amounts to a version of the 
Peter-Weyl theorem for loop groups.) The first complete proof of this result is in 
[29], (Cf. Tsuchiya's talk at this Congress.) 

One of the advantages of the field-theoretic viewpoint in the representation 
theory of loop groups is to make plain the otherwise mysterious modularity prop
erties of the characters: in field theory the values of the characters are naturally 
associated to complex tori. 

Witten realized [33] that the modular functor EE just described is essentially 
independent of the complex structure of E, and is the state space of the corre
sponding 2 + 1 dimensional topological theory based on the Chern-Simons action. 
More recently Kontsevich [21] has sketched an argument to show, still more 
surprisingly, that the concepts of modular functor and 2 + 1 dimensional topo
logical theory are exactly equivalent. 

A "topological" modular functor is closely related to a quantum group, for the 
quantum deformation of G amounts essentially to a way of defining an exotic tensor 
product on the category of representations of G. For a modular functor E we can 
define 

Vi®EV2 = ®EEtVuVi,w®W, 
w 

where W runs through the irreducible representations of G, and E is a disc with two 
holes whose boundary components are labelled Vx, V2 (incoming) and W (outgoing). 

It is easy to relate the modular functor EE to the space HE = r(JtE, L) of 
holomorphic sections described in § 3. Let us decompose the closed surface E as 
E1 u E2 by a simple closed curve S. A holomorphic bundle on E is automatically 
trivial on Ex and E2, so it can be described by a clutching function on S, i.e. 
by an element of J^G^. The set of isomorphism classes of bundles on E - essen
tially the same as JtE - is therefore the double coset space GEi\^

,G(C/GE2, and 
the space r(JtE, L) is the GEi-invariant part of H = F(^£G^jGE2, n*L), where 
7i : JSfGc/G^ -> JtE. If we now take E2 to be a standard disc then H is the basic 
representation of JSfG of level fc, constructed by the Borei-Weil method [25]. Finally, 
it is easy to see that when the boundary of Ex is labelled with H we have EE = EEi, 
and so 

EE s HG*> £ r(J/E; L). 

The preceding argument, which shows how representations of i?G define func
tions on the moduli space of G-bundles, also shows how representations of Dif^S1) 
give functions on the moduli space (€E of complex structures on a smooth surface E. 
For (€E behaves like a double coset space of the semigroup sé: if we write E = 
ExuE2, and choose fixed complex structures on E1 and E2, then E1 u A u E2 runs 
through an open set of <ßE as A runs through sé. The representation theory of 
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Diff^S1) allows us, for example, to identify and classify holomorphic line bundles 
on #£ much more simply than does conventional algebraic geometry. (Cf. [6,28].) 

§ 5. Zamolodchikov's c-Theorem 

The point of view of this talk is successful with topological and conformai field 
theories, but so far it has never been taken seriously in a wider context. At present 
the only general definition of a field theory is the classical one in terms of the vacuum 
expectation values of a class of operators varying from theory to theory. This is not 
sufficiently manageable for one to be able to speak, for instance, of the "space 5" of 
all 1 + 1 dimensional theories". Nevertheless one of the most interesting recent 
developments has been the following result of Zamolodchikov [36], which is framed 
in terms of the space 0~. 

Whatever may be the definition of a theory, it will presumably be true that from 
any theory T one can derive a 1-parameter family of theories Tx (for X e R x ) simply 
by multiplying all lengths by X. The resulting flow on 0' is the renormalization group 
flow. Conformai theories are fixed points of this flow. Zamolodchikov's idea is to 
define a Riemannian metric on 0' and a smooth function c : 0~ -» R such that 

(i) the renormalization group flow is the gradient flow of c, and 
(ii) c(T) is equal to the central charge if Tis a conformai theory. 

The central charge of a conformai theory is the number describing the central 
extension of Diffî S1) which acts on the state space of the theory. 

It is fairly straightforward to calculate the possible non-conformal infinitesimal 
deformations of a conformai theory, so Zamolodchikov's theorem suggests that one 
could in principle discover the global topology of the space 0~ by Morse theory. 
Vafa and others have made some steps in this direction. 

Zamolodchikov's argument is based on perturbation theory. I think it is a 
fascinating challenge to put it in a better mathematical setting. 

§ 6. 1 + 1 Dimensional Quantum Gravity 

The most dramatic recent development in quantum field theory has been a break
through in 2-dimensional quantum gravity. It has suddenly appeared possible to 
perform integrals over the space of all metrics on a surface and get very explicit 
answers. The main success has come from the technique of random matrices [9,11, 
19], and I cannot discuss it here. One very unexpected outcome is to link the theory 
with the classical completely integrable systems of non-linear partial differential 
equations such as the KdV equation. So far the situation has not really been 
assimilated mathematically, but the results seem to describe the algebraic topology 
of the space of metrics on a surface, or - equivalently - the moduli spaces of complex 
structures. 

From ordinary algebraic geometry one knows (see Morita's talk at this Con
gress) a ring of stable cohomology classes on the moduli spaces Jiq of surfaces of 
genus g ("stable" means that they are defined independently of g), and Witten has 
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claimed that the field-theoretic results are the integrals of these classes over the 
spaces J4.g, i.e. the characteristic numbers of J4r This has led him to the striking 
conjecture [34] that the generating function for the characteristic numbers is a 
certain specific solution of the KdV hierarchy. His lectures [35] give an excellent 
account of the present state of the subject. 

From the point of view of this talk it is interesting that quantum gravity does 
not fit directly into the framework of § 2 above, but nevertheless seems likely to be 
axiomatizable along related but more subtle lines. The crucial point that distin
guishes the gauge-theory situations to which §2 applies from the gravitational ones 
to which it does not is simply that an automorphism of a bundle P on Mx u M2 is 
just a pair of automorphisms of P\M1 and P\M2, but a diffeomorphism of Mi u M2 

cannot be broken into two diffeomorphisms. 
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Quantum Mechanics of Many-Particle Systems* 
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Department of Mathematics, 100 St. George Street, University of Toronto 
Toronto, Ontario, M5S 1A1 

1. Introduction 

In this talk I will discuss some mathematical questions arising in the theory of 
quantum many-body systems. Examples of such systems are atoms, molecules, 
nuclei, solids and, to some extent, stars. The remarkable fact is that such diverse 
objects are described within a single mathematical framework given in terms of 
the Schrödinger operator: 

H = -A + V(x) onL2(X). 

Here X is the configuration space of a system in question, it is either R3JV or a 
linear subspace thereof, where JV is the number of particles, A is the Laplacian 
on X and V(x) is the total potential energy, e.g. 

VW = ]>>•;(*>•-*;) = 

the sum of pair potentials, with x,- being the coordinate of the /th particle and 
x = (XI,...,XJV) e X. Whenever the Pauli principle is taken into account, L2(X) 
should be replaced by its appropriate subspace (see the paragraph after Equation 
(12)). 

Physical properties of quantum systems are associated with spectral charac
teristics of H. For instance, existence and uniqueness of unitary dynamics, i.e. 
solution of the Cauchy problem 

.diPt TT 

i— = Hy){ and xp0 = xp, (1) 

satisfying \\\pt\\ = \\\p\\, is equivalent to the statement that H is self-adjoint. Once 
this is established, the next problem is classification of orbits xpt. Though y)t is 
an orbit in the Hilbert space L2(X), of fundamental interest is its behaviour 
in the configuration space X. According to the latter, orbits are classified as 
bounded, wandering and escaping (to oo). This rough decomposition turns out to 
be equivalent to splitting the spectrum into pure point, singular continuous and 
absolutely continuous parts. Strange, recurrent orbits coming from the singular 
continuous spectrum subspace are ruled out by 
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Theorem [Mo 1981, PSS 1981]. Assume that 

\y\ìaìdaVij(y) are A r compact for \a\<2. (2) 

Then 
sing. cont. spec. = cj). 

The next basic questions are the asymptotic behaviour of unbounded orbits 
and stability of bounded ones under perturbations of H. They lead to the 
three main problems of the theory of quantum many-particle systems: scattering, 
binding and resonances. We consider here the first two problems, referring the 
interested reader to [Sig 1989] for a review of the last one. 

2. Scattering Theory 

The basic problem here is to show that as \t\ —> oo, every orbit starting in the 
continuous spectrum subspace obeys 

\\y)t — ^ simple orbits11 -> 0. (3) 

Here the sum is taken over all possible break-ups of the system into subsystems 
and over all stable states (i.e. eigenfunctions of the corresponding Schrödinger 
operators) of the resulting subsystems. Given a break-up and a specification of 
stable states, the corresponding simple motion can be written as 

simple motion = (j)®ut, 

where cj) is the product of the eigenfunctions of the subsystems (depending on the 
internal coordinates) and ut, a free (no potentials) orbit of the centers-of-mass of 
the subsystems (see Fig. 1). The time factors corresponding to the eigenvalues of 
the subsystems (the internal energies) are included into ut. 

Clusters / _ Stable (quantum) 
motion 

Free (classical) 
motion 

Fig. 1. Break up of a system into independent stable clusters 
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This problem is called asymptotic completeness. Over the last 40 years it 
was a focus of attention of many mathematicians and mathematical physicists. 
Important contributions were made by T. Kato, S. Kuroda, T. Ikebe, M. S. Birman, 
L. D. Faddeev, V. Enss, B. Simon, S. Agmon and L. Hörmander among others (see 
references in [SigSof 1987, 1990ab]). The problem was solved for the short-range 
potentials in [SigSof 1987] (see [Graf 1990] for a beautiful and concise proof, 
different proofs are given in [Kit 1990, Tarn 1990]): 

Theorem [SigSof 1987]. Assume (2) and that 

(y^Vjjiy) are Ay-bounded (4) 

with p > 1. Then asymptotic completeness holds. 

Precise restrictions on smoothness of Vy are not essential and can be relaxed if 
some extra care is exercised. What is important is their decay at infinity. If p > 1, 
then the potentials are called short-range, and if p < 1, long-range. Choices of the 
free evolutions are different for short-range and long-range cases. In particular, 
in the short-range case they are generated by the Hamiltonians 

rrasympt _ p intern /{CM /^\ 

where Emtern is the sum of the eigenvalues of the subsystems and ACM is the 
Laplacian in the center-of-mass coordinates, and in the long-range case, by more 
complicated, time-dependent operators. For the long-range potentials only partial 
results are, presently, obtained. Namely, for JV < 3 and p > <J3 — 1 asymptotic 
completeness is proven in [Enss 1985] and for JV < 4 and p — 1, in [SigSof 
1990a,b]. 

Open Problem. Prove asymptotic completeness for all JV and long-range (espe
cially, Coulomb-type: p = 1) potentials. 

We make a few comments about the proofs. 

Propagation Set. The first step one makes in the modern scattering theory is 
changing the viewpoint. Instead of studying the evolution of the system in the 
physical space R3 one investigates the behaviour of orbits \pt in the phase-space 
T*X. For ß c T*Z we define (modulo boundary terms) the probability that the 
system in question is in Q at time t: 

(Prob. syst, in Q at t) = ||<MI|2, (6) 

where 0 is a pseudodifferential operator whose symbol is supported in Q and 
is equal to 1 in a slightly smaller set. If Q c X and </> is the multiplication 
operator by the characteristic function of Q, then (6) is a standard definition for 
a quantum probability for the system to be in the region Q of the configuration 
space. One expects that as |t[ —> oo, xpt concentrates on the set 

PS = U (Class, phase-space traj. of quant, stable subsystems), 

called the propagation set (see Fig. 1). Indeed, we have 
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Theorem (SigSof 1987). Assume (2) and (4) with p>0. Then as \t\ -* oo 

(Prob. syst, in T*X\PS at t) -^ 0 (7) 

in the mean sense explained below. 

Note that unlike the wavefront set in the propagation of singularities the 
propagation set consists of partially quantized bicharacteristics (classical trajec
tories). A peculiarity of quantum propagation is that the motion along these 
bicharacteristics is unstable: the system can tunnel from one bicharacteristic to 
another. One of the consequences of this is that the convergence in (7) is in the 
mean sense: 

/ (l.h.s.of(7))^ < oo. 

Thresholds. A key restriction, omitted from the statement of the above theorem, 
says that initial conditions for the orbits \pt must be from R a n g e d (if), where 
EA(H) is the spectral projection of H and A is some interval away from the 
thresholds. The thresholds or threshold energies are critical values of Hamiltonians 
driving partially quantized bicharacteristics, (i.e. Emtern of (5)). Understanding the 
evolution at threshold energies is a delicate problem, particularly, because of the 
tunneling between critical and non-critical bicharacteristics (i.e. bicharacteristics 
for which a given energy is a critical value and those for which it is not). 

One of the principal differences between treatments of short-range and long-
range scattering is that while in the short-range case one can avoid considering 
threshold energies, in the long-range case, one cannot. 

Long-Range Scattering. In the long-range case as a system breaks apart, the inter
action between departing subsystems cannot be neglected entirely. It is replaced 
by a potential depending only on the internal coordinates of the subsystems and 
time. As a result the induction in the number of particles, which is used in the 
proof, forces one to estimate orbits xpt generated by time-dependent Schrödinger 
operators of the form 

H(t) = H + W(x,t), 

where the potential W obeys 

\dU)W(x,t)\ < Ca(l + \x\ + \t\r^. 

Since the energy is not conserved anymore, one cannot separate and remove 
threshold energies by cut-off functions in H, as it is done in the short-range case. 
To study \pt we use a version of microlocal analysis with several fine time scales. 
This allows us to separate critical bicharacteristics from non-critical ones. More 
precisely, we split the energy axis as 

dist(E, thresholds) > t~ß (8) 

dist(£, threshold) < t~ß (9) 

with some ß < p (= 1). For EA(t)(H)xpt with A(t) from (8) we still manage to 
prove that subsystems separate (though with relative velocities vanishing in time). 
For energies in (9), we consider separately regions 
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|x| < f (10) 

and 

\x\ S: 2f" (u) 

with a depending on the directions in X and obeying (1 =) p > a > 1 — ß/2 > 0. 
In the first of these regions we show that the system in question is localized. 
To this end we use that non-critical bicharacteristics lie outside (10), while the 
critical ones stay inside. Indeed, their velocities, due to (9), are bounded by 

critic, vel. < C(dist(£, thresholds))172 

= ct-w. 

As a result we can set x = 0 in W(x,t) which reduces the problem to the 
time-independent one. Since the critical bicharacteristics do not reach the second 
region, the system propagates there along non-critical bicharacteristics. This 
means it breaks up as \t\ -> oo. Subtlety here is that we can conduct the analysis 
above only in fixed directions, not globally, reducing the problem to a simple one 
step by step, Thence stems our limitation on the number of particles. 

3. Binding 

Binding is the property of matter to form stable compounds, such as atoms, 
molecules, nuclei, etc. It is measured by a gap between inf spec JT and cont specif. 
This gap is called the binding energy, 

BE = inf cont spec H — inf spec H. 

In fact, this is the energy needed to destroy the most stable bounded orbit, the 
one corresponding to inf specif. 

Example: Atoms. Consider a system consisting of JV electrons and a nucleus of 
charge z. Let z = N. For simplicity we assume the nucleus to be infinitely heavy. 
Then the Schrödinger operator of such a system is 

N 1 
H = Z ( - 4+v^)) + 21> - ^r1 ' <12) 

where V(x) = —z/\x\ and the units used are such that the electron mass is 1/2, 
the electron charge is 1 and the Planck constant is 2%. It acts on /\^=1 L

2(R3 xZq), 
where q = 2, the number of spin states of electron. It was shown in [LiebSim 
1977] that 

-inf spec = 0(z1/3). 

On the other hand it is believed that 

BE = 0(1). 

Thus the existence of matter as we know it is due to a subtle phenomenon, 
indeed. 
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Theorem [SecoSigSol 1990]. 

BE < const z20/21. (13) 

The proof of this theorem is rather instructive. Some of the tools used are 
described in the following sections. 

Open Problem. Show that BE = 0(1). 

Another way to measure binding is by the maximal number of electrons a 
nucleus of charge z can hold together, N(z). It was shown in [Rus 1982, Sig 1982] 
that N(z) is finite. 

Theorem. N(z) = z + 0(z5/1). 

It was shown in [BengLieb 1983, Solov 1990] that if the electrons were bosons, 
then 

JVboson(z) = 1.21z + 0(z) 

(the numerical value of the coefficient in front of z was computed in [Baum 
1984]). [Bach 1990] proves that 

BEboson = Q(z2y 

Thus Pauli principle plays a crucial role in the formation of atoms. 
The asymptotic behaviour of N(z) was established in [LSST 1988] and the 

remainder estimate was derived in [FefiSeco 1990a]. A simpler proof is given in 
[SecoSigSol 1990]. 

Ground State Energy. One of the basic characteristics of a quantum system is its 
ground state energy, i.e. the lowest eigenvalue of the corresponding Schrödinger 
operator. As an example we consider a molecule with JV electrons and M nuclei of 
charges z\,..., ZM> Let ]>] z/ = JV. We assume the nuclei to be infinitely heavy and 
located at positions r\,...,rM (Born-Oppenheimer model). Let Z = (ZI,...,ZM), 
\Z\ = Y??=i zi a nd ^ = (ri> • • • ' VM)- The Schrödinger operator of such a molecule 
is (12) with V(x) given by 

M 

"M - - E ^ , cm 

the potential of the interaction of an electron with the nuclei. Denote by E(Z, R) 
the ground state energy of such a molecule. One of the most elementary questions 
here is to understand asymptotic behaviour of E(Z,R) as £z;- tends to oo. To 
make this problem physically and mathematically interesting we have also to 
scale rj. Knowing such asymptotic behaviour is one of the key inputs in the 
proof of the previous theorem. 

TF Gas. L. H. Thomas and E. Fermi have suggested in 1927 that a large Coulomb 
system (atom or molecule) in the ground state (= eigenfunction corresponding to 
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the lowest eigenvalue) looks like a classical gas but with Pauli principle, namely, 
there could be at most 2 electrons per volume (2n)3 in the phase space. Such an 
object is called now the Thomas-Fermi gas. Its states are described by the electron 
density Q > 0 on R3 normalized as 

/ • 
Q = JV = # of electrons. 

The energy of the Thomas-Fermi gas is given by a simple non-linear functional 

<?TFte) = y J Q5/3 + Jve + y Q(\*rl * Q) > (15) 

where y = (3/5)(3n2)2^3 and V(x) is given by (14). The ground state energy, 
ETF(Z,R), is the infimum (in fact, minimum if JV < Xzj) °f tn*s functional. It 
has the following scaling property 

ETF(Z,R) = a1'3ÉÏY(a-"Z,a^R). 

Hence 
ETF(Z,R) = 0(|Z|7/3). 

Asymptotics. The next theorem shows that the Thomas-Fermi theory is asymp
totically correct for large Z systems but only to the leading order. 

Theorem. Let Z —• oo along a given direction and let the mutual distances between 
rj be bounded from below by const |Z|~2//3+fi. Then 

E(Z,R) = ETF(Z,R) + jYJ
zì + °(\z\2)- ("O 

It will follow from the analysis below that the leading term on the r.h.s. 
represents the quasiclassical energy of the bulk of electrons and the second term, 
the quantum spectrum of Coulomb singularities. 

The leading term in (16) was obtained in [LiebSim 1977]. The second term 
of asymptotics was conjectured by J. M. G Scott in 1952 as a contribution of 
those electrons which move very close to the nuclei (see [LiebSim 1977 and Lieb 
1981] for a discussion). For atoms the Scott conjecture was proven in [Hughes 
1990, SiedWeik 1987, 1989] and for molecules, in [IvSig 1990]. A proof of the 
next, z5/3 term for atoms is announced in [FeffSeco 1990b]. The approach in 
[Hughes 1990, SiedWiek 1987, 1989, FeffSeco 1990b] is based on an expansion in 
angular momentum channels. This is possible since the electron interaction with 
the nucleus V(x), is spherically symmetric in atoms. The problem is then reduced 
to a one-dimensional one which is treated by the standard WKB method. The 
proof in [IvSig 1990] is rather general. I will make a few comments about it. 

Mean Field Theory. The main utility of the Thomas-Fermi theory for us is 
to provide a sufficiently simple Schrödinger operator approximating the rather 
complex H. Let xp be the ground state of H, i,e. the eigenfunction corresponding 
to the smallest eigenvalue. Consider the random variable of electron density 
Y*=ià(x--Xj) with the probability distribution |ip(xi,...,Xjv)|2rfxi,...,dxjv. The 
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ideas of Thomas and Fermi suggest that for large JV this random variable is close 
to some mean electron density, namely the one, QTF(X), which minimizes <^TF(̂ ). 
Hence the potential experienced by any one electron is approximately 

4>(x) = V(X)-\-\X\-^QT¥(X), 

i.e. the one produced by the nuclei screened by this mean electron density QTV. 
Thus we introduce the mean-field (or quasiparticle) Schrödinger operator 

JV 

#ind = £ ( - 4 + 0(xi))-D 
i=i 

acting on /\jli £2(R.3 x TLi), where D is a number compensating for overcounting 
the electron-electron interaction in 0, 

' - k l ! 
QTF{x)QTF(y) 

\x-y\ dxdy. 

This operator describes independent (quasi-) electrons moving in an external 
potential 0(x). It was realized for some time that in many calculations if can be 
replaced by if*10. 

Some potential theory, Lieb-Thirring inequality, which combines uncertainty 
and Pauli principles, and a simple version of quasiclassical estimates discussed 
below yield the following result (cf. Lieb 1981, Hughes 1990, SiedWeik 1987, 
1990, FeffSeco 1990b). 

Theorem. Let Eind(Z,R) be the ground state energy ofHind. Then 

E(Z,R) = Eind(Z,R) + 0(\Z\5/3). 

The One-Body Problem. The separation of variables on AJli L2(R3 x Zy gives 

JV 

E'md(Z,R) = £ > - ì ) T F , 
i=i 

where E\,Ei,... are the eigenvalues of the one-particle operator P = — A + 
(j)(x) acting on L2QR? x 7Lj), labeled in order of their increase and counting 
their multiplicities. This is a much used relation in Quantum Physics and is a 
consequence of the Pauli principle: at most two electrons (the double degeneracy 
corresponding to 2 y per a quantum state. We show 

Theorem. Let Z -> oo along a given direction and let the mutual distances between 
the rfs > const|Z|~2/3+e. Then 

JV 

Y^Et = Weyl + Scott+ o(|Z |2), (17) 
i=i 

where, with p(x, £) = \Ç\2 + (ß(x), the symbol of P, 
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Weyl = f f pdxdt, 

J J p 

1 

p<0 

and 
.2 Scott = -Ez], 

The last two theorems yield the main result. 

Quasiclassical Asymptotics. Now we discuss the proof of (17). Let X be a fixed 
vector in RM with non-negative components and let Z = ß~3X. The scaling 
x —• ßx and properties of (j)(x) show that the large Z problem is, in fact, 
the quasiclassical problem with ß = 0(|Z|-1/3) playing the role of the Planck 
constant. Thus we have to find the quasiclassical asymptotic (as ß —• 0) for the 
sum of the first JV = \Z\ eigenvalues of the one-particle Schrödinger operator P. 
The problem is that cj)(x) is singular. Thus standard quasiclassical methods based 
on pseudodifferential calculus do not work here. Our method originates in ideas 
of [Ivr 1986], 

There are two ingredients in our proof. First of all we estimate global quan
tities through local ones. For instance, we study 

tr(V(x)g(P)), (18) 

where g(X) = X for X < 0 and = 0 for X > 0. If xp = 1, then the trace above 
is just the sum of negative eigenvalues of P. We take for xp smooth functions 
localized outside of the singularities of the potentials. Then it is not difficult 
to obtain asymptotic expansion in the quasiclassical parameter ß of the trace 
(18). Pseudodifferential calculus provides convenient tools for such a purpose. 
Adapting a standard technique, one represents g(P) as 

g(P) = Jg(t)e-iPtdt, 

where g(t) is the Fourier transform of g. The evolution operator e~iPt is then 
approximated on a small time interval to any power in ß by Fourier integral 
operators in the spirit of the geometrical optics. Such an approximation is 
possible because of finite speed of propagation of singularities for the Schrödinger 
equation: for sufficiently small times and for bounded energies the singularities 
of (j)(x) do not reach suppy. The appropriate Fourier integral operators are 
then expanded by the method of stationary phase. The information about (18) is 
recovered using the Tauberian technique. However, the remainder estimates here 
depend on suppi/; and on estimates of dvcj) on suppip. 

The second ingredient is a multiscale analysis. There are three scales in 
the problem: momentum scale determined by the quasiclassical parameter ß = 
0(|Z|-1/3), space scale, l(x), determined by how the potential differentiates and 
the energy scale, f(x), determined by the size of the potential. The first scale is 
constant while the other two depend on x. In our problem 

l(x) = dist of x to the singularities 

and f(x) = Z(x)-1. At each point outside of the singularities we rescale the 
problem using the scales at this point in such a way that the problem is mapped 
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into a model one, i.e. the one with a potential U obeying \daU(x)\ < Ca on a 
unit ball, with the effective quasiclassical parameter 

n 

aeff(x) = 
J(x)/(x)i/2 ' 

which depends on all the scales. The new problem admits a quasiclassical ex
pansion discussed above with a remainder bound independent of the singular 
structure of <j)(x). This implies an expansion for the original problem outside of 
small balls around the singularities of <j>(x). Inside each of those balls we analyze 
the problem differently. Namely, we replace the potential by its leading term near 
the singularity and solve the quasiclassical problem for this truncated operator 
more accurately. Leading terms near and outside the singularities combine into 
a single Weyl term over R 3 which gives the Thomas-Fermi energy. Precise qua
siclassical expansion of low-lying eigenvalues of the truncated problem near the 
singularities yields the Scott correction. 

4. Conclusion 

The rigorous Quantum Mechanics of many-particle systems is a fast developing 
branch of Mathematical Physics. This paper is not a comprehensive review of the 
subject. A rather versatile account of the Schrödinger operators as well as many 
references can be found in [CFKS]. What we attempted here is a brief glimpse 
into some of the recent developments and trends, just a small sample of many 
fresh and exciting problems with which this field abounds. 
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Moduli of Stable Curves, Conformai Field Theory 
and Affine Lie Algebras 

Akihiro Tsuchiya 

Department of Mathematics, School of Science, Nagoya University, Nagoya 464-01, Japan 

§1. Introduction 

Conformai field theory was initiated by Belavin, Polyakov and Zamolodchikov 
[1] as 2-dimensional quantum field theory describing the 2-dimensional critical 
phenomena. Conformai field theory is characterized by infinite-dimensional sym
metries such as Virasoro algebra, and its correlation functions are characterized 
by differential equations arising from representations of infinite-dimensional Lie 
algebras. 

In this article, we report our works with Y. Kanie [12], K. Ueno and Y. Yamada 
[13] concerning the construction of conformai field theory on the universal 
family of stable curves under the gauge symmetries associated with integrable 
representations of Lie algebras. 

We realize it by constructing a coherent &Md) -module YA over the modular 
stack Mgjy of JV-pointed stable curves of genus g with first order infinitesimal 
structure, the sheaf of twisted first order differential operators &[

 {{) (— log D^N : 
g,N 

cv), which is the geometric counterpart of the Virasoro algebra, and the action of 
@[ {1) (—logD^L : cv) on %. The solution sheaf of iQ gives what physicists call 

Mg,N K ' 

the current-conformal block which is the most fundamental object in conformai 
field theory. Moreover it turns out to be locally free and the factorization property 
at the normal crossing divisors D^N holds. 

The monodromy of these solution sheaves give the representations of the 
central extension rgiN of the mapping class group rgiN, by the multiplicative 
subgroup K of C* generated by e^v^c»/^ 

The construction of conformai blocks was also done using a quite different 
method (topological point of view) by G. Moore and N. Seiberg [9]. 

§2. Integrable Modules of Affine Lie Algebras 
and the Sugawara Form 

Let g be a simple Lie algebra over C. We fix a Cartan subalgebra I), a simple 
root system E, and the invariant bilinear form (, ) on g normalized by (6,0) = 2 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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for the highest root 0. Let P+ denote the set of dominant integral weights of 
g for X e Pf. We denote by Vx the irreducible g-module with highest weight X. 
And Vo is the one dimensional trivial g-module, Vxt denotes the contragradient 
g-module. For each positive integer *f, we define the finite subset Pg of P+ by 
{X e P/;0 < (6,X) < £}. We fix an orthonormal basis {Ja} of g. 

Let g = g ® C((£)) © Cc denote the associated affine Lie algebra of g. For 
X e g, / e C((0) and n e Z, we set X\f] = X ® / and Z(n) = X ® £". 

In the sequel we fix a positive integer £. The set Pg parametrizes the integrable 
highest weight g-modules of level /, and for each X e Pg we denote the associated 
integrable g-module by 3tfx- For each X e Pg, put Ax = (X,X + 2Q)/2(^+ g*), 
where Q is half the sum of the positive roots of g. 

For each n e Z, we define the Sugawara operator T(n) acting on Jtf'x by 

T ( n ) = 277T^T Z Z o '»(*)'•(» - fc) ° (2.1) 

where the symbol ° ° denotes the so-called normal ordering and g* denotes 
the dual Coxeter number of g. For an element f = £ n bn^

ld/d^ e C({Ç))d/d£9 

define an operator T[/] on ^ by T[<| = -£nfcn'F(n). Then we have the 
following fundamental relations of the operators on J^x-

[X[f], Y [g]] =[X, Y] [f g] + t(X, Y) Res(d/ • g) id 

[TV\,X\f\] =*['(/)] 

m<\\ nm =nvum + £ Res -^häm 
(2.2) 

where cv = afdim g/(*f + g*). 
Consider the automorphism group @ of the C-algebra C [[£]]. Then an element 

h of @ is represented by a formal power series /z(£) = a^ + fli £2 H—, flo 7̂  0. For 
each n > 0, define the normal subgroup <3n of ^ by 3)n = {h(Ç) = Ç+anÇ

n+i-\— }. 
Since each element h of ^1 is uniquely written as h = exp(/), / G C[[£]]£2d/d£, 
we define the operator G[h] of J ^ by G[h] = exp(T[/]). These operators G[h] 
define a representation of £i\ on ^A-

§3. Local Universal Family of N-Pointed Stable Curves of Genus g 

Let (g,N) be a pair of non-negative integers with 2g — 2 + JV > 1. Consider a 
local universal family of JV-pointed connected stable curves of genus g. 

#" = (n : C -> 5 : sÌ9• • • ,sN) (3.1) 

where s; : B —> C are cross-sections of %, and set Sj = s7(B) and S = (Jj Sj. 
Let D be the discriminant locus of % : C —> B. Then D is a normal crossing 

divisor of B, and B is a 3g — 3 + JV dimensional complex manifold. 
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For each non-negative integer n or n = oo we consider the associated local 
universal family of JV-pointed stable curves of genus g with n-th infinitesimal 
neighborhoods. 

*•("> = („00 : c<n> —• B® : s^, • • • , $ ; *<">, • • • , $ ) (3.2) 

where tf : #B(«)[[£]]/(£"+1) -> d W ^ w i 1 a r e ^BW-algebra isomorphisms. 

We get the sequence of fibering 

B = ^(0) <— Bd) < <— (̂oo) (33) 

where pJJ, = p : 2?(") _> #(»0 is a principal fibering with structure group @"®N, 
where &% = ^ ,„ /^„ . 

By the local universality of the system SF^9 we have the following isomor
phism of (9B{n) -modules. 

g„ : eB W ( - log D(?,)) - A A1*?0 (»CW/BOO (-(n + 1)S(,°)) (3.4) 

where D<n> = p~x(D), sf] = sf(B% S® = USf. 
With each local universal family 3F = (n : C -> B : s\, • • • ,SJV), we associate 

the following @B{n)-modules 

J '» ' (3.5) 
®SW/BW (*) =9e*om (K^n),K^n)). 

The &B(n) -module ®£oo/£(„)(*) has the canonical Lie algebra structure over (9B{n). 

We denote its Lie bracket by [, ]o. 
For n = oo we have the following canonical &B{*>) -module isomorphisms. 

T ^ :%»,((£,)) -= • K^ 

a ' (3-6) 

We have the following canonical inclusion mappings. 

N 

ÄC„„(*S<">) ^ ^ K ? l 

(3.7) 

M J 

Now consider the following condition (Q) for the system 3F = (% : C —> B : 
51 , ' •• ,Sjv). 

(Q) For each point b e B, and for each irreducible component C of Q, = nf"1^), 
there exists jf with ŝ (b) G C. 
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Proposition 3.1. Under the condition (Q) for #" , we have the following surjective 

(9B{n)-module homomorphism 

N 

J=i ' 

Furthermore, we introduce the Lie bracket [, ] on X / U ®S{,1)/BW (*) ^ 

[«1, »zl = fa, i* ]o + A(üi)(U2) - 0 ( ü 2 ) ( » I ) • (3 .9) 

Then the map 9 is a homomorphism of Lie algebras. 

As the group @®N acts on £(oo), the induced action of h = (A1, • • • , hN) e @®N 

on / = S U I X « , » G E j ^ B W » and / = £f=1 I n ^ f W ^ e 
ZU^imd/dZj are defined by *(Ä)(fl = ZjUnQ^KaiW^1) and 
«WW = ^S„C(*)(*Ö AdMit^d/dtj) respectively. 

Proposition 3.4. The action of @®N preserves the subspace n* @BM(*S^) of 
lf= 10BM ((£,))• 

We remark that the invariant part of the action of @®N on Yjf=i ^ß(00) ((£/)) 
a n d SjLi 0*w ((£/)) afe a r e £j=i %H) a n d £j=i ^SW/BWW respectively. 

§4. Sheafification and the Module 1/\ 

In this section, we assume the condition (Q) for any local universal family 3F. 
With each system $> = (n : C -> B : s\, • • • ,SJV), we associate the 05(«,)-Lie 

algebra sheaves 

B(^w) = Y g <8> K** e fljwc 
(4.1) 

g_(JfW) = g ® w f ^ c M ^ s W ) £ g ( ^ ( n ) ) . 

The Lie algebra structure is given by 

7=1 7=1 

= £ [ * , , Y;] ® /,-g; + X Ks8{gjdfj)(Xj9 Yj)c. (4.2) 
7=1 7=1 

Then g_(#"^) is a Lie subalgebra of g(J^) . In the case of n = oo, we have 

N 

9(^(C0)) = S 9 ® «aw(«y» e «awe. (4.3) 
7=1 
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The Lie group @®N acts on g(J^°°)) as Lie algebra automorphisms, and the 
sub-algebra g_(#"(co)) is preserved by the action of <@®N. 

For each 1 = (X\, • • • ,X^), a quasi-coherent $5(oo)-module ̂ (J^0 0)) is defined 
by 

^(j^M) = oBm ®jrh jfy = jfXi ® ... 0 jeXN . (4.4) 

Then the Lie algebra sheaf g(#"(ao)) acts on jfj^C»)) 0BM -linearly. Define 
the 0flW-modules jf j^0 0)) and f j^ 0 0 ) ) by 

j f J ^ H ) =^(^°°)) • ^2(^(0°)) 

(̂#-(°°)) =^(^V^'(^M)-

Since the Lie group 9fN acts on ^(J^0 0)), preserving Jtffl&W), the tf^ 
module ^(J^00)) has the structure of a Qf ^-module. 

Define the 0Bm -modules jfj(^W), JtTfl&M) and i^&M) as the invariant 
part of the ^ - a c t i o n s on j f j^ 0 0)) , ^'(J^00)) and ^(J^00)) respectively. Then 
the 0B(i)-module ^fj(J^(1)) has a canonical structure of g(#"(1))-module and we 
have the following canonical (9B(D -module isomorphism. 

J^(JF ( 1 ) ) -g_(^(1))^fj(#"(1)) 

T (̂#-W) - ^ ( ^ ( 1 ) ) / ^ ( ^ ( 1 ) ) • 

The (9B{\)-module ^(J^1)) is the most fundamental object in conformai field 
theory. Our first main theorem is the following one. 

Theorem I. The module f}(#"W) is a coherent 0B[i) -module. 

For the proof of this theorem, we use Gabber's theorem on the involutiveness 
of the characteristic variety [Gabber 5]. 

§5. Differential Equations Defining Conformai Blocks 

In this section we also assume the condition (Q), unless otherwise stated. Now to 
each J^, we associate the following sheaf version of the Virasoro algebra. 

N d 

Vir(^°°> : cv) = £ 05(oo) ((£,)) — © %«, (5.1) 
7=1 C j 

with the Lie bracket 

[fc r), (m, s)] = f fc m], ̂  £ Res^=0 [^TmJd^J + 0W(S) ~ 0 M W ) (5-2) 

where 
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6 V &B*»Mj))-7j- and r,s e 0B<») . 

The group 3>®N acts on Y\ï{2F^ : c„) as Lie algebra automorphisms 
as follows. For h = (hu---,hN) e 3)m, v = fcr) e Vir^00),c„), / = 
(tfid/dÇi,--- ,âNd/d£N), 

n(hW,r) = (n(h)(l),Q(h)(r) 

+ Cf2 £ Rcs^MhWjKh^j), Q (ç^f) dtj)), 

where {&/(£/)>£/} denotes the Schwarzian derivative. Taking the 2®N invariant 
part, we get the following exact sequence of Lie algebras. 

N 

0 —> (9m —> Vir (^) : cv) —• £ ^1 ) / 5 ( 1 ) (*) — 0. (5.3) 

7=1 J 

The Lie algebra sheaf V i r ^ ^ ; cv) acts on jfj^00*) by the following formula 

N 

D(v)(F <g) |*)) = 0(/)(F) <8> <P + F (8) £ (fy(r[^])|*) + rF « |#> (5.4) 
7=1 

where F G (PB(«,), |*) €JThv = (t,r) G Vir^F^ c0). 

Proposition 5.1. The action of' Vir(#"(oo) : c„) on ^(^°°>) preserves tffl&W), so 
Vir(#-(oo) . Cü) flCts ow ^(#-M). 

Finally taking the invariant part of the action @fN
9 we get an action of the 

Lie algebra sheaf Vi r^ 1 ) : cv) on « ^ ( J ^ ) , ^[(^) and fJ(^W). 

Proposition 5.2. For any system 3F, there exists a unique (9BM -module homomor
phism, 

a{co) : Tc^ecw/BW (*) 0 0Bm —• «Bw (5-5) 

swc/i that for any v G 7rioo)0C(co)/ß(co)(*) © 0fl<«a) and |<P) G ^ ( J 5 " ^ ) we feaue, 

D(i;)|<P)=a (œ)(u)|<P). (5.6) 

This map aW is expressed, locally on B, in the following way. For #" = 
(TC : C —> J5;5i,--- ,SN), taking B small enough, there exists an element co e 
H°(C xB C,co®jB(2A)) such that near the diagonal A^C xBC 
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dwdz 
(w-zf 

co = — — - ^ + regular at A , (5.7) 

where w and z represent fiber coordinates of TC : C —• B and coC/B de
notes the relative dualizing sheaf of n. Define, then, the associated pro
jective connection by Sœ(z)dz2 = — 6limw_^z{cy — dwdz/(w — z)2}. Then for 
v = ((tfid/dÇi, • • • ,^Nd/d^),r) we have 

JV 

"(00)(») = ^ Z R e s ^ o ( 0 ( y ^ ( y ^ i ) + r. (5.8) 
7=1 

Taking the <3fN invariant part we get the ®Ba) -module homomorphism, 

a : nPOcm/B^S^) © 0Bm —> 0*<i> • (5.9) 

The sheaf of twisted first-order differential operators on B^ is defined by 

&m (- log D® : co) = Vir(#-U : cv)/ I ker a © £ <9^1)/B(1) ( -2Sf ) j . (5.10) 

Then we have the following exact sequence of Lie algebra sheaves on B^ 

0 —* 0B(„ —• ^ „ ( - l o g D « 1 ' : c„) —> 6>B(i)(-logD(1)) —-• 0. (5.11) 

By Proposition 5.2, we get the following second main theorem of this paper. 

Theorem II. On 'fft&W), the sheaf of Lie algebras ^ ( ] ) ( - l o g D ( 1 ) : cv) acts as 
twisted first order differential operators. 

As a corollary of this theorem we have 

Corollary 5.3. On B^ - D ( 1 ) , the coherent 0Bn)-module i^(^^) is locally free. 

The sheaf of twisted first order differential operators ^ ( 1 )(—logD : cv) can be 
trivialized locally on B as follows. Take œ e H°(C xB C,C0ç/B(2A)) satisfying the 
property (5.7). Then we can associate canonically the 0B{\)-module isomorphism 

Aœ = Aa,^) : e f l 0)(- logßW : cv) © Om —• ^m(~\ogD^ : cv) (5.12) 

which is indeed a Lie algebra isomorphism. 
By this isomorphism Aœ (SF), the sheaf &B{i) has a structure of a ® (̂1) (— log D W : 

cv) module. We denote this ^ ( 1 )(- logI>W : cv) module by ^œ(^l)). Then we 
can consider the solution sheaf, 

^^•^w(-if lBDti)^,(^(^ ( 1 )) , ^ ( ^ ( 1 ) ) ) . (5.13) 

A fiber of this sheaf is nothing but what physicists call the space of conformai 
blocks. 



1416 Akihiro Tsuchiya 

Finally in this section, we remark how to define the sheaves nf^(SF^) and 
@Bu)(— logD^ : cv) in the case when the condition (Q) is not satisfied. For any 
local universal family J5" = (% : C -> B;s\, • • • ,SN), not necessarily satisfying 
the condition (Q), we can take a local universal family of (N + k) pointed 
stable curves SF' — (nf : C —> B';^,- • • ,s'N+k) satisfying the condition (Q) and 
surjective smooth maps F : C —> C and / : B' —> B with following properties : 
1) / o %' = % o F 2) Fsfj = SjfJ = 1, • • • ,N 3) for any V G Bf, put b = f(bf), 
Cv = ri~l(b'), Cb = 7L~l(b). Then, the map Fv : (Ch, : s[(b'),- • JN(bf)) -> 
(Cb',s\(b), • • • ,SM(b)) is an isomorphism of iV-pointed stable curves. Note that 
D'=r\{D). 

For X G Pf, put 2 = (1,0,• • • ,0) G Pf+k. Then it can be shown that there 
exists a Lie algebra sheaf ^ ( 1 ) (— logD^ : cy) on B ^ , and a coherent 0Bu)-module 
^(#" ( 1 )) with the action of @B{i)(— logD(1) : cy) and canonical isomorphisms 
/ • ^ ( - l o g D « : c„) - ^ ( - l o g D ' « : c„) and / ^ ( ^ ( D ) -» ^ ( ^ , « ) . The 
objects ^Bii)(— logD(1) : ĉ ) and ^(#" (1 )) do not depend on the choice of SF\ and 
these are the objects we wanted to define. 

§6. Local Freeness and Factorization 

Here we study the behavior of the ^\^(— logD^ : cv) module T^(#"^) near 
the discriminant locus D(1). Since the problem is local, we can take SF = (n : 
C —> B;s\,• • • ,SN) with condition (Q), with coordinate (x\,• • • ,%M) on B, M = 
3g — 3 -f- N, so that the discriminant locus is of the form D = D\ U • • • U D&, 
Di = { ( T ) e B ; T , = 0 } , i = l , - J fc. Set E = f|}=i Dj> E{1) = f fc i Df\ and denote 
by %E : CE -* E the restriction of % : C -> B on E. Let 5c£ : C£ -> £ be 
the simultaneous normalization of 7U£ : C# —> E, and cr̂ , o^ : E -* CE be the 
cross-sections corresponding to the normalized double points, p = 1, • • • , fc. Then 
the family # £ = li : C£ -> £ ; a'p, a^, (p — 1, • • • , fc), s\9 • • • , s^) is a local universal 
family of (N + 2k) -pointed (not necessary connected fiber) nonsingular curves 
satisfying the condition (Q). Put # ^ = %$ : CJp -* £(1)), the associated family 
of 1-structure. Then the canonical map E® —> E^ is a (C*)2k-principal fibering. 

Take œ G H°(CxBC,co^jB(2A)) with the condition (5.7) as well as the property 

i^(co) G H°(CE XE CE,CO~2 (2A)). Using this element œ, we fix the trivializations, 
CE/E 

&m(-logD^) © Om) -> ^ ( 1 ) ( - l ogDW ; CB) and ö~(1) © 0~(1) -> DÌ(1)(c„). 
Now we have the following fundamental theorem, which we call the sewing 

process. 

Theorem m . Fix X = (Xu • • • , XN). Then for each p = (pi, • • • , pk) G Pjf, and for 
each 

<ì> e Homßm(Cv){rm,:x){^\ <%„) (6.1) 

we can associate the formal solution having the initial term $, 

* 6 Hom0BW W[*{\ Gm [fa, — , *k\Vß) (6.2) 
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where T ^ = rf^1, • • • , T ^ \ p = (p\, • • • ,p\) and (9Ev[bu ' ' ' ^kìì = fimw,0W 
rm+l 

J£(l) ' _ 

And we can show that the formal power series $ converge with respect to the 
variables i i , " • ,T/C. 

Then we have 

Theorem IV. The coherent &B{\)-module f j (#"^) is locally free. 

For each 0B(D-module Jf such as (9m, ®Bv)(-\ogD^), fj(#"(1)), the 
F-filtration along E® is defined as VvJf = I^Pl - • - I^Pk Jf, for p = 
(Pu9" >Pk) e Zk where J, = 0B<UT/, ; = 1,• • • ,fc. 

The associated graded module is defined by GrF Jf = £pGZ* GrF Jf, 

GxyjT = F p ^ / X j = i V ^ where ej = (0,- • • , 1 , 0,- • • ,0) G Z*. Then we 

have G r I X » - 0E<D[TI,' • • ,T*], Gr#
F © ^ ( - l o g D « ) = (£*=i 0Emzpd/dTp + 

0JS(D) ® C[TI, ' • • ,Tfc] where degi/ = —ej9 and degTjd/dzj = 0, 7 = 1, • • • ,fc. 

Theorem V. 1) 27iere ex/sts cr canonical (9^-module isomorphism 

2) There exists a canonical isomorphism of GxX ®BO>(— logD(1)) © Gr^fl^o) 
modw/es 

Gr0
F fJ(^W) ® C[TI, • • • , Tfc] - Gr.K f ^ ( 1 ) ) . 

Let ko = GE0 © CE-0 © CHQ denote the principal 3-dimensional subalgebra 
of cj, and for each X e P+, let Vx = Yjje*-z^Q Vkj denote the homogeneous decom
position of the kß module Vx into (2j + l)-dimensional irreducible components. 

For each (X, p,v) e P), define 

Wxw ={<P e HomQ(Vx ®Vß® Vv, C), 

<P\vKh*v*ii*v*Ji == ° i f h + h + h > *} 

and set Nx^v = dime Wx^v Then we have 

Proposition 6.1. For each X e Pf, the rank ofi\(^^) is computed combinatorially 
in terms of Nx,n,v> (hp>v) e Pj only. 

§7. Monodromy Representations of the Mapping Class Group 

Let rgtN be the mapping class group of iV-pointed oriented surfaces of genus 
g with first-order infinitesimal structure, and put Fg = rgjo- Then there exist 
surjective homomorphisms, Fgjjv —• SJV ~~> 1 a n d Fg>jv —• Fg —• 1, and also an 
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exact sequence 1 -> ZN -» rg)N -> rg
N -> 1, where Fg is the mapping class 

group of iV-pointed oriented surfaces of genus g. 
Next consider the modular stack M^N of the iV-pointed (unordered) stable 

curves of genus g with first-order infinitesimal structure, and the normal crossing 

divisor D^f cz MJßf representing singular curves. Set Mg^N = M^ — Dg^N. Then 

the fundamental group ni(Mg^N) is isomorphic to rg}N. For an Sjv-invariant 
subset A of P?9 we denote V^(#"(1)) = © j ^ f^(#"(1)). Then the functors 
F -* ^ ( 1 )(- logZ)W : c„) and #" -> T^(#"(1)) define a sheaf of twisted first-
order differential operators & {l) (—logDg^N : cv) on M ^ , and a locally-free 

coherent 0M{D -module -f~A(M^N) on which ^ ( 1 ) (—logD^ : cv) acts. The func

tor (^,co) —> jSffl,^^) define a system of in verüble 0urm°dules jSfJ on which 

@\j.(— l ogD^ : cv) acts for some open covering {t/J of M ^ . Now restrict the 

system {&i9 Ut} on M{£N. Then the twisting system {Seij9 Ut n I/;} on M ^ is 
defined by JSfy = J ^ » ^ i ^(^iiUinUj,^j\UinUj), cf. Kashiwara [7]. Then using 

(D 

—> 

> 

X 
! = 
K -

- > M g j J V 

- > M g 

— > 

> 

Mg,w 
i 

Mg 

— > 

> 

1 

1. 

some results of Oda [10], about the homotopy type of Mg
}
N, we have 

Proposition 7.1. The twisting data {<&ij} on Mg^N define central extensions Fgjj/v and 
Fg of rgtN and Fg by the multiplicative subgroup K ofC* generated by e

27t^/-lc<>/24
> 

with the following commutative diagram. 

(7.1) 

Theorem VI. For each A, the system of solution sheaves on M ^ , 

*"»& (c^Aiu^i) (7.2) 

defines a monodromy representation Q of the group Fgjjv such that an element k of 
K acts as g(k) = k • id. 
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Non-Constructive Proofs in Combinatorics 
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One of the main reasons for the fast development of Combinatorics during the 
recent years is certainly the widely used application of combinatorial methods in 
the study and the development of efficient algorithms. It is therefore somewhat 
surprising that many results proved by applying some of the modern combinatorial 
techniques, including Topological methods, Algebraic methods, and Probabilistic 
methods, merely supply existence proofs and do not yield efficient (deterministic 
or randomized) algorithms for the corresponding problems. 

We describe some representing non-constructive proofs of this type, demon
strating the applications of Topological, Algebraic and Probabilistic methods in 
Combinatorics, and discuss the related algorithmic problems. 

1. Topological Methods 

The application of topological methods in the study of combinatorial objects like 
partially ordered sets, graphs, hypergraphs and their coloring have become in the 
last ten years part of the mathematical machinery commonly used in combinatorics. 
Many interesting examples appear in [12]. Some of the more recent results of this 
type deal with problems that are closely related to certain algorithmic problems. 
While the topological tools provide a powerful technique for proving the required 
results, they give us no clue on an efficient way for solving the corresponding 
algorithmic questions. 

A typical result of this type is the following theorem, proved in [2]. 

Theorem 1.1. Let N be an open necklace with kat beads of color i, 1 < i < t. Then 
one can cut N in (fc — l)t places and partition the resulting intervals into fc collections, 
each containing precisely a{ beads of color i for all 1 < i <t. 

The bound (fc — l)t, conjectured in [17] (where it is proved for fc = 2) is sharp. 
This can be seen by considering the necklace in which the beads of each type appear 
contiguously. The proof supplies no efficient procedure, which finds, given a neck
lace as above, a partition of it with the desired properties. By an efficient procedure 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
(D The Mathematical Society of Japan, 1991 
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we mean here, and in what follows, either a deterministic algorithm whose running 
time is polynomial (in the length of the input) or a randomized algorithm whose 
expected running time (on the worst-case input) is polynomial. 

Here is a sketch of the proof of the above theorem. A similar method is used in 
[6]. First we need a continuous version of it. Let / = [0, 1] be the (closed) unit 
interval. An interval t-coloring is a coloring of the points of / by t colors, such that 
for each i, 1 < i < t, the set of points colored i is (Lebesgue) measurable. Given such a 
coloring, a k-splitting of size r is a sequence of numbers 0 = y0 < yl < ••• < yr < 
yr+1 = 1 and a partition of the family of r + 1 intervals F = {[yf, yf+1] : 0 < i < r} 
into fcpairwise disjoint subfamilies Fl9..., Fk whose union is F, such that for each 
;, 1 <j < fc, the union of all intervals in Fj captures precisely 1/fc of the total measure 
of each of the t colors. 

The following result is the continuous analogue of Theorem 1.1. 

Proposition 1.2. Every interval t-coloring has a k-splitting of size (fc — \)t. 

We note that a similar statement can be proved for general continuous prob
ability measures instead of those defined by the colors. This generalizes the Hobby-
Rice Theorem on Li-approximation [18]. It is also related to one of the cake-
splitting problems of Steinhaus. It is easy to see that the classical theorem of 
Liapounoff [20] implies the existence of an even splitting in this more general 
setting, but unlike the above result does not supply any finite bound on the number 
of cuts required to form the splitting. For more details see [2]. 

It is not difficult to see that Proposition 1.2 implies Theorem 1.1. This is because 
any open necklace with £ | = 1 kat = kn beads as in the theorem can be converted 
into an interval t-coloring by partitioning the interval / into kn segments of equal 
size and by coloring the y'-th part by the color of the 7-th bead of the necklace. By 
Proposition 1.2 there is a fc splitting with (fc — l)t cuts. Of course, these cuts need 
not occur at the endpoints of the segments, but a simple induction argument can 
be used to show that the cuts may be shifted until they form a partition of the discrete 
necklace satisfying the assertion of Theorem 1.1. We omit the details. 

Another simple observation, whose details we omit, is the fact that the validity 
of Proposition 1.2 for (t, fc) and for (t, fc') implies its validity for (t, fcfc'). Therefore, 
it suffices to prove the proposition for prime values of fc. To do so we define, 
following [11], a CW-complex Y = Y(k, m) as follows. 

For two integers fc and m, put N = N(fc, m) = (fc - l)(m + 1) and let A = AN 

denote the iV-dimensional simplex; i.e., A = {(x0 , . . . , x^) : xf > 0, ]TJL0 xf = 1}. The 
support of a point xe A, denoted by Supp(x), is the minimal face of A that contains 
x. Define 

Y = Y(k, m) = {(yu ..., yk) : yl9..., yk e A, Supp(yf) n Supp(y,.) 

= 0 for all 1 <i<j<k}. 

The cyclic group Zk acts freely on Y by letting its generator œ cyclically shift the 
coordinates of each point y e Y, i.e., co(y1,..., yk) = (y2, . . . j k , yt). 
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The following lemma is proved in [11]. 

Lemma 1.3. / / fc is a prime, m ^ 1, N = N(k, m) = (fc — l)(m H- 1) and Y = Y(k, m) 
and œ are as in the preceding paragraph, then Y is N — fc connected and hence for 
every continuous mapping /? : Yh-> Rm there is a whole orbit of the Zk action on Y that 
is mapped by h into one point. I.e., there is a y e Y such that h(y) — h(œ(y)) = • • • = 

We can now prove Proposition 1.2 for primes fc. Let c be an interval t-coloring. 
Define N = N(k, t — 1) = (fc — l)t, Y = Y(k, t — 1) and consider the continuous 
function h : Yi—• tf'-1 defined as follows. 

Suppose y = (yx,..., yk) e Y. By the definition of Y, each yt is a point of AN, i.e., 
a real vector of length N with nonnegative coordinates whose sum is 1. Moreover, 

the supports of the points y{ are pairwise disjoint. Put x = (x0, ...,xN) = jYJl=i >'i> 

and define a partition of the [0, l]-interval / into N + 1 intervals J0 , . . . , IN by 

'o = [0» *o] and Ij = 
"j-i j 

X, Xh 2J XI 
1 = 0 1 = 0 

(1<J<N). 

Observe that since the supports of the points yt are pairwise disjoint, then for each 
interval I} with a positive length there is a unique / such that they-th coordinate of 
yf is positive. 

For each /, 1 < / < fc, let F, be the family of all the intervals Ij such that the;-th 
coordinate of y, is positive. Note that the sum of lengths of the intervals in each Fl 

is precisely 1/fc, and that Fl9 . . . , F, form a partition of all the intervals Ij whose 
lengths are positive. For each /, 1 < / < t — 1, define ht(y) to be the measure of the 
/-th color in the union of the intervals of F±. The function h(y) is now defined by 
h(y) = {hl(y\...9h1-1(y)). 

This function is clearly continuous. Also, for every 1 < / < fc and 1 < / < t — 1, 
hi(œ

l~1(y)) is precisely the measure of the /-th color in the union of the intervals of 
Fj. By Lèmma 1.3 there is a y e Y such that h(y) = h(œ(y)) = • • • = /?(cük_1(y)). This 
means that each of the fc families F, corresponding to this point y captures precisely 
1/fc of the measure of each of the first t — 1 colors. Since the total measure of each 
F, is 1/fc, it follows that the last color is evenly distributed between the families as 
well. This completes the proof for the case of prime fc, and hence implies the validity 
of Proposition 1.2 and Theorem 1.1. • 

The main topological tool in the above proof is the Borsuk-type theorem stated 
in Lemma 1.3. This proof does not seem to supply an efficient way of producing a 
partition whose existence is guaranteed by the theorem. 

In the classification of algorithmic problems according to their complexity, it is 
customary to try and identify the problems that can be solved efficiently, and those 
that probably cannot be solved efficiently. A class of problems that can be solved 



1424 Noga Alon 

efficiently is the class P of all problems for which there are deterministic algorithms 
whose running time is polynomial in the length of the input. A class of problems 
that probably cannot be solved efficiently are all the ATP-complete problems. An 
extensive list of such problems appears in [16]. It is well known that if any of them 
can be solved efficiently, then so can all of them, since this would imply that the 
two complexity classes P and NP are equal. 

It is not too difficult to show that the following problem is iVP-complete: Given 
a necklace satisfying the assumptions of Theorem 1.1, decide if one can form an 
even fc-splitting of it by using less than b cuts. On the other hand, we know that 
(fc — l)t cuts always suffice, so although the problem of finding the minimum 
possible number of cuts cannot be solved efficiently, unless P = NP, it is consider
able and seems likely that the problem of finding an even fc-splitting using (fc — X)t 
cuts is much easier. We do not know any efficient algorithm for this problem. 

Another result whose (simple) proof applies the Borsuk-Ulam theorem is the 
following fact, proved in [1]: 

Theorem 1.4. Let Al9 ..., Ad be d pairwise disjoint subsets of Rd, each containing 
precisely n points, and suppose that no hyperplane contains d + 1 of the points in the 
union of all the sets Aj. Then there is a partition of (J Aj into n pairwise disjoint sets 
Sl9..., Sn, each containing precisely one point from each Aj9 such that the n simplices 
conv(51),..., conv(S„) are pairwise disjoint. 

Here, again, the proof does not supply an efficient way of finding the sets St if 
the sets Aj are given, (although the proof does provide an efficient way of doing it 
for each fixed dimension d.) 

2. Algebraic Methods 

Many combinatorial proofs rely on methods from linear and multilinear algebra. 
Extensive survey of results of this type is given in [9]. These proofs rarely supply 
constructive procedures for the corresponding algorithmic problems. Here is a 
simple example, which is a special case of one of the results in [5]. 

Proposition 2.1. Every (not necessarily simple) graph with maximum degree 5 and 
average degree greater than 4, contains a 3-regular subgraph. 

The proof relies on the classical theorem of Chevalley and Warning (see, e.g., 
[10]). This theorem, that deals with the number of solutions of a system of multi-
variable polynomials over a finite field, is the following. 

Theorem 2.2. Let Pj(xl9..., xm), (1 <j< ri) be n polynomials over a finite field F of 
characteristic p. If the number of variables, m, is greater than the sum of the degrees 
of the polynomials then the number of common zeros of the polynomials (in Fm) is 
divisible by p. In particular, if there is one common zero then there is another one. 
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The proof is extremely simple; If F has q elements, then the number JV of common 
zeros satisfies 

N = E f i (1 - Pfru .... xJ ' - 'Mmod p). 
xi xmeF j=l 

By expanding the right hand side we get a linear combination of monomials of the 
form Y\T=i xff ana* for each such monomial at least one of the exponents fc,- is strictly 
smaller than q — 1. This implies that in F, X ^ ^ x f ' = 0, showing that the contribu
tion of each monomial to the sum expressing JV is 0(mod p) and completing the 
proof. • 

We can now prove Proposition 2.1. Given a graph G = (V, E) satisfying the 
assumptions of the proposition, let n denote the number of its vertices. For each 
edge e e E and for each vertex veV, let a(v, e) be 0 if e is not incident with v, 1 if e 
is a non-loop incident with v, and 2 if e is a loop incident with v. For each e e E let 
xe be a variable and consider the following system of polynomial equations over 
GF(3): 

£ a(v9e)x2
e=0 (veV). 

eeE 

This is a system of« degree-2 polynomial equations with \E\>2n variables. More
over, it clearly has the trivial solution xe = 0 for all e. Hence there is, by Theorem 
2.2, a non-trivial solution (ye:e E E). Let H be the subgraph of G consisting of all 
edges e for which ye ^ 0. By the equations above, the degree of every vertex of H 
is divisible by 3, and since the maximum degree in G is 5 it follows that H is 3-regular, 
completing the proof. • 

It is known that the decision problem: "Given a graph G, decide if it contains a 
3-regular subgraph", is JVP-complete. By the proposition above in certain cases we 
know that the answer to the decision problem is "yes" and yet the proof does not 
yield an efficient procedure for finding such a subgraph. 

Another result proved by applying some extension of the Chevalley Warning 
Theorem is the following statement, proved in [7]. Recall that a hyper graph is a 
pair (V, SF) (sometimes denoted only by #"), where F is a finite set of vertices, and 
3F is a finite set of subsets of V. The degree of a vertex is the number of edges that 
contain it. 

Theorem 2.3. Let qbea prime power, and let^r = {F1,..., Fd{q_1)+1 }bea hypergraph 
whose maximal degree is d. Then there exists 0 ¥= ^o ^ ^ such ^at I [J Fe ^^\ = 0 
(mod q). 

Here, again, we do not know how to quickly find such a subset !F0. Moreover, 
it can be shown that the problem of finding such an J^ is equivalent to the following 
problem: Given a polynomial h of degree at most d with d(q — 1) -f- 1 variables over 
GF(q)9 suppose that h(0) = 0. Find another zero of h(x) in which each variable is 
either 0 or 1. 
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3. Probabilistic Methods 

Probabilistic methods have been useful in combinatorics for almost fifty years. 
Many examples can be found in [14] and in [21]. 

In a typical application of the probabilistic method we try to prove the existence 
of a combinatorial structure (or a substructure of a given structure) with certain 
prescribed properties. To do so, we show that a randomly chosen element from an 
appropriately defined sample space satisfies all the required properties with positive 
probability. In most applications, this probability is not only positive, but is actually 
high and frequently tends to 1 as the parameters of the problem tend to oo. In such 
cases, the proof usually supplies an efficient randomized algorithm for producing a 
structure of the desired type, and in many cases this algorithmcan be derandomized 
and converted into an efficient deterministic one. 

There are, however, certain examples, where one can prove the existence of the 
required combinatorial structure by probabilistic arguments that deal with rare 
events; events that hold with positive probability which is exponentially small in 
the size of the input. Such proofs usually yield neither randomized nor deterministic 
efficient procedures for the corresponding algorithmic problems. 

A class of examples demonstrating this phenomenon is the class of results proved 
by applying the Local Lemma. This result, proved in [13] (see also, e.g., [21]), 
supplies a way of showing that certain events hold with positive probability, 
although this probability may be extremely small. The exact statement (for the 
symmetric case) is the following. 

Lemma 3.1. Let A1,...,Anbe events in an arbitrary probability space. Suppose that 
the probability of each of the n events is at most p, and suppose that each event A-x is 
mutually independent of all but at most b of the other events Aj. If ep(b + 1) < 1 then 
with positive probability none of the events A{ holds. 

One of the applications of this lemma, given already in the original paper [13], 
deals with hypergraph coloring. A hypergraph is k-uniform if each if its edges contains 
precisely fc vertices. It is k-regular if each of its vertices is contained in precisely fc 
edges. A hypergraph is 2-colorable if there is a two-coloring of the set of its vertices 
so that none of its edges is monochromatic. Erdös and Loväsz proved the following 
result. 

Proposition 3.2. For each fc > 9, every k-regular, k-uniform hypergraph is two color
able. 

The proof follows almost immediately from Lemma 3.1. Let (V, E) be a fc-
uniform, fc-regular hypergraph, and let / : Fi->{0, 1} be a random 2-coloring ob
tained by choosing, for each veV randomly and independently, f(v) e {0, 1} ac
cording to a uniform distribution. For each e e E let Ae denote the event that / 
restricted to e is a constant, i.e., that e is monochromatic. It is obvious that 
Prob(^4e) = 2~{k~1) for every e, and that each event Ae is mutually independent of 
all the events Af but those for which fn e ^ 0. Since there are at most fc(fc — 1) 
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edges / that intersect e we can substitute b = k(k — 1) and p = 2~(k~1] in Lemma 
3.1 and conclude that for fc > 9 with positive probability none of the events Ae holds, 
completing the proof. • 

We note that a different, algebraic proof of the statement of the last proposition 
(that works for all fc > 8) is given in [4]. Both proofs do not supply an efficient way 
of finding a proper two-coloring for a given hypergraph satisfying the assumptions 
of the proposition. Note that, in general, the problem of deciding whether a hyper
graph is 2-colorable is JVP-complete. 

Another application of the Local Lemma, which appears in [8], is the following. 

Proposition 3.3. Every directed simple graph D = (V,E) with minimum outdegree ö 
and maximum indegree A contains a directed (simple) cycle of length 0(mod fc), 

/ IV 
provided e(Ab + 1) I 1 - - I < 1. 

The proof here first applies the Local Lemma to show that there exists a function 
/ : V\-+ {0, 1, . . . , fc} such that for every veV there is a vertex u E V such that (v, u) 
is a directed edge of D and f(u) = f(v) + l(mod fc). 

Given such an / , the rest of the proof is very simple. We just choose, for every 
vertex v e V, some vertex p(v) such that (v, p(v)) is a directed edge and f(p(v)) = 
f(v) + l(mod fc). Suppose VE V and consider the sequence 

v0 = v, v1=p(v0), v2=p(vi),... 

Let j be the minimum index such that there is an / <j with vt = Vj. The cycle 
VjVi+1 ... Vj^Vj = Vi is a directed cycle of length 0(mod fc), as needed. 

Here, again, the proof is not constructive in the sense that it does not provide 
an efficient way of finding such a cycle in a directed graph satisfying the assumptions. 
This is because the proof that a function / as above exists is non-constructive. 

We note that it is not known if the related decision problem "Given a directed 
graph, decide if it contains a directed even cycle" is polynomial, but it is easy to 
deduce from the results of [15] that the similar problem "Given a directed graph 
and an edge e in it, decide if there is an even cycle containing e" is JVP-complete. 

The proof of the next result also relies on the Local Lemma, but contains several 
additional ingredients as well. The details appear in [3]. 

Theorem 3.4. There is an absolute constant c with the following property: For any 
two graphs Gi = (V, F J and G2 = (V, E2) on the same set of vertices, where Gx has 
maximum degree at most d and G2 is a vertex disjoint union of cliques of size cd each, 
the chromatic number of the graph G = (V, E1 u E2) is precisely cd. 

The proof, again, does not supply an efficient (deterministic or randomized) 
algorithm for producing a proper cd-vertex coloring of G. 

We close this section mentioning the following result of J. Spencer, whose proof, 
given in [22], which combines the probabilistic method with a counting argu-
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ment, also fails to supply an efficient procedure for the corresponding algorithmic 
problem. 

Theorem 3.5. Let vl9..., vn be n real vectors of length n each, and suppose that the 
lœ-norm of each vt is at most 1. Then there are e1, ..., en E {— 1, 1}, such that the 
lœ-norm of the sum YA=I

 etvils at most 6\fn-

4. Concluding Remarks 

We have seen several examples of combinatorial results proved by topological, 
algebraic or probabilistic methods. One natural question that arises is whether these 
methods are necessary. After all, we may tend to believe that simply stated com
binatorial results should have simple combinatorial proofs. Although this sounds 
plausible, there are no known natural combinatorial proofs for any of the results 
mentioned here (as well as for various other known similar examples). 

Another question that should be addressed is whether the proofs given here are 
really inherently non-constructive. Is it possible to modify them so that they yield 
efficient ways of solving the corresponding algorithmic problems? There are no 
known efficient algorithms for any of the problems mentioned here. However, 
it seems very likely that such algorithms do exist. This is related to questions 
regarding the complexity of search problems that have been studied by several 
researchers. See, e.g., [19]. 

In the study of complexity classes like P and NP one usually considers only 
decision problems, i.e., problems for which the only two possible answers are "yes" 
or "no." However, the definitions extend easily to the so called "search" problems, 
which are problems where a more elaborate output is sought. The search problems 
corresponding to the complexity classes P and NP are sometimes denoted by FP 
and FJVP. 

Consider, for example, the obvious algorithmic problem suggested by Theorem 
1.1, namely, given a necklace satisfying the assumptions of the theorem, find a 
partition of it satisfying the conclusions of the theorem. This problem is in FNP, 
since it is a search problem, and given a proposed solution for it we can check in 
polynomial time that it is indeed a solution. 

Notice that this problem always has a solution, by Theorem 1.1, and hence it 
seems plausible that finding one should not be a very difficult task. The situation is 
similar with all the other algorithmic problems corresponding to the various results 
mentioned here. Still, the problem of solving efficiently the corresponding search 
problems remains an intriguing open question. 
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1. Introduction 

A permutation group G on a set Q has a natural action on Qn for each natural 
number n. The group is called oligomorphic if it has only finitely many orbits on Q11 

for all «GN. (The term means "few shapes". Typically our permutation groups 
are groups of automorphisms of structures of some kind; oligomorphy implies 
that the structure has only finitely many non-isomorphic w-element substructures 
for each n.) 

Oligomorphic permutation groups have close connections with both model 
theory and combinatorial enumeration. For the former, a basic result is the 
theorem of Engeler, Ryll-Nardzewski and Svenonius characterizing Ko-categorical 
countable structures as those whose automorphism groups are oligomorphic. The 
connection with enumeration is via homogeneous structures, those for which 
orbits on 77-sets are isomorphism types of induced substructures. A theorem of 
Fraïssé gives us a rich supply of homogeneous structures. These matters are 
described in Section 2. Section 3 develops some tools of enumeration theory 
(cycle index) in this context, with a few applications. In Section 4, the famous 
countable "random graph" of Erdös and Rényi is used to introduce the ideas of 
measure and Baire category. In the fifth section, some results and problems on 
the rate of growth of orbit-counting sequences are presented. Finally, the search 
for cyclic automorphisms of certain interesting graphs leads to sum-free sets, 
which have a fascinating theory. 

For an oligomorphic permutation group G, I let fn(G), Fn(G) and F*(G) be 
the numbers of orbits of G on rc-sets, n-tuples of distinct elements, and all n-
tuples respectively. By convention, /o(G) = Fo(G) = FQ(G) = 1. There are some 
interesting relations among these sequences, notably 

n 

Ft(G) = Y,S(n,k)Fk(G), 

where S(n, fc) is the Stirling number of the second kind; this fact has a number 
of combinatorial consequences (Cameron and Taylor 1985). 

I will always assume that the set Q on which a group acts is finite or countable. 
(Little is lost here; the downward Löwenheim-Skolem theorem of model theory 
guarantees that any sequences (fn(G)), (Fn(G)), etc. realized by an oligomorphic 
group can be realized by a group of countable degree.) 

Proceedings of the International Congress 
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Notation: G x H and G Wr H denote the direct and wreath products of the 
permutation groups G and H (acting on the disjoint union and cartesian product 
respectively of the sets admitting G and H); Ga is the stabilizer of the point 
a eü. 

Sœ is the symmetric group of countable degree; Cn, the cyclic group of order n; 
and A, the group of order-preserving permutations of Q. Note that fn(A) = 1 for 
all n: any order-preserving bijection between finite subsets of Q can be extended 
to a (piecewise-linear) order-preserving permutation of Q. 

Three properties of Q will be important. First of course is Cantor's (1895) 
characterization of Q as countable dense ordered set without endpoints. Second, 
as just mentioned, any order-preserving bijection between finite subsets of Q 
extends to an automorphism. Third is the fact that, if X, Y are finite ordered sets 
with X ç 7, then any embedding of X in Q can be extended to an embedding 
of Y. These observations are the starting point for the next section. 

For a fuller and more leisurely discussion of oligomorphic permutation groups, 
see my lecture notes (Cameron 1990). 

2. Xo-Categoricity and Homogeneity 

A countable structure M over a first-order language is Wo-categorical if it is 
the unique countable model of its theory, i.e. determined up to isomorphism 
by countability and first-order sentences. (The prototype is Q, characterized by 
Cantor's theorem, as we saw.) In the spirit of geometry (where, since Klein's 
Erlanger Programm, we have known of a connection between axiomatizability 
and symmetry), the following remarkable result was found independently by 
Engeler (1959), Ryll-Nardzewski (1959) and Svenonius (1959): 

Theorem 2.1. The countable structure M is ^-categorical if and only if Aut(M) 
is oligomorphic. 

The proof involves the well-known tool of "back-and-forth". Without going 
into details (familiar to the experts), I note that back-and-forth is used, not just to 
show that two countable structures are isomorphic, but also to describe orbits on 
n-tuples structurally. The pre-requisite for back-and-forth is the ability to extend 
finite isomorphisms one point at a time. 

A countable relational structure M is homogeneous if every isomorphism 
between finite substructures of M can be extended to an automorphism of M. 
The age of M, written Age(M), is the class of finite structures embeddable in 
M. Now back-and-forth shows that M is homogeneous if and only if, for any 
X,Y e Age(M) with X £ Y, any embedding of X into M can be extended to Y. 
It suffices to require this when \Y\ = \X\ + 1. Using these ideas, Fraïssé (1953) 
showed: 

• 
Theorem 2.2. A class sé of finite structures is the age of a countable homogeneous 
structure M if and only if sé is closed under isomorphism and under taking substruc
tures, has only countably many non-isomorphic members, and has the amalgamation 
property. If these conditions hold, then M is unique up to isomorphism. 
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We say that M is the Fraïssê limit of the class sé. This result is extremely 
useful for constructing examples. For instance, the class of finite triangle-free 
graphs has Fraïssé's properties; so there is a unique countable homogeneous 
universal triangle-free graph T (Henson 1971). 

There is a natural topology on the symmetric group SOD, that of pointwise 
convergence. In this topology, the full automorphism group of any first-order 
structure is closed in S^. Moreover, for G < H, G is a dense subgroup of H if 
and only if G and H have the same orbits on n-tuples for all n. Now, given any 
permutation group G, there is a "canonical relational structure" M such that G 
is a dense subgroup of Aut(M), and M is homogeneous. 

The automorphism group of a countable homogenous structure over a finite 
relational language is thus a closed oligomorphic permutation group. The con
verse is false, however; I do not know any nice characterization of this class 
of permutation groups. (The closed oligomorphic groups are precisely the auto
morphism groups of countable Xo-categorical structures; we may add the word 
"homogeneous" to the right-hand side of this equivalence.) 

If M is a homogeneous structure and G = Aut(M) is oligomorphic, then 
• /„(G) is equal to the number of unlabelled 77-element structures in the class 
Age(M) (i.e. up to isomorphism), and Fn(G) to the number of labelled structures 
(i.e. on the point set {0,...,n — 1}). Thus, enumeration of unlabelled or labelled 
structures in classes satisfying Fraïssé's hypotheses is equivalent to description of 
the appropriate orbit-counting sequence for an oligomorphic group G. As hinted 
above, many interesting combinatorial enumeration problems are of this type. 

3. Generating Functions 

It is common practice in combinatorial enumeration to use different forms of 
generating function in labelled and unlabelled enumeration problems (Goulden 
and Jackson 1983). Thus, we define the ordinary generating function 

»2>0 

for (/«(G), and the exponential generating function 

for (Fn(G)). Convergence properties of these functions connect with growth rates 
(e.g. finite non-zero radius of convergence of fc is equivalent to exponential 
growth of (fn(G))), but usually we treat the series formally. Both turn out to be 
specializations of a series in infinitely many variables, as follows. 

If if is a finite permutation group of degree n, its cycle index is the polynomial 

Z(H;Sl sn) = ~VsfhK..^, 

where Cd(h) is the number of d-cycles in the cycle decomposition of h. Its rôle 
in enumeration is well known. Now, if G is a finite or oligomorphic permutation 
group, we define the modified cycle index of G to be 
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Z(G;si,s2,...) = ^Z(Hì;SUS2,...), 
i 

where the summation is over representatives of the G-orbits on finite setSj and Hi 
is the group induced on the i-th set by its setwise stabilizer. (By convention, the 
empty set contributes a term 1.) For finite G, it can be shown that 

Z(G;s1,S2,...) = Z(G;s1 + l,s2 + l,...). 

A couple of examples for infinite groups are 

Z(Sco) = e x p ( - ^ | ) 
n>l 

and 

Z{A) = 1 

1 - s i 

These series specialize as follows: 

Proposition 3.1. For any oligomorphic permutation group G, 
(a)fG(t) = Z(G;t,t2,t3,...); 
(b)FG(t)=Z(G;t,0,0,...). 

The behaviour under direct and wreath products and point stabilizers can be 
described: 

Proposition 3.2. (a) Z(GxH) = Z(G)Z(H); 
(b) Z(GWrH) = Z{H;Z(G) - 1) ; 
(c) £,2(0,,,) = £2(G). 

(The substitution in (b) is defined by 

A(B) = A(B(su 52, s3,...), B(s2, s*, s6,...), B(s3, s6, s9,...),...). 

In (c), the summation is over a set of orbit representatives 0 ;̂ Gai is the stabilizer 
of a,-, acting on the remaining points.) 

Thus, fGWrH can be determined from fc and Z(H). For example, 

fGmsJt) = Y[(l-tn)-fniG\ 

/GWrxW = ^ 7-7^. 

2 - / G W 

I close this section with a few simple examples. 
Example 1. fc2(t) = 1 + 1 +1 2 ; so /c2wr^(0 = 1/(1 — t — t2). This is the generating 
function for the Fibonacci numbers. 

Example 2. fn(Soo WrSoo) is the partition function p(n), whose generating function 
is rin>i(l ~" tn)~l. Moreover, the generating function for fn(Sao Wr Sœ Wr S^) is 
Iln>i(l — tn)~p(n\ which converges for all t; so the growth rate is slower than 
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exponential, though faster than exp(n1_E) for any e > 0. this sequence arises in 
work of Cayley (1889) counting canonical forms. 

Example 3. We have FGwrH W = F/j(FG(£) — 1), where the usual substitution is 
intended. In particular, 

F5œWrG(0 = FG(é - 1). 

Let F*(t) be the exponential generating function for F*(G). Since F*(G) = 
F„(SooWrG), we have 

F*G(t) = FG(et - 1), 

which is thus equivalent to the relation involving Stirling numbers given in 
Section 1. 

Example 4. Let C be the group preserving the cyclic order on the roots of unity. 
Then 

n ^ l d\n 

From the fact that fc(t) = 1/(1 — t), it can be deduced that 

exp(t/(l - t)) = Y[(l - f)~^{n)/n. 
»;>i 

For several further amusing examples, including groups realizing several fa
miliar sequences, see Cameron (1987b), (1989). There are also close connections 
with Joyal's (1981) combinatorial formal power series. (Joyal regards an age as a 
category whose morphisms are the embeddings; the objects of cardinality n occur 
as the coefficients in formal power series.) 

4. The Random Graph 

It follows from Fraïssé's theorem (2.2) that there is a unique countable homo
geneous graph JR in which every finite graph is embedded. R is characterized by 
the property that, if U and V are finite disjoint sets of vertices, there is a vertex 
z joined to every vertex in U and to no vertex in V. (This property translates the 
equivalent of homogeneity given just before the statement of (2.2).) 

The graph R first appeared in the literature in a paper by Erdös and Rényi 
(1963), who showed that, with probability 1, a countable random graph is iso
morphic to R. (The probability measure is defined by the rule "choose edges 
independently with probability ^"; but in fact the same graph is obtained if we 
take any fixed edge probability p with 0 < p < 1, or even if we let p vary a bit, 
e.g. tend to infinity not too slowly.) The proof of this paradoxical assertion is 
remarkably easy. First, given fixed finite disjoint sets U and V, the probability 
that the required vertex exists is 1. Now, since there are only countably many 
choices for U and V, and a countable intersection of sets of measure 1 has 
measure 1, the characteristic property of R holds with probability 1. 

Although an explicit description of JR is unnecessary for this d iscussion (the 
probabilistic argument shows its existence, while back-and-forth gives unique
ness), there are a couple of simple constructions for it: 
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Construction 1. The vertices are the natural numbers; x is joined to y if x < y 
and 2X occurs in the (binary) expression for y as a sum of distinct powers of 2 
(or vice versa). 

Construction 2. The vertices are the primes congruent to 1 (mod 4); p and q 
are joined if p is a quadratic residue mod q. (This is symmetric, by quadratic 
reciprocity.) 

In Construction 1, the asymmetric form of the relation gives a model for the 
Zermelo-Fraenkel axioms of set theory excluding the axiom of infinity. The proof 
of the characteristic property of R in Construction 2 is a pleasant exercise using 
the Chinese Remainder Theorem and Dirichlet's Theorem. 

As noted, the back-and-forth argument shows not only the uniqueness of 
R, but the homogeneous action of its automorphism group. If we use the first 
explicit construction of R, we find a group of primitive recursive automorphisms 
acting homogeneously on R. It would be interesting to investigate this group; for 
example, to see how the "recursive presentation" of R affects the structure of the 
group. 

Truss (1985) showed that the full automorphism group of R is simple, and 
described all the cycle types of its elements. We know that Fn(Aut(R)) and 
fn(Aut(R)) are equal to the numbers of labelled and unlabelled graphs on n 
vertices respectively; the former is 22n("_1\ the latter asymptotically 22n("~1)/n!. 

R is not the only countable homogeneous graph. All such graphs were found 
by Lachlan and Woodrow (1980) (the finite ones had been found earlier by 
Gardiner (1976)). 

Theorem 4.1. A countably infinite homogeneous graph is one of the following: 
(i) the disjoint union of m complete graphs of size n, where at least one of m 

and n is infinite; 
(ii) complement of (i) (complete multipartite); 
(iii) the Fraïssê limit of the class of finite graphs containing no complete sub

graph of size n (n> Ì); 
(iv) complement of (iii); 
(v) the random graph R. 

The universal Kw-free graphs in (iii) were constructed by Henson (1971). We 
met Henson's graph for n = 3 earlier, where it was called T. 

I turn now to more general relational structures. Suppose that we have some 
class 2£ of objects, each of which is described by a countable sequence of choices. 
There are two ways of assigning structure to the set !%: 

Method 1. By assigning non-negative numbers summing to 1 to the outcomes of 
each choice, ££ becomes a measure space. For example, a countable graph can 
be determined by choosing "edge" or "non-edge" for each pair of vertices; if we 
give each choice the value \, we obtain the above model. Equivalently, we could 
assign 1/2" to each possible extension of an n-vertex graph to an (n + 1)-vertex 
graph. This technique can in principle be extended to many other classes of 
relational structures; but it is not clear what values to assign in general. 
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Method 2. We can make SE into a complete metric space by defining the distance 
between two objects to be a suitable (decreasing) functions of the length of the 
common initial sequence of choices defining them. (The longer we have to wait 
to distinguish two objects, the closer they are.) Although the metric involves a 
choice of function, the topology does not. A set ®J ^ SE is open if, for any Y e f , 
there is an initial subsequence of the choice sequence defining Y which forces 
membership in ^ ; and a set ®/ ç SE is dense if, following any finite number of 
choices, there is a continuation defining a member of <&. 

A set is residual if it contains a countable intersection of open dense sets. 
The Baire category theorem asserts that, in a complete metric space, a residual 
set is non-empty (and, perforce, dense). Residual sets are regarded as "large", 
comparable to sets of measure 1 in a probability space. 

Analogously to the Erdos-Rényi theorem, it is possible to show that the set 
of graphs isomorphic to R is residual in the set of countable graphs. We now 
generalize this observation. 

Let sé be any age. We define SC(sé) to be the class of all structures on the set 
N whose age is contained in sé. (Thus, for example, if sé = Age(#), then S£(sé) 
is the set of all graphs on the vertex set N.) An element of sé is determined by 
countably many choices, the wth choice describing how to extend an element of 
sé on the set {0,...,n — 1} to one on the set {0,...,/?}. So SE (sé) is a complete 
metric space. Now we have: 

Proposition 4.2. Let M be a countable homogeneous structure. Then the set of 
structures isomorphic to M is residual in SE(Kgs(M)). 

No such result holds for measure, which seems much harder to deal with. 
However, there are some specific results. For example, Q is the random total 
order (where the measure is defined by making all possible orderings of any finite 
set equally likely). 

5. Growth Rates 

Quite a bit is known about possible growth rates of the sequence (f„(G)). (Of 
course, these general results apply to the numbers of unlabelled structures in a 
class satisfying Fraïssé's conditions. However, some of them are known to hold 
for any age.) A basic fact is that this sequence is non-decreasing: see Cameron 
(1976). Most of the results are due to Pouzet (1981) and Macpherson (1985a), 
(1985b). 

Pouzet showed that the rate of growth is either polynomial (and < fu(G) < bnd, 
where n e N and a,b > 0) or faster than any polynomial. In the latter case, 
Macpherson found a fractional exponential lower bound exp(m~E), comparable 
to the partition function. For primitive groups, Macpherson's result is much more 
striking: 

Theorem 5.1. There is an absolute constant c > 1 such that, if G is primitive, then 
either fn(G) = 1 for all n, or fn(G) > c" for all sufficiently large n. 
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Macpherson gave c = 2$ — s; it is conjectured that the result holds with 
c = 2 — e (this would be best possible, see below). 

Polynomial growth of degree fc — 1 is realized by, among others, S£ (acting 
with k orbits) and S^WrSk (acting imprimitively). S«) WrS«, realizes the partition 
function. Other fractional exponential growth rates, roughly exp(«p+2) for p G N, 
can also be realized. We saw that the growth rate for Sœ WrSoo WrSoo is faster than 
fractional exponential but slower than exponential. There are many imprimitive 
examples with exponential growth; we saw the Fibonacci numbers realized by 
C 2 W r A 

Primitive groups exhibiting exponential growth are fairly rare. Most of them 
are automorphism groups of "treelike objects" (Cameron 1987b) related to the 
Q-trees of combinatorial group theory (Alperin and Bass 1987). There are also 
structures related to circular orders, including Lachlan's (1984) "circular tourna
ment" L. The group of order preserving and reversing permutations of L has the 
slowest known growth rate of any primitive group (/„(Aut(L)) ~ 2n~2/n). 

For growth rates faster than exponential, we see in nature a gap between 
factorial growth (for the homogeneous pair of linear orders, we have fn(G) = nl), 
and growth like exp(cn2) (realized by the random graph, and projective and affine 
spaces over finite fields). A result of Macpherson (1987) throws some light on 
this. The independence property (Shelah 1978) forces growth at least exp(cn2); 
for homogeneous structures over finite languages, negating the independence 
property bounds the growth by exp(n1+e). Also, for co-stable structures, the same 
gap occurs, the criterion being the types of strictly minimal sets around which 
the structure is built. (See Cherlin-Harrington-Lachlan (1985) for the theory of 
co-stable, No-categorical structures.) 

In general, there is no upper bound for the rate of growth of (fn(G)): take 
a homogeneous structure over a language where the number of n-ary relation 
symbols grows as fast as you please with n. On the other hand, for a homogeneous 
structure over a finite language, fn(G) < exp(P(n)) for some polynomial P. 

Many of the most interesting open questions about growth rate concern its 
smoothness. For example, do the limits 

\imn^O0fn(G)/nd (for polynomial growth of degree d), 
lim^oo log log fn(G)/ log n (for fractional exponential growth), 
limw_>00/„(G)1>/n (for exponential growth), 

exist? If so, what possible values can these limits take? Apart from Macpherson's 
gap in values of the third limit for primitive groups, almost nothing is known. 

It is known that fn(G) = fn+i(G) = fn+i(G) can only hold in the trivial case 
where G fixes a set of size at most n and is transitive on (n -{- 2)-subsets of the 
complement. The situation fn(G) = fn+\(G) has been studied; a few examples are 
known, and some have been characterized, but a general result seems difficult. 
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6. Cyclic Automorphisms of Graphs 

Measure and Baire category have been used for constructing subgroups of oligo
morphic groups. Though much more general results are available, I will consider 
here only a special case, regular cyclic subgroups. 

Let g be a cyclic automorphism of a countable graph J \ Then the vertices of 
r can be indexed by the integers in such a way that g acts as a shift d\ \-* a,+i. 
Let S = S(r,g) = {n > 0 : ao ~ a,,}. Then S determines F up to isomorphism 
(a/ ~ ocj if and only if |/ — j \ e S) , and g up to conjugacy in Aut(F). We write 
r = rs, g = gs. Now we can ask: for which sets S is r$ isomorphic to some 
interesting graph? 

A subset S of N is determined in an obvious way by infinitely many choices; 
so the methods of measure and Baire category apply. 

S is called universal if every finite sequence of zeros and ones occurs as a 
consecutive subsequence of the characteristic function of S. It is easily checked 
that rs = R if and only if S is universal. A weak form of the law of large numbers 
says that the set of universal sequences has measure 1 ; it can also be shown to be 
residual. Since residual sets and measure-1 sets have cardinality 2K°, we conclude 
that the random graph has 2Ko non-conjugate cyclic automorphisms ! 

Now consider the homogeneous universal triangle-free graph T. First note 
that, for S £ N, Ts is triangle-free if and only if S is sum-free, i.e. x,y e S => 
x + y £ S. Now sum-free sets can be determined by countably many binary 
choices, in an obvious way: considering natural numbers in turn, if n = x + y 
where x,y have already been put into S, then n ^ S; otherwise we are free to 
choose. 

Let S be a sum-free set. The only obvious necessary condition for a finite 
zero-one sequence c to be a subsequence of the characteristic function of S is 
that, if j — i G S, then e/ and sj cannot both be 1. Call a sum-free set sf-universal 
if every finite zero-one sequence satisfying this condition is a subsequence of the 
characteristic function of S. Now Fs = T if and only if S is sf-universal. 

Henson (1971) showed that T has cyclic automorphisms, i.e. that sf-universal 
sets exist. Can we prove this using category or measure? It is easily seen that 
a residual subset of all sum-free sets are sf-universal, so we do indeed get 2Ko 

non-conjugate cyclic automorphisms of T. (Incidentally, I conjecture that an sf-
universal set has density 0. This would, if true, give a "density version" of Schur's 
theorem (1916) that N cannot be covered by finitely many sum-free sets.) 

However, when we turn to measure, the situation is different. Any set of 
odd numbers is obviously sum-free, and no such set is sf-universal. It came 
as a surprise to me to find that the probability that a random sum-free set 
consists entirely of odd numbers is non-zero. (This probability is about 0.218 ... .) 
Furthermore, there are infinitely many "periodic" sum-free sets whose subsets 
have positive probability. (After the odd numbers, the next two are the congruence 
classes 2 and 3 (mod 5) and the congruence classes 1 and 4 (mod 5).) I do not 
know whether or not almost all sum-free sets are contained in periodic ones. (For 
details, see Cameron (1987a).) 

Experiment suggests the possibility of quasi-periodic behaviour : a periodicity 
is established for a few cycles and then disrupted, to return with its phase shifted 
as part of a longer period. Maybe this process can continue infinitely and yield 
non-periodic sets whose subsets have positive probability. 
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What of the corresponding graphs F^ ? For each periodic set S whose subsets 
have positive probability, there is an "almost homogeneous" graph F * such that 
rs> = T* for almost all subsets Sf of S. (For the set of odd numbers, F* is 
the "universal bipartite graph".) It is not known whether any other triangle-free 
graphs occur with positive probability. (In particular, this is not known for T.) 

Many other questions about random sum-free sets remain open. For example, 
what is the average density, and how is the density distributed? (There are 
"spectral lines" corresponding to the periodic sets described above, e.g. a delta-
function of weight 0.218... at density \ (from the sets of odd numbers). Does 
almost every sum-free set have a density? Is the density almost surely in the 
interval (0, | ]? Does the spectrum have a continuous part?) 

I conclude with an example with very different behaviour. Covington (1989) 
calls a graph N-free if it contains no induced path of length 3. She showed that 
there is an "almost homogeneous" universal countable N-free graph C, unique 
up to isomorphism, but admitting no cyclic automorphisms. One can write down 
a condition on sets S equivalent to Ts being N-free. There are 2^° sets satisfying 
this condition, but the corresponding graphs rs are pairwise non-isomorphic! 
In other words, an N-free graph has at most one conjugacy class of cyclic 
automorphisms. 
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1. Introduction 

Let ^ = iß, I, A, t) be a geometry, that is a set 0 of elements together with a 
symmetric reflexive incidence relation I and a type function t : & -> A. A geometry is 
supposed to satisfy the following, axiom: the restriction of t to any maximal set of 
pairwise incident elements is a bijection onto A. 

Let 0 be a flag of 0, i.e. a set of pairwise incident elements. Let <&& = (&&, I&, 
d<p,t<p) where ^ 0 is the set of elements which are not contained in 0 and are incident 
to all elements in 0; A 0 = A — t(0); 1$ and t0 are the restrictions on 0 0 of J and 
t, respectively. Then ^ 0 is a geometry in the above sense and is called the residual 
geometry of 0 with respect to 0. 

Let ^ and 0 ' be geometries over the same set of types. A mapping (/> : &' -• 0 is 
a morphism of geometries if ^ preserves the incidence relation and the type function. 
A morphism is called a covering if its restriction to any proper residual geometry is 
an isomorphism. A morphism from a geometry onto itself is an automorphism. Let 
G < Aut(^) be an automorphism group of ^. G is said to be flag-transitive if it acts 
transitively on the set of maximal flags of 0. 

We usually assume that A = {0, 1, . . . , r — 1} where r is the rank of the geometry. 
A geometry 0 is connected if the graph with ^ as vertices and / as edges is connected. 
All geometries we will consider are supposed to be connected. A considerable 
amount of information about geometry is carried by its diagram. The latter is a 
graph on A where the edge joining / and j symbolizes the rank 2 residual geometries 
of type {Uj}- The empty edge stands for the generalized digons (any two elements 
of different types are incident), an ordinary edge stands for projective planes, etc. 

Let ^ be a geometry, G be a flag-transitive group of automorphisms of ^ and 
0 = {a0, a1,..., a,-!} be a maximal flag of ^. Let Gt = G(at) be the stabilizer of a; 

in G and sé be the amalgam of these stabilizers. The members G, of sé are the maximal 
parabolics. In the flag-transitive case ^ can be reconstructed from G and sé, namely 
its elements of type / are the (right) cosets of G{ in G, 0 < / < r — 1; two cosets are 
incident if they have a nonempty intersection. In this situation we write ^ = ^(G, sé). 

A geometry ^ possesses a universal covering (j)u'.$ -+<$ such that for any other 
covering </> : <&' -• ^ there is a covering ij/ : § -> &' such that <f>u = </>\j/. Let G act flag-
transitively on ^. Then automorphisms from G can be lifted to automorphisms of 
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# and all these liftings form a group G which acts flag-transitively on #. Let sé be 
an amalgam. By definition an sé-group is a group which contains sé and is generated 
by the elements of sé. An sé-homomorphism is a homomorphism of j/-groups whose 
restriction on sé is the identity mapping. If the class of j^-groups is nonempty then 
there exists a universal sé-group U(sé) such that any sé-group is an image of U(sé) 
under an ^-homomorphism. One can define U(sé) as a group having all elements 
of sé as generators and all equalitiesi valid in the members of sé as relations. 

The following fundamental result was proved almost simultaneously in [Pasl, 
Tit2] and in an unpublished manuscript by S.V. Shpectorov. 

Theorem 1.1. Let & be a geometry, G be a flag-transitive automorphism group of & 
and sé be the amalgam of maximal par abolies. Let <f>u : § -> & be the universal covering, 
G be the group of all liftings of the automorphisms from G and U(sé) be the universal 
sé-group. Then # ^ &(U(sé), sé) and G ^ U(sé). 

A geometry whose universal covering is an isomorphism is said to be simply 
connected. By Theorem 1.1 ^ is simply connected if and only if G is the universal 
j?/-group. 

In terms of generators and relations Theorem 1.1 gives a practical method 
for the determination of universal coverings of flag-transitive geometries. In this 
method one writes down a presentation for U(sé) starting with sé and constructs 
U(sé) by a coset enumeration. Nowadays this method is rather popular and on its 
base a number of very interesting results on classification of flag-transi ti ve geometries 
have been obtained (cf. [Hei, KTs, Pas2, WY] and many other papers). In some 
papers generators with relations are constructed just from conditions on the geo
metry. The language of generators and relations is rather convenient for concrete 
calculations. On the other hand the language of amalgams is more abstract. The 
correlation between these languages looks like the correlation between the lan
guages of matrices and modules in the theory of linear operators. 

Let <ê, G and sé be as above. A geometric presentation associated with the action 
of G on 0 is a set of elements of sé and a set of relations on these elements valid in 
the members of sé, giving a presentation of U(sé). Notice that a particular geometric 
presentation is involved in the definition of U(sé). If the geometry CS is simply 
connected then G ^ U(sé) and the geometric presentation is said to be faithful, so 
it is a presentation of G. 

Construction of faithful geometric presentations for large sporadic groups form 
the content of the proposed lecture. In the next section we start with a simple illus
trative example. We consider a presentation for Janko's group J1 from [ATLAS]. 
This presentation can be treated as a geometric one and it is faithful since the 
corresponding geometry is simply connected. In Sect. 3 we discuss practical methods 
for proving simple connectedness. Here we present two new ideas. One of them 
relies on consideration of simply connected subgeometries, the second one deals 
with the fixed points of involutions from the automorphism group. Section 4 is 
devoted to simple connectedness of geometries of the sporadic simple groups J4 (the 
Janko's group), F2 (the Baby Monster) and Ft (the Monster). The result for J4 implies 
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that a presentation from [SW] is faithful. In the case of F1 our result enabled S. 
Nor ton to prove that the famous Y-presentation (cf. [ATLAS], [CNS]) is faithful. 
In Sect. 5 we discuss some uniqueness aspects of sporadic groups. 

2. An Illustrative Example: The Group J± 

In [ATLAS] Janko's group Jx is presented as a Coxeter group having diagram 

5 5 

o o o o o 

ex e2 e3 eA es 

with the additional relations: zt = z2 = z3e1 = 1. Here zi is the nontrivial element 
in the center of (ei9 ei+l, ei+2) = A5 x Z2,1 < / < 3. Let Hl = <^-|l <j<5,j^ />, 
2 < / < 5 be subgroups of H ^ Jx. Then the relations for H which involve only 
generators of Hf give a presentation for Ht and if2 = H4^AS x Z2,H3^D6 x D10, 
H5 ^ L 2 ( l l ) . Let 2tf be the amalgam of the subgroups Hh 2 < / < 5 and 9(JX) = 
&(H, ffl). The geometry 9(3 ^) possesses a nice combinatorial interpretation. The 
group 31 acts distance-transitively on a graph T(Jt) of valency 11 with the following 
intersection diagram: 

, ,11 1, ,10 1 4 6 5 5 1 11, , 

rrn r rn irnn rnn run 
Then the elements of type 2, 3, 4 and 5 in ^(J1 ) are the Petersen subgraphs, the 
length 5 cycles fixed by Z3-subgroups, edges and vertices, respectively. The incidence 
corresponds to the symmetrized inclusion. 

The above presentation is a geometric one with respect to the action of J1 on 
^ ( J J . So it is faithful if and only if ^ ( J J is simply connected. Let <f> : § -> ^ ( i j be 
the universal covering. Then <j> induces a covering <j) : T-+ r(Jx) of graphs. Each 
5-cycle in r(Jx) is contained in a Petersen subgraph. Thus to prove that $ is an 
isomorphism one should split all cycles of r(J{) into cycles of length 5. The existence 
of these splittings is proved in [Ivn2, Lemma 6.9] by induction on the length of 
cycles. 

The above presentation was independently obtained in [ Ivn l ] just as a conse
quence of the simple connectedness of ^ ( 7 J . 

3. Proving Simple Connectedness of Geometries 

A direct combinatorial proof of simple connectedness of a geometry basically 
consists of the following two steps (cf. [IS2, Pas2, Ron2]). 

Step 1. With the geometry 0 in question one associates a graph T = r(&) with the 
property that the universal covering (j> : § -* ^ induces a covering (j) : r -> f of 
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graphs. From the condition that ^ is a covering of 9 one makes a conclusion that 
cycles of F from a certain class Jf are contractible with respect to <j>. This means 
that each cycle from Jf can be lifted to an isomorphic cycle in T. 

Step 2. Now to prove that (j> (and hence <j>) is an isomorphism it is sufficient to show 
that the normal closure of the cycles from Jf generates the fundamental group of 
r. This is equivalent to the claim that an arbitrary cycle in Tcan be split into cycles 
from Jf. 

There is a number of ways to associate a graph with a geometry. The typical 
strategy is the following. One chooses two types in 9 (points and lines) and considers 
the point graph of 9, that is, the graph on the set of points where adjacency 
corresponds to collinearity. Here we consider a special situation when 9 contains 
a simply connected subgeometry. 

Let 9, G and sé be as above and let #" be a simply connected subgeometry in 
9 over the set of types 0 e A^ ^ A. Suppose that the stabilizer F of #" in G acts 
flag-transitively on J*. Let M be the subamalgam of sé consisting of the subgroups 
Ft = GtriF,ie A&. Then by Theorem 1.1 the simple connectedness of £F implies 
that ^ generates in G ^ U(sé) a subgroup isomorphic to F and it is easy to see that 
this subgroup stabilizes in 9 a subgeometry which is an isomorphic lifting of J^. Let 
^ be the set of all images of #" under G. We assume that distinct subgeometries 
from # have distinct sets of elements of type 0. Let #(a0) be the set of subgeometries 
from ^ which contain a0. Then G0 acts on ^(a0) as it acts on the cosets of F0. Let 
R(a0) be a nontrivial symmetric 2-orbit in this action (if any such exists). Let 27 be 
a graph on ^ where two subgeometries are adjacent if they have an element ß of 
type 0 in common and are in the relation R(ß). 27 will be called an intersection graph 
of subgeometries. Let J5" and #"' be adjacent in 27. Let m = m(9) be the number of 
elements ß of type 0 in J5" n #"' such that J5" and #"' are in the relation R(ß). Then 
the valency of 27 is equal to |#"°| • v/m, where #"° is the set of elements of type 0 in 
J*, and we have the following 

Lemma 3.1. If miß) = m(9) then $ induces a covering (/>:E-> E where E is an 
intersection graph of subgeometries in #. 

Corollary 3.2. Let v = 1 and suppose that F0 is maximal in F. Then the valency of E 
is equal to \^°\ and (j) induces a covering (j>:E -> 27. 

Let S(a0) be a subgraph in E having #(a0) as vertices and R(a0) as edges. This 
subgraph can be lifted to an isomorphic subgraph in Ê. This implies that a cycle 
from S(aQ) as well as its images under G are contractible. An additional set of 
contractible cycles can give other classes of simply connected subgeometries in 9 
(if any). 

The intersection graphs are crucial in our simple connectedness proof for the 
geometries in Sect. 4. The point is that for G ^ 34, F2 and Fx the corresponding 
geometry contains a simply connected subgeometry whose stabilizer is a maximal 
order subgroup of G. It turns out that in each case an intersection graph of 
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subgeometries corresponds to the minimal antireflexive 2-orbit of G acting on the 
subgeometries. 

Now let us turn to the second step. In all examples we meet in the lecture, C^C 
contains all shortest cycles of F. These are pentagons in the .^-geometry and 
triangles in the geometries of J4, F2 and Flt So we come to a standard problem: to 
present the cycles of/"as sums of the shortest ones. If the shortest cycles are triangles 
then the standard problem is the problem of triangulation of graphs. 

Let us give a sufficient condition for a graph to be triangulable (compare [Ron 
2, Lemma 5]). As usual Fj(x) denotes the set of vertices of F which are at distance 
j from a vertex x, 0 <j < d, where d is the diameter of F. 

Lemma 3.3. If for each 2 <j < d the conditions (i) and (ii) are satisfied then F is 
triangulable 

(i) For y e Fj(x) the subgraph induced by F^x) n /j-i(y) is connected. 
(ii) For y, z e 7J(x), y and z adjacent, either i~i(x) n //-i(y) n Fj_x(z) / 0 or 

Ft (x) n / } _ ! (y) and F1 (x) n / ] _ ! (z) are joined by an edge. 

Let G act on F and let % be an involution in G. Let <9(T) be the subgraph of F 
induced by the vertices fixed by T and Jf (T) be the set of cycles from Jf which lie 
in <9(T). Then we can try to prove that normal closure of J f (T) generates the 
fundamental group of &(%). If we would succeed doing this for all representatives 
of conjugacy classes of involutions in G then we will get the following nice criterion: 
if a cycle is fixed by an involution then it is contractible. 

4. Geometric Presentations of Large Sporadic Groups 

4.1 Generic Properties 

Let G be one of the groups J4, F2 or Fx. Then G contains an elementary abelian 
subgroup K of order T (r = 4 for J4 and r = 5 otherwise) such that NG(K)/CG(K) ^ 
Lr(2). LQì1<K0<K1<---< Xr_! = K be a chain of subgroups in K. Let 9(G) 
be a geometry whose elements of type / are the subgroups of G conjugate to Ki9 

0 < / < r — 1 and the incidence be defined by inclusion. Let G, = NG(Ki), 0 < / < 
r — 1 and sé be the amalgam of these subgroups. Then sé is the amalgam of maximal 
parabolics and 9(G) = 9(G, sé). The diagram of 9(G) is a string. Namely the 
edge {i,j} is empty for |/ —j\ > 1. The residue of type {/, / + 1}, 0 < / < r — 3 
is the projective plane over GF(2). For 9(34) and 9(F2) the residue of type 
{r — 2, r — 1} is the geometry of edges and vertices of the Petersen graph while for 
9(FX) it is the famous triple cover of the generalized quadrangle of order (2, 2) 
denoted by o ~ = o . 

The parabolic G0 is of the form G0 ^ A. B where A = 02(G0) is an extraspecial 
group 2\+n, n = 12, 22 and 24; B ^ 3 • M2 2 .2 , Co2 and Co^or G ^ J4, F2 and F l s 

respectively. The subgroup A coincides with the kernel of G0 acting on the residual 
geometry 9(oc0) of 9 with respect to a0. The geometry 9(a0) possesses a natural 
representation in the module A = A/Z(A). This means that elements of type / in 
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9(a0) correspond to certain i-dimensional subspaces of Ä, 1 < i < r — 1 and the 
incidencem 9(oc0) corresponds to inclusion of the subspaces. In particular the image 
of K in ,4 corresponds to an element of type r — L This property can be taken as 
a definition of K. 

The geometries 9(0\) and 9(F2) are so-called P-geometries. A characterization 
of a nice class of girth 5 graphs is reduced to the classification of P-geometries 
[Inv3]. The simple connectedness of 9(34) and 9(F2) was proved just within this 
classification. Other results in this direction can be found in [LSI, IS2, Shpl, Shp2, 
Shp3]. The geometry 9(Fi) and the truncations of 9(34) and 9(F2) over type r — 1 
are the minimal 2-local parabolic geometries of these groups described in [RSt]. 

4.2 Janko's Group J4 

The action of 34 on 9(34) is described by the following diagram of par abolies where 
under the node of type i the structure of Gf is given ([2W] stands for an arbitrary 
group of order 2"). 

3-M2 2 .2 (S 3 xS 5 ) L 3 ( 2 ) x 2 L4(2) 
91+12 2 3 + 1 2 + 2 T2171 2 4 + 6 + 4 

The parabolic G2 = NG(K2) is contained in a subgroup L ^ 211 : M24, and 
K2 < 02(L). Let us consider the set of subgroups of 02(L) conjugated in L to 
nontrivial subgroups of K2. Then we obtain a subgeometry 3F in 9(34) over the 
type set {0,1, 2}. This subgeometry is isomorphic to the minimal parabolic geo
metry 9(M24) of M24. Notice that 9(M24) arises as a residue of type {2, 3, 4} in 
9(F1). 

The following result was proved in [Hei] and independently checked on a 
computer by S.V. Shpectorov and the author. 

Lemma 4.1. The geometry 9(M24) is simply connected. 

Thus we obtain a family # of simply connected subgeometries in 9(34). G0 acts 
on ^(a0) as M 2 2 .2 acts on the set of 77 blocks of 5(3, 6, 22). So there are two 
symmetric antireflexive 2-orbits in this action, having valencies 16 and 60. Let R(a0) 
be the 2-orbit of valency 60. 

Lemma 4.2. m(9) = m(9(34)) = 7. 

Hence by Lemmas 3.1 and 4.2 the universal covering ol9(34) induces a covering 
of an intersection graph of subgeometries 27(J4) of valency 15, 180 = 1771 -60/7. 
Notice that the elements of type 0 in 9(M24) are the 1771 sextets of 5(5, 8, 24). 

The subgraph S(oc0) contains representatives of all classes of triangles. So for 
simple connectedness of 9(34) it is sufficient to prove that 27(J4) is triangulable. The 
latter fact was proved by application of Lemma 3.3 and an analysis of the subgraphs 
induced by the fixed points of involutions. A description of the 2-point stabilizers 
of J4 acting on the cosets of L ^ 21 1 : M2 4 given in [Norl] was used in a crucial 
way. A detailed proof is presented in [Ivn4]. 
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The parabolic G3 is contained in a subgroup H ^ 210 : L5(2). It is shown in 
[Ivn2] that the permutational action of G on the cosets of H preserves a graph 77 
of valency 31 and girth 5. Let J^(34) be a rank 3 geometry whose elements are 
vertices, edges and pentagons of 77 with the natural incidence relation. In [SW] an 
explicit geometric presentation associated with the action of 34 on J f (J4) is given. 
This is a compact and nice presentation which is similar to the Steinberg presenta
tion for the group D5(2). Notice that H is isomorphic to a maximal parabolic in 
D5(2). As a corollary of the simple connectedness of 9(34) it was proved in [Ivn4] 
that J f (34) is simply connected. 

Theorem 4.3. The geometries 9(34) and 3tf(34) are simply connected and the presenta
tion by G. Stroth and R. Weiss is faithful. 

The above result implies also the simple connectedness of a rank 3 2-local 
geometry of 34 from [Bue] where maximal parabolics are L, G0 and a subgroup 
23 + 1 2 . (55xL3(2)) . 

It is mentioned in [AS] that an independent proof of the triangulability of E(34) 
is obtained by the authors of that paper. 

4.3 The Baby Monster F2 

The action of F2 on 9(F2) is described by the following diagram of parabolics. 
p 

o o o o o 
Co2 S3 x M22.2 L3(2) x S5 L4(2) x 2 L5(2) 

2i+22 [23 2] [235] [234] 2 5 + 1 0 + 1 0 + 5 

Let S ^ 29_+16.Sp8(2) and E ^ 2-2£6(2).2 be subgroups of G ^ F2 and let 
S = S/02(S), E = E/02(E). Then up to a suitable choice of S with respect to K ^ 25, 
the intersections S nGi9 0 < / < 3 contain 02(S) and their images in S are the 
maximal parabolics of the natural geometry of S. Up to a suitable choice of E with 
respect to K and S the intersections EnGt,0 <i <2,E nS contain 02(E) and their 
images in É are the maximal parabolics of the natural geometry of E. 

So S gives us a subgeometry 9* of type C4 while E gives a subgeometry ê which 
is a truncation of a geometry of type F4. Both 9 and ê are simply connected by 
[Titl], [Tit2]. Let ^ be the family of subgeometries which contains S. Put E0 = 
E n G0. Then E0 is maximal in E and [O2(G0) : O2(G0) n £ 0 ] = 2. So we can apply 
Corollary 3.2 and come to a covering of an intersection graph 27(F2) of sub-
geometries. Then 27(F2) is a graph on the class of {3, 4}-transpositions in F2 where 
two transpositions are adjacent if their product is a central involution of F2. The 
subgroup S acting on E(F2) has an orbit of length 120 which induces a complete 
subgraph 0. Since £f is simply connected one can show that 0 is contractible. On 
the other hand 0 contains representatives of all triangles in E(F2). So we come to 
the triangulation problem. Here we are in a position to prove the triangulability 
just by Lemma 3.3 using the structure constants of 27(JF2) calculated in [Hig]. 
Eventually we come to the following result whose proof will be given in [Ivn5]. 
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Theorem 4.4. The geometry 9(F2) is simply connected. 

It would be.interesting to find a nice explicit presentation of F2 as a corollary 
of Theorem 4.4. 

Some independent results on triangulability of 27(F2) were obtained by T. Meixner 
[Mei] in his study of a c-extension of the natural geometry of 2E6(2) related to F2 

(cf. [Bue]). 

4.4 The Monster Fx 

In the case of 9(FX) we have the following diagram 

Co, S3 x M24 L3(2) x 3. S6 L4(2) x S3 L5(2) 
91+24 p235T [2391 [2391 2 5 + 1 + 5 + 1 0 + 1 0 + 5 

9(F)) contains 9(F2) as a subgeometry. This embedding can be described as 
follows. G ^ Ft contains exactly two conjugacy classes (2A and 273) of involutions 
with centralizers 2 • F2 and 2\+2Ar. Co!, respectively. Let K be the subgroup involved 
in the definition of 9(F)) and T G K *. Then T is of type 2B and G2(CG(T)) contains 
an involution a of type 2A such that CG(o)nNG(K) induces L5(2) on K. Let 3F 
consist of all images of the subgroups of K under conjugation by CG(o). Then #" is 
isomorphic to 9(F2) and its stabilizer F is CG(a) ̂  2-F2. So by Theorem 4.4 we 
obtain a family <& of simply connected subgeometries in 9(F)) whose members are 
in a one-to-one correspondence with the 2/4-involutions in G. 

The subgroup F0 = F n G0 is maximal in F and [02(GQ) : O2(G0) n F0] = 2. So 
by Corollary 3.2 the universal covering of 9(F)) induces a covering $ of a graph 
27 = 27(7^). The latter is a graph on the set of 2/4-involutions in G where two 
involutions are adjacent if their product is a 27?-involution. So to prove that 9(F)) 
is simply connected it is sufficient to prove that the normal closure of the cycles 
from S(a0) and their conjugacies under G generates the fundamental group of 27. 
Let 27* = 27* (7*\) be the Monster graph, that is a graph on the same set as 27 where 
two involutions are adjacent if their product is an involution of type 2A. Detailed 
information about 27* is contained in [Nor2], [GMS]. Let us show that ^ induces 
a covering of 27*. Let x, y e 2A and x • y e 2A. Then y e E2(x). Let Q be a graph on 
the set E± (x) n 27x (y) where u and v are adjacent if the triangle {x, u, v} is conjugated 
to a triangle from S(a0). Then Q is connected and hence (j> induces a covering of 
27*. Now, 27* is also an intersection graph of subgeometries. This means that two 
subgeometries from ^ which are adjacent in 27* have a common element of type 0. 
Let 3*(a0) be the subgraph in 27* on the set of subgeometries passing through a0. 
Then S* (a0 ) contains representatives of all triangles in 27 *. The triangulability of 27 * 
was proved by application of Lemma 3.3 with an analysis of the fixed points of 
involutions and using some results from [Nor2] and [GMS]. So we come to the 
following result whose proof will appear in [Ivn6]. 

Theorem 4.5. The geometry 9(F)) is simply connected. 
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An independent triangulation proof for the Monster graph is given in [AS, Sect. 
8], 

Let sé be the amalgam of maximal parabolics associated with the action of 7^ 
on 9(FX\ Then by Theorems 1.1 and 4.5, U(sé) ^ 7v Let @ be the subamalgam of 
sé consisting of the parabolics G0, Gx and G2. The residues of types {0, 1, 2} and 
{0, 1, 2, 3} are classical and simply connected. Hence, if/ = 4 or 5 then Gi coincides 
with the universal group of the amalgam consisting of the subgroups G, n Gj for 
0 <j < i — 1. So we have the following 

Corollary 4.6. U(^)^Ft. 

By arguments similar to the above ones it is possible to prove simple connected
ness of a geometry 9(Cot) isomorphic to the residue 9(a0) in the Monster geometry. 
Here the crucial subgeometry is 9(Co2) isomorphic to the analogous residue in the 
Baby Monster geometry. It is proved in [Shp3] that 9(Co2) is simply connected. 
So in view of Lemma 4.1 and Theorem 4.5 the following proposition holds. 

Theorem 4.7. The geometry 9(F)) is 2-simply connected. 

A geometry is 2-simply connected if any of its covering whose restrictions on 
rank 2 residues are isomorphisms is an isomorphism itself. To describe the universal 
2-cover of the Baby Monster geometry 9(F2) is an interesting open problem. I 
conjecture that the automorphism group of this 2-cover is a nonsplit extension of 
the elementary abelian group of order 3 4 3 7 1 by F2. 

The above results were announced at the Durham Symposium on Groups and 
Combinatorics in July 1990. During this symposium S. Norton [Nor4], using his 
recent results [Nor3] and Corollary 4.6, proved that the famous Y-presentation (cf. 
[ATLAS, CNS]) is faithful. Namely he proved that the group Y555 in the notation 
of [ATLAS] is isomorphic to the Bimonster, i.e. to the wreath product of the 
Monster and a group of order 2. This result gives an explicit presentation for the 
Monster and for other related groups. 

5. On Uniqueness of Sporadic Groups 

Here we indicate some relationship between the above results and the uniqueness 
problem for sporadic simple groups. 

We consider a geometric approach to the uniqueness problem which involves 
the following steps. (1) Starting with some general properties of a group G in 
question, prove that it should act flag-transitively on a geometry 9(G). (2) Using 
geometrical properties of 9(G), prove uniqueness of the corresponding amalgam of 
maximal parabolics. (3) Prove that 9(G) is simply connected. 

Notice that this scheme is very close to the approach based on so-called 
uniqueness systems proposed in [AS]. 

First of all the existence of the geometries 9(34), 3^(34), 9(F2) and 9(F)) follows 
from some general properties of the groups such as the structure of the centralizers 
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of involutions. In the case of 34 the second step was realized in [SW] for J f (34) in 
terms of generators and relations and in [Shp] for 9(34) in terms of amalgams. So 
Theorem 4.3 implies the following 

Corollary 4.8. There is a unique group of type 34. 

For F2 and F± the step (2) is not done yet but we belive that [GMS] and [Sev] 
contain enough information for this purpose. 

Notes added in proof. (1) The simple connectedness of the geometry ^(Cox) which 
is a residue in the Monster geometry is proved in [Ivanov, A.A.: The minimal 
parabolic geometry of the Conway group Col is simply connected. In: Proc. Int. 
Conf. "Combinatorics 90", Gaeta, Italy 1990. (To appear)]. 

(2) The geometric approach to the uniqueness problem (cf. Section 5) is now 
completed for the groups 7<\ and F2 [Ivanov, A.A.: A geometric approach to the 
uniqueness problem for the sporadic simple groups. Dokl. Akad. Nauk SSSR 316 
(1991) 1043-1046 (Russian)]. 

(3) Using the simple connectedness of the Baby Monster P-geometry the author 
has proved that Y433 is isomorphic to 2 x 2. F2. This gives an explicit presentation 
for F2 and hence answers the problem posed in the paragraph after Theorem 4.4 
[Ivanov A.A.: Presenting the Baby Monster. Preprint, 1991]. 
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Some Developments in Ramsey Theory 

Vojtech Rodi 

Department of Mathematics, Emory University, Atlanta, GA 30322, USA 

Introduction 

Ramsey Theory is a part of combinatorial mathematics that studies the behaviour 
of structures under partitions. Many Ramsey type results assert that complete 
disorder is impossible - they find some regular substructures in general combina
torial structures. 

Generic results are due to F.P. Ramsey [R3] and B.L. van der Waerden [V]. 
The systematic study of these and related statements was initiated by the work of 
P. Erdös and R. Rado. This includes extending van der Waerden's theorem by giving 
a complete description of those systems of linear equations that are preserved under 
partitions [RI, R2], developing the partition calculus - a theory which deals with 
transfinite extensions of Ramsey's theorem [EHR, EHMR] - and setting many 
further directions for systematic study [Eri, E4]. Another step was done by Hales 
and Jewett [HJ], who found a new Ramsey type combinatorial principle, the 
theorem for partitions of words over finite alphabets. This result was further 
generalized by R.L. Graham and B.L. Rothschild [GR2] for partitions of multi
dimensional words (parameter words). This subsequently led R.L. Graham, K. Leeb 
and B.L. Rothschild [GLR] to the proof of the conjecture of G. C. Rota on finite 
vector spaces. Moreover, the Hales-Jewett Theorem played an important role in 
studying induced subgraphs, distributive lattices and (m, p, c)-sets. A survey of the 
work in this area can be found in the book "Ramsey Theory" by R.L. Graham, B.L. 
Rothschild and J. Spencer [GRS]. 

Most of the work in Ramsey theory has been focused toward two directions: 
structural Ramsey type theorems (finding new statements of Ramsey type) and 
quantitative Ramsey type theorems (evaluating the size and number of the corre
sponding objects). Results were found that deal with vector spaces (and their 
combinatorial analogues - parameter words), set and relational-systems, groups 
and lattices, and other structures. Various generalizations were found for partitions 
restricted by topological concepts, (cf. [CS]) 

Ramsey type statements have a number of striking applications and connections 
to other parts of mathematics (e.g. [PH, CW, AH, KV] cf. also [NR11]). On the 
other hand some deep theorems were discovered using non-combinatorial means 
(e.g. [Fu, FK1, and FK2]). 
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In this account, we will outline the development in a few areas of this subject. 

The Ramsey Theorem and Ramsey Numbers 

We will adopt the usual convention of identifying the positive integer m with the 
set of its predecessors {0, 1, 2 , . . . , m — 1}. For a set X, [2Qfc denotes the set of all 
fc-element subsets of X. 

The Ramsey Theorem (1930). For all positive integers n1,n2,...,nl and k there exists 
an integer m such that for every partition 

[m]k = Ci u C2 u • • • u Cl 

there exists i and a set Y{ ^ m = {0, 1, 2 , . . . , m — 1} | Y{\ = nt such that []£]* Ç Cx. 

The Ramsey number Rk(nx, n2,..., n) is the smallest integer m such that the 
i 

Ramsey Theorem is valid. Clearly Ri(n l9 n2,..., n) = ]£ («i — 1) + 1; to deter
rà 

mine the Ramsey numbers for k > 2 is much harder. Even in the next simplest 
case, i.e., k = 2, / = 2 progress on determining the corresponding Ramsey numbers 
R(nl9 n2) = R2(n1, n2) has been very slow. For example, the lower bound for R(n, n) 
due to P. Erdös [El] was already known in 1947: 

R(n, n) > (1 + o(l))-^j=n2nl2. (1) 
ey/2 

In more than forty years since its proof, this bound has been improved only by 
a factor of 2. This was done by J. Spencer [S4] implementing the Lovâsz Local 
Lemma [EL]. The upper bound 

*(*.*) * (^"j,"2) (2) 

given by Erdös and Szekeres [ES] in 1935 has been improved for nt fixed and 
n2 -> oo by Graver and Yackel [GY] and Ajtai, Komlós and Szemerédi [AKS]. For 
other values of nl9 n2 there have been improvements on (1) only by a constant factor 
([Fri]). The bound in (2) was improved in [R6]. (see also [GR1]) 

R(nu n2) < C± ^ + n^jj[log^ + n2)J\ (3) 

Subsequently, for values of nx and n2 which are close to each other I . « 
\ \ V l o g n2 

nx < n2 ), (3) was improved by A. Thomason [T2] who established 

R(nl9 n2) < C3 P ^ n 2 j exp ~ ^ - l o g n2 + C^log n2 \. (4) 
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The proof of both inequalities is based on the idea of counting triangles in 
graphs and their complements (cf. [Go, L2]). Both (3) and (4) can probably be 
significantly improved. 

Of all asymptotic bounds for R(nl9 n2) the only satisfactory ones are known for 
ii) = 3 and H2 = n large: 

2 „2 
CA- <R(3,n)<C2 log nj log n ' 

The lower bound was established by P. Erdös [E2] and the upper bound by 
• Ajtai, Komlós, Szemerédi [AKS] (cf. Shearer [S2]). 

For H x > 4and/i2 = n large, the situation is much less satisfactory. For instance, 

/ n \5/2 n2 

CA- <R(4,n)<C4 >\ïognJ ^ ' " ^ l o g ^ 

(cf. [S5] [AKS]) are the best bounds currently known. A substantial effort has gone 
into finding the exact values R(nl9 n2) for small values of nl9 n2. It is unlikely that 
R(nl9 n2) will be determined for many new values of nx and n2 (cf. table below). For 
example, it would appear that determination of R(5, 5) will require some essentially 
new ideas. The reader is referred to [GRS], [RK] and [RIO] for further discussion. 

"l/«2 

3 
4 
5 
6 

3 

6 

4 

9 
18 

5 

14 
25-27 
43-52 

6 

18 
34-43 
51-94 
102-169 

7 

23 
47-66 
76-160 

8 

28 

9 

36 

Let us also mention that various extensions of the Ramsey numbers have been 
investigated quite extensively in the last 15 years. For a survey on this work, see 
[GR1]. We will close this section by mentioning three old problems. 

1) From the bound on Ramsey numbers R(n, n) one can deduce that yJ2 < 
R(n, n)lln < 4. 

So, the first problem is to improve either of these bounds for n -> oo. (i.e. improve 
the base of the exponent in either case) It is, for example, not even known whether 
the lim R(n, n)1/n exists. 

2) Another old problem is to decide the growth of R2(3, 3, . . . , 3) (/7-times). It is 
not even known whether lim [R2(3, 3, . . . , 3)]1/w is finite or infinite. (The existence 

/I-+00 

of the limit here is easy to prove). The known bounds are 

(315)1'5 < [*a(3, 3, . . . , 3)]1"' < Q ( l + o(l)). (5) 

Note that the upper bound in (5) has not been improved in the 74 years since its 
discovery [SI]. 
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3) Perhaps the most important problem concerning Ramsey numbers is to 
decide about the behavior of R3(n, n). The following is known (cf. [EHMR]) and it 
is believed that the upper bound is correct 

n^(l + o(l))<\og2R3(n,n)<2cn. 

Structural Induced and Restricted Ramsey-Type Theorems 

Most of my contributions to Ramsey Theory have been in this area, much of this 
is joint work with J. Nesetril. The area was opened by work of J. Folkman [Fo]. 
Answering a question of Erdös and Hajnal, he proved that for every n there exists 
a graph H not containing Kn+1, but for which every 2-coloring of the edges results 
in a monochromatic Kn. A related result was obtained by W. Deuber [Dl ] , P. Erdös, 
A. Hajnal, L. Posa [EHP] and myself [R4]. These results, together with work of 
Graham, Leeb, Rothschild and others, (cf. [D2, DR, LI, NR1]) layed the ground 
work for further systematic investigation of Ramsey classes. 

Let K be a class of objects (e.g. graphs, parameter sets, ... ) endowed with 

0 isomorphism and subobjects. For A, B e K, consider the set I I consisting of all 

subobjects of B which are isomorphic to A (A-subobjects of B). Let A e K. The class 
K has the A-Ramsey Property if for every B e K there exists C G K with C -> (B)2, 
i.e. for every 2-coloring of the A-subobjects of C there exists a B-subobject of C with 
all its A-subobjects colored the same. If K has the A-Ramsey property for each A EK 
we say that K is a Ramsey class. 

In this language, the classical Ramsey theorem means that the class of all finite 
sets together with inclusion forms a Ramsey class. Also the class of all finite 
dimensional vector spaces over finite fields is a Ramsey class - this is the statement 
of Graham-Leeb-Rothschild Theorem [GLR]. 

Effort has been focused toward finding new Ramsey classes and, for the other 
classes, one has tried to characterize A e K for which K has the A-Ramsey property. 

So, for example, the class of all fe-uniform hypergraphs with linearly ordered 
vertex sets, Gra(fc) (more general, the class Soc(A) of all set systems of type A) is a 
Ramsey class. This was proved in [NR3] (see also [NR5]) and independently by 
Abramson and Harrington [AH]. On the other hand, the same classes with vertex 
sets not ordered fail to be Ramsey. Here the A-Ramsey property holds only for 
highly symmetric hypergraphs A, i.e., those which are either complete or empty. 
Subsequently, analogous statements were proved for the class of partially ordered 
sets [NR6] and the classes of parameter sets and vector space systems, [PI, P2]. 

Another direction was to consider the same type of questions for certain sub 
classes K of the class of all fe-uniform hypergraphs, partially ordered sets, and others. 
We will explain here the result of [NR3]. 

A type A = (mô; ö e A) is an indexed collection of positive integers. A system A 
of type A is a pair (X, M) where X is a finite linearly ordered set, M = (M^; ö e A) 
and Mö e [Z]m*. The elements of M are called edges. The system A is a subsystem 
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(subobject) of B = (Y, N) if X is a subset of Y with the induced order, and M^ = 
Na n P(X) for every ö e A. Two systems (X, M) and (Y, N) are isomorphic if there 

„ a moncone bijecion / : X -. Y «aking M, on.o N, for every , « A. Let ( * ) be 

the set of all subsystems of B which are isomorphic to A. Let Soc(A) be the class of 
all set systems of type A. For example, if A = (2) the class Soc(A) is the class of graphs 
with ordered vertices and induced embedding. 

A system F e Soc(A) is called irreducible if every pair of points of F is contained 
in an edge of F. For F ç Soc(A) (F may be infinite), denote by Forb(F) the set of 

all A e Soc(A) with f j = 0 for every F G F. 

The following theorem was proved in [NR3], (see also [NR5]). 
Let F ç Soc(A) be a (possibly infinite) set of irreducible set systems. Then 

K = Forb(F) is a Ramsey class. Moreover, if K satisfies certain additional assump
tions, the implication can be reversed, i.e., if K ç Soc(A) is a Ramsey class satisfying 
additional assumptions then K is of the form K = Forb(F), where F is the class of 
irreducible set systems (cf. also [Nl]) 

As there are many naturally defined classes that are not described in terms of 
forbidden irreducible set systems (note for example that for type A = (2) the only 
irreducible systems are complete graphs) the following general problem (asked in 
many particular forms by P. Erdös) arises: 

Given A G Soc(zf) determine which classes K ç Soc(A) have the A-Ramsey 
property. 

The answer to this question is hard even in the simplest cases, i.e. for |A| = 1 
and A = (2). However, quite general satisfactory answers can be found. 

In [NR4] and [NR6], partite amalgamation was introduced. This method was 
successful in [NR7] [NR8] and moreover allowed simplification of (difficult) proofs 
of some earlier statements. It was furthermore observed that it is possible to apply 
this proof technique to Hales Jewett cubes and to arithmetic progression. This 
motivated further research with P. Frankl and R.L. Graham, [FRG] where extend
ing the earlier results of H.J. Prömel [PI, P2], we succeeded in applying partite 
amalgamation to vector spaces and parameter words. This paper was followed 
by work of J. Nesétril, H.J. Prömel, B. Voigt and myself ([NR9, NR10, PV]) 
which describes the general form of results which can be obtained by partite 
amalgamation. 

Euclidean Ramsey Theory 

Hadwiger and Nelson [HI] posed the problem of determining the chromatic 
number %(rc) of Euclidean space R" - the minimum integer r + 1 such that for every 
decomposition R" = Xx u X2 u • • • u Xr and every positive real a there are two 
points in Xt for some / with distance precisely a. It was proven in [HI] , [MM], [W] 
that 4 < x(2) < 1 and it follows moreover from [Fa] that under the assumption that 
the sets Xx are measurable, the lower bound can be replaced by 5. The best current 
bounds for %(») are 
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(1.2)" < X(n) < (3 + o(l))". 

The lower bound is due to Frankl and Wilson [FW], the upper bound to Larman 
and Rogers [LR]. 

Generalizing the problem of Hadwiger and Nelson, the following concept was 
investigated in [EG]. A finite subset A c Rd is called Ramsey if for every r there 
exists n = n(r, A) such that for every partition Rw = XL u X2 u • • • u Xr there is some 
i and A' c xt with A' congruent to A. « 

In a series of papers, Erdös et al. [EG] have investigated this property. They 
have shown that all Ramsey sets A are spherical, that is, A has a circumcenter, a point 
equidistant to all points of A. On the other hand, it is proved in [EG] that the vertex 
sets of rectangular parallelepipeds (and therefore all their subsets) are Ramsey. 

The simplest sets that are spherical but can not be embedded into rectangular 
parallelepipeds are obtuse triangles. 

In [FR3], (cf. also [FR2]) it is shown that all vertex sets of nondegenerate 
simplicies are Ramsey. Moreover, for both simplices and rectangular parallel
epipeds one can in fact choose n(r, A) = C(A) log r, where C(A) is an appropriate 
positive constant. This can be further strengthened as follows; 

Let Sm(g) = {(x0, xu...,xje Rm+1 : x2
0 + x\ + • • • + x2

m = Q2) be the , m-
dimensional sphere of radius Q. In [Grl] , a configuration A is called sphere-Ramsey 
if for every r there exists m = m(A, r) and Q = Q(A) such that for every partition S™ = 
Xi u • • • u Xr there exists Ä c Xt with Al congruent to A. R.L. Graham [Grl] 
proved that rectangular parallelepipeds are sphere-Ramsey and asked whether for 
a parallelepiped A with circumradius a one can choose Q(A) = a + 6, where <5 > 0 
is arbitrarily small. A positive answer to this question for 2-point configurations, 
follows from a result of Lovâsz [L3]. In [FR3], a positive answer to Graham's 
equation is given in the following stronger form: 

Call a set A hyper-Ramsey if for all S > 0 there exist positive constants c = 
c(A, S), s = e(s, ö) and subsets X = X(m) c Sm(g(A) + ö) for m > m0(ö) such that 

i) |X(m) |<cmbut i f 
ii) | Y| > (1 - s)m \X(m)\ and Y c X(m) 

then Y contains a congruent copy of A. 
It has been stated in [FR3] that if A c Rn, B c Rm are hyper-Ramsey, then, so 

is their product A * B = {x * y|x G A, y e B} where for x = (xl5 x 2 , . . . , xn) and y = 
(y i5 • • • > y m) o n e defines x * y = (xl9..., xn, y l 5 . . . , ym). From [FW], it follows that 
every 2-element set is hyper-Ramsey (cf. also [R5]). Thus, also the products of 
2-element sets, i.e. all rectangular parallelepipeds are hyper-Ramsey (which answers 
Graham's conjecture affirmatively). 

Our current knowledge does not exclude the possibility that all spherical sets 
are hyper-Ramsey, but we can not prove this even for non-degenerate simplices. 
The first step towards settling this problem would be to decide whether all obtuse 
triangles are hyper-Ramsey. We can, however, prove that non-degenerate simplices 
(and also their products) are exponentially sphere-Ramsey. This means that they are 
sphere-Ramsey and there exists e = e(A) > 0 and constant C =• C(A) such that 
m = m(A, r) can be chosen to satisfy m < C(l + e)r. The proof of this fact is given 
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in [FR3] and the main tool in proving it is a rather difficult theorem about inter
section properties of partitions [FRI]. 

Concerning the original problem of characterizing Ramsey configurations, the 
first problem left in [FR3] was to decide whether the vertices of the regular pentagon 
form a Ramsey configuration, Recently, I. Kriz [K] proved that the vertices of the 
regular k — gon Ak form a Ramsey configuration for any positive integer k. This 
supports the hope that Ramsey configurations might coincide with spherical ones. 
The bounds on n(Ak, r) which follow from the proof given in [K], seem to be rather 
weak. 

Finally, we will state here one more problem. In [E5], P. Erdös asked whether 
n(T, 2) = 2 for any configuration of three vertices of a non-regular triangle. 

Van der Waerden's Theorem 

In 1927, B.L. van der Waerden [V] published the proof of the following result: 

Theorem (Van der Waerden's Theorem), For all positive integers k and r, there exists 
an integer W(k, r) so that if the set of integers {1,2, . . . , W(k, r)] is partitioned into 
r classes, then at least one class contains a k-term arithmetic progression. 

Set W(k) = W(k, 2), known values are W(2) = 3, W(3) = 9, W(4) = 35, W(5) = 
178 (see [Gr2]). The original proof of van der Waerden, as well as the later proof 
(cf. [GR3], [D3], [TI]), give very weak upper bounds on the function W(k). In 1987, 
S. Shelah [S2] found a fundamentally new proof that yields a much better upper 
bound. 

Set Mn) = 2n, f2(n) = 2", . . . , fi+l(n) = //'(l), where //• denotes the n-times 
iterated function/^. So, f3(n) is the n-times iterated exponential consisting of a tower 
of n twos. The function f4(n) grows much faster: fA(l) = /3(1) = 2, f4(2) = f3° f3(l) = 
2\ A(3) = h ° L/3 °/3( l )] = hVfM\ = 65536 which is a tower of 4 twos, and 
Xt(4) = f3 [/4(3)] is a tower of 65536 twos. While the earlier best upper bounds on 
W(k) were of the order of the Ackerman function, i.e. fk(ck) for c > 0, the bound 
given by S. Shelah [S2] is "only" W(k) < f4(k + 1) (cf. also [GRS]). The problem 
of finding reasonable estimates for W(k) is one of the main problems of the area and 
the result of Shelah is a vast improvement of the previous bound. The best known 
lower bounds are exponential: W(k + 1) > fc-2* for k prime was proved in [B2], 
while W(k) > fc1-e2k for k > k0(s) was recently established in [S6]. 

In [ET], P. Erdös and P. Turän considered the quantity rk(n) defined as the 
maximum cardinality \Z\ of a set Z cz {1, 2 , . . . , n} that does not contain an arith
metic progression of k terms. One of the reasons for investigating rk(n) is that 
rk(n) < n/2 implies W(k) < n and bounds on rk(n) could improve the upper bound 
for W(k). Erdös and Turän noted that rk(n + m) < rk(n) H- rk(n) which implies that 
lim,,^ = ck exists. Erdös and Turän conjectured that ck = 0 for all k. They also 
conjectured that rk(n) < n1"^ which was disproved by Salem and Spencer [SS] who 

/ c ln n \ 
proved r3(n) > n exp I — -—-— J. This was improved in 1946 by F.A. Behrend who 
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established r3 (n) > n exp I J, the best current upper bound for r3 (n) is due to 
\ y/ln nj 

Heath-Brown [H2] and Szemerédi. In 1952, Roth proved that r3(n) < c «/log log n. 
In 1967, E. Szemerédi [S7] proved r4(h) = o(n). His proof used the general statement 
of van der Waerden's theorem. Later, Roth [R8, R9] gave a different proof that 
r4(n) = o(n) (and his proof probably yields r4(n) < n/logj n where / is a large fixed 
integer and logj n denotes the /-times iterated logarithm cf [S8]). In 1973, Szemerédi 
[S9] gave a proof of the Erdös-Turän conjecture, establishing that ck = 0 for every 
fc. A different proof based on ergodic theory was found in 1977 by H. Fürstenberg 
[Fu]. Since then, the methods of ergodic theory have proven to be a powerful tool 
for investigating related questions; proofs of several extensions of Szemerédi's 
theorem were found [FK1]. Recently, Fürstenberg and Katznelson, establishing 
a conjecture of R.L. Graham [Grl ] , proved the density form of Hales-Jewett's 
theorem. The methods of ergodic theory as well as the proof of Szemerédi do not 
yield bounds on rk(n). Therefore, finding alternative proof techniques is still of 
interest. Recently, P. Frankl and the author considered the following question. Let 
{at, bi}, 1 < i < k be pairwise disjoint 2-element sets. Define Ft = {al9 a2,..., ak, b j 
- {aj and F = F(k) = {FUF2,..., Fk}. Let t a [Vf be such that i) | V\ = n, ii) 
\E± n E2\ < k — 2, for any two distinct El9 E2, e S and iii) S does not contain F(fc) 
as a subconfiguration. 

Set ex(n, F(fc)) = Max{|rf|; ë satisfies i), ii), and iii)}. With P. Frankl, we recently 
noticed that ex(n, F(fc)) > ck n

k~2rk(n), and thus, 

ex(n, F(fe)) = ofa"-1) (6) 

would imply rk(n) = o(n). (In fact, this implies a density version of the Graham-Leeb-
Rothschild Theorem as well.) This is known to be true for fc = 3 by [RS] and with 
P. Frankl, we recently gave the proof for fc = 4. We conjecture that (6) holds for 
every fc. 
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1. Introduction 

The input to a combinatorial optimization problem usually consists of two parts : 
the first part describes the combinatorial structure; the second part is a list of 
numerical data. For example, the input to the maximum-flow and the shortest 
path problems consists of a network (the combinatorial structure) and numbers 
that define the capacity and the length of each arc, respectively. An algorithm 
for these problems is polynomial if its running time can be bounded by a 
polynomial in the size of the underlying combinatorial structure (the number 
of nodes and edges) and the number of digits needed to write the numerical 
data. Most of the early polynomial algorithm satisfied, in fact, a stronger notion 
of efficiency; these algorithms are not only polynomial, but the number of 
arithmetic operations performed can be bounded by a polynomial in the size 
of the underlying combinatorial structure alone, independent of the size of the 
numbers involved. Such algorithms are called strongly polynomial. 

Strongly polynomial algorithms are more appealing theoretically and the 
additional insight needed to develop such algorithms can lead to practical im
provements. It is an important theoretical question to understand which problems 
can be solved in strongly polynomial time. In this paper we shall survey partial re
sults in this direction. We discuss some techniques to turn polynomial algorithms 
into strongly polynomial ones. 

Khachiyan's [15] proof that the linear programming problem, max (ex : Ax < 
b), can be solved in polynomial time has been one of the major breakthroughs in 
the design and analysis of algorithms in the last ten years. The first polynomial 
linear programming algorithm was developed using the ellipsoid method of 
Yudin and Nemirovskii [33] from non-linear programming. Grötschel, Lovâsz and 
Schrijver [11] have used the ellipsoid method to develop a powerful technique 
for proving that many combinatorial optimization problems can be solved in 
polynomial time (see also [14] and [25]). The polynomial algorithms developed 
using the ellipsoid method are generally not strongly polynomial. There have 
been several other polynomial linear programming algorithms developed in the 
recent years (e.g., Karmarkar's algorithm [13]), however no strongly polynomial 
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is known. It is an important open problem if there exists a strongly polynomial 
linear programming algorithm. 

A somewhat related question is if the combinatorial optimization problems 
that were proved to be solvable in polynomial time using the ellipsoid method can 
be solved more efficiently using combinatorial techniques, rather than employing 
the analytic techniques from non-linear programming. 

In this paper we shall survey two techniques for converting polynomial 
algorithms into strongly polynomial ones. The first one uses Diophantine ap
proximation. It replaces the numbers occurring in the problem description by 
small integers that define an equivalent problem. Any polynomial algorithm can 
be used to solve the resulting problem in strongly polynomial time. The second 
technique is iterative. After some preprocessing each iteration finds an approxi
mately optimal solution to the problem. From such an approximate solution the 
algorithm either finds an optimal solution, or it concludes that some of the defin
ing constraint are not necessary, and these are deleted before the next iteration 
starts. 

There are further techniques known for converting some polynomial algo
rithms into strongly polynomial ones. The first such technique has been devel
oped by Megiddo [20] for solving combinatorial ratio minimization problems in 
strongly polynomial time. This technique can turn algorithms that use binary 
search (which is not strongly polynomial) into strongly polynomial algorithms. 
One of the most powerful application of this technique, due to Megiddo [21], 
is testing the feasibility of linear programs with at most two variables in each 
inequality. A more recent application by Norton, Plotkin and Tardos [22] gives a 
further extension of the class of linear programs solvable in strongly polynomial 
time: If a linear program is known to be solvable in strongly polynomial time, 
then so is its extension by a constant number of additional variables and side 
constraints. A nice example in this class, which we shall discuss later in more 
detail, is the concurrent flow problem. 

2. Using Diophantine Approximation 

One of the most powerful techniques for making combinatorial optimization 
algorithms strongly polynomial, due to Frank and Tardos [7], uses simultaneous 
Diophantine approximation. Many combinatorial optimization problems can be 
defined as a pair of a (highly structured) system of subsets J of a finite set E 
and weights w(e) for each e e E (e.g., perfect matchings in a graph form a system 
of the subsets of the edges). The weight of a set J G J is w(I) = ^eeI w(e). The 
problem is to find a set in J with maximum weight. Let n denote the size of the 
set E. The size of such the combinatorial structure J depends on the way J is 
specified, but generally it is at least n. 

The idea of converting polynomial algorithms for problems in the above form 
into strongly polynomial ones is as follows. Consider first a weight function w 
whose coordinates are integers with size no more than a polynomial in n. For 
such inputs there is no distinction between polynomial and strongly polynomial 
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algorithms. The key lemma is that for every weight function w there is an 
equivalent weight function w that consists of small integers. Furthermore, the 
new weight function w can be found in strongly polynomial time, The strongly 
polynomial algorithm first computes such an equivalent weight function w, and 
then uses the polynomial algorithm to find the maximum weight set subject to 
the new weights. 

Two weight functions are equivalent for a problem J, if for every two sets 
1,3 e J WG have that w(I) < w(3) if and only if w(I) < w(3). Clearly, the 
maximum weight set in J> is the same for any two equivalent weight functions. 
The existence of an equivalent weight function whose coordinates are small 
integers was first observed by Orlin [23], Orlin's proof is not algorithmic. Frank 
and Tardos [7] gave an algorithmic proof using the simultaneous Diophantine 
approximation technique of Lovâsz (see in [18]). 

Throughout the paper we shall use different norms, For a vector x we use 
llxlloo to denote the maximum absolute value of a coordinate of x, and ||x||i to 
denote the sum of the absolute values of the coordinates of x, 

Theorem 1. For a given n-dimensional vector w, and an integer N one can find an 
integer vector w in time polynomial in n and logiV, such that ||vv||oo < 2°^ )jV°(" * 
and for every integer vector a such that \\a\\\ < N, aw < 0 if and only if aw < 0. 

Let w be the weight function in a combinatorial optimization problem. If 
Theorem 1 is applied with w and N = n + 1, we obtain an equivalent weight 
function w. 

Next we try to give an idea of the proof of Theorem 1. Consider a vector 
w and an integer N. Lovâsz's [18] algorithm finds a positive integer q and an 
integer vector wf such that (1) \\qw - w'H«, < 1/N, and (2) q < 2°^2)Nn. This 
vector w' satisfies a property similar to that required by Theorem 1. 

Lemma 2. Let wf be the vector obtained from w and N by the Diophantine approx
imation algorithm, and let a be an integer vector such that \\a\\\ < N. If aw < 0 
then also aw' < 0. 

Proof Assume aw < 0. Consider aw'. The sum of the coordinates of a is at 
most N. Using this fact, and the first property of Diophantine approximation 
we obtain that a(w' — qw) < 1. We also have that aw < 0 and q > 0, therefore 
aw' < 1. Since both a and w' are integral, it follows that aw' < 0. D 

The lemma implies that the vector w' satisfies all the relevant non-strict 
inequalities satisfied by w. The vector w in Theorem 1 must also satisfy all of the 
strict inequalities. Theorem 1 can be proved by a procedure that uses Diophantine 
approximation repeatedly. 

A nice application of Theorem 1 shows that a maximum weight clique in a 
perfect graph can be found in strongly polynomial time. The first polynomial 
algorithm for the problem was developed by Grötschel, Lovâsz and Schrijver [11] 
using the ellipsoid method. Theorem 1 can be used to convert this algorithm into 
a strongly polynomial one. 
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Many combinatorial optimization problems are related to linear programming. 
Combinatorial special cases of linear programming include several network flow 
problems. These problems generally have constraint matrix with small integer 
entries. In Section 4 we shall discuss the maximum-flow, the transshipment and 
the multi-commodity flow problems in more detail. The constraint matrix in 
these problems describes the combinatorial structure (e.g., it is the incidence 
matrix of the network). The simultaneous Diophantine approximation technique 
can be used to convert polynomial algorithms for these problems into strongly 
polynomial ones. 

Consider the linear program max(cx : Ax < b) where A is an n by m matrix. 
Assume that the matrix A is integral, m>n, and let A (A) denote the maximum 
absolute value of a subdeterminant of A. We say that two objective functions c 
and c, and the right-hand sides b and b are equivalent for the constraint matrix 
A if the same set of inequalities are satisfied as equations at the optimal solution 
for the two linear programs max(cx : Ax < b) and max(cx : Ax < b). Using linear 
programming duality and Theorem 1 we can prove the following theorem. 

Theorem 3. For any linear program max(cx : Ax < b) with an n by m integer matrix 
A, there is an equivalent integral right-hand side b and objective function c such 
that log[|&||oo and logUcH«, are polynomially bounded in n, m and logzl(^4). 

Corollary 4. Linear programs where the constraint matrix A is integral and has 
coefficients whose size is at most polynomial in n and m, can be solved in strongly 
polynomial time. 

3. Iterative Approach 

In this section we discuss an iterative method for converting polynomial algo
rithms into strongly polynomial ones. When using the iterative technique it is 
possible to take advantage of additional insight into the combinatorial structure 
of the problem in question. In some cases this leads to very efficient algorithms. 
For example, highly efficient algorithms for the maximum-flow and transshipment 
problems have been obtained this way. 

Consider a linear program max (ex : Ax <b). The dual of this problem is the 
problem min(by : ATy = c,y > 0). We say that x' is feasible if Ax' < b, and y' is 
dual feasible if yf > 0 and ATy' = c. It is well-known that the linear program and 
its dual have the same optimal value. Complementary slackness gives a localized 
condition that helps recognize a pair of primal and dual optimal solutions. A 
feasible solution x' and a feasible dual solution y' are optimal if and only if for 
every row a(x < fi\ of Ax < b and the corresponding coordinate y\ of y, we have 

ant < fit => y[ = 0 . (1) 

The key concept of the iterative method is e-optimality. This is a relaxation 
of the complementary slackness conditions. A feasible solution x' and feasible 
dual solution yf are e-optimal if for every row i we have that 

atx
f < fit - s => y\ = 0 . (2) 
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Note that e-optimality with e = 0 is the same as the complementarity slackness 
conditions. It is not too difficult to show that an e-optimal pair (x',yf) is close 
to being optimal both in terms of its objective function value and in terms of 
the distance to an optimal solution. This was first proved by Mangasarian [19]. 
For our purposes it will be important that the bound on the distance of the 
e-optimal x' to an optimal solution is independent of the size of the numbers 
in the objective function. Such a bound was proven by Cook, Gerards, Schrijver 
and Tardos [4]. 

Theorem 5. Suppose x' and y' form a pair of e-optimal primal and dual solutions 
to the linear program max(cx : Ax < b). Then there exists an optimal x* such that 
\\x'-x*\\^<neA(A). 

Assume that A is an integer matrix, and let a denote H^H^, the largest absolute 
value of a coefficient of A. 

Corollary 6. Suppose that x' and y' are a pair of e-optimal solutions to the linear 
program max(cx : Ax <b) and its dual. Consider a constraint ax < fi. Suppose x' 
satisfies fi — ax' > nmA(A). The coefficient corresponding to the inequality ax <, ß 
is zero in every optimal dual solution, and every optimal solution is also optimal if 
the constraint ax < fi is deleted. 

This theorem and corollary are the key of the iterative strongly polynomial 
algorithm. The algorithm repeatedly finds an e-optimal primal-dual solution pair, 
and deletes all constraints that are known (by Corollary 6) not to be tight at an 
optimal solution. This procedure is repeated until only the tight constraints are 
left. The algorithm terminates in at most as many iterations as the number of 
defining inequalities. There are two remaining issues that need to be discussed: 
how can one guarantee that at least one inequality will be deleted each iteration, 
and how can one find an e-optimal solution in strongly polynomial time. 

In order to guarantee that at least one inequality will be deleted one has 
to do some preprocessing before the iteration, and choose an appropriate e. 
In most special cases the preprocessing is quite simple, in the general case it 
involves a projection. See [30, 27] for more details for the general case. After such 
preprocessing the appropriate choice of e turns out to be H&Hoo/^zi^)). 

Next consider the issue of finding an e-optimal solution. This can be accom
plished in strongly polynomial time if A(A) is "small". Round every coordinate 
of b to an integer multiple of e. A pair of optimal primal and dual solutions 
for the rounded problem is e-optimal for the original problem. If A(A) is small 
then the coefficients of the rounded b are small multiples of e. If a polynomial, 
but not strongly polynomial, algorithm is used to solve the rounded problem, 
then the resulting running time will be independent of the size of the numbers 
in the original vector b. However, it will depend on the size of the numbers in 
the objective function, c. In order to get rid of the dependence on c we need to 
solve the rounded problem by applying the same iterative scheme to its dual. The 
running time of the resulting algorithm is independent of the size of the numbers 
in the objective function as well as in the right-hand side. 
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4. Network Flow Problems 

The most well-known linear programs with small integral constraint matrices are 
network flow problems. These problems can be used to illustrate some of the 
ideas from the previous sections. By taking advantage of the special structure 
one can make the general algorithms simpler and more efficient. 

A network is a directed graph G = (V,E). We shall use n and m to denote the 
number of nodes and edges, respectively. The maximum-flow problem is defined 
by a network, a source s G V and a sink t e V and nonnegative capacities u(v, w) 
associated with the edges (v, w) e E. A vector f(v, w) for (v, w) G E is a preflow if 
0 < f(v, w) < u(v, w) for every e e E. Its excess at a node uGFi s defined to be 

ef(v) = YJf(w,v)-YJf(v,w) . (3) 
w w 

A preflow / is a. flow if ej(v) = 0 for every node v =f= s,t. The value of the flow is 
ef(t). The problem is to find a flow with maximum value. 

In the transshipment problem there are costs c(v,yv) associated with the edges 
instead of capacities, and there are demands b(v) on the nodes v e V. A preflow 
/ is a transshipment if ej(v) = b(v) for every node v e V. The cost of a preflow f 
is ^jVweE f(v,w)c(v,w). The problem is to find a transshipment of minimum cost. 

Both the maximum-flow and the transshipment problems are linear programs 
with 0,±1 constraint matrix. The capacities and the demands form the right-
hand side, the costs are the coefficients of the objective function. The strongly 
polynomial solvability of these problems follows, for example, from Corollary 4. 

The first polynomial algorithm for the maximum-flow problem is due inde
pendently to Dinic [5] and Edmonds and Karp [6]. Both algorithms are strongly 
polynomial. The first polynomial algorithm for the transshipment problem is due 
to Edmonds and Karp [6], This algorithm is not strongly polynomial. The first 
strongly polynomial algorithm was developed much later [29] using the iterative 
method of Section 3. 

The multi-commodity flow problem is defined similarly. There are k pairs of 
sources and sinks suU G V and each has an associated demand, d\. The prob
lem is to find flows ft from st to ti of value d\ such that a joint capacity 
constraint, Y<{v,w)eEfi(v>w) ^ u(v>w)> is satisfied for each edge (u,w) e E. The 
multi-commodity flow problem is also a linear program with 0, ±1 constraint 
matrix, and therefore it can be solved in strongly polynomial time. 

The multi-commodity flow problem is fairly a general linear program. Dinic 
(see in [1]) and Itai [12] have independently proved that any linear program can 
be reduced to a 2-commodity flow problem in polynomial time. 

4.1 Transshipment Problem 

The first strongly polynomial algorithm for the transshipment problem [29] is 
rather slow and complicated. It is more appropriate to refer to it as a proof 
of solvability in strongly polynomial time, rather than as an efficient algorithm. 
Since then, many strongly polynomial algorithms have been discovered and some 
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of them are surprisingly simple and efficient, such as the recent algorithms due to 
Goldberg and Tarjan [9] and Orlin [24]. Here we shall focus Orlin's algorithm. 

The dual variables in the transshipment problem are prices p(v) at the nodes 
v e V. The dual constraints require that the reduced cost cp(v,w) = p(v)+c(v,w) — 
p(w) is nonnegative for every arc. The complementary slackness conditions require 
that the reduced cost is zero for every arc with positive flow. 

Orlin's algorithm uses a variant of the e-optimality conditions that relax 
the flow conservation constraints rather than the complementary slackness con
straints. The algorithm maintains a preflow / and a dual feasible price function 
p that satisfy the complementary slackness conditions. We say that such a pair is 
A -optimal if \b(v) — ej(v)\ < A for every node v. 

First consider a simple variant of the Edmonds and Karp algorithm. One 
step of the algorithm selects a node v with large excess (with ef(v) » b(v)) 
and a node w with large deficit (e/(w) « b(w)). It sends flow from v to w 
along the cheapest path between them. Such a step decreases the excess or the 
deficit of a node. Roughly speaking the maximum excess or deficit decreases 
by a constant factor after every n shortest path computations. Therefore, if 
B = H&lloo, then this algorithm finds an eJ5-optimal transshipment in 0(?7log(l/e)) 
shortest path computations. If all demands are integral, then throughout the flow 
is integral, and hence after at most 0(n\ogB) shortest path computations an 
optimal transshipment is found. 

The constraint matrix, A, of the transshipment problem is totally unimodular, 
i.e. A(A) is 1. Therefore, the nonnegativity requirement for an edge (v,w), can be 
deleted if the value of a ^-optimal flow / on an arc (v, w) is at least nA. Deleting 
the nonnegativity requirement, f(v, w) > 0, corresponds, in graph theoretic terms, 
to contracting the arc (v, w). 

The general iterative method starts each iteration by some preprocessing to 
guarantee that at least one inequality will be deleted each iteration. There is no 
need for preprocessing in the case of the transshipment problem. It is easy to see 
that a A = 5/«2-optimal flow must have an arcs that can be contracted. Indeed, 
let v be the node with largest demand in absolute value. In a A -optimal flow all 
excess or deficit is at most A, hence most of the demand of v must be satisfied, 
and at least one arc entering or leaving v must carry sufficient flow that it can be 
contracted. 

The above ideas give the sketch of a strongly polynomial algorithm for the 
transshipment problem that consists of 0(n2logn) shortest path computations. 
One iteration of the algorithm computes and e-optimal solution for some e. 
This consists of 0(n\ogn) shortest path computations. Then some edges are 
contracted (at least one each iteration), and a new iteration starts. One reason 
why this algorithm is slow is, that it restarts the flow computation after every 
iteration. Orlin [24] gave a more sophisticated version of this algorithm that does 
not have separate iterations, but instead contracts edges and then continues the 
same flow computation. Amortized analysis is used to show that a minimum cost 
transshipment is found in 0(m log n) shortest path computations. 

Let us compare running times of the resulting strongly polynomial algorithms 
with the algorithm of Edmonds & Karp. Note that while the iterative algorithm 
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is already strongly polynomial, its running time does not compare favorably 
with the Edmonds & Karp algorithm. In order to make the algorithm strongly 
polynomial, the Ö(logjB) in the running time had to be replaced by O(mlogn). 
However, in the running time of Orlin's algorithm the 0(logB) is replaced by 
only an O(logn), which is much more attractive. 

4.2 The Maximum-Flow Problem 

The first polynomial algorithms for the maximum-flow problem, due indepen
dently to Dinic [5] and Edmonds and Karp [6], were strongly polynomial. The 
preflow-push algorithm of Goldberg [10] is one of the biggest recent break
throughs in network algorithms. Using sophisticated data-structures Goldberg 
and Tarjan [10] obtained an 0(nmlog(n2/m)) implementation of this algorithm. 
This was the fastest known strongly polynomial algorithm for all values of n and 
m until very recently. Ahuja and Orlin [2] have developed a simple data-structure 
free version of the algorithm, that is more efficient for all but very large values 
of the capacities. Its running time is 0(mn + n2logU), if we assume that the 
capacities are integral and at most U. This algorithm was the starting point of 
the strongly polynomial algorithm of Cheriyan and Hagerup [3]. Combining the 
ideas for converting polynomial algorithms into strongly polynomial ones, the 
data-structures used by Goldberg and Tarjan and a very sophisticated amortized 
analysis, they give a maximum-flow algorithm that runs in O(mn + n2log3 n) time. 
This time bound is better than the Goldberg and Tarjan bound if the graph is 
not too sparse. 

For practical problems the size of the numbers involved often compares 
favorably to the size of the network. Therefore, polynomial algorithms that 
are not strongly polynomial might be more efficient in practice. To compare 
polynomial algorithms with strongly polynomial ones Gabow has suggested the 
similarity assumption, that is, to assume that all numbers involved are integers 
that have size at most 0(logn). Unfortunately, algorithms whose running time 
depends exponentially on the size of the numbers involved appear polynomial 
under this assumption. A slightly weaker assumption that avoids this problem, 
is to assume that all numbers involved are integral of size is at most log0(1) n. 
Under this assumption both Orlin's transshipment algorithm and the Cheriyan 
& Hagerup algorithm compares favorably to its polynomial counterpart. It is an 
interesting open problem to see what other polynomial algorithms be converted 
to strongly polynomial ones by replacing the size of the numbers in the running 
time by 0(logcn) for some constant c where n is the combinatorial size of the 
problem. 

4.3 Multi-Commodity Flows 

There are several important special cases of the linear programming problem 
which have a combinatorial structure similar to the transshipment problem and 
also play a fundamental role in applications, but are not nearly as well understood. 
For many of these problems, the only known polynomial algorithm is obtained by 
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using polynomial linear programming algorithms. Such algorithms use continuous 
methods and do not take advantage of the combinatorial structure. It is an 
interesting question whether some of these problems can be solved more efficiently 
using combinatorial techniques. The multi-commodity flow problem is an example 
of such a problem. 

Many polynomial algorithms, if stated with an appropriate initial point, find 
an approximately optimal solution in time polynomial in n, m and log(l/e). If a 
is large this is strongly polynomial, In the definition of e-optimality used for de
signing strongly polynomial algorithms, the complementary slackness conditions 
have been relaxed in a one-sided way. A symmetric version would require only 
yi < a instead of yt = 0. Primal-dual potential reduction versions of Karmarkar's 
method find "e-optimal" solutions in this symmetric sense in time polynomial in 
n, m and log(l/e). See Todd [31] for a survey of such methods. 

Recently, Klein, Stein and Tardos [16] have obtained a combinatorial algo
rithm that significantly outperforms the general purpose techniques for a special 
case of the multi-commodity flow problem where e is large. Consider a multi-
commodity flow that satisfies the demands, but not necessarily the capacity 
constraints. Let f(v,w) = X/Z'O^w) denote the sum of the different commodities 
on an arc (v,w). We consider the maximum ratio X = m2LX(ViW)eE f(v,w)/u(v,w) as 
the value of the flow. The objective of the concurrent flow problem is to minimize 
this ratio X. 

The concurrent flow problem has one variable, X whose coefficients are not 
0,±1 in the corresponding linear program. The coefficients of X are the capacities. 
The problem is an extension with one new variable of a linear program that is 
known to be solvable in strongly polynomial time. This implies that the problem 
can be solved in strongly polynomial time [22]. 

Shahrokhi and Matula [28] gave a fully polynomial approximation algorithm 
for the special case of this problem with unit capacities, that is, an algorithm that 
finds a concurrent flow with value no worse than (1 -f e) times the optimal, in 
time polynomial in n, m and 1/e. This algorithm is quite slow, both in terms of its 
dependence on e and in its dependence on the other parameters. Klein, Stein and 
Tardos [16] gave a much faster algorithm extending the Shahrokhi & Matula 
technique. The algorithm uses a notion of e-optimality similar to the symmetric 
notion used by the general linear programming algorithms. The algorithm runs 
roughly (ignoring log's) in 0(e~2m2k) time. This compares quite favorably to 
known algorithms as long as e is large (e.g., a constant). 

Approximation algorithms for the concurrent flow problem are especially 
interesting because several of its applications require only approximately optimal 
solutions. Examples of such applications are graph partitioning by Leighton 
and Rao [17] and VLSI routing by Raghavan and Thompson [26]. It remains a 
significant open problem to design algorithms for this problem that outperform 
general purpose linear programming techniques for the case when e is small. 

The key dual variables for the concurrent flow problem are nonnegative 
lengths £(v, w) associated with the edges. Let X denote the value of the multi-
commodity flow /. The complementary slackness conditions stated in terms of 
these variables require that (1) all arcs with nonzero length are fully utilized, that 
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is, for each arc (v, w) either the total flow on it is exactly X times its capacity, or 
the arc has zero length; and (2) for each commodity the flow can be decomposed 
into flows along simple paths each of which is shortest according to the length 
function £. 

The variant of e-optimality used by the algorithm is defined by relaxing both 
of the above constraints. We require that (1) each arc is either almost fully utilized 
or has close to zero length; and (2) almost all the flow is carried on close to 
shortest paths. It is not too difficult to prove that these conditions imply that the 
value of multi-commodity flow is close to optimal. 

The idea of the approximation scheme is to maintain a length function defined 
as a function of the flow, £(v, w) = exp(af(v, w)) for an appropriate constant a, 
such that the first part of the e-optimality conditions is satisfied. The second 
assumption is gradually enforced as flow is repeatedly rerouted from long paths 
to the corresponding shortest path. 

5. Generalized Flow: An Open Problem 

The most intriguing special case of linear programming for which no strongly 
polynomial algorithm is known is the generalized flow problem, which is essen
tially the problem of an arbitrager who wants to maximize his profit by converting 
currencies at different exchanges. The problem is defined by a network, a source 
s e V, capacities and positive gainfactors y(v,w) on the arcs. When x units of 
flow enter an arc (v, w) then xy(v, w) units leave the arc. The excess of a preflow / 
is defined to be ]Tw f(w, v)y(w, v) — ]TW f(v, w). A preflow is a generalized flow if all 
nodes, except the source, have zero excess. The problem is to find a generalized 
flow with maximum excess at the source. 

The generalized flow problem is a linear programming problem. The constraint 
matrix is not 0, ±1 ; its nonzero entries are the gainfactors. The problem can also 
be considered as a slight generalization of the class of feasibility problems 
with two variables per inequality considered by Megiddo [21]. Consider the 
(equivalent) version of the problem with demands at the nodes instead of the 
capacities. The linear programming dual of this version has two variables in each 
inequality. However, it does not fit into Megiddo's framework, because it has an 
objective function with more than two variables; the demands at the nodes are 
the coefficients of the objective function in the dual. 

The fastest known algorithm for the generalized flow problem is due to 
Vaidya [32]. It combines general linear programming techniques and fast matrix 
inversion techniques. It makes some use of the network structure by speeding up 
the matrix inversions involved. Goldberg, Plotkin and Tardos [8] gave two combi
natorial algorithms for this problem. One of the algorithms uses a transshipment 
algorithm as a subroutine, the other one combines techniques from maximum-
flow and transshipment algorithms. Both run in time comparable to the fastest 
known algorithms for the problem. It remains an interesting open problem to find 
algorithms that significantly outperform general linear programming techniques. 

Finally, we point out that a combination of the multi-commodity flow and 
the generalized flow problem covers the full generality of linear programming. 
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We have mentioned in the first part of of Section 4. that every program can 
be reduced to an equivalent 2-commodity flow problem [1,12], However, the 
reduction is not strongly polynomial. The following theorem is an easy extension. 

Theorem 7. Every linear program can be reduced in strongly polynomial time to an 
equivalent 2-commodity generalized flow problem. 
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Computational Complexity in Finite Groups 

Làszló Babai * 

Department of Computer Science, University of Chicago, Chicago, IL 60637, USA 
and Department of Algebra, Eötvös University, Budapest, Hungary H-1088 

We survey recent results on the asymptotic complexity of some of the fundamental 
computational tasks in finite groups in a variety of computational models. A 
striking recent feature is that techniques motivated by the problems of the 
more abstract models (nondeterminism, extreme parallelization) have turned out 
to provide powerful tools in the design of surprisingly efficient algorithms on 
realistic models (e.g. a nearly linear time membership test for permutation groups 
with a small base). 

The techniques involve a combination of elementary combinatorial results on 
finite groups, some classical elementary group theory, and the extensive use of 
certain consequences of the classification of finite simple groups (CFSG). 

Most of the recent work surveyed is due to E. M. Luks, G. Cooperman, 
L. Finkelstein, A. Seress, E. Szemerédi, and the author. 

1. Group Models and Measures of Complexity 

Rubik's Cube illustrates some of the basic problems of computational group 
theory. We may want to decide whether or not a particular configuration is 
feasible (accessible without pulling the cube apart) ; determine the total number of 
feasible configurations; or construct "typical" configurations. In group theoretical 
terms, we are given a group G by a list S of generators (the "legal moves"), and 
we wish to determine whether or not a particular element of a larger group 
belongs to G (membership testing)', determine the order of G; generate uniformly 
distributed random members of G. The gourmet will ask more sophisticated 
questions such as deciding solvability, nilpotence, constructing normal closures, 
the center, composition factors, Sylow subgroups, etc. 

The cost of answering these questions depends on two factors : the way group 
operations are performed, and the measure of cost. 

For greatest generality, we consider black box groups, a model where no 
restriction is made on the way group operations are performed. In this model, 
elements of an unknown group B (the "group in the box") are encoded by 
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binary strings of uniform length n. (In particular, \B\ < 2n.) Group operations 
are performed by the "black box" at unit cost. A black box group is a subgroup 
of B given by a list of generators. (Generators of B, or a recognition method of 
strings in B, are not assumed to be known.) 

Two implementations of the "black box" are of particular interest: permutation 
groups (subgroups of the symmetric group B = Sym(ß)), and matrix groups over 
finite fields (subgroups of the linear group B = GL(d,q)). 

The models of computation to be studied include deterministic as well as 
Monte Carlo (randomized) computation, both sequential and parallel (several 
processors). Timing estimates refer to the logarithmic cost RAM model [AHU]. 

A Monte Carlo algorithm uses randomization, hence its outcome may be in 
error. However, on any input, the probability of error is required to be < 1/4. By 
repeating the algorithm m times and taking majority vote, the chance of error is 
reduced to < e~m^ (Chernoff's bound). 

The cost (in terms of a specific resource such as time, space, number of 
processors, length of proofs) is measured as a function of the length of the input, 
i.e. the number of input bits. An algorithm is said to have cost 0(f(n)) (or cost 
0~(f(n))) if for n>no and on all inputs of length n, the cost is at most cf(n) (at 
most /(n)(logn)c, resp.) (no, c will denote various constants throughout). 

A function f(n) is polynomially bounded (or "short", "small") if f(n) '< nc for 
some c and all n > no. A polylog bound means f(n) < (logn)c. When used as 
technical terms, "short", "small" will be Italicized. 

NC ("Nick's Class") denotes (somewhat informally) the class of functions 
computable in polylog time, using a small number of parallel processors. 

NP ("nondeterministic polynomial time") stands for the class of decision 
problems where the "yes" answers have short proofs. More precisely, a predicate 
^4(x) belongs to NP if there exists a polynomial time computable predicate 
B(x, w) such that for every input string x, ^4(x) <-» (3pw)B(x, w), where 3pw refers 
to short strings w. The string w is called a witness of the statement A(x). The 
negations of NP -predicates form the class coNP. (Cf. [GJ].) 

We shall also consider the class AM ("Arthur-Merlin"), a randomized exten
sion of NP, defined as follows: the predicate ^4(x) belongs to AM if there exists 
an NP -predicate B(x,r) such that for every input string x, ^4(x) is equivalent to 
B(x,r) for most short strings r. (The definition of "most" is flexible; asking more 
than 51% will define the same complexity class as asking, say, a 1 — 2~~n frac
tion, where n is the length of x.) Informally, A(x) has short "interactive proofs" 
in the sense that if the all-knowing but untrusted Merlin is able to present a 
short "witness" in response to a random question r of polynomial time bounded 
Arthur, this should convince skeptical Arthur by way of overwhelming statistical 
evidence that Merlin's claim A(x) is true. (Cf. [Ba2, BM, GMR, Go].) 

2. General Methods: Black Box Groups 

In this section we demonstrate the somewhat unexpected fact that nontrivial 
computational tasks, such as constructing random elements and deciding solv
ability, can be accomplished in Monte Carlo polynomial time in the extremely 
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general model of black box groups. Here and throughout the paper, G will denote 
a finite group and S a set of generators of G. 

2.1 Two Combinatorial Lemmas 

We begin with two elementary results which will play a key role. The first one 
concerns the number of group operations required in order to construct an 
element from a given set of generators. 

A straight line program from S ç G t o g G G i s a sequence u\,...,um of 
elements of the group G such that each u\ either belongs to S or is obtained from 
one or two previous elements by a group operation; and g = um. The straight 
line cost cost(g\S) is the smallest m such that such a straight line program exists. 

Lemma 1 (Reachability Lemma [BSz]). Given any set S of generators of a group 
G and any g e G, we have cosl(g|S') < (1 + log \G\)2. 

(All log's in this paper are to the base 2.) A subproduct of the elements 
/ii,...,/i/c e G is a product of the form ltf -'he

k
k, where e\ e {0,1}. The k-

dimensional cube C = C(h\,...,hk) is the set of all the 2k subproducts of the h\. 
The cube C is nondegenerate if \C\ = 2k. The basic structure established in the 
proof of Lemma 1 is a chain of nondegenerate cubes: we prove the existence of 
a sequence of elements h\,...,ht which generate a nondegenerate cube C such 
that G = C~XC\ and for every /, cost(/?/|/ii,...9fy_i,S) < 2/— 1. The h\ are found 
inductively; we can continue as long as C~XC ^ G: the element outside C~~lC of 
lowest straight line cost will do. We shall refer to this procedure as doubling the 
cube. Clearly, we must stop at some t < log \G\. 

The proof just sketched is non-constructive; it does not tell how to find an 
element that will double the current cube. The following lemma provides the key 
to an efficient Monte Carlo procedure. 

A graph is a pair X = (V,E) where V is the set of vertices, and E is a 
set of unordered pairs of vertices, called edges. Two vertices v, v' are adjacent 
if {v, v'} E E. An isomorphism of two graphs is a bijection of the vertex sets 
preserving adjacency. The group of self-isomorphisms of X is the automorphism 
group A\xt(X). We say that X is vertex-transitive if Aut(X) is a transitive subgroup 
of Sym(F). The number of vertices adjacent to y G F is the degree of v. X is 
locally finite if its vertices have finite degrees. The boundary dW of a subset 
W Ç V consists of all vertices in V \ W adjacent to some vertex in W. X is 
connected if dW ^ 0 for any nonempty proper subset W. A walk of length £ in 
X is a chain of *f + 1 vertices, each adjacent to its predecessor. The distance of 
v,v' e V is the length of the shortest walk between them. Let X\v) denote the 
set of vertices at distance < t from v. 

Lemma 2 (Local Expansion Lemma [Ba4,5]). Let X = (V,E) be a locally finite 
connected vertex-transitive graph and veV.IfW^ X\v) and \W\ < \V\/2 then 
\dW\>\W\/(At). 

This lemma has the interesting consequence that random walks on a vertex-
transitive graph "don't get stuck" in a corner. 
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Theorem 3 [Ba5]. Let X be a connected vertex-transitive graph of finite degree d. 
Assume that \XM(v)\ < \V\/2. Let % be a random integer chosen uniformly from 
{t,t+ !,...,£} where £ = Ct2dlog\G\ (C = 500). Then with probability > 1/16, a 
random walk of length %, starting at v, will end outside Xl(v). 

Among the ingredients of the proof is a Cheeger-type [Ch] eigenvalue estimate 
for graphs, derived from the local expansion property, following the Unes of [Alo]. 

The graphs this theorem will be applied to are Cayley graphs. The vertex set 
of the Cayley graph X(G, S) is G; and g e Gis adjacent to gh for he SU S~{. 

2.2 Membership and Random Generation 

We begin with a nondeterministic result. 

Theorem 4 [BSz]. Membership in black box groups belongs to NP. 

Indeed, a short straight line program qualifies as a witness of membership. 
There is little hope for making this proof constructive, even in the very special 

case when the "group in the box" is the multiplicative group of GF(q). Indeed 
in this case, finding a straight line program to generate g from S = {h} is 
equivalent to solving the equation hx = g. This is the discrete logarithm problem, 
not believed to be solvable in polynomial time. (Known algorithms require time 
Gxp(c^/qlogq); whereas polynomial time would mean polylog(g) steps.) 

Yet, part of the proof can be turned into an efficient Monte Carlo algorithm. 

Theorems [Ba5]. Nearly uniformly distributed random elements of a black box 
group can be constructed in Monte Carlo polynomial time. 

Nearly uniform distribution means each element has probability (1 ±ß)/ |G| 
to be selected; and the reliability of the algorithm is > 1 — ö, where e, ö are 
input parameters, and the number of operations is polynomially bounded in 
k = log |G|+log(l/e)+log(l/<5). The idea is to construct a set Sf of generators such 
that the diameter of the Cayley graph X(G, Sf) is small. Once this is accomplished, 
short random walks are known to produce nearly uniformly distributed elements 
[Aid, Alo]. 

To reduce the diameter, we should like to adapt the "doubling the cube" trick. 
The difficulty is, how to obtain the next hu which must be outside the set C~lC, 
where C is the current cube. The solution is a short random walk of random 
length over the Cayley graph. By Theorem 3, such a walk has a fixed positive 
chance of reaching a desired element. 

2.3 Nonmembership, Order 

These two problems are known to belong to the class AM [Ba4]. Indeed, to prove 
this was the original motivation behind inventing the Local Expansion Lemma. 

For black box groups, the nonmembership and order verification problems are 
provably not in NP [BSz]. (To be precise, here we are talking about a relativized 
version of NP: computations refer to the black box, an "oracle" [GJ].) 
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We conjecture, however, that for matrix groups over finite fields, these prob
lems belong to NP. This will follow from the conjecture below. The length of a 
presentation of a group (in terms of generators and relations) is the number of 
bits required to write down the presentation. E. g., the presentation (a\aN = 1) 
of the cyclic group has length log N + 0(1) (we write exponents in binary). 

Short Presentation Conjecture, (i) Every finite simple group G has a presentation 
R of length polylog(|G|). (ii) If G is of Lie type over GF(q) then such R is 
computable from the standard name of G in time polylog(|G|), assuming GF(q) 
and a primitive root in it are explicitly given. 

One can prove, using Lemma 1, that part (i) of the Conjecture, if true, 
automatically extends to all finite groups [BKLP], The conjecture itself has been 
verified for all G except those of rank one twisted Lie type [BKLP], cf. [Ka4]. 
Note that for a Lie-type simple group of rank d over GF(q), the Conjecture 
requires presentations of length < (dlogq)c; whereas the Steinberg presentations 
[St, Car] require an exponentially greater number, about d2q generators. 

Verification of the order is a central problem. If it belongs to NP (as we 
expect for matrix groups), this brings a number of other verification problems 
into NP, including composition factors, homomorphisms, isomorphisms, kernels, 
minimal normal subgroups. On the other hand, problems known to be in AM 
(for black box groups in general) but not expected to belong to NP (even for 
permutation groups) include verification of the intersection of two subgroups, the 
centralizer of an element, non-conjugacy of two elements [Ba4]. 

2.4 Random Subproducts 

Algorithms often depend on access to random elements of G (e.g. [CFS, NP]). 
Theorem 5 constructs such elements in reasonable polynomial time, but not 
efficiently enough for some applications. Random subproducts, however, often 
emulate truly random elements very efficiently. 

Let S = {gi,...,gs}- A random subproduct is a subproduct cp = g\x •••g|% 
where the ej are independent uniform (0, Invariables (coin flips). 

Lemma 6 [BLS2]. Let H < G be a proper subgroup. Then Prob(<p ^ H) > 1/2. 

Let L be the maximum length of subgroup chains in G. (L <> log |G|.) Lemma 
6 implies that the probability that 2L(1 + a) random subproducts do not generate 
G is less than exp(—a2L/(l + a)). A refined argument yields: 

Lemma 7 [BCFLS]. / / G is given by a list of s generators, then a Monte Carlo 
procedure, using 0(s\ogL) group operations, produces (with large but fixed prob
ability) a set of 0(L) generators for G. 

This keeps the number of generators down when constructing subgroups. 
Some additional combinatorics yields a particularly efficient normal closure algo
rithm. Recall that the notation 0~(f(n)) refers to an upper bound f(n)(iogn)°^\ 
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Theorem 8 [BCFLS]. Let H < G be black box groups, each given by a list ofO(L) 
generators. Then the normal closure of H in G can be constructed (in the form of 
0(L) generators) in Monte Carlo 0~(L2) operations. 

As an immediate application, we obtain polynomial time Monte Carlo algo
rithms to decide solvability and nilpotence of G (both require 0~(L3) operations). 

We should stress that the results of this section apply to all black box groups, 
including their implementations as matrix groups or permutation groups. In spite 
of their generality, the results are strong enough to yield asymptotic savings even 
in the well-studied area of permutation groups (see Sect. 4.2). 

3. Permutation Groups: Survey of Complexity Status 

We consider groups G < Sym(ß) where |Q| = n. The stabilizer of x G Q is the 
subgroup Gx = {g G G : xg = x}. The pointwise set stabilizer of A e Q is the 
subgroup G A = f]XeA Gx. We call A a base if G A = {1}. 

Let G = G® > G® > ... > G<m> =t {1} be a chain-of subgroups. A strong 
generating set (SGS) w.r. to this chain is a set S ç G such that G(i) = (Sn G®) 
for every i. A transversal system (TS) is a family {Tt : 1 < i < m], where Ti 
is a (right) transversal (set of coset representatives) of G® in G^~l\ A partial 
transversal system is a family of partial transversals T{ ^ Tt. 

The stabilizer chain w.r. to a given ordered base zl = {xi,...,xm} is defined as 
G® = GXlv..jX(. The concept of an SGS w.r. to an ordered base was introduced by 
C. G Sims in the early 60's as a central tool in computational group theory ([Siml, 
2]). Given an SGS, a TS is readily constructed, solving the membership and order 
problems and the construction of truly uniformly distributed random elements. A 
slight modification yields normal closures, clearing the way for more advanced 
applications. The central problem of constructing an SGS was efficiently solved 
by Sims [Siml, 2], 

The asymptotic complexity of these algorithms was not analyzed until 1980 
when the complexity of many of these algorithms was recognized to be polynomial 
time in [FHL]. In particular, an 0(n6 + sn2) variant of Sims's SGS algorithm 
was constructed, where s is the number of input generators. As a consequence, 
membership, order, normal closures, solvability were shown to be computable 
in polynomial time [FHL]. E. M. Luks has subsequently added an array of 
elegant polynomial time algorithms which, for the first time, required deeper 
group theoretic analysis. The list includes the center, a composition chain [Lu2], 
and subcases of the coset intersection problem, i.e. determining G n H h where 
G, H < Sym(ß), h e Sym(ß). The subcases solved in polynomial time in Luks's 
seminal paper [Lui] include the case when G is solvable, or more generally, the 
nonabelian composition factors of G are restricted to the set ^(c) consisting of 
the alternating groups of degree < c, the groups of Lie type of rank < c, and 
the sporadic groups. The algorithm uses classical divide and conquer algorithmic 
techniques, splitting the domain into orbits and then into domains of imprimitivity 
([Wi]). When G is primitive, some of the algorithms use exhaustive search. In 
such cases, the polynomial time claim depends on the following result. 
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Theorem 9 [BCP], If G < Sym(ß) is primitive and G e $(c) then G is small. 

(Small means \G\ < if' for some constant c', depending on c.) For primitive 
solvable groups, the precise bound is \G\ < 24_1/3/7c where c = l+log9(48-241/3) = 
3.24399... [Pâ, Wo]. 

Sylow subgroups and Sylow normalizers were added to the polynomial time 
library by Kantor [Kai, 2, 3]. For a long list of additional results see [KL]. 

Another important observation of [Lui] was that a number of problems, 
including coset intersection, setwise stabilizer of a subset, centralizer of an element, 
and centralizer of a subgroup, are equivalent (polynomial time reducible to one 
another), and the graph isomorphism problem (to decide whether or not two 
given graphs are isomorphic) is reducible to each. In particular, as long as graph 
isomorphism is not solved in polynomial time (the best current algorithm requires 
exp(0~(s/ri)) for graphs on n vertices, cf. [BL]), coset intersection, etc., are not 
expected to be efficiently solvable. On the other hand, the decision versions of 
these problems ("is GnHh ^ 0?") are not NP -complete, unless the so-called 
polynomial time hierarchy of complexity classes collapses [BM, GMW]. (The 
conjecture that the polynomial time hierarchy does not collapse is a stronger 
version of the famous NP =fc coNP conjecture [Sto].) 

Some related problems are ATP-complete; the nicest is A. Lubiw's result: the 
predicate "G has a fixed-point-free element" is NP-complete, even for elemen
tary abelian 2-groups [Lub]. An even harder problem is to determine minimum 
generating sequences; the length of the shortest word in S representing g e G is 
PSPACE-completQ pel]. (For related problems, see [BHKLS].) 

On the other end of the spectrum, some of the basic problems were shown 
to admit ultra-fast parallel algorithms. Most notably, membership, order, and even 
a composition chain are computable in NC [BLS1]. A striking feature of the 
algorithm is that even for the rudimentary tasks of membership testing, we are 
forced to determine the composition factors first, using several facts of asymptotic 
group theory currently derivable only via the classification of finite simple groups 
(CFSG) (cf. Sect. 5.). - Coset intersection is not known to be in NC; if it is in 
NC, then so is the isomorphism of graphs of degree 3 [LM]. 

4. Efficient Construction of Strong Generators 

The 0(n6 + sn2) analysis of the SGS algorithm of [FHL] was soon replaced by 
0(n5 + sn2) [Kn, Je2]. Knuth's is the closest to Sims's original approach and is 
quite efficient in practice, but there exist large collections of examples where its 
typical behavior is as bad as the n5 worst case bound (while s = n — 1) [Kn]. 

The n5 bottleneck was broken, using machinery developed for the NC result, 
in [BLS2] (0~(n4 + sn2)). Further improvements yield 0~(sn3) [BLS3], the best 
deterministic bound to date. These results heavily depend on the CFSG. 

4.1 A Fast and Elementary Monte Carlo SGS Algorithm 

We outline a new 0~(/73 + sn) time Monte Carlo SGS algorithm with a perfectly 
elementary analysis [BCFLS]. 
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Let H < G be a subgroup of index k; and T = {t\,..., tk} a right transversal. 
For g e G, let g = t,- where iîg = H^. Schreier's lemma asserts that the sk 
elements Uhjtihj ("Schreier generators") generate H, where S = {h\,...,hs} 
[Ha]. Noting that a transversal for Gx in G is easily constructed, a natural 
approach to constructing an SGS would be to consider the Schreir generators for 
Gx and repeat. The difficulty is that the number of generators grows rapidly. 

Random subproducts are the new tool. (When using the results of Sect. 2.4, 
the following bound comes handy: Every subgroup chain in Sn has length < 2n 
[Ba3, CST].) Lemma 7 alone saves nearly an order of magnitude over [Kn, Je2]: 
we reduce the number of generators of G to 0(n), then construct a transversal 
and the Schreier generators of Gx; repeat. The cost of this naive approach is 
0~(n4 + sn). When G > An, we have a particularly speedy variant, based on the 
following consequence of Lemma 6. 

Proposition 10 [BLS2]. If G = (S) < Sn and Sf is a set ofclogn random subprod
ucts of S then with large probability, the orbits of (Sf) and G agree. 

Applying this to the action of G > An on the set of ordered 6-tuples we find 
that O(logn) random subproducts are likely to generate all of G. So the previous 
argument, using only 0(logn) random subproducts in each round, constructs an 
SGS for G > An in time 0~(n3). This process works also when G induces Ak 
or Sk on some orbit A s Q (\A\ = k). However, now we don't get generators 
of G A. (The procedure preserves the action of G on A only.) Instead, we use a 
set of 0(k) defining relations of Ak or Sk to construct normal generators of G A', 
and then use our normal closure algorithm (Theorem 8) to obtain G A. Another 
ingredient of the 0~(n3 +sn) algorithm is computation of Gx in 0~(snk), where k 
is the length of the orbit of x (apply Lemma 7 to the Schreier generators). This 
bound is exploited through a "smallest orbit first" strategy. By adding action on 
maximal blocks to Q we ensure that the next x to be stabilized is from an orbit 
with primitive action. The timing depends on a combinatorial observation: 

Lemma 11 [BCFLS]. IfG<Sn is primitive and Gx has a nontrivial orbit of length 
k < n/2 then every subgroup H ^ {1} of Gx has a nontrivial orbit of length < k. 

4.2 Small Base Groups in Nearly Linear Time 

Groups with a small base are of particular importance; e.g. linear groups, treated 
as permutation groups on a vector space, always have a base of size < log n. Let 
us say that a family of groups has small bases if they have base size polylog(n). 
The SGS methods of [Sil,2], [Kn], [Je2], [BCFLS] require > n2 time for such 
groups. Combinatorial techniques based on Lemmas 1 and 2 have recently led to 
a Monte Carlo SGS algorithm in time 0~(n) for small base groups [BCFS]. 

The basic ideas are (i) a very efficient implementation of Sims's "Schreier 
vector" data structure to store transversals, based on the "doubling the cube"trick 
(Sect. 2.1) ; and (ii) the use of Lemma 2 to rapidly locate elements not yet reached 
by the current partial transversal system. A key new feature of these methods 
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is that rather than operating with the coarse subgroup structure, we are able to 
handle chains of certain subsets, such as cubes and their generalizations. 

5. CFSG vs. Elementary 

We mention some of the consequences of the simple groups classification (CFSG) 
used in the analysis of the algorithms quoted. Schreier's conjecture that the outer 
automorphism groups of simple groups are solvable, is used in Luks's composition 
chain algorithm [Lu2] and the algorithms building on it [BLS1, 2, 3, Kal , 2, 3]. 
In Sect, 4.1 we used that the degree of transitivity of G < S„ is t < 6 (unless 
G > An) [CKS], At the cost of some extra log factors (swallowed by the 0 " 
notation) this can be replaced by the 19th century bound t = o(log2n) [Jo]. Using 
the CFSG, Cameron has shown that if G is a primitive group of order > n2logn 

then n = (J) and G is a subgroup of SuwrSm with socle A!$ acting on the ordered 
m-tuples of/-subsets of a /c-set [Cam]. This result helps reduce the case of "large" 
primitive groups to Sn ; the remaining primitive groups have small bases. This is 
indispensable for [BLS1, 2, 3], even if all we need is to test membership ! Kantor 
uses detailed knowledge of the CFSG even just to find an element of order p. 

Other elementary estimates that may help avoid CFSG references (at a cost 
of some extra log's) include the bound \G\ < exp(4y^?log2n) for G primitive 
but not doubly transitive [Bal] and \G\ < nclog " for G ^ An doubly transitive 
[Py]. Bochert's 1892 estimate [Bo] that a doubly transitive group G ^ An has 
minimal degree > n/A (cf. [Wi]) is used in [BCFS]. Combinatorial proofs may 
directly suggest efficient algorithms. A case in point is the algorithm derived from 
a simple proof of Jordan's o(log2n) bound on the degree of transitivity [BS], 
allowing ultra-parallelized (NC) management of Sn [BLS1]. 

Conclusion. During the past decade, the asymptotic complexity of computation 
in finite groups has been analyzed in a variety of models of computation. New 
combinatorial and algebraic tools have been developed. Structural insights gained 
from the study of models ranging from the unrealistic (extreme parallelization : 
NC) to the absurd (nondeterminism : NP, AM) have contributed to the design of 
new efficient algorithms with a reasonable expectation of competitive implemen
tations. 

Acknowledgment. I feel privileged to have had an exciting ongoing collaboration with Gene 
Luks, now for over a decade. I have also greatly benefited from joint work with Gene 
Cooperman, Larry Finkelstein, and Akos Seress. 
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1. Introduction 

Classically, the theories of computation and computational complexity deal with 
discrete problems, for example over the integers, about graphs, etc. On the 
other hand, most computational problems that arise in numerical analysis and 
scientific computation, in optimization theory and more recently in robotics 
and computational geometry, have as natural domains the reals R, or complex 
numbers C. A variety of ad hoc methods and models have been employed to 
analyze complexity issues in this realm, but unlike the classical case, a natural 
and invariant theory has not yet emerged. One would like to develop theoretical 
foundations for a theory of computational complexity for numerical analysis and 
scientific computation that might embody some of the naturalness and strengths 
of the classical theory. 

Toward this goal, we have been developing a new theory of computation 
and complexity which attempts to integrate key ideas from the classical theory 
in a setting more amenable to problems defined over continuous domains. Our 
approach is both algebraic and concrete; the underlying space is an arbitrary 
commutative ring (or field) and the basic operations are polynomial (or rational) 
maps and tests. 

The theory yields results in the continuous setting analogous to the pivotal 
classical results of undecidability and NP-completeness over the integers, yet 
reflecting the special mathematical character of the underlying space. For example, 
over the reals we have that (1) the Mandelbrot set as well as most Julia sets 
are undecidable2 and (2) the problem of deciding if an algebraic variety has 
a real point is NP -complete. While there are many subtle differences between 
the new and classical results, the ability to employ mathematical tools of more 
mainstream mathematics (such as from algebra, analysis, geometry and topology) 
in the domain of the reals may suggest new approaches for tackling the classical, 
as well as new, "P = NP ?" questions. 

The material covered here is based in large part on (Blum, Shub and Smale 
1989) denoted in this paper by BSS, (Blum and Smale 1990) and (Blum 1990). 

1 This work was partially supported by National Science Foundation grants CCR-8712121 
and CCR-8907663 and the Letts-Villard Chair at Mills College. 
2 Indeed, the complements of these sets provide examples of semi-decidab]e sets that are 
undecidable over the reals. 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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Discussions of related work and references are contained in those papers. See 
also (Shub 1990a, 1990b) and (Smale 1990). Additional relevant literature is listed 
in the References. 

2. Computable Functions and Decidable Sets 

The classical theory of computation had its origins in work ,of logicians -
of Godei, Turing, Church, Kleene, Post - in the 1930s. Of course there were no 
computers at the time; this work, in particular Turing's (1937), clearly anticipated 
the development of the modern digital computer. But even more, a primary 
motivation for the logicians was to formulate and understand the concept of 
decidability, or of a decidable set, thus to make sense of such questions: "Is the 
set of theorems of arithmetic decidable?" or "Is the set of polynomials with 
integer coefficients and integer solutions decidable?"3 

Intuitively, a set S <= U is decidable if there is an "effective procedure" 
that given any element u of U (some natural universe) will decide in a finite 
number of steps whether or not u is in S, i.e. if the characteristic function of 
S (with respect to U) is "effectively computable." The models of computation 
designed by these logicians were intended to capture the essence of this concept 
of effective procedure/computation. The idea was to design formal "machines" 
with operations, and finitely described rules for proceeding step by step from one 
operation to the next, so simple and constructive that it would be self-evident 
that the resulting computations were effective. 

In each formalism (e.g. Turing's), a function / from the natural numbers N 
to N is defined to be computable if it is the input-output function of some such 
machine (e.g. a Turing machine). It is quite remarkable that even though the 
formalisms were often markedly different, in each case, the resulting class of 
computable functions (and hence decidable sets) was exactly the same. Thus, the 
class of computable functions appears to be a natural class, independent of any 
specific model of computation.4 This gives one a great deal of confidence in the 
theoretical foundations of the theory of computation. Indeed, what is known as 
Church's thesis is an assertion of belief that the classical formalisms completely 
capture our intuitive notion of computable function. Compelling motivation 
clearly would be required to justify yet a new paradigm. 

3. Examples 

In order to motivate our theory, we briefly discuss three examples, one from 
complex analytic dynamics, one from numerical analysis and one from classical 
complexity theory, 

3 It was originally taken for granted (by mathematicians in general, and Hilbert (1901-
1902) in particular) that the answers to these questions were both affirmative. The queries 
were actually posed as tasks: "Produce decision procedures for the given sets." The 
incompleteness/undecidabilty results of Godei (1931) in the first place, and of Matijasevich 
(1971) on the unsolvabilty of Hubert's Tenth Problem in the second, show such tasks cannot 
be carried out in full generality. 
4 These functions are often called the (partial) recursive functions. 
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3.1 Is the Mandelbrot Set Decidable? 

Fig. 1. The Mandelbrot set5 

This question was asked by Penrose (1989) in his book The Emperor's New 
Mind. Recall the Mandelbrot set M can be defined : 

M = {ceC |p2(0 )^oo} , 

where pc(z) = z2 + c and p" is the n-th iterate of pc. 

It is well known (see e.g. (Branner 1989)) that the boundary of M has a rich and 
extraordinarily complex structure. Hence, the reasonableness of Penrose's query. 

However, the classical theory presupposes all underlying spaces are countable 
and hence ipso facto cannot handle such questions about arbitrary sets of real 
or complex numbers. One way to deal with this might be to consider the 
rational or algebraic skeletons of the sets in question. Problems quickly arise 
with this approach (e.g. consider the rational skeleton of the points on the curve 
x3 + y 3 = 1 in the positive orthant). Another way might be to take a recursive 
analysis approach. For example, we might imagine a Turing machine being input 
a real number bit by bit by oracle. Using its internal instructions, the machine 
operates on what it sees, possibly every so often outputing a bit. The resulting 
sequence, if any, would be considered in the limit the (binary expansion of the) 
real output. Problems arise here when one wants to decide if two numbers are 
equal. 

Penrose speculates on various such approaches and concludes (p. 129) "One 
is left with the strong feeling that the correct viewpoint has not yet been arrived 
at." 

5 This illustration is from (Penrose 1989) and is reproduced with permission by the 
publisher. 
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3.2 The Newton Machine 

Lenore Blum 

Newton's method is perhaps the "algorithm" sine qua non of numerical analysis 
and scientific computation. Here we briefly recall Newton's method for finding 
zeros of polynomials in one variable. 

Given a polynomial f(z) over the complex numbers C, define the Newton map 
Nf : S —> S of the Riemann sphere S = CU {00} into itself by 

Nf(z)=z-(f(z)/f(z)). 

Now for Newton's method: Pick an initial point z0 G C and generate the 
orbit 

z0,zi = Nf(z0),Z2 = Nf(zi),... ,zfe+i = Nf(zk) = iV£+1(zo), • • • 

Some stopping rule such as "stop if \f(zk)\ < s and output Zk (else pick a new 
initial point if k is too large)" is implied.6 

We can represent Newton's method schematically as in Fig. 2. 

INPUT 

COMPUTE 

OUTPUT 

z<-z-f(z)/f(z) 

l/MI < 8 

Fig. 2. The Newton machine for / 

A Turing machine for implementing Newton's method, by reducing all oper
ations to bit operations, would wipe out its basic underlying structure. We would 
like to have a model of computation in which Newton could be represented as 
naturally as in the Newton machine, and in which its salient features would be 
as apparent. 

6 It is well known, however, that Newton's method is not generally convergent. The main 
obstruction to general convergence is the existence of attracting periodic points of period 
at least 2. (See (Smale 1985) and (Friedman 1989) for estimates on measures for the basin 
of attraction of the Newton map.) 



A Theory of Computation and Complexity over the Real Numbers 1495 

3.3 DoesP = WP? 

If a problem has a solution that can be easily verified, can such a solution be 
found quickly? This question is formalized by means of the fundamental open 
problem of classical (discrete) complexity theory, namely does P = NP1 We 
would like to pose this question within a more general setting, thus perhaps 
increasing the mathematical tools and perspectives available to tackle it. 

4. Finite Dimensional Machines over a Ring R 

Now we describe our formal model of computation over a ring. Let R be an 
arbitrary ordered commutative ring (or field). 

Definition. A finite dimensional machine M_ over R consists of three spaces : input 
space I, state space S, and output space O of the form Rl, Rn, Rm respectively, 
together with a finite directed connected graph with four types of nodes : input, 
computation, branch and output. 

The unique input node has no incoming edges and only one outgoing edge. 
All other nodes have (possibly several) incoming edges. Computation nodes have 
only one outgoing edge, branch nodes exactly two (left and right), and output 
nodes none. Each node has associated maps : 

At the input node, there is a linear map / taking points from the input space 
to the state space. 

Each computation node has an associated polynomial or rational map g : 
R" —• R" of the state space to itself. 

Each branch node has an associated polynomial function h : Rn —• R from the 
state space R" to the ring R. For a given state z in Rn at such a node, branching 
left or right will depend upon whether or not h(z) < 0. 

Finally each output node has an associated linear map from the state space to 
the output space. 

If R is a field and g is a rational map associated with some computation 
node, we will assume that previous nodes have tested for the vanishing of the 
denominators occurring in g and branched away as necessary. (Thus we are 
assuming that a map associated with a computation node is defined at every 
input to the node.) 

Thus the Newton machine is an example of a machine over R. (Here we are 
viewing C as R2 and the Newton map Nf as a rational map g = (gi,g2) : R2 —• 
R2. By expressing the stopping rule as |/(z)|2 < s2, we get an equivalent real 
polynomial condition h(x,y) < 0.) 

It is quite natural to view M as a discrete dynamical system. Here it is 
convenient to_ assume there is only one output node with associated map 0. Thus 
we may let N = {1, . . . N} be the set of nodes of M , where 1 is the input node 
and N the output node. We call the space of node/state pairs N X S the full state 
space of the machine. 

Implicitly associated to M is the computing endomorphism 

H :NxS -+N xS 
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INPUT node, 1 
/ :7->5 

A 

COMPUTATION node, n 
gn : S - > S 

ßn 

BRANCH node, n 
hn :S-> R 

ï 
ßn 

. . . 1 
OUTPUT node JV 

0 : S -> 0 

ßi 

Fig. 3. A finite dimensional machine M : J and 0 are the maps associated with the input and 
output nodes respectively. For n a computation node, g„ is the associated "computation 
map"; and for n a branch node, hn is the associated "branching function." 

For n an input node or a computation node, ßn is the unique next node following n. 
For n a branch node, ß~ is the next node along the left outgoing edge and ß+ the next 
node along the right outgoing edge 

of the full state space to itself. That is, H maps each node/state pair (n, x) to the 
unique next node/next state pair determined by the directed graph of the machine 
and its associated maps (see Fig. 3) as follows: 

tf(l,x)-(j3i,x); H(N,x) = (N,x); H(n,x) = (ßn,gn(x)) 

if n is a computation node; and if n is a branch node, 

H(n, x) = OS", x) if hn(x) < 0, else (ß+, x) if hn(x) ^ 0. 

The computing endomorphism is our main technical as well as conceptual 
tool. For example, we can use it to define the input-output map q>M of a machine 
M as follows: 

With input y_in J, let x = I(y). Then with initial point ZQ = (l,x) of the full 
state space N x S generate the computation (i.e. the orbit under iterates of H) 

z0 = (1, x), zi = H(z0), Z2 = H(zi), ...,zk = H(zk-i) = (nk, xk),... 
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Halt when (if ever) the first point ZT is produced which has the form ZT = (N,w). 
If this is the case, the resulting finite sequence is called a halting computation; 
we say M halts on input y in (halting) time T with output 0(w) and define 
q>M(y) = 0(w). If there is no such T, then M does not halt on input y (i.e. the 
halting time is infinite) and cpM is not defined. 

The halting set of M, QM> is the set of all points in / on which M halts. Thus, 
CM : &M -> O. 

The conditions describing halting computations are essentially (semi-)alge-
braic; they serve as the key technical tool in the proof of the NP -Completeness 
Theorem, as well as in an algebraic proof of Gödel's Theorem (see (Blum and 
Smale, 1990)). The basic idea is that the relevant sets can be defined in terms of 
these conditions. For_example, the time T halting set of M can be defined as the 
set of all points y in J for which there are solutions ZQ,...,ZT and w to the (time 
T) register equations (of M ) : 

z0 = (1,1(y)), zT = (N, w) and zk = H{zk-i) for k = 1,... , T. 

Now having defined our formal notion of machine over R, we can easily 
formalize all related concepts including those in Sects. 2 and 3. For example, we 
define a map 

cp : Y ->Rm , Y œRJ 

to be computable over R if it is the input-output map of some machine M over 
R, i.e. if cp = cpM and Y = QM- We say M computes q>.7 A set S a Rl is 
decidable over R if its characteristic function is computable over R. Otherwise it 
is undecidable over R. 

In this setting, Penrose's question may thus be posed quite formally: Is the 
Mandelbrot set M decidable over R? (Again we are viewing C as R2.) 

But before addressing this, it is worth noting that M', the complement of M, 
is semi-decidable over R. That is, there is a machine over R that on input x e R2 

outputs 1 if x 6 M' and otherwise outputs 0 or is undefined. A semi-decidable 
machine for M' can be constructed (see Fig. 4) using the fact that M is also 
characterized as {e e C\ |p2(0)| ^ 2}. 

Now as in the classical theory, it is easy to see that a set is decidable just in 
case both it and its complement are semi-decidable, and that the semi-decidable 
sets are exactly the halting sets.8 

Thus we are now ready to take a closer look at halting sets. Here it is 
convenient to return to the directed graph picture of a machine M over R. To 
each point y in the halting set QM we associate its halting path, i.e. the finite 
sequence of nodes 

7 We remark that the new theory reduces to the classical when R = Z. That is, the 
computable functions over Z are exactly the recursive functions (see BSS). Therefore, our 
model of computation is sufficiently powerful to develop the classical theory. (By Church's 
Thesis, we would have cause for concern had we produced more functions computable 
over Z.) 
8 In the classical theory, the halting sets are exactly the output sets of machines. This 
is true also for machines over real closed fields (BSS), but not in general over arbitrary 
ordered rings or fields (Michaux 1990). Open Problem. Which results of the classical theory 
of computation generalize and which do not? See (Blum, Smale 1990) and (Friedman, 
Mansfield 1988) for additional examples. 
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INPUT 

COMPUTE 

OUTPUT 

Fig. 4. A semi-decision machine for the complement of M 

n0 = l,nu...,nT =N 

traversed from input to output in the computation of q>M(y)-
There are only a countable number of halting paths. For each halting path y 

let Iy be the set of all points in the halting set QM that have y as their halting 
path. It is easy to see that for distinct y's the iy's are disjoint. Also, each Iy is_a 
semi-algebraic set.9 Note also that M acts like a "straight line program" on Iy. 
Indeed, by concatenating the input, computation, and output maps that occur 
along the path y, we see that q>M restricted to Iy is just a polynomial (or rational) 
map cpy. Thus we have the following: 

Proposition 1. The halting set of a machine M over R is a (disjoint) countable 
union of semi-algebraic sets (over R) ; the input-output map (J>M is a piecewise 
polynomial (or rational) map. 

So, for example, halting sets have integral Hausdorff dimension. 

Proposition 2 (Sullivan 1990). The Mandelbrot set is not the countable union of 
semi-algebraic sets over R.10 

Corollary. The Mandelbrot set is not decidable over R. 

The same holds for most Julia sets since, from the theory of complex analytic 
dynamical systems, we know that most Julia sets have fractional Hausdorff 
dimension. Indeed, for hyperbolic rational maps of the Riemann sphere, we have 
the following 

9 A set S c Rl is basic semi-algebraic (over R) if it is the set of elements in Rl that satisfy 
a (fixed) finite set of polynomial equalities and inequalities (over R). A semi-algebraic set 
is a finite union of basic semi-algebraic sets. 
10 Here I would like to acknowledge helpful discussions with Michel Herman and Adrien 
Douady and also with John Hubbard who provided an independent proof of this result. 



A Theory of Computation and Complexity over the Real Numbers 1499 

Theorem (BSS). A Julia set is decidable if and only if it is 

1. a round circle, 
2. an arc of a round circle, or 
3. the whole sphere. 

5. Infinite Dimensional Machines over R 

The classical construction of a universal machine assumes an effective coding of 
machines by (natural) numbers. In effect, the coding is a collapsing of sequences 
of numbers into a single number. Over the integers this can be done by a Godei 
coding. However, in general over a ring R (e.g. over the reals), such an invertible 
collapsing cannot be done by a computable map. This suggests that a universal 
machine over R should have the facility to take as input finite sequences of 
unbounded length. 

In addition, if we wish to have a natural framework for dealing with uniform 
procedures for solving problem instances of arbitrary dimension (say for the 
Travelling Salesman Problem), we are also led to consider machines that handle 
unbounded sequences. 

With these considerations in mind we are motivated to extend our notions to 
infinite dimensional machines oyer R : _ 

The underlying spaces / , S, and 0 for an infinite dimensional machine over 
R each will be R00, the infinite direct sum space over R. A point y = (y\,yi>. •.) in 
R°° satisfies yk = 0 for k sufficiently large. The length of y is the largest n such 
that y„ ^ 0. Polynomial (or rational) maps in this context are still defined by a 
fixed finite number of polynomials (rational functions) that and depend only on 
a fixed finite number of variables. 

The machine will consist of a finite connected directed graph now containing 
five types of nodes, four as before, with associated maps. If the machine had only 
the previous type nodes it would essentially be a finite dimensional machine. The 
increased power comes from the addition of fifth nodes that allow accessing of 
coordinates of arbitrarily high dimension. 

A fifth node may have several incoming edges but only one outgoing edge. 
The associated map transforms state x = (/, j , x\,..., Xj,...,xk,...,x,-,...) to state 
x' = (/,7,xi,...,x/,...,x/(,...,x,-,...), assuming / and j are positive integers. That 
is, the fifth node map writes x\ in the "j-th place" of x and leaves everything else 
alone. 

Thus, the first two coordinates of the state space play a special role which 
require some minor modification of the other maps. For y = (yi,y2,...) in I we 
let I(y) = (1,1, length (y), y i,0,y2,0,y3...). This initializes the indices / and j and 
leaves room for workspace. Information about the length of y is often useful 
and so is also included. For x = (i,j,x\X2,...) in S, we suppose a computation 
node map can alter the first two coordinates only by adding 1 or by setting to 1. 
Finally we let 0(x) = (x2, X4,...). 

Computing endomorphisms, input-output maps, halting sets and all such 
related notions are defined exactly as before. Note that a finite dimensional 
machine can be considered as a special case of infinite dimensional machine. 

See BSS for an explicit construction of a universal machine over R. 
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6. Complexity Theory over a Ring R 

A goal of computational complexity theory is to quantify the intrinsic difficulty 
of solving problems. This theory had its origins in the 1960s.11 It was developed 
primarily by researchers, originally trained in mathematics and logic, but who 
found more hospitable environments for these interests in the newly emerging 
computer science departments. Here, in the realm of the solvable (decidable), 
they discovered a rich and natural hierarchy, with the dichotomy of tractabil-
ity/intractability mirroring the dichotomy of decidability/undecidability studied 
by the logicians. (For the seminal work in the theory, see (Rabin 1960), (M. Blum 
1967), (Winograd 1970), (Cook 1971), (Karp 1972) and (Levin 1972).) 

Classical complexity theory deals primarily with combinatorial (discrete, in
teger) problems. We extend the theory in order to consider a wider class of 
problems. As has been traditional however, we focus on decision problems. These 
are problems with "yes/no" answers (to questions generally of the form "Does 
there exist a solution to ...?") and are classified as to their difficulty into classes 
P, NP or as being NP-complete. 

Definition. A decision problem over R is a pair (Y, 7yes) with 

y ^ c T c R 0 0 . 

Y is the set of problem instances, and Yyes is the set of yQS-instances. 

For example the Travelling Salesman Problem, stated over an ordered ring R, 
can be put in this form by letting: 

Y = {(n, A, k) | n is a positive integer, k > 0 and 

A = (atj) is an n x n matrix over R} 

Yyes = {(n, A, fc) in 7 | there is a tour x(n) with Distance (A, %(ri)) < fc}. 

Here a tour %(n) = (Ti,T25---3^n) is a cycle on the entire set {1,2,...,n} and 

Distance (A,z(n)) = [YA=I
 aWi+i ) + flw By representing A by the sequence of 

its rows one after the other, we have Y c R00. 
A second example, which will be prominent in out theory, is the 4-Feasibility 

Problem (4-FEAS) over R. Here, 

Y = {multivariable polynomials / over R \ degree / < 4} 

ïyes = {f in /(£) = 0 for some £ = (ft,..., ft) in Rk} 

We are supposing that polynomials are represented as elements of R00 via the 
standard representation (see BSS). 

Thus the 4-FEAS problem is: Given a multivariable polynomial / of degree 4 
with coefficients from R, does f(x) = 0 have a solution over R? While it may not 
at all be obvious how to decide if such a solution exists, it is a straightforward 
procedure to verify one that may be presented to us. Just plug the purported 
solution into the equation and check it out. Is this verification tractable in our 
model of computation? The answer will depend on the underlying mathematical 

11 However, as early as 1948, von Neumann (1963) had articulated the need for such a 
theory. 
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properties of the ring or field, as well as our measure of complexity. But first we 
must formalize the basic concepts of size and cost. 

We first suppose we have a function height defined on R with values in 
the non-negative reals, e.g. for R = Z or R, and y e R we might choose 
height (y) to be logarithmic height, /og2(|y| + 1), or unit height, 1. Then for 
y = O'i > J>2,..., y„, 0,0, ) G R00, we define 

size(y) = length (y) + height(y) 

where height(y) = max height(y,). Thus with unit height, size reflects the "dimen
sion" of input, whereas over the integers with logarithmic height size reflects the 
traditional bit length. For the remainder of this paper, unless otherwise stated, 
we will suppose unit height for R and logarithmic height for Z. 

Now suppose M is a machine over R with a height function defined. Then 

costM(y) = TM(y) x hmn(y) 

where TM()>) is the halting time of M on input y (which may be finite or infinite 
depending on whether or not y is in the halting set of M) and /7max(>0 is the 
maximum height of any element occurring in the computation of M on input y. 
Over the reals, the cost reflects the number of basic algebraic operations, whereas 
over the integers, the cost reflects the number of bit operations. 

The following definitions make sense only in case height has been defined 
over R. 

Definition. A map (p on (admissible) inputs Y <= R00 is polynomial time computable 
over R if there is a machine M over R that computes cp and 

COSIMOO < poly(size(y)), for all y in Y . 

Here poly is some polynomial with nonnegative integer coefficients. Polynomial 
time is meant to formalize our notion of tractability. 

Now we are in a position to formally define class P and class NP over 
R. While the first definition is straightforward, the second is considerably more 
subtile. 

Definition. A decision problem (Y, Yyes) is in class P (polynomial time) over R if 
the characteristic function of Yyes in Y is polynomial time computable over R. 

Definition. (Y, Yyes) is in class NP (non-deterministic polynomial time) if there is a 
machine M which takes as input pairs (y, w) (where y in Y is a problem instance 
and w in R00 is thought of as a "guess" or "witness" for a solution to y), outputs 
1 or 0 (yes or no) and satisfies : 

1. If y is a yes-instance then there exists some (guess for a solution) w such that 
<PM'(y>w) = 1 and 

costM(y? w) < poly(size(y)). 

2. If y is a no-instance (i.e. not a yes-instance) then there is no (guess) w such 
that <pM(y,w) = 1. 

We remark that we need only consider guesses w for which size(w)poly(size(y)), 
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M is called an NP-decision machine for the NP-problem (Y, Yyes). Property 1 
reflects the non-deterministic aspect of this notion, i.e. for each yes-instance, we 
just require that some polynomial time verifiable solution exists, not necessarily 
that one can be found. Property 2 requires that the verification process have 
some integrity, i.e. it can never output yes for a no-instance input. 

In this general setting it is natural to ask (analogous to the classical question 
over Z) : Does P = NP over R? For R = R, we have a new open problem. 

Now let us return to 4-FEAS. The halting time for verifying a purported 
solution to a polynomial equation f(x) = 0 using a straightforward evaluation 
process can easily be seen to be bounded above by a polynomial function of the 
length of / . (Recall we are supposing / is standardly represented as an element 
of R00.) Thus over the reals, since size is length and cost is halting time, this 
verification is polynomial time. 

On the other hand, over the integers we know (by the undecidability of 
Hubert's Tenth Problem) that even the smallest size of integer solutions to 
polynomial equations f(x) = 0 (solvable over Z) cannot be bounded above by 
any polynomial (in size(jf)). Thus, even if we only consider solutions of smallest 
size, there is no polynomial that will bound the cost of verification; in general it 
would just take too long to even read in purported solutions. 

The above arguments show that 4-FEAS is in class NP over R but not over 
Z. 

A key impetus for the development of classical complexity theory was the 
discovery (by Cook (1971) and Levin (1973)) of the existence of NP problems 
(over Z) that efficiently encode all NP problems. 

Definition. ( Y, YyesJ is NP-complete if it is in class NP and universal in the 

following sense: 
For every (Y, Yyes) in NP there is a polynomial time map cp : Y —> Y such 

that for all y in Y 

y is in Yyes if and only if (p(y) is in Yyes. 

Here <p is the efficient (i.e. polynomial-time) coding function. Thus any decision 
procedure for (Y,YyesJ can be easily converted (in polynomial time) into one 
for (Y, Yyes) of not worse complexity (up to a polynomial): To decide if y is in 
Yyes, simply encode y into Y using a polynomial time machine for <p and then 
decide if cp(y) is in Yyes. 

Thus an NP -complete problem is the "hardest" problem in the class NP ; any 
NP problem can be efficiently "reduced" to it. 

We have the following analogue over R, to the pivotal Cook Theorem (3-SAT 
is ATP-complete)12 over Z: 

Main Theorem (BSS). The 4-Feasibility Problem (4-FEAS) is NP-complete over 
the reals. 

12Cook's Satisfiability Problem is: Given a Boolean formula cp(ui,...,uk) is there an 
assignment to the variables ui,...,uk that makes the formula true? For 3-SAT the Boolean 
formulas considered are conjunctions of clauses of the form "17 or V or W". Here each 
of U, V or W is either a variable or the negation of a variable. 



A Theory of Computation and Complexity over the Real Numbers 1503 

Remarks. This theorem has a number of immediate consequences which point to 
the subtle differences between the theory of NP over the integers and over the 
reals. 

For example, over the integers it is easy to see, using a simple counting 
argument, that NP problems are decidable in exponential time (in the size of 
the instance). This is because, as noted earlier, for problem instances y , we need 
only consider guesses of size at most poly(size(y)). Over Z, there are at most 
2poiy(size(j0) s u c r i guesses, and so a perfectly good decision procedure is to check 
out each one in turn using an ATP-decision machine for the problem. 

On the other hand, over R there are a continuum number of such guesses, and 
so it is not even clear that NP problems are decidable over R, no less decidable 
in exponential time. However, by Tarski (1951), 4-FEAS is decidable over R. So 
by the NP -completeness of 4-FEAS we see that all NP problems are decidable 
over R. Moreover, (by Canny (1988) and Renegar (1988)) 4-FEAS is decidable 
in exponential time (over R),13 and so all NP problems must be decidable in 
exponential time. Thus we have the same result here over the reals as over the 
integers but now for much deeper reasons. 

The Main Theorem implies that the P = NP ? problem over R is equivalent 
to the new open problem: Is 4-FEAS in class P over R? (thus focusing our 
attention on an intrinsic algebraic-geometric problem new to complexity theory.) 
In contrast, recall over the integers, 4-FEAS is not even decidable over Z. 

The analogous NP -complete problem over the complex numbers C is related 
to an effective version of Hubert's Nullstellensatz.14 Thus, as in the case of the 
reals, the NP -complete problem here is of a fundamental nature. However, for 
the moment, these are essentially the only NP -complete problems known over 
the reals or complex numbers. 

To contrast, what makes the classical theory of NP -completeness so com
pelling has been the discovery (indicated first by the work of (Karp 1972)) of a 
large number of seemingly unrelated ATP-complete problems. A polynomial time 
decision method for one would yield polynomial time decision methods for all. 

Open Problem. Find other (seemingly unrelated) ATP-complete problems over the 
reals or complex numbers. 

The TSP is NP-complete over Z and, as remarked earlier, in class NP over R. 

Open problem: Is TSP NP-complete over R? 

Proof of Main Theorem (Idea). The task at hand is to show, for each ATP -problem 
(Y, Yyes) over R, how to encode in polynomial time any problem instance y as a 
degree 4 polynomial y over R such that : 

y is a yes-instance if and only if y — 0 has a solution over R. 

13 For related results with respect to bit complexity see (Grigor'ev and Vorobjov 1988). 
14 A machine over C is similar to one over R except at branching nodes; over C branching 
left of right will depend on whether or not a polynomial h evaluated at the current 
state x is equal to 0. The NP-complete problem over C is: Given a system f\,...,fk of 
polynomials in n variables xi,...,x„ over C, decide if there is a common solution over 
C. By Hubert's Nullstellensatz, f\,...,fk has no common solution just in case 1 is in the 
ideal generated by f\,... ,fk, i.e. if and only if 1 = a\j\ -f ... + 0/c//c for some polynomials 
fli,..., fl/c over C in the variables xi,..., x„. 
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The basic idea is to utilize the register equations for an ATP-decision machine 
for (Y, Yyes). 

First suppose M is any machine over R. Note that the assertion "M with 
input y outputs x in time T" is equivalent to asserting the system of equations 

zo = (1,1(y)), zT = (N,xT), 0(xT) = x and zk = H(zk-{) for k = 1,..., T. 

is solvable over R. We can convert (in polynomial time) this essentially semi-
algebraic system over R to a single polynomial equation of degree 4 

f(y,x,uu...,uT>) = 0 

such that the original system is solvable over R if and only if the single equation 
is. Here T' = p(J) where p is some polynomial dependent only on M. See BSS 
for details. 

Now suppose M is an ATP-decision machine for (Y, Yyes) with time bound a 
polynomial q. For y in Y let T = g(sizey). Suppose w is in R00 and size(w) = T. 
By the above we have : 

"M with input (y, w) halts with output 1 in time T" if and only if there is a 
solution to /((y,w), l,u\,...,UT>) = 0. Here T' = p(T) = p(g(size y)). 

Now we are ready to encode : For each y in Y let y be the degree 4 polynomial 
f((y,w),l,u\,...,UT') as above (having constant y and T + T' variables w = 
(w\,..., WT) and u\,..., UT>). This is a polynomial time encoding over R. 

Now by the definition of NP-problems and NP -decision machines, y is in 
Yyes if and only if: there is a w in R00 with size(w) = T such that M with input 
(y, w) halts with output 1 in time T. By the above, this holds if and only if: there 
is a solution over R to /((y,w), l,u\,...,uT>) = 0, i.e. to y = 0. 

7. Conclusion and Directions 

Since this framework is new there are a number of open problems, some of which 
have already been indicated and new directions to take. Many questions natu
rally arise concerning the relationship between the classical and new fundamental 
"P = NP ?" questions, and even whether the various possible extensions of the 
classical notion of NP (e.g. via guesses or via non-deterministic computation) 
are equivalent. (This is related to the question of whether or not the TSP is 
NP -complete over R.) Here it is proving fruitful to investigate the fundamental 
question under varying assumptions on height, computing power and branching 
criteria. (See (Shub 1990b).) In the general setting, algebraic topology is pro
viding useful tools for lower bound arguments on the topological complexity 
(i.e. branching complexity) of problems (Smale 1987; Vasiliev 1988; Levine 1989; 
Hirsch 1990). Related questions are also being pursued over other fields e.g. the 
p-adics (Bishop 1990). 

Another direction is to study questions of parallel and distributed computa
tion, as well as probabilistic algorithms, in this context. For the latter it would be 
natural to add "coin tossing" nodes to machines. Related to distributed compu
tation, Luo and Tsitstklis (1990) have recently given tight lower bounds for the 
communication complexity of several algebraic problems. 

To bring the theory closer to numerical analysis and scientific computation 
one must extend the new model of computation to incorporate notions of round
off errors, condition numbers and approximate solutions. See (Renegar 1990) 
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and (Priest 1990). Here questions of the relationship between the complexity and 
the condition of a problem arise. In this direction it would also seem natural 
to adjoin nodes to compute limits of (rapidly) converging sequences, as well as 
other reasonable functions. 

Finally there are interconnections between logic (and computation/complexity 
theory) and the theory of complex analytic dynamical systems to pursue. This is 
an intriguing direction. For example, inspired by the "degree theory" of classical 
recursive function theory, one is led to study the hierarchy of Julia sets imposed 
by various notions of relative decidability. Roughly we say a set A is decidable 
relative to a set B (A < B) if a machine with an additional node for deciding B 
(i.e. an "oracle" for B) can be used to decide A. The question then is: what is the 
resulting hierarchy? Classically, it was an open problem for a number of years (a 
variant of Post's problem) to find two semi-decidable sets of integers that were 
incomparable with respect to relative decidability. (See (Rogers 1967).) Over R, 
Chong (1990) has shown that the situation appears to be quite the opposite, at 
least for undecidable Julia sets of quadratic maps.15 Thus we ask: are there 
two comparable undecidable Julia sets? Alternatively, is there a natural way to 
increase the power of machines so that the resulting hierarchy is meaningful? 

In the opposite direction we have exploited the analog between computing 
machines and dynamical systems in our NP-completeness proofs over the reals 
(Blum, Shub and Smale 1989) and for a new proof of Gödel's Theorem (Blum 
and Smale 1990). Here the computing endomorphism is our key technical tool. 
Can we exploit this analogy further and use techniques of dynamical systems 
to better understand the nature of complexity of computations and of formal 
computing machines? In concrete form, this approach has been successfully used 
by Batterson (1990) (following Shub (1983) and Smale (1985)) for the global 
analysis of classical algorithms of numerical linear algebra. 
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Introduction 

In this paper an algorithm is described for factoring multivariable polynomials over. 
local fields. The complexity of the algorithm is polynomial in the size of input and 
the characteristic p of the residue field of the local field. As an application a 
polynomial equivalence is ascertained for the problem of constructing a basis of the 
ring of all integers of a given number field and the problem of finding square free 
part of an integer. It means that the first (respectively second) of these problems can 
be solved within polynomial time if there is an oracle for solving the second 
(respectively first) problem within polynomial time. Even the more general result is 
proved which is also valid in the case of non-zero characteristic, see Theorem 2. 

In proofs of the last results we use on the one hand the factorization of poly
nomials over local fields and on the other hand an idea which is applied for 
obtaining efficient bounds for sizes of coefficients in the Newton-Puiseux expansion, 
see [8, 7] and also Lemma 1 below. 

The present results solve in particular problems posed by H.W. Lenstra, Jr. in 
[9]. In the general case, even for one variable, earlier known algorithms required 
for factoring polynomials over local fields an enumeration exponential in the size of 
input data before applying Hensel's lemma, see [1]. Elements of local fields are 
represented as sums of infinite series. Here and below we regard a series as comput
able in time polynomial in Ax,.,., Am iff its /th partial sum S{ is computed in time 
polynomial in Au ..., Am and / for all /. Besides that, if computation of St involves 
other infinite series, then it should involve a number of initial terms polynomial in 
iandAl9.,.9Am. 

Our algorithm of the factorization uses the method of Newton's polygons for 
constructing roots of polynomials in one variable. However, in its classical form, as 
in the case when the residue field is of zero characteristic, this method does not 
succeed because of the presence of higher ramification for exlention of local fields, 
when one cannot choose in advance a uniformizing element in the extension. For 
solving the problem we use additionally expansions of a special type in the factor 
algebra modulo the polynomial under the factorization. Our algorithm is of the 
greatest interest in the case when the characteristic of the local field is zero. In the 
case of non-zero characteristic an analog of this algorithm is the classical algorithm 
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for resolution of singularities of algebraic curves over finite fields (it is also of 
polynomial complexity in the size of input and the characteristic of the finite field). 
Thus, our algorithm can be considered as a new efficient method for local resolution 
of singularities in rings which are finite over % of Fp[£], where t is an element 
algebraically independent over the field. 

Now we proceed with a more detailed statement of results. Let k, o, &, ô and n 
denote Q, TL, Qp, 7Lp and p respectively in the case of zero characteristic, and Wp(t), 
Fp[t], Fp((t)), Fp[[t]] and t in the case of non-zero characteristic .(concerning 
standard notations see [2] ). Let £ be the algebraic closure of £ and ord : & -> Q u {oo} 
the order function with respect to 7ü-adic metric on £, and ord(7c) = 1, see [1]. Let 
K' denote a finite separable extension of k, K a composite of K' and k in k over k, 
0 the subring of K of all the integral elements over o. The field K' is given over k 
by a primitive element 9 with its minimal polynomial cp G fc[Z]. Let q>1 G k\Z~\ be 
an irreducible factor of cp such that K ^ ^[Zj/^JZ)), i.e. q>i(Q) = 0 in K. Without 
loss of generality we suppose that cp G o[Z], cpx e <3[Z] and the leading coefficients 
lcz <p = lcz <px = 1. The polynomial <p1 is uniquely defined by its reduction çx = 
(Pi mod 7ur+1 e ôl%r+1ô[Z] where r = ord Resz((p, cp') is the order of the discrimi
nant of cp; see [1], chap. 4, § 3, th. 1. The polynomial <px and consequently the field 
K are given accordingly by cpx. 

Furthermore (see Remark 1 below), let TU ! be a uniformizing element of K, and 
rj e K such that k[_r(] is a maximal unramified extension of k contained in K. Let 
the minimal polynomial h for rj over k be given, and the minimal polynomial g for 
nl over k\rf]. Besides that, let h G o\Z\, lcz h = 1, g G fc[rç] [Z], lcz g = 1. Set the 
field K = k\r\, n{], O = o\y\, %{\. 

Each element XeK can be decomposed with respect to either the £-basis 
{öi}o^<deg<pl5 or the £-basis {^rcOo^Kdegft.o^deg^ or it can be expanded into the 
series YJJ>J0 t Qijrfftu aijG {0,1,..., p — 1}. And we can go from any of these three 
representations to any other within polynomial time (as it was previously defined). 

Le t /G K'[XU ..., Xn~\ be an arbitrary polynomial and 

/ - | E ( I * wO'W-Jfr 
" iu...,in \0<j<deg<p / 

where a, ah t j e o. We define the length 1(b) of the element 0 ^ ft e o as 1(b) = 
(1 + deg, b)([iôg2 p] + 1) if k = Wp(t), and 1(b) = min{s eZ:\b\< 2s"1} if k = Q. 
Set 1(0) = 1. If b G fc, b = fci/fcj, GCD(bl5 fc2) = 1 then /(h) = J(M + Zfe). T h e s i z e 

L(f) off is set tobe 

1(a) + max (1 + deg^ f)n(l + deg <p)l(aiy inJ) 
M l »n.J 

Similarly we define the size L(cp) and the sizes of other polynomials. 
Now we can formulate the main result. 

Theorem 1. (i) In time polynomial in L(f), L(cp) and p, the decomposition f = 
^Wieifi1 is constructed where f eK[Xu ..., X„] are pairwise distinct poly
nomials irreducible over the field K,l< rt s TL, I is a finite set, and 0 / A G K. 
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(ii) When n = 1 set X = Xx. Then additionally within the same time for each field 
K{ = KlX^Kf), i G J, one can construct an element r\ì e Kf with its minimal poly
nomial h{(Z) over the field K such that £[rç,-] is a maximal unramified extension 
of K contained in Kh and a uniformizing element %i of the field Kf with its 
minimal polynomial gf(Z) over the field K[rç,]. Herewith the leading coefficients 
lcz hi = lcz gt = 1 and hf E K[Z], gt e K[rç,] [Z] 

Remark 1. Note that cpî, r\, n1, h, g can be constructed in time polynomial in L(cp) 
and p by applying Theorem 1 to the polynomial cp E fc[Z] instead of / e K[X~\. 

Considering dérivâtes of polynomials Theorem 1 can be reduced to the case 
when / i s separable, i.e. when all r, = 1. Then for the case of one variable we obtain 
the following result. 

Theorem 2. Letfe Ô[X~], <p e ô\_Z], \cx f = lcz cp = 1 and the order of discriminants 
ord Resx(/ , / ' ) < ö, ord Resz(<p, cp') < 6X. Then one can construct f, rjh nh gh /?,; 
/ G /, from Theorem 1 in time polynomial in deg^ / , degz cp, ö, öx, p. 

The general plan of the proof of Theorem 1 is given in Section 1. 
Now we go to the applications. Let fc, o be the same as above, f E fc[^] a 

separable polynomial, K' = k[X~\l(f) the factor algebra, and 0' the integral closure 
of o in K'. The square free part of an element 0 ^ a E O is defined as an element 
axEo which is equal to the product of all the irreducible divisors of a in the first 
power, i.e. ax = Y[q\a Q where q E O are irreducible. 

Theorem 3. The following problems are polynomial equivalent. 
(1) For a given element a E o find the square free part a1of a. 
(2) For a given separable polynomial f E fc[^] construct an o-basis of the integral 

closure 0' of the ring o in the algebra K' = fc[^]/(/). 

In the case of non-zero characteristic of k the square free part of an element 
d 

dt 
Thus, the following statement is valid 

a E F/J[t] can be found in polynomial time by considering the derivate 

Theorem 4. The integral closure of the ring F p[ t ] in a separable algebra Fp(t) [X~]/(f) 
can be constructed within the time polynomial in deg^ / and log p. 

Note that the earlier known algorithms for constructing the integral closure 
from the statement of Theorem 4 required the time polynomial in p instead of log p. 

In the case when the characteristic of the field fc is 0 and / is an irreducible 
polynomial we obtain from Theorem 4 the next 

Theorem 5. The following problems are polynomial equivalent 
(1) For a given integer a find the square free part a± of a. 
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(2) For a given irreducible polynomial f G Q[2f] construct a Z-basis of the ring 
of all integers of the field Q[X]/( / ) . 

The polynomial reducibility of the problem (1) to the problem (2) is obtained 
easily by considering fields k(y/b) where beo. The inverse reducibility is proved 
much more difficult. Here we have the following 

Theorem 6. Let feo[X~\ be a separable polynomial with the leading coefficient 
\cx / = 1» and let be known the square free part D of the discriminant of the polynomial 
f Then within the time polynomial in L(f), one can construct an o-basis of the integral 
closure of o in the algebra k[X~\/(f). 

The description of the algorithms from Theorems 3-6 is given in Section 2. The 
whole construction is based on the algorithm of the factorization from Theorem 1 
and formulated below Lemma 1. 

Let qeobe irreducible, kq be g-adic completion of the field fc, kq an algebraic 
closure of kq, and ord, : kq -> Q u {oo} the order function with ordq(q) = 1. Further, 
let Resx(f, f) be the discriminant of the polynomial/, cha.i(o/qo) the characteristic 
of the residue field. 

Lemma 1. Let f be a polynomial from the statement of Theorem 6 and the degree 
degx / < char (o/qo). Let x1,x2ekqbe two distinct roots of the polynomial f. Then 

there exists an integer 1 < s < d e g x / for which ord J -TT^(*ì) — brf" 1 > p, i = 

1, 2, where p G (1/V)Z, V G Z , GCD(V, char(o/go)) = 1 , 1 < v < deg*/, 0 < p < 
(ord,(Res*(/, f')))/2; bub2e kq; ord, bl9 ord, b2 > 0; o r d , ^ - b2) = 0. 

An analog to this lemma (but without a restriction to deg x / ) is valid also 
in the case of zero characteristic residue fields. It was proved by the author earlier 
and it was central for obtaining of efficient bounds for sizes of coefficients in the 
Newton-Puiseux expansion, see [8]. Namely, the ith coefficient in the Newton-
Puiseux expansion can be constructed within the time polynomial in the size of 
input and il where / is the transcendence degree of the field of constants over the 
primitive subfield. The main problem here is to estimate the first coefficients till the 
stabilization of the process of the expansion, Le. the distinction of roots. Note that 
the direct methods give here, even in the case when there are no extensions of the 
constant field, an exponential or subexponential growth of sizes of coefficients. After 
the stabilization of the expansion one can apply Hensel's lemma in the ordinary way. 

The last result has many important applications. These are algorithms with 
polynomial complexity for factoring multivariable polynomials over fields of power 
and fraction-power series and also algorithms in the theory of algebraic curves: 
computing the genus of a curve, indices of ramification, uniformizing elements, the 
smooth model of a curve, etc. within polynomial time, see [7]. 
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1. Description of the Algorithm for Factoring Polynomials 
over Local Fields 

At first we reduce the problem of factoring a polynomial / G K'lX, > • • • > ^ J over 
the field K to the principle case when n = 1. Using the algorithm, for example from 
[4], one can assume / to be irreducible over K'. Applying the algorithm from [4] 
we can find an absolutely irreducible (i.e. irreducible over K') factor fx off. Herewith 
some coefficient offx is equal to 1. Besides that, see [4], we construct also the field 
K'\Z]I(^/) generated over K' by the coefficients of the polynomial fx. Here x// E 
K'\Z~\ is an irreducible polynomial in one variable. Factor \j/ over K. Let i// = 
ELe/iAf be the obtained decomposition, ij/j E X[Z], and Kt = K[X]/(i/^) the fields. 
Compute the norms f = Nki{Xl Xn)/k{Xl Xn)(fi) of the polynomials ft = 
/ i mod xj/i E Kt[Xl9 ..., XjJ for all / G I. Then / = Xlife/// ^s a decomposition 
off into irreducible factors over the field K, where 0 / A G K'. Thus, everything is 
reduced to the factorization of \f/ over K, i.e. to the case when n = 1. 

Let now n = 1, and / be a separable polynomial. Without loss of generality we 
can assume that / G 0[X~] and lc* / = 1. Construction of some imbedding which 
we are going to define is central in the proof of Theorem 1. 

It is an embedding of K-algebras 

K[xy(f) ^ n Kjixyifj) (i) 
JeJ 

where the fields Kj are weakly ramified extensions of K. More precisely, Kj = 
K ®x Kj where Kj = K[rjj, nf], ord rjj = 0, ly E K\Z~\ is a minimal polynomial for 
the element rjj over K, lcz hj = 1, flf,- = Zv(j) — n1 is a minimal polynomial for the ele
ment nj over the field K[Y\f\, GCD(v(;), p) = 1. Further, fj E K^X] is an Eisenstein's 
polynomial with respect to the field Kj9 and deg* fj = pcU), 0 < s(j) e Z. Therefore, 
fj is irreducible over the field Kj. Finally, for discriminants we have ord Res(^j, fj) < 
ord Res(/, / ' ) for all; G J. J is a finite set. 

To construct the embedding we need the Newton broken line of the polynomial 
and other notions connected with it. Now we go to their definitions. Let E = 
{0, 1,. . . , p — 1} and E1 = {Zo^Kdeg/i^1 : a{ E E} be systems of representatives of 
the residue fields of k and K respectively. Let \j/ E 0[X\ \OX \j/ = 1. We write 

* = Z Z aitUn[X", aUuEE. (2) 
0<>ie TL 0<w<degy> 

We define 

0<i<,N 0<u^degt/> 

to be an approximation to the polynomial \j/ in the ring K[X~\; 

P(il,) = {(i,u):aitU*0}. 

If a, ßE<§, a > 0 ß > 0 then we set P(\j/, a, ß) = {(/, u) E Pty) : VO*!, ut) G P(\j/) 
[ai1 + ßut ^ ai + ßü]}, 

<A*(a, ß)= Z K « mod nJX" G 0/71,01X1 
(i,u)eP(y>,a,ß) 



1514 Alexandre L. Chistov 

M*,ß)= £ aUu%\XueKlX\; 
(i,u)eP(tp,a,ß) 

VW) = {(0, deg ij/)} u {(i, u) : 3a, /»[{ft u)} = Pty9 a, j»)]} 

to be the set of vertices of the Newton broken line of \j/; 

£GM = {{{ii, "i)> (*2, u2)) G F(i/02 : 3(a, j8)[(/l5 u j , (i2, u2) G P(IA, a, ß)&u1> u2]} 

to be the set of edges of the Newton broken line off. If w = ((il5 MJ, (Z2, M2)) G E(^), 

{(iu «i), 0*2, "2)} c 0̂A> a» ß) then we define 

xjj* = tfr*(a, /?), A(w) = (Wl - u ^ i - i2) = m 

to be the coefficient of the slope of the edge w, and 0 < a(w), ß(w) E Z for which 
j8(w)/a(w) = X(w), GCD(j8(w), a(w)) = 1. 

Finally, if \j/ is not a monomial then E(\jj) ^ 0, and let w0 G £(^) be an edge 
for which l(w0) = min{À(w):wEE(il/)}, \//* = ^*o, a0 = a0G^ K) = a(w0), & = 
/?0(i/r, K) = j8(w0), a! = a1(i/r, X) be the greatest divisor of a0 relatively prime 
with p. 

These notions are defined (and we shall use them) for polynomials with coeffi
cients from an arbitrary other local field K if E and ft are fixed analogous to E1 and 
n1 in (2). 

The embedding (1) is constructed recursively with the iteration of two cases. The 
first case is when / * has two or more different roots in Wp, the second one is when 
/ * is a power of a linear polynomial. In the first case we construct an intermediate 
embedding of X-algebras 

KLXMf) <=+ u K|[*]/(/i) (3) 
leL 

where the fields Kx have the same properties as Kj above. In particular, rjx, KX, 
K> 9h Ôi = Ô[rji, 7cJ are defined. The polynomial ft* is a power of a linear one 
for every leL (in the definition of / * we change K, %u Et for Kl9 nx, Ex = 

Œ o ^ K d . , * , ^ / : «i e ^1} i n (2))-
Now we go the construction of the embedding (3). We suppose / not to be 

a monomial, and besides that, X(f, K) > 0 changing if it is necessary / for 
WieB//(*/*i). We factor/* over 0/{n±). Namely,/* = \\yerh

e
y\hy G 0/(7^) [2Q are 

irreducible, \cx hy = 1,1 < ey E Z. Let hy be a polynomial with coefficients from E1 

for which hy mod n1 = hy, rjy a root of hy in K, T^l{K'f) = n1ifhy^X and 7iy = nl 

if hy = X,Ky = K[ti79 n,], Ky = K®K Ky, n"0
o{k'f) = nl9 K'y = K[rjy, Tü0]. Set F = 

f(XiLß
0°)/4odGBf G Ky[X-]. Then F E Ô[t,y9 TC0], 1CX F = 1, F* = / \ A(F, K'r) = 0. 

The decomposition F* = (X — rj^ij/^ over the residue field of Ky is lifted by 
Hensel's lemma till F = Fy\l/y over K'y where Fy mod 7r0 = (X — rjy)

e\ Set /y = 
Fy(X/4°)4M. Then / , G KJX\ is a divisor of / , lcx fy = 1, f* = (X- rjyf> if 
r\y ^ 0. Compute all the polynomials fy = (/y)#(ord Res(/,//)/ord(7iy), Ky). Then 
there exists an imbedding X [ * ] / ( / ) <=* fly e rKylX]/(fy),™d f* = f* ifhy * X. 
To construct (3) it is sufficient now to do it recursively for fyo E K[X] with hyo = X 
(if such an element y0 exists at all). Thus, we have reduced the first case to the second 
one. 
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Consider the second case which is central. Using some double recursion for 
each / G L from (3) we construct a polynomial / G KJIX'] such that J£,[X]/(/,) ~ 
Kl [X]/(/) and either / * is not a power of a linear polynomial, or / is an Eisenstein's 
polynomial with deg / = pE{l), s(l) E Z, and it coincides with some fj from (2). 
Therefore, the second case will be reduced to the first one. 

To construct / we carry out a recursive procedure within a finite number of 
steps beginning from step 0. At step a if it is not final we construct a polynomial 
Ha+1 E K}[X\ such that lc* Ha+1 = 1, Ha+1 E Ô,[X], * , [*] / ( / , ) * K,[X]/(iffl+1), 
X(H0+U Kx) = p~E(a+1\0 < c(a + 1) e Z;c(a + 1) > e(a)ifa > 0;andH*+1 is a power 
of a linear polynomial, ord Res(Ha+1, H'a+1) < ord Res(//5 / / ) . 

Now we describe step 0. Denote x = X mod /, G X, [2f]/(/,) = A, X(f, Kx) = 
ß0/p

E > 0. We can assume without loss of generality that 

card Ej > deg /(deg / + l)/2 + 1. 

Choose 0 < vl5 v2 EZ,CE Eh such that v2 is minimal, XV2/TC/VI + ex is a primitive 
element of A over iC, with its minimal polynomial (j), and ^* is a power of a linear 
polynomial, À((/>, Kj) = p~E. Set H1 = (j). Step 0 is not final. 

We describe step a with a ^ 1. Let H = Ha, A = Kj\_X~\l(Ha), x = X mod Hfl, 
H*(£) = 0, £ G Ej, I mod TI, = Ç, N0 = pE{a), ZNQ^ = xN° E A, i / ^ be the minimal 
polynomial for ZNQ^ over Kj, lc IAN0-I

 = 1- Using recursion on N > N0 — 1 we 
construct an element ZNE A with its minimal polynomial i//N E KJ[X~], \CX \j/N = 1, 
i/^ G ÔjlX'], such that if N > N0 then ZN = ZN_! + y ^ x V where 0 < b < pc{a), 
b + WpE^ = N,yNE E j, u,bEZ. Further, XN = A(\//N, Kj) > N/pE{a); if zN is not final 
then lN = N1/p

E(a), NXEZ and ^ is a power of a linear polynomial. 
We show howto find yN E EJ. If AN_± > N/pE{a) then yN = 0^ If kR = N/pE{a) 

we find the root ÇN_t of ij/fi^. Then é ^ e Ôj/fa). Set "^ = — ^JV_1/^
b, y^ei 1 , , 

7N m o d TI, = yN . 

The process of constructing zN is finished at the element zNi for which one of two 
conditions is valid: 

(i) X(\l/N2, Kj) = NJpe{a), where e(a) > e(a), GCD(N3, p) = 1, 0 < e(a), N3EZ and 
^ 2 is a power of a linear polynomial; 

(ii) i/$2 is not a power of a linear polynomial. We have N2 < d e g / ord Res(/, / ' ) / 
(2 ord 71/). 

In both cases when (i) or (ii) is fulfilled choose 0 < vl9 v2 G Z, e E EX such that v2 

is minimal, zj£/xVl + ex is a primitive element of A over Xz with its minimal 
polynomial (/> E KJIX'], lc* (/> = 1, and X((j>, Kt) = l/LCM(pE(fl), a 0 (^ 2 , Kx)). Besides 
that in the case (i) ^* is a power of a linear polynomial and in the case (ii) ^* is not 
a power of a linear polynomial. Set Ha+1 = ^#(ord Res(/, //)/ord(7c/), Kj). 

Now let condition (i) be fulfilled. Then we set e(a + 1) = e(a). Step a is not final 
if deg Ha+1 > pE(fl+1). If deg Ha+1 = pE{a+1) then step a is final, and we set f = Ha+1. 
It is Eisenstein's polynomial. 

Let condition (ii) be fulfilled. Then step a is final. S e t / = Ha^. The polynomial 
/ * has at least two different roots in Wp. Thus, we have finished the description of 
the algorithm for constructing the embedding (1). 
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Having constructed (1) we can find all the roots of / contained in fields 
Kj[X]/(fj),j G J, using the standard method of Newton's polygons, since we know 
uniformizing elements and systems of representatives of residue fields in Kj[X~\/(fj). 
After that we can find all the irreducible factors off over K computing, for example, 
normes of linear factors. Further %x, Y\X, hx, gt are constructed for the fields j£[2f]/(/), 
i G I. These fields are subfields of Kj[X~\l(fj),j E J. So here arise only some technical 
difficulties. We have completed the description of the algorithm from Theorem 1. 

2. Constructing a Basis of the Ring of Integral Elements 
of a Global Field 

For the proof of Theorems 3-6 it is sufficient to reduce problem (1) to problem (2) 
in Theorem 3 and to prove Theorem 6. 

So let 0 / b G o. We find the square free part b^ ofb. In the case when char(fc) > 0 

it is possible to do this even without an algorithm for (2) considering —. Let 
at 

char(fc) = 0. Set 6 = y/b, K' = k(yfi), œl9 CO2E k(y/b) to be Z-basis of 0'. We 
represent y/b — c1œ1 + c2œ2; cl9 C2EZ and compute b3 = GCD(c l5 c2), ex = 
c1/b3, e2 = c2/b3. Then yjbjb\ G 0' and b2 = bjb\ is square free. Recursively we find 
the square free part ft4 of b3. Then bx = LCM(b2, fc4). 

Now we go to the proof of Theorem 6. We denote by B the set of all the 
irreducible divisors q G O of D such that 2 4- (degx f)

2 > char(o/qo) and find B by 
factoring D over Wp or the enumeration. Set <50 = D/ELe* 4-

For each ö E O we consider the localizations 0[ô) = S^O' and o(3) = 5_1o where 
S = ° \ [jq\ö Q0- We define a 5-integral basis of 0' as a family of elements of O' which 
is an o(<5)-basis of 0\òy Consider also completions in 5-adic topology oô, 0'&, kà, K'ô 

of o, O', k, K' respectively. Then col9..., œm e 0' is a <5-integral basis iff it is an o rbasis 
of 0'&. Each polynomial 0 ^ ij/ G kô[X~\ can be represented in the form 

*= Z Z fli^1*". flf..^ (4) 

where Eô = {z G Z : 0 < z < \S\} if char(fc) = 0 and Eô = {ZE Wp[f] : deg z < deg 5} 
if char(fc) = p > 0; there exists aio u =£ 0. Set ord^ \j/ = i0. Let now i/f G o^[Jf], lcz ^ = 
1. Then we define P ( ^ Pty, a, jS), ^ ( a , /»), H«, ß\ V(^), Ety\ **, ifr* = tfr*(ä, * ) , 
X = A(^, 5), a0 = a0(^, 5), j80 = ß0(ij/, ö) for (4) analogous to that as it was above for 
(2) with changing nl9 E1 for ô, Eô. Also we define ij/#(N, S) analogous to \//#(N, K). 
Further, if deg \j/ = 0, \j/ e kô we set ij/* = aiot0 mod öo G O/öO 

Lemma 2. Let î , i/rf G O[JT], le i/f = le ^ = 1, èe separable polynomials for all i G L 
Let be given coiA,...,coitmia 3-integral basis of the integral closure Oxof oink [_X~\l(\j/^ 
for every i G I. Further, let oràô(\jj — fltei ^t) > (2 deg ^ + 1) ord^ Res(i^, \j/') where 
Res(i/r, ijj') is the discriminant of \jj. Then in time polynomial in L(\j/), L(^), L(œitj), 
1 < j < mu i E I, one can either construct a ö-integral basis co1,...,comof the integral 
closure 0 of o in k[X~\l(\j/) or find a decomposition ö = ö1ö2 where Sl9 S2E O are 
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non-inversible in o. Besides that, L((o}) < P(L(\j/), L(ö)), 1 < / < m, where the poly
nomial P does not depend on ^,, cojj. 

The following lemma is an analog of Hensel's lemma. 

Lemma 3. Let \\i be a polynomial from the statement of Lemma 2, X = X(\j/, ö); 
0o, h0 E o[_X\ lc 0O = lc h0 = 1, 0o = 0o(U X), h0 = hQ(\, X), 0* = 0O(1, X)h0(\, X), 
Res(0o, h0) mod öo be inversible in o/öo. Then for every 0 < / G Z there exist poly
nomials g{i\ h{i) E o[X] such that (i) lc g® = lc /i(0 = 1; (ii) X(g(i), Ö) > X, X(h{i), 0)>X 
and the equality takes place for g{i) if g0 is not a monomial and analogously for h{l)', 
(iii) 0O*(1, X) = (0<'->)*(l, X), /7*(1, X) = (Ä«)*(l, X); (iv) ord,(iA - g(i)h{i)) > //«<#, S); 
(v) 0(O, h{i) can be found in time P(L(\j/), ö, i). 

We need one more auxiliary algorithm which uses Euclid's algorithm for finding 
GCD and dérivâtes. This algorithm has at input a polynomial / 0 G O/ôO[X~\ with 
\cx fo = l,deg(/0) < char (o/qo) for every irreducible q \ ö. It has one of three outputs: 

1) The decomposition ö = ö1ö2 where òx, ö2 E O are noninversible. 
2) The decomposition / 0 = / 1 / 2 where fx, f2 E O/òO\X~] are polynomials of 

non-zero degree lcx fx = lcx f2 = 1 and the resultant R e s ^ , ^ ) is inversible in 
o/öo, 

3) The representation f = fi where / 3 E O/ôO[X~], l c x / 3 = l, 1 < c G Z, 
f3 mod q E o/qo[X~\ are separable and X does not divide / 3 mod q for all q\b. 

Now we return to the description of the algorithm from Theorem 6. We suppose 
without loss of generality that / is not a monomial, i.e. / ^ X. Then changing / for 
Dde*ff(X/D) if it is necessary we assume X(f, D) > 0. 

For every q E B using algorithms from section 1 we find /• G O[_X~] irreducible 
over fc, such that ord, ( / - Y\ieI f) > (2 deg / + 1) ord, Res(/, / ' ) . We find also 
r\\l), n\l) E fc[2f]/(/|) h\1], g\l) analogous to r\i9 %{, h{, g{ from Section 1 with changing 
K for fc,. Then M1))mi(7iJ1))ma, 0 < m1 < deg h\1}

9 0 < m2 < deg g\1], is a 0-integral 
basis of the integral closure of o in fcpG/(/)> / G /. Applying Lemma 2 we construct 
a ^-integral basis Eq of O' for every q E B. 

Recall that <50 = -D/n^ß Q- We describe an algorithm which constructs some 
decomposition <50 = Y\je J &J where ÖJE O are non-inversible and forj E J constructs 
a ^-integral basis Ej of 0'. Then the union of families Eq, qE B\ Ej,j E J; X1 mod / , 
0 < / < deg / , is a system of generators of the o-module 0'. Using the result from 
[3] about the construction of a basis of a lattice over Z by its system of generators 
in polynomial time or the similar result for the case of non-zero characteristic we 
find the required o-basis of 0'. 

Let a non-inversible divisor ö of <50 be given. Now il is sufficient for us to describe 
an algorithm which finds either a <5-integral basis of 0' or a non-trivial decomposi
tion ö = ö1o2. Indeed, if ö0 is non-inversible then applying this algorithm to ò = ö0 

and again to the obtained divisors ö1 and b2 (if they arise) etc. we shall construct 
the required decomposition ö = Y[jejàj a n d ^-integral basises of O'. 

Our algorithm is recursive on deg(/) and under fixed degree on the maximal 
multiplicity of roots from o/qo of polynomials/* (5, X) mod q E o/qo[X] herewith 
the maximum is taken over all the roots and all irreducible q\ö. In this recursive 
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algorithm a case may occur when / = X. Then f*(ö, X) is not determined but in 
this case 0' = o and there are no difficulties. 

So let ö\öQ. At first we apply the auxiliary algorithm (see above) to the poly
nomial /*((5, X). If we have input 1) then the algorithm finishes its work. If we 
have input 2) then there exist 0O, h0 satisfying the conditions of Lemma 3 such 
that g*(l,X) = f1, h$(l,X) = f2, X = X(f,S). We use Lemma 3 for i//= f, 
i = (2 deg / + 1) orda Res(/, f')a0(ö, f) and construct g(i), h{i). We apply separately 
the algorithm described to g{i) and h{i) instead off and further use Lemma 2. 

It remains to consider input 3), i.e. f*(ö, X) = hE. At first suppose that e > 1 or 
X(f, Ö)-1 $ Z. Set Nx = deg /(deg / + l)/2 + 1, N2 = (deg f)2 + 2 and choose sub
sets Cl9 C2a Eô of Nx and N2 elements such that for them the natural through 
mappings Ct cz Eô -> o/öo -> o/qo are injective for all q\ö, i = 1,2. It is possible since 
q $ B. Let C3 = {y G Z : 1 < y < deg /} , C^ = C3x C2x Cu Q = {m} x C2 x Q . 
We shall enumerate elements of C 4 \ Q if e > 1 and Q if e = 1. 

Let (y, c2, Ci) G C4 be an arbitrary but fixed element. We compute fa G k[X~\, 
dyf 

lcx fa = 1 the minimal polynomial over fc of the element /(y)(x) = - — mod / G 
dXy 

k[X~\l(f) = K' where x = X mod / G K'. We have ^ G O{ô)[_X~\ and if y < m then 
A(^ls 5) > 0. On the other hand f(m)(x) = m\ and X(fa, Ö) = 0 for y = m. 

We compute / j 3 = LCM(a0(/, ö\ a0(fa, <*)) > 0 a n d vl5 v2, V3EZ such that 
Vi^(/, <5) + v2X(fa, (5) + v3 = l/^3;|v1 | , |v2 | , |v3 | < p3 max{A(/, ö), X(fa, ö)};v3 = 0 
if X(fa, Ö) =£ 0. Set fit = p3X(f, Ö) EZ,p2 = p3X(fa, Ö). 

When y ^ m it is fulfilled X(fa, ö) > 0, v3 = 0. We choose 0 < v2 < pt and define 
v4 = Vi - ju2, v5 = v2 + pu v6 = 0. 

When y = m it is fulfilled X(fa, ö) = 0, v3 = 0. We choose 0 < v1 < p3, v2 = 0 
and define v4 = v± + p3, v5 = 0, v6 = v3 — j ^ . 

Return to the case of an arbitrary y. We compute (/> E k[X~\, lcx </) = 1, the 
minimal polynomial over fc of the element z = xVl(/(v)(x))V25V3 + c1x

V4(/(y,(x))V9«Vfi 

+ c 2 x6 K'. The following lemma is based on Lemma 1 from Introduction. 

Lemma 4. Fix an irreducible divisor q of ö. Then there exists (y, c2, cx) G C4, among 
those which we enumerate, such that ordô Res(^, (/>') <L r = ordô Res(/, / ' ) , deg (/> = 
m = deg / , X((j), q) / 0, X((/>, q)~* e Z and 

(i) if e > 1 then either X divides </>*(q, X) or there exist more than deg h = m/s 
different roots of </)*(q, X) in o/qo. 

(ii) if e = 1 then X does not divide (/>*(q, X) and (/>*(q, X) is separable. 

Note that if fa = (f>*(ö, X) mod q # 2T then j*(q9 X) = Cmfa(XQ, C e ö/5ö. 
Lemma 4 permits either to change / for $ = ^#((2m + l)r, ö) for some (y, c2, cx) 
and continue our construction recursively or obtain some decomposition ö = ö1ö2. 

It remains to consider the case / = hE, e = 1 and X(f, o)'1 e Z. But here a 
<5-integral basis can be obtained immediately as it follows from 

Lemma 5. Let X(f, (5)_1 = e G Z, f*(ö, X) mod q be separable polynomial and X 
does not divide f*(ö, X) mod q for all q\ö. Then the family xl(xe/öy, 0 < i < e, 
0 < j < m/e, is a ö-integral basis of O'. 
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Interactive Proofs and Applications 
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1. Introduction 

Proofs whose correctness can be verified efficiently play a central role in com
plexity theory. The famous complexity class NP consists of those sets for which 
"short" proofs of membership exist. For example, the set of all satisfiable Boolean 
formulas is in NP. A short proof that a boolean formula (j) is satisfiable would be 
a truth assignment to the boolean variables which makes 0 true. Formally, NP = 
{L çz {o, 1}* s.t. 3 a polynomial time computable function fL and constant c > 0 
such that x G {0,1}" is in L if and only if 3y G {0,1}"C such that fL(x,y) = 1}. 

How about proving that there is no assignment which makes (j> true? It is 
generally believed that no short proof exists. Still, by some very recent work, we 
now know of "procedures" which can convince us quickly and beyond a shadow 
of a doubt that a formula </3 is not satisfiable. Such procedures, introduced by 
Goldwasser, Micali, and Rackoff [GMR], and in somewhat different form by 
Babai [Ba] are called interactive proofs . 

Informally, an interactive proof-system is a method by which one algorithm 
of unlimited resources, called the prover, convinces another algorithm which runs 
in polynomial time, called the verifier, of the truth of a proposition. The verifier 
may toss coins, ask repeated questions of the prover, and run efficient tests upon 
the prover's responses before deciding whether to be convinced or not. Interactive 
proofs do not yield proofs in the strict mathematical sense: the verifier may be 
incorrectly convinced with an exponentially small, though non-zero probability. 

Formally, a set L is said to have an interactive proof-system if for all x in 
L, there exists a prover that can convince the verifier that x is in L with high 
probability, and for all x not in L, no prover can convince the verifier that x is in 
L with better than negligible probability. The class IP denotes the sets for which 
interactive proofs of membership exist. 

Essentially, this procedure adds two new ingredients to the classical notion of 
proof (which can be written down and does not require active participation of 
the verifier) : randomness and interaction with the prover. 

* Supported in part by NSF Grant 865727-CCR and ARO grant DAAL03-86-k-017. 
Article was partially written while on a sabbatical in Princeton University, Computer 
Science Department. 

Proceedings of the International Congress 
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Lund, Fortnow, Karloff, Nisan [LFKN], and Shamir [Sh] show the exact 
unexpected power of adding randomness and interaction to classical proofs : a 
polynomial time verifier can be convinced of membership in L if and only if 
membership in L can be computed in polynomial space (PSPACE)2. Examples 
of problems that can be solved in polynomial space are showing that a boolean 
formula is non-satisfiable, computing the permanant of a matrix, or showing 
that a generalized geography game has a forced win. This particular list is of 
increasingly difficult "complete" problems, each as hard as a class of problems 
(Co-NP, FP, PSPACE). 

What exactly gives interactive proofs their enhanced power? Both random
ization and interaction are necessary: if the verifier did not toss coins then the 
prover could simply simulate all the moves of the verifier on his own and in
teractive proofs would be the same as the NP short proofs; in the absence of 
interaction, IP equals probabilistic polynomial time computation. The amount of 
interaction and randomness necessary is studied in [Ba, AGH, GS]. It seems that 
polynomial number of message exchanges are necessary to obtain the full power 
of interactive proofs. 

Randomness is used in a different way in interactive proofs as defined in 
[GMR] than in the Arthur Merlin games as defined in [Ba]. In Arthur Merlin 
games the verifier moves are restricted to only tossing coins and sending their 
outcome to the prover, while in interactive proofs the verifier can toss coins in 
secrecy and send the prover messages computed based on the hidden coins. It is 
this secrecy which made possible some of the early examples of interactive proofs 
(see Section 4.). Still, Goldwasser and Sipser [GS] showed that the Arthur Merlin 
games and interactive proof systems are equal in power. 

How about efficiently verifying membership in even harder sets? Ben-Or, 
Goldwasser, Kilian and Wigderson [BGKW] introduce procedures called two 
prover interactive proofs. Instead of one prover, it is two provers who jointly 
attempt to convince the verifier of the truth of a proposition. The two provers 
can decide on a common strategy before the interaction with the verifier starts, 
but once they start interacting with the verifier they can no longer communicate 
or see the messages exchanged between the verifier and the "other prover". (This is 
reminiscent of the police practice to interrogate two suspects in a crime separately. 
The consistency of the abbi is what assures the police of its correctness). The class 
IP2 denote the sets for which membership has a two-prover interactive proof. 
Babai, Fortnow, and Lund [BFL] show that IP2 equals exactly nondeterministic 
exponential time (which contains PSPACE and is known to strictly contain NP). 

The notion of interactive proof generalizes in the right way to attack a novel 
problem: how to convince a verifier of the truth of a proposition without giving 
him any extra "knowledge". For example, convince a verifier that a Boolean 
formula is satisfiable without revealing a truth assignment (or anything he can 
not compute in polynomial time). This is made precise with the introduction of 
zero-knowledge interactive proofs by Goldwasser, Micali and Rackoff in [GMR]. 
Goldreich, Micali and Wigderson [GMW] showed that every set in NP has a zero-

2 Note that polynomial space computation may take exponential time. 
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knowledge interactive proof if one way functions exist. Their result was extended 
[BGG, IY] to every set in IP. In contrast, [BGKW] show that zero-knowledge 
two-prover interactive proof exist for every set in IP2 without resorting to the 
unproven assumption of one-way functions. 

The notion of zero-knowledge has important applications to the design of 
cryptographic protocols and fault tolerant computation. 

2. Background 

2.1 Notation 

We use the symbol |x| to denote the binary length of a string x £ {0,1}*. 
Whenever we refer to picking an element out of a set at random we mean with 
uniform probability distribution. A language L is a subset of {0,1}*. We use the 
term algorithm and Turing machine interchangably throughout the paper. 

2.2 Complexity Classes 

Traditionally, efficient computation in theoretical computer science has been as
sociated with polynomial time computation. The complexity class P is defined 
to be the set of languages for which membership can be computed by a poly
nomial time algorithm. (Intuitively, these languages correspond to easy to solve 
problems.) 

In recent years probabilistic polynomial time computation has emerged as an 
alternative accepted formalism of efficient computation. A probabilistic algorithm 
is an algorithm which can toss coins as an additional primitive operation. 

A language L is said to be accepted by a probabilistic polynomial time 
algorithm M if for all x G L, the prob(M accepts x) > § ; and for all x not in 
L, the prob(M rejects x) > | . The class of languages accepted by probabilistic 
polynomial time algorithms is called BPP. (Intuitively, these languages correspond 
to problems that are easy to solve by probabilistic algorithms. 

A notable example of a problem which is in BPP but not known to be in P 
is integer primality testing. 

The class of languages in which membership can be verified by a polynomial 
time algorithm is called NP. (Intuitively, NP corresponds to the set of problems 
for which, once solved, it is easy to verify that the solution is correct.) A language 
L G NP iff there exists a deterministic polynomial time algorithm ML and 
a polynomial PL such that x e L if and only if there exists a y such that 
|y| < P L ( M ) and NÎL(x,y) accepts. 

It is generally believed that P ^ NP. An NP-complete problem is a language 
L such that L e NP and if L G P then P := NP. An example of an NP-complete 
language is the set of satisfiable Boolean formulas. 

The Polynomial Time Hierarchy (PH) was introduced to classify computa
tional problems with a more complex logical structure than NP. It is defined 
inductively as follows: (in the definition below the |y7| < polynomial(|x|) and R 
is a polynomial time computable relation.) 
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Z o P = ^ = P 

Xr+i = {L\ for some R G il,f ,L == {x|3yR(x,y)}} 

p 

nk+i = {L\ f o r s o m e R^YJ'L== {x\VyR{x>y)}} 
k 

/c>0 

A common conjecture made in complexity theory is that the hierarchy defined 
is strict and Yl ¥= Zf+i-

So far, we concentrated on the time taken by an algorithm to solve a problem 
as the "resource" in question. Alternatively, the amount of memory used by an 
algorithm can be considered. We call PSPACE the set of languages accepted by 
deterministic Turing machines which are restricted to use a polynomial in the 
length of the input amount of space. The polynomial time hierarchy is contained 
in PSPACE, as it requires only a polynomial amount of space to go through all 
possible values of the universal and existential quantifiers of a logical formula to 
evaluate if it is satisfiable even though it requires exponential time. 

3. Definitions 

3.1 Interactive Proof Systems 

Before defining notion of interactive proof-systems, we define the notion of 
interactive Turing machine. 

Definition. An Interactive Turing machine (ITM) is a probabilistic Turing machine 
which in addition to its input tape, random tape, work tape, and output tape, 
has a one read only communication tape, and one write only communication 
tape. The contents of the write-only communication tape can be thought of as 
messages sent by the machine; while the contents of the read-only communication 
tape can be thought of as messages received by the machine. 

Definition. An interactive protocol is an ordered pair of ITMs (A,B) which 
share the same input tape; 5's write-only communication tape is 4̂'s read
only communication tape and vice versa. The machines take turns in being 
active with B being active first. During its active stage, the machine first performs 
some internal computation based on the contents of its tapes, and second writes a 
string on its write-only communication tape. The z-th message of A(B) is the string 
A(B) writes on its write-only communication tape in i-th stage. The protocol is 
terminated by machine B which accepts (or rejects) the input by entering an 
accept (or reject) state. The first member of the pair, A, is a computationally 
unbounded Turing machine. The computation time of machine B is defined as 
the sum of 5's computation time during its active stages, and is bounded by a 
polynomial in the length of the input string. 
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A few parameters of an interactive protocol are of interest. The value AB (x) of 
an interactive protocol (A, B) on input x is the probability (taken over A and B's 
coin tosses) that B accepts x. The number of rounds of an interactive protocol 
(A, B) on input x is defined to be the number of message exchanges between A 
and B. The size of an interactive protocol (A,B) on input x be the total number 
of bits exchanged between A and B. 

Definition. We say that a language L c {0,1}* has an interactive proof-system if 
3 IT M V s.t. 

1. 3 IT M P s.t (P, V) is an interactive protocol and Vx e L the value(j>y)(x) > 
2 
3 -

2. V IT M P s.t (P, V) is an interactive protocol Vx ^ L the value(py)(x) < \. 
Note that it does not suffice to require that the verifier cannot be fooled by 
the predetermined prover (such a mild condition would have presupposed 
that the "prover" is a trusted oracle). 

We say that (P, V) (P for which condition 1 holds) accepts L or is an 
interactive proof-system for L. Let IP denote all languages accepted by some 
interactive proof-system. Note that NP is a special case of interactive proofs, 
where the interaction is trivial and the verifier tosses no coins. 

We say that (P, V) is a t(n)-round interactive proof-system if Vx G L, the 
number of rounds of (P, V) on input x is bounded by t(|x|), and let IP[t(n)] 
denote all languages accepted by some f(n)-round interactive proof-system. 

We say that (P, V) has error probability e if Vx G L,valueptv(x) > 1 — e, and 
Vx ^ L,yiP'valuepiiv(x) < s. 

The error probability of an interactive protocol (P, V) can be decreased to 
be exponentially small by a simulating3 protocol (Pf, V) which runs the (P, V) 
protocol independently several times in parallel. V1 accepts the input if and only 
if V accepts the input in a majority of the runs. 

Amplification Lemma 1. Let (P, V) be an interactive proof-system for L. On in
puts of length n to (P,V), let m(n) = length of messages exchanged, and g(n) = 
number of rounds, Then V polynomials k(n), 3 interactive proof system (Pf,V) for 
L with error probability < ^m, g(n) rounds and length of messages exchanged 
0(m(n)k(n)). 

3.2 Arthur Merlin Games (AM) 

Another, seemingly more restricted, proof-system was defined by Babai [Bal]. 
Babai called his proof-system an Arthur-Merlin game where Arthur corresponds 
to the verifier and Merlin corresponds to the prover. The difference with interac
tive proof-system of (GMR) is that Arthur messages consist only of the outcome 
of this coin tosses. 
3 The notion of one interactive-protocol simulating another is used throughout this paper. 
We say that protocol (Pf, V) simulates (P, V) if V can use V as an oracle and P' can use 
P as an oracle and the same language is received by (P1, V) as by (P, V). The cost of the 
simulation is the ratio of the sizes of (P', V) and (P, V). 
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An Arthur Merlin protocol (game) (M, A) on common input x is an interactive-
protocol in which A's f-th message consist of the next block of m(\x\) bits on its 
random tape (where mQ is a polynomial). The protocol is terminated by A, who 
then evaluates a polynomial time function defined over the contents of its tapes 
to decide whether to accept or reject the input x. 

Thus, Arthur can be thought of as a verifier who flips public coins which 
Merlin, the prover, can look at. 

Similarly to [GMR], Babai [Bal] defined a language L to have an Arthur-
Merlin proof-system if 3 IT M A s.t 

1. 3 IT M M s,t (M, A) is an Arthur Merlin Protocol and Vx G L, the 

value(MtA){x) > f • 
2. VITM M s.t (M, A) is an Arthur Merlin Protocol, Vx £ L, the value^M,À){x) 

< 

We say that an Arthur Merlin game (M, A) accepts L or is an Arthur Merlin 
proof-system for L if it obeys condition 1. AM will denote the set of all languages 
accepted by some Arthur Merlin proof-system, and AM[t(n)] denote the set of 
all languages accepted by a t(n) -round Arthur Merlin proof-system. 

4. Examples of Interactive Proofs 

Notation. Whenever an interactive protocol is demonstrated, we let B —> A : 
denote an active stage of machine B, in the end of which B sends A a message. 
Similarily, A —> B : denotes an active stage of machine A. 

Example 1: Quadratic Residuosity 

Let Z* = {x < n, (x,n) = 1} 
QR = {(x, n) | x < n, (x, n) and 3y s.t y2 = x mod n} 
QNR = {(x, n) | x < n, (x, n) and ßy s.t y2 = x mod n} 

We demonstrate an interactive proof-system for QNR. 
On input (x, n) to interactive protocol (A, B) : 
B —> A : B sends to A the list w\ • • • Wk where fc =| n | and 

f zfm 
\x-zf 

mod n if fof = 1 
mod n if bi = 0 

where B selected z,- G Z*,foj G {0,1} at random. 
A —> B : A sends to B the list c\ • • • c& s.t. 

_ ( Uf Wi 
Ci \ 0 o t h e 

is a quadratic residue mod n 
otherwise 

B accepts iff Vi<j<£, c\ = bi 
B interprets bt = c,- as evidence that (x,n) G QRN; while b,- ^ c/ leads him to 
reject. 

file:///x-zf
file:///0othe
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We claim that (A, B) is an interactive proof-system for QNR. If (x, n) G QNR, 
then Wj is a quadratic residue mod n iff fo,- = 1. Thus, the all powerful A can easily 
compute whether w,- is a quadratic residue mod/? or not, compute c\ correctly 
and make B accept with probability 1. If (x,n) £ QNR and (x,n) G QR then w/ 
is a random quadratic residue mod n regardless of whether b\ = 0 or 1. Thus, 
the probability that A (no matter how powerful he is) can send c/ s.t c\ — b\, is 
bounded by \ for each / and probability that B accepts is at most (^)k. 

Recognizing quadratic non-residues is in NP, but is not known to be solvable 
by probabilistic polynomial time algorithms (BPP). A short (non-interactive) 
proof that x is a quadratic non-residue modulo n is a prime factor p of n such 
that the Legendre symbol of x mod p is — 1. 

The interest of the interactive proof for QNR described above is that none of 
the prime factors of n are disclosed to the verifier during the interactive proof. In 
fact, this example was the first zero-knowledge interactive proof (see [GMR] for 
definition) known for a language not known to be solvable in polynomial time. 
This was shown by Goldwasser Micali and Rackoffin [GMR]. 

Example 2: Graph Non-Isomorphism 

The most famous interactive proof for a problem not known to be in NP is for 
the graph non-isomorphism problem. This was shown by Goldreich, Micali, and 
Wigderson [GMW]. The input is a pair of graphs G\ and G2, and one is required 
to prove that there exists no 1-1 edge-invariant mapping of the vertices of the 
first graph to the vertices of the second graph. (A mapping % from the vertices 
of G\ to the vertices G2 is edge-invariant if the nodes v and w are adjacent in G\ 
iff the nodes 71 (v) and %(u) are adjacent in G2) 

The length of the shortest (non-interactive) proof of non-isomorphism is no 
better than the best deterministic isomorphism test, i.e g°(v"los "). 

The interactive proof (A,B) on input (Gi,G2) proceeds as follows: 

B —> A : B chooses at random one of the two input graphs, Ga, 

where a,- G {1,2}. B creates a random isomorphic copy of Ga/ and sends it to A. 
(This is repeated for 1 < / < fc, with independent random choices, where fc = 
number of vertices in Gar) 

A —> B : A sends B ft G {1,2} for all 1 < / < k. 
B accepts iff ft = a,- for all 1 < 7 < fc. 
B interprets ft = a,- as evidence that the graphs are not isomorphic; while 

ft ^ a,- leads him to reject. 
If the two graphs are not isomorphic, the prover has no difficulty to always 

answer correctly (i.e., a ß equal to a), and the verifier will accept. If the two 
graphs are isomorphic, it is impossible to distinguish a random isomorphic copy 
of the first from a random isomorphic copy of the second, and the probability 
that the prover answers correctly to one "query" is at most \. The probability 
that the prover answers correctly all fc queries is < (\)k. 
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5. Equivalence of Interactive Proof Systems and 
Arthur Merlin Proof Systems 

If we review the examples of interactive-proof systems for quadratic non-
residuosity and graph non-isomorphism, we see that the ability of the verifier 
to keep his coin flips secret, and thus unable the prover to predict the correct 
answer to his questions unless the statement in question was true, was the crucial 
ingredient which made these proofs go through. Thus, the interactive proofs 
described in the example are not Arthur Merlin games. This leads to our next 
question: as Arthur is a special case of a general verifier who can not hide the 
results of his coin flips, AM is contained in IP, but is it a strict containment? 

Surprisingly, it turns out that AM = IP. Goldwasser and Sipser [GS] show 
a transformation from a general interactive proof-system to an Arthur Merlin 
protocol accepting the same language. Moreover, the transformation preserves 
the number of rounds. 

Theorem2 [GS]. V polynomially bounded t(n) > 2 AM[t(n)] = IP[t(n)]. 

In particular, the theorem implies that the graph non-isomorphism language is 
accepted by a constant round Arthur Merlin protocol. This has certain implication 
as to the complexity of graph non-isomorphism (see Section 7.2 ). 

The equivalence between AM and IP is highly convenient. It is usually 
easier to prove membership of languages using the interactive proof formulation. 
The elegant simplicity of the Arthur-Merlin games definition facilitates proving 
complexity results. 

For example, we have defined IP to allow two sided error: the verifier can err 
both when x is in the language and when x is not in the language. Goldreich, 
Sipser and Mansour [GSM] show that every L G AM[î(n)] has a one sided error 
Arthur Merlin protocol (M,A) of t(n)-rounds. Namely, when x G L, the Pr(A 
accepts x) = 1. 

6. Interaction: Essential Ingredient? 

When the verifier is deterministic it is clear that interaction does not add power 
with respect to language recognition, since the all powerful prover can anticipate 
in advance all messages of the verifier and answer them with no need for 
interaction. However, when the verifier is a probabilistic algorithm, it is an 
interesting and not fully resolved question whether more rounds of interaction 
enable a proof-system to recognize more languages. It has been shown by Babai 
[Bal], that any language which has a constant round interactive proof-system, 
has an interactive proof-system that requires only two rounds. 

Theorem 3 [Ba]. For constant c>2 AM[c] = AM [2]. 

Babai and Moran [BM] obtained a stronger result showing how the number of 
rounds can be halved . 
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Theorem 4 [BM]. For polynomially bounded t(n) > 2 AM [2t(n)] = AM[t(n) + 1]. 

The simulation technique used to prove the collapse and speed-up theorem 
result in a 0(t(n)) cost. Thus, if the number of rounds is halved a logarithmic 
number of times, the size of game grows faster than a polynomial in n. Thus, 
the speed-up theorem can not resolve the question whether for unbounded t(n), 
AM[t(n)] =AM[2]. 

One piece of evidence known in regard to this question was obtained by 
Aiello, Goldwasser, and Hastad [AGH] as follows. 

Theorem 5 [AGH]. 

Vf>gs.tg(n) = o(f(n)),3 oracle set B s.t AMB\f(n)] j= AMB[g(n)] 

This result does not imply any unrelativized conclusion, but implies that 
resolving the above question will involve proof techniques which do not relativize 
(e.g., diagonalization type arguments will not suffice). As a word of warning we 
note that quite recently a few relativized results in this field have shown not to 
hold in a non-relativized setting. See Section 8.. 

7. The Complexity of Interactive Proofs 

An interesting question is what is the complexity of language in IP in terms of 
more traditional complexity classes. For example, can a verifier be convinced that 
a Boolean formula (j) has no satisfying assignments, or that the shortest traveling 
salesman tour in a graph is bounded by integer fc? 

The answer to this question is different for interactive proofs with bounded 
(constant independent of the input) number of rounds and interactive proofs 
with polynomial number of rounds. 

We start with the case of bounded rounds. 

7.1 Bounded Rounds Interactive Proofs 

The Polynomial Time Hierarchy (PH) (see Section 2.2) was introduced to classify 
computational problems with a more complex logical structure than NP. We 
can extend the definition of ]Tf and J]f from a finite number of alternation 
of quantifiers, to a number of alternations which is a function of the input 
length. Namely, £f(n) = {L|L = {x|3yf(„)Vyf(„)_i • • -R(x,yi • •-,ym)},R G P} and 

n f = {L|L = W V ^ g ^ • • • R(x,yi • • • yt{n))},R G P}. 
It can be shown (using ideas from a proof of Lautman [L]) that membership 

in any language accepted by an interactive proof of t(n) rounds can be expressed 
as the question of satisfying a logical formula with t(n) alternation of universal 
and existential quantifiers starting with a universal quantifiers. 

Theorem 6 [Ba, AGH]. AM[t(n)] çz nf{n) for all t(n).> 2 . 
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This was shown by Babai [Bal] for t(n) = 2, and Aielo-Goldwasser-Hastad 
for unbounded t(n). The converse is not known to be true. 

An especially interesting case in question is whether languages in Co-NP = 
n f are in IP[2]. A result which may be taken as supporting a separation between 
Co-NP and IP [2] is by Boppana-Hastad-Zachos [BHZ]. 

Theorem7 [BHZ]. If Co-NP çz AM[2] => PH = \[l . 

We conclude that showing that Co-NP has bounded round interactive proofs 
would be quite hard if true. The proof of Theorem 7, however, does not carry 
over to to AM[t(n)] for the case of unbounded number of rounds t(n). 

A language is saia* to have non-uniform polynomial time deterministic (non-
deterministic) algorithms if for every size of input n, there exists a polynomial in 
n time deterministic (non-deterministic) algorithm which decides membership of 
strings of length n in the language. Non-uniform complexity has generated much 
interest in complexity theory in the last years. 

Theorem 8. Languages in IP [2] have non-uniform polynomial-time non-determi
nistic algorithms. 

7.2 The Complexity of Graph Non-Isomorphism 

The graph isomorphism problem is one of a select group of problems in NP 
which have not been classified as solvable in polynomial time, nor have been 
proven NP-complete. 

The developments regarding interactive proof-system have shed light on the 
complexity of the graph non-isomorphism problem. 

Let ISO = {graphs (Gi,G2) s.t G\ is isomorphic to G2} and Non-ISO as its 
complement. 

In Section 4. we showed that Non-ISO has a bounded round interactive proof 
an thus is in IP [2]. Combining the results above we can show the following 
conditional implications. 

Corollary 9. If ISO is NP-complete then 

1. Polynomial Time Hierarchy (PH) collapses to Yl2. 
2. Co-NP has non-uniform polynomial time non-deterministic algorithms. 

This is usually taken as evidence that ISO is not NP-complete. In general, 
showing that both a language L and its complement L are in IP [2] imply that 
either L is not NP-complete or the polynomial time hierarchy collapses and 
Co-NP has non-uniform polynomial size non-deterministic algorithms. This can 
help when trying to classify the complexity of an NP problem. An intersting NP 
problem which is not known to be NP-complete is the problem of the existence 
of a short vector in an integer lattice. It is open question whether the complement 
problem (all vectors in a lattice are bigger than a given value) is in IP [2]. 
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8. IP = PSPACE 

We saw in the previous section that bounded round interactive proofs are quite 
low in the polynomial time hierarchy. In this section, we investigate how powerful 
are general interactive proofs. 

We first bound the complexity of languages accepted by interactive proofs. 
Membership in every L G IP can be decided by some Turing machine which uses 
a polynomial amount of space and IP çz PSPACE as follows. 

Let L be in IP accepted by an interactive proof (P, V) with error probability 
e. On input x a Turing machine can in polynomial space go through all possible 
histories of communication between P and V and compute the probability that 
the verifier accepts. If this probability is greater than e, then x is in L. 

Until recently, it was not known whether the containment of IP ^ PSPACE 
is strict. In fact, only a handful of languages not known to be in NP were shown 
to be in IP. 

In December 1989, Lund Fortnow Karloff and Nisan showed that every 
language in the polynomial time hierarchy has an interactive proof system. Their 
proof used novel techniques showing how to reduce proving to the verifier the 
number of accepting computations of a non-deterministic Turing machine, to 
proving the value of polynomials of low degree over a finite field. These algebraic 
techniques are of general interest to complexity theory at large as they do not 
relati vize. 

Theorem 10 [LFKN]. PH çz j p . 

The result was announced to a few colleagues using the international electronic 
mail system. A few days later A. Shamir [Sh] closed the gap and showed that in 
fact languages accepted by interactive proofs with polynomial number of rounds 
of interaction are exactly those languages accepted in polynomial space. 

Theorem 11 [Sh]. IP = PSPACE. 

Shamir's proof shows an interactive proof for the quantified Boolean for-
mula(QBF) language defined as follows: 

QBF = {F = (Qiyi,Q2y2,Qny„,R(yu-,y,ò}, 

where R is an unquantified Boolean formula and Q\ G {3,V}}. Membership in 
any language in PSPACE can be reduced to membership in QBF. 

We briefly sketch the ideas in the proof. The idea of [LFKN] can be described 
as follows. Let L G 777f. Then, x G L if and only if F(x) = Vyi3y2 • • • 3y/cR(x,yi, 
... ,y/c) is true. (Here fc is finite, and R an unquantified Boolean formula). We can 
write an arithmetic expression F = ^ = 0 X3>2=o • • • S}fc=o &{x> >>i> •••> h)> replacing 
every Boolean variable y,- by integer variable % every logical A to arithmetic 
x, every logical -.E to 1 - E, every Vy to IIj;e{ofi}> a n d e v e r y 33> t o Zj»e{<u}- ^ 
evaluates to 0 if and only if the input x does not satisfy F. Thus in order to 
prove that x satisfies F the prover has to prove that F ^ 0. Define gyi(z) = Fyi=z 
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(evaluated F with y\ replaced everywhere by variable z). Note that since fc is 
finite, gyi (z) is a polynomial of polynomial degree in variable z. The prover sends 
the coefficients of gn (z) to the verifier. The verifier checks that the value of g 
received on z = 0,1 matches the assertion that F ^ 0. If this assertion was false, 
then it must be that the g received is not the correct polynomial, and since both 
g received and the correct polynomial are of low degree they can agree on only 
few points. Now, the verifier chooses a random value zf from some sufficiently 
large range of integers, and asks the prover to prove that the value of gyi (z

f) 
equals Fyi/Z' (F when y\ is assigned value zf. ) Since zf was chosen randomly 
among integers from a sufficiently large range, with high probability this new 
assertion is false too. The verifier and prover iterate on that until they exhaust all 
the variables yi9 and are left with a fully instanciated expression, at which point 
the verifier can verify whether the value the prover claims for it is true. 

When extending this proof to PSPACE, the number of quantifiers fc is not 
finite, and the degree of the polynomial F and the intermediate g's in the variables 
yi can be exponential! Shamir's [Sh] solution is to replace expressions of the form 
(VytR) by (Vy^y'i,-,J^-i* suchthat (y{ = y[,y2 = y'2,...,yi-i = y'i-i^i =Jt)AR/=y) 
(i.e replace each yi in R by y\ , I < i in R). This way, no variable in F will have 
higher than constant degree and the number of variables is squared. When fc 
is not finite the value of F may be doubly exponential in size, thus the prover 
will prove to the verifier that F =f= 0 modulo a prime of smaller size. The above 
procedure is modified accordingly. 

A few remarks are in order. First, the equivalence with PSPACE implies that 
IP is closed under complementation. Second, a polynomial number of rounds of 
interaction seem to be crucial for the argument used in the proofs of Theorems 10 
and 11. Showing that IP = IP[2] would imply that PSPACE = J j | \ We conclude 
that resolving the question of whether bounded round interactive proofs accept 
all of IP would settle questions complexity theorists have been struggling with 
for years. 

The current proof technique of Theorem 11 requires the prover to be PSPACE 
powerful. Possible conjectures are (1) that the ability to decide whether or not a 
Boolean formula is satisfiable does not enable a prover to convince a polynomial 
time verifier that a formula is not satisfiable (i.e membership in Co-NP complete 
languages), and (2) that the ability to count the number of satisfying assignments 
to a Boolean formula is sufficient to enable a prover to convince a verifier of 
membership in PSPACE complete languages. It seems likely progress can be 
made on these questions in near future. 

9. Multi-Prover Interactive Proofs 

Is membership in a PSPACE language the limit of what a polynomial time 
verifier can hope to be convinced of? 

Ben-Or, Goldwasser, Kilian and Wigderson [BGKW] proposed an extended 
definition of interactive proof-systems which they called multi-prover interactive 
proofs. Instead of one prover attempting to convince a verifier that x, the input 
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string, is in L, the prover consists of fc separate agents (or rather fc provers) who 
jointly attempt to convince a verifier that x is in L, The fc provers can cooperate 
and communicate between them to decide on a common optimal strategy before 
the interaction with the verifier starts. But, once they start to interact with 
the verifier, they can no longer send each other messages or see the messages 
exchanged between the verifier and the "other prover". 

As in single prover interactive proofs, the verifier is a probabilistic polynomial 
time algorithm, and can exchange upto a polynomial number of messages with 
each one of the provers (with no restriction on interleaving the exchanged 
messages) before deciding to accept or reject the input x. 

Definition. Let P], P2,-., Pk be Turing machines which are computationally un
bounded and F be a probabilistic polynomial time Turing machine. All machines 
have a read-only input tape, a work tape and a random tape. All machines share 
the same input tape. The P,'s share an infinite read-only random tape of O's 
and l's. Every P/ has one write-only communication tape and one write-only 
communication tape. V has fc write-only communication tapes and fc read only 
communication tapes. The /th write-only communication tape of V is P,'s read
only communication tape, and vice versa. Namely, on its /th communication tape, 
V writes messages to Pr. We call (P\,P2,...,Pk> V) a k-prover interactive protocol. 

Definition. We say that L cz {0,1}* has a k-prover interactive proof-system (IPS) if 
there exists an interactive probabilistic Turing machine V such that: 

1 3P\,P2,...,Pk such that (P\,P2,...,Pk, V) is a fc-prover interactive protocol and 
Vx G L, prob(F accepts input x) > | . 

2 VPi,P2,...,P/( such that (Pi,P2,...,Pk,V) is a fc-prover interactive protocol, 
prob(7 accepts input x) < | . 

We let IP/c denote the class of languages which are accepted by fc-prover 
interactive proof-systems and IP/c [£(77)] denote the class of languages which are 
accepted by fc-prover interactive proof-system using t(n) rounds. 

It can be shown that as in the single-prover case, for any fc, if L G IP/( then 
there exists an an interactive proof (P\,P2,...Pk, V) for L such that for all x G L, 
the Pr(F accepts x) = 1. The number of rounds, size, and error probability of a 
multi-prover interactive proof is defined similarily to interactive proofs. 

10. The Complexity of Multi-Prover Interactive Proofs 

Is IP* be different than IP? The hope is that the inability of the provers to 
communicate with each other will allow the verifier to check the consistency of 
the provers responses against each other. Intuitively, this additional check makes 
the verifier trust the answers of the prover more than in the single-prover case. 
This potentially may allow the verifier to be convinced of membership in harder 
languages. 
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It was shown in the original paper of [BGKW] that languages accepted by 
interactive proofs with a polynomial number of provers are equal to languages 
accepted by interactive proofs with two provers. 

Theorem 12 [BGKW]. For all k>2,ifLe IPk then L G IP2. 

Shortly after the results showing IP = PSPACE, Babai, Fortnow and Lund 
[BFL] proved that the class of languages having two-prover interactive proof 
systems is exactly nondeterministic exponential time (NEXPTIME). 

Theorem 13 [BFL]. IP2 = NEXPTIME. 

This represents a further step demonstrating the unexpected power of ran
domization and interaction in efficient provability. It follows that multiple provers 
with coins are strictly stronger than without, since NEXPTIME ^ NP. In par
ticular, for the first time, provably polynomial time intractable languages turn 
out to have "efficient proof systems" since NEXPTIME £ P. 

The first part of the proof extends the techniques of [LFKN] and [Sh] for the 
single prover case. The second part is a verification scheme for the multilinearity 
of an n-variable function held by the two provers. 

10.1 Interaction in Multi-Prover Interactive Proofs 

Unbounded number of rounds of interaction seemed necessary to realize the full 
power of interactive proofs. In contrast, work of Fortnow, Rompel and Sipser 
[FRS], Cai, Condon and Lipton [CCL], and Kilian shows that a two prover 
proof system can accept every language in /P2 using bounded number of rounds 
and achieving a constant error probability. 

Theorem 14 [FRS, CCL], kilian. For any constant e, any L G JP2 has a bounded 
round two-prover interactive proof with error probability s. 

11. Approximating the Clique Problem 

A new connection between approximation of combinatorial graph problems and 
multi-prover interactive proofs was recently discovered. 

It is well known that the Clique problem (i.e., finding the size of the largest 
complete subgraph in a given graph G) is NP-complete. However, the related 
problem of approximating this size (say within a constant factor) is not known to 
have an efficient algorithm, nor is it known to be NP-complete. The best known 
polynomial time approximation algorithm for clique is a factor O(^r^) below 
the optimal [Boppana et al.] 

Using the characterization of IP2 = NEXPTIME, Feige, Goldwasser, Lovâsz, 
and Safra [FGLS] showed the following. 
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Theorem 15 [FGLS]. If approximating the clique problem within factor 2logC"/or 
some c < 1 can be done in time 2iog " for some fc> 1 then 

1. EXPTIME = NEXPTIME 
2.NP £ \jDTIME(2io^n) 

/oo 
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1. Introduction 

We give an intuitive account of the concepts in the title, by considering the 
following simple number-theoretic example. Imagine two distant players who 
communicate by exchanging binary messages (bits). One player is given a prime 
number x, and the second a composite number y, where x,y < 2". The players' 
task is to find a prime number p, with p < 2n, such that x ^ y (mod p). The 
existence of such a small prime p is guaranteed by the prime number theorem 
and the Chinese remainder theorem. 

The players agree beforehand on a "protocol" for exchanging messages. The 
protocol dictates to each player what message to send at each point, based on his 
input and the messages he received so far. It also dictates when to stop, and how 
do determine the answer from the information received. There is no limit on the 
computational complexity of these decisions, which are free of charge. The cost 
of the protocol is the number of bits they have to exchange on the worst case 
choice of inputs. We shall be interested in the cost of the best protocol under this 
measure, which we denote by t(n). 

There is a trivial protocol in which one player sends his input to the second 
(n bits), who computes the answer and sends it (log n bits) back to the first. This 
shows that t(n) <,n + log n. 

How small can t(n) be? Is it possible that1 t(n) = 0(log n), which is (essentially) 
the trivial lower bound? At present, these trivial upper and lower bounds are the 
best known ! 

Why should anyone take the time to think about this problem, besides its 
innocently simple statement and the challenge of the exponential gap in our 
knowledge? The reason is that this information theoretic problem encodes the 
computational difficulty of primality testing! Answering it is extremely important 
for computational number theory and theoretical computer science as follows: 

* This research was partially supported by the American-Israeli Binational Science Foun
dation grant number 87-00082. 
1 For two functions f(n),g(n) we write f(n) = 0(g(n)) (resp. f(n) = Q(g(n))) if there is a 
fixed positive constant that bounds the ratio f(n)/g(n) from above (resp. from below) for 
every integer n. 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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If t(n) = O(logn), then for every n there is a polynomial (in n) size logical 
formula of n boolean variables, that evaluates to 'true' if and only if the values of 
these variables represent (in binary) a prime integer! This means that primality 
can be tested highly efficiently, both sequentially and in parallel, which has far 
reaching practical consequences (e.g. in cryptography and coding). 

If t(n) =fc 0(logn), the primality function has no such formulas, and it would 
be the first explicit example of such a function. This would resolve a close cousin 
of the P vs. NP question, which is perhaps the single most important problem 
of theoretical computer science. (In a nutshell, this question asks if there exist 
mathematical theorems whose proofs are much harder to find than to verify.) Es
sentially no progress was made on this problem since it was first posed informally 
in a letter of Godei to von Neumann in the 50s, and formulated by Edmonds, 
Cook and Levin in the 70s. 

There is nothing special about choosing the primality function. If, instead, the 
number x given to the first player is a perfect square, and y is a non-square, then 
the communication complexity t(n) of the same communication problem would 
correspond to the formula complexity of testing if an integer (given in binary) is 
a perfect square. For this problem it turns out that t(n) = O(logn). 

It is not hard to see, by a simple counting argument, that for almost all 
Boolean functions on the integers, the communication complexity is as bad as 
can be, i.e. t(n) = Q(n) (again, for input integers less than 2n), and the associated 
Boolean formulae computing them must be of exponential size. But no explicit 
example of a function requiring superpolynomial formulae size is known. 

The computational complexity of Boolean functions, in the model of Boolean 
circuits and formulae, called Circuit Complexity, was initiated by Shanon and oth
ers in the 40s. Its importance stems from the direct connection between resources 
in this model, circuit size and circuit depth (« the logarithm of formula size), 
and the "standard" resources time and space (respectively) in Turing machines. 
Non-trivial results exist mainly for restricted circuits, especially monotone (no 
negations allowed) circuits. Comprehensive texts on circuit complexity are the 
books of Wegener [W] and Dunne [D]. [BS] is a beautiful and concise account 
of the most important issues. 

The information theoretic model of Communication Complexity was introduced 
by Yao [Y] in '79. In his model the two players have to compute a Boolean 
function of their two inputs (in contrast to the "search" problem defined above). 
This model was extensively studied in the last ten years, and many significant 
questions about it were resolved. No complete survey of this area exists, but 
many of the issues and results are discussed and referenced in [BFS]. 

In 1988 Karchmer and Wigderson [KW] suggested to study the communi
cation complexity of relations (search problems), and showed how to associate 
with an arbitrary Boolean function a relation (in essentially the way described 
above), such that the circuit depth of the given function is exactly the commu
nication complexity of the associated relation. They also showed how to capture 
in a similar fashion monotone computation. This connection established that 
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computational difficulty (at least of the "depth" resource), stems from purely 
information theoretic limitations. 

The elegance of the communication model, and the existence of non-trivial 
machinary to handle it, enabled the sequence of recent lower bounds on the 
monotone circuit depth of several important functions [KW, RW2, RW1]. We 
have beleive that this approach will be instrumental in breaking the ice and 
finally obtaining a non-trivial lower bound for some explicit function on general 
(non-monotone) circuits ! 

In Section 2 we give the neccesary background from circuit complexity and 
communication complexity. In Section 3 we describe the connection between the 
two, and in Section 4 we state the lower bounds obtained via this connection. In 
Section 5 we give some concluding remarks. 

2. Preliminaries 

2.1 Boolean Functions and Circuit Complexity 

For an integer r let [r] denote the set {l,2,...,r}. The set {0,1}" will denote all 
binary sequences of length n. We interpret such a sequence as truth assignment 
to n Boolean variables xi,X2, ...,x„. These variables will encode some object, e.g. a 
number, a graph, a matrix in a natural way. Any function / : {0,1}" —• {0,1} is a 
Boolean function. We will be interested in asymptotic complexity of functions, so 
77 should be thought of as a parameter describing "input size", and the function / 
as a sequence of functions, {/„}, one for each value of n. Here are some functions 
we will deal with in this paper. Let x = (xi,X2,...,x„) G {0,1}". 

- parity(x) = 1 iff ]T"=1 x\ is odd. 
- majority(x) = 1 iff Y!!=\ > n/2-
- prime(x) = 1 iff x is the binary representation of a prime integer. 
- stconn, the st-connectivity function. Here x represents a graph (binary relation) 

on a set V, with \V\ = m, n = m2. So x can be thought of as an m * m matrix 
A with Ajj = 1 (i, j G V) iff there is a direct connection (an edge) from / to ;. 
For fixed s, t G V, stconn(x) = 1 iff there is a path from s to t in this graph 
(i.e. if s and t are related in the reflexive transitive closure of the relation A). 

- clique. Here x represents an undirected graph on m vertices, so n = m2 and 
Xij = Xß. A clique is a subset U of the vertices such that every pair of distinct 
vertices i,j G U is connected by an edge. Now clique(x) = 1 iff the graph 
represented by x has a clique of size (say) m/10. 

- matching, the perfect matching function. Again x represents an m * m matrix 
A with rows B and columns G with Abg = 1 if boy b G B and girl g G G 
are willing to be matched. Now matching (x) = 1 iff all boys and girls can be 
simultanously matched. Equivalently, matching(x) = 1 iff the permanent of 
the matrix A is positive. 

There is a natural partial order on the set of sequences {0,1}", namely for 
sequences x,y we say that x < y if for all / G [n] x,- < y,-. A Boolean function 
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/ is called monotone if f(x) < f(y) whenever x < y. For example, the functions 
majority, stconn, clique and matching above are monotone, but parity and prime 
are not. 

A Boolean circuit over {xi,X2,...,xn} is a sequence of functions gi,g2,...,gs 
such that for every k G [s] either: 

1. gk = Xi for some i G [n]. 
2. gk = Xi (the negation of xt) for some / G [n]. 
3. gk = gi V gj for some i, j < fc. 
4. gk = gi A gj for some i,j < fc. 

Functions of type 1 and 2 are called inputs of the circuit, those of type 
3 and 4 are called gates, and the last function gs is called the output of the 
circuit. Thus, a circuit computes a Boolean function of the variables in a natural 
way — its output. The size of the circuit is s, the number of functions. The 
depth is the length of the longest "path" from an input to the output. More 
precisely, the depth is defined to be d(gs), where d(gk) = 0 if gk is an input, and 
d(gk) = 1 + max(d(gi),d(gj)) if gk is a gate. 

The size of a function / , denoted s(f), is the size of the smallest circuit 
computing / . The depth of f, denoted d(f), is the depth of the shallowest circuit 
computing / . In a vauge sense which can be formalized, the size corresponds to 
the sequential time to compute / , and the depth to the "parallel" time, as well 
as space, needed to compute / . The relationship between these two fundamental 
complexity measures is far from understood. It is trivial that log s(f) <,d(f) <, s(f) 
for every function / . A nontrivial construction of Paterson and Valiant [PV] 
slightly improves the right inequality to d(f) <> s(f) / log s(f). 

If we disallow negated inputs, i.e. functions of type 2 in our circuits, it 
is clear that they can now compute only monotone functions, and indeed we 
call such circuits monotone circuits. Every monotone function can be computed 
by a monotone circuit. We let sm(f) denote the smallest size of a monotone 
circuit for / , and similarly with dm(f) for monotone depth. The same weak 
relationship between monotone size and depth as above is the best that is known. 
To summerize: 

Theorem 1 [PV]. 
log s(f)^d(f)<s(f)/log s(f) (1) 

log sm(f) <^dm(f)< sm(f)/ log sm(f). (2) 

Finally, a Boolean formula is a circuit in which every function gt- can appear 
at most once on the right hand side of type 3 or 4. In other words, in a formula 
subfunctions need to be recomputed, and thus it looks like a tree. The formula 
size of a function / , denoted L(f), is the size of the smallest formula for / , and 
similarly Lm(f) stands for the monotone formula size. The depth of a circuit and 
a formula is clearly the same. Formula size and (circuit) depth are closely related: 

Theorem 2 [Sp]. 
d(f) = ® (log L(f)) (3) 

dm(f) = 0(logLm(f)). (4) 
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2.2 Communication Complexity 

Let X, Y,Z be finite sets, and let R ç X x Y x Z be a relation. A deterministic 
communication protocol A over (X,Y,Z) specifies the exchange of information 
bits by two players, J and II, that initially receive as inputs x G X and y G Y, 
respectively. The protocol dictates who sends the first message, and how a player 
computes his next message from his input and the previously received messages. 
It also dictates when they terminate, and how they compute a value A(x,y) G Z. 
There is no limit on the complexity of these computations. 

Denote by CA(X,)>) the number of bits exchanged by / and II on the input 
pair (x,y) when using protocol A. Let CA(R) = max c,4(x,y). 

{x,y)eXxY 

We say that A computes R if for all (x,y) G X x Y we have 
(x, y, A(x, y)) G R. Then the deterministic communication complexity of the relation 
R is c(R) = min{cy4(R)|>4 computes R}. When R is clear from the context, we 
sometimes use c(Xl, Y') for the communication complexity of R restricted to the 
subdomain X' x Y'9 where X1 £ X and Yf ç= Y. 

The original model for communication complexity, as introduced by Yao [Y], 
dealt only with the computation of functions by the two players (i.e. for every 
pair of inputs there is a unique output). We accomodate this common notion of 
computing functions (rather than relations) in a natural way. If R has the property 
that for every (x,y) there is a unique z(x,y) G Z with (x,y,z) G R, then we identify 
the relation R with the function R : X x Y -> Z where R(x,y) = z(x,y). 

The main advantage in generalising the model to compute relations, is that 
now we can relate it to the circuit model. 

3. Boolean Relations and Circuit Depth 

3.1 Unrestricted Computation 

The study of relations (search problems) was initiated by [KW], who showed that 
the circuit depth of a boolean function is exactly captured by the communication 
complexity of a related relation. 

Specifically, for / : {0,1}" - • {0,1} define the relation 

by (x,y,i) G Rf iff Xi •£ y\. In words, player / gets an input x G {0,1}" with 
f(x) = 1, player II gets y G {0,1}" with f(y) = 0, and their task is to find a 
coordinate where their inputs differ. Note that this search problem is somewhat 
different than the one defined in the introduction, where the players' task was 
to find a small prime rather than a coordinate. However, this is just a matter of 
representation of integers (either binary notation or modular notation), and since 
there is an efficient conversion between the two, they are essentially equivalent. 
The heart of this research is the following theorem. 

Theorem 3 [KW]. For every function f : {0,1}" —> {0,1} we have 

d(f) = c(Rf). (5) 
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The simple proof of this theorem follows from the fact that there is a one-
to-one correspondance between formulae for / and communication protocols for 
the relation R/. We illustrate this by an example. Consider the parity function 
parity on n variables. We will assume that n is a power of two, and denote the 
complement of this function by parity. Also, for x G {0,1}", let XL,XR G {0, l}n^2 

denote respectively the left and right half-portions of the sequence x. 
A simple recursive construction of a formula for parity(x) (and parity(x) by 

de-Morgan's rules) is as follows : 

If n > 1 then parity(x) = (parity'(XL) A parity (XR)) V (parity(xL) A parity (XR)). 

If n = 1 then x is a single variable x\9 and parity (xi) = x,-. 
Reducing problem size by a factor of two costs depth two (V of A's) so this 
formula has depth 21og.n (and size n2). 

A protocol for Rparity can also be described recursively. Recall that by defini
tion player J has an odd sequence x (parity (x) = 1), and player / / has an even 
sequence y, and they want to find a coordinate where x and y differ. 
If n > 1 then player J sends the bit parity (xL) and player 77 responds by sending 
to player I the bit parity (y{). If these two bits are different, then the players can 
discard the right portion, and recursively find a coordinate in which XL and y^ 
differ. If the two bits are the same, this implies parity (XR) •£ parity (yR), and they 
can recursively continue with the right portions. 
If n — 1, then the index of this bit is the required coordinate. 
Again, with two bits the problem size is reduced by a factor of two, so the 
communication complexity is 2log«. 

Both the formula and the protocol can be viewed as binary trees. In the 
formula the boolean values propagate from the inputs to the output via the 
Boolean gates at the nodes. In the protocol the players move along the tree from 
output to leaves according to their input values. These two object are essentially 
the same, if we syntactically identify player J with tree nodes labeled by an V 
gate, and player II with the A gate. The formal proof of Theorem 3 below (in 
two lemmas) follows this simple idea. 

Lemma 4. For all functions f and all BQ,B\ £ {0,1}" such that BQ ç / - 1 (0) and 
B\ ^ / _ 1 ( 1 ) we have 

C(BuBo)<d(f). (6) 

Proof By induction on d(f). 
If d(f) = 0 then / is either xt or x*. In either case, we have that for all x G B\ 

and y G BQ, Xi ̂  yi so that i is always an answer and C(B\,BQ) = 0. 
For the induction step we suppose that / = / i A f% (the case / = / i V fi is 

treated similarly) so that d(f) = max(d(fi)9d(f2)) +1. Let BJ
0 = B0 nfy^O) for 

j = 1,2. By induction we have that C(Bi,BJ
Q) <> d(fj) for j = 1,2. Consider the 

following protocol for B\ and BQ: II sends a 0 if y G BQ, otherwise he sends a 1; 
the players then follow the best protocol for each of the subcases. We have 

C{Bl9Bo) < 1 +max(C(JJi,^)) < 1 +max(d(fr)) = d(f). (7) 
j—1>^ j—ij-^ 
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The converse is as follows, and its similar proof is omitted. 

Lemma 5. Let BQ,B\ e B„ such that BQPIB\ = 0. Then, there exists a function f 
with Bo £ /(0) and B\ ç f(l) such that 

d(f)<C(BuBQ). (8) 

3.2 Monotone Computation 

We conclude this section with the analog of Theorem 3 for monotone computa
tion. Let / : {0,1}" —> {0,1} be a monotone function, and define the relation 

Rf^f-^Vxf-'Wxln] 

by (x,y,/) G Rf iff Xi > yj. In words, player I gets an input x G {0,1}" with 
f(x) = 1, player II gets y G {0,1}" with f(y) = 0, and their task is to find a 
coordinate / where x?- = 1 and y,- = 0. The existance of such a coordinate is 
guaranteed by the monotonicity of/. This relation captures exactly the depth of 
monotone circuits for / . 

Theorem 6 [KW]. For every monotone function f : {0,1}" -> {0,1} we have 

d,n(f) = c(RJ). (9) 

The proof is essentially the same as the previous one, with a difference in the 
base case of the induction — the leaves of the tree — which is the only place 
monotone and nonmonotone computations differ. 

It is very convenient to reformulate Theorem 6 in the following way. A min
temi (or minimal 1-witness) of a monotone function / is a minimal subset S Ç [71] 
such that any input x with x,- = 1 for all / G S satisfies f(x) = 1. Let MIN(/) be 
the set of all minterms of / . It is easy to see that MIN(f) characterizes / . 

Similarly, one can define a maxterm (or minimal 0-witness) as any minimal 
subset of the variables which, if set to 0, force the function value to 0. Let 
MAX(f) denote the set of all maxterms of / . 

It is easy to see that every minterm must intersect every maxterm (otherwise / 
can be simultaniously be forced to be 0 and 1 on the same input). Also, monotone 
computation of / does not become easier if we restrict ourselves to inputs which 
are defined only by minterms and maxterms. Thus the task of the players in Rf 
turns out to be: Player J gets a minterm S G MlN(f), player II gets a maxterm 
T G MAX(f), and they must find an element of the intersection S C\T. And 
Theorem 6 becomes : 

Theorem 7. For every monotone function f we have 

rf'"Cf) = c(MIN(f),MAX(/)). (10) 
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As an example, consider the majority function on n bits, say with n = 2k — l, 
an odd number. Then 

MIN(majority) = MAX(majority) = {S G [n] : \S\ = fc}. 

Clearly, by the pigeonhole principle every minterm and maxterm intersect, 
and the players should find a member of the intersection. A recursive procedure 
similar to the one describes above yields only an upper bound of 0((logn)2) bits 
(the reader may wish to find this protocol). It is a remarkable result, which was 
given two different beautiful proofs, that one can do much better! 

Theorem 8 [AKS, V]. 
dm (majority) = 0(logn). 

Even though the same upper bound holds for the communication complexity 
of the above relation, the two proofs were given in terms of circuits. They 
are, in some inherent way, construct the circuit in a bottom-up fashion (from 
inputs to output), and it is hard to translate them into a simple protocol. In the 
remaining sections we will see that in other cases it is much easier to handle the 
communication problem, working top-down on the protocol, especially for lower 
bound purposes. 

4. Applications 

4.1 Size vs. Depth 

Shanon, who initiated circuit complexity over 40 years ago, observed that simple 
counting arguments show that most functions are difficult to compute. 

Theorem 9 [Sh]. Almost all Boolean functions on n variables f satisfy 

s(f) = Q(2n/n) (11) 

d(f) = Q(n). (12) 

On the other hand, there is no known sequence of functions (that can be 
explicitely described) / for which s(f) =/= 0(n) or d(f) =/= O(logn). Finding such a 
function is a major problem of theoretical computer science. 

With this problem seeming too difficult for present techniques, the monotone 
analoge of this problem was attacked. Nevertheless, explicit monotone functions / 
for which sm(f) is super linear or dm(f) is super logarithmic were not discovered 
till 1985. That year, in a breakthrough paper Razborov [Rl] proved a super-
polynomial monotone size lower bound on the clique function above, which is 
known to be in the class NP. 

Theorem 10 [Rl]. 
sm(clique)=nQ^n). 
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Soon after, exponential lower bounds were given for functions in NP by 
Andreev [A] and by Alon and Boppana [AB]. In particular, the later improved 
the clique lower bound to 

Theorem 11 [AB]. 

sm(c1ique)=exp(n1/6). 

These results, together with theorem 1 immediately imply a super logarithmic 
lower bound on monotone depth. 

Corollary 12. 

dm(clique) = Q(n]/6). 

As mentioned in the discussion preceding theorem 1 , it is not known if the 
logarithmic relashionship between size and depth is tight. This means that we are 
looking for a depth lower bound which is superlogarithmic in the size. The first 
application of the communication complexity viewpoint enabled to find such a 
result for the st-connectivity function, stconn. 

There is a natural monotone circuit for this function, that is based on raising 
the matrix describing the graph to the 7?ith power, by repeatedly squaring it log m 
times. Each such step takes size 0(7?13) = 0(n3/2) and depth 0(log7?i) = 0(log7i), 
so we get sw(stconn) = O(n3^2logn), and dm(stconn) = 0((log77)2) Thus, in this 
circuit, depth is quadratic in the logarithm of the size. Karchmer and Wigderson 
[KW] proved that this depth bound is optimal regardless of size. 

Theorem 13 [KW]. 

dm(stconn) = Q((logn)2). 

The proof of this theorem draws intuition from the communication protocol 
for R-slconn which corresponds to the above circuit. It uses probabilistic arguments 
to show that after 0 (log 77) bits of communication sent by the players in any 
protocol, one can interpret the remaining steps of the protocol as solving an 
s£-connectivity problem of roughly half the size. For more detail, we refer the 
reader to the original paper. We just note here, that this direction, working from 
the output of the circuit down to the inputs is natural in the communication 
complexity framework, but rare in existing circuit lower bounds. 

Together with (4) of Theorem 2, we conclude that there is a superpolynomial 
gap between circuit and formula size in the monotone model. 

Corollary 14. 

L"'(5tC07177)=77ß(l0ß"). 

We end this section by noting that it is not known if this superpolynomial 
gap can be improved to exponential (for any monotone function, not neccessarily 
explicitely given). 
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4.2 Monotone vs. Nonmonotone 

Once we are able to prove monotone lower bounds, it is interesting to ask if 
negations can help when computing a monotone function. The clique function is 
unlikely to provide the answer, as being iVP-complete, we expect an exponential 
size lower bound even for nonmonotone circuits. 

The perfect matching function match, on the other hand, has a simple poly
nomial time algorithm and therefore a polynomial size (nonmonotone) circuit. 
Razborov [R2] was able to apply his methods to this function as well, and prove 
the first superpolynomial gap between monotone and nonmonotone computation. 

Theorem 15 [R2]. 
sm(match) = nß(logn). 

The methods of Alon and Boppana [AB] which improved the clique lower 
bound to exponential failed to improve the perfect matching bound. However, E. 
Tardos [T] found that their arguments would work for another function, which 
while being very similar to clique, has a polynomial time algorithm, and thus 
established an exponential gap between monotone and nonmonotone size. 

The analogous question for depth was resolved last year by Raz and Wigder
son [RW2]. Again, the function that examplifies the gap is the perfect matching 
function match. A sequence of results on this problem and parallel algorithms 
for it led Borodin, von zur Gathen and Hopcroft [BGH] to the following depth 
upper bound. 

Theorem 16 [BGH]. 
d (match) = 0((logn)2). 

Note that the monotone depth lower bound that follows from taking the 
logarithm in Theorem 15 only matches this upper bound. However, the commu
nication complexity approach provided a depth bound which is independent of 
the size: 

Theorem 17 [RW2]. 
dm(match) = Q(m) = Q(y/n). 

The proof of this theorem utilizes the communication complexity approach 
in a different way. We show that the communication problem R%atch encodes 
another communication problem, called set disjointness. In this problem, each of 
the two players is given a subset of {l,2,...,m}, and their task is to find if these 
two subsets are disjoint or not. 

More precisely, any protocol for R^atch using c communication bits would 
lead to a probabilistic protocol for set disjointness which uses only 0(c) bits 
on average. However, a difficult result of Kalyanasundaram and Schnitger [KS] 
shows that this is possible only if c = Q(m), from which our theorem follows. 

For the exact definitions of probabilistic communication complexity, as well 
as the probabilistic reduction which establish the relationship above we refer the 
reader to [RW2]. 
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We note that a straightforward reduction from the clique to match establishes 
a better depth lower bound for clique than the one which followes from the size 
lower bound of Alon and Boppana in Corollary 12. 

Corollary 18 [RW2]. 

5. Conclusions 

dm(clique) = Q(m) = Q(y/n). 

We feel that the communication complexity approach to circuit lower bounds 
was fruitful for a few reasons. The lack of computation in that model. The ability 
to view computations top-down; this simplifies several knwon upper and lower 
bounds (see [K]). And last, but not least, the existing techniques and results for 
this model that can be used via reductions. 

This paper was not intended as a complete survey, and indeed some new results 
were recently obtained. However, there are still no nontrivial nonmonotone lower 
bounds, and we believe that the communication complexity approach will play a 
role in changing this state of affairs ! 

Acknowledgements. The work described in this paper was done in an exciting and enlight
ening collaboration with Mauricio Karchmer and Ran Raz. 
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Recent Developments in Shock-Capturing Schemes 
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Abstract. In this paper we review the development of the shock-capturing methodology, 
paying special attention to the increasing nonlinearity in its design and its relation to 
interpolation. It is well-known that high-order approximations to a discontinuous function 
generate spurious oscillations near the discontinuity (Gibbs phenomenon). Unlike standard 
finite-difference methods which use a fixed stencil, modern shock-capturing schemes use 
an adaptive stencil which is selected according to the local smoothness of the solution. 
Near discontinuities this technique automatically switches to one-sided approximations, 
thus avoiding the use of discontinuous data which brings about spurious oscillations. 

1. Introduction 

In this paper, we describe and analyze numerical techniques that are designed 
to approximate weak solutions of hyperbolic systems of conservation laws in 
several space dimensions. For sake of exposition, we shall describe these methods 
as they apply to the pure initial value problem (IVP) for a one-dimensional scalar 
conservation law 

w* + f(u)x = 0, u(x, 0) = wo W - (1.1) 

To further simplify our presentation, we assume that the flux f(u) is a convex 
function, i.e., f"(u) > 0 and that the initial data UQ(X) are piecewise smooth 
functions which are either periodic or of compact support. Under these assump
tions, no matter how smooth UQ is, the solution u(x,t) of the IVP (1.1) becomes 
discontinuous at some finite time t = tc. In order to extend the solution for t > tc, 
we introduce the notion of weak solutions, which satisfy 

d_ r 
dt Ja U 

dx + f(u(b,t))-f(u(a,t))=0 (1.2a) 

for all b > a and t k 0. Relation (1.2a) implies that u(x,t) satisfies the PDE in 
(1.1) wherever it is smooth, and the Rankine-Hugoniot jump relation 

f(u(y + 0, t)) - f(u(y - 0, t)) = [u(y + 0, t) - u(y - 0, t)] g (1.2b) 

across curves x = y(t) of discontinuity. 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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It is well-known that weak solutions are not uniquely determined by their 
initial data. To overcome this difficulty, we consider the IVP (1.1) to be the 
vanishing viscosity limit s I 0 of the parabolic problem 

(ue)t + f(u% = suß
xx ue(x, 0) = UQ(X) , (1.3a) 

and identify the unique "physically relevant" weak solution of (1.1) by 

u = limuË . (1.3b) 
6],0 

The limit solution (1.3) can be characterized by an inequality that the values 
UL = u(y — 0,t),uR = u(y + 0, t) and s = dy/dt have to satisfy; this inequality is 
called an entropy condition; admissible discontinuities are called shocks. When 
f(u) is convex, this inequality is equivalent to Lax's shock condition 

ß(uL) >s> a(uR) (1.4) 

where a(u) = f'(u) is the characteristic speed (see [8] for more details). 
We turn now to describe finite difference approximations for the numerical 

solution of the IVP (1.1). Let v* denote the numerical approximation to u(xj,tn) 
where Xj = jh, tn = m; let Vh(x,t) be a globally defined numerical approximation 
associated with the discrete values {v1-}, —oo < j < oo,n > 0. 

The classical approach to the design of numerical methods for partial dif
ferential equations is to obtain a solvable set of equations for {v1}} by replacing 
derivatives in the PDE by appropriate discrete approximations. Therefore, there is 
a conceptual difficulty in applying classical methods to compute solutions which 
may become discontinuous. Lax and Wendroff [9] overcame this difficulty by 
considering numerical approximations to the weak formulation (1.2a) rather than 
to the PDE (1.1). For this purpose, they have introduced the notion of schemes 
in conservation form: 

v]+l = v) - X(fM - 7 H ) - (Eh • v")j ; (1.5a) 

here X = xjh and fi+i denotes 

7H.j=/(«äUfi, •-,«&*); (i-sb) 

f(wi,...,W2k) is a numerical flux function which is consistent with the flux f(u), 
in the sense that 

J(u,u,...u) =f(u); (1.5c) 

EH denotes the numerical solution operator. Lax and Wendroff proved that if 
the numerical approximation converges boundedly almost everywhere to some 
function u, then u is a weak solution of (1.1), i.e., it satisfies the weak formulation 
(1.2a). Consequently discontinuities in the limit solution automatically satisfy 
the Rankine-Hugoniot relation (1.2b). We refer to this methodology as shock-
capturing (a phrase coined by H. Lomax). 
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In the following, we list the numerical flux function of various 3-point schemes 
(/c = l in (1.5b)): 

(i) The Lax-Friedrichs scheme [7] 

J(wi,w2) = jt/Xwi) +/(W2) ~j(W2- wi)] (1.6) 

(ii) Godunov's scheme [1] , 

7(wi,w2)=/(K(0;wi>w2)) ; (1.7a) 

here F(x/t;wi,W2) denotes the self-similar solution of the IVP (1.1) with the 
initial data 

t v f wi x < 0 „ _u. 
"oW = i ^ A • (1.7b) 

[ W2 x > 0 v ' 
(iii) The Cole-Murman scheme [12] : 

7(wi,w2) = 2l / (w i ) +/ (w2) - |ö(wi,w2)|(w2 - wi)] (1.8a) 

where 

{: 
(iv) The Lax-Wendroff scheme [9] : 

1 "(Wi) if W\ — W2 

m,w2) = \{f(m) +f(w2)-*a (^l±^j mw2) -f(Wi)]}. (1.9) 

Let E(t) denote the evolution operator of the exact solution of (1.1) and let 
£/, denote the numerical solution operator defined by the RHS of (1.5a), We say 
that the numerical scheme is r-th order accurate (in a pointwise sense) if its local 
truncation error satisfies 

E(T)-u-Eh-u = 0(hr+1) (1.10) 

for all sufficiently smooth u; here T = 0(h). If r > 0, we say that the scheme is 
consistent. 

The schemes of Lax-Friedrichs (1.6), Godunov (1.7), and Cole-Murman (1.8) 
are first order accurate; the scheme of Lax-Wendroff (1.9) is second order accurate. 

We remark that the Lax-Wendroff theorem states that if the scheme is con
vergent, then the limit solution satisfies the weak formulation (1.2b); however, it 
need not be the entropy solution of the problem (see [4]). It is easy to see that 
the schemes of Cole-Murman (1.8) and Lax-Wendroff (1.9) admit a stationary 
"expansion shock" (i.e., J(UL) = f(uR} with A(WL) < A(WK)) as a steady solution. 
This problem can be easily rectified by adding sufficient numerical dissipation to 
the scheme (see [11] and [3]). 
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2. Interpolatory Schemes and Linear Discontinuities 

Let us consider the constant coefficient case f(u) = au,a = const, in (1.1), i.e., 

ut + aux = 0, u(x, 0) = UQ(X) , (2.1a) 

the solution to which is 

u(x, i} = UQ(X — at). (2.1b) 

In this case the schemes (1.6) - (1.9) take the form 

K+ 
vTi= Z Ct(v)vn

j+t = (Eh-v
n)j (2.2) 

£=-K-

where v = Xa is the CFL number. The coefficients Q(v) are independent of the 
numerical solution vn ; this makes Eh a linear operator. 

We say that the numerical scheme Eh is (linearly) stable if 

|| (Eh)
n \\<C for 0 < m < T, % = 0(h). (2.3a) 

In the constant coefficient case the scheme is stable if and only if it satisfies von 
Neumann's condition 

/ = - £ -

< 1 forall 0 < £ < 7 u . (2.3b) 

It is easy to see that all the 3 point schemes (1.6) - (1.9) are stable under the 
CFL condition 

|v| = | l f l | < l . (2.3c) 

The notion of stability (2.3 a) is related to convergence through Lax's equivalence 
theorem, which states that a consistent linear scheme is convergent if and only if 
it is stable (see [13] for more details). 

Let us denote by S/" the stencil of (r + 1) successive points starting with x,-

SI = {xi, Xi+i,..., xi+r}, (2.4a) 

let P(x',S-,u) denote the unique polynomial of degree r interpolating the (r + 1) 
values of u on this stencil and let Q(x;u) denote the piecewise polynomial 
interpolation of u 

Q(x;u)=P(x; S ^ ; u) xy_i < x < x7-. (2.4b) 

We refer to the numerical scheme 

üj*1 = Q(XJ - ax\vn) (2.4c) 

as interpolatory scheme. Clearly, the interpolatory scheme (2.4) is r-th order 
accurate. When Q(x;vn) is the piecewise linear interpolation of vn (i.e., r = 
1JU) = 7 — 1 in (2.4b)) then (2.4c) is the first-order accurate upwind scheme; in 
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the constant coefficient case this scheme is identical to those of Godunov (1.7) 
and Cole-Murman (1.8). 

Next let us assume a > 0 and consider the second order case r = 2 in which 
Q(x;vu) is a piecewise-parabolic interpolation of vn. There are two different 
choices of stencil in (2.4): Taking Q in [XJ-\,XJ] to be the parabola through 
Sy2_i = {xj-\,xj,Xj+\} (i.e., i(j) = 7 — 1) results in the Lax-Wendroff scheme (1.9); 
taking g in [xj-\,xj\ to be the parabola through S2_2 = {xy-2,x;-_i,x;} (i.e., 
i(j) — j — 2) results in the second-order upwind scheme. 

We turn now to consider the application of these schemes to the step function 
H(x) 

0 x < 0 _ f 0 j <,0 
1 x > 0 ' ' H - ' ~ i l ; ^ 1 tfMH; ; t n . ^ = {5 J<ZÏ- (2.5a) 

For the first order upwind scheme we get that 

(2.5b) 

for the Lax-Wendroff scheme 

0 x < -h 
if(l + f) -h<x<0 
l - i ( l - f ) ( 2 - f ) 0<x<h 
1 h<x 

Q(x;H) = < 

for the second order upwind scheme we get that 

Q{x;H) = < 

(2.5c) 

0 x < 0 
±f(l + f) 0<x<h 
1 + i ( f - l ) ( 2 - f ) h<x<2h 
1 2/7 < x 

(2.5d) 

We observe that Q in (2.5b) is a monotone function of x; consequently the 
numerical solution by Godunov's scheme to these data is also monotone. On the 
other hand ß for the second order schemes (2.5c) - (2.5d) is not a monotone 
function. For the Lax-Wendroff scheme Q is negative in — h < x < 0 and has a 
minimum of —0.125; similarly for the second order upwind scheme Q is larger 
than 1 in h < x < 2h with a maximum of 1.125. This observation explains 
the Gibbs-like phenomenon of generating spurious oscillations in calculating 
discontinuous data with these second order schemes. 

We say that the scheme Ej} is monotonicity preserving if 

v monotone => Ej} -v monotone. (2.6) 

Clearly the numerical solution of a monotonicity preserving scheme to initial data 
of a step-function is always monotone and therefore the discontinuity propagates 
without generating spurious oscillations. 
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Godunov has shown that the linear scheme (2.2) is monotonicity preserving 
if and only if 

Q ( v ) > 0 „ - K _ < / < £ + ; (2.7) 

this implies that a monotonicity-preserving scheme which is linear is necessarily 
only first-order accurate. It took some time to realize the Godunov's monotonicity 
theorem does not mean that there are no high-order accurate monotonicity 
preserving schemes; it only means that there are no such linear ones. Hence high-
order accurate monotonicity-preserving schemes are nonlinear in an essential 
way. 

The second-order accurate schemes mentioned above are linear because the 
choice of the stencil (2.4) is fixed. Let us consider now a piecewise-quadratic inter
polation which is made nonlinear by an adaptive selection of the stencil in (2.4b). 
For the interval [x7_i,x;] let us consider the two stencils S2_2 = {xj-2,Xj-i,Xj} 
and Sj^ = {xj-i, Xj, x7+i}, and select the one in which the interpolant is smoother. 
If we measure the smoothness of u by the second derivative of the corresponding 
parabola we select 

f 7 - 2 if \£p(x;S2_2,u)\ < \&P{x;SJ_l9u)\ 
i(j) = < . (2.8a) 

^ 7 — 1 otherwise 

When we apply this selection of stencil to the step-function H(x) (2.5a) we get that 
for [x_i,xo] we choose the stencil S^_2 = {^-2,^-1,^0} for which P(x;S2

2,H) == 
0; for the interval [xi,X2] we choose the stencil S2 = {xi,X2,X3} for which 
P(x;S2,H) = 1. As is evident from comparing (2.5c) and (2.5d) it does not 
matter which stencil we assign to [xo,xi] since both parabolae are monotone 
there; with (2.8a) we select S2

{ for [xo,xi]. Thus we get in (2.4) 

0 x < 0 
Q(x,H) = { H(l + D 0<x<fc (2.8b) 

1 h<x 

which is a monotone function of x although it is actually a piecewise-quadratic 
polynomial. 

The use of an adaptive stencil is the main idea behind the Essentially Non-
Oscillatory (ENO) schemes to be described later in this paper. It extends to 
high order of accuracy in a straightforward manner: For r-th order accuracy we 
consider for [x7_i,x7] the r stencils SJ_r,Sj,_r+1,...,SjL1. We choose i(j) in (2.4b) 
to be the one which minimizes 

£p(*;tf,«) foii = j-r,...,j-l. (2.9) 
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3. Total Variation Stability and TVD Schemes 

An immense body of work has been done to find out whether stability of 
constant coefficient scheme with respect to all "frozen coefficients" associated 
with the problem, implies convergence in the variable coefficient case and in the 
nonlinear case. 

In the variable coefficient case, where the numerical solution operator is linear 
and Lax's equivalence theorem holds, it comes out that the stability of the variable 
coefficient scheme depends strongly on the dissipativity of the constant coefficient 
one, i.e., on the particular way it damps the high-frequency components in the 
Fourier representation of the numerical solution. 

In the nonlinear case, under assumptions of sufficient smoothness of the PDE, 
its solution and the functional definition of the numerical scheme, Strang proved 
that linear stability of the first variation of the scheme implies its convergence; 
we refer the reader to [13] for more details. 

In the case of discontinuous solutions of nonlinear problems, linearly stable 
schemes are not necessarily convergent; when such a scheme fails to converge, 
we refer to this case as "nonlinear instability." The occurrence of a nonlinear 
instability is usually associated with insufficient numerical dissipation which 
triggers exponential growth of the high-frequency components of the numerical 
solution. 

The following theorem states that a stronger sense of stability, namely uni
form boundedness of the total variation of the numerical solution, does imply 
convergence to a weak solution. 

Theorem 3.1. Let Vh be a numerical solution of a conservative scheme (1.5). 
0) if 

TV(vh(;t))<C-TV(u0) (3.1) 

where TV( ) denotes the total variation in x and C is a constant independent of h 
for 0 < t < T, then any refinement sequence h —• 0 with z = 0(h) has a convergent 
subsequence ly —> 0 that converges in l)°c to a weak solution 0/(1.1). 

(ii) If Vh is consistent with an entropy inequality which implies uniqueness of 
the IVP (1.1), then the scheme is convergent (i.e., all subsequences have the same 
limit, which is the unique entropy solution of the IVP (1.1)). 

We say that the scheme £/, is Total Variation Diminishing (TVD) if 

TV(Eh • v) < TV(v) (3.2) 

where 

TV(W) = X K + 1 - 4 (3.3) 
j 

Clearly TVD schemes satisfy (3.1) with C = 1 and therefore are TV stable. 
In [2] we have shown that if the scheme can be written in the form 

I7Ï+1 = v1] + C+ , A,, i vn - C~ ! A, i v" (3.4a) 
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where Cr. i satisfy for all j 
7+2 

cj^°> Ck+CM^1 <3-4b) 
then the scheme is TVD; here At+ivn = v%+l — vf. Applying this lemma to the 
general scheme 

t f 1 ^ - ^ - / , _ , ) (3.5a) 

fM = \ifj + fj+i - qj+^J+iv") (3.5b) 

we get that if Xq satisfies 

X\äj+i2\ <XqjJti_ < 1 (3.6a) 

then the scheme (3.5) is TVD; here 

3 A = (J±^ll. (3.6b) 

This shows that the Cole-Murman scheme (1.8) for which q = |ä| is TVD subject 
to the CFL restriction /l|fl;+i| < 1. 

Using conditions (3.4b) it is possible to construct TVD schemes which are 
second-order accurate in the Li-sense (see [2] and [14]). However, TVD schemes 
are at most second-order accurate (see [5]). In order to design higher-order 
accurate shock capturing schemes we introduce the notion of Essentially Non-
Oscillatory (ENO) schemes. 

4. ENO Schemes 

In this section we describe high-order accurate Godunov-type schemes which are 
a generalization of Godunov's scheme (1.7) and van Leer's MUSCL scheme [10]. 

We start with some notations: Let {Ij} be a partition of the real line; let ̂ 4(1) 
denote the interval-averaging (or "cell-averaging") operator 

A(l)-» = ±-Jw(y)dy; (4.1) 

let Wj = A(Ij)-w and denote w = {WJ}. We denote the approximate reconstruction 
of w(x) from its given cell-averages {Wj} by R(x;w). To be precise, R(x;w) is a 
piecewise-polynomial function of degree (r — 1), which satisfies 

(i) R(x;w) = w(x) + 0(hr) wherever w is smooth (4.2a) 

(ii) A(Ij) • R(-;w) = Wj (conservation). (4.2b) 
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Finally, we define Godunov-type schemes by 

vf1 = A(Ij) • E(T) • R(-; i>") s (Ë,, • y"), (4.3a) 

^ = /1(J>0 ; (4.3b) 

here E(t) is the evolution operator of (1.1). 
In the scalar case, both the cell-averaging operator A(Ij) and the solution 

operator E(x) are order-preserving, and consequently also total-variation dimin
ishing (TVD); hence _ 

TV(E/,'W)<^TV(R(sW)). (4.4) 

This shows that the total variation of the numerical solution of Godunov-type 
schemes is dominated by that of the reconstruction step. 

We turn now to describe the recently developed essentially non-oscillatory 
(ENO) schemes of [5, 6], which can be made accurate to any finite order r. These 
are Godunov-type schemes (4.3) in which the reconstruction R(x\w), in addition 
to relations (4.2), also satisfies 

TV(R(-;w)) ^ TV(W) + 0(hHp), p>0 (4.5) 

for any piecewise-smooth function w(x). Such a reconstruction is essentially 
non-oscillatory in the sense that it may not have a Gibbs-like phenomenon 
at jump-discontinuities of w(x), which involves the generation of 0(1) spurious 
oscillations (that are proportional to the size of the jump) ; it can, however, have 
small spurious oscillations which are produced in the smooth part of w(x), and 
are usually of the size 0(1?) of the reconstruction error (4.2a). 

When we use an essentially non-oscillatory reconstruction in a Godunov-type 
scheme, it follows form (4.4) and (4.5) that the resulting scheme (4.3) is likewise 
essentially non-oscillatory (ENO) in the sense that for all piecewise-smooth 
function w(x) 

TV (I,, • W) < TV(W) + 0(h1+p), p > 0; (4.6) 

i.e., it is "almost TVD." Property (4.6) makes it reasonable to believe that the 
total variation of the numerical solution is uniformly bounded. We recall that 
by Theorem 3.1, this would imply that the scheme is convergent (at least in the 
sense of having convergent subsequences). This hope is supported by a very large 
number of numerical experiments. 

Next we describe one of the techniques to obtain an ENO reconstruction. To 
simplify our presentation we assume that {7/} is a uniform partition 

7J = (Xy_i,X;), Xj =jh. 

Given cell averages {WJ} of piecewise-smooth function w(x), we observe that 

hwj = f J w(y)dy = W(XJ) - W(XJ^) (4.7a) 
Jxj-l 

where 

W(x) = f w(y)dy (4.7b) 
JXQ 
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is the primitive function of w(x). Hence we can easily compute the point values 
{W(xj)} by summation 

i 

W(xi) = h^j- (4.7c) 

Once we have computed the point values of the primitive function we use the ENO 
interpolation technique (2.4), (2.9) to obtain Q(x;W), an r-th order piecewise-
polynomial interpolation of W, i.e., 

Q(x; W) = P(x;Sl'U), W) for x ;_i < x < Xj (4.8a) 

where P(x;S-, W) is the unique r-th degree polynomial which interpolates W 
over the stencil S- = {xi,Xi+i,...,xi+r}, and i(j) is chosen so that 

£*(*;% ̂  mm 
j-r<,i<>j-\ 

&(*&•*) (4.8b) 

We define R(x;w) by 

R(x;w) = ^ ß ( x ; ^ ) . (4.9) 

We observe that if w(x) is smooth in (XJ_I,X ;) then for h sufficiently small the 
algorithm (4.8b) will select a stencil Sfa in which w(x) is smooth. It follows then 
from standard interpolation theorems that 

R(x;w) = ^P(x;S?u), W) = j-W + 0(U) = w(x) + 0(W) (4.10) 

which is property (4.2a). Furthermore (4.10) holds in every interval except for 
those in which w(x) has a discontinuity. As we have seen in the examples 
(2.5) and (2.8b) the Gibbs-phenomenon is associated with intervals near the 
discontinuity and not with the interval that contains the discontinuity. This is 
why the reconstruction (4.8) - (4.9) satisfies the ENO property (4.5); in [2] 
we show that the second-order accurate ENO scheme is actually TVD. The 
conservation property (4.2b) follows directly from the definition (4.9) : 

A(Ij)R{-;w) = ^ T j^Q{x; W)dx = ^[Q{xf, W) - Q(xHi;W)] 

X/_I (4.11) 

= ~[W(xj)-W(xj_l)]=Wj. 

The abstract scheme (4.3) can be written in the standard conservation form 
(1.5). To do so let us denote by v(x, t) the solution in the small of the IVP 

{ v(x,0) = R(x;vn) v ' 

and integrate this PDE over Ij x [0, T] ; using the divergence theorem and (4.2b) 
we get that vn+l in (4.3) can be expressed by 

ü;"
+1 = ^ - l ^ + i - / H ] (4.13a) 
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where 

fM = l- f f(v(xj,t))dt (4.13b) 
" Jo 

In the first-order case the scheme (4.13) is identical to Godunov's scheme and the 
numerical flux (4.13b) can be expressed in a closed form by (1.7b). For higher 
order schemes we use a numerical flux which is an appropriate approximation to 
(4.13b) (see [6] for more details). 

We remark that the ENO schemes are related to the interpolatory schemes of 
Sect. 2 as follows : In the constant coefficient case a fixed choice of stencil (i.e., 
i(j)—j — constant in (4.8a)) results in the interpolatory scheme (2.4) corresponding 
to the same choice of stencil. 
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Undirected Multiflow Problems and Related Topics -
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Institute for System Studies, Academy of Sciences of USSR, 9, Prospect 60 Let Oktyabrya 
117312 Moscow, USSR 

Abstract. A multiflow (multicommodity flow), arising as a natural extension of 
the well-known notion of a network flow, is a popular object studied in linear 
programming and combinatorial optimization. We discuss some recent results on 
undirected multiflow problems and ideas behind them, concerning combinatorial 
and computational aspects, such as: (i) the existence of feasible and optimal 
solutions with small denominators, (ii) special solvabilility criteria and minimax 
relations, (iii) efficient solution algorithms, (iv) a relationship between multiflows 
and packings of cuts and metrics, and some others. 

1. Preliminaries 

Fractionality. We start with some basic notion. Suppose that Jf is a collection (a 
class) of linear programs P of the form : (i) find x G Q" satisfying Ax < b (the 
feasibility problem), or (ii) maximize (or minimize) cTx subject to Ax <; b, x e Q" 
(the optimization problem), where A is an integral m x 77-matrix and b (c) is an 
integral m-vector (n-vector). Define the fractionality cp(P) of P to be the minimum 
positive integer k for which P has a rational feasible (optimal) solution x such 
that kx is integral; if P has no feasible (optimal) solution, we put cp(P) := 1. The 
fractionality <p(Jf) of Jf is defined as sup{<p(P)|P e Jf); if (p(Jf) =°owe say 
that X has unbounded fractionality. 

In combinatorial applications, a class Jf usually describes the linear program
ming relaxation of a certain combinatorial problem, and determining cp(Jf) c a n 

be rather difficult. For example, let AQ be the {0, l}-matrix whose rows correspond 
to the edges e G £ of a graph G = (V,E) and the columns are the incidence 
vectors of the perfect matchings M ç E in G, that is, each vertex of G is covered 
by exactly one edge of M. Then the well-known conjecture of Berge-Fulkerson 
[Fu2] (cf. [Se3]) that "any bridgless cubic graph G can be covered by six perfect 
matchings so that each edge is covered twice" is equivalent to the assertion that 
(p(Jf) = 2 where Jf is the set of programs maxll^x^cx < l,x > 0} for such Gs 
(actually it is even unknown whether cp(Jf) is finite). 

Flows and Multiflows. We shall deal only with undirected flows and multiflows. 
By a graph we mean a finite undirected graph without multiple edges and loops; 
an edge {u, v} will be denoted by uv. 

Consider a network N = (G,H,c) consisting of a (supply) graph G = (V,E), 
a (demand) graph H = (T,U) with T £ V and a nonnegative integer-valued 
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vector c e Z j (of edge capacities) ; we suppose that each vertex of H is covered 
by an edge. A n s - t chain in G is a subgraph L = (VuEL) of G with VL = 
{s = VQ, vi,..., vm = t} and EL = {iro+i |i = 1,..., m}. Define Ä' := if (G, H) to be 
VJstexj££(G, st) where if (G, st) is the set of s — t chains in G. A multiflow in JV is a 
nonnegative rational-valued function / on if satisfying the capacity constraints : 

£/(*) := ]£(/(L)|L e if, e G EL) ^ c(e) for all e G E. (1) 

For st e U the restriction /st of/ to J?(G,st) is called a ./tow between s and £ of 
value v(fst) := £(f(L)|L G J2?(G,rt)). The tota/ value v(f) of / is £s tG[/ t;(fÄ). 

Three types of problems on multiflows are well-known. 

(2) Demand problem, D(G,H,c,d): given a vector d G Z+ (of demands), find f 
satisfying t;(/*st) = d(s£) for all st e U (or establish that such an / does not 
exist). 

(3) Maximization problem, M(G, H, c) : find / with v(f) maximum (a maximum 
multiflow). 

(4) Minimum coat multiflow problem, M(G,H,c,a): given a vector a G Z+ (of 
edge costs), find a maximum multiflow / whose total cost Y*eeE a{eW{e) *s 

minimum (clearly this is reduced to a linear program). 

An obvious necessary condition of solvability of (2) (that is, the existence of 
a required /) is the cut condition 

A(c,d,X) := c(öG(X)) - d(öH(X n T ) ) > 0 for all X s V, (5) 

where d(Xf) = ÒQ>(Xf) denotes the set of edges of a graph G' = (V!,Ef) with 
one endvertex in X1 £ V' and the other in V \ X! (a "cut" in G'); and for 
d G Q£ and E" s E', c'(£") stands for £(c'(e)|e e E"). When |t/| = 1 
(2)-(4) are specified to be the classical (single-commodity) demand, maximum 
and minimum cost maximum flow problems. Well-known results on flows are 
that if \XJ\ = 1 then: (i) (5) is sufficient for solvability of (2), and (ii) (2) has 
an integral (feasible) solution whenever it is solvable [Me, FF]. Similarly, if 
|U| = 1 then (3) and (4) have integral optimal solutions. This can be written 
as cp(D(H)) = (p(M(H)) = <p(C(H)) = 1 for |17| = 1, where D(H) is the set of 
problems D(G,H,c,d) with fixed H and arbitrary G, c and d; M(H) and C(H) 
are defined in a similar way. 

When G and H vary, determining cp(P) for an "individual" problem P in (2), 
(3) or (4) seems to be rather difficult. However, as we shall see in Sects. 2-5, this 
task has been successfully accomplished for many classes D(H), M(H) and C(H). 
In particular, the values q>(C(H)) have been found for all H, and there is only 
one H for which cp(D(H)) is still unknown. In Sect. 5 results on the fractionality 
for planar supply graphs G are discussed. For some other results on multiflows 
see [Fr]. 

The cut condition (5) gives a special solvability criterion for (2) in the case 
\U\ = 1. This is equivalent to the minimax relation "the maximum value of a 
flow between vertices s and t is equal to the minimum capacity c(ö(X)) of a cut 
ö(X) separating s and t" (ö(X) separates s and t if \X (1 {s, t}\ = 1). We shall see 
that the bounded fractionality behaviour for D(H) or M(H) with other H's is 
also accompanied by appearance of certain special solvability criteria or minimax 
relations. 
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As to computational aspects, we are not going to present here a survey of 
various approaches developed to solve multiflow problems. The purpose is only 
to outline the idea of one general approach, the so-called "splitting-off " method. 
By applying this method one can prove constructively the existence of an integral 
or half-integral solutions for certain "difficult" problems of type (2) and (3), and 
develope efficient algorithms to solve them. Apparently splitting-off techniques 
appeared originally in [RW] in connection with the two-commodity flow problem. 

Complexity. We briefly recall the notions of polynomial and strongly polynomial 
algorithms. For details, see, e.g., [GJ]. An algorithm is said to be polynomial if its 
running time (the number of bit operations) is bounded by a polynomial in the 
input size of the problem (the input size is the number of bits occurring in the 
input). Speaking of a strongly polynomial algorithm, one means that the input 
consists of two parts. The first part describes a "combinatorial structure", and 
the second part is a list of "numerical data". The dimension of the input is the 
amount of bits in description of this structure plus the amount of numerical 
data. For instance, the input size of D(G,H,c,d) is 0 ( |F | 2 + YsceE l°g2(c(ß) + 
1) + ^ log2(rf(w) + 1)) while its dimension is 0(|F|2). A polynomial algorithm 
is strongly polynomial if, roughly speaking, it consists of elementary arithmetic 
operations and data transfers, the number of these operations is bounded by 
a polynomial in the dimension of the input, and the size of data arised in the 
algorithm is polynomially bounded in the input size. 

Remarks, (i) The above definition of a flow in the "edge-chain" form is known 
to be equivalent to the usual "node-edge" definition of a flow as a function on 
directed edges satisfying conservation conditions [FF]. The first form is preferable 
for us to explain some combinatorial ideas and methods. Though this form leads 
to appearance of constraint matrices for (2)-(4) with possibly exponential in \V\ 
number of columns we support explicitly only chains ("columns") with non-zero 
values of a multiflow; this provides efficiency of algorithms mentioned below. 

(ii) The problems (2)-(4), being stated in the node-edge form, can be solved by 
general-purpose polynomial algorithms like the ellipsoid method [Kh]. Moreover, 
there are polynomial algorithms of finding a basis solution [GLS] and even, by 
a method of Tardos [Ta], strongly polynomial algorithms (since the constraint 
matrix has entries 0 ,1 , -1 , and hence its size is polynomially bounded in \V\). 
However these general methods do not guarantee (at least for the problems (3) 
and (4)) that the denominators of the obtained (optimal) solution will not exceed 
the fractionality of a problem; this will be explained in Sect. 3. 

Related Problems. There is a special kind of duality between multiflows and 
packings of cuts or metrics. This can be illustrated by the following example. 
Let / G 7J\ be a vector (of edge lengths) associated with a connected graph 
G = (V,E). A simple fact is that for s,i G V there exist cuts ö(X\),...,ö(Xjc) in 
G such that: (i) \{i\e G ö(Xj)}\ < 1(e) for all e G E, and (ii) \{i\ö(Xj) separates s 
and t}\ = dist/(s, t). Here dist/(w,i;) is the minimum /-length ]T)(/(e)|e G EL) of an 
s — t chain L in G. The problem of determining cuts satisfying (i)-(ii) is dual, in 
a sense, to (2) with U = {st}. In Sect. 6 we discuss similar problems on cuts and 
metrics and their relation to multiflows. 



1564 Alexander V. Karzanov 

2. Demand Problem 

Applying Farkas' lemma to (2) and making simple transformations one obtains 
the following metrical criterion [Lo2]: D(G,H,c,d) is solvable if and only if 

]T c(e)m(e) - ^ d(u)m(u) > 0 (6) 
eeE ueu 

holds for each metric monV such that 

m is primitive and has an extremal graph T with Er ^U. (7) 

Here by a metric on V we mean a nonnegative rational-valued function m on the 
set of unordered pairs in V satisfying m(xx) = 0 and m(xy) + m(yz) > m(xz) for 
any x,y,z e V (we use the term "metric" rather than "semimetric"); m is called 
primitive if mf-\-m" = m, where m! and m" are metrics, implies m' = Xm for some X; 
an extremal graph of m is a minimal graph F = (Vr,Er) with Vr ^ V such that 
for any distinct u,v e V there is s£ G Er for which m(st) = m(su) + m(uv) + m(vt). 

We say that a metric m on V is induced by a graph Q = (VQ, EQ) if there is a 
mapping <r from V onto VQ such that for u, v G V, m(uv) is equal to the distance 
in Q between cr(u) and G(V). A simplest example of a primitive metric gives that 
induced by the graph K2, called the cut metric (Kp is the complete graph on p 
vertices). Clearly, for a cut metric (6) turns into the inequality in (5). 

Papernov found the complete list of demand graphs H such that for all G 
any metric m as in (7) is a cut metric. By the argument above, this describes the 
set of H for which the cut condition (5) gives a criterion of solvability of (2). 

Theorem 1 [Pa]. Suppose that H is either K4 or Cs or a 2-star. Then (2) is solvable 
if and only if (5) holds. For any other H there are G, c and d such that (5) holds 
but (2) has no solution. 

(Here C5 is the circuit on 5 vertices, and a graph is called a p-star if there 
are at most p vertices in it covering all edges.) Theorem 1 says nothing about 
numbers <p(D(H)) for H occurring in it. This number gives another theorem, due 
to Lomonosov, which extendes results in [Hu, RW, ADK, Se4]. We say that a 
vector (c,d) is Eulerian if c(öo(X)) + d(òu(X n T)) is even for every X ^ V. 
Clearly (p(D(H)) < 2(p(De(H)) where De(H) is the set of problems in D(H) with 
Eulerian (c,d). 

Theorem 2. [Loi, Lo3]. If H is as in Theorem 1, (c,d) is Eulerian and (5) holds 
then P = D(G,H,c,d)) has an integral solution, that is, cp(De(H)) = 1. 

Theorem 2 implies that cp(D(H)) < 2 for H as above (actually q>(D(H)) = 2 
unless H is a 1-star). There are strongly polynomial algorithms to find a half-
integral or integral (in the Eulerian case) solution when H is a 2-star [Chi, Se2] 
or H G {K4, C5} [Kai]. These algorithms exploit, in essence, augmentation tech
niques that construct a solution starting with zero multiflow. We now explain how 
to derive Theorem 2 directly from Theorem 1 by use of splitting-off operations, 
as shown in [Ka6, Sc3]. 

Suppose that (5) holds. Then, by Theorem 1, P has a solution / . One may 
assume that d ^ 0, c(e) > 0 for all e G E, and st g E whenever st G U. For a 
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pair TI = {uv,vw} of edges of G let a = a(n) < min{c(uv), c(vw)} be the maximum 
rational for which D(G',H,c',d) is still solvable, where Gf and c' arise from G 
and c by decreasing c(uv) and c(vw) and increasing c(uw) by a (if uw £ E we add 
the edge uw of capacity a); this operation is called splitting off n by a. Let n be 
chosen so that a is maximum. If a > 1 we split off n by 1, obtaining a "simpler" 
solvable problem D(G',H,c",d) for which (c",d) is again Eulerian, and the result 
follows by induction. But if a < 1 then, by Theorem 1, there is X £ V such that 
A" := A(df,d,X) < 0 (A(-,-,X) is defined in (5)). Since A := A(c,d,X) and zl" 
are even, zl > 0 and, obviously, c(ö(X)) — c"(apÓ) < 2, we have zf = 0, whence 
a = 0. This implies f = 0, and hence d = 0; a contradiction. 

The above proof can be transformed to a strongly polynomial algorithm as 
follows. Choose a vertex i; G F of the current network (G, i / , c), consider pairs 
% = {uv,vw}, one by one, and split offn by La(7c)J. If v G 7 \ T , remove i> from G. 
Repeat the same for a new vertex */, and so on. As a result, one eventually gets 
G = (V,Ë) and c such that V = T and c(e) > d(e) for e € U. Now a required 
multiflow in the original network is constructed in a natural way by using the 
obtained numbers a. One shows that calculation of a(n) can be reduced to solving 
0(1) minimum cut problems. This provides a strongly polynomial algorithm. 

Now let T\ + ... + rp denote the graph that is the union of disjoint graphs 
r\,...,rp. For H = K2 + K2 + K2 and arbitrary k G Z + one can construct 
a solvable problem (2) of fractionality at least k [Loi, Lo3]. This and simple 
observation that if H' is a subgraph of H then cp(D(H!)) < cp(D(H)) imply the 
following result. 

Theorem 3. If H contains a matching of 3 edges then (p(D(H)) = 00. 

The only graphs different from those in Theorems 2 and 3 are: (i) certain 
subgraphs of K5, (ii) the union of Ki and a 1-star, (iii) K3 + K3. The case (ii) is 
easily reduced to (i). The following theorem generalizes Theorem 2. 

Theorem 4 [Ka6]. If H = K5 then cp(De(H)) = 1. 

The proof of this theorem given in [Ka6] and based on splitting-off techniques 
is rather complicated. First, one shows that a metric satisfying (7) for H = K5 

is either a cut metric or a metric induced by ^2,3, called a 2,3-metric (KM is the 
complete bipartite graph with parts of p and q vertices). Thus (2) is solvable if 
and only if (6) holds for all cut metrics and 2,3-metrics on V. Second, unlike 
the proof above (when a = a(7c) is always an integer), in our case a can take 
half-integer values; in particular, a = 1/2 is possible (in which case the "obstacle" 
m violating (6) after splitting off n by 1 is a 2,3-metric). The core of the proof is 
to show, using combinatorial properties of 2,3-metrics, that if a(n) < 1 for all n 
then a is 0 everywhere. 

This proof also can be turned into a strongly polynomial algorithm (however, 
using the ellipsoid method). To get such an algorithm, one shows that determining 
a(n) is reduced to solving 0(1) problems P: given d G Z^ and a metric o on 
T that is either a cut metric or a 2,3-metric, find a metric m on V such that 
777 coincides with Q on T and ^(d(e)m(e)\e G E) is minimum. The size of the 
constraint matrix for P is a polynomial in \V\, hence P is solvable in a strongly 
polynomial time, by [Ta]. 
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Theorems 2-4 yield ç(D(H)) for all H except H = K3 + £ 3 . A simple example 
shows that cp(De(K3 + K3)) is at least 2, and a conjecture is that it is exactly 2. 

Theorems 2 and 4 have some consequence in lattice theory. A set S — 
{a\,..., au} ^ Qn is said to form a Hilbert basis if the intersection of the lattice 
fliZ + ... + ßfcZ with the cone in Q" generated by S coincides with {X\ai + ...+ 
Xkak\Xi,..., Xk G Z+} (cf. [GP]). Let S(G, H) be the set of the following vectors in 
Q £ x Qu: (i) (xL,£st), L is an s — t chain in G, st G U; (ii) (%c,0), C is a circuit 
in G; (iii) (2ee,0), e G E; here #L (xc) is the incidence vector of EL (Ec) in QE , 
and ee (8si) is the e-th (st-th) unit basis vector in QE (Qu). Then S(G,H) forms a 
Hilbert basis when H is a subgraph of K5, or a 2-star, or the union of K3 and a 
1-star. 

3. Maximization Problem 

The set of if's for which M(H) has bounded fractionality turns out to be larger 
than that for D(H). The complete list of such i f s is unknown, but the values 
<p(M*(H)) have been determined for all H. Here M*(H) is the set of programs 
P = M*(G,H,c) dual to those in M(H); P can be written as: minimize cTl 
subject to J G Qf_ and distj (s, t) > 1 for each st G U. 

We say that c is inner Eulerian if c(<5({t;})) is even for any v G V \T. 
Clearly (p(M(H)) < 2cp(Me(H)) where M*(tf) is the set of problems in M(H) 
with inner Eulerian c. The following theorem, due to Lomonosov and the author, 
generalizes results in [Hu, RW, Lov, Ch2]. Let sé(E) denote the collection of 
maximal independent sets (anticliques) of H (A cz T is independent if st $ U for 
all s,t G A). 

Theorem 5. [Ka3, Lo3]. Let jtf(H) have a partition {jtfu^i} such that each sèi 
consists of pairwise disjoint sets (in other words, H is the complement of the line 
graph of a bipartite graph). Then cp(Me(H)) = 1. 

(A weaker statement that cp(M(H)) < 2 occurred in [KL].) Again, as for 
Theorems 2 and 4, splitting-off techniques can be applied to prove Theorem 5 
[Ka3]. A sketch is as follows. It turns out that the dual problem for H in question 
can be solved separately from the primal one. More precisely, one shows that: (i) 
the dual problem has an optimal solution / of a special form [KL], namely, 

-u ^ X(Ô(XA)) (8) 
Aejtf{H) 

where XA, A G sé, are subsets of V such that XA n T çz A, and each s G T is 
contained in just one XA (X(E') is the incidence vector of E' çz E) ; and (ii) these 
XA$ can be found by solving the minimum cut problem in a certain network of 
dimension 0(|E| |F|). One can see that cTV is an integer when c is inner Eulerian. 
This observation implies that a(7c) is a multiple of 1/2 for any % = {uv,vw} ç E, 
where a(%) is the maximum of X < min{c(i«;),c(î;w)} for which splitting off % by 
X preserves the maximum value of a multiflow. The central point of the proof 
is to show that if uv,wv,zv are three edges with a({uv,vw}) = a({wv,vz}) = 1/2 
then OL(UV,VZ) > 1; this enables us to apply induction. The proof can be turned 
into a "pure combinatorial" strongly polynomial algorithm. 
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The expression (8) shows that (p(M*(H)) < 2 for if as in Theorem 5. The 
exact values of cp(M*(H)) were pointed out in [Ka7] for all H. In particular, the 
following result was stated there. Specify the set of if's with the property : 

(9) for any three pairwise intersecting anticliques A,B, C in H, AnB = BnC = 
CnA. 

Theorem 6. cp(M*(H)) G {1,2,4} if H satisfies (9) and (p(M*(H)) = oo otherwise. 

The first part can be reformulated in polyhedral terms as follows. Let P(G,H) 
be the polyhedron {/ G Q£ | / > 0, dist/(s, t) > 1 for any st G U}. If H is as in (9) 
then P(G,H) is 1/4-integral, that is, each face in it contains a 1/4-integral point. 

Another consequence of Theorem 6 is that if H is not as in (9) then cp(M(H)) = 
oo because (p(M(Hf)) > (p(M*(H')) for all H'. The latter follows from a general 
statement [Ka7] (extending a result on totally dual integral systems [Fui, EG]): 
let A be a nonnegative m x 77-matrix, b be an integral 777-vector, and let the program 
D(c) := max{yTfc|y > 0, yTA ^ c} have a l//c-integral optimal solution for every 
nonnegative integral 77-vector c; then the polyhedron {x G Q"|x > 0,Ax > b} is 
l//c-integral. 

It is unknown whether <p(M(H)) is finite for each H as in (9); a conjecture is 
that f(M(H)) < 4. 

Finally, we show that M(G,H,c) can have an optimal basis solution / such 
that the denominator of some component of / exceeds (p(M(H)), as it was 
mentioned in Sect. 1. Take a demand problem D = D(G',H',c,d) with Hf = 
(T\ U') = K2 + K2 + K2 such that cp(D) > 2 (existing by Theorem 3). Let 
U = {sjti\i = 1,2,3}. Add new vertices p/,#/ and edges p,s,-, q\t\9 i = 1,2,3, to 
G', forming the graph G, and put c(piSj) := c(g/t,) := rf(s,t,). Let H = (T, U) be 
the complete graph on T, and B := {p^i = 1,2,3}. Then cp(M(H)) < 2, by 
Theorem 5. Now take the objective function h(f) := J](v(fu)\u G B). Then any 
optimal basis solution of max{/7(/)|/ a multiflow in (G,H,c)} is an optimal basis 
solution of M(G,H,c) and it determines a solution of D(G'H'c,d) in a natural 
way, whence the vector 2 / is not integral. 

4. Minimum Cost Problem 

According to the multi-terminal version of the minimum-cost maximum-flow 
theorem [FF], (p(C(H)) = 1 when H is a complete bipartite graph. The following 
result was stated in [Ka2]. 

Theorem 7. If H is a complete p-partite graph with p > 3 (that is, sé(H) consists 
of p pairwise disjoint sets) then cp(C(H)) = 2. 

Theorem 7 is a consequence of a pseudo-polynomial algorithm (an algorithm 
of complexity 0(c(E)ß(|F|)), Q(7i) is a polynomial in 77) which finds a half-integral 
optimal primal solution. This algorithm extends the minimum-cost augmenting 
path method in [FF] based on ideas of the primal-dual method in linear pro
gramming. Recently the author found a strongly polynomial algorithm using a 
general method in [Ta]. 

On the other hand, it was shown in [Ka5] that if H is not a complete p-partite 
(p > 2) then cp(C(H)) = 00. 
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5. Demand Problem for Planar Graphs 

Speaking of a planar graph G, we mean that G is explicitly embedded in the 
plane without intersecting edges. There are known several cases of the demand 
problem (2) when it is solvable provided that the cut condition (5) holds. The 
most interesting of them are the following: 

(CI) the graph (V, EuU)is planar [Se5] ; 
(C2) there is a set Jf of two faces in G such that each edge of H connects 

vertices in the boundary of some face in J f [Ok] ; 
(C3) U = {s\ti,...,Sktk} and there are two inner faces / and J in G so that 

si,...,Sk occur in clockwise order in I and t\,...,tk do so in J [Sc2]. 

Moreover, in (C1)-(C3), if (c,d) is Eulerian and (5) holds then (2) has an 
integral solution. 

Now we consider the case similar to (C2) for |Jf | > 3. A simple example 
with G = K2,3 shows that (5) is, in general, not sufficient for solvability of (2). 
However, the above result is extended, in a sense, as follows. 

Theorem 8 [KalO]. Let |Jf | = 3. 
(i) (2) is solvable if and only if the metrical condition (6) holds for all m such 

that m is a cut metric or a 2,3-metric on V. 
(ii) If (c, d) is Eulerian and (2) is solvable then (2) has an integral solution. 

It was shown in [KalO] that if | J f | = 4 (or more) then (ii) is, in general, not 
true, and there are infinitely many "types" of metrics m necessary for cheking 
solvability of (2) for all corresponding G and H. 

The statement (i) follows from a result on packing of cuts and 2,3-metrics 
(Theorem 10(ii)(b) below). To prove (ii) we use (i) and the splitting-off method 
as in the proof of Theorem 4. There are certain difficulties when applying this 
method, because in order to keep planarity we should take only those pairs % of 
edges of G which are contained in the boundary of a face of G. The core of the 
proof is to show that if a(n) < 1 for all such rc's then there are three edges of 
capacity 1 in G such that the graph G' obtained by removing these edges consists 
of three components, each containing just one face in Jf. Now (ii) is proved by 
using Okamura's theorem for (C2). 

6. Packings of Cuts and Metrics 

There is a kind of duality that connects solvability conditions for the demand 
problem (2) with a certain packing problem on metrics. It can be expressed in a 
general form as follows. 

Proposition 9. Given G = (V,E), H — (T,U) and a set M of metrics on V, the 
following statements are equivalent: 

(i) for any c and d, (2) is solvable if and only if (6) holds for all me M; 
(ii) for any l G Z j , there exist m\,...,mk G M and X\,...,Xk G Q+ so that: 

X\m\(e) + ...Xkmk(e) < 1(e) for all e G E ; (10) 

and 
X\mi(st) + . . . + Xk,mk(st) = distj(st) for all st G U. (11) 



Undirected Multiflow Problems and Related Topics 1569 

This is easily proved by applying Farkas' lemma or the cone polarity. Propo
sition 9 enables us to derive results on packing of metrics directly from corre
sponding solvability theorems for (2) (like Theorems 1, 4, 8), and vice versa. Note 
that this relationship gives only theorems on the existence of rational X. There 
are stronger, integral, version for some of these theorems; as a rule, their proofs 
are based on special, sometimes complicated, combinatorial approaches. Now we 
present some results in this area. We say that a vector / G Z^ is bipartite-like if 
the /-length of every circuit in G is even. 

Theorem 10. Let I be bipartite-like. 
(i) (10) and (11) hold for some cut metrics 777/'s and integral X\'s in the following 

cases: (a) H is K4 or C5 or a 2-star [Ka4] (cf. [Sel] for H = K2 + K2); (b) G 
and H are as in (CI) 777 Sect. 5 [Se5]; (c) G and H are as in (C2) 777 Sect. 5 [Sci] 
(see [Ka8] for a strongly polynomial algorithm). 

(ii) (10) and (11) hold for m\,...,mk, where 777/ is a cut metric or a 2,3-metric, 
and integers X\,...,Xk in the following cases: (a) H is K$ or the union of K3 and 
a 1-star [Ka9]; (b) G and H are as in Theorem 8 [KalO]. 

There is a connection of the problem (10)—(11) and the problem (P): given 
a metric 777, decide whether 777 is contained in the conic hull of metrics from a 
certain collection M. Such a connection was demonstrated in [Ka4] in terms 
of an extremal graph of 777 for M consisting of the set of cut-metrics. It was 
also shown there that for this M the problem (P) (or, equivalent, the problem 
"whether m is embeddable isometrically in the space L1" [De]) is iVP-hard. 
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Computing Vortex Sheet Motion 

Robert Krasny 
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1. Introduction 

Coherent vortex structures occur in many types of fluid flow including mixing 
layers, jets and wakes. A vortex sheet is a mathematical model for such structures, 
in which the shear layer is approximated by a surface across which the tangential 
fluid velocity has a jump discontinuity. Vortex sheet motion belongs to the field of 
vortex dynamics, one of the main approaches to understanding fluid turbulence. 

Careful numerical experiments have helped advance the mathematical study 
of vortex sheets. Difficulties arise in computing vortex sheet motion due to 
short wavelength instability, singularity formation, and spiral roll-up. This paper 
reviews the problem of computing vortex sheet motion and presents several 
applications. See [2] for a sample of other vortex models and numerical methods. 

2. Analytic Evolution and Singularity Formation 

A vortex sheet is defined by a curve z(T,t) in the complex plane, where F is the 
circulation parameter and t is time. The evolution equation is [4,32], 

3 _ /-CO -j 

Tt(r,t) = J^K(z(r,t)-z(r,t))dr , K(Z) = — . (i) 

The Cauchy principal value of the integral is taken. Equation (1) says that a 
point on the vortex sheet moves with the average of the two limiting velocities, 
as the curve is approached from either side. 

A flat vortex sheet of constant strength z(T,t) = T is an equilibrium solution 
of (1). Linear stability analysis shows that short wavelength perturbations can 
grow arbitrarily fast (Kelvin-Helmholtz instability). This means that the linearized 
initial value problem is ill-posed in the sense of Hadamard. However, Sulem et 
al. [35] have proven that if the initial perturbation is an analytic function of F, 
then the solution of (1) remains analytic for a positive time interval. 

Birkhoff conjectured that instability and nonlinearity would cause a singularity 
to form during the vortex sheet's evolution [4, 5]. An asymptotic analysis by 
Moore [24, 26] supports this conjecture, indicating that with initial perturbation 
amplitude e, a F ^ 2 branch point forms in the vortex sheet at a finite critical 
time t = tc(c). Meiron et al. [23] analyzed the Taylor series coefficients of z(T,t) 
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with respect to the time variable and obtained results consistent with Moore's. 
The validity of Moore's approximation for t <tc has been proven [6] and special 
solutions have been studied [7, 14], but proving that a singularity forms for 
general initial data is an open problem. 

3. The Point Vortex Approximation 

Rosenhead performed the first vortex sheet computation in 1931 [31], using the 
periodic Cauchy kernel in (1). The sheet was discretized by a finite number of 
point vortices per period z/(i) ~ z(Tj,t),j = 1,...,N, leading to the ordinary 
differential equations, 

d^i = Y4K(zj-zk)N-1, K(z) = j . cot nz. (2) 
Hi 

The sum omits the singular term k — j , but if the vortex sheet has a bounded 
2nd F-derivative, then the discretization error is 0(N~1) [25]. If the vortex sheet 
is analytic, then infinite order accuracy may be obtained by applying one step of 
Richardson extrapolation [34, 16]. 

Rosenhead used JV ~ 10 points and the 1st order Euler method with time 
step At ~ 0.05 to integrate in time. He drew a smooth interpolating curve 
through the point vortices, suggesting that a perturbed vortex sheet rolls up into 
a smooth spiral. In the 1950's, Birkhoff performed computations using a larger 
number of point vortices and more accurate time integration [4, 5]. In contrast to 
Rosenhead's results, the points' computed motion was irregular, leading Birkhoff 
to question whether the vortex sheet rolls up into a spiral. Later workers sought 
to obtain convergent numerical results by using higher order accurate quadrature 
rules for the principal value integral, e.g. [15, 38]. Another approach was to 
stabilize the problem by adding surface tension [28]. In spite of much effort, the 
computations failed to converge as the number of points increased. 

The key to obtaining convergent numerical results for t < tc lies in Fourier 
analysis of the computed solution [19]. Sulem et al. [36] showed that the singu
larity structure of nonlinear evolution equations could be obtained from spectral 
computations, by analyzing the rate of decay of the discrete Fourier coefficients. 
For vortex sheet computations, discrete Fourier coefficients of the perturbation 
quantities pj(t) = Zj(j) — Tj can be similarly analyzed. 

Figure 1 shows computations with JV = 50 in single and double precision 
arithmetic. Irregular small scale motion develops in single precision, but the 
double precision results are smooth. The corresponding spectral amplitudes are 
plotted in Fig. 2. The initial spectrum has a spike at wavenumber k = 1 (an 
explicit perturbation of amplitude e = 0.01), as well as broad band noise in the 
higher modes. In Fig. 2a, the noise is amplified by the system's instability, leading 
to the irregular motion in Fig. la for t > 0.3. In Fig. 2b, the spectrum spreads 
smoothly to higher wavenumbers, due to genuine nonlinear effects [19]. 

A stable physical process is modeled by a well-posed initial value problem, 
and if the difference scheme is consistent and stable, then the solution converges 
as the mesh is refined [30]. Shear flows however are physically unstable and 
this appears as ill-posedness in the vortex sheet initial value problem. The point 
vortex approximation for an analytic vortex sheet defines a consistent but unstable 
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Fig. 1. Point vortex computations at times t = 0,0.1,0.2,0.3,0.4. (a) single precision. 
(b) double precision 

Fig. 2. Discrete Fourier coefficient amplitudes corresponding to Fig. 1. (a) single precision. 
(b) double precision 

difference scheme. Fritz John has observed [18], "Instability of a difference scheme 
under small perturbations does not exclude the possibility that in special cases 
the scheme converges towards the correct function, if no errors are permitted 
in the data or the computation." This refers to roundoff error, due to the 
computer's finite precision arithmetic, as opposed to discretization error, due 
to replacing a continuous operator by a discrete approximation. Using higher 
precision arithmetic is one way to see convergence as the mesh is refined, but for 
vortex sheet computations, a more practical remedy is to filter out the spurious 
roundoff error perturbations [19]. Computations and theory [8] now show that 
the point vortex approximation converges as JV —• oo for t < tc. A consistent 
picture of singularity formation in a vortex sheet has been obtained: infinite 
curvature forms at an isolated point, but the vortex sheet remains continuously 
differentiable at t = tc, showing no sign of roll-up [19, 23, 24, 26, 34]. 
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An obvious question is whether the vortex sheet continues to exist past the 
critical time. Note that in other problems, a physically valid weak solution can 
be defined past a critical time, e.g. shock formation in a nonlinear hyperbolic 
equation. Computations show that the point vortex approximation does not 
converge for t > tc as JV —> oo [19]. A different type of small scale motion occurs 
in the point vortex system (2) for t > tc, but it is not relevant to vortex sheet 
evolution. Based on work with self-similar vortex sheets [27], Pullin conjectured 
that a periodically perturbed sheet rolls up into a spiral for t > tc, the spiral 
vanishes in size as t -> £c

+, and for any t > tc it has an infinite number of turns 
[29]. As described in the next section, numerical experiments using Chorin's 
vortex blob method support this conjecture [1, 9, 10, 11, 20, 21, 22]. 

4. Vortex Sheet Roll-Up 

Let ö > 0 be a smoothing parameter and consider a regularized approximation 
to (1), 

dz_ 

dt /

oo 

Ks(z(r, t) - z(t, t))dt, Ks(z) = K(z)-
-00 I + <52 (3) 

When (3) is discretized, the computational elements are called "vortex blobs". For 
fixed ö > 0, short wavelength perturbations no longer have unbounded growth 
rates and computed solutions converge as the number of blobs JV —> oo, even 
for t > tc [20]. Figure 3a shows the evolution for 0 < t < 1, with the smoothing 
parameter value ö = 0.03, in a case for which the vortex sheet's critical time is 
tc ~ 0.375. Figure 3b shows the solution at time t = 1 with decreasing amounts 
of smoothing 0.05 < ö < 0.2. Figure 4 shows that the smoothed solutions at t = 1 
converge to a spiral as ö —> 0. The limit spiral is a candidate extension for the 
vortex sheet past the critical time. 

Fig. 3. Regularized vortex sheet roll-up past the critical time tc 

increasing time, (b) t = 1, decreasing <5 
0.375. (a) Ö = 0.03, 
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0.25 

1577 

Fig. 4. Convergence as ö ->• 0 for t = 1 > tc ~ 0.375. (a) x-axis intercepts of one spiral 
branch plotted against <5. (b) closeup of the solution for ö = 0.03 

The numerical experiments suggest that the vortex blob method provides a 
convergent discretization of vortex sheet motion for t > 0. This has been proven 
for t <tc [8], but proving convergence for the physically important roll-up regime 
t > tc is an outstanding problem. Other interesting issues concern uniqueness of 
the limit for different regularizations [3, 37], existence of a weak solution to the 
incompressible Euler equations with general vortex sheet initial data and the 
possible presence of concentrations in the limit ö —• 0 [12, 13]. 

5. Applications 

The vortex blob method has advantageous mathematical and numerical proper
ties, but the smoothing parameter ö has no precise physical meaning. One would 
like to know whether computations performed with a value ö > 0 approximate 
real fluid motion. Some applications presented below demonstrate the vortex blob 
method's potential for simulating shear layer dynamics. 

Aircraft Trailing Vortices. On takeoff and landing, an aircraft sheds vortices at 
the wing's trailing edge. Figures 5 and 6 show a free-space vortex sheet simulation 
of this process, including the effects of the wing tips and deployed flaps [21]. The 
computation illustrates different types of vortex interactions : rotation of like-sign 
vortex pairs, translation of opposite-sign vortex pairs, core deformation due to 
collision, and vortex sheet folding. 

Separation at a Sharp Edge. Vortices are shed from the edges of a flat plate that 
is moving in a viscous fluid. As the viscosity is reduced, an ideal flow emerges 
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Fig. 5. Roll-up of an aircraft trailing vortex sheet, including tip and flap vortices. The 
solid and dotted fines indicate opposite senses of rotation 

having embedded vortex sheets that emanate from the edges. This problem is 
more difficult to compute than the periodic and free space problems considered 
above. New issues arise, in satisfying the flow tangency condition on the plate, 
and shedding the correct amount of circulation at the edges. Previous numerical 
studies did not obtain smooth spiral roll-up, e.g. [17, 33]. 

A new implementation of the vortex blob method has been developed. Figure 
7a is a computation of the vortex sheets that separate from an impulsively 
started flat plate. The velocity field plotted in Fig. 7b shows that the sheets form 
a recirculating region behind the plate. 

To validate the algorithm, a comparison with Pullin's computation of self-
similar vortex sheet roll-up [27] has been performed. The similarity assumption 
circumvents the difficulty of solving the initial value problem. Figure 8 compares 
a time dependent vortex blob computation with, Pullin's self-similar result. The 
two plots may be superimposed to verify that the spiral shapes are in good 
agreement. Further details are given in [22] and a more complete validation is in 
preparation. 
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t = 5 

Fig. 6. Continuation of Fig. 5, showing details of core deformation and vortex sheet 
folding 

Instability of a Jet. Figure 9 shows the evolution of a jet being expelled from a 
box. The jet is driven by two point sources in the lower corners of the box, which 
are turned on at time t = 0. A starting vortex forms and propagates away from 
the outlet, leaving behind a thin straight jet. Waves form along the jet, rolling up 
into a small vortex which propagates through the large starting vortex. 

6. Final Remarks 

Vortex sheet motion poses interesting mathematical problems concerning singular 
integrals, weak limits, and nonlinear dynamics. Vortex blob computations may 
provide a useful tool for clarifying the role of coherent vortex structures in shear 
flow. Future computational work will focus on improved treatment of boundary 
conditions, the effects of parametric forcing, and three dimensionality. 

Acknowledgements. This work was supported in part by GRI Contract #5088-260-1692, 
NSF Grant DMS-#8801991, and ONR URI#N000184-86-K-0684. The computations 
were performed at the NSF San Diego Supercomputer Center and the University of 
Michigan. 
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Fig. 7. (a) Vortex sheet roll-up due to the impulsively started upward motion of a flat 
plate, (b) Velocity field at time t = 4 
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Fig. 8. (a) Time dependent vortex blob computation, <5 = 0.025, t = 1. (b) Self-similar 
vortex sheet roll-up past a semi-infinite flat plate, reproduced from [27] 
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Fig. 9. Computation of a jet being expelled from a box 
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Developments in the Double Exponential Formulas 
for Numerical Integration 

Masatake Mori 

Department of Applied Physics, Faculty of Engineering, 
University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan 

1. Optimality of the Trapezoidal Rule 

The double exponential formula, abbreviated as the DE-formula, was first pre
sented by Takahasi and Mori [18] in 1974 as an efficient and robust quadrature 
formula to compute integrals with end point singularity, e.g. 

1 = L (X-2)(1-X)V4(1+J03/4 > C1) 

or over the half infinite interval, e.g. 

- / 
Jo 

OO 

e~*logxsinxdx . (2) 

The DE-formula is based on the optimality of the trapezoidal rule over 
(—oo, oo) in the following sense. Consider the integral 

/

oo 

g(u)du 
•00 

(3) 

where g(u) is analytic over (—00,00) and |g(w)| is integrable. We apply the trape
zoidal rule, or equivalently the midpoint rule, to (3) with an equal mesh size 
h: 

00 

h = h X g(kh) . (4) 
k=—00 

Then the error of (4) is expressed in terms of a contour integral [16] 

27C7 Jc 
Ah = Tr-. I ®h(w)g(w)dw , (5) 

where tf>/,(w) is called the characteristic function of the error and defined by 

+2n\„< ; l m w > 0 

<PA(w) = < 

1 / ^ " ~ \ 

1 - e x p ( — — w) 
, h (6) 

- % , • ; i m W < o 
l-exp(+—-w) 

h 
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and C consists of two infinite curves one of which runs to the left above the real 
axis and the other to the right below the real axis in such a way that there exists 
no singularity of g(w) between these two curves. Since Ah is a linear functional 
over the family of analytic functions on (—00,00), it can be regarded as a Sato's 
hyperfunction [10] and — <t>h(w)/(2%i) is nothing but its defining function. 

Although there are infinite number of quadrature formulas for the integral 
(3), the trapezoidal rule (4) is proved to be optimal in the following sense. Let an 
arbitrary quadrature formula for (3) be 

00 

k=—00 

Then its error is expressed also in terms of the contour integral 

AIÄ = I-IÄ = —[ òA(w)g(w)dw . (8) 

Since |<P>i(w)| usually decays exponentially as |Im w\ becomes large for quadrature 
formulas of practical use we define the average decay rate r of | ^ ( w ) | for large 
|Imw| as follows: 

r= lim ( l i m - — / \ - — log|#A(w)| \dw ) , w = u + iu. (9) 
d->co \R->CC 2R J-RHd { dv J ) 

It is easy to see that the error of numerical integration is smaller if the decay rate 
r is larger. Then we have 

Theorem (Takahasi-Mori, 1970). Suppose that Ak and ak in I A for I satisfy 

k=—00 

Then, among quadrature formulas I A whose average density ofak's per unit length 
is equal (= vp) to each other, the trapezoidal rule h with equal mesh size h = 1/vp 
is optimal in the sense that r attains its maximum 

2% 
rmax = 27CVp = y (11) 

by the trapezoidal rule. 

The decay rate in case of the Simpson's rule is r = rcvp = n/h, so that the 
Simpson's rule is as twice inefficient as the trapezoidal rule. 
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2. The Double Exponential Formula 

Now that the trapezoidal rule over (—00,00) is optimal, we can get a new efficient 
quadrature formula by means of a variable transformation. Let the given integral 
be 

/ = f f(x)dx . (12) 
Ja 

The variable transformation 

x = c/)(u), (j)(—oo) = a, (p(+co) =b (13) 

leads to 

/
oo 

f{<j>{u))^'{u)du . (14) 
•00 

Since this is an integral over (—00,00) we apply the trapezoidal rule with equal 
mesh size h, which results in a quadrature formula 

00 

h = h x mmwim • as) 
fc=—00 

This is an infinite summation and in actual computation we need to truncate the 
sum 

N+ 

tf0 = h Z nmu'ikh), (i6) 
k=-N-

where N = N- + ÌV+ + 1 is the number of function evaluations. Therefore the 
overall error of (16) is 

AI^=I-I^=I-h + Ih-I^=AIh + 8, , (17) 

where AI h is the discretization error defined by 

/

oo °° 

fi^uMMdu - h £ f www(kh) 
= edithWMMWM'1* ' (18^ 

and et is the truncation error defined by 

-N- 00 

st=h - 4N) = h x fMkhM'm+h £ mkhwm • a« 
fc=—00 k=N+ 

In general if an analytic function g(w) decays rapidly as Rew -^ ±00, then it 
grows rapidly asImw-> ±00, and vice versa. Therefore |zU/,| and \et\ cannot be 
made small at the same time and there should be an optimal decay rate of |g(w)| 
as Re w —> +00. 
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In order to get an optimal quadrature formula Takahasi and Mori [18] 
investigated the efficiency of the formulas based on the three kinds of variable 
transformations x — (j)(u) which have the following asymptotic behaviors under 
the condition that Alh and et are of the same order of magnitude: 

(a) | ^ ( I I ) | « e x p H u D , m =1,2,... (20) 

(b) |0'(w)| «exp(-cexp|u | ) (21) 

(c) |0'(u)| « exp(-cexp \u\m), m = 3,5,.... (22) 

They found that the optimal decay of \g(u)\ or \f(4)(u))^(u)\ is double exponential, 
i.e. 

\f(<t>(u))<t>\u)\ ~ exp(-cexp \u\), \u\ -* oo , (23) 

and the quadrature formula obtained based on this optimal transformation is 
. called a double exponential formula, abbreviated as DE-formula. 

Specifically, for the integral over (—1,1) 

1 = j J(x)dx (24) 

the transformation 
x = tanh f - sinh u J (25) 

gives a DE-formula, and for the integral 

/•oo 

/ = / /i(x)exp(—x)dx (26) 
Jo 

the transformation 
x = exp(w — exp(—u)) (27) 

gives a DE-formula over (0,oo). It is also shown that the asymptotic error of the 
formula in terms of the mesh size h of the trapezoidal rule is expressed as 

-§)• M/*|»exp - T , (28) 

and that the asymptotic error in terms of the number N of the function evalua
tions is 

l < V e x p ( - c ^ ) . (29) 

Before the DE-formula was developed a quadrature formula also based 
on variable transformation called the IMT-formula had been proposed by Iri, 
Moriguti and Takasawa in 1969 [3], which was characterized by the fact that 
the original finite interval of integration (0,1) was transformed onto itself. The 
asymptotic error behavior of the formula was shown to be 

AI{N) « Gxp(-cy/N) , (30) 
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from which we see that asymptotically the efficiency of the DE-formula is su
perior to that of the IMT-formula. Mori [6] presented a formula based on the 
transformation from (—1,1) onto itself having an asymptotic error behavior 

which is slightly inferior to the DE-formula. In 1982 Murota and Iri [8] tried to 
improve the IMT-formula by means of parameter tuning and repeated application 
of the IMT-transformation and it turned out that, although the efficiency is 
improved by the repeated application of the IMT-transformation step by step, 
its limit does not attain the efficiency of the DE-formula as shown below: 

' IMT-single : AIm « e x p ( - c ^ ) (32) 

IMT-double : AI{N) « exp (-e n \ ^ \ (33) 
V (logJV)V 

IMT-triple : ,/<»> « exp ( - c ^ - ^ - ^ (34) 

DE-formula : AI{N) « exp ( - C p ^ ) • (35) 

3. Analysis of the DE-Formula on Function Spaces 

At a research meeting held at the Research Institute for Mathematical Sciences 
of Kyoto University in 1985 M.Sugihara presented a detailed theoretical analysis 
on the optimality of the DE-formula introducing function spaces for integrands 
and his hand-written note on the analysis appeared in [12] in Japanese. Although 
he is now preparing a full paper about the details of the analysis, fragrance of 
his analysis will be worth while to be given here. 

Basically he extended the analysis by Stenger [11] on Hp space to the analysis 
on spaces of functions defined not on the unit circle but directly on the real axis 
w E (—oo, oo) in the w-plane, where w = u + iv. These spaces are characterized by 
the decay of their elements at large |Re w\. First denote the strip domain in the 
w-plane 

A fwG(C D(d) = {> |Imw|<|rf} (36) 

and define 
sé(D(d)) = {analytic functions on D(d)} . (37) 

He introdeuced a function space 

Hdouhk(D(d);A,B)(B<l/d) 

= { g G œ?(D(d)) sup {|g(w)| • | exp(,4cosh£w)|} < +oo I (38) 
weD(d) J 
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with an appropriate norm || g ||double- In short this space is characterized by the 
double exponential decay of its elements at large |Re w\. Consider the integral (3) 
and an approximation (7) to it in FTdoubie- As to the norm of the error 

/•oo N 

EN= g(u)du - ]T Akg(ak) 
•y-°° fe=i 

(39) 

Sugihara proved 

Theorem 1. In Hdouhie(D(d);A,B) 

inf || EN(a1,...,aN;A1,...,AN) ||> Cexpf -c-—-) . (40) 
flfc^eR \ log N ) 

On the other hand, the following theorem holds for the trapezoidal rule. 

Theorem 2. In double (D (d) ; A, B) 

|| EN (trapezoidal rule) || < C' exp ( - c ' -—- ) . (41) 

From these two theorems we immediately see that the trapezoidal rule is optimal 
in //double-

Next, in a similar way as Hdoubie> Sugihara introduced another function space 
Gingie characterized by the single exponential decay of its elements at large |Re w|, 
and showed again the optimality of the trapezoidal rule in ffsingle- However, the 
inequality for the error in Hsingie corresponding to (41) is 

EN (trapezoidal rule) ||< C'exp j —Vn2dAy N + - j , (42) 

where A is some constant, so that it is clear that the double exponential trans
formation asymptotically leads to a more efficient quadrature formula than the 
single exponential one. Then it is quite natural to raise a question: is the trape
zoidal rule more efficient in a space whose elements decay more rapidly than 
those in #doubie? Sugihara answered the question negatively by proving that there 
exists no element except zero function in such a space. Consequently we conclude 
that the DE-formula is asymptotically optimal. 

4. The DE-Formula for Slowly Decaying Oscillatory Integrals 

Consider the integral 

Jo 
f(x)dx , . (43) 

./o 
where 

f(x) = fi(x) cosx, /i(x) = algebraic function . (44) 

In this case f(<j>(w))^(w) does not belong to ifdoubie, so that the DE-formula does 
not work well as seen from the analysis in the previous section. Toda and Ono 
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[19] applied the DErformula followed by the Richardson's extrapolation method 
successfully to 

/»OO 

I = lim / f(x) exp(-zx)dx , (45) 

Afterwards Sugihara showed both theoretically and experimentally [13] that the 
Richardson's method is more efficiently applied to 

= lim / 
00 

,2 f(x) cxp(-zxl)dx . (46) 

Recently Ooura and Mori [9] presented an interesting transformation which 
gives an efficient formula for integrals such as 

/•OO 
I = / / lW s u l wxdx (47) 

Jo 
/•oo 

J = / / iW c o s o)xdx. (48) 

Jo 

Consider the variable transformation 

Mu 
x = Mò(t) = , rjr . 1 x, M,K = constant . (49) 

1 — exp(—K sinh w) 
Then (j)(u) satisfies cj) (—oo) = 0 and 0(+oo) = oo. Moreover, 

lim ò(u) = u double exponentially (50) 
M->+00 

lim (j)'(u)=0 double exponentially (51) 

hold. If we apply the variable transformation x = M(j)(u) to (47) and compute it 
by the trapezoidal rule, we have 

h = Mh £ /1(M0(/c/i))sin(coM(/)(/c/i))^/(/c/i) . (52) 
k=—oo 

Choose h such that œMh = 2%, then 

sin(coM(j)(kh)) ~ sinmMkh = sin2nk = 0 , (53) 

so that we can truncate the sum (52) at some moderate value of fc. 
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5, Problems Arising in Coding Automatic Integrator 

When you write an automatic integrator based on the DE-formula you must be 
careful about the loss of significant digits which may occur when computing, say, 
(1 -fx)~3/4 in (1) in the close neighborhood of x = —1, and about the overflow. 
A device to avoide the loss of significant digits is given in [18]. 

Recently a useful method to avoide the overflow which may occur when 
computing the weights of the DE-formula was presented by Watanabe [21]. 
Consider again the integral 

/ : • 
f(x)dx . (54) 

L 

The weights of the DE-formula obtained by 

x = (j)(u) = tanh(— sinh u) (55) 

are 
coshkh , ^ , , , „ , ^ 

4k = , 2 „ • , ,,.» k = °> ±1, ±2,-.- , (56) cosh2(f sinhkh)' 

and a careless coding often gives rise to the overflow when computing the 
denominator in (56) because it grows double exponentially as k becomes large. 
Watanabe found a recurrence relation 

Ak+i =Akxrk , (57) 

where 
cosh h + sinh h tanh kh _ox 

rk = j (58) 
(coshs/c + (/)(kh) sinhsfc) 

and 
h 1 

sk = n sinh - cosh((fc + -)h) , (59) 

and showed that the integral (54) can be computed by the following small code: 

1=0 
DO 10 fc = N, 1, - 1 

I = (I + f(ak) + f(-ak)) x rk-\ 

10 CONTINUE 
I = y ( I + /(£*>))• 

Although the denominator of rk has a double exponential factor sinh s^ its inner 
exponential factor has a small coefficient sinh(/z/2), so that the overflow in rk will 
not occur until fc becomes much larger than such fc for which the overflow occurs 
in Ak. 
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6. Applications of the DE-Formula 

The DE-formula is used for multiple integration. See [14] and [1], and the 
references therein. 

The DE-formula is installed in many computer centers in Japan and is easily 
found in subroutine packages in the Japanese market. It is actually used in 
various fields of science and technology. In the references one paper is listed 
from each of the fields, the boundary element method [2], the suface charge 
method [20], filter analysis[4], and molecular chemistry [5]. Very recently also in 
the field of statistics it is proved to be quite efficient for numerical evaluation of 
risk of improved estimation [15]. For further reference see these papers and the 
references therein. 
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1. Introduction 

We briefly survey recent computational complexity results for certain algebraic 
problems that are relevant to numerical analysis and mathematical programming. 
Topics include (i) linear programming, (ii) decision methods and quantifier elim
ination methods for the first order theory of the reals, (iii) solving real algebraic 
formulae approximately, and (iv) ill-posed problem instances. 

2. Linear Programming 

In this section we discuss complexity results for the linear programming problem 

(2.1) 
maximize cTx 

subject to Ax > b 

where e e IR", b e IR"7 and A is an m x n matrix. 
In the last four years there has been a vast amount of work on "interior point" 

algorithms, motivated by Karmarkar's algorithm [16]. Unlike the traditional 
simplex method which moves from vertex to vertex around the feasible region 
{x;>4x > b}, interior point methods proceed through the interior {x;Ax > b] of 
the feasible region. 

Karmarkar's algorithm is a "projective" interior point algorithm, the basic 
computation for each iteration being a projective transformation. In the last four 
years another breed of interior point algorithms has received a lot of attention, 
"path-following" algorithms. These are closer to traditional numerical analysis 
than are projective algorithms, having Newton's method at their heart. The best 
upper bounds known for the complexity of linear programming are based on the 
analysis of particular path-following algorithms. 

Following are the simple ideas behind the first path-following algorithm 
proven to have a polynomial-time bound. Let af denote the /-th row of the 
constraint matrix A. 

The center of the system of linear inequalities Ax ^ b is the point z which 
maximizes Yl^fx — b/), viewed as a function restricted to the feasible region. 
The center exists and is unique if the feasible region is bounded and has non
empty interior, as we assume in what follows. Equivalently, then, the center is 
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the maximizer of the strictly concave function f(x) := ^ l n f a f x — bi), viewed as 
being defined only on the interior of the feasible region. 

The center has a natural physical interpretation which arises from the equa
tions Vf(z) = 0. Consider each hyperplane {x; afx = bi} as emitting a force 
which acts on an arbitrary point x not in the hyperplane. The direction of the 
force is orthogonal to, and away from, the hyperplane, and its magnitude at x 
equals the reciprocal of the distance from x to the hyperplane, i.e., the force at 
x is simply OLì/(CLìTX — bi). Then the center is the unique equilibrium point in the 
interior of the feasible region. 

Now assume k^ is a known strict lower bound on the optimal objective value 
for (2.1). Let z(0) denote the center of the extended system 

Ax > b 
„7\- - ».mi 1^.2) 
c x> fcW> 

and assume that x(0) is known to be a feasible "good" approximation to z^\ We 
know x ^ but not necessarily z®\ We want to move from x ^ towards an optimal 
solution for (2.1). A natural way to proceed is to create a new system with center 
z ^ closer to an optimal solution than z®\ and then move from x ^ to a feasible 
"good" approximation x(1) for z(1). 

To create a new system we simply increase fc(0). Of course we must be careful 
that fc(0) not be increased above the optimal objective value for (2.1). Hence, it 
is natural to replace fc(0) by fc(1) = (5cTx(0) + (1 - <5)Jfc(0) where 0 < Ö < 1. This 
corresponds to bringing the hyperplane {x; cTx = k^} for (2.2) towards x(0), 
thus causing the equilibrium point to move to another point with better objective 
value. 

To compute an approximation x ^ for z(1) we apply one iteration of Newton's 
method, beginning at x(0), to the equations V/(1)(x) = 0 where f^(x) := ln(cTx — 
fcW) + ^ f ln (a^x — bi). (The special structure of / ^ makes the gradient and 
Hessian very easy to compute). 

It is easily proven that if <5 is sufficiently small and x(0) is a "good" approxi
mation to z ^ then x ^ obtained in this manner will be a "good" approximation 
to z(1). However, to establish noteworthy complexity bounds we need to prove 
something to the effect that ö need not be "too" small. In [23], the author proved 
that any 5 satisfying 0 < < 5 < l / 1 3 i s allowable, i.e., proceeding iterati vely the 
algorithm will then generate points x^ , j = 0 ,1 , . . . , converging to an optimal 
solution. In practice, much larger ö are acceptable. 

The algorithm terminates with standard procedures for computing an exact 
optimal solution from sufficiently close approximations. 

The number "1/13" arises from an analysis of Newton's method for a carefully 
chosen coordinate system. The analysis can be greatly simplified by relying on 
work of Smale [32] as was shown by Renegar and Shub [28]. The latter paper 
presents a unified complexity analysis for several path-following interior point 
algorithms. 

The best complexity bound known for linear programming is due to Vaidya 
[38]. He established the bound for a path-following algorithm not suggested 
to be practical, as it relies on fast matrix multiplication. Vaidya's bound is 
0((m + «)3/2nL2log(L) log log(L)) bit operations where (very roughly) L is the 
number of bits required to specify the particular problem instance, i.e., required 
to specify A, b and c. This bound is an improvement on the earlier record 
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bound of Gonzaga [11] and Vaidya [37] (derived from a modification of the 
algorithm described above), which in turn was an improvement on the record 
bound of Karmarkar [16], which in turn was an improvement on the original 
polynomial-time bound of Khachiyan [17]. 

The complexity bounds for interior point algorithms are generally obtained by 
bounding the number of iterations required by an algorithm and multiplying the 
bound by the amount of work required per average iteration. The best iteration 
bound known for an interior point method is 0(y/m + nL) and was established 
by the author in [23]. The recent record complexity bounds arise from clever 
ways to (theoretically) reduce the amount of work required per average iteration. 
Much effort has been expended by researchers (including the author) to decrease 
the iteration bound, but to no avail. 

Other seminal papers in the complexity theory of interior point methods 
include work by Kojima, Mizuno and Yoshise [18] (motivated by Megiddo [19]), 
Monteiro and Adler [21], and Ye [40]. The amount of recent literature on interior 
point algorithms is staggering. Relevant surveys have been written by Gonzaga 
[12], Goldfarb and Todd [10], and Megiddo [20]. 

All polynomial time algorithms for linear programming require polynomial 
time in the Turing machine sense, i.e., the number of bit operations is bounded by 
a polynomial function in the bit length L of the input. The number of arithmetic 
operations (over the rationals Q) for all of the algorithms tends to infinity as 
L does, even when m and n are fixed. (By contrast, the number of arithmetic 
operations required by the simplex method can be bounded above by a function 
of m and n alone). 

A major open question in the complexity theory of linear programming is 
whether or not there exist polynomial-time real number machine algorithms in 
the sense of Blum, Shub and Smale [2], i.e., is "uniform," accepts arbitrary real 
number coefficients as inputs, and has arithmetic operation count bounded by 
a polynomial in m and n. Tardos [35] has made some progress on this question 
by devising an algorithm with arithmetic operation bound independent of the 
coordinates of the data vectors b and c, but dependent on the coefficients of A 
which she assumes to be integers. 

"Experts" are divided in their opinions as to the answer of the question. If 
the answer was affirmative then most likely there would be practically important 
linear programming algorithms yet to be discovered. If the answer was negative 
then the complexity heirarchy for real number machines would be very different 
from that for Turing machines. 

3. Decision Methods and Quantifier Elimination Methods 

Now we move to a very general setting which includes many problems from 
numerical analysis and mathematical programming, e.g., eigenvalue problems, 
non-linear programming with multi-variate polynomial objective and constraint 
functions, sensitivity analysis problems, etc. All of these problems arise in the 
classical (by computational complexity standards) setting of the decision problem 
for the first order theory of the reals. We begin with a quick introduction for 
readers unfamiliar with this setting. 
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A sentence is an expression composed from certain ingredients. Letting IR 
denote a real-closed field, the following is an example of a sentence: 

(ßxi e Rni)(Vx2 e R"2) [(gi(x1,x2) > 0) V (fö(*i,*i) = 0)] 

/\(g3(xux2)j=0). 
(3.1) 

The ingredients are: vectors of variables (xi and X2); the quantifiers 3 and V; 
atomic predicates (e.g. gi(xi,X2) > 0) which are polynomial inequalities (>,>, 
=,=£, <,); and a Boolean function holding the atomic predicates ([B\ VB2] A.83). 

A sentence asserts something. The above sentence asserts that there exists 
xi G IR"1 such that for all X2 G R"2, (i) either gi(xi,X2) > 0 or g2(xi,X2) = 0, and 
(ii) g3(xi,X2) ^= 0. Depending on the specific coefficients of the atomic predicate 
polynomials this assertion is true or it is false. 

The set of all true sentences constitutes the first order theory of the reals. A 
decision method for the first order theory of the reals is an algorithm which, given 
any sentence, correctly determines if the sentence is true. Decision methods for 
the reals were first proven to exist by Tarski [36] who constructed one. 

A sentence is a special case of a more general expression, called a formula. 
Here is an example of a formula: 

(3xi e 1R"0(VX2 G R«2) f(gi(z,xi,x2) > 0) V (g2(z,xuX2) = 0)1 
L J (3.2) 

f\(g3(z,Xi,X2) ^0). 

A formula has one thing that a sentence does not, namely, a vector z G R"° 
of free variables. When specific values are substituted for the free variables, the 
formula becomes a sentence. 

A vector z G R"° is a solution for the formula if the sentence obtained by 
substituting z is true. 

Two formulae are equivalent if they have the same solutions. 
A quantifier elimination method is an algorithm which, given any formula, 

computes an equivalent quantifier-free formula, i.e., for the above formula (3xi G 
Rni)(Vx2 G Rn2)P(z,xi,X2) such a method would compute an equivalent formula 
Q(z) containing no quantified variables. 

When a quantifier elimination method is applied to a sentence, it becomes a 
decision method. Thus, a quantifier elimination method is in some sense more 
general than a decision method. 

Tarski [36] actually constructed a quantifier elimination method. 
Many problems in numerical analysis and mathematical programming can be 

cast as the problem of computing a solution for a particular formula. The reader 
will easily verify that this can be done for the problems mentioned earlier. It can 
be done for many other problems as well. Of course determining if a solution 
for a formula exists can be done with a decision method. In the next section we 
discuss the complexity of approximating solutions for formulae. 

Both (3.1) and (3.2) are said to be in prenex form, i.e., all quantifiers occur in 
front. More generally, a formula can be constructed from other formulae just as 
(3.1) was constructed from the atomic predicates. 

We now present a brief survey of some complexity highlights for quantifier 
elimination methods, considering only formulae in prenex form. General bounds 
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follow inductively. (If a formula is constructed from other formulae, first apply 
quantifier elimination to the innermost formulae, then to the innermost formulae 
of the resulting formula, etc.) 

We consider the general formula 

(ßixi G r ) . „ ( ß Ä GR"-)P(z,xi,.. . ,x (M), (3.3) 

where Q\,...,Qœ are quantifiers, assumed without loss of generality to alternate, 
i.e., Qi is not the same as Q/+i. Let m denote the number of distinct polynomials 
occurring among the atomic predicates and let rf > 2 be an upper bound on their 
degrees. 

In the case of Turing machine compulations where all polynomial coefficients 
are restricted to be integers, we let L denote the maximal bit length of the 
coefficients. In this context we refer to the number of "bit operations" required 
by a quantifier elimination method. In the general and idealized case that the 
coefficients are not integers we rely on the computational model of Blum, Shub 
and Smale [2], and refer to "arithmetic operations", these essentially being field 
operations, including comparisons. 

The sequential bit operation bounds that have appeared in the literature are 
all basically of the form 

(md)E [L0(1) + Cost] (3.4) 

where E is some exponent and "Cost" is the worst-case cost of evaluating the 
Boolean function holding the atomic predicates, i.e., worst-case over 0-1 vectors. 

The first reasonable upper bound for a quantifier elimination method was 
proven by Collins [5]. He obtained E = 20(n) where n := no + . . . + nœ. Collins' 
bound is thus "doubly exponential" in the number of variables. His method 
requires the formula coefficients to be integers, the number of arithmetic op
erations (not just bit operations) growing with the size of the integers. This is 
reminiscent of the polynomial time algorithms for linear programming discussed 
earlier. Also, Collins' algorithm was not shown to parallelize, although enough is 
now known that a parallel version probably could be developed. Collins' work 
has been enormously influential in the area. 

The next major complexity breakthrough was made by Grigor'ev [13] who 
developed a decision method for which E « [0(n)]4cü. Grigor'ev's bound is dou
bly exponential only in the number of quantifier alternations. Many interesting 
problems can be cast as sentences with only a few quantifier alternations. For 
these, Grigor'ev's result is obviously significant. Like Collins' quantifier elimina
tion method, Girgor'ev's decision method requires integer coefficients and was 
not proven to completely parallelize. 

Slightly incomplete ideas of Ben-Or, Kozen and Reif [1] were completed 
by Fitchas, Galligo and Morgenslern [9] lo construct a quantifier elimination 
method with arithmetic operation bound 

(md.)ECosi (3.5) 

where E = 2°^. This provides an arithmetic operation analog of Collins' bit 
operation bound. When restricted to integer coefficients, the method also yields 
the Collins' bound if the arithmetic operations are carried out bit by bit. Moreover, 
the algorithm parallelizes. Assuming each arithmetic operation requires one lime 
unit, the resulting time bound is 
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[E log(mrf)]0(1) + Time(iV) (3.6) 

if (md)EN parallel processors are used, where Time(iV) is the worst-case time 
required to evaluate the Boolean function holding the atomic predicates using JV 
parallel processors. The analogous time bound for bit operations is also valid, 
namely, [E log(Lmd)]0(1) +Time(iV) if (md)E[L°W + N] parallel processors are 
used. 

In [25], the author introduced a new quantifier elimination method for which 
E = rifc=o (̂n&)- This was established for arithmetic operations and bit op
erations, i.e., (3.4) and (3.5). Regarding bit operations, the dependence of the 
bounds on L was shown to be very low, L0(1) in (3.4) being replaced by 
L(log L)(log log L), i.e., the best bound known for multiplying two L-bit in
tegers. Moreover, the method was shown to parallelize, resulting in the arithmetic 
operation time bound (3.6) if (md)EN parallel processors are used, and the bit 
operation time bound log(L)[E log(md)]0(1) +Time(JV) if (md)E [L2 + N] parallel 
processors are used. 

Independently and simultaneously, Heintz, Roy and Solerno [15] developed 
a quantifier elimination method for which E = 0(n)°(œ\ both for arithmetic and 
bit operations. Their method also completely parallelizes. 

The various bounds are best understood by realizing that quantifier elimina
tion methods typically work by passing through a formula from back to front. 
First the vector xw is focused on, then the vector xm-.\, and so on. Some methods 
([5, 25]) make a second pass, from front to back. The work arising from each 
vector results in a factor for E. For Collins' quantifier elimination method, the 
factor corresponding to xk is 2°^(2°M = 2°<"°>.. .20(Wûj)). For the method intro
duced by the author, the factor'is 0(nk). The factor corresponding to Grigor'ev's 
decision method is « 0(n)4 independently of the number of variables in x/c. In 
that method a vector with few variables can potentially create as much work 
as one with many variables. Similarly, the factor corresponding to the quantifier 
elimination method of Heintz, Roy and Solerno is 0(n)0^ independently of x/c. 

For the record, the quantifier elimination method in [25] produces a quantifier-
free formula of the form 

/ h 
y /\(hij(z)AijO) 
i=U=l 

where / < (md)E, Jt < (md)E/n°, E = nLo°(nO> t n e d e 8 r e e o f hj is at most 
(md)E/no and the Ay are standard relations (>,>,=, i=, <, ^). If the coefficients 
of the original formula are integers of bit length at most L, the coefficients of the 
polynomials hy will be integers of bit length at most (L + no)(md)E^n°. 

Results of Weispfenning [39], and Davenport and Heintz [6], show the dou
ble exponential dependence on œ of the above bound on the degrees of the 
polynomials htj cannot be improved in the worst case. 

Fisher and Rabin [8] proved an exponential worst-case lower bound for 
decision methods. However, the lower bound «is exponential only in the number 
of quantifier alternations, and is only singly exponential in that. A tremendous 
gap remains between the known upper and lower bounds for decision methods. 

In closing this section we mention that work of Canny ([3], [4]) has been 
especially influential in this area in recent years, both for the techniques he has 
developed and employed and for the connections he has established between the 
area and robotics. Work of Vorobjov [14] has also been very influential. 



Computational Complexity of Solving Real Algebraic Formulae 1601 

4. Solving Formulae Approximately 

In this section we discuss the complexity of approximating solutions for formulae, 
restricting attention to the field R of real numbers. 

The most basic problem in this vein is thai of approximating roots of univari
ate polynomials. Sequential bounds for this problem are numerous, for various 
models of computation, and have been proven over many years. Discussions have 
been provided by Smale ([31, 33]), and Schonhage [29]. 

Until very recently significant time bounds for the parallel compulation of 
roots of univariate polynomials have been missing. However, Neff [22] has proven, 
in the parlance of computer science, that the problem is in NC. He has shown 
that all roots of a univariate polynomial can be approximated to within Euclidean 
distance e > 0 in lime 0[log(Lrf)+log log(4+±)]3 using [Ld log(2+M]0(1) parallel 
processors, where d > 3 is the degree of the univariate polynomial and L is the 
maximal bit length of the coefficients, assumed to be integers. Although Neff 
does not present an arithmetic operation time-bound for arbitrary real number 
coefficients, his ideas can be extended to do so. Assuming we desire to approximate 
all roots lying within distance r of the origin, the resulting lime bound is of the 
form [log(rf)log log(4 + jj)]0^ if [d log(2 + L

E)]0^ parallel processors are used, 
assuming one time unit is required per processor per arithmetic operation. 

Neff's result and techniques have implications beyond the univariate setting. 
For example, the principal bottleneck in parallelizing Collins' quantifier elimina
tion method has been its reliance on univariate polynomial root approximation. 
Neff's result removes that bottleneck. 

In [26], the author reduces the problem of approximating solutions for for
mulae (3.3) to the problem of approximating roots for univariate polynomials. 
Both sequential and parallel complexity bounds for the reduction are provided. 
Using Neff's algorithm and ignoring the cost of evaluating the Boolean function 
holding the atomic predicates (which generally is a relatively negligible cost), 
the resulting arithmetic operation time bound is [E log(wd)log log(4 + ~)]0^ if 
[(md)E log(2 + ~)]0(1) parallel processors are used, where as in the last section, 
E = Y\k 0(nk). For each connected component of the solution set that intersects 
{z; ||z|| < r}, a point within Euclidean distance e of the component is computed 
wilhin this lime, assuming that either (i) both r and e are input to the algorithm 
or (ii) only e is input and r is defined to be the infimum of distances of all 
solutions from the origin. 

The resulting bit operation time bound is [E log(Lmd)log log(4+ \)]0^ if 
[L log(2 + l)]°^(md)E parallel processors are used. For each connected compo
nent of the solution set, a point wilhin distance e of the component is computed 
within this time. 

(The solution set consists of at most (md)E connected components. If the 
coefficients of the formula are all integers of bit length at mosl L then each 
connected component of the solution set has a point within distance 2L of the 
origin, where L = L(md)E.) 

Sequential bounds established in [26], the best presently available, are 
(md)E log log(4+ £) arithmetic operations and L2log(L)log log(L)(md)E bit op
erations where L = L + log(2 + £). The dependence of this arithmetic operation 
bound on r and e cannot be improved, as was proven by the author in [24]. 
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The occurrence of the ratio r/e in both the sequential and parallel arithmetic 
operation bounds naturally leads one to suspect that analogous bounds hold for 
relative error, that is, for the problem of computing a point within distance e/||x|| 
of an actual solution x. However, it is easily proven that even for the problem 
of computing relative approximations to roots of quadratic polynomials, no real 
number model algorithm has a uniform arithmetic operation bound independent 
of the quadratic polynomial, depending only on the degree and relative error 
desired. Uniform bounds for computing points within specified relative error of 
a solution require that the basic algorithmic operations include more than just 
arithmetic operations and comparison operations, e.g., radicals. 

5. Ill-Posed Problem Instances 

Complexity theory has been developed almost exclusively for problems for which 
exact data is used in computations. A theory which fully incorporates the use 
of approximate data has yet to be developed. Central to such a development 
will be the notion of an ill-posed problem instance. In this section we relate an 
answer to the question, "Is it possible to know a problem instance is ill-posed?" 
A complete development can be found in [27]. Here we can only sketch a few of 
the ideas, rather vaguely. 

Define a problem to be a formula P (x, y) with two vectors x G R", y G Rm 

of free variables, R denoting the real numbers. A problem instance corresponds 
to specifying values for y. The values are the data for the instance. We say "x is 
a solution for instance y" if the pair (x,y) is a solution for the formula. 

Many problems can be cast in this format. For example, linear programming 
with a fixed number of constraints and variables fits this format. The vector y 
then specifies A, b and c in (2.1). 

We assume a formula P(x,y) encoding the problem of interest is known 
and we assume arbitrarily accurate approximate data for the actual instance is 
available through an oracle. Input to the oracle is ö > 0 and output is y strictly 
within error à of the data for the actual instance. (Very general functions are 
allowed in measuring solution and data errors, but for this brief synopsis assume 
errors are measured by norms.) 

The goals : 
1) Determine if the actual instance has a solution. 
2) If it has a solution, compute a e-approximate solution, i.e., x G R" guaranteed 

to be within error e of a solution for the actual instance. 
The goals are to be achieved using approximate data and any other infor

mation available about the actual instance, e.g., it might be known the actual 
instance has infinitely many solutions, even if the exact data for the instance is 
not known. There are no restrictions on the known information, including its 
form, except it is required to be consistent, i.e., a contradiction cannot be deduced 
from it. 

Depending on the known information and the exact data for the actual 
instance, the goals may not be achievable. Roughly, the actual instance is ill-
posed if the goals cannot be achieved regardless of how accurate the approximate 
data is. 

To be more definite, we introduce three definitions, which are discussed at 
length in [27]. 



Computational Complexity of Solving Real Algebraic Formulae 1603 

Definition. A problem instance y is indistinguishable from the actual instance if the 
known information regarding the actual instance does not exclude the possibility 
that y is the actual instance. 

Definition. An acceptable algorithm for the problem: 

1) Accepts as input any tuple (y, ö, s) where ö > 0, e > 0 and y might be provided 
by the oracle upon input ö. 

2) Replies one of the following three statements : 
(a) "All instances which 

(i) are indistinguishable from the actual instance and 
(ii) are strictly within error ö of y, 

have solutions, and x is strictly within error e of a solution for all such 
instances," (where x is computed by the algorithm). 

(b) "All instances which 
(i) are indistinguishable from the actual instance and 
(ii) are strictly within error ö of y, 

do not have solutions." 
(c) "Please provide better data accuracy." 

3) Can be proven correct, i.e., correct in the sense that whenever it replies with 
statement (2a) or (2b) and the input tuple satisfies the condition that y is 
strictly within error ö of data for an instance which is indistinguishable from 
the actual instance then the statement replied is indeed true. 

The motivation for requiring that the algorithm can be proven correct in the 
sense of (3) is that if the algorithm does, say, reply with statement (2a) upon some 
input for which y is strictly within error ö of the actual instance then one can 
prove, in terms of one's knowledge regarding the actual instance, that the point 
x is indeed within error e of a solution for the actual instance. In other words, 
one can be certain in terms of what one knows about the actual instance that 
the algorithm will not erroneously claim a certain point to be within error e of a 
solution for the actual instance when in fact it is not. Indeed, the reader should 
regard the definition of an acceptable algorithm to simply formalize the requirement 
that one be able to trust the algorithm not to reply with an incorrect answer for 
the actual instance. 

Definition. The actual instance is definitely well-posed if some acceptable algorithm 
replies (2a) or (2b) whenever y is strictly within error ö of the actual instance 
and ô > 0 is sufficiently small, where what constitutes sufficiently small ö may 
depend on e. 

We do not provide a precise definition of an ill-posed problem instance. We 
only assume that whatever definition is chosen, it excludes 'definitely well-posed' 
instances. 

In [27], the author argues that if the information known about the actual 
instance can be used to deduce the actual instance is not 'definitely well-posed' 
then it can be used to deduce the actual instance is 'definitely well-posed', a 
contradiction. Consequently, if the known information is consistent, it cannot 
be known the actual instance is ill-posed. (Somewhat inaccurately, the result 
amounts to saying that if one knows arbitrarily accurate approximate data is 
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insufficient for the goals, then that knowledge provides sufficient information to 
design acceptable algorithms for which accurate approximate data is sufficient, a 
contradiction.) Consequently, for problems corresponding to real formulae it is 
impossible to know if for the instance of interest it is pointless to collect better 
approximate data and try new algorithms (although it is certainly possible to 
sometimes know it is not pointless). 

The impossibility of being able to know the actual instance is ill-posed is 
primarily a consequence of the existence of decision methods for the first order 
theory of the reals. If instead, for example, solutions are required to be rational 
vectors, examples can be easily constructed showing it is possible to deduce 
from the known information that the actual instance is not 'definitely well-posed' 
without arriving at a contradiction. This is discussed at greater length in [27]. 

Again, much work needs to be done to develop a complexity theory which 
incorporates the use of approximate data. Some reflections on this have been 
provided by Demmel [7], Smale [34] and Shub [30]. In [27], basics for a very 
general theory of condition numbers are developed. 
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1. Introduction 

Paul Halmos [1981] once claimed that applied mathematics is bad mathematics. 
Naturally, we do not share this view (nor did Halmos, at least not entirely, in 
the article cited above). With the analysis of turbulence as an example, in this 
short paper we hope to show that, while its concerns are neither as clean nor as 
circumscribed, applied mathematics can be rich and fascinating and that it often 
interacts deeply with the best "pure" mathematics. 

Two threads can be detected in the application of dynamical systems theory 
to turbulence. The first and better known originates with Landau [1944] and 
Hopf [1948], who proposed a "soluble" model equation which shared features of 
Navier-Stokes and could be shown to exhibit a sequence of bifurcations to flows 
of increasing complexity as a parameter (~ Reynolds number) increases. Hopf 
also suggested that there should be a finite dimensional attracting manifold in the 
infinite dimensional phase space of the evolution equations. Ruelle and Takens 
[1971], following an idea also proposed by Arnold, introduced the notions of 
generic properties and structural stability to the discussion and argued that strange 
attractors, characteristic of low dimensional systems, would more likely provide an 
explanation for the complex, apparently statistical motions of systems ostensibly 
governed by the deterministic Navier-Stokes equations than the quasi-periodic 
flows of Landau and Hopf. This idea led to enormous activity - experimental, 
analytical and numerical - especially in studies of closed fluid systems such as 
Bénard convection and the Taylor-Couette problem (cf. Swinney and Gollub 
[1981]). 

Center manifold theory and the unfolding of degenerate bifurcations (cf. Guck-
enheimer and Holmes [1983], Golubitsky and Guckenheimer [1986]) have been 
major tools in the study of interacting instability modes. However, this local 
approach seems best suited to problems in hydrodynamic instability and the 
transition to turbulence rather than the fully developed turbulence characteristic 
of "open" flows. More recently, proofs of finite Hausdorff dimension for attrac
tors of various partial differential equations (PDEs), including Navier-Stokes, and 
of inertia! manifolds which globally attract all initial data exponentially fast, have 
helped connect these finite dimensional ideas with infinite dimensional evolution 
equations, cf. Constantin et al. [1989], Temam [1988]. 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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The second thread, also traceable to a paper of Hopf [1952], cf. Foias-Prodi 
[1967], Foias [1973], takes a statistical viewpoint and addresses the notions of 
invariant measures and other probabilistic descriptions of turbulent fields. Of 
course, since the original work of Reynolds [1895], statistical descriptions of 
turbulence have been widely used in engineering and physics. 

This paper outlines aspects of current work in which we attempt to bring 
these statistical and deterministic approaches together. Taking the near wall 
region of a fully developed turbulent boundary layer as a specific case and using 
a basis of empirical eigenfunctions, arrived at by statistical means, the Navier-
Stokes equations are projected into a low dimensional subspace and the resulting 
ordinary differential equations (ODEs) studied by dynamical systems techniques. 
See Aubry et al. [1988, 1989, 1990], Holmes [1990], Berkooz et al. [1991] for 
original material and background. Here we concentrate on mathematical issues 
involved in the projection, truncation and modelling processes and indicate how 
some of the "intuitive" simplifications made in the work cited above can be 
justified. 

In Sect. 2 we discuss the proper orthogonal decomposition, by which an "op
timal" basis is generated from data ensembles. Section 3 addresses the averaging 
implicit in representations of boundary layer flows lacking streamwise variation 
and shows that the many spatial scales and modes neglected in such truncations 
can be rationally modelled. In Sect. 4 we draw conclusions. 

We hope that this brief paper provides at least a taste of the fascinating 
interplay between physical foundations, experimental work, modelling and diverse 
types of mathematical analysis characteristic of "good" applied mathematics. 

2. The Proper Orthogonal Decomposition and "Optimality" 

Lumley [1967, 1970] first suggested the use of the proper orthogonal or Karhunen-
Loève decomposition in turbulence studies (cf. Loève [1955]). Motivated by ex
perimental observation of coherent structures (cf. Cantwell [1981]) in open flows 
such as fully developed jets, wakes, shear layers and boundary layers, he sought 
an unbiased method for the recognition and "extraction" of such structures as 
objects in space-time. 

We describe the method for scalar fields; the vectorial generalization is not 
difficult. Suppose that U = {u*(x)\i G /} is an ensemble of realizations of turbulent 
field on some region Q e IR" ; each ul belonging to a suitable Hilbert space 2/(? 
with inner product (•, •) and norm || • ||. Here / is an index set for the realizations, 
(•) denotes the ensemble average. For simplicity one can think of time averages in 
a statistically stationary flow. We seek a basis 0 = {(/>j(x)}f for 2tf such that the 
ensemble averaged normalized projections (Pj(u)) = ((w,0;))/110./II onto each 
element in turn are maximized among all bases W. The desired basis is produced 
by solution of the Fredholm integral equation 

f R(x, x')0;(x') dx' = Xj^j(x), (2.1) 
JQ 

where R(x, x') = (u(x)u(x1)) is the ensemble averaged two point autocorrelation 
function. The basis elements 07- are called empirical eigenfunctions, since they 
derive from R(x,xf), itself the result of experimental observation or numerical 
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simulation; they are orthogonal (henceforth assumed orthonormal) and the eigen
values Àj correspond to the ensemble averaged kinetic energy in each "mode", 
(ßj, via the expressions 

OO 00 

« = 5 > ^ - Ni2 = 2>; l 2 - (2.2) 
1 1 

Also, since the aj are uncorrected, we have 

00 00 00 

( lK- l 2 ) = I<Ki2> = Z V (2-3) 
1 1 1 

$ may have other desirable properties; for example, when the tensor R(x,xf) 
derives from measurements on an incompressible fluid, the <j)j are divergence-free 
vectors: an advantage in Galerkin projection of the Navier-Stokes equations, 
since the projected pressure term (Vp, (j>j) can be removed by integration by parts. 

The basis $ is optimal in the following sense. Let W = {y}f be any other 
orthonormal basis, so that any field u G U can be approximated by the n'th order 
truncations u » ^ " ajcßj and u « ]T" bjipj: 

Proposition 1. For each n > 1 and any W, Zï(^>2 ^ Z"(b;>-

This may be proved by a manipulation involving the correlation matrix 
R(x,x') and the fact that, if K is a self-adjoint operator and Q an orthogonal 
projector onto span {(/){,...,cj)n}, then 

n n 

Tr(K • Q) = £ ( K ^ , fa) < £ KJ , (2.4) 
i i 

where /ci,...,7c„ are the n largest eigenvalues of K (cf. Ternani [1988, p.260]). 
Proposition 1 guarantees that use of 0 minimizes the error, in a mean square 
sense, among all possible truncations of any fixed order. In fact <?> spans the 
subspace which contains almost all realizations in a measure theoretic sense of 
the flow from which R(x,x') was computed. 

Several groups have recently been using empirical eigenfunctions for the 
representation of turbulent fields: see Moin et al. [1984, 1989] and Sirovich et al. 
[1987, 1988, 1989, 1990] for examples based on computer simulation. However, 
in spite of all the numerical activity and studies of convergence of averages (cf. 
Foias et al. [1990]), there has been little study of the way in which the mean 
square optimality of $ relates to the dynamics of ordinary differential systems 
produced via projection of the governing PDEs onto (low dimensional) subspaces 
spanned by finite sets <PN = {(/)j}N. The original work of our group (Aubry et 
al. [1988]) indicated that the statistical optimality of <PN led to systems which 
exhibited instantaneous dynamical behavior representative of the full system, in 
spite of the low order truncations employed (only 5 complex modes!). Sirovich 
and his colleagues have made similar observations for other dissipative PDEs. 
The ideas introduced in the rest of this paper are directed toward a rational 
justification of these observations. 
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3. Dynamics in Subspaces Lacking Streamwise Variation 

In any finite dimensional representation of an infinite dimensional evolution 
equation, such as Navier-Stokes, the phase space J f is divided into a finite subset 
of resolved modes, R, and its (orthogonal) complement, S, elements of which 
are modelled in terms of elements of R, or simply neglected. For example, if an 
inertial manifold, M, exists, it is expressible as a function h : R —> S and one 
relies on the attractivity of M to guarantee that all states asymptotically approach 
points of M with coordinates (r,h(r)). The reduced dynamical system or inertial 
form (Sell [1989]) is then a closed set of ODEs for r: in its simplest form it is 
merely the projection of the full flow onto R with h = 0. 

In measure theoretic terms, there is a conditional measure pr(s) on each 
unresolved fiber r -\-S over the base R3r and an associated measure pR(r) on R 
itself, forming a measurable partition, so that for a set B c j f : 

-L p(B)= / pr(s€B)dpR(r). (3.1) 
JR 

In this context, the physical notion of small scale or local isotropy (Tennekes 
and Lumley [1974]) is the assumption that pr is independent of the base point r. 
More generally, modelling of activity in small spatial scales in terms of the large 
scales can be seen as an attempt to estimate pr. 

Throughout the analysis to follow two notions of ensemble average are 
implicit. The first is the usual one of averaging over many separate (experimental) 
realizations. The second is based on the observation that, when length scales in the 
homogeneous directions (those lacking a distinguished origin) are long compared 
to those of typical turbulent phenomenon, integration over those directions will 
yield a characteristic measure of all the dynamical phenomena. An implicit 
equivalence or ergodicity assumption is thus invoked. 

We now focus on a turbulent boundary layer over a flat plate, the domain 
Q = [0,Li] x [0,L2] x [0,L3] being of streamwise extent L\, span wise L3 and 
normal L2, with periodic boundary conditions in xi and X3. In Aubry et al. [1988, 
1989, 1990] Q is the "wall region". 

Flow visualizations of the boundary layer by Kline et al. [1967] (one of 
which is reproduced in Aubry et al. [1988]) demonstrate the presence of coherent 
structures (streaks) with long streamwise spatial scales and relatively small span-
wise spacing. This, together with explicit evaluation of empirical eigenfunctions, 
prompts the split of Jf into R and S developed below. 

In this section we identify R with (a finite dimensional subset of) the subspace 
of flows u(x, t) = u(x2, X3, t) having no streamwise dependence. Thus, if P is the 
orthogonal projector P : J f -> R, its application is identical to averaging in the 
streamwise direction, as can be seen by appeal to the representation 

o(x,t) = X f l^W*5yM> (3-2) 
k,l,n 

4>h(x) = e2,ti((fa'/L')+((X3/L3))0»((x2)/V^i;, 

k,l,n 

where 

and 
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P(«) = Z «&/(')*&»(*) = T" E «iy W T $ w W "* ' • (3-3) 
/,» L l -70 

Here u(x,t) is the fluctuating field riding on the mean flow U = (wife),0,0). 
Let 

Tt=N{u) ( 1 4 ) 

denote the Navier-Stokes equations. We wish to determine the evolution of the 
resolved state r e R. Ideally, we should solve (3.4) for an ensemble of initial 
conditions (r, s,) to find pr and determine the vector field in R dit each such r by 
integration with respect to this measure : 

(B).-/ /(£L>»- <3-5> 
A simpler alternative is to project (3.4) onto R and solve the resulting reduced 
equation 

&)rp(N(r+a»> M 
with s = h(r) modelled in some way. This latter is computationally accessible and 
fortunately we have 

Proposition 2. For statistically stationary flows, as L\ -• oo so (jjj ~* (lì) • 

Proof The right hand side of (3.5) is the conditional ensemble average over 
Sr such that P(u) = r. However, if L\ is large enough Q may be divided into 
M = L\/d > 1 regions of length d in each of which the flow is statistically 
independent. (Thus d is assumed to be much greater than the streamwise length 
scale.) The ensemble average may then be written 

JSr \ dt LrJ afir(S) " M^dt r+. "* Li 7o dt 

= P(N(r + s)). D 

dx\ 
r+s 

Physically, we assume that Q is long enough to contain "something of ev
erything" at any instant, and so effectively to yield the measure pr. (It is also 
related to the small scale isotropy assumption referred to earlier). Thus the pro
jected evolution equations (3.6) differ from the "ideal" case (3.5) only in that the 
unresolved modes, s, must be modelled. We now turn to this aspect. 

The evolution equation for the fluctuations u, including Reynolds stress terms 
due to the fact that the mean flow U(x) = (U\(x2),0,0) only solves the Navier-
Stokes in a suitably averaged sense, may be written as in Aubry et al. [1988], 
using the Einstein summation convention : 

Yt + MM u i + Lri,2W2<5u + ujUij - (ujjUj) = — n j + VUìJJ . (3.7) 

Here (•) denotes the streamwise-spanwise spatial average: 
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(•> = j - ^ \ \ (') àxi dx3, 

% the fluctuating pressure and v is the viscosity. Letting Ui = r,- + s* and applying 
P, this yields for (3.6) 

dr-
-^ + r /fll/i + Uli2r2on +P(SJSìJ) - (SJSU) 

+ rjrU - (TP rUj) = —P,i + vrUjj > (3-8) 
Q 

where n = p + q and p corresponds to the resolved pressure modes. Note that, 
since ri is independent of xi and s/ has zero mean in xi, several "mixed" terms 
vanish: specifically, the Leonard stresses are zero. 

P ((rjSij) + sjnj - ((rjSij + (sjnj))) = 0, (3.9) 

as Aubry et al. [1988] assumed. 
Now (3.8) is "closed" apart from the term P(SJ,SìJ) — {SJSìJ) which represents 

interaction between modes in R and S. Normally one might expect this to result 
in transfer of energy from R to S and from S to R, as well as modulate its 
transport among the R modes. However, when S represents a subspace of no 
streamwise dependence, and is spanned by the leading empirical eigenfunctions, 
we have 

Proposition 3. (1) P(SJSìJ) — (SJSìJ) on the average can only transfer energy from 
R to S or mote it around in R. No energy on the average enters Rfrom S. 

(2) The ratio (rir2)/\\r\\2 of Reynolds stress to turbulent kinetic energy is re
stricted to an interval appropriate for the ensemble U. For the truncations of Aubry 
et al. [1988] this interval is bounded away from zero. 

(3) Provided only low wavenumbers are retained in R, the ratio of energy loss 
from R to S to turbulent kinetic energy in R is compatible with simple Heisenberg 
or eddy viscosity modelling. 

Proof. Multiplying (3.8) by rt and averaging by (•) yields the evolution equation 

2 for the resolved turbulent kinetic energy ^- ' 

D_/m 
Dt 

-(P(sjSij)n)-2v(QijQij), (3.10) 

where gy = (rij + r^) /2 and D/Dt = jt+Ti^ denotes the convective deriative. In 
(3.10) the term (P(Sj,Sij)ri) alone represents interactions between R and S. Using 
incompressibilty and the fact that rt is independent of xi it may be rewritten 
explicitly as 
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(hL'SjSudxiri) = (hr(SiSjXjdxiri) 
I 1 Ll 1 [u 1 fL1 \ 

= ( 7-S/S1 ri + — / (sis2),2ri dx\ + — / (s/53),3n dx\ ) 
\Lj 0 L\ Jo * Li Jo / 

=((^rw'^ i )'2+(^i iw"'r fx i)>3 
- 7 - / s,s2 dx\ri}2 -J" Wi dxn\3 ) 

= (P(sisjri)j) - (P(siSj)rij) = (stsjrùj - (P(SiSj)rÎJ) . (3.11) 

The first term in (3.11) represents transport of energy among modes in R while 
the second represents straining of modes in S by those in R - i.e. losses from 
R to S. No term exists for transfer of energy from S to R on the average. This 
establishes (1). 

To establish (2) we consider the ratio T = (wit/2)/(w/t//). Since this argument 
has already appeared (Berkooz et al. [1991]), we merely sketch it. Expanding T by 
(3.2)-(3.2)with k = 0 and maximizing and minimizing over the available modes 
in any specified truncation \1\ < L, 1 < n < N leads to a study of expressions of 
the form 

and thus the relative signs and magnitudes of the streamwise (-)i and span wise 
(•)2 components of the empirical basis vectors 0gj determine the upper and 
lower bounds for the range of ratios which can be represented by velocity fields 
belonging to R. Reference to Fig. 4 of Aubry et al. [1988] shows that the lower 
bound is strictly positive, establishing (2). 

Having shown in (1) that energy can be lost from R to S we now wish to 
model this effect by expressing the loss as a function purely of the resolved modes 
r,\ To do this we estimate the ratio 

(QijQij) (('•-•j + 'Vv)('*ü + 'V,')> 

(rijnj) ~ < W 1 / 2 ' 

Here ~ means "equal within an order 1 number"(the correlation coefficient). 
In the conventional Heisenberg type model as used by Aubry et al. [1988] (cf. 

Tennekes and Lumley [1972]) an effective (eddy) viscosity 

vT = ti2^dx\y2 (3.14) 

(^Jo^'X/'X/)^) 
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is introduced by averaging the numerator and square of the denominator of 
(3.13) over the wall region normal to the wall. From (3.13) a more natural choice 
might seem to be 

" - S H A K <3'I5) 
but using the facts that the velocities Si, r* and their derivatives are represented 
by the empirical eigenfunctions, which may in turn be well fitted by (low) order 
polynomials in the wall region we find that (3.14) and (3.15) are of the same 
order. Specifically, let 

(siSi) ~ x2
2
p, (rijrij) ~ x2

2
q , (3.16) 

so that a typical scale in the unresolved mode is represented by a polynomial of 
order p and in the resolved modes by order q (p > q). Then (3.14) and (3.15) 
yield, respectively 

VT ~ \ _ , \ Lz
2"~q, VT ~ n_ _ , 1 , (3.17) 

so that 
2P + 1 (3.18) r«w 

vT y/2ï[+ï(2p - 4 + 1) 

If, as in Aubry et al. [1988], the energy is assumed to be lost to the next higher 
wavenumbers (the lowest in S), then p = q + 1 and 

VT 2q + 3 

vT (q + 3)^/2^+1 
G(c/V«, l ) , (3.19) 

while if we assume that energy is transferred to high wavenumbers in S, p > q 
and 

— ~ - 7 = . (3.20) 

In either case, if a small range of wavenumbers 0 < q < Q are retained in R, 
as in Aubry et al. [1988] the ratio VT/VT does not vary radically and (3) is 
established. D 

As Berkooz et al. [1991] point out, the restriction, by the projection, of the ratio 
T of Reynolds stress to kinetic energy to a range appropriate to the experimental 
observations is crucial to the success of low dimensional representations lacking 
streamwise variation in producing relevant dynamics. If % could drop to zero, 
decoupling spanwise from streamwise motions, then one expects turbulent kinetic 
energy to decay (cf. Moffatt [1990]). When T is strictly positive the turbulent 
fluctuations can (indeed must) extract energy from the mean velocity gradient 
Ui}2 via the third term in (3.7) (the second is absent if there is no streamwise 
dependence). 

The first conclusion of Proposition 3 is striking in that it shows that motions 
contained high spanwise and wall-normal wavenumbers but lacking streamwise 
variations (in R) cannot on the average extract energy even from low streamwise 
wavenumber modes (in S). This is distinct, of course, from their ability to extract 
energy from the mean velocity gradient referred to above. 
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4. Conclusions 

We conclude that projections on the subspace S, lacking streamwise variation (and 
finite subspaces of it) have some special properties. These become apparent due 
to the convenient interpretation of the projection as an average in the streamwise 
direction (Proposition 2). The notion of equivalence of ensemble averages is used 
in an implicit way and must be considered an assumption. We then can make 
the following observations. The projected system is in effect a spatially averaged 
system, constraining the reduced dynamics to what will be physically observable. 
Assumptions previously made neglecting the Leonard stresses prove to be exact 
in an average sense. The expression used for the effective (Heisenberg) viscosity, 
which was based on physical intuition, is proven to be correct (within an order 1 
number) in an average sense. We also observe that on the average energy does 
not pass from S to its complement, R, justifying our intuitive feeling that R is a 
fundamentally important subspace. (It was previously referred to as a "backbone" 
for the analysis Holmes [1990].) We also recalled a previous observation that the 
turbulent energy production is held in an experimentally appropriate range, again 
confirming our physical intuition. 

In work of this type we use a wide range of mathematical tools. Statistical 
methods are used to extract key features from experimental data or simulations. 
Recent ideas from PDE, analysis and dynamical systems theory motivate our 
derivation of reduced (projected) dynamical systems. This is not a bag of unre
lated tricks which happen to work; there are deep relations among the different 
pieces of mathematics and the physical problems which have prompted their 
development and use. Although we do not describe them here, ideas from the 
global theory of dynamical systems permit us to give fairly complete analyses of 
large (O(10 —50)) sets of ODEs, to understand the effects of symmetries on them 
(cf. Armbruster et al. [1988, 1989]) and the influence of noise and other perturba
tions on the heteroclinic attractors they possess (Stone and Holmes [1989, 1990]). 
Physical intuition and reasoning come to our aid when rigorous mathematical ar
guments are inadequate. Perhaps more significantly for mathematics, attempts to 
analyze problems such as turbulence continue to provide a wealth of challenging 
mathematical problems and even to suggest whole new fields of study. 
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1. Introduction 

Some investigations conducted by (1) D. Marr in psycho-physiology of human 
vision, (2) J. S. Lienard in speech signal processing and (3) J. Morlet in seismic 
signal processing led these scientists to switch from short-time Fourier analysis to 
some more specific algorithms better suited to detect and analyze abrupt changes 
in images or signals. 

These algorithms are strikingly similar and in the three of them the functions 
emt, which have a given frequency co, and are the building blocks of the standard 
Fourier analysis, are replaced by "wavelets" which are time and frequency items 
and are the building blocks of "wavelets analysis". Wavelets have a finite duration 
(which can be arbitrarily small) but nevertheless, should also possess a well defined 
average frequency. 

The success of the wavelets theory is due to the remarkable formulation by 
A. Grossmann of J. Morlet's ideas. Today this theory has applications in various 
branches of science whenever complicated interactions between events occuring 
at different scales appear. This happens in astrophysics [7] or in turbulence [3, 
13, 14]. 

Independently of the above mentioned research, heavy constraints imposed 
by digital speech processing have led to the discovery of the so-called quadrature 
mirror filters. These filters also have some applications in image processing where 
they improve pyramidal algorithms [1]. 

During the fall of 1986, S. Mallat discovered that some quadrature mirror 
filters were the key to the construction of orthonormal wavelet bases generalizing 
the Haar system. 

This program was completed by I. Daubechies (1987) and A. Cohen (1990) 
and culminated with the discovery (1989) by G. Beylkin, R. Coifman and V. 
Rokhlin of striking new algorithms in numerical analysis [6]. 

Working on submarine passive detection, J. M. Nicolas set up a new hierar
chical organization of quadrature mirror filters, distinct from the one proposed 
by S. Mallat. 

R. Coifman and the speaker proved the convergence of these schemes to new 
"libraries of orthonormal bases" resembling the waveforms used by J. S. Lienard. 

Proceedings of the International Congress 
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R. Coifman and V. Wickerhauser are planning to improve speech signal 
compression substantially through new algorithms to select a most efficient rep
resentation from such libraries. This line of research might end the dispute 
between the advocates of Gabor wavelets and those of Grossmann since both 
types belong to the library [9]. 

2. The Windowed Fourier Transform 

In signal analysis one often encounters the problem of extracting the frequency 
content of a signal f(t) for which one has only local information. The so-
called short-time Fourier transform, or windowed Fourier transform uses cut
off functions gk(t) which vanish when the information on f(t) is missing. The 
frequency content of each block gk(t)f(t) is given by its Fourier coefficients. Let, 
gk(t), for instance, be the indicator function of the interval Ik = [2kn,2(k + 1)%[ 
and let us expand each block gk(t)f(t) into its Fourier series ]T a(k, I) ellt on the 
interval 4 . It would amount to the same thing if (1), we define "trivial wavelets" 
by T/2TZ W(k,i)(t) — eiltx(t — 2kn), k G TL, l G TL, x(t) being the indicator function 
of [052rc[, (2) observe that these trivial wavelets form an orthonormal basis of 
L2(R), (3) use this basis for expanding our signal. 

As everyone knows, this way of splitting into "hard blocks" produces nu
merical artifacts and the coefficients a(k,l) = (2n)~1^2 (f, Wkf) do not give the 
frequency content of the signal / around Ik. To suppress these artifacts, D. Ga
bor decided in 1945 to replace x(t) by a smoother window function g(t). Gabor 
wavelets are 

(2.1) wk,i(t) = eiltg(t-2kn), leZ, keZ 

where g(t) = 7c_1/4 exp(-£2/2). 
But we would like the I2 norm of the wavelets coefficients to provide an 

energy (L2) estimate on the signal. This happens when g = x- But if g(0 satisfies 
the two condition f™œ t2\g(t)\2 dt < oo and f™œ Ç2 \g(Ç)\2dÇ < oo, it is never the 
case (R. Balian, G. Battle, R.R. Coifman and S. Semmes [11]). For that reason, 
the definition of Gabor wavelets has been modified to 

(2.2) wk,i (t) = eilt g(t-ak), 0<a<2n, 

and this over complete system is currently used in signal analysis [11]. 

3. Wavelets with Constant Shape 

A function \p(x) belonging to L2(RW) is an analyzing wavelet if its Fourier 
transform <p(£) vanishes at 0 in a precise manner, given by the convergence of the 
following integral 

(3.1) c(W)= f \m\2m-ndn. 
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If JR„ |y;(x)|2 (1 + \x\)n+adx < oo for some a > 0, then y; G ÛQR11) and c(y;) is 
finite iff the integral of t/; vanishes. More generally c(\p) is finite for any y; in the 
Hardy space if1 (R"). 

We now pick an analyzing wavelet \p, the mother wavelet, and decide that 
the other wavelets y;g of the family (which are used in the wavelet analysis) will 
only differ from xp by their orientation, their position and their size. This can be 
formulated in terms of the group G with elements g(x) = ag(x) + b, a > 0, b G IR", 
Q G SO(n). In other words, y)g(x) = a~~u/2y)(g~{(x)). The wavelet coefficients a(g), 
g G G, of / G L2(IR") are (f9\pg) and satisfy 

(3.2) Il/Il! = MV))"1 [\*(g)\2dg> 
JG 

where dg = GT" - 1 dadbdç is the left-invariant Haar measure of the group G. 
This implies [16, 23] 

(3-3) / W = (c(V))-1 [*(g)vg(x)dg. 
JG 

Let ç) be a radial function in the Schwartz class such that $(0) = 1 and q>(Ç) = 0 
when Ifl > 1. Then J. Morlet's analyzing wavelet is 

(3.4) \j)(x) = exp (/5xi) q>(x) 

and looks like a Gabor wavelet. But the other wavelets xp of the Morlet family 
differ from Gabor wavelets by the fact that both their size and their average 
frequency are modified. Indeed we have 

(3.5) y)g(x)=a-"/2ei5a~ivx(p'X' 

where v is a unit vector, a > 0 and b G IR". The Fourier transform of y;g is 
contained in the ball |£ — Sa~lv\ < a~x which amounts to saying that the average 
frequency of y;g is 5a - 1 v. 

On the other hand, the size of the support of y;g is 0(a) and Morlet wavelets 
unlike Gabor wavelets have the sharpest spatial resolution at high frequencies, 
which is consistent with the Heisenberg uncertainty principle. In other words, 
when y) is the Morlet analyzing wavelet, the multiscale analysis given by (3.3) 
also provides a multichannel analysis. 

Some scientists, like D. Marr [21], have accepted a looser spectral resolution 
and they impose on the Fourier transform of the analyzing wavelet the following 
conditions: \p(Ç) e C°°(R") and 

(3.6) (d*<p)(0) = 0 for |a| < m 

(3.7) 0K) = O(|Êr") as |É|->oo. 

The larger m and JV, the better the spectral resolution. 
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Scientists who apply wavelets to signal or image processing believe that the 
diagnostic given by the wavelet coefficients will not depend too much on the choice 
of xp as long as xp satisfies (3.6) and (3.7). This belief is supported by functional 
analysts who have been obtaining the same results when using either the standard 
Littlewood-Paley theory or one of its variants. Today it is easy to recognize that 
the standard Littlewood-Paley theory is a wavelet analysis based on Morlet 
wavelets. A. Calderón, E. Stein and G. Weiss developed a program in which a 
function / on IR" is analyzed by the normal derivative ^(x,t) of its harmonic 
extension u(x, t) to the upper half space (x G IR", t > 0). This also amounts to a 
wavelet analysis in which the mother wavelet is xp(x) = (|x|2 — n2) (|x|2 + l )~^+ 3^2 . 

Grossmann's simple and elegant formalism has been directly used in astro
physics [7], in experiments on turbulence [3, 13, 14] and in many other fields 
of science or technology. In all these applications, the role played by wavelet 
analysis is to provide a better localization of small scale structures. These fine 
details are enhanced after being extracted from a background which is either 
cancelled or strongly attenuated by a correctly tuned wavelet. 

Discrete versions of (3.3) would be f(x) = Y,xeA °{^)WXM where A is a suitable 
discrete subset of G. J. Morlet proposed X(x) = 2~aJ(r(x) + ßk), j G Z, k G TLn, 
r G F, where a > 0, jS > 0 are small enough and F is a finite set of rotations. 
I. Daubechies proved in [11] that 

XeA 

and that the corresponding mapping from I2 (A) into L2(RW) is onto when a and 
ß are small enough. The values of a and ß depend strongly on the choice of xp 
which should satisfy (3.6) and (3.7) [22]. 

Daubechies' theorem implies that a canonical decomposition f(x) = 
YJàEA CWWX(X) exists in which the coefficients are given by c(X) = (f,xpx)- Un
fortunately these "dual wavelets" xpx might be badly behaved in terms of size 
and regularity. When this happens, it prevents us from using (in G. Weiss termi
nology) the "atomic decomposition" f(x) = £ c(X)xpx(x) in situations other than 
the "trivial L2 setting". But if one is limited to the L2 theory, the Haar system 
(1909) will provide the most efficient wavelet analysis, since it uses the simplest 
analyzing wavelet and since it is an orthonormal basis. 

All these difficulties would disappear if xpx, Xe. A, forms an orthonormal basis 
of L2QR.n). 

4. Pyramidal Algorithms, Quadrature Mirror Filters 
and Orthonormal Wavelets 

We fix an integer JV > 1 and assume we are given two trigonometric polynomials 
m0(6) = h0 + heie + • • • + h2N-^2N-^, mi{B) = go + giew + • • • + g2N-iei{2N-1)6 

such that iwo(0) = 1, |mo(0)|2 + |mo(0 + n)\2 = 1 and mi(fl) = é^-W m0(6 + TC). 
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We fix these polynomials and for every ö > 0 we consider the corresponding 
operators FQ : l2 (öl) -> I2 (20%), Fi : 12(ÖZ) -* I2 (20%) which are defined by 

oo 

(4.1 ) *b{*(M)} (215) = V2j^h Hk+W > 

(4.2) Fi {x{kS)} (2/5) = V5 £ g t X(t+2/)ä • 
—00 

These two operators are called "quadrature mirror filters" and have the following 
remarkable properties. The operator F = (FQ,Fi) : 12(ÖW) - • 12(2ÖZ) x 12(2ÖZ) is 
a unitary isomorphism and both adjoints 0̂* : I2 (20%) - • l2(öZ), F* : l2(2ÖTL) - • 
l2(ö7L) are partial isometries. The ranges of FQ and F[ are orthogonal in 12(SZ) 
and, finally, one has 

(4.3) I^FÌFO+FÌFL 

We now consider the increasing sequence Fj = 2~j% of lattices (0 < j) together 
with the corresponding partial isometries FQ : l2(Fj) —• l2(Fj+\). It makes sense 
to compose these operators and we are led to study the asymptotic behavior of 
(FQY : /2(ro) —• l2(Fj). By construction, this operator commutes with integral 
translations T*, k G TL. Let ê  G /2(ro) be defined by £*(/) = 0 if / ^ /c, 1 if I = k. 
Then (F^fa), k G Z, is an orthonormal sequence in l2(Fj) and we would like to 
know if, in some sense, this sequence converges to an orthonormal sequence of 
the form <p(x — k), k G %, where cp belongs to L2(R). The convergence procedure 
is defined in the following way. To each element fj(k2~J) in /2(r ;) we attach the 
corresponding atomic measure Gj = 2~ ;/2 £ fj(k2~j)ö^2-J) where öa is the Dirac 
mass at the point a. We next define the convergence of the sequence fj by the 
weak convergence of the corresponding sequence Oj. 

Theorem 2 (A. Cohen, 1989). The two following conditions are equivalent 

(4.4) the discrete orthonormal sequences (F^fa), k G TL, converge to cp(x—k), k G 
Z and this sequence is orthonormal in L2(R). 

(4.5) for 0<9<2n, lim^«, mo(ö)mo(20)... mo(2^0) = 0. 

If (4.5) is satisfied, the function cp G L2(R) which is called the scaling function 
can be characterized by an other property. Consider the functional equation 

2N-Ì 

(4.6) cp(x) = 2 ]T hk(p(2x-k), 
o 

where we impose the condition cp G L{(K) and / cp(x) dx = 1. Then (4.6) admits 
a unique solution which is precisely the function cp of (4.4). Moreover the Fourier 
transform cp^) is given by 

(4.7) $({) = m0K/2). . .m0«;/2 ') . . . 
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We next define xp e L2QR) by y;(x) = 2 Xo^"1 Sk <p(2x — k) or equivalently by 

(4.8) 0«) =mi({/2) moK/4)...ifioK/2^)... 

If (4.5) is satisfied, then 2^2xp(2jx — k), j G Z, k G Z, is an orthonormal basis of 
L2(R). 

It remains, for a given JV, to choose mo(9) and mi(0) carefully in order 
to obtain a smooth wavelet xp(x). One way to proceed is the following. There 
exists (F. Riesz) m0(6) = h0-\ + h2n-i e

i{2N~i)e such that m0(0) = 1 and 
|mo(0)|2 = CN j1»(gin x)M-i dx (CN > o will permit mo(0) = 1). We then have [12]. 

Theorem 3 (I. Daubechies, 1987). There exists a constant a > 0 such that for each 
JV > 2, the corresponding functions <p and xp will belong to CaN. 

This construction also gives orthonormal wavelet bases in several dimensions. 
For the sake of simplicity, we stick to n = 2. We then consider the three wavelets 
xpi(x,y) = xp(x)cp(y), xp2(x,y) = (p(x)xp(y) and xp3(x,y) = xp(x)xp(y). The full 
collection Vxpq(Vx - k, Vy - I), q = 1,2 or 3, j G TL, k G Z, Z G Z is an 
orthonormal basis of L2(R2). 

When compared to Fourier series expansions, orthonormal wavelets expan
sions provide a much deeper insight into the local or global properties of the 
function to be analyzed [17, 18]. 

For example, J. O. Strömberg proved in 1980 that orthonormal wavelets form 
an unconditional basis for the Hardy space J ï 1 ^") . A suitable regrouping of 
the wavelet expansion of a function / in i^flR") yields its atomic decomposition 
[22]. 

5. Wavelets Packets 

Wavelet analysis gives its best performance when it is applied to signals with 
abrupt changes or to functions which have simple discontinuities on smooth 
surfaces and which are smooth elsewhere. On the other hand, wavelet analysis 
gives its worst performance on stationary signals. 

The speech signal obviously contains these two components and one would 
like to switch freely from wavelet analysis to windowed Fourier analysis in speech 
signal processing. R. Coifman and his co-workers have constructed a library of 
orthonormal bases in which can be found I. Daubechies orthonormal wavelets, a 
second orthonormal basis resembling the Gabor wavelets as well as many other 
bases. 

Let us fix some notations to describe this library. We start with two quadrature 
mirror filters FQ : l2(TL) - • l2(2Z) and Fi : l2(Z) -> l2(2TL) as in Theorem 3. Let 
J be the collection of all dyadic intervals J = [I2j, (I + 1)2''), le¥[,j eZ, which 
are contained in [0,oo). To each / G J we attach a closed subspace Wi c L2(R) 
and a function w/(x) which are uniquely defined by the four following properties 

(5.1) w/(x — k2~j), k G TL, is an orthonormal basis of W\\ 
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(5.2) if I0 is the left half of / and h the right half, then Wi is the direct 
orthogonal sum of Wj0 and Wi{ ; 

(5.3) if f(x) = D^x, «/(fc) w/(x - *2";) 
= Z'oo / W » ) Wo(* - 2*2"') + X-oo Wl (2k) W/l (x - 2k2"'), 

then ßJo = FO(CLJ) and y7] = JFi(aj); 

(5.4) if / = [0,2-0, then Wj = Vj and w7(x) = 2^2(p(2h). 

It is easy to compute w/(x). We write J = [të', (/+1)2'), / = e0+fii2+- • -+cq2*+... 
where sq = 0 or 1 and we have 

(5.5) wj(0 = 2-"2 mEQ(^/2^)mr, « / 2 ' + i ) . . . 

With these notations, the library of orthonormal bases generated by the 
quadrature mirror filters (FQ,F\) is described by the following theorem. 

Theorem 4. Let J* c J be any collection of dyadic intervals I <= [0, oo) with 
the property that, excepting a set D which is either finite or denumerable, each 
x G [0,oo[, x ^ D, belongs to one (and only one) interval I G A . 

Then the corresponding family wi(x - k2~j), keZ, I = [12j, (1 + 1)2-0 ^ •*•> ^ 
an orthonormal basis of L2(R). 

When «/* is the obvious collection of the dyadic intervals [2j,2j+1), j G Z, 
this basis happens to be the one described in theorem 3 and when A is the 
collection of [/,/ + 1), / G N, the corresponding Wi(x) will be denoted by w/(x) 
and resemble Gabor wavelets. Moreover, if mo(£) = ^f- and m\(E) = ^f-, the 
orlhonormal basis wi(x — k), 1 e N, fc G Z, is the well known Walsh system which 
is widely used in signal processing. When JV > 2 and m^(£) is chosen following I. 
Daubechies, the corresponding orthonormal basis wj(x — k), l e N, fc G Z, should 
be compared to a smooth version of the Walsh system. 

In their work in speech signal compression, R. R. Coifman and V. Wicker-
hauser are using this full library of bases together with an entropy criterion for 
selecting the specific basis among the library which provides the "best" expansion 
[9]. 
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1. Introduction 

Reaction-diffusion approach has been used to explain pattern formation arising in 
neurobiology, chemical physics, population ecology, developmental biology and 
other fields. Despite its simple structure, a class of reaction-diffusion systems exhibit 
a lot of spatial and spatio-temporal patterns. Some of these patterns in a reacting 
and diffusing medium can be often observed by internal layers or interfaces which 
are boundaries between qualitatively different states in the system. Such interfaces 
exhibit a variety of geometrical patterns such as rotating patterns in the Belousov-
Zhabotinsky reagent [Wi], dendritic patterns in solidifications [Ca], pigmentation 
patterns on shells [MK] and animal coat marking [Mu], for instance. 

The term "reaction-diffusion equations" is usually taken to mean the following 
semilinear parabolic equations: 

^ = DAu + F(u)9 (1.1) 

where u(i, x) = (ul9 u2,..., un)(t, x) means the concentration, density and other 
physical component with time and space variables t and x, D is an n x n nonnegative 
matrix and in most cases, it is a diagonal one and F is the reaction term. 

Among so many reaction-diffusion equation models, we are concerned with 
activator-inhibitor systems which arise in modelling of morphogenesis ([GM]). The 
most simple and suggestive system is the following two-component model: 

-- = d1Au + f(u,v) 
at 

(1.2) 

— = d2Av + ög(u, v), 
dt 

where w and v are called respectively the activator and its inhibitor in morphogenesis 
[GM] or the propagator and its controller in excitable media [Fil] . Here d1 and 
d2 are the diffusion rates of u and v. ö is the ratio of reaction rates. The nonlinearities 
of / and g in which we are interested in this paper are restricted to two types in 
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/ < 0 

\u = M») 

~~/\ / 

P = (u_,u_) 

QL 

l ~ = hQ(v) 

g(u,v) = Q 

y<(R = (u+iv+) 

\u= h+{v) 

/(«,») = o 

(fc) 

Fig.l 

Figs, la and b. A prototype of/ and g is 

(/(H, D) = u(l - M)(« - a) - v 

\g(u, v) = u-yv 
(1.3) 

with constants 0 < a < 1 and y > 0. When v is totally absent in (1.2) with (1.3), it is 
called the time dependent Ginzburg-Landau equation and when v does not diffuse, 
it reduces to the well-known FitzHugh-Nagumo equation which models a nerve 
impulse propagating along the axon ([NAY]). 

The kinetic system of (1.2) is given by 

du 

dv 

dt 

(1.4) 

= àg(u, v), 

which is called the Bonhoeffer-Van der Pol equation when / and g take (1.3). 
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For the case in Fig. la, (1.4) has the only one equilibrium state P, which is 
globally stable. In this case, a small disturbance from this state is rapidly damped, 
while a large disturbance wanders far from the state but then eventually returns to 
the state. Because of this feature, the state P is called a rest state in excitable media. 
On the other hand, for the case in Fig. lb. (1.4) has three equilibria P, Q and R where 
P and R are stable and Q is unstable. That is, (1.4) is called a monostable system 
for the former case, while it is a bistable one for the latter case. 

We consider the situation where diffusion terms are present in (1.2) and one 
component u diffuses slower than the other v, moreover, u reacts much faster than 
v. More specifically, we introduce the new parameters e, i and D instead of dl9 d2 

and ö through 

e = yfa\9 T = S/y/a\ and D = d2/ö. 

Moreover, we specify the nonlinearities off and g as (1.8) for simplicity only, though 
the results which will be stated later are valid for more general nonlinearities under 
appropriate conditions. We thus rewrite (1.2) as 

ci — = c2Au + f(u) — V 
dt 

(1.5) 
ÔV 
— = DAv + u — yv 
dt 

with/(w) = w(l — u)(u — a), where s is sufficiently small and T and D are of the order 
0(1) compared with e. 

Assuming that e is sufficiently small, we use singular perturbation techniques to 
study the existence and stability of stationary pulse solutions in a monostable system 
and traveling front solutions in a bistable one in Sections 2 and 3, respectively. Both 
solutions exhibit internal layers with width 0(e). In Section 4, in order to study 
the dynamics of such layers, we derive the equation of motion for interfaces in the 
limit e J, 0. Finally, we would like to give some remarks on our system in Section 5. 

Acknowledgement. I have benefitted from the discussions with my colleagues, H. Fujii, Y. 
Nishiura, H. Ikeda, T. Tsujikawa, R. Kobayashi and T. Ohta. 

2. Localized Patterns in a Monostable Medium 

In this section, we consider (1.5) under the situation where there is only one trivial 
(constant) equilibrium state P = (0, 0) as in Fig. la. In addition, we assume 

1 i 

f(u) du > 0 
o 

under which the equilibrium state P is asymptotically stable. This situation is realiz
able when a and y are chosen to satisfy 0 < a < 1/2 and 0 < y < max(w — a)(l — u). 
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We treat the system (1.5) in the whole domain RN. The boundary condition at 
infinity is 

lim (u, v) = (0, 0). (2.1) 
|x|->oo 

For this problem, there arises naturally a question of interest: Are there any 
nontrivial equilibrium states? Intuitively we can imagine the following situation: 
Suppose that there is a local disturbance in u. If it is not so small, then it possibly 
forms into a large peak and expands, as an activator, but its expanding may be 
stopped due to the relatively faster diffusion of the inhibitor. This argument suggests 
the possibility of the localization of two components, if there exists a suitable 
balance between them. 

Motivated by this suggestion, we are interested in the existence problem of 
(hopefully stable) nonconstant equilibrium states of (1.5) under the boundary condi
tion (2.1). 

For one dimensional case, singular perturbation techniques [Fi2] or shooting 
arguments [EHT] can be applied to (1.5), (1.6) if e is sufficiently small. 

Theorem 1. There is s0 such that the stationary problem of (1.5), (2.1) has two different 
types of ID-pulse solutions (ue, vE) and (uE, ve), which are symmetric with x = 0, for 
0 < s < s0 (the profiles of these solutions are Fig. 2). 

We now address the following questions: (1) Is there any other pulse-solution 
for small e? (2) Is there any pulse solution for not small e? (3) How is the stability 
of the equilibrium solutions (u~e, vE) and (ue, vB)l Unfortunately, the first two equa
tions (1) and (2) have not yet been answered except for the special case when / is 
piecewise-linear 

f(u, v) = — 1 + H(u — a) — v 

(b) 

Fig. 2 
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2.0 

(IZ,Z)-branch 

2(i+y) 
0.5 

(a) (b) 

Fig. 3 

with constants a and y satisfying 0 < a < 1/2 and 0 < y < 2a/(l - 2a), where H(x) 
is the Heaviside step function. For this case, the global structure of symmetric pulse 
solutions can be completely understood ([OMK]). For instance, Figs. 3a and b 
show respectively ID- and 3D-radially symmetric solutions. That is, for suitably 
fixed a and y, there is the critical value ec such that there are exactly two different 
solutions for 0 < e < ec, where the upper and lower branches correspond to (uE, vE) 
and (uE, vE), respectively, while there are no solutions for BC < e. 

For the third question (3), we have recently obtained the following: 

Theorem 2 [NM]. Let (UE, vE) and (uE, vE) be the equilibrium solutions of (1.5), (2.1) 
which are given in Theorem 1. There is the critical value xc such that (uE,vE) is 
asymptotically stable (except for translation free) for xc < x, while it is unstable 
through Hopf bifurcation for 0 < x < %c. On the other hand, (uE, vE) is unstable for any 
T > 0 . 

4.00 

2.00 

0.00 

4.00 

2.00 

0.00 

(a) (b) 

Fig. 4 
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Remark [[NM]). When x decreases, the destabilization of (UE, vE) occurs and there 
appears a bifurcating solution which exhibits oscillating internal layers as in Fig. 4. 

It is quite interesting to consider the stability of pulse solutions in higher 
dimensional space. For the piecewise nonlinearity, it has been recently shown in 
[OMK] that even if x is fixed to satisfy xc < x, the stability of 2D- and 3D-solutions 
is different from the ID-one. For higher dimensional cases, the stability crucially 
depends on parameters a and y. For instance, when y is suitably fixed, there is the 
critical value ac such that the solution is stable for ac < a, while it is unstable through 
radially symmetric breaking. For more general nonlinearities, numerical simula
tions show that such destabilization also occurs ([OMK]). Its rigorous treatment 
is in progress. 

3. Traveling Fronts in a Bistable Medium 

In this section, we consider (1.5) in the case when there are two equilibrium states 
which are stable as in Fig. lb. We simply write them as P : (w_, vJ) and R : (u+, v+). 
This situation is realizable when 0 < a < 1/2 and 

y > Vo = q/{(2 -a- Ja2 -a+ 1)(1 - 2a + ja2 - a + 1)} 

Under this situation, we consider one dimensional traveling front solutions which 
correspond to propagating transition from one state P to the other R. This kind of 
problem occurs in the study of diffusive waves in population genetics, combustion 
theory, chemical reaction and population dynamics. 

These solutions can be represented by (u, v)(z) with z — x -j- ct where c is the 
velocity. Thus, (1.5) is written as 

e2uzz - scxuz + /(«) - 0 = 0 
zeK, (ÓA) 

- cvz + u — yv = 0 
where we may take D = 1 without loss of generality. The corresponding boundary 
conditions are 

(u, u)(±oo) = (u+, v±). (3.2) 

Our problem is to find c such that (3.1) has a heteroclinic orbit u(z) connecting 
(u+, v+) and (w_, vj) at the infinities z = ±oo. 

For a special case when y tends to oo, (3.1), (3.2) formally reduces to the scalar 
problem for u 

s2uzz - scxuz + f(u) = 0, zeR 
u(±oo) = u± 

because v = 0. For this problem, it is already known that there is only one traveling 
front solution u(z) with the unique velocity c and it is stable (except for translation 
free) ([FM], for instance). We easily find that when e is sufficiently small, this 
solution exhibits a single internal layer with width 0(e). 
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We consider the problem as to how many traveling fronts exist and how their 
stability are for (3.1), (3.2). Before stating the result, we introduce the following two 
critical values in addition to y0: 

and 

72 

yi = 9/{(2-a)(l-2a)} 

= 9/(1 + a + y/3(a2-a + !)/{(! + a)(2 - a)(l - 2a)} 

When e is sufficiently small, singular perturbation techniques can apply to (3.1), 
(3.2) so that the global bifurcation pictures with respect to x are drawn for some 
values of y, as in Fig. 5 ([IMN]). We find that the number of traveling front solutions 
depend upon the parameters x and y, which is totally different from the scalar 
version. Fig. 5a is the structure for y0 < y < yl9 Fig. 5b is for y = yl9 Fig. 5c is for 
y1 < y < y2 and Fig. 5d is for y2 < y. For the special case when y = y1 so that the 
kinetics possess odd symmetry, there exist an odd symmetric standing front solution 
(which has zero velocity) for any x and a pitchfork bifurcation occurs at x = xc 

such that the trivial solution is stable for xc < x, while it is unstable for 0 < x < xc. 
When y is slightly different from yl9 this symmetric structure is deformed into the 
imperfection structures in which one limit point appears. 

T o 

(b) 

M (d) 

Fig. 5 
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We call the front with positive velocity a front wave, while the one with negative 
velocity a back wave. For the stability of these solutions in one dimensional case, 
we have 

Theorem 3 (NMIF]). Consider the solution branches in Fig. 5. 

(1) (Fig. 5a) The fast front wave and the back wave are stable, while the slow front 
wave is unstable; 

(2) (Fig. 5b) The front and back waves are both stable; 
(3) (Fig. 5c) The front wave and the fast back wave are stable, while the slow back 

wave is unstable; 
(4) (Fig. 5d) The front wave is stable. 

The fourth case corresponds to the scalar problem which was already noted. 
A natural question arises whether these planar traveling front solutions are 

stable or not in higher dimensional spaces? Recently we have found that the stability 
crucially depends on the value of x. The result will be stated in a forthcoming paper. 

4. Interfacial Dynamics 

We have shown the stability as well as existence of stationary pulse solutions and 
traveling front solutions which possess internal layers with width 0(e). From an 
application view point, we address the following question: When e is sufficiently 
small, how does a solution of the initial-boundary value problem of (1.5), (2.1) or 
(1.5), (3.2) evolve into these patterns? In order to answer it, we derive the approximat
ing evolution equation from the original reaction-diffusion system (1.5) when e tends 
to zero. In this case, one could expect that an internal layer becomes an interface in 
the limit e J,0. First, we consider a bistable scalar equation of (1.5) when v is assumed 
to be constant, say v = q such that f(u) = q has three zeros h_(q), hQ(q) and h+(q). 

du 
ex— = s2Au+f(u)-q. (4.1) 

We consider (4.1) in the whole plane R2 for simplicity. When e is sufficiently 
small, one could expect that the process consists of two different stages. The first 
stage is that even if the initial data is smooth, the solution u(t, x) tends, in a short 
time, to one stable equilibrium state u = h+(q) in a region where u(0, x) > h0(q) or 
to the other stable state u = h_(q) in a region where «(0, x) < h0(q), since the system 
is a bistable one. This indicates that there appear internal layers with width 0(e) 
which separate the plane into two different subplanes ([FH]). In the limit e j 0, it 
implies the appearance of interfaces in the plane. The next stage is that such 
interfaces propagate. Suppose that the interface is described by a gentle curve r(t) 
in a way that R2\T(t) = Q+(t) u Q_(t) where the relations u = h+(q) hold in the 
regions Q±(t). The motion of r(t) is described by the following evolution equation 
([KT], for instance): 
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xV={-c(q) + eK}n (4.2) 

where V is the normal velocity of the interface, K is the mean curvature at T(t), n 
is the unit normal vector of T(t) pointing from Q+(t) to Q_(t) and c(q) is the velocity 
of the ID-traveling front solution of the bistable equation 

du d2u 

Tt = ôS + m - q > t>0' x e R 

lim u = h±(q) 

It is known that c(q) is explicitly represented as 

M«) - 2Äo(9) + U<?) c(q). 
J2(h+(q) - M«)) 

Recently, for the study of the curvature effect on the motion of interfaces, (4.2) has 
been investigated in the mathematical community ([CGG], [ES], [Gr] and the 
references therein). 

Come back to our system of equations (1.5) in R2. Keeping the scalar equation 
(4.1) in mind, one could expect that the process also consists of two stages: The first 
stage is the appearance of internal layers or interfaces in the limit e J, 0. In the region 
where is away from interfaces, we may put c = 0 in (1.5) so that it becomes 

j t = DAv + g±(v), (4.3) 

where g±(v) = h±(v) — y v. The functions u = h±(v) stand for the two branches of 
f(u) = v, as shown in Fig. 1. Thus, the whole plane R is decomposed into two 
subplanes Q±(t) where u = h±(v) hold. The boundary between Q+(t) and Q_(t) is an 
interface, say r(t). The second stage is the motion of interfaces. As in the similar 
way to the scalar version, we obtain 

xV={-c(q) + eK}n (4.4) 

where q is the value of v on the interface. We thus have the evolution equation for 
(v,n 

dv 
- = DAv + g±(v), (t, x) e Q±(t) 
vt (4.5) 
T K = -{c(q) + cK}n on P(t) 

with suitable continuity conditions for v on the interfaces. For the one dimensional 
case, the global existence of a smooth solution is proved in [HNM]. On the other 
hand, for higher dimensional cases, complicated singularities may appear so that 
we can not expect the global existence of smooth solutions. Recently, the local 
existence of a smooth solution has been shown in [Ch]. 

For the dynamics of interfaces, there is a great difference between the scalar case 
(4.1) and the system (4.4). For the former case, if the configuration of an initial-
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interface is convex, it is still convex for any time, while it possibly becomes non-
convex for the latter case ([OMK]). 

The analysis of this system is in the beginning stage. 

5. Concluding Remarks 

In the previous sections, we have two different systems. One, system (1.5). is the 
so-called reaction diffusion system with a small parameter e and the other (4.5) is 
the interface equation associated with (1.4) in the limit as e J, 0. The relation between 
(1.5) and (4.5) can be studied by intuitive and formal asymptotic analysis. The 
rigorous understanding has been achieved for the scalar case (3.1) ([MS]) and the 
numerical study ([IK]). This is one of the important problems which we should 
study in future, from pattern formation view point. 

Note after submission. After completing this work, the author learned the paper by 
X. Chen: Generation and propagation of interfaces in reaction diffusion systems 
(IMA, preprint series #708), which discuss the relation of (1.5) and (4.5). 
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The Development of Algebraic Methods 
of Problem-Solving in Japan in the Late Seventeenth 
and the Early Eighteenth Centuries 

Annick M. Horiuchi 

REHSEIS (CNRS), 49 rue Mirabeau, F-75016 Paris, France 

I. Introduction 

The rapid growth of mathematical knowledge during the Edo period (1600-1868) 
is one of the most remarkable features of the history of science in Japan before the 
modernization of the Meiji era. The chief outcomes of this long-standing tradition 
were: 

- the accumulation of a significant body of high-standard mathematical works 
jealously kept within private academies where they were communicated to small 
numbers of selected disciples, 

- the wide diffusion of mathematical practice through the publication of popular 
textbooks and the activity of schoolmasters and itinerent teachers. 

To appreciate the extent of this development, one must recall that, at the turn 
of the 17th century, mathematics meant little more than elementary computations 
performed with the abacus. The situation was modified to a considerable extent 
after the Japanese turned their attention to ancient Chinese scientific works. In less 
than half a century, Japanese mathematics developed from the primary art of 
computation which served the practical needs of merchants, craftsmen and low-
grade warriors into a discipline appealing to a scholarly audience. 

Before dealing with the original contribution of Japanese mathematicians, it is 
to be noted that the assimilation of Chinese mathematics was quite effectively 
prompted by the novel practice of leaving several problems unsolved at the end of 
the books as a challenge to other mathematicians. Almost all the difficult problems 
discussed in Chinese works were integrated in this way into the Japanese corpus. 

A further impetus was added in 1658 by the discovery and the subsequent reprint 
of a 13th century Chinese treatise [Zhu Shijie 1299], the level of which far surpassed 
those of previously available works. The 13th century in the history of Chinese 
mathematics was a very productive period (often described as its golden age) when 
significant achievements were made, most particularly in the area of algebraic 
devices [Li Yan and Du Shiran 1987, chap. 5]. The Japanese scholars' attention 
soon focused on the tengen (or tianyuan in Chinese) method which Zhu Shijie used to 
solve a range of tricky problems. 
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The tengen/tianyuan method of solving problems was basically similar to the one 
which is called algebra in the West. The Japanese scholars spent many years before 
getting at the meaning of the word tengen (literally "celestial origin"), the name given 
by the Chinese to the "unknown". The level of the difficulties involved was such 
that the contemporary Chinese mathematicians who were unaware of the past 
achievements had to wait for the introduction of the western algebra in the 18th 
century to rediscover the meaning of the method. [Martzloff 1987, pp. 105-106] 

Japanese mathematicians worked on problems which were modelled on the 
older Chinese problems. These problems dealt with concrete situations and were 
expressed in numerical terms; their solution included both the numerical result and 
the procedure (jutsu in Japanese), the sequence of the operations to perform on the 
abacus or with counting-rods to get to the result. 

The proliferation of small problems of this kind throughout the Edo period and 
the increasingly artificial character of most of them led some historians to stress the 
artistic and recreational character of Japanese mathematics and the mathematicians' 
indifference to the 'utility' of their art [Mikami, 1921]. 

This point of view relied chiefly on the examination of one side of Japanese 
mathematics: the problems. But one cannot ignore the fact that the "utility" of 
mathematics in the past very often depended on the general and efficient methods 
and tools which were obtained through solving particular problems. Therefore, 
the issue of the utility of Japanese mathematics cannot be settled before having 
examined the other side of the mathematicians' work, that of elaborating methods 
of solving problems. 

The aim of this paper is to discuss some prominent features of the development 
of these methods in the late 17th and the early 18th centuries. I will focus on the 
achievements of Seki Takakazu (7-1708) and Takebe Katahiro (1664-1739), two 
major mathematicians of this period. I will discuss the way Seki improved the 
Chinese algebraic methods and stress the importance of the Chinese root-extraction 
procedure in the course of his research. I will then turn to one of Takebe's main 
contributions, the introduction of the infinite power series in the scope of algebraic 
calculation. 

II. SEKI's Study of Algebraic Devices 

Let us begin with Seki's synthesis of earlier methods of problem-solving. The 
synthesis, achieved by 1683, took the form of a trilogy. Each treatise was devoted 
to a particular method of problem-solving [Hirayama et al 1974, sects. 6, 7 and 8]. 
I will examine only the last treatise where Seki expounds an original method of 
problem-solving which can be understood as an extension of the Chinese tengen/ 
tianyuan method. 

Let us consider first the main features of this Chinese method which had a 
considerable influence on the development of algebraic devices in Japan. Here is 
an example of a problem requiring the tengen method for its solution: 

"Given a rectangular field of 8 mu 5 fen and 5 li [1 mu = 240 square bu; 1 fen = 
0.1 mu; 1 li = 0.1 fen]. We only say that the sum of the length and the width is 
92 bu. Find the length and the width". [Zhu Shijie 1299, chapter kaifang shisuo] 
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The solution followed a regular pattern: first, a quantity was set up as the 
unknown. Then two different algebraic expressions for a certain quantity were built 
up (in the problem above, the area was expressed as x(92 — x) and 2052). The 
equation was derived by subtracting one of the expressions from the other. Finally, 
the numerical value of the unknown was determined by extracting the root of the 
equation, digit by digit. 

One basic feature of the tengen/tianyuan method was the use of counting rods 
to carry out the polynomial calculation as well as the extraction of the root. The 
solution itself, as I have said in the introduction, consisted of the sequence of 
operations to be performed with this instrument. The instructions given by the 
author were like: "Put one rod for the unknown", "Multiply by itself four times", 
"Add it to the area", etc. 

The way the counting-rods were to be handled could be reconstructed from 
specific symbols representing the polynomials obtained on the counting-board (a 
large sheet of paper with horizontal and vertical lines drawn on it). These symbols 
were inserted in the solution after each instruction. Polynomial expressions as well 
as equations of one unknown were represented by the column of their coefficients 
arranged in the order of increasing powers of x (see Fig. 1): 

|o| | | | 209 (constant term) 

} —16 (coefficient of x) 

HI 3 (coefficient of x2) 
Ex: 3x2 - 16x + 209 

Fig. 1. The Chinese notation for polynomials 

Let us now turn to Seki's improvement of the Chinese method. The need for an 
improvement originated in the publication in 1671 of fifteen unsolved problems by 
Sawaguchi Kazuyuki, a Kyoto mathematician. Sawaguchi's problems were so intri
cate that none of them could be handled with the Chinese method. This is an 
example of Sawaguchi's problems: 

"We have now A, B and C, such that each is a cube. 
We say first that the volumes of A and B altogether make 137,340 tsubo and 
also that the volumes of B and C altogether make 121,750 tsubo. 
We say in addition that the square root of the edge of A, the cube root of 
the edge of B and the fourth root of the edge of C altogether make 1 shaku 
2 sun. Find the sides of A, B and C." [Sawaguchi 1671, Problem 4]. 

The third treatise of Seki's trilogy gave a global solution to two questions 
implicitly raised by Sawaguchi's problems which can be formulated as follows: 
How can one proceed to the calculation when the quantities involved cannot be 
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HI—UHI / I l h (315/-4fc) (constant term) 

-M h (-12/I5) (coefficient of x) 
4 

3bhl (coefficient of x2] m » 
Ex: 3lbhx2 - 12h5x + (315/ - Ah) 

Fig. 2. Seki's notation for polynomials with literal coefficients. 
The literal and the numerical parts were dealt with separately. The latter part was 

transcribed by using the rod-numerals; the former was written beside these numerals using 
Chinese characters. 

In the example above, the Chinese characters meaning length, breadth, height and number 
four have been replaced by the letters /, b and h and the arabic numeral 4. h5 is represented 

h 
by because Japanese mathematicians used to consider the number of times a quantity was 

multiplied by itself, that is the power minus one unit. 

expressed in terms of one unknown? How can one eliminate the unknown within 
two equations?1 

Seki answered by adding supplementary steps to the tengen pattern. In the 
course of these steps, additional unknowns were introduced and eliminated. Seki's 
improvement can be characterized by two main features. First, the general pattern 
of the tengen was maintained by considering one unknown at each stage and by 
integrating the other unknown quantities into the data. Second, the calculation 
was reduced to a single process of eliminating one unknown within two given 
algebraic equations. 

Seki's ability to cope with such general contexts and questions was closely 
related to his use of adequate notations to represent polynomials and equations 
with literal coefficients (see Fig. 2). Seki's notations were obtained by extending the 
traditional representation of polynomials with numerical coefficients. The rules of 
calculation with the new notations remained unchanged. [Hirayama et al. 1974, 
Sect. 29]. 

This step has been described by many historians as a shift from an "instru
mental" algebra into a "written" algebra. But this description is misleading in at 
least one respect. In fact, the solution maintained its algorithmic character and 
consisted of a rhetorical description of the operational instructions to be performed 
on an imaginary counting-board. In the solution, the notation was only used to 
represent the polynomial expressions obtained at each main step of the calculation. 
The calculation itself was performed somewhere else and was not made explicit. We 
do not even know if Seki performed the calculation on the paper or went on using 
the counting-board in some manner. In this respect, his calculation still preserved 
an instrumental character. 

1 Regarding this point, an extension to the case of four unknowns was achieved in China as 
early as the beginning of the 14th century [Zhu Shijie, 1303]. Japanese mathematicians of 
Edo period did not know about this extension. 
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Additional features should be noted about Seki's use of this notation. Seki 
described the procedure of elimination in very general terms, by considering sets of 
two equations with arbitrary coefficients. 

The coefficients were represented by means of Chinese characters taken from a 
series of twelve characters (the ten "stems" and the twelve "branches"; kanshi) in the 
same way as alphabet letters symbolise numbers in western algebra. 

Many studies have been devoted to Seki's method of elimination by which he 
solved problems through cancelling a certain determinant [Mikami 1913]. Leaving 
aside detailed analysis of this method, we note that Seki's interest in the general 
rules of calculating the determinant was closely connected to his systematic use of 
Chinese characters as symbols in place of particular numbers. 

To conclude the first part of this study, I will add that the whole trilogy of Seki's 
reveals a clear shift of his concern from particular problems to general methods of 
solution. In all the treatises composing the trilogy, Seki displays both his intention 
and his ability to reduce any particular problem to general processes of calculation. 

This tendency towards generalization, however, was not entirely new in the 
Sino-Japanese tradition. The search for general procedures of problem-solving had 
always been part of the Chinese tradition, as is well exemplified by the classification 
adopted in one of the oldest mathematical treatises in China, the Nine Chapters of 
Mathematics [Chemla 1988; Wu 1986]. Seki's originality lay rather in departing 
from the general tendency of his time to favour particular problems, and in his 
introduction of a range of efficient tools to describe the methods in general terms. 
As a consequence, Seki's attention gradually concentrated on general objects like 
equations and polynomials. 

III. 'Defective' Problems and Seki's Reflection 
on Root-Extraction Procedures 

Let us now examine more closely Seki's study of equations. This part of Seki's 
achievement, which took place shortly after the trilogy, is particularly interesting 
in that it brings forward a quite different way of discussing properties of equations 
and roots from the one so far better-known to modern mathematicians. A particular 
computational device plays a central role in Seki's research: the root-extraction 
procedure. 

Seki's interest in equations stemmed from a particular, quite pragmatic pre
occupation: the search for methods to correct what he called 'defective' problems 
(byôdai). According to Seki's definition [Hirayama et al. 1976, Sect. 9], problems 
were "defective" or wrongly stated if they led either to more than one acceptable 
solution or to none. Defective problems had to be corrected by changing the terms 
of the problem. 

In the course of his research, Seki's interest shifted to the equations themselves 
and he thought out a general method of transforming an equation with more than 
one root into one equation with a single root [Hirayama et al. 1974, Sect. 8]. This 
was done by changing the value of one of the coefficients in the initial equation. 
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Before discussing Seki's method, we must note that the notion of "equation' did 
not have a strict equivalent in traditional Chinese methematics. Instead, we find the 
concept of "configuration for extraction" (kaifangshi), referring to the numbers set 
up on the counting-board to perform the extraction. The configuration itself was 
similar to the polynomial expression (Fig. 1). Likewise, instead of the concept of 
"root", we find that of "quotient", which referred to the location on the counting-
board of the result of the extraction. The coefficients of the equation were similarly 
called by the names of their respective locations on the counting-board, 

The extraction procedure which Seki used in this context was a general proce
dure which allowed him to compute successively all the real roots of a given 
equation. 

This procedure, in fact, was an outcome of a long tradition of research in China 
[Li Yan and Du Shiran 1987, Sect. 5.2] but let us concentrate here only on the 
procedure as was set forth in Seki's treatise [Hirayama et al. 1976, Sect. 8]. The 
whole extraction was built on one basic pattern of computation involving the 
coefficients of the equation (see Table 1), in which one can easily recognize the 
so-called Horner-Ruffini process. The successive configurations can be interpreted 
as a gradual alteration of the coefficients of (1) into the coefficients of (2) where (2) 
is satisfied by y with y = x — a. 

f(x) = m + nx + lx2 + px3 = 0 

<p(y) = f(y + a) = o 

0) 
(2) 

The above interpretation of the root-extraction pattern as a substitution of the 
unknown was not explicitly stated by Seki in this context. But all the improvements 
he introduced suggest that Seki did have a similar explanation of it. 

Let us examine more closely how Seki used this procedure to find all the roots 
of a given equation. To begin, the first root of the equation, let us call it a, was 
sought by carrying out successively this basic pattern with several quotients 

Table 1. The basic pattern of Seki's root extraction procedure 

Quotient 

Constant term 
Coefficient of x 
Coefficient of x2 

Coefficient of x3 

(1) 

a 

m 
n 
I 
P 

(3) 

(2) 

a 

m + (n + la + pa2). a = m -+- na + la2 + pa3 

n + (l + pa).a = n + la + pa2 

l + p.a 
P 

(4) 

a 

m + na + la2 + pa3 

n + la + pa2 + (/ + 2pa). a 
I + pa + p.a = l + 2pa 
P 

= n + 2/a + 3pa2 

a 

m + na + la2 + pa3 

n + 2la + 3pa2 

l + 2pa + p. a = l + 3pa 
P 

The calculation is carried out for each configuration from the bottom up. 
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(positive or negative), suitably chosen so that the number in the top line gets closer 
and finally becomes equal to zero. The first root was then derived by adding the list 
of quotients. 

The equation cp(y) = 0 corresponding to this last configuration would therefore 
be inferior by one unit compared to the initial equation. 

Seki's originality lay in his idea of iterating the previous process to the new 
equation. Assuming for example that fc is a root of the new equation <p(y) = 0, which 
means that at the end of the iterated process with b as quotient, the top line of the 
last configuration gets to zero, then the number a + b would be the second root of 
the initial equation. 

The central role played by this root-extraction procedure in Seki's reflection on 
equations and roots is particularly obvious in the way he tried to solve the afore
mentioned question of removing the "excess" roots. 

Seki's method was based on a general criterion which was to be fulfilled by the 
coefficients of any equation having a single root. This criterion which is actually a 
condition of existence of a double root was the outcome of a computation in which 
the extraction procedure played a central role. 

The fact that a is the single root of (1) meant for Seki that at the end of the 
extraction procedure, the top two lines of the last configuration (the configuration 
(4) in Table 1) were equal to zero. 

\m H- na + la2 + pa3 = 0 

[n + 21a + 3pa2 = 0. 

The criterion was then derived by eliminating a within these two equations: 

27m2p2 -I- 4m/3 -I- 4w3p - limnlp - n2!2 = 0. 

As shown by this example, the root-extraction procedure in Seki's mathematics 
was clearly something more than a device for computing the roots of an equation. 
This procedure was automatically involved in any discussion pertaining to equa
tions, coefficients or roots. No hypothesis on the roots or any property of the 
equation could be stated without referring to this procedure. "Theory of extraction" 
would thus be the most suitable name for this part of Seki's research. 

IV. Takebe's Method of Computing the Length of An Arc 

Let us turn now to another significant response given by the Japanese mathe
maticians to a very ancient problem of trigonometry, the problem of finding a 
general procedure for calculating the length of an arc a in terms of the sagitta s and 
the diameter of the circle d (see Fig. 3). 

We shall focus here on the work of Seki's disciple, Takebe Katahiro, whose 
contribution provides the crowning step of a long tradition of research in China 
and Japan [Li Yan and Du Shuran, §3.2]. In 1720, Takebe expressed for the 
first time the square of the length of the arc of the circle as an infinite power 
series of the sagitta. Takebe's work displays an unprecedented intensity in the 
application of algebraic methods and especially of the root-extraction procedure. 
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Fig. 3 

To begin with, let us look at the infinite procedure of calculating the quantity 
(a/2)2 as formulated in Takebe's treatise [Takebe 1722, sect. 12]. a, s and d are 
respectively the length of the arc, the sagitta and the diameter of the circle. 

"The fundamental procedure runs as follows: 
Sagitta and diameter are multiplied. This gives the approximate value of the 

square of half the arc. [sd~] 
Divide by three the square of the sagitta. This gives the first discrepancy. 

[*i = *73] 
Put down the first discrepancy and multiply by the sagitta. Divide by the 

diameter. Then, multiply by 8 and divide by 15. This gives the second discrep
ancy. [X2 = X±. (s/d). (8/15)] 

Put down the second discrepancy. Multiply by the sagitta. Divide by the 
diameter. Multiply by 9. Divide by 14. This gives the third discrepancy. fX3 = 
X2 (s/d). (9/14)] 

Put down the third discrepancy. Multiply by the sagitta. Divide by the 
diameter. Multiply by 32. Divide by 45. This gives the fourth discrepancy. 
IX4 = X3 (s/d). (32/45)] 
[...] 

The successive discrepancies are added to the approximate value of the 
square of half the arc. This gives the fixed value of the square of half the arc." 
[Takebe 1722, Chap. 12] 

Leaving aside the highly empirical method through which Takebe found his 
way to this procedure, we shall focus on his extension of the scope of algebraic 
calculation. 

The first thing to examine is the original commentary he added to the explana
tion of his method. In this commentary, Takebe took as his starting point a common 
distinction between 'exhaustible' numbers (tsukuru kazu) and 'inexhaustible' ones 
(tsukizaru kazu). Numbers were exhaustible (respectively inexhaustible) if they had 
a limited (respectively unlimited) decimal expression. He then extended this distinc
tion to procedures and formed the following programme: 
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"Numbers like 1/4 and 1/5 are exhaustible numbers. 1/3 and 1/7 are examples 
of inexhaustible numbers. Addition, subtraction, and multiplication are exhaus
tible procedures. Division and extraction are inexhaustible procedures. The 
perimeter of the square or the areas of rectangles have an exhaustible form. The 
circumference and the segment of the circle have an inexhaustible form. Thus, 
just as the forms of the arc and the circle are inexhaustible, the procedure 
involved is also inexhaustible. Since the procedure is inexhaustible, so are the 
resulting numbers." 
[Takebe 1722, Chap. 12] 

Takebe's commentary aimed at conferring a legitimate status to the infinite 
procedure, a thing which must have been quite unfamiliar and uncomfortable to 
most of his contemporaries. The link he established between the infinite procedures 
and the numbers with an infinite decimal expression may be considered as his 
primary argument for integrating the new procedure into the existing mathematical 
corpus. 

The role played by this link was not only pedagogical. As can be seen in Takebe's 
later works, this analogy between the decimal numbers and the infinite series 
allowed him to venture into still more new fields of research. 

This last point is exemplified by the second method of calculating the length of 
arc which Takebe devised shortly after the first. The method rested on the idea of 
deriving an infinite series by performing the root-extraction on an equation with 
literal coefficients. 

We shall limit our discussion to the first step of the process which contains the 
main idea. Takebe resorted to a classical device consisting in inscribing polygonal 
lines inside the arc and getting approximate values of the arc by calculating the 
length of the polygonal lines (see Fig. 4). 

Now, let us call a0 the length of the arc to be calculated and s0, the sagitta in 
terms of which the arc is to be expressed. 

As can easily be seen, the sagitta s1 of the arc a1 = a0/2 satisfies the following 
equation (1). 

- s 0 d + 4dx-4x2 = 0 (1) 

Fig. 4 
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The extraction procedure is performed on (1) exactly as if the coefficients were 
numerical. As a result of this extraction s1 is expressed as an infinite power series 
of s0/d. 

S l = So/4 + s0
2/16d + s0

3/32d2 + 5s0
4/256d3 + 7s0

5/512d4 + 21s0
6/2048d5 + ••• 

The same process is then performed on (2) in which the constant term — s±d is 
given as an infinite series of s0/d. 

- s 1 d + 4 d x - 4 x 2 = 0 (2) 

s2 could then be expressed in terms of s0/d by performing the root-extraction 
procedure on (2). We note that in the course of the calculation successive terms of 
the infinite series are handled as if they were successive digits of a decimal number. 

This example shows clearly the central role played by the aforedescribed analogy 
in Takebe's second method of calculating the arc. His extension of the extraction 
procedure to cases where coefficients are literal and even infinite series, as well as 
his way of handling the infinite series, were direct outcomes of this analogy. 

From a historical point of view, this later aspect of Takebe's research had a 
fundamental significance in offering a very effective method of constructing infinite 
series. Moreover, in his explanation of the second method, Takebe clearly displayed 
his belief that the previously described extraction procedure could be applied to an 
equation of any degree. He also suggested that the general law which governs the 
successive terms of the series was resulting from the extraction procedure [Takebe 
s.d, p. 24b]. Both points bring Takebe's method very close to the idea of the binomial 
theorem. 

Conclusion 

Even though the analyses above do not cover the whole scope of mathematical 
research in the Edo period, they show well enough the growing interest in algebraic 
devices during the 17th and the 18th centuries in Japan. We have seen how the 
Chinese algebraic devices, including the procedure of extraction, have been ex
tended and enriched by Seki and Takebe. By studying these devices, they not only 
sought to solve the largest amount of problems, but also strove to clarify and make 
explicit the general patterns of methods of problem-solving. In my view, this 
outstanding feature of the Japanese tradition has more claim to the utilitarian cause 
than has usually been recognized. 
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1. Introduction 

The history of spectral theory is the history of a beautiful and important area 
of mathematics with close links to physics and with a strong influence on the 
development of functional analysis. Its roots lies in three areas: 1) discrete systems 
described by matrices (or quadratic forms) and continuous systems described by 
2) differential equations or 3) integral equations. These different appearences of 
spectral theory were not formally connected until around 1900. The history of 
spectral theory of matrices has been studied in detail by Hawkins (e.g. 1975), so 
here I shall concentrate on the last two areas. In both of these, Joseph Liouville 
(1809-1882) played a role in the early period. His and his friend Charles Sturm's 
(1803-1855) work from the 1830s on spectral theory of self adjoint second order 
differential equations is emphasized in all histories of mathematics of the 19th 
century (e.g. Dieudonné 1981). The bulk of his work on spectral theory of 
integral operators, on the other hand, remained unpublished in his notebooks, 
until I recontructed and published it in a scientific biography of Liouville that has 
recently appeared (Liitzen 1990 Chap. XV). Therefore Fredholm's and Hubert's 
works from the beginning of the 19th century are the earliest published works 
on spectral theory of integral operators, but Liouville's notes from the mid 1840s 
show that he anticipated many of the basic ideas with more than half a century. 
Moreover they reveal that Liouville used a variational technique, named after 
Rayleigh and Ritz (1877 and 1909 respectively), to determine the eigenfunctions1, 
and that he questioned the naive version of the Dirichlet principle more than 20 
years before Weierstrass' famous criticism. 

Liouville's "integral operator"originated in a study of potential theory of 
charged surfaces, and Liouville's approach has turned out to be of interest even 
to modern potential theorists (Berg and Liitzen 1990), (Berg and Fuglede 1990), 
(Bang and Fuglede 1990), (Berg 1990). 

1 In the 1810s continuous spectra had implicitly been considered by Fourier and Cauchy 
in their work on the Fourier Integral. Otherwise continuous spectra do not occur until 
1897 when Wirtinger was led to them in his study of Hill's equation (Dieudonné 1981 
p. 149). Therefore, in this paper, we shall only consider discrete spectra of eigenvalues. 

Proceedings of the International Congress 
of Mathematicians, Kyoto, Japan, 1990 
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2. Separation of Variables 

Sturm and Liouville considered the following differential equation 

(k(x)V'(x)y + (g(x)r-l(x))V(x)=0 for xe(a,ß) (1) 

with the boundary conditions 

k(x)V'(x)-hV(x) = 0 for x = a '" (2) 

and 
k(x)V'(x)+HV(x)=0 for x = ß (3) 

where k,g and / are positive functions, h and H are positive constants and r is 
a parameter. They both arrived at this problem by separating variables (i.e. by 
setting u(x, t) = V(x)e~rt) in the partial differential equation 

gdt dx u w 

governing the heat conduction in a heterogeneous, unequally polished bar.2 Here 
u represents the temperature, and the boundary conditions (2) and (3) reflect that 
the ends of the bar are maintained at zero degrees. 

Sturm and Liouville saw that there were only non-trivial solutions to (l)-(3) 
when r belongs to a countable set of eigenvalues3 r\,ri,r->>,' • -, and they studied 
the following questions : 

1) properties of the eigenvalues; 
2) behaviour of the corresponding eigenfunctions V\, V2, V3, • • • ; 
3) expansion of arbitrary functions in a series of eigenfunctions. 

The expansion problem arose in attempting to fit the solution ^ AnVne~~r,it, 
found by superposing simple solutions of (4), to a given initial temperature 
distribution u(x,0) = f(x). Indeed this poses the problem of finding An's so that 

X AnVn(x)=f(x). (5) 

Separation of variables was at the origin of all the early eigenvalue problems 
of differential operators (Liitzen 1987). It was used in its full generality by 
Fourier in his influential work on heat conduction in homogeneous equally 
polished materials (1822). Stationary heat conduction in a rectangular plate and 
non-stationary heat conduction in a rod led Fourier to the following simple 
special case of (1) : 

V"(x) = -m2V(x) (6) 

with suitable boundary conditions. 

2 In his earliest work, Liouville (1830) had g and k constant. 
3 I shall use Hubert's terminology "eigenvalue" "spectrum" etc. Moreover, I shall use the 
word "orthogonal", although Liouville had no such geometric ideas. 
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In this case the series (5) is the usual trigonometric Fourier series. When 
studying stationary heat conduction in spheres and cylinders Fourier used spher
ical and cylindrical coordinates in order to have one of the coordinates constant 
at the boundary. In these coordinates, the Laplacian has variable coefficients and 
so, separation of variables led to more complicated differential operators with 
variable coefficients, for which the eigenfunctions could only be found as infinite 
series. 

Similar ideas had been used already in 1759 by Euler, to study vibrations 
of a circular membrane (eigenfunctions are Bessel functions) and implicitly in 
the 1780s by Legendre and Laplace in their study of attraction from a spheroid 
(eigenfunctions are spherical harmonics). In the 1830s Lamé developped such 
applications of curvilinear coordinate systems into a flexible method. In particular 
he studied stationary heat conduction in an ellipsoid and was thus led to the so-
called Lamé functions or ellipsoidal harmonics. Later in the century the method 
of separation of variables applied to the partial differential equations of physically 
interesting phenomena gave rise to many other special functions. 

3. Sturm-Liouville Theory 

In their study of the eigenvalue problem (l)-(3) with variable, and not even 
explicitly given coefficients, Sturm and Liouville hit on problems of an entirely 
new nature. Indeed, since no workable explicit expression of the solutions can 
be found, they had to work directly with the equation, and the results they 
found were necessarily qualitative. Except for Cauchy's theorem on the existence 
of a solution to the Cauchy problem of a first order differential equation, 
(1824-1981) all previous works on differential equations had asked the question: 
given a differential equation, find its solutions. Sturm and Liouville broadened 
the question to : given a differential equation, find some property of its solutions. 
Conceptually this is a great step toward a qualitative theory, taken up by Poincaré 
in the 1880s in the case of non-linear equations. 

Sturm mainly studied point 1) and 2) above. By a variational technique, he 
followed the behaviour of the roots of a solution Vr of (1) and (2). He showed that 
these roots are decreasing functions of r. From this observation he concluded 
that there is a countable infinity of eigenvalues of the system (l)-(3) and he 
deduced his famous comparison and oscillation theorems. He developped most 
of his remarkable theory in the period from 1829 to 1833, but it did not appear 
until Liouville invited him to publish it in the first volume of his journal (Sturm 
1836a,b). 

3.1 Liouville's 1830 Paper 

Liouville primarily studied the expansion problem 3), finding, in the process, 
additional results related to 1) and 2). His first paper of 1830 was a peculiar 
mixture of ingenious ideas and unrigorous methods. Among the ingenious ideas 
was his use of the method of successive approximations to express the solution 
of (1) and (2). He proved the convergence of the series and had thus published 
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the first theorem of existence of a differential equation (1830, 1836).4 Moreover 
he established the orthogonality relation 

l ß 
g(x)Vm(x)Vn(x) dx = 0 for m^n. (1) 

This is the only general result in Sturm-Liouville theory, that had been shown 
earlier, namely by Poisson (1826). 

Multiplying (5) by g(x)Vm(x) and integrating from a to ß, Liouville found 
by (7), that if f(x) can be expressed in a series eigenfunctions, the "Fourier" 
coefficients must be of the form 

Sig(x)VH(x)f(x)dx ... 
An = n . (öl 

fa
ßg{x)V*(x)dx 

In this argument Liouville integrated term by term in an infinite series. We 
know that this is problematic, but he never questioned this exchange of limit 
procedures. 

Finally Liouville determined the asymptotic behaviour of Vn : 

sin^/n x 
Vn(x) ^=— for n large, (9) 

s/n 

and used this to prove the convergence of the "Fourier" series of / : 

n f£g(x)V*(x)dx 

In 1830 he used the expression for Vn, found by successive approximations, to 
establish the latter two theorems, and his proofs are highly questionable even 
with the standards of rigour of that time. 

3.2 Liouville's Mature Papers 

Liouville returned to these questions in a series of papers from the period 
1836-1837. Now he did much better, for two reasons; 1) he could use Sturms's 
investigations of the oscillatory behaviour of Vn and 2) he could refer to Dirichlet's 
proof (1829) of the convergence of ordinary trigonometric Fourier series. With 
these tools Liouville gave a beautiful and rigorous proof (in fact two of increasing 
generality) (1837a,b) of the convergence of the Fourier series (10) for a large class 
of functions / . This may be considered his most important contribution to 
Sturm-Liouville theory. 

However the problem remains: what is the limit of the Fourier series? In. his 
first paper in the series of 1836-37 (1836), Liouville claimed that the Fourier 
series converges to the function / , i.e. if 

4 Cauchy's first existence proof was not published until 1981. The method of successive 
approximations was later attributed to Picard (1890). 
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then F = f. In fact he showed that 

rß f 
Ja 

g(x)(F(x)-f(x))V„(x)dx = 0 forall n (12) 

and inferred that F(x) — f(x) = 0. As Liouville himself later realized, the last 
inference is wrong. One can only conclude that F — f oscillates "infinitely fast". 
In a note in his notebooks he attributed this insight to a certain Mr. D, probably 
his good friend Dirichlet, who had explicitly excluded such functions from his 
convergence proof. Dispite repeated efforts by Liouville, partly in colaboration 
with Sturm, this major lacuna in Sturm-Liouville theory was left open untili 
arround 1900. 

3.3 Higher Order Sturm-Liouville Theory 

In a course at the College de France, Liouville (1838) generalized Sturm-Liouville 
theory to certain non-self adjoint higher order equations. Already Lagrange 
had introduced the adjoint equation and now Liouville introduced the adjoint 
boundary values. With this new concept he could prove a biorthogonality relation, 
that takes the place of (7) and he succeeded in generalizing most of Sturm's results. 
However, he was not able to generalize his own main theorem on the convergence 
of Fourier series, in spite of the importance he attached to this question. There 
were good reasons for this failure: Even in simple cases the Fourier series does 
not converge to the expanded function (see Haagerup's example in Liitzen 1984). 

Why did Liouville's intuition fail in this case? I think the reason is that 
Liouville (as well as many of his French contemporaries) were often inspired by 
physics and borrowed their intuition from this science. However the generaliza
tions proposed by Liouville did not correspond to any physical problem. Thus 
ended the first epoque in the history of Sturm-Liouville theory with an only 
partially successfull generalization for the sake of generality. When the theory 
was revived about 40 years later, it was again a physically interesting problem 
that lay behind, and this was also the case when Liouville in the 1840s took up 
spectral theory of integral operators. 

4 Liouville on Integral Operators 

Fourier and Laplace transforms had given rise to integral equations already in 
the 18 th century, but if we disregard these implicit occurrences, Abel (1823) was 
the first to study such an equation. Liouville broadened the approach in the 1830s 
by emphasizing the great physical interest of integral equations (1832) and by 
offering his theory of differentiation of arbitrary order, as a means to solve them. 
Moreover integral equations played a central role in his work on Sturm-Liouville 
theory (Liitzen 1982). 
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4.1 The Published Note 

At the end of 1845 Liouville published a l j page note on spectral theory for a 
general class of integral operators. He considered the eigenvalue equation5 

[ JfrOTfox'KOOax' = mC(x) (13) 
JD 

where I is a real valued function defined in a subset D of IR" (or perhaps D is 
an n dimensional manifold) and T is real and symmetric on D x D. His note 
contained two theorems : 

Theorem 1. Let Cud be solutions (eigenfunctions) corresponding to two different 
(eigen) values mi and mi. Then the following (orthogonality) relation holds: 

L l(x)Ci(x)C2(x) dx = 0 for mi ^ m2. (14) 

Theorem 2. / / 1 is always positive all the eigenvalues m are real. 

Liouville even concluded his brief note with the following prophetic remark : 

Moreover, one can easily see that instead of the left-hand side of the equation 4[(13)] 
one can substitute more complicated integrations or even operations of another kind 
without the theorem (conveniently modified, if necessary, to suit these new operations) 
and even the proof ceasing to be correct; for the statements above rely essentially on a 
certain symmetry which it will be sufficient to retain (Liouville 1845b). 

With our present day knowledge of symmetric operators we must admire 
Liouville's foresight. 

4.2 The Unpublished Notes 

My admiration grew considerably when, two years ago, I discovered that this 
note contained but a small fraction of a great spectral theory of an integral 
operator in potential theory that Liouville confided to his notebooks arround 
1846. 

Liouville's notes begin as follows : 

1°. Render / / / / u'd™dco' a minimum with ffÀdco = const.; and you have a function / 
for which ff l-^f- = const. = 1, say; that corresponds to the equilibrium distribution 
of electricity. 

2°. Render maximum 
Let ff Àdco = 0 and ff ^ > = const, and you find a second function Z£i such that 

J / y^ - = m i C i ; mi<i tf JJ~=1-
Of course Liouville did not use vector notation. He wrote x, y, • • • , z instead of x. 
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3°. Let ffXdœ = 0, ffK\dœ = 0 and ff&r = const. You find the function Id such 
that 

" " rC2dco' li' A : »12C2, m2 < m\ A 

and so on. 
And a function Q can be expressed as 

Q = I ( A 0 + A 1 C 1 + A2C2 + - - - + 4 , c „ + • • • ) > 

ffQCnda* II KmLdto = 0, A„ = 
fSuiw<° • 

That is what we found a long time ago (Liouville Ms 3618 (1), pp. 15v-16r). 

What goes on here? From the rest of Liouville's approximately 100 pages of 
messy notes on this subject it appears that he considers a closed surface S with a 
single layer charge distribution of which the charge density at a point x is given 
by the function k = k(x). If this function is considered a function of another 
point x' on S Liouville writes kf = X(xf). Moreover A denotes the distance |x — x'\ 
between the two points and dœ is the surface measure on S. 

In the first step Liouville minimizes the potential energy of the charge distri
bution under the assumption that the total charge is kept constant. This is similar 
to the way Gauss (1840) had shown the existence of the equilibrium distribution, 
and Liouville concludes that the minimizing function / is indeed the equilibrium 
distribution. This means that its potential on S is a constant that we may assume 
to be equal to 1 : 

m 
JJslx- dco(x') = 1. (15) 

In order to abbreviate the rest of the argument, and to see the connection with 
modern spectral theory I shall introduce some notation, that cannot be found by 
Liouville. Consider the Hilbert space L2(S,ldco) with the inner product 

(C,fi) = JfuxMx)l(x)dco(x). (16) 

Moreover define the integral operator A on L2{S,ldeo) by 

A^JIs\x^hî(x')dœ^- (17) 
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In this terminology (15) can be written as 

Al = l, (18) 

i.e. the function 1 is an eigenfunction of A with eigenvalue 1. In the second 
step Liouville finds the next eigenfunction and eigenvalue by maximizing {AC, C) 
under the condition that (1,£) = 0 and ||C||2= constant. The maximizing function 
Ci has 

AC\ = m\C\ where m\ < 1. (19) 

Generally Liouville's n'th step calls for the maximization of (ACC) in the orthog
onal complement of the subspace spanned by the eigenfunctions found in the 
n — 1 previous steps. The maximizing function Cn has 

ACn = WnCn where mn < mn-\ < • • • < m\ < 1 (20) 

It is clear that these eigenfunctions are mutually orthogonal, and in the last lines 
of the quote Liouville claims that any function on S can be expanded in a Fourier 
series of the eigenfunctions. 

The above variational technique for finding eigenfunctions is now the stan
dard method for compact operators and is often attributed to Rayleigh (1877). 
Liouville's note raises many questions: 

1) What motivated Liouville to develop this method? 
2) How much of a proof did he give? 
3) Why did he not publish his results? 
4) Are Liouville's results correct? 
5) What are the historical and mathematical connections to later works? 

4.3 Motivation 

Liouville was motivated mainly by Gauss' great paper on potential theory (1840) 
in which the following problem was formulated: 

Gauss' Problem. Given a function V on a surface S. Determine a single layer 
distribution X on S whose potential has the value V on S. 

In 1842, in connection with his (also unpublished) research on stability of 
rotating masses of fluid Liouville introduced the Lamé functions SIB of the second 
kind, in addition to Lame's RìB,MìB and NiB. The only thing we need to know 
about these functions is that they are defined in IR3 in such a way that RÎB and S,-JJ, 

for each value of i and B, are constant on a certain ellipsoid S, whereas M^ and 
NiB can be considered as functions on this surface. In 1845 and 1846 Liouville 
published a series of results about the Lamé functions. The main theorem states 
that: 

II /(x,)M(B(x')Ar(fl(x/) , 4nRm{x)SiB(x) 
1 dœ(x') = —— MiB (x)NiB (x). (21) 
be — x\ 2 i + l 
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Here / is a function on S that Liouville later interpreted as the equilibrium charge 
distribution. Liouville remarked, that if Cn denotes the product MìBNJB, Cn will 
satisfy the eigenvalue equation 

Si ]{*%^da>{x') = mnUx). (22) 
| A X | 

It is now easy to solve Gauss' problem for the ellipse. Indeed if we write V as 

F = 5>nÇn (23) 
11 

(Liouville showed that this could "always" be done), then 

* - ' £ & • (24> 
n " 

is the desired charge distribution. The proof is an easy application of (22) and 
the orthogonality of the (,,'s. 

At this point Liouville got the great idea of generalizing this method to 
an arbitrary surface S, i.e. to find its equilibrium distribution /, and define the 
eigenfunctions Cn by (22), such that any function V can be expanded in a series 
(23). Then X defined, by (24) is a solution of Gauss' problem. He sketched this 
idea briefly in his published paper (1845a) and even emphasized its importance: 

After having studied the matter I do not hesitate to regard the functions ( as being 
of the utmost importance in analysis (Liouville 1845a). 

The problem raised in Liouville's notebooks is the following: How can the 
(„'s be found? As we saw, the variational method provided the answer. His 
notebooks even reveal how he arrived at the method: First he used the idea a 
posteriori: Asuming that the (,,'s exist with 1 > mi > w?2 > ••• and supposing 
that any function can be expanded as Y,AuCn, it is easy to see that m„ and Cn 
can be found by the variational method. Some 40 pages later he returned to this 
method and remarked that "considered a priori it demonstrates the existence of 
these functions". 

4.4 Proofs 

In my Liouville biography (Liitzen 1990 Chap. XV) one can find as much of 
Liouville's proofs as I have been able to reconstruct from Liouville's rather 
disorganized notes. These proofs are really beautiful up to a certain point and 
are strikingly similar to the arguments found in a modern book on spectral 
theory of compact operators. Liouville succeeded in proving Bessel's inequality, 
Parseval's equality and showed that if a function is orthogonal to all the (,,'s 
it must vanish identically. From this he concluded that if the Fourier series of 
a function Q converges, it has the sum Q. However, since he did not have the 
Lebesgue integral at his disposal, and since he was interested in pointwise or 
uniform convergence rather than I? convergence, he could not prove that the 
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Fourier series converges. Thus the situation was the oposite of the situation in 
Sturm-Liouville theory, where he could prove the convergence of the Fourier 
series but could not show that it had the desired sum. 

4.5 Why Were Liouville's Results Never Published? 

Liouville developed several interesting theories and results that he never pub
lished. In general the main reason for not publishing was lack of time, but in 
the case we consider here, there were also inner mathematical reasons. Indeed 
there were holes in Liouville's argument. First, he does not seem to have been 
able to prove that the decreasing series of eigenvalues mn tend to zero, and 
this is of great importance for the whole theory. Liouville may not have been 
aware of this shortcoming but toward the end of his notes he began to sense 
another problem, in connection with the variational technique for finding / and 
the eigenfunctions („. Indeed he discovered that though the upper (lower) bound 
exists the max (min) may not always be attained; instead there might be what he 
called a "tendence indéfinie vers le but". 

It is very remarkable that Liouville here pointed to the weakness of the naive 
version of the Dirichlet-principle, and similar principles, about 25 years before 
Weierstrass presented his famous counterexample (1870-1895). Of course, once 
the variational method was called into question the existence of the (n's was not 
secured, and this may explain why Liouville did not publish his ideas. 

4.6 Are Liouville's Results Correct? 

This question is urgent, once we have realized that Liouville's arguments are not 
entirely satisfactory. In modernized language it is enough to show that Liouville's 
operator A is compact on L2(S,ldco) and, indeed, Christian Berg has succeeded 
in proving this theorem under rather weak assumptions on the surface S (Berg 
and Liitzen 1990). ( 

4.7 Connections to Later Works 

In fact it was not Rayleigh but Heinrich Weber (1869) who first published a 
variational method for finding eigenfunctions. He applied the method to the 
two dimensional Laplacian, but as Liouville, he did not show that the infima 
were attained by minimizing functions. It was left to Poincaré (1894) to establish 
Weber's results rigorously. In connection with Liouville's notes a later paper by 
Poincaré (1896) is even more interesting. Here Poincaré introduced what he called 
fundamental functions of a surface S. They were defined by a variational method, 
and are in fact identical to Liouville's (M. Poincaré was unable to prove rigorously 
that these functions exist, and so he only used them as a heuristic tool. However 
his student Le Roy (1898) succeeded in giving a very long proof of their existence. 

Weber's, Rayleigh's, and Poincaré's work, together with works by Kirchhoff, 
Klein and others from arround 1880 mark the first continuation of Sturm-
Liouville theory, in the sence that they dealt with differential equations. Integral 
operators (or equations) implicitly arose out of the Beer-Neumann method for 
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solving the Dirichlet problem. They were studied by Volterra in the 1890s but 
their spectral theory was not studied until 1900 in an elegant paper by Fredholm. 

Fredholm's ideas were carried much further in Hilbert's monumental work 
(1904—1910), that in a sense marks the conclusion of the development we have 
considered. Hilbert introduced the so-called "vollstätige" operators, and showed 
that their eigenvalues can be found by the variational technique used by Liouville. 
Moreover he joined the two types of spectral theory that Liouville had studied. 
Indeed he showed how one can use a Green's function to reduce problems 
in Sturm-Liouville theory to (easier) problems of integral operators. He even 
connected both these theories to spectral theory of discrete systems, by showing 
how the spectral theorem of quadratic forms in the limit would lead to the 
spectral theorem of integral operators, or more generally of quadratic forms in 
infinitely many variables. This idea had already been suggested by Poincaré but 
Hilbert was the fist to carry out the limit procedure rigorously. In the case of 
infinite quadratic forms he made an ingenious use of the Stieltjes integral in order 
to deal with the continuous spectrum. 

About the same time, the structural movement made another unification of 
the three branches of spectral theory possible. It became clear that they all dealt 
with one and the same question for different operators between different spaces. 
Liouville clearly did not have such a unifying concept, but there is no doubt that 
he was aware of the formal similarity between his work on Sturm-Liouville theory 
and his unpublished work on integral operators. Indeed many of the theorems 
are the same and their proofs often go along the same lines. 

5. Conclusion 

One may wonder if the development of spectral theory would have been speeded 
up if Liouville had published his research on his integral operator in 1846. This 
is not at all certain. In fact, Sturm-Liouville theory was not developped further 
until half a century after Sturm and Liouville had published their work, and 
Liouville's small published note on symmetric integral operators went completely 
unnoticed. How can this lack of interest be explained? 

The reason is probably the very qualitative nature of the results. I have stressed 
this in connection with Sturm-Liouville theory and it is equally true of the results 
concerning Liouville's operator A. In fact, except for simple surfaces, even the 
equilibrium distribution / is impossible to determine. Most mathematicians in the 
middle of the 19th century were not excited by existence theorems, unless they 
could find the objects. Therefore they did not continue Sturm-Liouville theory 
and would probably have neglected Liouville's spectral theory of his integral 
operator even if it had been published. Only at the end of the 19th century, the 
mathematical community was ripe for such questions. 

This shows Liouville's farsightedness. 
Liouville is usually mentioned in histories of spectral theory in connection 

with his work on Sturm-Liouville theory. I hope this paper has demonstrated, 
that he was an even greater pioneer in this field than it is usually acknowledged. 
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Introduction 

Ordre. [... ] Je sais un peu ce que c'est et combien peu de gens 
l'entendent. Nulle science humaine ne le peut garder. Saint Thomas ne 
l'a pas gardé. La mathématique le garde, mais elle est inutile en sa 
profondeur. 

Pascal, Pensées 

When H. Poincaré first published in 1902 his book La Science et Vhypothèse, it 
became a bestseller. The first chapter of this book was devoted to the nature of the 
mathematical reasoning. Poincaré discussed an old philosophical controversy 
whether the mathematical knowledge could be reduced to long chains of 
tautological transformations of some basic ("synthetic") truths or it contained 
something more. He argued that the creative power of mathematics was due to a 
free choice of the initial hypotheses-definitions which were later on constrained by 
the comparison of deductions with the observable world. 

The society of our days seems to be much less interested in the philosophical 
subtleties than Poincaré's contemporaries. I do not want to say that science itself 
became less popular. Such books as S. Weinberg's The first three minutes and S.W. 
Hawking's A brief history of time are sold by hundreds of thousands and favorably 
reviewed in widely distributed newspapers. What has changed is the general mood. 
The paradoxality of the new physical theories is perceived less dramatically and 
more pragmatically. (We can note that the perception of visual arts evolved in much 
the same way: if the first exhibitions of Impressionists were a kind of spiritual 
revolution, each new wave of the post-war avant-garde immediately acquired family 
traits of academism). 

* Delivered by Barry Mazur. 
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In this atmosphere, the heated discussions of the bygone days on the 
foundational crisis of mathematics and the nature of infinity seem almost 
irrelevant and certainly inappropriate. The audience responds much livelier to the 
opinions about school education or a new generation of computers. 

This is why I have decided to present at this section an unpretentious essay in 
which our science is considered as a specialized dialect of the natural language, and 
its functioning as a special case of speech. This implies certain suggestions about 
the high school and University training. 

Metaphorism 

The word "metaphor" is used here in a non-technical sense, which is best rendered 
by the following quotations from James P. Carse's book Finite and Infinite Games: 

"Metaphor is the joining of like to unlike such that one can never become the other." 
"At its root all language has the character of metaphor, because no matter what it intends 

to do, it remains language, and remains absolutely unlike whatever it is about". 
"The unspeakability of nature is the very possibility of language". 

Considering mathematics as a metaphor, I want to stress that the interpretation 
of the mathematical knowledge is a highly creative act. In a way, mathematics is a 
novel about Nature and Humankind. One cannot tell precisely what mathematics 
teaches us, in much the same way as one cannot tell what exactly we are, taught ;by 
"War and Peace". The teaching itself is submerged in the act of re-thinking this 
teaching. 

This opinion seemingly disagrees with the time-honored tradition of applied 
mathematics in scientific and technological calculations. 

In fact, I want only to restore a certain balance between the technological and 
the humanitarian sides of mathematics. 

Two Examples 

Let me try to illustrate the metaphoric potential of mathematics by discussing two 
disjoint subjects: the Kolmogorov complexity and the "Dictator Theorem" due to 
K. Arrow. 

i) Kolimogorov's complexity of a natural number JV is the length of a shortest 
program P that can generate JV, or the length of a shortest̂  code of JV. A reader 
should imagine a way of coding integers which is à partial recursive function f(P) 
taking natural values. Kolmògorov's theorem states that among! all such functions 
there exist the most economical ones in the following sense: if Cf(N) is the minimal 
value of P such that f(P) = JV, then Cf(N) < const. Cg(N), where Const, dépends 
only on /, g but not JV. 

Since P can be reconstructed from its binary notation, the length Kf(N) of the 
shortest program generating JV is bounded by log2 Cf(N). This function, or rather 
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the class of all such functions defined up to a bounded summand, is the Kolmogorov 
complexity. 

First of all, K(N) < log JV -f const. Of course, this conforms nicely with the 
historical successes of the positional notation systems which provided us with the 
number generating programs of logarithmic length. However, there are arbitrary 
large integers whose Kolmogorov's complexity is much smaller than the length of 
their notation, e.g., K(10N) ̂  K(N) + const. In general, when we use large numbers 
at all, we seemingly use only those which have a relatively small Kolmogorov's 
complexity. Even decimal decompositions of n which are, probably, the longest 
well-defined numbers ever produced by mathematicians, are Kolmogorov simple, 
because K([10N7t]) < log JV + const. In general, small Kolmogorov complexity = 
high degree of organization. 

On the other hand, almost all integers JV have the complexity close to log JV. 
For example, if f(P) = JV for an optimal /, then K(P) is equivalent to log P. 
Such integers have many remarkable properties which we usually connect with 
"randomness". 

Second, Kolmogorov's complexity can be easily defined for discrete objects 
which are not numbers, for example, Russian or English texts. Therefore, "War and 
Peace" has a pretty well defined measure of its complexity; the indeterminacy is 
connected with the choice of an optimal coding and seems to be pretty small if one 
chooses one of the small number of reasonable codings. 

From this viewpoint, is "War and Peace" a highly organized or an almost 
random combinatorial object? 

Third, Kolmogorov's complexity is a non-computable function. More precisely, 
if / is optimal, there is no recursive function G(N) which would differ from Cf(N) 
by exp(0(l)). One can only bound complexity by computable functions. 

I feel that Kolmogorov's complexity is a notion that is very essential to keep in 
mind in any discussion of the nature of human knowledge. 

As long as the content of our knowledge is expressed symbolically (verbally, 
digitally,...) there are physical restrictions on the volume of information that can 
be kept and handled. We always rely upon various methods of information com
pressing. Kolmogorov complexity puts absolute restrictions on the efficiency of such 
a compression. When we speak, say, of physical laws, expressed by the equations 
of motion, we mean that a precise description of the behaviour of a physical system 
can be obtained by translating these laws into a computer program. But the 
complexity of laws we can discover and use is clearly bounded. Can we be sure that 
there are no laws of arbitrary high complexity, even governing the "elementary" 
systems? 

At this point, our discussion becomes totally un-mathematical, and before a 
mathematically-minded audience I must stop here. But such is the fate of any 
metaphor. 

ii) Arrow's Dictator Theorem was discovered around 1950. Mathematically, it 
is a combinatorial statement describing certain functions with values in binary 
relations. Intuitively, it is a formalized discussion of the problem of Social Choice. 
Suppose that a lawmaker has to establish a law which governs the processing of 
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individual wills of voters into a collective decision. If the problem is to choose one 
of the two alternatives, the standard solution is do it by the majority of votes. 
However, usually there are more than two alternatives (imagine the funds allocation 
problems), and voters may be asked to order them according to their preferences. 
What should be the algorithm extracting the collective preference from any set of 
individual preferences? Arrow considered algorithms satisfying some natural and 
democratic axioms (e.g., when everybody prefers A to B, the society prefers A to B). 
Nevertheless, he discovered that when there are more than two alternatives, the 
only way to achieve a solution is to nominate a member of the society ("the 
Dictator") and to equate his personal preference order to the social one. (Actually, 
this is one of the versions of Arrow's theorem discovered later. Also, it refers to the 
case of a finite society; in the infinite case, the social decisions can be made by 
ultrafilters, appropriately called "the ruling hierarchies".) 

In a way, this theorem illustrates the content of Jean-Jacque Rousseau's idea of 
a Contrat Social. 

The fundamental inconsistency of the image of the ideal democratic choice can 
be illustrated by the following story referring to three voters and three alternatives. 
It is the story of three knights errant at the cross-roads with a stone before them. 
The inscription on the stone prophesies only losses: who goes to the left will lose 
his sword; who goes to the right will lose his horse; who goes straight will lose his 
head. The knights dismount and start taking council. In a Russian version of this 
story, the knights have names and personalities: the youngest and ardent Alyosha 
Popovich, the eldest and wisest Dobrynya Nikitich, and the slow peasant Ilya 
Muromets. So Alyosha values sword more than horse, and horse more than his 
head; Dobrynya values most his head, then his sword, then his horse; and Ilya prefers 
his horse to head to sword. 

A reader will note that the three individual preference orders constitute one and 
the same cyclic order on the set of alternatives. As a result, one can decide by 
majority the choice between any two of the alternatives, but the union of these 
decisions will be inconsistent: the democratic procedure cannot provide us with a 
well-ordered list. The knights sigh and delegate the decision-making power to 
Dobrynya. 

Does the Arrow theorem tell us something that we did not know beforehand? 
Yes, I think it does if we are ready to discuss it seriously, that is, to look closely at 
the combinatorial proof, to imagine the possible real life content of various assump
tions and elementary logical steps made on the way, in general, to enhance our 
imprecise imagination by the rigid logic of a mathematical reasoning. We can 
understand better, for example, some tricks of policy-making and some pitfalls the 
society can leap whole-heartedly into (like accepting without questioning a list of 
alternatives imposed by a ruling hierarchy, although precisely the compilation of 
this list can be the central issue of the social decision making). 

At this stage, we come to the main topic of our discussion: what distinguishes a 
mathematical discourse from a natural language discourse, why the Pascalian 
"ordre" came to reign over our specialized symbolic activities, and is it truly so 
"useless in its profundity"? 
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Language and Mathematics 

A very interesting chapter of the interaction between mathematics and humanities 
started about thirty years ago when the first serious attempts of automatic transla
tion were made. These first attempts were a painful failure, at least so for many 
optimists who believed that in this domain, there are no fundamental obstacles, and 
it remains only to overcome technical difficulties connected with the sheer amount 
of information to be processed. In other words, they took for granted that the 
translation is in principle performed by a not very complex algorithm which only 
must be made explicit and then implemented as a computer program. 

This assumption is a nice example of a mathematical metaphor (actually, a 
specialization of the general "computer metaphor" used in the brain sciences). 

This metaphor proved to be extremely fruitful for the theoretical linguistics in 
general because it forced linguists to start describing vocabulary, semantics, acci
dence, and syntax of human languages with unprecedented degree of explicitness 
and completeness. Some totally new notions and tools were discovered thanks to 
this program. 

However, the successes of the automatic translation itself were (and still are) 
scanty. It became clear that written human speech is an extremely bad input data 
for any algorithmic processing planned as translation or even as a logical deduction. 
(I add this proviso because there is nothing special in human speech considered as 
a material for, say, statistical studies). 

This fact can be considered as a universal property of human languages, and it 
deserves some attention. One must first of all reject as too naive a usual explanation 
that the universe of meanings of a human language is too vast and poorly structured 
to admit a well organized metalanguage describing this world. The point is that 
even if we severely restrict this universe to the subset of arithmetic of small integer 
quantities, we shall still have to face the same difficulty. In fact, this difficulty was 
a decisive reason for the crystallization of the whole system of arithmetical notation 
and the basic algorithms of calculation, and later on of symbolic algebra. Even the 
vocabulary of elementary arithmetic in human language is basically archaic: the 
finite natural series of primitive societies "one, two, three, indefinitely many" is 
reproduced in the exponential scale in our "thousand, million, billion, zillion". The 
expressions for relatively small numbers like "1989" are actually names of the 
decimal notation and not of the numbers themselves. 

The advantage of F. Viete's algebra over the semi-verbal algebra of Diophantus 
was due not to the fact that it could express new meanings but to the incomparably 
greater susceptibility to the algorithmic processing ("identical transformations" of 
our high school algebra). 

The rupture of the intuitive and emotional ties between a text and its producer/ 
user so characteristic of the language of science was compensated by the new 
computational automatisms. In their (albeit restricted) domain they proved to be 
infinitely more efficient that the traditional Platonian and Aristotelian culture of 
everyday language discourse. Why then our scientific papers are still written as a 
disorganized mixture of words and formulas? Partly because we still need those 
emotional ties; partly becaue some meanings (like human values) are best rendered 
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in human language. But even as a medium of scientific speech, human language has 
some inherent advantages: appealing to the spatial and qualitative imagination, 
it helps to understand "structurally stable" properties like the number of free 
parameters (dimension), existence of extrema, symmetries. To put it bluntly, it makes 
possible the metaphorical use of science. 

Metaphor and Proof 

The views professed here can be considered in relation to the high school and 
graduate curriculum. 

The general mathematical education of the first half of this century was applica
tion oriented. It provided the basic minimum for the practical life problems and a 
smooth transition to the study of engineering and scientific calculations at the 
college level. The break of this curriculum with the activity of professional mathe
maticians becarne more and more pronounced. As is well known, this brought 
the reaction in the form of NewMath in USA and similar programs in other 
countries. These programs introduced into the high school mathematics the notions 
and principles borrowed from professionals: set theory, axiomatic presentation of 
proofs, strict culture of definitions. 

NewMath became widely accepted but its expansion was accompanied by the 
protesting voices which in the 70s and 80s merged into a loud chorus. The critics 
disagreed with the basic arguments of the NewMath proponents, Leaving aside the 
objections based upon the data from cognitive sciences.and learning psychology I 
shall only recall those concerning the general evaluation of the role of the proof in 
mathematics. 

The one pole is represented by the well known statement due to Nicolas 
Bourbaki: "Dépuis les Grées, qui dit Mathématiques, dit démonstration". Accord
ing to this perception, the rigorous proof was made a matter of principle in the 
NewMath programs. It was argued that: a) a proof helps to understand a mathe
matical feet; b) a rigorous proof is the most essential component of the modern 
professional mathematics; c) mathematics possesses the universally recognized 
criteria of rigour. 

These views were extensively criticised, e.g. by Gila Hanna in the book "Rigorous 
Proof in Mathematics Education", OISE Press, Ontario 1983. In particular, Gila 
Hanna pointed out that the mathematicians are far from unanimous in accepting 
the criteria of rigour (referring to quarrels between logicists, formalists and intui-
tionists), and that working mathematicians constantly break all rules in the book. 

In my opinion, this is irrelevant. 
What is relevant, is the imbalance between various basic values which is pro

duced by the emphasis on proof. Proof itself is a derivate of the notion of "truth". 
There are a lot of values besides truth, among them "activities", "beauty" and 
"understanding", which are essential in the high school teaching and later. Neglect
ing precisely these values, a teacher (or a university professor) tragically fails. 
Unfortunately, this also is not universally recognized. A sociological analysis of the 
controversies around the Catastroph Theory of René Thorn shows, that exactly the 
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shift of orientation from the formal truth to understanding provoked such a sharp 
criticism. But of course, the Catastroph Theory is one of the developed mathe
matical metaphors and should only be judged as such. 

Pedagogically, a proof is just one of the genres of a mathematical text. There 
are many different genres: a calculation, a commented sketch, a computer program, 
a description of an algorithmic language, or such a neglected kind as a discussion 
of the connections between a formal definition and intuitive notions. Every genre 
has its own laws, in particular, laws of rigour, which only are not codified because 
they were not payed a special attention. 

A central problem of a teacher is to demonstrate at the restricted area of his or 
her course the variety of types of mathematical activities and underlying value 
orientations. Of course, this variety is hierarchically organized. The goals may vary 
from achieving an elementary arithmetical and logical literacy to programming 
skills, and from the simplest everyday problems to the principles of modern scientific 
thinking. In the spectrum of these goals, the emphasis on the norms of "rigorous 
proof" can safely occupy a peripheral position. 

But having said all this, I must stress that my argumentation by no means 
undermines the ideal of a rigorous mathematical reasoning. This ideal is a funda
mental constituting principle of mathematics, and in this sense Bourbaki is certainly 
right. Having no external object of study, being based on a consensus of a restricted 
circle of devotees, the mathematics could not develop without the permanent 
control of rigid rules of game. Applicability of mathematics in the strict sense of this 
word (like its indispensability in the Apollo project) is due to our ability to control 
series of symbolic manipulations of fantastic length. 

The existence of this ideal is far more essential than its unattainability. The 
freedom of mathematics (G. Cantor) can only develop in the limits of iron necessity. 
The hardware of modern computers is an incarnation of this necessity. 

Metaphor helps a human being to breathe in this rarefied atmosphere of Gods. 
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The present era, described variously as a Highly Industrialised Society, the 
Information Era or even a Postindustrial Society, places greater emphasis than 
before on the importance of teaching mathematics. Teaching mathematics to 
students who select it as their major subject is of course a problem of vital 
importance, but compared with all the students studying mathematics, those 
actually majoring in it would be a drop in the ocean; the problem of teaching 
mathematics to those majoring in other subjects is a much larger problem. 

University education has become more available and more widely spread. In 
Japan, for instance, there are three times as many university students as there 
were middle-school pupils before the 2nd World War, and the present university 
teaching staff is five times more numerous than pre-war middle-school teachers. 
Universities have rid themselves of their ivory tower image and have adapted to 
the need for practical sciences. At present, there is probably more demand for 
this, a more practically oriented area. 

Most of those students who require mathematical education at university level 
specialise in engineering, the rest in natural sciences such as physics, chemistry, 
and biology, as well as those who specialise in economics, business studies, or 
some areas of medicine, etc. In fact, in Japan, there are only 3,200 students 
specialising in pure mathematics, whereas almost all the students in engineering, 
who number well over 65,000, receive lectures in mathematics. 

1. What kind of mathematics and mathematical teaching is required? 

Mathematics is indispensable for the study of engineering, no matter what the 
field of engineering and no matter what the area of technology the student selects 
for his or her future professional skill. Students of engineering cannot therefore 
avoid learning mathematics. At present, although the extent varies according to 
the field, all students of engineering get some mathematical tuition. What passes 
for mathematics here is mathematical skills, i.e. mathematical knowledge and the 
ability to apply this knowledge to engineering, ability to calculate and compute, 
etc. The subjects normally taught to them are: calculus, linear algebra, theory 
of complex functions, vector analysis, special functions such as Bessel functions, 
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differential equations, probability and statistics, etc. They would be quite unable 
to come to grips with their field of engineering without knowing these subjects. 
It is therefore unlikely that the need for teaching these subjects should decrease 
in the future. 

There are naturally some differences depending on the specialisation. For 
example, those who enter fields where fluid dynamics is important, such as civil 
and mechanical engineering, may find vector analysis important. But for those 
who aim at signal theory, it would be essential to study abstract algebra and in 
particular Galois fields. There are some areas of engineering where topology and 
graph theory may be more important, or it may be essential to study Boolean 
algebra. How would one satisfy such diverse demands of engineering students? 

One might say that except for engineering, a basic knowledge of mathematics 
would suffice for any discipline. For an ordinary student in economics, elementary 
calculus and linear algebra used to be sufficient. However, econometrics, which is 
increasingly becoming an essential part of economics, demands some knowledge 
of probability and statistics, and further, depending on one's specialty, a student in 
economics may have to know such subjects as fixed point theorems and the theory 
of differential equations. Similarly, the students of physics, chemistry and many 
other fields all require some degree of specialised knowledge in mathematics. 

There are also some subjects in mathematics which seem irrelevant or un
important to one's own field at first, and yet turn out to be important or even 
essential later. Since it is impossible to teach all potential areas of mathematics 
covering many different subjects, we ought to.lay a certain amount of groundwork 
in order to equip students with the ability to handle new subjects as they arise. 
For example, there was a time when Boolean algebra was not considered a part 
of applied mathematics. Now, however, Boolean algebra is even more common 
in applied than in pure mathematics. We shall probably see this sort of thing 
happening in the future too. We have no idea which techniques,will be used 
and no idea of what to provide in. the way of basic education for these new 
techniques. But to go back to the above example, it is not difficult to deal with 
Boolean algebra as long as one has some grounding in abstract algebra. This 
shows how important it is to provide training in the basics of mathematics as a 
whole. In the information age, beset as it is by violent changes, it is difficult, 
and even dangerous, to make prior judgments and predictions about the sort of 
mathematics that will be needed. Surely our aim should be to give our students 
the ability to learn new topics, and, to enable them to confront new things without 
fear, although this is easier said than done. 

2. Should one confine oneself to teaching students only the knowledge and skills 
immediately required for their study, or should they be taught some different aspects 
of mathematics as well? If so, what should these be? 

If we consider the future development of applied mathematical techniques on the 
assumption that computers will be more widely used, then we should probably 
place the emphasis on intelligence rather than skill, on thought • rather than 
computation, and on concepts rather than formulae. 
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Applied mathematicians of the old school were concerned solely with the 
memorization and use of formulae. They were, so to speak, walking reference 
books of mathematical formulae. Nowadays, however, many more scientific fields 
have a very high mathematical content, and mathematics is now applied to a 
much wider range of subjects. Thanks to modern computer techniques, compu
tational skills will be replaced by the use of computers. Take the example of 
teaching techniques of integration. The basics such as integration by parts and 
integration by substitution must be taught as a part of differential and integral 
calculus, but there is no need to go into finer technical points, or give the stu
dents hours of computational practice. It is more efficient to train them to use 
computer algebra systems or formula manipulation systems such as REDUCE 
or MATHEMATICA, just as students in the past were trained to use formula 
books. In the same way, we can delegate the specialised techniques of solving 
differential equations to computer formula manipulation systems. 

In the past, engineering departments tended to view mathematics as something 
required for physics. The mathematics used in physics generally deals with 
phenomena which are quantified from the start, and in many cases,' it is possible 
to manage with just classical mathematics or statistics. In recent years, however, 
even in engineering, there has been a rapid expansion in subjects dealing with 
social phenomena, such as environmental engineering, urban engineering, and 
management engineering, most of which deal with unquantifiable things. This 
has led to a greater need for abstract mathematics. Taking this into account, the 
emphasis of mathematical education from now on should be placed on training 
students to become able to grasp abstraction and logical thought. 

Many engineers retain the old-fashioned "walking reference book" or "cook
book-method" approach to mathematics. This tends to filter through to engineer
ing students who then attempt to try to find applicable formula from existing 
lists and apply the result of the computation to an engineering problem. I would 
like to stress the enormous importance of logical thought through the teaching 
of mathematics. We should highlight mathematical way of thinking, and concen
trate on basic mathematical concepts. Thus, when teaching integration, we should 
stress the meaning of the integral more than how to evaluate a given integral. Even 
when explaining a theorem, we should keep the proof to a minimum. It is more 
important to stress premises and offer counter-examples where these premises do 
not hold true. 

3. How do computers change the teaching of mathematics? 

In the face of changing times and especially with the advent of the Information 
Era, is it still correct to teach the same things as we have done so far, or should 
we reconsider the contents of our syllabus? How can we introduce the computer 
more effectively in education? Which new ways of teaching, making full use of 
computers, can be devised? 

The contents of the mathematics to be taught in the computer era must, 
of necessity, have changed. Discrete mathematics and finite mathematics have 
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become more important than before. Although more syllabus time should be de
voted to these areas, this does not mean that traditional continuous mathematics 
should lose importance. Moreover, to gain deeper understanding, one also needs 
these skills for concrete computation and calculation. What exactly are these 
skills, then? As the expertise required for modern warfare are different from that 
used during the age of bows and arrows, so the computational skills required 
in the age of computers are vastly different from those required inf the days of 
pencils and paper. The skill of handling computers has already becofne a part of 
a mathematician's skill. There may be other new kinds of skills required in the 
future. 

Originally, mathematics possessed an experimental side. Euler speaks of pure 
mathematics thus: "The properties of numbers which everybody knows have 
been discovered through ordinary observation. They were discovered long before 
their correctness could be verified by proof. It is by observation that more and 
more properties are discovered, and afterwards people spend all their efforts 
on proving them." The emergence of the computer expands the possibilities of 
observation and experimentation in mathematics. 

Since it is easy to draw graphs of functions and the solution curves of 
differential equations on a personal computer, this can be used to enhance 
learning and research. For instance, it is now easy to draw the solution graphs of 
a differential equation for as many cases as one wishes, extract those properties 
which are in common, and make a conjecture on the nature of the solutions. 
One can then attempt to prove the conjecture, but before reaching this stage, 
the skill of handling computer graphics is required. There are still some pure 
mathematicians who have an aversion to computers, but surely this aversion is 
merely backwardness. 

Once upon a time, man used only his own strength, but he then learned to 
use the strength of domestic animals such as horses to do his labour. Later, 
engines were developed which were hundreds or thousands of times more pow
erful than the animals. These engines now routinely do work that would be 
almost impossible by manpower alone. Life without these machines is virtually 
unthinkable. 

In the same way, man has also learned to use technology to perform his 
intellectual work. Computers have been developed which can process information 
hundreds or thousands of times faster than the human brain, and can routinely 
do work that would be almost impossible by brainpower alone. There are still 
many areas where computers cannot replace the power of human thought, but 
they are now becoming essential tools, and it would be difficult to contemplate 
life without them. Mathematics research and teaching must adapt accordingly in 
order to benefit from the progress of computers. 

At the very least, we could install a microcomputer in the classroom with 
a big screen to demonstrate effectively the locus of functions, solution curves 
of differential equations and so on. We could then ask students to do their 
assignments either by using their own personal computers or by using computing 
facilities provided by the university. As I mentioned above, a computer algebra 
system could be employed as a very powerful tool in the mathematics education. 
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4. Which subjects should be taught? One example 

One topic proposed as a practical example of mathematical over-abstraction was 
that old chestnut, the existence theorem of solutions to differential equations. 
This can be taught with the use of Picard's successive approximation. Of course, 
instead of carrying out a rigorous proof of the Picard successive approximation, 
one could just settle it by arm waving. There may be people who think it 
unnecessary to teach the existence theorem. I believe that it would be better to 
teach the theorem. One reason is that successive approximation is a concrete 
way of showing the existence of a solution by construction and this is useful in 
engineering. Another reason is that the mathematics which students have learned 
at high school does not prepare them for the possibility that there may be no 
solution to a problem. When they were given a problem to solve, they could 
always take it for granted that it had a solution. It would be very useful, for 
several purposes, to give the students a little culture shock by teaching them the 
existence theorem. However, those teaching first-year university students should 
be aware of the fact that their students are completely new to mathematics 
involving things like existence theorem. Also, topics like this should not take up 
too much time in the syllabus. 

However, it may be a little hard on the students if there are too few subjects of 
computation, like calculation of indefinite integrals for instance, which follow on 
from the high-school curriculum, even though it should not be covered in great 
depth. It is by no means easy for students to overcome the gap between high-
school mathematics and university mathematics. Should we change high-school 
mathematics, then? It would be quite inappropriate to cram subjects like existence 
theorems wholesale into the high-school curriculum. In fact, mathematics is not 
only an abstract science, it also is a technique. If it is taught under the sole 
auspices of mathematicians, they might overimpose their taste for the abstract. 
The useful aspects may be obscured, and worse still, there is the danger that even 
the deep understanding of mathematics may be lost. This is because there can 
be no deep understanding without a fair amount of skill in concrete calculation, 
etc. I was told that some students of Tokyo University, while knowing all sorts 
of abstract things, were quite unable to expand sin x into Taylor series, and that 
primary school pupils in France who were asked what "1 + 2 =? " is, answered 
"1 + 2 = 2 + 1," adding that the operation of addition is commutative. Such 
anecdotes are in fact quite embarrassing. 

5. In which direction should the teaching be aimed? Is it appropriate to choose the 
same method as applied to teaching mathematics specialists, or is a different ap
proach called for altogether? 

Although mathematics for engineering students should not be very different from 
that for pure mathematics students, one should be aware of the fact that pure 
mathematics students are those who are already attracted or enchanted by the 
beauty of mathematics. These students are willing to study mathematics as their 
major subject, whereas students of other subjects think of mathematics as merely 
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a tool to use for their own studies. Thus we need to give the students motivation 
to study. How can this be achieved? We can begin by showing them how one can 
construct mathematical models and how one can solve them. What I have been 
doing in my ODE course for engineering students at Kobe University is this. At 
the first lecture, they are given a mathematical model of population dynamics. 
The equation given first is 

dx 
— = a x. 
dt 

As is well known, this simple Malthus model is not very good at all. They are 
then introduced to the famous Verhulst model: 

dx / . x\ 

By giving this model, I can talk about thè asymptotic behaviour of a solution, 
equilibrium points, and stability of a solution. Then, a small parameter c is added. 

dx 
-r- = a X 
dt ( ' - ! ) -

This parameter c may correspond to capturing animals in Africa, or to 
deforestation by human beings in South America. The parameter c is then 
increased a little. Here I am in a position to be able to talk about the structural 
stability. The parameter can then be increased a little more. If the parameter c 
is increased still further, then, all of sudden, the structural stability is lost, and 
students realise that all the solution curves drop away from the top left to the 
bottom right. I can then explain what environmental capacity means to us and 
how easily we can destroy our world. 

I have also found it very effective to demonstrate this example of population 
dynamics by installing a micro-computer in the classroom displaying families of 
logistic curves on the screen. 

Concerning the way of teaching, one can say that there are two ways of 
teaching, namely, the top down method in which general theory is taught first and 
examples are explained by applying the general theory, and the bottom up method 
in which examples are taught first and general theory is introduced by extracting 
properties common to these examples. I think the most effective way is perhaps to 
give a few typical examples like the ones above in order to motivate the students 
and then formulate a general theory by extracting properties common to these 
examples. After proving theorems, more examples of application should be given 
to show how powerful the theory is. This combination of bottom up and top 
down methods would be the most efficient. 

6. What qualifications should the instructors ideally possess in order to offer the 
most effective instruction? Should the teaching be undertaken by those who have 
specialised in pure mathematics and have carried out some research, or should it 
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be undertaken by experienced users of mathematics ? Or, indeed, is the ideal tutor 
for this kind of education someone who is primarily a teaching specialist, research 
being of secondary concern? 

On this matter, Dr. Satsuma of Tokyo University carried out an interesting survey 
some years ago. According to his report, the students expressed the following 
views in response to the question: "Who would be an ideal tutor of mathematics 
to engineering students?" "Those who once worked hard to learn mathematics 
because they understand how we feel and how much we suffer from an allergy 
to mathematics;" "Get rid of those who lecture from inside their own world, 
while ignoring students;" "Mathematics professionals are likely to stay wrapped 
up in their cocoon, so give us a non-mathematician;" "An expert on teaching 
mathematics, who understand those who do not understand." 

These comments provoke a little awakening. Why should it be all right for 
middle-school or high-school teachers to be teaching experts, but when it comes to 
university, those who do no research at all are suddenly able to teach well? Surely, 
someone who has never done any research cannot fully understand its importance 
and, therefore, cannot teach it properly. This would surely halve the value of 
university education. This is why university teachers must be researchers. Even 
if this researcher were to lack eloquence, his pervading dedication to research is 
bound to come across and inspire students. Of course, if this researcher also were 
to strive to "understand those who do not understand," he or she would become 
quite outstanding. There are those who would leave research to academies and 
research institutions and have universities solely as organs of education. This, for 
the above-stated reasons, would not seem appropriate. 

7. It is safe to assume that the importance of teaching mathematics to students of 
non-mathematics majors will further increase in the future. What sort of policies 
and methods have we to cope with this increased importance? 

Mathematics itself, to be sure, has undergone many changes. Not only has there 
been an expansion in the way mathematics provides the basic means of expression 
for other sciences but, at the same time, it has itself undergone internal changes. 
Some famous long standing problems, such as the four colour problem or the 
continuum hypothesis, have already been solved. At the same time, mathematics 
has become extremely complex and greatly more diversified. It is now almost 
impossible to understand a paper on a subject completely unrelated to one's area 
of study. Small wonder that non-mathematicians regard mathematics as a secret 
sect of mystics, with some few high priests allowed to carry out secret rituals 
after long years of specialised study, totally incomprehensible to ordinary mortals. 
AbstractionTias advanced to this degree, particularly since the beginning of this 
century. A good example of this is the Bourbaki group of French mathematicians 
in the 1940s, who advanced the rigorousness of expressions. Thus mathematics 
proceeds to greater refinement, creating a beautifully elegant logical structure -
the Temple of Pure Mathematics. This results in weakening the link with the 
other sciences and engineering, for which mathematics ought to provide the basic 



1680 Haruo Murakami 

mode of expression. Even the partition walls between mathematics and physics, 
and also between mathematics and engineering have grown wider. 

This trend, however, has changed a little in the last few years. For example, 
the latest developments in mathematical physics, particularly the advancements 
concerning nonlinear problems, are an indication of the fact that the two disci
plines are again beginning to come closer together. An involvement of algebra 
and geometry becomes also noticeable, as well as the traditional analysis. 

Since mathematics is different from engineering, it is not desirable that only 
engineers are to be in charge of teaching mathematics at the faculty of engineering. 
On the other hand, as transpired from the survey mentioned earlier, if somebody 
who studied mathematics and does research in pure mathematics is put in 
charge of teaching students of applied sciences, such a tutor has the tendency to 
become blinkard and teach pure mathematics, as would be taught to students of 
mathematics. This occasionally confuses the students. 

What, then, is the best way of instructing? Those who teach mathematics to 
students majoring in other subjects, such as engineering, should ideally understand 
engineering to some extent, so that they may sufficiently comprehend the attitudes 
and the enthusiasm which students of engineering have towards their subject. 
At the same time they should have a sound grasp of mathematics as such 
and should do research in mathematics or in a very closely related subject. 
Of course, it is almost impossible for one person to know all branches of 
engineering in detail, to know what is easy and what is difficult, to know what 
is important and what is trivial, and at the same time have a top-class grasp 
of pure mathematics. Nonetheless, mathematics should be taught to engineering 
students by someone who is not entirely ignorant of what engineering is, who 
has an adequate understanding of the role mathematics plays within engineering, 
and who knows how one should teach mathematics to them. Unfortunately, it is 
difficult to see how people of such profile might easily come out of the present 
educational establishment in any significant numbers. 

In consequence, we should consider some effective strategies for producing 
teachers of that kind. As I mentioned before, both in engineering and in other 
applied sciences, there has emerged an increasing number of fields which positively 
utilise mathematics and entirely depend on it. This now covers a very wide 
area and what is common to this area is that it no longer relies solely on 
recalling theorems or formulae, but relies more on a thorough understanding 
of the underlying mathematical structure. This is applied mathematics in the 
contemporary sense. It lies between pure mathematics and engineering, bridging 
the gap between the two. This is why applied mathematics has suddenly acquired 
much more importance. Reflecting this new importance, Japan SIAM (Japan 
Society of Industrial and Applied Mathematics) was established earlier this year. 

I would now like to make a proposal, which I address firstly to the govern
ment of Japan. In each faculty of engineering, create a department of applied 
mathematics or a department of mathematical engineering that would be respon
sible for the teaching of mathematics in the faculty and would also create a base 
for research in applied mathematics and mathematical engineering. Since this 
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department would be involved with teaching mathematics to students of other 
departments, the staff-student ratio in the department should be appropriately 
weighted. Those who graduate from such a department are likely to have a 
foot both in engineering and in mathematics, and should therefore understand 
both ways of thinking. They would therefore be the ideal graduates for our job. 
Such people may exceptionally come from computer science or from informatics, 
but not as a rule. Preferably, they should be inclined more toward mathematics. 
However, as the role of the computer in those disciplines is quite extensive, the 
tutors should not suffer from computer allergy. 

I should furthermore like to add a few words concerning the staff composition 
of this department. First, it is likely that a well balanced team could be appointed 
containing the right number of pure mathematicians in proportion to others. As 
the number of graduates of the department increased, these graduates may begin 
occupying a larger part of the staff. At that time there may arise the danger 
that this would lead to a weakening of the feeling for the mathematical spirit. 
Unlike other departments within engineering, this department would depend on 
retaining the mathematical spirit, i.e. mathematics as such. There should always 
be a reasonable number of pure mathematicians on the staff of these departments 
if we are to avoid a deterioration. Sufficient attention must be paid to this point. 

The situation in other countries is probably similar. It is not a bad idea to 
establish a faculty of mathematical sciences consisting of a department of pure 
mathematics, applied mathematics, statistics, and possibly mathematical infor
matics. Also, it may be thought, for instance, that in developing countries, where 
the task of developing national resources and industrialisation is pre-eminent, the 
relevance of applied mathematics far outstrips that of pure mathematics. In these 
countries, it might be better to begin with application-oriented mathematics and 
hope that a move towards pure mathematics will take place. 

Naturally, we would not be creating this department solely for the purpose 
of training teachers of mathematics. Most of the graduates from this department 
would seek employment in industry. It is said that the recent trend in industry is 
from heavy-thick-long-big to light-thin-short-small. It is impossible to know how 
long this will continue, but it has resulted in mathematics being directly, rather 
than indirectly, involved in industry. The mathematics involved is, of course, 
mainly applied mathematics. Thus the graduates of the departments of applied 
mathematics or of mathematical engineering that I am proposing here would be 
the very people now required in industry and would play an important role there. 
In fact, those countries and industries which do not have such people may well be 
jeopardizing their future, just as the structure of industries is rapidly upgraded. I 
should therefore like to emphasise to the industrialists the importance of creating 
such departments. 
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