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Preface 

The Proceedings of the International Congress of Mathematicians 1994, held in 
Zürich from August 3rd to 11th, 1994, are published in two volumes. Volume I con
tains an account of the organization of the Congress, the list of ordinary members, 
the reports on the work of the Fields Medalists and the Nevanlinna Prize Winner, 
the plenary one-hour addresses, and the invited addresses presented at Section 
Meetings 1-6, Volume II contains the invited addresses for Section Meetings 7-19. 
A complete author index is included in both volumes, 

The five invited lectures organized by the ICMI (International Commission on 
Mathematical Instruction) and the five invited lectures organized by the ICHM (In
ternational Commission on History of Mathematics) which were a part of the sci
entific programme have not been included in these Proceedings. Also not included 
are the short communications presented in poster sessions during the Congress; 
summaries of those communications which were received in due time were printed 
in a separate volume Abstracts of Short Communications] another volume contain
ing the available abstracts of the plenary addresses, the invited section lectures and 
the ICMI and ICHM lectures was also prepared, Both volumes of abstracts were 
given to all ordinary members at the time of their registration at the Congress. 

Lausanne, April 1995 The Editor 
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Organization of the Congress 

The 1994 International Congress of Mathematicians (ICM) was held in Zürich, 
Switzerland, at the invitation of the Swiss Mathematical Society (SMS), repre
senting the Swiss mathematical community, and under the auspices of the Inter
national Mathematical Union (IMU) whose official approval was announced at the 
1990 ICM held in Kyoto, The SMS invitation was made possible by the support 
promised at the very outset by the appropriate authorities of the Federal Govern
ment, the Government of the Canton of Zürich and the Municipality of the city 
of Zürich. Financial help given by these and other public and academic bodies as 
well as the donations of many private corporations and individuals were crucial for 
the realization of the Congress; a list of the donors is given in these Proceedings. 
Naturally, the registration fees paid by the participants of the Congress were an 
essential element in financing the organization. 

The members of the Organizing Committee are listed in the following pages; 
also listed are the members of the Honorary Committee, the Finance Committee, 
the Scientific Committee and the Administrative Staff. 

The scientific program of the Congress was in the hands of the Programme 
Committee appointed by the IMU. Its members were Louis Nirenberg (Chair
man), Simon K. Donaldson, Vladimir Drinfeld, Pierre de la Harpe, Richard Karp, 
Hanspeter Kraft, Andrew J. Majda, Michel Raynaud and Y, Sinai. 

Recipients of the Fields Medals and the Rolf Nevanlinna Prize were selected 
by the respective committees appointed by the IMU. The Fields Medal Commit
tee consisted of David Mumford (Chairman), Masaki Kashiwara, Barry Mazur, 
Alexander Schrijver, Dennis Sullivan, Jacques Tits and S. R. S. Varadhan. The 
Rolf Nevanlinna Prize Committee consisted of Jacques-Louis Lions (Chairman), 
H. W. Lenstra, R. Tarjan, M. Yamaguti and J. Matiyasevic. 

The Organizing Committee was responsible for all the other activities of the 
Congress. MCI Travel (Zürich) handled accomodation and related arrangements 
as the official travel agency of the Organizing Committee. 

The opening and the closing ceremonies as well as all the one-hour Plenary 
Addresses were held in the Zürich Kongreßhaus. The forty-five minute section 
lectures were organized in various parallel sessions in the auditoria of the ETH 
Zürich and the University of Zürich. There were 16 plenary lectures and 148 sec
tion lectures on the program. In addition, there were five lectures organized by the 
International Commission on Mathematical Instruction and five lectures organized 
by the International Commission on the History of Mathematics which were sched
uled along with the section lectures. Poster sessions arranged at the ETH Zürich 
permitted the presentation of numerous short communications; summaries of 782 
of these, received before a fixed deadline, were printed in a separate abstracts 
volume and a further 100 additional contributions were actually presented at the 
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poster sessions. There were also several informal seminars as well as a symposium 
organized on Thursday, August 4, by the Association for Women in Mathematics 
and the European Women in Mathematics. 

In the afternoon of August 3, lectures reporting on the works of the Fields 
Medalists and the Nevanlinna Prize Winner were presented; an account will be 
found in these Proceedings. 

A total of 2476 participants from 92 countries along with 363 accompanying 
members attended the Congress; 77 exhibitors were present. 

The Organizing Committee was able to give financial support for the partic
ipation of the prize winners, the officials of the IMU, 19 of the invited speakers 
and some 200 participants from Eastern Europe. The IMU, through its special 
Development Fund, paid the travel expenses of 79 young scholars from developing 
countries whose living expenses were covered by the Organizing Committee. 

All participants were invited to a number of social events. A reception was 
offered by the city of Zürich in the Kongreßhaus on the evening of the opening day 
of the Congress, on Wednesday, August 3. A Buffet-Banquet was given in the Irchel 
campus of the Universiy of Zürich, on the evening of Friday, August 5. Tuesday 
evening, August 9, a violin recital by Hansheinz Schneeberger, accompanied by 
Gerard Wyss, in the Tonhalle (Kongreßhaus) and a performance by the pantomime 
group Mummenschanz together with the folk music group Trio da Besto in the 
Kongreßsaal (Kongreßhaus) were proposed. 

Evening reception at Irchel Campus of the University of Zürich 
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P. Buser (EPFL), D. Coray (Uni Genève), B. Dacorogna (EPFL), A. Derighetti 
(Uni Lausanne), J.-C. Hausmann (Uni Genève), H. Hofer (ETHZ), J. Hüsler 
(Uni Bern), G. Jäger (Uni Bern), U. Kirchgraber (ETHZ), T. Liebling (EPFL), 
P. Littelmann (Uni Basel), J.-J. Loeffel (Uni Lausanne), J.-C. Pont (Uni Genève), 
H. M. Reimann (Uni Bern), C. Riedtmann (Uni Bern), V. Schroeder (Uni Zürich), 
M. Struwe (ETHZ), A.-S. Sznitman (ETHZ), A. Valette (Uni Neuchâtel), G. Wüst
holz (ETHZ) 
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Michael Goßmann 

The mathematics assistants at ETHZ and at the University of Zürich 
Assistants from other Swiss universities 
Staff members from the Mathematics Departments at ETHZ and at the University 
Technical personnel of ETHZ and of the University 

The Organizing Committee extends its warmest thanks to these and numerous 
other collaborators, without whose generous help the Congress would never have 
been possible. 
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Opening Ceremonies 

The opening ceremonies of the Congress were held in the Zürich Kongreßhaus in 
the morning of Wednesday, August 3, 1994, starting at 9.30. The Brass Quintet of 
the Zürich Conservatory of Music provided the musical accompaniment, opening 
with a suite from Banchetto musicale 1617 by Johann Hermann Schein (1586-
1630). Professor Jacques-Louis Lions, President of the International Mathematical 
Union (IMU), opened the Congress with the following speech; 

Madame la Conseillère Fédérale, 
Mesdames, Messieurs, 

J'ai l'honneur de saluer: 

Madame Ruth Dreifuss, Conseillère Fédérale, 
Madame Hedi Lang, Présidente du Gouvernement Cantonal 
Zurichois,. 
Monsieur Dr. Thomas Wagner, représentant du Conseil Municipal 
de la Ville de Zürich, 
Monsieur Dr. Alfred Gilgen, Directeur de l'Instruction Publique 
du Canton de Zürich, 

je les remercie très vivement de leur présence ainsi que les Professeurs 

Clive Kuenzle, Prorecteur de l'Université de Zürich, 
Ralf Hütter, Vice-Président de l'Ecole Polytechnique Fédérale de 
Zürich, 
Dominique de Werra, Vice-Président de l'Ecole Polytechnique 
Fédérale de Lausanne, 
André Aeschlimann, Président du Conseil de la Recherche au Fonds 
National; et les Professeurs Chandrasekharan et Moser, anciens 
Présidents de l'Union Mathématique Internationale. 

Je poursuis en Anglais. 

Excellencies, 
Ladies and Gentlemen, 

Already now mathematics, in addition to its intrinsic importance, is 
one of the keys for the development of other sciences and of industry. 
Everything indicates that this already fundamental role will increase 
during the next century. This implies responsibilities for us and for our 
governments to: 

1) continue, and even increase the support to mathematical research 
of the highest quality, 
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J.-L. Lions, President of the IMU 

The Brass Quintet of the Zürich Conservatory of Music at the opening ceremonies 
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2) further develop collaborations and exchanges with other disciplines 
and with industry, 

3) help as much as possible the Mathematical Instruction and the 
Mathematical Research in countries suffering of difficult economic 
situations, and to 

4) explain as clearly as possible what we are doing to a not too spe
cialized public. 

These four points arc the aims pursued by the Executive Commit
tee of IMU, according to the wishes of the General Assembly in Kobe in 
1990, and Lucerne in 1994. These are also the aims of the Commissions 
of IMU, namely ICMI and CDE and of the WMY 2000, launched by 
IMU at IMPA, Rio de Janeiro, co-sponsored by UNESCO and the Third 
World Academy of Sciences. 

These four points are also reflected in the present Congress. 
The Program Committee has been nominated by the Executive 

Committee of IMU and by the Swiss Organizing Committee. It had the 
responsibility of the selection of the speakers. 

The Chairman of the Program Committee is Professor Louis Niren-
berg and the members are: S. K. Donaldson, V. Drinfeld, P. de la Harpe, 
R. Karp, H, Kraft, A, Majda, M. Raynaud, M. Sato and Y. Sinai. 

Je passe maintenant la parole au Professeur Henri Carnal, Prési
dent du Comité d'Organisation du Congrès International des Mathéma
ticiens 1994, qui devient le Président du Congrès par acclamation, 

Professor Henri Carnal then took the floor and welcomed the audience as follows: 

Madame la Conseillère fédérale, 
Frau Regierungspräsidentin, 
Herr Stadtrat, 
Mr, President, 
Ladies and Gentlemen, 

In the name of the Organizing Committee of ICM 94, I am very glad to 
welcome you to Zürich today. 

As you know, this is the third time that the International Congress 
of Mathematicians takes place in this city. In the year 1897, at the 
very first of these meetings, the plenary speakers were Hurwitz, Felix 
Klein, Peano and Poincaré, four outstanding scientists, whose names 
and achievements are still familiar to us, even after one hundred years 
of tremendous changes in science and society. 

This lasting quality of mathematical ideas is certainly one of the 
most fascinating aspects of our science. Another aspect, which is at least 
as important, is the universality of mathematical activity, a feature that 
Hermann Weyl emphasized in a speech in 1932, when the Congress came 
to Zürich for the second time. Then, at the beginning of the darkest 
period of our century, the world's scientific community was called upon 
to develop a new sense of solidarity, arising from a joint search for truth, 
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Six decades later, we face a completely different world, balanced 
(precariously) between order and chaos. When we began our prepa
rations for this event, in the summer of 1989, the borders in Europe 
seemed to be topologically and even metrically invariant, so that we 
didn't include them in the list of problems that we might have to cope 
with. Since then, we have witnessed the birth of many new countries 
and of many new mathematical societies. We are very glad to note that 
most of them have found their way to Zürich. We are especially pleased 
to be able to welcome the representatives of the Bosnian Mathemati
cal Society and to thank the authorities and the people who helped to 
organize their journey out of Sarajevo. 

As well as the political instability of the last few years, we have also 
seen serious world economic problems, from which Switzerland has not 
been completely excluded, and it was by no means evident that we would 
find the financial support we needed for the Congress. We are therefore 
deeply grateful to all of those who have helped us, and with unexpected 
generosity. I would like especially to mention the federal authorities, the 
ETHs of Zürich and Lausanne, the Swiss National Science Foundation, 
the Cantonal Government of Zürich and its University department, the 
City of Zürich, many private companies in insurance, banking, chemi
cals, commerce and industry and, last but not least, the International 
Science Foundation in Washington. I wish to thank my colleagues in the 
Finance Committee who not only helped us to raise funds, but who also 
suggested many ways to make this event more attractive. 

We have tried to use the money we received with the greatest 
possible efficiency, but we have been forced to the conclusion that op
timization problems in real life are very different from what they are 
in theory! We hope nonetheless that the positive aspects outweigh the 
negative ones, and that you will enjoy the former and forgive us the 
latter. 

Let me end with two pleasant remarks about the Congress of 1932: 
The first one is that we have among us Prof. J. J. Burckhardt, who 
was active in the organization 62 years ago. By extrapolation, we may 
assume that some of today's participants will be able to attend the 
fourth congress in Zürich in the middle of the next century. The second 
remark relates to a comment that I found in a historical survey on 
the International Mathematical Congresses concerning that meeting of 
1932: "In a country which at that time didn't allow women to vote, it 
was distinguished by the inclusion of a woman mathematician — Emmy 
Noether . . . But the number of women who have been invited to speak 
at international congresses since Noether does not differ much from 0!" 
I am therefore happy to observe not only that the number of plenary 
lectures by women will this time be greater than 0, and even greater 
than 1, but also that the highest federal and cantonal authorities are 
both represented here by women. This shows that we can always hope 
for positive changes! 
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And now I request your help in the election by acclamation of the 
Honorary President of the Congress. I propose to you the former secre
tary of the IMU and founder of the Mathematical Research Institute at 
the ETH, Prof. Beno Eckmann. 

Professor Beno Eckmann addressed the audience as follows: 

Frau Bunclesrätin, sehr geehrte Damen und Herren, 

Ich danke Ihnen und dem Kongress-Komitee herzlich für die grosse Ehre, 
die ich im Namen der Schweizer und im besonclern der Zürcher Mathe
matik annehme. Je vous remercie ainsi que le Comité du Congrès très 
sincèrement pour le grand honneur que vous venez de me témoigner, 
et je souhaite a vous tous la très cordiale bienvenue. Vorrei ringraziare 
cordialmente il Comitato e tutti i presenti per il grande onore reso a me 
con questa nomine; e saluto in modo particolare i matematici di lingua 
italiana. 

I will now try to continue in English. I am not at all able to express 
myself in our fourth national language, Romantsch, which anyway is not 
likely to be understood by many in this audience. 

Ladies and Gentlemen, 

I have to confess that I did not participate in the tremendous work of 
preparing this Congress. So, in any case from that viewpoint, I do not 
deserve being elected Honorary President. I can accept, however, the 
honor with not too bad a conscience: indeed, I have been very active 
in the preparation of two earlier Congresses, namely, 1958 Edinburgh 
and 1962 Stockholm, when I was Secretary of IMU (the International 
Mathematical Union), 1956 to 1961. It can be said that this was a very 
important and interesting period for international collaboration in all 
aspects of mathematics. 

May I recall first of all that just at that time many countries — 
some of them very large and important —, which did not up until 
then adhere to the IMU, became members. One can imagine that quite 
some difficulties of a political, personal, and financial nature had to be 
overcome; but it was a gratifying challenge. For the Union became a 
truly worldwide family. Today, clearly the Union must be faced with 
problems of a quite different nature. Secondly, a decision was taken 
which today seems most natural, namely, that the Scientific Program 
of the International Congress be prepared by the IMU, since that task 
could not be handled any longer by a single country. Stockholm was the 
first Congress where the new scheme was adopted, after several — very 
friendly — discussions. Nowadays the functioning of the international 
collaboration in mathematics can certainly be considered as a model for 
many other fields. 

Something else has, since these times, considerably changed local 
and global mathematical life. I think, of course, of the computer, as a 
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tool within our science and as a marvellous means of communication. 
I believe there are very few mathematicians who have not taken ad
vantage of and derived great benefit from the fabulous possibilities of 
this tool. But we should not forget that the most important tool of a 
mathematician is the fellow mathematician! And that is why we all are 
here today: to exchange ideas, views, and results, and to listen to each 
other. 

With regard to the computer I have heard over and over again the 
saying: Whether mathematicians like it or not, the computer is here to 
stay. I do not agree with that formulation. We like the computer and 
we use it, But today I find it important to turn that phrase around 
and say: Whether the computer likes it or not, mathematics is here to 
stay. This means mathematics as the art of creating concepts out of the 
vague intuition and evidence of the real world and of everyday life; and 
then to put these concepts to work and experiment with them by all 
available means — including, of course, the computer; to see relations, 
conjectures and theorems emerge; and to prove the same b}' the good old 
traditional proof, which is at the heart of our science. For mathematics 
is, and remains, an abstract intellectual enterprise, despite the fact that 
natural sciences and technology, and much more, bear witness to its 
practical usefulness. Sometimes it is the same person who speculates 
and conjectures, provides proofs, and makes applications to our real 
world; but more often this is done by different people and at different 
times. Personal collaboration always remains an essential feature. 

Most beautiful evidence of all the above is given by the scientific 
program of our Congress, and by the impressive work of the laureates 
of the Fields Medal and the Nevanlinna Prize, which are the most pres
tigious distinctions in mathematics. It will be my duty and immense 
pleasure to hand over the medals and the Prize to the winners. I should 
make it clear that their names have not }̂ et been disclosed; they are not 
even known to myself, in any case not officially. I will learn later this 
morning whether my guess and the traditional mathematicians' gos
sip will prove to be correct, Nevertheless let me congratulate them in 
advance. I share their feelings of pride and accomplishment, and I am 
looking forward to their continued success — hoping that I will be able 
for some time to come, to understand what they are doing. I also share 
the feelings of the many who are disappointed because they did not get 
the medal; there is simply too much excellent work being done! 

Mathematical research indeed seems to live in a golden age, As for 
the mathematical education of coming generations, however, I must say 
that I see some danger: there are worldwide trends trying to completely 
replace rigorous reasoning and proving by computer visualisation and 
experimentation. This is not the place to elaborate on the theme of the 
central importance of rigorous proof. Instead let me quote Hermann 
Weyl (who spent a long and very important period of his scientific life 
in Zürich): Mathematics, besides language and music, is one of the pri-
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mary manifestations of the free creative power of the human mind and it 
is the universal organ for world-understanding through theoretical con
struction. It has to remain an essential element of the knowledge and 
abilities we have to teach, of the culture we have to transmit to the next 
generations. 

May I just add: To achieve more we probably dare not hope; to 
achieve less we certainly must not try. 

Thank you. 

After a musical interlude ("Changing Moods" by Gordon Jacob (1895-1984)), 
Minister Ruth Dreifuss, Head of the Federal Department of Home Affairs, gave 
the following speech: 

Ladies and Gentlemen, 

A hundred years ago, in 1897, the first International Congress of Math
ematicians was held in Zürich. In 1932, the Congress met in Switzerland 
for the second time. On that occasion, the Fields Medal was introduced 
as your Nobel Prize equivalent. Today, our country hosts your Congress 
for the third time. No other country has been honoured in such a way 
by your scientific community and I am sure, that the "genius loci" will 
show his gratitude for your fidelity and ensure the success of your work. 

I feel personally very honoured to open your Congress. It's a rare 
opportunity to host the world's leading masters of this art and to come 
into contact with their scientific debate. 

If the subject of your Congress were cancer research or modern 
history, for a lay person it would be simpler to understand what the 
discussion is about. In contrast, mathematics at first sight seems to be 
an abstract tool for its own purpose or an exclusive art. 

Two years ago, in Rio cle Janeiro, under the sponsorship of the 
UNESCO, "World Mathematical Year 2000" was launched. On that 
occasion, the International Mathematical Union defined a vision for 
mathematics which stresses the relationship between science and so
ciety. The Declaration of Rio cle Janeiro states that "pure and applied 
mathematics are one of the main keys to understanding the world and 
its development". I am sure that society needs these keys. 

But since I am not a mathematician myself, I wonder what doors 
they open, and what society will find behind them. Therefore I would 
like to learn from you how mathematicians view their role in society. 

With the relationship between science and society in mind, I sent 
three questions to over a dozen of the world's most eminent mathemati
cians and I am very grateful for all the answers I received. For the first 
two questions, I referred to the distinction between pure and applied 
mathematics cited in the Declaration of Rio. 

The first question concerns pure mathematics. Pure mathematics 
seems to function within a realm of complete independence. Its results 
have their purpose not in their usefulness to society, but in their truth. 
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The clarity of this truth finds a beauty which elevates pure mathematics 
to an art form. But, in contrast to a harpist who delights others by her 
music, I fear the pure mathematician cannot make his art accessible to a 
wider public. M}̂  question then was: How can pure mathematics justify 
its art to the State which finances it? 

For Beno Eckmann, mathematics "sets the standard for every ob
jective thought" and according to Friedrich Hirzebruch "without math
ematics there would be no structured logical thinking". 

For Raoul Bott, "the treasure the [mathematician] hunts is at the 
very core of a l l . . . precise inquiry into the world As such [his] search 
must be a central concern of any enlightened state". 

I agree and I am convinced of the need of mathematical thinking 
as a fundamental component of the modern world. Historically mathe
matics has been a key to open the doors to enlightment, Today, pure 
mathematics can still be considered as the guardian of the grail of logical 
thinking. 

But as Roland Bulirsch puts it, "mathematics is invisible culture". 
Further Jürgen Moser says that "mathematics may not be accessible for 
the enjoyment of a broad audience". If this culture of pure mathematics 
is invisible and inaccessible how then can one show its practical use and 
demonstrate its tangible results ? 

Armand Borei explains that "mathematics resembles an iceberg: 
beneath the surface is the realm of pure mathematics, hidden from the 
public view . . . . Above the water is the tip, the visible part which we 
call applied mathematics". 

According to Phillip Griffiths, "one of the deep mysteries of life is 
the way in which the best pure mathematics, pursued for its own sake, 
inexplicably and unpredictably turns out to be useful". 

Jürgen Moser adds that "the difficulty in getting this message 
across lies in the longer timespan needed to recognize the significance of 
mathematical discoveries . . . . Sometimes twenty or more years have to 
elapse . . . . Politicians unfortunately often think in much shorter terms." 

This is certainly true not only for politicians but for society as 
a whole. In modern times we insist on increasingly shorter timespans 
for everything in our life, We ask for immediate return on investment. 
We want real time information. The life-span of technologies is getting 
shorter and shorter. Cost efficiency and speed have become the basic 
criteria to judge any human activity. This is dangerous because it's 
shortsighted. 

In such an environment it is very important to continue to recog
nize that knowledge is a value in itself. Mathematics or philosophy or 
any basic research develops only thanks to this principle which is an 
important part of our civilization. If we start to forget it, we jeopardize 
the roots of our progress. The future is unpredictable. We cannot judge 
knowledge on the basis of its immediate usefulness. As an example, the 
work of Vaughan Jones, who connected three-dimensional knot theory 
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with functional analysis, was awarded the Fields Medal at your last 
Congress in Kyoto on the basis of its intrinsic merit. Later, his theory 
was utilized by physicists in statistical mechanics and by biologists to 
explain the structure of DNA. It is only through the recognition and 
support of basic research that society can ensure the continued and full 
development of scientific progress. 

Let us turn to applied mathematics. Today applied mathematics 
has become a basis for all other sciences and has a tremendous impact 
on life in modern societies. Applied mathematics is hereby both highly 
relevant and useful to society but it has lost its innocence. However, 
in contrast to the debate on the responsibility of nuclear physics and 
of genetechnology, it seems to me that there has been little ethical dis
cussion on the role of mathematics in society. Thus here is my second 
question: Has mathematics avoided such discussions ? 

There are mathematicians who claim moral neutrality for their 
science. René Thorn for example writes me that "mathematics by itself 
is ethically neutral". 

But Sir Michael Atiyah reminded me in his answer that the "atomic 
bomb was only built after extensive mathematical calculations", and 
Jürgen Moser acids that "the renowned mathematicians von Neumann 
and Ulam played an important role" in this project. 

Armand Borei asks "should one see the fact that mathematics is 
at the base of artillery or guided bombs as an ethical problem?" Yes, I 
think one should. 

It is true that "most mathematicians are remote from the decisions 
of the application" of their work, as Friedrich Hirzebruch puts it. Beno 
Eckmann goes even further, when he says: "For mathematics itself this 
[ethical and political] discussion is not relevant . . . . As a purely intellec
tual activity, it could not be influenced by such a discussion. Of course, 
those who apply mathematics have to face [this] discussion". 

However, I do not think that making a distinction between abstract 
theory and practical application can altogether eliminate the ethical 
problem. We owe much of our progress in society to mathematicians 
and we have to recognize their merits while at the same time they have 
to assume their responsibilities. 

Raoul Bott has expressed his argument against ethical neutrality, 
writing to me "that the age of innocence has come to an end for us all". 

I am convinced this is true not only for science, but for most hu
man activities. Today, thanks to science, our society has developed a 
tremendous power to control nature. This power enables us to take our 
destiny in our hands. But this power forces us to assume the responsi
bilities bound to it. If the age of innocence has come to an end, we have 
to recognize that it is the age of responsibility that has replaced it. 

Let's turn now to my last question: If, as Minister of Science, I 
had the possibility to create 10 new professorships in Swiss universities, 
how many of them should I give to mathematics and why? 
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Phillip Griffiths is generous with his science and answers: "They 
should all go to mathematical scientists". 

So is Gerd Faltings: nine chairs for mathematics but — as he likes 
music — he leaves the tenth chair to the harpists. 

Sir Michael Atiyah, Friedrich Hirzebruch and Jürgen Moser request 
four or five chairs for mathematics. That is about the average of all the 
answers. In fact, in Switzerland today only one chair out of twenty is 
for mathematics. 

Some replies focus exclusively on the needs of natural sciences. 
This is surprising. When one considers the complexities of the prob
lems that face society, I am convinced that their solution will require a 
supported and dedicated effort of the social sciences and humanities, in 
close collaboration with natural sciences. 

In view of the growing importance of science I understand why 
scientists ask for more means, why they want more professorships than 
they have. Scientists are increasingly expected to find solutions to all of 
our problems. It is more than legitimate that you ask for the necessary 
means from society. 

Science and research are crucial today. You don't have to convince 
me of this as minister of science, but together we have to convince the 
public and the Parliament. We have to convince the taxpayer, This is a 
difficult task when public budgets are running huge deficits. 

One problem is that the growing impact of science in society is not 
felt when we drive a car or use a phone. Most people are not aware of 
the scientist whose work is behind everything in our everyday life. Ask 
for instance any Swiss "Whose portrait is on the ten franc note?" They 
won't be able to tell you. They have never noticed that it is Leonhard 
Euler. Probably they don't even know who Euler is. 

It is the task of the scientific community to tell the public why 
science matters. It is your task and it is mine. 

I wish you all the best for your Congress. Thank you. 

Dr. A. Gilgen, Head of the Department of Education, Canton Zürich, greeted 
the Congress participants on behalf of the Cantonal Government, recalling the 
names of celebrated mathematicians who had worked at the University of Zürich 
or at the ETH Zürich. 

Dr. Th. Wagner, Zürich City Councillor, saluted the Congress participants 
on behalf of the authorities of the city of Zürich, depicting the image of Zürich as 
an open and international city of Congresses. 

After a musical interlude ("Suite for Brass Quintet" by Edvard Grieg (1843-
1907)) Professor David Mumford, Chairman of the Fields Medal Committee, an
nounced the names of the recipients of the Fields Medals as follows: 

I would like to thank our Swiss hosts very warmly for organizing so 
flawlessly and for giving us such a beautiful locale for the 1994 ICM. I am 
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here as the chairman of the Fields Medal Committee for this Congress, 
whose other members are: 

Luis Caffarelli 
Masaki Kashiwara 
Barry Mazur 
Alexander Schrijver 
Dennis Sullivan 
Jacques Tits 
S.R.S. Varadhan. 

I should add that we consulted many many others in making our 
decisions. 

As the committee compiled fists of names of candidates and their 
accomplishments, we found ourselves both pleased and awed by the 
great fecundity of recent mathematics, and by the great number of pos
sible candidates representing a great number of areas of mathematical 
research. What to me is the most miraculous aspect of our field is that 
it is growing in so many directions: limbs sprout new growth and new 
shoots go off in unexpected dimensions. There is growth by deep and 
subtle proofs of old problems, and by the discovery and exploration of 
wholly new phenomena with new models. 

Our response to this is to try to reward excellence in as many areas 
as possible. Fields himself realized that at least two medals were needed 
"because of the multiplicity of the branches of mathematics" and, as 
you know, this has grown to three or four medals. With at most four, 
we had to make quite a few very painful choices. 

Fields also said in his 1932 memorandum on the medals: It is 
understood that in making the awards, while it was in recognition of work 
already done, it was at the same time intended to be an encouragement 
for further achievement on the pari of the recipients and a stimulus 
to renewed effort on the part of others . . . with a view to encouraging 
further development along these lines. 

We have followed previous committees in interpreting his intent 
by restricting ourselves to considering candidates who are at most forty. 
His words also bring up an issue which is central to the future of our 
field: in many countries, governments have been attempting in the last 
few years to channel mathematical research along lines that bureaucrats 
deem to be productive and useful. Note that Fields' recommendation is 
instead to let mathematics develop by its internal forces, to let its success 
encourage further success. I agree with him that, in the long run, this 
will produce more results for both mathematics and for society. 

Finally, we must bear in mind how clearly hindsight shows that 
past recipients of the Fields' medal were only a selection from a much 
larger group of mathematicians whose impact on mathematics was at 
least as great as that of the chosen. 
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So now, with great pleasure, let me announce the recipients whose 
work, in the view of the whole committee, embodies the best in mathe
matics today. In alphabetical order, they are: 

Jean Bourgain (IHES, University of Illinois, Institute for Advanced 
Study), 
Pierre-Louis Lions (Université de Paris-Dauphine) 
Jean-Christophe Yoccoz (Université de Paris-Sud, Orsay) 
Efim Zelmanov (University of Wisconsin, University of Chicago) 

The medalists came forward and received their medals and prizes from Professor 
B. Eckmann. 

Prof. Jacques-Louis Lions, Chairman of the Rolf Nevanlinna Prize Commit
tee (the full composition of the Committee is given under Organization of the 
Congress), announced Avi Wigclerson as the recipient of the Rolf Nevanlinna Prize; 
the prize winner received his prize from Prof. B. Eckmann. 

The opening ceremonies concluded with the music of Jean-François Michel 
(born 1957) "Trois Pastels sur la Belle Epoque". 

D. Mumford, President of the Fields Medal Committee 
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The prize winners with Minister Ruth Dreifuss; from left to right: 
J. Bourgain, A. Wigclerson, J.-C. Yoccoz, P.-L. Lions, E. Zelmanov 

The Honorary President B. Eckmann with P.-L. Lions 
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The closing ceremonies were held in the Zürich Kongreßhaus in the afternoon of 
Thursday, August 11, 1994, starting at 15.00, immediately after the final lecture 
by Andrew Wiles. 

Professor Jacques-Louis Lions, President of the International Mathematical 
Union, began the closing ceremonies with the following words: 

Ladies and Gentlemen, 

I am sure to convey the feelings of all participants when thanking and 
congratulating all those — in particular Prof. Carnal and Prof. Blatter 
— who worked so hard to make this Congress perfectly organized and 
scientifically of exceptional interest, 

It is now my responsibility to give you the names of colleagues 
who have been elected to the Executive Committee and in the other 
committees of the International Mathematical Union at the General 
Assembly which took place in Luzern just before this Congress. 

International Mathematical Union — IMU Executive Committee 

President: 
Vice-presidents: 

Secretary: 
Members: 

David Mumford (Harvard University, USA) 
V. Arnold (Steklov Institute, Russia) 
A. Dold (University of Heidelberg, Germany) 
J. Palis (IMPA, Brazil) 
J. Arthur (University of Toronto, Canada) 
S. Donaldson (Oxford University, United Kingdom) 
B. Engquist (KTH Stockholm, Sweden) 
S. Mori (RIMS, Kyoto University, Japan) 
K. Parthasarathy (Indian St. Inst., New Delhi, India) 

The past president, J.-L. Lions, is an ex-officio member of the Executive 
Committee. 

Commission on Development and Exchange — CDE 

Chairman: 
Secretary: 
Members: 

Rolando Rebolledo 
Pierre Bérard 
A. A. Ashour 
O H . Clemens 
Kung Ching Chang 
Cesar Camacho 
Jean Mawhin 
Mitsuo Morimoto 

(University Cat. de Chile) 
(Inst. Fourier, France) 
(Cairo University, Egypt) 
(University of Utah, USA) 
(University of Beijing, China) 
(IMPA, Brazil) 
(University of Louvain, Belgium) 
(Sophia University, Japan) 
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The ex-officio members are: the past chairman of CDE, 
M. S. Narasimhan, the president of IMU, and the secretary of IMU. 

International Commission on Mathematical Instruction — ICMI Exec
utive Committee 

President: Miguel cle Guzman (University of Complutense, Spain) 
Vice-presidents: Jeremy Kilpatrick (University of Georgia, USA) 

Anna Sierpinska (University of Montreal, Canada) 
Secretary: Morgens Niss (Roskilde University, Denmark) 
Members: Colette Laborcle (Grenoble, France) 

Gilash Leder (Monash University Melbourne, Australia) 
Carlos Vasco (University Nac, Colombia) 
Zhang Dian-Zhou (East China Normal University, Shanghai) 

The ex-officio members are: the past president of ICMI, J.-P. Kahane, 
the president of IMU, and the secretary of IMU. 

International Commission on History of Mathematics - - ICHM (jointly 
with the International Union of the History and Philosophy of Science 
— IUHPS) 

Two representatives of IMU were elected: 

Karen Hunger Parshall (USA) 
Laura Toti-Rigatelli (Italy) 

Various resolutions were voted at the General Assembly. I would like you 
to know in particular of four of them (all of them will be published). 

Resolution 2 
The General Assembly thanks the Turn of the Century Committee for 
its report. It asks the new Executive Committee to proceed with the 
planning of World Mathematical Year 2000, and to organize and coor
dinate activities such as: 

a) an invitation to a selected group of outstanding mathematicians 
to present their views on topics they expect to be central to math
ematical activity in the next century. 

b) the selection of a number of symposia, some possibly organized 
together with other scientific bodies, dedicated to mathematics, 
its applications and to its role in society, and 

c) events held under the auspices of ICMI, CDE and ICHM. 

The Executive Committee is asked to explore the possibilities provided 
by communications technology to unite activities occurring around the 
world. 

Resolution 3 
The General Assembly recommends that the name of the Chair of the 
Program Committee be made public on appointment. 
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Resolution 7 
The General Assembly expresses its gratitude to UNESCO and ICSU for 
the help and support that these organizations have provided for various 
mathematical activities, in particular those carried out in cooperation 
with the Commission for Development and Exchange (CDE) and the 
International Commission on Mathematical Instruction (ICMI) of the 
IMU. 

Resolution 10 
The General Assembly expresses its gratitude to the Swiss organizers of 
the 1994 Congress, for their hospitable reception, and for the excellent 
arrangements for this meeting of the Assembly. 

I have now a last reponsibility, a very pleasant one. I announce that the 
General Assembly has unanimously approved that the next ICM 98 will 
take place in Berlin. And I leave the floor to Professor Hirzebruch. 

Professor Friedrich Hirzebruch invited the audience to the next International 
Congress of Mathematicians with these words: 

Herr Ehrenpräsident, lieber Beno; meine Herren Präsidenten, meine 
Damen und Herren! 

Just as Professor Lions did, I would like to express thanks to the orga
nizing committee, in particular its Chairman Professor Carnal, for the 
wonderful work they did from which we all profited so much. It will be 
difficult to follow their example and to keep up the high standards. The 
third International Congress of Mathematicians took place in Heidel
berg at the beginning of our century in 1904. Since then the Congress 
was not held in Germany. After the terrible period of World War II there 
were attempts to invite the Congress to Germany, beginning in the six
ties; these attempts failed, always for understandable reasons. Let me 
say a few words about ICM 1904, to illustrate how times have changed. 
Who supported the Congress? His Majesty Kaiser Wilhelm gave 5000 
M. from his private funds, his ministry "der geistlichen, Unterrichts-
und Medizinalangelegenheiten" another 5000 M. His Royal Highness, 
the Grand Duke of Baden, the German State to which Heidelberg be
longed, gave 3000 M., a well known publishing house contributed 2000 
M. The registration fee for members was 20 M. I communicated this in
formation to the Federal Ministry of Research and Technology in Bonn 
and to the Governing Mayor of Berlin and asked them to be as gen
erous as the Kaiser and the Grand Duke, and they were. Some more 
information on the Heidelberg Congress: In 1904 the number of partic
ipating mathematicians was 336, among them 30 from Russia (about 
10%, like in the Zürich Congress now), 25 from the Austrian-Hungarian 
empire, 24 from France, 15 from the United States, 12 from Switzer
land and 2 from Japan. Felix Klein from Göttingen and Julius Molk 
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Closing ceremonies 

F. Hirzebruch at the closing ceremonies 
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from Nancy presented the first volume of the Encyclopedia of Mathe
matical Sciences (German and French editions). Lectures were given, 
for example, by Minkowski, Hilbert, Borei, Voronoi, Ricke, Mittag-
Leffler, Hadamard, Sommerfeld, Weber, Prandtl, Cappelli, Macaulay, 
Levi-Civita. Felix Klein lectured in the ICM section, as we call it nowa
days, on "Über eine zeitgemäße Umgestaltung des mathematischen Un
terrichts an den höheren Schulen", a title which can be used without 
change at any congress. 

For Berlin we expect 10 times as many mathematicians as in Hei
delberg from all parts of the world. We plan to provide fellowships for 
young mathematicians and for mathematicians — young and senior — 
who come from countries with difficult financial conditions. We hope 
that the formerly divided city of Berlin will-be a symbol for improved 
worldwide cooperation. The mathematical landscape in the Berlin area 
is highly developed with three universities in Berlin and one in Pots
dam and with two research institutions, the Konrad-Zuse-Center and 
the Weierstrass Institute for Applied Analysis and Stochastics. Many 
Berlin mathematicians are eager to make the Congress a success. Much 
work was already done by the Berlin members of the Provisional Or
ganizing Committee whom I thank very much, in particular Professor 
Grötschel, Vice-President of the Konrad-Zuse-Center and President of 
the German Mathematical Society. By his efforts it was possible to pre-
register for ICM 1998 here in Zürich using the world-wide web, I hope 
many of you have done so. 

It is a great pleasure and honor for me to invite on behalf of the 
German Mathematical Society the International Congress of Mathe
maticians to Berlin for the period August 18 to 28, 1998. The united 
city has many theatres and museums. It has forests and lakes. There 
is much to do. The average maximum daily temperature in Berlin in 
August is 23 degrees. Specialists in probability have told me, however, 
that in August 1998, Berlin may even be hotter than Zürich in 1994. 
But never mind, I hope to see 3̂ 011 all in Berlin in any weather. 

Professor Henri Carnal then addressed the audience as follows: 

Ladies and Gentlemen, 

I know that most of you have heard many, many talks in the last few 
days. So, let's have a very short closing ceremony! 

My colleagues in the Organizing Committee and I are today in the 
mood of mathematicians who have worked for years on a problem and 
who have come to the publication of their results. At the beginning, as it 
often happens in mathematics, we thought that we could just solve our 
problem by adapting well-known methods to the new boundary condi
tions. But, after a while, we realized that the boundary conditions were 
the core of the problem, e.g. the unrealistic exchange rate for the Swiss 
franc and, even more, the new political situation in Eastern Europe. 
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From that part of the world, we received over 1000 requests from schol
ars who wanted to participate and who asked for support. We would 
have liked to have invited all of them, but it was unfortunately only 
possible for à minority. So the number of registered participants stayed 
at 2326, which is below our initial expectation. You should add to this 
figure not only 363 accompanying members, 77 exhibitors and some 
200 day visitors, but also the 150 young mathematicians from Swiss 
institutes who helped us during the last two weeks. They worked hard, 
certainly harder than they, and even we, had expected and they would 
have deserved more than one yellow T-shirt. I want to thank them very 
warmly here. 

And now, as I said before, we feel like people who have just pre
sented a partial solution to a challenging problem: we could have done 
better, but we are still very proud to have brought a non-trivial contri
bution to a long sequence of events which started almost one hundred 
years ago and which will certainly continue into the next century. We 
would be quite happy to know that you feel the same way. Thank you. 

Professor Henri Carnal then declared the Congress closed. 
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The Work of Jean Bourgain 

Luis CAFFARELLI 

Institute for Advanced Study 
Princeton, NJ 08540, USA 

Introduction 

Bourgain's work touches on several central topics of mathematical analysis: the ge
ometry of Banach spaces, convexity in high dimensions, harmonic analysis, ergodic 
theory, and finally, nonlinear partial differential equations (P.D.E.'s) from mathe
matical physics. In all of these areas, he made spectacular inroads into questions 
where progress had been blocked for a long time. 

This he did by simultaneously bringing into play different areas of mathe
matics: number theory, combinatorics, probability, and showing their relevance to 
the problem in a previously unforeseen fashion. 

To give a flavor of his work, I have concentrated on his recent research, of 
about the last ten years. 

The solution of the Ap problem 

A great part of the work of Bourgain, in the study of the geometry of Banach 
spaces, concentrated on the question: Given a Banach space of finite dimension n) 

how large a section can we find that resembles a Hilbert subspace? 
Maybe his most relevant paper in this field is his solution of the A(p) problem: 

Given a subset A of the set of characters of a compact Abelian group, A is a p-set 
(p > 2) if the LP and L2 norms are equivalent in the suspace of LV(G) generated 
by A. 

The longstanding question was: Do K(p) and A(g) sets coincide? 
Bourgain answers this problem in the negative with the following sharp esti

mates: 
Among n given characters there is a subset of optimal size [n2/p] for which 

H ||E°*w|| iP<c(p)(x;ioiia)1/2-

Through a lacunary argument, one can construct a A(p) set, which is not A(q) for 
any q > p. 

Proceedings of the International Congress 
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The converse of Santalo's inequality 

Another product of Bourgain's studies is his proof of Santalo's inequality: 
Given K the unit ball of a norm on Rn and K* its dual, Bourgain and Milman 

prove 
vol (K) vol (IC) > Cn\B\2 

for some absolute constant 0 < c < 1. 
This has applications to number theory and computer sciences. 

Ergodic theory 

In ergodic theory, Bourgain developed a completely new theory, where averages 
under very sparse (polynomial) families of iterations are studied (and shown to 
converge). 

The basic theorem, from which the general setting follows by a well-known 
transformation, due to Calderon, is the maximal theorem for £2(Z). 

THEOREM. Let f e £2(Z)} and I he a positive integer; let 

N 

»>°'Nk=i 

Then 

1 N 

M/(n) = sup | - £ / ( n + **)!• 

HM/H,* < C||/||,2 

i.e., the maximal function of the partial averages of the k£ iterations of the 1-
translation is hounded in d2. 

Oscillatory integrals 

An important family of ideas introduced by Stein in harmonic analysis concerns 
the study of the restriction of classical operators (maximal functions, Hilbert and 
Fourier transforms) to curves in space (parabolics, circles) that have special rele
vance to the study of partial differential equations (singular integrals of parabolic 
type, spherical averages related to the wave equation, etc.). 

In this area I'll mention two fundamental contributions of Bourgain: 

The circle maximal function 

Mf(y) = sup — — / f(y + x) dA 

xESr{0) 

was shown by Stein to be a bounded operator in IP for some range p(n) for n > 3. 
The two-dimensional case (p > 2) remained open for a long time until Bour

gain closed the gap. 
As the "solid" maximal function in any dimension can be written as an 

average of spherical maximal functions in a fixed low dimension, this allows us 
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in particular to prove bounds for the "solid" maximal function independent of 
dimensions. 

The second contribution refers to the restriction of Fourier transforms to 
spheres, or, related to it, the properties of the characteristic function of the ball 
as a Fourier multiplier (a natural generalization of taking partial sums of Fourier 
scries). 

In two dimensions, these problems were well understood (C. Fefferman). 
In higher dimensions some range of continuity is expected around L2, and a 

scries of results was obtained by Tomas and Stein. 
Bourgain considerably sharpened these results, but what is more important 

than the exact ranges, is the fact that, in doing so, he introduced completely new 
techniques, where instead of relying on L2 theory (i.e., decomposing functions and 
operators in "Z2 pieces'!) iie sharpenedjLhe geometric understanding^ Besicovitcl> 
type maximal operators and Kakeya sets. 

Nonlinear partial differential equations 

Bourgain's contributions to nonlinear partial differential equations are very recent, 
and it is somewhat difficult to decide where to stop in this presentation because 
results from him and many others in the field (Kenig, Klainerman, Machedon, 
Ponce, Vega) have been pouring in, in good part thanks to the revitalization of 
the field brought in by Bourgain's approach. 

Let us say that he obtained very sharp results for the well-posedness of the 
nonlinear Schrödinger equation, 

iut + Au + u\u\a = 0 

for non smooth data. 
Previous to his work, there was mainly local well-posedness in H8 for large 

enough s. 
By introducing new, suitable space-time functional spaces, Bourgain started 

a new, more deep and elegant wajr of treating dispersive equations. 
In closing, let me reiterate that some of the outstanding qualities of Bourgain 

are his power to use whatever it takes — number theory, probabilistic methods, 
covering techniques, sharp decompositions — to understand the problem at hand, 
and his versatility, which allowed him to deeply touch so many areas in such a 
short period of time. 



The Work of Pierre-Louis Lions 

S. R. S. VARADHAN 

Courant Institute, New York University 
251 Mercer Street, New York, NY 10012, USA 

Pierre-Louis Lions has made unique contributions over the last fifteen years to 
mathematics. His contributions cover a variety of areas, from probability theory 
to partial differential equations (PDEs). Within the PDE area he has done several 
beautiful things in nonlinear equations. The choice of his problems has always 
been motivated by applications. Many of the problems in physics, engineering and 
economics when formulated in mathematical terms lead to nonlinear PDEs; these 
problems are often very hard. The nonlinearity makes each equation different. 
The work of Lions is important because he has developed techniques that, with 
variations, can be applied to classes of such problems. To say that something is 
nonlinear does not mean much; in fact it could even be linear. The entire class of 
nonlinear PDEs is therefore very extensive and one does not expect an all-inclusive 
theory. On the other hand, one does not want to treat each example differently 
and have a collection of unrelated techniques. It is thus extremely important to 
identify large classes that admit a unified treatment. 

In dealing with nonlinear PDEs one has to allow for nonclassical or nons-
mooth solutions. Unlike the linear case one cannot use the theory of distributions 
to define the notion of a weak solution. One has to invent the appropriate notion 
of a generalized solution and hope that this will cover a wide class and be sufficient 
to yield a complete theory of existence, uniqueness, and stability for the class. 

Due to the very limited time that is available, I shall focus on three areas 
within nonlinear PDE where Lions has made major contributions. The first is the 
so called "viscosity method". This development is a long story that started with 
some work in collaboration with Crandall. Over many years, in partial collabo
ration with others (besides Crandall, Evans and Ishii), Lions has developed the 
method, which is applicable to the large class of nonlinear PDEs known as fully 
nonlinear second order degenerate elliptic PDEs. The class contains very many 
important subclasses that arise in different contexts. 

By solving a nonlinear PDE one is trying to solve an equation involving an 
unknown function and its derivatives. Let u be a function in a region G in some 
Rn and let Du, D2uì..., Dku be its derivatives of order up to /c. A nonlinear PDE 
is an equation of the form 

F[x,u(x)ì(Du)(x)ì(D
2u)(x)ì...ì(D

k(u)(x))\=0 in G 

with some boundary conditions on dG. Such a PDE is said to be nonlinear and 
of order k. The viscosity method applies in cases where k = 2 and F(xìuìpìH) 

Proceedings of the International Congress 
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has certain monotonicity properties in the arguments u and H. More precisely, 
it is nondecreasing in u and nonincreasing in H. Here u is a scalar and if is a 
symmetric matrix of size n X n with the natural partial ordering for sjmimetric 
matrices. 

Some of the many examples of such functions are described below. 

Linear elliptic equations: 

-£<"W5£-W+/M-° 

where the matrix a1J(x) is uniformly positive definite. 

In this_ case_the_ function F is given by 

F(xìuìpìH) = -Trace[a(:c)il] + f(x). 

First order equations: 

f(xìu(x)ì(Du)(x))=Q 

These include Hamilton-Jacobi equations where it all started. One added a term 
of the form e A to the equation and constructed the solution in the limit as e went 
to zero. The theory owes its name to its early origins. 

If one has a family Fa of such functions one can generate a new one by 
defining 

F = supFa. 
a 

If one has a two-parameter family Faß of such functions one can generate a new 
one by defining 

F = sup inf Faß . 

Such examples arise naturally in control theory and game theoiy and are referred 
to as Hamilton-Jacobi-Bellman and Isaacs equations. 

In order to understand the notion of a generalized solution it is convenient 
to talk about supersolutions and subsolutions. Suppose u is a subsolution, i.e. 

F(xìu(x)ì(Du)(x)ì(D
2u(x))) < 0 

and we have another function 0, which is smooth, such that u — cj) has a maximum 
at some point x. Then by calculus Du(x) = D(j)(x) and D2(u)(x) < D2((j))(x). 
From the monotonicity properties of F it follows that 

F(xìu(x)ì(Du)(x)ì(D
2u(x))) > F(x,u(x),(D(j))(x),(D2(j)(x))). 

Therefore 

F(x,u^),(D(ßm,(D2m)) <o-
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The last inequality makes sense without any smoothness assumption on u. We 
can try to define a nonsmooth subsolution as a u that satisfies the above for 
arbitrary smooth cß and x provided u — (j) has a maximum at x. The definition of a 
supersolution is similar, and a solution is one that is simultaneously a super and 
a subsolution. 

Let us consider first a Dirichlet boundary value problem where we want to 
find a u that solves our equation and has boundary value zero. 

The main step is to establish the key comparison theorem (with a long history 
that began with the work of Crandall and Lions and saw an important contribution 
from Jensen) that if u is a subsolution and if v is a supersolution in a bounded 
domain G and if u < v on the boundary dG then u < v in G U 8G. This requires 
some mild regularity conditions on F as well as some nondegeneracy conditions. 
After all, we have not ruled out F = 0. Once such conditions are imposed one can 
establish the key comparison theorem. From this point on, the theory proceeds in 
a way similar to the classical Perron's method for solving the Dirichlet problem. 
Assuming that there is at least one subsolution ü and at least one sup er solution v 
with the the given boundary value, one establishes that 

W(x) = sup{w(x) : ü < w < v , w is a, subsolution} 

is a solution. The comparison theorem is of course enough to guarantee uniqueness. 
The constructibility of ü and v depends on the circumstances and is relatively easy 
to establish. 

The richness of the theory is in its flexibility. One can prove stability results of 
various kinds and the validity of various approximation schemes. One can modify 
the theory to include Neumann boundary conditions. This is tricky because one 
has to interpret the normal derivative suitably for a function that has no smooth
ness requirements and the boundary condition can be nonlinear as well. Treating 
parabolic equations is not any different. One can just consider t as another variable. 

I would suggest the survey article by Crandall, Ishii, and Lions that appeared 
in the Bulletin of the American Mathematical Society in 1992 for those who want 
to read more about this area. 

The second body of work that I want to discuss has to do with the Boltzmann 
equation and similar equations. During the last six or seven years Pierre-Louis Li
ons has played the central role in new developments in the theory of the Boltzmann 
equation and similar transport equations. These are important in kinetic theory 
and arise in a wide variety of physical applications. We wiU for simplicity stay 
within the context of the Boltzmann equation. In R3 we have a collection of parti
cles moving along and interacting through "collisions" among themselves. As we do 
not want to keep track of the positions and velocities of the particles individually, 
we abstract the situation by the density f(x,v) of particles that are at position x 
with velocity v. Even if there is no interaction, the density f(x,v) will change in 
time due to uniform motion of the particles. The time-dependent density f(t,x.v) 
will satisfy the equation 
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The collisions will change this equation to 

^ + «.V./ = Q(/,/). 

Here Q is a quadratic quantity that represents binary collisions and its precise 
form depends on the nature of the interaction. Generally it looks like 

Q(f, f)= [ [ dv. dioB{v - vt,u,){f'f: - / / , } . 
J JR3xS2 

The notation here is standard: v and v, are the incoming velocities and v' and v[ 
are the outgoing velocities. B is the collision kernel. For given incoming velocities 
v and y i, u) on the sphere S2 parametrizes all the outgoing velocities compatible 
with the conservation of energy and momenta. 

v' — v — (v — v^w)u)) 7/ = v + (v — V^(jj)u) 

and / ' , /„, fl are f(t,xy) with v replaced by the correspondingly changed v\ v*, 
and v[. 

This problem of course has a long history. Smooth and unique solutions 
had been obtained for small time or globally for initial data close to equilibrium. 
Carleman had studied spatially homogeneous solutions. But a general global ex
istence theorem had never been proved. The work of Lions (in collaboration with 
DiPerna) is a breakthrough for this and many other related transport problems of 
great physical interest. 

Let me spend a few minutes giving you some idea of the method as developed 
by Lions and others (mostly his collaborators). 

Although the nonlinearity looks somewhat benign it causes a serious problem 
in trying to establish any existence results. The collision term is quadratic and in
volves both positive and negative terms. To carry out any analysis one must control 
each piece separately. One gets certain a priori estimates from the conservation of 
mass and energy. The Boltzmann H-theorem gives an important additional control 
if one starts with an initial data with finite entropy. If we denote by Q+ and Q~ 
the positive and negative terms in the collision term with considerable effort one 
is able to obtain only local L1 bounds on (1 + f)~1Q±(f,f)- The weak solutions 
are therefore formulated in terms of log(l -f / ) . As there are no smoothness esti
mates in x one has to show that the velocity integrals contained in Q provide the 
compactification needed to make the weak limit behave properly. 

This idea of "velocity averaging", which is central to these methods, is easy 
to state in a simple context. Suppose we have a function g(x,v) in RN x RN and 
for some reasonable function a(v) we have a local Lp estimate on a(v).Vxg(xi v), 
Then for a good test function iß the velocity integral 

/ i/j(v)g(xiv)dv 
JRN 

is in a suitable Sobolev space. Another important step that is needed in dealing 
with the Vlasov equation is the ability to integrate vector fields with minimal 
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regularity. In nonlinear problems you have to learn to live with the regularity that 
the problem gives you. The writeup by Lions in the Proceedings of the last ICM 
(Kyoto 1990) provides a survey with references. 

The third and final topic that I would like to touch on is the contribution 
Lions has made to a class of variational problems. There are many nonlinear PDEs 
that are Euler equations for variational problems. The first step in solving such 
equations by the variational method is to show that the extremum is attained. This 
requires some coercivity or compactness. If the quantity to be minimized has an 
"energy"-like term involving derivatives, then one has control on local regularity 
along a minimizing sequence. This usually works if the domain is compact. If the 
domain is noncompact the situation is far from clear. Take for instance the problem 
of minimizing 

J J (V / ) (x ) | 2 dx- j Jv{x-y)f{x)f\y)dxdy 

over functions / with L2 norm A (fixed positive number) . Here V(.) is a reasonable 
function decaying at oo. Because of translation invariance, the minimizing sequence 
must be centered properly in order to have a chance of converging. The key idea 
is tha t , in some complicated but precise sense, if the minimizing sequence cannot 
be centered, then any member of the sequence can be thought of as two functions 
with supports very far away from each other. If we denote the infimum by cr(A), 
then along such sequences the infimum will be ^(X^ + er(A2) with X1 + A2 = A 
0 < XliX2 < X rather t han cr(A). If independently one can show tha t a(X) is 
strictly subadditive, then one can prove the existence of a minimizer. This idea 
has been developed fully and applied successfully by Lions to many important and 
interesting problems. 

See the papers in Annales cle l 'Institut Henri Poincaré, Analyse Non Linéaire 
1984 by Lions for many examples where this point of view is successfully used. 
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1. Curriculum 

Jean-Christophe Yoccoz est un pur produit, et du meilleur cru, du sj^stème français. 
Ancien élève de l'Ecole Normale Supérieure où il fut reçu 1er en 1975, reçu 1er à 
l'Ecole Polytechnique la même année, 1er ex-aequo à l'Agrégation de Mathéma
tiques en 1977, il soutient sa Thèse de Doctorat d'Etat en 1985 et fut invité à 
enseigner le Cours Peccot au Collège de France en 1987. Aujourd'hui, âgé de 37 ans, 
il est Professeur à l'Université de Paris-Sud (Orsay), membre de l'I.U.F. (Institut 
Universitaire de France) et de TURA "Topologie et Dynamique" du CNRS à Orsay. 

Il effectua son Service National en Coopération à l'IMPA à Rio de Janeiro, et 
cela devait le marquer profondément. Il visite régulièrement le Brésil, mais aussi 
le Centre International de Trieste. D'ailleurs sa femme est brésilienne. 

Yoccoz est un étudiant de Michel Herman, et c'est ainsi qu'il est devenu 
peut-être le meilleur spécialiste de la Théorie des Systèmes Dynamiques. 

2. La Théorie des Systèmes Dynamiques 

Cette théorie cherche à décrire révolution à long terme d'un système quand on en 
connaît la loi d'évolution élémentaire. Le temps peut y être continu ou discret. 

Dans le cas d'un temps continu, la loi d'évolution infinitésimale se traduit par 
une équation différentielle, qui est donnée par un champ de vecteurs, et le problème 
est de comprendre l'évolution à long terme des solutions. On obtient parfois des 
attracteurs étranges. 

Un exemple typique est le problème de la stabilité du Système Solaire, qui a 
amené Poincaré à fonder la théorie au tournant du siècle. 

Dans le cas d'un temps discret, l'évolution élémentaire est donnée par une 
application / , qui donne l'état du système au temps 77,+ 1 en fonction de l'état au 
temps n. Il s'agit alors d'itérer / un grand nombre de fois. 

Quand deux applications f et g décrivent le même phénomène dans des 
représentations différentes, elles sont conjuguées par l'application h qui traduit 
le changement de représentation, Toute conjugaison peut être interprétée de cette 
façon. Deux applications conjuguées ont donc les mêmes propriétés djuiamiques. 
Par suite la classification des applications à conjugaison près est un problème 
central dans la théorie. 

Proceedings of the International Congress 
of Mathematicians, Zürich, Switzerland 1994 
© Birkhäuser Verlag, Basel, Switzerland 1995 



12 Adrien Douady 

3. Conjugaison C°° à la rotation 

L'exemple le plus simple est celui où l'espace des états est un cercle, et où l'applica
tion à itérer est indéfiniment differentiate ainsi que son inverse, autrement dit un 
difféomorphisme C°°. Pour une telle application / , Poincaré a défini le nombre de 
rotation a = Rot (/) E T = R/Z. Les question est alors: quand-est-ce que / est 
C°°-conjuguée à la rotation lZa: t \—> t + al 

Si a en rationnel, disons a = -, ceci exige que l'on ait fq = I, ce qui ne se pro
duit essentiellement jamais. Le cas intéressant est donc celui où a est irrationnel. 
Il a été étudié par Denjoy — qui a montré que / est toujours topologiqement 
conjuguée à 7la —, Birkhoff, Arnold, Herman et beaucoup d'autres, et bien sûr 
Yoccoz. Ils ont tous insisté sur l'importance des propriétés arithmétiques de a. 

Pour a rationnel, il se produit des résonnances. Si a est irrationnel, il se 
produit presque toujours des compensations et on observe certaines régularités. 
Mais si a, tout en étant irrationnel, se trouve extrêmement proche de rationnels 
avec des dénominateurs modérément grands, il arrive qu'une résonnance s'amorce 
et qu'avant qu'elle soit amortie une autre prenne le relais, et on peut obtenir 
une situation très compliquée. Ce qui importe est donc la distance 6q(a) de a 
à l'ensemble des rationnels à dénominateur borné par q, et la façon dont cette 
distance tend vers 0 quand q tend vers l'infini. 

4. Conditions diophantiennes 

On dit que a est diophantien si 8q (a) est minoré par une expression de la forme -^. 
Pour un difféomorphisme C°° du cercle de nombre de rotation a, Herman 

a montré que / est nécessairement C°°-conjuguée à la rotation 7£a si a est dio
phantien d'exposant 2. Ce résultat constituait une percée importante. En fait Her
man avait démontré un théorème plus fort: le même résultat sous une hypothèse 
plus faible, satisfaite pour presque toute valeur cle a. 

Dans sa thèse, Yoccoz a amélioré le théorème de Herman: il a donné une 
démonstration plus simple et obtenu le résultat sous l'hypothèse que a est dio
phantien sans restriction d'exposant - hypothèse plus faible que celle de Herman. 

Des contre-exemples de Herman montrent que ce résultat est optimal. 

5. Le cas R-analytique 

On peut se poser la même question dans le cadre R-analytique. 
Yoccoz a démontré dans sa thèse qu'un difféomorphisme R-analytique du 

cercle à nombre de rotation a diophantien est nécessairement R-analytiquement 
conjugué à la rotation 7la. Récemment il a donné une description de l'ensemble 
exact des nombres de rotation a ayant cette propriété. C'est un ensemble com
pliqué: alors que les ensembles qu'on définit de cette façon sont en général du type 
Fa, celui-ci est seulement Fag. 

Les fonctions C°° et R-analytique ont une consistance différente. Quand on 
travaille clans le cadre R-analytique, la première chose que l'on fait est d'étendre 
les applications aux valeurs complexes de la variable. Une application f:T —> T 
s'étend ainsi à un voisinage annulaire Q de T dans le cylindre C/Z, et si / est 
R-analytiqucmcnt conjugué à IZŒ il y a un anneau A dans Si qui et invariant 
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par / . Pour z E A, la fermeture de l'orbite de A est une courbe R-analytique, 
correspondant à un cercle parallèle à l'équateur T de C/Z. L'épaisseur minimale 
de A, son module, ce qui se produit au voisinage de sa frontière sont autant de 
propriétés sur lesquelles le raisonnement géométrique a prise. 

6. Réciproque du Théorème de Bruno 

La question de linéarisabilité locale des diffeomorphism.es holomorphes au voisinage 
d'un point fixe est étroitement liée à la précédente. C'est la suivante: 

Une fonction f:z H-> a\z + a^z2 + a^z3 + • • •, est-elle holomorphiquement 
conjuguée au voisinage de 0 à sa partie linéaire z \—> a\zl 

Le résultat est facile si |oi| ^ 1 (Schröder, Böttcher), le cas intéressant est 
celui où ai est de la forme e2l7Ta. Il a été étudié par Fatou - qui a traité le cas où 
a est rationnel, Cremer - qui a donné des exemples de non-linéarisabilité, Siegel -
qui a montré que / est linéarisable dès que a est Diophantien (et ce quelle que soit 
la queue a^z2 + • • • ), Bruno - qui a amélioré le théorème de Siegel en démontrant 
le résultat sous l'hypothèse plus faible Y, °ëqn+1 < oo (où les &*• sont les réduites 
du développement de a en fraction continue), et enfin Yoccoz qui a démontré la 
réciproque du théorème de Bruno. 

Siegel et Bruno travaillaient en force, résolvant le problème formellement et 
majorant les coefficients de la conjugante. Yoccoz a une approche plus géométrique 
et plus fine. Il y a une construction que l'on appelle renormalisation, qui associe 
à une application / d'angle a une application f\, ayant un angle a'i, dont le 
développment en fraction continue est le même que celui de a mais décalé avec 
perte du premier terme. Par une étude quantitative pousséee des propriétés de cette 
opération et de ses itérées, Yoccoz a obtenu une démonstration très éclairante du 
théorème de Bruno, et il a pu prouver la réciproque: que pour tout a ne satisfaisant 
pas à la condition de Bruno on peut chosir la queue de façon que / ait des points 
périodiques arbitrairement proches de 0, ce qui exclut la linéarisabilité. En fait la 
queue la plus simple (/ = a\Z + z2) fait l'affaire. 

Restait une question: La non-linéarisabilité est-elle toujours due à la présence 
de petits cycles? Les exemples construits par Cremer et Yoccoz pouvaient le laisser 
croire. La question a été résolue par la négative par Perez-Marco, un élève de 
Yoccoz qui a encore affiné sa méthode. Elle fait très curieusement intervenir la 
condition Y °g o g 9 n + 1 < oo, plus faible que celle de Bruno. 

7. Jeu de Cadres 

La Géométrie et l'Analyse interviennent dans toute les parties de la Théorie des 
Systèmes Dynamiques. Mais elles ont une façon particulière d'interagir dans les 
Systèmes Dynamiques Complexes, grâce aux inégalités de Schwarz, Koebe, Groet-
zsch etc, inégalités puissantes qu'on peut appliquer sous des hypothèses purement 
topologiques. C'est une méthode que Yoccoz a énormément développée. 

8. MLC: La taille des membres 

L'essentiel de notre connaissance des propriétés dynamiques de la famille des 
polynômes quadratiques complexes est concentré dans les propriétés topologiques 

http://diffeomorphism.es
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de son lieu de connexité M, connu sons le nom d'ensemble de Mandelbrot. Ses pro
priétés combinatoires sont maintenant bien comprises, et Thurston en a proposé 
un modèle synthétique. Mais pour savoir que M est effectivement homéomorphe 
à son modèle, il manque une information: que M est localement connexe. 

L'ensemble M contient des copies de lui-même. Yoccoz a montré que M est 
localement connexe en tout point "non infiniment renormalisable", c'est à dire 
qui n'est pas contenu dans l'intersection d'une suite décroissante de copies de M. 
Pour démontrer la conjecture MLC complète, il reste aujourd'hui à montrer que 
l'intersection d'une suite décroissante de copies de M est réduite à un point. 

Le premier cas est constitué par les points de la cardioide: L'ensemble M est 
formé d'une grande cardioide T, remplie, et cle membres attachés aux points de T 
d'argument interne rationnel (les arguments internes définissent la paramétrisation 
naturelle cle Y). 

Yoccoz a montré que le diamètre d'un membre Mvjq attaché au point d'argu
ment interne p/q est majoré par une expression de la forme - où c est une 
constante. Ce résultat n'est sûrement pas optimal (d'après Hubbard ou pourrait 
espérer ^ f 5 ) , mais il suffit à montrer que M est localement connexe aux points 
de T. Par la même méthode, il obtient la connexité locale en tout point qui est sur 
le bord d'une composante hyperbolique. 

9. MLC: les puzzles de Yoccoz 

Pour montrer que M est localement connexe aux points c qui ne sont ni infiniment 
renormalisables ni sur le bord d'une composante hyperbolique, Yoccoz emploie 
la méthode dite des "Puzzles de Yoccoz". Selon de principe que je défends en 
Dynamique Complexe. 

On laboure dans le plan dynamique. 

On moissonne dans le plan des paramètres. 

Il y a en effet des figures dans le plan dynamique qui se trouvent reproduites plus 
on moins fidèlement dans le plan des paramètres. 

Le point de départ est un article de Branner-Hubbarcl, qui traite d'une cer
taine famille de polynômes cubiques (voir l'exposé de Lyubich à ce Congrès). Il leur 
faut montrer que certains ensembles dans le plan des paramètres, dont on s'attend 
à ce qu'ils soient réduits à un point, le sont effectivement. D'après l'inégalité de 
Grötzsch, il suffit d'enfermer un tel ensemble dans une suite d'anneaux emboités 
dont la somme des modules est infinie. C'est ce qu'ils font, mais d'abord dans 
le plan dynamique où les anneaux considérés sont des revêtements les uns des 
autres, de sorte qu'à une constante près les modules sont des inverses d'entiers et 
la divergence résulte d'une étude combinatoire très poussée. 

Dans leur cas, le transfert dans le plan des paramètre est facile, car les an
neaux considérés s'y retrouvent reproduits conformément. 

La Conjecture MLC est aussi en un sens un énoncé de la forme "les points 
sont effectivement des points". Dans le plan des paramètres qui contient M, on 
peut définir des pièces limitées par des rayons externes et des arcs d'équipoten-
tielles. Une telle pièce découpe dans M un ensemble connexe, et pour démontrer 
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MLC en un point c il suffit démontrer que l'intersection des pièces qui sont des 
voisinages de c est réduite à c. 

La situation est analogue à celle de Branner-Hubbard, et la démonstration 
dans le plan dynamique peut se faire suivant les mêmes lignes. L'essentiel de la 
difficulté réside dans le passage au plan des paramètres, et Yoccoz réalise là un tour 
de force d'Analyse. En effet, en dehors de M et de K, il y a une correspondance 
conforme entre le plan dynamique et le plan des paramètres, mais sur ces ensembles 
il n'y a plus de correspondance (dans M il y a des petites copies de M qui ne se 
retrouvent pas dans le plan dynamique), les 

Plan dynamique Plan des paramètres 

anneaux n'ont pas même module et il faut faire de l'Analyse fine pour montrer 
que le rapport des modules est borné, et que la divergence est donc préservée. 

Yoccoz n'a pas fait taper son manuscrit, mais on peut lire une démonstration 
dans les rédactions qu'en ont faites Milnor dans un preprint, et Hubbard (Three 
theorems of Yoccoz) dans le livre dédié à Milnor. 

10. Conjugaison C°° 

Je me suis étendu longuement sur la Dynamique Complexe, parce que c'est ce que 
je comprends le mieux, mais les travaux de Yoccoz en Dynamique Réelle sont tout 
aussi importants. La plupart sont en collaboration. 

Palis et Yoccoz ont obtenu un système complet d'invariants de conjugaison 
C°° pour les difféomorphismes de Morse-Smale. 

• des invariants locaux qui décrivent les formes normales aux points attractifs 
ou répulsifs; 

• des invariants globaux qui comparent les coordonnées adaptées à ces formes 
normales là où les bassins se recouvrent. 
Le cas d'une dynamique Nord-Sud sur Sn en facile: le second invariant est 

le changement de cartes. Mais dans le cas général il y a des points-selle. Palis et 
Yoccoz montrent que ces points-selle ne produisent pas de nouveaux invariants en 
raison d'un théorème de singularités inessentielles: Si deux difféomorphismes de 
Morse-Smale sont C°°-conjugués sur la réunion des bassins attractifs et répulsifs, 
la conjugaison s'étend de façon C°° à la variété toute entière. 
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11. Autres travaux avec Palis 

Yoccoz a écrit au moins trois autres articles avec Palis. Un sur les centralisa
teurs des difféomorphismes, où ils démontrent que, sous certaines conditions assez 
générales, en partant d'un difféomorphisme hyperbolique / on peut obtenir par 
une perturbation arbitrairement petite un difféomorphisme / , qui ne commute 
qu'avec lui-même et ses itérés, et tel que tout difféomorphisme fi suffisamment 
voisin de f\ ait la même propriété. 

Un autre article sur les bifurcations homoclines complète un résultat de New-
house et établit une réciproque à un résultat de Palis-Takens: si la dimension de 
Hausdorff de l'ensemble hyperbolique créant cette bifurcation est plus grande que 
un, les applications structurellement stables ne sont pas prévalentes au voisinage, 
détruisant un vieux rêve de Thom. 

A en croire Michel Serres, dans une telle collaboration, il y a toujours un 
renard qui va à la chasse et un sanglier qui creuse. Combien de fois Palis et Yoccoz 
ont-ils échangé les rôles? 

12. Travaux avec Le Calvez et Raphael Douady 

Avec Le Calvez, autre étudiant de Herman, Yoccoz a démontré qu'il n'y a pas 
d'homéomorphisme minimal de l'anneau S1 x R. Autrement dit il n'y a pas d'ho-
méomorphisme de la sphère 5 2 préservant les deux poles, et tel que tout autre 
point ait une orbite dense. 

Les méthodes sont celles de la topologie en dimension 2. Le lemme central est 
que, au voisinage d'un point fixe qui n'est ni attractif ni répulsif, et pour lequel il 
y a un voisinage ne contenant aucune orbite complète, l'application se comporte 
du point de vue de l'indice comme z »—> e2vr ïp/9z(l — ^rq) pour certains entiers r 
et q. 

Je veux aussi citer un article avec Raphael Douady. Pour un difféomorphisme 
/ du cercle conjugué à lZa par une application h de classe ip1, la mesme ßs de 
densité (h,)1~s satisfait f*((f')s f-Ls) = ßs. Douady et Yoccoz montrent qu'il existe 
une mesure unique satisfaisant cette propriété des que / , difféomorphisme de classe 
(p2, a un nombre de rotation irrationnel, même si la conjugante est seulement un 
homéomorphisme. 

13. Cocorico 

Ce retour aux difféomorphismes du cercle termine notre brève visite guidée des 
travaux de Yoccoz. 

Avec deux médailles Fields pour la France, même s'il s'agit d'une coincidence 
nous pouvons pavoiser. Mais dans une occasion pareille il convient de se rappeler 
un proverbe de nos jardiniers 

Si la rose est belle, c'est que le fumier est gras. 

Il est de la responsabilité de chaque communauté nationale, en Mathématiques, de 
veiUer à ce que la qualité de l'enseignement en mathématiques, en particulier au 
niveau secondaire, soit préservée. Pour nous Français, au moment où des réductions 
d'horaires draconniennes menacent, cette tâche sera rude. 
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0 Introduction 

Efim Zelmanov has received a Fields Medal for the solution of the restricted Burn-
side problem. This problem-in group theory-had long been known-to be-related-
to the theory of Lie algebras. In fact, to a large extent it is the problem in Lie 
algebras. A precise statement of it can be found in Section 2 below. 

In proving the necessary properties of Lie algebras, Zelmanov built on the 
work of many others, though he went far beyond what had previously been done 
in this direction. For instance, he greatly simplified Kostrikin's results [K] which 
settled the case of prime exponent and then extended these methods to handle the 
prime power case. 

However, while the case of exponent 2 is trivial, the case of exponent 2k for 
arbitrary h is the most difficult case that needed to be addressed. The results from 
Lie algebras that work for exponent ph with p an odd prime are not adequate for 
exponent 2fc. This indicated that a new approach was necessary here. Zelmanov 
was the first to realize that in the case of groups of exponent 2k the theory of 
Jordan algebras is of great significance. Even though Vaughan-Lee later removed 
the need for Jordan algebras [V], it seems probable that this proof could not have 
been discovered without them, as the ideas used arise most naturally from Jordan 
algebras. 

Zelmanov had earlier made fundamental contributions to Jordan algebras and 
was an expert in this area, thus he was uniquely qualified to attack the restricted 
Burnside problem. 

Below the background from the theory of Jordan algebras and some of Zel-
manov's contributions to this theory are first discussed (I am grateful to McCrim-
mon and Jacobson for much of this material). See [Jl] and [J2] for the general 
theory of Jordan algebras. Then the Burnside problems are described and some of 
the things that were earlier known about them are listed. Section 4 contains some 
consequences of the restricted Burnside problem. Finally, some relevant results 
from Lie and Jordan algebras are mentioned (in a necessarily sketchy manner). 

Zelmanov himself has written a set of expository notes on these topics [ZÌI]. It 
contains all the appropriate definitions and some of the material used in the proof 
of the restricted Burnside problem. It also includes material on several related ques
tions, such as the Kurosh-Levitzky problem. Of course, ultimately, the details are 
the heart of the matter, and for these the reader should consult [Z8] and [Z9], or [V]. 
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This circle of ideas illustrates the unity of mathematics once again. Although 
many formal identities are used to settle the restricted Burnside problem, it seems 
unlikely that they could have been discovered without the conceptual framework 
provided by the seemingly unrelated and diverse fields of Lie and Jordan algebras. 

1 Jordan algebras 

Jordan algebras were introduced in the 1930s by the physicist P. Jordan in an 
attempt to find an algebraic setting for quantum mechanics, essentially different 
from the standard setting of hermitian matrices. Hermitian matrices or operators 
are not closed under the associative product xy, but are closed under the symmetric 
products xy + yx, xyx, xn. An empirical investigation indicated that the basic 
operation was the Jordan product 

x-y= -(xy + yx), 

and that all other properties flowed from the commutative law x-y = y-x and the 
Jordan identity (x2 • y) • x = x2 • (y • x). (For example, the Jordan triple product 
{xyz} = ^ (xyz + zyx) can be expressed as x • (y • z) + (x • y) • z — (x • z) • y, though 
the tetrad 

{xyzw} = -(xyzw + wzyx) 
z 

cannot be expressed in terms of the Jordan product.) Jordan took these as axioms 
for the variety of Jordan algebras. Algebras resulting from the Jordan product in 
an associative algebra were called special, so the physicists were seeking algebras 
that were exceptional (= nonspecial). In a fundamental paper [JNW] Jordan, von 
Neumann, and Wigner classified all finite-dimensional formally-real Jordan alge
bras. These are direct sums of five types of simple algebras: algebras determined by 
a quadratic form on a vector space (a special subalgebra of the Clifford algebra of 
the quadratic form) and four types of algebras of hermitian (n x n)-matrices over 
the four composition algebras (the reals, complexes, quaternions, and octonions). 
The algebra of hermitian matrices over the octonions is Jordan only for n < 3, 
and is exceptional if n = 3, so there was only one exceptional simple algebra in 
their list (now known as the Albert algebra, of dimension 27). At the end of their 
paper Jordan, von Neumann, and Wigner expressed the hope that by dropping the 
assumption of finite dimensionality one might obtain exceptional simple algebras 
other than Albert algebras. 

Algebraists developed a rich structure theory of Jordan algebras over fields of 
characteristic ^ 2. First, the analogue of Wedderburn's theory of finite-dimensional 
associative algebras was obtained by Albert. Next this was extended by Jacobson 
to an analogue of the Wedderburn-Artin theory of semisimple rings with minimum 
condition on left or right ideals. In this, the role of the one-sided ideals was played 
by inner ideals, defined as subspaces B such that Ubx is in B for all x in the 
algebra A and all b in B where Ua = 2L2

a — Lai and La is the left multiplication by 
a in the Jordan algebra A. If A is the Jordan subalgebra of an associative algebra 
then Ubx = bxb in the associative product. Using the definition of semi-simplicity 
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(called nondegeneracy) that A contains no z ^ 0 such that Uz = 0, Jacobson 
showed that every nondegenerate Jordan algebra with d.c.c. on inner ideals is the 
direct sum of simple algebras that are of classical type (analogues of those found 
in [JNW]: (Type I) Jordan algebras of nondegenerate quadratic forms; (Type II) 
algebras II(A, *) of hermitian elements in a *-simple artinian associative algebra 
A ((nx n)-matrices over a division algebra with involution, or over a direct sum of 
a division algebra and its opposite under the exchange involution, or matrices over 
a split quaternion algebra with standard involution); (Type III) 27-dimensional 
exceptional Albert algebras; (Type IV) Jordan division algebras, defined by the 
condition that Ua is invertible for eveiy a ^ 0. 

Up to this point, the structure theory treated only algebras with finiteness 
conditions because the primary tool was the use of primitive idempotents to intro
duce coordinates^ In 1975 Alfsen, Schultz, and Stonier obtained a Gelfand-Naimark 
theorem for Jordan C*-algebras, and once again the basic dimensional structure 
theorem, but here again it was crucial that the hypotheses guaranteed a rich supply 
of idempotents. 

In three papers [Zl], [Z2], [Z3], Zelmanov revolutionized the structure theory 
of Jordan algebras. These deal with prime Jordan algebras, where A is called prime 
if UBC = 0 for ideals B and C in A implies that either B or C = 0. In [Zl] Zel
manov proved the remarkable result that a prime Jordan algebra without nil ideals 
(improved in [Z3] to prime and nondegenerate) is either i-special (a homomorphic 
image of a special Jordan algebra) or is a form of the 27-dimensional exceptional 
algebra. This applied in particular to simple algebras. The proof required the in
troduction of a host of novel concepts and techniques as well as sharpening of 
earlier methods, e.g. the coordinatization theorem of Jacobson and analogues of 
results on radicals due to Amitsur. 

The paper [Z3] is devoted to the study of z-special Jordan algebras. Zelmanov 
showed that a prime nondegenerate i-special algebra is special, and he determined 
their structure as either of hermitian type or of Clifford type. Paper [Z2], which 
preceded [Z3] obtained these results for Jordan division algebras. 

The principal tool in both papers is the study of the free associative algebra 
®{X) on X = {x1,x2,...}. This becomes a Jordan algebra $(X)+ by replacing the 
given associative multiplication ab by a • b = ^(ab-\-ba). The subalgebra SJ(X) of 
<&(X)+ generated by X is called the free special Jordan algebra. 

We also have the subalgebra II(X) of $(X)+ of symmetric elements (a" = a) 
under the involution in ®(X) fixing the elements of X. It was shown by Paul Cohn 
in 1954 that SJ(X) C H(X) and H(X) is the subalgebra of $(X)+ generated by 
X and all the tetrads x%x3xhxl with i < j < k < I. Zelmanov has obtained a 
completely unanticipated supplement to Cohn's theorem: thé existence of elements 
/ in SJ(X) such that if / ( / ) denotes the ideal generated by / then 

{I{f),p,q,r}£SJ(X) 

for p, q, r in SJ(X). This is used to sort out the two types of z-special algebras: 
Clifford types characterized by the identity / = 0 and hermitian types by the 
nonidentity / ^ 0. 
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One of the consequences of Zelmanov's theory is that the only exceptional 
simple Jordan algebras, even including infinite-dimensional ones, are the forms 
of the 27-dimensional Albert algebras. This laid to rest the hope that had been 
raised by Jordan, von Neumann, and Wigner in [JNW]. Another consequence of 
Zelmanov's results is that the free Jordan algebra in three or more generators has 
zero divisors (elements a such that Ua is not injective). This is in sharp contrast 
to the theorem of Malcev and Neumann that any free associative algebra can be 
imbedded in a division algebra. 

Motivated by applications to analysis and differential geometry, Koecher, 
Loos, and Myberg extended the structure theory of Jordan algebras to triple sys
tems and Jordan pairs. Zelmanov applied his methods to obtain new results on 
these. 

Lie methods were used in these papers based on the Tits-Koecher construc
tion. The final work in this line of investigation was [Z4] in which Zelmanov applied 
the theory of Jordan triple systems to study graded Lie algebras with finite grad-
ings in which the homogeneous parts could be infinite dimensional. 

To encompass characteristic 2 (which is essential for applications to the re
stricted Burnside problem) it is necessary to deal with quadratic Jordan algebras 
[JM]. These were introduced by McCrimmon in [Mc] as the natural extension of 
Jordan algebras to algebras over any commutative ring. This amounted to replac
ing the product a- b = ^(ab + ba) in an associative algebra by the product Uab. 

In the joint paper with McCrimmon [ZM], the results of [Z3] were extended 
to quadratic Jordan algebras. 

2 Burnside problems 

We begin with some definitions and notation. 
A group is locally finite if every finite subset generates a finite group. In 

1902 Burnside [Bl] studied torsion groups and asked when such groups are locally 
finite. The most general form of the question is the Generalized Burnside Problem 
(GBP). 

(GBP) Is a torsion group necessarily locally finite? 

Equivalently 

(GBP)' Is every finitely generated torsion group finite? 

A group G has a finite exponent e if xe = 1 for all x in G and e is the 
smallest natural number with this property. Clearly a group with a finite exponent 
is a torsion group. A more restricted version of GBP, which already occurs in 
Burnside's work, is the ordinary Burnside Problem (BP). 

(BP) Is every group that has a finite exponent locally finite? 

There is a universal object B(r,e), (the Burnside group of exponent e on r 
generators), which is the quotient of the free group on r generators by the subgroup 
generated by all eth powers. BP is equivalent to 

(BP)' Is B(r, e) finite for aU natural numbers e and r? 
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Burnside proved that groups of exponent 2 (trivial) and exponent 3 are locally 
finite. In 1905 Burnside [B2] showed that a subgroup of GL(n, C) of finite exponent 
is finite. Schur in 1911 [Sc] proved that a finitely generated torsion subgroup of 
GL(n, C) has finite exponent, and hence a torsion subgroup of GL(n, C) is locally 
finite. This was very important as it showed that answers to BP or GBP would 
necessarily involve groups not describable in terms of linear transformations over C. 
Other methods were required. In handling groups of exponent 3 Burnside had 
used only the multiplication table of a group. However, his methods were totally 
inadequate to handle, for instance, groups of prime exponent greater than 3. 

During the 1930s people began to study finite quotients of B(r,e) and con
sidered the following statement. 

(RBP) B(r,e) has only finitely many finite quotients. 

This is equivalent to" 

(RBP)' B(r,e) has a unique maximal finite quotient RB(r,e). 

W. Magnus called the question of the truth or falsity of RBP the restricted 
Buniside problem. If such a unique maximal finite quotient RB(r,e) exists for 
some e and 7', then necessarily every finite group on r generators and exponent e 
is a homomorphic image of RB(r, e). If RB(r, e) exists for some e and all r we say 
that RBP is true for e. 

3 Results 

In 1964 Golod [G] constructed infinite groups for every prime p, which are gen
erated by 2 elements and in which every element has order a power of p, thus 
giving a negative answer to GBP. A few years later in 1968 Adian and Novikov 
[AN] showed that B(2,e) is infinite for e odd and e > 4380, thus giving a negative 
answer to BP. The bound has been improved since then as B(r,e) is finite for 
e = 2,3,4, or 6, but in no other case with r > 1 is it known to be finite. 

In a seminal paper Hall and Higman [HH] in 1956 proved a series of results 
concerning RBP. Let n be a set of primes. Consider the following two statements. 

(1) There are only finitely many finite simple 7r-groups of any given exponent. 
(2) The Schreier conjecture is true for 7r-groups, i.e. for any finite simple 7r-group 

G, Aut(G)/G is solvable. 
A special case of one of their results is the following. 

THEOREM [HH], Suppose that statements (1) and (2) are true for the set TT. Then 
if for every prime p in n, and natural numbers m and r} RB(r,pm) exists; then 
RBP is true for any exponent e that is a ir-number. 

The classification of the finite simple groups shows that (1) and (2) are true 
for any set of primes IT. Hence the truth of RBP will follow once it is proved that 
RB(r,pm) exists for all primes p and all natural numbers 777, and r. 

In 1959 Kostrikin announced that RB(r,p) exists for p a prime and any 
natural number r. Kostrikin's original argument had some difficulties. He pub
lished a corrected and updated version of his proof in his book [K], which contains 
numerous references to Zelmanov. 



22 Walter Feit 

In 1989 Zelmanov announced that RBP is true for all exponents pm with p 
any prime, and hence for aU exponents by the remarks above. The proof appeared 
in 1990-91 in Russian. The English translation appeared in [Z8] and [Z9]. 

It should be mentioned that analogous questions have been raised for as
sociative, Lie, and Jordan algebras. Golod's work was actually motivated by the 
associative algebra question and the counterexamples for groups arose as corollar
ies. The questions for Lie and Jordan algebras will be discussed below. 

4 Some consequences 

This section contains some consequences of RBP. The ideas used in the proof, in 
addition to the actual result, have also been applied widely. 

The next three results were proved by Zelmanov [ZIO] as direct consequences 
of RBP. 

THEOREM 1. Every periodic pro-p-group is locally finite. 

COROLLARY 2. Every infinite compact (Hausdorff) group contains an infinite 
abelian subgroup. 

THEOREM 3. Every periodic compact (Hausdorff) group is locally finite. 

Theorem 3 was conjectured by Platonov [Ko]. 
Shalev showed that RBP implies the following. 

THEOREM 4 [Sh]. A pro-p-group is p-adic analytic if and only if there exists a 
natural number n such that the wreath product Zp I Zpn is not a homomorphic 
image of any subgroup of G. 

The "only if" part of Theorem 4 is elementary, but the converse is equiva
lent to RBP. Since then, Zelmanov jointly with others, has made several further 
contributions to the study of pro-p-groups, see e.g. [ZS], [ZW]. 

5 Lie algebras 

Let G be a finite group of exponent pk, p a prime. Let G — GQ and Gi+1 — [G, GJ 
for all i. Choose s with Gs / (1), Ga+1 = (1). Then 

G = G0 > • • • > Gs+1 = (1) 

is the lower central series of G. Define 

L ( G ) = £ G . / G . + 1 

4 = 0 

as abelian groups. Then L(G) becomes a Lie ring with [atGti a3G3] = [ati a3]Gl+3+1, 
and L(G) has the same nilpotency class as G. Furthermore L(G)jpL(G) is a Lie 
algebra over Zp. 

Let L be a Lie algebra. 
L satisfies the Engel identity (En) if ad(x)n = 0 for all x in L. 
An element x in L is nilpotent if ad(x)n = 0 for some n. 
If G has exponent p then L(G) is a Lie algebra over Zp that satisfies (Ep_1). 

Kostrikin proved 
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THEOREM 5 [K]. If L is a Lie algebra over Zp that satisfies (Ep_1) then L is 
locally nilpotent. 

Theorem 1 implies the existence of RB(r,p) and so yields RBP for prime 
exponent. Observe that for prime exponent e = p, the case p = 2 is trivial, so that 
it may be assumed that p > 2. This is in sharp contrast to prime power exponents 
e = pk, where p = 2 is the most complicated case. 

An element a of L is a sandwich if [[L, a], a] = 0 and [[[L, o],L], a] = 0. L is a 
sandwich algebra if it is generated bjr finitely many sandwiches. This concept was 
introduced by Kostrikin and is of fundamental importance for the proof of RBP. 
A first critical result is 

THEOREM 6 [ZK]. Every sandwich Lie algebra is locally nilpotent. 

Theorem 6 is essential for the proof of Theorem 5. 
The main result in [Z8] is rather technical but it has the following conse

quence. 

THEOREM 7 [Z8]. Every Lie ring satisfying an Engel condition is locally nilpotent. 

More importantly, it implies 

THEOREM 8. RB(r,pk) exists for p an odd prime. 

Once again an essential part of the proof requires Theorem 2. Let L be a Lie 
algebra over an infinite field of characteristic p that satisfies an Engel condition. 
The way to apply Theorem 2 is to construct a polynomial f(x1,...,xt) that is 
not identically zero, such that every element in f(L) is a sandwich in L. Actually 
such a polynomial is not constructed but its existence for p > 2 follows only after 
a very complicated series of arguments, which constitute the bulk of the paper 
[Z8]. This of course settles RBP for odd exponent. (It might be mentioned that 
the classification of finite simple groups is not required here, only that groups of 
odd order are solvable.) 

6 The case of exponent 2fc 

The outline of the proof of RBP for exponent 2k is similar to that for exponent 
pk with p > 2 described in the previous section. However, the construction of 
the function / is vastly more complicated. It is here that quadratic Jordan alge
bras play an essential role, most especially the results of [ZM]. The details are 
extremely technical and cannot be presented here. The reader should consult [Z9] 
for a complete proof. 
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On some works of Avi Wigderson 
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I am to present the research performed by Professor Avi Wigderson. This is both 
a pleasant and a difficult errand, and there are two sources of this difficulty. 

First, Avi Wigderson has made a lot of wonderful contributions to diverse 
areas of the mathematical foundations of computer science. I have time to outline 
only a few of them. The selection is entirely mine. If another member of the 
Committee were chosen for this presentation, he well might speak about different 
works of Avi Wigderson. The choice is indeed very large. 

The second source of difficulty in presenting Avi Wigderson's works is due 
to the fact that in many cases they are based on complex well-balanced defini
tions that are too technical to be reproduced here (the balance is often between a 
statement to be uninteresting or to be not true). That is why my presentation will 
be on informal, intuitive level. (More technical details related to Avi Wigderson's 
research area are presented to this Congress in his paper and also in the papers 
by L. Babai, by O. Goldreich, and by M. Levin.) 

Some of Avi Wigderson's impressive results are connected with the so-called 
zero-knowledge interactive proofs. This was a new and rather paradoxical kind 
of mathematical evidence introduced by Goldwasser, Micali, and Rackoff [5]. A 
zero-knowledge interactive proof allows a mathematician A, called the Provcr, to 
convince another mathematician B, called the Verifier, that a certain mathematical 
statement is true without providing a formal proof, and moreover, without giving 
any hints as to such a proof. 

For example, suppose that mathematician A established that some large in
teger N is composite by finding its nontrivial factorization N = PQ. Now he or 
she can, in a dialog with another mathematician B, convince the latter that N is 
indeed composite but without revealing the values of the factors. 

A, The PROVER: N = PxQ 

questions answers 

B, The VERIFIER: N is composite 
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Of course, in mathematics there cannot be a secret in the strong sense. As 
soon as two mathematicians have agreed on the axioms and on the rules of logical 
deduction, it is only a matter of time and space to find a proof for any provable 
statement. (In our example mathematician B could find a factorization of N him
self or herself.) Speaking more technically, zero-knowledge means that the amount 
of the work required for the Verifier to find an actual proof after the dialog with 
the Prover is on average essentially the same as it was before the dialog. 

In fact, an interactive proof is not a proof in the strong sense because such a 
proof can be given, in principle, even to a statement that is not true at all. However, 
the probability of such a misproof goes to zero exponentially with the number of 
questions asked and hence the probability of giving an interactive "proof for a 
false statement can be easily made arbitrarily small. This is just what gives the 
convincing power to interactive proofs. 

For such a convincing but zero-knowledge proof to become possible, the 
Prover and the Verifier should agree in advance upon what kinds of questions 
can be asked. In technical terms such an agreement is called protocol. 

When the notion of zero-knowledge was first introduced, zero-knowledge pro
tocols were known only for statements of a rather restricted nature. The actual 
scope of zero-knowledge proofs remained unclear. Avi Wigderson, in collaboration 
with Goldreich and Micali [2], established the following fundamental fact: zero-
knowledge proofs are possible for so-called class NP. This class is one of the main 
subjects of study in modern computer science. Roughly speaking, class NP con
sists of statements that become easy to verify when a small amount of additional 
information is supplied. 

(In our example, it is easy to verify that N is composite as soon as its factors, 
P and Q, are given. This example was chosen as an easy-to-explain specimen of 
a statement from NP. In fact, thanks to the magic of number theory, in this 
particular case no dialog is required for mathematician B to become convinced of 
the mere fact that AT is composite. However, a zero-knowledge interactive proof can 
do much more, namely, convince mathematician B that mathematician A knows 
nontrivial factors P and Q.) 

This result on the existence of zero-knowledge proofs for class NP was based 
on the conjecture of the existence of so called one-way functions. Roughly speaking, 
F is such a function if it is easy to calculate its value y = F(x) for given x but it 
is difficult to find an x for given y. For example, it is easy to calculate an integer 
from its prime factorization but it is believed to be a difficult task to factor a large 
integer. 

However, nobody has proved so far that factoring is in fact a difficult task. 
Moreover, the existence of a single one-way function has not been proved so far. 
Nevertheless, it is a widely accepted conjecture used almost as an axiom and hence 
its use was completely justified. However, Avi Wigderson, in collaboration with 
Ostrovski [6], also studied what would follow from the nonexistence of one-way 
functions. They established that the assumption of the existence of one-way func
tions was indeed essential for the existence of nontrivial zero-knowledge interactive 
proofs. 
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This is so for the original type of interactive proofs. Wishing still to avoid the 
yet unproved conjecture, Avi Wigderson in collaboration with Ben-Or, Goldwasser, 
and Kilian [4], introduced a new kind of interactive proof. In such multi-prover 
interactive proofs two or more persons convince another one by conversation with 
the latter. In this scheme the Verifier cannot check whether the answers are correct 
but he or she can check that the answers from different Provers are consistent. 
That is why the Verifier should be sure that during the interactive proof there is no 
exchange of information among the Provers, and this nonmathematical assumption 
replaces the yet unproved conjecture on the existence of one-way functions. 

Al, The first PROVER 

questions answers 

B, The VERIFIER 

questions answers 

A2, The second PROVER 

(This difference between single-user and multi-user interactive proofs can be 
viewed as mathematical justification of the saying "Two heads are better than 
one" which seems to have counterparts in many languages. In a sense, almost 
all papers of Avi Wigderson contribute to the justification of such sayings, at 
least with respect to mathematics, because almost all his papers were written in 
collaboration with other mathematicians.) 

Zero-knowledge proofs are a very interesting subject of study by themselves 
but they have also found numerous applications, in particular, for fault-tolerant dis
tributed computations. Such computations involve several communicating agents, 
some of whose work could be faulty. In this area we found 

A TYPICAL THEOREM. A particular computational task can be 
achieved by a computational network of k participating agents pro
vided that strictly fewer than ck of them are faulty. 

Avi Wigderson, in collaboration with Goldwasser and Ben-Or [3] and with 
Goldreich and Micali [1], obtained very general results of this kind. These results 
are striking in two aspects. First, they are uniform; namely, the values of c do not 
depend on the particular computational task (but may vary for different assump
tions about the network). Second, the values of c obtained are the best possible, 
namely, given exactly ck or more faulty agents, there exist computations that 
cannot be accomplished. 
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Interactive proofs use randomness in an essential way. (Clearly, the Prover 
must be unable to predict the forthcoming questions of the Verifier.) For a long 
t ime randomness has been recognized as a specific computational resource. Avi 
Wigderson contributed to the study of the computational power of randomness 
and to the construction of pseudo-random generators. 

Formal definition of zero-knowledge, of what constitutes a good pseudo
random generator, and definitions of many other important concepts are based 
on estimates of the amount of computational work required for particular tasks. 
Such estimates depend heavily on the computational model used, and here Avi 
Wigderson shows his universal capacities. He contributed to bo th lower and upper 
bounds on the complexity of computations on very different computational de
vices: from powerful parallel computers to very restricted Boolean circuits. While 
nontrivial upper bounds are of practical interest, the lower bounds in this area are 
usually much more difficult to prove. In fact, to get an upper bound one needs to 
find only one algorithm, let ingenious, whereas to get a lower bound one has to 
observe in some way all conceivable algorithms for a particular task. 

Avi Wigderson's more recent investigations are connected with computational 
aspects of special dynamical systems motivated by genetic algorithms and kinetic 
gas models. Here he had already contributed to transferring to nonlinear systems 
results tha t previously were known only in the linear case. I do not doubt tha t 
soon we shall hear about his new striking results in this area as well. 
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1 Introduction 

The aim of this report is to describe some recent research in the area of nonlinear 
evolution equations. The choice of the topics is largely influenced by the author's 
own interests and it is in no way a complete survey of this field, which would 
be nearly impossible to achieve in a single exposition. Some very outstanding 
achievements in recent years such as, for instance, the work of Christodoulou 
and Klainerman [C-K] on global solutions of the Einstein equations will not be 
discussed here. 

We will be mainly concerned with nonlinear Hamiltonian equations on bounded 
domains (Dirichlet or periodic boundary conditions say) and the following issues: 

(i) The Cauchy problem; i.e., local and global wellposedness results for individual 
data 

(ii) Behavior of solutions for time —> oo 

(iii) Behavior of the flow in phase space. 

These issues are rather well understood in the integrable case, because of the pre
sence of a large set of invariants of motion. The integrable Hamiltonian evolution 
equations form a small and distinguished class, including, for instance, the 

ID cubic nonlinear Schrödinger (NLS) equation iut + uxx + u\u\2 = 0 

Kortcwcg dc Vries (KdV) equation ut + dxu + uux = 0 

Modified KdV equation ut -\- d^u + u2ux — 0. 

These invariants of motion allow us to control for a given data u(Q) = 0 the so
lution u(t) for all time. In the general Hamiltonian case on the other hand, one 
only disposes of a few conserved quantities, namely the Hamiltonian itself, some
times the L2-norm ||u(£)||L2. Hence, to establish global existence of solutions even 
for smooth data, one needs to study the local wellposedness problem for data of 
low regularity, because the existence time should only depend on the conserved 
quantities. This procedure leads to estimates on higher smoothness norms that 
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are exponential in time, thus ||ij(£)||#a < C^, for some C > 1 depending on 
the initial data. A natural problem is whether this is the "true" behavior or only 
a crude estimate, and the lack of a rigorous mathematical approach here is in 
sharp contrast to the situation in integrable models. On the other hand, certain 
information on the global behavior of the flow of the equation in an appropriate 
phase space may be obtained from methods of statistical mechanics and symplec
tic geometry. The Gibbs measure construction from statistical mechanics gives a 
normalization procedure of the formally invariant Liouville measure on an infinite-
dimensional phase space and permits us to obtain Poincaré recurrence properties 
for the flow. Other symplectic invariants, called symplectic capacities, originating 
from Gromov's pioneering work [Grom], allow us to study "squeezing properties" 
and energy transitions in the symplectic normalization of phase space. These nor
malizations of the phase space are however such that the resulting theories deal 
with low-regularity solutions and consequently, as a first step, require us again to 
establish the existence of the flow for such data. Our investigations on the Cauchy 
problem have been mainly pursued for periodic boundary conditions (i.e. the space 
variable ranges in a d-dimensional torus Td), which is also the context for the dis
cussion above. In fact, the literature on the initial value problems (IVPs) in the 
periodic case is far less extensive than that on the line and the theory is less de
veloped. It turned out that the analysis in the periodic situation is significantly 
different (due for instance to the absence of dispersion) and requires new ideas, 
some of which also eventually lead to an advance on the corresponding problem 
for the line. Several results in this direction will be discussed in the next section. 

A third important method borrowed from classical mechanics is the KAM me
thod to establish persistency of time periodic or quasi-periodic solutions of small 
Hamiltonian perturbations of linear or integrable equations. The main contributor 
in adapting the KAM technology to the PDE setting is Kuksin [Kuki]. His work 
gives satisfactory results for ID problems with Dirichlet boundary conditions. A 
different approach, avoiding some of the limitations of the KAM technique, has 
been elaborated by Craig and Wayne [C-Wi^] and the author [Bi] and permits 
us to deal with ID periodic boundary conditions. 

2 Initial value problems for KdV type equations 

There are numerous investigations of the Cauchy problem for the standard KdV 
equation on R 

ut + d^u + uux = 0 
(2.1) 

u(0) = <j>{x) 

using either fixpoint techniques or inverse scattering methods. The advantage of 
the fixpoint approach is its large range of applicability, and it is the only method 
we consider here. The setup is given by Duhamel's integral formula 

u(t) = S(t)cß - S(t- T) W(T) dr , w= uux (2.2) 
Jo 
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where S(t)iß solves the linear problem 

Uf + diu = 0 

(2.3) 
u(Q) = iß 

and is explicitly given by the oscillatoiy integral (iß denotes the Fourier transform 

of iß) 

S(t)iß(x) = f$(\) e^+^V d\ (2.4) 

on the line (K-case) and the exponential sum 

S(t)iß(x) = ^^(n)e^nx+n3^ " ~ (2.5)" 

in the periodic case (T-case). 

Solving (2.2) by a fixpoint argument in the M-case is mainly based on the 
regularizing properties of the linear group S(t), such as Stricharti's inequality and 
Kato's smoothing. In the periodic case, no smoothing properties îmiy be expected. 
We introduced in [B2] new space-time norms defined in terms of the Fourier trans
form of u. These norms exploit some arithmetical features, which form a substitute 
for the smoothing properties of (2.4). In fact, the regularity gains here are due both 
to the linear part of the equation and the specific structure of the nonlinear part. 
This method and its application in conjunction with earlier techniques lead to the 
"best" known results on the I VP for the KdV equation. 

THEOREM 2.6. (T) There is local wellposedness for data cß G HS(T), s > -\; 
global wellposedness for data (ß G L2(T); the solutions resulting from L2-data are 
almost periodic in time (see [B3]/ 

(R) There is local wellposedness for data cß G HS(M), s > — | ; global well
posedness for data cß G L2(R) (see [K-P-Vi], [K]). 

The solution depends real analytically on the data. 

REMARKS. 

(i) By wellposedness, we mean the construction of a unique solution for a certain 
class of data (coinciding with the classical solution in the smooth case) and 
depending continuously on the data. 

(ii) The almost periodicity of KdV solutions is a subject with a long history 
that we will not recall here. Important steps are due to Gardner-Kruskal-
Miura [G-K-M], Lax [Lax], Novikov [Nov], and McKean-Trubowitz [M-T]. 
The statement for L2-data is a consequence of the work of [M-T] and the 
existence of regular L2-flow. 
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A direct generalization of KdV are equations of the form 

ut + dlu + f(u)ux=0 (2.7) 

where / is a smooth function of u. The Hamiltonian is given by 

H^) = \ jfaf-JFM) (2-8) 
where F2 is the second primitive of / (F2(0) = F^O) — 0) and equation (2.7) is 
equivalent to 

dff 
ut = D x - . (2.9) 

The mean J cß, the L2-norm J cß2, and H(cß) are preserved under the flow. In the 
general case (f(u) = u,u2 are special), these are the only invariants of motion 
at our disposal. Construction of global solutions based on these a priori bounds 
requires a local theory for iì1-data. In the M-case, results along these lines appear 
in the works of Kenig, Ponce, and Vega (see [K-P-V2] for instance). We state the 
theorem in the periodic case (see [B2]). 

THEOREM 2.10. The IVP 

ut + diu + f(u)ux = 0 ; u(0) = (ß 

is globally well posed for sufficiently smooth data as long as the Hl-norm remains 
bounded. This is in particular the case for small data. 

The proof uses many of the techniques developped for the periodic KdV case. We 
just want to mention one additional point, which is a certain "renormaliz at ion" of 
the nonlinearity, in the spirit of "Wick-ordering" discussed below. Rewrite (2.7) 
in the form 

ub + diu + v(t)u = [v(t) - f(u)] ux with v(t) = / f(u) dx (2.11) 
JT 

redefining the linear and nonlinear parts of the equation. Observe that for f(u) = u 
or u2, v(t) is time independent. The different setup (2.11) seems necessary for a 
regularizing interaction between linear and nonlinear terms in a fixpoint argument. 

REMARK. There has been recent work by Klainerman and Machedon [K-Mi] on 
nonlinear wave equations in the same spirit as Theorem 2.10. In particular, a local 
i^-theory is developed considering appropriate space-time norms, and a careful 
analysis of the nonlinear term is needed. See also [K-M2] for IVP results related 
to Yang-Mills equations. 

A 2-dimensional generalization of the KdV equation is given by the Kadoms-
tev-Petviashvili equation (KP). The KP-II equation 

ut + diu + uux + D^Uyy = 0 (2.12) 
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is integrable. However, the conserved integrals 

u dx dy 

dx dy 

J [ul - \ v* - (U-S)'] àx dy 

do not imply immediately a priori bounds on the solution, except for the L2-norm 
(because of sign features). Techniques closely related to those used in proving the 
periodic results for the KdV equation (Theorem 2.6) yield the following. 

THEOREM 2.13. [B4] -The KP-II equation is globally-well posed for data cß G 
HS(T2) orcßeHs(R2), s > 0. 

There is a rich algebraic theory around the KP-II equation and explicit solutions 
may be expressd in terms of logarithmic derivatives of ö-functions associated to 
certain (possibly infinite genus) Riemann surfaces. This theory has been developed 
by Its, Novikov, and Krichever among others (see [Kr]). Very recently, Knörrer and 
Trubowitz proved the following analogue of the [M-T] result for the KdV equation. 

THEOREM 2.14. [K-Tr] Solutions of the periodic KP-II equations for smooth pe
riodic data are almost periodic in time. 

3 Nonlinear Schrödinger equations and invariant Gibbs measures 

We consider the nonlinear Schrödinger (NLS) equation 

iut + Au ± u\u\p~2 = 0 (3.1) 

with periodic boundary conditions. Thus, u is a complex function on Td x I (local) 
or Td x M (global). The equation ma}' be rewritten in Hamiltonian format as 

ut = i^L (3.2) 
a u 

where H (cß) = \ JJd \V(ß\2 =f - JTd \(ß\p. Both the Hamiltonian H(cß) and the L2-
norm J |0|2 are preserved under the flow. The ID case p = 4 is special (ID cubic 
NLS) because it is integrable and there are man}' invariants of motion. This aspect 
will however play no role in the present discussion. The possible sign choice ± in 
(3.1) corresponds to the focusing (resp. defocusing) case. In the focusing case, the 
Hamiltonian ma}' be unbounded from below and blowup phenomena may occur (for 
p > 2+ ^). The canonical coordinates are (Re 0, Im cß) or alternatively (Re cß, Im (ß). 
The formal Gibbs measure on this infinite-dimensional phase is given by 

dlß = e" W > H dcßix) = e ± f / M" • e-* J ^ J J dcf>(x). (3.3) 
X X 

(ß > 0 is the reciprocal temperature and we may take ß = 1 in this discussion.) 
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From Liouville's theorem, (3.3) defines an invariant measure for the flow of 
(3.1). Making this statement precise requires us to clarify the following two issues: 

(i) The rigorous construction (normalization) of the measure (3.3) 

(ii) The existence problem for the flow of (3.1) on the support of the measure. 

The first issue is well understood in the defocusing case. The case D = 1 is trivial, 
the case D = 2, p even integer is based on the Wick-ordering procedure (see [G-J]), 
and the normalization for D = 3, p = 4 is due to Jaffe [Ja]. In the focusing case, 
only the case D = 1 is understood [L-R-S] and normalization of the measure is 
possible for p < 6, restricting cß to an appropriate ball in L2(T). 

The construction of a flow is clearly a PDE issue. The author succeeded in 
this in the D = 1 and D = 2, p = 4 cases ([B5], [B6]). For D = 2, p = 4 there is a 
natural PDE counterpart of the Wick-ordering procedure and equation (3.1) has 
to be suitably modified (this modification seems physically inessential however). 
We may summarize the results as follows. 

THEOREM 3.4. (D = 1) (i) In the defocusing case} the measure (3.3) appears as 
a weighted Wiener measure, the density being given by the first factor. The same 
statement is true in the focusing case forp < 6, provided one restricts the measure 
to an L2-ball [\\(ß\\2 < B\. The choice of B is arbitrary for p < 6 and B has to be 
sufficiently small if p = 6. 

(ii) Assuming the measure exists, the corresponding ID equation (3.1) is glob
ally well posed on a Ka set A of data, A C D HS(T), carrying the Gibbs measure 

70. The set A and the Gibbs measure jp are invariant under the flow. 

REMARKS. 

(i) In dimension 1, the L2-rcstriction is acceptable, because L2 is a conserved 
quantity and a typical 0 in the support of the Wiener measure is a function in 
HS(T), for all s < ^. Instead of restricting to an L2-baU, one may alter-
nativelymultiply with a weight function with a suitable exponential decay 
in ||^||2. 

(ii) Let for each N = 1,2,... 

pN<ß=<t>N= Yl ^ n ) e i ( n , x ) (3-5) 
\n\<N 

be the restriction operator to the N first Fourier modes. Finite dimensional 
versions of the PDE model are obtained considering "truncated" equations 

iv? + u%x ± PN (UN\UN\P-2) = 0 

(3.6) 
u"(0) = PNcß . 
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It is proved that for typical cß, the solutions uN of (3.6) converge in the space 
C#S(Tr)[0,T] for all time T and s < | to a (strong) solution of 

iut + uxx ± P (u\u\v~2) — 0 
(3.7) 

u(Q) = (ß . 

THEOREM 3.8. (D = 2, p = A) (i) Denote H^ the Wick-ordered Hamiltonians, 
obtained replacing 

\aN= J2 T-Ï2-: \ /—' \nr H 
\ - - - \n\<N~l ' 

|<M hV \4>N\ -4O>N\<I>N\ +î\O>N\ \aN= > ^ iT Ï2~^—logA^ | . 

The corresponding measures e~@HN^ Y\d(ß converge for N —> oo to a weighted 
2-dimensional Wiener measure whose density belongs to all IP-spaces. Denote by 
7/3 this "Wick-ordered" Gibbs measure. 

(ii) The measure jß is invariant under the flow of the "Wick-ordered" equa
tion 

iut + Au- ( u\u\2 - 2u I \u\2 j = 0 (3.9) 

which is well defined. More precisely, denoting by uN the solutions of 

in? + AuN - PN (uN\uN\2 - 2uN J \uN\2) = 0 

uN(0) =PNcß 

the sequence 

(3.10) 

uN(t) - Y^ ?(") e ' K ^ + W *> (3.11) 
\n\<N 

converges for typical cß in CHS(J2)[0,T] for some s > 0, all time T, to 

«(*) - Y<ì>(n) e i ( { n 'a : > + | n | 2 t ) . (3.12) 

REMARKS. 

(i) We repeat that the novelty of Theorem 3.8 lies in the second statement on 
the existence of a flow. The first statement is a classical result. 

(ii) The second terms in (3.11), (3.12) are the solutions to the linear problem 

iut + Au = 0 

u(0) = cß . 
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Here a typical <j> is a distribution, not a function. However the difference (3.12) 
between solutions of the linear and nonlinear equation is an IP-function for 
some s > 0, which is a rather remarkable fact. 

(iii) The failure in D = 2 of typical (ß to be an L2-function makes the [L-R-S] 
construction for D = 1 inadequate to deal with the D — 2 focusing case. 
Some recent work on this issue is due to Jaffe, but for cubic nonlinearities in 
the Hamiltonian only. The problem for D = 2, p = 4 in the focusing case is 
open and intimately related to blowup phenomena (p = 4 is critical in 2D). 

The ID cubic NLS equation appears as the limit of the ID Zakharov model (ZE) 

iut = -uxx + nu 
(3.13) 

ntt-c
2nxx = c2(\u\2)xx 

when c —> oo. The physical meaning of u,n,c are resp. the electrostatic envelope 
field, the ion density fluctuation field, and the ion sound speed. This model is 
discussed in [L-R-S]. Defining an auxiliary field V(x,t) by 

nt = -cf Vx 

Vt = -nx - \u\l 

we may write (3.13) in a Hamiltonian way, where 

(3.14) 

H = \ J [\ux\
2 + \ (ra2 + c2 V2) + n|u|2] dx (3.15) 

and (Reu,Imu), In, V) with n = 2_ 1 /2n, V = 2 - 1 / 2 Jx V as pairs of conjugate 

variables. Considering the associated Gibbs measure 

e~ßH • xu iup«jx<fl} n d2<x) ^w ww (3-16) 
X 

one gets the ID cubic NLS Gibbs measure as marginal distribution of the w-field. 

THEOREM 3.17. [B7] The ID (ZE) is globally well posed for almost all data 

(UQ,UQ, VQ) in the support of the Gibbs measure, which is invariant under the 

resulting flow. 

REMARKS. 

(i) In the study of invariant Gibbs measures, it suffices to establish local well
posedness of the IVP for typical data in the support of the measure. One 
may then exploit the invariance of the measure as a conservation law and 
generate a global flow. For instance, for the ID NLS iut + uxx ±u\u\p~2 = 0, 
there is for p — 4 a global wellposedness result for L2-data (L2 is conserved). 
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However, for p > 4, we only dispose presently of a local result (in the periodic 
case) for data cß satisfying 

cj) e Hs , s > 0 (p < 6) 
(3.18) 

0 E Hs , s > s, , p = 2 + î 4 ^ (p > 6) 

and a global flow is established from the invariant measure considerations. 

(ii) There have been other investigations in ID on invariant measures, mostly 
by more probabilistic arguments. In this respect, we mention the works of 
McKean-Vaninski and in particular Mckean [McK] on the ID cubic NLS. 
These methods are more general but give less information on the flow. 

4 Symplectic capacities, squeezing and growth of higher derivatives 

The works of Gromov and Ekeland, Hofer, Zehnder, and Viterbo lead to new finite-
dimensional symplectic invariants, different from Liouville measure on the phase 
space. Let us recall the following construction of a symplectic capacity for open 
domains O in R71 x Rn, dp A dq. Call a smooth function / m-admissible (m > 0) if 
/ = 1 on a neighborhood of O and / = 0 on a nonempty sub domain of O. Denote 
Vf the associated Hamiltonian vector field f -^- , —-Q-}- Define the symplectic 
invariant 

C2n(0) — inf {m > 0\Vf has nontrivial periodic orbit of period < 1 , 

whenever / is in-admissible for O}. (4-1) 

Then C2n(-) is monotonie and translation invariant and scales as C2n(rO) = T2c^n 

(O). The main property is that 

C2n(Bp)=7TP
2=C2ri(Up) (4.2) 

where Bp is the ball Bp = {\p\2 + \q\2 < p2} and JJ a cylinder, say Y[p = {p\ + 
q2 < p2}. As a corollary, there is no symplectic squeezing of a p-ball in a cylinder 
of width p', pl < p. 

Exploiting such an invariant in Hamiltonian PDE requires an infinite-dimen
sional setting. Notice that although the theory described above is finite-dimensio
nal, a conclusion such as (4.2) is dimension free. An appropriate "finite-dimensional 
approximation" appears to be possible if the flow St of the considered equation is 
of the form 

linear operator + "smooth compact operator" (4.3) 

or, more generally, if the evolution of individual Fourier modes on a finite time 
interval is approximately the same as in a truncated model i) = JVH(v,x,t), 
v — Pjyv. Here the cutoff Af should only depend on the required approximation, 
the lime interval [0, T], and the size of the initial data in phase space. Here and 
also in (4.3), the phase space has to be defined in a specific way, corresponding to 
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the finite-dimensional normalizations. Hence, the flow properties derived this way 
relate to a specific "symplectic Hilbert space", for instance 

L2 for nonlinear Schrödinger equations (in any dimension) 

iJ 1 / 2 X H1/2 for nonlinear wave equations (in any dimension) 

H~1I2 for KdV type equations, 

and "nonsqueezing" refers to that particular space. 

THEOREM 4.4. ([Bg], [Kuk2]) There is nonsqueezing of balls in cylinders of smaller 
width 

(i) For nonlinear wave equations utt — Vit + p(u\ t, x) with smooth nonlinearity 
of arbitrary polynomial growth in u in dimension 1 and polynomial in u of 
degree < 4 (resp. < 2) in dimension 2 (resp. 3 ; A). 

(ii) For certain ID nonlinear Schrödinger equations. 

The interest of the squeezing or nonsqueezing properties lies in its relevance to the 
energy transition to higher modes, more precisely whether, for instance, part of 
the energy may leave a given Fourier mode, which would "correspond to squeezing 
in a small cylinder. The nonsqueezing implies also the lack of uniform asymptotic 
stability of bounded solutions; i.e., di&m St(Bp) does not tend to 0 for t —> oo if 
p>0. 

The drawback of those results is that they do not relate to properties of the 
flow in a classical sense, because of the phase space topology. On the other hand, 
Kuksin showed recently that in fact certain squeezing of balls in cylinders may 
occur in spaces of higher smoothness, if one considers for instance a nonlinear 
wave equation uu = pAu +p(u) where p is a small parameter (small dispersion). 
The squeezing phenomena appear in some finite time and are stronger when p —> 0. 

As far as the behavior of individual smooth solutions concerns, some examples 
are obtained in [B2] and [Bg] of Hamiltonian PDE (in NLS or KdV form) defined 
as a smooth perturbation of a linear equation, showing in particular that higher 
derivatives of solutions u(t) for smooth data u(0) = 0 need not be bounded in 
time. For instance 

PROPOSITION 4.5. There is a Hamiltonian NLS equation with smooth and local 
nonlinearity such that St(Bs(ö)), t > 0, is not a bounded subset of Hs°, for any 
s < oo, ö > 0. Here Bs(ö) denote {ip G Hs \ \\tp\\s < #} and SQ is numerical. 

Another example, closely related to the discussion in the next section, is the fol
lowing. Considering a linear Schrödinger equation 

-iut = -uxx + V(x)u (4.6) 

where V(x) is a real smooth periodic potential and the periodic spectrum {Xk} of 
,2 

— ̂ 2 + V satisfies a "near resonance" property 

dist(Anj.,ZAno) -> 0 rapidly for j - • 00 (4.7) 
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for some subsequence {iij}. We construct a Hamiltonian perturbation T(u) = 
JT= G such that the solution uE a of the IVP 

-iut = -uxx + V(x)u + E T(u) 
(4.8) 

u(0) = q 

satisfies 
inf sup ||weg(t)||jf

flQ —> oo for e —> 0. (4.9) 
geo t 

Here SQ is again some positive integer and O is some nonempty open subset of 
HSo(T). 

5 Persistency of periodic and quasi-periodic solutions under perturbation 

One of the most exciting recent developments in nonlinear PDE is the use of 
the classical KAM-type techniques to construct time quasi-periodic solutions of 
Hamiltonian equations obtained by perturbation of a linear or integrable PDE. 
This subject is rapidly developing. Results so far are only obtained in ID and in 
this brief discussion, we only consider perturbations of linear equations. We work 
in the real analytic category. Important contributions are due to Kuksin [Kuki], 
using the standard KAM scheme and more precisely infinite-dimensional versions 
of Melnikov's theorem on the persistency of n-dimensional tori in systems with 
N > n degrees of freedom. His work yields a rather general theory and we mention 
only some typical examples of applications to ID nonlinear wave or Schrödinger 
equations 

( r>2 \ fi 

— -V(x\a)\ w-E — (x,w;a) (5.1) 
-iut = -uxx + V(x,a)u-\-£-— (x,\u\2;a) u. (5.2) 

Here V(x, a) is a real periodic smooth potential, depending on n outer parameters 
a = (ai,... ,an). Denote {Xj(a)} the Dirichlet spectrum of the Sturm-Liouville 
operator —^2 + V(x,a). Thus, Xj(a) — ir2j2 + 0(1) and we assume the following 
nondegeneracy condition 

det{8Xj(a)/dak \l<j,k<n}^0 (5.3) 

(this condition is a substitute for the classical "twist" condition). Denoting {tpj} 
the corresponding eigenfunctions, the 27i-dimensional linear space 

Z° = span {ipj,iipj I 1 < j < n} (5.4) 

is invariant under the the flow of equation (5.2) for E = 0 and foliated into invariant 
71-tori 

Tn(I) = I Ê « + i*J)>Pj I « ) 2 + (*7)2 = 2Ij , 3 = 1, • • •, n I (5.5) 

wu 
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which are filled with quasi-periodic solutions of (5.2) for e = 0. A typical result 
from [Kuki] is that under assumption (5.3), for most parameter values of a there 

e o 
is an invariant torus ^ (Tn) near the unperturbed torus ]P given by (5.5) and 

a,I a.,1 

filled with quasi-periodic solutions of (5.2). The frequency vector uE of a perturbed 
solution will be ce close to LJ = (Ai, . . . , An) of the unperturbed one. 

The methods in [Kuki] leave out the case of periodic boundary conditions, 
because of certain limitations of the KAM method (second Melnikov condition) 
excluding multiplicities in the normal frequencies. A different approach has been 
recently used by Craig and Wayne [C-Wi^], based on the Lyapunov-Schmidt de
composition and leading to time periodic solutions of perturbed equations un
der periodic boundary conditions. This method consists in splitting the problem 
into a (finite-dimensional) resonant part (Q-equation) and an infinite-dimensional 
nonresonant part (P-equation). In the PDE-case (contrary to the case of a finite-
dimensional phase space), small divisor problems appear when solving the P-
equation by a Newton iteration method, also in the time periodic case. Writing u 
in the form 

u = 53e(m, Jfe) eimXt ipk(x) (5.6) 
771, k 

and letting the linearized operator act on the Fourier coefficients u(m, k), one gets 
operators of the form 

(mX-Xk)+ET (5.7) 

where the first term is diagonal and T is essentially given by Toeplitz operators 
with exponentially decreasing matrix elements. The main task is then to obtain 
reasonable bounds on their inverses. The problem is closely related to a line of 
research around localization in the Anderson model and in particular the works of 
Fröhlich, Spencer, and Surace with quasi-periodic potentials (see [F-S-W], [Sur]). 
In this case, the operator T in (5.7) is replaced by —A, A = lattice Laplacian, and 
the first term plays the role of the potential. 

The author succeeded very recently in dealing with the quasi-periodic case 
by the same methods [Bi] ; giving thus a new proof of the KAM theorem where one 
avoids Melnikov's second condition. Also the case of periodic boundary conditions 
and quasi-periodic solutions for (5.1), (5.2) may be treated this way. Observe that 
in the quasi-periodic setting, the diagonal part of (5.7) becomes now (m,X) — Xk 

where for instance (m, X) = mi Ài + 77Ì2A2. The singularities here are more severe 
and a large part of the difficulty already appears in the classical finite-dimensional 
case. 

The Lyapunov-Schmidt method is significantly more flexible than KAM, and 
other applications, possibly to the 2D problem, should be expected. 

Added in Proof: The author succeeded more recently in developing a theory of 
quasi-periodic solutions for NLS equations of the form (5.2) in 2D (see [B9]). For 
the special case of time periodic solutions, the work of [C-Wi] may be extended 
to any dimension, leading for instance to periodic solutions of the NLW equation 
utt — Au + pu + u3 = 0, for typical p (cf. [Bio]). 
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Sphere Packings, Lattices, Codes, and Greed 
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The problem of determining the greatest density to which n-dimensional space can 
be filled by nonoverlapping unit spheres is solved only for the first three values of 
n (namely n = 0,1,2), and so we must impose further conditions if we are to make 
any progress at the moment. 

The lattice-packing problem, when we demand that the vector sum and dif
ference of any two sphere-centers must be another center, was solved by Blichfeldt 
more than sixty years ago in all dimensions up to 8, but in all those years there 
has been no advance on the 9-dimensional problem. 

About fifty years ago, in an unsuccessful attack on this problem, Chaundy 
made the unwarranted assumption that an optimal (7i+l)-dimensional lattice must 
necessarily contain an optimal n-dimensional one. Although this is now known to 
fail for some n < 11, Sloane and I turned it into a definition of what we called the 
"laminated lattices", and investigated these in all dimensions up to 48. 

The laminated lattices serve as benchmarks for the general sphere-packing 
problem; thus, I shall define them and briefly summarize our results. By a sphere-
packing lattice I mean one in which each point is distant at least 2 from all other 
points (so that it can be used to pack unit spheres). 

DEFINITION. The 0-dimensional lattice is laminated. The (7i + l)-dimensional lam
inated lattices are precisely all the (71 + l)-dimensional sphere-packing lattices of 
maximal density that contain at least one 71-dirnensional laminated lattice. 

THEOREM. The unique 24-dimensional laminated lattice is the celebrated lattice 
discovered in 1969 by John Leech, and for n < 24 every n-dimensional laminated 
lattice is a section of the Leech lattice. The inclusions between these lattices in 
consecutive dimensions are as shown in Figure 1. There are precisely 23 distinct 
laminated lattices of dimension 25 (one for each type of "deep hole" in the Leech 
lattice). In each dimension from 26 to J^.8 the density of all laminated lattices is 
known, and at least one such lattice has been found. 

Figure 2 illustrates the first few laminated lattices. In the illustrations for 
dimensions n up to 3, we have shaded the sphere at the origin, and put spots at 
the centers of n neighboring spheres for which the corresponding vectors generate 
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Figure 1. 
Laminated lattices 
to 24 dimensions. 

the lattice. If we join two spots whose spheres touch, and leave them unjoined 
when the corresponding vectors are orthogonal, then the diagrams that indicate 
the shapes of the lattices in up to 8 dimensions are very familiar — they are the 
Coxeter-Dynkin diagrams of certain root lattices. In 9 dimensions we need a new 
convention — the broken line indicates a pair of vectors at angle arccos(l/4). 

These root lattices have very simple definitions. The root lattice An consists 
of all the points specified by n + 1 integer coordinates with zero sum; for Dn we 
have n integer coordinates with even sum. We write (Dn)

+t for the union of Dn 

and its coset determined by the vector (1/2 ,1/2 ,1/2 , . . . , 1/2, t/2), and write just 
D+ when t = 1. Then (for n < 9) En consists precisely of those vectors of D% 
whose last 9 — n coordinates are equal. 

The laminated lattices in dimensions up to 9 are AQ, AI, A<i, A3 = D3, 
D±, D5 = E5, E6, E7, E8 = -Dg", and D£°. They were all known to Khorkhine 
and Zolotarev in 1880. Most of the remaining laminated lattices in dimensions 
up to 24 were found by John Leech in about 1970. The numbers of laminated 
lattices in dimensions 26-48 are almost certainly very large indeed: Sloane and I 
gave a probabilistic estimate of at least 75,000 for the number of 26-dimensional 
laminated lattices of a certain very special type. 

Denser sphere-packing lattices than the laminated ones are known in dimen
sions 11, 12, 13, and 32-48, but most of the others are probably optimal. In 1980 
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Ai> , • • • S=D3 

Figure 2. Laminated lattices and Dynkyn diagrams. 

M. R. Best discovered a nonlattice packing in 10 dimensions that has a higher 
density than any 10-dimensional lattice packing currently known. 

All of this is recorded in my book with Sloane: Sphere Packings, Lattices and 
Groups (Springer). So what further information on these topics has been discovered 
in the last four years? 

Noam Elides has improved the records in many dimensions beyond 48 by 
using the lattice structures of the Mordell-Weil groups of certain algebraic curves. 
Wu-Yi Hsiang has made a strongly disputed claim to have solved the general 3-
dimensional sphere-packing problem. On the basis of a certain "Postulate", Sloane 
and I have found all the optimal sphere packings in dimensions up to 9. In the 
rest of the first half of this communication, I shall briefly describe only the latter 
result. 

Our "Postulate n", which requires a slight modification in 9 dimensions, is 
that the centers of the spheres in an optimal n-dimensional packing (n > 1) can 
be grouped into parallel ??i-spaces that each contain the centers of an optimal m-
dimensional packing, where m is the largest power of 2 that is strictly less than 77,. 

The situation is familiar in the 3-dimensional case. It seems that in all optimal 
3-dimensional packings the spheres form 2-dimensional layers in which they are 
arranged hexagonally as in Figure 3. If the centers of the spheres in one horizontal 
layer are the points marked 0 in the figure, then those of an adjacent layer must be 
above either those marked 1 or those marked 2. But there is complete symmetry 
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Figure 3. The three positions for layers. 

Figure 4. How a packing corresponds to a coloring. 

between the three sets of points 0, 1, 2, and so we see inductively that the centers 
of any layer must he vertically above one of these three sets of points. 

Figure 4 shows how we can code this by giving a 3-coloring of the 1-dim
ensional sphere packing whose centers are obtained by projecting those of the 
3-dimensional one onto a vertical line. Here a (1-dimensional) sphere colored n 
(for n = 0,1,2) represents all the spheres of a 2-dimensional layer centered above 
all the points marked n in Figure 3. Just two of these packings are uniform — 
the root lattice .A3, or face-centered cubic (f.c.c.) packing, which we get from the 
coloring . . . , 0 ,1,2,0,1,2,0,1,2, . . . , and the hexagonal close packing (h.c.p.), from 
the coloring . . . , 0 ,1,0,1,0,1,0,1,0, . . . . 

This method works because of the symmetry between the three sets of points 
0, 1, 2. Each of these sets is a lattice whose "deep holes" (the points of space at 
maximal distance from the lattice) form the union of the other two sets. They are 
in fact the three cosets of the root lattice A2 in its dual. 

In 4 dimensions, both the horizontal and vertical spaces are 2 dimensional. 
It follows from our Postulate 4 that in an optimal 4-dimensional packing, the 
"heights" (the positions in "vertical" space) will form a scaled copy of the optimal 
2-dimensional packing A^, which has a 3-coloring that specifies the placing of the 
layers above the "horizontal" space. 

However, the 3-coloring of A2 (Figure 3) is unique! So it follows from our 
Postulate that the optimal 4-dimensional packing is also unique. This is the 4-
dimensional root lattice D4. It has four cosets 0, 1, 2, 3 in its dual, and the set of 
deep holes in any one of these is formed by the union of the other three. 

Our Postulates now imply that all optimal packings in dimensions 5, 6, 7, 
8 are specified by 4-colorings of the optimal packings in dimensions 1, 2, 3, 4, 
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Figure 5. The uniform packings in 5 dimensions. 

Figure 6. The uniform packings in 6 dimensions 
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Figure 7. The uniform packings in 7 dimensions. 
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respectively. In each of the dimensions 5, 6, and 7 there are just four uniform 
packings, arising from the colorings shown in the respective figures. However, the 
4-coloring of the 4-dimensional packing D4 is unique, and so the Postulate entails 
that the only optimal 8-dimensional packing is the root lattice E%. 

In 9 dimensions, there are several new features. The deep holes in the E& 
lattice are not the union of its cosets in its dual (it is in fact self-dual), but of 135 
particular cosets of E$ in (l/2)^g. The successive E$ layers need not be obtained 
from each other by translation alone, but perhaps by translation combined with 
rotation. There are in fact precisely 382,185 choices for the position and orientation 
of each successive layer. 

However, the most interesting new fact is that there are some remarkable new 
packings — the "fluid diamond" packings Dg(v) (consisting of Dg and its translate 
by a suitable vector v) — that, among other things, disprove our Postulate 9. 
That's not all they do — the spheres in these packings form two equinumerous 
sets (the "gold" and "silver" spheres) that can (by varying the vector parameter v) 
be moved around independently of each other in such a way that at most instants 
no silver sphere touches a gold one. There is in fact a motion that fixes all the 
gold spheres, but moves the silver ones so far that any chosen one can reach the 
place initially occupied by any other one, although at all times the packing remains 
(conjecturally) optimal! 

It appears that Postulate 9 only just fails, because the fluid diamond pack
ings include as a limiting case the Khorkhine-Zolotarev lattice packing DQ°, which 
is obtainable by stacking the E^ lattice packing. However, Postulate 10 is irre
deemably false, and the best known packing is an intriguing nonlattice packing 
discovered by M. R. Best in 1980. It consists of all the vectors whose 10 coordi
nates can be obtained from some cyclic permutation of one of the words 

(01112), (21132), (21310), (01330), 

(03110), (23130), (23312), (03332) 

by replacing each digit by a pair of integers according to the scheme 

0 ^ 

l -> 

• even, even 

• even, odd 

2-> odd, odd 

3 —• odd, even. 

Lexicographic Codes 
I now turn to an apparently totally different topic. The integral lexicographic code 
("lexicode") of distance d is defined by the following "greedy algorithm". We start 
with the word 

. . . 0 0 0 0 0 

(all "words" in this theory are semi-infinite strings of nonnegative integer "digits", 
almost all zero). Then we proceed inductively to add further words, at each stage 
choosing the lexicographically earliest word that differs in at least d digits from 
all preceding ones. 
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We illustrate by taking d = 3. 

,000000 

.000111 

.000222 

,000333 

,000444 

51 

. 00077,7171 

001012 

001103 

001230 

001321 

001456 

..002023 

..002132 

..003031 

..004048 

..010013 

There is a quite remarkable theorem about codes of this type: 

T H E LEXICODE THEOREM. 

Any lexicode, when equipped with natural termwise definitions of addition and 
scalar multiplication, is a vector space. 

Rather than prove this theorem, I want to explore its consequences, so I will 
take it for granted and rename it the Lexicode Axiom. 

One consequence is that the termwise sum of any two words from any lexicode 
is another word in that lexicode: for example it asserts that the sum 

...000111 

+ . . . 001012 
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should be in the lexicode we took as our example. But in fact . . . 001123 is not m 
that lexicode, because . . . 001103 is, and because any two distinct words of that 
code must have distance at least 3. 

What is wrong? The answer is that the termwise definitions of addition and 
scalar multiplication referred to in the Lexicode Axiom, although "natural", are 
not quite the ones you might have expected! What happens is that the underlying 
addition and multiplication operations in the integers are not the customary ones. 
How could they be? With the customary definitions of addition and multiplication, 
the integers do not even form a field. 

What are the new operations? The best way to find out is to turn the Lexicode 
Axiom around once again, and rename it the Lexicode Definitionl Let's see how 
this works. 

THEOREM 0. 0 + 0 = 0. 

Proof. Suppose that 0 + 0 = z. Then we have the addition sum 

...000000 

+ ...000000 

= . . . zzzzzz, 

and for the latter word to be in the lexicode, it must have almost all its digits zero, 
so that z = 0. D 

It now follows that the zero of our field is "0", and so we have 0+n = n = n-\-0 
for all n. 

THEOREM 1. We have 1 + 1 = 0, 1 + 2 = 3. 

Proof. We have the addition sum 

...000111 

+ ...001012 

= ...milxy 

where z = 1 + 1, ?/ = 1 + 2. But . . . 001103 is in our lexicode, and so must be the 
answer to this sum, whence x = 0, y = 3. D 

THEOREM 2. Our field has characteristic two. 

Proof. By multiplying the equation 1 + 1 = 0 by a suitable constant, we find that 
n + n — 0 for any given n. D 

THEOREM 3. We have 3 + 2 = 1. 

Proof. 3 + 2 = (1 + 2 ) + 2 = 1 + ( 2 + 2) = 1 + 0 = 0. D 

THEOREM 4. We have 4 + 0 = 4, 4 + 1 = 5, 4 + 2 = 6, 4 + 3 = 7. 
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Proof. These assertions follow from the easy addition sum 

. . . 0 0 0 4 4 4 4 + . . . 0 0 1 0 1 2 3 = . . . 0 0 1 4 5 6 7 

in the distance 4 lexicode. D 

The entire addition table of our field can be established by a precisely similar 
argument: 

THEOREM 5. If A is any one of the numbers 

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . . 

and B is any strictly smaller number, then A + B takes its usual value, while 
A + A = 0. 

Before proving this, we show how it can be used to work out an arbitrary 
addition-sum, taking 13 + 11 as an example. By repeated use of the theorem, we 
find 

13 = 8 + 4 + 1 , 11 = 8 + 2 + 1, 

whence (again using the theorem) 

13 + 11 = (8 + 8) + 4 + 2 + (1 + 1) = 4 + 2 = 6. 

Proof of Theorem 5. From this part of the addition table 

0 1 2 3 4 5 6 7 
1 0 3 2 5 4 7 6 
2 3 0 1 6 7 4 5 
3 2 1 0 7 6 5 4 
4 5 6 7 0 1 2 3 
5 4 7 6 1 0 3 2 
6 7 4 5 2 3 0 1 
7 6 5 4 3 2 1 0 

we shall show how to continue. The eight words obtained from the above by pre
fixing . . . 0 0 0 1 must all be in the distance 8 lexicode, because the first of them 
is, and the others are obtained by adding 

. . . 0 0 n n n n n n n n 

for n = 1 , . . . ,7. 
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It then easily follows that the next word in this code is 

. . . 0 0 0 1 8 9 10 11 12 13 14 15 

so that 8 + 0 = 8, 8 + 1 = 9, 8 + 2 = 10, . . . , 8 + 7 = 15, from which we deduce 
the addition table up to 15 + 15. D 

THEOREM 6. We have 6 = 4.4. 

Proof. In the distance 5 lexicode we find the words 

w = ... 0 0 1 0 1 2 3 4 

and 
Aw = . . . 0 0 4 0 4 8 12 6. D 

There is an analogue of Theorem 5 for multiplication. 

THEOREM 7. If A is any of the numbers 

2, 4, 16, 256, 65536, 4294967296, . . . 

and B is any smaller number, then A • B takes its usual value, while A- A is the 
usual value of 3A/2. 

We shall not prove this, but just show how to use it to work out arbitrary 
multiplications. We have 

5 • 12 = (4 + 1)(8 + 4) = 4 - 8 + 8 + 4 + 1 = 4 - 8 + 1 3 

and in this 
4 -8 = 4 - 4 - 2 = 6-2 = (4 + 2)-2 = 8 + 3 = 11 

so that finally 5 • 12 = 11 + 13 = 6. 

Further Remarks About Our Field 
Readers who are familiar with the game of nim will recognize that the addition of 
our field is "nim-addition", namely addition without carry in the binary notation. 
So I call the multiplication "nim-multiplication", and the field, the "nim field". It 
is indeed a field, and a very interesting one. The reader might like to verify that 
1/4 = 15, that the fifth roots of unity are 1, 8, 13, 14, 10, and that we have 

22 = 3, 44 = 5, 1616 = 17, 256256 = 257 , . . . . 

The definitions extend naturally to infinite ordinal numbers, and we find 
for example that CI, the first infinite ordinal, is a cube root of 2, and that the 
ordinal usually called Qn is a fifth root of 4, and so on! The ordinal numbers form 
an algebraically closed field under these operations — the finite ones form the 
quadratic closure of the field of order two. 
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Lexicodes, Sphere Packings, and Games 
How are lexicodes related to sphere packings? The answer is, they ARE sphere-
packings! For example, the set of all integer sequences that differ in at most one 
place from a given one . . . f e d c b a is a solid sphere in a certain space, and the 
words of the distance 3 lexicode are the centers of a perfect packing of this space 
by spheres. 

How are they related to games? Let us define a two-player game on the set of 
such sequences by allowing either player to move from any such sequence to any 
lexicographically earlier one that differs from it in at most two digits. Then the 
winning strategy in this game is simply to move always to a lexicode word! (If we 
replace "at most two" by "at most one", we get a game equivalent to nim, and so 
explain the connection with nim-addition.) 

Are laminated lattices related to games? I think so. If two players play a 
game on the points (x,y) of the first quadrant in which the move is to replace 
(x,y) by any lexicographically earlier point distant strictly less than 1 from it, 
then the winning strategy is to move always to a point of the lattice shown in our 
final figure. 

However, the definition of this game is slightly wrong, because in 3 dimensions 
the winning positions are the centers of the hexagonal close packing rather than 
the face-centered cubic lattice. I hope to find the correct definition, for which an 
analogue of the lexicode theorem will force the solution to be a lattice, which 
should be one of the laminated lattices, and so the Leech lattice in 24 dimensions. 



Ingrid Daubechies, a plenary speaker 



Wavelets and Other Phase Space Localization Methods 

I N G R I D D A U B E C H I E S 

Princeton University 
Princeton, NJ 08544, USA 

1. Introduction 

Mathematicians have various ways of judging the merits of new theorems and 
constructions. One very important criterion is esthetic — some developments just 
"feel" right, fitting, and beautiful. Just as in other venues where beauty or esthetics 
are discussed, taste plays an important role in this, but I think I am not alone in 
being especially excited when apparently different fields suddenly meet in a new 
concept, a new understanding. It is often of the sparks of such encounters that our 
esthetic enjoyment of mathematics is born. 

Another important criterion for according merit to some particular piece of 
mathematics is the extent to which it can be useful in applications; this is the cri
terion almost exclusively used by nonmathematicians. Mathematicians themselves 
do not discount the importance of mathematics for applications (after all, if we 
were producing only beauty, there wouldn't be as many teaching positions allotted 
to us), but often beauty is considered the real grail, with applicability second-best. 
Although we have come some way since Hardy's A Mathematician's Apology, we 
often still believe, maybe subliminally, that the two criteria are exclusive — that 
mathematics, when really close to applications, cannot be beautiful and is often 
even "dirty." 

I believe that this does not have to be so; a wish for beauty and simplicity, 
and a desire to bring different fields together, can equally well drive developments 
in "applicable" mathematics. 

When mapping out this presentation, I initially thought that I wanted to 
speak about wavelets, but I soon realized that other developments, aside from or 
beyond wavelets, should have their place here as well, and the scope was enlarged 
to add the "other phase space localization methods." Let me start by explaining 
what I mean by this. 

I shall use the term "phase space" when a special type of description is meant, 
involving several complementary variables. It is really a term that is appropriated 
here from physics. Imagine that you want to describe the motion of a planet in 
the solar system. A simple way to do this is to give, as a function of time, its posi
tion in space as well as its momentum. This is a phase space description: the two 
complementary variables are position and momentum, and you are describing the 
motion by a curve in phase space. "Phase space localization" is no problem here: 
both position and momentum can be measured, with arbitrarily high precision. 
("Phase space" is also used in a more general sense for other dynamical systems, 
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but that is a different story.) The situation is different if we look at a quantum 
system, say an electron in a solid state crystal, where measuring position and 
momentum both, simultaneously, with arbitrarily high precision, cannot be done: 
the uncertainty principle forbids it. Nevertheless, it is still very useful to think 
in terms of phase space, or momentum and position, when comparing a quantum 
system with its classical analog, for instance. This poses a problem to the theo
retical physicist: How to give a description, localized in phase space, despite the 
uncertainty principle? The mathematical model for a quantum mechanical particle 
assigns to a physical state a wave function ijj(x), where x is the position variable; 
an equivalent description is given by the Fourier transform V>(p), where p is in
terpreted as the momentum variable. Trying to "localize in phase space" amounts 
therefore to pinning down, as well as possible, a function's local properties and 
the local properties of its Fourier transform simultaneously — something analysts 
have been doing for decades under the name microlocalization. 

The same problem also crops up in electrical engineering, or in statistics: for 
instance, when trying to understand signals depending on time, such as a recorded 
audio signal, it is often useful to gauge its spectrum or frequency content, again 
modeled naturally by the Fourier transform of the data. But the make-up of such 
signals, in terms of their different frequency characteristics, seems to change with 
time. This is immediately clear when you think of a music score which, after all, 
tells the musician to play different notes (= frequencies) at different times. Once 
again, the intuitive notion of the mathematical tool needed involves localization in 
phase space, with the two complementary variables now in the form of time and 
frequency. 

Similarly, the computer scientist or engineer working with images (such as 
any image on your television screen) finds it helpful to break it up in smaller pieces 
(localization in space) and to look at the different spatial frequencies present in 
those pieces: again a phase space localization, now in two dimensions. 

Because similar problems occur in different disciplines, it is not surprising 
that the answers developed, often independently, have some similarity as well. 
What I want to describe here is how the synthesis of different points of view and 
different approaches has led in some cases to new developments, making the whole 
much more than the sum of its parts. 

Before embarking on a more detailed discussion, I would like to point out that 
this presentation will summarize essential contributions by many people besides 
myself. At the ICM '90 in Kyoto, both R. Coifman and Y. Meyer gave talks related 
to this one; at this ICM, related talks include those by W. Dahmen, D. Donoho, 
and V. Rokhlin. For a more complete list of important contributors, I refer the 
reader to the references and their references. I would like to take this opportunity 
to thank especially R. Coifman, A. Cohen, A. Grossmann, S. MaUat, and Y. Meyer, 
from all of whom I learned a lot. 
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2. Wavelets 

Most of this presentation will concern the development of wavelets, in particular 
of orthonormal wavelet bases, our growing understanding of their mathematical 
properties, and the waĵ s in which they can be applied. 

What are wavelets? To keep things simple, I shall restrict myself mostly to 
one dimension; with slight modifications, everything here can be generalized to 
higher dimensions (the few exceptions will be pointed out explicitly). I shall also 
almost systematically not try to give the most general conditions under which my 
statements hold, preferring to strip down the technicalities so as to lay bare the 
essential ideas. 

A typical example of a family of wavelets ißj^x) is given by 

i>Jik(x) = 2- 'Vty(2-4 - A) = 2 - " V ( ^ ^ ) , j , k £ Z , (1) 

where iß is a function with reasonable decay (say, |0>(œ)| < C(l + \x\)_^1+^)> 
with some smoothness (as measured by the decaj' of the Fourier transform iß, say 
1-0(01 < C(l + |£ |)" ( 1 + e )) , and such that J iß(x) = 0. For particular choices of 
iß, the ißj^ constitute a basis often orthonormal for L2(R); I shall mainly restrict 
myself to this case (although there are many interesting applications that use 
wavelets that are not linearly independent, which fall outside this framework). 
The first known example of a function iß for which the ißj^ give an orthonormal 
basis is the Haar wavelet, known since 1910, 

iß(x) 

(2) 

this does not satisfy the smoothness requirement above. Much smoother construc
tions were found only in the 1980s: Stromberg (1982), Meyer (1985), Battle (1987), 
Lemarié (1988), and Daubechies (1988) are some examples. The first construction, 
by Stromberg, did not attract a lot of attention at the time, although it later turned 
out to be very useful, not only for the harmonic analyst, but also computationally 
Meyer rediscovered that dilations and translations of a single smooth and decaying 
function, as in (1) above, could give rise to orthonormal bases for L2(M); in his 
example both iß and iß are C°° and iß has compact support. The constructions 
by Battle and Lemarié use iß E Cm, where m can be arbitrarily large but finite; 
moreover iß has exponential decay. (Stromberg's iß has similar properties.) These 
first ad hoc constructions became much more transparent with the development 
by Mallat (1989) and Meyer of multiresolution analysis, a framework that linked 
wavelets with approximation theory. Interestingly, this construction was triggered 
by analogies with tools in vision theory, with which Mallat was familiar. Multires
olution analysis was then used in Daubechies (1988) to construct a basis of type 
(1) where iß is still in Cm but compactly supported. 

1 if 
1 if 
0 otherwise 

0 < x < 1/2 
1/2 < x < 1 
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3. Mult ir esolution Analysis 

The multiresolution analysis framework views the expansion of / in L2(R) with 
respect to an orthonormal wavelet basis, 

as a decomposition of / into successive layers, each more detailed than the previous 
one. That is, we write 

where the spaces Vj constitute a nested sequence of approximation spaces, 

••• C V2 C Vi C Vo C Vii C V-2 C ••• 

n ^ = { o } • 
jez 

For fixed j , summing the terms in (3) over k gives exactly the layer to be peeled 
away from Pj-if := Projy._ l / to reach the coarser approximation Pjf := 

Pj-if = Pjf + E < ^ ' ^ > ^ • W 
k 

For the Haar basis, the corresponding spaces Vj are given by 

Vj = {/ G L2(M) ; /|[2ifc,22(/c+i)[ = constant for each k G Z}. 

For the constructions of Stromberg, Battle, and Lemarié, the multiresolution hi
erarchy consists of spaces of spline functions, 

Vj = {feL2(R);feCmand , 
/|[2J"fc,22(fc+i)[ — polynomial of degree m + 1, for each feGZ}. ^ ' 

Additional requirements are that the spaces Vj are all scaled versions of each other, 

feVj^f(y-)ev0 

(as is obviously the case in the examples above) and that the central space Vb 
is invariant under integer translation. This invariance follows automatically from 
the final requirement, that there exists a function 0 in Vb, commonly called the 
scaling function, such that the 0(. — k) = 2 -J/20(2 --7a; — k), k G Z, constitute an 
orthonormal basis for Vj. In the Haar basis case, cß(x) is taken to be X[oli[(^)5 ^n e 

characteristic function of [0,1[; in the spline examples, 0 is a spline function of the 
appropriate order and with exponential decay. The work of Lemarié (1993) and 
Auscher (1992) proves that any wavelet basis of type (1) is associated with such a 
multiresolution analysis, provided that iß has some smoothness and decay. (Note 
that this result does not completely translate to higher dimensions.) 
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These formulas consist of a convolution of the sequence Sj_i with h = (h*_n)ne% or 
g = (<7-n)nE2o followed by retaining only the even entries of the result. Schemati
cally, this is represented by 

(n) 
where the symbol [ö] stands for convolution with the sequence a, and 2 j is "dec
imation by a factor 2." 

The transition from the sequence (sj-ijTi)riez to the two sequences (sjtk)keZi 
(djtk)kez corresponds to a change of basis in V^-i, from {0j_i,n G Z} to 
{0i7,/c3'0j,A:; k G Z}. The inverse operation corresponds to the adjoint unitary oper
ator, and we have 

°j—l,n 2_^[hn-2kSjtk + 9n-2kdjik] (12) 

Each of the two terms in the right-hand side of (12) can be viewed as the result 
of first "upsampling by 2," i.e. taking the given sequence as the even entries of 
a new sequence in which all the odd entries are zero, followed by a convolution. 
Schematically, this becomes 

For the Haar basis one finds HQ l 
V2 

(13) 

hi, #o = -4= = —gi, with all other 
hni9n = 0 - The decomposition steps (9) and (10) then correspond to breaking up 
the sequence Sj_i into pairs, and replacing every pair of numbers by its average (a 
coarser level approximation, giving Sj) and the difference between the two numbers 
(the detail dj). The reconstruction (12) then adds the sum and difference to recover 
the first number, whereas a subtraction gives the second number in every pair. The 
resulting algorithm is fast: starting from a sequence SQ with N entries, we compute 
sums and differences for y pairs to obtain s\ and d±. The y entries in si give ^ 
pairs, for each of which we have another sum and difference to compute, and so 
on. The total number of computations is therefore 2~ + 2 ^ + • • • ~ 2N (where 
we have swept edge effect terms under the rug if N is not a power of 2, but they 
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don't matter here: their contribution to the complexity is 0(log N)). If we have 
K nonvanishing hn,gn instead of only 2, then the total number of computations 
is KN, still linear in N. This type of wavelet transform has therefore a lower 
complexity than the FFT, which uses O(NlogN) computations. 

5. What Do Wavelets Buy You? 

So we have a fast algorithm for a neat kind of basis, in which all basis functions 
are shifted and dilated versions of just one template (or a few templates, in some 
generalizations or in higher dimensions). Why should anyone care? In fact, sur
prisingly many people do care, and many fields have something to tell us about 
these wavelet bases. 

To harmonic analysts, wavelet bases are a convenient way to carry out a 
Littlewood-Paley (LP) decomposition. In a traditional LP decomposition of a func
tion / , one writes 

oo oo 

/ = £ Ajf = f0 +
 y£*jf , 

where the Fourier transform (Aj/)~(£) of each Ajf is nonvanishing only for, 
say, 23~l < |£| < 23+1. One way of obtaining such Ajf is to construct a smooth 
function w, supported on ^ < |£| < 2, such that, for 1 < |£| < 2, w(£t)-\-w(£>/2) = 1, 
and to define (Aj-/)~(£) = f(£)w{2~j€). T h e different Ajf decouple different 
frequency ranges of / ; yet, unlike the Fourier transform itself, they retain some 
spatial information. This information is sufficient, for instance, to characterize the 
Holder spaces Cs: even though it is impossible to characterize (i.e. give an "if and 
only if" condition) the Holder exponent of / by the decay of its Fourier transform, 
nevertheless decay conditions on the Ajf, as a function of their frequency range 
label j , permit such a characterization. More precisely, for any / G L°°, we have 

f eCs & sup 2js || Adf ||Lcc < oo . (14) 
j en 

Similarly, LP decompositions can be used for much more sophisticated estimates 
(Stein (1993), Frazier et al. (1990)). A wavelet decomposition carves up / likewise 
in dyadic frequency blocks, with Q-jf '.= ̂ f c < f,iß-jtk > iß-jtk corresponding to 
Ajf. This means that many achievements of LP decompositions have their mirror 
image in wavelet terms. For instance, if the wavelet iß and the scaling function 
0 are in Cr and have sufficiently rapid decay, then we have, for all s < r, a 
characterization of the Holder spaces similar to (14). Specifically, for / G L°°, 

f eCs & s u p 2 ^ s + ^ sup | < f,iß-jik > | < oo . (15) 
jGN fcez 

The similarity with (14) is obvious (the extra \ in the exponent is due to the 
normalization we chose for the ißjtk in (1)); more sophisticated estimates using LP-
type decompositions translate into wavelet estimates analogously. Wavelets then 
provide a way to write powerful techniques in harmonic analysis in a language 
that can also be read as an algorithm. On the other hand, their very convenient 
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orthogonality properties in L2 also lead to shortcuts in proofs in harmonic analysis 
(see e.g. Meyer (1990)). 

To electrical engineers, wavelet bases are a mathematical framework that 
links up with a filtering technique developed earlier, called subband filtering. Di
agram (11) is in fact the electrical engineering notation for a filter bank with two 
channels, one low pass (the transition Sj-i —> Sj) and one high pass ( S J - I —» dj); 
the downsampling makes this a critically downsampled filtering procedure, mean
ing that after the operation we end up with exactly as many entries as before. 
Diagram (13) then means that we have in fact a perfect reconstruction, critically 
downsampled 2-channel filter bank. The standard reference in electrical engineer
ing for such filter banks is Smith and Barnwell (1986); similar constructions also 
appear in Mintzer (1985) and Vetterli (1986). Before these perfect reconstruction 
filter banks, electrical engineers had constructed similar filter banks that were al
most perfect, in the sense that the reconstructed sequence is very close to the 
original. Such near-perfect filter banks are still designed and used for many appli
cations; giving up perfect reconstruction leads to more degrees of freedom in the 
design and, if things are clone right, to perceptually equally good results. 

All this was developed without any input from mathematicians, with the 
result that electrical engineers sometimes and understandably feel that the present 
popularity of wavelets gives a lot of "undeserved" credit to mathematicians for re
inventing the wheel while engineers were already driving cars. This view would be 
correct if there were nothing more to wavelets than the algorithm. The realization 
that the perfect reconstruction banks are linked to a rich underlying mathematical 
structure, associated with powerful and deep mathematical theorems is a different 
matter, however. Even for applications of interest to electrical engineering, this link 
has led to new applications that use the mathematical insights, and that would 
not have been developed from only the subbancl filtering concept (examples are 
Mallat and Hwang (1992), Wornell and Oppenheim (1992)). 

To the computer scientist or engineer interested in studying vision, the mul
tiresolution analysis framework, with its different levels of detail, is very remi
niscent of multiscale models in vision analysis, such as Witkin (1983), or in a 
more algorithmic version, the pyramids of Burt and Adelson (1983). (As men
tioned above, it was Mallat's background in vision theory that inspired him to 
re-interpret wavelet bases via the mathematical concept of multiresolution analy
sis.) Independently of and in parallel with the wavelet development, Adelson had in 
fact already switched from the (redundant) pyramid schemes to cascaded subband 
filtering for image analysis (see Adelson et al. (1987)). 

Approximation theorists also recognized familiar concepts in wavelet the
ory: the space Vj, with their varying degrees of resolution, are basic standard 
fare in approximation theory. The example in (5) of spline spaces Vj really stems 
from approximation theory (de Boor (1978)). Similarly, formulas (10) and (12) 
are reminiscent of subdivision schemes, a technique developed to generate smooth 
curves and surfaces (Cavaretta et al. (1991)), Dyn et al. (1987)). There is a "philo
sophical" difference between many theorems in approximation theory and, for in
stance, the way function spaces are characterized via wavelets. Wavelet coefficients 
< f^j.k > capture the difference between the successive approximations Pj-if 
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and Pjf, rather than studying / via the Pjf. Similarly, subdivision schemes typi
cally contain in their coarse-to-fine-formulas, only the first term in the right hand 
side of (12). Nevertheless, approximation theorists immediately recognized the 
kinship of wavelets, and are very active in the field now. 

Wavelet techniques have some similarity as well with the multipole algorithms 
developed by Rokhlin (1985) for fast numerical computations. (See also Rokhlin's 
presentation in this ICM.) In a multipole expansion, the quantity to be computed 
(such as, e.g., the total gravitational potential energy of a completely arbitrary 
distribution of a large number of particles) is taken apart into many contributions 
living on different scales; for many of them, a coarse scale description suffices. 
Moreover, the taking apart is done in a hierarchical way. All this results in a fast 
algorithm. The wavelet algorithms in Beylkin et al (1991) and subsequent work 
(e.g. Beylkin (1993)) work on the same principle as these fast multipole expansion 
techniques. 

Finally, and as promised, wavelets buy yuu a time-frequency decomposition: 
once a function / is decomposed as in (3), it is written as a superposition of 
building blocks, the wavelets 0j,/c, each of which is well localized in frequency (in 
a frequency band of width proportional to 2~3, i.e. 2~3a < |£| < 2~3 ß) and in 
time (around the position 23k, with a resolution proportional to k). Note that this 
means that high-frequency wavelets have very sharp time resolution, whereas low-
frequency wavelets are much more spread out in time but have sharp frequency 
resolution. A decomposition of this type is well suited to signals / that consist of 
short-lived high-frequency transients superposed on more placid longer-lived low-
frequency components. Many signals are of this type. But many more are realty 
more complicated, and require a battery of tools of which wavelets are only one; 
we shall come back to this later. 

6. Back to the Algorithm 

For many applications, the powerful mathematical properties of wavelets can be 
exploited only if the associated algorithm is truly efficient. We saw earlier that 
the total complexity of a decomposition into orthonormal wavelets is KN, if there 
are K nonvanishing hn,gn in the associated filters. However, many "natural" or
thonormal wavelet bases correspond to filters with infinitely many nonvanishing 
hn, ruining the complexity estimate. This is the case, for instance, if the Vj are 
taken to be spline spaces of higher order than 1. In this case, the most natural 
choice for the function 0, the translates (ß(x — n) of which should span all of Vb, 
would seem to be the B-spline function, obtained by convolving X[o,i] with itself 
fc — 1 times (for splines of order k). For this choice, the 0(z —??,) are not orthogonal, 
so that 0 needs to be replaced by an "orthogonalized" version, which is however 
now supported on all of M (with exponential decay), leading to infinitely many 
K £ 0. 

So how does one get MRA with finitely many nonvanishing hnl The answer 
lies in the filtering approach from electrical engineering. If one takes (9), (10), and 
(12) as the point of departure, rather than as a corollary of the MRA structure, 
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then one finds easily that the hn should satisfy 

X)hnhn+2k =ak,0 , (16) 
n 

while the gn can be chosen as 

9n = {-l)nh*_n+1 . 

Smith and Barnwell (1986) had found ways to construct finite sequences h that 
satisfy (16). Such sequences do not necessarily correspond to an L2-function 0 
such that (6) holds, however; necessary and sufficient conditions for this corre
spondence were found by Cohen (1990) and by Lawton (1991). If these conditions 
are satisfied, then there always exists an MRA associated with h. To obtain high 
approximation order for the MRA-ladder and smoothness, one needs to impose 
additional conditions on the sequence h, of the form 

^ ( - l ) n h n n z = 0 Z = 0 , . . . , L - 1 . (17) 
n 

Daubechies (1988) constructs such finite sequences h and proves that by this 
method one can obtain compactly supported 0, iß that are Ck, where k is ar
bitrarily large (but finite). These functions <fr(x), iß(x) are not given by an explicit 
analytic expression, although the Fourier transform of 0 can be written as an 
infinite product, 

oo 

kO=mI[rnQ(2-3t) , (18) 
j = i 

withmo(0 = 2 - V 2 5 ^ n h n e - ^ . 
One can use (6) to make a detailed study of their different, sometimes in

triguing, properties. For instance, it turns out that the Holder exponent of 0 in a 
point x in its support depends on the frequency of the digits 1 and 0 in the binary 
expansion of z, as shown in Daubechies and Lagarias (1992); this means that these 
0 have multifractal properties (Daubechies and Lagarias (1994); see also Jaffard 
(1994)). 

Although the wavelet bases constructed in Daubechies (1988) have been used 
in various applications, they are by no means ideal for all circumstances, and 
many other constructions have been carried out that improve on them in some 
respects, while giving up on other properties. For instance, one can give up some 
of the orthogonality in the constructions above, and construct a Riesz basis rather 
than an orthonormal basis of wavelets (together with the dual Riesz basis), as in 
Chui and Wang (1991), Chui and Wang (1992), Auscher (1989), or Cohen et al. 
(1992); this relaxing of orthonormality buys more smoothness and/or symmetry 
for the wavelets. Another useful construction restricts these wavelet bases to an 
interval while retaining their powerful mathematical properties (see e.g. Cohen et 
al. (1993), and Andersson et al. (1994)). Not all applications require absolutely 
that the filter h be finite; if rao, defined as in (18), can be written as the quotient of 
two trigonometric polynomials, then there still exist fast algorithms to implement 
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convolution with h, and such filters and wavelet bases have been proposed as well 
(Lemarié and Malgouyres (1989), Evangelista (1992), Herley and Vetterli (1993)) 
— in fact, the original construction by Stromberg (1982) falls into this class. 

7. Higher Dimensions 

So far, we have been working in one dimension only. There exist several pos
sible generalizations to higher dimensions. Usually they involve several wavelets 
0 1 , . . . ,ißK, and the wavelet basis is then given by the collection ißV,

k(x)2~3d/2ißn 

(2~3x — k), j G Z, k G Zd, n = 1, . . . ,K. The easiest construction starts from 
a one-dimensional multiresolution analysis, with scaling function 0 and wavelet 
iß, and uses these to build one scaling function $ and 2d — 1 wavelets \E/fc in d-
dimensions, by taking products of (ß(xk) and iß(xm). For d = 2, for instance, one 
takes $(x1,x2) = (ß(xx)cß(x2), ^1(x1,x2) = iß(x1)^(x2), ^2(x1,x2) = (ß(x1)iß(x2), 
\[ /3(x\,x2) = iß(xi)iß(x2). This corresponds to a two-dimensional multiresolution 
where the spaces Vj are tensor products Vj ® Vj, and the ^ ? £, k G Z2, n = 1,2,3, 
then exactly span Wj, the orthogonal complement of Vj on Vj_i. The higher-
dimensional \[/fc and $ inherit, of course, recursion relations similar to (6) and (7) 
from their one-dimensional progenitors, so that the algorithms remain basically 
as simple as in one dimension. There exist other, fancier constructions as well, 
with "nonseparable" higher-dimensional wavelets, possibly with a dilation matrix 
A replacing the simple scaling by 2, but the simple tensor product multiresolution 
analysis above is the most used. One can also introduce special bases of multidi
mensional wavelets, such as the divergence-free wavelet bases of Battle and Feder-
bush (1993) or Lemarié-Rieusset (1992), useful for decomposing divergence-free 
vector fields. 

In most of what follows, I will stick to the one-dimensional notation, but all 
statements (unless qualified) will be true for these d-dimensional wavelets as well. 

8. Mathematical Properties 

A first important property of wavelet bases is that they provide unconditional 
bases for many classical function spaces. A family of functions {ga',ct G A} is 
an unconditional basis for a Banach space B C 5" if it is a Schauder basis and 
there exists a criterion to decide whether / G B by using only the absolute values 
| < fi9a >\ia G A. Equivalently, the ga constitute an unconditional basis if, 
whenever YlaeA ccc9a G B, multiplying the coefficients ca with arbitrarily chosen 
ea = i l always leads to another element of B, i.e. J2aeA eaca9a G B. It turns out 
that the orthonormal wavelet bases (or more generally, Riesz bases of wavelets) 
give such unconditional bases for Lp (1 < p < 00), the Sobolev spaces Ws, the 
Besov spaces B^,s, the Holder spaces Cs, as well as for the Hardy space H1 and 
its dual BMO (see Meyer (1990)). For instance, (15) gives a characterization of 
/ G Cs, using only the |< f,ißj,k >\, if we know a priori that / G L°°. This last 
requirement can be dropped if we also impose that supfcGZ |< / , 00^ >| < 00; this 
then means that {00,/c", k G Z j u j ^ - j ^ ; k G Z, j G N} is an unconditional basis for 
the (inhomogeneous) Holder space Cs (provided 0 G Cr with r > s). 
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Intuitively speaking, wavelet expansions do so well, in such a variety of frame
works, because their smoothness allows them to adjust well to smooth functions 
(or to smooth portions of functions), their scaling properties allow them to "zoom 
in" on singularities, and their good spatial concentration allows them to handle 
decay well. 

It follows that wavelet expansions for a function / can converge in many 
different topologies (depending on which spaces / belongs to). They can converge 
in even other ways as well. For instance, if we restrict ourselves to an interval, 
and order the wavelet basis properly (exhausting every scale first before moving 
on to the next finer scale), then the truncated sums of the correspondingly or
dered wavelet expansions will converge in L1 on the interval. (L1 does not have 
unconditional bases, so some ordering is necessary.) When looking at pointwise 
convergence, one finds easily (provided 0 and iß satisfy a minimum of decay and 
smoothness conditions, as always) that the wavelet expansion of / converges in all 
points of continuity of / . It is also true that for L2-functions / , the wavelet expan
sion of / converges pointwise almost everywhere (more precisely: in every Lebesgue 
point of / ) . For compactly supported 0, this last point follows from standard har
monic analysis arguments once one realizes that supj £]fc |< fi<ßj,k >\\^jtk{^)\ is 
essentially a maximal function for / , bounded above (up to a constant factor) by 
the standard Hardy-Littlewood maximal function. The result is also true for less 
constrained 0 (Auscher (1989), Kelly et al. (1994)), and it carries over (as usual) 
to other Lp-spaces as well. 

9. Applications 

Among the many successful applications of wavelets, only a few can be presented 
here. Particularly attractive (at least to me) are those where the mathematical 
properties of wavelets play an essential role in their effectiveness. A first example 
was the matrix or operator compression in Beylkin et al. (1991). The matrices 
Aij they consider are finely sampled versions, Aij = K(ia,ja) of an integral 
kernel K(x,y) corresponding to a Calderón-Zygmund operator, i.e. K satisfies 
bounds of the type \K(x,y)\ < C\x - y\-\ \dxK(x,y) | + \dyK(x,y)\ < C\x-y\~2 

(with often similar bounds for higher order derivatives). For the matrix Aj j , this 
means that the matrix elements vary smoothly with i,j as long as (i,j) stays away 
from a region around the diagonal; near the diagonal wilder behavior is allowed. 
Replacing the sequence Aij by its wavelet coefficients (obtained by "filtering" in 
both horizontal and vertical directions, with the fast algorithms explained above) 
results in a new matrix in which the majority of entries are exceedingly small. 
Thresholding them by e (i.e. the entries smaller than e are replaced by 0) gives 
a sparse matrix, so that computing (a truncated version of) the action of A on 
a vector can be clone much faster. The beauty is that one can actually control 
the damage done by thresholding — not a trivial matter, since a large number of 
small errors can still add up to a sizeable total error. If the tresholding is done 
a little bit more carefully than by simple truncation (some sum rules need to be 
respected), then Beylkin, Coifman, and Rokhlin proved that the truncated matrix 
^tmnc obtained by thresholding and then returning, via the inverse algorithm, to 
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the "real world" from the "wavelet coefficient world," satisfies || A — A[runc ||< Ce1 

in L2-operator norm, with C, 7 independent of e and also independent of the size 
of the matrix. The proof essentially repeats the argument of the "T(l) theorem" 
by David and Journé (1984). 

The ort honor mality of wavelet bases, as well as their different scales, are 
exploited by Elliott and Majda (1994) in an application closer to physics. They 
use wavelets as a tool to generate random velocity fields that accurately model 
fractal, self-similar fields, important in turbulent diffusion. 

Applications to a very different field (although, strictly speaking, not of 
wavelet bases but of another type of wavelet representation) can be found in the 
work by Mallat and Hwang (1992). In one application, they seek to remove noise 
from very noisy images. This noise has particularly large effects on the fine scale 
wavelet coefficients, which also contain the information necessary to keep "sharp" 
edges in the image — discarding these corrupted fine scale coefficients altogether 
would result in a less noisy image, but it would also look blurred. Mallat and 
Hwang exploit the characterization of singularities given by the rate at which lo
cal wavelet coefficients decay as a function of scale, to sort out the chaff from the 
grain in the fine scale coefficients, leading to a restored denoised image with sharp 
edges. 

Yet a different set of applications is in the work of Donoho (1993). He also 
discusses denoising. The starting point is a function / , supposed to belong to a 
Banach space B (which describes the class of problems of interest in a particular 
application); / is known only through noisy samples or estimations. Suppose that 
(9a)aeA is an unconditional basis for B. Then the data for / can be translated 
into noisy estimates for the coefficients of the expansion of / into the ga. The 
denoising consists in a thresholded shrinking of these coefficients (all the ones 
below a threshold are set to zero, the ones above the threshold are multiplied with 
a nonzero coefficient < 1 depending on their size) and reconstruction. Donoho 
proves that if the ga constitute an unconditional basis for B, then the worst-case 
error for this method cannot be significantly larger than the worst-case error for 
any other method, however fancy. Because wavelet bases are unconditional bases 
for many function spaces, they provide therefore a near-optimal method for a large 
variety of frameworks. 

Wavelet bases are also, because of their adaptivity, a good tool to use in 
nonlinear approximation of e.g. piecewise smooth functions; see e.g. DeVore et al. 
(1992), Donoho (1993). Linear approximation theory discusses how well successive 
truncations of an expansion approach the desired function. For instance, if (gn)n^ 
is a basis for B, then linear approximation is concerned with the behavior, as a 
function of N, of distjg(/, E^r), where T.^ is the linear subspace Ejy = {/ = 
Yln=i cn9n\ cn G C}. In nonlinear approximation, the N-ih approximation of/ still 
involves N terms, but they need not correspond to the first N basis functions. That 
is, one studies distjg(/, SN), where SN = {/ = J2neifìN

 cn9n\ cn E C, #// ,TV = N}; 
SN is no longer a linear subspace of B. An example of how this affects things: if / 
is a piecewise Cs function with good decay, and possibly discontinuities between 
the pieces, and if we choose a wavelet basis (with (ß,iß G CT with r > s), then 
dist/,2 (/, EJV) ~ CN~X/2, but distL2 (/, SN) ~ CN~S: the nonlinear approximation 
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does not suffer from the presence of the discontinuities. In contrast, if one chooses 
a Fourier basis, one finds that both dist^2(/, £;v) and dist^2(/, Sjy) decay like 
TV-i/2. 

10. Shortcomings of Wavelets 

In spite of all their good qualities, wavelets are, of course, not the universal 
panacea. They are markedly inefficient for coherently oscillating components. 
Wavelet bases also suffer from being very translationally noninvariant, and no en
tirely satisfactory solution has been found, so far, to deal with boundary problems 
in higher dimensions for nonrectangular domains. Other recently developed har
monic analysis tools are much better at dealing with oscillations: wavelet packets 
and localized trigonometric bases. 

11. Wavelet Packets 

The algorithm that we sketched above for a decomposition into wavelets consists 
of concatenating diagram (11) several times, starting a new stage from the pre
ceding uSj" output. The "dj"-branches are left untouched. We could also choose 
to attach another splitting diagram (11) to the "dj"-branches; this still results in 
fast algorithms, corresponding to a decomposition into different functions, called 
wavelet packets. The wavelet bases we saw before are just one (extreme) example 
of wavelet packet bases. As explained before, the wavelet bases correspond to a 
Littlewoocl-Paley decomposition: in the frequency domain, V>j,fc(£) is essentially 
concentrated in and near the region 23-K < |£| < 2J+17r. When the extra splittings 
are introduced that lead to wavelet packets, they correspond to further splits of 
these frequency blocks. One can, for instance, choose to keep splitting the branch 
of the wavelet algorithm diagram that would normally have ended in the "rfj"; 
if we split j times, at every intermediate step splitting all the subbranches that 
have been sprouted from the dj-branch, then we will have subdivided the region 
237T < |£| < 2J+17T into 23 subregions. If we do this for all j > 0, we end up with 
wavelet packets that aU have the same "width," for their Fourier transforms as 
well as in "physical" space; these are therefore much closer to a standard win
dowed Fourier type basis than to the dyadic frequency decomposition given by 
wavelets. By choosing to split fewer times, one can generate a wide variety of 
wavelet packet bases that are intermediary between the "pure" wavelet bases and 
these Fourier-type wavelet packet bases. 

Among all these bases, one can adaptively choose the one that is most "effi
cient" for a given function / (meaning, coarsely speaking, that the decomposition 
into this basis is achieved by a few large coefficients that represent most of the 
L2-norm of / , with a small "tail" in the other coefficients) by basing the decision 
whether or not to split, at every step in the algorithm, on the results obtained 
for / . Detailed descriptions of these wavelet packet bases, first constructed by 
Coifman and Meyer, and of their mathematical properties and the associated al
gorithms can be found in Coifman et al. (1992), Coifman and Wickerhauser (1993), 
Wickerhauser (1994), and references therein. Note that when many splittings are 
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carried out, the carving up of the frequency domain is not really as "clean" as the 
description above indicates; see Coifman et al. (1992). 

12. Localized Trigonometric Bases 

Wavelet packet bases are already much better at dealing with oscillations than 
wavelets. Even better are the localized cosine or sine bases constructed by Coifman 
and Meyer (1991), related to the independently constructed overlapped cosine 
transforms of Malvar (1990). These are orthogonal bases of the type 

fKi(t) =wk(t)sm(nkjt) , 

where the functions wk are window functions, well localized in space (e.g., with 
compact support) but with possibly varying widths Wk, and the O^j arc a cor
responding discrete sequence of frequencies; in first approximation, the $1^,1 be
have like nl/Wk- More precisely, every wk(t) is supported on an interval [a*. — 
Éfc,a/c+i + efc+i], and is = 1 on the smaller interval [ak + Cfc,afc+i - Cfc+i]; bere 
Ave assume ••• < ak-i < ak < a/c+i < •••, with the 6j chosen so that, for 
all k, ak + ek < afc+i - efc+1. In the transition regions [ak - ekìak + e*.], the 
window functions Wk and wk-i must satisfy the complementarity requirement 
w2_1(x)-{-w2(x) = 1 as well as the symmetry condition Wk-i(ak — t) = iJük(ak + 0 
(for |t| < Ek). The width Wk is then defined as Wk = a^+i — a^, and the fkii are 
given by 

/*,!(*) = {2/Wkf'
2
Wk{t)sm[^{l + \){t - ak)} . 

It is quite surprising that the functions wkl and the frequencies £lk,l c a n be chosen 
in such a way that the fk,i are all smooth (even C°°) and nevertheless provide 
an orthonormal basis for L2(M). The construction is ingenious, but it doesn't use 
any modern techniques — this construction could have been carried out in the 
eighteenth century, and maybe the biggest surprise is that it wasn't. A remarkable 
feature of the construction is that neighboring window functions can be "merged," 
leading to the replacement of the fk}i and fk+1,1' by different functions fk,i"'-> 
together with the remaining (and untouched!) fUii(n < k or n > k +1) these then 
provide a different orthonormal basis. As in the case of wavelet packets, this choice 
between two options (to merge or not) can be exploited to construct a whole family 
of different bases, all "living" within one fast algorithm, so that the "best basis" 
can be chosen adaptively. See Coifman and Wickerhauser (1993), or Wicker hauser 
(1994). 

13. Libraries of Bases 

In practice, functions are usually quite complicated, and even these "best basis" 
algorithms do not necessarily give the most efficient decomposition. A simple exam
ple is a nicely oscillating function with just one superposed spike — the oscillations 
are best represented with a localized trigonometric basis or a wavelet packet basis, 
whereas the spike is "asking for" a wavelet representation. To address this, Mallat 
proposed a "pursuit" algorithm (Mallat and Zhang (1993)), adapted by Coifman 
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and Meyer into an algorithm using libraries of bases. Based on the function to 
be decomposed, one first selects the best basis from a library, which can contain 
wavelet packets, various localized trigonometric bases, and other possible bases 
as well (as long as they are associated with fast algorithms). One monitors the 
coefficients computed for a decomposition in this basis, ranked by decreasing size. 
Beyond a certain threshold (which can depend on the total norm of the remaining 
tail, or the slowing down of the decay rate of the coefficients in this tail), one calls 
it quits — the selected basis was good for the first components but may not be 
optimal now. Reconstructing the first components and subtracting from the origi
nal leads to a remainder, for which one star ts anew: again a best basis is selected, 
and one sticks to this basis until it becomes less satisfactory, etc This pro
cess can be repeated several times (see Coifman and Wicker hauser (1993)). This 
type of approach leads to very flexible and efficient time-frequency, or phase space 
decompositions. 

14. Conclusion 

In the last ten years, mathematical tools have emerged tha t combine insights from 
harmonic analysis with fast algorithms. They turn out to be very powerful for 
many applications, especially when used in conjunction with each other, and in 
combination with many existing tools. Not surprisingly, they can be linked with 
many other earlier insights in a variety of fields; one way of viewing them is as the 
synthesis of these varied strands. The result of this synthesis is more than just the 
sum of its parts , and as these new tools are becoming a familiar part of many a 
researcher's toolbox, they will turn up in many applications. 
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"There's so much fun to be had. . . . J don't want you to take this stuff too seriously. 
I think we should just have fun imagining it, and not worry about it — there's no 
teacher going to ask you questions at the end."(R. P. Feynman) 

1 Chern-Simons theory 

Chern-Simons theory has come to play an important rôle in three-dimensional 
topology because of its connections with Ray-Singer analytic torsion [47], the 
Gauss linking number [25], [14], [57], the Jones polynomial in knot theory [35] 
and its generalizations [63], [23], and three-manifold invariants [63], [12]. Recently, 
Chern-Simons forms and actions over noncommutative spaces [7] have been de
fined [45], [6] and turn out to provide a unifying perspective for topological gauge 
theories in odd and even dimensions [6]. 

The comparatively trivial abelian pure Chern-Simons theories (which repro
duce the Gauss linking number and analytic torsion) have turned out to be fun
damental building blocks for a theory of the fractional quantum Hall effect [61], 
[31], [59], [20], [29], [49]. This effect is one of the more exciting effects in condensed 
matter physics, discovered and explored between 1980 and the present [58], [54], 
[9], [44]. It has also been observed that S,^7(2)-Chern-Simons theories come up in 
problems of condensed matter physics connected with the theory of spin liquids; 
see e.g. [26]. 

Thus, it is well justified to start this report with a short review of the defini
tion and some mathematical properties of Chern-Simons theory. 

Let M be an oriented, framed three-manifold (the framing of M corresponds 
to a choice of a trivialization of the tangent bundle of M). Below, we shall consider 
the example where M — M3. Let G be a compact Lie group, or let G = RN. Let 
E denote the total space of a principal (7-bundle with base space M, and let V 
be a connection on E. Locally, we may describe V in terms of its components, 
A (the "gauge potential"), in some local trivialization of E. These components 
are 1-forms on M with values in Lie G (the Lie algebra of G). The Chern-Simons 
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3-form on M is defined, locally, by the formula 

CS^(A) = ti (A A dA + \ AAAAA), (1.1) 

where tr(-) is a trace on Lie G that is invariant under the adjoint action of G on 
Lie G. The Chern-Simons action functional S is defined, formally, by 

S(A) = ±- JCS^\A). (1.2) 
M 

Unfortunately, this definition does not make sense in general. To understand the 
problems with (1.2), we consider the example where M — S3 and G = SU(N). 
We choose an orthonormal basis { T « } ^ , DN = N2 — 1, in AN-I = Lie SU(N) 
and choose tr(-) such that 

tr (TaTp) = -^Saß, (1.3) 

fcGi Because ^ ( G ) = Z, the action S (A) in eq. (1.2), with tr(-) as in (1.3), 
is defined only modulo 27r/cZ. It follows that exp i S (A) is a well-defined, single-
valued functional of the connection V if and only if /e E Z. Similar remarks apply 
to general compact Lie groups. 

Assuming now that tr(-) has been chosen such that exp i S (A) is a well-
defined functional of V, quantized Chern-Simons theory is defined as a mathemat
ically precise interpretation of the formal Feynman "functional measure" 

dP(A) := Z'1 exj)iS(A)VA, (1.4) 

where VA is a formal Lebesgue measure on the affine space of connections on 
E, and the normalization factor Z (the partition function) is chosen such that 
J dP(A) = 1. One would hope to extract from (1.4) a precise definition of dP(A) 
as a complex measure on the space A of orbits of gauge potentials under the action 
of the group of gauge transformations. 

The functional exp i S(A) does not require choosing a metric on M, and one 
might expect, therefore, that dP(A) is independent of a choice of a metric on 
M. Unfortunately, this is a wrong expectation. The definition of "UA" involves 
the choice of a metric on M, and, in order to eliminate dependence of dP(A) on 
that metric, one must add to S (A) a "counterterm", which is given by the Chern-
Simons action of the Levi-Civita spin connection [63], [5]. One may then hope to 
arrive at a definition of dP(A) that depends only on the framing of M and hence 
yields what is called a topological gauge theory [63], [62]. 

The kinds of functionals on A one would like to integrate with the "measure" 
dP(A) are Wilson loops: let £ be a loop in M (i.e., a smooth embedding of S1 in 
M), and let R be an irreducible, unitary representation of G. We define 

WR[C] := TrRR [P exp Ç J A], (1.5) 
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where P indicates path ordering, and Ç is some positive constant ("field strength 
renormalization" constant) to be determined. For a smooth Lie G-valued 1-form 
A, the R.S. of (1.5) can be defined via Chen's iterated integrals, i.e., through its 
Dyson series, 

As it stands, the expression on the R.S. of eq. (1.4) is nonsense. A conventional 
strategy used to make sense of (1.4) is to fix a gauge and apply the Faddeev-Popov 
procedure [10] to interpret VA. "Fixing a gauge" consists in choosing connection-
dependent, local trivializations of E in such a way that the gauge potentials A 
satisfy certain constraints. We wish to exemplify gauge fixing in a special case, 
following [23]: we choose G = SU(N) and M — R3. Points x E M are represented 
by (Cartesian) coordinates (x+,x~,t), with x+,x~,t in M. We expand the gauge 
potential A in the basis {dx+, dx~, di] of 1-forms: 

A(x) = a+(x)dx^ + a-(x)dx~~ + a^(x)dt, (1.6) 

where ai(x) E AN-\, i = +, —,0. We choose a basis {Ta}a=i in A^-i and a trace 
tr(-) on ATV-I as specified in (1.3). Then 

DN 

a>i(x) - ^Taf(x)Ta, 

where af (x) is a function on M, Vz, a. One easily shows that the condition 

a-(x) = 0 (1.7) 

fixes a gauge (called "light-cone" or "axial" gauge). In this gauge, the Chern-
Simons action S of eq. (1.2) takes the form 

S {A) = — / tr (a+d-aQ) dx+ A dx~ A dt. (1.8) 

This action is quadratic in A. One may therefore attempt to interpret the measure 
dP(A) in (1.4) as a "complex Gaussian measure". Well, it actually is a "complex 
Gaussian", but it isn't a measure. However, all we really need to be able to do 
is to calculate moments of dP(A). Let ((•)) denote formal integration J dP(A)(-) 
with respect to dP(A). The first moments (af(x)) vanish and the second moments 
(af (x) aß (y)) can be expressed in terms of the partial derivative of a Green function 
of the d'Alembertian d+d- with respect to x+. Together, they determine all higher 
moments ("Wick's theorem"). It is advantageous to complexify the planes {t = 
const.}, use complex coordinates, z = x+ E C, z — x~ E C , and analytically 
continue the moments of dP(A) in x+. The physicists call this "Wick rotation". 
Wick rotation is convenient, but not indispensable, in the following calculations. 
The Wick-rotated second moments are: 

(aZ(x)a?(y)) = 0, for all j,a,ß, 

(a%(x) aß+(y)) = 0, for all a,ß, 

(a%(x)aß
Q(y)) = 0, for all a, A 
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and 

(a%(z,t)aß(w,s)) = 2X6aß6(t-s)——, (1.9) 

with A = — 1/k. Expectations ((•)) of more complicated functionals of A can be 
calculated from (1.9) by using Wick's theorem. In particular, we may calculate 
expectations of "Wilson lines" and Wilson loops from (1.9) (e.g. by expanding 
them in a Dyson series). 

Let i i , . . . , Im be a partition of { 1 , . . . , n}, m = 1,2,..., n = 1,2,... . To 
every index set Ig we assign a representation Ri of SU(N). Each index j E Ig 
labels a smooth curve 

7j(*) = {*j(0 e C : t0 <t' <t] 

in the complex plane that determines a smooth curve &j (t) in M3 given by 

aj(t) = {(Re Zj(t'), Im Zj(t'),t') : zó{i!) E ^(t), t0<tf < t}. (1.10) 

We define a "Wilson line operator" Wj (t) by setting 

Wj(t) := ifc[PexpC J A], (1.11) 

where ( > 0 is a field strength renormalization constant. This operator is a holo-
nomy matrix of the connection V with components A and acts on the representa
tion space VRe of SU(N). It is easy to see that 

dwj(t) = Ç daj(t) Wjfr), (1.12) 

where 
t 

aj(t) := d i ^ [ / " { a + ( z i ( 0 , O i j ( * / ) + ao(«i(0»* /)}{ft/]» 
to 

with z(t) = dz(t)/dt, and dRg the representation of A^-i determined by Rg\ 
j E Ig, 1 = 1 , . . . ,m. 

The basic object in a mathematically precise definition of SU(N) pure Chern-
Simons theory on M3 is 

0n(Mo) := (wi(*) ®---® w„(t)), (1-13) 

which is an endomorphism of the vector space 

Vn := VRii)®---®VRin), (1.14) 

with RU} = Ri, for j E Ig, n= 1,2,3,. . . . One may attempt to calculate (j)n(t, to) 
by deriving a differential equation for it. We define 

DN 

Slij := ^ ! I (8 ) - - -®dÄ W (T a ) (8 ) - - - (g )d^ (T a ) (8 ) - - -®l I , (1.15) 
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for all i,j, with 1 < i < j < n. Using (1.12), one shows — see [23] — that 

in fata) = K Y, " ' S I * JS"tf*"(* '*•») ' ( L 1 6 ) 
l<i<j<n Zl^ ' Z^ ' 

where n = Ç2À. Eq. (1.16) is the celebrated Knizhnik-Zamolodchikov equation[3&\. 
An alternative method to calculate </>n(t,to) would be to expand all Wilson line 
operators Wj (t) in their Dyson series and to calculate the resulting terms by using 
Wick's theorem and (1.9) [16]. 

Let Mn denote the subset of C n consisting of ?i-tuples, z = (z\,... ,zn), of 

complex numbers, with Zi ^ Zj, for i ^ j , and let Mn be the universal cover of 
Mn. Let K be the space of V?i-valued functions on Mn. On K we may define a 
connection 1-form u) by setting 

u) = K 2_] d ^°&(zi — zj) ^ij- (1.17) 
l < i < J < 7 1 

This connection is called the Knizhnik-Zamolodchikov connection. It is easy to 
verify that u) is flat, i.e., 

du + uj A u) — 0. 

This is a consequence of the infinitesimal pure braid relations 

[toij&ki] = o, [n^fyfc + îîfed = o, (Lis) 

where i, j , k, and £ are all distinct. Eq. (1.16) may now be written as 

dc/)n = UJ (j)n, (1.19) 

which is the equation for a parallel transporter. 
Let (z\,... ,zn) be a point in Mn, and let 7r be an arbitrary permutation of 

{ 1 , . . . ,n} leaving the subsets I\,... ,Im invariant. Let CTJ = Oj(ti) be a curve in 
M3, as in (1.10), starting at the point (Re Zj, Im Zj,t^) and ending at (Re zw^, 
Im ^Tr(j), t i ) , for j = 1 , . . . , 7i. The family of all 7i-tuples {cri,... ,an} o£ such curves 
that do not intersect each other is a union of disjoint homotopy classes of curves 
labelled by elements b of a subgroup Bn(I\,... , Im) of the braid group, Bn, on n 
strands defined by the property that the cosets of elements of Bn(I\,... ,Im) mod
ulo the normal subgroup of pure braids are permutations 7r of { 1 , . . . ,77,} leaving 
i i , . . . ,Im invariant. Let b E Bn(I\,... ,Im), and let {o i , . . . , crn} be n curves in 
the homotopy class b. Let (ßn(b

m, ti, to) be a solution of the Knizhnik-Zamolodchikov 
eq. (1.16) for the curves {ai,... ,o~n}, with initial condition (j)n(°\^->^) = I L • 
Then 

b h-> 0n(Ml,*o) (1-20) 

defines a representation cj)n of Bn(Ii,... ,Im) on Vn. This is a consequence of the 
identity 

0n(&2 o&i;*2,*o) = 0n(&2;*2,t l) 0n(&i;£ i , t O ) 
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(representation property) and the flatness of the Knizhnik-Zamolodchikov connec
tion U). 

Let 
g •-> R(n)(g) := R{1)(g)®---®Rin)(g)i geSU(N), 

be the representation of SU(N) on Vn. Because the Knizhnik-Zamolodchikov con
nection L) is 5£/(AT)-invariant, the representation cj)n of Bn(Ii,... ,Im) on Vn com
mutes with the representation R^ of SU(N) on Vn. Let Xn be the subspace of Vn 

consisting of 5,t/(A/')-invariant tensors, i.e., for £ E Tn, R(n)(g)£ — £> Vg £ SU(N). 
The space 2^ inherits the scalar product of Vn. It is an invariant subspace for (j)n. 
It is interesting to ask whether the representation cj)n of Bn(Ii,... ,Im) on Vn, or 
its subrepresentation </>n I , are unitary in the scalar product of V^. The answer 
is that they are not unitary. However, 0 n may contain a unitary subrepresentation: 
suppose that 

K = ± — | — , * = 1,2,3, . . . , (1.21) 
k + c2 

where c2 is the eigenvalue of the quadratic Casimir operator in the adjoint rep
resentation of the group G, normalized such that c2 = N, for G = SU(N). Let 
Uq(Lie G) denote the usual quantum deformation of the universal enveloping al
gebra of Lie G with deformation parameter q = exp ìITK [34]. We assume that 
the representations Ri, £ = 1 , . . . , m, have positive g-dimensions; see e.g. [21]. One 
may then define a certain quotient Tn of Vn of Uq (Lie G)-invariant tensors, which 
is expected to be invariant under the representation cj)n of Bn(Ii,... ,Im); see e.g. 
Chapter 6 of [21]. The miracle is that 0 n \ w appears to define a unitary repre
sentation of Bn(Ii,... ,Im) on Tn . For G = SU(2), proofs have been sketched in 
[52], [39]. More details can be inferred from the explicit formulas in [23], [11] and 
the general results in Chapters 5 and 6 of [21]. For G = SU(N), N > 3, a proof 
may, perhaps, be constructed on the basis of the results in [23], [21], [60], [37], 
but has apparently not appeared in the literature. The result described above is 
expected to hold for arbitrary compact, simple Lie groups G, but proofs are not 
available yet. The mathematical setting within which a proof might be constructed 
is that of braided tensor categories (more precisely "quantum categories" [21]) and 
of generalized hypergeometric functions [46] ; see also the contributions of Felder 
and Wasser man to these proceedings, and references given there. A mathemati
cally precise definition of quantized pure Chern-Simons theory on M = M3, with 
K as in (1.21), would consist of converting the conjectures just described into the
orems. Quantum-mechanical state vectors of this theory would be vectors in the 
spaces Tn

q , n — 0,1,2, . . . (ZQ ' := C), and it would determine unitary represen
tations (ßn of the groups Bn(Ii,...,Im) on Tn , for all Ii,..., Jm , and all n. The 
"physics-inspired" literature on these matters is somewhat confusing, with many 
incomplete proofs for fairly obvious conjectures. 

The analysis sketched above for G = SU(N) becomes very simple when 
G = MiV, N = 1,2,... (abelian pure Chern-Simons theory). See Section 3. Chern-
Simons theories with G = RN are the basic building blocks in the theory of the 
fractional quantum Hall effect. (It will turn out that G is actually given by MN/T, 
where T is an integral Euclidian lattice.) 
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Chern-Simons theory becomes a more interesting, dynamical quantum field 
theory if the manifold M is a full cylinder (and k = 1,2,3,.. . ). In this situation, it 
is equivalent to Lie G Kac-Moody algebra at level k and its representation category. 
See [63], and [43], [24], [16] for more details. In the context of the quantum Hall 
effect, the Kac-Moody currents acquire physical significance as "edge currents". 

But let us return to the representations <f>n of the braid groups Bn(Ii,... ,Im) 
on the spaces Tn, for generic values of the parameter K, and sketch their connection 
with polynomial invariants of knots and links. We choose n = 2p to be an even 
integer and assume that 

ä Ü + P ) = RU)\ j = i , . . . , P | (1.22) 

where Rw is the representation of SU(N) conjugate to R. Let ix be a permutation 
of { 1 , . . . , 2p] with 7r(j + p) = j -\-p, RMM = RU) (j and ir(j) are in the same 
subset Ii of { 1 , . . . ,2p}) for j = 1 , . . . ,p. Let {e^ } be an orthonormal basis of 
the representation space VR. We define vectors £(7r) E X2p by setting 

«*) = E « © « • • • ® « 4 C ® e ^ ( 1 > ) ® • • • « e S W ) - d-2 3) 
a i , . . , , » , , 

Let ò be an element of the braid group u?2p with the property that the coset of b 
modulo pure braids on 2p strands is given by the permutation ir. We consider the 
scalar products 

(EM, 02P(Mi,toH(M.)>- (1.24) 

These numbers are invariants of framed links. Quotients of these scalar products 
by analogous scalar products, with SU(N) replaced by R, yield the evaluation 
of an invariant of oriented links on the oriented link determined by the element 
b E B2P and colored by the representations R^\ . . . , R^p\ The special case where 
RÌ1) = ... z= R(P) = R is the N- dimensional, fundamental representation of SU(N) 
has been analyzed in detail in [23], with generalizations appealing in Section 6.3 
of [24]. 

The scalar products (1.24) can be calculated perturbatively, by expanding 
02p(fy hi io) in a Taylor series in K. The Taylor coefficients can be found by either 
solving the Knizhnik-Zamolodchikov equation for 02p iteratively (see the appendix 
in [23]) or, equivalently, by expanding the Wilson line operators u)j(t) defined in 
(1.11) in their Dyson series, plugging the Dyson series into the R.S. of (1.13) and 
using Wick's theorem and (1.9). These Taylor coefficients are given in terms of 
multiple integrals along the curves &i(t),..., o-2P(t). They are special cases of what 
has become known under the name of Vassiliev invariants [56]: If, in eq. (1.19), 
a specific Knizhnik-Zamolodchikov connection u is replaced by the "universal flat 
connection" defined by (1.17), with {H^} the "universal solution" of (1.18), one 
obtains the Vassiliev invariants of links. 

It is natural to conjecture that the invariants built from (1.24) depend on the 
choice of the gauge group G in a nontrivial and interesting way. For a review of 
recent results concerning this topic see e.g. [2]. 

Now it is time to shift gears and talk about physics. 
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2 Quantum Hall effect and integral lattices 

Experimentally, the quantum Hall effect is observed in two-dimensional systems of 
electrons confined to a planar region Q and subject to a strong, uniform magnetic 
field Bc transversal to £1, as indicated in Figure 1. 

L<^\ 

Figure 1 

By tuning the ^/-component Iy of the total electric current to some value and then 
measuring the voltage drop Vx in the ^-direction of the plane of the system, i.e., 
the difference in the chemical potentials of the electrons at the two edges R and 
L, one can calculate the Hall resistance 

7? — x 

ly 
(2.1) 

and finds that, for a fixed density n of electrons and at temperatures close to 0 K 
(absolute 0), the value of RH is independent of the current Iy. It depends only on 
the external magnetic field Bc. If the electrons are treated classically one finds, by 
equating the electrostatic to the Lorentz force, that 

Bc 

RH = 
ecu 

(2.2) 

where Bc is the ^-component of Bc perpendicular to the plane of the system, e is 
the elementary electric charge, and c is the velocity of light. 

By also measuring the voltage drop Vy in the y-direction, one can determine 
the longitudinal resistance, RL, from the equation 
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Neither classical nor quantum theory makes simple predictions about the behavior 
of RL, but RL > 0 means that there are dissipative processes in the system. 

Two-dimensional systems of electrons are realized, in the laboratory, as in
version layers that form at the interface between an insulator and a semiconductor 
when an electric field (gate voltage) perpendicular to the interface, the plane of 
the system, is applied. An example of a material is a sandwich (a "heterojunc
tion") made from GaAs and Ga^Ali-^As. The quantum-mechanical motion of the 
electrons in the z-direction perpendicular to the interface (identified with the x-y 
plane) is then constrained by a deep potential well with a minimum on the in
terface. Quantum theory predicts that electrons of sufficiently low energy, i.e., at 
low enough temperatures, remain bound to the interface and form a very nearly 
two-dimensional system. 

In a theoretical analysis of the Hall effect it is advantageous to consider 
the connection between the electric current density j(x) = (^(x), j2(x)) and the 
electric field E(x) = (E'i(x),E,

2(x)) at an arbitrary point x = (x1^2) = (x,y) of 
Ü which is given by the Ohm-Hall law 

E(x) = ^j(x), p = {*>** -fH) , (2.3) 
\PH Pyy J 

where pxx = Rh(^yßx)-> Pyy = B-L^xßy) a r e t n e t w o longitudinal resistivities, 
PH = RH is the Hall resistivity, and £x, &y are the widths of the system in the x-
and y-directions, respectively. This is a phenomenological law valid on macroscopic 
distance scales and at low frequencies. 

It is convenient to introduce a dimensionless quantity, the so-called filling 
factor v, by setting 

v = n/(eBc/hc), (2.4) 

where — is the quantum of magnetic flux. Then the classical Hall law (2.2) says 
—1 —i 2 

that RH rises linearly in v, RH — j^v, the constant of proportionality being given 
2 

by a constant of nature, ^-. Because, experimentally, Bc can be varied and n can 
be varied (by varying the gate voltage), this prediction of classical theory can be 
put to experimental tests. Experiments at very low temperatures and for rather 
pure inversion layers yield the following very surprising data shown in Figure 2 
[58], [54], [9]. 
These data tell us the following: 
(1) a H •'= A RH1 ( t n e dimensionless Hall conductivity) has plateaux at certain 

rational heights. The plateaux at integer height occur with an astronomical 
precision of 1:108 (defining a new standard for conductivity and yielding 
perhaps the most precise experimental value for the fine structure constant 
a — 2ive2/hc ~ 1/137). The plateau quantization is insensitive to sample 
preparation and geometry. 

(2) When (v, an) belongs to a plateau the longitudinal resistance RL very nearly 
vanishes. This means that, for such values of u and o-#, there are no dissipa
tive processes in the system. 
The remarkable nature of these facts has been expressed by Laughlin [41] as 

follows: "The exactness of these results and their apparent insensitivity to the type 
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Figure 2 

or location of impurities suggest that the effect is due, ultimately, to a fundamental 
principle." 

It is the main purpose of this lecture to uncover some aspects ofthat principle. 
We shall be modest and focus our attention on the explanation of why OH must be 
a rational number when RL vanishes, which rational numbers may occur, and what 
properties the system has when RL = 0 and an takes an allowed rational value. 

As a first step, we formulate the classical electrodynamics of a two-dimen
sional system of electrons in an external electromagnetic field (E,Btot.) when 
RL = 0, and for an arbitrary value of an- Here E is an external electric field, 
and .Btot. = Bc + B, where Bc is a constant, external magnetic field transversal 
to the plane of the system, and B is a small, nonconstant perturbation of Bc. As 
long as we do not describe the dynamics of the spins of the electrons — which are 
quantum-mechanical degrees of freedom — the laws of electromagnetism in such a 
system only involve E = (Ei,E2), the component of E parallel to the plane of the 
system, and £?tot. = Bc + B, the component of -Btot. perpendicular to the plane 
of the system. Because RL is assumed to vanish, eq. (2.3) can be rewritten as 

(i) Hall's law. 
jk(x) = aH eMEi(x), x = (x,t), with k,£ = 1,2, and e = ( ^ *), in units 
where e = h = 1. 

More fundamental are the following two laws: 
(ii) Charge conservation. 

§i 3Q(X) + V • ](x) =0 (continuity equation for the electric charge density j° 
and the electric current density j). 

(iii) Faraday's induction law. 
| 5 ( z ) + V A E ( i ) = 0 . 
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Combining (i), (ii), and (iii), we find that 
& j°(x) =aH§-t B(x). 

Defining j° to be the difference between the total electric charge density and the 
uniform background density, n, we obtain the following result [20]. 
(iv) Charge-flux relation. 

f(x) = aHB(x). 
The laws (i)-(iv) are generally covariant and metric independent (topological) [20]. 
Integrating (iv) over all of space ft, we conclude that 

qG\ = crH $ , (2.5) 

where qe\ = JQ d2x j°(x,t) is the total (excess) electric charge of the system, and 
$ = Jn d2x B(x, t) is the total (excess) magnetic flux passing through the system. 

These simple, beautiful laws, (i)-(iv), are the starting point of our analysis. 
They remain valid in a quantum-mechanical treatment of the electrons, see Section 
3, that leads to rather remarkable conclusions. Let me anticipate the main results 
of our analysis and discuss their consequences. To do this, I must recall what 
integral Euclidian lattices are. 

Let V be a vector space over the rational number field equipped with a 
positive-definite inner product (•,•). In V we choose a basis { e ^ } ^ , N = dim V, 
with integral Gram matrix K, where 

Ki;} = Kji = (e^ej) E Z, (2.6) 

for all i,j — 1 , . . . , N. The basis { e ^ } ^ generates an integral Euclidian lattice T 
defined by 

N 
r = {q = $ > ' e * : ç' CZ, V z } . (2.7) 

i=l 

The lattice T* dual to T, i.e., the lattice of integer-valued linear forms on T, is 
given by 

N 

T* = {n = Y,ni£Ì : n i G Z , V t } , (2.8) 

where {e1}^ is the basis of V dual to {e-j}^1, i.e., 

N 

é = £ (K~lr e,- , (2.9) 

and 

(K-1)* = <eV) = ì &, (2.10) 

where 
A = det K = | T*/r | (2.11) 

is the discriminant of T, and K is the matrix of cofactors (Kramer's rule). 
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The matr ix K is positive-definite, with rank (K) = N, if and only if (•,•) 
is positive-definite. The lattice T is called odd iff it contains an element q, with 
(q, q) .E 2 Z + 1. Thus, T is odd iff Ka is odd, for at least one i E { 1 , . . . , N}. 

We are now in a position to state our main contention. Consider a two-
dimensional system of electrons in a uniform, external magnetic field Bc at a 
temperature T « 0 K, with the property tha t RL vanishes. Following Laughlin, 
we call such a system an incompressible quantum Hall fluid, abbreviated as IQHF. 
We claim tha t the physics of an IQHF on very large distance scales and at very 
low frequencies (i.e., in the so-called scaling limit) is coded into the da ta ( r e , Qe) 
and (r^jQ/j,), where 

(i) T e and Th are two integral, odd Euclidian lattices, and 
(ii) for x = e, h, Qx is a primitive, odd vector in Tx. 

A vector Q E T* is called primitive, or visible, iff g.c.d. ( (Q ,e j ) ) = 1, and Q 

is called odd iff 

(Q,q> = (q,q> mod 2, Vq E V . (2.12) 

The dimensionless Hall conductivity O~H is then given by 

o-H = o-e - ah, (2.13) 

where 

o-x = ( Q x , Q s ) , for a: = e,h. (2.14) 

This proves immediately t h a t &H is a rational number. We shall denote it by 

aH = — , with g.c.d. (nH,dH) = 1. 
dH 

At this point, there is the danger tha t our theory predicts far too many 
possible rational values of O~H- However, what our theory really says is tha t if 
RL = 0 then a H must belong to a certain subset § of the rational numbers, and 
tha t if RL = 0 at some value of G H belonging to S then the properties of the system 
are encoded in some pair, ( r e , Qe) and ( r ^ , Q ^ ) , of integral Euclidian lattices and 
primitive vectors in their duals. Typically it happens tha t there are many pairs, 
( r e , Q e ) and ( r ^ Q ^ ) , corresponding to a given value of an in S. Whether a 
pair ( r e , Q e) , ( r ^ , Qh) describes an incompressible quantum Hall fluid t ha t can be 
realized in a laboratory is a complicated analytical problem of quantum mechanics 
to which our theory can only give a tentative answer! Thus, it is very likely t ha t 
many points in § do not correspond to the Hall conductivity a H of a real IQHF. 

The subscripts "e" and "ft" refer to the following physics: the basic charge 
carriers in a quantum Hall fluid (QHF) can be mobile electrons of electric charge 
—e. If RL = 0 the fluid is then described by a pair ( r e , Q e ) . They could also 
be mobile holes ("missing electrons") of charge + e , in which case the IQHF is 
described by ( r ^ , Q ^ ) . Finally, an IQHF could be composed of two fluids, one 
consisting of mobile electrons, the other one consisting of mobile holes. It is a 
natural , physical idea tha t , for small values of the filling factor, these two fluids 
do not rnix.' We shall assume this henceforth (but see [22], [27] for a more general 
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analysis also involving (indecomposable) Lorentzian lattices). The IQHF is then 
described by a pair ( r e ,Q e ) , (r^, Q/J. As the electric charge of an electron is —e 
and the one of a hole is +e, there is a relative minus sign between oe and a h in 
eq. (2.13)1. As there is a complete symmetry between electrons and holes, it is 
sufficient to develop the theory of QH fluids composed of electrons, and we set 
OH := cre and drop the subscript "e" henceforth. 

A pair (r,Q), where T is an integral, odd Euclidian lattice and Q is a 
primitive, odd vector in T* satisfying (2.12), is called a chiral quantum Hall lat-
tzce(cQHL). Our task is to classify cQHL's and to compare the predictions of the 
theory with experimental data. 

The success of the theory is quite impressive: In Figure 3 we display measured 
values of a H when RL ~ 0 (i.e., for IQHF's) in the range 0 < a H < 1 that 
have been reported in the literature [9], [53] (for so-called single-layer, narrow-well 
IQHF's). We divide the data into separate "windows", Ep, p = 1,2,3,.. . , and 
each window Ep is the union of a left window E< and a right window E>. Well-
established plateau values of G H (i.e., values of G H corresponding to some IQHF) 
are indicated as a •. Values of OH where RL has a clearly visible local minimum 
~ 0, and a H has an inflection point as a function of the filling factor v are indicated 
as a o. Very weak, or controversial data are indicated by .. Finally, the symbol p.t. 
indicates that, to such a value of cr#, there correspond several distinct IQHF's, 
i.e., there are phase transitions between two or more different IQHF's with the 
same an-

The remarkable fact is that these data — in particular the absence of data 
points — are very accurately reproduced by our theory of cQHL, see [28], [22], 
[27], if a heuristic principle of stability of a cQHL is introduced: the stability of a 
cQHL is intended to be a measure for the stability of the corresponding quantum-
mechanical state of an IQHF under small perturbations, such as changes of the 
filling factor v, see (2.4), or of the density of "impurities" in the system, etc. In 
order to formulate our stability principle for cQHL's mathematically, we must 
introduce some numerical invariants of cQHL's. The most primitive invariant of a 
cQHL (r, Q) is the dimension N of the lattice T. Next, let 

r = © Vj (2.15) 

be the finest decomposition of the lattice T into an orthogonal direct sum of 
sublattices Fj,j = 1, . . . , k, and let 

k 

Q = J2 Q(j)> Q ( j ) Ê r } > (2-16) 

be the decomposition of Q associated to (2.15). We say that a cQHL (r, Q) is 
primitive iff Q(J') is a (nonvanishing) primitive vector of r j , for all j = 1 , . . . , k. This 

1 Historically, the existence of holes in semiconductors was first discovered in measurements 
of the sign of RH ! 
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Figure 3. Observed Hall fractions a H in the range 0 < a H < 1 and their experi
mental status in single-layer quantum Hall systems. 

means that the pairs (Vj, Q ^ ) are indecomposable cQHL's. Every indecomposable 
cQHL (I\), Qo) has a basis {qi , . . . qjvQ} with the property that (Qo, qt) = —1, for 
all £ = 1 , . . . , NQ. The set of all such bases is denoted by 13(1*0, Qo). We then define 
an invariant £max. (called "relative-angular-momentum invariant" [28]) by setting 

^max.(r0,Q0) := ^min ( m a x (qi><li))-

If (r, Q) is a decomposable, primitive cQHL, i.e., 

(2.17) 

(r,Q) = © (r^.Qü)), 

as in (2.15), (2.16), we define 

*max.(I\Q) = max fmax.^.QÜ)). 

(2.18) 

(2.19) 

Our stability principle for cQHL's says that an incompressible quantum Hall fluid 
corresponding to a primitive, chiral quantum Hall lattice (r , Q) is the more stable, 
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the smaller the value of the invariant 4nax.(I\Q) and the smaller its dimension 
N. Available experimental data suggest that 

*mBx.(I\Q) < 7, (or 9), (2.20) 

for an arbitrary cQHL (r, Q) describing a physically realizable IQHF. This is con
firmed, qualitatively, by heuristic theoretical and numerical arguments [27]. Fur
thermore, there are fairly convincing, but heuristic theoretical arguments suggest
ing that, for a real IQHF with a nonzero density of impurities of finite strength, 
the dimension N of the corresponding cQHL is bounded above by a finite integer, 
TV*, depending on the filling factor v, the density of electrons, and the density and 
strength of the "impurities", with iV* —* oo, as the density of "impurities" tends 
toO. 

It is an elementary result in the theory of chiral quantum Hall lattices that 
the total number of cQHL's, (I\Q), with £max.( r»Q) < ^* a n d N = d i m r ^ -N*> 
for arbitrary finite values of £*,N*, is finite (though rapidly growing in £*,N*). 

A simple consequence of the Cauchy-Schwarz inequality tells us that the Hall 
conductivity oR of an IQHF corresponding to a cQHL (r, Q) obeys the inequality 

OH = crH(r,Q) = <Q,Q) > ^ « . ( r . Q ) " 1 . (2.21) 

This bound has interesting consequences (confirming a prejudice of Mark Kac 
[36]): if a H G Ep , i.e., 

then 
*mBx.(I\Q) > 2 p + l . (2.22) 

Our stability principle for cQHL's then says that the most stable IQHF's with 
O'H £ Ep are those described by cQHL's (r, Q) satisfying 

4mx.(r, Q) = 2p + 1 (N as small as possible). (2.23) 

Combining the universal upper bound (2.20), i.e., 4nax.(I\ Q) < 7, with the bound 
(2.21), we conclude that there should not exist any physically realizable IQHF's 
with a H < \t and that, for G H in the window E3, 4nax.(r, Q) must take the small
est possible value compatible with (2.21), i.e., Anax.(r,Q) == 7. These conclusions 
are compatible with the data displayed in Figure 3. 

The family of all primitive cQHL's (r, Q), with cr#(r, Q) E Ep and 
^max.(r>Q) = 2p + 1 (the smallest possible value), is henceforth denoted by Hp. 
In [22] we have proven an easy, yet remarkable theorem that says that there exist 
bijections, called "shift maps", 

Sp : Wi-»W„+i, p = 1,2,3, . . . , (2.24) 
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between the cQHL's in Hi and those in Hp-\-i, with the properties that 

^ ( S p O ^ Q ) ) - 1 = aH{T,Qrl+2p, 

and 
^max.(5p(r,Q)) = ^m a x . (r}Q) + 2p. (2.25) 

Furthermore, we have proven a somewhat deeper, but still rather easy uniqueness 
theorem[22\: let 

Wp - { ( r , Q ) e W p : ^ ( r , Q ) G E < } . (2.26) 

Then all the cQHL's (r, Q) in Hp are known explicitly: the possible values in E< 
of the Hall conductivity an corresponding to IQHF's described by cQHL's in Hp 
are given by the formula 

°» = mri' (2"27) 

and to each N = 1,2,3,... , with G H given by (2.27), there corresponds a unique 
cQHL, (rjv,p, Q), of dimension N, and there are no further cQHL's in Hp\ 

Note that it follows from the bound (2.20) on -£max. that Hp contains all 
possible cQHL's with aH G E< (as given by (2.27)), for p = 3. 

The lattices (TN)P,Q) with orH(TNtPiQ) = (Q,Q) = N(2pN + 1) _ 1 can be 
described as follows: the lattice TNìP has a basis {q, e i , . . . , e^v-i} with the property 
that 

(Q,<?) = - 1 , (Q,eJ-> = 0, j = l,...,N-l, (2.28) 

and with a Gram matrix K given by 

K 

/ 2 p + l - 1 
- 1 2 

- 1 

V 
0 

-1 
2 -1 

- 1 
-1 2 / 

(2.29) 

where 2p+l = (q, q), and Ki+\j+\ = (e^, e^) are the matrix elements of the A^-i-
Cartan matrix. Thus, the Witt sublattice [8] of TtftP is the Ajv-i-root lattice, and 
it is natural to call the series (rjvjP,Q) G Hp, N = 1 ,2 ,3, . . . , of cQHL's the 
fundamental A-series in the window Ep . The cQHL's (rjviP, Q) described here are 
typical examples of a general class of so-called maximally symmetric cQHL's [28], 
[27], which can be classified. The shift map <Sp_i acts on the A-series in Hf by 
replacing K\\ = 3 by Kn = 2p + 1 and leaving the other matrix elements in the 
Gram matrices unchanged. 

If you compare these results with the data in the windows E^ of Figure 3 
and recall that an IQHF is the less stable, the larger the values of p and N of the 
corresponding cQHL, the agreement between theory and experiment is remarkable. 
Is there a problem with the data point at OH = ^j G Ef ? There are no cQHL's 
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with a H = Yï and £max, = 3, but there actually are at least two distinct, low-
dimensional cQHL's, with a H = ji and ^max . = 5(!), one obtained by applying 
the shift map Si to the lattice Z © 3Z, hence of dimension 2, and another one 
of dimension 7 (among, perhaps, further lattices of high dimension). Because, for 
these lattices, tmax. d ° e s not have the minimal value, 3, allowed in the window Ei, 
an IQHF with G H = -jj is expected to be quite unstable against perturbations. 

To the mathematician, the results just described may look disappointing, 
because they do not involve interesting lattices. The situation changes when we 
study the cQHL's belonging to the family Hp := Hp\Hp, corresponding to the 
range E> of values of GH- Because the shift map Sp_i is a bijection between 
Hi and Hp, p = 2,3,4, . . . , the classification of the most stable cQHL's with 
G H £ E>, that is of all the lattices in Hp , reduces to the classification of lattices 
in Hi- But this is not an easy job. Although the number of cQHL's in H\ of 
dimension N < N* is finite, it grows rapidly in Af*. 

In order to make progress, one may attempt to translate physical properties 
of IQHF's (related e.g. to electron spin, or to the spectrum of quasi-particles in 
such systems) into mathematical properties of quantum Hall lattices (related to 
the structure of their Witt sublattices and of the so-called glue group; see [28], [22], 
[27]). This enables one to introduce subfamilies of quantum Hall lattices, likely to 
describe physically realizable IQHF's, whose classification is feasible. 

A prominent finite series of cQHL's in Hf is the one corresponding to the 
values 

2 3 4 5 6 . . 
^ = 3 ' 5 ' 7 ' 9 ' ï ï - ^ 

It is called the E-series, for the following reasons. Let Ö © Tw denote the Kneser 
shape [8] of an integral lattice T, 

oer^crçrço'er^ 

where Tw is the Witt sublattice generated by vectors of squared lengths 1 and 
2. To every GH in the ^-series (2.30) there corresponds a cQHL (r, Q) with the 
property that the ö-sublattice in its Kneser shape is a one-dimensional, odd lattice, 
denoted Oj-, T]y = T ^ is an .E^-root lattice, with k = 7,6,5,4,3, and Q E ö\ is 
orthogonal to T\y [28]. Here we define the lattices T ^ as the root lattices of the 
Lie algebras corresponding to the following Dynkin diagrams: 

and #3 = A2 © Ai <-> o—o-

There is also a cQHL with G H = j% and £max. = 3 . It has a two-dimensional Ö-
sublattice, and its Witt sublattice is the Ai-root lattice. This cQHL may be viewed 
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as an irregular endpoint of the ^-series. For there is no cQHL with G H = j$ and 
^max. = 3 in dimension N < 4, or with discriminant A < 15 and N < 9. 

A lattice T is obtained from its Kneser shape, OÇBTw, by gluing, namely by 
adding cosets of vectors in Ö* © T ^ , to Ö © Tyy- The lattices T^ obtained from 
Ok © r ^ , where r#fc is the E^-root lattice, k = 7,6,5, are unlikely to correspond 
to physically realizable IQHF's, as their dimensions (and the number of quasi-
particles of the corresponding IQHF's) are large. However, they contain quantum 
Hall sublattices, with the same values for G H and £max., which are realistic. For 
example, for k = 7, G H = §, the cQHL obtained from Ö7 © TE7 by gluing contains 
a decomposable, two-dimensional QH sublattice, 3Z © 3Z, and an indecompos
able, three-dimensional QH sublattice, whose Witt sublattice is the Ai-root lattice 
which, physically, could describe electron spin [28], or an internal symmetry that 
we call "isospin" symmetry — as well as less realistic sublattices of dimension 
4, 5, 6, and 7. All these sublattices yield cQHL's with G H = f, 4 a x . = 3. We 
thus predict that there should be at least three rather stable IQHF's with ojy = §. 
They differ from each other in the rôle played by electron spin (which can be tuned 
by tilting the external magnetic field Bc) or by "isospin". One therefore expects 
a magnetic-field driven phase transition between different IQHF's with G H = §• 
These predictions of our theory are in remarkable agreement with experimental 
data. 

There is also a D-series of cQHL's, leading, e.g., to values of G H = ^ with 
an even denominator dn'- ^u — \ (arbitrary Dn), and G H = 12

4.n? corresponding 
to Tw = ^Dn with n < 7. Let (r, Q) be a primitive cQHL. It has been shown in 
[28] that the sublattice of V orthogonal to Q cannot contain any self-dual lattice. 

Besides the D- and the ^-series, there is also an AN-I-series of cQHL's in 
Hi that could describe single-layer IQHF's if N is an odd integer > 5. They yield 
the values 

*" = WTÏ (2-31) 

of the Hall conductivity ( f j ^ ' A ' " - ) " 
Furthermore, we have classified all two-dimensional, three-dimensional, and 

four-dimensional cQHL's in H^; see [27]. (With an efficient computer program one 
could extend these results to N = 5, 6.) They correspond to the values \, | , | , | , ^ 
rA/r = 3 ì a n d ^ ^ ^ i ^ ^ ^ ^ ^ - ^ - - ^ i n H ^ M A and^f iV = 4i 
\iy °)i <U1LL 3 ' 4 ' 5 ' 5 ' 7 ' 7 ' 7 ' 8 ' 9 ' 1 1 ' 1 1 ' 1 1 ' 13 ' 17 ' 19 ' 21 ' c L l l u 31 ^ i V ^J-

Besides the lattices discussed above, there are plenty of decomposable cQHL's 
in Hi obtained as the direct sum of two cQHL's of the fundamental A-series of 
cQHL's in Hi- They correspond to the sequence 

4ATM 4- N + M 
" - (2N + WM + 1) - " . « = ^ , 3 (2.32) 

of values of the Hall conductivity. Because there is a very stable single-layer IQHF 
with G H = I, described by ( r = Z, Q = 1), one does not expect to see plateaux 
in the Hall conductivity around the points given in (2.32), for values of N and M 
larger than 2 or 3. 
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Finally, our theory provides candidates of IQHF's described by pairs (Te, Qe) 
and (r/l5 Q/7) of cQHL's corresponding to values of G H — G^ — G^ in the window E^. 
These IQHF's would be charge-conjugate to those described by the fundamental 
yl-series in Hf. They are obtained by setting r e = Z, Qe = 1, Tjx = r ^ . i ; see 
(2.27), (2.28). One finds that 

N 
GH = ae - Gh = 1 - ^ ^ j , N = 1,2,3, . . . . (2.33) 

For N < 6, these values of G H coincide with the ones of the .E-series. The ex
istence (and uniqueness) of these pairs of cQHL's makes it plausible that G H = 
n» Ï3 » ïk> Tf a r e v a ^ u e s o r " t n e Hall conductivity of physically realizable IQHF's. 

Those values of G H that correspond to several cQHL's in Hi (e.g. | , | , | , | , 
. . . ) tend to be values where, experimentally, phase transitions are observed. 

We emphasize that, logically, our theory predicts the values of G H that cannot 
appear in IQHF's — indeed, it predicts plenty of gaps if bounds on £max. and AT" 
are imposed. (For example, it tells us that values of G H = ^p-, with dn very 
large, require large values of either £max.

 o r N and hence should not be observed!) 
Furthermore, it tells us that if an allowed value of G H is observed in an IQHF, the 
structure of the IQHF can be described by a certain set of cQHL's. That's all our 
theory does if no heuristic principles are added to it. 

Next, we propose to sketch how the physics of IQHF's leads us to study the 
mathematics of chiral quantum Hall lattices. 

3 From incompressible quantum Hall fluids to chiral quantum Hall 
lattices via Chern-Simons theory 

The starting point of our analysis is the idea to look for a theoretical description 
of the physics of an IQHF in the limiting regime of large-distance and long-time 
(low-frequency) scales. This limiting regime is called the scaling limit of the sys
tem, and experience shows that the theoretical description of physical systems 
simplifies in the scaling limit. An IQHF can be characterized by the following 
physical properties. 

(PI) The temperature T of the system is close to 0 K. The longitudinal 
resistance, ÄL, of an IQHF at T — 0 K vanishes, and the total electric charge is 
a good quantum number to label quant urn-mechanical state vectors of the system 
[28], [19]. The charge of the groundstates of the system is normalized to be zero. 

(P2) In the scaling limit, the total electric charge and current densities of 
an IQHF are the sum of N = 1,2,3,. . . separately conserved charge and current 
densities describing electron and/or hole transport in Af separate "channels" dis
tinguished by conserved quantum numbers. In our analysis, N will be treated as 
a free parameter. (Physically, N turns out to depend on the filling factor v and 
other parameters characterizing the system.) 

(P3) In units where e = h = 1, the electric charge of an electron/hole is 
—1/1. A local excitation of the system composed of electrons and holes and of 
total electric charge gei. satisfies Fermi-Dirac statistics if qe\, is odd and Bose-
Einstein statistics if qe\. is even. 
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The quantum statistics of any local excitation of the system of electric charge 
qe\m E 2 Z + 1 must be Fermi-Dirac statistics (i.e., the Pauli principle must hold), 
and if çei. G 2Z it must be Bose-Einstein statistics. 

(P4) The quantum-mechanical state vector describing an arbitrary physical 
state of an IQHF is single valued in the position of aU those excitations that are 
multi-electrons /-holes. 

The properties (P1)-(P4), believed to be true in every IQHF, are physical 
properties. Part of the art of theoretical physics is to translate physical properties, 
deduced from experiments, into precise mathematical hypotheses. This cannot be 
done in the form of theorems and requires intuition. But once this exciting part of 
the job is completed, one must attempt to use mathematical theorems to derive 
new predictions on the behavior of a physical system. 

The assumption that the longitudinal resistance RL of an IQHF vanishes 
is translated into the mathematical assumption that the energy spectrum of the 
quantum-mechanical Hamiltonian describing the dynamics of the system exhibits 
what is called a mobility gap 6 above the groundstate energy which is strictly 
positive, uniformly in the size of the system. This is actually an assumption that one 
can try to derive from the underlying microscopic Schrödinger quantum mechanics 
of nonrelativistic electrons. This is a difficult, but not hopelessly difficult, problem 
of analysis; see [15] and references given there. 

The quant urn-mechanic al electric charge and current densities of a physical 
system are op er at or-valued distributions 

j(x) = {j°(x),j1(x),...,jd(x)), (3.1) 

where d is the dimension of physical space, and x = (x, t) is a space-time point. 
They satisfy the continuity equation (conservation of electric charge) 

§-tj\x) + V-j(x) = 0. (3.2) 

Let J(x) = *j(x) be the d-form dual to j . Then (3.2) says that 

dJ(x) = 0. (3.3) 

For a two-dimensional system confined to a disk fìCM2, the Poincaré lemma tells 
us that (3.3) implies that 

J(x) = db(x), (3.4) 

where b(x) is a 1-form; b is determined by J up to the gradient of a scalar distri
bution XJ he-, b has the properties of an abelian gauge field. By property (P2) 

N 

J(x) = Y, Qi A*), (3-5) 
i = l 

where Qi is the unit of electric charge transported by the current Jz, and J% 

satisfies the continuity equation 

dJ\x) = 0, îoii = l,...,N, (3.6) 
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so that, by Poincaré 's lemma, 

J\x) = db\x), i = 1,...,N. (3.7) 

The key idea is to describe the physics of an IQHF in the scaling limit in terms 
of an effective field theory of the gauge fields b(x) = (bx(x),..., bN (x)) . Because, 
by property (PI), an IQHF has a strictly positive mobility gap 6, that effective field 
theory can only be a topological field theory. The presence of a nonzero, external 
magnetic field transversal to the plane to which the electrons of an IQHF are 
confined implies that the quantum dynamics of the sj^stem violates the symmetries 
of parity (reflections in lines) and time-reversal. The only topological field theory 
of the gauge fields b(x) breaking these symmetries and respecting invariance under 
the gauge transformations 

b(x) h-> b(x)+dX(x) (3.8) 

is abelian Chern-Simons theory, with G = MN. This has been shown in [29], [26]. 
(The same conclusion can be reached by starting from the laws (i)-(iv), Section 2, 
preceding eq. (2.5), of electrodynamics in quantum Hall fluids [20], or by studying 
gauge anomaly cancellations [59], [26].) The action functional of abelian Chern-
Simons theory is given by 

SAW = ^ jbT ACdb + r 9 A (b) , (3.9) 

A 

where A = O x M is the three-dimensional space-time of the system, C = (Cij)fj=i 
is some metric on "field space" RN, and TöA(D) is the two-dimensional, anomalous 
chiral action only depending on the restriction of the gauge fields b to the boundary 
9A of A; see [50]. Note that, individually, the two terms on the r.h.s. of (3.9) are not 
invariant under gauge transformations (3.8) not vanishing on <9A. The boundary 
action TgA(b) is chosen such that their sum is gauge invariant (and is essentially 
determined by this requirement [50]). It is quadratic in b |ß A . 

Quantum Hall fluids are quantum-mechanical systems, and hence the Chern-
Simons theory, with action functional S'A given in eq. (3.9), must be quantized. 
Because S'A is quadratic in b, quantization may proceed via Feynman functional 
integrals. This task is not a big deal; see Section 1, and [25], [63], [23]. It turns 
out that the only dynamical degrees of freedom of the theory are localized on dA 
and describe chiral IA(1)-currents [43], [16]. Their dynamics is described by the 
term Tg^h), (after having taken into account the equations of motion of Chern-
Simons theory). The number of clockwise moving currents is equal to the number 
of positive (negative) eigenvalues of the metric C; the number of counterclockwise 
moving currents is equal to the number of negative (positive) eigenvalues of C, 
(depending on the direction of Bc). These are the experimentally observed edge 
currents first predicted by Halperin [32]. We shall focus our attention on the anal
ysis of IQHF's with edge currents of only one chirality. Then C may be chosen to 
be positive-definite. 
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As sketched in Section 1, states in the quantum-mechanical Hilbert space of 
Chern-Simons theory can be viewed as solutions (j) of the Knizhnik-Zamolodchikov 
equations [23] in n = 0,1, 2 , . . . variables. For our abelian Chern-Simons theory 
introduced in (3.9), these equations take the form 

d4 
dt \ X^ (q*,qj) *l _ ZJ + ^2 (qu,qgn) z% tifa) \ cß, 

^i<i<j<n Zi ZJ » = i J (3.10) 

where 
% = tó,..-,9f)Te R" , i = i , . . . , n , 

are n TV-tuples of charges, mathematically: characters of R^, locahzed at the points 
zi,..., zn, resp., qso is an AT-tuple of boundary charges, 

N 

<q,q'> = E JGii<îj, (3-11) 

z\ ( t ) , . . . , zn (t) aie n paths in the domain ft of the complex plane parameterized 
by a real parameter t, with Zi(t) = z£ ' , and h is a harmonic function on ft, with 
h! = f ; see [16]. 

The solutions of eq. (3.10) are functions on the universal covering space Mn 

of the space Qn\T>, where V is the diagonal fa = Zj, for some i ^ j}. At t = t i , 
with Zi = Zi(ti), for z = 1 , . . . ,n, the solution 0 t l = (j)fa, q i , . . . , zn , qn) of (3.10) 
is given by 

(ß(zi,qi,...,zn,qn) = const. H (*-*,-)<** 
1 < i < j < n 

x exp ( ^ fa.qan) hfa)j, (3-12) 

with (^i , . . . , 2n) viewed as a point of Mn, i.e., fa,..., 2n) stands for (^ i ( t i ) , . . . , 
z-nfa)) ? together with the homotopy class of the path fa(t), • • • , zn(t))tGrt t iî s e e 

Section 1. 
To see that the characters q1-, i = 1,...,N, are charges, we consider the 

charge operators 

f J* = Iti (3.13) 

of the Chern-Simons theory, where Dj is a disk in fi containing Zj, but not con
taining 2fc, k 7̂  j . From the results in [23] one easily derives that 

( / J1) 0 ( * i , q i , . . . , *„,(!„) = gj-0(^i ,qi , . . . ,«n,qn), (3.14) 

Di 
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i.e., c/)fa,qi,... ,zn,qn) is an eigenvector of the zth charge operator JD J1, with 

eigenvalue gj, for i = 1 , . . . ,N, j = 1 , . . . ,n. By eq. (3.5) the operator detecting 
the total electric charge in the disk Dj is given by 

(3.15) j J = Y,QijJi = /(Q>J>> 
D, i = 1 D3 D3-

and, by (3.14), 0 is an eigenvector of J J with eigenvalue 

N 

goi.(Bj,0) = ^QiQ) = <Q,qj">- (3-16) 
i = l 

Suppose that q̂  = q̂  = q, for some i ^ j . Let us continue the solution 0 
along the path fa(t),... ,zn(t)) from t = ti to t = t2, assuming that 2fc(t) = 0, 
for fc ^ z, j , ti < t < t2, and that (z7;(t),2j(t)) < i < t exchanges z7; and Zj along 
counterclockwise oriented arcs not including any point z^, for k ^i,j. Then 

0ta = exp(z7r(q,q))0 t l , (3.17) 

i.e., the half-monodromy (called "Aharonov-Bohm phase factor" by the physicists) 
of the solution 0 of (3.10) in the pair Zi,Zj is given by 

exp(z7T<q,q)). (3.18) 

Similarly, if Zi(t) = 0, ti < t < t<i, i ^ k, and (zk(t))t <t<t describes a 
counterclockwise oriented loop around the point zi not including any point Zi, 
i^k,£, then 

&a = exp(*27r(qfc,q^))0 t l, (3.19) 

i.e., the monodromy of the solution 0 of (3.10) in the pair Z]~,Zf> is given by 

exp(t27r(qJblq£)). (3.20) 

The groundstate of an incompressible quantum Hall fluid (IQHF) described 
by the Chern-Simons theory (3.9) is the vector 0 = 0O = 1 (n = 0 in (3.12)); the 
charge densities J1 are normalized such that 

f J* (fa = 0. 
n 

The states c/)fa,qi,... ,zn,qn) given in (3.12) might correspond to excited 
states of the IQHF. To make this idea precise, we must find conditions on the 



98 R. G. MU0 

characters, or charge vectors q i , . . . , qn that guarantee that properties (P1)-(P4) 
of an IQHF are valid. Thus, suppose that 

N 

fci.faj) = YlQiCé = <Q'%) 
i = l 

is an odd integer. By property (P3), a physical excitation with charges qj must 
then satisfy Fermi-Dirac statistics. Hence the half-monodromy (3.18) must satisfy 

exp (î7r(qj,qj)) = - 1 , 

i.e., 
(q,-,q,-) G 2 Z + 1. (3.21) 

Similarly, if (Q,qj) were even, the half-monodromy (3.18) would have to be +1 , 
and hence 

<«b,q,-)e 2Z. (3.22) 

Summarizing (3.21) and (3.22), we have that 

(Q,q> = <q,q) mod 2, (3.23) 

whenever (Q,q) G Z. 
Next, suppose that qei.(qj) G Z, for some j (i.e., qj corresponds to a multi-

electron/-hole excitation of the fluid). By property (P4), the state vector 0(zi,qi, 
. . . , Zj, qj,..., zn, qn) must then be a single-valued function of Zj (for fixed Zi, i / 
j), provided q i , . . . , qn are the charge vectors of (finite-energy) physical excitations 
of the IQHF. Thus, by (3.20), 

(q^qi) G Z, f o r a l H / j . (3.24) 

Next, if q is the charge vector of a localized physical excitation of an IQHF 
then so is — q, by a principle of charge conjugation. Furthermore, if q and q' are 
the charge vectors of two localized physical excitations of an IQHF then so is 
q + q'j because one may let their positions approach each other arbitrarily closely. 
Thus, the charge vectors of localized physical excitations of an IQHF form an 
additive group, denoted rphys.- By (3.23) and (3.24), the charge vectors q with 
Çei.(q) = (Q>q) £ Z form an integral sublattice, T, in rphys.- Finally, by eq. (3.24) 
(which expresses property (P4)), 

Tphys. Ç T*, (3.25) 

where F* is the lattice dual to T. Because 

tfel.(q) = ( Q , q ) e Z , for all q G T, 

we conclude that Q G T*. Fiirthermore, a single electron or hole is a physical 
excitation of an IQHF. Thus, there exists a vector q G T, with 

(Q,q> = 1, 

i.e., Q is a primitive vector of T*. 
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Suppose that rphyB. =* T. Then there exists some local excitation of the 
IQHF with a charge vector q G rphySi such that q mod r / 0. The electric 
charge gei.(q) = (Qjq)? of this excitation is then necessarily nonintegral (in units 
where e = 1), and its quantum statistics, as described by the half-monodromy 
exp(z7r(q, q)) ^ =bl, is neither Fermi-Dirac nor Bose-Einstein statistics. It deter
mines abelian, unitary representations of the braid groups Bn, n = 2 ,3 ,4 , . . . , and 
is therefore called abelian braid statistics. Thus, if rphy s , ^ T, there are local exci
tations in an IQHF with fractional electric charge and braid statistics ( "Laughlin 
vortices"). 

Our analysis has enabled us to safely land on the notion of chiral quantum 
Hall lattices. It should be emphasized, once more, that the general analysis de
scribed here does not imply that T is a Euclidian lattice. The quadratic form (•, •) 
could be indefinite; see [22]. For simplicity, this general situation is not considered 
here and is presumably not relevant plrysically. 

We are still missing one important point: that the Hall conductivity is given 
by 

OH = (Q5Q>. (3.26) 

To prove eq. (3.26), we study the response of an IQHF to a perturbation given 
by a small magnetic field B in the interior of the region ft. Let B be the compo
nent perpendicular to H, and let A — Ylu=o A^dx11 be an electromagnetic vector 
potential on A with 

B = (dA)i2. (3.27) 

Now, recall that Qi is the unit of electric charge transported by the current J1. 
Thus, J1 couples to the electromagnetic vector potential A through a term 

iJJiAQiA--èJbiAQidA 
2 T T , 

A A 

(up to a boundary term). The action functional of the IQHF in the scaling limit 
is therefore given by 

SA(b) = -Î- [bT AC db - — [bT AQdA, 
4?r J 2TT J 

A A 

up to a boundary term only depending on b \Q\ and A \QA- The equations of 
motion obtained by variation of SA with respect to b are found to be 

N 

dbj(x) = YjiC^QidA^), (3.28) 
i=l 

for x in the interior of A. Thus, 

Ju(x) = Qjj{2(x) = Qj(dW)i2(x) 

= (^2Qj(C-yiQl)(dA)i2(x) 

= (Q,Q)(dA)i2(x). 
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Integrating this equation over ft, we find, using (3.27), that 

«ei. = Jji2 = (Q,Q)JB = (Q,Q>*. 

Comparing this identity with eq. (2.5), we conclude that GH — (QjQ), which 
proves eq. (3.26). Following [51], [1], [4], one can show that G H can also be ex
pressed in terms of a first Chern number of a vector bundle of Chern-Simons 
groundstates on a two-dimensional torus of magnetic fluxes — this is physically 
somewhat contrived, though — or as a "generalized index", [20]. These matters 
will be discussed in more detail elsewhere. 

We conclude this report with a list of important invariants of cQHL's (r , Q) 
and their physical interpretations. For details and proofs, see [28], [22]. 

(I) Invariants of Y 

Invariant 

dimT 

A =| r*/r | 

A(Q,Q) mod 8 

genus of T 

Witt sublattice, Vw 

Physical quantity 

number of independently conserved 
currents ( "channels" ). 

number of fractionally charged Laughlin 
vortices (assuming that rphy s . = P*); 

monodromies, 
{exp(i27r(q, q')) : q, q' G T*} of fractionally 
charged Laughlin vortices. 

root lattice of simply laced Lie algebra 
of nonabelian symmetries of IQHF 
in scaling limit. 

(II) Invariants of (r, Q) 

Invariant 

°H = (Q,Q) 
orbit of Q under orthogonal 
trsfs. of T 
"level" £= g.c.d. (A,AGH) 

£max.0\Q) (see (2.17)) 

q* = min (Q,q) 
qer* 

Physical quantity 

Hall conductivity. 
assignment of electric charges 
to quasi-particles. 

relative angular momentum of 
a pair of electrons. 

smallest fractional electric charge / 0. 

These invariants and their physical counterparts permit us to elucidate fairly 
specific physical properties of IQHF's. But this goes beyond the present report. 
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4 Epilogue: Origins of the problems discussed in tins lecture 

In 1986, we became interested in two seemingly unrelated topics: three-dimensional 
gauge theories with a Chern-Simons term in their Lagrangian (or action), and 
the braid statistics of charged particles described by such theories, on one hand, 
and the fractional quantum Hall effect, on the other hand. It had already been 
suggested that these two topics are related to each other [61], [31], but it appeared 
that nobody understood the relationship in precise terms. 

Between the fall of 1986 and 1990, we focused our attention primarily on 
the problems of understanding Chern-Simons gauge theory, the related two-di
mensional conformai field theories, the general theory of braid statistics and of 
quantized symmetries in two- and three-dimensional quantum field theory, and 
some Jiiathematical-problems in iaiot_theory_ and-the theory-oL braided -tensor 
categories related to low-dimensional quantum field theory. Our main results on 
these topics appeared in [23], [21], [24], [17], [30]; see also [13], [42]. 

In studying Chern-Simons-Higgs theories [25], Fröhlich and Marchetti un
derstood that abelian, pure Chern-Simons theory was, in essence, just a way of 
reproducing the Gauss linking number. In 1987, during a sabbatical at I.H.E.S., 
Fröhlich was taught the basics of subfactor and knot theory by Jones. Jones ex
pressed the intriguing idea that, in analogy to the Gauss linking number, more 
general knot invariants should be calculable from some "field theories" defined on 
links. Thanks to the presence of Felder and Gawçdzki at I.H.E.S., Fröhlich also 
acquired some rudimentary knowledge in two-dimensional conformai field theory. 

These strands of ideas naturally merged and led to some preliminary un
derstanding of braid statistics in low-dimensional quantum field theory and its 
connection with the theory of knots and links [14]. Seminar notes of Jones and a 
preprint by Turaev [55] were very helpful in attempting to make those insights more 
precise. They soon led to the conjecture that, just as abelian pure Chern-Simons 
theory gives rise to the Gauss invariant of links, nonabelian pure Chern-Simons 
theory ought to give rise to more interesting link invariants. Apparently, Schwarz 
independently arrived at the same conjecture, around the same time (1987) [48]. 
Unfortunately, it appeared to be difficult to identify those invariants. It is well 
known that, in 1988, Witten independently came up with the same ideas, identi
fied the link invariants emerging from nonabelian Chern-Simons theory, and went 
on to define new invariants for three-dimensional manifolds [63]. His work provided 
new motivation for us (Fröhlich and King) to return to the ideas leading to the orig
inal conjecture. We found a way of deriving the so-called Knizhnik-Zamolodchikov 
(KZ-)equations [38] from formal Chern-Simons functional integrals; see Section 1. 
We showed how to calculate some knot polynomials generalizing the Jones polyno
mial from solutions of the KZ-equations. The existence of appropriate solutions of 
the KZ-equations was proven by using convergent power series expansions in A = 
±(fc-f-C2)_1, where k is the level of some Kac-Moody algebra and c2 is the dual Cox-
eter number of the underlying Lie algebra [23]. Our results gave substance to Jones' 
idea of constructing invariants of links from some "field theory" defined on links. 

The KZ-equations are the equations for horizontal sections of certain vector 
bundles equipped with flat connections, called KZ-connections. The construction 
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of KZ-connections is based on solutions of the so-called infinitesimal pure braid 
relations (a special case of which are the classical Yang-Baxter equations [3]). In 
fact, every solution of the infinitesimal pure braid relations gives rise to a KZ-
connection. Horizontal sections of vector bundles can be constructed, locally, with 
the help of Chen's iterated integrals, more appropriately called Dyson series by 
the physicists. This method was used in [23]. 

Later on, the results and methods of [23] - see also Section 6.3 of [24] - were 
confirmed and put in a more general context of Vassiliev invariants [56] in [40]. 

In 1990, Morf taught us the basic facts about the (fractional) quantum Hall 
effect. A paper by Halperin [32] made it clear to us that there is a fundamental 
relationship between the quantum Hall effect and the theory of Kac-Moody al
gebras. We found that the quantum Hall effect is actually described by abelian 
pure Chern-Simons theories [20]. This insight, combined with the theory of the 
chiral anomaly in two-dimensional gauge theory, provided a completely general 
explanation of Halperin's findings (in a more general context than the one he had 
envisaged); see also [26]. Similar results were found, independently and somewhat 
earlier, by Wen [59] and were later confirmed by many other groups; see e.g. [49]. 

The work of Fröhlich and King on Chern-Simons theory now turned out to 
be very useful: it said that physical state vectors of incompressible quantum Hall 
fluids (RL = 0, G H on a plateau) could be constructed in terms of solutions of KZ-
equations derived from certain abelian pure Chern-Simons theories. The known 
monodromy of solutions of the KZ-equations provided an essential clue to under
standing the rôle played by the theory of integral quadratic forms on lattices in 
the theoretical analysis of incompressible quantum Hall fluids. Our analysis led us 
to the notion of chiral quantum Hall lattices. A partial classification of those chiral 
quantum Hall lattices that appear in the analysis of incompressible quantum Hall 
fluids was accomplished in joint work of Fröhlich and Thiran, with contributions by 
Kerler and Studer. Incidentally, such lattices also appear in algebraic topology (al
gebraic surfaces in algebraic four-manifolds). Our enterprise has taken quite a lot of 
time and effort. We are grateful to L. Michel for explaining to us many basic facts 
concerning integral lattices. Our results have appeared in [29], [26], [28], [22], [27]. 

Now that the classification of incompressible quantum Hall fluids in terms 
of chiral quantum Hall lattices has reached a satisfactory stage, it would be time 
to develop analytical proofs of existence of incompressible quantum Hall fluids. 
Interesting ideas on this problem have appeared in [64]. The strategy followed 
there leads to rather beautiful variational problems on spaces of sections of some 
fine bundles — somewhat similar to the vortex problems in Higgs models [33] — 
which are described in [15]. 

Another fine of research concerns the definition of Chern-Simons actions on 
noncommutative spaces, in the sense of Connes [7], and the analysis of the cor
responding Chern-Simons theories [6]. This leads to a unifying point of view on 
topological field theory [63], [62]. The interplay between noncommutative geometry 
and quantum field theory appears to be a promising area for future work [18]. 

I believe we had "fun imagining it" — even though the job has sometimes 
been pretty hard. 
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Wave Propagation 
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1. Introduction 

The mathematical theory of wave propagation is the study of partial differential 
equations, or systems of such equations, with wave-like solutions. An example of 
such an equation is the wave equation 

Au(x,t) - ——uttfat) = 0 . (1.1) 
cA[x) 

Here the unknown u(x, t) is a real- or complex-valued function of a point x in Rn 

and of the time t. The given positive function c(x) is the speed of propagation of 
waves at the point x. 

Equations like (1.1) are satisfied by the acoustic pressure in a gas or liquid, 
by each component of an electromagnetic field, by each component of the displace
ment of a string or membrane from its rest position, and by many other physical 
quantities. In these examples, the number n of space dimensions is one for a string, 
two for a membrane, and three for acoustic and electromagnetic fields. In these 
cases, the physical quantity is real, so it is represented by a real solution, or the 
real part of a complex-valued solution. 

In quantum mechanics, the wave function u(x, t) is complex valued and the 
number of space dimensions is three times the number of particles in the physical 
system under consideration, so it can be very large. The differential equation for 
u is the Schrödinger equation. It differs from (1.1) in having utt replaced by iut, 
and in containing terms in which u is undifferentiated. 

When c(x) is a constant, (1.1) has the plane wave solution 

u(x,t) = Ae< k - x -"0 . (1.2) 

The constants A, k, and CJ are called respectively the amplitude, the wavevector, 
and the angular frequency of the wave. In order for (1.2) to satisfy (1.1), the 
angular frequency UJ must be related to the wavenumber A; = |k| by the equation 
UJ2 = k2c2. The solution (1.2) is called a plane wave because at each value of t it 
is constant on the planes k • x = constant. These planes are called wavefronts, and 
they propagate in the direction of k with the velocity c. The wave is periodic in 
the direction of k with the period À = 2-iï/k, which is called the wavelength. We 
note that A is small when k is large. 
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Because (1.1) is linear in u, more general solutions can be formed by super
position of plane wave solutions: 

u(x,t) = f [ ^ ( k ) ^ * - ^ ) + Aa(k)ei(k,x+W*)] dk . (1.3) 

In fact the two amplitude functions AiQa) and A2(k) can be adjusted to make u, 
given by (1.3), and its derivative ui, take on any specified values at t = 0. Then 
(1.3) is the solution of the initial value problem, also called the Cauchy problem, 
for (1.1) with c = constant. 

More interesting problems occur when (1.1) holds in a subdomain of Rn, 
with conditions imposed upon u at the boundary of the sub domain. We shall now 
describe the two classical boundary value problems that arise in this way. Similar 

„problems „occur when„c(x) is_ not „constant, _as_we_shall_see_. 

2. Boundary Value Problems 

First we consider a solution of (1.1), with c = constant, in a bounded domain D 
in Rn. On the boundary 3D of D we require that u = 0. Furthermore, we require 
that u be the product of a function v(x) multiplied by a function of t. We find at 
once that the function of t must be e±lUJt, so that u must have the form 

u(x,t) = v(x)e±iujt . (2.1) 

Now the problem is to find a constant UJ and a function v(x) not identically zero, 
satisfying the following equations: 

Aw + k2v = 0 , xeD (2.2) 

v = 0 , xedD . (2.3) 

In the Helmholtz equation (2.2), kr = ur jc2. This problem is called an eigenvalue 
problem. The values of k2 for which it has solutions are called eigenvalues, and 
the corresponding solutions v(x) are called eigenfunctions. 

In one dimension, each eigenvalue determines a possible frequency of vibra
tion of a vibrating string with fixed endpoints. The corresponding eigenfunction 
determines the amplitude of vibration at each position x along the string. Similarly 
in two dimensions, the solutions determine the frequencies and modes of vibration 
of a membrane, such as a drumhead, held fixed at 3D. In three dimensions, the so
lutions determine the frequencies and modes of vibration of fluid in a soft container 
with the surface 3D. At 3D, the acoustic pressure is forced to vanish. 

The second problem we consider is called the scattering problem. In it we 
seek a solution u of (1.1) with c = constant, in the exterior of a bounded domain 
D. This solution must consist of the incident plane wave (1.2), which is specified, 
and a scattered wave of the form (2.1) with the negative sign, which is to be found. 
Thus, u has the form 

u(x, t) = yle'C"-"*) + v(x)e~iujt . (2.4) 

On the boundary of D we require that u — 0, and at infinity we impose a condition 
that guarantees that v(x) does indeed represent a wave travelling outward from D. 
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The problem for v can be formulated as follows: given k and A, find the 
scattered wave v(x) satisfying 

Av-rk2v = 0 , xeRn-D (2.5) 

v = - A e * k x , xedD (2.6) 

lim r ^ (vT -ikv) = 0 . (2.7) 
T L - l 

7 
i—»oo 

In (2.7), which is called the Sommerfeld radiation condition, r denotes distance 
from x to an origin in D and vr denotes the radial derivative of v. 

The eigenvalue problem determines a discrete spectrum of positive real values 
of k2 that depend upon the size and shape of D and upon the dimension n. In the 
scattering problem however, the spectrum consists of all positive real values of k2. 

3. Classical Methods of Solution 

Most of the classical methods of solving the eigenvalue problem, the scattering 
problem, and other boundary value problems, are based upon separation of vari
ables. In this procedure, the point x is represented in terms of curvilinear coordi
nates and the differential equation (2.2) is expressed in terms of these coordinates. 
For example, in n = 2 dimensions we write x = (£,77) and express A in terms of £ 
and 77. Then we seek a solution that is a product of a function of £ times a function 
of 77, v = f(Ç)g(rj). 

If there are product solutions, the variables separate in (2.2). This leads to 
two ordinary differential equations, one for /(£) and another for g(n): 

i i / ( 0 = ßf(0 , L2g(V) = - W f a ) . (3.1) 

Here Li and L2 are second order ordinary differential operators in £ and 77 respec
tively, and ß is a constant called the separation constant. All the special functions 
of classical mathematics and mathematical physics arise as the solutions of these 
ordinary differential equations: Bessel, Hankel, Mathieu, Legendre, Hermite, La-
guerre, and other functions. 

To complete the specification of the solutions of (3.1), we must impose the 
boundary condition (2.3), the radiation condition (2.7), regularity conditions at 
singularities of the coordinates, periodicity conditions if coordinates are cyclic, etc. 
These conditions determine a spectrum of values of fi and corresponding solutions 
of (3.1). 

If the fi spectrum is discrete, say J.LI,JI2,. .., we denote the solutions corre
sponding to ßj by /j (£) and gj(r]),j = 1, 2 , . . . . Then we can write the solution v 
as a series of product solutions with undetermined coefficients Cj : 

00 

^rì) = YJCjm)gj(rì). (3.2) 
i= i 

When the spectrum of /j, is continuous, we denote the solutions by /(£,/.£) and 
#(77, fi). Then we represent v as an integral of product solutions with the undeter-
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mined coefficient function c(fi): 

v(^v)= JcMffarìgfarìdiJ, . (3.3) 

The coefficients c7- or c(/i) must be determined from the inhomogeneous data 
of the problem, such as the prescribed value of v on the boundary, a source term 
in the equation, initial data in the case of the wave equation (1.1), etc. Various 
discrete and continuous transforms have been developed for this purpose: Fourier, 
Laplace, Hankel, Mellin, Lebedev, etc. 

Once Cj or c(ji) is determined, (3.2) or (3.3) provides a representation of the 
solution v as an infinite series or as an infinite integral. It is then necessaiy to 
evaluate the series or integral in order to determine the quantitative behavior of 

~v(x). Whê hTĉ iŝ  smällT^öThat~the wavelength~is~large compärecTtö tlië~dimensions"" 
of D, the series (3.2) converges rapidly and the integral (3.3) can be evaluated 
readily. However, when k is large, which corresponds to a high frequency, the 
wavelength is small compared to the dimensions of D. Then the terms in the 
series (3.2) are oscillatory, as is the integrand in (3.3). In that case, there is a great 
deal of cancellation in the series and in the integral, and it is difficult to evaluate 
them. 

To overcome this difficulty, methods for the asymptotic evaluation of series, 
such as the Euler-Maclaurin sum formula and the Poisson summation method, 
have been adapted. A new method, the Watson transformation, has also been 
developed. For asymptotic evaluation of the integral, Laplace's method has been 
used, Kelvin's method of stationary phase was developed, the saddle point method 
has been used, etc. 

In addition to the methods described above, there are other classical methods 
of solution based upon Green's functions, integral equations, images, etc. 

4. Limitations of the Classical Methods 

At the end of the nineteenth century and in the beginning of the twentieth century, 
it was discovered that separation of variables is possible in only very few coordinate 
systems. This was shown by expressing the Laplacian in (2.2) in general curvilinear 
coordinates and then deducing conditions on the metric coefficients in order that 
separation be possible. In the plane, for example, (2.2) is separable only when the 
coordinate lines are linear or quadratic curves, i.e. conic sections, and a similar 
conclusion holds in R?. 

This limitation on the coordinate systems also limits the domains D to which 
separation of variables is applicable. This can be seen by noting that when a 
product solution v = f(^)g(i]) vanishes at one point £0,770 then either /(£o) = 0 
o r #(?7o) = 0- Thus, v vanishes all along the coordinate line £ = £0 or along the 
line 77 = 770. It is only when 3D consists of one or more such lines that a product 
solution can vanish on it. The consequence of this fact is this: the method of 
separation of variables can be used to solve a boundary value problem only when 
the boundary consists of portions of coordinate lines (or surfaces) of a coordinate 
system in which the differential equation is separable. 
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Within these limits, a large number of scattering problems have been solved. 
It is from these solutions that our physical insight has developed, and it is from 
them that we have obtained many quantitative results. 

Some of the objects (or domains) for which the scattering problem has been 
solved are listed below, together with the name of the solver and the approximate 
date: 

circular cylinder Rayleigh 1881 
sphere (electromagnetic waves) Mie 1908 
parabolic cylinder Epstein 1914 

,., . , } Morse and Rubinstein 1938 
slit in plane screen J 

circular disc ^ r> , ^AA 
, , , . , \ Bouwkamp 1944 

circular hole in plane screen J 

circular cone (electromagnetic) Hansen and Schiff 1945 
plane angular sector Kraus and Levine 1963 

Asymptotic evaluation of the solutions for high frequency or short wavelength 
was done for the following cases: 

circular cylinder 

sphere 
parabolic cylinder 

elliptic cylinder 

Debye 
Nussenzweig 
Watson 
Fock 
Rice 
Keller 
Levy and Keller 

1908 
1970 
1912 
1946 
1950 
1956 
1960 

A new modification of the classical method, useful for short wavelengths, was 
developed by Sommerfeld to solve the problem of diffraction by a half plane, i.e. 
a thin screen with a straight edge: 

half plane Sommerfeld 1896 
wedge McDonald 1902 

During the 1940s, another new modification was developed based upon the 
Wiener-Hopf method for solving integral equations with convolution kernels. This 
was done by Schwinger and by Vainstein, and the method has been used by many 
others. This work is described in the book of Noble (1965) on this method. 

5. Geometrical Optics 

In addition to the classical methods described above, there is a different classical 
method called geometrical optics, which is used for describing the propagation of 
light. It was known to the ancient Greeks, and is presented in the works of Euclid. 
It is called geometrical optics because it determines the paths, called rays, along 
which light travels. This method is based upon the following three laws. 
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Law of Propagation (Euclid). In a homogeneous medium light travels in a straight 
line. 
Law of Reflection (Euclid). A ray that hits a reflecting surface produces a reflected 
ray. The reflected ray makes the same angle with the normal to the surface as does 
the incident ray, and the two rays lie on opposite sides of the normal. Alhazcn, in 
the eleventh century, noted that the two rays and the normal are coplanar. 
Law of Refraction (Snell 1626, Descartes 1637). A ray that hits the interface be
tween two different media produces a refracted ray on the other side of the interface 
from the incident ray. The angle ß between the refracted ray and the normal is 
related to the angle a between the incident ray and the normal by Snell's law: 
m sin a = n2sinß. Here m is the refractive index of medium one containing the 
incident ray and n2 is that of medium two containing the refracted ray. We now 

._know_that_ni_=_co/c^-wliere co-is a_reference-speed, usually-that of-light-in avac--
uum, and Q is the speed in medium i. The two rays are coplanar with the normal 
and lie on opposite sides of it. Ptolemy, in the first century, gave an approximation 
to Snell's law that is valid for small angles, namely nia = n2ß. 

These three laws suffice for the calculation of the focal lengths of mirrors and 
lenses, and for the design of optical instruments. They were used, for example, by 
Gauss in the early 1800s in his analysis of imaging in axially symmetric optical 
systems. 

There is a different formulation of the laws of optics, based upon the calculus 
of variations. For propagation it was known to Euclid, because he knew that a 
straight line is the shortest distance between two points. Thus, the ray from P to 
Q is the shortest path from P to Q. For reflection, Heron of Alexandria, in the 
second century, showed that the incident ray from P to a plane mirror, plus the 
reflected ray from the mirror to Q, is the shortest path from P to Q with one point 
on the plane mirror. 

Finally Fermât (1661) found a variational formulation of the law of refraction. 
This led to his principle of least time, which states that in a medium with the 
refractive index n(x), the light ray from P to Q minimizes the integral L: 

rQ rQ ds r 
L= n [x(s)] ds = cQ / = c0 / dt . (5.1) 

Jp Jp c[x(a)] J 
The last integral in (5.1) shows that L is Co times the time required for light to 
travel from P to Q along the path x(s). L is called the optical length of the path. 
We now know that L is stationary at the light ray, but not necessarily a minimum. 

Fermat's Principle yields the laws of propagation and refraction, and it deter
mines the rays in inhomogeneous media. It also yields the law of reflection when it 
is applied to paths with one point on a given (mirror) surface. Thus, it determines 
all the rays of geometrical optics. 

Hamilton (1833) gave various alternative formulations of the laws of optics. 
One is the system of six first order ordinary differential equations for the rays in R?. 
These are now known as Hamilton's equations, and are most familiar in mechanics. 
Another is the eiconal equation, a nonlinear first order partial differential equation 
for the eiconal function S(x)\ 

(VS)2 = n2(x) . (5.2) 
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The surfaces S(x) = constant are orthogonal to a normal congruence of rays. 
These surfaces are called wavefronts. The difference between the values of S on 
two wavefronts is equal to the optical length L of any ray of the congruence between 
them. 

Geometrical optics does not suffer from the limitation to special geometries 
that restricts the method of separation of variables. However, it has its own limi
tation, namely that it describes only the rays along which light travels, but it gives 
no quantitative information about the amplitude or phase of the light field. 

6. Modern Developments 

The modern theory of partial differential equations began to develop in the last 
half of the nineteenth century, and it has flourished in the twentieth century. It has 
focused on the questions of existence and uniqueness of solutions of boundary value 
problems, of initial value problems, of initial and boundary value problems, etc. In 
addition it has considered whether the solutions depend continuously on the data 
of the problem. A further concern has been regularity of solutions, i.e. how many 
continuous derivatives they have and the Holder continuity of those derivatives. 
It also deals with the singularities of solutions, the locus of such singularities, the 
Hausdorff dimension of the set of singularities, etc. For linear partial differential 
equations, this theory is presented in an elegant and general form in the treatise 
of Hörmander (1983). 

In addition to these mainly qualitative developments, there have been two 
quantitative developments. One is the use of computers and the related numerical 
analysis. The other is the development of asymptotic analysis, which is the topic 
of the remainder of this survey. 

An asymptotic expansion of a wavelike solution of the Helmholtz equation 
(2.2) is an expression of the form 

oo 

^ f c J ^ e ^ W ^ - i - A ^ x ) . (6.1) 
j=o ^ > 

This expression is not assumed to be a convergent series, but rather an asymptotic 
expansion of v, valid as k tends to infinity. This means that as k —» oo, 

j 

v(x,k) - eikSW Y^W-jAj(x) = o (k~J) . (6.2) 
j=o 

In other words, the difference between v and any partial sum vanishes more rapidly 
than the last term retained, as k —> oo. Therefore such an expansion can be 
useful in representing v when the wavenumber k is large, or equivalently when the 
wavelength 2ir/k is small. 

Carlini (1815) introduced an expression somewhat like (6.1) to solve Bessel's 
equation, which is an ordinary differential equation of second order. Jacobi (1817) 
explained and elaborated upon this work. Then Liouville and Green in the 1830s 
used expansions of the form (6.1) to solve general linear second order ordinary 
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differential equations. However, despite repeated attempts, no one succeeded in 
showing that these series converged. Then Poincaré (1886) suggested that they 
were not convergent but asymptotic, and he introduced the definition (6.2). Steltjes 
(1886) introduced the same concept to deal with certain formal series that arose in 
the evaluation of integrals. Finally, in 1893 Korn showed, for certain linear second 
order ordinary differential equations, that the formal scries were indeed asymptotic 
to solutions. 

Shortly after the introduction of quantum mechanics in 1925, this method 
of solution was rediscovered by Wentzel, by Kramers, and by Brillouin. Therefore 
physicists call it the WKB method, and sometimes the WKBJ method because 
Jeffreys had used it in the early 1920s. 

Other asymptotic expansions, different from (6.1), have also been used to 
„represent solutions. „Often _a_number_ofjdifTerent_expansions_are_used_to_represent_ 
a single solution, each valid in a different region of space. These expansions must 
match together where these different regions overlap. The use of such combinations 
of expansions is called the method of matched asymptotic expansions. It is widely 
used in wave propagation, and it is a basic tool of modern applied mathematics. 

7. Asymptotic Expansions and Geometrical Optics 

In 1916 Sommerfeld and Runge attempted to show the connection between geo
metrical optics and the wave equation. They began with the Helmholtz equation 
in an inhomogeneous medium with the refractive index n(x): 

Av + k2n2(x)v = Q . (7.1) 

They represented v by the first term of the expansion (6.1), substituted it into 
(7.1), and equated to zero the coefficient of k2, which was the highest power of fc. 
This yielded the eiconal equation for the exponent, or phase function, 5(x): 

(VS)2=n2(x) . (7.2) 

This is just the equation (5.2) obtained by Hamilton for the eiconal function of 
geometrical optics, so a connection between the wave equation and geometrical 
optics was established. 

By equating to zero the coefficient of fc, they obtained an equation for AQ(X): 

2V5 • VA0 + A0AS = 0 . (7.3) 

Luneberg (1944) and Friedlander (1947) used the full expansion (6.1) and obtained 
equations for the other An: 

2V5 • VAn + AnAS = - A A n _ i , n > 1 . (7.4) 

The equation for AQ is called the (first) transport equation, and the equations for 
the other An are called the higher transport equations. 

The eiconal equation can be solved by the method of characteristics, which 
Hamilton developed for this purpose. The characteristics are just the rays, and the 
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solution for S at the point x on the ray x(r) is 

S(x) = 5(x0) + fT n [x(r')] dr1 . (7.5) 
I TQ 

Here xo = X(TO) is some point on the ray and 5(x0) is the value of S there. The 
integral in (7.5) is just the optical length (5.1), which occurs in Fermât 's principle. 

Each transport equation can be written as a first order ordinary differential 
equation along a ray, and then it can be solved explicitly. The solution for AQ can 
be expressed in the form 

n(x)Al(x)do(x) = n(x0)Al(x0)da(x0) . (7.6) 

Here da(x) denotes the normal cross-sectional area at x of a narrow tube of rays, 
and dcr(xo) denotes the corresponding area at xo- Thus, the relation (7.6) expresses 
conservation of energy in a tube of rays: the flux of energy nA2da at x is the same 
as that at XQ. From (7.6) we can solve for A(x)\ 

AQ(x)=AQ(x0) 
n(xQ) do-(x0) 

n (x) da(x) 

1/2 

(7.7) 

n(x0) do-(x0)]1 /2 

Upon using (7.5) for S(x) and (7.7) for AQ(x) in the first term of (6.1), we 
obtain 

v(x,k) ~ e J-o A0(x0) 
L n[x) da(x) 

This expression for v involves only quantities determined by geometrical optics, 
in addition to k and the initial value AQ(XQ). Therefore we call it the geometrical 
optics field. It is the field associated with a particular ray through x. 

As Luneberg (1944) observed, the total field at x is the sum of the fields on all 
the rays through x. They are the direct rays from the source to x, the reflected rays, 
the refracted rays, and the multiply reflected and/or multiply refracted rays, if 
there are any. Therefore the solution v(x, k) is represented by the sum of asymptotic 
expansions of the form (6.1), with one such expansion associated with each ray 
through x. We call each of these expansions a wave. Then we can say that v is 
represented as a sum of direct, reflected, refracted, and multiply reflected and/or 
refracted waves. 

Upon examining asymptotic expansions of various exact solutions of scatter
ing problems, we find that they do indeed contain all these waves. However, they 
usually contain additional waves, called diffracted waves, which are not associated 
with the rays of geometrical optics. We shall explain how the preceding theory 
can be extended to include those waves. This requires an extension of geometrical 
optics, which we shall present first. 

8. The Geometrical Theory of Diffraction 

Geometrical optics does not specify what happens when a ray hits an edge or 
vertex on a boundary or interface. This is so because there is no unique normal to 
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the boundary or interface at such places, so the laws of reflection and refraction 
do not apply. Therefore we have introduced the following two new laws to describe 
what happens in such cases, and a third law to describe what happens when a ray 
is tangent to a boundary or interface (Keller 1953). 
Law of Edge Diffraction. A ray that hits the edge of a boundary or interface 
produces a one parameter family of ra}'S that we call edge diffracted rays. The 
angle ß between an edge diffracted ray and the tangent to the edge at the point of 
diffraction is equal to the angle a between the incident ray and the edge, if they 
lie in the same medium. If they lie in different media then m cos a = n2 cos ß. The 
edge diffracted rays and the incident ray lie on opposite sides of the plane normal 
to the edge. 
Law of Vertex Diffraction. A ray that hits a vertex of a boundary or interface 

-produces a ̂ wo_paraineter_farnily_of vertex_diffracted_rays._They_leave jthe_vertex_ 
in all directions. 
Law of Surface Diffraction. A ray that hits a boundary or interface tangentially 
produces a surface diffracted ray that is a geodesic on the surface in the metric 
n(x)ds. It sheds rays along its tangent at each point. At each point on an interface 
it also sheds rays into the second medium in accordance with Snell's law. 

In addition to these diffracted rays, we have introduced complex rays, which 
are complex-valued solutions of the ray equations. They can be defined when n(x) 
is analytic or piecewise analytic. 

The principle of "least" time can be extended to yield all these new rays. To 
extend it we introduce various classes of curves Cj, j = 1,2,.... Then we define 
the rays from P to Q in Cj to be the curves that make the optical length L from 
P to Q stationary among all curves in Cj. If C\ is the class of curves with no 
points on boundaries or interfaces, it yields the direct rays from P to Q. If C2 

consists of curves with one point on a boundary or interface it yields the reflected 
and refracted rays from P to Q. The class C3 of curves with one point on an 
edge yields the edge diffracted rays and the law of edge diffraction. The class C4 
of curves with a point at a vertex yields the vertex diffracted rays. The class of 
curves C5 with an arc on a boundary or interface yields surface diffracted rays. 
Multiply reflected, refracted, and diffracted rays can be obtained in a similar way. 

The study and use of these new rays, the diffracted rays and the complex rays, 
is called the geometrical theory of diffraction. There are normal congruences of 
such rays, and the wavefronts orthogonal to them are called diffracted wavefronts. 
There is an eiconal or phase function S(x) associated with each family of diffracted 
wavefronts, and it satisfies the eiconal equation (7.2). The initial value problem 
for the wavefronts associated with edge diffracted rays involves specification of the 
value of S(x) on the edge. Similarly, for the phase function associated with vertex 
and surface diffracted rays, the initial values must be specified at the vertex or on 
the surface. 

We have now presented three equivalent ways of determining the diffracted 
rays and the corresponding diffracted wavefronts. The first way is to use the laws 
governing the rays. The second way is to use the extended form of Fermât's princi
ple. The third way is to solve the eiconal equation, including the multiple branches 
of the solution that branch at the edges, vertices, and surfaces. From normal con-
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gruences of rays we can construct the wavefronts and the solution of the eiconal 
equation, and conversely from the wavefronts we can determine the rays. All three 
of these methods yield the usual rays and wavefronts of geometrical optics as well 
as the diffracted rays and diffracted wavefronts. Thus, all three formulations of the 
geometrical theory of diffraction are extensions of the corresponding formulations 
of geometrical optics. 

9. Asymptotic Expansions of Diffracted Waves 

Next we shall indicate how to use this geometrical theory to obtain asymptotic 
solutions of boundary value problems for (7.1). Just as in the case of geometri
cal optics, we construct asymptotic expansions of the form (6.1) by the method 
described in Section 7. We construct one such expansion for each wave in the prob
lem, i.e. for each normal congruence of rays or equivalently for each branch of the 
solution of the eiconal equation, or for each family of wavefronts. As before, we 
represent the solution v(x,k) as a sum of asymptotic expansions vp(x,k) of the 
form (6.1), with one expansion associated with each ray through x. Thus, we write 

v(x, k)~Y,**&k) ~ EeikSp{x) E jàj A ^ ) • ( 9 1 ) 
p p j=Q * ' 

Now the sum includes expansions corresponding to all the diffracted rays or waves 
through x, as well as to all the usual rays of geometrical optics. 

The initial values SI(XQ) and Aji(x§) on incident rays are specified, if the rays 
come from infinity. If the rays come from a source, the initial values are determined 
by the solution of a local problem containing the source. The initial values on a 
reflected or transmitted ray are obtained from the values of S(x) and Aj(x) on the 
incident ray that produces it, by means of a reflection or transmission coefficient. 
This coefficient is also determined by the solution of a local problem. Similarly, 
the initial values on a diffracted ray are determined from the values of S(x) and 
Aj(x) on the corresponding incident ray by means of a diffraction coefficient. 

There are edge diffraction coefficients, vertex diffraction coefficients, and sur
face diffraction coefficients. Each of them is determined by the solution of a suitable 
problem, called a canonical problem, which incorporates the local geometry of the 
boundaries or interfaces near the point of diffraction, and the corresponding local 
properties of n(x). These solutions often can be found by the classical methods of 
separation of variables, etc., described in the previous sections. The use of local so
lutions is an instance of the method of matched asymptotic expansions, which was 
mentioned earlier. It describes the solution near the point of diffraction, where the 
ray expansion (9.1) becomes singular because of the vanishing of the cross-sectional 
area da(x) in the denominator of the expression (7.7) for AQ(X). By matching the 
local solution to the ray expansion, the diffraction coefficients can be determined. 

This procedure shows that any edge diffraction coefficient D is proportional 
to A;-1/2, whereas any vertex diffraction coefficient C is proportional to k~x. These 
same conclusions also follow from dimensional analysis. They show that the field 
on both edge diffracted and vertex diffracted rays vanishes as k —• oo. That on 
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a vertex diffracted ray vanishes more rapidly; in fact it vanishes as fast as the 
field on a ray doubly diffracted by edges. Furthermore, the value of v on a surface 
diffracted ray decays exponentially with distance along the surface, with a decay 
rate proportional to k1/3. The field on a complex ray has a complex phase S(x), 
so it decaj's at a rate kImS(x) proportional to k. For simplicity, the dependence 
upon k described in this paragraph is not shown in (9.1). 

These results show that all diffracted fields, i.e. the values of v associated with 
diffracted waves, vanish as k —> oo. The values of v on the ordinary geometrical 
optics rays do not vanish as k —> oo, so they are stronger than the diffracted fields 
for large values of k. However, there are no geometrical optics rays in shadows, so 
the diffracted fields are the only fields present there. 

The method described in Sections 6-9 can be used to solve both scattering 
. and„eigenvalue„problems. Jt„can also be used to solve other partial differential, 
equations. For scattering problems, the method is relatively straightforward, al
though there are of course, many complications. But for eigenvalue problems some 
further considerations are needed, as we shall now explain. 

10. Eigenvalue Problems 

In an eigenvalue problem in a domain D, there are no incident rays, and the value of 
k is unknown, so it is not clear how to start using the preceding method. Therefore, 
we must determine all the rays or waves in the solution simultaneously. Thus, in 
the domain D we seek an asymptotic expansion of the form (9.1) consisting of a 
sequence of waves p = 1 , . . . , N. The pth wave is defined in a domain Dp, which 
may be all of D or a sub domain of D. On each part of the boundary of Dp, either 
the pth wave is produced by some other wave or it produces some other wave. 
Therefore, its phase Sp(x) must equal that of the other wave on the corresponding 
part of the boundary. Within Dp, Sp(x) must satisfy the eiconal equation (7.2). 

It is convenient to introduce an TV-sheeted space E consisting of the Af do
mains Dp. The domains Dp and Dpt are joined together at those parts of their 
boundaries where one of these waves produces the other. On this space E, the 
function VS(x) is single valued, with the value VSp(x) on the sheet Dp. When we 
integrate VS(x) to obtain S(x), we obtain a multiple-valued function. The corre
sponding amplitude function AQ(X), given by (7.7), may also be multiple valued. 
But the solution v(x,k) must be single valued. This gives rise to the condition 

kAS ~ iA log AQ = 27T77, + o( l ) . (10.1) 

Here AS(x) denotes the difference between two values of S(x) at a point x on the 
multi-sheeted space E, and similarly for AAQ(X), while o(l) denotes terms which 
tend to zero as k —> oo, and n is an integer. 

We can write AS(x) as a line integral along a closed curve C on E in the 
form 

WS-d£ . (10.2) 

c 
Every C on E is a linear combination with integer coefficients, of basis curves 
Ci, C2,..., CB of the fundamental group E. Here B, the first Betti number of E, 

AS(x) = I 
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is the order of the fundamental group. Therefore (10.1) will hold for every C if the 
following B conditions hold with integers n j : 

ké VS-di-i(AlogAQ)Cj=2Tvnj , j = 1,2,... ,B . (10.3) 

The function log AQ(X) changes its value by —itr/2 as a wave passes through 
a caustic surface, i.e. an envelope of rays, as can be shown by a local analysis. 
Therefore, we denote by Vj the number of times the curve Cj crosses a caustic. 
Then — z(Alog AQ)CJ = ~\vj and (10.3) becomes 

k&VS-d£ = 2iv{nj + ^A , j = 1,2,... ,B . (10.4) 

Cj 

This result applies when v satisfies the boundary condition 3nv = 0 on 3D. For 
other boundary conditions, (AlogAQ)cj contains an additional term associated 
with each time Cj crosses 3D. 

To use (10.4) we must find TV solutions Sj of the eiconal equation that join 
together pairwise along portions of the boundary of D, or along caustic curves or 
caustic surfaces inside D. These solutions must depend upon B — 1 parameters. 
Then k and these B — 1 parameters must be determined to satisfy (10.4) for each 
choice of the nonnegative integers rij, j = 1, . . . ,B. Finding the TV solutions Sj is 
equivalent to finding TV families of wavefronts, each of which reflects into another 
family at 3D, or that join pairwise at caustics. Alternatively we could find TV 
normal congruences of rays which reflect into one another at 3D or which join one 
another at caustics. 

In quantum mechanics, conditions like (10.4) are called quantum conditions. 
Bohr (1913) presented the first such condition for the motion of an electron in a 
hydrogen atom, with B = 1 and vi = 0. Sommerfeld (1916) and Wilson (1916) 
presented B such conditions for separable systems with B degrees of freedom, and 
Einstein (1917) gave these conditions for nonseparable systems, all with Vj = 0 . 
After the Schrödinger equation was formulated, the Sommerfeld-Wilson conditions 
for separable systems were rederived from it by separation of variables. In some 
cases in which the separated equations had turning points, this derivation yielded 
corrected Sommerfeld-Wilson conditions with Vj =^0. The present author's deriva
tion, described above, which does not require separability, led to the widespread 
use of this method by chemists and physicists. They call it the EBK method, for 
Einstein, Brillouin (who used the single-valuedness argument), and the author. 

The conditions (10.4) were later derived independently by Maslov (1965). 
Then Arnold (1970) showed that the Vj are invariants (i.e. independent of the 
curves Cj). The integer Vj is sometimes called the Keller-Maslov index. 

11. Conclusion 

Many authors have contributed to the further development of the asymptotic 
methods described above. Some of them are R. K. Luneberg, F. G. Friedlander, 
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M. Kline, I. Kay, R. M. Lewis, R. Buchal, B. Levy, B. Seckler, N. Bleistein, J. Co
hen, R. Handelsman, B. Matkowsky, D. Ahluwalia, F. Karal, L. Felsen, D. Ludwig, 
L. Hörmander, C. Morawetz, C. Bloom, W. Miranker, N. Kazarinoff, P.D. Lax, 
R.M. Phillips, W. Straus, J. Ralston, A. Majda, M. Taylor, F . Ursell, Y. Kravtsov, 
L. Babich, P. Ufimtsev, R. Melrose, M. Zworski, J. Rauch, V. Lazutkin, V. Maslov, 
and M. Berry. They have proved the validity of these methods in many cases, 
extended them to other equations and systems of equations, applied them to spe
cial problems, developed computer programs to determine the various kinds of 
diffracted rays and to calculate the corresponding phases and amplitudes, etc. In 
addition, some of these methods have been extended to weakly nonlinear waves. 

Some of the early work on these methods is described in the papers listed 
below, which also contain references to many other works. 
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Homological Algebra of Mirror Symmetry 
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Mirror symmetry (MS) was discovered several years ago in string theory as a dual
ity between families of 3-dimensional Calabi-Yau manifolds (more precisely, com
plex algebraic manifolds possessing holomorphic volume elements without zeros). 
The name comes from the symmetry among Hodge numbers. For dual Calabi-Yau 
manifolds V, W of dimension n (not necessarily equal to 3) one has 

dim Rp(V,nq) =dim B.n-p(W,nq) . 

Physicists conjectured that conformai field theories associated with mirror 
varieties are equivalent. Mathematically, MS is considered now as a relation be
tween numbers of rational curves on such a manifold and Taylor coefficients of 
periods of Hodge structures considered as functions on the moduli space of com
plex structures on a mirror manifold. Recently it has been realized that one can 
make predictions for numbers of curves of positive genera and also on Calabi-Yau 
manifolds of arbitrary dimensions. 

We will not describe here the complicated history of the subject and will not 
mention many beautiful constructions, examples, and conjectures motivated by 
MS. On the contrary, we want to give an outlook of the story in general terms 
and propose a conceptual framework for a possible explanation of the mirror phe
nomenon. We will restrict ourselves to a half of MS considering it as a relation 
between symplectic structures on one side and complex structures on another side. 
Actually, we will deal only with a half of this half, ignoring the holomorphic anom
aly effects (see [BCOV]) in the symplectic part (A-model) and the polarization of 
Hodge structures in the complex part (B-model). For an introduction to mirror 
symmetry we recommend [M] and [Y]. 

At the moment there are only a few completely solid statements, essentially 
because there was no universal definition of the "number of curves" for a long 
time. 

Comparison of symplectic and complex geometry 

We start with a recollection of well-known facts concerning symplectic and complex 
manifolds. Numbers followed by S indicate facts on symplectic manifolds; numbers 
followed by C indicate facts on complex manifolds. 
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LcM T be a compact smooth 27i-dimensional manifold. 
l.S. A symplectic structure on V is given by a reduction of the structure 

group GL(2n,H) of the tangent bundle Ty to the subgroup Sp(2n,lH) satisfying 
certain integrability conditions (the associated 2-form UJ is closed or, equivalently, 
the associated Poisson bracket on smooth functions satisfies the Jacobi identity). 

l.C. A complex structure on V is given by a reduction of the structure group 
GL(2n, R) of the tangent bundle Ty to the subgroup GL(n,C) satisfying certain 
integrability conditions (the Newlander-Nirenberg theorem). 

Notice that both groups Sp(2n, R) and GL(n,C) are homotopy equivalent 
to U(n). Thus, they have the same algebra of characteristic classes generated by 
Chern classes c?: G R2i(BU(n),Z), 1 < i < n. 

Basic examples of compact symplectic or complex manifolds are complex 
-projective -algebraic-manifolds- endowed with-the-pullback of the-Fubini-Studi--
Kahler form on the projective space. 

2.S. First-order deformations of symplectic structures on V are in one-to-one 
correspondence with H2(y, R). The deformation theory is unobstructed and the 
local moduli space of symplectic structures on V can be identified with a domain 
in the affine space H2(V, R) via map UJ \—> [UJ] G H2(V, R) (Moser). 

2.C. First-order deformations of complex structures on V near a fixed one 
are in one-to-one correspondence with H1(y,Ti

1}°1), where Ty°l denotes the sheaf 
of holomorphic vector fields on V (Kodaira-Spencer theory). If ci(V) = 0 and 
V admits a Kahler structure then the deformation theory of V is unobstructed 
and the local moduli space can be identified with a domain in the affine space 
H^ViT^01) (the Bogomolov-Tian-Todorov theorem). 

The following two facts concern only complex manifolds. 
3.C. For a complex manifold V admitting a Kahler structure there is a pure 

Hodge structure on the singular cohomology groups: 

Hfc(V,Z)®C~ 0 Rq(V,Qp) . 
p-\-q=k 

4.C. With a complex algebraic manifold V one can associate the abelian cate
gory Coh(V) of coherent sheaves on V and the triangulated category Vb(G6h(V)) 
(the bounded derived category). 

Our aim in this talk is to propose candidates for 3.S and 4.S in the context of 
symplectic geometry. The mirror symmetry should be a correspondence (partially 
defined and multiple valued) between symplectic and complex manifolds (both 
with ci = 0) identifying structures 2-4. 

To get a feeling of what is going on it is instructive to look at a simplest case 
of the mirror symmetry, which is already highly nontrivial. 

2-dimensional tori (after Dijkgraaf ) 

Let E be a complex elliptic curve and pi,... ,p2g-2 be pairwise distinct points of 
E, where g > 2 is an integer. We consider holomorphic maps <j> \ C —• E from 
compact connected smooth complex curves C to E, which have only one double 
ramification point over each point pi G E and no other ramification points. By the 
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Hurwitz formula the genus of C is equal to g. The set Xg(d) of equivalence classes 
of such maps of degree d > 1 is finite, and for each cj) : C —> E its automorphism 
group 

A u t ( 0 ) : = { / : C - > C | cf>of = J>} 

is finite. For g > 2 we introduce the generating series in one variable q as follows: 

The following statement is now rigorously established because of the efforts 
of several people (Dijkgraaf, Douglas, Zagier, Kaneko): 

F 3 G Q [ £ 2 , £ 4 , £ 6 ] , 

where E^ are the classical Eisenstein series, 

* n > l \ a | n / 

£?fc is a modular form of weight k for even k > and E2 is noi a modular form. 
Here B2 = 1/6, B^ = —1/30, BQ = 1/42, . . . are Bernoulli numbers. If one 
associates with E^, k = 2,4,6, the degree k, then Fg has degree 6g — 6. 

One can regard E as a symplectic 2-dimensional manifold (S1 x Sx,u) with 
the area J^UJ equal to —log(g), 0 < q < 1, and interpret weights qd of ramified 
coverings as 

exp (—area of C with respect to the pullback of UJ) . 

Mirror symmetry in this example is the claim that the generating function for 
certain invariants of symplectic structures on S1 x S1 is a "nice" function on 
the moduli space of complex structures on S1 x S1. The 2-dimensional torus is a 
self-dual manifold for MS. 

Notice that the standard local coordinate q = exp (2TTìT) , Imr > 0, on the 
moduli space of elliptic curves, 

elliptic curve = C/ (Z + Zr) , 

can be written as 

q = exp I 2tri-• 4 ^ 
f n ' 

where 70, 71 are two generators of Hi (elliptic curve, Z) and £1 is a nonzero holo
morphic 1-form. 
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Quintic 3-folds (after [COGP]) 

Here we describe the first famous prediction of physicists. Let V be a nonsingular 
hypersurface in complex projective space P 4 given by an equation Q(xi,... , x§) = 
0 of degree 5 in 5 homogeneous variables (xi : • • • : x§). This complex manifold 
carries a top degree holomorphic differential form which is nondegenerate at all 
points (a holomorphic volume element): 

1 5 — 
H = —- y^(-iyxidxi A • • • A dxi A • • • A dx§ . 

Clemens conjectured that smooth rational curves on a generic quintic 3-fold 
are isolated. Recently it was checked up to degree 9. It is natural to count the 
numbeT^/VXof rational ^ui'ves on V of fixed degree d. Tn^fact~there are lingular" 
rational curves on V of degree 5, and one has to take them into account as well. At 
the end of the next section we will propose an algebro-geometric formula for the 
"physical" number of curves on V, both smooth and singular, without assuming 
the validity of the Clemens conjecture. 

The mirror symmetry prediction is the following. First of all, we define the 
virtual number of curves of degree d as 

k\d 

The reason for this formula is that in string theory one counts not just curves in 
V but maps from rational curves to V. Any map P 1 —> V of positive degree is 
the composition of a rational map P 1 —> P 1 and of an embedding P 1 t—> V. It 
was argued first by Aspinwall and Morrison [AM] that the factor associated with 
multiple coverings of degree k should be equal to 1/fc3. 

The complete generating function for rational curves is 

^ M : = j ^ + EJVdirtexp(*)-
d>l 

The first summand here represents the contribution of maps of degree 0 (i.e., maps 
to a point of V). 

On the mirror side we consider functions 

M») = E w*n 

71=1 ^ 'I \fc=7l+l / 

ip3{z) = -(logz)3-M*) + ---
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which are solutions of the linear differential equation 

( ( * é ) * - ^i+wê+2)<fas+3"fel+4>) « « ' = ° • 

More precisely, 

yU*Y+o(e4) = y ( 1 + 5 e ) ( 2 + 5 e ) - - - ( 5 n + 5
5

e ) z^ . 
Ü to ((l + e)(2 + e)...(n + e)f 

Functions if)i(z) are periods J UJ of the Calabi-Yau manifold W = W(z), 
which is a resolution of singularities of the following singular variety: 

{(xi \x2\x3\x±\ x6)\ x\+x\+x\ + x\ + x\ = z~1^xix2x3x4x5}/(Z/5Z)3 . 

Here the group (Z/5Z)3 is the group of diagonal matrices preserving W 
5 

{diag(fc,...,6oi ^ = 1, Y[ti = i}/{çid\e = i} 
i=l 

and 7i are certain singular homology classes with complex coefficients. The family 
of varieties W(z) depending on 1 parameter is mirror dual to a universal family 
of smooth quintic 3-folds depending on 101 parameters. 

The prediction of physicists is that 

5 ljJiljJ2 - ljjtfljj3 

( ! ) 2 Vo2 

One of the miracles in this formula is that 

exp !H* 
Also, numbers Nd computed via the mirror prediction are positive integers. 
It is interesting that the contribution of individual nonparametrized ratio

nal curves on 3-dimensional Calabi-Yau manifolds is connected with variations of 
mixed Hodge structures in a fashion analogous to the mirror symmetry predic
tions. Namely, according to the Aspinwall and Morrison formula [AM] we have the 
following generating function: 

d>\ 

We introduce functions I/J*: 
1 yd 

ifa{z) = li tpi(z)=logz, ijj2(z) = -(logz)2, ijj3(z)=U3(z) : = 5 ^ ^ 3 ' 
1 d>i 

which are solutions of the linear differential equation 

d (1 — z ( d\ 
éz\ z \Zdz) ^Z))=°-

Functions F and I/J* aie related by the evident formula 

F (ti) = __ 
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Gromov-Witten invariants 

We describe here a not yet completely constructed theory that has a potentially 
wider domain of applications than mirror symmetry. It is based on pioneering 
ideas of Gromov [G] on the role of 9-equations in symplectic geometry, and certain 
physical intuitions proposed by Witten [Wl], [W2], There are many evidences that 
the following picture from [KM] is correct. 

Let (V,UJ) be a closed symplectic manifold, ß G H^O^, Z) be a homology class, 
and g,n > 0 be integers satisfying the inequality 2 — 2g — n < 0. Gromov-Witt en 
classes 

W e H n ( Â ? f f i n ( C ) x V n ; Q ) 

are homology classes with rational coefficients of degree 

D = D(g,n,ß) = (dim V - 6)(1 - g) + 2n + 2 / Cl(Tv) . 
Jß 

Here M9tn denotes the Deligne-Mumford compactification of the moduli stack of 
smooth connected algebraic curves of genus g with n marked points. Recall that 
an algebraic curve C with marked points pi,... ,pn is called stable if 

(1) all singular points of C are ordinary double points, 
(2) marked points jH are pairwise distinct and smooth, pi G C s m o o l h , 
(3) the group of automorphisms of (C : pi,... ,pn) is finite, or, equivalently, the 

Euler characteristic of each connected component of Csmooth \ {pi,... ,pn} 
is negative. 

The arithmetic genus of stable curve C is defined by the formula 

ga(C) := dimH^C, O) = -x(C
smooth)/2 + 1 . 

The stack M9in is the moduli stack of stable marked curves of arithmetic genus g 
with n marked points. The associated coarse moduli space A/(flj77#(C) is a compact 
complex orbifold. 

One expects that Ig^ß is invariant under continuous deformations of the 
symplectic structure on V. 

Analogously, we expect that the Gromov-Witten invariants can be defined for 
nonsingular projective algebraic varieties over arbitrary fields and they take values 
in the Chow, groups with rational coefficients instead of the singular homology 
groups. 

Intuitively, the geometrical meaning of Gromov-Witten classes in the sym
plectic case can be described as follows. Let us choose an almost-complex structure 
on V compatible in the evident waj' with the symplectic form UJ. Notice that the 
space of almost-complex structures compatible with the fixed UJ is contractible. 
Denote by X9in(V,ß) the space of equivalence classes of (C; xi,... ,xn\ 0), where 
C is a smooth complex curve of genus g with pairwise distinct marked points xi, 
and $ : C —> V is a pseudo-holomorphic map (i.e., a solution of the Cauchy-
Riemann equation d(j) — 0) such that the image of the fundamental class of C 
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is equal to ß. There is a natural map from Xgtn(V,ß) to A4g)Tl(C) x Vn associ
ating with (C;x*\(jj) the equivalence class of (C;x*) and the sequence of points 
(cß(xi),..., (ß(xn)). One can show easily that the dimension of the space Xgjn(V, ß) 
at each point is bigger than or equal to D(g, n, ß). Also, under appropriate generic-
ity assumptions, XgiTl(V,ß) is smooth of dimension D(g,n,ß). We want to define 
Ig,n\ß a s the image of the fundamental class of a comp act ificat ion Xg>n(V,ß). The 
problem here is to find a correct comp act ificat ion and to define the "fundamental 
class" if there are components of dimensions bigger than expected. Also, one has 
to prove that classes Igtn-,ß d° n ° t depend on the choice of an almost-complex 
structure. 

There are now two approaches to the rigorous construction of Gromov-Witten 
classes. The first one is due to Ruan and Tian [RT] and it suffices for the genus zero 
case. This construction works only for so-called semi-positive manifolds (including 
Fano and Calabi-Yau manifolds), but it gives classes with integral coefficients. The 
idea of this construction is to perturb generically d-equations and check that there 
are no strata of dimension larger than D(0,n,ß) in Gromov's comp act ificat ion of 
the space of pseudo-holomorphic curves. In fact, Ruan and Tian define not GW-
classes but the number of maps from a fixed complex curve to V satisfying general 
incidence conditions (counted with signs). Using algebraic results on the structure 
of H* (.Mo.n) it is possible to reconstruct a whole genus-zero part of Gromov-Witten 
classes (see [KM]). Another construction [K2] is based on a new compactification 
of the moduli space of maps and should work, presumably, for all genera, for all 
symplectic manifolds, and also for all nonsingular projective varieties over arbitrary 
fields. At least, one can produce now purely algebro-geometric definitions of genus-
zero Gromov-Witten invariants in the case of complete intersections in projective 
spaces. Its advantage is that it will not use any general position argument, and its 
weak point is the lack of control on integrality of arising classes. 

As an example we give a definition of "numbers of rational curves" on a 
quintic 3-fold. Denote by A^o,o(P4,^) the moduli stack of equivalence classes of 
maps 0 : C —> P4 , where C is a connected curve of arithmetic genus zero with 
only ordinary double points as singular points (i.e., C is a tree of rational curves) 
such that each irreducible component of C mapping to a point has at least 3 
singular points. The parameter d, d> 1, denotes the degree of the image of the 
fundamental class [C] in H2(P4,Z) ~ Z. It is proven in [K2] that A4o)o(P4,d) is 
a smooth proper algebraic stack of finite type. The set of its complex points is a 
compact complex orbifold of dimension 5d + 1. 

We define a vector bundle Ed of rank 5d+ 1 over A/(o>o(P4, d). The fiber of Ed 
at <j> : C —> P 4 is equal to H°(C, <0*O(5)). Notice that if a quintic 3-fold V is given 
by an equation Q of degree 5 in 5 variables, Q G T(P4,0(5)), then there is an 
associated section Q of Ed whose zeros are exactly maps into V. In general, there 
are connected components of the set of zeros of Q of positive dimensions arising 
from multiple covering maps to rational curves in V. Nevertheless, we define the 
"virtual" number of curves by the formula 

NfTt := j c5d+1(£d) 
-Mo,o(P4,d) 
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Here the integral is understood in the orbifold sense. Thus, the numbers 
NJiri G Q in general are not integers. We are sure that our formula will give the 
same numbers as physicists predict. This formula was checked up to degree 4. Also 
we obtained in [K2] a closed expression for the generating function for the numbers 
NJiri. Hence, the mirror prediction in the quintic case is reduced to an explicit 
identity. 

There is an extension of the definition above to the case of complete inter
sections in toric varieties and for counting of higher genus curves in flag varieties. 

Axioms 

The system of axioms formulated in [KM] is a formalization of what physicists 
call 2-dimensional topological field theory coupled with gravity (see [W2]). We 

"reproduce" here only one of the axiomsrfrorrr[KM], which is~the basic one. "Other-
axioms encode more evident properties of Gromov-Witten classes, like the invari
ance under permutation of indices, etc. 

It will be convenient to associate with the class I9)n\ß a linear map 

Jgtn.ß : (H*(V,Q))*n -> K*(Mg,n,Q) 

using the Künneth formula and the Poincaré duality. A splitting axiom describes 
the restriction of Gromov-Witten classes to boundary divisors of M9iTl. Namely, 
for gi, g2 > 0 and m, n2 > 0 such that 

9i + #2 = Q, ni + n2 = n + 2, 2 - 2 ^ - ra. < 0 for i = 1,2 

there exists a natural inclusion ig^ilu : Mgilm
 x -Mg2in2 *—> •Mg,n 

(Ci;xi,...,xni)x (C2;yi,...,yn2) i—> (Ci ( J C2\x2,... ,xni,y2,... ,yn2) . 
xi=yi 

The following diagram should be commutative: 

U*(V)®n ——-> H * ^ ) ® ^ 1 - 1 ) (gH^i/)®^2"-1) 

H*CMfll„) H*0O®ni ® H*(7)®na 

H* (Mgi ,ni x Mg2 ,n2 ) —^—• H* (Mgi ,ni ) ® H* (Mg2 ,,i2 ) 
Künneth 

Ja,n-,ß 

2^ Jgi,ni;ßi®Jg2<n2,-l32 
ß1+ß2=ß 

Here all cohomologies are taken with coefficients in Q and A denotes the 
Poincaré dual to the fundamental class of the diagonal V C V X V. The geometric 
meaning of this axiom is clear: a map cj) of the glued curve C from the image of 
ig*in* is the same as two maps (jji, (ß2 from Ci and C2 with ^i(cci) = (j)2(yi). 

The splitting axiom in the case gi = g2 = 0 was checked by Ruan and Tian 
for semi-positive manifolds and by me for complete intersections using the stable 
map approach. 
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Associativity equation 

For a compact symplectic manifold (V,UJ) denote by H := ©fcHfc(V,C) the total 
cohomology space of V considered as a Z-graded vector space (super vector space) 
and also as a complex supermanifold. This means that the underlying topological 
space of H is Heven(V, C) and functions 0(H) on H are holomorphic functions on 
Heven(V, C) with values in the exterior algebra generated by (Hodd(V, C))*. 

Using Gromov-Witten classes for genus zero we define the following function 
(pre-potential) on H: 

*(7):= E e~Iß"Y,^ / 17*o,»®7®"-®7-
£GH2(y,Z) n>3 -lQ

J
nß 

Here 7 denotes an even element of H (8) A, where A is an arbitrary auxiliary 
supercommutative algebra (as usual in the theory of supermanifolds). The element 
lj^ is the identity in the cohomology ring of MQ}T1. 

CONJECTURE. The series <& is absolutely convergent in a neighborhood UofO in 
H, if the cohomology class [UJ] G lP(V,K) is sufficiently positive. 

Without assuming the validity of this conjecture we can work not over the 
field C but over the field of fractions of the semigroup ring Q[B], where B is the 
semigroup generated by classes ß such that L UJ' > 0 for all symplectic froms UJ1 

close to UJ. Other homology classes are excluded because they cannot be represented 
by pseudo-holomorphic curves. 

The function 3> in its definition domain U satisfies a system of nonlinear dif
ferential equations of the third order (due to R. Dijkgraaf, E. Verlinde, H. Verlinde, 
and E. Witten, see [W2]). Let us choose a basis Xi of the space H and denote by 
x% the corresponding coordinate system on H. Denote by (gij) the matrix of the 
Poincaré pairing, g^ := Jv XìAXJ , and by (g^) the inverse matrix. For all i,j, k, I, 
we have (modulo appropriate sign corrections for odd-degree classes): 

w ^ mm w ^ __ X ^ w ^ mm u ^ 
dxidx^dx7n dxkdxldxnh' ^ dxidxkdxrn dx^dxldxrn' ' 

m,m/ m,m' 

This equation can be reformulated as the condition of associativity of the alge
bra given by the structure constants A*• := Ylk' 3kk ^ijk'^- In invariant terms it 
means that $ defines a supercommutative associative multiplication on the tangent 
bundle to H (the quantum cohomology ring). 

The associativity equation follows from the splitting axiom and from a certain 
linear relation among components of the compactification divisor of .Mojn. Denote 
by Ds for S C { 1 , . . . , n} , 2 < #S < n — 2, the divisor in M.QìTI, which is the 
closure of the moduli of stable curves (C\pi,... ,pn) consisting of two irreducible 
components Ci, C2 such that pi G Ci for i G S and pi G C2 for i £ S. 

LEMMA. We have the following identity in E2(MotTl, Z) 

£ [Ds] = E [Ds] . 
S:l,2eS S:1,3£S 

3,4^5 2,4^5 
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Both sides in the equality above arc pullbacks under the forgetful map 
•MQìU —> .Mo,4 of points -0{I,2}î ^{1,3} £ -M0,4 ^ P1 . It is clear that any two 
points on P 1 are rationally equivalent as divisors. 

Conversely, one can show using the splitting axiom that one can reconstruct 
the whole system of genus-zero GW-classes starting from <I>. The equation of the 
associativity is a necessary and sufficient condition for the existence of such recon
struction (see [KM]). 

The associativity equation was studied by Dubrovin [D]. He discovered that 
it is a completely integrable system in many cases (but not for CY manifolds). For 
example, for V ~ P2 the associativity equation is equivalent to the Painlevé VI 
equation. It means that via a simple recursion formula we can compute the number 
of rational curves of degree d in the projective plane passing through generic 3d— 1 

-points. 
Notice that by dimensional reasons, the associativity equation is an empty 

condition for 3-dimensional Calabi-Yau manifolds, because the virtual dimension 
of the space of rational curves is zero, curves do not intersect each other, and the 
degeneration argument is inapplicable. 

Let us introduce a connection on the tangent bundle Tu by the formula 
V = Vo|^ + A, where Vo is the standard connection of the affine space H. The 
associativity equation implies the flatness of V. 

Variations of Hodge structures 

Suppose that ci(V) = 0, and V carries at least one integrable complex structure 
compatible with UJ such that H2,0(V) = 0. For any such complex structure we 
have a Hodge decomposition ©Hfc(y, C) = ©Hp,g. We expect that all cycles I9in]ß 
are Hodge cycles of (complex) dimension equal to (n + dimcV — 3). It follows 
that the restriction of V to the convergence domain of the series $ in the second 
cohomology group: 

Ucl :=Un H2(V, C) C H2(V, C) - H1 '1 

maps Hp '9 ® 0(Ucl) to H p + 1 ' 9 + 1 <8> ^(W1). We call Uci the classical moduli space 
because it is locally isomorphic to a complexification of the moduli space of sym
plectic structures on V. 

We introduce nitrations ©p^H 7 3 ' 9 on trivial bundles over Ucl with fibers 
equal to ©7J_9 is nxedHp'9- Hence, we have flat connections and nitrations on holo
morphic vector bundles over a complex manifold satisfying the Griffiths transver-
sality conditions. We call such data a complex variation of pure Hodge structures. 
One can prove by using formal arguments with Hodge-Tate groups that the equiv
alence classes of such complex variations of pure Hodge structures do not change 
under deformations of the complex structure on V. 

For general symplectic manifolds V with ci(V) = 0 we can consider just the 
two trivial vector bundles Heven and Hodd on Uc] := U H H2(V, C) C H endowed 
with the flat connection induced from V and the filtration by subbundles (Bk<k0R

k-
Algebro-geometric complex variations of pure Hodge structures are defined 

as sub quotients of variations of pure Hodge structures on cohomology groups of 
complex projective algebraic manifolds depending algebraically on parameters. 
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MIRROR CONJECTURE. Complex variations of pure Hodge structures constructed 
using Gromov-Witten invariants of symplectic manifold V as above are locally 
equivalent to algebro-geometric variations. 

In almost all known examples such variations of Hoclge structures should be 
locally equivalent to variations of Hodge structures on total cohomology bun
dles of a mirror family of complex manifolds with ci = 0. Exceptions come 
mostly from CY-manifolds V such that dimH1(V,Ty) = 0, i.e. rigid manifolds. 
In this case dual manifolds with rotated Hodge diamond could not exist, because 
dimH1(W,fi^) ^ 0 for Kahler manifolds. Physicists proposed as candidates cer
tain substructures of Hodge structures on cohomology groups of Fano varieties 
(=algebraic manifolds with an ample anti-canonical bundle). Also, calculations 
of numbers of curves on projective spaces suggest that in general there exists 
some relation between the pre-potential of non Calabi-Yau manifolds and algebro-
geometric variations of Hodge structures. 

In the case of a quintic V in P 4 the function $ is the sum of two terms: 
the contribution of maps to points of V and the contribution of rational curves 
in V (and their multiple covers). We introduce coordinates t%, i = 0,1,2,3, in 1-
dimensional spaces H1 '*^) and odd coordinates £J, rj3;, j = 1, . . . , 102, in H3(V, C). 
In these coordinates we have (modulo adding a polynomial of degree 2) 

i+j+fc=3 j d>l 

One can deduce an example from [COGP] from this formula. 
The flat coordinates x% on the moduli space of complex structures on dual 

manifolds are equal to the ratios of periods ( J tl) / ( J ft), where £1 is a holo
morphic volume element on the mirror manifold W and 7̂  are elements of H* (W, C) 
locally constant with respect to the Gauss-Manin connection on the homology bun
dle. 

There exists a generalization of the mirror correspondence to higher genera. 
First of all, the dimension formula for degrees of Gromov-Witten classes shows 
that one can expect a nonnegative dimension for the space of genus g curves for 
Calabi-Yau varieties V only in the following cases: 

(1) g = 0 and an arbitrary dimension n := dim y (this is what we have de
scribed right now), 

(2) g = 1 and arbitrary n, 
(3) g > 2 and n < 3. 

The Harvard group of physicists in the remarkable paper [BCOV] proposed 
a procedure ("quantum Kodaira-Spencer theory") giving numbers of curves for 
cases g = 1 or n = 3. It relates GW-invariants with certain structures on the 
moduli of dual varieties, which are more complicated than just variations of Hodge 
structures and are not understood mathematically yet. The example of Dijkgraaf 
(elliptic curves) is a 1-dimensional version of this theory. 

In the rest of this paper we give an outline of a program relating mirror 
symmetry to general structures of homological algebra. The central ingredient 
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here is a fundamental construction of Fukaya based on ideas of Donaldson, Flo er, 
and Segal. 

Extended moduli spaces 

When we restrict the flat bundle Tu to the subspace Ucl = B-2(V, C), much in
formation will be lost. It seems very reasonable to extend the moduli space of 
symplectic structures to the whole domain U in H in which the potential <I> is 
defined. Hence, the tangent space to the extended moduli space at classical points 
Ucl should be equal to H = ©Hfc. 

Now we want to construct an extended moduli space M for a complex Calabi-
Yau W containing the ordinary moduli space of complex structures on W. The nat
ural candidate for the tangent bundle to M at classical points Mcl := moduli (W) 

"should be equal to the direct sumr©Hp(H^, AqTw). The problem of constructing -

M was already dicussed by E. Witten (see [W3]). 
We anticipate that ©HP(H^ A9 TV) can be interpreted as the total Hochschild 

cohomology of the sheaf Ow of algebras of holomorphic functions on W. 
For an algebra A/k over a field its Hochschild cohomology HH*(A) — 

R*(A,A) is defined as Ext*A_mod_A(A,A). The second Hochschild cohomology 
HH2(A) classifies infinitesimal deformations of A. Notice that each A-bimodule M 
defines a functor from the category of A-modules into itself: 

M®A ' A - mod —> A - mod , N \-+ M ®A N 

and A corresponds to the identity functor Id^-mod-
Analogously, we define the Hochschild cohomology of the structure sheaf Ow 

of a scheme W over k (or of an analytic space) as the global Ext-functor 

HH*(0 w ) := Ext*WxW(6*(Ow),6*(Ow)) , 

where 6 : W <-+ W x W is the diagonal embedding. Another definition of the 
Hochschild cohomology for algebraic varieties (in fact, equivalent to ours) was 
proposed by Gerstenhaber and Schade [GS]. The following fact proven in hidden 
form in [GS] seems to be new in algebraic geometry: 

THEOREM. For smooth (and not necessarily compact) variety W over a field of 
characteristic zero there is a canonical isomorphism 

iffl"(Ow)~ © tfiW^Tw) 

For smooth W the second Hochschild cohomology EH.2(Ow) splits into the 
direct sum of ordinary first-order deformations H1(M /,T^), noncommutative de
formations H° (W, f\ TV ) of the sheaf Ow of associative algebras (global Poisson 
brackets on W), and a slightly more mysterious piece H2(W, Ow)- This third part 
can be interpreted as locally trivial first-order deformations of the sheaf of abelian 
categories of CV-modules. 

In the next section we will propose an interpretation of the total Hochschild 
cohomology as the tangent space to "extended moduli space" Ai containing the 
classical moduli space Mcl as a part. 
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AQO-algebras and categories 

Aoo-algebras were introduced by Stasheff in 1963 (see [S]). Let A = ©Afc be a Z-
graded vector space. The structure of the A^-a lgebra on A is an infinite sequence 
of linear maps m^ : A®h —> A, k > 1, degm/c = 2 — k, satisfying the (higher) 
associativity conditions: 

(1) m2 = 0 (we can consider m i as a differential and (A,mi) as a complex), 
(2) m-i(m2(a ® b)) = m2(mi(a) ® b) ± m2(a ® mi(b)), (m2 is a morphism of 

complexes), 
(3) 77&3(mi(a)®&<8)c)±772,3(a®mi(b)®c)±7713(a®ò(8)mi(c))±rai(7713(a®ò(g)c)) 

= m2 (m2 (a® &) <8) c)—7712(0® m2(ò®c)), (m2 is associative up to homotopy), 
(4) and so on . . . . 

In one sentence one can define the AQO-algebra structure on A as a co-
derivation in the graded sense d, d2 = 0 of degree 1 on the co-free co-associative 
co-algebra without a co-unit co-generated by the Z-graded vector space A[l], 
A[l]fc:=Afc+1. 

A morphism of Aoo-algebras (from A to B) is an infinite collection of linear 
maps A®k —+ B, k > 1, satisfying some equations analogous to the defining 
equations for individual Aoo-algebras. In terms of co-free co-algebras it is the same 
as a differential graded homomorphism. A homotopy equivalence of A^-algebras 
is a morphism whose linear part induces an isomorphism of cohomology groups 
with respect to the differential m i . 

In general, Aoo-algebras are closely related to differential graded algebras. 
Namely, a dg-algebra is the same as an Aoo-algebra with 7713 = 7714 = • • • = 0. 
Conversely, for an Aoo-algebra A one can construct using the bar-construction a 
differential graded algebra B homotopy equivalent to A. 

An additive category over a field k is a category C with finite direct sums 
such tha t all sets of morphisms Homc(X, Y) aie endowed with s t ructure of vector 
spaces over k and where the composition of morphisms is a bilinear map. In a 
sense, one can approximate additive categories by algebras of endomorphisms of 
their objects. Analogously, one can define a differential graded category as an 
additive category with the structure of complexes on Homc(X,Y) such tha t the 
composition is a morphism of complexes. 

An Aoo-category C is a collection of objects and Z-graded spaces of mor
phisms Hom.c(X, Y) for each two objects endowed with higher compositions of 
morphisms satisfying relations parallel to the defining relations of Aoo-algebras. 
We require the existence of identity morphisms I d ^ E Homc(X, X), which obey 
the usual properties of identity for composition 7712 and vanish under substitution 
in other (higher) compositions. We can also require the existence of finite direct 
sums in C in an obvious sense. Notice tha t C is not a category in general, because 
the composition of morphisms is not associative. Nevertheless, one can construct 
an additive category H(C) from C with the same class of objects by defining new 
Z-graded spaces of morphisms as 

H(Cn ' Im ( m i : H o m e 1 ( X , y ) ^ Horn«, ( X , F ) ) 
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There exists a generalization of Hochschild cohomology to the case of Aoo-
algebras. The meaning of HH*(A) for * > 0 is the space of equivalence classes of 
first-order deformations of Aoo-structure on A over Z-graded bases. We hope that 
there exists an appropriate version of Hochschild cohomology for some good class 
of AQO-categories as well. 

One can show under some mild assumptions that if the formal Z-graded mod
uli space M of Aoo-categories is smooth then there exists the canonical structure 
of an associative commutative algebra on the tangent bundle to M. In the case 
of an Aoo-category consisting just of one object X with morphisms Homc(X,X) 
consisting of an associative algebra A in degreee 0, the product in Hochschild 
cohomology (i.e., in the tangent space to M) 

HH*(A) := Ext^_m o d_^(A, A) _ 

coincides with the usual Yoneda composition of Ext-groups. 

Triangulated categories 

One of the fundamental tools in homological algebra is the triangulated category 
T>(C) associated with an abelian categoiy C satisfying certain conditions (Verdier, 
see [V] ). A triangulated category is an additive category endowed with a shift func
tor and a class of so-called exact triangles, obeying a complicated list of axioms. 
For example, for C equal to the category of A-modules, where A is an associative 
algebra, the category V(C) is equivalent to the category whose objects are com
plexes of free A-modules and whose morphisms are equal to homotopy classes of 
differential graded morphisms of degree 0: 

HomD{C)(X,Y) :=H°(0nHomc7(^,yJ+fc)) . 
k j 

The bounded derived category T>b(C) is the full subcategory of T)(C) con
sisting of complexes of A-modules with nonvanishing cohomology groups only in 
finitely many degrees. 

The shift functors at the level of objects just shifts the degree of complexes: 
X -> X[n], X[l]k = Xk+n, and (X[n])[m] = X[n + m], X[0] = X. 

We will not describe Verdier's axiomatics of exact triangles here because it 
does not look completely satisfactory, although it was generally adopted and widely 
used. A certain improvement of axioms was proposed by Bondal and Kapranov in 
[BK]. The main ingredient in their definition is the notion of a twisted complex in 
a differential graded category. 

We can extend the construction of [BK] to the case of Aoo-categories. We 
assume that an Aoo-category C is endowed with shift functors such that 

Komc(X[i],Y[j}) = Uomc(X,Y) [j - i] . 

By definition, a (one-sided) twisted complex is a family (X^)iEz of objects 
of an Aoo-category C such that j W = Q for almost all i together with a collection 
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of morphisms dij G B.omc(X^\X^y~'L for i < j obeying a generalization of the 
Maurer-Cart an equation: 

forfixedz, j ^ rnk(fÌQìil,... , fik_ltik) = 0 . 
fc;zo,...,4/c 

ÌQ=Ì,Ìk=j 

We define the Z-graded space of morphisms between twisted complexes X and Y 
as 

0Homc(X^'),y^+fc))[-A:] . 
fcj-

Using higher compositions in C one can define the structure of an Aoo-category 
on {twisted complexes of C}. Any higher composition of morphisms of twisted 
complexes is defined as the sum over all possible products that one can imagine. 

One can check without difficulties that the derived category 

Vb(C) := tf (twisted complexes of C) 

satisfies the Verdier axioms for triangulated category. 

Fukaya's Aoo-category 

In this section we describe a remarkable contsruction of Fukaya [F] with a few 
minor modifications. 

Let y be a closed symplectic manifold with ci(Ty) = 0. 
Denote by LV the space of pairs (x,L), where x is a point of V and L is a 

Lagrangian subspace in TXV. The space LV is fibered over V with fibers equal to 
Lagrangian Grassmanians. Thus, the fundamental group of the fibers is isomorphic 
to Z. 

The condition on V posed above guarantees that there exists a Z-covering 
LV of LV inducing a universal cover of each fiber. Let us fix LV. 

Objects of Fukaya's category F(V) are Lagrangian submanifolds C C V 
endowed with a continuous lift of the evident map C —» LV to a map C —> LV. 
In fact, it is only a first approximation to right objects (see remarks after the 
definition). For subvarieties Ci, C2 intersecting each other transversally at a point 
x G V and endowed with lifts to LV, we can define the Maslov index p.x(Ci, C2) G 
Z. Notice that 

ßx(Ci,C2) +ßx(C2,Ci) =n:= -dim(V) . 

Fukaya defines the space of morphisms Morip(£i,£2) °nly if ^ i 5 ^2 intersect 
transversally: 

H o m F ( £ i , £ 2 ) : = C £ i n £ 2 

with Z-grading coming from the Maslov index. 
The differential in Homi?(A»^) is a version of Floer's differential. Its matrix 

coefficient associated with two intersection points pi,p2 G Ci (1 L2 is defined as 

2_. ±exp(—area of D2), 
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where (ß : D2 —> V is a pseudo-holomorphic map from the standard disc D2 := 
{z | \z\ < 1} G C to V such that 0 ( - l ) = Pi, ^(+1) = P2, and 

0(exp(m)) G £1 for 0 < a < n, 0(exp(za)) G £2 for 7r < a < 2TT . 

More precisely, we consider equivalence classes of maps 0 modulo the action of the 
group of holomorphic automorphisms of D2 stabilizing points 1 and —1: 

R î C PSL(2,R)= Aut (D2) . 

The area of D2 with respect to the pullback of u) depends only on the homotopy 
type of 0 G 7T2(V5£i U C2). One expects that for sufficiently large UJ the infinite 
series is absolutely convergent. 

The sign db in the definition of the Floer_differentiai_cqmes_from_a natural 
orientation of the space of pseudo-holomorphic maps. One expects that there will 
be finitely many such maps for a generic almost-complex structure on V if {J>P2 — 
HPl = 1. Presumably, one can develop a general technique of stable maps for 
surfaces with boundaries or extend Ruan-Tian's methods. 

Analogously, one can define higher order compositions using zero-dimensional 
components of spaces of equivalence classes modulo PSL (2, R)-action of maps (ß 
from the standard disc D2 to V with the boundary (j)(dD2) sitting in a union of 
Lagrangian subvarieties. More precisely, if £ 1 , . . . , £fc+i are Lagrangian submani-
folds intersecting each other transversally and pj G Cj D £7+1, j = 1 , . . . , fc, are 
chosen intersection points, then we define the composition of corresponding base 
elements in spaces of morphisms as 

mk(pi,... ,pk) := Yl d= exP I " / 0*^1 9 £ HomF(£i, Ck+i), 
(j>:D2-^Vìq££1n£k+1 \ D2 J 

Q=ao<ai<---<oik<ak+i=^ 

where 0(exp(za)) G Cj for CKJ_I < a < ctj and cß(exp(iaj)) — pj for j = 1 , . . . , k + 
1; Pfc-K := 9- Again, we expect that there exist only finitely many equivalence 
classes modulo the action of Aff(R) = Stabie ö2 c P*S'L(2,R) of such maps in 
each homotopy class if ßq = ßPl + • • • + p.Vk + 2 — k and the infinite series in the 
definition of mk converges absolutely. 

Fukaya claims that the identities of the Aoo-category follow from considera
tions analogous to the proof of the associativa equations in the case of rational 
curves. He also claims that it is possible to extract an actual Aoo-category with 
compositions of all morphisms using an appropriate notion of a "generic" La
grangian manifold. In particular, it is possible to restore the identity morphisms. 
The main idea is that two Lagrangian submanifolds obtained one from another Ijy 
a Hamiltonian flow are equivalent with respect to the Floer cohomology. 

There is an extension of Fukaya's category. We can consider pairs consisting 
of a Lagrangian submanifold C and a unitary local system S on C as objects of a 
new Aoo-category. Morphism spaces will be defined as 

RomF((Ci,Si),(C2)S2)) := 0 Hom(£i|p,£2|p) • 
p££1nC2 
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In the definition of higher composition we add a new factor to each term 
equal to the trace of the composition of holonomy maps along the boundary of 
D2. Unitarity in this definition is an obligatory condition, otherwise the series 
defining higher compositions will be inevitably divergent. 

It seems that there are further possible extensions of Fukaya's Aoo-category. 
One can consider as objects Lagrangian foliations, families of Lagrangian subman-
ifolds parametrized by closed oriented manifolds, etc. 

Homological mirror conjecture 

We propose here a conjecture in slightly vague form, which should imply the 
"numerical" Mirror conjecture. Let (V, CJ) be a 2n-dimensional symplectic manifold 
with ci(V) = 0 and W be a dual 72-dimensional complex algebraic manifold. 

The derived category constructed from the Fukaya category F(V) (or a suit
ably enlarged one) is equivalent to the derived category of coherent sheaves on a 
complex algebraic variety W. 

More precisely, we expect that there is an embedding of Vb(F(V)) as a full 
triangulated subcategory into Vb(Coh(W)). We have the following evidence for 
that. 

(1) By the general philosophy, Aoo-deformations of first order of F(V) should 
correspond to Ext-groups in a category of functors F(V) —> F(V). The* 
natural candidate for such a category is F(V x V), where the symplectic 
structure on V x V is (UJ, —UJ). The diagonal Vdiag C V x V is a Lagrangian 
submanifold and it corresponds to the identity functor. By a version of 
Floer's theorem (see [F]) there is a canonical isomorphism between the 
Floer cohomology H * (Hornby xy)(Vdiag, Vdiag)) and the ordinary topolog
ical cohomology H* (V, C). The Yoneda product on the Floer cohomology 
considered as Ext-groups arises from holomorphic maps from D2 with 3 

• marked points on 3D2 to V x V with a boundary on Vdiag- Such maps 
are the same as holomorphic maps to V from the 2-dimensional sphere 
5 2 ~ CP2 with 3 marked points. Thus, it seems very reasonable to ex
pect that we will get exactly the quantum cohomology product on H*(V). 
We expect that the equivalence of derived categories will imply numerical 
predictions. 

(2) Lagrangian varieties (and local systems on it) form a natural class of local 
boundary conditions for the A-model in topological open string theory. 
Also, holomorphic vector bundles form local boundary conditions for the 
B-model (Witten [W4]). Physicists believe that the whole string theories 
on dual varieties are equivalent. Thus, we want to say that topological open 
string theory is more or less the same as a triangulated category. 

(3) Both categories Vb(F(V)) and Vb(Coh(W)) possess a duality: a functorial 
isomorphism (Hom(X, Y))* ~ Hom(Y, X[n]). On the algebro-geometric 
side it is Serre duality. For Fukaya's category the definition of compositions 
is cyclically symmetric. The duality follows from this symmetry and from 
the idendity ßx(Ci,C2) -f ßx(C2,Ci) = n. We developed some time ago a 
theory of Aoo-algebras with duality in [Kl] and proposed a combinatorial 
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construction of cohomology classes of the moduli spaces of smooth curves 
M9in based on such algebras. This construction has a generalization to 
an Aoo-category with a duality. Thus, we expect that the Gromov-Witten 
invariants could be defined in a general purely algebraic situation. We still 
do not know what is missed in algebraic structures and how to define classes 
with values in H*(M9ìU, C). 

A mirror complex manifold W is usually not unique. For example, one cannot 
distinguish the B-models on dual Abelian varieties A, A!. It is compatible with 
our picture because the derived categories of coherent sheaves on A and A! are 
equivalent via the Fourier-Mukai transform. Also, the B-models on birationally 
equivalent Calabi-Yau manifolds W, W1 are believed to be isomorphic. In all known 
examples the Hodge structures on total cohomology depend only on a birational 
type. Thus, we expect that the derived categories of coherent sheaves on W and^ 
on Wf are equivalent. 

Our conjecture, if it is true, will unveil the mystery of mirror symmetry. The 
numerical predictions mean that two elements of an uncountable set (formal power 
series with integral coefficients) coincide. Our homological conjecture is equivalent 
to the coincidence in a countable set (connected components of the "moduli space 
of triangulated categories", whatever it means). 

In the last section we show what our program looks like in the simplest case 
of mirror symmetry 

2-dimensional tori: A return 

Let E be the standard flat 2-dimensional torus 5 1 x S1 endowed with a symplectic 
form UJ proportional to the standard volume element. Let Ci ,C2,C^ be three simple 
closed geodesies from pairwise different homology classes and 

Pi G Ci n c2, p2 G £ 2 n £3 , P3 = q e Ci n c3 

be three intersection points. We will compute now the tensor coefficient of the 
composition 7712 corresponding to the base vectors pi,P2jP3- Each map cj) from D2 

to E can be lifted to a map 0 from D2 to R2 = the universal covering space of E. 
The preimages of circles Ci on R2 form three families of parallel straight lines. 
Thus, the images of lifted maps 0 are triangles with sides on these lines. It is easy 
to see that the equivalence classes of triangles modulo the action of Z2 = TTI(E) 

are labeled by terms of an arithmetic progression (the lengths of sides of triangles 
sitting on the pullback of Ci). The areas of triangles are proportional to the squares 
of elements of this progression. The tensor element of composition m2 can be 
written naturally as 

2_^ exp (—(an + b)2) 
nez 

for some real parameters a ^ 0 and b, which is a value of the classical 9-function. 
The associativity equation is equivalent to the standard bilinear identity for 9-
functions. It is well known that 9-functions form natural bases of spaces of global 
sections of line bundles over elliptic curves. 
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It seems very plausible that the triangulated category constructed from the 
Fukaya category F(T,) enlarged using unitary local systems is equivalent to the 
bounded derived category of coherent sheaves on the elliptic curve with the real 
modular parameter r := exp (— area of (E)) . 

Note added in proof-
After preparing the text of this lecture I realized tha t there is a serious flaw in 
Fukaya's preprint. It seems tha t he forgot about a certain s t ra tum in the Gro
mov compactification, which usually produces obstructions to the vanishing of the 
square of the Floer differential (compare with [O]). Algebraically, it means that we 
have elements mo of degree 2 in morphism spaces and the axioms of Aoo-categories 
are modified slightly. This defect is very unpleasant, but it does not appear in our 
simple example of the torus or in the. case of the diagonal in the square of a 
symplectic manifold. 
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1 Introduction 

We wish to present here some aspects of a few general methods that have been 
introduced recently in order to solve nonlinear partial differential equations and 
related problems in nonlinear analysis. 

As is well known, nonlinear partial differential equations have become a rather 
vast subject with a long history of deep and fruitful connections with many other 
areas of mathematics and various sciences like physics, mechanics, chemistry, engi
neering sciences, etc. And we shall not pretend to make any attempt at surveying 
all recent activities in that field. Also, we shall concentrate on rather theoretical is
sues leaving completely aside more applied issues such as mathematical modelling, 
numerical questions that go hand in hand in a fundamental way with the theories. 
For a discussion of the interaction between nonlinear analysis and modern applied 
mathematics, we refer the reader to the report by Majda [56] in the preceding 
Congress. 

We shall mainly discuss here recent methods that have been developed re
cently for the analysis of the major mathematical models of gas dynamics (and 
compressible fluid mechanics), namely the Boltzmann equation and compress
ible Euler and Navier-Stokes equations (essentially in the so-called "isentropic 
regime"). These methods include velocity averaging, regularization by collisions 
that we shall apply to the solution of the Boltzmann equation (Section 2 below), 
and compactness via commutators and in particular compensated compactness, 
which we illustrate on isentropic compressible Euler and Navier-Stokes equations. 

This selection of topics (equations and methods) is by no means an exhaustive 
treatment of all the exciting progresses that have taken place recently in nonlinear 
partial differential equations: many more important problems have been investi
gated — see for instance the various reports in this Congress related to Nonlinear 
Partial Differential Equations — and other methods and theories have been de
veloped. We briefly mention a few in Section 4. And even for the methods that we 
describe here, much more could be said in particular about applications to other 
relevant problems. 

Proceedings of the International Congress 
of Mathematicians, Zürich, Switzerland 1994 
© Birkhäuser Verlag, Basel, Switzerland 1995 
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We only hope that our selection will serve as a good illustration of recent 
activities. It will also emphasize some current trends that go far beyond the ma
terial discussed here. The first one is the analysis of the qualitative behavior of 
solutions (regularity, compactness, classification of possible behaviors, etc.). The 
second one, related to the preceding one, concerns the structure of specific non-
linearities and its interplay with the behavior (or possible behaviors) of solutions. 
Finally, this requires theories and methods that are connected with many branches 
of mathematics and analysis in particular. 

2 Boltzmann equation 

2.1 Existence and compactness results 

The Boltzmann equation is given by 

^ + v-Vxf = Q(fJ) (x,v)eR2N ,t>0 (1) 

where the unknown / is a nonnegative function on R2N x [0,oo), N > 2, \7X 

denotes the gradient with respect to x, and we denote by x • y or (x, y) the scalar 
product in RN. The nonlinear operator Q can be written as 

Q(f,f) = Q+(f,f)-Q-(fJ) (2) 

Q+(Lf) = [ dvj du,B(v-v.,u)f'fi (3) 
JRN JSN~1 

Q-(fJ)=[dvJ dujB(v-v*,u)fft = fL(f), L(f) = f*A (4) 
JRN JS"-1 V 

where /„ = f(x,v*,t), f = f(x,v',t), ft = f(x,v^,t), A(z) = J^^ B(z,uj)dw, 
and B = B(z,u) is a given nonnegative function of \z\ and |(2,CJ)|, is called 
the scattering cross-section or the collision kernel, which depends on the physical 
interactions of the gas particles (or molecules) and 

v1 — v — (v — V*,UJ)U) , v't = v* 4- (v—V*,UJ)UJ . (5) 

A typical example (the so-called hard spheres case) of B is given by: B = \(Z,UJ)\. 

We always assume that A e Lloc(R
N) a n d ( l + | ^ | 2 ) - 1 • L,<RA(z-^)d^ -> 0 as 

\z\ —> oo, for all R E (0,oo). 
Of course, we wish to solve (1) given an initial condition that is the values of 

/ at t = 0 
/|t=o - h in K2iV • (6) 

The initial value problem (1),(6) is a deceivingly simple-looking first-order 
partial differential equation with nonlinear (quadratic) nonlocal terms. It is a rel
evant model for the study of a rarefied gas and is currently used for flights in the 
upper layers of the atmosphere (Mach 20-24, altitude of 70-120 km). The statisti
cal description of a gas in terms of the evolution of the density / of molecules was 
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originally obtained by Boltzmann [6] (see also Maxwell [57], [58]). There is a long 
history of important mathematical contributions to the study of (1) by Hilbert 
[31], Carleman [8], [9] etc. Further details on the derivation of (1) and references 
to earlier mathematical contributions can be found in Grad [28], Cercignani [10], 
and DiPerna and Lions [18]. 

The major mathematical difficulty of (1), (6) is the lack of a priori estimates 
on solutions: only bounds on / in L1 (with weights) and on / log / in L1 are 
known! Nevertheless, the following result, taken from [18],[20], holds: 

THEOREM 2.1. Let / 0 > 0 satisfy: 

/o(l + \x\2 + \v\2 + I log /o|) dx dv < oo. 

Then there exists a global weak solution of (1),(6) f G C([0,oo);L1(M^)) satis
fying 

sup / f(t)(l + \x-vt\2 + \v\2 + |log f(t)|) dx dv < oo 
£G[0,oo) o) JR2N 

and the following entropy inequality for allt>0 

[ /(*) log /(*) dxdv+\ [ dsf dxD[f] < f / 0 log /0 dx dv (7) 
J R 2 J V 4 JQ JRN JR2N 

where D[f] = j[R2N dvdv* JSN-I B du(fft-fft) log ££- . 

REMARKS 2.1. (i) We do not want to give here the precise definition of global weak 
solutions as it is a bit too technical. Let us mention that the notion introduced in 
[18], [20] is modified in Lions [48] (additional properties are imposed on / in [48]). 

(ii) Further regularity properties of solutions are an outstanding open problem. It 
is only known that the regularity of solutions is not "created by the evolution" 
and has to come from the initial condition /o- It is tempting to think, in view of 
the results shown in [48] (see sections 2.2, 2.3 below), that, at least in the model 
case when B = tp(\z\, ^^-) with ip E C£°((0,oo) x (0,1)), / is smooth if /0 is 
smooth. Related to the regularity issue is the uniqueness question: uniqueness of 
weak solutions is not known (it is shown in [48] that any weak solution is equal to 
a solution with improved bounds assuming that the latter exists!). 

(iii) The assumption made upon B corresponds to the so-called angular cut-off. 

(iv) Boundary conditions for Boltzmann's equation can be treated: see Hamdache 
[29] for an analogue of the above result in that case. Realistic boundary conditions 
require some new a priori estimates and are treated in Lions [46]. 

(v) Other kinetic models of physical and mathematical interest can be studied by 
the methods of proof of Theorem 2.1: see for instance DiPerna and Lions [19], 
Arkeryd and Cercignani [2], Esteban and Perthame [22], and Lions [48]. 
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The strategy of proof for Theorem 2.1 is a classical one, which is almost al
ways the one followed for the proofs of global existence results: one approximates 
the problem by a sequence of simpler problems having the same structure (and the 
same a priori bounds) for which one shows easily the existence of global solutions, 
and then one tries to pass to the limit. This strategy is also useful for the math
ematical analysis of numerical methods because one can view numerical solutions 
as approximated solutions or solutions of approximated problems. This is wiry the 
main mathematical problem behind the proof of Theorem 2.2 is the analysis of 
the behavior of sequences of solutions (we could as well consider approximated 
solutions... ) and in particular of passages to the limit in the equation. This is 
a delicate question because the available a priori bounds only yield weak conver
gences that are not enough to pass to the limit in nonlinear terms, This theme 
will be recurrent in this[report_(as_it was_already_in Majda's report [56]). 

We thus consider a sequence of (weak or even smooth) nonnegative solutions 
fn of (1) corresponding to initial conditions (6) with /b replaced by ffî and we 
assume 

sup / ft(l + \x\2 + \v\2 + \]Qgff\)dxdv < oo (8) 
n>lJR™ 

sup sup / / n ( t ) ( l + | z - ^ | 2 + H 2 + |log fn\)dxdv < oo (9) 
71>1 t>0 JR™ 

sup [ dt [ dv D[fn] < oo . (10) 
n>lJO JRH 

Without loss of generality — extracting subsequences if necessary — we may 
assume that / £ , / " converge weakly in L ^ R 2 ^ ) , L ^ R 2 ^ x (0,T))(V T E (0,oo)) 
respectively to fo,f. 

THEOREM 2.2. We have for all T\J E Cg°(R^)} T,Re (0, oo) 

/ fni/jdv-> j fyjdv in L 1 ^ x (0,T)) , (11) 
JRK

 n
 JRK 

I Q+(fnJn)^dv^ f Q+(fJ)iPdv,^ 
JRN n JRN 

I Q-(r,n*pdv^ [ Q-(fj)rpdv \ (12) 
JRN n J^N 

in measure for \x\ < R , t E (0,T) ; 

and f is a global weak solution of (1), (6). 

THEOREM 2.3. (1) We have for all R,T E (0,oo) 

Q+(f\D -> Q + ( / , / ) in measure for \x\<R, \v\ < R, t E (0,T). (13) 
n 

(2) If f% converges in L^R 2 ^ ) to f0} then fn converges to f in C Q O ^ j L ^ R 2 ^ ) ) 
for all T E(0,oo). 
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REMARKS 2.2. (i) Theorem 2.2 is shown in [18] — a simplification of the proof of 
the passage to the limit (using (13)) is given in [48]. Theorem 2.3 is taken from 
[48]. 

(ii) The heart of the matter in Theorem 2.2 is (11), which is a consequence of 
the velocity averaging phenomenon detailed in Section 2.2 below. The proof of 
Theorem 2.3 relies upon the results of Section 2.3 below. 

(iii) It is shown in Lions [48] that the conclusion in (2) of Theorem 2.3 implies 
that ffî converges to fa m £x(R2iV): in other words, no compactification and in 
particular no regularization is taking place for t > 0. As indicated in [47] (see also 
the recent result of Desvillettes [16]) this fact might be related to the angular cut
off assumption because grazing collisions seem to generate some compactification 
("nonlinear hypoelliptic features" in the model studied in [47]). 

2.2 Velocity averaging 

A typical example of the so-called velocity averaging results is the following 

THEOREM 2.4. Let m > 0; let 9 E [0,1); and let f,g E LP(R% x R f x R t) with 
1 < p < 2. We assume 

dl+v-Vxf = (-Ax,t + l)9/2(-Av + l)m'2g in V'(R2N+1). (14) 
ut 

Then, for all VJ E CQ°(RN), JRN f(x,v,t)yj(v) dv belongs to the (Besov) space 

B*'P(RN x R) — and thus to HS'>P(RN) for all 0 < s' < s — where s = ( 1 -

REMARKS 2.3. (i) If m = 0, JRN fipdv E Hs>p with s = 2=^. The above exponent 
s is optimal in general (this is shown in a work to appear by the author). Similar 
results are available if 2 < p < oo or in more general settings: we refer the reader 
to DiPerna, Lions, and Meyer [21]. 

(ii) Such velocity averages are known in statistical physics (or mechanics) as macro
scopic quantities. The above result shows that transport equations induce some 
improved partial regularity on velocity averages (by some kind of dispersive effect). 

(iii) The first results in this direction were obtained in Golse, Perthame, and Sentis 
[27], Golse, Lions, Perthame, and Sentis [26] (where the case m = 0 is considered). 
The case m > 0, p = 2, was treated in DiPerna and Lions [19] while the general 
case is due to DiPerna, Lions, and Meyer [21] — a slight improvement of the Besov 
space can be found in Bézard [5]. Two related strategies of proof are proposed in 
[21] that both rely on Fourier analysis, one uses some harmonic analysis, namely 
product Hardy spaces and interpolation theory, while the second one uses classical 
multipliers theory and careful Littlewood-Paley dyadic decompositions. However, 
the main idea is rather elementary and described below in extremely rough terms. 

As indicated in the preceding remark, we give a caricatural (but accurate!) 
explanation of the phenomena illustrated by Theorem 2.4. If we Fourier transform 
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(14) in (x,t), we see that we gain decay (^regularity) in (f, r) — dual variables 
of (x,t) — provided \r + v • £| > 6\v • £| for some 6 > 0. On the other hand, the 
set of v on which we do not gain that regularity, namely {v E Supp (VJ) / \r + 
v ' f| < ^IC^OI}» n a s a Pleasure of order 6, and hence contributes little to the 
integral (JRn f(^,v,r)yj(v)dv). Balancing the two contributions, we obtain some 
(fractional) regularity. 

Of course, such improved regularity yields local compactness (in (x, t)) of the 
velocity averages and leads (after some work) to (11). 

2.3 Gain terms and Radon transforms 

We set for J , ^ ^ ) 

Q^/ .S ) " = l~ dvj durB(v-v*,uj)f'gl (15)~ 
JRN JS"-1 

and we assume (to simplify the presentation) that B satisfies: 

B(Z,UJ) — y{\z\, u| ) (this is always the case in the context of (1)) and tp E 

CQ°((0, oo) x (0,1)). We denote by A1(RN) the space of bounded measures on RN. 

THEOREM 2.5. The operator Q+ from M(RN) x HS(RN) and HS(RN) x M(RN) 
into H^^ÇR1*) is bounded for all s E R. 

REMARK 2.4. This result is taken from Lions [48] using generalized Radon trans
forms; a variant of this proof making direct connection with the classical Radon 
transform has been recently given by Wennberg [72] (this proof, contrarily to the 
one in [48], does not extend to more general situations such as collision models for 
mixtures or relativistic models — this case is treated in Andréasson [1]). 

The above gain of regularity (^-^ derivatives) can be shown by writing Q + 

or its adjoint as a "linear combination" of translates of some Radon-like transforms 
given by 

Ryj(v) f B(v,uj)yj((v,u)uj)duj , \tvj£C^(RN) (16) 

or 

Rijj(v) = f B(v,uj)yj(v-(v,uj)u))duj , Viß e C%°(RN) . (17) 

In both cases, one integrates (/? over the set {(V,UJ)UJ \ UJ E SN~1} = {V — (V,UJ)UJ \ 
UJ E SN~1}, which is the sphere centered at | and of radius -^. These operators are 
rather special Fourier integral operators often called generalized Radon transforms 
(see for instance Phong and Stein [62], Stein [66]). The crucial fact is that the set 
over which VJ is integrated "moves" with v — except that all these spheres go 
through 0, but this does not create difficulties because B vanishes if (V,UJ)UJ = 0 
or if v~(v, U))UJ — 0. This is the main reason why one can prove that R is bounded 
from ^ ( R ^ ) into H**1**1^) for all s E R (^f1 comes from the stationary 
phase principle... ). 
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3 Compressible Euler and Navier-Stokes equations 

The compressible Euler and Navier-Stokes equations are the basic models for the 
evolution of a compressible gas. In the case of aeronautical applications, the main 
difference between the domains of validity of the Boltzmann equation and the 
Euler-Navier-Stokes systems is the altitude of the aircraft. This indicates that 
there should be a transition from the Boltzmann model to those mentioned here. 
Mathematically, this corresponds to replacing B by ^ B in (1) and letting e go to 
0 (at least formally): as is well known, one recovers, taking velocity averages of the 
limit / (i.e. p = JRN f dv, pu = JRN fvdv, pE = JRN f\v\2 dv), the compressible 
Euler equations (with 7 = ^j^) — see Cercignani [10] for more details. This 
heuristic limit (and related limits) remains completely open from a mathematical 
viewpoint: partial results can be found in Nishida [61], and Ukai" and Asano [71], 
and recent progress based upon the material described in Section 2 above is due to 
Bardos, Golse, and Levermore [4]. Related problems are described in Varadhan's 
report in this Congress. 

The compressible Euler and Navier-Stokes equations take the following form: 

- ^ + div (pu) = 0 x E RN , t > 0 (18) 

—- (pu) + div (pu (g> u) - XAu - (A+/i) V div u + Vp = 0 xeRN , t>0 (19) 
at 

and an equation for the pressure p (or equivalently for the total energy or the tem
perature) that we do not wish to write for reasons explained below. The unknowns 
p, u correspond respectively to the density of the gas (p > 0) and its velocity u 
(where u(x, t) E R^) . The constants À, a axe the viscosity coefficients of the fluid: 
if À = fi — 0, the above system is called the compressible Euler equations, whereas 
if A > 0, 2A + p > 0, it is called the compressible Navier-Stokes equations. Despite 
the long history of these problems, the global existence of solutions "in the large" 
is still open for the full (i.e. with the temperature equation) systems except in the 
case of compressible Navier-Stokes equations when N = 1: in that case, general 
existence and uniqueness results can be found in Kazhikov and Shelukhin [37], 
Kazhikov [36], Serre [64], [63], and Hoff [34]. This is why we shall restrict ourselves 
here to the so-called "isentropic" (or barotropic) case where one postulates that p 
is a function of p only, and in order to fix ideas we take 

p = ap1 , a > 0 , 7 > 1 . (20) 

This condition is a severe restriction from the mechanical viewpoint (in the Navier-
Stokes case, it essentially means considering the adiabatic case and neglecting the 
viscous heating). Mathematically, it leads to an interesting model problem that is 
supposed to capture some of the difficulties of the exact systems. 

Of course we complement (18)-(19) with initial conditions 

p\t=o = Po , pu\t=o = rn0 in R^ (21) 

where po > 0, mo are given functions on R^. 
We study the case of compressible isentropic Euler equations in Section 3.1. 

The analogous problem for Navier-Stokes equations is considered in Section 3.3. 
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3.1 ID isentropic gas dynamics 

We thus consider the following system 

g + 2 H _ „ , £M + ̂ „ W ) .„ i e K | i > 0 (22) 

where p > 0, and a > 0, 7 > 1 are given constants. Without loss of generality (by 

a simple scaling) we can take a = ^ ' (to simplify some of the constants below). 
As is well known for such systems of nonlinear hyperbolic (first-order) equa

tions, singularities develop in finite time: even if po = p + p\ > 0 on R with p E R, 
p > 0, pijtio E CQ°(R), then ux and px become infinite in finite time (see Lax 
[38], [39], [41], and Majda [54], [55] for more details). In addition, bounded so
lutions of (22), (21) are not unique and additional requirements known as (Lax) 
entropy conditions on the solutions are needed (Lax [41],[40], see also the report 
by Dafermos in this Congress). 

In the case of (22), these requirements take the following form (see DiPerna 
[17], Chen [11], and Lions, Perthame, and Tadmor [53]): 

^ [ip(p, pu)] + ^ [yj(p, pu)} < 0 in X>'(R x (0, oo)) (23) 

and tp, VJ are given by 

JR 

VJ = jdv[6v+(l-6)u]uj(v)(pry-1-(v-u)2)x 

JR 

(24) 

+ 

where UJ is an arbitrary convex function on R such that UJ" is bounded on R, 
\ — 3-̂ y A — 2=1 A — 2(7-1)' ° — 2 • 
THEOREM 3.1. Letpo,mQ E L°°(R) satisfy: p0 > 0, |mo| < Cp0 a-e. inR for some 
C > 0. Then there exists (p,u) E L°°(R x (0,oo)) (p > 0) solution of (21)-(22) 
satisfying (23). 

As explained in Section 2.2, the proof of the existence results depends very 
much upon the stability and compactness results shown below (in fact one ap
proximates (22) by the vanishing viscosity method; i.e., adding — e ^ 2 , —e —^2 
in the equations respectively satisfied by p, pu where E > 0, and one lets e go to 
0). We thus consider a sequence (pn,un) of solutions of (22) satisfying (23) and 
we assume that (pn,un) is bounded uniformly in n in L°°(R x (0,oo)) (pn > 0 
a.e.). Without loss of generality, we may assume that (pn,un) converges weakly in 
L°°(R x (0,oo))-weak* to some (p,u) E L°°(R x (0,oo)) (p > 0 a.e.). The main 
mathematical difficulty is the lack of any a priori estimate (except for 7 = 3, the 
so-called monoatomic case) that would ensure the pointwise compactness needed 
to pass to the limit in pn(un)2 or (p71)1. 

THEOREM 3.2. pn,pnun converge in measure on (-R,R) x (0,T) (for all 0 < 
R,T < 00J to p,pu respectively. And (p,u) is a solution of (22) satisfying (23). 
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REMARKS 3.1. (i) This result shows that the hyperbolic system (22) has com
pact ifying properties because initially at t = 0 we did not require that pn or pnun 

converge in measure. 

(ii) Theorem 3.2 is essentially due to DiPerna [17] if 7 = §f±f (k > 1), Chen [11] 
if 1 < 7 < | . It is shown in Lions, Perthame, and Tadmor [53] if 7 > 3 and in 
Lions, Perthame, and Sóuganidis [51] if 1 < 7 < 3. The existence result (Theorem 
3.1) for 1 < 7 < 00 is taken from [51]. 

(iii) The proofs in [53],[51] use two main tools: the method introduced by Tartar 
[69] (and developed by DiPerna [17]) which combines the compensated-compact-
ness theory of Tartar [68], [69], Murat [60] and the entropy inequalities (23), and 
the kinetic formulation of (22) introduced in [52], [53] where one adds a new "veloc
ity" variable, and writes the unknowns (p, pu) in terms of macroscopic quantities 
(velocity averages) associated with a density f(x,v,t) that has a fixed "profile" in 
v (a "pseudo-maxwellian"). This formulation connects the Boltzmann theory as 
described in Section 2 and the study of compressible hydrodynamic (or gas dy
namics) macroscopic models. More details on this new approach are to be found in 
Perthame's report in this Congress. In the next section, we present some aspects 
of the compensated-compactness theory. 

3.2 Compensated compactness and Hardy spaces 

One important point in the compensated-compactness theory developed by Tartar 
[68], [69] and F. Murat [60] is the systematic detection of nonlinear quantities that 
enjoy "weak compactness" properties. A typical example known as the div-curl 
example — it is precisely the one used in the proof of Theorem 3.2 — is given by 
the following result taken from [60]. 

THEOREM 3.3. Let (En,Bn) converge weakly to (E,B) in LP(RN)N x Lq(RN)N 

with 1 <p < 00; | + 1 = 1 ; N >2. We assume that cuilE71, div Bn are relatively 

compact in W~liP(RN), W~1,q(RN) respectively. Then, En • Bn converges weakly 
(in the sense of measures or in distributions sense) to E • B. 

REMARK 3.2. Let US sketch a proof. We write: En = V-Kn + Ën where àìvE71 = 0, 
Én is compact in U>(RN) (Hodge-De Rham decompositions), ir71 E Lp

oc(R
N), 

V?rn E LP(RN). Then, we only have to pass to the limit in Bn- W 1 = div (7rnBn)-
7rndivBn. The first term passes to the limit because irn is compact in Lfoc(R

JV) 
(Rellich-Kondrakov theorem) while the second term also does because âivBn is 
relatively compact in ^ - ^ ( R ^ ) and Virn is bounded in LP(RN). 

As shown in Coifman, Lions, Meyer, and Semmes [12], the above nonlinear 
phenomenon is intimately connected with some general results in harmonic analy
sis associated with the (multi-dimensional) Hardy spaces denoted here by ^ ( R ^ ) 
(0 < p < 1): see Stein and Weiss [67], Fefferman and Stein [23], and Coifman and 
Weiss [14] for more details on Hardy spaces. 

In particular, the following result holds. 
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THEOREM 3.4. Let E E LP(RN) satisfy curl E = 0 in V'(RN), let B E Lg(RN) 
satisfy divB = 0 in V'(RN) with 1 < p,q < oo, £ = ± + ± < 1 + ^ . T/ie?z 

E - B G J Ï ^ R " ) . 

REMARKS 3.3. (i) This result is taken from [12] (and was inspired by a surprising 
observation due to Müller [59]). 

(ii) The relations between the weak compactness result (Theorem 3.3) and the 
regularity result (Theorem 3.4) are made clear in [12] and follow from some general 
considerations on dilation and translation invariant multilinear forms that enjoy a 
crucial cancellation property (JRN E • B dx = 0 in Theorem 3.4 above). 

(iii) Theorem 3.4 is one of the tools used in the proof by Hélein [30] of the regularity 
of two-dimensional harmonic maps. 

(iv) It is shown in [12] that any element of H\(RN) can be decomposed in a 
series ]Cn>i KEn • Bn where ||£;n||L2 = ||Bn||La = li d i v S n = cui\En = 0, 
En>l l A n | < OO. 

If we denote by Rk the Riesz transform (= öfc(—A)-1/2), then, under the 
conditions of Theorem 3.4, there exists % E LP(RN) such that E = Rn. And 
E- B = B-Rïï = B-Rïï + (R- B)TT because R • B = ( - A ) " 1 / 2 div B = 0. Then 
we can recover the case r = 1 in Theorem 3.4 using the iJi-BMO duality and the 
result on commutators due to Coifman, Rochberg, and Weiss [13]: indeed, we then 
obtain f(Rkg) + (Rkf)g £ fi^R*) for each k > 1, / E LP(RN), g E L«(RN), 
K j x o o , | + | = 1. 

3.3 Isentropic Navier-Stokes equations 

We now consider the system 

( dp 
1 -^ + div (pu) = 0 , 

^P + div (pu <g> u) - XAu - (X+p)V div u + aS/p1 = 0 , (25) 

xeRN,t>0, 

where a > 0, 1 < 7 < 00, A > 0, 2A + p > 0, p(x,t) > 0 on R^ x (0,00), with the 
initial conditions (21) that are required to satisfy 

\ mo = yfpövn a.e. with ^o E L2(RN) . 

THEOREM 3.5. We assume (26) and 7 > § if N = 2, 7 > \%f N = 3, 7 > ^ */ 
AT > 4. Then tfiere eztós a solution (p,u) E L°°(0,oo;L^(R i V))nL2(0,r ; iJ1(5 / î)) 
( V Ä , r E (0,oo)) o/(25),(21) satisfying in addition: p E C([0,oo);Lp(RN)) z/ 
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1 < p < 7 , p\u\2 e L ^ O . o o j L 1 ^ ) ) , p£L*(J8LN x (0,T)) for 1 < q < 7 + | f - 1 
i / i V > 2 . 

/ lp(t)Ht)\2 + -^-p(ty dx + [dsf X\Vu\2 + (X+ß){äivu)2dx 
Jn 2 7 —1 7o Jn C2Y'\ 

< Z 1 
+ —-r Po dx 

2 pò 7 - I 

/or almost allt > 0. 

REMARKS 3.4. (i) This result is taken from Lions [45] (see also [50]). If TV = 1, 
more general results are available and we refer to Serre [63], Hoff [32],[33]. 

(ii) If AT > 2, the uniqueness and further regularity of solutions are completely 
open as is the case of a general 7 > 1. The case 7 = 1 is also an interesting 
mathematical problem (see [49]). 

(iii) Of course, the equations contained in (25) hold in the sense of distributions. 

(iv) The preceding result is rather similar to the results obtained by Leray [42], [43], 
[44] on the global existence of weak solutions of three-dimensional incompressible 
Navier-Stokes equations satisfying an energy inequality like (27). Despite many 
important contributions (like the partial regularity results obtained by Caffarelli, 
Kohn, and Nirenberg [7]), the uniqueness and regularity of solutions are still open 
questions. 

As explained in the previous sections, the above existence result is based 
upon a convergence result for sequences of solutions pn,un satisfying uniformly 
in n the properties mentioned in the above result. Hence, without loss of general
ity, we may assume that (pn,un) converge weakly to (p,u) in L'y(RN x (0,T)) x 
L2(0,T;H1(BR)) (V R,T E (0,oo)). Then it is shown in [45], [49] that if p% 
(= pn\t=Q) converges in L ^ R ^ ) , then pn converges in C([0, T\\ D>(RN))nL<i(RN x 
(0,T)) for all T E (0,oo), 1 < p < 7,1 < q < 7 + ^ - 1. And (p,u) is a solution 
of (25) with the properties listed in the preceding result. It is also shown in [45], 
[49] (see also Serre [65]) that the analogue of Theorem 3.2 for the system (25) does 
not hold: in other words, the compactification that took place for the hyperbolic 
system (22) is lost when we add viscous terms while we could expect (from a 
linear-linearized inspection) that the introduction of viscous terms regularizes the 
problem! These delicate and surprising phenomena depend in a subtle way on the 
nonlinearities of the systems we consider. Let us also mention that the proof of 
the above convergence result is rather delicate and uses in particular the structure 
of the convective derivatives ( J^ + u • Vx) that lead with the analysis detailed in 
[45],[49] to terms like 

pnRiRj(p
nu^)-pnu2RiRj(p

nu]), 

which are shown to converge weakly to pRiRj(pUiUj) — pu{ Ri,Rj(pUj) under 
the sole weak convergence stated above on pn,un. This weak continuity follows 
from regularizing properties of the commutators [uf,RiRj]. It is worth noting 
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that the incompressible limit of such compressible models yields pn — est (say 1), 
divun = 0, in which case the above term reduces to RiRj^fu™) and Rj(u™u^) = 
(-A)-1/2^1 • Vun} because diwun = 0. Obviously, curl (Vun) = 0, divi*71 = 
0, and un • Vwn is precisely a nonlinear expression for which the compensated-
compactness theory applies (see Section 3.2). 

4 Perspectives, trends, problems and methods 

Let us immediately emphasize that this brief section will select topics in a biased 
way that reflects the author's tastes. 

First of all, we have mentioned above some of the progress made recently 
and many remaining open questions in gas dynamics and fluid mechanics. There 
is much more to say and in particular we have not touched here the incompressible 

'"models" (Euler and Navier-Stokes equations) —^see the reports by Beale, Chemin,-

Constantin, and Avellaneda in this Congress and Majda [56]. Even if many fun
damental questions are left open, progress is being made (step by step). 

We should also make clear that the topics covered here do not reflect fully 
the scope of nonlinear partial differential equations and in particular those arising 
from applications, the variety of mathematical problems and methods developed 
recently, and their relationships with other fields of mathematics. Let us briefly 
mention a few more examples of themes covering several related areas that all have 
important scientific and technological implications: (i) propagation of fronts and 
interfaces, geometric equations, viscosity solutions, image processing (see the re
ports by Spruck, Souganidis, and Osher in this Congress), (ii) quantum chemistry, 
N-body problems, density-dependent and meanfield models, binding, thermody
namic limits, (iii) twinning and defects in solids and crystals, phase transitions, 
Young measures (see for instance Ball and James [3], James and Kinderlehrer [35], 
and the report by Sverak). 

However, we wish to emphasize that the trends mentioned in the Introduction 
can also be found in the above themes. 

Finally, it is important to develop at the same time the methods — some 
of which have been briefly presented in this paper — which are certainly inter
esting by themselves, and we would like to conclude with a few examples of such 
developments: (i) H-measures of Tartar [70], Gérard [24] (and the related Wigner 
measures by Lions and Paul [50], Gérard [25]), (ii) nonlinear partial differential 
equations in infinite dimensions (and in particular the viscosity solutions approach 
of Crandall and Lions [15]). 
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Introduction 

In this paper we discuss the use of dynamical and ergodic-theoretic ideas and 
methods to solve some long-standing problems originating from Lie groups and 
number theory. These problems arise from looking at actions of Lie groups on 
their homogeneous spaces. Such actions, viewed as dynamical systems, have long 
been interesting and rich objects of ergodic theory and geometry. Since the 1930s 
ergodic-theoretic methods have been applied to the study of geodesic and horocycle 
flows on unit tangent bundles of compact surfaces of negative curvature. Prom the 
algebraic point of view the latter flows are examples of semisimple and unipotent 
actions on finite-volume homogeneous spaces of real Lie groups. It was established 
in the 1960s through the fundamental work of D. Ornstein that typical semisimple 
actions are all statistically the same due to their extremal randomness caused by 
exponential instability of orbits. Their algebraic nature has little to do with the 
isomorphism problem for such actions: they are measure-theoretically isomorphic 
as long as their entropies coincide. 

In striking contrast, unipotent actions (all having zero entropy), though ran
dom and chaotic from a dynamical point of view, were found to be rigidly linked to 
the algebraic structure of the underlying homogeneous space. In 1981 it was shown 
by the author that measure theoretic isomorphisms of horocycle flows must be al
gebraic and imply the isometry of the underlying surfaces. Subsequently, further 
"rigidities" of an algebraic nature have been found. 

While the study of this "rigidity" phenomenon was underway, a powerful 
impetus came from number theory. Around 1980 Raghunathan made a remark
able observation that the long-standing Oppenheim conjecture on the density of 
values of irrational quadratic forms at integral points would follow if it were true 
that closures of orbits of certain unipotent subgroups U C S,L(3,M) acting on 
SL(3,Z)\SL(3,R) were merely orbits of larger groups containing U. The latter 
result was proved by Margulis in 1986. 

Raghunathan's observation led him to propose a general conjecture on orbit 
closures of unipotent actions. In 1990 it was shown by the author that ergodic-
theoretic methods (some of which we developed previously for horocycle flows) can 
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be applied to solve this and other related conjectures. This made it possible to an
swer further number theoretic questions and stimulated subsequent developments 
in ergodic theory and dynamics of subgroup actions on homogeneous spaces. 

This paper consists of six sections. In Sections 1 and 2 we introduce the 
necessary defintions and state conjectures and results prior to 1990. In Section 
3 we state and discuss new results for real Lie groups and in Section 4 we give 
p-adic and §-arithmetic generalizations of these results. In Section 5 we discuss 
applications to number theory and in Section 6 applications to ergodic theory and 
the "rigidity" phenomenon of unipotent actions. 

It should be noted that this paper discusses only some of the many important 
topics that fall under its title. 

I thank A. Borei, G. Prasad and D. Witte for their valuable comments on 
the preliminary version of this paper. 

1 Definitions 

Let G be a locally compact second countable topological group, T a discrete sub
group of G, and T\G = {Th : h G G}. We shall denote by TT : G -> T\G the 
covering projection 7r(h) = Th, h G G. The group G acts on T\G by right transla
tions: x —> xg, x ET\G, g G G. We study the dynamics of this action. 

Let {xn} be a sequence in G and let e denote the identity element of G. 
We say that xn = Tv(xn) cuspidally diverges in T\G if there are e ^ *yn G I \ 
n = 1,2,... such that x~ 17 nx n —> e as n —» oo. (This means that a left invariant 
distance between xn and 7̂ X7̂  tends to zero as n —> 00 or that the sequence {xn} 
escapes to the cusps of T\G.) For g G G the set 

2}(g) = {x G r \ G : xgn cuspidally diverges a s n ^ o o } 

is called the divergent set of g. It is clear that if T>(g) ^ 0 for some g G G then 
r \ G is not compact. 

The group T is called a lattice in G if there is a finite G-invariant measure 
VQ on r \ G . (In this case we shall assume that VQ is a probability measure, i.e. 
z/c(r\G) = 1.) Then a sequence {xn} in T\G cuspidally diverges if and only if it 
eventually leaves every compact subset of T\G (see [R]). 

Now let U be a subgroup of G and x G T\G. The set x\J = {xu : u G U} is 
called the U-orbit of a;. A typical orbit xXJ in T\G is random and chaotic. 

We pose the following questions: 
(1) What are the closures of orbits xXJ in T\G? 
(2) What are the ergodic U-invariant Borei probability measures on T\G? (A 

U-invariant probability measure p, on T\G is ergodic if every U-invariant measur
able subset of r \ G has /i-measure zero or one.) 

Let us give a few natural examples. Suppose G is a real Lie group, U = {u(t) : 
t G R} a one-parameter subgroup of G, and xlJ a periodic orbit. Then xXJ = xU 
and the normalized length measure on zU is U-invariant and ergodic. 

For a more general example suppose that the closure zU coincides with the 
orbit of a larger group H containing U, i.e. xXJ = xU. In addition, it might happen 
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that xK is the support of an H-invariant Borei probability measure J/H (this hap
pens if and only if xHx - 1 Pi V is a lattice in x H x 1 , x G n~1{x}) that is ergodic 
for the action of U. 

These examples motivate the following definitions. 

DEFINITION 1. A subset A C T\G is called homogeneous if there exists a closed 
subgroup H C G and a point x G T\G such that A = xU and xR is the support 
of an H-invariant Borei probability measure 7/H. 

We emphasize that this definition of xU being homogeneous is different from 
the commonly used one where the existence of a finite H-invariant measure on xH 
is not required. 

DEFINITION 2. A Borei probability measure p on T\G is algebraic if there exist 
x G r \ G and a closed subgroup H C G such that xïl is homogeneous and p — is&. 

Equivalently, p is algebraic if there is z G T\G such that u(xA(u)) = 1, where 

A(p) = {g G G : the action of g on T\G preserves p}. 

It is rather exceptional for a subgroup U to have homogeneous orbit closures 
or algebraic ergodic measures. However, there are some U for which this happens. 
To characterize these U we need the following definitions. 

Let G be a Lie group over a field K (where n is either the real field or a p-adic 
field) with the Lie algebra 0. For g G G let Adg : ($ —• (S denote the differential 
at the identity of the map h —> g_1hg, h G G. Then Adg (called the adjoint map 
of g) is a linear automorphism of 0 . 

It is a fact that there is a neighborhood O of zero in (5 such that the expo
nential map exp : Ù —» G is well defined on D and maps Û diffeomorphically onto 
a neighborhood of e in G. (When K = R the map exp is defined on all of Ö.) If 
x,y G G and y = xexpv for some v G D with Adgr(i>) G Û for all r = 1 , . . . ,n 
and some 0 < n G Z then ygr = xgr exp(Adgr(i;)) for all r = 1 , . . . ,n. Thus Adgr 
characterizes the divergence of ygr from xgr when r runs from 1 to n. 

An element u G G is called Ad-unipotent if Adu is a unipotent element of 
GL(T\,K), n = dimÖ, i.e. every eigenvalue of Adu equals one. Then Adur = 
S f c L o ^ ^ u ) / ^ ' f°r a ^ r ^ ^ anc^ some integer m > 0, where Tu is a nilpotent 
endomorphism of (5. This polynomial (in r) form of Adur plays a crucial role in all 
of the results stated below. It shows that Ad-unipotent orbits diverge polynomially. 

A subgroup U C G is Ad-unipotent iî each u G U is Ad-unipotent. A subgroup 
U C GL(n, K) is unipotent if each u G U is unipotent. A unipotent U C GL(n, K) 
is Ad-unipotent. 

Now let u be an ad-nilpotent element of (S (this means that the map adu : 
Ö —> Ö, adu(u) = [v,u] is a nilpotent linear transformation of &). An element 
a G 0 is called ^diagonaV for u if there exists an ad-nilpotent element u* G Ö 
(called an "opposite" for u) such that 

adu*(u) = a, ada(ii) = — 2u, ada(ii*) = 2u*. 
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This terminology is motivated by the fact that u, u* generate a Lie subalgebra 
sl2(u,a) of <S isomorphic to sl(2, K). 

Now let t —> u(£) be a continuous (hence analytic) homomorphism from K 
(as an additive group) to G with u — du(t)/dt\t=o ^ 0. The latter condition 
implies that if K is a p-adic field then the map t —> u(£) is one-to-one. We call 
U = {u(t) : t G K} a one-parameter subgroup of G with tangent u G (5. Then U is 
Ad-unipotent if and only if u is ad-nilpotent. 

2 Conjectures and Results Prior to 1990 

CONJECTURE 1. (Raghunathan's Topological Conjecture) Let G be a real con
nected Lie group and U an Ad-unipotent subgroup of G. Then given any lattice V 
of G and any x G T\G the closure of the orbit x\J in T\G is homogeneous. 

CONJECTURE 2. (Raghunathan's Measure Conjecture) Let G and U be as in Con
jecture 1. Then given any lattice T in G every ergodic U-invariant Borei probability 
measure on T\G is algebraic. 

Actually Raghunathan proposed a weaker version of Conjecture 1 and showed 
its connection with the long-standing Oppenheim conjecture on the density of val
ues of irrational quadratic forms at integral points (see Section 5 below). The latter 
version as well as Conjecture 2 were stated by Dani [Dl] in 1981 for reductive G 
and one-parameter U and by Margulis [Ml, Conjectures 2 and 3] in 1986 for gen
eral G and U. (Raghunathan did not propose Conjecture 2. We gave the latter his 
name because it represents a natural measure-theoretic analogue of his topological 
conjecture.) 

CONJECTURE 3. (Margulis [Ml, Conjecture 1], [M2, Conjecture 2]) Let G be a real 
connected Lie group and U a subgroup of G generated by Ad-unipotent elements 
of G. Then given any lattice T in G and any x G T\G the closure of x\J in T\G is 
homogeneous. 

In fact, Margulis proposed a weaker version of this conjecture. Conjecture 3 
generalizes Conjecture 1 to a class of subgroups U much larger than Ad-unipotent 
subgroups. For example, every connected semisimple U without compact factors 
is generated by Ad-unipotent elements of G. 

It was shown earlier by Furstenberg [Fui] and Parry [PI] (see also [AGH]) 
that Conjectures 1 and 2 hold for one-parameter and one-generator subgroups 
of nilpotent G. Also Starkov [St2] proved Conjecture 1 for one-parameter Ad-
unipotent subgroups of solvable G with V being an arbitrary closed subgroup of 
G such that T\G has finite G-invariant measure. Conjecture 2 for the latter case 
follows from [St2] and [PI] (in fact, without the assumption of T\G being of finite 
G-invariant measure). 

As for semisimple G, Hedlund [H] showed that if G = SL(2, R) and T\G 
is compact (in this case T is called a uniform lattice in G) then the action of a 
unipotent one-parameter subgroup U of G on T\G is minimal (i.e. every orbit of 
U is dense). Subsequently, Furstenberg [Fu2] proved that in this case the action of 
U is uniquely ergodic. 
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It is a fact that one-parameter unipotent subgroups of G = SL(2,R) are 
horospherical. A subgroup U of a Lie group G is called horospherical if there 
exists g G G such that 

U = {u G G : g~nugn —> e as n —> 00} 

where e denotes the identity element of G. 
Generalizing Furstenberg's Theorem, Bowen [Bw], Veech [V] and Ellis and 

Perrizo [EPe] showed that if V is a uniform lattice in a connected semisimple 
Lie group G without compact factors then ergodic actions of horospherical sub
groups on (r\G,7/c) are uniquely ergodic. Adapting the method of Furstenberg 
and Veech, Dani [Dl] proved Conjecture 2 when G is reductive and U is a maximal 

-horospherical subgroup of G. 
As for Conjecture 1, Dani [D3] proved it for horospherical subgroups of re

ductive G. Also Dani and Margulis [DM2, 3] showed that Conjecture 1 holds for 
one-parameter unipotent subgroups of SL(3,R). 

Dani and Margulis [DM1] proved Conjecture 3 for G = SL(3,R), F = 
SL(3,Z), andU = 50 (2 , l ) 0 . 

It should be noted that in 1986 Dani showed [D2, Theorem 3.5] that if G is 
a connected semisimple Lie group and T a lattice in G then given e > 0 there is 
a compact K(e) C T\G such that for any x G T\G and any one-parameter Ad-
unipotent subgroup U = {u(t) : t G R} of G either \{t G [0,T] : xn(t) G K(e)} > 
(1 — e)T for all large T or xL is homogeneous for some proper closed connected 
subgroup L of G containing U. (Here À denotes the Lebesgue measure on R.) This 
important result is used in the proofs of Theorems 6 and 8-10 below. 

3 New Results (1990 and After) 

All Lie groups in this section are assumed to be real, and, unless otherwise stated, 
the results below are due to the author. 

THEOREM 1 (Classification of ergodic invariant measures for Ad-unipotent ac
tions). Let G be a connected Lie group and U an Ad-unipotent subgroup of G. 
Then given any discrete subgroup T (not necessarily a lattice) of G every ergodic 
U-invariant Borei probability measure on T\G is algebraic. 

THEOREM 2. Let G be a connected Lie group and U a Lie subgroup of G of the 
form U = U^u^U 0 , where u^ are Ad-unipotent in G, i = 1,2,..., U/U° is finitely 
generated, and the identity component U° is generated by Ad-unipotent elements 
of G contained in U°. Then Theorem 1 holds for U. 

Theorem 1 is stronger than Conjecture 2 and Theorem 2 extends it to groups 
generated by Ad-unipotent elements. 

THEOREM 3 (Orbit closures for Ad-unipotent actions). Let G and U be as in 
Theorem 1. Then given any lattice T in G and any x G T\G the closure of the 
orbit x\J in T\G is homogeneous. 
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THEOREM 4. Let G and U be as in Theorem 2. Then Theorem 3 holds for U. 
Moreover, if U is connected, then for any lattice T in G and any x G T\G there 
exists a closed connected subgroup H of G containing U and a one-parameter 
subgroup V of U Ad-unipotent in G such that xY = xXJ = xU is homogeneous and 
V acts ergodically on (xU, Z/H); where VR denotes the H-invariant JBorei probabiHty 
measure on T\G supported on xU. 

Conjecture 1 is implied by Theorem 3 and Theorem 4 extends it to groups 
generated by Ad-unipotent elements. 

THEOREM 5. Let G be a connected Lie group, T a discrete subgroup ofG, and 
x G r \ G . Let Ax denote the set of all closed connected H C G such that xH is 
homogeneous and there is a one-parameter subgroup U C H Ad-unipotent in G 
acting ergodically on (zH, z/g). Then Ax is countable. 

We show that in order to prove Theorem 3 for general Ad-unipotent U it 
suffices to prove it for one-parameter Ad-unipotent U. But for such U we have the 
far stronger Theorem 6 below. To state it we need to introduce a definition. 

DEFINITION 3. Let U = {u(t) : t G R} be an arbitrary one-parameter subgroup 
of G. A point x G r \ G is called generic for U if there exists a closed subgroup 
H C G such that xXJ = xïL is homogeneous and \ JQ f(xu(s)) ds > Jr,G f dv# 

t—»oo * 

for every bounded continuous function / on T\G. 

A similar definition can be given for a one-generator U = {ufc : k G Z} 
replacing the integral by the sum Ylk=o f(xuk)/n-

THEOREM 6 (Uniform distribution of Ad-unipotent flows). Let G be a connected 
Lie group and U a one-parameter or one-generator Ad-unipotent subgroup of G. 
Then given any lattice T of G every point x G T\G is generic for U and U acts 
ergodically on (x\J = xH, VR). 

This theorem was proved one month before it was conjectured by Margulis 
at the ICM 1990 in Kyoto, Japan [M2, Conjectures 3 and 4]. 

Theorem 6 for nilpotent G follows from [PI] (see also [L]) and for G = 
SL(2, R) it was proved earlier by Dani and Smillie [DSm]. Also Shah [SI] proved 
it for semisimple G of real rank 1. Their methods are totally different from the 
author's. 

To derive the results stated above we first prove Theorem 1 for one-parameter 
Ad-unipotent U. Theorem 7 below plays a crucial role in this proof. To state it 
we introduce the following definition. Let U = {u(t) = exptii : t G R} be a one-
parameter Ad-unipotent subgroup of G and assume there is a "diagonal" element 
a G Ö for u (see Section 1). Then we call A = {a(t) = exp ta : t G R} "diagonal" 
for U and denote by SX2CU, A) the connected subgroup of G with the Lie algebra 
sl2(u, a) (see Section 1). It is clear that A is "diagonal" for U if and only if cAc - 1 

is so for every c G C(U) — the centralizer of U in G. 

THEOREM 7. Let G bea Lie group, V a discrete subgroup ofG, and U = {u(t) : t G 
R} a one-parameter Ad-unipotent subgroup of G. Suppose there is a "diagonal" 
A = {a(t) : t G M } for U in G and let p be an ergodic U-invariant Borei probability 
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measure on T\G. Then either (1) p(V(a(t))) = 1 for all t > 0 or (2) p is algebraic 
and is preserved by c5L2(U, A)c_ 1 for some c G C(U). 

Recall that V(g), g G G, denotes the divergent set of g (see Section 1). 
The central role in the proof of Theorem 7 in [Ra9] is played by a dynamical 

property of Ad-unipotent actions which we introduced in [Ra8, Theorem 3.1] and 
called the iï-property. It is a consequence of the polynomial divergence of Ad-
unipotent orbits. Also it is a generalization of the //"-property for horocycle flows 
introduced in [Ra4] (see Section 6 below). 

The Ä-property states, roughly speaking, that given 0 < E < 1 there exists 
0 < 77(e) < 1 such that if F is an appropriate sufficiently large open rectangular 
subset of a closed connected simply connected Ad-unipotent subgroup U of G with 
e G F and sup{dQ(u,xU) : u G F} = 0 for some small 9 > 0 and some x ^ U, 
dc(e,x) < 6, then there exists A C F such that (1 — e)0 < dc(u,xU) < 6 for all 
u G A and A(A) > 7y(e)A(F), where A denotes a Haar measure on U and do denotes 
a left invariant metric on G. Moreover, if u G F and dc(u,xU) = dc(u, ur(u)) 
for some r(u) G G with ur(u) G xU and dc(e,r(u)) < 0 then r(u) is close to the 
normalizer of U in G and this closeness tends to zero as the sides of the rectangular 
set F tend to infinity. (When U = {u(t) : t G R} is a one-parameter subgroup of 
G we can take F = {u(t) : 0 < t < T} for large T > 0.) 

The rectangular sets F in the description of the iti-property are Feiner subsets 
of U (see [Ra8]) and the Birkhoff Ergodic Theorem for measure preserving actions 
of U holds for averages performed over F. 

It should be noted that the /^-property and the Birkhoff Ergodic Theorem 
are the only basic facts used in the proof of Theorem 7. 

Using Theorem 1 (proved in [Ra8-10]) and Theorem 5 (whose proof is simple 
[RalO, Theorem 1.1]) we deduce Theorem 6 [Rail]. These two proofs (of Theorem 1 
and of Theorem 6 from Theorems 1 and 5) are central. Note that Theorem G implies 
Theorem 3 for one-parameter Ad-unipotent U. In [Ral4, Section 8] we outlined 
(using Theorem 5) how the validity of Theorems 1 and 3 for one-parameter Ad-
unipotent U implies their validity for higher-dimensional connected U generated 
by Ad-unipotent elements of G (see [RalO] and [Rail]). 

Let us outline the main idea used in [Rail, Proof of Theorem 2.1] to deduce 
Theorem 6 from Theorems 1 and 5. 

Let U = {u(t) : t G R} be a one-parameter Ad-unipotent subgroup of G. 
For x G r \ G = X and a sequence tn —> 00 we denote by pn the normalized 
length measure on the orbit interval Ln = {xu(t) : 0 < t < tn}, assuming that 
pn is a measure on X supported on Ln. Thus t" 1 J0

n f(xu(s)) ds = Jx f dpn for 
every bounded continuous function / on X. Also the sequence pn contains a weak* 
convergent subsequence (as the closed unit ball in the space of Borei measures on 
X is weak* compact). 

Suppose pn converges weak* to p for some tn —> 00. Then /i is U-invariant, 
Supp(/x) C öÜand p(X) = 1 (by [D2, Theorem 3.5]). Let {(C(y),p,C(y)) : y e X} 
be the ergodic decomposition of the action of U on (X,p). Here each Pc{y) is 
an ergodic U-invariant measure supported on C(y) and p is the direct integral 
of the measures Pc{y)-> V £ X- By Theorem 1 each p>c(y) is algebraic and C(y) 
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is homogeneous. It follows from Theorem 5 that there exist yo G X and a small 
6 > 0 such that the set Ü = \J{C(y) : C(y) = C(yo)z,dQ(z,e) < 0} has positive 
/i-measure. It follows from the definition of p, that the proportion of time spent 
by Ln in every small neighborhood of fì is close to p(£ï) for all sufficiently large 
n. Using the polynomial form of Adu(t) (via a version of the Ä-property for U) we 
show that this may happen only if x G C (y) C Î1 for some y and p(C(y)) = 1. 
Then zU = C(y) is homogeneous and p, — Pc(y) is algebraic. Thus there exists 
H C G such that x\J = xU is homogeneous and p = Z/H- Because this is true for 
all sequences tn —> oo with pn weak* convergent, x is generic for U. 

Recently, Dani and Margulis [DM4] offered a linearized version of this argu
ment using the action of the adjoint representation of G on the mth exterior power 
of Ö with m = dimC(yo). Using this version they offered an alternative proof of 
Theorem 6 (and Theorem 8 below) and showed that the convergence in Theorem 6 
(and Theorem 8) is uniform on compact subsets of T\G. Also this linearization 
method is basic for the proofs of Theorems 9, 10, and C2 below. 

Now let U n = {unit) : t G R}, n = 1,2,... and U = {u(t) : t G R} be 
one-parameter Ad-unipotent subgroups of G. We say that Vn —> U if "iin(t) —> u(t) 
for all t G R. 

The argument given above can be applied to derive the following more general 
version of Theorem 6. (This was pointed out to the author by Marc Burger in 
December 1990.) 

THEOREM 8. Let U n —• U and xn —> x G T\G with V being a lattice in G. 
Suppose that there exists no proper closed connected subgroup L of G such that 
U C L and xh is homogeneous. Then 

lim — / f(znun(s))ds= / fduG 
n-*oo tn Jo Jr\G r\G 

for every bounded continuous function f on T\G and every sequence tn —> oo when 
n —• oo, where VQ denotes the G-invariant Borei probabihty measure on T\G. 

Theorem 6 follows from Theorem 8 if we set Un = U, xn = x for all n and 
use induction on the dimension of G. The main part of the proof of Theorem 8 is 
given in [Ral4, Section 7]. 

Now let T be a discrete subgroup of G, X = T\G, and let V(X) denote the 
set of all Borei probabihty measures on X. Recall that a sequence {pn} in V(X) 
weak* converges to a measure p on X if f f dpn —> J f dpi for every bounded 
continuous function / on X. Define 

Q(X) = {p G V(X) : there exists a one-parameter Ad-unipotent subgroup 

of G that preserves p and acts ergodically on (X, p)}. 

By Theorem 1 every member of Q(X) is algebraic. 
Recently Mozes and Shah proved the following theorem. 
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THEOREM 9 (Mozes, Shah [MoS]). Let {un} be a sequence of measures in Q(X) 
weak* converging to p G V(X). Then p, G Q(X). Moreover, there exist x G 
Supp(/i) and gn G G, gn —> e such that xgn G Supp(/in) C Supp(/i)gn for all 
large n. 

The proof of this theorem uses Theorems 1 and 5 and the method of [DM4]. 
Theorem 9 implies the following extension of Theorem 6 to the case when V is 

not a lattice: if U is a one-parameter Ad-unipotent subgroup of G and xXJ is com
pact in T\G, then x is generic for U. This was conjectured in [Rai2, Conjecture D] 
and proved there for G = SL(2,R). 

It is clear that if {u(t) : t G K} is a one-parameter unipotent subgroup of 
GL(n,R) then each entry of the matrix u(t) is a polynomial in t. 

Recently, Shah extended Theorem 6 to more general polynomial actions. A 
map 0:Rk —> SL(n,R), n G Z+, is called polynomial if every entry of the matrix 
B(t\,..., tfc) G SL(n, R) is a polynomial in ( t i , . . . , t/.) G Rk and 0 maps the origin 
to the identity element of SL(n,R). 

THEOREM 10 (Shah [S2]). Let 0 : Rk - • SL(n,R) be polynomial and let G be 
a closed subgroup of SL(n,R) containing 0(Rk). Then given any lattice T in G 
and any x G T\G there is a closed subgroup H C G such that x0(Rk) = xU is 
homogeneous and 

i i m I7ÏTT / fWW)dX{t) = / fu* 

for every bounded continuous function f on T\G, where BR denotes the ball of 
radius R in Rk centered at the origin and A denotes the Lebesgue measure on Rk. 

The proof of Theorem 10 uses Theorems 1 and 5 and the method of [DM4]. 
Shah also showed that if 0(t\,..., t^) = 0i(t\)... Bk(th) for some polynomial maps 
0i : R —> SL(n,R), i = 1, . . . ,k, then the conclusion of Theorem 10 holds also 
for Bn being of the form [ 0 , ^ ] x • • • x [0,7^*°] with T^ -> oo, i = 1, . . . ,k. 
This implies, in particular, that Theorem 6 holds for higher-dimensional connected 
simply connected Ad-unipotent U with averages performed over large rectangular 
subsets of U and, in particular, over Feiner subsets of U (see [Rail]). This gives 
an affirmative answer to a question raised in [Ral4, Problem 2]. 

Next we address the following question: Are there subgroups of G not gener
ated by Ad-unipotent elements of G for which Theorems 1 and 3 hold? Theorems 
11-13 below give an affirmative answer to this question. 

Indeed, let Y be a discrete subgroup of G and p, a Borei probability measure 
on r \ G . Also let U be a one-parameter Ad-unipotent subgroup of G and A be 
"diagonal" for U. Using Theorem 7 we showed in [RalO, Proposition 2.1] that if 
p is preserved by both U and A then p is preserved by 5L2(U,A). Note that 
SX2(U, A) is generated by Ad-unipotent elements of G. This and Theorems 2 and 
4 imply the following 

THEOREM 11. Let G be a connected Lie group and U a connected subgroup ofG 
generated by Ad-unipotent elements ofG. Let A i , . . . , An be "diagonal" for some 
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one-parameter Ad-unipotent subgroups U i , . . . ,Un of U. Then Theorems 1 and 3 
hold for the subgroup H of G generated by U and A i , . . . , An . 

Indeed, if p, is an ergodic H-invariant Borei probability measure on T\G then 
p is invariant under the action of the group H' generated by U and 5L2(Ui, A^), 
i = 1, . . . ,n. Because H C H'7 p is ergodic for H'. Because H' is generated by 
Ad-unipotent elements of G, p is algebraic by Theorem 2. This gives Theorem 1 
for H. (This argument was brought to the author's attention by Mozes.) To derive 
Theorem 3 for H we show that when V is a lattice in G, then xU = xW for all 
x G T\G. Hence xU is homogeneous by Theorem 4. 

This implies the following 

THEOREM 12. Let G be a connected Lie group and Gì a connected semisimple 
subgroup of G without compact factors. Let H be a parabohc subgroup of Gi. 
Then Theorems 1 and 3 hold for H. 

Theorem 12 implies, in particular, that Theorems 1 and 3 hold for the sub
group H of G = SL(n,R) consisting of all upper triangular matrices in G. 

We say that a subgroup L of G is epimorphic with respect to G if for every 
finite-dimensional representation of G every vector v fixed by L is also fixed by G. 
It is a fact that the group H described in Theorem 11 is epimorphic with respect to 
H' generated by U and SL2(Uii Ai), i = 1 , . . . , n. Recently, Mozes has generalized 
Theorems 11 and 12 in the following form. 

THEOREM 13 (Mozes [Mo2]). Let G be a connected Lie group and L a subgroup 
ofG epimorphic with respect to a connected semisimple subgroup Gi of G without 
compact factors. Then Theorem 1 holds for L. 

Mozes5 proof uses Theorem 2 and a recent result of Bien and Borei [BBo]. 

PROBLEM. Let G and L be as in Theorem 13. Does Theorem 3 hold for L? 

In [Ral4] we incorrectly stated that Raghunathan had a counterexample to 
this problem. 

It is a fact that, in general, Theorem 3 does not hold for non-Ad-unipotent 
one-parameter U. However, using Theorem 3, Starkov proved the following 

THEOREM 14 (Starkov [St3]). Let T be a lattice in G and U a one-parameter 
subgroup ofG. Then the following statements are equivalent: (1) for every x G T\G 
the closure xXJ is a smooth submanifold ofT\G; (2) |A| = 1 for every eigenvalue A 
of Adu and every u G U. 

Finally we mention that the validity of Theorems 1 and 2 for discrete sub
groups T implies their validity for arbitrary closed F C G. This was shown by 
Witte in [W3] (see also [Stl] for a related result). Witte also showed (in a recent 
correspondence with the author) that the validity of Theorems 2 and 4 with the 
assumption of U/U° being finitely generated implies their validity without this 
assumption (because the assumption holds for the closure of U). 

In [RalO] Theorem 2 is also proved for disconnected G with the additional 
assumption (which was omitted in [RalO], though used in the proofs) that U/U° 
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is nilpotent. This assumption automatically holds when G is connected. (See [W4] 
for more on the disconnected G case.) 

In closing, we note that the following question remains unanswered. 

QUESTION. DO Theorems 2 and 4 hold for arbitrary disconnected non-Ad-unipo
tent subgroups U of G, generated by Ad-unipotent elements of G? 

4 Generalizations to the p-adic and §-Arithmetic Cases 

The problem of extending Raghunathan's conjectures to cartesian products of 
algebraic groups over local fields of characteristic zero (this is referred to as the 
S-arithmetic setting) was raised by Borei and Prasad in [BoPr] (see also [Pr]). 
They pointed out that the validity of Conjecture 3 for the ^-arithmetic case (see 
-Theorem S2 below) would solve the density problem in the Oppenheim conjecture 
for this case (see Section 5 below). 

It turns out that the ideas and methods developed in [Ra8-ll] for real Lie 
groups can be applied to prove Conjectures 1-3 for a more general (than the S-
arithmetic setting) case, namely, cartesian products of real and p-adic Lie groups. 
(If K is a local field of characteristic zero then n is (isomorphic to) either R, or 
C or a finite extension of a p-adic field. Then a Lie group over K can be viewed 
as either a real Lie group or a p-adic Lie group.) Also our results allow us to 
understand the structure of p-adic Lie groups G that carry discrete subgroups 
T (in particular, lattices) admitting finite Borei measures on T\G preserved by 
one-parameter subgroups of G (see Theorem S6 below). 

More specifically, let § be a finite set and for each s G § let Qs De either the 
real field R or the field of p$-adic numbers for some prime p$. In the latter case we 
call s ultrametric, otherwise s is called real. The set S is ultrametric if each s G S 
is ultrametric. 

For s G S let G s be a Lie group over Qs with the Lie algebra (&s and let 
G§ = n ( G s : s G S} denote the cartesian product of Gs, s G S. 

Let n : G s —> G§ denote the natural embedding of G s in G§ and let Us = 
{us(t) : t G Qs} be a one-parameter Ad-unipotent subgroup of Gs- Then U = 
i](\Js) = {u(t) = ?7(us(t)) : t G Qs} is called a one-parameter Ad-unipotent 
subgroup of G§. 

It is a fact (see [Rai5, Theorem 1.1]) that every one-parameter subgroup of 
a p-adic Lie group G is Ad-unipotent (this was recently proved independently by 
Lubotzky and Prasad). Also G is totally disconnected and small neighborhoods 
of the identity of G do not generate G. Because of this, G might contain two dis
tinct one-parameter subgroups Ui and U2 that have the same tangent (and hence 
coincide in a neighborhood of e in G). This motivates the following definitions. 

For an ultrametric s G S we call Gs Ad-regular if ker Adcs = Z(Gs), where 
Adc s denotes the adjoint representation of G s and Z(Gs) the center of Gs- An 
Ad-regular G s is called regular if the orders of all finite subgroups of G s do not 
exceed a constant depending only on Gs-

We show that if two one-parameter subgroups Ui = {ui(t) : t G Qs} a n d 
U2 = {u2(t) : t G Qs} of a regular Gs have the same tangent then Ui = U2 (i.e. 
u1(t)=u2(t) for a l l t G Q s ) . 
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It is a fact that if K is a finite extension of Qs with an ultrametric s then 
GL(n, K), n G Z + , and its Zariski closed and connected subgroups (viewed as Lie 
groups over Qs) are regular. 

Also we showed in [Rai 5] that if G s is a Lie subgroup of a regular ps-adic 
Lie group then there exists an open subgroup GS? of Gs such that G<! is regular 
and contains every one-parameter subgroup of Gs. (This implies that if Theorems 
S1-S6 below hold for G^ in place of G s then they hold for Gs- Thus one can reduce 
these theorems to the case when Gs is regular for every ultrametric s G S.) 

Henceforth we assume that Gs is a Lie subgroup of a regular ps~adic Lie 
group for every ultrametric s G S. 

THEOREM SI (Ergodic measures). Let H be a closed subgroup of G§ and U a 
subgroup of H generated by one-parameter Ad-unipotent subgroups of G§. Then 
given any discrete subgroup V of H every ergodic U-invariant Borei probabihty 
measure on T\H is algebraic. 

THEOREM S2 (Orbit closures). Let H and U be as in Theorem 1. Then given 
any lattice T of H and any x G T\H the closure xXJ of the orbit xXJ in T\H is 
homogeneous. 

Theorems SI and S2 proved in [Rai5, Theorems 1 and 2] extend Theorems 2 
and 4 to G§. To extend Theorems 6 and 8 we need to introduce the following 
notation. 

Let H be a closed subgroup of G§, T a discrete subgroup of H, and U = 
7/(Us) = {u(t) : t G Qs}, s G S, a one-parameter Ad-unipotent subgroup of G§ 
contained in H. For r > 0 let 

FS(r)={t G Q s : | t | s < r} , 

where | • |s denotes the normalized absolute value on Qs- When s is ultrametric, 
Fs (T) is a compact open subgroup of Qs. We denote by As a Haar measure on Qs. 

THEOREM S3 (Uniform Distribution [Ral5, Theorem 3]). Given any lattice V of 
H and any x G T\H there exists a closed subgroup L of H such that xXJ = xL is 
homogeneous, U acts ergodically on (xXJ = xL, Z/L), and 

Sffar) = / f(xu(t))d\s(t)^> / fdvL = vL(f) as r - ^ oo, 
AS(^S(T) ) JFS(T) Jr\B 

for every bounded continuous function f on T\H. 

THEOREM S4 ([Ral5, Theorem 4]). Let xn —> x G T\H with V being a lattice in 
H. Suppose there exists no closed nonopen subgroup L of H such that U C L and 
xL is homogeneous. Then there exists an algebraic measure v on T\H such that 
A(v) is an open subgroup of H, v(xA(v)) = 1, U acts ergodically on (xA(v),i>), 
and 

lim Sf(xn,rn) = i/(/) 
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for every bounded continuous function f on T\H and every sequence rn —> oo 
when ?! —> oo. If xXJ = T\H then v is H-invariant. 

Recall (see Section 1) that A(v) — {h G H : the action of h on T\H preserves v}. 
Theorem S3 follows from Theorem S4 if we set xn = x for all n and use 

induction on the dimension of H. 
Note that Theorem 5 has also been extended to G§ (see [Ral5, Theorem 

1.3]). 
Recently Margulis and Tomanov [MT1,2] published a particular case of The

orem SI when for each s G § the group G s is the set of K; s -rational points of 
an algebraic group defined over a local field Ks of characteristic zero. (They also 
formulated Theorem S3 with H = G§ and a weaker version of Theorem S2 for this 
algebraic case.) As does the author's their proof uses in the most essential way the 
basic ideas and methods from [Ra8,9] (though they give no specific references to 
[Ra8,9] in [MT2] and no references to [Ra8,9] at all in [MT1]). In fact, for the most 
part their proof can be viewed as a translation (with modifications and substantial 
simplifications possible because Gs are algebraic) of these ideas and methods to 
the algebraic group setting. The basic Lemma 7.5 in [MT2] uses the fundamental 
idea from the proofs of [Ra8, Lemma 4.2], [Ra9, Lemma 3.1] of using the poly
nomial divergence of Ad-unipotent orbits through the normalizer and the ergodic 
theorem. Also the results in [MT2, Proposition 6.1] and [MT2, Propositions 6.7 
and 8.3] are analogous to [Ra8, Theorem 3.1, Lemma 3.3] and [Ra9, Lemma 3.1]. 

Next we generalize the notion of a "diagonal" subgroup for a one-parameter 
Ad-unipotent subgroup Us = {u(t) : t G Qs}, u = du(t)/dt|t=o. Suppose there is 
an "opposite" u* and a "diagonal" a = adu* (u) for u in ©s (see Section 1) and let 
As be a one-dimensional Lie subgroup of G s normalizing Us whose Lie algebra is 
spanned by a. 

DEFINITION. The group As is called "diagonaV for U s if there exists a one-para
meter Ad-unipotent Ug = {u*(t) : t G Qs}, du*(t)/dt\t=Q = u* normalized by A s 

such that if we denote by S = (UsjUJ) the subgroup of G s generated by Us,Us 
then As C S and Adc s maps As homomorphically onto the multiplicative one-
parameter subgroup {a(r) : r G Qîj} of Adcs(S) with da(r)/dr\T=i = ada. Here 
Qs = Qs - {o}. 

We write S = SL2 (US,AS) and A s = U{As(r) : r G QJ}, where 

A S ( T ) = {a G A s : Ada = a(r)}. 

Now let U = ?7(US) C Gs. Then we call A = ?7(AS) "diagonal" for U in G§ 
and write SL2(U, A) = ?7(SL2(US, A s)) . 

As in the real case, the central role in the proof of Theorem SI is played by 
the following Theorem S5 [Rai5, Theorem 6], which generalizes Theorem 7. 

THEOREM S5. Let U be a one-parameter Ad-unipotent subgroup of G§ and as
sume that G§ contains a "diagonal" subgroup A for U. Let T be a discrete sub
group of G§ and p an ergodic JJ-invariant Borei probability measure on T\G§. 
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Then either (1) p(V(a(r))) = 1 for every a(r) G A(r) with \r\ > 1 or (2) c5L2(U, 
A)c_ 1 C A(p) for some c G C(U) and p is algebraic. 

Recall that V(a(r)) denotes the divergent set of a(r) (see Section 1). It is 
a fact that if S is ultrametric then there are no cuspidally divergent sequences 
in r \ G § (see [Ral3, Proposition 2]). Thus when S is ultrametric and there is 
a "diagonal" A for U, then conclusion (2) holds in Theorem S5. The following 
theorem shows that the presence of a "diagonal" subgroup for U is necessary for 
U to preserve a finite measure on T\G§. 

THEOREM S6. Assume S is ultrametric. Let T be a discrete subgroup of G§ and U 
a one-parameter subgroup of G§ preserving a Borei probability measure on r \ G § . 
Then there is a "diagonal" subgroup A for U in G§. 

COROLLARY SI . Assume S is ultrametric and G§ admits a lattice. Then for every 
s G S and every one-parameter subgroup Us of Gs there is a "diagonal" As in Gs-

This corollary can be viewed as a generalization of [T, Theorem 3] stating 
that if an algebraic p-adic group G admits a lattice then G is reductive. 

Finally, we mention that Theorem S5 allows us to extend Theorem 11 to G§ 
(see [Ral5, Corollary 3]). 

5 Applications to Number Theory 

The Oppenheim Conjecture 

THEOREM O l (Margulis). Let B be a reai nondegenerate indefinite quadratic 
form in n variables, n > 3. Suppose that the ratio of some two coefficients of B is 
irrational. Then the set of values of B at integral points is dense in R. 

This is an equivalent version of the Oppenheim Conjecture proved by Mar
gulis [Ml] in 1986. (The original Oppenheim Conjecture asserts that zero is a limit 
point of B(Zn).) In fact, it was Raghunathan who noticed that in order to derive 
this theorem for n = 3 one only needs to prove a weaker version of Theorem 4 
for G = SL(3,R), V = SL(3,Z), and U = SO(2,1)°. This is precisely what Mar
gulis did. (He also observed that Theorem 0 1 for n > 3 can be reduced to the 
case n = 3.) Subsequently he and Dani [DM1,3] showed that the values of B at 
the primitive elements of Z n are dense in R. In 1990-91 Borei and Prasad [BoPr] 
obtained a remarkable strengthening of this fact, implied by Theorem 4. 

THEOREM 0 2 (Borei, Prasad [BoPr]). Let B be as in Theorem 0 1 . Then given 
c i , . . . , Cn-i G R and £ > 0 there are x\,... , xn-i G Zn that are part of a basis 
in Z n (and hence are primitive elements of IT1) such that \B(xì) — Q | < £ for all 
i = 1 , . . . ,n — 1. 

In fact, Borei and Prasad [BoPr] have generalized the Oppenheim Conjecture 
and Theorem 02 to the following more general setting. 

Let « be a number field and o the ring of integers of K. For every normalized 
absolute value | • \v on n, let KV be the completion of n at v. Let § be a finite set 
of places of K containing the set S ^ of archimedean ones, «§ the direct sum of 
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the fields /îS, S ES, and o§ the ring of S- integers of n (i.e. of elements x G ft with 
\x\v < 1 for allv <£§). 

A quadratic form F on fi§ is a collection (Ls)5 s G S, where F$ is a quadratic 
form on ft?

s\ The form is nondegenerate if and only if each F$ is nondegenerate. 
The form is isotropic if each F$ is so, i.e. if there exists for each s G S an element 
xs G fr?s — {0} such that F$ (x$) = 0. If s is a real place, this condition is equivalent 
to Fs being indefinite. The form F is said to be rational if there exists a unit 
A = (As) G «g and a form FQ on Kn such that Fs = XSFQ for all s G S, and 
irrational otherwise. 

THEOREM 0 3 (Borei, Prasad [BoPr, Theorem A]). Let F bc irrational, nonde
generate, and isotropic, and n > 3. Then given £ > 0 there exists a;Go§ such that 
0< \Fs(x)\ <£ for alls G S. 

THEOREM 0 4 (Borei, Prasad [BoPr, Corollary 7.9]). Assume S = S^ and let F 
be as in Theorem 03 . Let Ai , . . . , An_i G ft§. Then for each j = 1,2,... there are 
Xjti,... ,ccjjn_i G on = Og that are part of a basis of on over o (and hence are 
primitive elements of on) such that lhx i j -^ F(xjti) = Â  for all i = 1 , . . . ,n — 1. 
In particular, the set of values of F on the primitive elements ofon is dense in «§. 

Theorems 0 3 and 04 in [BoPr] are deduced by means of Theorem 4, geom
etry of numbers, and strong approximation in algebraic groups. In [BoPr] Borei 
and Prasad pointed out that the density of F(o§) (and Theorem 04) for non-
archimedean S would follow from the S-arithmetic version of Theorem 4 (see The
orem S2 above). Indeed, the deduction of Theorem 05 below from Theorem S2 is 
given in [Bo]. 

THEOREM 0 5 (Borei, Prasad). Theorem 04 holds also for non-archimedean S 
with o replaced by o§. 

To illustrate the connection between the Oppenheim conjecture and the orbit 
closures Theorem 4 let us present the deduction of Theorem 01 from Theorem 4. 
This deduction is a simplified version of the argument originally given by Raghu
nathan. 

Let B be a quadratic form as specified in Theorem 01 . Also let G = SL(n, R), 
T = SL(n,Z), and L = Z n be the lattice of integral points in Rn. Let Lg denote 
the lattice in Rn obtained by applying the linear transformation g G G to L. Then 
X = {Lg : g G G} is a set of lattices endowed with the natural Hausdorff topology. 
Note that if 7 G T then L7 = L. This says that we can identify Lg G X with the 
coset Tg G r \ G . The identification Lg —> Tg is a homeomorphism from X onto 
r\G. 

Now let H denote the subgroup of G preserving the quadratic form B. Then 
H is conjugate to SO(p, q)-,p~\-q~ n, pq ^ 0, and hence consists of two connected 
components. Also H° is generated by unipotent elements of G (because n > 2). 
For each h G H the set of values of B on Lh is the same as on L. To prove Theorem 
01 it suffices to show that the orbit LH° is dense in X or, equivalently, the orbit 
zH° is dense in T\G, where z = Te and e denotes the identity element of G. 
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By Theorem 4 the closure zEP = zF is homogeneous for some closed con
nected subgroup F C G, containing H°. But the only closed connected subgroups 
of G containing H° are G and H°. Hence either F = G or F = H°. 

We have to show that F = G, i.e. zEP = T\G. Suppose to the contrary 
that F = H°. Then H° n T is a lattice in H° (by Definition 1) and hence H n T 
is a lattice in H because H/Ho is finite. Because T = SL(n,Z), it follows from 
the Borei density theorem that H is a Q-subgroup of G. This means that H is 
the set of real zeros of some ring of polynomials with rational coefficients. This 
implies by an elementary argument that B is proportional to a quadratic form with 
rational coefficients. This contradicts the conditions of Theorem 01 and proves the 
Theorem. 

This proof shows that LH is dense in X. This is used to prove Theorem 
02. Indeed, given c\,..., cn_i G R there is a unimodular basis y\,... ,yn G Rn 

such that B(yi) — Ci for alH = 1, . . . ,n — 1 (because the level surface B(x) = c, 
x G Rn is not contained in any hyperplane). Then the Z-span of this basis belongs 
to X. Hence there are x\,..., xn G L and h G H such that z i h , . . . , x n h are close 
to yi,... ,yn and \B(xih) — c*| < £ for all i = 1 , . . . ,n — 1. This implies that 
xi,...,xn form a basis in L and \B(xi) — c*| < e for alH = 1 , . . . , n — 1, because 
B(xi) = B(xih), i — 1,... ,n. This yields Theorem 02. (This proof is given in 
[BoPr, Proof of Corollary 7.9].) 

Finally we mention the following problem. Let B be a quadratic form as in 
Theorem 0 1 . Given 0 < a < & and r > 0, let Er(a,b) = {x G Z n : a < \B(x)\ < 
b,\\x\\ < r}. Then card Er(a,b) —» 00 when r —> 00. It seems plausible that 
Theorems 1, 5 can be used to find the asymptotic growth rate for this number. It 
is believed that card Er(a, b) ~ c(a, b)rn~2 for some c(a, b) > 0. A lower bound of 
this type has already been found by Dani and Margulis in [DM4]. Also recently 
Eskin and Mozes have informed the author that using the latter lower bound they 
can prove this asymptotic growth for n = 4 and B of the signature (3,1) (and 
disprove it for the signature (2,2) and the case n = 3) and with a modification 
suggested by Margulis the proof works for any B with n > 4. 

Counting Integral Points on Homogeneous Varieties 

The discussion in this section is related to the following problem recently studied 
in [DuRuSa] and [EsMc]. 

Let W be a real finite-dimensional vector space and let W(Q)(W(Z)) denote 
the set of all vectors in W with rational (integer) coordinates relative to a fixed 
basis in W. Let (Ö be a connected algebraic reductive group defined over Q and let 
(5 (R) denote the set of real points of (3, i.e. the set of real zeros of the polynomials 
defining (S. Similarly, one defines <S(Q) and <S(Z). We assume that <$ is homo-
morphic via a surjective morphism p defined over Q to an algebraic subgroup of 
GL (2U) defined over Q. (Here W denotes the complexification of W.) Then &(R) 
acts linearly on W by w —> wg = p(g)(w), w G W, g G <5(M), and <3(Q) preserves 
W(Q). 

Now let V C W be the set of real points of an affine subvariety of W defined 
over Q. Assume that V has finitely many connected components and G = <S(M)° 
acts transitively on each of these components. Suppose there exists VQ G V(Z) = 
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W(Z) n V and let H = {g G G : v^g = vQ} be the stabilizer of v0 in G. It is a fact 
that H = SS (R) H G for some reductive algebraic subgroup $ry of (S defined over 
Q. Suppose Ö and $h do not admit nontrivial characters defined over Q. Then 
G5(Z) H G is a lattice in G and <5(Z) PI H a lattice in H. Let T be a subgroup of 
finite index in (S>(Z) D G whose action on W preserves W(Z). 

We denote by || || a norm on W and for T > 0 define BT = {w E W : \\w\\ < 
T}. We are interested in the asymptotics of the number of points in V(Z) R BT 
as T —* oo. The group Y acts on V(Z) and it was shown in [BoHC] that V(Z) 
consists of finitely many T-orbits. Thus it suffices to know the asymptotics of the 
number N(T, V, O) of points in Ö R BT, where O = vQT. 

Theorem CI below recently proved by Eskin, Mozes and Shah [EsMoS] gen
eralizes an earlier result of Duke, Rudnick, and Sarnak [DuRuSa] where an asymp
totic of N(T, V, Ö) was first found. To state the theorem we need the following 
definition. 

Let {En}, n = 1,2,... , be an increasing sequence of open subsets of H\G = 
U{En, n = 1,2,... } and let En denote the natural lifting of En to H°\G. Also let 
A denote the G-invariant volume on H°\G, p the natural projection from G onto 
H°\G, and # ° the Zariski closure of H°. 

DEFINITION. [ESMOS] The sequence {En} is said to be focused in H\G as n —> oo 
if there is a compact C C G and a proper Q-subgroup £ of (S containing # 0 such 
that 

v A(p((zG(H°)nr)LC)nL;n) ^ n 
hm sup —^—^—-——z— > 0, 

n—»oo X(En) 
where L = Ü(M)0 and ZG(H°) denotes the centralizer of H° in G. 

THEOREM CI [EsMoS]. Suppose that every Q-subgroup of (5 containing fi0 is 
reductive and for every sequence Tn } oo the sequence RTU = {Hg : vog E BTn} is 
not focused in H\G. Then 

as T —> oo; where the volumes in (1) are induced by a left invariant Riemannian 
metric on G. 

COROLLARY CI [EsMoS]. Suppose ft0 is a maximal proper connected Q-subgroup 
of (S. Then relation (1) holds for N(T, V, O) as T -> oo. 

For the particular case when Si is an affine symmetric subgroup of (3 (i.e. Sj 
is a fixed point set of an involution of (S defined over Q) Corollary CI was proved 
earlier in [DuRuSa] by other methods (subsequently a simpler proof appeared in 
[EsMc]). 

To give an application of Theorem CI the authors of [EsMoS] denote by 
Mn (Z) the set of all n x n integer matrices and consider the set 

VP(Z) = {AE Mn(Z) : det(t/ - A) = p(t)} , 
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where p(t) denotes a monic polynomial of degree n with integer coefficients irre
ducible over Q. Theorem CI implies that 

AT(T,y p)-c pT n( r i- 1) / 2 

for some cp > 0, where N(T, Vp) denotes the number of points in VP(Z) of Hilbert-
Schmidt norm less than T. 

Theorem CI is deduced in [EsMoS] from the results on the limit behavior 
of algebraic measures under translations. More specifically, let xYL, x = Te be a 
homogeneous subset of T\G with Y being a lattice in a Lie group G and let {gi}ieN 
be a sequence in G. We denote by z/egi the g^Hgi-invariant probability measure 
supported on xYLgi. One asks what are the possible weak* hmits of the sequence 
{vRgi}ieN and, in particular, when does the sequence converge to the G-invariant 
probability measure v&l 

Using Theorems 1 and 5 and the linearization method of [DM4], Eskin, 
Mozes, and Shah [EsMoS] showed that if G, H, and Y satisfy the conditions of 
Theorem CI and the sequence {z^og^} weak* converges to a probability measure 
y then v = u^c for some c G G, where Z/L is the L-invariant probability measure sup
ported on a homogeneous set xL with L = £(M)° for some reductive Q-subgroup 
£ of (S containing Ü)0. Also they proved the following 

THEOREM C2 [ESMOS]. Let G} H, and T be as in Theorem CI and let {En} be 
an increasing sequence of open subsets of H\G = U{En : n = 1,2,... }. Suppose 
that {En} is not focused in H\G as n —> oo. Then given any £ > 0 there exists an 
open set A C H\G such that 

. volR\G(AnEn) 
lim ini ^ r——— > 1 — £ 
n->oo VOl H \Gl^n) 

and {i>Hgi} weak* converges to V& for every sequence {gi} with {Rgi} being a 
sequence in A containing no subsequences convergent in H\G. 

COROLLARY C2 [EsMoS]. Suppose i } 0 is a maximal connected Q-subgroup of 
(3 and let {gi} be a sequence in G such that {Hg^} contains no subsequences 
convergent in H\G. Then {vngi} weak* converges to VQ. 

To deduce Theorem CI from Theorem C2 one denotes by XT the character
istic function of the ball S T , and for g G G one defines 

*r(g) = X!{XT(wg) : 7 e H n T\r}. 

Then FT is a function on T\G, as FT(g) = -Fr(7g) for all 7 e T. Also ^ ( e ) = 
N{V,T,0). Defining 

p vol(r\G) 
T ( g ) ~ vol(H n T\H) VO1H\G(ÄT) 

and using Theorem C2, Eskin, Mozes, and Shah showed (following the method of 
[DuRuSa]) that -Fr(g) —» 1 weakly and pointwise onT\G. In particular, -FV(e) —> 1. 
This yields Theorem CI. 
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6 Applications to Ergodic Theory and the "Rigidity" Phenomenon 
of Ad-unipotent Actions 

The central problem of ergodic theory is that of classifying measure preserving 
(m.p.) transformations or flows up to isomorphism. 

More precisely, let T and S be two m.p. transformations on probability spaces 
(X, px) and (Y, py) respectively. We say that S is a factor oî T if there is a m.p. VJ 
from X onto Y such that VJ(T(X)) = S(VJ(X)) for /i^-almost every (a.e.) x E X. If 
VJ is invertible, then T and S are called isomorphic and VJ is called an isomorphism 
between T and S. Similarly, one defines factors and isomorphisms of m.p. flows. 
One asks what m.p. transformations (or flows) are isomorphic? And what are the 
possible isomorphisms between T and SI 

To approach this problem one looks for properties stable under isomorphisms. 
There are a number of dynamical properties of this kind, characterizing the degree 
of randomness of the system. There is also a numerical invariant of isomorphism 
called the entropy, which plays an important role in ergodic theory. 

The definition of entropy will not be discussed, but we shall only mention 
that if an element g of a real Lie group G acts on ( I ^ G ^ G ) , where Z/Q is the 
G-invariant Borei probability measure on T\G, then the entropy of this action 
is given by 8(g) = 5^{log |A| : À is an eigenvalue of Adg with |A| > 1}, where 
the eigenvalues are counted with multiplicities. Thus if u is Ad-unipotent then 
£(u) = 0. 

An element g G G is called Ad-semisimple if Adg is diagonalizable over C. 
The following theorem solves the isomorphism problem for Ad-semisimple actions. 

THEOREM E l (Ornstein, Weiss, Dani). Let Gì, i = 1,2, be two real connected 
Lie groups. For each i let Yi be a lattice in Gi, g^ an Ad-semisimple element 
of Gi with Adg(.i) having at least one eigenvalue \X\ ^ 1. Suppose that g^ acts 
ergodically on (Adi = I \ \ G J , Z / G J > i — 152. Then the actions of g^ and g^ are 
isomorphic if and only if 8(g^) = 8(g^). 

This theorem is proved by showing that the actions of gt1) and g(2) are 
isomorphic to Bernoulli shifts and then using Ornstein's isomorphism theorem, 
which states that Bernoulli shifts with the same entropy are isomorphic. Thus 
the isomorphism problem for actions of Ad-semisimple elements depends only on 
the entropy of these actions, hence only on the eigenvalues of Adg(i) and Adg(2). 
Neither Gi, G2, nor Yi, Y2 play any significant role in the problem. Also one 
can show that there are uncountably many isomorphisms between isomorphic Ad-
semisimple actions. 

The following "rigidity" theorem, which can be deduced from our Theorem 1 
demonstrates the profoundly different behavior of the actions of Ad-unipotent el
ements. 

THEOREM E2 (Rigidity Theorem). Let Gi be as above and let Yi be a lattice 
in Gi containing no nontrivial normal subgroups of Gi, i = 1,2. Let u.^ be an 
Ad-unipotent element ofGi, i = 1,2. Suppose that the action of uW on (Mi,z/Ga) 
is ergodic and there is a m.p. VJ : ( M I , I / G I ) —> (M2,VQ2) such that VJ(XU^) — 
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yj(x)u.(2) for z/G^a.e. x E Mi. Then there is c G G2 and a surjective homomorphism 
a : Gi —> G2 such that &(Yi) C c_1r2C and yj(Yih) = T2ca(h) for UQ1-a.e. 
Yih G Mi. Also a is a local isomorphism whenever yj is unite to one or Gi is 
simple and it is an isomorphism whenever yj is one-to-one or Gi is simple with 
trivial center. 

Note that 8(u^) = £(u(2)) = 0. This theorem says in particular that if the 
actions of Ad-unipotent elements u^1^ and u^2^ are isomorphic then Gi must be 
isomorphic to G2 and Ti to T2-

The action of the unipotent group H = {h(t) = n 1 : t G M} on (M = 

r \G,i /c) i G = SL(2,R) is called the horocycle flow on M and the action of the 

diagonal group A = {a(t) = : t e M } the geodesic flow on M. 

Theorem E2 for horocycle flows was proved in [Ra2] in 1981. Then using the 
method of [Ra2] and [Ra4] Witte [Wl] extended it to any connected Gi,G2 and 
Ad-unipotent u ^ ^ u ^ and furthermore to any mixing zero entropy affine maps 
[W2]. (Theorem E2 for nilpotent Gi ,G 2 was proved earlier by Parry [P2].) 

The proof in [Ra2] of the rigidity theorem for horocycle flows uses the polyno
mial divergence of horocycle orbits and the commutation relation with the geodesic 
flow. Generalizing this method, Feldman and Ornstein [FO] extended the rigidity 
theorem to horocycle flows on the unit tangent bundles of compact surfaces of 
variable negative curvature. Also generalizations to higher-dimensional hyperbolic 
space, to horospherical foliations and to geometrically finite groups were given by 
Flaminio [Fl], by Witte [W3], and by Flaminio and Spatzier [FISp]. 

In fact, Theorem E2 is a consequence of a far stronger "Joinings Theorem" 
implied by Theorem 1. More specifically, let T and S be as above and let p, be 
a T x S invariant probability measure on X x Y. Then p, is called a joining of 
T and S if p(A x Y) = px(A), p(X x B) = py(B) for all measurable subsets 
A C X, B C Y. The joining px x PY is called the trivial joining. T and S aie 
called disjoint if they have no nontrivial joinings. 

It follows from Theorem 1 that every ergodic joining p of the actions of 
Ad-unipotent elements u ^ on ( M i , ^ ) and u ^ on (M2,Z/G2) is algebraic. Thus 
p(xA(p)) — 1 for some x E Mi x M^ (see Definition 2). Also A(p) is a subgroup 
of Gi x G2 and the groups AI(JLA) and A2(/i) defined by 

A1(M) = { h G G 1 : ( h , e ) e A ( / i ) } 

A2(/.) = { h G G 2 : ( e , h ) G A ( M ) } 

are closed normal subgroups of Gi and G2 respectively. For c G G2 write Y% — 
{jA^(p) : 7 G c~1r2c} and for z E Mi let 

£/*(*) = iv e M2 : M e xA(p)}. 
The set ^ß(z) is called the 2-fiber of p. We showed in [Ra9, Theorem 2] that there 
is c G G2 and a continuous surjective homomorphism a : Gi —> G2/A2(/^) with 
kernel Ai(p), a(u^) = u^2^A2(/i) such that 

£M(Tih) = {r 2 q6>(h) :i = l,...,n} (2) 
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for all h G Gi, where the intersection r 0 = a(Yi) nY^ is of finite index in a(Fi) 
and in Hj, n = | r 0 \ a ' ( r i ) | and Q'(Fi) = {Y^ßi : i = 1, . . . , n}. This implies the 
following 

THEOREM E3 [Ra9, Corollary 5] (The Joinings Theorem). Every ergodic joining 
p of the actions of Ad-unipotent elements u^ and u^ is algebraic and the fìbers 
of p are given by (2). If, in addition, Gi is simple, i = 1,2, and p is nontrivial, 
then every fiber of p is finite and Gi and G2 are locally isomorphic. 

Thus if Gi and G2 are simple and not locally isomorphic, then the actions of 
u^1) and u(2) are disjoint. 

The Joinings Theorem for horocycle flows was proved earlier in [Ra4, Theo
rem 6]. We showed there that if p is a nontrivial ergodic joining of the horocycle 
flows hf] on Mi = Yi\SL(2,R), h^(x) = xh(t), x E Mu i = 1,2, then the flow 
hi1' x Iv* on (Mi x M2ip) is isomorphic to the horocycle flow on YQ\SL(2,R), 

where YQ is a subgroup of finite index in Ti and in c_1r2C for some c G SL(2, R). 
This shows that the number of nonisomorphic ergodic joinings of the horocycle 
flows on M\ and M2 is at most countable and if Ti is uniform and T2 is not or if 
Ti is arithmetic and Y2 is not then the horocycle flows are disjoint (see [Ra5] for 
more on this). 

The central role in the proof of [Ra4, Theorem 6] is played by a dynamical 
property of horocycle flows, which we introduced in [Ra4, Definition 1] and called 
the if-property. It is a consequence of the polynomial divergence of horocycle 
orbits. 

The iî-property states that given 0 < E < 1 and p, N > 0 there are 6(e,p,N), 
a(e) E (0,1) such that if dG(x,e) < 6(e,p,N) for some x G G = SL(2,R) and 
x ^ H then there are L,T > 0 with N < L < T, L > a(e)T such that either 
dG(xh(t),h(t+p)) < pe for all t E [T - L,T] or dG(xh(t),h(t - p)) < pe for all 
tE [T-L,T]. 

The iï-property was proved in [Ra3, Lemma 2.1]. The latter proof also implies 
the following more general form of the iJ-property. 

Given small 9,e E (0,1) and N > I there are p(9,N),i](e) E (0,1) such that 
if dG(x,e) < p(0,N) and x ^ N G ( H ) then there exist T > N and differentiate 
functions a(x, s),r(x, s) : [0,T] —> R, cr(x, 0) = r(x, 0) = 0 with a(x,s) increasing 
in s such that 

dQ(xh(a(x,s)),h(s)a(r(x,s))) < COT'1 for all s E [0,T] 

max{|r(x,s)| : 0 < s < T} = \r(x,T)\ = 6 (*) 

\r(x,s) - r(x,T)\ < Qe for all s E [(1 - il(e))T,T], 

where C > 0 is a constant. Here N G ( H ) denotes the normalizer of H in G = 
SL(2, R) (it is generated by A and H). 

The first two relations in (*) show, in particular, that for any M C G—NG(H) 
with e G M the group generated by N G ( H ) D {h_sxht : x G M, s,t > 0} contains 
A. (It also contains H by the iî-property and hence N G ( H ) . ) A version of this fact 
for a more general case was later used by Margulis in [Ml, Lemmas 5 and 8]. 
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The if-property was generalized in [Wl, the Ratner property] and property 
(*) was generalized in [Ra8, Theorem 3.1], where it is called the Ä-property (see 
Section 3 for a description of the ^-property). The latter property plays a crucial 
role in the proof of Theorem 1. (We showed in [Ral2] how to use property (*) to 
prove Theorem 1 for G = SL(2,R).) 

Theorem 1 allows one also to show that factors of Ad-unipotent actions on 
(r\G,z/G) have simple algebraic form. This was recently done by Witte [W4]. We 
showed earlier in [Ra3,4] that if St is a factor of the horocycle flow on Y\SL(2,R) 
then there is a lattice Y* in SL(2, R) such that T C T' and St is isomorphic to 
the horocycle flow on Y;\SL(2,R). This implies that the number of nonisomorphic 
factors of the horocycle flow is finite and if Y is maximal then there are no non-
trivial factors. 

It is a fact that there are uncountably many nonisomorphic ergodic joinings 
and factors of Ad-semisimple actions with positive entropy (this follows from Orn-
stein's theory of Bernoulli shifts). Also it was shown by Sinai and Bowen-Ruelle 
that the geodesic flow on r\SX(2,M) possesses infinitely many ergodic invariant 
probability measures that are not algebraic. Also there are points x in Y\SL(2,R) 
for which closures of geodesic orbits are not manifolds. All these facts put Ad-
semisimple actions in striking contrast with the rigid behavior of Ad-unipotent 
actions discussed in this section and given in Theorems 1, 3, 6, E2, and E3. 

The rigidity theorem for the horocycle flows h\ on (Mi = Yì\Gì,I/ì), Gì = 
SL(2,R), Vi = vGi, i = 1,2, says that if h\ is isomorphic to h\ then Yi is 
conjugate to T2. We ask: Can this "rigidity" be destroyed by time changes? 

More specifically, let r be a positive integrable function on Mi with JM r dvi 

= 1. We say that h\ is obtained from h\ ' by the time change r if h\ (x) — h/) t* (x) 

for all x E Mi, t ER, where v(x,t) is defined by JQ ' r(xh(s)ds) = t. Then h\ 
preserves the probabihty measure rdvi on Mi. 

We ask: Is there a time change r such that K[ is isomorphic to h\ ? If "yes" 
h\ is called Kakutani equivalent to h\ . 

Using the Feldman-Katok-Ornstein-Weiss theory of Kakutani equivalence 
(developed in the 1970s) we showed in [RaO] that the answer to this question 
is affirmative. However, we also showed [Ra6] that even very mild smoothness 
conditions on r cause the rigidity to persist. Namely, we say that r is Holder 
continuous in the direction of the rotation group 

R = {r(0) = cos 9 sin 9 
— sin 9 cos 9 

Q E [-TT, TT]} 

if \T(X) - T(XT(9))\ < C\9\a for some C,a > 0 and all x E Mx, 9 E [-ir,ir}. We 
showed in [Ra6] that if K[ is isomorphic to h\ with r being bounded, measurable, 
and Holder continuous in the direction of R, then Ti is conjugate to r 2 . Also all 
isomorphisms between /ij" and h\ as well as factors and joinings of K[ have an 
algebraic form [Ra7]. 
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P R O B L E M 1. Are Ad-unipotent ergodic flows on homogeneous spaces of a general 

Lie group G Kakutani equivalent? In particular, is the flow h\ x h\ acting on 

(Mi x Mi , / / i x z/i) Kakutani equivalent to the flow h\ ' x h\ acting on (M2 X 

M2,7/2X7/2)? (We showed in [Rai] that ht x ht acting on ( M x M, 7/ x 7/) is not 

Kakutani equivalent to ht acting on (M,?/).) 

P R O B L E M 2. Do the rigidity properties discussed in this section hold for smoothly 
time-changed Ad-unipotent flows? 

Theorem SI above allows one to extend Theorems E2 and E3 and classify 
factors of Ad-unipotent flows in the S-arithmetic setting discussed in Section 4. The 
latter flows represent measure preserving actions of the field Qs (as an additive 
group) on (r\G§,7/Gs), s G §, with Y being a lattice in G§ (see Section 4). It 
would be of interest to develop the ergodic theory" of measure preserving actions 
of the p-adic field Qp as an additive group and, in particular, to construct a 
theory of Kakutani equivalence for these actions. Applying such a theory to p-adic 
horocycle flows on Y\SL(2,Qp) one can ask questions similar to those discussed 
in this section for the real case. 

To conclude this section we mention tha t recently Starkov [St4] used Theo
rem 1 to give an affirmative answer to a question raised by Marcus in [Ma] (see 
also [M2]). Namely, he showed that if Y is a lattice in a connected Lie group G 
and the action of a one-parameter subgroup U C G on ( F \ G , T / G ) is mixing, then 
it is mixing of all orders. Marcus [Ma] proved this result for semisimple G (see also 
[Mol]). Starkov's argument exploits Marcus' result and a theorem of Wi t t e [W2, 
Proposition 2.6] (cf. Corollary 1 in [St4]). 
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Progress on the Four-Color Theorem 

PAUL SEYMOUR 

Bellcore, 445 South Street 
Morristown, NJ 07960, USA 

ABSTRACT. The four-color theorem, that every loopless planar graph is 
4-colorable, was proved in 1977 by Appel and Haken, but there remain open 
several conjectured extensions. Here we report on a new (but still computer-
based) proof of the four-color theorem itself, and on some progress towards 
two of the open extensions. We also survey some related results on minors 
of graphs and on linkless embeddings of graphs in 3-space. 

1. Introduction 

The four-color theorem (briefly, the 4CT) asserts that every loopless planar graph 
admits a vertex 4-coloring. (Graphs in this paper are finite, and may have loops 
or multiple edges. We assume familiarity only with absolutely basic graph theory.) 
The 4CT was conjectured in about 1850 by F.W.Guthrie, and over the next 125 
years became one of the most popular problems of mathematics. Correspondingly, 
a great many "proofs" of it were proposed, but none of them survived scrutiny 
until 1977, when Appel and Haken (A&H) gave their famous proof [1], [2], [3]. 

This was a major triumph. They took the well-established approach of at
tempting to find an "unavoidable set of reducible configurations" and pushed it 
through to success, by means of extensive use of a computer, and a novel and 
elaborate system of "discharging rules" that they invented. 

Yet seventeen 3'ears have passed, and there still remains some doubt as to 
whether the theorem is actually true. This implies some serious difficulties with 
checking the A&H proof, so let me explain what I think these are. First, the most 
novel feature of the A&H proof, and the most commonly heard criticism of it, is 
that it makes use of a computer. Evidently, a readable conventional proof would 
be better, but to me this does not seem such an important issue. Provided the 
computer calculations can easily be duplicated by the reader, the computer use 
seems rather like the use of a calculator, and not much more objectionable. 

It has to be admitted, however, that the A&H proof does not quite meet this 
standard; it is difficult to duplicate the calculations. The programs themselves are 
straightforward to write, but getting all the data into the computer is a major 
headache — it is necessary to input, by hand, descriptions of some 1400 fairly 
substantial planar graphs. But this would be overcome if the data were available 
in electronic form, instead of only by figures. If this were the only problem things 
would not be so bad, someone would have produced the necessary data file and 
we would have a checkable proof. 
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The real difficulty lies in the conventional part of the A&H proof, not in the 
computer part. The noncomputer part of the proof requires such an enormous 
amount of time and patience that, as far as I am aware, no one has made an 
independent check of all the details. No major errors have been found in the proof, 
and the consensus of opinion is that it is probably correct; but, still, it is disturbing 
that it has not been properly checked. 

In the spring of 1993, Neil Robertson, Daniel Sanders, Robin Thomas, and 
I decided to try to convince ourselves somehow that the theorem really was true. 
We tried to read the A&H proof, but gave up after a week or so; it became evident 
that this was not going to work. Instead, we decided it would be easier, and much 
more fun, to make up our own proof, using the same basic approach as A&H but 
inventing the details for ourselves. We succeeded, and the new proof turned out to 
be simpler and more easily checked than the old one. In particular, the necessary 
data is available in electronic form, and the part analogous to the difficult non-
computer part of the A&H proof has been written in a formal language so that 
it can be checked by a computer in a few minutes, or by hand (by a very patient 
reader) in a few months. The other differences are all in the technical details, 
however, so there is not much point in sketching here what we did — the interested 
reader should see [16]. For our purposes here, all we need is this: despite all the 
rumors and doubts, the 4CT is true and provable by the approach that A&H used. 

In this paper, we sketch (in Sections 2, 3, and 4) three conjectured gener
alizations of the 4CT, and some recent progress on two of them. The two new 
results are both related to the problem of embedding a graph in 3-space so that 
no subgraph forms a nontrivial link in the sense of knot theory; this is discussed 
in Section 5. Finally, in Section 6 we sketch a general result on graph excluded 
minors, related to the two new results. 

2. Hadwiger's Conjecture 

A graph if is a minor of a graph G iî H can be obtained from a subgraph of G 
by contracting edges. The most well-known theorem about minors of graphs is the 
Kuratowski-Wagner theorem [13], [34], that a graph is planar if and only if it has 
no K5 or Ksi3 minor. (In general, Kn is the complete graph with n vertices; if3,3 is 
the graph with six vertices ai, a<i, a3, bi, hi, 63, in which each â  is adjacent to each 
bj.) Actually, this is more usually stated in terms of "topological containment", 
but the two forms are easily inter derivable. 

In view of this, we can restate the 4CT without mentioning planarity, in the 
form "Every loopless graph with no K5 or ^ 3 3 minor is 4-colorable." Now K$ 
is not 4-colorable, so its presence here is natural, but what about ^3,3? That of 
course is 2-colorable, so it looks a little anomalous. What if we leave it out? In 
1937, Wagner [34] proved the following lemma: 

LEMMA 2.1 Every ^-connected graph with no K$ minor is planar. 

From this, it follows that we can indeed leave out ^3,3, that the 4CT is 
equivalent to the following: 
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THEOREM 2.2 Every loopless graph with no if 5 minor is 4-colorable. 

To prove this equivalence, one direction is clear: certainly (2.2) implies the 
4CT, because planar graphs have no ifg minor. Suppose that the other direction 
is false, and take a minimal counterexample, that is, a loopless graph with no if5 
minor, not 4-colorable, and as small as possible. It is easy to prove that such a 
graph must be 4-connected, and hence planar by (2.1), contrary to the 4CT. This 
proves the equivalence of (2.2) with the 4CT, known as "Wagner's equivalence 
theorem". 

In 1943, Hadwiger [8] proposed the following conjecture: 

CONJECTURE 2.3 For every integer n > 0, every loopless graph with no Kn+i 
minor is n-colorable. 

(For fixed 71, let us call this "HC(?i)".) Then HC(0), HC(1), HC(2) are trivial, 
and HC (3) follows easily from a theorem of Dirac [6] that every nonnull simple 
graph with no if4 minor has a vertex of degree < 2. (Actually, HC(3) was proved 
earlied by Hadwiger [8].) We already saw that HC(4) is equivalent to the 4CT. So 
the sequence goes 

"trivial; trivial; trivial; easy; very veiy difficult; ...." 

What should the next term be? Many people guessed "false" ; but it turns out to 
be true — Robertson, Thomas, and I proved it in [20]. (More precisely, we proved 
its equivalence with the 4CT — we were not at that time convinced that the 4CT 
was proved. Actually, this was a strong motivation for the work reported in Section 

i.) 
At first sight it is surprising that the 4CT, a result about 4-coloring planar 

graphs, can be equivalent to a result about 5-coloring nonplanar ones. But what 
happens is rather like the derivation of (2.2) from the 4CT. Let us say a graph is 
apex if for some vertex v (called the apex), deleting v from G results in a planar 
graph. Certainty apex graphs have no if G minor, because if one did then deleting 
the apex would yield a planar graph with a if5 minor, which is impossible. More
over, loopless apex graphs arc 5-colorable (assuming the 4CT), because four colors 
suffice for the planar part, and there is still a color left for the apex. We showed, 
without assuming the 4CT, that: 

THEOREM 2.4 Any minimal counterexample to HC(5) is apex. 

(It follows, assuming the 4CT, that there is no minimal counterexample, and 
so HC(5) is true.) The proof of (2.4) was long and complicated, but it was nothing 
like the proof of the 4CT, and did not need a computer. 

Actually, it is not too difficult to show that every minimal counterexample to 
HC(5) is 6-connected. There is a conjecture due to J0rgcnsen [9], still open, that 
would make the proof of HC(5) even more like the proof of HC(4), by providing 
an analogue of (2.1). J0rgensen conjectures: 

CONJECTURE 2.5 Every 6-connected graph with no K$ minor is apex. 
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The fact that (2.5) is still open makes it painfully clear that we do not yet 
really know what graphs with no if6 minor are like. We shall return to this later. 

What about Hadwiger's conjecture in general? I have no idea what a general 
proof could be like. Proving HC(5) was a lot of work, and I cannot imagine a proof 
of the general case that uses anything like the same approach. In particular, one 
of the main results we used was a theorem of Mader [14], the n = 5 case of the 
following: 

THEOREM 2.6 For n < 6, any simple graph G with at least n — 1 vertices and with 
no ifn+i minor has at most 

(n-l)\V(G)\-n(n-l)/2 

edges. 

(This bound is best possible for each n, as is easily seen.) But for n > 6, 
the inequality of (2.6) is false. For instance, Mader found a simple graph with 10 
vertices and 40 edges, with no if g minor. (Delete five pairwise nonacljacent edges 
from if io.) So at least one of our basic tools fails in the general case, and it is not 
clear what to use instead. The best analogue of (2.6) for general n is the following 
theorem of Thomason [31]: 

THEOREM 2.7 For every n, every simple graph G with no ifn+i minor has at most 

Cn(logn)^2\V(G)\ 

edges, where C is a constant. 

It follows easily from (2.7) that every graph with no ifn+i minor is 
(Cfn(log n)1/2)-colorable, for some constant C"; but nothing better is known. It is 
not even known whether every graph with no if^+i minor is lOOOn-colorable. 

But we do have one result on HC(n) in general. Before the 4CT was proved, 
there was speculation as to whether it could be undecidable in some sense. (This 
would of course mean that there was no counterexample, because a counterexample 
would make it decidable.) Now that the 4CT is proved, one might still wonder 
whether, say, HC(6) is undecidable. But it is not. 

THEOREM 2.8 For any fixed n, we can construct N so that if HC(n) is false then 
it is false for some graph with < N vertices. 

Hence to decide the truth of HC(n) we merely check it for the finitely many 
graphs with < N vertices. This is a consequence of a general result on graph 
minors, described in Section 6. 

3. Tutte's Conjecture 

Some notation: if G is a graph and X Ç V(G), we denote by 6(X) the set of edges 
of G with one end in X and the other in V(G) — X. An edge e is a bridge of G 
if ö(X) = {e} for some X. A graph is cubic if every vertex has degree 3. A graph 
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G is k-edge-colorable, where k > 0 is an integer, if there is a map K from E(G) 
into { 1 , . . . , k} so that for each vertex v, all the edges e incident with v have K,(e) 
different. Tait [30] showed that the 4CT is equivalent to the following: 

THEOREM 3.1 Every bridgeless cubic planar graph is 3-edge-colorable. 

Now "bridgeless" here is necessary; no cubic graph with a bridge is 3-edge-
colorable, for trivial reasons. But what about "planar" ? It is not so easy to find 
any cubic bridgeless graph that is not 3-edge-colorable, but one was eventually 
found, by Petersen [15], the so-called Petersen graph (see Figure 1). 

Figure 1. The Petersen graph 

In 1966, Tutte [33] proposed the following: 

CONJECTURE 3.2 Every bridgeless cubic graph with no Petersen graph minor is 
3-edge-colorable. 

This evidently implies the 4CT, because planar graphs do not have the Pe
tersen graph as a minor. Superficially, this conjecture seems to resemble (2.2), 
for they are both obtained from a version of the 4CT by replacing the "planar" 
condition with a condition excluding as a minor the smallest graph not possessing 
the desired property. But (3.2) seems to be much more difficult than (2.2), even 
assuming the 4CT, and in particular is still open. Actually, (3.2) is much closer to 
HC(5) than to HC(4), as we shall see. 

Because apex graphs have no Petersen graph minor, (3.2) also implies that: 

CONJECTURE 3.3 Every bridgeless cubic apex graph is 3-edge-colorable. 

There is another specialization of (3.2) of interest, as follows. We say a graph 
is doublecross if it can be drawn in the plane with at most two crossings, so that 



188 Paul Seymour 

every crossing is in the boundary of the infinite region in the natural sense. (See 
Figure 2.) 

Figure 2. A doublecross graph. 

Doublecross graphs have no Petersen graph minors, so (3.2) implies: 

CONJECTURE 3.4 Every bridgeless cubic doublecross graph is 3-edge-colorable. 

It turns out that Tutte 's conjecture is equivalent to the conjunction of (3.3) 
and (3.4). This is a consequence of a very recent result of Robertson, Thomas, 
and myself [19]. We prove that any minimal counterexample G to (3.2) has the 
following properties: 

(i) Every circuit of G has length at least 5 

(ii) \Ö(X)\ > 6 for every X C V(G) with \X\, \V(G) -X\>8. 

(This is not particularly difficult, and may well have already been known.) 
Then we show that: 

THEOREM 3.5 With one exception, every cubic graph satisfying (i) and (ii) with 
no Petersen graph minor can be converted to an apex or doublecross graph by 
applying a certain "twisting" operation that does not affect 3-edge-colorability. 

We deduce: 

THEOREM 3.6 If Tutte7s conjecture is false, there is a counterexample to it that is 
either apex or doublecross. 

Consequently, Tutte's conjecture seems to be almost proved. We hope to be 
able to adapt our proof of the 4CT to prove (3.3) and (3.4), and thereby prove 
(3.2), but this work is still in progress. 

4. Nowhere-Zero Flows 

Tutte's conjecture (3.2) is a special case of another conjecture of Tutte about 
nowhere-zero flows. We have no new results to report about nowhere-zero flows, 
but survey the topic briefly in this section because it is rather pretty. Also, because 
the two conjectures of Tutte are often confused, it seems a good idea to clarify the 
difference between them. 
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Let G be a graph; direct its edges arbitrarily. (How these edges arc directed 
makes no essential difference to what follows.) Let k > 2 bc an integer. A nowhere-
zero k-flow in G is a function cj) with domain E(G), so that 

(i) For each edge e, 0(e) is one of ±1 , ± 2 , . . . , ±(k — 1) 

(ii) For each vertex v, if X and Y denote the set of edges of G with head v and 
tail v respectively, then 

5>(e):CeX) = $>(e):eey). 

Nowhere-zero flows are of interest basically because of the following. Let 
G be a graph drawn in the plane, with edges directed arbitrarily. Let n be a 
k-region-coloring of G\ that is, for each region r, n(r) is one of 1,2,... ,k, and 
n(r\) ^ ft(7^2) for airy two regions 7^, 7̂2 both incident with the same edge. For 
each edge e, define (j)(e) to be n(r\) — ft^), where n,r% axe the regions to the 
right and left of e respectively. Then it is easy to see that 0 is a nowhere-zero 
k-ûow in G. Conversely, given a nowhere-zero fc-flow in G, it is almost as easj' to 
reconstruct from it a fe-region-coloring of G. Thus, nowhere-zero flows give us a way 
to talk about fc-rcgion-colorings of planar graphs without mentioning regions, and 
thereby to extend some of them to nonplanar graphs. (For instance, the elementary 
theorem "A planar cubic graph is 3-region-colorable if and only if it is bipartite" 
has a pretty generalization to "A cubic graph has a nowhere-zero 3-flow if and 
only if it is bipartite.") 

Consequently, via planar duality, it follows that another equivalent form of 
the 4CT is: 

THEOREM 4.1 Every bridgeless planar graph has a nowhere-zero 4~flow. 

(Please note that (4.1) is not just about planar cubic graphs.) Again, the 
"bridgeless" condition is necessary, because no graph with a bridge has a nowhere-
zero fc-flow for any k. If we try to drop the "planar" condition, we find ourselves 
in the same situation as before, because the Petersen graph has no nowhere-zero 
4-flow; indeed, it is easy to show that: 

THEOREM 4.2 A cubic graph has a nowhere-zero 4~flow if and only if it is 3-edge-
colorable. 

In view of this, Tutte proposed [33]: 

CONJECTURE 4.3 Every bridgeless graph with no Petersen graph minor has a 
nowhere-zero 4~flow. 

For cubic graphs, this is equivalent to (3.2): but it does not seem possible to 
reduce (4.3) to the cubic case. It has not been shown that the smallest counterex
ample to (4.3) is cubic, for instance. Because apex graphs have no Petersen graph 
minor, a consequence of (4.3) would be: 
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CONJECTURE 4.4 Every bridgeless apex graph has a nowhere-zero 4~flow. 

In view of (4.2), it might be thought that (4.4) was close to (3.3), but in 
fact it seems to me that (4.4) is much stronger. For instance, take a minimal 
counterexample to (4.4). It is easy to prove that every vertex has degree 3 except 
for the apex, but the apex might have arbitrary degree. We are going to try to 
prove (3.3) by adapting our proof of the 4CT, but I have little hope of proving 
(4.4) this way. The difference is, roughly, that for apex cubic graphs there are only 
three vertices that are neighbors of the apex, and our proof of the 4CT yields 
a large (constant) number of vertices in the neighborhood of which a "reducible 
configuration" can be found; so some of these must be far away from the three 
bad places. But for (4.4), the number of bad places is unlimited, and I do not see 
a way to get a reducible configuration avoiding the bad places. 

Actually, (4.4) can be shown to be equivalent to the following (unpublished) 
conjecture of Grötzsch: 

CONJECTURE 4.5 Let G be a planar graph. Then G is 3-edge-colorable if and 
only if: 

(i) every vertex of G has degree < 3, and 

(ii) no subgraph of G has one vertex of degree 2 and all others of degree 3. 

This in turn is a special case of a conjecture of mine [24]: 

CONJECTURE 4.6 Let G be a planar graph, and let k > 0 be an integer. Then G 
is k-edge-colorable if and only if: 

(i) every vertex of G has degree < k, and 

(ii) every subgraph of G with an odd number n of vertices has at most k(n — l)/2 
edges. 

This remains open, for all k > 4. (Please note that, in all these conjectures, 
parallel edges are permitted.) The special case of (4.6) for 4-regular graphs when 
k = 4 is particularly interesting; it implies: 

CONJECTURE 4.7 Any 4-connec^ed 4-regular planar graph with an even number 
of vertices is 4~edge-colorable. 

This might be approachable by some variation on our 4CT proof, but we 
have not yet tried. (4.7) implies the 4CT, because Kotzig [12] showed that, if G 
is a connected cubic graph with !#(£?) I even, then G is 3-edge-colorable if and 
only if its line graph L(G) is 4-edge-colorable. (L(G) is defined as the graph with 
vertex set E(G), in which distinct edges e,f are adjacent if they have a common 
end in G. The line graph of a planar cubic graph is planar and 4-regular.) As far 
as I know, (4.7) is strictly stronger than the 4CT (indeed, it seems enormously 
stronger, but perhaps I am missing something). 

Returning to nowhere-zero flows, there is another pretty conjecture of Tutte 
[33], the following: 
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CONJECTURE 4.8 Every bridgeless graph has a nowhere-zero 5-flow. 

(4.8) would imply that, in contrast with the chromatic number of nonplanar 
graphs, "flow number" cannot be arbitrarily large. This much at least is true; it is 
shown in [26] that: 

THEOREM 4.9 Every bridgeless graph has a nowhere-zero 6-flow. 

5. Linkless embeddings 

In Section 2, we wanted to know "Which graphs have no KQ minor?", and in Sec
tion 3, "Which cubic graphs have no Petersen graph minor?" These two questions 
are more closely related than they might appear, because of a connection between 
if6 and the Petersen graph. By a "Y-A operation" we mean the following. Let v 
be a vertex of a graph G, with degree 3, not incident with any loops or parallel 
edges. Let its neighbors be x,y,z say. Delete v from G, and add three new edges 
xy,xz,yz, producing a new graph Ü. We say H is obtained from G by a Y-A 
operation, and G is obtained from H by a A-Y operation. 

These operations are quite powerful; for instance, Steinitz [28], [29], [7] showed 
that any planar graph can be reduced to the null graph by means of these oper
ations and by deleting loops, multiple edges, and vertices of degree < 2, and 
suppressing vertices of degree 2. But if we apply these operations repeatedly to 
if6 in all possible ways, we obtain a total of only seven graphs, up to isomorphism. 
One of them is the Petersen graph, and we call the set of seven the Petersen family. 

A third question we might ask is: "Which graphs have no minor in the Pe
tersen famity?" This seems to be quite closely connected with the other two ques
tions. For instance, we can prove that if G is cubic and |£(X)| > 5 for every 
X Ç V(G) with |X|,|V(G) - X\ > 3, then G has a Petersen graph minor if 
and only if G has a minor in the Petersen family; and I expect there is a similar 
equivalence between the KQ question and the Petersen family question for highly 
connected graphs, though that is not yet shown. 

But the Petersen family question has a nice answer, concerned with linkless 
embeddings. Take an embedding in 3-space of a graph G. It is 

(a) knotless if every circuit of G bounds a disc in the space 

(b) windless if for every two disjoint circuits G\,G^ of G, the "winding number" 
(defined in the natural way) of Ci through C2 is zero 

(c) linkless if every set of mutually disjoint circuits forms a "trivial link" in the 
sense of knot theory; that is, each of the circuits bounds a disc disjoint from 
the other circuits 

(d) flat if each circuit of G bounds a disc disjoint from the remainder of G. 

(The difference between (a) and (d) should be noted.) Now an embedding 
can be knotless and yet not windless, and vice versa; but a linkless embedding is 
both knotless and windless, and seemed to be a nice kind of embedding to investi
gate. The question arose, "Which graphs have linkless embeddings?" Conway and 
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Gordon [5] proved that if6 has no windless embedding; and Sachs [22] indepen
dently proved that no graph with a minor in the Petersen family has a windless 
embedding, and conjectured a strong converse, that every graph with no minor 
in the Petersen family has a linkless embedding. Böhme [4] suggested that flat 
embeddings might be even nicer, for every flat embedding is linkless, yet a linkless 
embedding need not be flat; and he conjectured that any graph that admits a 
linkless embedding also admits a flat embedding. In [21], we proved that all these 
conjectures are true. More precisely: 

CONJECTURE 5.1 For a graph G, the following are equivalent: 

(i) G admits a windless embedding 

(ii) G admits a linkless embedding 

(iii) G admits a flat embedding 

(iv) G has no minor in the Petersen family. 

In some ways, this should be a "deep" theorem. It was certainly difficult 
enough; the Petersen family is natural from the point of view of graph theory, 
and flat embeddings are natural from a topological viewpoint (for instance, an 
embedding is flat if and only if for every subgraph, its complement in 3-space 
has a free fundamental group). So we are asserting a connection between two, 
apparently unrelated, natural objects, and such a theorem might be expected to 
be important. Yet, for our applications to coloring, it was of no help whatsoever. 
It gives us no idea how to construct the graphs with no if g minor (say), because 
we do not know how to make flat embeddings. Still, I feel that it must be more 
than a coincidence that the same graphs (K$ and the Petersen graph) occur here 
and in the coloring problems. 

6. General results 

Although this is not an appropriate place to go into the details of how such results 
as (2.4) and (3.5) can be proved, there is one basic piece of machinery that is 
used very frequently, and is not as well known as it might be. Let si,S2,*i»*2 De 

vertices of a graph G. When are there two paths of G, pairwise disjoint, from si 
to ti and from s2 to £2 respectively? There is one obvious case when such paths 
do not exist, namely when G can be drawn in the plane with si,s2 ,£i,£2 all on 
the infinite region, and in the given order; because then clearly any path from si 
to i i will meet any path from s2 to £2. The result I want to mention here is that 
this is essentially the only situation when the paths do not exist. More precisely: 

THEOREM 6.1 Let G, si, £25̂ 25 2̂ be as above, and suppose that for every vertex v 
different from si, ti, S2, ti, there are four paths of G from v to si,ti, S2, t2 respec
tively, mutually disjoint except for v. Then exactly one of the following holds: 

(i) There are two paths of G, pairwise disjoint, from si to ti and from s2 io £2 

respectively 
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(ii) G can be drawn in the plane with s i ,s 2 , t i ,£ 2 all on the infinite region, and 
in the given order. 

This was proved for 4-connected graphs by Jung [10], and in the form given 
by Shiloach [27], Thomassen [32], Kelmans [11] and myself [25], independently. 
(See also [17] for a simple proof.) This is the basic tool that we use to persuade 
large parts of wild nonplanar graphs to be planar or almost planar, in the proofs 
of both (2.4) and (3.5). 

(2.4) and (3.5) both tell us that, in some sense, apex graphs are an important 
way to construct graphs without if e and without Petersen graph minors. Can this 
be made more precise? To clarify the issue, let us replace these little excluded 
minors by a big one, if ioo say. How can we construct graphs with no if ioo minor? 

One important construction is as follows. Let G and H both be graphs with 
no if ioo minor. Let gi,..., g^ be pairwise adjacent vertices of G, and let h\,... , h^ 
be pairwise adjacent in Ü. Take the disjoint union of G and H, and then identify 
gi with hi for i = 1 , . . . , fc, and, if we wish, delete the edges between gi and gj, for 
1 < ^ < j < /c. The graph we produce is called a clique-sum of G and H\ it is easy 
to show that it has no if ioo minor. 

But what can we use for building blocks? Certainly graphs with at most 99 
vertices have no if ioo minor, and so do graphs G such that G\X is planar for 
some set of vertices X with \X\ < 95. Similarly, because if g cannot be drawn in 
a torus, it follows that if G\X can be drawn in a torus for some set X of vertices 
of size < 92 then G has no if ioo minor, and so on. 

This is not yet very rich, and yet at this point it begins to be difficult to 
think of other constructions. One important one is to expand the idea of a surface 
embedding, as follows. A capacitated surface E is a connected compact 2-manifold 
with boundary, together with an integer X(C) > 2 for each component C of the 
boundary of E. By a drawing of a graph in E, we mean a drawing in the usual 
sense, with all vertices drawn in E — òd(E), with each edge meeting ùd(E) in only 
finitely many points, and without crossings, except that edges are permitted to 
cross each other on the boundary of E; each point of a boundary component C of 
E may belong to at most X(C) edges of the drawing. 

Let us say a capacitated surface E admits a graph G if there is a graph drawn 
in E with G as a minor. For every E, there is a k such that E does not admit iffc. 
For instance, let E be a closed disc, with X(C) = 2 for the unique boundary 
component; then Seese and Wessel [23] proved that E does not admit ifg-

This gives a slightly more general way to construct graphs with no if ioo 
minor. For any integer k > 0, let A(k) be the set of all graphs G such that some 
capacitated surface admits G and not Kj~. Then for each graph in A(k), we have 
one of finitely many "reasons" why it has no if & minor; because it is admitted by 
some E that does not admit if/-, and there are only finitely many E that do not 
admit iffc. 

Let us denote by A(k)+n the set of graphs that can be obtained from graphs 
in A(k) by adding up to n new vertices, adjacent to anything. Thus, all of 

,4(100) + 0, .4(99) + 1, ,4(98) + 2 , . . . 
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are sets of graphs with no i f ioo minor, tha t in some sense we understand. And 
we can take repeated clique-sums of these graphs to produce new graphs with no 
i f ioo minor. 

How close are we getting to the complete answer? Probably not very close, if 
we really want a necessary and sufficient construction for all graphs with no i f ioo 
minor. But in another sense, these are qualitatively all the constructions necessary. 
Robertson and I [18] proved the following: 

T H E O R E M 6.2 There exist integers k,n such that every graph with no i f ioo minor 
is constructible by repeated clique-sums, starting from graphs in A(k) + n. 

(Of course, 100 is not important here; the same is true for any constant.) 
This had a number of interesting consequences. For instance, (6.2) was the main 
step in our proof of Wagner's conjecture, tha t in any infinite set of graphs one of 
its members is a minor of another. It also was a crucial step in the proof of (2.8), 
the result implying the decidability of each case of Hadwiger's conjecture. But 
the main observation to be drawn from it here is t ha t in this area nature is not 
very inventive. There are capacitated surfaces, there is the trick of adding a few 
extra vertices, and there are clique-sums; and qualitatively tha t is the complete 
list, these suffice to make all the graphs with any fixed minor excluded. Thus, it 
is perhaps not so surprising tha t results like (2.4) and (3.5) should be true. 
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Entropy Methods in Hydrodynamic Scaling 
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1 Introduction 

Hydrodynamic scaling is a procedure that attempts rigorously to derive large scale 
behavior of complex interacting systems from laws governing its evolution that are 
specified at a smaller scale. The procedure involves statistical averaging over the 
small scales and can be viewed as part of nonequilibrium statistical mechanics. 

The basic example is the classical problem of starting with a Hamiltonian 
system of interacting particles and deriving from it, after rescaling, the Euler 
equations of compressible gas dynamics. 

Let us consider a Hamiltonian system of N particles moving in a rather large 
physical space, for instance, the 3-dimensional torus of size L These particles are 
governed by a pair interaction V(x — y) between particles. V(-) is an even function 
that is nonnegative and has support in a fixed compact set independent of L N 
and Ü will be large with N = £3 so that the interparticle distance is of order 1 and 
each particle will typically see only a few particles at any given time. The phase 
space is (Tf x R3)N and the equations of motion for the positions and velocities 
(xi(t),Ui(t)) are 

dxf(t) _ dH_ 
dt ~ ßn? 

x (1.1) 
duf(t) _ dH { } 

dt ~ dx? 
Here i is the particle number, 1 < i < N, and a is the coordinate index, a = 1,2, 3. 
The Hamiltonian H(xi,... ,XN;U\, ... ,UN) is, of course, given by 

H{x; u) = \ Ç IKH2 + IY,V^ - xi)- (L2) 
i i^j 

The system has five conserved quantities: the number of particles N, the momenta 
X 1 U ? J and the total energy H. Suppose we rescale the torus to have size 1 and 
rescale time by a similar factor I, then quantities of the form 
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(1.4) 
J Y V L J 

and 

(1.5) 
1\ '—• \ C J 

where 

change in a reasonable manner in t. As N and £ —> oo in the manner specified, 
one should think of (1.3), (1.4), and (1.5) as converging to 

J-J(y)p(ytT) dy- (1.6) 

J(y)va(y,T)p(y,T)dy (1.7) 

N ^ 

NY,-

1 „ „ ' 
U* — r\ \ 1 a ? 11 

' ( = 

' ( ! 

>+\ 

f])um 
:-f))e,(«) 

I 
and 

J(y)^(y^)p(y,r) dy. (1.8) 
/ • 

Here y and r are rescaled space and time. p(y,r) is the density at a given point of 
space time. {va(y, r)} are the local fluid velocities and e(y, r) is the energy density, 
related to the temperature at a given point. The equations of gas dynamics in this 
context are a system of symmetric hyperbolic conservation laws that one can write 
down for the evolution of p, va, and e. These equations are somewhat different 
from the usual Euler equation one derives from the Boltzmann equation. In the 
Boltzmann limit the real density is small; thus, the Euler equation derived from 
it is linearization in p of our equations. 

This classical model is deterministic and any randomness has to bc in the 
initial configuration. A precise formulation of the problem has to be done carefully. 
The goal is to establish some rigorous connection between the Hamiltonian equa
tions on one hand and the Euler equations on the other. Randomness is important 
because some averaging has to be done with respect to small scales and one needs 
some information as to how the particles will arrange themselves locally in phase 
space if we only know their local density, local average velocity, and local temper
ature. One expects the arrangement to be given by an appropriate Maxwell-Gibbs 
distribution and formally the equations are derived under that assumption. To 
justify it, at the least, one needs a reasonable ergodic theory and for that more 
noise is better. 

We will first look at two other models where the evolution is stochastic, say 
something about these models, and return at the end to our classical model. 

The next example is referred to as simple exclusion. The physical space will 
be the periodic d-dimensional integral lattice of period H. After scaling by a factor 
of t, this will be viewed as living inside the unit d-torus. We will have a certain 
number Af = p£d of particles located at some of the lattice sites. Each site can have 
at most one particle. A particle at the lattice site x waits for a random exponential 
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waiting time with mean 1 and then picks a random new site x' to which it tries to 
jump. If the new site already has a particle, then the jump cannot be completed 
and our particle waits again for a new exponential random time. If the site x/ is free, 
it jumps and starts afresh. The choice of xf is made with probability TT(X/ — x). 
The probability distribution ir(z) is of jump sizes, is independent of £, and is 
assumed to have finite support. All the particles are doing this at the same time 
and independently of each other. Because of continuous time there will be no ties 
to resolve. 

The only conserved quantity here is the number of particles and we look at 
the density. We want to study the behavior of 

where r = £at. The rescaling of time can be with either a = 1 or 2. 
The mean m = ^ zn(z) plays an important role. If m ^ 0, the motion is 

convective and one has to take a = 1. If we think of (1.9) as converging to 

/ 
J(y)p(r,y) dy (1.10) 

then p is expected to satisfy the scalar conservation law 

| £ + V • mp{\ -p)=0. (1.11) 

If m = 0, then we need to take a = 2. The scaling is diffusive and one then expects 
p to satisfy a nonlinear diffusion equation 

^ = ^-a(p(r,y)Vp). (1.12) 

If ir(z) = 7r(—Z); i.e., iv is symmetric, then the problem is rather easy and, in fact, 
one can verify that 

a(p) = a = 2_] z ® z n(z) (1-13) 

is a constant matrix and is, in fact, the covariance matrix of n(-). The hmiting 
equation in this case is the linear heat equation. 

The third example we will consider is referred to as the Ginzburg-Landau 
model and is a lattice field model. We again start with the periodic lattice of 
size £ in d dimensions. We scale it down and think of it inside the unit torus. 
At each lattice site x, we have a variable £(x,t) that is real valued and changes 
in time. The collection {£(x,t)} is an ^-dimensional diffusion process and can 
be described either through a set of stochastic differential equations or though 
its infinitesimal generator. We will do the former. If e i , . . . ,e<i are the d positive 
coordinate directions, then x±ei are the neighbors of x. 

d 

d£(x, t) = 2_] [drj(x — ei,x,t) — drj(x, x + e ,̂ t)] (1.14) 
i = l 



Entropy Methods in Hydrodynamic Scaling 199 

dV(x,x + ei,t) = ì Wtefat)) - 0;(e(a: + ei,t))} dt + dßXiX+e%(t) (1.15) 

The equation (1.14) tells us that the way £(x,t) changes is by "stuff" coming 
in or going out along the bonds. We orient the bonds using the positive coordinate 
directions and the net change is an algebraic sum. Equation (1.15) tells us that the 
flow along a bond is proportional to some nonlinear gradient modified by white 
noise. Here <//(£) is a nonlinear function that satisfies some natural assumptions. 
We use cj)', the derivative of (j>(£), for convenience. If we again take r = £2t and 
consider 

^ E ^ ( i ) ««•'•) ( L 1 6 ) 

as an approximation of 

' J(y)m(y,r) dy - (1.17) 
/ • 

where m(y, r) is the limiting "density" of "stuff', then m(-, •) is supposed to satisfy 
an equation of the form 

dm 1 
"ft = 2 A A M 

where X(m) is to be determined in terms of (j). 
We shall look at our three examples in some detail in our next three sections 

and end with some comments. 

2 Ginzburg-Landau Model 

It is convenient to write down the infinitesimal generator of our diffusion process 
onRe". 

(2.1) 

-Çj2l<l>'(lï(x +d))-<£'(&))} 
d d 

F. 

is 

The factor £2 appears due to rescaling of time. The object we want to study 

G^ = TäT,J(a)^t)- (2-2) 

Using the stochastic differential equations one can write 

dG(t) = A(t)dt + dM(t) (2.3) 

where 
A(t) = . P E ' G H ® (,4) 

2£d 
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and 
dM(t) ~ 0 

because the Brownian noise terms cancel each other out by averaging. The diffi

culty now, which is typical of all of these problems, is that due to the nonlinearity 

of (j)' the equations do not close and one has to represent . " '' " 

in terms of m(x,t) as £ —• oo. These are, of course, defined by (1.16) and (1.17). 
These require a knowledge of how £(x,t) are "distributed" for a given value of 
"m". If we know this, then the volume average of 0' can be replaced by a mean 
value of <fJ for a given m. 

The evolution governed by £g is reversible or symmetric with respect to the 
weight 

C-£.*K(*)> = $ , ( £ ) . (2.6) 

(We normalize </> so that J e~^^ d£ = 1.) However, the process is not ergodic 
because 

X 

is conserved under our evolution. The conditional distribution ^m^(d£) of {£(%)}, 
given the average m, are the invariant ergodic pieces. By an "equivalence of en
sembles" type theorem we can show 

and 

Here 

and X(m) solves 

and equals 

One finally verifies that 

«w(de)-»n e~*m K ( B ) ) d£( a : ) 
X 

* m ( O = 0 ( O - A ( m ) f + p ( A ( m ) ) . 

p(\)=\og J exp[\Ç-</>(£)}<% 

p'(A(m)) = m 

X(m) = -— sup [Am — p(A)l 
0771 x 

/V(0e~*m(od£ = A(m). 

This yields our equation 

t-ÌAAM. (2.8) 
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In order to justify this one has to prove that averages of the form 

l-B| „ 
1 ' x€B 

are nearly equal to 

A t e w ) 
most of the time with probability nearly 1. The size of the block is important. 
It should bc of size £e with e << 1 but fixed. In [5] with Guo and Papanicolaou 
we developed a method for handling the problem by using entropy and entropy 
production-as tools. We assume that-initially—the-field-{^(-a;,0)-}-is random and-is 
given by a density / ° ( £ ) ^ ( 0 satisfying an entropy bound 

j fi(t)log fiiOMO d£ < C£d. (2.9) 

Such a bound is natural and is satisfied in most cases because one can think of C 
as the bound for average entropy per site. Then the distribution of {£(x,t)} will 
have a density fj>(£) satisfying 

He(t) = / / / ( 0 1 ° g / Ì ( 0 * / ( 0 <% < He(0) 

and, in fact, 

d.He(t) _ e r v / dît dfi V i a (n dP df {0 inx 

Because Hß(t) > 0 one gets a trivial bound 

Jo 'C/(Ä-^)'2# ' (0«*S2W" 
If we fix a finite time T and consider 

- i rT
rt 

by convexity 

d-2 

We showed in [5] that the above estimate was sufficient to justify the averaging 
lemma and establish equation (2.8) rigorously. The following theorem was proved. 
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Assume / ° (£) satisfies the bound (2.8). Assume further that for some density 
m-o(y) and all smooth test functions J(-) 

in probability under / ° (£)$*(£)d£. Then for any t > 0 

Jd E J (f) *(*» *) "> / JfoM*. Î/) dV 

in probability, where m(t,y) solves (2.8) with initial condition mo(2/). 
In [14] a modified approach was developed by Yau that has much wider 

applicability. One could guess that the density at time t should look like 

gimm = \ exp [EA (*» f ) £(*)] *«(0 

where Z = exp[J]p (t, | ) ] and X(t,x) — X(m(t,x)) and m solves (2.8). In general, 
the density is $* (£)•/?(£) where /^(£) is obtained by solving the Fokker-Planck 
equation and is not g\, even if we start off with /°(£) = #°(0-

The question is: How close are they? 
If we define the specific entropy s(f\,g\) by 

<fi>9i) = ^ / / K o log | § ^ ( 0 de, (2.11) 

the theorem of Yau in [14] is that uniformly in 0 < t < T, 

\ims(fj,gt
e)=0. 

£—>oo 

This is enough to justify the hydrodynamic scaling and arrive at the same theorem 
as in [5]. One assumes more initially but one obtains a stronger conclusion. 

The model that we have studied is very special because it is a "gradient" 
model. While computing 

dG(t)=d(±J2J(°l)tM 

we obtained 

- -\ji E [J (^P) -J (?)] W(*(*+e<)) - <m*))] 
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We were able to carry out summation by parts twice. The local "flux" turned out 
to be 

<£'(£(*+ e))-<£'(£(*)), 

which is a gradient and is amenable to another summation by parts. With that 
the global flux turned out to be 

^5>i)(f)«M. 
which is an order 1 quantity. 

This is not true in general. To see this let us modify our evolution somewhat. 
Our operator corresponds to the following Dirichlet form relative to the weight 

MO —. ._ _ 

^ > 4 / | : ( r a - a I ) ) • ' « * • 

We modify it by 

where a(£1,^2) is a smooth positive function bounded above and below. For sim
plicity, let us talee d = 1. The operator La is given by 

^>4E«(^+i).^))(âê(^i)-âè))^ 
- ïE^(«»+i) .«-))(f lç^ny-^)^ 

Wfêi.6) = 0(6,6,) ( * ' ( & ) - * ' ( & ) ) 

+ 0 2 ( 6 , 6 ) - ai(Éi>£2) 

where 

and 

for i = 1, 2. 
Now, if we compute 

we get 

ûi(fl)O) = ^770(6)6) 

* G £'(?)«*> 

4E- , , ( ! ) H '« ( a : + i >.« i )> ' <2-12) 
The term in (2.12) is a big term. The mean value of W is zero for any given 

value of m and so averaging produces a meaningless product of zero and infinity. 
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In [12] we developed a method for handling problems of this kind. We showed that 
there is a function D(m) such that 

• ^(6,6)-£(™)[t f> ' (6)-<£' (&)] 

is negligible in a somewhat complicated but precise sense. With this modification 
the correct diffusion equation is 

dm 1 3 „ , . xv 9 w / 

1 9 ~, , ..dm 
= 2 d y D ^ y ^ 

D(m)=D(m)X'(m). 

For D(m) we provided a variational formula that replaces the traditional Green-
Kubo formula. In the Green-Kubo formula the diffusion coefficient D(m) is a 
space-time integral (sum) of the autocorrelation function in equilibrium, and this 
is not convenient. Our variational formula is much more convenient and is given 
explicitly by 

D(m) = inf £ m { a ( ^ , 6 ) ( l - Gf)
2}. 

Here Em refers to the expectation with respect to the infinite product measure 

e^P[-^2(ßm(^))} Yld£x 

and the infimum is taken over all tame test functions depending on a finite number 
of coordinates. For each such f, Gf is the gradient defined by 

and rx is the canonical shift operator on the product space. 
In principle one could try to carry out the method of Yau in [14] and one 

would have to work with a trial function of the form 

9N(£) - exp S A ^ D ^ + ì ^ ^ ^ O 

for g^(£)- One has to choose a suitable corrector ip in order to carry out the 
analysis. This has been done very recently by Funaki, Uchiyama, and Yau. 

3 Simple Exclusion 

We will now return to simple exclusion models. The state of the system can be 
described by a configuration 77 = {n(x)}, x G Zg, where Zn is the lattice of integers 
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modulo £. For simplicity, we have taken d = I. rj(x) = 1 if there is a particle at x 
and 0 otherwise. The generator can be written as 

(CeF) (77) = e° £ 17(00(1 - frfaOMa:' - x) [F (,f >*') - F(r?)] . (3.1) 

Here rjx'x refers to the new configuration obtained when the particle at x jumps 
to x'. a will be either 1 or 2, depending on the scaling used for time. 

The case a = 1. 

~Ci 

~ m / J,(y)p(y,t)(l - p(y,t)) dy 

where m is the mean J^:c n(x) of the jump distribution IT. The last step is justified 
because one expects the probability that a site x is occupied to be the local density 
p(j,t), with occupancy of different sites being independent. 
This leads to the equation 

dp 
at •m{p(l-p))y = 0 (3.2) 

for the density p. The method of [5] does not work here. The method of relative 
entropy contained in [14] will work, but needs the solution p(t, x) to be smooth. 
It is known that for most initial data, sooner or later, discontinuities will develop 
and so the method applies only up to the first shock. There are other coupling 
methods that establish convergence to the correct weak solution of (3.2). See, for 
instance, Rezakhanlou [10] for the best results in the case of attractive dynamics. 

The case a = 2. In the symmetric case; i.e., n(z) = ir(—z), we always have m = 0 
and we take a = 2. 

^\ EJ (?) »>(*) - y E [J ( 7 ) -J (f)] rt*)(i - "(*') w*' - ») 
= Ç£Y,(j(j)-^))i^)-^')Mx'-^ 

~^E^"(f)'^(E^w) 
= § : c ( ! ) * • > • 

This yields 
dp_D 
m _ 2 " t e (3.3) 
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with 
Z? = Xy,r(z). 

The nonlinearity miraculously cancels out and the equations close. No averaging 
is needed. 

If we change the problem by coloring the particles so that some are green 
and some are red, we can ask how the colors spread. One should compute 

Ci ï E * (!)*«+7 £*(!Kw 
and proceed from there. Here ng(x) = 1 if there is a green particle at x and 
similarly for rjr(x). r]g(x) + r]r(x) < 1 due to exclusion. The dynamics is color 
blind. The analysis is hard because the system turns out to be nongradient. The 
method of [12] was applied to this situation by Quastel in [9] and he obtained an 
elliptic system for the pair pg(t,y) and pr(t,y). One first solves for 

Pfay) =Pg(tìy)+Pr{tìy) 

by the heat equation (3.3). Then pg(t,y) is solved by 

where 

2 p 

is the pressure due to density gradient. S(p) is the self diffusion coefficient deter
mined in [7] and really depends on p, with S(p) —• D as p —> 0 as S(p) —> 0 as 
p —> 1. The case 7r(l) = 7T(—1) = | is special and S(p) = 0 in that case. 

The case where n(z) ^ TT(—z) but still m = 0 is more complex. This is 
nongradient and nonreversible. The methods of [12] and [9] have to be modified. 
This was carried out by Xu in [13] who established a limiting equation of the form 

m = 2dyD{f))dy 

with D(p) >D = X>2TT(;Z). In general, D(p) > D for 0 < p < 1 with D(p) -> D 
as p —> 0 or 1. 

Navier-Stokes corrections. Let us return to the case m / 0 , but start very close 
to equilibrium. We start with a density p(y) = \ + jQo(y)\ i-e., 

™*)=iH+^(f). 
Now we can rescale with a = 2. Recently Esposito, Marra, and Yau [4] have shown 
that when the dimension d > 3, the empirical density at the rescaled time t is of 
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the form ^ + |g(£, | ) to within an accuracy o(j), and q(t,y) is given as the solution 
of a Navier-Stokes type equation; i.e., Burgers' equation with viscosity. 

4 Hamiltonian System 

Let us return finally to our classical Hamiltonian system. If we start with a random 
initial configuration given by a density g^ at time t — 0, and let the configuration 
evolve by the Hamiltonian motion, one can obtain the density of the configuration 
at time t by solving the Liouville flow 

dfN 

dt 
= CNfN fN=gu

Nait = 0. (4.1) 

If we are given functions p(y)^va(y), and T(y) on T 3 representing local density, 
average v^locity,and~teTnperatirre7as^smuin"g tlmt~thöse välü^s^ävöidTegiöiTs öf pös^-

sible phase transitions, we can associate a density g^(yi,... ,y^;ui,... , ujsf) in the 
phase space that is a family of slowly varying Maxwell-Gibbs distributions strung 
together. If we calculate averages like -^ Y2 J(yi) we get J J(y)p(y) dy in probabil-
ity as N —> oo. If we pick p, va, and T to be, as functions of t and y, a solution of the 
Euler equation that is quite smooth in some interval, we can use p(t,y),va(t,y), 
and T(t,y) to construct a time dependent family <?;v(£,2/i, • • • ^N'^i,... u^) of 
such densities. 

We would like to establish that the density obtained by the Euler equation; 
i.e., gs is close to the density fjy obtained by solving the Hamiltonian or equiv-
alently the Liouville flow. An ideal theorem will say that as N —> oo the specific 
(per j3article) relative entropy 

s(fN,gN) = -T7 / log — • fN dy du-^ 0. (4.2) 
V̂ J gN 

We note that if the specific entropy were to tend to zero, by the usual large 
deviation estimates, the local density, velocities, and temperature would be the 
same for f^ and g^. This would establish the hydrodynamic limit. But we cannot 
quite prove such a theorem. We have problems at two levels. First there is difficulty 
with large velocities. This can be overcome by changing the kinetic energy in 
the Hamiltonian to a function (j)(u) with a bounded gradient instead of TJ|M|2 . 

(One choice that will work is the relativistic kinetic energy.) This is a technical 
point. The more serious problem is the hunger for noise. It is needed to establish 
some ergodichry But only very little is needed. We put it in as an additional 
noisy exchange of velocities between pairs of particles that conserves momenta 
and energy The strength of this noisy term is much smaller than the exchange 
of velocities provided by the Hamiltonian equations. This is then a small second 
order perturbation of the Liouville operator that does not destroy the conservation 
laws. The Euler equations are still the same. With (4.1) now replaced by a modified 
Fokker-Planck equation, one can establish (4.2). The details can be found in our 
work [8] with Olla and Yau . A key step is that whereas the noise is responsible for 
keeping the velocitiy distributions locally Maxwellian, for a Hamiltonian dynamics 
the positions are then shown to satisfy the necessary ergodic behavior with the 
correct Gibbs distributions. 
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5 Comments 

We have limited our discussion essentially to work tha t uses entropy-related meth
ods to the s tudy of problems of hydrodynamic scaling. There is considerable work 
tha t uses other methods to study similar problems and we have not described them. 
T h e monographs [2] and [11] are excellent sources for a much wider collection of 
material. 

We have also not discussed issues of large deviation. In some sense entropy-
related methods are intimately related to techniques of large deviation theory and 
the two often go hand in hand. See, for instance, [6] and [2] for connections to the 
methods of [5]. As for Hamiltonian systems, there is the earlier work of Boldrighini, 
Dobrusin, and Sukov [1], which deals with the case of hard rods in one dimension 
with elastic collision. 
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1 Main definitions and examples 

The general notion of a discriminant is as follows. Consider any function space T, 
finite~dimensionai rjr not;~and som^"iuass~of~slngularitie5 S tlmt~the~functiöns" from" 
T can take at the points of the issue manifold. The corresponding discriminant 
variety E (S) C T is the space of all functions that have such singular points. For 
example, let T be the space of (real or complex) polynomials of the form 

xd + a i ^ " 1 + • • • + ad, (1) 

and S = {a multiple root}. Then (in the complex case) E (S) is the zero level set 
of the usual discriminant polynomial of the coefficients a$; this is a motivation for 
the word "discriminant" in the general situation. In the simplest nontrivial case, 
when d = 4, the discriminant variety in the space of real polynomials is ambient 
diffeomorphic to the direct product of the line R1 and the "swallowtail", i.e. the 
surface shown in the lower part of Figure la. More generally, we can consider the 
discriminant E^ consisting of all polynomials having roots of multiplicity at least 
fc, or we can consider the space of polynomial systems of the form 

xmi +a ìz m i ~ : L + --- + aJni 

(2) 
:+akxmh-l + mmm+a^ 

and take for the discriminant the resultant variety consisting of all systems that 
have common roots, etc. In the simplest nontrivial case, when k = 2, mi — 777,2 = 2, 
the real resultant variety is ambient diffeomorphic to the direct product of the line 
R1 and the Whitney umbrella, i.e. the surface shown in the lower part of Figure 
lb. 

Many famous topological spaces can be described as the complements of 
suitably defined discriminants (or at least are homotopy equivalent to them). Some 
examples are: 

• the classifying spaces of braid groups and, more generally, spaces of polyno
mials without roots of multiplicity > k (k > 2); 

• classical Lie groups; 
• spaces of Morse or generalized Morse functions on a manifold M or, more 

generally, spaces of smooth maps M —» Rn without complicated singularities; 
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Figure 1 
a b 

Simplest discriminant and resultant varieties and their simplicial resolutions 

• loop spaces CtY and, more generally, the spaces of maps X —• Y where X is 
an m-dimensional cell complex and Y an (m — l)-connected one; 

• spaces of based rational maps CPl —> CPn of fixed degree; 
• spaces of nonsingular complex manifolds; 
• spaces of knots and links in Rn , n > 3, and many others. 

In this paper I describe an easy general method for calculating the cohomolo-
gies of all these spaces and, in many cases, also their stable homotopy types. In 
all the listed cases this method gives new results or at least a simple and uniform 
way to guess and prove the old ones. Among the known results that appear as 
very special cases of this general theory and get strong generalizations there are 
the Adams spectral sequence for the cohomology of loop spaces, the May-Segal 
formula for the cohomology of stable braid group, the results of Segal and Cohen-
Cohen-Mann-Milgram relating the spaces of based rational maps CP1 —• CPn 

with the configuration spaces and double loop spaces, the Goresky-MacPherson 
formula for the homology of complements of plane arrangements, knot and link 
polynomials, and others. The Snaith and Mahovald splittings for the homology of 
iterated loop spaces and classical Lie groups also appear naturally in this theory 
and get an uniform interpretation. 

The first reduction 
One of the key notions in this construction is the Spanier-Whitehead duality. Two 
topological spaces (having the homotopy types of CW-complexes) are Spanier-
Whitehead dual to one another if they have homotopy types of complementary 
subsets in a sphere of appropriate dimension. (In particular, the homology groups 
of Spanier-Whitehead dual spaces are related by the Alexander duality.) 

An important property of this duality consists in the fact that it is an invo
lution on the space of stable homotopy types: the stable homotopy type of a topo
logical space is completely determined by that of its arbitrary Spanier-Whitehead 
dual space. 
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If the function space T is finite dimensional, then the space S panier-White
head dual to T \ E is nothing but the one-point compactification Ë of the discrim
inant variety, and we can replace the study of all stable homotopical properties (in 
particular, the homology groups) of T \ E by the study of this compactification. 
This reduction, introduced in the work [Arnold 70] (where the topological study 
of the complements of discriminants was essentially initiated), is very useful be
cause the space of nondiscriminant maps is open and has no evident geometrical 
structure, whereas the discriminant variety is a naturally stratified set, and, as we 
shall see, a lot of its topology can by expressed in the terms of this stratification. 

The next two steps of the method consist in the use of simplicial resolutions 
of discriminants, and (in the infinite-dimensional case) in the stabilization of the 
obtained calculations over suitable sequences of finite-dimensional approximating 
subspaces iir Jr-see~[V~87,-89] rWedemonstr ate these steps inthefollowing-simplest-
case. 

2 The main example: real polynomials and functions without multiple roots 

Geometrical resolution of the discriminant variety 
Denote by Pd the space of real polynomials of the form (1) and consider the space 
Pd \ Efc of polynomials having no roots of multiplicity > k. As before, we replace 
the study of Pd \ E/, by the study of its Spanier-Whitehead dual space E/-. The 
homology groups were calculated in [Arnold 89], we give here another calculation 
that demonstrates our general method. 

Namely, we construct a geometrical resolution of £&, i.e. a topological space 
with the same homotopy type but with a more explicit homological structure. 

At the first step of this construction we take the tautological normalization 
of the discriminant £/-, i.e. the space of all pairs {a point in the line R1, a poly
nomial having a fc-fold root at this point}. Obviously, this is a smooth manifold 
diffeomorphic to Rd_fe+1, and forgetting the first elements of the pairs defines a 
proper map of it onto E^. A generic point of E^ has exactly one preimage under 
this map, while the number of preimages of an arbitrary discriminant polynomial 
is equal to its number of geometrically distinct /c-fold roots. To get a space homo
topy equivalent to the original one we ought to change any such preimage by a 
contractible space, for instance by inserting a simplex with vertices at the points 
of this preimage. A precise construction of this resolution is as follows. We fix a 
generic imbedding / : R1 —» KN of the argument line into a space of a very large 
dimension. The genericity condition here consists in the claim that the images of 
no [d/k] distinct points of the line lie in the same ([d/k] — 2)-dimensional affine 
subspace. Our resolution will be a subset in the direct product of this space R^ 
and the space Pd of all polynomials of the form (1). Namely, for any discriminant 
polynomial / we take all its roots of multiplicity > k, z\,... ,Zt, and consider a 
simplex in R^ X P^, the vertices of which are the points (I(z\), / ) , . . . , (I(zt), f). 
The desired resolution space o = a^ is defined as the union of all such simplices. 
The obvious projection R^ x Pd —> Pd defines a proper map of a onto £&; the 
extension of this map to a map of the one-point compactifications of these spaces, 
ö —> Ë*., is a homotopy equivalence. 
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Figure 2 Support of the general cohomological spectral sequence 

On the other hand, the space a (and hence also its one-point compactification 
a) has a natural increasing filtration: the term Fp of this filtration consists of 
all simplices of dimension < p — 1 participating in the previous construction; 
F0 = {the added point}. The term Epq of the corresponding homological spectral 
sequence is equal to Hp+q(Fp\Fp-i), where H* denotes the Borel-Moore homology. 
This space Fp(a) \ Fp^i(ä) has a natural structure of a fibre bundle, the base of 
which is the space ^(R 1 ,^) of all subsets of cardinality p in the line, and the 
fibre over such a collection (zi,..., zv) is the direct product of an open (p — 1)-
dimensional simplex and an affine space of dimension d — p • k, consisting of all 
polynomials of the form (1) having the /c-fold roots at exactly these p points. Hence 
the space of this bundle is a cell and Epq is equal to Z if g = d — p(k — 1) and 
p < d/k and is trivial for all other p and q. Obviously, this sequence degenerates 
at the term E1 and gives immediately the answer. 

It is the time now to remember that we are calculating not the homology of 
the discriminant, but the (Alexander dual to it) cohomology of the complementary 
space. Therefore it is natural to invert our homological spectral sequence formally 
into a cohomological one by setting 

E™ = ElPid_ <z-i. (3) 

then its support comes to (the left boundary of) the shaded region in Figure 2 and 
converges to exactly the cohomology group of the complement of the discriminant. 
The group Ef 'q of this sequence is equal to Z if (A; — l)p + q = 0, — d/k <p<0, 
and is equal to 0 for all other p and q. Therefore the group ^(Pd \ Efc) is free 
cyclic if i is a multiple of k — 2 and is no greater than [d/k](k — 2), and is trivial 
for all other i. 

Stabilization and jet imbedding 
An important property of this cohomological spectral sequence is its stabiliza
tion when k is fixed and d increases: for any d! > d the corresponding sequences 
calculating the cohomologies of spaces P# \ Efc, Pd \ £& naturally coincide in 
the "stable" domain {(p,q)\p > —d/k}. (Moreover, there is a filtration-preserving 
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homeomorphism between the term F^/k] of the resolution o-(df) of the discriminant 
Efc(d') C Pd' and the direct product a(d) x Rd ~d.) These spaces Pd \ £*., d —> oo, 
can be considered as finite-dimensional approximations of the space T \ £fc of 
smooth functions R1 —> R1 with a fixed behavior at infinity (say, equal identically 
to 1 outside some compact set) without zeros of multiplicity > k. Our spectral se
quences for increasing d actually converge to a stable spectral sequence calculating 
the cohomology of the latter space. 

Moreover, these sequences prove that T \ £& is homologically equivalent to 
the loop space 

ü(Rk \ 0) - ns*-1 (4) 

and this equivalence is induced by the jet extensions mapping a function / E T 
intojthc map _(_/,^,_.._ , fSJ*—1)^ H 1 = L R * . 

Indeed, the cohomology of the space (4) can be calculated by a similar spectral 
sequence naturally isomorphic to the previous one starting with the terms Ei. 

(Moreover, this jet imbedding induces not only a homology but also homotopy 
equivalence. The approximation of the space T \ E/. by the (suitably imbedded) 
subspaces Pd \ Efc is equivalent (via this homotopy equivalence) to the approxi
mation of the space SlSk~x by the spaces of pieccwisc-smooth paths of restricted 
length, see [Milnor 63].) 

All this is a very special case of the general situation described in the next 
section; in particular the groups H*(Jr\ £(5)) defined by arbitrary discriminant 
varieties can be calculated by appropriate spectral sequences shaped as is shown 
in Figure 2 with tana- = codim(S'). 

3 The spaces of functions without complicated singularities 

Let k be a nonnegative integer, M and N two manifolds. Recall the notation 
Jk(M, N) (respectively, Jk(M, N)) for the space of /c-jets of smooth maps M —> iV 
(respectively, for the space of fc-jets at the point x G M), see for example [Gromov], 
[AVGL], Obviously Jh(M,N) is a fibre bundle over M with fibres Jk(M,N). Any 
smooth map / : M —> JV defines in an obvious way a section of this bundle, its 
fc-jet extension jk(f). 

DEFINITION. A singularity class of maps of 777,-dimensional manifolds into R71 is any 
semialgebraic closed subset of the space JQ (R m ,R n ) (for some finite k) invariant 
under the obvious action of the group Diffo(Rm). 

If S is such a class, then for any 77i-dimcnsional manifold M the corresponding 
subset S(M) in the jet space Jk(M, Rn) is well defined: it is a subbundlc with fibre 
5 of the jet bundle Jk (M, R n) —> M. The corresponding discriminant variety £(£) 
consists of all smooth maps M —> Rn, the /c-jet extensions of which intersect S (Ad). 

THEOREM 1 (The Smale-Hirsch principle for functions without complicated sin
gularities). Let M be a compact m-dimensional manifold without boundary. If the 
codimension of the singularity class S in JQ (R m ,R n ) is at least m + 2 (or, which 
is the same, the codimension r(S) of the set £(5) in the space of all smooth maps 
M —> Rn is at least 2), then the space of maps without singularities of the class 
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S is homology equivalent to the space of all continuous sections of the obvious jet 
fibration (Jk(M,Rn) \ S(M)) —> M; this homology equivalence is induced by the 
k-jet extensions of maps. 

(In particular, if r(S) > 3 then by Whitehead's theorem they are not only 
homology but also homotopy equivalent. In the case when n — 1 and S consists of 
the singularities more complicated than the "birth-death" singularity Ai, a similar 
homotopy equivalence was proved by Igusa (see [Igusa]) up to dimension m and 
by Eliashberg in all dimensions.) 

Indeed, the cohomologies of both spaces can be calculated by the spectral 
sequences generalizing the one considered above and naturally isomorphic to one 
another starting with the term Ei. All nontrivial groups EP,Q of this term he in the 
edge {(p, q)\p < 0,r(S) • p + q > 0} and have an explicit and "finite-dimensional" 
description in the terms of the sets S and configuration spaces of M. Namely, 
consider the obvious fibre bundle (S(M))~P —> M~p with fibre (S)~p. Delete from 
M~p the "diagonale", i.e. the set of all points (xi,... ,X-p) E M~p such that 
Xi — Xj for some i ^ j , and delete from (S(M))~P the preimage of this diagonale. 
The group of permutations of —p elements acts in an obvious way on the base 
and the space of the resulting bundle. The quotient spaces of these actions also 
form a fibre bundle with fibre (S) ~p, the base of which is the configuration space 
B(M, —p), i.e. the space of all subsets of cardinality - p in M. The space of this 
bundle will be denoted by A_p(M, S). Set A0(M, S) = {a point} and denote by 
A = A(k,m,n) the dimension of the space J* (R m ,R n ) . 

THEOREM 2. In the conditions of Theorem 1, there exists a spectral sequence 
EP,q converging to the cohomology of the space of maps M —> Rn without the 
singularities of type S, the term EP,q of which is trivial ifp > 0, and for nonpositive 
p this term is isomorphic to the group 

tf_pA_q(A_p(M,S),T) (5) 

where T is a certain local system with fibre Z. 

(In particular, EP,q = 0 if r(S) • p-\- q < 0, and for any integer c there are at 
most finitely many nontrivial groups EP,q with p + q = c, thus no problems with 
the convergence of the spectral sequence appear.) The local system T from (5) is 
defined as follows. 

There are three important elements in the group iJ 1 (5(M,i ) ,Z 2 ) , the ele
ments W, Alt, and WJk. Namely, any loop I in B(M,i) is a simultaneous move of 
i points in M, and the union of paths swept by these points is a closed curve [I] in 
M. The class W is defined by identity (W, I) = (wi, [I]) where wi is the first Stiefel-
Whitney class of M. The class Alt takes nontrivial values on the loops that define 
odd permutations of the i points. Finally, WJk is the first S tief el-Whitney class of 
the vector bundle over B(M,i), the fibre of which over the collection (x\,... ,xi) 
is the space J^(M,Rn) x • • • x j £ ( M , R n ) . 

It is easy to calculate that WJk = n f ^ + ^ A l t + {™±ï)w\. 
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Consider the local system over B(M,i) locally isomorphic to Z and chang
ing the orientation after the transportation over a loop I if and only if ((Alt + 
WJk),l) 7̂  0. The local system T mentioned in (5) is induced from this one by 
the obvious projection A_P(M, S) —> B(M, —p). 

The construction of this spectral sequence essentially repeats that of the 
(stable) spectral sequence from Section 2 calculating the cohomology of the space 
Pd \ £fe. First of all, using a generic sequence of finite-dimensional approximating 
subspaces in the space T of smooth maps M —• Rn we can work with this space 
as with a vector space of a very large finite dimension. (In fact, we construct the 
spectral sequences calculating the cohomologies of complements of £(5) in these 
subspaces and then prove the stabilization of these sequences.) 

Then we take the geometrical resolution a(S) of the discriminant variety 
£(*9)rThrs""is~a~nltered^imce, tlie term^f\~i^zrr j f l t is^~filjre~bimdle7~tlie base~ 
of which is B(M,i), and the fibre over a point (xi,... ,Xi) E B(M,i) is a direct 
product of an open (i — 1)-dimensional simplex and the space of all smooth maps 
M —> Rn having singularities of type S at all points x\,... ,Xi. The latter space 
is obviously diffeomorphic to a direct product of (S)1 and of some affine subspace 
in T. Thus, the fibre bundle Fi \ Fi-i —» B(M,i) is a fibred product of three 
bundles: the bundle of open (i — l)-simplices (the first Stiefel-Whitney class of 
which is equal to Alt), the bundle A^(M, S) —• B(M,i), and an affine bundle, the 
first S tief el-Whitney class of which is equal to WJk. This "proves" formula (5). 

REMARK 0. Usually the homology groups of spaces of nonsingular functions (to 
the calculation of which our spectral sequence is intended) appear as the invariants 
of the underlying manifold M. However, this spectral sequence itself (especially 
its higher differentials) provides a much stronger system of invariants than these 
homology groups. 

REMARK 1. If S is invariant also under the obvious action of GL(Rn), then instead 
of the space of maps M —> Rn in Theorems 1 and 2 we can take the spaces of 
sections of n-dimensional vector bundles over M (and of the associated bundles 
with fibres isomorphic to J$(Rin,Rn)). 

REMARK 2. A similar spectral sequence calculates also the cohomology of spaces of 
functions on manifolds with boundary. Namely, let M be a compact manifold with 
boundary dM, S a singularity class of codimension > 772 + 2, and cß any smooth 
map of M into Rn having no singularities of type S in a neighborhood of dM. 
Then the space of functions M —> Rn coinciding with cj) close to dM and having 
no singularities of type S is homology equivalent to the space of sections of the 
bundle (Jk(M,Rn)\S(M)) —> M coinciding with jk((j)) close to dM\ this homology 
equivalence is induced by the jet extension map. Indeed, the homology groups of 
both spaces can be calculated by spectral sequences similar to the previous one 
and isomorphic to one another starting with the terms Ei. These terms Ei are 
described in almost the same way as similar terms in Theorem 2: we need only to 
define the new space A_P(M, S) as a fibre bundle with fibre S~p not over B(M, —p) 
but over B(M \ dM, -p). 
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REMARK 3. A similar spectral sequence can be constructed even if codim(5) = 
771 + 1 (for example if S = NM, the set of non-Morse singularities, and hence 
T \ £(£) is the space of Morse functions). In these cases our spectral sequence 
also provides many cohomology classes of T \ £(5) , but possibly not all of them. 
The lines {p + q = const} of these sequences may contain infinitely many non-
trivial groups, thus the convergence of the sequences is questionable; moreover, 
generally the O-dimensional cohomology classes provided by the spectral sequence 
do not constitute a complete system of invariants of such functions: say, in the 
case S = NM they are just the polynomials of the numbers of critical points of 
any Morse index. However, our spectral sequence gives also more delicious invari
ants. Indeed, the basis higher-dimensional integer homology classes (counted by 
the dual sequence) are realized by cycles that lie in certain components of the 
space of Morse functions and thus characterize these components. 

Also, the other invariants of the manifold M that appear in our spectral 
sequences (defined by different S) are of independent interest. For the simplest 
example, if S = NM the group E^ '* coincides (up to a change of grading) with 
the cohomology of the fibre bundle over M that is the (fibre-wise) join of two 
bundles: the spherized cotangent bundle of M and the total Grassmann bundle 
associated with the cotangent bundle of M (the fibre of which over a point x E M 
is the disjoint union of all m + 1 manifolds Gk(T*M), k = 0 , . . . ,m). 

The calculation of columns i£{~*'*, i > 1, also contains the study of config
uration spaces of M and some interaction of them with the Grassmann bundles 
associated with T*M. The precise calculation of our spectral sequences (especially 
of their higher differentials) eventually will allow us to guess many other natural 
invariant structures and characteristics of M. 

4 Spaces of maps of m-dimensional CW-complexes into 
(m — l)-connected complexes 

The simplest version of our spectral sequence, corresponding to the case when the 
forbidden singularity S is defined by the 0-jets (i.e. S is just a subset in Rn), calcu
lates the cohomology of the space of continuous maps of arbitrary m-dimensional 
CW-complex X into arbitrary m-connected complex Y1). (The simplest version of 
this simplest version, when X is a circle, is the Adams spectral sequence calculating 
the cohomology of the loop spaces.) 

Indeed, we can assume that the complex Y is finite dimensional. We imbed 
it generically in a sphere SN (N very large) and choose a subcomplex \£ E SN 

Spanier-Whitehead dual to it. Let C * be the union of all rays in the Euclidean 
space RN+1 issuing from the origin and penetrating the unit sphere in the points 
of*. 

We take for the function space T the space of all continuous maps X —• R ^ 1 

"and define the discriminant variety as the space of all maps the images of which 
intersect the cone C^l. Because Y is m-connected, the space * can be chosen to 

1) Note added in proof: As I have learned from F. Cohen's review of [V 92 & 94] (Bull. AMS, 
October 1994), the same (as an algebraic object) spectral sequence in the case when X is 
a manifold was constructed by D. Anderson in the early seventies. 
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be of codimension at least m + 2 in the sphere, and hence the codimension r of 
this discriminant in T is at least 2. 

The space of maps X —> Y is obviously homotopy equivalent to the comple
ment of this discriminant, hence the cohomology of it can be calcucated completely 
by our spectral sequence. Let us describe this spectral sequence in our particular 
case. 

Again, it lies in the second quadrant in the edge {(p,q)\p < 0,rp + q > 0} 
(see Figure 2), and the term Ep'q of it is as follows. Let U(t) be the space of a 
fibre bundle over B(X,t), the fibre of which over a point {zi,... , Zt}, Zi E X, is 
the Cartesian product of t examples of C\f> that are in a correspondence with the 
points Zi (and permute in the obvious way after the transportations over the loops 
in the base space B(X,t) that permute these points). Then 

E™=H_p{N+1)_q(Il(-p),±Z®N) (6) 

where ±Z is the local group locally isomorphic to Z but changing the orientation 
over the loops defining odd permutations of the points Zi. 

Also in the "marginal" case, when X is ?7i-dimensional and Y is (m — 1)-
connected, this spectral sequence provides many homology classes of Yx, but 
generally not all of them. 

This spectral sequence has also a "relative" version that calculates the coho
mology of maps X —> Y coinciding with a fixed map on a sub complex K C X. In 
this case II (—p) in the formula (6) should be defined as a similar fibre bundle over 
B((X\K),-p). 

EXAMPLE 1. If X = S1 and K = {a point}, then the relative version of this 
spectral sequence coincides with the Adams spectral sequence for the loop spaces, 
cf. [Adams], [Chen]. 

EXAMPLE 2. If both X and Y are the spheres Sm, Sn, n > m, this spectral 
sequence degenerates at the first term and gives (the homology version of) the 
Snaith splitting formula 

Hi^nS
n) ~ © ^ 0 ^ - t ( n - m ) ( 5 ( R m , t ) , (±Z)®(n~m)). (7) 

5 Complex analogues: The May-S egal formula for the braid group and 
multidimensional generalizations 

The previous techniques can be applied to holomorphic functions of complex vari
ables: say, the May-Segal formula [Segal 73] for the cohomology of the stable braid 
group, 

H*(Br(oo))~H*(n2S3), (8) 

can be interpreted in these terms as a simplest version of the complex Smale-Hirsch 
principle, cf. Theorem 1. 

Indeed, the classifying space of the braid group on d strings can be realized 
as the space CPd \ £ of complex polynomials (1) without multiple roots. The 
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space £l2S3 is obviously homotopy equivalent to the space of continuous maps 
R2 —-> R4 \ 0 with a fixed behavior at infinity. Any polynomial / of the form (1) 
defines a map R2 —> R4, its 1-jet extension is given by 

all these maps (for a given d) have the same asymptotical behavior at infinity, and 
the condition that / has no double roots coincides with the condition that the 
image of this map in C2 does not contain the origin. Thus, we get an imbedding 
of the space CPd \ E ~ K(Br(d), 1) into a space homotopy equivalent to £12S3. 

PROPOSITION. This imbedding induces an isomorphism of cohomology groups in 
dimensions not exceeding [d/2] + 1. 

In particular, for d —> oo we get the May-Segal formula. 
A proof of this proposition is very similar to that of Theorem 1 and is essen

tially a comparison theorem of two spectral sequences calculating the Borel-Moore 
cohomology of the standard discriminant E C CPd and the discriminant variety 
in fi2R4 defined as the set of double loops R2 —> R4 intersecting the origin. 

The multidimensional May-Segal formula 
Let / : (C^jO) —> (C,0) be a holomorphic function with an isolated singularity 
at 0, and F : (Cn x Cz,0) -> (C,0) a deformation of / (i.e. / = F(-,0)). F 
can be considered as a family of functions f\ : (Cn,0) —> (C,0), f\ = F(-,X), 
parametrized by the points A E Cz. 

The discriminant variety E(-F) is the set of parameters À E C* such that the 
corresponding function f\ has close to the origin in Cn a critical point with critical 
value 0 (or, which is the same, the variety /^_1(0) is singular). The complement 
of this discriminant variety is the base of several important fibre bundles that 
appear naturally in integral geometry and mathematical physics, see for example 
[AVGL], [V 95]. The natural hierarchy in the space of functions and their defor
mations (defined by the adjacencies of singularities) allows us to define the stable 
(co) homology group of complements of discriminants of isolated singularities of 
functions (Cn,0) -> (C,0), see [Arnold 76, 79], [V 87]. (For any fixed dimension i, 
this stable group can be thought of as just the group iî2(Cz \ £(i?)) for a "suffi
ciently large" deformation F of a "sufficiently complicated" singularity / , see [V 
90]. For instance, if n = 1, then for a sufficiently complicated singularity we can 
take any singularity xd, d > 2i, and for the sufficiently large deformation of it the 
corresponding space of polynomials (1) parametrized by coefficients aj.) 

THEOREM 3 (see [V 87, 90]). For any n, the stable cohomology ring of comple
ments of discriminants of isolated singularities of functions (Cn,0) —• (C,0) is 
naturally isomorphic to the ring H* (£l2n5f2n+1) • this isomorphism is induced by 
1-jet extensions. 

6 Complements of resultant and discriminant varieties 

Let C(mi , . . . , ra/c) be the space of complex polynomial systems (2) and £ ( m i , . . . , 
ra/c) the resultant subvariety in it. It is easy to see that all spaces C(mi,... , m^) \ 
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£(777,1,... ,77T,fc) with the same k and min (mi) are homotopy equivalent to one 
another, in particular to the space C(m,..., m)\E(771,... , m) where 771 = min(mi). 
Denote the latter space by C(m\k) \ H(m\k). 

THEOREM 4 (see [V 92 & 94]). The space C(m\k) \ T,(m\k) is stably homotopy 
equivalent to the space CPm.fc\Efc(77i-fc)) of all complex polynomials of the form (1) 
with d = m- k having no roots of multiplicity k. Analogously, the spaces R(m\k) \ 
T>(m\k) and Pm.k \ £/c("i • k)) of real systems and polynomials are (nonstably) 
homotopy equivalent. 

(In the case when k = 2 this fact was previously established by Cohen, Cohen, 
Mann, and Milgram, see [CCMM].) 

Indeed, the geometrical resolutions of the resultant variety T,(m\k) and of the 
discriminant £̂ (777, • k) axe very similar to one another (for illustration, compare 
the upper parts of Figures la, b). The terms Fi \F t_ i of their standard nitrations 
are fibre bundles, the common base of which is the configuration space ^(C1,?]), 
and the fibres are direct products of a (common) open (i — 1)-dimensional simplex 
and a complex affine subspace of codimension k • i in the space C(ni\k) or CPm.fc. 
In particular, the terms Ep of the canonical spectral sequences generated by 
these filtrat ions are isomorphic. To prove the stable homotopy equivalence of the 
one-point compactifications of our resolutions we proceed as follows. 

(A) Imbed both CPm.k and C(m\k) in C(?77, • k, rn • k — 1 , . . . , (771 — 1) • k + 1): 
the first imbedding maps a polynomial / into the system ( / , / ' , . . . , f^k~^) and 
the second is provided by multiplication of the polynomials of a system (2) by 
some polynomials with distant and different roots. These imbeddings map the 
discriminant and resultant varieties into the resultant variety. 

(B) Lift these imbeddings T,k(m-k) —> T>(m-k,..., (m—l)-k-\-l) <— H(m\k) to 
the maps of their geometrical resolutions. The images of both lifted maps lie in the 
term Fm of the resolution cr(777, • k,..., (777, — 1) • k +1) of £(777, • k,... , (m — 1) • k +1). 

(C) Prove that both these lifted imbeddings can be extended to the filtration-
preserving maps of appropriate multiple (of multiplicity k(k — 1)(2?TI — 1)) suspen
sions of the one-point compactifications of o-fc(m-fe) and o~(m\k) onto the one-point 
compactification of the term Fm of the resolution cr(777, • k,... , (777, — 1) • k + 1). The 
isomorphism of terms E1 of corresponding spectral sequences allows us to prove 
that (a) there are no topological obstructions for the construction of such maps by 
induction over our filtration, and (b) both these maps are homotopy equivalences. 

7 The knot invariants 

For arbitrary n > 3 consider the space T of all smooth maps of the circle S1 

(respectively, of a disjoint union of several circles) into Rn and define a discriminant 
as the space of such maps that are not the knots (respectively, links), i.e. that have 
either singularities or self-intersections. Then a spectral sequence similar to the one 
described above provides the cohomology elements of the space of knots or links, 
in particular (for 77, = 3) the knot and link invariants. 

Indeed, consider the space \fr of all unordered pairs of (not necessarily distinct) 
points in the circle S1 and imbed \& generically in the space Rn of immensely 

file:///Ft_i
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large dimension. For any discriminant map / : S1 —> Rn consider the simplex 
A( / ) C Rn spanned by the images of all points (x,y) E ^ such that either 
f(x) — f(y) (if x ^ y) or f(x) = 0 (if x = y). The resolution of the discriminant 
is a subset in Rn x T equal to the union of simplices of the form A(f)xf over all 
discriminant points / . (We ignore here the maps having nondiscrete sets of singular 
points.) The one-point compactification of the obtained resolution admits a natural 
increasing filtration that generates (after the standard inversion similar to (3)) the 
desired spectral sequence. All the quotient spaces Fi/Fi-i of this filtration are 
finite cell complexes (strictly speaking, with infinite-dimensional cells), thus all its 
terms Ep,q axe finitely generated. 

This spectral sequence looks like the one in Figure 2 with t a n a = n — 2. In 
particular, for n > 4 there are no problems with its convergence on any diagonale 
{(PìQ)ÌP + Q — const} and it calculates completely the cohomology of the corre
sponding knot and link spaces. Moreover, Kontsevich has proved that this spectral 
sequence (over Q) degenerates at the term Ei, thus the problem of calculating the 
rational cohomology of spaces of links in R- 4 is essentially closed. 

CONJECTURE. I suspect that in fact this spectral sequence degenerates in a much 
stronger "homotopical" sense: namely, that for any i the term Fi of our filtration 
is (in some precise sense) homotopy equivalent to the wedge (Fi/Fi-i) V . . . V 
(P2 /Pi) V Fi. 

In the "marginal" case n = 3 it turns out that the invariants that appear 
from the spectral sequence are stronger than all known polynomial invariants (see 
[Birman & Lin], [Birman]), and the Milnor's fi-invariants of links ([Bar-Natan 93], 
[Lin]), in particular distinguish all links up to homotopy equivalence. The problem 
of completeness of this system of invariants for the isotopy classification is still 
open. 

A majority of the standard notions of the theory developed around these 
invariants appear naturally in the spectral sequence: say, the groups EQ1I% of it are 
generated by the "chord diagrams" with i chords, while the groups EQ1' are 
spanned by the "four-term relations" and the "framing independence relations". 
For further results concerning these invariants see [Kontsevich], [Bar-Natan 92], 
[Birman], [Arnold 92], [Piunikhin], [Cartier]...2) 

Similarly to Remark 3 of Section 3, besides the "straightforward" invariants 
of knots (i.e. the 0-dimensional cohomology classes that appear from the terms 
E^>z) our spectral sequence provides some more invariants: namely, the basis 
higher-dimensional integer homology classes of the space of knots or links that are 
counted in the upper lines of the dual sequence correspond to the cycles that lie 
in some components of this space and thus characterize these components. 

A similar spectral sequence calculates the cohomology of the space of knots 
or links in an arbitrary 3-dimensional manifold. Of course, all the groups EP>q and 

2) Note added in proof: Many invariants of this kind can be constructed explicitly from 
representations of Lie algebras (Bar-Natan, Kontsevich), superalgebras and Yang-Baxter 
Lie algebras (see A. Vaintrop, Vassiliev knot invariants and Lie S-algebras, Math. Research 
Letters 1 (1994), 579-595). Recently P. Vogel announced that the invariants coming from 
Lie superalgebras are strictly stronger than those for the semisimple Lie algebras. 
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all differentials of these sequences provide a system of invariants of the manifolds 
themselves. It would be very interesting to study these invariants explicitly and to 
compare them with other known invariants. 

8 Invariants of ornaments 

A k-ornament is a collection of k ordered closed plane curves, no three of which 
intersect at the same point. (The ornaments are close relatives of the doodles 
of [Fenn & Taylor], which are just the ornaments, the components of which are 
smooth and have no self-intersections.) 

Again a spectral sequence appears that calculates the invariants of such ob
jects: it is based on a resolution of the space of forbidden curves. Many of these 
invariants have very easy descriptions (but were guessed only by using the general 
techniques), see [V 94], [Merkov], ancTthcTsecond edition of [V1}2~&T94]. 

The simplest of them are the "index-type invariants" : they are the collections 
of (g) integer-valued functions of k integer variables. Namely, let (j) be a generic 
smooth k-ornament, i.e. a collection of k ordered immersed circles in R2 having 
only transversal double intersections and self-intersections. Let i and j be two 
naturals, 1 < i < j < k. The corresponding function Iij(b\,... ,b}~) is defined as 
follows. To any intersection point x of the it h and jfth curves we assign in the 
following way k integer numbers b\(x),..., b^(x) and a sign a(x). 

If I ^ i,j, then bi(x) is just the number indi(x), the index of x with respect 
to the lih curve. Close to any regular point of the ith curve (in particular, to 
the intersection point x) the values of the corresponding function indi(-) take two 
neighboring integer values on different sides of the curve. Define the number bi(x) 
as the smallest of these values in the neighboring points to x. The number bj(x) is 
defined in the same way by means of indj. Finally, a(x) is equal to 1 (resp., —1) 
if the tangent vectors of the zth and j th curves at the point x define a positively 
(resp., negatively) oriented frame (with respect to a fixed orientation of R2). 

Given a generic smooth /c-ornament and k integer numbers fri,... , b^, define 
Iij(bi,... ,bfc) as the number of intersection points x of the i-th and j-th curves 
of our ornament such that b\(x) = &i,... ^^(x) = b^ and a(x) = 1, minus the 
number of similar points with a(x) = —1. 

THEOREM 5. All the functions Iij, 1 < i < j < k, are invariants of ornaments. 

Several more delicious invariants were discovered by Merkov, see [Merkov] 
and Section VI.9 in [V 92 & 94]. 

These invariants seem to be related to the equations of higher-dimensional 
simplices in the same way as the knot and link invariants are related to the usual 
Yang-Baxter equation. 

The calculations in this (and the previous) spectral sequence lead to many 
(partially classical and partially unknown) problems in the modern homological 
combinatorics, concerning the complexes of connected (multi)graphs, see [V 93, 
94], [Björner & Welker]. 

A parallel classification of plane curves was recently developed by Arnold, 
see [Arnold 94] and [Aikardi]. 
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9 Complements of affine plane arrangements 

Let Vi,..., Vs be a collection of affine planes in Rn (such collections are called 
affine plane arrangements), and let V be the union of these planes. The topology 
of spaces Rn \ V in some special cases was studied in [Arnold 69], [Brieskorn] and 
many other works; in [Goresky & MacPherson] a general formula for the homology 
groups of these spaces was obtained. The techniques used above also allow us to 
describe their stable homotopy types. 

Indeed, let A be any affine plane that is the intersection of several planes 
Vi. Consider the simplex A (A), the vertices of which correspond formally to all 
the planes Vi containing A. A face of this simplex, i.e. a collection of such planes, 
is called marginal, if the intersection of these planes is strictly greater than A. 
The quotient space of the simplex A (A) by the union of all marginal faces will be 
denoted by K(A)i 

THEOREM 6 (see [V 91', 93], [Ziegler & Zivaljevic]). The one-point compactifica
tion of thé variety V is homotopy equivalent to the wedge of dim(A)-fold suspen
sions of the spaces K(A) taken over all planes A that are the intersections of some 
planes of the set (Vi,..., Vs). 

The proof used in [V 91', 93] consists of two steps: we take the (obvious) 
geometrical resolution of V and apply to it a version of the stratified Morse theory; 
see [Goresky & MacPherson]. 

COROLLARY 1. The stable homotopy type of the complement Rn \ V of the ar
rangement V is completely determined by its combinatorial (dimensional) charac
teristics. 

COROLLARY 2. The cohomology group i P (R n \ V) is isomorphic to 
OlIn-i-i-dim(A) (K(&)) (the summation over all planes A that are the intersec
tions of several planes Vi). 

Indeed, this follows from Theorem 6 by the Alexander duality. 
This formula was previously obtained in [Goresky & MacPherson]. 

10 Homology of classical Lie groups 

A few years ago (as J. Milgram informed me in 1992) Mahovald discovered the 
following splittings of the homology groups of the Lie groups U(n), 0(n), and 
Sp(n) (or, which is the same, of the homotopy equivalent to the groups of all 
nondegenerate matrices over the complex, real, and quaternion numbers) into the 
homology groups of the corresponding Grassmannians: 

HiiUin)) ~ ©JUofli_fca (Gfc(C")), (9) 
fli(0(n),Za) ~ ®t=0Hi-Hk-i)/2(Gk(R

n),Z2), (10) 

fii(0(n)) ^ ©£=o#i-*(*-i)/2(G*(Rn), Or®«-1)), (11) 

Haspln)) ~ ©JUffi-a^-fcCGfcOBr)), (12) 

where Or is the orientation sheaf of the tautological bundle over Gk(Rn)-



Topology of Discriminants and Their Complements 223 

These splittings are close relatives of formula (7) and can be guessed au
tomatically with the help of our general techniques (as actually was done in [V 
91]). Indeed, they appear from the study of some conical resolution of the deter
minant varieties, i.e. of the spaces of all degenerate square matrices. The basis 
of this resolution is the (suitably topologized) order complex (see e.g. [Goresky & 
MacPherson]) of vector subspaces of the space Kn, K = C,R, or H. 

Namely, consider the join of 77- Grassmann manifolds of subspaces in Kn, 

Gi(K") * • - • * Gn_i(Kn) * Gn(K
n), (13) 

i.e. roughly speaking the union of all simpliccs, the vertices of which correspond to 
the points of all these Grassmann manifolds. This join is contractible as Gn(K

n) is 
„a point ..Consider a subset C0(K n ) inthe joim(13) consisting of only_such simplices _ 
that the planes corresponding to their vertices are incident to one another (i.e. form 
a flag). To any linear subspace V C K" there corresponds a (contractible) subset 
CB(V) C CB(Kn), the union of all simplices from the construction of CB(Kn) all 
vertices of which correspond to subspaces of V. 

Let Mat(K") be the space of all linear endomorphisms of Kn , and Det(Kn) the 
set of endomorphisms that are not isomorphic. The natural resolution of Det(Kn) 
is constructed as a subspace in V(Kn) x Mat(Kn) consisting of all pairs (v, A) such 
that v G V(ker>4). The splittings (9)—(12) appear automatically in the study of 
the corresponding spectral sequence. 

Here is one more result that also follows from this calculation. 

PROPOSITION (see [V 91]). The link of the complex C8(K n ) (i.e. its intersection 
with the subjoin Gi(Kn) * • • • * Gn_i(Kn) of (13)) is homeomorphic to a sphere of 
dimension (™) diniR K + 77, — 2. 

REMARK. The construction of simplicial resolutions from Sections 2 and 3 also 
can be reformulated in terms of a certain order complex, the order complex of 
finite subsets of the issue manifold. (More precisely, if we describe the geometrical 
resolution in terms of the order complexes, then for every discriminant function 
/ with k singular points the simplices of this order complex that lie over the 
point / in the space of the resolution form the first barycentric subdivision of the 
(k — l)-dimensional simplex that lies over / in the construction from Section 2.) 

11 A homological invariant of rings 

Any commutative ring A defines a partially ordered set: the set of its proper ideals. 
The cohomology ring of the order complex of this poset is obviously an invariant 
of A. 

If A is a finite-dimensional R- or C-algebra, then besides the standard "dis
crete" topologization the order complex can be supplied with the "Hilbert-scheme" 
topology. Namely, we take a disjoint union of all Grassmann manifolds G\(A),..., 
Gdim A-i(A) of vector subspaces in A, and consider the join Gi(A) * . . . * 
Gdim A-i(A) as the union of all simplices the vertices of which correspond to the 
points of several different Grassmannians. Then we consider only such simplices, 
all vertices of which correspond to ideals of A that are incident to one another. 
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T h e union of these simplices is obviously bijective to the usual order complex of 
the poset of ideals, but , being supplied with the topology induced from our join, 
differs from it as a topological space. All the topological characteristics of this 
space (in particular, the structure of the cohomology ring) are again invariants 
of A 

A similar invariant also exists if A is a finitely generated graded module 
over F[XQ, . . . ,xn]. In this case a similar topologization of the order complex of 
homogeneous ideals can be constructed using the filtration in the space of ideals 
defined by the lexicographical order of the Hilbert polynomials of corresponding 
quotient rings, see [Mumford] (first we compare the degrees of the polynomials, if 
they coincide, then the coefficients of the leading monomials, . . . ). 

The obtained order complexes are a natural means of constructing the reso
lutions of certain discriminant subsets of the rings: say, in the problem of the rigid 
isotopy classification of real curves and surfaces it is natural to define a discrimi
nant as the set of polynomials distinguishing singular varieties and to construct a 
resolution of it as a subset in the product of our order complex and the space of 
polynomials. 

P R O B L E M . Let A be a quotient ring F[xi,..., xn]/{fi,..., / m } . Is it possible to 
express the Betti numbers of the corresponding order complex in the terms of 
some s tandard characteristics of the polynomials fi (for example, their Newton 
polyhedra if the polynomials are "generic")? 

Acknowledgment. While preparing this article I was partially supported by grant 
M Q O 000 from the International Science Foundation. 
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Free Probability Theory: Random Matrices and 
von Neumann Algebras 

DAN VOICULESCU* 

Department of Mathematics, University of California 
Berkeley, CA 94720, USA 

0 Introduction 

Independence in usual noncommutative probability theory (or in quantum physics) 
is based on tensor products. This lecture is about what happens if tensor products 
are replaced by free products. The theory one obtains is highly noncommutative: 
freely independent random variables do not commute in general. Also, at the level 
of groups, this means instead of Z n we will consider the noncommutative free 
group F (n) = Z * • • • * Z or, looking at the Cay ley graphs, a lattice is replaced by 
a homogeneous tree. 

Three different models of free probability theory are provided by convolution 
operators on free groups, creation and annihilation operators on the Fock space of 
Boltzmann statistics, and random matrices in the large Af limit. 

Important problems on the von Neumann algebras of free groups have been 
solved using free probability techniques, and surprisingly the random matrix model 
has played a major role in this. In another direction there is a free entropy quantity 
that goes with free independence. 

Concerning connections with other fields we should signal that combinato
rial objects (noncrossing partitions, random permutations) have appeared in free 
probability theory and that random matrices are used in physics. 

We have divided our survey into five sections: 

(1) Free random variables 
(2) Free harmonic analysis 
(3) Asymptotic models 
(4) Applications to operator algebras 
(5) Free entropy. 

At the end, an Appendix explains a few basic notions in operator algebras for the 
reader not conversant in C*- and W*-algebras. 

1 Free Random Variables 

For noncommutative probability spaces, the usual prescription applies: replace the 
functions on a space by elements of a (possibly noncommutative) algebra. Thus: 
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1.1 DEFINITION. A noncommutative probability space is a imitai algebra A over 
C endowed with a linear functional 0 : A —> C such that 0(1) = 1. The elements 
of A are called random variables and the distribution of a random variable a G A 
is the map \ia : C[X] -> C given by ßa(P(X)) = 0(P(a)). 

The above definition is only an algebraic caricature, sufficient for discussing 
questions such as independence. (Positivity and almost everywhere convergence 
require additional structure: A a C*-algebra and <f> a state or, even more, a von 
Neumann algebra with a normal state. In the C*-case, if a — a*, the distribution 
functional fia extends to a compactly supported probability measure on K.) 

Usually independence is modeled on tensor products. The idea of free prob
ability theory is to replace tensor products by free products. 

1.2 DEFINITION. A family of subalgebras 1 G Ai C A (i G J) in a noncommutative 
probability space (A, (ß) is called a free family of subalgebras if 

cj)(ai... On) = 0 

whenever aj G ^U(j) with i(j) ^ i(j + 1) (1 < j < n) and (ß(aj) = 0 (1 < j <n). 
Families of subsets or of random variables in (A, cß) aie free if the generated unital 
subalgebras are free. 

As for usual independence, if the free family of subalgebras Ai (i E I) gen
erates A, then (j) is completely determined by the restrictions (ß\Ai (i G I) . What 
distinguishes freeness and independence is that free random variables are highly 
noncommuting. 

1.3 EXAMPLES, (a) Let G = * Gì be a free product of groups and let A be 
ièi 

the left regular representation of G on £2(G). Let further W and Wi (i G /) be 
the weakly closed subalgebras generated by X(G) and X(Gi) respectively. The von 
Neumann trace r : W —> C is given by r(T) = (T6e,6e) where 6g (g G G) is the 
canonical basis of £2(G). Then the Wi (i G /) are free in (W,r). 

(b) Let U be a complex Hilbert space and let TTL = ®k>oH®k where H®° = 
CI. Let further l(h)£ = /i®£ be the creation operators on the full Fock space TTC 
and let e(X) = (XI, 1) be the vacuum expectation. If Hi (i G / ) are mutually 
orthogonal subspaces of TL, then the generated subalgebras C*(£(?ii)) (i G /) are 
free in {C*{l{H)\e). 

1.4 The analogue of the Gaussian law in the free context is the semicircle law, i.e. 
probability measures on M with densities having a semiellipse graph: 0 if \t — a\ > R 
and equal to 2TT~1R~2(R2 — (t — a)2)* if \t — a\ < R. Indeed, we have the following 

F R E E CENTRAL LIMIT THEOREM [32]. If (fn)neN is a free family of random 
variables in (A, cß) so that (ß(fn) = 0 (n G N), 

lim AT1 Y cß(f2) = A^R2 > 0 
l<n<iV 

sup |0(/£)| < oo for all k G N 
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then, if 

AH £ h 
l<k<N 

the distributions ßsN converge pointwise on C[X) to the semicircle law with density 
27T~1R-2Re(R2-t2)i. 

Convergence in the previous theorem is in a very weak sense. Actually, in 
the free context convergence to the central limit is much stronger than in usual 
probability theory (see [1] concerning this superconvergence). 

1.5 Roughly speaking, the Gaussian process over a real Hilbert TL space is the pro
cess indexed by H, the random variable corresponding to h being ( • , h) : H —> M, 

"when TL is endowed with the Gaussian measurer This is part -of the Gaussian" 
functor of second quantization, which takes real Hilbert spaces and contractions 
to commutative von Neumann algebras with specified trace state and trace- and 
unit-preserving completely positive maps. The canonical anticommutation rela
tions provide a fermionic analogue. We have found a third such functor, which is 
the free analogue of these. 

T H E F R E E ANALOGUE OF THE GAUSSIAN FUNCTOR [32]. If H is a real Hilbert 
space, let He be its complexification and let THc and £(h) be as in 1.3(b). Let 
further s(h) = l/2(£(h) + £(h)*). 

(i) The von Neumann algebra $(H) generated by s(H) is isomorphic to the 
III factor of a free group on dim H generators (if dim H > 1) and the trace state 
is given by the vacuum expectation (-1,1). 

(ii) If T : Hi —> H2 is a contraction there is a unique completely positive 
map $(T) : <&(Hi) -> ®(H2) such that 

(®(T))(X)1=T(TC)(X1). 

The map $(T) is trace and unit preserving. 
(iii) If (Hi) iç. 1 is a family of pairwise orthogonal subspaces in H and v(i) are 

the corresponding inclusions, then ($(v(i)))($(Hi))i£i is free in $(H). 
(iv) Orthogonal vectors correspond to free variables via the map s : H —> 

$(H) and the distribution of s(h) is a centered semicircle law. 

Gaussian processes are obtained by mapping the index set of the process into 
a Hilbert space and then composing with the Gaussian process over the Hilbert 
space. Composing with the free analogue (i.e. with s : H —> ®(H)) one gets the free 
analogue of Gaussian processes. Free increments correspond to the requirement of 
orthogonal increments for the map into the Hilbert space. For instance, Brownian 
motion corresponds to H — L2(0,oo) and the Hilbert space curve [0,00) 3 t —> 
%[o,t) G L2(0,00). The free analogue of Brownian motion is then obtained by taking 
[0,oo) 3 t —> sC^o,*)), a possibility used in [28]. 

1.6 Generalizations of various parts of the free probability context have been 
studied. We would like to mention here the following two. 
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(a) Free products with amalgamation over an algebra B [32], [36]. One re
places the complex field C by an algebra B over C. The noncommutative probabil
ity space A is then an algebra containing B as a subalgebra and the expectation (ß 
is a B — 5-bimodule projection 0 : A —> B. There is a corresponding definition of 
S-freeness and the corresponding operator-algebra context has also been studied. 

(b) Deformed Cuntz relations [6]. A natural model in which free random 
variables arise is provided by the creation operators 1(h) (Example 1.3(b)). They 
satisfy the Cuntz relations £(h)*£(k) = (h, k)I. A deformation of these relations is 

£(h)*£(k)-fi£(k)£(hy = (h,k)I 

fi G [—1,1]. This provides an interpolation between the three cases fi = —1,0,1, 
which correspond, respectively, to the fermionic, free, and bosonic creation oper
ators. 

1.7 Free stochastic integrations. Stochastic integration in the free case has been 
studied in papers by R. Speicher, K. R. Parthasarathy, B. K. Sinha, F. Fagnola, 
L. Accardi, and B. Kümmerer. 

2 Free Harmonic Analysis 

2.1 Free convolution. The distribution of the sum of two independent random 
variables is the (additive) convolution of their distributions. By analogy on E = 
{/ : C[X] —• C[ / linear, / ( I ) = 1}, there are operations EH and Ê3 called, respec
tively, additive and multiplicative free convolution so that if a, b aie free random 
variables in some noncommutative probabihty space then fia+b = Ma B3 /i& and 
fiab = fia ^ fib [32]. Because this does not depend on the concrete realizations of 
the variables with distribution fia, fib and because the sum of self-adjoint operators 
is self-adjoint j the product of the unitaries unitary, etc., we have that EB extends to 
an operation on compactly supported probabihty measures on IR, while Ë3 defines 
operations on the compactly supported probability measures o n l x , M+, and T. 
Clearly EB is commutative and actually Kf is also commutative. Moreover, [2] EB 
extends to an operation on all probability measures on IR, while Kl extends to an 
operation on probability measures on IR+ — which correspond to operations on 
"unbounded" random variables. 

2.2 The linearizing transforms. The computation of free convolution can be done 
using a linearizing transform. This is like computing the usual convolution of two 
probabihty measures using the logarithm of the Fourier transform (which linearizes 
convolution). 

THEOREM [33]. If fi G E let G^(z) = z~x + £ n > i / i p f " ) * - " " 1 and let K^z) G 
z~x + C[[z]} be such that Gß(Kß(z)) = z. Then Rß(z) = Kß(z) - z'1 has the 
property that Rß3 = Rßl + Rß2 if fis = fii ffl fi2-

If fi is a compactly supported probability measure then G^ is its Cauchy 
transform and R^ is analytic near 0. The linearization result also extends to the 
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case of unbounded supports using analytic functions in angular domains ([2], an 
intermediate generalization is given in [16]). 

A similar linearization result holds for the multiplicative free convolution E3 
[34] and also has an analytic function extension to the case of unbounded supports 
[2]-

2.3 F-Infinitely divisible laws. A probability measure fi on IR is called F-infinitely 
divisible if for every n G N there is fii/n so that fi\/n EB • • • EB fii/n = fi. A family of 

v v ' 
7i times 

probability measures (fit)t>o on IR is an F1-convolution semigroup if fit+s = fit^fis 
and fit depends continuously on t. There is bijection between ^-infinitely divisible 
measures and F-convolution semigroups. Stationary processes with free increments 

-naturally-leadto -these definitions^— 
If (fit)t>o is an JF-convolution semigroup, then the Cauchy transforms 

G(t,z) = Gflt^nf(z) for some probability measure 7 on R satisfy the complex 
quasilinear equation 

dG dG ±f^ n 

where (j)(z) = Rßl(z). In particular, the complex Burger equation 

dG „ dG n 

is the analogue of the heat equation, as R^(z) = az if fi is a centered semicircle 
law (which is the free analogue of the Gauss law). 

THEOREM, fi is F-infinitely divisible iff Rß has an analytic extension to {z G 
C|Im z < 0} with values in {z G C|Im z < 0}. 

(The case of compactly supported measures is given in [33], the intermediate 
case of measures with finite variance in [16], and the result in full generality in 

[2].) 
The condition on the imaginary part of Rß(z) implies the existence of an 

integral representation, which makes the above theorem an analogue of the Levy-
Khintchine theorem. The analogy goes even further when we remark that the free 
Poisson distribution defined by 

.ffln 

n 
lim ((1 - -)60 + - 6b) n-»00 \ n n J 

has the R-function R(z) — ab(l — bz)^. The free Poisson measure is given by 

(1 - a)6Q + v i f 0 < a < l 

v 11 a > 1 

where v has support in [&(1 — yfa)2,6(1 + \fa)2\ and density (27T6£) 1(4ab2 — (t — 
&(l + a))2)l. 
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2.4 F-Stable laws [2]. Replacing usual convolution by free convolution in the 
definition of stable laws one defines F-stable laws. F-stable laws were classified in 
[2], up to taking certain linear combinations, the main types are given by 

(i) R(z) = a, a G C, Im a < 0 
(ii) R(z) = z^signia - 1), a G (0,1) U (1,2) 

(iii) R(z) = log z. 

As for infinitely divisible laws this runs essentially parallel to the classical 
case. 

The usual Cauchy distribution and the free Cauchy distribution, given by 
R(z) = —i coincide. 

2.5 Multiplicative F-infinite divisibility. Infinitely divisible probability measures 
with respect to the operation IE on T were classified in [1] and on R + in [2]. 

Note that the generating function for the measure fi, which is the free ana
logue of the multiplication Gaussian distribution (i.e. of the log-normal distribu
tion) iß(z) = ]Cn>i/i(^77');z71'> c a n be expressed using the generating series for 
rooted labelled trees 

- l 

zn . ^ n\ 
n>l 

2.6 Nonprossing partitions. Because the map fi —> Rß linearizes the free con
volution it follows that if R^(z) = ^CnX^^WiCAO^77, ^n e coefficients Rn+i(fi) are 
polynomials in the moments of fi and i ^ + i ^ i EB fi2) = Rn+i(fii) -f- Rn+i(fi2)-
The Rn+i(fi) are the free analogues of the cumulants of fi. In [29] it was shown 
that the formulae giving the free cumulants are entirely analogous to those for 
the usual cumulants if we replace the lattice of all partitions of { 1 , . . . ,n} by the 
lattice of noncrossing partitions (i.e. partitions with crossing pairs {a,c},{6,c} 
where a < b < c < d do not lie in different sets of the partition). There are more 
general such formulae based on noncrossing partitions [29], [30], [20], [21] which 
characterize freeness of sets of random variables. It seems that the passage from all 
partitions to the noncrossing partitions is the combinatorial aspect of going from 
usual independence to free independence,. 

2.7 Generalizations of the free harmonic analysis, (a) 5-free convolution. Free 
convolution and its linearization were extended to the context of 5-freeness in [36]. 
A combinatorial approach based on noncrossing partitions to linearization and to 
the classification of infinitely divisible distributions (with moments of all orders) 
in the B-free context was developed in [30]. 

Multiplicative free convolution is no longer commutative for general B and 
there are nonlinear systems of differential equations that replace linearization [36]. 

(b) Deformed linearization maps. The linearization map involves certain 
canonical forms of random variables in creation and annihilation operators on 
the full Fock-space. Passage to the deformed Cuntz-relation was used to construct 
deformed free convolution [6] and its linearization map [21]. 
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3 Asymptotic Models 

3.1 Gaussian random matrices. The semicircle law that appears in the free cen
tral limit theorem also occurs in Wigner's work on the asymptotic distribution of 
eigenvalues of large Gaussian random matrices [41], [42]. The explanation we found 
[38] for this coincidence is that large Gaussian random matrices with independent 
entries give rise asymptotically to free random variables. Moreover, this asymptotic 
model is the bridge connecting classical and free probability theory. Indeed, inde
pendence of matrix-valued random variables is transformed into free independence 
of the corresponding noncommutative random variables (asymptotically). 

The precise statements are as follows. 
Let (An,cßn) and (A^^oo) be noncommutative probability spaces and let 

(Xnii)i£i, n G N U {oo} be in An. Then (XUii)iei converges in distribution to 

(^oo.ijiei if 
lim (ßn(P((Xn^j)) —> cß00(P(X00ii)ieI) 

for every noncommutative polynomial P in indeterminates indexed by I. In par
ticular the (XUii)iej are asymptotically free if they converge in distribution to a 
free family. 

A family (xi)iei is called semicircular iî the Xi have equal centered semicircle 
distributions and are free. In a C*-probability space we require in addition that 
Xi — X • . 

For asymptotics of random matrices the appropriate (An,(ßn) are An = 
rii<p<oo Lp(ü, Mn) where (ft, da) is some standard probability measure space and 

(ßn(X) = - [ TrX(uj)da(uj) . 

THEOREM [38]. Let Y(i,n) = (a(i,j',n,i)i<iij<n) G An be real random matrices 
(L G / ) . Assume a(i,j;n,i) = a(j,i\n,i) and {a(i,j;n,i)\l < i < j < n, L G / } is 
a family of independent Gaussian (0,1/n) random variables. Let further Dn G An 

be a constant diagonal random matrix having a limit distribution as n —> oo. 
Then {Y(L,Iï)\L G / } U {Dn} is asymptotically free as n —> oo and {Y(L,U)\L G / } 
converges in distribution to a semicircular family. 

3.2 Unitary random matrices. Using polar decomposition (i.e. noncommutative 
functional calculus) and results of Gromov-Milman on isoperimetric inequalities 
yields stronger versions of the preceding result for unitary random matrices. 

THEOREM [38]. Given e > 0 and a nontrivial element 

q = nkl nk2 ... qkm 

(m > 1, kj ^ 0, is ^ is-j-i) of the free group on p generators, let 

fin(ff) = {("i, • • • ,uv) e (U(n)Y\rn(u^ .. . u ^ ) | < e) 
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where rn = n~1Tr is the normalized trace on (n x n) -matrices. Then we have 

lim fin(iïn(g)) = 1 
n—>oo 

where fin is the normalized Haar measure on (U(n))p. 

The preceding theorem has a more general form where a constant diagonal 
unitary also appears. This implies asymptotic freeness results for random matrices, 
which as matrix-valued variables are independent and are distributed according 
to the invariant measures of unitary orbits of self-adjoint matrices (this includes 
random projections, etc.). 

3.3 Further results. Further extensions of the preceding theorems include results 
for real symmetric and antisymmetric Gaussian random matrices [38], for matrices 
with fermionic entries [38], and matrices with independent non-Gaussian entries 
together with a finite-dimensional constant algebra [10]. A generalization of the 
random matrix result involving representations has been obtained in [4]. 

In a different direction in [18] freeness results were obtained for indepen
dent uniformly distributed random permutation matrices. (Further combinatorial 
results for words in independent random permutations related to this are given 
in [19].) 

3.4 Applications. Many of the known asymptotic distribution of eigenvalue results 
for random matrices can be recovered from the asymptotic freeness results. Indeed, 
many of these are obtained via noncommutative functional calculus from random 
matrices like those in the preceding theorems. Hence the limit distribution of 
eigenvalues in the large n limit is the same as the distribution of an element in a 
certain algebra generated by free random variables, the distribution of which can 
be computed, in certain cases via free convolution operations. 

Related to the asymptotic freeness results for random matrices, it was re
cently discovered in [5] that free convolution occurs asymptotically in the de
composition into irreducible representations of tensor products of representations 
of U(n). 

Last but not least there are applications to the Hi factor of free groups, 
which we shall survey in the next section. 

4 Applications to Operator Algebras 

Free probabihty theory and especially asymptotic random matrix realization have 
led to a surge of new results on the von Neumann algebras of free groups. These 
recent results will be surveyed here, preceded by some background on Hi -factors. 

4.1 J/i-Factors of discrete groups. A factor is a von Neumann algebra M with 
trivial center Z(M) = CI. The factor M is type Hi if it has a trace-state r : 
M —> C (which is then unique) and is infinite dimensional. As P ranges over 
projections in M, r(P) takes all values in [0,1], which corresponds to a geometry 
with subspaces having dimensions in [0,1]. 
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L(G), the von Neumann algebra of the left regular representation A(G), is a 
Jii-factor iff G has infinite conjugacy classes (i.c.c). The L(G)'s are a rich source 
of Ui-factors (G will be assumed countable in what follows). 

By a deep theorem of Connes [7] all L(G) with amenable G are isomorphic 
— the hyperfinite Hi -factor. This is the "best" among all Hi -factors; it has a 
large automorphism group and good finite-dimensional approximation properties, 
and there are approximately central elements (property T of von Neumann). The 
remarkable properties of the hyperfinite Hi -factor made an in-depth study of its 
subfactors possible. 

At the other extreme are the L(C7)'s for G with property T of Kazhdan [8], 
[9]. These Hi -factors have rigidity properties, few automorphisms, no approxima
tion properties, and no approximate center (non-r). It is conjectured (by Connes) 

-thatMsomoiphisms-among-these-L^ 
ing groups. 

The free group factors L(Fn) (n = 2,3,..., oo) have intermediate properties: 
some approximation properties (compact instead of finite-rank) and some proper
ties towards rigidity (non-r). Like the hyperfinite Hi -factor, which is related to 
the fermionic context of the canonical anticommutation relations, the free group 
factors are related to the free analogue of the Gaussian functor. This could mean 
that the free group factors are the "best" among the "bad" (i.e. non-r) Hi -factors. 

4.2 The free probabihty technique [37] Semicircular and circular systems are the 
free analogues of, respectively, independent real and complex Gaussian random 
variables. They provide convenient sets of generators for free group factors. The 
asymptotic random matrix models based on Gaussian random matrices are the 
source for many of the properties of circular and semicircular systems. 

A system of self-adjoint random variables (SJ)J^J is semicircular if the s '̂s 
are free and have identical centered semicircle distributions. Similarly, (ci)i^i is 
circular if (Re Cì)ì^I U (Im Cì)ìEJ is semicircular. 

A block of a Gaussian random matrix, being a matrix of the same kind, 
implies that if p — p* = p2 is free with respect to a semicircular system (s j ie j 
then the compression (psip)i^r is semicircular in (pAp, 0(p)_10(-))- i n the polar 
decomposition c = ii|c| of a circular element, u and \c\ are free. Cutting and pasting 
blocks of Gaussian random matrices have analogues for circular and semicircular 
systems. For instance, if (cij-^icij^^^s is circular, then the matrices Xs = 
Y^i<i,j<n

 cijis ® Cij, s G S, form a circular system. 

I introduced this free probability technique and used it to obtain results on 
free group factors in [37] ; the applications to free group factors were subsequently 
carried much further by Radulescu and Dykema. 

4.3 The fundamental group J7(L(F1(oo))). If M is a Ui-factor and p = p2 G M 
the isomorphism class of pMp depends only on À = r(p) and is denoted M\. The 
fundamental group F(M) [17] consists of those A G (0,1] such that M\ ~ M and 
their inverses. For the hyperfinite Hi -factor R, F(R) = (0,oo). By a result of 
Connes T(L(G)) is countable if G is an i.c.c. group with property T. 
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THEOREM. ^(X(F(oo))) = (0,oo). 

That .F(L(.F(oo))) D Qn(0,oo) was proved in [37] by me, the complete result 
was then obtained by Radulescu [23]. 

4.4 The compressions (L(F(n)))\ 

THEOREM [37]. (L(F(n)))i/N ~ L(F(N2(n - 1) + 1)), N G N, n = 2 , 3 , . . . , oo. 

The preceding result, a first application of the free probability technique, was 
extended in several directions. 

THEOREM [24], [25]. Ifp,qeN, 2<p<q, and X = (p - l)*(q - 1)"2, then 

(L(F(p)))x = L(F(q)). 

Building on this, Dykema [12] and Radulescu [25] (independently) defined 
interpolated free group factors L(F(s)), s > 1, s G IR, satisfying the formula in 
the preceding theorem for arbitrary real q > p > 1. Moreover for arbitrary real 
p>l, q>l, 

L(F(p))*L(F(q))~L(F(p + q)). 

4.5 Free products. A few preliminary results [37], [10] identifying certain free 
product von Neumann algebras with free group factors were greatly extended by 
Dykema [11]. If A, B are injective separable von Neumann algebras with specified 
faithful normal trace-states and if A * B is a factor, then it is isomorphic to one of 
the interpolated free group factors L(F(s)). Moreover, formulae for the parameter 
s axe given in [11]. A further generalization is given in [13]. 

4.6 Subfactors. Radulescu has shown in [25] that £(^(00)) has subfactors of all 
allowable Jones indices < 4, i.e. the numbers 4 cos2 ^ of [15]. The proof involves 
random matrices and results of [22] on constructing subfactors via amalgamated 
free products. Note that the fundamental group of L(F(oo)) being (0,oo) implies 
the existence of subfactors of indices > 4. 

4.7 The isomorphism problem. The question of whether the free group factors 
L(F(m)) are isomorphic or not for different values of m is still unresolved (this 
problem appears on Kadison's Baton Rouge problem list). 

4.8 Type III factors. In [26] Radulescu showed that the free product of L("Z) with 
the (2x2) matrix algebra endowed with a nontracial state is a type III factor and 
that its core is isomorphic to L(F00)<S}B(H). Further results on free product type 
III factors were obtained by Barnett and Dykema. 

4.9 Quasitraces. Uses of semicircular systems have not been confined to W*-
algebra questions. A surprising application of semicircular systems appears in 
Haagerup's solution of the quasitraces problem for exact C*-algebras [14]. 
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5 Free Entropy [39] 

5.1 The definition of free entropy. In classical probability theory, the entropy of 
an 7i-tuple / = (fi,... , fn) of random variables is given by 

S(f) = - [ p(t)]agp(t)dt 

where p is the density of the distribution of (fi,... ,fn). To define a free en
tropy x(Xi) • •. ,Xn) for an 77,-tuple of self-adjoint random variables in a tra-
cial W*-probability space, we had to go back to Boltzmann's S = klogW (i.e., 
roughly, the entropy is proportional to the logarithm of the measure of a set of mi-
crostates) and take into account that independence of random matrices gives rise 
asymptotically to freeness. This means we will choose approximating microstates 
V-R(Xi, ,Xn\771,k,E) to-be-the sets of-(j4i,.. .~,An) G (M^)71 so-that 

\r(Xi, ...Xip)- k-'TiiAi, ... Aiv)\ < e 

for all 1 < p < m, (ii,... ,ip) G {1 , . . . ,n}p and ||Aj|| < R, 1 < j < n. With vol 
denoting the volume on (M^a)n f°r ^n e s c a ^ a r product defined by the trace Tr, we 
take 

liiYisup(/c-2 log vol TR(Xi,..., Xn; m, k, e) + - log k) 
/c-»oo ^ 

and then define x(Xi,... ,Xn) to be 

sup inf inf 
R>Q mGN £ > 0 

of that quantity. 
Note that a similar definition for the classical entropy is possible, taking 

instead of all matrices M^ only the diagonal ones. 

5.2 Properties of free entropy 

(1) For one variable X with distribution fi, 

X(X) = j j log \s - t\ dfi(s) dfi(t) + | + \ log 2TT 

(2) x(Xu • • • , Xn) < I log(27re7i-1C) where C2 = r(X2 + • • • + X2). 
(3) If (X[p),... , X^) converge strongly to (Xu. ..,Xn) then 

lim sup x(x[p),..., XW ) < x(Xi,.. •, Xn) 
p—>oo 

(4) x(Xi,... ,Xm+n) < x(Xi,... ,Xm) + x(Xm+i,. • • , Xm+n) 
(5) If Xi,..., Xn are free, then X{XU . . . , X n ) = x(Xi) + • • • + x(Xn)-
(6) Let F — (Fi,... ,Fn) where Fj are noncommutative power series in n 

indeterminâtes. Under suitable convergence assumptions and the existence 
of an inverse (with respect to composition) of the same kind, 

X(F(Xlt... ,Xn)) = x(XU- • • ,Xn) + \og\J\ 

where |,7| (the "positive Jacobian") is the Kadison-Fuglede positive de
terminant of the differential DF(Xi,... ,Xn) viewed as an element of 
M(g)Mo p(8)Mi-
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5.3 The free analogue of Fisher's information measure. By analogy with the 
classical case, the free analogue of the Fisher information measure is 

$(X) = l i m e - 1 ^ * + VÏS) - x(X)) 
ej.0 

where S is (0, l)-semicircular and X, S are free. If dfi(t) = v(t)dt (fi the distribution 
of X) then 

<S>(X) = \jv*(t)dt. 

The free analogue of the Cramér-Rao inequality is 

(/«"(*)*)(/*"«(*)*) >J ï 
where v G L1 n L3 is a probability density. Equality holds iff v is a centered 
semicircle law. 

5.4 The free entropy dimension. The entropy being a kind of normalized (loga
rithm of) volume, one may imitate the idea of the Minkowski content and define 
a dimension quantity from the asymptotic of volumes of ^-neighborhoods. This is 
realized via a free semicircular perturbation. The free entropy dimension is 

r,v ^ x . r x(Xi+eSi,...,Xn + eSn) 
6(Xi,..., Xn) =n + hmsup — : 

e-o | log e | 
where ( S i , . . . , Sn) and (Xi,... ,Xn) aie free and (Si,..., Sn) is a semicircular 
system. 

(1) ö(Xi,... ,Xn) < n and it is > 0 if Xi,... , Xn can be realized in a free 
group factor L(Frn). 

(2) 6(Xi,... ,Xv+q) < 6(Xi,... ,XP) + fi(-Xp+i,... ,-Xp+g). 

(3) If Xi,... ,Xn are free then 8(XU ...,Xn) = 6(Xi) + • - - + 6(Xn). 

(4) If fi is the distribution of X, 6(X) = 1 - Y^teR&dt}))2• 

5.5 Free entropy dimension and smooth changes of generators 

THEOREM. If Xi,..., Xn and Yi , . . . , Ym are semicircular generators of the same 
W*-algebra M and if Y i , . . . , Ym are "smooth noncommutative functions ofXi,..., 
Xn" then n>m. 

Here Yj is a smooth noncommutative function of (Xi,... ,Xn) if 

d2(Yj,W*(Xi+£Si,...,Xn + eSn)) = 0(Es) forali s < l 

where d2 is the 2-norm distance defined by the trace ( S i , . . . , Sn) semicircular and 
free with respect to (Xi,... ,Xn). For instance, elements obtained via suitably 
convergent noncommutative power series are smooth. 

Note that if "smooth" could be replaced by "Borei" the corresponding result 
would imply m ^ n => L(F7n) nonisomorphic to L(Fn). In particular, the same 
conclusion, concerning the isomorphism problem of free group factors, would be 
reached, from an affirmative answer to the 
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S E M I C O N T I N U I T Y P R O B L E M . If (x[p\... ,Xn) converges strongly to (Xi,..., 

Xn) does it follow that liminfJl-_00 6(x[p),.. .,X^p)) > 6(XU... ,Xn) ? 

The explicit formula for 8 in case n = 1 implies an affirmative answer. 
Note also tha t if Xi,... ,Xn arc free and generate a factor, then comparing 

S(Xi,... ,Xn) with the results of [11] we have 

W*(XU • • •, Xn) ~ L(F(6(XU..., Xn))) . 

Appendix: Operator Algebra Glossary 

C*-algebras are involutive Banach algebras isomorphic to norm-closed sub-alge
bras of the algebra of all bounded operators on some complex Hilbert space B{Ji) 
and which together with an operator T contain its adjoint T*. 

A functional (ß : A —> C (A a C*-algebra) is a state if \\(ß\\ = 1 and (ß is positive, 
i.e. (ß(a*a) > 0 for all a G A. By a theorem of Gel'fand-Naimark commutative C*-
algebras are precisely the algebras of continuous functions CQ(X) vanishing at 
infinity on some locally compact space — states are Radon probability measures 
o n X . 

A von Neumann algebra M (or W*- algebra) is a *-subalgebra of B(H) tha t 
contains the identity and is closed in the weak operator topology, i.e. if Xi is a net 
of operators in M and (xi,h,k) —» (xh,k) for some x G B(7i) and all h, k G Ti, 
then x is in M. 

A functional r : A —> C on an algebra is a trace if r(ab) = r(ba) for all 
a,b G A. 
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The equation of Fermât has undoubtedly had a far greater influence on the devel
opment of mathematics than anyone could have imagined. AfterT847 most serious 
mathematical approaches to the problem followed the line introduced by Kummer. 
This approach involved a detailed analysis of the ideal class groups of cyclotomic 
fields. 

The class number formulas used in Rummer's theory are refinements of the 
well-known class number formula of Dirichlet of 1838. To recall a special case, if 
q is a prime with q = 3 mod 4 and 9 ^ 3 , then the class number of Q(\/—q) is 
(B — A)/q where 

B — E quadratic nonresidues mod q 
A = E quadratic residues mod q. 

Such formulas can be recast in the language of Galois modules as follows. If 
M ~ (Qp/Zp) (x) with a Gal(Q/Q)-action we define h(M) by 

h(M) = #ke r : Hl(q„M) —> n H1 (Ç£tnr, M). 

For a general p-divisible M we need to modify the condition at p, but for the 
example given above we can just take Mv — (Qp/Zp) (YJ where x is the quadratic 
character of Q(\f—q). Then knowing the class number of Q(v^-ç) is equivalent to 
determining h(Mv) for all p. 

However, despite considerable progress on such problems, no convincing con
jectures appeared that were strong enough to imply Fermât's Last Theorem. Ul
timately, the solution came from a quite different source, although it did also rely 
in part on a generalized class number formula of the above type. 

We begin with a rather special but influential example from the work of 
Eichler (1954). Let E be the elliptic curve: y2 + y = x3 - x2 - 10a; - 20. Let 
Np denote the number of solutions of this (affine) equation mod p. Consider the 
modular form 

/ = q H (l-qn)2(l-qUn)2 

7 1 = 1 

= V(z)2 rtllz)2 = q - 2q2 - q3 + 2g4 + q5 + q6 - 2q7 + • • • 
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Then / is a modular form on TQ (11) and if we write / = E a n qn then Eichler 
showed that ap = p — Np for each prime p ^ 11. The L-function of E is thus 
given by the Mellin transform of / , L(f,s) = Eann~s. We call an elliptic curve 
modular if there is a modular form with this property. 

In the 1960s Shimura, building on the work of Eichler, showed how to as
sociate an elliptic curve over Q to any newform of weight 2 on TQ (N) that has 
rational Fourier coefficients. One therefore has a triangle 

Newforms of weight 2 Shimura Elliptic curves 
on TQ (N) with rational —> over Q 

Fourier coefficients r up to isogeny 

\s V 
Compatible systems 

of £-adic representations 

where s is simply defined as the composite. Serre in special cases and Faltings in 
general later proved that t was injective. However, the fundamental question posed 
in [We], which was apparently first raised in an imprecise form by Taniyama and 
in a precise form by Shimura, was whether r was surjective. In other words, is 
every elliptic curve over Q modular? 

During the next 25 years, the triangle was enormously developed. The map r 
was studied in great generality under the name of Shimura varieties and the map 
s was also studied in great generality as part of the Langlands programme. One 
significant advance was in the analogue of s for weight one. Here the image is more 
naturally replaced by 2-dimensional complex representations. The construction of 
these was given in [D-S] and the crucial converse theorem for representations with 
soluble image was proved by Langlands in [L] and completed by Tunnell in [T]. 
However, the original problem on the surjectivity of r remained untouched. 

In 1985, Frey suggested a completely new approach to Fermat's Last Theo
rem. If p > 5 is an odd prime and oP + bP = cp were a solution to Fermat's equation 
then he proposed showing that the elliptic curve E : y2 = x(x — ap)(x + bP) could 
not be modular. To exploit this idea Serre formulated a conjecture on Galois rep
resentations which applied to the Galois module E\p] of p-division points implied 
that this curve could not be modular. Ribet then proved Serre's conjecture in the 
summer of 1986 (see [R]). 

It remained to prove that elliptic curves over Q are modular, or less generally 
that all semistable elliptic curves over Q are modular, as those considered by Frey 
would necessarily be of this form. The main theorems of [Wi] are: 

THEOREM 1 Every semistable elliptic curve over Q is modular. 

THEOREM 2 (Fermat's Last Theorem) Ifap + bp = cp with a,b,c in Q; then 
abc = 0. 

To set the stage for the proof in [Wi] one begins by replacing the problem 
on elliptic curves with a problem on Galois representations. Thus instead of con
sidering the map r we consider the map s. We consider the extension of the map 
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s covering forms on Ti (N) and restrict its image to consider only £-adic represen
tations for a single choice of L 

The proof itself begins with the crucial observation that for any elliptic curve 
E over Q, PE,3 is modular where pg^ is the representation on the 3-division points 
of E. This is immediate from the theorem of Langlands and Tunnell referred to 
above, although we actually want to know that it is also the reduction of the 
representation associated to a form of weight 2. The proof then proceeds by show
ing that, under the hypothesis that pg^ is irreducible, every suitable lifting to a 
GL2(Za) representation is modular; in other words, it is in the image of the ex
tended map s. This is part of a more general theory describing conditions under 
which 2-dimensional £-adic representations that are liftings of modular mod I rep
resentations should themselves be modular. The key ingredient in proving these 

-results is the forging of a surprising link with a certain generalized class number_ 
formula. The link is made using some new arguments from commutative algebra 
as well as an elaborate study of the properties of modular forms. The commuta
tive algebra enters in trying to relate two rings, one arising from the theory of 
deformations of Galois representations and the other from the theory of modular 
forms. 

The theorem of Langlands and Tunnell permits one to choose a modular 
lifting of pE£ and it is the adjoint of this representation to which the class number 
formula is attached in the manner described earlier. The solution to this class 
number problem is based on duality theorems in Galois cohomology and on a 
construction using Hecke rings, which was inspired by a variant of Iwasawa theory 
(see [Wi] and [T-W]). These arguments only work at the moment when PE^ is 
irreducible. To include the other semistable curves we use a different argument 
involving families of elliptic curves with the same representation on their 5-division 
points. 

At the time of the congress, one step in the argument was not complete, but 
it was completed a few weeks afterwards. For a fuller account of the proof we refer 
to [Wi] and [T-W]. 
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1 Introduction 

1.1 Broadly speaking, the goal of the theory of dynamical systems is, as it should 
be, to understand most of the dynamics of most systems. 

The dynamical systems that we will consider in this survey are smooth maps 
/ from a smooth manifold M to itself; the time variable then runs amongst non-
negative integers. 

Frequently, we will also assume that the map / is a diffeomorphism, aUowing 
the time variable to take all integer values. We could also consider smooth flows 
on M, with a real time variable: the ideas and concepts are pretty much the same 
in this case. 

Given two dynamical systems / : M —> M and g: N —> N, a morphism from 
/ to g is a smooth map h: M —> N such that g o h = ho fì in other words the 
diagram 

is commutative. 

When h is a diffeomorphism, we will say that / and g are (smoothly) conju
gated. When h is an embedding, / is a subsystem of g. When h is a submersion, / 
is an extension of g, and g is a factor of / . 

The ultimate goal of the theory should be to classify dynamical systems up 
to conjugacy. This can be achieved for some classes of simple systems [PY1]; but 
even for (say) smooth diffeomorphisms of the two-dimensional torus, such a goal is 
totally unrealistic. Hence we have to settle to the more limited, but still formidable, 
task to understand most of the dynamics of most systems. 

The word "most" in the last sentence may assume both a topological and 
metrical meaning. From a topological point of view, it means open and dense, or 
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more frequently G^-dense (i.e. countable intersection of open and dense); from a 
metrical point of view, we would like to understand the trajectories of Lebesgue 
for almost every point of the system; when considering a smoothly parametrized 
family of maps or diffeomorphisms, we would also like to understand the dynamics 
for almost all values of the parameter. 

1.2 The dynamical features that we are able to understand fall into two classes, hy
perbolic dynamics' and quasiperiodic dynamics; it may very well happen, especially 
in the conservative case, that a system exhibits both hyperbolic and quasiperiodic 
features. 

I will not try to give a precise definition of what is hyperbolic or quasiperiodic: 
actually, we seek to extend these concepts, keeping a reasonable understanding of 
the dynamics, in order to account for as many systems as we can. The big question 
is then: Are these concepts sufficient to understand most systems? 

1.3 The prototype of a quasiperiodic dynamical system is a translation T in a 
compact abelian group G; typically, G is the n-dimensional torus T n = R n / Z n , 
but the additive group Zp of p-adic integers (or more generally any profinite abelian 
group) is also relevant. 

Every translation commutes with T, hence is a symmetry of the dynamics 
of T: this makes the dynamics homogeneous, with a group of symmetries act
ing transitively. Another significant feature is that the family of iterates of T is 
equicontinuous; the topological entropy of T is zero. 

Finally, the Haar measure on G is invariant under T, and the unitary operator 
tp i—> ip o T of L2(G) induced by T has a discrete spectrum. 

1.4 As prototypes of hyperbolic dynamical systems, we will consider two examples. 
The first one is the Bernoulli shift o on the profinite abelian group E = 

{0,1}Z, defined by 

& ((zt)*ez) = (yOiGZ, Vi = z<+i-
For the second one, we consider a matrix A E GL(?i, Z) which is hyperbolic, i.e. 
no eigenvalue has modulus one. Such a matrix induces an automorphism of Tn, 
which is a typical example of Anosov diffeomorphism. 

Let us consider some significant features of the dynamics (in both examples). 
Perhaps the most important is the shadowing property: define an e-pseudo 

orbit as a sequence (zi)A E Z such that d(f(zi),Zi+i) < E for all i\ then, for given 
6 > 0, there exists E > 0 such that every e-pseudo orbit (zi) A E Z is "shadowed" 
by a true orbit (wì)J, E Z in the sense that d(wi, Zi) < 6 for all i. 

A counterpart of the shadowing property is the expansivity property: there 
exists E0 > 0 such that 

SuVd(fnx,ry)>E0 
n 

for all distinct x, y: this makes the shadowing orbit unique (for 8 small enough) 
and is in contrast with the equicontinuity of iterates of the quasiperiodic case. 

In both examples, the topological entropy is strictly positive. As automor
phisms of compact abelian groups, the two examples preserve the Haar measure; 
the corresponding unitary operators have a Lebesgue spectrum. 
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2 Quasiperiodic dynamics 

2.1 Before giving some specific results, let us begin with a broad overview. 
There are three approaches to quasiperiodic dynamics that have been very 

fruitful. 
The first one is the function-theoretical approach, dealing with the stability of 

diophantine quasiperiodic motions. This includes the so-called KAM-theory, and 
techniques where functional equations are solved via Newton's method (combined 
with smoothing operators) or implicit function theorems in Fréchet spaces (which 
are conceptual analogues of Newton's method). In several special but important 
contexts, Herman [H2] has been able to solve the functional equations via the 
Schauder-Tichonoff fixed point theorem. 

Finally, Rüssmann [Ru2] has announced the proof of several KAM-theorems 
relying only on the standard fixed point theorem. 

In the symplectic context, the variational approach has also been quite suc
cessful; there is a huge number of results related to the existence of periodic orbits. 
We will present briefly the pionneering work of Mather on quasiperiodic dynamics 
in this context. 

The last approach to quasiperiodic phenomena is more geometric, and fre
quently coined as "renormalization". Roughly speaking, the combinatorics of the 
recurrence are unravelled in an infinite sequence of simple successive steps, each 
of them involving a change of scales both in time and space. Typically, for a 
circle diffeomorphism / , with irrational rotation number a having convergents 
(pn/qn)jn > 0, two successive iterates fQn, f^n+1 give rise to a circle diffeomor
phism fn, which is the "nth-renormalization" of/ (Herman, Yoccoz). Sullivan has 
developed this approach when the recurrence is combinatorially described as a 
translation in a profinite abelian group. 

2.2 Let us consider a holomorphic germ f(z) = Xz-\-0(z2), X E C*, in one complex 
variable. 

We are interested in the dynamics near the fixed point 0, when the eigenvalue 
A has modulus 1 but is not a root of unity; we write À = e27™a, with irrational 
a E (0,1). 

It is convenient to assume some normalization on / ; we wiU consider the class 
Sa of germs as above that are defined and univalent in the unit disk D. 

The germ / is always formally linearizable: there exists a unique formal power 
series hf(z) = z-\-0(z2) satisfying hfoRx = fohf, where R\: z —> Xz is the linear 
part of / . 

Consider Vf = int I fi /~ n (D) I ; it is easy to see that 0 E Vf if and only if 
\n>0 J 

hf is convergent, and that in this case there exists Tf > 0 such that the restriction 
of hf to {|z| < rf} is a conformai representation of the component Uf of 0 in Vf. 
Actually, when ! 7 j C D , Tf is the radius of convergence of hf. 

Let us define 
r(a) = inf 77, 

and denote by (pn/gn)_n > 0 the convergents of a. 
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Siegel [Si] proved in 1942 that r(a) > 0 as soon as the diophantine condition 
Log gVi+i = 0(Log qn) holds; he achieved this first breakthrough through small 
divisors problems by a direct estimation of the coefficients of hf. Later, Br j uno 
[Br], through a refinement of Siegel's estimates, proved that if 

(B) *(a) = J2 Qn1 L°g Gi+i < +°°> 
n>0 

then r(a) > 0 and even Log r(a) > 2$(et) — c (for some c > 0 independent of a). 
See also [C]. 

Using a "renormalization" approach based on a geometric construction, I 
gave a new proof of the Siegel-Brjuno theorem and proved the converse ([Y5], 
[Y4]). 

THEOREM. (1) If<b(a) < +oo, then 

\Log r(a) + $(a)\ < c, 

for some c > 0 independent of a. 

(2) If$(a) = +0O, the quadratic polynomial P\(z) — Xz-\- z2 is not lineariz-
able: every neighborhood of 0 contains a periodic orbit, distinct from 0. 

Actually, one first constructs a nonlinearizable germ with this property, and 
then shows that the same holds for the quadratic polynomial, via Douady-Hubb-
ard's theory of quadratic-like maps. 

Significant progress has been achieved by Perez-Marco [PM2], [PM3] in the 
understandings of the dynamics in the nonlinearizable case. He first showed that 
for a germ / E Sa that is not linearizable and has no periodic orbit in D (except 
for 0) to exist, it is necessary and sufficient that 

5Z qn* L°g L°g 9Wi = +°°-
n > 0 

He also defines "degenerate" Siegel disks as follows: assuming / to be univalent 
in a neighborhood of D, the connected component Kf of 0 in f i / _ n ( D ) is a full, 

_ z 
compact, connected, invariant subset of D that meets S1. When a satisfies the 
diophantine condition (H) (see 2.3), one has just Kf = Uf. 

These invariant sets provide a rich connection with the theory of analytic 
circle diffeomorphisms; if k: H/Z —> C — Kf is a conformai representation, the map 
g = k~1 f k is defined in some strip {0 < Im z < 6} and extends by Schwarz 's 
reflection principle to a circle diffeomorphism with the same rotation number as / . 

2.3 Let us now consider analytic circle diffeomorphisms. For 8 > 0, define Bß = 
{z E C/Z, | Im z\ < 8}. For irrational a E R/Z, let Sa(8) be the set of orientation 
preserving analytic diffeomorphisms / of R/Z with rotation number a that extend 
to a univalent map from B^ to C/Z. 
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By Denjoy's theorem, / is conjugated to the translation Ra : z \—• z + a on the 
circle by a homeomorphism hf of R/Z (uniquely defined if we require hf(0) = 0). 
•As for germs, hf is analytic if and only if the circle R/Z is contained in the interior 
of fi f~n(Bg). There are two kinds of results, depending on-whether we assume 

n>0 
or not that / is near the translation Ra ; the breakthroughs (under more restrictive 
arithmetic conditions) are respectively due to-Arnold (1960) and Herman (1976). 
We state the results in their final form before some comments. 

THEOREM 1. (Arnold [A], Rüssmann, Yoccoz [Y6]) Assume that E g " 1 Log qn+i 
< -f-oo. There exists e = E(QL,8) such that, if 

\\f - ROLWC^BS) < e ( a > 5 )> 

then hf is analytic. Moreover, the diophantine condition is optimal. 

THEOREM 2. (Herman, Yoccoz) Assume that the rotation number satisfies the 
diophantine condition (H) below. Then hf is analytic. Moreover, the diophantine 
condition is optimal. 

The arithmetic condition (H) 

Assume that 0 < a < 1 and define a0 = a, an = {CK~11} for n > 1. For m > n > 0, 
define inductively A(m,n) as follows: 

A(n,n) = 0, V n > 0 

Aim + 1 n) = [ GXP A ^ ' ^ Ìf A ^ ' ^ " L ° g a™ 
I « m ^ K " ) - L°g am + !) i f A(m,ra) > Log a"1 

Then a satisfies (H) if for every n > 0 we have A(rh, n) > Log a" 1 for m>m0 = 
m0(n). 

The set of numbers a satisfying (H) is a Fas set (a countable intersection of 
Fa sets) but neither a Fa or a Gs set (this explains why the definition has to be 
complicated)'. Numbers a such that . 

Log qn+i = 0 ((Log qn)
c), for some c> 0 

\ 
satisfy (H). On the other hand, condition (H) is strictly stronger than condition 
(B). Indeed, for numbers a — l / (a i + 1/(^2 H such that 

a» < fli+i < exp(a^) 

condition (B) is always fullfilled; on the other hand, defining b0 = 0, bn = 
exp(òn_i), the number a satisfies (H) if and only if, for any k > 0, we have 
flm+fc < bm for m large'enough; for instance, if a^i > exp(a^), for some 6 E (0,1), 
a does not satisfy (H). 
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Conditions (B) and (H) are closely related: let H0 be the set of irrational a 
such that A(?7i,0) > Log CK"1 for large m; then a satisfies (H) if and only if its 
orbit under GL(2,Z) is contained in H0, whereas it satisfies (B) if and only if its 
orbit meets Ti0. 

REMARKS. (1) The fact that the optimal arithmetic condition is not the same 
in the local and global conjugacy theorems is in strong contrast with the smooth 
(C°°) case; then in both theorems, the optimal arithmetic condition is the standard 
one 

Log qn+1 = 0(Log qn) 

(Moser [Mo2], Herman [HI], Yoccoz [Y2]). 
(2) Another important-difference between the smooth and analytic cases is

that the effect of good rational approximations is cumulative in the analytic case, 
but not in the smooth case. Another way to see this difference is to observe that 
the arithmetic condition in the smooth case is given by the linearized equation, 
whereas both conditions (H) and (B) do not appear naturally when looking at 
linear difference equations. 

(3) All known proofs ([HI], [Y2], [KOI], [K02], [KS]) of global conjugacy 
theorems (smooth or analytic) are based on a renormalization scheme that relies 
in an essential way on the relationship between the good rational approximations 
of the rotation number (given by the continued fraction). 

2.4 When several frequencies are involved, KAM techniques are available, but they 
do not give as much geometric insight as we would like to have. One would like 
to have some geometric renormalization scheme as above, but the problem, of 
a purely arithmetical nature, is then to understand thoroughly the relationships 
between good rational approximations. 

Here is a test case. Consider the following two theorems. 

THEOREM 1. (Arnold [A], Moser [Mo2]) Let a = ( a i , . . . , a n ) E T n satisfy the 
diophantine condition: El 7 > 0, r > 0 s.t. 

|(A:,a') + fc0|>7||fc|rn-T 

for all (k0, ki... kn) E Z n + 1 - {0}. 
There exists E = E(œ) and k = k(r) such that if f is a smooth diffeomorphism 

ofTn satisfying 

\\f ~ ^al lc* < £> 

then there exists a (small) translation R\ and a smooth diffeomorphism h such 
that 

f = RxohoRaoJr1. 
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THEOREM 2. (Moser [Mo3]) Let ( a i , . . . ,an) E Tn satisfy the diophantine con
dition: 3 7 > 0, r > 0 s.t. 

\k0cti - ki\ > 7| | /c | |_^~ r , 1 < i < n 

for all (k0,... ,kn) G Z n + 1 - { 0 } . 
There exists E = e(a) and k = k(r) such that if fi,... ,fn are smooth 

commuting diffeomorphisms of T1 satisfying 

Il/i - d a t i l e * < £ > Pifi) =0ii 

then there exists a smooth diffeomorphism h such that 

fi = hRai h-1, 1 < i < n. 

PROBLEM 1 : Prove Theorem 2 without assuming that fi is close to Rai. 

PROBLEM 2: Find the optimal arithmetical conditions in Theorem 1 and Theorem 
2 in the analytic case. 

The first problem should be easier: diophantine conditions in smooth small 
divisors problems tend to be more "stable" than in analytic ones. 

2.5 Codimension 1 invariant tori 

The fundamental result of Moser [Mol] on the existence of invariant curves for near 
integrable area-preserving twist diffeomorphisms of the annulus was first general
ized by Rüssmann as a "translated curve" theorem (removing the area-preserving 
hypothesis) [Rul], [H3]. This has recently been further generalized to higher di
mensions as follows (by Cheng-Sun [CS] and Herman [H6]). 

Let L be a smooth orientation preserving diffeomorphism of Tn x R such that 
L(Tn x {0}) = Tn x {0} and the restriction of L to T n x {0} is a translation; let 
also a E T n satisfy the standard diophantine condition (see Theorem 1 in 2.4). 

Then, if F is a smooth diffeomorphism of Tn x R close enough to L, there 
exists a translation R in T71 x R such that RoF leaves invariant a codimension one 
torus T, going through the origin, G°°-close to T n x {0}, and RoF/T is smoothly 
conjugated to the given translation Ra. 

Herman has derived important consequences of this result. 
The first is the failure of the quasi-ergodic hypothesis. The ergodic (resp. 

quasi-ergodic) hypothesis states that the generic Hamiltonian flow is ergodic (resp. 
has a dense orbit) on the generic (compact, connected) energy surface. The classical 
KAM-theorems provide for open sets of Hamiltonian flows a set of positive measure 
(on each energy surface) made of diophantine invariant tori; hence the ergodic 
hypothesis fails. Herman has discovered a rigidity property of the rotation number 
in the symplectic context that guarantees a similar phenomenon: there exist a 
nonempty open set of Hamiltonian flows and energy values for which the energy 
surface contains a Cantor set of codimension one diophantine invariant tori; the 
orbits "between" the tori are thus constrained to stay there. 
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Another important consequence is the failure of a conjecture of Pesin: Herman 
shows that on any manifold M (of dimension > 3) there exists a nonempty open 
set of volume-preserving diffeomorphisms whose Lyapunov exponents are all 0 on 
a set of positive volume. In dimension 2, this follows from Moser's twist theorem. 

2.6 In the symplectic context, Mather has been pioneering the study of quasiperi
odic motions through a variational approach. In one degree of freedom, we now 
have (due to Aubry [AD], Mather [Mal], Le Calvez [LeCl], . . . ) a fairly satisfac
tory theory of Aubry-Mather Cantor sets. In more degrees of freedom, Mather has 
obtained a yet partial generalization that seems quite promising in understanding 
somewhat Arnold diffusion ([Ma3], [Ma2]). 

Let me explain this very roughly for discrete time (diffeomorphisms). Con
sider an integrable diffeomorphism L of T n x Rn = T*Tn: 

L(0,r) = (0 + W(r) , r ) , 

with strictly convex ß super linear at oo. 
To each invariant lagrangian torus {7̂  = r0}, we can associate the cohomology 

class r0 E H1 (Tn , R) and the rotation number a = VP(r0) that belongs in a natural 
way to Hi(V\R). 

Let now F:(0,r) \—> (B,R) be an exact symplectic diffeomorphism close to 
L. Writing 

E Ri dBi - E n dOi = dH(6, G) 

we obtain the generating function H of F, defined on Rn x Rn and satisfying 

H(9 + k,B + k) = H(6, G), k E Zn. 

Given an invariant measure p with compact support, we transport it via (0,r) \—> 
(6, 6) to the diagonal quotient (Rn x R n ) /Z n and consider, for UJ E Rn = H1^71, 
R), the UJ-action: 

Aw(n) = J[H{0,e)-(u>,G-0)]diM. 

The invariant measure is minimal if it minimizes the cj-action (amongst invariant 
measures, or equivalently amongst all measures) for some cohomology class UJ. 

On the other hand, to any invariant measure, one can associate a rotation 
number 

a(p) = f(Q -6) dp E Rn = iJ i (T n ,R) . 

Then p is minimal if and only if it minimizes the action A0 amongst all invariant 
measures with the same rotation number. 

For any UJ, there exist cj-minimal measures; there also exist minimal measures 
with any given rotation number a. The correspondence between a and UJ is realized 
by Legendre transform (in a nonsmooth, nonstrictly convex context). 

The support of such a minimal measure is an invariant torus in the integrable 
case and shares in the general case some properties of Aubry-Mather sets: in partic
ular, it is the graph of the restriction to a closed subset of a Lipschitz map from T n 

to Rn. 
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The key point for further progresses is to understand the "shadowing" prop
erties of these minimal measures. With one degree of freedom, Mather has proved 
(see also Le Calvez) that there are no obstructions except for the obvious ones: 
if (An)_n E Z is a sequence of Aubry-Mather sets, not separated by an invariant 
curve, there exists an orbit coming successively (in the prescribed order) close to 
each of the A .̂ In more degrees of freedom, invariant tori do not separate and there 
is no obvious obstruction preventing an orbit to come successively close to the sup
ports of any given sequence of minimal measures (for a generic diffeomorphism). 
Mather has a partial result in this direction. 

2.7 Renormalization theory for quadratic polynomials 

The Aubry-Mather sets and minimal measures we have just discussed are impor
tant generalizations of the classical KAM quasiperiodic motions. Another non
standard "generalization" is provided by the dynamics of infinitely renormalizable 
quadratic polynomials. 

The key tool is the Douady-Hubbard theory of quadratic-like maps [DH2], 
i.e. ramified covering f:U —» U' of degree 2, with U, Ul simply connected and 
U CC U*. Such a map is quasiconformally conjugated to a quadratic polynomial, 
its filled-in Julia set is Kf = f| f-n(U'). 

An integer n > 2 is a renormalization period for the quadratic polynomial 
Pc: z \—> z2-\-c if there exist open neighborhoods Un CC U^ of 0 such that P™:Un —> 
Ul

n is quadratic-like with connected filled-in Julia set. The quadratic polynomial 
is infinitely renormalizable if the set j\f = {ni < n<i < ... } of its renormalization 
periods is infinite; then Uk divides TC/C+I (we write rik+i = Pk+i^ki Vi — ni)\ let 
f0 = Pc and fk = Pck /Unk. Then /fc+i is the restriction of f%k to the smaller 
domain cTn ; it is called the renormalization of fk- (See Figure 1). 

Figure 1 

In the study of the dynamics of rational maps, a key point is to understand the 
geometry and the dynamics of the post-critical set: 

P(f) = {fn(c)in > l ,c critical value}. 
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In our case, P(f0) is contained in the fully invariant compact set 

* - = n u # ( * / * ) • 
k>QQ<j<nk 

We have a natural continuous surjective map 

UT«, - ^ Z ^ = limZ/nfcZ 

onto the profinite abelian group of AA-adic integers, the dynamics on Zjy being 
translation by 1; the post-critical set is sent to the set of positive integers. The 
map p is known to be a homeomorphism for real c (Sullivan), but it is also known 

-that-it is not always injective. 

PROBLEM: Find a necessary and sufficient condition on the combinatorics for p to 
be a homeomorphism. 

Very little is known in the general case (with complex c). On the other hand, 
a beautiful approach pioneered by Sullivan [Sul], [Su2] has been fruitful in impor
tant particular cases. The general strategy is the following; one first constructs, 
from an infinitely renormalizable quadratic-like map, a geometric object that is a 
compact set laminated by Riemann surfaces (Riemann lamination). The dynam
ical properties of the initial quadratic-like map correspond to some properties of 
the complex geometry of this Riemann lamination. Such laminations have, as usual 
Riemann surfaces, a Teichmüller space; the renormalization operator (from fk to 
/fc+i) corresponds to a map between such Teichmüller spaces and we are led to 
study the dynamics of this new map (at the "parameter" level). This map does 
not increase the Teichmüller distance, and the central problem is to understand 
to which extent it is contracting. There are partial results in this direction by 
Sullivan (for real c, with (pk)-k > 1 bounded) and McMullen (under a potentially 
more general geometric assumption) [McM]. 

3 Hyperbolic dynamics 

3.1 Before we discuss some recent developments, we recall some "classical" hyper
bolic dynamics, as developped by Anosov, Sinai*, Smale, Palis, . . . in the 1960s 
[Bo], [Sm], [Sh], [Y9]. 

The central concept is that of a basic set: if / is a smooth diffeomorphism 
of a manifold M, a basic set of / is a compact, invariant subset K of M that is 
transitive (f/K has a dense orbit), locally maximal (K is the maximal invariant 
set in an open neighborhood), and hyperbolic: the tangent bundle E = TM/K 
admits an invariant splitting E = Es © Eu in a stable subbundle Es uniformly 
contracted by Tf and an unstable subbundle Eu uniformly contracted by Tf~x. 

The dynamics on a basic set are fairly well understood (and completely so 
when dim M = 2); in particular, the existence of Markov partitions allows us to 
reduce the study of periodic orbits, invariant measures, . . . to the same problems 
in symbolic dynamics, i.e. subshifts of a finite type on a finite alphabet. 
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The existence of a basic set K for a diffeomorphism is a semilocal property: 
it only involves the dynamics of / near K. One gets to more global properties 
(Anosov diffeomorphisms, Axiom A diffeomorphisms, . . . ) if one asks that some 
big invariant subset, carrying "most" of the dynamical properties of / , is hyper
bolic. 

For instance the chain recurrent set G(f) of a smooth diffeomorphism of 
a compact manifold is the locus of points that are periodic for some arbitrarily 
small C°-perturbation of / . Let us say that / is uniformly hyperbolic if C(f) is 
hyperbolic. 

It can be proven that G(f) is then a finite union of disjoint basic sets. Uni
formly hyperbolic diffeomorphisms form an open subset of Diff°°(M) (it is even 
open in the C1-topology), and they are stable [R], [Ro]: two C^-close uniformly hy
perbolic diffeomorphisms are topologically conjugated on a neighborhood of their 
respective chain recurrent sets. Actually, a deep theorem of Mane (extended by 
Pahs) states that the converse is also true: a diffeomorphism that is C1 stable in 
this sense is uniformly hyperbolic [M3]. 

It was hoped at some point that such globally hyperbolic diffeomorphisms 
could account, at least in the dissipative case, for most diffeomorphisms. This was 
shown to be too optimistic when Newhouse [NI], [N2] discovered in the 1970s that 
there exist open sets of diffeomorphisms that exhibit generically infinitely many 
attractive periodic orbits (this is not compatible to any global uniform hyperbolic 
behaviour). Nevertheless, uniformly hyperbolic diffeomorphisms still constitute a 
good starting point from which one can bifurcate and study more complicated 
diffeomorphisms. Also, there are many important classes of diffeomorphisms that 
are not uniformly hyperbolic, but that admit many basic sets that together should 
carry a lot of information on the dynamics. 

3.2 The conceptual apparatus to study weaker forms of hyperbolicity is based on 
Oseledets' theorem (1968) [O] and Pesin's theory (1976) [Pel], [Pe2], [FHY]. Os-
eledets theorem, itself based on a subadditive ergodic theorem, asserts the existence 
of Lyapunov exponents of a diffeomorphism on a (Borei) set of points that has full 
measure with respect to all invariant measures. From this starting point, Pesin 
then constructed the stable and unstable "foliations" associated to the nonzero 
exponents and proved the crucial fact that they are absolutely continuous. 

How frequently are all (or some) of the Lyapunov exponents of a non-uniform-
ly hyperbolic diffeomorphism different from 0 ? I have mentioned above Herman's 
theorem (see 2.5), which indicates that we cannot be too optimistic. On the other 
hand, there have been several breakthroughs showing that it tends to happen with 
positive measure in the parameter space. 

3.3 The first crucial step in this direction is Jakobson's theorem (1981) [J]. He 
considers real quadratic polynomials Pc(x) = x2 + c, for c in some subset A£ C 
[—2,-2 + E], whose relative measure tends to 1 as e goes to zero. For such a 
parameter, let a be the negative fixed point of Pc and / = (a, — a); he constructs 
a countable partition I = [J Ii (mod 0) into disjoint open intervals and a map 
T: U Ii —> / that is uniformly expanding (with bounded distortion) and whose 
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restriction to each Ii is an iterate Pj?* realizing a diffeomorphism onto i" (see 
Figure 2). 

graph (Pc) 
—a 

graph (T) 

Figure 2 

An important point is that although the ki are not bounded, the measures of the 
Ii for which ki > k is exponentially small with k. From the existence of such a map 
T, it is easy to deduce that Pc has an ergodic invariant measure that is equivalent 
to Lebesgue measure on the (real) Julia set, and that the corresponding Lyapunov 
exponent is positive. 

This kind of result has since been extended in several directions. Rees [Re] 
has proved that a similar statement holds for an holomorphic family of rational 
maps (see also [Be]). Jakobson and Swiatek have extended the set of values of c 
for which the map T is constructed (putting no restriction on the k^s) [JS]. 

For complex quadratic polynomials whose all periodic orbits are repulsive 
and that are not infinitely renormalizable, I proved that the dynamics are still 
sufficiently expanding to guarantee that the Julia sets are locally connected, as 
a consequence of a (very weak) self-similarity property [Y10]. Lyubich [Lyl] then 
went on to prove that such a Julia set has measure 0. These results are related to 
previous work of Branner-Hubbard [BH] and McMullen [McM] on complex cubic 
polynomials. 

3.4 Another very important breakthrough, going to higher dimensions, was 
achieved by Benedicks-Carleson (1989). They consider Hénon's family [He] of poly
nomial diffeomorphisms of the plane: 

Hatb(x, y) = (x2 + a - y, bx). 

The parameter b is the constant value of the Jacobian; it is fixed and very small. 
The parameter a belongs to a subset AE C [—2-\-E, — 2+2e] of relative large measure, 
with 0 < |b| <^ E «C 1. For such parameters, the rectangle U = {(x,y),\x\ < 
2 — £er, \y\ < 3b} satisfies Ha^(U) CC U, and one wants to describe the "attractor" 

K» = R KbW-
71>0 
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What emerges from Benedicks-Carleson's study [BC2], together with more recent 
work of Benedicks-Young [BY] and Jakobson-Newhouse [JN] is the following struc
ture (see Figure 3): one can construct an open subrectangle V C U, a countable 
family of disjoint subrectangles Vi C V such that [j Vi "essentially" covers V D A, 

i 

and a map T:\jVi —> V, whose restriction to Vi is some iterate Hki of H, and 
i 

that is uniformly hyperbolic; the /c '̂s are not bounded, but they take big values 
on very small sets. 

vAv2 
pd 
pd \v; 

Y////////////////////M 
\////////////////////TTTT> 
v / / / / / / / j * / / / / j / J / / / / / / / / 

>/////////////////////77T\ 

WMMMMMA 

Figure 3 

From there, one constructs a nice S inai- Bowen- Ruelle invariant measure on A; it 
describes the asymptotics of a positive Lebesgue measure set of orbits in U, and the 
Lyapunov exponents with respect to that measure are nonzero. One also recovers 
many classical properties of uniformly hyperbolic attractors (it is easy to see that 
A cannot be uniformly hyperbolic; in fact, there is a dense subset of A where the 
stable and unstable manifolds are tangent). 

One should note that the admissible set AE of values of the parameter a 
has an empty interior; also, two distinct values of a give rise to attractors that 
admit the same qualitative description, but are definitely not conjugated. This is 
in strong contrast to the uniformly hyperbolic case. 

The kind of phenomenon that we have tried to describe is not particular to 
the Hénon family. A first extension of these results, extremely important for appli
cations (see below), was given by Mora-Viana [MV], who introduced the concept 
of "Hénon-like" families. More recently, Viana [V] proved similar results for some 
families in higher dimensions, for instance skew products: 

T: T 2 x R 2 ^ T 2 x R2 

T(9,(x,y)) = (A(0),Ha{G)tb(x,y)), 

where A is an Anosov diffeomorphism of T2 (for instance linear hyperbolic) and 
a is a Morse function on T2 (subjected to some conditions). In this context, be
cause of the uniform hyperbolicity on the base, it is no more necessary to exclude 
parameters. 

file://T:/jVi
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3.5 What we would like to do in the next few years is to obtain a conceptual 
theory of "weakly hyperbolic basic sets" (including of course the striking exam
ples considered above). For a smooth diffeomorphism / of a manifold M, such 
a "weakly hyperbolic basic set" should again be a compact, invariant, transitive, 
locally maximal subset K of M satisfying moreover some kind (?) of weak hyper-
bolicity condition. Let me speculate, based on the examples above, on what could 
be some aspects of this theory. 

(1) One would be able to cover "most" of K with a countable family of disjoint 
open sets Vi and define on [j Vi a uniformly hyperbolic map T whose restriction to 
Vi is some iterate fk% of / ; 

(2) One would thus obtain K as the limit (for the Hausdorff distance on compact 
sets) of an increasing sequence of (uniformly hyperbolic) basic sets 

77l£Z 

(3) One should be able to construct some kind of Sinaï-Bowen-Ruelle invariant 
measure, whose "restriction" to most unstable manifolds would be absolutely con
tinuous with respect to some Hausdorff measure on the unstable manifold. The 
Lyapunov exponents with respect to this measure would be nonzero; 

(4) There would exist some "infinite Markov partition" (as the Vi above) allowing 
a description by symbolic dynamics (with an infinite alphabet). 

4 Parameter space 

4.1 I want to discuss now "how many" dynamical systems we are able to under
stand. 

Let us start with a "test case", the family of quadratic (real or complex) 
polynomials Pc: x \—> x2 + c, where only one (real or complex) parameter c is 
involved. 

If the critical point 0 escapes under iteration to infinity or converges to some 
attractive periodic orbit, the dynamics on Jc are uniformly hyperbolic (expanding) 
and stable; such parameters c form an open set E/hyp. 

If there is a periodic orbit with eigenvalue A of modulus 1, the parameter c is 
determined (algebraically) by the period and À (up to a finite number of choices); 
the dynamics on the Julia set is of "weak-hyperbolic" type when À is a root of 
unity, whereas quasiperiodic features are dominant when À is not a root of unity 
(see 2.2). 

We are left with the case where all periodic orbits are repulsive, but the crit
ical point belongs to the Julia set Jc (preventing it to be uniformly hyperbolic); it 
is here natural to discuss separately the cases where Pc is infinitely renormalizable 
and it is not. 

In the non-infinitely renormalizable case, the dynamics on the Julia set still 
exhibit some (very weak) form of hyperbolicity (see 3.3). As a consequence, I 
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proved that such parameters are rigid, i.e. they are determined by the combina
torics of the Julia set [Y10]. 

In the infinitely renormalizable case, the dynamics on the Julia set exhibit 
many quasiperiodic features (see 2.7). Swiatek [Sw] and Lyubich [Ly2] have proved 
that for real quadratic polynomials, these parameters are rigid (in the real sense). 
As a consequence, the open set Uhyp fi R of (uniform) hyperbolicity is dense in 
R. Actually, one would expect that even the following stronger statement should 
be true: for almost all e E R, either e E £/hyp

 o r there exists (as in Jakobson's 
theorem) an invariant measure on Jc D R, absolutely continuous with respect to 
Lebesgue measure, for which the Lyapunov exponent is nonzero. 

On the other hand, although there is a partial result by Lyubich, it is not 
known whether infinitely renormalizable parameters are rigid in the complex sense. 
This is the missing step in the Douady-Hubbard's conjecture that the Mandel
brot set is locally connected; actually, assuming this rigidity, we would have from 
Douady-Hubbard [DH1] and Thurston a complete topological description of the 
Mandelbrot set (whereas we have only a combinatorial one at the moment). 

4.2 In higher dimensions, such as for instance for diffeomorphisms of surfaces, we 
are still very far from having a near complete understanding of the "parameter 
space". 

Nevertheless, the results that we have discussed above and others in the same 
line have led to a change of point of view in looking at these problems. 

The classical, uniformly hyperbolic, basic sets have a strong stability property 
known as hyperbolic continuation: a nearby diffeomorphism admits a basic set 
close to the original one and the dynamics on the two basic sets are conjugated 
by a homeomorphism close to the identity. The "parameter space", for instance 
the space of all smooth diffeomorphisms of the given compact manifold, was in 
the 1960s and 1970s mostly considered from a topological point of view; one was 
looking for dynamical features appearing on some open set, or some G s set (dense 
into some open set). 

Although this point of view remains important, properties of "weakly hyper
bolic basic sets" such as Hénon-like attractors have given a strong impetus on the 
measure-theoretic point of view of the parameter space: typically, in a generic pa
rameter family of diffeomorphisms, one expects to meet these weakly hyperbolic 
features on a Fa subset of the parameter space (because one needs to exclude 
parameters), but one that has positive Lebesgue measure. 

4.3 I would like here to emphasize the importance of the Hénon family, or rather 
of the Hénon-like families introduced by Mora and Viana (see 3.4), for the study 
of surface diffeomorphisms. 

Consider a smooth diffeomorphism f0 of a surface M that exhibits a homo-
clinic tangency: this means that f0 has a fixed saddle point p such that the stable 
manifold Ws(p) and the unstable manifold Wu(p) are tangent along a homoclinic 
orbit (fn(q))n£Z- This is a codimension one phenomenon. 

Assume that the tangency is quadratic and consider a one-parameter family 
of diffeomorphisms (/t)-|£| < E unfolding generically the tangency. 
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One would like to understand the orbits under ft, \t\ small, which remain in 
an appropriately small neighborhood of the orbit of q under f0. To do this, the 
first step is to compute the return map Rt into some small neighborhood V of 
q; it is a disjoint union V = \J Vn; Rt is equal to / " on Vn and is a Hénon-

like family of approximately constant Jacobian. The striking conclusion is that 
every dynamical feature exhibited by the Hénon family, or Hénon-like families, 
actually occurs in a generic one-parameter family near homoclinic bifurcations. 
For instance, if the fixed point p is dissipative, the Jacobian of these Hénon-like 
families will be very small and we will get for a positive measure set of parameters 
Hénon-like attractors. Let me recall in this context an older result of Newhouse: 
there are arbitrarily close to 0 intervals of parameter values in which for generic 
t the diffeomorphism ft has infinitely many periodic orbits; still we suspect (but 
we don't know) that this only happens for a set of t of Lebesgue measure zero. 

Homoclinic bifurcations are by no means the only codimension one bifur
cations where Hénon-like families occur; another such example, studied by Diaz, 
Rocha, and Viana, is the critical saddle-node bifurcation [DRV1], [DRV2]. 

4.4 Palis has proposed a general program to stud}'' the dynamics of (non-uniformly 
hyperbolic) diffeomorphisms (of compact surfaces, to begin with). He suggests that 
one should look first to a dense subset in the space of non-uniformly hyperbolic 
diffeomorphisms for which we have at least some grasp of the dynamics; he conjec
tures actually that homoclinic tangencies could be such a subset. Then one should 
consider generic parametrized families through these "simple" diffeomorphisms, 
and study which dynamical features are "persistent" in the measure theoretical 
sense, i.e. they occur on sets of parameters of positive measure or even relative 
positive density near the initial diffeomorphism. 

Starting with Newhouse-Palis-Takens [NPT] and Palis-Takens ([PT1], [PT2]), 
there has been a great deal of effort and results related to the study of homoclinic 
bifurcations, which give rise to an extremely rich number of complicated phe
nomena; still we are quite far from a satisfactory understanding of / . One very 
interesting feature of these results, when the fixed saddle point belongs to some 
(uniformly hyperbolic) basic set, is the subtle relationship between the geometry 
of the basic set (Hausdorff dimension, thickness, . . . ) and the dynamics near the 
bifurcating parameter [PY2]. 

4.5 Still there is a very central difficulty in carrying out Palis's program, a difficulty 
that occurs at very many places in dynamical systems, the so-called closing-lemma 
problem. Pugh's closing lemma [Pu] asserts that if p is a recurrent point for a 
smooth diffeomorphism / , then one can perturb / in the C1-topology in order for 
p to become periodic. See also [Ml]. 

We still have no idea whether it is possible to achieve the same goal by a 
C2 (or even C1+£r) perturbation. In particular, we still don't know whether the 
C2 diffeomorphisms of T2 that have a periodic orbit form a C2-dense subset of 
Diff2(T2)! Guttierez [G] has constructed an example (on the noncompact surface 
T2 — {0}) that indicates that the localized perturbations used by Pugh in the C1-
case cannot be sufficient in the C2-case. Also Herman [H4], [H5] has constructed 
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a Hamiltonian flow on a compact symplectic manifold, for which no periodic orbit 
can be created by smooth perturbations of the Hamiltonian (because of KAM-
theory and a symplectic rigidity of the rotation number) . 

In a similar vein, recent results of Herman suggest tha t it would be very 
interesting to know the answer to the following question: Let C be the set of 
smooth diffeomorphisms (of a compact manifold M) tha t are of finite order on a 
nonempty open set (depending on the diffeomorphism) ; what is the closure of C 
in the C°°-topology? 
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Introduction 

The study of simply definable equivalence relations, and in particular of Borei 
and analytic ones, on Polish spaces, has attracted a lot of attention in descriptive 
set theory since 1970, when the first fundamental result in the subject, Silver's 
theorem, was proved. 

One motivation has certainly been the conjecture of Vaught in model the
ory, one of the oldest still open problems in mathematical logic, which can be 
interpreted as a question about certain analytic equivalence relations. Another 
motivation is that these objects are extremely common in many different fields of 
mathematics, and the answers to basic facts about them are certainly desirable. A 
third motivation is that the progress made on the tools and techniques of what is 
now called "effective" descriptive set theory, which is instrumental in many results 
in the subject, made it possible to hope for nontrivial results. 

Since the 1970s, the study of these equivalence relations has been developed 
in many directions. This article will only consider one central question: Given a 
Polish space X, and a simply definable equivalence relation E on X, what can be 
said about the size of the quotient set X/E of equivalence classes? 

In the rest of this paper, X will always denote a Polish space, i.e. a topological 
space homeomorphic to a separable complete metric space. And as all uncountable 
Polish spaces are Borei isomorphic, and we will work up to Borei isomorphism 
anyway, one can think of X as being the Cantor space G = {0,1}N. (One could 
also consider more general domains, like analytic or coanalytic ones, but simple 
manipulations usually allow us to reduce the questions to Polish domains.) It 
will be understood that X is the domain of an equivalence relation E. And as 
E is a subset of the Polish space X2, definability properties of E make sense in 
that space. This paper will focus on the Borei equivalence relations and on the 
analytic ones. (A set is analytic in a Polish space if it is a continuous image of a 
Borei set. It is coanalytic if its complement is analytic.) What about the "size" 
of the quotient X/E? The usual set-theoretic notion is that of cardinality, and 
it is historically the first that has been studied, again in relation with Vaught's 
conjecture. In the first section of this paper, I will present the dichotomy results 
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of Silver (which imply that for Borei E, the quotient is either countable or of 
cardinality the continuum) and Burgess (that for analytic E, and regardless of the 
exact value of the continuum, the only other possibility is Ni). I will also relate 
these results to Vaught's conjecture. 

In a second section, I will introduce and study another notion of "size" for 
quotients, more in the spirit of descriptive set theory, where the one-to-one maps 
between quotients that compare their size are now assumed to be "definable" (i.e. 
to come from definable maps on the domains). This leads to a partial ordering 
between equivalence relations, first introduced by Friedman and Stanley, for which 
it is still possible to get dichotomy results in the Borei case (Harrington-Kechris-
Louveau) and in the analytic case (Becker, Hjorth-Kechris), which I will discuss, 
together with some other properties of this ordering. 

This article is not a research paper (in particular, no proofs are given, and 
it is a bit of a pity, for proofs convey often more of the flavor of the subject 
than the results). It is also not a survey paper (even for the narrow problem it 
considers, this would need much more space), but a mere introduction to the 
subject, with a chosen sample of results (many important works, especially about 
the Vaught conjecture and its generalization, the topological Vaught conjecture, 
are not mentioned). For the reader interested in the subject, there should soon 
be available a monograph, by Kechris ([K]), called "Lectures on definable group 
actions and equivalence relations", that will contain the material presented here, 
and much, much more. 

1 Cardinality of quotients 

The following result of Silver gives the possible cardinalities of quotients X/E, 
when E is a Borei, or even a coanalytic, equivalence relation on a Polish space X. 

THEOREM (SILVER [SI]) . Let E be a coanalytic equivalence relation on the Polish 
space X. Then either 
(i) X/E is countable 

or 
(ii) There is in X a copy of the Cantor space C consisting of pairwise E-inequi-

valent elements (so in particular X/E has cardinality the continuum). 

A subset of X that picks at most one point in each equivalence class of E is 
called a partial transversal, and a transversal if in addition it meets all classes. So 
Silver's theorem asserts that if X/E is uncountable, it admits a partial transversal 
that is a perfect set homeomorphic to C. One then says that E has perfectly many 
classes. The question of the existence of well-behaved (total) transversals will be 
discussed in the next section. 

Silver's result is reminiscent of the classical perfect set theorem for analytic 
sets — which indeed can be viewed as a particular case of it. But it is much harder 
to prove. Silver's original proof is both difficult and metamathematical. A later 
simpler proof by Harrington (unpublished) had a considerable influence on the 
subject because it brought into it the "effective" techniques borrowed from the 
theory of definability on the integers, hence based ultimately on comput ability 
theory, that are now central to the subject. 
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Silver's result was the starting point of a series of investigations about the 
number of classes of definable equivalence relations. The next result takes care of 
the analytic case. 

THEOREM (BURGESS [B] ). Let E be an analytic equivalence relation on the Polish 
space X. Then either 
(i) X/E has cardinality at most Ni 

or 
(ii) E has perfectly many classes. 

This result says that, compared to the Borei case, the analytic case adds at 
most one possibility, namely that of Ni many, but not perfectly many, equivalence 
classes. Such analytic equivalence relations do exist: it is easy to give the set LO 
of linear orders with domain N a Polish topology. For this topology, the following 
relation between linear orders is analytic: two orders are equivalent if they are 
well-orders of the same length, or if both are not well-orders. This relation does 
not have perfectly many classes, and its quotient space is isomorphic to the set u)\ 
of countable ordinals. 

After the results of Silver and Burgess, investigations have been pursued 
in two main directions. The first one concerns even more complicated definable 
equivalence relations. For this line of research, see the papers of Harrington-Sami 
[HSa] and Harrington-Shelah [HSh]. 

Another line of research is concerned with the possibility of extending Sil
ver's dichotomy result to interesting subclasses of analytic equivalence relations, 
in particular in relation with Vaught's conjecture in model theory. 

Vaught's original conjecture is the statement that any first-order theory (in 
a countable language) has either count ably many or else continuum-many noniso
morphic countable models. 

As in the case of linear orders, it is possible to equip the set of models of a 
given first-order theory that have domain N with a natural Polish topology, for 
which the isomorphism relation becomes analytic, but not always Borei. So Silver's 
result does not apply to this situation, and the result of Burgess is inconclusive. 

On the other hand, the isomorphism equivalence relations that arise in model 
theory are not arbitrary analytic equivalence relations. They are a particular case 
of the following situation: Suppose we are given a Polish group G (i.e. a topological 
group that is a Polish space), and a Borei action a : G x X —> X of G on X. One 
can then consider the associated orbit equivalence relation Ea on X defined by 

xEay <r^3g e G a(g, x) = y 

(the model theory case corresponds to the natural action of the symmetric group 
£00 (N) of permutations of N on the space of models with domain N). 

Orbit equivalence relations of Borei actions of Polish groups are analytic 
(and again not always Borei). The natural generalization in descriptive set theory 
of Vaught's conjecture is the so-called topological Vaught conjecture: "For any 
Borei action of a Polish group on a Polish space, the orbit equivalence relation has 
either count ably or perfectly many classes." 
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A lot of work has been done on the two conjectures, both in model theory 
and in descriptive set theory, and it is impossible to give here a fair account of the 
known results. 

In model theory, Vaught's conjecture has been established for many theories, 
in particular among the theories for which the classification tools apply. The best 
results at present are that Vaught's conjecture holds for the so-called cj-stable 
theories (Harrington-Makkai-Shelah [HMS]), and the superstable theories of finite 
rank (Buechler [Bu]). The conjecture is also known for some specific theories, trees 
for example (Steel [St]). 

In descriptive set theory, the topological Vaught conjecture is known for var
ious acting groups (the locally compact ones, the abelian ones), and for orbit 
equivalence relations with special (rather technical) properties (see Steel [St]). 
Still, both conjectures are open. 

2 An alternative notion of size for quotients 

DEFINITION. Let E and F be two equivalence relations on the Polish spaces X 
and Y j respectively. A reduction of E to F is a map f : X —» F that satisfies, for 
all x and y in the space X, 

xEy~f(x)Ff(y). 

We say that E is Borei reducible to F, or F Borei reduces E, written E •< F} 

if there exists a Borei reduction of E to F. The relations E and F are Borei 
bireducible, written E = F, if both E ^ F and F ^ E. 

Note that a reduction / of E to F induces a quotient map /* : X/E —» Y/F, 
which is one-to-one. So the idea of Borei reducibility is to compare the sizes of 
quotients not by arbitrary one-to-one maps, as is done in cardinality theory, but 
by one-to-one maps that are induced by Borei functions. And heuristicaUy the class 
of equivalence relations that are Borei bireducible with a given E is a measure of 
the "Borei size" of the quotient space X/E. 

The notion of Borei reducibility was first introduced, in the context of model 
theory, by Friedman and Stanley [FS]. It corresponds there to the search, for 
countable models of a given theory, of invariants that describe the models up to 
isomorphism, and is used in [FS] as a way of comparing theories. 

What are the possible "Borei sizes" of quotients? Let us first consider the 
case of Borei equivalence relations. 

First, Silver's dichotomy result can be interpreted in terms of the ordering :< 
Denote by A (A), for any set A, the relation of equality on A. Then Silver's result 
asserts that for any Borei E, either E ^ A(N), or else A(C) ^ E, where G is the 
Cantor space. So among uncountable Borei quotients, C has the smallest "Borei 
size". 

The equivalence relations that are Borei reducible to equality on C are called 
smooth. They can alternatively be characterized as those Borei equivalence rela
tions that admit a countable Borei separating family, i.e. a sequence (Bn) of Borei 
S-invariant sets such that 

xEy <-> Mn{x G Bn <-> y G Bn) 
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and also as those for which the ^-algebra of ^-invariant Borei sets is countably 
generated. 

Moreover, using a selection theorem of Jankov and von Neumann, smooth 
equivalence relations admit C-measurable transversals. (In a Polish space, a set 
is C-measumble if it is in the smallest or-algebra containing the open sets and 
closed under Suslin operation. These sets are more general than the analytic and 
coanalytic ones, but still well behaved, in particular, universally measurable.) 

Closed, and even G s equivalence relations are smooth. But it is well known 
tha t there are simple Fa equivalence relations with no universali}'' measurable 
transversals, hence tha t are not smooth, e.g. Vitali's famous example of equality 
mod Q on the space R. Here we will consider another example (which happens to 
bc Borei bireducible to Vitali's example), the relation EQ of eventual equality on 
the Cantor space C, given by 

cvEoß <-> 3?7,Vm > n a(m) = ß{m). 

This Fa equivalence relation is not smooth, hence C/EQ represents a new quotient, 
of "Borei size" bigger than C. The next dichotomy result, which extends earlier 
results of Glimm [G] and Effros [El], [E2], says tha t it is indeed the smallest Borei 
quotient above C. 

T H E O R E M ( H A R R I N G T O N - K E C H R I S - L O U V E A U [HKL]). Let E be a Borei equiva
lence relation on the Polish space X. Then either 
(i) E is smooth, i.e. E is Borei reducible to A ( C ) ; 

or 
(ii) EQ ^ E, in fact there is a one-to-one and continuous reduction of EQ to E. 

A consequence of this result is the following: Say tha t a probability measure 
ß on X is ergodic for E if every Borei £?-invariant set has p-measure 0 or 1, and 
nonatomic for E if every i^-class has //-measure 0. For example, A(C) admits 
no ergodic nonatomic measures, but the usual Lebesgue measure on C is both 
ergodic and nonatomic for EQ . It is easy to check tha t ergodicity and nonatomicity 
are preserved under images by Borei (or even universally measurable) reductions. 
Hence the previous result implies that , for a Borei equivalence relation, smoothness 
is indeed equivalent to the existence of a C-measurablc transversal (this is the way 
smoothness is proved for Gs equivalence relations), and also tha t the relation 
EQ ^< E is equivalent to the existence of an ergodic and nonatomic probability 
measure for E. 

Equivalence relations that are Borei reducible to EQ are called hyperfinite. 
Among the Borei equivalence relations with countable equivalence classes, they 
can be characterized as those induced by a Borei automorphism of X, i.e. as the 
orbit equivalence relations of Borei Z-actions. So they are the ones considered in 
ergodic theory (although in a different context, as the domain is a measure space, 
and the automorphism is usually assumed to be nonsingular with respect to the 
measure). Hyperfinite equivalence relations with countable equivalence classes have 
been extensively studied by Dougherty, Jackson, and Kechris, in a paper [DJK] 
t h a t contains in particular a complete classification up to Borei isomorphism. 
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However, there is no known dichotomy result, similar to the Harrington-
Kechris-Louveau result, that would separate the hyperfinite equivalence relations 
from the other ones, and some basic questions about them are open. For example, 
it is not known exactly which countable groups have the property that all their 
Borei actions have hyperfinite orbit equivalence relations. It holds when the group 
is Z n (Weiss) or more generally is a finitely generated group of polynomial growth 
(Jackson-Kechris-Louveau), and it does not hold if the group is not amenable (in 
analogy with the measure case, amenability should be the right conjecture). 

Above EQ , the partial order of Borei reducibility between Borei equivalence 
relations is not very well understood, and the known results indicate that it has a 
rather complicated structure. 

First, it has a cofinal sequence of length ui, but no maximum element (Fried
man). In fact, if one defines, for a Borei equivalence relation E on X, the Borei 
relations E+ and E* on XN by 

(Zn)n<EN # + Ü/n)n<EN <"> {xn/E \ U G M} = {yn/E : U G N}, 

where x/E denotes the E'-class of x, and 

(xn)neN E* {yn)nen <-> 3n Mm > n xnEyn, 

then for E with at least two classes, both E+ (Friedman) and E* (Louveau) are 
strictly bigger than E in the ordering •<. These two "jump operators" are also 
incomparable (e.g. the relations A(C)+ and A(C)* are ^-incomparable). 

Another result (Kechris-Louveau) is that for any Borei E strictly above EQ, 
there is always another Borei E' that is ^-incomparable to it. It follows that 
there can be no similar dichotomy results above EQ, at least for the whole class 
of Borei equivalence relations. Finally (in this list of negative results), Louveau 
and Velickovic [LV] have shown that the partial order of almost inclusion between 
subsets of N can be embedded, as a partial order, in the order -< between Borei 
equivalence relations. Hence so does any partial order of size at most Ni, and there 
is no hope to describe in a reasonable way the various possible "Borei sizes" of 
Borei quotients. 

The ongoing research on this partial ordering focuses on some important sub
classes of Borei equivalence relations, like the ones that have countable equivalence 
classes. For more on the subject, we refer the reader to the forthcoming monograph 
ofKechris [K]. 

Let us consider now the analytic equivalence relations. First, one should 
relax a bit the notion of definable reducibility used to compare the quotients, 
and consider, say, C-measurable reductions instead of Borei ones. Even then, the 
Harrington-Kechris-Louveau result does not extend to the analytic case. 

Consider for example, in model theory, the relation E of isomorphism be
tween countable abelian torsion groups. These groups can be classified, up to 
isomorphism, by invariants called the Ulm invariants. These invariants can be 
considered as transfinite sequences of O's and l's of countable length, i.e. elements 
of {0,1}<W1 . If one considers only groups with Ulm invariant of fixed bounded 
length, isomorphism is smooth on them. This prevents EQ from being reducible 
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to the isomorphism in any reasonable way. But the length of the Ulm invariants 
cannot be bounded below ui\, and this prevents E from being reducible to A(C) 
in any reasonable way. 

The following very recent and unpublished result says t ha t the situation above 
is in fact typical. To state the result, note that , like the set UJ\, the set {0,1}<UJ1 

can be realized as the quotient of the Cantor space C by some analytic equivalence 
relation, call it E\. One then has 

T H E O R E M ( B E C K E R , H J O R T H - K E C H R I S ) . Let E be the orbit equivalence relation 

of the Borei action of a Polish group on the Polish space X. Then either 
(i) E is reducible, via a C-measurable reduction, to E\, 

or 
(ii) EQ is continuously reducible to E. 

This result could have interesting consequences in model theory. It suggests 
that some of the theories with continuum many nonisomorphic models, which are 
usually considered unclassifiable, might still admit some kind of classification, anal
ogous to the Ulm invariants for abelian torsion groups, when £"0 is not reducible 
to the isomorphism relation. But work has to be done, first to understand what 
it means for a theory tha t EQ is not reducible to its isomorphism relation, and 
secondly in order to replace the abstract invariants of case (i) of the theorem by 
concrete ones in specific situations. 

Let us mention finally tha t a weak version of the above theorem, valid for 
arbitrary analytic equivalence relations, has also been established by Hjorth and 
Kechris, using a strong set-theoretic assumption. 
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1 Introduction 

The past few years have seen some new connections developing between model 
theory (a branch of mathematical logic) and both algebra and number theory. 
Part of the novelty, for the model theorists, is that this work depends on the 
techniques, machinery, and point of view of stability theory, whose use, up to now, 
has been largely, but not exclusively, confined to problems of pure model theory 
(such as classifying first order theories and their models). 

For us here, differential fields (and more generally, fields with operators) will 
serve as objects of study, as well as intermediaries between model theory and dio
phantine geometry. The connection between differential algebra and diophantine 
geometry goes back at least to Manin's proof [M] of the Mordell conjecture for 
function fields. Lang made a conjecture (discussed in Section 4) that generalized 
Mordell's conjecture. Buium [Bl], [B2] and Hrushovski [H] (separately) used differ
ential algebra to prove the function field version of Lang's conjecture. Hrushovski's 
proof uses in addition some model-theoretic methods and theorems and general
izes to the positive characteristic case (where the model theory of separably closed 
fields replaces that of differentially closed fields). 

On the other hand, differential algebra (the study of fields equipped with 
derivations, and the resulting algebraic study of solutions of algebraic differen
tial equations) also has a relatively long history. The theory was developed by 
Ritt and Kolchin. An important achievement of Kolchin [KI] was his "differen
tial Galois theory of strongly normal extensions", which generalized the theory of 
Picard-Vessiot extensions, and was moreover one of the starting points of the mod
ern theory of algebraic groups; algebraic groups are precisely the Galois groups of 
"strongly normal" extensions. In Section 3, we present a further generalization of 
Kolchin's theory, where the Galois groups are precisely "finite-dimensional differ
ential algebraic groups". 

The general theory of differential algebraic groups (which can be thought 
of either as group objects in differential algebraic geometry, or as groups defin
able in differentially closed fields) was developed by Cassidy [Cl], [C2] and then 
by Kolchin [K2]. Finite-dimensional such groups have already been mentioned in 
connection with differential Galois theory, but also play a fundamental role in the 
aforementioned diophantine questions. In Section 2 we give a classification of the 
finite-dimensional "simple" differential algebraic groups (continuing the work of 
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Cassidy and Buium). This leads also to a solution of the problem of how many 
countable differentially closed fields of characteristic 0 there are. In Section 2 we 
also give solutions to some problems stated by Kolchin [K2] concerning arbitrary 
(not necessarily finite-dimensional) differential algebraic groups, such as their em-
beddability in algebraic groups. 

It is now time to mention model theory. The reader is referred to Hodges' 
recent book [Ho] and also [P] for the basic ingredients of first order logic, model 
theory, and basic stability theory. [Pil] and [Pi2] are recommended for stability 
theory. Many of the basic notions of stability theory and stable group theory also 
appear in the survey article [Pi3]. Model theory studies, among other things, the 
family of first order definable sets in a given structure M. Under various hypotheses 
(such as stability) on the structure M, an array of tools has been developed, largely 
by Shelah, for understanding these definable sets and their mutual interaction. In 
particular, there is a highly developed theory of independence, orthogonality, and 
stable groups, all of which play important roles in the applications. A basic point 
is that differentially closed fields (introduced below) are cj-stable structures, and 
all the techniques apply. Separably closed fields are stable. The model completion 
of the theory of fields with an automorphism, although unstable, turns out to have 
a manageable model theory. 

If M is a model of a stable theory, A Ç M, and a, b are tuples from M, the the
ory of forking allows us to give sense to the statement "a is independent from b over 
A". If also M is cj-stable, then definable sets, and also types (intersections of defin
able sets) can be assigned an ordinal valued "dimension" (often called a "rank" ) in 
such a way that a is independent from b over A iff dim(tp(a/Ab)) = dim(tp(a/A)). 
Among such ranks we shall use Morley-rank (for definable sets and types) and U-
rank (for types and definable groups). So if X is a definable set in M (say X Ç Mn), 
defined with parameters in A Ç M, we will be able to speak of a point a G X being 
a generic point of X over A (namely if Morley-rank(X) = Morley-rank(tp(a/A))). 
If M happens to be an algebraically closed field (K,-\-,.), then the definable sets 
in M are precisely the constructible sets (finite Boolean combinations of affine 
algebraic sets), and Morley-rank = algebro-geometric dimension. So in this sense 
the model-theoretic context generalizes the Weil point of view and language of al
gebraic geometry. Partly for this reason we will follow Weil's language of varieties, 
rather than the language of schemes, in any algebraic-geometrical considerations. 

It is worth recaUing the definition of Morley-rank. If M is a sufficiently sat
urated structure and X is a set definable (with parameters) in M, then Morley-
rank(X) >a -f- 1 if there is a set {Yi'.i < UJ} of pairwise disjoint nonempty de
finable sets in M such that for all i < u, Yi Ç X and Morley-rank (Yi) > a. If 
Morley-rank(X) = a, then X is said to have multiplicity 1 if X cannot be parti
tioned into two disjoint definable sets, each of Morley-rank a. A strongly minimal 
set is defined to be a definable set of Morley-rank 1 and multiplicity 1. The strongly 
minimal set D is said to be locally modular if (after naming parameters) for any 
a, b from D, a is independent from b over acZ(a) n ad(b). 

Finally in this introduction we introduce and give the basic properties of dif
ferentially closed fields. AU the differential algebras we will mention here will be in 
characteristic 0. An (ordinary) differential field is a field F equipped with a deriva-
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tion 5:F —> F. There is a natural notion of a differential polynomial P(Xi,..., Xn) 
over F, in the differential indeterminates X\,... ,Xn. (P will be simply an ordi
nary polynomial over F in indeterminates 83(Xì), for j < UJ and i = 1, . . . ,n.). If 
n = 1, then we can speak of the order of P(X) (the greatest 771 such that 6m(X) 
occurs in P). The differential field F is said to be differentially closed if when
ever P(X), Q(X) are differential polynomials over F, with order(Q) < order(P), 
then P(X) = 0 and Q(X) ^ 0 has a solution in F. DCFo denotes the theory 
of differentially closed fields (of characteristic 0), in the language with symbols 
for +,. ,0,1,6 (namely the theory whose axioms are those for differential fields, 
together with those expressing the existence of solutions to the above systems). 
See Poizat's book [P], or Marker's survey paper [Mar] for the following facts, and 
also for attributions. 

FACT 1.1. DCFo is consistent, complete, has quantifier elimination, and is in
stable. 

A similar result holds for "partial" differential fields, namely fields equipped 
with a fixed finite set of commuting derivations. All our results generalize to this 
context. 

FACT 1.2. DCFo has elimination of imaginâmes. 

This means that if F is a model of DCFo, X Ç Fn is a definable set, and E 
is a definable equivalence relation on X, then there is some definable set Y Q Fk 

(for some k) and a definable bijection between X/E and Y. 
If U is a «-saturated model of DCFo of cardinality K (for some large K) then U 

is a "universal domain" for differential algebraic geometry, in the sense of Kolchin. 
In particular, if F is a differential subfield of U of cardinality < K and L is a 
differential field extension of F of cardinality < K, then there is an embedding of 
L into U over F. Quantifier elimination of DCFQ implies that if F is a differential 
subfield of U and F is differentially closed then F is an elementary substructure 
of U. 

If F is a differential subfield of U and AQU, then F (A) denotes the dif
ferential field generated by F and A. The notion of independence (coming from 
stability) takes the following form here: if F is a differential subfield of U then a is 
independent from b over F just if F (a) is algebraically disjoint from F(b) over F. 

In the next section we will work inside such a universal domain U. An impor
tant feature of DCFo (compared with say the theory of algebraically closed fields) 
is that, from the point of view of Morley-rank, definable sets may be infinite-
dimensional. For example U itself has Morley-rank UJ. On the other hand Gjj, the 
field of constants of U, is a definable set of Morley-rank 1. 

Now U, as an algebraically closed field, is also a universal domain for algebraic 
geometry. We will be concerned with both sets definable in the structure (U, +, . , 5), 
and sets definable in the "reduct" (U,-\-,.). We will call the former ^-definable sets, 
and the latter /-definable sets. Of course any /-definable set is ^-definable, but not 
vice versa. We will identify an algebraic variety V over U with its set of [/-rational 
points, which will be an /-definable set. Although V has finite Morley-rank in 
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the structure ([/,+,.)> it will have (if it is not trivial) infinite Morley-rank as a 
^-definable set. It is important to note that if X is ^-definable and X Ç (Cu)71 

then X is definable in the structure ( C J 7 , + , .). When we say that the definable 
set X is defined over A (A Ç.U), we mean that X is defined by a formula (of the 
relevant kind) whose parameters are from A. 

2 Differential algebraic groups 

We could introduce differential algebraic groups, by first introducing the category 
of 8-varieties and 6-morphisms (analogous to abstract algebraic varieties and mor
phisms), and then defining differential algebraic groups to be group objects in this 
category. It is easier, however, to consider differential algebraic groups as simply 
«^-definable groups (groups G whose underlying set and group operation are defin
able sets in (U, +, . , 8)). The identification of these two classes of groups is actually 
a theorem [Pi4]. When it comes to fields of definition, however, this identification 
is a more subtle matter, and is treated in [Pi5]. In a similar fashion we will identify 
algebraic groups with /-definable groups. 

Examples 
2.1. If G is an algebraic group defined over G\j, then G(Cu), the set of C^-rational 
points of G, is a ^-definable group. 

2.2. If G is an algebraic subgroup of GLn(U) (so a linear algebraic group), then 
we can give {(A, A1): A G G} the structure of a «^-definable group by setting 
(A,A').(B,Bf) = (A.B,(A.B)f). (Here (a*,)' means (a^).) 

This group can be considered naturally as a ^-definable subgroup of GL2n(É7). 

2.3. Let A be -an Abelian variety over U. Manin [M] shows, using generalized 
"Picard-Fuchs" equations, that there is some nontrivial ^-definable homomorphism 
/ from A into some vector group Un. The kernel of / is then a ^-definable group, 
which contains Tor (A). A particular case of this is given in Example 3.7. 

The following answers a question of Kolchin [K2], and is proved using ideas 
from stable group theory. The key point in the proofs is a Weil theorem for pro-
algebraic varieties and pro-algebraic groups. 

THEOREM 2.4 [Pi5]. If G is a 8-definable group then there is a 8-definable embed
ding of G into an algebraic group. 

In fact the proof also yields information on the rather delicate matter of fields 
of definition, and shows that if the 5-group G is defined over F in the Kolchin sense 
(or mo del-theoretic sense) then G is defined over F in the <5-variety sense. 

Let us say that the 6-group G is linear if there is a ^-definable embedding of 
G into some GLn(U), and of Abelian type if there is a «^-definable embedding of G 
into some Abelian variety. A 5-definable group is said to be ^-connected if it has 
no proper ^-definable subgroup of finite index. 

COROLLARY 2.5. If G is a 8-connected 8-definable group then G has a (unique) 
maximal normal linear 8-connected 8-definable subgroup N, and G/N is of Abelian 
type. 
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A ^-definable set X is said to be finite dimensional if Morley-rank(X) < UJ. 
Suppose X is defined over F (namely defined by a formula with parameters in F). 
Then X will be finite dimensional iff for any a E X (or even for generic a E X 
over F) F (a) has finite transcendence degree over F. The 6-definable groups in 
Example 2.2 are infinite dimensional. Concerning Example 2.3, there will always 
be some / such that Ker(/) is finite dimensional. 

We will call the ^-definable group G 8-simple, if G contains no proper infinite 
normal ^-definable subgroup. If G is noncommutative, then (from the theory of 
superstable groups) G will be 5-simple just if Z(G) is finite and G/Z(G) is simple 
as an abstract group. A 6-simple group will (by Corollary 2.5) be either linear or 
of Abelian type. So a noncommutative ^-simple group will be linear. The following 
was proved by Cassidy, but another proof appears in [Pi6]. 

2.6. Let G be a finite-dimensional linear 8-simple 8-definable group. Then there 
is a (linear) algebraic group H defined over Cu such that G is isomorphic (by a 
8-definable isomorphism) to H(Cu)- (In particular G is 8-definably isomorphic to 
a group definable in (Cr/,-!-,.).) 

A consequence is: 

2.7 [S]. If K is a finite-dimensional 8-definable field, then F is 8-definably iso
morphic to the field Cu • 

Fact 2.6 implies that there are no exotic simple noncommutative finite-
dimensional groups in the context of differential algebraic geometry. The case of 
(5-simple ^-definable groups of Abelian type presents a different picture. It is clear 
that any such group G 5-definably embeds in a simple Abelian variety A (namely 
one without proper sub-abelian varieties). Also, as Buium [Bl] proves: 

LEMMA 2.8. Let A be a simple Abelian variety over U. Then A contains a unique 
8-simple 8-definable subgroup G. G is finite dimensional and contains Tor (A). (In 
fact G will be the kernel of some 8-definable homomorphism of A into some Um.) 

LEMMA 2.9. Let A\,Ai be simple Abelian varieties and G\,G<i 8-simple 8-defin
able subgroups of A\,A<i respectively. Then G\ is 8-definably isomorphic to G<i if 
and only if A\ is f-definably (birationally) isomorphic to A^. 

The following brings in the key notion of orthogonality. If D\, Z>2 are definable 
sets in a saturated model of an cj-stable theory, and both have multiplicity 1, then 
they are said to be orthogonal if for any set A of parameters over which D\, D<i are 
defined, and for a, b generic points of D\,Di respectively over A, a is independent 
from b over A. The following is proved in [HS], using the deep result of [HZ], 
concerning strongly minimal sets with a nice "Zariski topology". 

THEOREM 2.10. Let D be a strongly minimal 8-definable set. Then either D is 
nonorthogonal to Cu or D is locally modular. 



282 Anand Pillay 

Using Theorem 2.10, and the structure of "1-based" or "locally modular" 
groups (from [HPi]), one obtains: 

THEOREM 2.11. 

(i) Suppose A is a simple Abelian variety over U that is not birationally isomor
phic to one defined over Cu- Let G be the unique 8-simple 8-definable subgroup 
of A. Then any 8-definable subset of Gn is a finite Boolean combination of 
cosets of 8-definable subgroups. 

(ii) Let G\,G2 be 8-definable 8-simple (finite-dimensional) groups, both of which 
are orthogonal to Cu- Then G\ is nonorthogonal to G2 iff there is a 8-
definable isogeny from G\ to Gi (iff the corresponding simple abelian varieties 
are isogenous). 

The same conclusion as in Theorem 2.11(i) holds if G is any almost strongly 
minimal, ^-connected <5-defmable group that is orthogonal to Cu-

Lemma 2.8 and Theorem 2.11 (ii) (together with the existence of elliptic 
curves that do not descend to Cu) are used to give a fast proof of: 

THEOREM 2.12 [HS]. There are continuum many countable models o/DCFo (up 
to isomorphism). 

Another proof, not making use of Theorems 2.10 and 2.11 appears in [Pi6]. 

3 Differential Galois theory 

Picard [Pic] initiated the Galois theory of linear differential equations. Let C denote 
the complex numbers. Let C denote the differential field of meromorphic functions 
on C (where 8 is d/dz). Let ao(;z),... ,an-i(z) be polynomials over C. Consider 
for example the nth order homogeneous linear differential equation: 

cTf/dzn + an^i{z){^"1f/dzn-1) + • • • + aQ(z)f = 0. 

The set of everywhere holomorphic solutions forms an n-dimensional vector 
space over C. Let f\(z),..., fn(z) be a basis for this space. Let F = C(z), and L 
be the differential subfield of C generated by C(z, /1 (z),... , fn(z)). So F < L and 
the field of constants of both F and L is C. Let G be the group of automorphisms 
of the differential field L that fix F pointwise. For each g G G, there are Xji(g) in 
C such that g.fi = Ylxji(9)fj- Then it turns out that the set of matrices (xji(g)), 
g E G, forms an algebraic subgroup of GLn(C), isomorphic to G. In fact it appears 
that this is the first time the expression "algebraic group" was used. 

Kolchin generalized the theory in the framework of differential algebra as 
follows. Let F < L be differential fields. Assume L has finite transcendence degree 
over F and is finitely generated over F as a differential field. We consider both F, L 
as differential subfields of the universal domain U. Assume also that Cp = CL, 
and is algebraically closed. L is called a strongly normal extension of F if, for 
any (differential) embedding er of L in U that fixes F pointwise, (L,a(L)) Ç 
(L, Cu)- Let G be the group of automorphisms of (the differential field) L that fix 
F pointwise. Kolchin proves that there is an algebraic group H defined over Cp 
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such that G is canonically isomorphic (in a maimer that we make precise below) 
to H(Cp). Here H is an abstract algebraic group (and so could be, for example, 
an Abelian variety). Note that the group H (Cu) is a ^-definable group of finite 
dimension, which Kolchin calls the Galois group associated to the extension L/F. 
Moreover Kolchin shows that for any differential field FQ such that C = CpQ is 
algebraically closed, and for any algebraic group H over C, there are FQ < F < 
L, with C = Cp = CL such that L is a strongly normal extension of F with 
Galois group H (Cu)- In addition to this we have the usual Galois correspondences 
holding. Here I will point out a generalization of this theory, where the Galois 
groups can now be arbitrary finite-dimensional ^-definable groups. The remaining 
results of this section appear in [Pi7] and [Pi8]. 

It is convenient to make use of "differential closures" of differential fields. 
If F is a differential subfield of U, then cj-stability implies that there is a prime 
model over F, namely there is a differentially closed field F < U that contains 
F and can be (elementarily) embedded over F in any differentially closed field 
F2 < U that contains F. F is called the differential closure of F, and is unique 
up to F-isomorphism, but is not in general unique as a differential subfield of U. 
(This is the analogue of the algebraic closure of a field.) F has the feature that 
for any tuple a from F, there is a single formula ^(x) over F true of a such that 
for any tuple b from U, ip(x) is true of b in U iff there is an automorphism a of 
U that fixes F pointwise and takes a to b. In the usual terminology, ip(x) isolates 
the type of a over F. 

DEFINITION 3.1. Suppose that F is a differential field, F is a fixed copy of the 
prime model over F, and X is a (5-definable set in U, defined by a formula with 
parameters in F. Suppose also that X(F) — X(F) (namely all points of X in F 
have all coordinates in F). Let L be a differential field such that F < L < F and 
L is finitely generated over F. We will then call L an X-strongly normal extension 
of F, if for every embedding a of L in U over F, (L, o~(L)) Ç (L,X). 

REMARK 3.2. Suppose L is an X-strongly normal extension of F. Suppose L = 
F (a). The type of a over F is isolated by a formula ip(x) in U. Let S be the set 
of solutions of tp in U. Recall that L is a subfield of F. It follows that S(F) (the 
set of points of S all of whose coordinates are in F) is contained in L. For, by 
the compactness theorem, there is some ^-definable function / (defined over F) 
such that for any c E S, there is b Ç X such that c = / (a ,b) . This sentence is 
then true in the elementary substructure F of U. But X(F) is contained in F. 
Thus for any c in S(F), c = / (a ,b) for some b in F. So (as DCFQ has quantifier 
elimination) c is contained in L. This shows also that Aut(L/F) acts on S(F), and 
any o E Aut(L/F) is even determined by its action on S(F). 

THEOREM 3.3. Let L be an X-strongly normal extension of F. Suppose that L = 
F(a). Let tp(x) isolate the type of a. over F. Let S be the set of realizations of ip in 
U. Then there is a finite-dimensional 8-definable group H such that 

(i) H is defined over F, and H Ç dcl(X) ; 

(ii) H acts 8-definably (over L) and regularly on S. 
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(iii) H(F) is isomorphic to Aut(L/F), as groups acting on S(F). (See Remark 
3.2.) 

(iv) If F is algebraically closed, or even relatively algebraically closed in L, then 
H is 8-connected. 

R E M A R K 3.4. 

(i) When we say tha t H Ç dcl(X) we mean tha t there is some ^-definable 
function from a 6-definable subset of X m onto H. 

(ii) As H acts regularly on S (and the action is (^-definable over F), H(F) acts 
regularly on S(F). So Theorem 3.3 (iii) makes sense. Often we say tha t the 
Galois group of L over F is H. 

(iii) Again one has a Galois correspondence for X-strongly normal extensions: 
if L is an X-strongly normal extension, and H is the differential algebraic 
group given by Theorem 3.3, then there is a Galois correspondence between 
intermediate differential fields: F < K < L and <5-definable subgroups of H 
tha t are defined over F. 

(iv) So actually, L will be an iJ-strongly normal extension of F. 

By a generalized strongly normal extension of F we mean an X-strongly 
normal extension of F, for some F-definable set X. T h e following gives a canon
ical form for generalized strongly normal extensions (if F is algebraically closed), 
generalizing Kolchin's theorem [KI] on G-primitive elements. It amounts to the 
triviality of a certain "rational first cohomology group". Remember by Theorem 
2.4 tha t any ^-definable group defined over F can be £-definably embedded into 
an algebraic group. 

T H E O R E M 3.5. Let L be an X-strongly normal extension of F, where F is al
gebraically closed. Let H be as in Theorem 3.3. Let Hi be any connected alge
braic group that is defined over F and into which H F-definably embeds. Assume 
H < Hi. Then there is a E Hi(L), and an isomorphism h : Aut(L/F) —> H(F), 
such that 

(i) L = K(ct), and 
(ii) for any a E A u t ( L / F ) o~(a) = h(a)_1.a (where the last product is in the 

sense of Hi). 

T H E O R E M 3.6. Let FQ be any differential field. Let H be any finite-dimensional 
differential algebraic group defined over FQ. Then there are FQ<F<L, such that 
L is a generalized strongly normal extension of F, and H is the Galois group of 
L over F. 

The proof of Theorem 3.6 uses the embeddability of H in some algebraic 
group and also the fact tha t types of finite [/-rank (such as generic types of finite-
dimensional definable groups) are orthogonal to types of [/-rank uj.m (such as 
generic, in the DCFo-sense, types of algebraic groups). 

E X A M P L E 3.7. Assume tha t C, the field of complex numbers, is Cu- Let t E U 
be such t h a t t' (short for 8(t)) = 0. Let A be the elliptic curve whose equation 
(in affine coordinates) is y2 = x(x — l)(x — t). (A can be thought of as a family 
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of elliptic curves in C, parametrized by t.) Manin [M] constructs a ^-definable 
homomorphism p from A onto the algebraic group (U, +) , whose kernel is defined 
(according to [Bl]) by -y3-2(2t-l)(x-t)2x'y + 2t(t-l)(x-t)2(x"y-2x,y') = 0. 

Let G = ker(p). G is a finite-dimensional ^-definable group, defined over 
C(t). Let a be a ^-generic point of A over C. Let d = p(a). Let F = acl(C(t)(d)) 
(= acl(C(t)(d))), and L = F (a). Then L is a G-strongly normal extension of F 
with Galois group (7. So G is in a sense the Galois group of the differential system 
"(x,y) £ A and fj,((x,y)) =d" . 

An open question is whether a superstable differential field must be differen
tially closed (i.e. a model of DCFo). In [PiS] it was shown that superstable fields 
have no proper strongly normal extensions. An extension of the proof shows that 
they have no proper generalized strongly normal extensions. Using this together 
with the classification of nontrivial strongly minimal ^-definable sets, obtained 
from the results of Section 2, we obtain the following statement (using the lan
guage of stability theory) : 

THEOREM 3.8. Let F be a differential field whose theory is superstable. Let F be 
a copy of the prime model over F in the sense of DCFo. (So F (= DCFo J Work 
now in U. Let <[> be the family of strongly minimal formulas that are over F and 
have nontrivial pregeometries. Let &(x) be a formula over F that is $>-analyzable. 
Then all solutions of 8 that are in F are already in F. 

4 A conjecture of Lang 

Thirty years ago or so, Lang formulated the following conjecture (often called the 
Mordell-Lang conjecture, which we state here for semi-Abelian varieties, namely 
extensions of Abelian varieties by algebraic tori): 

LANG CONJECTURE. Let A be a semi-Abelian variety overC. Let X be a subvariety 
of A. Let r < A be the divisible hull of some finitely generated subgroup of A(C). 
Then X HT is a finite union of cosets. 

See [L] for a thorough discussion and more background. The conjecture im
plies Mordell's conjecture on the finiteness of the set of rational points on curves 
(defined over Q) of genus > 1. (The implication can be seen by embedding the 
curve in its Jacobian variety.) The full Lang conjecture has recently been proved 
by McQuillan. But the past few years have also seen proofs of the geometric (or 
function field) version, using surprisingly general methods. 

Let me first mention that Lang's conjecture is equivalent to a purely model-
theoretic statement. First, if T is a stable theory and 0(x) is a formula over 0, 
then 9(x) is said to be 1-based if for any model M of T, and any algebraically 
closed subsets X, Y of (6M)eq, X is independent from Y over X D Y (in the sense 
of forking). 

DEFINITION 4.1. Suppose K is an algebraically closed field. Let A be a com
mutative algebraic group over K, and let Y be a subgroup of A (K). We say that 
(K, A, T) is of Lang-type if for any subvariety X of A(K), X n T is a finite union 
of cosets. 
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So Lang's conjecture can be restated as: 

If A is a semi-Abelian variety over C and Y is a subgroup of A which is the divisible 
hull of a finitely generated subgroup, then (C, A,T) is of Lang-type. 

P R O P O S I T I O N 4.2. (K, A,T) is of Lang-type if and only if the complete theory of 
the structure (K, + , . , a, Y)aEK is stable and the formula "X E T" is 1-based. 

The following result of Hrushovski [H] proves the "geometric" or "function 
field" version of Lang's conjecture in all characteristics. 

T H E O R E M 4 . 3 . Let k < K be fields, where k is algebraically closed. Let A be a 
semi-Abelian variety defined over K. Let X be a subvariety of A defined over K. 
Let Y be a subgroup of A(acl(K)) that is contained in either the divisible hull of 
a finitely generated subgroup of A (in the characteristic 0 case) or the "prime to 
p)}-divisible hull of a finitely generated subgroup of A (in the characteristic p case). 
Assume that XClY is Zariski dense in X. Then there are a semi-Abelian subvariety 
B of A, a semi-Abelian variety AQ defined over k, and a subvariety XQ of AQ also 
defined over k, and a rational homomorphism h from B onto AQ such that X is a 
translate ofh~1(XQ). 

In the characteristic 0 case, the proof uses the results from Section 2, the key 
idea being to replace Y by a finite-dimensional ^-definable subgroup of A. We give 
a sketch of the proof. We may assume K is also algebraically closed. We identify 
A, X with A(K), A(X) respectively. First enrich K by adjoining a derivation 8 
such tha t (K,-{-,.,8) is a model of DCFo and k = CK- Work in the structure 
(K, + , .,8), which we may assume to be saturated. Using essentially Lemma 2.8, 
find a ^-definable, finite-dimensional subgroup G oî A tha t contains Y. So X D G 
is Zariski dense in X. Quotienting out by the stabilizer of X (in the sense of 
algebraic groups) we may suppose this stabilizer of X to be finite. Applying some 
"finite Morley-rank group theory" we can find a 5-definable connected subgroup 
H of G such tha t (up to a translation of X) X H H is Zariski dense in X, H 
is a sum of almost strongly minimal groups, and S tab(X PI H) (in the sense of 
model theory) is finite. The results of Section 2 imply tha t H is the sum of two 
definable groups Hi and if2, where Hi satisfies the conclusion of Theorem 2.11(i), 
and H2 is 5-definably isomorphic to the /c-rational points of a semi-Abelian variety 
AQ defined over k. If Hi^{0}, then one concludes tha t S tab(X Pi H) is infinite, a 
contradiction. So H = H2- The ^-definable isomorphism of H2 with AQ(A;) lifts to 
a rational isomorphism h of some semi-Abelian subvariety B of A wi th Ao. If Xo 
is h(X), then XQ is defined over k too. This completes the sketch. 

In the characteristic p case, one works in a separably closed field K of some 
suitable finite, nonzero, Ersov invariant, such tha t k = f]{Fpn : n < UJ}. The 
theory of the field K is stable, but not superstable. Nevertheless there is a the
ory of "finite-dimensional" infinitely definable sets and groups in K. The finite-
dimensional oo-definable subgroup of A tha t plays the role of G (from the charac
teristic 0 case) is (~)n(p

n(A(K))). From here on the proof parallels the characteris
tic 0 case (of course using suitable analogues, such as those in [Me], of the results 
from Section 2). 
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Logic and Complexity: Independence results and the 
complexity of propositional calculus 

P A V E L P U D L ä K 

Mathematical Institute 
Academy of Sciences of Czech Republic 
11567 Praha 1, Ztnâ 25, Czech Republic 

1. Introduction 

The problem of whether V = MV is generally recognized as one of the most 
important problems in contemporary mathematics. It is one of the many problems 
in complexity theory that have resisted for years all attempts to solve them. The 
problem V = AfVl originated in logic and thus there were some hopes that logic 
would help to solve it. Naturally the question of whether V — MVl or a similar 
problem is independent from theories used as foundations of parts of mathematics, 
e.g. Peano arithmetic, also was brought up. Later more researchers started to 
use finite combinatorics and algebra in this field. This approach has been quite 
successful in solving some restricted versions of the problems, but the fundamental 
problems remain open. 

Also it turned out that it is very difficult to prove independence of sentences 
of such a form from Peano arithmetic; therefore the attention of many logicians 
has focused on much weaker theories, called bounded arithmetic. For such theories 
it is possible to prove interesting connections with problems in complexity the
ory and at least some weak independence results. In particular it is also possible 
to reduce independence results to combinatorial questions. In complexity theory 
such reductions use boolean circuits; however, in logic the connection is based on 
propositional calculus. Thus, a new field has emerged that combines proof theory 
and model theory with techniques and results from complexity theory and finite 
combinatorics. 

In this paper we want to explain these relationships between logic and com
plexity theory using some recent results in this field. These results concern prov
ability and mutual dependence of counting principles. We think that this will give 
you a better idea of the methods used in this field than a general survey of the 
whole area. 

We shaU start with an algebraic problem, which may be more understandable 
for mathematicians not working in logic or complexity theory and which inciden
tally arose in an independence proof for the counting principles. Then we shall 
explain some basic concepts used in this field — propositional proof systems and 
bounded arithmetic. Finally we shall describe the results on the independence of 
counting principles and state an important open problem. 
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2. An example 

Let us consider the problem of deciding whether a system of algebraic equations 
has a solution. Let a field F be given and let 

fi(xi,...,xn) = 0 

! (1) 
J m \^1ì ' • • 5 %n ) = U 

be a system of equations with fi,..., fm polynomials over F. We are not interested 
in solving the equations, we only want to know whether there is a solution. In order 
to simplify the exposition, let us assume for a moment that F is a finite field. Then 
the problem is AAP-complete, even if each /7; is a polynomial of degree at most 
2. This means that any solution to the problem can be described in polynomially 
many bits and verified in polynomial time (i.e. the problem is in J\fV) and any 
such problem (i.e. any problem in MV) can be reduced by a polynomial algorithm 
to this problem. The first property is trivial. The second property implies that 
there is no polynomial time algorithm for it, if V ^ J\fV. 

A general concept of a proof [9] is based on the following simple condition: 
potential proofs are codable as finite strings over a fixed finite alphabet, and there 
is a polynomial time procedure to test the validity of a proof. In this sense every 
AfP-problem has an associated proof system. In the case of algebraic equations, 
we can simply proclaim that a solution to a system of equations is a proof that the 
equations are solvable. The property that characterizes AfP-problems is the fact 
that they have proofs of sizes bounded by a polynomial in the sizes of inputs. For 
example, a solution of (1) in F is just a string a E Fn, hence it is polynomially 
bounded in the size of the sequence fi,..., fm. 

Now we know that it is unlikely that we find a polynomial time algorithm 
for deciding solvability of algebraic equations. We also know that we can easily 
find polynomial size proofs that they are solvable, if they have a solution in a 
finite field. But can we find polynomial size proofs that they are unsolvable, if they 
are unsolvable? Does this hold for all AfP-problems? Because polynomial size 
proofs define the class NT, this is just the question, whether NT is closed under 
complements, i.e. whether NT = coNV. It follows from the J\fV-completeness of 
the problem of solvability of algebraic equations in finite fields that the general 
problem is equivalent to this special case. 

A nice property of our example of an NT-complete problem is that we have a 
natural proof system for its complement. This is the basic result known as Hubert's 
Nullstellensatz (weak form): 

THEOREM 1 The system (1) does not have a solution in F (the algebraic closure 
°f F)> iff 1 *5 in Üie ideal generated by fi,... ,fm. 

Note that the fact that the solutions are considered in the algebraic closure 
of F does not cause any problems, if we are interested only in solutions in a finite 
field F, as we can add equations Uaep(xi — a) = 0, i = 1, . . . ,m, which ensure 
that any solution must be in F. 
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Let us state this theorem more explicitly. We can prove that (1) does not 
have a solution by finding other polynomials gi,..., gm E F[xi,..., xn] such that 

i 

holds in F[xi,... ,xn]. Thus, polynomials gi,... , #m are a proof that (1) does not 
have a solution. Hubert's Nullstellensatz is a completeness result for this "calcu
lus", it says that there is such a proof if (1) is unsolvable. (As we want to be able 
to test the condition (2) in polynomial time, we assume that all polynomials are 
represented as sums of monomials.) 

There are several results about the degrees of polynomials gi,..., gm in (2). 
In particular, it is very easy to give an example of constant degree polynomials 
/ l j • • • j fm such that, for any polynomials gi,... , g m satisfying (2), at least one 
of them has an exponentially large degree [6] (the example is due to Masser and 
Philippone). We shall show below that a certain lower bound on the degrees can 
be used to obtain results about stronger systems, including first order theories. 
The set of equations is defined below, see (5); presently we have only a very small 
nonlinear lower bound, and the proof is quite involved. 

3. Propositional calculus 

The above calculus is not a typical logical proof system; it does not talk about 
formulas and the proof is not based on successive derivation of small pieces (though 
we can reformulate it in this way). The most important types of proof systems for 
propositional logic are the so-called Frege systems and extended Frege systems. 
We shall briefly describe them in this section. 

We consider propositional formulas in a fixed finite basis, say {A, V, -"}, with 
propositional variables pi, p2, A Frege system is determined by a finite set of 
rules that are sound and enable us to derive all tautologies. A rule may have zero 
premises, in which case it is called an axiom schema; an example is the law of 
excluded middle 

<£>V -up 

The cut rule, which allows us to derive ip V x from tpV yj and -T0 V x> usually 
written as 

</? V ijj -W/J V x 

is an example of a rule with two premises. Let us remark that the particular choice 
of rules is not so important, as it can change the minimal length of a proof at most 
polynomially [9].1 

The propositional proof systems that are used in textbooks on logic are in 
most cases Frege systems. 

An extended Frege system is a Frege system augmented with a special rule, 
the extension rule, which allows us to abbreviate a formula by a variable. (Namely, 
we are allowed to introduce a sentence expressing that a formula is equivalent to 

1This is not quite so in the sequent calculi, where the presence of the cut rule plays an 
important role. 
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a propositional variable, provided that the variable does not occur in the previous 
part of the proof nor in the conclusion.) It seems that because of this rule some 
tautologies may have much shorter proofs in extended Frege systems than in Frege 
systems, but we are not able to prove it. 

In both cases a proof is a sequence of formulas that are either axioms or follow 
from the previous ones by a rule. 

The main question about these proof systems is whether there is a polynomial 
p(x) such that every tautology r has a proof of length p(|r |), where \r\ denotes 
the length of r as a string in a finite alphabet. Because the set of tautologies 
is a complement of an NT-complete set, this is not true, unless NT = coNT-
However already Frege systems are quite strong, so we are not able to prove even 
such consequences of the conjecture NT ^ coNT. 

Exponential lower bounds can be proved under the restriction of bounded 
depth. By the depth of a formula in the basis {A, V,-"} we mean the number of 
alternations of the connectives A, V, -«. For instance a conjunction of an arbitrary 
number of propositional variables is of depth 1, the negation of such a formula and 
disjunctions of such formulas are of depth 2, etc. Let a particular Frege system 
be given. For each positive integer k we can consider a proof system obtained by 
restricting the Frege system to formulas of depth k. 

The techniques used for lower bound proofs for bounded depth Frege systems 
come from boolean circuit complexity theory. The two subjects — propositional 
proofs and boolean circuits — are very much related. Nevertheless, applications 
of methods from boolean complexity require additional work. (One should realize 
that a Frege proof is a sequence of tautologies, which are formulas that define 
boolean functions constantly equal to 1, thus we cannot simply transfer results on 
the difficulty of specific boolean functions.) 

4. Bounded arithmetic 

We turn now to some first order theories that are important in this field. Let us 
first recall the classical theory Peano arithmetic used to formalize number theory. 
This is a theory that axiomatizes a part of the true sentences about nonnegative 
integers with 0, 1, +, -, and < as primitive notions. The axioms consist of 8 axioms 
describing some basic properties of the operations, e.g. the inductive clause for 
addition 

x + {y + l) = {x + y) + li 

and induction axioms for all formulas in this language. This theory is adequate 
for the formalization of most mathematical reasonings about numbers and finite 
combinatorics, except for those involving very fast growing functions. (The theory 
does not contain the concept of a set as a primitive notion, but finite sets can be 
coded by numbers.) As the interesting problems in complexity are statements that 
do not contain fast growing functions, it is impossible to prove their independence 
from Peano arithmetic with the current methods. 

Thus, the interest of many logicians gradually switched to weaker theories. A 
typical theory of the family bounded arithmetic is defined roughly as follows. We 
choose a complexity class C and a set of arithmetical formulas C> whose formulas 
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define just the sets in C. To this end we may need to extend the standard language 
of arithmetic 0,1, +, • by more function and predicate symbols. Then the axioms 
of the theory T aie basic axioms about the relations and functions of the language 
plus induction axioms for all formulas in 3>. 

Let us stress that our motivation for studying bounded arithmetic is not based 
on some philosophical approach to foundations of mathematics like constructivism. 
The real importance of bounded arithmetic stems from the fact that we can prove 
some dependence between problems in complexity theory and these theories. 

Here is such an important connection. Most problems in complexity theory 
are stated as the question of whether two complexity classes Ci and C2 axe the same, 
where Ci Ç C2- If we have theories Ti and T2 corresponding to these complexity 
classes, we can ask whether Ti = T2. The answers to these two questions can 
be independent, but at least one thing is clear (provided that we consider natural 
formalizations of the classes Ci,C2): if we prove thatTi ^ T2; then it is not provable 
inTi thatCi =C2-

We shall mention, in particular, two of the many theories of bounded arith
metic. The first one, introduced by Parikh [15] and denoted by /Ao, is obtained 
from Peano arithmetic simply by restricting the induction to bounded formulas. 
A bounded (arithmetical) formula is a formula where each quantifier is followed 
by an inequality limiting the range of the quantified variable; e.g. the following 
formula (p(x), which defines composite numbers, is bounded: 

3y, y < x 3z, z < x (x — y • z t\y <x /\z <x). 

The class of bounded formulas is denoted by Ao. The class of sets that bounded 
formulas define is the so-called linear time hierarchy (which is equivalently defined 
as the class of sets accepted by alternating Turing machines with constant number 
of alternations in linear time). 

The second theory is denoted by S\- In this theory induction is postulated 
for formulas that define sets in NT. This theory uses a richer language and the 
induction axioms are slightly modified; we shall not go into details and refer the 
readerto [7], [10], [12]. 

An important property of these theories is that they cannot define fast grow
ing functions, e.g. they do not prove that for every x there exists 2X. 

We need the following modification of / A Q . Let R be a predicate symbol. 
Consider all arithmetical formulas that may also contain R. Then we can extend 
the concept of bounded formula to these formulas; let us denote this class of 
formulas by /±.Q(R). Finally we extend also the theory /Ao to IAQ(R) by extending 
the induction schema to all formulas in AQ (R). We can think of R as a free second 
order variable. As we do not specify interpretation of R, proving independence 
results is easier, but still requires quite ingenious arguments. 

5. Counting principles 

We shall show further connections between the concepts introduced above using a 
concrete example of counting principles. 
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Many important problems in complexity theory are connected with counting, 
especially with counting modulo a fixed number. In boolean complexity it has been 
proved that bounded depth polynomial size circuits with gates computing mod
ulo a prime p cannot compute the boolean function that computes the number 
of ones modulo a different prime q. Other problems are connected with counting 
the number of accepting computations of a nondeterministic Turing machine. A 
related problem concerns bounded formulas. Suppose we use not only the usual 
quantifiers V and 3, but also a counting quantifier, saying that the number of x 's 
satisfying ip is divisible by p. Then we can ask if the class of bounded formulas aug
mented with such a counting quantifier defines the same class of sets as bounded 
formulas without counting quantifiers. By the above schema, there is a correspond
ing question, if / A Q is equivalent to its version with counting quantifiers. We shall 
relax the problem by asking about the provability of certain consequences of such 
theories, which we call counting principles. 

Let q > 2. The counting principle Countq is the statement that the set 
{0, . . . ,n — 1} cannot be decomposed into blocks of size q, for every n not divisible 
by q. In bounded arithmetic with an extra relation we can express this principle 
as follows. We take a g-ary relation symbol R. For a given x we shall think of 
R as encoding q element subsets {xi,... ,xq} where xi < • • • < xq < x and 
R(xi,... ,xq). Then the statement that R encodes a partition of {0 , . . . , x — 1} is 
a AQ(R) formula; let us denote it by Partq(x,R). Hence the counting principle 
Countq can bc expressed by 

Vz(Vy < x(q • y ^ x) -> ^Partq(x,R)). (3) 

We shall denote this formula by Countq(R). This formula is Hi(R) (universally 
quantified AQ(R)), SO it has the same logical complexity as the statement of 
Ao(-#)-induction. Therefore it is natural to ask if it is derivable from AQ(R)-

induction. We can consider the theory axiomatized by 8 basic axioms together 
with Countq(AQ(R)) (schema of counting modulo q for all bounded formulas with 
R) instead of IAQ(R). Then the above problem is equivalent to the question of 
whether this theory is contained in IAQ (R). 

Let us now consider propositional calculus. Let n be fixed. Talee propositional 
variables pe indexed by g-element subsets of {0, . . . , n— 1}; we shall use the variables 
to code sets of g-element subsets, where pe is true, if the subset e is present. Then 
we can express the counting principle for this particular n by 

V A-ft V V (pEApf) (4) 
v<n vEe e,f\ e±f 

where e l / abbreviates the conjunction eCif^tyAe^f. We denote this formula 
by Count™, Of course, this is a tautology iff n is not divisible by q, 

We can also express the same counting principle using algebraic equations as 
the unsolvability of the following set of equations: 

( 2_\ xe] — 1 = 0 , for v < n, 
e; -uGe / 

(5) 

xe • Xf = 0, for e JL f. 
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Again xe — 1 expresses that the subset e is in the alleged partition. 
One of the main motivations for studying the length of proofs in propositional 

calculus is its relation to provability in bounded arithmetic. Paris and Wilkie [16] 
showed that provability of a ILi(R) sentence ip in IAQ(R) implies that certain 
tautologies have polynomial size proofs in a bounded depth Frege system. These are 
obtained from numeric instances of the universal sentence (p. In order to simplify 
the exposition, we shall state their theorem only for the special case of counting 
principles. 

THEOREM 2 Suppose Countq(R) is provable in IAQ(R). Then the propositions 
County, for n not divisible by q, have depth k and polynomial size proofs in a 
Frege system. 

This reduction has actually been used. Ajtai [1], [2] proved sup er polynomial lower 
bounds on the lengths of proofs in bounded depth Frege systems for such formulas 
and for the related pigeon hole principle. 

THEOREM 3 [2] There are no polynomial size bounded depth Frege proofs of 
Count™, forn not divisible by q. 

COROLLARY 4 Countq(R) is not provable in IAQ(R). 

A similar relation holds between bounded arithmetic 5 2 and extended Frege 
systems, namely the provability of certain universal sentences in S% implies poly
nomial upper bounds on the length of some tautologies in extended Frege systems 
[8] (this was done first for an equational theory PV and later extended to 5 2 [7]). 
However such proof systems are quite strong, so we are not able to prove any 
superpolynomial lower bounds for them at present. 

Let us note that there are more such relations, see [14], [12]. When working 
on the complexity of propositional calculus it is necessary to know about these 
relations, as one can more easily find proofs in bounded arithmetic than construct 
them in particular propositional proof systems. This has actually helped to refute 
some conjectures about the lengths of propositional proofs. 

6. Independence of counting principles 

Probably the most interesting and deepest results in this field deal with the in
dependence of counting principles. In the same way as above we can ask the 
question either in bounded arithmetic or in propositional calculus. In bounded 
arithmetic it is the question if, for given q and r, one can prove Countq(R) from 
IAQ(R) + Countr(AQ(R)). In the latter theory we assume the counting principle 
Countr for all bounded formulas that one can construct from R. Using the same 
method as in Theorem 2, one can reduce this problem to propositional calculus. 
There the question is: Are there polynomial size bounded depth Frege proofs of 
County, for n not divisible by q, using instances of Count™, for m not divisible 
by r, as assumptions? 
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These problems have been completely resolved by two people and one group 
working, more or less, independently. The main progress was done by Ajtai [4], who 
proved the independence for q and r different primes. He applied symmetric group 
representation theory over finite fields to prove a general theorem about symmetric 
systems of linear equations, which he then applied to solve a key combinatorial 
problem in his proof of the independence of counting principles. His theorem states, 
roughly speaking, that every solvable symmetric sj'stem of linear equations over 
GFp, p prime, has in a certain sense regular solutions. 

In [5], [17] different methods were used and a complete analysis of the possible 
cases was accomplished also for composite numbers q and 7̂ , which is: 

THEOREM 5 There are polynomial size bounded depth Fliege proofs of Count™, for 
n not divisible by q, using instances of Count1™, for m not divisible by r, if and 
only if all prime factors of q are prime factors of r. 

As a corollary we get that the same relation holds in bounded arithmetic. 
I shall briefly describe the solution of the group in which I participated [5]. 

Our proof is based on a reduction to a lower bound on the degree of polynomials gi 
in the Nullstellensatz (see equation (2)), where the system of algebraic equations 
(1) is (5). 

Let q and n be given, n not divisible by q. Let us first suppose that g is a 
prime and F is a field of characteristic p. Then the equations (5) are not solvable 
and we can find polynomials gv and ge j such that 

X ^ ( ( Y^ x* ) -x ) + Y.9e>fXeXf= L (6) 
v<n \ \e\vEe / / e_L/ 

If p = q one can find such polynomials of degree < 1 (take gv = —((%2e.vee ze) + 
l)/n and gej = \e n f\/n.) This is not true, if p =̂  q; we have the following result, 
which can be interpreted as a lower bound on the complexity of proofs of Count™ 
in the Nullstellensatz proof system over a field of characteristic r. 

LEMMA 6 Let F be a field of characteristic r and suppose that q is a different 
prime. Then the degrees of polynomials gv andgej satisfying (6) cannot be bounded 
by any constant. 

In the proof of Theorem 5 we reduce the lower bound on the size of bounded 
depth Frege proofs to the lower bound on the degree of polynomials gv and gej in 
Lemma 6 in a little stronger form (the above lemma suffices for q and r different 
primes). The reduction is not as direct as when we reduce provability in bounded 
arithmetic to the lengths of proofs in propositional calculus. It is based on a lemma 
of the type that is known in complexity theory as a switching lemma [11]. This 
lemma enables us to reduce bounded depth formulas to constant depth decision 
trees by fixing some variables. 

Finally, let us note that Lemma 6 can be also proved using Ajtai's theorem 
on symmetric systems of linear equations. Our proof is combinatorial, based on 
the Ramsey theorem, and thus can be applied also in the case when r is not a 
prime. 

file:///e/vEe
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7. Conclusions 

From what we have presented it is clear tha t we are able to prove independence 
results only for very weak systems. Also the sentences that we consider are triv
ial combinatorial s tatements. This is the present situation and we can only add 
tha t the proofs of these results are not easy and tha t a similar situation holds in 
complexity theory. For instance it is not proved for any nonrestricted model of 
computation tha t multiplication is harder t han addition, though experience con
firms it strongly. By understanding the power of counting we get closer to the 
solution of such problems. 

We shall conclude this paper by stating a fundamental problem, which shows 
another possible way tha t logic could help complexity theory. 

Consider the problem of whether NT = coNT, i.e. if the complement of 
every NT set is also in NT. As we noted above, this problem is equivalent to the 
problem of whether there is a propositional proof system in which all tautologies 
have polynomial size proofs. For all we know, such a system could be just a Frege 
system, i.e. the most usual system. 

We have mentioned tha t there is a relation between S\ and extended Frege 
systems, which is similar to the relation between IAQ(R) and bounded depth Frege 
systems. More importantly, extended Frege systems are the strongest propositional 
proof systems whose soundness S\ can prove. It follows tha t if S\ proves tha t 
NT = coNT, then it must actually prove tha t each tautology has a polynomial 
size proof in an extended Frege system. 

Hence, to prove tha t 5 2 does not prove NT — coNT, it suffices to prove 
superpolynomial lower bounds on the lengths of proofs in extended Frege systems. 
Such a lower bound would give us models of arithmetic very similar to the natural 
numbers, where NT ^ coNT. At present this seems to be very hard (even for 
ordinary Frege systems), bu t it should be easier than proving superpolynomial 
lower bounds for all proof systems, which is needed for a proof of NT ^ coNT. 

Acknowledgments. I want to thank Sam Buss, Jan Krajicek, Russell Irnpagliazzo, 
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In the theory of finite-dimensional representations of complex reductive algebraic 
groups, the group GLn(C) is singled out by the fact t ha t besides the usual language 
of weight lattices, roots, and characters, there exists an additional important com
binatorial tool: the Young tableaux. For example, the sum over the weights of all 
tableaux of a fixed shape is the character of the corresponding representation, and 
the Littlewood-Richardson rule describes the decomposition of tensor products of 
c7Ln(C)-modules purely in terms of the combinatorie of these Young tableaux. The 
advantage of this type of formula is (for example compared to Steinberg's formula 
to decompose tensor products) tha t there is no cancellation of terms. This makes 
it much easier (and sometimes even possible) to prove for example tha t certain 
representations occur in a given tensor product. 

To construct objects like the tableaux in a more general setting, consider the 
weight lattice X of a complex symmetrizable Kac-Moody algebra g, and denote 
by n the set of all piecewise linear paths IT : [0, 1]Q —> XQ starting in 0 and ending 
in an integral weight. We associate to a simple root a linear operators ea and 
fa on the free Z-module Z n spanned by n . Let A C End^ Z n be the subalgebra 
generated by these operators. 

Fix 7T G n such tha t the image is completely contained in the dominant Weyl 
chamber. The .A-module Air C Z n generated by 7T is a "model" for the irreducible, 
integrable representation VA of Q of highest weight À = TT(1): for example, the sum 
over the endpoints of all paths in AIT is the character of V\, and the Littlewood-
Richardson rule can be generalized in a straightforward way. As an application, 
one gets a purely combinatorial proof of the P - R - V conjecture. 

So the paths can be viewed in a natural way as a generalization of Young 
tableaux to the setting of symmetrizable Kac-Moody algebras. Though the theory 
of the pa th modules is completely independent of the theory of quantum groups, 
the pa th modules are strongly related to the crystal graph of representations of the 
q-analog of the enveloping algebra of g. In fact, they can be viewed as a geometric 
realization of the theory of crystals of representations. 
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1 Review on the GLn(C)-case 

Let T be the maximal torus of GLn(C) of diagonal matrices, and denote by ê  : 
T —» C* the projection of a diagonal matrix onto its zth entry. The irreducible 
polynomial representations of GLn(C) are in bijection with the dominant weights 
X+ of the form A = piei + • • • + pn

em where pi > P2 > • • • > pn > 0- A Young 
diagram of shape A G X+ is a left-justified sequence of rows of boxes such that 
there are pi boxes in the first row, jJ2 boxes in the second row, etc. By a Young 
tableau T of shape A we mean a filling of the boxes of the diagram with numbers 
{ 1 , . . . ,?i}. T is called semi-standard if the entries are strictly increasing in the 
columns and nondecreasing in the rows. 

A word w in the alphabet { 1 , . . . , n} is a finite sequence w = ii%2 . . . is with 
1 < ii,... ,is < n. Its weight is the sum v(w) := e^ + • • • + eis, and it is called 
A-dominant for some A G X+ if A + e^, A + e^ -f- e^, . . . , are all in X^~. For a 
tableau T let w r be the word obtained by reading the entries from top to bottom, 
right to left: If T is of shape (3,2) having in the first row the entries 1 2 4 and in 
the second row 3 6, then w r = 42163 . The weight v(T) is the weight of wr , and 
T is called A-dominant if w r is A-dominant. 

THEOREM 1. For A G X+ let V\ be the irreducible GLn(C)-representation. 
(a) Character formula: Char VA = Y2e1^T\ w/iere the sum runs over all semi-

standard Young tableaux of shape A. 
(b) Littlewood-Richardson rule: For A, /i G X+ the tensor product V\ (8) Vß de

composes into the direct sum: V\ <8> V^ ~ ® Vx+;,(r) ; where the sum runs over all 
semi-standard Young tableaux of shape p that are X-dominant. 

For more details on these classical results we refer to [3], [20], [27]. The Little
wood-Richardson rule was first stated in [17] (without proof), it seems that the 
first complete proof was given in [25] (the proofs in [16], [24] are not complete). 
For various generalizations of Young tableaux, Gelfand-Zetlin patterns and related 
topics we refer to [1], [2], [8], [9], [11], [12], [13], [22], [23], [26] (this list is far from 
being complete). To the best of my knowledge, the (conjectural) definition of a 
"Young tableau" in [12] is the first that is independent of the type of the Lie 
algebra (see Section 8). 

2 The paths 

Let now X be the weight lattice of a symmetrizable Kac-Moody algebra, and set 
XQ := X ®2 Q. 

DEFINITION. A piecewise linear path in XQ is a piecewise linear, continuous map 
7T : [0, 1]Q —* XQ of the interval [0, 1]Q := {x G Q | 0 < x < 1} into XQ. We 
consider two paths TT,T] as identical if there exists a piecewise linear, nondecreasing, 
continuous, surjective map cj) : [0, 1]Q —> [0, 1]Q such that TV = rj o cß. Denote by U 
the set of all piecewise linear paths such that n(0) = 0 and TT(1) G X, and let ZU. 
be the free Z-module with basis U. 
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TT(t) 

E X A M P L E , (i) For A G X Q set ir\(t) := tX, then TT\ G n <=> A G X . 
(ii) Let 7Ti, 7T2 be two piecewise linear paths starting in 0. By TT := ITI * 7T2 we 

mean the pa th defined by 

_ f 7Ti(2£), if 0 < £ < 1/2; 
\ 7 r i ( l ) + 7 r 2 ( 2 t - l ) , if 1/2 < t < 1. 

(iii) For a word w = A i . . . As in the alphabet XQ (a finite sequence of rational 
weights) set 7rw := TT\1 * • • • * TT\S . The pa th connects successively the weights 
0, Ai, Ai + A2, etc. Of course, 7rw G n <=» Ai + . . . + Xs G X. Note tha t any pa th in 
n is (up to reparameterization) of this form. 

(iv) Suppose g = gln(C) and w = ii.. .is is a word as in Section 1. Denote 
by w also the path associated to the word e^ . . . ê 3 as in (iii). In this way we can 
consider the free Z-module ZW spanned by the words as a subset of Z n . 

3 The root operators 

Suppose M C Z n is a Z-submodule having a set of paths BM C n as a Z-basis. 
By the character of M we mean the formal sum: Char M := Yl^eB e ? r ^ • 

E X A M P L E . For g = g[n(C) and A G X+ let M\ c Z n be spanned by the paths 
w r , T semi-standard of shape A. Then C h a r M ^ = Char V\ (Theorem 1). 

To construct such submodules in the setting of symmetrizable Kac-Moody 
algebras, we associate to every simple root two linear operators ea,fa G End^ Z n . 
For a piecewise linear path IT let sa(ir) be the pa th defined by sa(ir)(t) := Sa,(7r(£)). 
Choose 7T G n and fix a simple root a, let a v be its coroot. Denote by ha the 
function: ha : [0, 1]Q —> <Q>, t »-> (7r( t ) ,a v ) , and let ma be the minimal value 
at tained by the function ha. 

If ma < —1, then fix ti G [0, 1]Q minimal such tha t ha(ti) = ma and let 
to £ [0J* I ]Q D e maximal such tha t ha(t) > ma + 1 for t G [0,£O]Q- We "cut" now 
the pa th between to and ti into smaller pieces: 

Choose ìQ = SQ < si < • • • < sr = ti such tha t either 
(1) ha(t) > ha(si-i) = ha(si) for t G [ s i - i , Sì]Q; 
(2) or ha is strictly decreasing on [ S ì _ I , S ì ] Q and ha(t) > ha(si-i) for t < s^_i. 

Figiue 1 The part of ea(7r) different from ir is drawn as a dashed line. 
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Let 7Ti be the part of IT between s^_i and Si, or more precisely: set s_i := 0 
and s r + i := 1, and denote by TTì the path defined by 

7Ti(t) :=7r(s^_i + t(s7; - s » - i ) ) -7r(s ? ;_i) , i = 0 , . . . , r + l . 

It is clear that IT = TTQ * 7Ti * • • • * 7rr+i. 

D E F I N I T I O N . If ma < —1, then ean := 7To * 771 * 772 * • • • * Vr * TTr+i» where r\i = TTì 
if the function /iQ behaves on [SJ_ I ,S^ ]Q as in (1), and ??7; = S o ; ^ ) if the function 
ha behaves on [S7;_I,S7;]Q as in (2). If ma > —1, then we set ea7T := 0. See Figure 
1. 

The definition of the operator fa is similar. Let to G [0, 1]Q be maximal such 

tha t /i«(to) = 771a- If ha(l) — ma > 1, then fix t i G [£O,1]Q minimal such that 

h^(t) > 77i^i-"l for t~G-[tr,l]çF 
Choose to = so < si < • • • < sr = t i such tha t either 

(1) ha(t) > ha(si) = / iQ(si_i) for t G [ S ì _ I , S ì ] Q ; 
(2) or ha is strictly increasing on [Sì-I,Sì]Q and ha(t) > ha(si) for t > Si. 

As above, we write now 7r as TT = TTQ * TTI * • • • * 7rr+i, where the pa ths TTì are 
defined by 7Ti(t) := 7r(si_i + t(si - Si_i)) - 7r(si_i). 

D E F I N I T I O N . If / i a ( l ) — ?77,a > 1, then fair := 7To * 771 * 772 * • • • * 77̂  * 7ry+i, where 
Vi — Ki if the function ha behaves on [ S î _ I , S î ] Q as in (1), and rji = sa(7Ti) if /IQ, 
behaves on [ S ì _ I , S»]Q as in (2). If ha(l) — ma < 1, then we set fair := 0. 

E X A M P L E , a) Suppose that g = 5(3 and /J is the highest root. The paths obtained 
from TTß \t\->tß by applying the operators fa, ea are the paths 7T7(t) := t'y, where 
7 is an arbitrary root, and for the two simple roots the paths 77Q, := iT-u/2 * 7^/2• 
See Figure 2. 

Figure 2 The paths generated by iTß. 

(b) Suppose g = gtn . Let w G Z W C Z n be a word (path), and let a be the 
simple root ei — e^+i. It is easy to see tha t if faw ^ 0 (respectively ea,w 7̂  0), then 
the operator fa just replaces some i in w by an i + 1 (respectively some à + 1 by 
an i). In particular, Z W is stable with respect to the root operators. 
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4 Some simple properties of the root operators 

The following properties of the paths are easy to prove [14], [15]: 

LEMMA 1. Let a. be a simple root and suppose IT Ell. 
(i) If ea7T ̂  0, then ea(ir)(l) = ir(l) + a, and if fa(^) ^ 0, then fa(7r)(l) = 

7r(l) — a. 
(ii) If ea(ir) ^ 0, then faea(Tr) — TT, and if fa(^) ¥" 0; then eafaW = TT. 

(iii) Let TT* be the dual path; i.e., 7r*(t) := TT(1 — t) — 7r(l). Then (faTr)* = eQ(7r*) 
and (eaTr)* = fa(iT*). 

(iv) Let n be maximal such that /£(7r) ^ 0 and let m be maximal such that 
e™(Tr) ^ 0. Then (TT(1), ay)=n- m. 

(v) For k G N let kir be the path obtained by stretching TT: (kTr)(t) := kir(t). Then 
KfaF) = fa{kir) and k(eaTr) = e%(kir). 

(vi) Set Xa := E , > i éŒf~\ Ya := E ,> i f ^ \ and Ha := J ^ > i 4 £ ~ fa<-
The Lie algebra in End^ Z n generated by Xa,Ya, and Ha is isomorphic to sÌ2(Z). 

5 Concatenation of integral modules 

Denote by A C End^n the algebra generated by the operators ea and fa. Let 
M C Zn be an ,4-stable submodule. We call M an integral A-module if the set of 
paths B := M n n contained in M forms a Z-basis for M, and if for all TT G B and 
all simple roots a the minimum of the function ha : t H-> (7r(t), a v ) is an integer. 

If M, N aie integral A-modules, then let M * TV be the submodule of Zn 
spanned by the concatenation TT * 77 of all paths TT G M and 77 G N. The integrality 
condition on the function ha implies [14], [15]: 

LEMMA 2. If M,N are integral A-modules, then M * N is an integral A-module, 
and for TT G M n n and n E N (ML one has 

/a(ir*,) = ((/aT)/!J' Ìf
1

3n-1 
K J \ TT* (/c*77), else. 

such that f%TT ^ 0 but e™n = 0; 

and ea(ir * 77) = TT * (earj) if 3 n > 1 such that e™r] ^ 0 but f™ir = 0, and 
ea(TT * 77) = (ea7r) * 77 else. 

6 Continuity 

For 7Ti, 7T2 G n fix a parameterization. With respect to this parameterization we 
set: 

d(TTi,TT2) := max{|(7Ti(t) — 7r2(t),av)| | a simple, t G [0, 1]Q}. 

Denote by c the maximum max{|(a, 7V)| | a, 7 simple roots }. An important prop
erty of the operators is that they are "continuous" with respect to d(-, •). But note 
that d(7Ti,7T2) depends on the parameterization (see [15]). 

PROPOSITION 1. Suppose d(TTi,TT2) < e. If faTTi, fa7T2 7̂  0 (respectively eaTTi,eaTT2 
^ 0), then d(faTTi, faTT2) < 3ce (respectively d(eaTTi,eaTT2) < 3cej. 
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7 The main results 

Denote by n + C n the subset of paths such that the image is completely contained 
in the dominant Weyl chamber. The structure of the modules ATT generated by a 
pa th 7T G n + is described in the following theorems [15]: 

M A I N T H E O R E M . Suppose TT,TTI,TT2 E n + . 

(a) Integrality: ATT is an integral A-module; i.e., B^ := ATT nil is a Z-basis for 
ATT, and the minimum of the function ha : t \-> (i](t),av) is an integer for 
all a simple, 77 G Bn. 

(b) Highest weight module: ATT nil"1" = {TT}, ATT = Yl^fm • • • fas^} and TT is the 
only path in ATT such that eaiT = 0 for all simple roots. 

(c) Isomorphism: If TTi(l) = 7 ^ ( 1 ) , then ATTI ~ AT\2-
(d)— Weyhgroup:~The-action-of-the-simple-reflections s^on-ZU definedbyf 

a[V)-~\el(v), if-p:=(ri(l),^}<0, 

extends to an action of the Weyl group W on ZU such that the A-modules ATT are 
stable with respect to this action and w(r]) (1) = TI;(77(1)). 

W E Y L C H A R A C T E R F O R M U L A F O R .A-MODULES. Fix p G X such that (p, ay) = 1 

for all simple roots, and suppose TT G n + . Then 

Y^ Bgn(flr)ea^ Char ATT = ] T sgn(<r)e f f^+A). 
aEW aEW 

In particular, Ghax Air is equal to the character of the irreducible, integrable g-
module V\ of highest weight X := TT(1). 

C O N C A T E N A T I O N O F A - M O D U L E S . Suppose TTI,TT2 G n + . T/ie77, 

ATTI * ATT2 = ^ A(TTI * 77), 

where the sum runs over all paths 77 G A.7T2 such that TTI * 77 G n + . 

Because Char ATTI * Air 2 = Char .ATTI Char ATT2 = Char V^ (i) ® 1^2(1) > we get 
as an immediate consequence: 

G E N E R A L I Z E D L I T T L E W O O D - R I C H A R D S O N RULE. For dominant weights X,p let 

7Ti,7T2 G n + be such that TTI(1) = A and 7T2(1) = p. Then the tensor product 
of the integrable, irreducible representations V\, VjJL of g of highest weight X,p is 
isomorphic to the direct sum 

where the sum runs over all paths rj E ATT2 such that ix\ * 77 G n + . 
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E X A M P L E . Suppose g = gln and A G X+, and we write again w for the path 
associated to the word. Let 7Q be the tableau of shape A having only l 's in the 
first row, 2's in the second row, etc. One sees easily tha t wr0 is completely contained 
in the dominant Weyl chamber, and the module Awq-Q has as basis the paths w r , 
where T is a semi-standard Young tableau of shape A. In this way we get the 
Young tableaux and the classical Littlewood-Richardson rule as a special case of 
the theory of pa th modules. 

8 An example: The Lakshmibai-Seshadri paths 

Let VA be the simple integrable module of a symmetrizable Kac-Moody algebra of 
highest weight A. Denote by TT\ : t —> tX the pa th tha t connects the origin with A 
by a straight line. 

We are going to describe the basis ATT\ PI n of the A-module generated by 
TT\\ the Lakshmibai-Seshadri paths. The definition given here is a "translation" of 
the definition in [12] into the language of paths . 

Let W\ be the stabilizer of A, and let " < " be the Bruhat order on W/W\. 
We identify a pair TT — (r,a_) of sequences: 
• r : r i > T2 > . . . > r r is a sequence of linearly ordered cosets in W/W\ and 
• a : a o : = 0 < a i < . . . < a r : = l i s a sequence of rational numbers with the 

path: 

7r(t) := ^ ( a , : - a7;_i)r7;(A) + (t - a j_ i ) r , (A) for a^i<t<aj. 
i = i 

Note t ha t A —7r(l) = (A — T r(A))-fX^=i ai{Ti+iW ~ riW)i s o if the a^ are chosen 
such tha t the ^ ( r ^ + i (A) — ^(A)) are still in the root lattice, then ?T(1) G X. To 
ensure this, we introduce now the notion of an a-chain. Let l(-) be the length 
function on W/W\ and denote by ßy t he coroot of a positive real root ß: 

Let r > er be two elements of W/W\ and let 0 < a < 1 be a rational number. 
By an a-chain for the pair (r, a) we mean a sequence of cosets in W/W\\ 

KQ := r > « i := sßlr > K2 •"= Sß^sßlr > • • • > KS := Sßa • ... • s ^ r = a, 

where ßi,... ,ßs are positive real roots and 1(K>ì) = I(Kì-I) — 1, a(Ki(X),ß^) E Z 
for a l H = 1 , . . . ,s. 

D E F I N I T I O N . A pair (r,a) is called a Lakshmibai-Seshadri pa th of shape A if for 
all z = 1 , . . . , r — 1 there exists an ai-chain for the pair (ri, Tì+I). 

E X A M P L E . For a E W/W\ let TTa{X) be the pa th 11—• tcr(A) tha t connects 0 with 
cr(A) by a straight line. Then TTa[x) is t he Lakshmibai-Seshadri pa th (er;0,1). 

T H E O R E M 2. [14] The A-module ATT\ generated by the path TT\ has as basis the 
set of all Lakshmibai-Seshadri paths (r,a) of shape X. 
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For r G W let ATT\(T) be the subset of all Lakshmibai-Seshadri paths of 
shape A such that TI < r, and denote by A^ the Demazure operator on ; 

pH+P _ p8a(fl+p) 

DEMAZURE T Y P E CHARACTER FORMULA. [14] For any reduced decomposition 
r = sai... sa.r one has Aai o • • • o Aar(e

x) = ^EA^T)
 e??(1)-

9 The P-R-V conjecture 

Consider the tensor product V̂  ® Vti of two simple, integrable g-modules of highest 
weight A and \i. The Parthasarathy-Ranga-Rao-Varadarajan conjecture states: 

THEOREM-3T Ifo,7-~^-W~are-such-that-iy-\=-r^X)-^r o~(p)-is a~dominant~weightr 

then the module Vv occurs in V\ ® VfJ,. 

Proofs of the conjecture have been given independently in [10] and [21]. Using 
the generalized Littlewood-Richardson rule, one can give a simple purely combi
natorial rule. Figure 3 shows the idea of the proof given in [14]: 

s2Si(X + o~(p))^ \ -A / 

si(A + o-(/x)) •-< 

* A + a(p) 

Figure 3 

For z/ G X let [i/] E X+ be the unique dominant element in the Weyl group 
orbit W-v1. Suppose now v := r(A)+o(p) is a dominant weight, then for n := r~1a 
we have v = [A + «(/i)]. Starting with the path TTK(H) = (^;0,1), Figure 3 shows 
how to construct inductively a Lakshmibai-Seshadri path TT = (r_,a) of shape p, 
such that TT\ * TT G n + and v — X + 7T(1), which proves the theorem. 

10 The paths and the crystal graph 

Let Uq(g) be the g-analog of the enveloping algebra of g (see for example [5], [19]). 
Kashiwara [6] and Lusztig [18] gave decomposition formulas for tensor products 
of ^-representations using the theory of representations of UQ(Q). 
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For TT G n + let G(TT) be the oriented, colored graph having as points the 
elements of the basis .ATT D n , and put an arrow TTI-^->TT2 with color a if and 
only if fa(7Ti) = TT2- Though the theory of the pa th modules is independent of 
the theory of quantum groups (the proofs of the properties of the pa th modules 
involve only combinatorics of Weyl groups), the following connection has been 
found (independently) by Joseph [5], Kashiwara [7], and Lakshmibai. 

T H E C R Y S T A L G R A P H . For TT E n + set X := 7r(l). The graph Q(TT) is isomorphic 
to the crystal graph of the irreducible representation V\ of highest weight X of the 
q-analog Uq(&) of the enveloping algebra of g. 

11 The representation ring 

Denote by ZHo := A n + C Z n the A-submodule generated by the elements of n + , 
and set no := ZHo fi l l . By the decomposition formula, ZHo is a subalgebra of Z n . 

We say TT, 77 G Ho are equivalent if and only if there exist TT+, 77+ G n + such 
t ha t T T + ( 1 ) = 77+(1), 7T G A.7T+, and 77 G ^4T7+, and the isomorphism ATT+ —> AT7 + , 

a7T+ 1—> a?7+ maps TT onto 77. 

P R O P O S I T I O N . The concatenation on ZYLQ induces on IÄIQJ "~" in a canonical 

way the structure of a Z-algebra, and IXIQJ "~n is isomorphic to (&XEX+ ATT\ as 
an A-module. Further, for A, p E X+ one has 

ATT\ * .ATT^ = é&ATT^+^I) mod " ~ " , 

where the sum runs over all 77 G A-TT^ such that TT\ * 77 G n + . 

So one can hence view Z H o / " ~ " as a model for the representation ring of 
g. Note tha t for g = sin this algebra is isomorphic to the monoide plactique of 
Lascoux and Schützenberger [25]. Here we define the multiplication on the semi-
s tandard Young tableaux as follows: let (as before) wj- be the pa th associated to a 
tableau. Then TT' := T" , where TN is the unique semi-standard Young tableau 
such tha t WT * wy/ = w ^ " mod "~" . 

12 Some idempotents 

Let ZHo be as above. Denote by AQ the subalgebra of End^ ZHo generated by 
the restrictions ea\zuQi fa\zu0 £ End^ZHo. We consider here for simplicity only 
the case where g is a finite-dimensional, semi-simple Lie algebra. For a dominant 
weight A set Aa := (A, a v ) , and denote by p\ E AQ the element 

PA:- H ^ / > ( l - e ^ + 1 / ^ + 1 ) ( l - / Q e Q ) . 
a simple 

Note t h a t p\n = 77 if 77 G n + and 77(1) = A, and p\n = 0 else. It follows tha t p\ is 
an idempotent and p\apß = 0 for all a G AQ and A / p. Denote by A\ the ideal 
AQP\AQ, and let A* be the highest weight of Home (VA, C). 
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T H E O R E M 4. (a) As an (AQ X AQ)-bimodule, the ideal A\ is isomorphic to the 
tensor product AQTT\ ® AQTT\*} and the representation map AQ —» Endz.AoTTA; 
a i—> û|,4Q7rA, induces an isomorphism of algebras A\ ~ Endz A^OTT^. 

(b) Set U := ®xex+ ^o^A- The representation p : .Ao —> Endz U, a H-> a\u, 
is faithful and induces an isomorphism: © A G X + ^ — > ®\EX+ Endz.Ao?TA. 

(c) Let T C AQ be the subalgebra generated by the fa and let E C AQ be the 
subalgebra generated by the ea. For any a G Ao and v E ZAIQ there exists an A-
stable submodule M C ZHo such that v E M, and there exist F\ E T and Ex E S 
such that CL\M = Yi ^xPx^x for a finite number of X E X+. 
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Subgroup Growth 
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Dedicated to the memory of S. A. Amitsur 

1 Introduction 

Let r be a group generated lyy a finite set S. Denote by ò7^(r) the number of 
elements of T of length at most n with respect to S U S~1. The word growth of T, 
i.e., the growth of the sequence b^(T) has received considerable attention following 
the observation that it has some geometric meaning (see [Gr] and the references 
therein). 

Here we look at a different growth — the subgroup growth. Let (rn(T) = the 
number of subgroups of T of index at most n and an(T) = crn(r) — an-i(r). The 
study of an(T) was started in 1949 by Hall, who computed o-n(T) for T — FT, the 
free group on r generators. But it was only in the last decade that the research of 
this concept blossomed when connections were found to problems in finite groups, 
combinatorics, algebraic and arithmetic groups, p-adic Lie groups, number theory, 
model theory, complex functions, Igusa's zeta functions, and more. 

Subgroup growth can be thought of as a chapter in "asymptotic group the
ory" where we study infinite groups via the asymptotic behavior of some of their 
invariants. As will be seen below it leads naturally to another direction of asymp
totic group theory where invariants of infinite families of finite groups are studied. 
The interplay between the finite and the infinite turns out to be extremely useful. 

A related development is the resurgence of interest in the last decade in the 
subject of "finiteness properties of infinite groups". This topic deserves an inde
pendent survey. In Section 7 we only touch on it briefly and give some references. 

We will try here to give a brief description of the main results achieved so 
far and some indication on the problems for future research. Other survey papers 
are [L4], [MS2], [dS2]. 

In Section 2 we will present the theorem that characterizes the groups with 
polynomial subgroup growth (PSG-groups for short), i.e., those T for which an(T) 
= 0(nc) for some constant c. This is probably the major theorem in this topic so 
far. We give some hints of its proof as they shed light on the connection between 
subgroup growth and other topics, such as the classification of finite simple groups, 
p-adic Lie groups, strong approximation results for arithmetic groups, and some 
number theory. 
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The proof of the PSG-theorem calls attention to the problem of count
ing the congruence subgroups of arithmetic groups. This problem is addressed 
in Section 3, where estimates of the growth of congruence subgroups are given. 
This is nciogn/iogiogn for characteristic zero arithmetic groups (e.g., SLr(Z)) and 
slightly higher for characteristic p > 0 (e.g., SLr(¥p[t])). In case the arithmetic 
groups satisfy the congruence subgroup property (CSP) (e.g. r > 3), the congru
ence subgroups are all the finite index subgroups and so we have groups with 
o~n(T) ~ n c l o g n / l o g l o g n , i.e., groups with subgroup growth that is strictly between 
polynomial and exponential. It turns out that the congruence subgroup property 
can be characterized by means of subgroup growth. The latter has a purely group 
theoretic meaning — so the congruence subgroup problem can now be asked for 
nonarithmetic lattices in semi-simple groups. Some conjectures and some very par
tial results on subgroup growth of fundamental groups of hyperbolic groups are 
presented. 

Another application of the counting of congruence subgroups is that for 
finitely generated linear groups T, ^ ( r ) grows either polynomially or at least 
as fast as n

cioën/ioëiosn
m For profinite groups there is no such gap, but for pro-p 

groups G the gap is even larger: o-n(G) > n c l o g n if not polynomial. The question 
of existence of a "gap" for general finitely generated groups is still open. There 
are however (nonlinear) groups with growth n

c^°en/(loëio&n) a n d it might be that 
this is the minimum possible for discrete non PSG-groups. The gap problem is 
discussed in Section 4. 

In Section 5, we turn to nilpotent groups V. They have polynomial subgroup 
growth and the zeta function 

oo 

CrM = ]C "*&)*'* w h e r e a-(r) = an(T) - <7n_i(r) 
n=l 

has nontrivial domain of convergence. Moreover, it has Euler factorization and 
the local p-factors are rational functions of p~s. One is tempted to try to develop 
a theory of zeta functions for nilpotent groups, in analogy with the Dedekind 
Ç-functions of number fields. Only very partial results on analytic continuation 
and functional equations are known. In Section 6, we briefly describe some of the 
detailed information known about o~n(r) for virtually free groups T, and we hint 
at the connection to some combinatorial problems. 

2 Groups of polynomial subgroup growth 

A group T is said to have polynomial subgroup growth (a PSG-group) if there exists 
c such that an(T) < nc for every n. Here is the main result on such groups. 

THEOREM 2.1. [LMS], [MSI], [LM2], [S] Let F be a fìnitely generated, residually 
finite group. Then V has polynomial subgroup growth if and only ifT is virtually 
solvable of finite rank. 

Recall that a group is virtually solvable if it has a finite index solvable sub
group. It is of finite rank if there is a bound on the number of generators of its 
finitely generated subgroups. 



Subgroup Growth 311 

The difficult part of Theorem 2.1 is, of course, the part saying that a PSG-
group is virtually solvable. This is done in a sequence of steps, which we describe 
briefly: 

The core of the proof is the linear case. Assume T is a PSG-subgroup of 
GLn(C) for some n and T is not virtually solvable. Some results on linear and 
algebraic groups are used to deduce that T has a representation n into GLm(Q) 
for some m with a non virtually solvable image. Moreover, the Zariski closure G of 
n ( r ) can be assumed to be a semi-simple, connected, simply connected algebraic 
subgroup of GLm. Hence n ( r ) is a subgroup of an S-arithmetic group G(Zs). 
Strong approximation results for subgroups of S'-arithmetic groups imply that 
crn(r) grows at least as fast as ryn(G(Zs)). The latter is the number of congruence 
subgroups of G(Zs) of index at most n. A congruence subgroup of T is one con
taining T(m) = TnKer(GL n (Z) -> GLn(Z/mZ)) for-some 0 ^ m E Z . The-Prime-
Numb er Theorem is then used to count congruence subgroups and to show that 
their growth is not polynomial. (A more precise counting of congruence subgroups 
is described in Theorem 3.2 below.) This proves the linear case in characteristic 
zero. 

Theorem 2.1 is extended to residually-p groups in the following way. A 
residually-p group T is characterized by the fact that V is embedded in its pro-
p completion Tp. If T is PSG so is H = Vp. In addition we have the following 
theorem, which is of independent interest: 

THEOREM 2.2. [LM2] Let H be a finitely generated pro-p group. Then H is a 
PSG group if and only if it is p-adic analytic. 

The theory of p-adic analytic groups, i.e., groups that are Lie groups over 
Qp, the field of p-adic numbers, was studied in detail by Lazard. For a more 
modern treatment (via the notion of powerful p-groups) and references see [DDMS]. 
A compact p-adic analytic group is linear. Thus Theorem 2.2 and the remark 
proceeding it imply that a PSG residually-p group is linear over C Theorem 2.1 is 
therefore proved for residually-p groups that include linear groups in characteristic 
p. The linearity argument described above is a prototype of a linearization method, 
initiated in [L2], that uses y>adic analytic groups as a tool to ensure linearity of 
various groups. 

The case of general T in Theorem 2.1 is carried out in the following way. 
Using the classification of the finite simple groups one analyzes the possible chief 
factors of T, the profinite completion of T. The nonabelian simple ones should 
have bounded multiplicity and should have bounded degree linear representations. 
This, with the linear case proved below, reduces the proof to residually solvable 
groups. Some results and arguments from the theory of infinite solvable groups are 
then used to reduce to the residually-p case, which was treated before. 

The same proof can be presented via different patterns. The reader is referred 
to other surveys like [DDMS], [LMS], and [L4]. 

We finally define for a PSG-group the invariant: a(V) = lim sup °^7l
7[ • 

n—»oo 

Very little is known about o:(r). It is not even known whether or not it is always 
a rational number (this is so for pro-p groups ([dSl])), not even for nilpotent 
groups T. 
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3 Counting congruence subgroups and intermediate subgroup growth 

The proof of the PSG-Theorem (2.1) called attention to counting congruence sub
groups in arithmetic subgroups of semi-simple groups. The proof there required 
only that this growth not be polynomial, a fact that follows quickly from a weak 
version of the prime number theorem. Deeper versions of the prime number the
orem combined with group theoretical methods from [P] can give more precise 
estimates. (For simplicity we present here weak forms of the actual results.) 

DEFINITION 3.1. Let / : N —• R be a function and T a group. T is said to have 
subgroup growth of type / if there exist a,b E M+ such that an(F) < f(n)a for 
every n and crn(r) > f(n)b for infinitely many n. We will write an(T) ~ f(n). 

THEOREM 3.2. [L3] Let G be asimple Chevalley subgroup ofGLn, and F = G(Z). 
Then jn(F) ~ niDgn/iogiogn w £ e r e ^yn(r) is the number of congruence subgroups 
of F of index at most n. 

Interestingly enough, for global fields of characteristic p > 0 the type of 
growth is different as is the method of proof (which is influenced by [Shi]). 

THEOREM 3.3. [L3] Let G be a simple Chevalley subgroup of GLn and F = 
G(¥p[i\) (with G not of type Ai or Cn ifp = 2). Then there exist two constants a 
and b such that for every n, 

n a l o g n < 7 n ( r ) < n M o g 2 n 

where 7 n ( r ) is the number of congruence subgroups of index at most n. 

Note that in the characteristic p case we do not have a complete answer. It 
is however different from characteristic zero. 

In any event, if T has the congruence subgroup property, e.g., T = SL^(Z) 
or T = SL3(Fp[i\) where every finite index subgroup is a congruence subgroup, we 
can conclude: 

COROLLARY 3.4. There exist finitely generated groups of intermediate subgroup 
growth. 

The above-mentioned examples are of growth that is just slightly faster than 
polynomial. Other types of examples were constructed using arguments from com
mutative algebra and the geometry of numbers: 

THEOREM 3.5. [SS] For every d > 1 there exist a finitely presented meta-abelian 

group T and constants b, c > 1 such that bn < an(F) < cn for all large n. 

It is widely open as to what the possible types of subgroup growth are for 
finitely generated discrete (or pro-p) groups. 

The congruence subgroup property is connected to subgroup growth in an 
even deeper way. Assume G is a semi-simple, simply connected, connected Q-
algebraic subgroup of GLn such that F = G(Z) is infinite and G(Q) has the 
standard description of normal subgroups (cf. [PR], [L3]). F — G(Z) is said to 

have the congruence subgroup property (CSP) if Ker(Ó(Z) —> G(Z)) is finite. 
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THEOREM 3.6. r = G(Z) has the congruence subgroup property if and only if 
an(j) = 0£(?iElogn) for every E > 0. 

So, if CSP fails there are many more noncongruence subgroups than con
gruence subgroups. Moreover, the Theorem says that an arithmetic property like 
CSP can be characterized by the subgroup growth, which is a purely group the
oretical property. This enables one to pose the congruence subgroup problem for 
groups without arithmetic structure, in particular for nonarithmetic lattices in a 
semi-simple Lie group H. One of the features of Serre's conjecture on CSP [Se], is 
that the CSP depends on H and not on F. It is natural to extend this conjecture 
to nonarithmetic lattices and to suggest that fundamental groups of hyperbolic 
manifolds have fast subgroup growth. Only partial results are known, e.g.: 

^PROPOSITION 3.7. [LI], [L3]_Le£_M be a ^-dimensional hyperbolic^manifold oL_ 
finite volume. Then for some e > 0, o"n(ni(M)) > ?7,elogn for infinitely many n's. 

It can also be shown that the arithmetic lattices treated in [M] and the 
nonarithmetic lattices in [GP] have sup er-exponential subgroup growth. 

On the other hand, it is natural to conjecture (and it is supported by the 
known examples) that discrete groups with Kazhdan property (T) have modest 
subgroup growth. No nontrivial bound is known at this point. 

4 The gap problem 

A byproduct of the PSG-Theorem (2.1), the precise counting of congruence sub
groups (Theorem 3.2), and arguments from the geometry of numbers from [SS] 
is: 

THEOREM 4 .1. [L3] Let F be a finitely generated linear group. Then either F is a 
PSG-group or cjn(F) > ncioBn/iogiogn for SQme C>Q and infinitely many n » S i 

This joins a result of similar flavor (but with a different bound!) for pro-p 
groups. 

THEOREM 4.2. [Shi] Let G be a finitely generated pro-p group. Then either G is 
PSG or &n(G) > 77,clogn for some c > 0 and infinitely many 7i's. 

On the other hand for profinite groups G, there is no such gap. 

THEOREM 4.3. [Sh2] For every function f : N —> N such that f(l) = 1 and 
log f(n)l log n goes to infinity, there exists a finitely generated non PSG-profinitc 
group G satisfying an(G) < f(n) for all n. 

Theorems 4.1 and 4.2 are best possible in the sense that linear (resp. pro-
p) groups exist with an(F) ~ nlog"/loglogn (resp. an(G) ~ ?i logn). But it is not 
known whether or not any gap exists for general finitely generated discrete groups. 
Recently, it was shown that the lower bound for linear groups given in Theorem 
4.1 can be beaten. 

THEOREM 4.4. [LPSh] There exist finitely generated groups whose subgroup 
growth is Of type nl°B»/0°Sl°S«)a. 

We are left with: 
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OPEN PROBLEM. IS there a nontrivial lower bound on the subgroup growth of 
non-PSG finitely generated groups? Is it ni°gn/(iogiogn)2

? 

5 Nilpotent groups and zeta functions 

For word growth the numbers b^(F) defined in Section 1 are of little interest; their 
growth is the focus of research. With subgroup growth the situation is different: 
the numbers an (F) (= the number of subgroups of index n) are of intrinsic interest 

oo 

by themselves. In [GSS] the function Cr(s) = ]C an(l)n~s w a s associated with F 
n = l 

and its properties were studied when T is a nilpotent group. 

THEOREM 5.1. [GSS] Let F be a finitely generated nilpotent group and Cr(s) = 
J2an(F)n~s. Then: 
(1) an(F) grows polynomially and so 

logoVi(r) 
ct(F) = hmsup — ^ - < oo. 

logn 

(2) C7(s) JS convergent for Re(s) > a(F). 
oo 

(3) Euler factorization: Cr(s) = J] Cr,P(s) where Cr,p(s) = 2 <V C O P " -
p prime i=0 

(4) For every prime p, Cr,p(s) is a rational function ofp~3. 

The first three parts of Theorem 5.1 are easy — but not the fourth. Its 
proof is based on a presentation of (r,p(s) as a p-adic integral. This p-adic integral 
is rational by the main result of [D]. The proof of the latter is based on model 
theoretic considerations. 

Of course, the dream is to establish a theory of zeta functions for nilpotent 
groups in analogy to Dedekind zeta functions of number fields. The many examples 
computed in [GSS] are quite encouraging — but very little is known (see [dS2]). 
The computations suggest also a Cebotarev type theorem. Recently it was shown 
in [dSL] that an analogous local zeta function Cr,p(s) satisfies, in some cases, a 
kind of functional equation. Here, Cr (s) = S an(On~s w n e r e an CO is the number 
of subgroups of index n in F whose profinite completion is isomorphic to F. This 
Cr,p(s) turns out to be an Igusa zeta function computed as an integral over some 
p-adic algebraic group [I]. On the other hand in [dS2] some examples are shown 
where £r do not have a meromorphic continuation. Clearly only the tip of the 
iceberg has been revealed so far. Only the future can say where this theory will 
lead us. 

A far-reaching generalization of Theorem 5.1(4) is the following: 

THEOREM 5.2. [dSl] Let G be a compact p-adic analytic group; then CG,P(S) is a 
rational function of p~s. 

Although many examples were computed with G nilpotent, the only semi-
simple groups G for which CG,P(S) has been computed are the principal congruence 
subgroups of SL2(Zp) [II]. 
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6 Virtually free groups and permutational representations 

As mentioned above the number of subgroups of index n, an(F), in F = Fr, the 
free group on r generators was given (recursively) in [H]. The basic observation is 
that an(F) = , j ^ ^ [Horner, ffn)| where H o m ^ r , ^ ) is the number of transitive 
actions of F on the set { 1 , . . . ,7i}. For F = Fr, most actions are transitive so 
\Romt(Fr,Sn)\ ~ |Hom(.Fr,£V,,)| = (nl)r and hence an(Fr) ~ 77,(77,!)r_1, which is 
super-exponential. For general groups it is not easy to estimate |Hom(r,S'n)| (or 
|Hom t(r,5?1)|). 

Detailed stud}'' for F virtually free groups was carried out in [Mu] (and the ref
erences therein). For example if F is a free product of two finite groups r = Hi*H2, 

2 
then |Hom(r, Sn)\ = YI \rlom(Hi,Sn)\. The problem of estimating \rlom(H,Sn)\ 

i=l_ 
for a finite group H was solved in [Mu] and the following Theorem is deduced: 

THEOREM 6.1. [Mu] Let F = *?=1 Gi be a free product of 2 < s < oo nontrivial 
finite groups of orders mi,... ,ms respectively. If s = 2 assume that not both G\ 
and G2 are cyclic of order 2. Then 

an(F) ~ L r • $r(n) as n —> oo 

where 

r /n \-l/2 / V^ \amt/2\>
jri)j 

L r = (27T777,i * • • • * ms) ' e x p — ^ '-
V {iiai^} ' 

$r(n)=n-h( r)"exp h{T)n + ^2 J2 ^f^ridl/m'+ \fogn 
i i=l dl\nil 

\ d% <ra% / 

and 

h(F) = Euler characteristic ofF= 1 ( m i ^ ' " ' ' (?? 's ^ 
?7ii • . . . • ms 

This applies in particular for the modular group PSL2(Z) ~ Z/2Z 
Of course the subgroup growth of PSL2(Z) is super-exponential, whereas the 
growth of the congruence subgroups is much slower (see Theorem 3.2), so "most" 
subgroups are noncongruence as Theorem 3.6 says. It even suggests that a much 
stronger form of Theorem 3.6 might be true. Compare Proposition 3.7 and the 
remark preceding it. 

7 Finiteness conditions on infinite groups 

Subgroup growth can be viewed as part of the general theory of "finiteness con
ditions on infinite groups". This theory was a main theme of group theory in the 
first half of the century. There have been various conjectures, all of the following 
type: Assume a group G satisfies a set of conditions P, then G is finite (or solvable 
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or virtually solvable). The theory had only partial success. The examples of Tarski 
monsters by Olshanski and Rips explain why: these groups are finitely generated 
where every proper subgroup is of order p (for a fixed prime p) and still they are 
infinite groups. They are, therefore, of finite exponent, finite rank, etc. and yet not 
virtually solvable. 

In recent years it has been shown tha t under the assumption of residual 
finiteness, some of these old conjectures become theorems. The most notable ex
ample is of course the restricted Burnside problem, which is nothing more than 
the Burnside problem for residually finite groups: 

T H E O R E M 7 . 1 . [Zl] Let F be a fìnitely generated residually finite group of unite 
exponent (i.e. for some m, xm = 1, for every x E F). Then F is finite. 

Similarly for finite rank instead of finite exponent: 

T H E O R E M 7.2. [LM1] Let F be a finitely generated residually finite group of unite 
rank (i.e. for some m, every fìnitely generated subgroup of F is generated by at 
most m elements). Then F is virtually solvable. 

Another result of a similar flavor is: 

T H E O R E M 7.3 . [W], [Z2] A finitely generated residually finite n-Engel group (i.e. 
for every x and y in F, [x, y, y,... , y] = 1 where y occurs n times) is nilpotent. 

These developments were made possible by the accumulation of four theories: 
(1) The classification of finite simple groups, 
(2) The remarkable progress made in Lie algebras techniques, 
(3) The use of p-adic analytic pro-p groups, and 
(4) The use of the theories of l inear/algebraic/arithmetic groups. 

It seems tha t the future will bring many more exciting results in these di
rections. Some connections of finiteness conditions with arithmetic groups have 
already surfaced (cf. [PR], [L3]). 
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1. Introduction 

Soit G un groupe fini. Existe-t-il une extension de Q (ou plus généralement une 
infinité d'extensions de Q, ou plus généralement encore une extension régulière de 
Q(t)) galoisienne de groupe de Galois Gl 

Lorsque G est extension centrale d 'un groupe H par Z/2Z, et que l'on connaît 
une extension régulière K de Q(t) de groupe de Galois H, l'existence d'une exten
sion quadrat ique M de K telle que M/Q(t) soit galoisienne de groupe de Galois 
G est reliée au fait qu 'un certain élément CLK de Br2(Q(t)) associé à l'extension K 
est nul l . 

Dans la section 1, nous considérons le cas où H est le groupe alterné An 

(n > 4), et G = An l 'unique extension centrale non triviale de An par Z/2Z. Pour 
n impair, nous construisons des extensions K de Q(t) de groupe de Galois An, 
dont les ordres des groupes d'inertie sont impairs (en fait égaux à 3). L'invariant 
OLK est alors constant. Comme, pour t = oo, ces extensions se spécialisent en des 
algèbres étales scindées Q71, l'invariant CLK est nul, et le groupe An est groupe de 
Galois d 'une extension régulière de Q(£). Il est facile de voir que le cas n pair se 
déduit du cas n impair, d'où le théorème: 

T H é O R è M E 1 Si n est un entier > A, le groupe Àn est groupe de Galois d'une 
extension régulière de Q(t). 

Dans la section 2, nous traitons le cas où H = PSL2(FV) et G = SL2(Fy). 
Dans ce cas, LaMacchia a construit des extensions régulières de Q(x) de groupe 
de Galois PSL2(Fy) telles que l'invariant w E Br2(Q(z)) associé a 4 points de 
ramification d'indice pair, et qui, pour certaines valeurs de t, s'annule. 

Le théorème 

T H é O R è M E 2 Le groupe SL2(Fy) est groupe de Galois d'une extension régulière 
de Q(t) 

apparaît alors comme un corollaire du théorème suivant: 

1Pkis précisément, si ß est l'élément de H2(H, Z/2Z) associé à G, et p : Gal(Q(t)/Q(i)) -> H 
le morphisme associé à l'extension K, on a «/<- = p*(ß). 

Proceedings of the International Congress 
of Mathematicians, Zürich, Switzerland 1994 
© Birkhäuser Verlag, Basel, Switzerland 1995 



Constructions polynomiales et théorie de Galois 319 

THÉORÈME 3 Soit k un corps de caractéristique différente de 2, et ex. un élément 
de Br2(fc(:c)); tel que Vêlement a(oo) E Br2(fc) obtenu par spécialisation de x en 
l'infini est nul, et dont la somme des degrés des pôles est < 4. Il existe alors une 
fraction rationnelle x = f(t) non constante, telle que /(oo) = oo; et telle que 
l'élément f*(cv) de Bi'2(&(£)) est nul. 

Ce théorème (ainsi que le théorème analogue lorsque la somme des degrés 
des pôles est < 5) résulte de constructions polynomiales élémentaires. 

Dans la section 3, nous montrons comment ces mêmes constructions perme
ttent de construire une courbe elliptique sur Q(£) de rang 12 (et donc une infinité 
de courbes elliptiques sur Q de rang 12). 

Les résultats ci-dessus étant soit parus, soit à paraître prochainement, nous 
avons choisi ici d'insister sur la description des constructions polynomiales qui ont" 
permis de les démontrer. 

2. Le groupe An est groupe de Galois d'une extension régulière de Q(t) 

Le point crucial de la démonstration (cf. [2]) est la construction suivante: 
Soit n un entier impair. Il existe un polynôme H E Q [ X L , . . . ,Xn] tel que 

tout élément P — xn -f aix11-1 -\-... + an de Q[x] avec H(ai,...,an) ^ 0 vérifie 
les propriétés suivantes: 

1) Il existe deux polynômes Q et R de degré < n — 1, premiers avec P, vérifiant 

P'Q-PQ' = R2. 

2) Le polynôme R a ses racines distinctes. 
3) Soit t une nouvelle indéterminée. Le discriminant (par rapport à la variable x) 
du polynôme Ft = P — tQ est égal à S(t)'2D, où D est le discriminant de P et où 
S est un polynôme en t de degré n — 1 ayant ses racines distinctes. 
4) Si a est une racine de S, le polynôme Fa a une racine triple et n — 3 racines 
simples. 

L'existence de Q et R vérifiant P'Q — PQ' — R2 résulte du fait que cette 
égalité est équivalente à un système de n équations linéaires à n inconnues, dont 
la matrice associée est antisymétrique (et a donc un noyau non nul pour n impair) 
([2], p. 485). Les points 2),3),4) sont techniques, et en fait résultent de ce qu'ils 
sont vérifiés dans le cas particulier où P(x) = xn — x ([2], p. 486). 

Soit à présent un polynôme P E Q[x] de degré n impair dont les coefficients 
n'annulent pas H, et dont les racines sont simples et appartiennent à Q. Soit K 
l'extension de Q(t) engendrée par les racines du polynôme Ft. Il n'est pas difficile 
de montrer que son groupe de Galois est le groupe alterné An, que les valeurs de 
ramification sont les n — 1 racines t\ du polynôme S, et que les groupes d'inertie 
sont des 3-cycles, donc d'ordre impair. Par suite, l'obstruction a E Br2(fc(£)) est 
constante. Pour t = oo, l'extension K se spécialise en l'algèbre étale Qn, dont 
l'invariant a associé est nul. Donc a = 0, et il existe une extension quadratique M 
de K dont le groupe de Galois est An. 
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REMARQUE 1. La méthode ci-dessus permet également de construire, pour n im
pair, une infinité d'extensions de Q totalement réelles de groupe de Galois An: en 
effet, la forme Tr(x2) de l'extension K/Q(t) est indépendante de t, et est donc 
équivalente à la forme Tr(;c2) de l'algèbre Q[œ]/(P). Si P est scindé sur Q, cette 
forme est définie positive, d'où le résultat. 

REMARQUE 2. Par des constructions analogues, on peut prouver que les groupes 
6Aß et 6A7 (dans les notations de l'Atlas de Conway) sont groupes de Galois d'une 
extension régulière de Q(t). 

3. Le groupe SL2(F7) est groupe de Galois d'une extension régulière de Q(t) 

Dans [1], LaMacchia a construit des familles d'extensions Kafb régulières de Q(a, b) 
de groupe de Galois PSL2(F7), où a et b sont deux indéterminées. 

Lorsque a = 4 et b = 1, Malle a prouvé que l'extension de Q obtenue par 
spécialisation admet une extension quadratique galoisienne sur Q de groupe de Ga
lois SL2(Fy). Considérons donc l'extension K^j, de Q(b). On peut montrer qu'elle 
est ramifiée de type (3,3) en l'infini, et ramifiée d'ordre 2 en 4 autres points. 
L'invariant a E Br2(Q(b)) est donc tel que sa spécialisation en b = 1 est nulle, 
et que la somme des degrés cle ses pôles est égale à 4. Le théorème 2 est donc 
conséquence du théorème 3 ci-dessus. 

Soit donc a un élément de Bi2(k(x)), où k est un corps de caractéristique 
différente de 2, dont la spécialisation en +00 est nulle. À un tel élément sont 
associés le polynôme unitaire p produit des pôles de a et le "résidu" de a, qui est 
un élément r E A*/A*2, où A = k[x]/(p) (cf. [5]). 

On va voir que le théorème 3 est une conséquence facile du lemme élémentaire 
suivant: 

LEMME. Soitp un élément de k[x] de degré 2n, où n est un entier > 1, et a 
le coefficient de son terme de degré 2n. Il existe un unique polynôme g E k[x] de 
degré n et de terme dominant a tel que ap — g2 soit de degré <n — l. 

Il suffit de prendre pour g la partie polynomiale du développement asympto-
tique de (ap)1/2. 

La démonstration du théorème 3 est alors immédiate: si t est une nouvelle 
indéterminée, et si R est un représentant de .degré 3 de r (il en existe toujours), 
d'après le lemme, le polynôme p -h t2R = g2 + A(t)x — B(t), où A et B sont des 
éléments de k(t). On peut montrer que B est de degré 8 et A est non nul de degré 
< 6; le changement de variable x = B(t)/A(t) répond alors à la question: il est tel 
que f*(a) = 0 et /(oo) = 00). 

Le lemme précédent permet de prouver facilement des assertions voisines, par 
exemple: 

THÉORÈME 4 Soit k un corps de caractéristique distincte de 2, p E k[x] un poly
nôme unitaire de degré 8; c E k, et a l'élément de Br2(k(x)) égal à (p,c). Il existe 
un changement de variable non constant x — f(t), où f E k(t) vérifie /(oo) = 00, 
tel que f*(a) = 0. 
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La démonstration complète de ce résultat fera l'objet d 'un article ultérieur. 
Nous donnons ici la preuve du théorème ci-dessus lorsque le coefficient de degré 
7 de p est nul (ce à quoi on peut toujours se ramener) et lorsque p n'est pas pair 
(i.e. p(-x) ^p(x)). 

Dans ce cas, d'après le lemme, il existe g de degré 4 et r de degré < 3 tels 
que p = g2 -f- 7̂ ; si t est une nouvelle indéterminée, et si G = g + ct2/2, on a donc 
p — G2 — eu2G + r + c2w4/4. Si l'on applique à présent le lemme au polynôme 
cu2G — r — c2w4 /4, on voit que cu2G — r — c2u4/A = cH2 + A(t)x — B(t); puisque 
p n'est pas pair, le polynôme A n'est pas nul. La fraction rationnelle / = B/A 
répond alors à la question (Et on a même une solution explicite de l 'équation 
X2p(f(t)) +Y2c = Z2, avec (X,Y,Z) = ( 1 , # ( / ( * ) ) , G ( / ( t ) ) ) . ) 

Par une méthode légèrement différente (qui pourrait se ramener à l'applica
tion "du lemme ci-dessus, mais ce serait artificiel), on peut également montrer le 
théorème suivant: 

T H é O R è M E 5 Soit k un corps de caractéristique différente de 2, et a un élément 
de ~Bï2(k(x)) dont la somme des degrés des pôles est < 5, et dont la spécialisation 
en oo est nulle. Il existe une fraction rationnelle x = f(t), de degré < 16; telle que 
/ (oo) = oo etf*(a) = Q. 

Nous donnons ici les points principaux permet tant de démontrer ce théorème, 
la démonstrat ion détaillée faisant l'objet d'une publication ultérieure. 

Soit p le polynôme unitaire produit des pôles de a, et r un polynôme de 
degré < 4 représentant le résidu de a. Posons U = r + ax + b, V = vO + vlx + tx2, 
et R = R4X4 + • • • + RQ le reste de U2 — rV2 mod p. Il est clair que le système 
R4 = R3 = 0 est linéaire en a et b; lorsqu'on le résout, on voit que a est de degré 
1 en VQ, et que le coefficient de degré 1 de a par rapport à ^0 est linéaire en v\. On 
l'annule, et a et V\ sont donc à présent des éléments de k(t). On remarque alors 
que R2 est un polynôme de degré 1 en VQ (à coefficients dans k(t)). On résout donc 
R2 = 0 par rapport à VQ; par suite, a, b,v^,v\ sont à présent des éléments de k(t), 
et R = Ri(t)x + Ro(t), où RQ (resp. Ri) est de degré 16 (resp. 14) en t. Par suite, 
U2 — rV2 = R\(t)x + Ro(t) modp, et le lemme 1.2 de [5] permet de conclure: la 
fraction rationnelle non constante x = f(t) = —RQ/RI est telle que / (oo) = 00 et 
l'on a / * ( a ) = 0 . 

4. Courbes elliptiques de rang élevé 

Le lemme de la section précédente permet également de construire des courbes 
elliptiques de rang élevé: soit p un élément de Q(£) unitaire de degré 12, dont 
les racines sont distinctes et appartiennent à Q. D'après le lemme, il existe g de 
degré 6 et r de degré < 5 tels que p = g2 — r. Supposons que r soit de degré 4; 
la courbe de genre 1 d'équation y2 = r(x) possède alors les 12 points rationnels 
Pi = (xi,g(xi)), où les X{ sont les racines de p. 

Une méthode efficace pour trouver de tels polynômes p (tels que r soit de 
degré 4) est la suivante: soit q = (x — ai)... (x — aß) un polynôme de degré 6 
scindé sur Q, soit t une indéterminée, et soit p(x) = q(x —t)q(x -\-t). Le polynôme 
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r est alors divisible par t2, et si R = r/t2, le coefficient de degré 5 de R est un 
polynôme s ( a i , . . . , a§) en les Oj indépendant de t. 

Par suite, si s(a\,... ,a$) = 0, on obtient une courbe de genre 1 sur Q(t), 
d'équation y2 = R(x), et possédant 12 points rationnels. On en choisit un comme 
origine, et la courbe elliptique ainsi obtenue est en général de rang 11 sur Q(t) . 

Pour obtenir des courbes de rang 12, on remarque que le coefficient de degré 
4 de R est de la forme Pt2 + Q, où P et Q sont des polynômes en les a^. Si, pour 
certains choix de (a±,... ,a^) annulant s, la conique (en (t,z)) Pt2-\-Q — z2a des 
points, on la parametrise par t — f(w): les points à l'infini de la courbe y2 = R(x), 
définie sur Q(w), sont alors rationnels sur Q(w), et l'on obtient ainsi en général une 
courbe de rang 12 sur Q(w) ([3]). Comme l'invariant modulaire de cette courbe est 
non constant, on obtient par spécialisation du paramètre w une infinité de courbes 
elliptiques sur Q de rang 12, deux à deux non isomorphes. 

On peut donc espérer que par spécialisation on obtienne des courbes ellip
tiques sur Q de rang > 12. C'est ce qu'ont fait notamment Fermigier (qui a obtenu 
des courbes de rang > 19) et Nagao (qui a obtenu une courbe de rang > 21). 

De façon plus surprenante, Nagao a remarqué ([6]) qu'en considérant la 
courbe obtenue en prenant (a i , û2>a^,a4,a^ ,a^) = (148,116,104,57,25,0), on ob
tient un treizième point rationnel sur Q(t), d'abscisse (t + 103)/15, et indépendant 
des précédents. De plus, la conique Pt2 -h Q = z2 a un point (car ici P = 1), donc 
il obtient une courbe elliptique sur Q(w) (d'invariant non constant) de rang > 13 
(et donc une infinité de courbes elliptiques deux à deux non isomorphes, définies 
sur Q, et de rang > 13). 

En fait, on peut trouver une famille à deux paramètres (u, v) de telles courbes: 
Soit ( a i , a 2 3 a 3 , a 4 , a 5 , a 6 ) = 

(u3v2 -2u2v3 ^uv4 -u4 -2u2v2 -2itv3 +v4 + u2v^uv2 -v3 ^u2 + 2uv + v2 -v, 

u4v - 2 u3v2 + u2v3 + u4 - 2 u3v - 2 u2 v2 - v4 - u3 + u2v + uv2 + u2-\-2uv + v2 -u, 

u4+u4v-u3v2-2u3v-2u3+u2v3+u2v2+u2-2u2 

u3 -u4v -2u2v-\-u2v2 -\-u2v3 -2u2 - 2uv + uv2 + 2 u v 3 +u-v2 + v3-v4 + v, 

u3v2 -u4v + 2u3v + u3 -\-u2v2 -u2v3 + u2v-2uv3 -2uv2-u + uv4-2v3+v2-\-v4, 

—ai — a2 — a% — a^ — a$). 

On a alors s ( a i , . . . , a§) = 0, et la courbe elliptique y2 = R(x), définie sur 
Q(u,v)(t), contient un treizième point rationnel sur Q(u,v)(t), indépendant des 
précédents, à savoir le point d'abscisse (A -h Bt)/(u2 + v2 -\-1), où 

A = 3u3v2 + 2u4v + uv - Av3u - 3v2u2 + 3v3u2 - Au3v + u + v - u6 + v3 - 3v4 

+21 ; 5 - vG + 3u2v + 3v2u + 2v4u - 3u4 + u3 + 2u5 + u5v2 -f- u5v - u4v3 - 2u4v2 

-u3v4 - 4,u3v3 + u2v5 - 2u2v4 + uv5 

et 
B = -u2 -v2 + 2u + 2v + l. 
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De plus, le terme de degré A de R est de la forme R^ = C(u,v)2t2 + D(u,v), 
où C(u,v) et D(u,v) sont des éléments de Q[i/., i>]. donc en paramétrant la conique 
(en (t, z)) R4 = z2 par t = /(w), on obtient une famille à deux paramètres (ti, v) 
de courbes elliptiques sur Q(w) de rang > 13. On retrouve la courbe de Nagao en 
prenant (u,v) = (2,5). 

REMARQUE. Le même type de constructions permet de construire une infinité de 
courbes elliptiques sur Q, non deux à deux Q-isomorphes, d'invariant modulaire 
égal à 0 (resp. 1728), et dont le rang est > 6 (resp. > 4) ([4]). 
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ABSTRACT. Let X be an algebraic variety over a field k of characteristic not 2. A 
quadratic space on X is a locally free sheaf E on X together with a self-dual isomor
phism q : S —> £ v . In this article we outline some recent developments concerning 
the stable and nonstable study of quadratic spaces over algebraic varieties. Although 
this study borrows tools from algebra and geometry, it yields in return new insights 
into certain seemingly unrelated questions in algebra and geometry. 

1 Quadratic spaces over the affine plane 

The nonstable study of quadratic spaces acquired an impetus with the solution of 
Serre's conjecture on the triviality of algebraic vector bundles on the affine space by 
Quillen and Suslin. In [OS], Ojanguren and Sridharan constructed nonfree, rank 
one projective modules over D[X,Y], where D is any noncommutative division 
ring. There was a classification [PS1] of nonfree projective left ideals of M[X, Y], 
where M denotes the algebra of real quaternions, in terms of certain 2x2 hermitian 
matrices, modulo "hermitian" equivalence. This led to the construction [PI] of an 
explicit family of indecomposable rank 4 quadratic spaces over R[X, Y], thereby 
giving a negative answer to an analogue of Serre's conjecture for orthogonal bundles 
over A^. 

Given a quadratic space (S,q) over A£, there is a quadratic space qo over 
k such that the form on the fibre of (E,q) at any point of A£ is isometric to 
go- We call qo the form on the fibre of (S,q). We say that a space over A£ is 
isotropic if the form on the fibre is isotropic. This is equivalent to the form being 
isotropic generically. The indecomposable spaces over R[X, Y] mentioned above 
are anisotropic; indeed they have (1,1,1,1) as the form on the fibre. It was shown 
by Ojanguren [O] and independently by Kopeiko and Suslin [KS] that any isotropic 
quadratic space over A£ is extended from k. Thus, the obstruction to the quadratic 
spaces on A£ being extended from k lies in the existence of anisotropic quadratic 
spaces over k. That this is the precise obstruction to the extendibility question 
foUows from the theorem [P2] below. 
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THEOREM. Let k be a field of characteristic not 2 and go an anisotropic quadratic 
space of rank at least 3 over k. Then there exists an infinite family of indecompos
able quadratic spaces over A2 with qo as the fibre at any rational point. 

Raghunathan [R] proved the following theorems extending these results for 
principal G-bundles on A^, where G is a connected reductive algebraic group 
over k. 

THEOREM A. Assume that if [G,G] is nontrivial, then every one of its k-simple 
components is isotropic over k. Let P be a G-bundle on A]J such that P becomes 
trivial under base change to A£ . Assume further that over some (hence any) k-
point of An,P is trivial. Then P is trivial. 

THEOREM B. Assume that G is connected anisotropic absolutely almost simple 
and is not of type F4 or G2. Then there are infinitely many mutually nonisomorphic 
G-bundles P on A2 that become trivial over A2 , such that P do not admit a 
reduction of structure group to any proper connected reductive subgroup of G. 

A rational construction of Cayley algebras over any affine scheme [KPS4] 
leads to examples of nontrivial GVbundles on A2, provided k admits a Cayley 
division algebra. 

It was shown in [KPSI] that anisotropic quadratic spaces over A^ admit a 
unique extension to the projective plane F2. This reduces the problem of clas
sification of quadratic spaces on A2 to a corresponding problem over P^, where 
there is an abundance of vector bundle techniques available. An adaptation of 
methods of Barth and Hulek [BaH] yields a classification [OPS2] of anisotropic 
"s-stable" quadratic spaces over P^ in terms of certain orthogonal equivalence 
classes of triples of skew symmetric matrices. Thus, the classification problem of 
quadratic spaces on A2 is reduced to a problem in linear algebra. This was used 
in the construction of certain large rank indecomposable quadratic spaces over Aj| 
[OPS1] and in the classification of rank 4 quadratic spaces over A^ with prescribed 
"Chern classes" [OPS2]. 

2 Pfafnans and discriminants 

There has been a systematic study due to Knus-Ojanguren-Parimala-Sridharan of 
low rank quadratic spaces over arbitrary commutative rings via Clifford algebras. 
Let R be a commutative ring in which 2 is invertible. Let A be an Azumaya 
algebra over R of degree n; i.e., for some faithfully flat extension S of R, S®RA ~ 
Mn(S>)- Let P be a projective A-module of rank one. In [KOS], there is a functorial 
assignment to P of a projective .R-module NrdP of rank one and a polynomial 
map Nrd : P —> NrdP of degree n. If P = A, then Nrd A = R and Nrd : A -> R 
is the usual reduced norm. If degree A — 2, Nrd : P —» NrdP is a quadratic 
map. If NrdP is free, a choice of a generator for NrdP yields a quadratic space 
(P, Nrd) of rank 4 and trivial discriminant. In [KOS], it is proved that every rank 
4 quadratic space of trivial discriminant arises this way. 
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Let A be an Azumaya algebra of degree 2n over R which is 2-torsion in 
the Brauer group of R. Let ip : A <8>ìì A —» End^P be an isomorphism of R-
algebras, P being a finitely generated projective i2-module. The "switch" map 
x (8> y —> y ® x on A ®R A is given by inner conjugation by a "canonical" unit 
u G (A<8) A)* with u2 = 1. Let cp(u) = yj. We call iß the "module involution" on P. 
Let AltP = {x — yb(x),x G P} be the Ä-module of vb-alternating elements in P. 
To the triple (A,P,ip) is associated in [KPS2] functorially a projective .ft-module 
Pf P of rank one and a polynomial map Pf : Alt P —> Pf P of degree n. Further, 
there is a natural pairing 

6:PfP®PfP-+NrdP 

such that for x G AltP, ö(Pf(x) (8) Pf(x)) = Nrdx [PS3]. If A = M2n(Ä), 
tp : A (8)H A —> EndjiA is the map z (8) y —> (2 —> xzy}), Alt A = Alt2n(R), the 
subset of M2n(.R) of alternating matrices, Pf A ~ E and Pf : AZ£2n(i2) —> R is the 
classical pfaffian; the pairing 6 : E (8) i2 —> -R is the multiplication and the formula 
above simply says that the square of the pfaffian of an alternating matrix is its 
determinant. Let degree A = 4 and Pf P be free. Then, a choice of a generator for 
Pf P yields a quadratic space Pf : Alt P —> R of rank 6 and of trivial discriminant. 
In [KPS2], it was shown conversely that every rank 6 quadratic space of trivial 
discriminant arises this way. 

Let A be an Azumaya algebra of degree 2n with an orthogonal involution r; 
i.e., r splits a s X ^ X1 in a faithfully flat splitting of A. We have an isomorphism 
ipT : A <8># A —• EndjiA, defined by x (8) y i—• (2 —• xzr(?/)). The module involu
tion vb on A coincides with r and AZtA = {a: — rx,x G A}. Since Nrd A = R, 
6 : Pf(A) (8) Pf(A) —> i? gives a discriminant module over Ä, which was called 
the pfaffian discriminant of ( A , T ) in [KPS2]. If A is a central simple algebra over 
a field k with an involution r, the discriminant defined above for (A, r ) coincides 
with the one defined by Jacobson [J] and Tits [T]. The discriminant in this case 
coincides with the square class of any unit u such that ru = —u. In [KPS3] the 
following theorem was proved. 

THEOREM. A rank 16 Azumaya algebra with an orthogonal involution splits into 
a tensor product of involutions on quaternion subalgebras if and only if the dis
criminant of the involution is trivial. 

This criterion for decompusability of involutions on rank 16 algebras is inter
esting already for fields where examples of indecomposable involutions have been 
constructed by Amitsur-Rowen-Tignol [AmRT]. 

Subsequently the determination of possible discriminants on a given division 
algebra D with deg D > 4 over a field k has become a problem of wider interest. 
It was not a priori clear whether one could construct, on a given algebra D, an 
orthogonal involution that had a trivial discriminant or, for that matter, one that 
had a nontrivial discriminant. 

The following theorem [PSSu] gives a complete answer to this question. 
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THEOREM. Let D be a central division algebra over k of degree at least 4, whose 
class in the Brauer group of k is 2-torsion. Then every element of D is symmetric 
with respect to an orthogonal involution of discriminant one. In particular, the 
group of reduced norms of D* modulo k*2 coincides with the set of discriminants 
of orthogonal involutions on D. 

Yanchevskii [Y] uses this theorem to construct indecomposable involutions 
on division algebras D for which KiSpinD is nontrivial. 

In terms of the invariants of hermitian forms over division algebras with invo
lutions like the discriminant and the Clifford invariant for involutions of orthogonal 
type, Bayer-Flückiger and Parimala [BP] have recently obtained a classification 
result for hermitian forms over division algebras with involutions over fields of 
characteristic not 2 and of cohomological dimension < 2. This has led [BP] to an 
affirmative solution of a conjecture of Serre, for groups of classical type. 

THEOREM. Let k be a perfect field of characteristic not 2 and of cohomological 
dimension at most 2. Let G be a semisimple, simply connected linear algebraic 
group defined over k. If G is of classical type, then Hl(k,G) — {1}. 

The validities of the conjecture for G = SLI}D, for D a finite dimensional 
central division algebra over k and for G = Spin g, for a quadratic form q over k, 
are due to Merkur j e v- Suslin [S] and Merkurjev respectively. 

3 Invariants for quadratic spaces — Witt groups 

For quadratic spaces over algebraic varieties, we have the "classical" invariants, 
namely the rank (modulo 2), which has values in H®t(X, P2), the discriminant with 
values in Hli(X,p2)-l and the Clifford invariant (cf. [PSr], [KPS4]) with values in 
H2

t(X,p2)- Whereas the first two invariants are surjective onto the cohomology, 
it is interesting to analyse the image of the Clifford invariant. The following two 
theorems relate this question for a curve to some purely geometric questions con
cerning the curve. We begin with a definition. 

Let XQ G X(k). The curve X is said to have extension property (for quadratic 
spaces with respect to XQ) if every quadratic space over X\XQ extends to a quad
ratic space over X. We have the following theorems: 

THEOREM. [PS2] Let X be a smooth projective curve over a local field of charac
teristic not 2. Suppose X(k) ^ 0. Then the Clifford invariant map is surjective if 
and only if X has the extension property. 

THEOREM. [PSc] Let X be a smooth, projective hyperelliptic curve of genus at 
least 2 over a local field k of characteristic not 2. Suppose X(k) ^ 0. Then the 
following are equivalent: 

(1) X has the extension property. 

(2) The canonical line bundle 0.x is a square in PicX. 
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(3) The genus of X is odd or the genus of X is even and X satisfies one of the 
following conditions for the double covering TT : X —> P1 . 

(a) 7T has a ramification point of odd degree; 
(b) All ramification points of TT have even degree and there is a quadratic 

extension of k that is contained in the residue fields of all ramification 
points of TV. 

The criterion (3) leads to examples of hyperelliptic curves over local fields 
where the Clifford invariant map is not surjective. 

For any affine variety X, there are also invariants ê  for quadratic spaces with 
values in certain quotients of the lf-groups, Ki(X) for 1 < i < 3, ê  being defined 
for spaces for which the previous invariants vanish. The invariant e2 has been 
defined by Giffen [G]. This is a refinement of the Clifford invariant in the following 
sense: The Grothendieck equivariant Chern class map c22 : ^(X) —> H2

t(X,p2) 
maps the class of the e2 invariant to the class of the Clifford invariant [OP S 3]. 
The invariant e% has recently been constructed by Barge-Ojanguren [BaO] and is 
related to the Arason invariant for fields [A]. 

The stable theory of quadratic spaces over algebraic varieties was initiated 
by Knebusch, who defined the Witt group W(X) of a variety X following the 
classical notion of Witt groups of quadratic forms over fields. This group is the 
quotient of the Grothendieck group of isometry classes of quadratic spaces on 
X with respect to orthogonal sum, modulo the subgroup generated by metabolic 
spaces. Metabolic spaces are those spaces (E, q) that admit a sub-bundle V with 
V = V±. The following are a few computations for the Witt groups of varieties 
over arbitrary fields: Witt group of the projective space due to Arason [A], of 
conies [P3], and hyperelliptic curves due to Parimala-S uj at ha [PSj], Shick [Sh], 
and Arason-Elman-Jacob [AEJ2]. 

A general method of studying the Witt group of a smooth variety is through 
the graded group associated to the filtration induced by the filtration of the Witt 
group of the function field by powers of the fundamental ideal of even rank forms. 
Whether the graded Witt group is isomorphic to the graded Galois cohomology 
group is a wide-open question even for fields, posed by Milnor [Mi]. In [P4], the 
graded Witt group of X is related to the graded unramified cohomology group of X 
provided the Milnor conjecture is valid for the function field of X and the residue 
fields of X at codimension one points. This was achieved by using a flasque reso
lution due to Bloch-Ogus [BOg] of the Zariski sheaf Hn associated to the presheaf 
U —• H™t(U, /i2). This association to the graded Witt group of the graded unrami
fied cohomology group has since been used widely in the study of the "unramified" 
Witt group of a smooth variety ([Sj], [CSj], [SaSj]) and is also crucial in the anal
ysis of the finiteness questions of Witt groups of real varieties, which we discuss 
in the next paragraph. 

4 Some connections with geometry 

The study of Witt groups is especially interesting for real varieties where there is 
a subtle interplay between the geometry of X and the real topology of X(M). In 
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this connection, Knebusch [Kn2] raised the question whether the Witt group of a 
smooth variety over M is finitely generated. Finite generation of W(X) was proved 
for dim X = 1 by Knebusch himself [Knl] and for dim X — 2 by Ayoub [Ay], 
For smooth affine 3-folds, we have the following theorem [P4], which relates the 
question of finite generation of W(X) to one purely concerned with the geometry 
of X. 

THEOREM. Let X be a smooth affine 3-fold over R. Then W(X) is finitely gener
ated if and only ifCH2(X)/2 is finite, CH2(X) denoting the group of codimension 
2 cycles on X, modulo rational equivalence. 

In fact, if CH2(Xc)/2 is finite, then CH2(X)/2 is finite. However, finiteness 
of CH2(Y)/2 for smooth 3-folds over C is in general an open question which is 
known to_be true only in some special cases; e.g. where Y is unirational over C, 
or where Y is a conic bundle over a smooth projective variety ([P5], Appendix). 

The proof of the above theorem uses the following results: 

(1) Separation of connected components of X(M) by signatures, due to Malie 
[Ma]. 

(2) Relationship between the graded Witt ring and the graded cohomology ring 
for function fields of real 3-folds, due to Arason, Elman, and Jacob [AEJ1]. 

(3) Finiteness of certain unramified cohomology groups due to Colliot-Thélène 
and Parimala [CP], which we discuss in the next paragraph. 

Let Y(X,TLn) denote the group of sections of the Zariski sheaf TLn associated 
to the presheaf U i-> H^(U, fi2). By results of Bloch and Ogus [BOg], T(X, TLn) is 
a birational invariant for smooth projective varieties. To prove the theorem above, 
one required the finiteness of T(X, Wd+1) for smooth real varieties X of dimension 
d. If dim X = 1, T(X,H2) ~ Br(X), the "unramified" Brauer group of X. For 
smooth quasiprojective curves over R, Witt [W] proved that Br(X) ~ (Z/2)s, s 
denoting the number of connected components of X(M). The following theorem 
[CP] provides a generalization of Witt's theorem to higher dimensional varieties. 

THEOREM. Let X be a smooth variety over M of dimension d. For any integer 
n > d + 1, we have an isomorphism 

H°(X,Hd+1) -^(Z/2)s , 

where s denotes the number of connected components of X(M) for the real topology. 

This result has in turn been extended to varieties with possible singularities 
by Colliot-Thelène and Scheiderer ([CSc]). In fact, they show that for any variety 
X of dimension d over M, and for n > d + 1, i > 0, 

H^lx{X,'Hn)^Hi(X(S.),Z/2). 

The obstruction to the finite generation of W(X) mentioned above for real 
3-folds vanishes if the cycle map 
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is injective, in view of the fact tha t the étale cohomology groups H™t(X,fi2) are 
finite for smooth varieties over IR. It was shown in [CP] tha t if X is a smooth pro
jective surface over IR, this map is indeed injective. The question of the injectivity 
of the cycle map for arbitrary smooth projective surfaces with rational points has 
been of general interest and has been open for a while. 

There are examples of surfaces without rational points over Qp(t) for which 
the cycle map is not injective (cf. [C], Remark 7.6.1). Recently, Parimala and 
Suresh [PSu] have constructed examples of smooth conic fibrations of hyperelliptic 
curves with rational points over Q3 for which the cycle map is not injective. 

For a smooth projective variety X over any field k, there is a pairing 

CH0(X) x H^(X,Gm) -» H2
et(k,Gm) = Br(fc), 

defined by 

(PiO = coresfc(p)/fc(£p) , 

for a closed point p of X and £ G H2
t(X,Gm), where £p denotes the restriction 

of £ to the fibre at p and cores/^)/*. : Br(k(p)) —> Br(fc) is the corestriction 
homomorphism. Let 

a : CH0(X) -> Hom((H*t(X,Gm),Br(k)) 

be the map induced by the above pairing. 

Let A; be a p-adic field. If dim X = 1, Lichtenbaum [L] shows tha t a is 
injective. Let X be a smooth projective surface over k. One can show tha t the 
kernel of a modulo 2 is contained in the kernel of the cycle map. The examples in 
[PSu] show tha t for some conic fibrations of curves over p-adic fields, ker a is in 
general not zero. Thus , the cohomological Brauer group fails to detect zero cycles 
modulo rational equivalence, for surfaces over p-adic fields. 

We observe tha t Saito in [Sa] has shown tha t for a smooth projective surface 
over a p-adic field with H2(X,öx) — 0 and for which the Albanese of X has 
good reduction, the map a is an injection. The examples in [PSu] show tha t the 
condition of good reduction for A l b ^ in Saito's result is indeed essential. 

References 

[AmRT] S.A. Amitsur, L.H. Rowen, and J.P. Tignol, Division algebras of degrees 4 and 
8 with involution, Israel J. Math. 33 (1979), 133-148. 

[A] J.Kr. Arason, Der Wittring projektiver Räume, Math. Ann. 253 (1980), 205-
212. 

[AEJ1] J.Kr. Arason, R. Elman, and B. Jacob, The graded Witt ring and Galois 
cohomology, Can. Math. Soc. Conf. Proc. 4 (1984), 17-50. 

[AEJ2] J.Kr. Arason, R. Elman, and B. Jacob, On generators for the Witt ring, 
Contemp. Math. 155 (1994), 247-269. 

[Ay] G. Ayoub, Le groupe de Witt d'une surface réelle, Comm. Math. Helv. 62 
(1987), 74-105. 



Study of Quadratic Forms — Some Connections with Geometry 331 

[BaO] J. Barge, and M. Ojanguren, Sur le troisième invariant d'une forme quadra
tique, preprint 1994. 

[Ball] W. Barth, and K. Hulek, Monads and moduli of vector bundles, Manuscripta 
Math. 25 (1978), 323-347. 

[BP] E. Bayer-Fliickiger, and R. Parimala, Galois cohom.ology of the classical groups 
over fields of cohomological dimension < 2, to appear in Invent. Math. 

[BOg] S. Bloch, A. Ogus, Gersten's conjecture and the homology of schemes, Ann. 
Sci. École Norm. Sup., 4e série 7 (1974), 181-202. 

[C] J.-L. Colliot-Thélène, Cycles a,lgébri.ques de torsion et K-théorie algébrique, 
Arithmetic Algebraic Geometry, Trento 1991, 1-49, SLN 1553. 

[CP] J.-L. Colliot-Thélène, and R. Parimala, Real components of algebraic varieties 
and étale cohomology, Invent. Math. 101 (1990), 81-99. 

[CSc] J.-L. Colliot-Thélène, and C. Scheiderer, Zero cycles and cohomology of real 
algebraic varieties, preprint 1994. 

[CSj] J.-L. Colliot-Thélène, and R. Sujatha, Unramified Witt groups of real aniso
tropic quadrics, Proc. Symp. Pure Math. 58, Part II (1995), 127-147. 

[G] C.H. Giffen, Hasse-Witt invariants for (a,u) reflexive forms and automor
phisms I: Algebraic K2-valued Hasse-Witt invariants, J. Algebra 44 (1977), 
434-456. 

[J] N. Jacobson, Clifford algebras for algebras with involution of type D, J. Alge
bra 1 (1964), 288-300. 

[Knl] M. Knebusch, On algebraic curves over real closed fields II, Math. Z. 151 
(1976), 189-205. 

[Kn2] M. Knebusch, Some open problems, in: Conference on Quadratic Forms, 
Queen's Papers in Pure and Appi. Math. 46 (1977), Kingston, Ontario, 361-
370. 

[KOS] M.-A. Knus, M. Ojanguren, and R. Sridharan, Quadratic foims and Azumaya 
algebras, J. Reine Angew. Math. 303/304 (1978), 231-248. 

[KPSI] M.-A. Knus, R. Parimala, and R. Sridharan, Non-free projective modules over 
B[X,Y] and stable bundles overP2(C), Invent. A4ath. 65 (1981), 13-27. 

[KPS2] M.-A. Knus, R. Parimala, and R. Sridharan, A classification of rank 6 quadra
tic spaces via Pfaffians, J. Reine Angew. Math. 398 (1989), 187-218. 

[KPS3] M.-A. Knus, R. Parimala, and R. Sridharan, Pfaffians, central simple algebras 
and similitudes, Math. Z. 206 (1991), 589-604. 

[KPS4] M.-A. Knus, R. Parimala, and R. Sridharan, Compositions and triality, J. 
Reine. Angew. Math. 457 (1994), 45-70. 

[KS] V.l. Kopeiko, and A.A. Suslin, Quadratic modules over polynomial rings, J. 
Sov. Math. 17 (1981), 2024-2031. 

[L] S. Lichtenbaum, Duality theorems for curves over p-adic fields, Invent. Math. 
7 (1969), 120-136. 

[Ma] L. Mafie, Signatures et composantes connexes, Math. Ann. 260 (1982), 191-
210. 

[Mi] J. Milnor, Algebraic K-theory and quadratic foims, Invent. Math. 9 (1970), 
318-344. 

[O] M. Ojanguren, Foimes quadratiques sur les algèbres de polynômes, C.R. Acad. 
Sci. Paris, Sér. A 287 (1978), 695-698. 

[OPS1] M. Ojanguren, R. Parimala, and R. Sridharan, Indecomposable quadratic bun
dles of rank An over the real affine plane, Invent. Math. 71 (1983), 648-653. 

[OPS2] M. Ojanguren, R. Parimala, and R. Sridharan, Anisotropic quadratic spaces 
over the plane, in: Vector bundles on algebraic varieties, Bombay 1984, OUP 
1987, 465-489. 



332 Raman Parimala 

[OPS3] M. Ojanguren, R. Parimala, and R. Sridharan, Ketu and the second invariant 
of a quadratic space, if-theory 7 (1993), 501-515. 

[OS] M. Ojanguren, and R. Sridharan, Cancellation of Azumaya algebras, J. Alge
bra 18 (1971), 501-505. 

[PI] R. Parimala, Failure of a quadratic analogue of Serre's conjecture, Amer. J. 
Math. 100 (1978), 913-924. 

[P2] R. Parimala, Indecomposable quadratic spaces over the affine plane, Adv. in 
Math. 62 (1986), 1-6. 

[P3] R. Parimala, Witt groups of conies, elliptic and hyperelliptic curves, J. Number 
Theory 28 (1988), 69-93. 

[P4] R. Parimala, Witt groups of affine 3-folds, Duke Math. J. 57 (1989), 947-954. 
[P5] R. Parimala, Witt groups vis-à-vis Chow groups, in: Geometry, Bombay 1990, 

NBHM (1993), 149-154. 
[PSc] R. Parimala, and W. Scharlau, On the canonical class of a curve and extension 

property for quadratic forms, Contemp. Math. 155 (1994), 339-350. 
[PS1] R. Parimala, and R. Sridharan, Projective modules over polynomial rings over 

division rings, J. Math. Kyoto Univ. 15 (1975), 129-148. 
[PS2] R. Parimala, and R. Sridharan, Graded Witt rings and unramified cohomology, 

if-Theory 6 (1992), 29-44. 
[PS3] R. Parimala, and R. Sridharan, Reduced norms and Pfaffians via Brauer-

Severi schemes, Contemp. Math. 155 (1994), 351-363. 
[PSSu] R. Parimala, R. Sridharan, and V. Suresh, A question on the discriminants 

of involutions of central division algebras, Math. Ann. 297 (1993), 575-580. 
[PSr] R. Parimala, and V. Srinivas, Analogues of the Brauer group for algebras with 

involution, Duke Math. J. 66 (1992), 207-237. 
[PSj] R. Parimala, and R. Sujatha, Witt group of hyperelliptic curves, Comm. Math. 

Helv. 65 (1990), 559-580. 
[PSu] R. Parimala, and V. Suresh, Zero cycles on quadric fibrations: finiteness the

orems and the cycle map, to appear in Invent. Math. 
[R] M.S. Raghunathan, Principal bundles on affine space and bundles on the pro

jective line, Math. Ann. 285 (1989), 309-332. 
[Sa] S. Saito, A conjecture of Bloch and Brauer groups of surfaces over p-adic 

fields, preprint 1990. 
[SaSj] S. Saito, and R. Sujatha, Finiteness theorems for cohomology of surfaces over 

p-adic fields and an application to Witt groups, Proc. Symp. Pure Math. 58, 
P a r t i i (1995), 403-415. 

[Sh] J. Shick, Witt groups of function fields of hyperelliptic curves, Comm. Algebra 
21 (4) (1993), 1371-1388. 

[Sj] R. Sujatha, Witt groups of real projective surfaces, Math. Ann. 288 (1990), 
89-101. 

[S] A.A. Suslin, Algebraic K-theory and the norm residue homomorphism, J. So
viet Math. 30 (1985), 2556-2611. 

[T] J. Tits, Formes quadratiques, groupes orthogonaux et algèbres de Clifford, In
vent. Math. 5 (1968), 19-41. 

[W] E. Witt, Zerlegung reeller algebraischer Funktionen in Quadrate, Schiefkörper 
über reellem Funktionenkörper, J. Reine Angew. Math. 171 (1934), 4-11. 

[Y] V.l. Yanchevskii, Symmetrie and skew-symmetric elements of involutions, as
sociated groups and the problem of decomposability of involutions, Proc. Symp. 
Prue Math. 58, Part II (1995), 431-444. 



Invariant Differential Operators 

GERALD W. SCHWARZ 

Department of Mathematics 
Brandeis University 
PO Box 9110, Waltham, MA 02254-9110, USA 

0 Introduction 

All varieties we consider will be irreducible, algebraic, and defined over our base 
field C. 

Let Z be an affine variety, and set A := O(Z). Let E denote a vector bundle 
over Z or a coherent sheaf of C^-modules, with global sections M := T(Z,E). 
Then we define the algebra of (algebraic) differential operators on M and E as 
follows: If P G Ende (M) and a, G A, then [P^] denotes the usual commutator: 
[P,a](m) = P(am) - a(P(m)), m G M. Define D'X(M) = 0 for n < 0, and for 
n > 0 inductively define: 

Dn
A(M) = {Pe Endc(M) : [P, a] G Dn

A
l(M) for all a G A}. 

Clearly, D°A(M) = EndA(M). Note that Dn
A(M) Ç Dn/X(M) for all n, and we 

define DA(M) := |J D\(M). Now we set V%[Z) := B\(M) and Vn(Z) := D\(A), 
and similarly for VE(Z) and £>(Z). We call V%(Z) (resp. £>^(M)) the differential 
operators on E (resp. M) of order at most n, T>E(Z) (resp. DA(M)) the algebra 
of differential operators on E (resp. M), and V(Z) (resp. DA(A)) the algebra of 
differential operators on Z (resp. A). Note that O(Z) acts on V^(Z), etc. by left 
multiplication, making V^(Z), etc. into left (9(Z)-modules. 

PROPOSITION (see [Sci, Section 3]). Let Z and E be as above. Then 

(1) Dß(Z) is fìnitely generated for all n. 
(2) IfPe V%(Z) and Q G V%(Z), then QoP G V%+™(Z). IfE = Oz, then 

[Q,P] := QoP - PoQ G 2>n+m-1(Z). 

Frolli the filtrations {T>^(Z)} we obtain associated graded algebras gYT>E(Z), and 
grV(Z) is commutative by (2) above. 

If Z is smooth, then grV(Z) is a finitely generated domain [Bj], hence £>(Z) 
is a finitely generated domain, left and right Noetherian. Moreover, if E is a vector 
bundle over Z, then grT>E(Z) is a finite gr £>(Z)-module. Finally, T>(Z) is a simple 
algebra. If Z is not smooth, all of these properties can fail [BGG]. It seems to be 
very difficult to determine the properties oiV(Z) in the singular case. 

We consider the case of quotient singularities: let X be an affine G-variety, 
where G is reductive. Then 0(X) is finitely generated, corresponding to an affine 
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variety X//G, and we have a surjection irx '• X —> X//G dual to the inclusion 
0(X)G C O(X) [Kr, II.3.2]. Recent work ([Ka], [Le], [LSI], [Mu], [MuV], [Sci], 
[Sc2], [VdBl], [VclB3]) has given support to the following. 

CONJECTURE 1. Let X be a smooth affine G-variety, where G is reductive. Then 
grV(X//G) is finitely generated. 

CONJECTURE 2. Let X and G be as above. Then V(X//G) is simple. 

We also consider the properties of algebras grT>s(X//G), where 8 is the sheaf of 
Gx/fG-mQauies corresponding to the G-invariant sections of a (7-vector bundle E 
over X. Note that Conjectures 1 and 2 are true if they are locally true on X, 
i.e., if they are true for every variety irx~1(U) for U affine open in X//G ([Sci], 
[VdB3]). Luna's slice theorem ([Lui], [SI]) then allows us to reduce to the case 
of representations (of all the subgroups of G that are isotropy groups of closed 
orbits in X). Moreover, if E is a G-vector bundle over X, then we can similarly 
reduce questions about V^(X//G) to cases of the form X = V and E = Qw := 
V x W —> V, where V and W aie G-modules. In other words, it is sufficent 
to consider differential operators on algebras 0(V) and on 0(V) -modules of 
covariants Mor(V,W)G. Prom now on V and W will be G-modules and E will 
denote 9 ^ . 

Let P G Vn(V)G ~ Vn(ö(V))G. Then P\ö{V)G G Vn(ö(V)G), hence we have 

an element (TTV)*(P) e Vn(V//G). If (TTv)*(L>n(V)G) = Vn(V//G) for every n > 0 
(equivalently, if g r ^ y ) * : gr(D(V) ) —» grV(V//G) is surjective) we say that 
(nv)* is graded surjective. As grV(V) ~ G(V © V*), gr£>(V)G ~ Ö(V © V*)G 

is finitely generated. Hence, gr T>(V//G) is finitely generated whenever (TTV)* is 
graded surjective. 

Similarly, we can define irViE : VE(V)G -> VE(V//G), where grVE(V)G is 
finitely generated over gr T>(V) . We say that 7VviE is graded surjective if gr ny}E : 
grVE(V) —> grT>s(V//G) is surjective. If TTV,E and (ny)* are graded surjective, 
then grT>g(V//G) is a finite grV(V//G)-module in a natural way [Sci, Section 3]. 

Let K.n(V) denote the elements in Vn(V) that act trivially on Ö(V)G. Set 
JC(V) = \JK,n(V). Then JC(V)G is the kernel of (TTV)* : V(V)G -> V(V//G), 
and analogously for JCn(V) . Similarly, one defines K,E(X) — {JJCE(X), where 
1C%(X)G is the kernel of 7rx,E • VE(V)G - • V^(V//G). 

In order to show that (irv)* is (graded) surjective, it is obviously very useful 
to have a good description of JCn(V). There is an obvious subspace of JCn(V): 
let X G g := Lie algebra of G. Let r(X) denote the action of X on 0(V) (as 
derivations). Then r(rj) annihilates 0(V)G, hence X)n-1(Vr)r(g) C ICn(V). It is 
natural to pose the following questions: 

QUESTIONS 3. Let V be a G-module. 

(1) What are sufficient conditions for (TIV)* to be graded surjective? 
(2) What are necessary conditions for (try)* to be graded surjective? 
(3) Is it possible for (ny)* to be surjective without being graded surjective? 
(4) When is there equality in the inclusion £>n-1(V)T(ö) C JCn(V)? 
(5) When is there equality in the inclusion (X>n-1(Vr)r(a))G! C JCn(V)G? 
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There are analogues of all the questions above with (7Ty)* replaced by 7ry^, 
)Cn(V) replaced by IC^(V) , and T(Q) replaced by TE(&), where TE(X) is the 
action of X G 0 as a differential operator of order 1 on T(V,E). 

In the next section we will deal with Conjecture 1 and Question 3. Con
jecture 2 is reported on in Section 2, and we consider an interesting analogue of 
Question 3(3) in Section 3, where we deal with differential operators on adjoint 
representations. 

1 On Conjecture 1 

We first define some properties of the G-module V that figure in necessary condi
tions and sufficient conditions for (ny)* (or iiyiE) to be graded surjective. 

Let X be an affine G-variety. Let H be a minimal clement (with respect to 
set inclusion) of {Gx : Gx is closed in X}. Then H is called a principal isotropy 
group of X, and all the principal isotropy groups are conjugate. One calls X1 := 
{x G X : Gx is closed and Gx is principal} the principal orbits of X. We say 
that X has FPIG when the principal isotropy groups of X are finite. Set Xpr = 
^x~l(^x(X')). If X has FPIG (which we normally assume), then X1 = Xpr. 

Define X^ = {x G X : dimG^ = n}, and define mod(X,G), the modularity 
of (X, G), to be supn{dimX(n) — dim G + n} (see [Vi]). Define d(X, G) to be the 
transcendence degree of Q(X)G, where Q(X) denotes the field of rational functions 
o n X . 

REMARKS 4. (1) By a theorem of Rosenlicht, d(X, G) = dimX — supx dimGx. 
(2) If X has FPIG, then d(X,G) = dimX//G = d i m * - dimG. 
(3) d(X,G) <mod(X,G). 

DEFINITIONS 5. Let k > 0. Then 

(1) V is k-rnodular if V has FPIG and mod(V \ V{0) ,G) + k< dim V//G, 
(2) V is k-principal if codim V \ Vpr > k, and 
(3) V is k-large if it is fc-modular and ^-principal. 

REMARKS 6. Let V have FPIG. 

(1) V is fc-modular if and only if codini V(n) > n + k; n — 1, 2 , . . . , dim G. 
(2) V is fc-large if and only if mod(V \ Vpn G) + k < dimV//G. 

We say that V is coregular if 0(V) is a polynomial ring, equivalently, if V//G is 
smooth. Regarding the surjectivity of (7iy)* and I\\^E we then have the following. 

THEOREM 7 [Sci], [Sc2]. (1) IfV is 2-iarge, then (ny)* and TTXìE are graded 
surjective. 

(2) Suppose that G is semisimple. Consider G-modules V such that Ker(G —> 
GL(U)) is finite for each nonzero irreducible G-submodule U ofV. Then, 
up to isomorphism, all but finitely many V are 2-large. 

(3) Suppose that G is simple and VG = (0). Then, up to isomorphism, all but 
finitely many V are 2-large. Moreover, if V is irreducible, then either V is 
coregular or (ny)* is graded surjective. 
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THEOREM 8 [Sci]. Suppose that (ny)* is surjective. 

(1) If G is finite, or G° is semisimple or a torus, then V is 2-principal. 
(2) If G° is a torus, then (try)* is graded surjective. If, in addition, V has 

FPIG, then V is 2-large. 
(3) The smooth points ofVjjG are exactly the principal orbits (V//G)pr. In 

particular, if V is coregular, then 0 G V is a principal orbit. Hence, V is 
fix pointed, i.e., V = VG © V1} where Ö(V{)G = C. 

COROLLARY 9. (1) If G is unite, then (try)* is surjective iff it is graded surjective 
iff V is 2-principal iff V is 2-large iff G —> GL (y) contains no pseudoreflections 
(Kantor [Ka]). 

(2) If G° is a torus, then (ity)* is surjective iff it is graded surjective iffV is 
2-principal (Musson [Mu]). Moreover, ifV has FPIG, then V is 2-principal 
iff it is 2-large. 

(3) If G is semisimple, then, up to isomorphism, there are only finitely many 
coregular G-modules V such that VG = (0) [Pop], [Go], [Kn]. 

Using some tricks one obtains from the above: 

COROLLARY 10. Conjecture 1 holds in the following cases. 

(1) V is 2-large. 
(2) V is coregular. 
(3) G is commutative. 
(4) G is finite. 
(5) G is simple and V is irreducible. 

The situation for the G-vector bundle analogue of Conjecture 1 is more compli
cated. Parts (1), (4), and (5) above hold. Part (2) holds if you add the condition 
that TYy is equidimensional (we say that V is co free in this case, because the condi
tion is equivalent to 0(V) being a free Ö(V) -module). As stated, however, parts 
(2) and (3) fail: 

EXAMPLE 11. Let Uj denote the irreducible representation of G = C* of weight 
j . Set V = v\ © V-\ © z/_i, W = v\. Then V is coregular and 1-large, G is 
commutative, yet grT>g(V//G) (which is commutative) is not finitely generated 
[Sci, 3.27]. 

EXAMPLE 12. Let G = SLn, V = (n + l )C n ((n + 1) copies of the standard rep
resentation on Cn), and W = C n , n > 2. Then V is coregular with quotient C n + 1 , 
but Vg(V//G) is not left Noetherian. Hence grT>s(V//G) is not finitely generated 
over any finitely generated commutative algebra [Sci, 3.28]. 

We return to considering "ordinary" differential operators. Coregularity is a prop
erty of "small" G-modules, and 2-largeness is true for modules that are "sufficiently 
large." In between there is a "gray area" of modules that are neither 2-large nor 
coregular. We have no general tools to determine whether or not Conjecture 1 holds 
in these cases. Examples are some of the SLn-modules of the form kCn © l(Cn)*, 
k + l < 2n. However, there are cases where there is no "gray area." 
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THEOREM 13. V is always coregular or 2-large in the following cases. 

(1) G = SL2 [Sci, 11.9]. 
(2) (V,G) = (k,Cn®l(Cny,GLn), (fcC\On), (*C",SOn) or (fcC2",Sp2n); k, 

l>0,n>l [LSI]. 
(3) G — Gi (resp. Spin7y), and V is a direct sum of copies of the irreducible 

7-dimensional (resp. 8-dimensional) module [Sci, 11.21]. 

Regarding Question 3(3) little is known. If V is 1-large, then one can show that 
(7iy)* is surjective iff it is graded surjective, and similarly for nyiE, provided that 
the principal isotropy groups of V act trivially on W (otherwise there are coun
terexamples [Sci, 5.4]). 

EXAMPLE 14. Let V = kC2 have the diagonal action of SL2. Then V is (k - 2)-
large. When k = 2, IC(V)G ^ (V(V)T(Q))G. When k = 3, V is 1-large but (Try)* is 
not surjective (because V is coregular). For k > 4, (ny)* is graded surjective (and 
V is not coregular!). 

2 On Conjecture 2 

Let V and W be G-modules, and, as usual, let E denote 6^/. The question is 
whether or not T>z(V//G) is simple. If nyiE is surjective, this is the same as asking 
if )CE(V)G is a maximal 2-sided ideal in VE(V)G. Of course, V(V//G) = VE(V//G) 
when W is the trivial one-dimensional G-module. 

Suppose that G is finite, and set H = {g G G : g acts trivially or as a 
reflection on V}. Then V := V//H is a G/H-module without reflections, and 
there is a G/H-module W' such that Y(V,E)H ~ T{V\E') as 0(Vl) and G/H-
module, where E' := V x W' —> V. Hence we can reduce to the case that G acts 
effectively on V and contains no reflections. 

THEOREM 15. Suppose that V and W are G-modules, where G is unite and acts 
faithfully and without reflections on V. Then 

(1) ^V,E is an isomorphism. 
(2) VE(V)G ~ Ve(V//G) is simple. 

Proof. It is easy to see that 7TyiE is injective, because iry}E : T>E(Vpr) -^ 
'Ds(VPrllG) is an isomorphism. As V is 2-large, 7TVìE is also surjective, giving 
(1). For (2), one can modify the proof of [Wa] or apply [Mo, Corollary 2.6]. In 
the latter case one has to show that G consists of "outer" automorphisms of the 
simple algebra T>E(V), which follows from the fact that G acts faithfully. D 

For tori, we have the work of Van den Bergli [VdBl] and Musson and Van den 
Bergli [MuV]. They considered differential operators on modules of covariants of 
torus representations. I add the assumption of 2-largeness to their hypotheses, so 
that we are talking about differential operators on the quotient. 

THEOREM 16 [MuV]. Let G be a torus and V a G-module that is 2-large. Let 
Vii-•• iVn De the weights of V (chniV = n). Suppose that W is an irreducible 
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G-module with weight Y^^VìJ
 ai £ Q- Then VE(V//G) is simple if - 1 < â  < 0 

for all i. In particular, V(V//G) is simple. 

In case G° is not a torus results are even fewer and farther between. Levasseur 
and Stafford established simplicity in the case of the "classical" representations 
of GL™, 0 n , and Spn [LSI]. Of course, there is nothing to prove in the coregular 
case, because the Weyl algebras T>(Cn) are simple. However, in general, there are 
not many W such that Vg(V//G) is simple: 

THEOREM 17. Let V be 2-large. 

(1) IfVE(V//G) is simple, then T(V,E)G is Cohen-Macaulay [VdBl]. 
(2) Suppose that G acts faithfully on V. Then there are only finitely many 

W, up to isomorphism and addition of trivial factors, such that T(V,E)G 

is Cohen-Macaulay (Brion[Br]). Hence there are only finitely many W for 
which Vg (V//G) is simple. 

Here is an example where everything works out nicely: Let G = SL2, and let 
Rj = Sym3 (C2) denote the irreducible representation of G of dimension j + 1. We 
have the following result of Van den Bergh [VdB2], [VdB3]: 

(h + l)2 

THEOREM 18. Let V = YH=I
 Rki} where each ki is odd. Set s = Yli=i 

We assume that V is not coregular, hence V is 2-large. Let W = Rm. Then 

(1) VE(V//G) ~ VE(V)G/ICE(V)G is simple iff m < s + 2. 
(2) r (V,E)G is Cohen-Macaulay iffm<s-\-2. 

3 Differential operators on Lie algebras 

Let G be connected reductive with maximal torus T. Let Q (resp. t) denote the Lie 
algebra of G (resp. T) and let W denote the Weyl group. Long ago, Harish-Chandra 
[HCl], [HC2] constructed a map 8 : V(Q)G —• V(i)w with the following properties: 

(81) 8 is an algebra homomorphism. 
(52) On 0(Q)G, 8 is the isomorphism given by restriction 0(Q)G ^>ö(i)w. 
(83) On Sym($)G (considered as the invariant constant coefficient differential 

operators on g), 8 is the isomorphism Sym(Q)G ^ Sym(t)w induced by 
the canonical projection Q —> t. 

(84) The kernel of 8 is /C(g)G. 
(85) 8 is surjective. 

There are several other properties of 8, but the ones above are the most important. 
The construction of 8 is quite simple, but proving the above properties is quite 
arduous and, in Harish-Chandra's case, rather analytic in nature. Also, (85) is only 
recent. It is a corollary of the following theorem of Levasseur and Stafford [LS2]: 

THEOREM 19. Let H be a finite group and U an H-module. Then V(U)H is 
generated by 0(U)H and Sym(U)H. 

Here is a slight reformulation of Harish-Chandra's construction of 8: Let t' denote 
the principal W-orbits in t, i.e., those with trivial isotropy. Then 7Tt : t' —> i'//W is 
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a covering map, so (7T{)* induces an isomorphism of V(\!) and V(\!//W). Define 
8f by the following commutative diagram: 

V(Sf "' 
J (T.). 

V{QI/G)
 incl-

-> V{i')w 

( T . ) ; 

-» V{\!//W) 

Then 6' is clearly a homomorphism. Let p denote the product of linear functionals 
that define the reflection hyperplanes in t. Define 8 to be the composition of dif
ferential operators mpa8lomp-\, where mp denotes multiplication by p. Considered 
as morphisms from V(Q)G -> V(i')W, 8 and 8f satisfy (81), (82), and (64). One 
needs "only" to show (83) and that Im 8 C X>(t)W. 

Let P G T>(Q)G. Then 6(P) = £ a a Q . 9 a , where 6(P) lies in V(l)w iff the 
rational functions aa are polynomial. If one of the aa is not polynomial, then it 
must have poles along the reflection hyperplanes in t. However, the hyperplanes 
correspond to copies of SL2 C G, and using Luna's slice theorem (there is a bit 
of work here), one can reduce the problem to the case of SL2, where it is an easy 
calculation to see that Im 8 = V(ï) . 

It remains to show (83), and we can clearly reduce to the case where g is 
simple. We construct an action of SL2 on £>(g): let g denote the quadratic invariant 
of g and let Q G Sym2(Q)G denote the corresponding constant coefficient operator. 
Then the commutator h := [q, Q] is easily seen to be aE + b, where E is the Euler 
operator and a, b G C. Adjusting coefficients, one can arrange that e := q, f := Q, 
and h form a simple algebra of type B/2. Because q and Q act ad-nilpotently on 
T>(Q), the s/2-action integrates to an action of SL2. 

Now 8(q) = q' is the quadratic generator in G(i)w, and hopefully, 8(Q) = Ql 

is a generator of Sym ( t ) w . From the construction of 8, 0 ^ Q1 has order 2, and it 
sends elements of ö(i)w of degree k to elements of degree k — 2. As the coefficients 
of Ql are regular, it can only be a constant coefficient differential operator, i.e., 
Q' G Sym2(V)w. Because adg, adQ, and ad[g,Q] define an action of s/2 on T>(Q), 

the same is true for adg', adQ', and adfg'jQ'] on T>(i). By construction, 8 is 
equivariant with respect to the two s/2 and SL2-actions. The generator of the 
Weyl group of SL2 interchanges 0(Q)G and Sym(Q)G (and ö(i)w and Sym(i)w), 
and (83) follows from (82). 

Wallach and Hunziker [WaH] have a purely Lie algebra theoretic construction 
of 8. In their approach, properties (81), (82), (83), and (£5) are immediate. The 
difficult part is to establish (84). They do this by showing that 8 annihilates K' := 
0^(ö) " T(ö))G : a n d then showing that every element P G /C(g)G can be multiplied 
by an invariant h ^ 0 so that it lands in K' [Wa]. Because 8 is a homomorphism, 
8(hP) = 0 implies that h\{ annihilates 8(P). Hence, 8(P) = 0. 

Finally, we consider connections to our previous questions. First of all, does 
/C(g)G equal (T>(Q)T(Q))G7 This has been recently established by Levasseur and 
Strafford [LS3], using noncommutative methods. Secondly, is the surjective homo
morphism 8 :V(Q) —> V(i) graded surjective? Identifying g* and t* with g and t 
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via the Killing form, we are asking if the restriction map er : ö ( g © g ) G —> ö ( t © t ) w 

is surjective. By a theorem of Richardson [Ri], the closure of G-(t©t) in g © g is the 
commuting variety C := {(A, B) G Q(BQ : [A, B] = 0}. By a theorem of Luna [Lu2], 
a is surjective iff C//G C (g + g ) / G is normal. For example, if one knew tha t C 
were normal, then a would be onto. However, normality has only been established 
in a few cases by calculation. 
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The general idea of motivic cohomology as a universal cohomology theory on the 
category of schemes goes back to Grothendieck. But it was not until 1982 that 
this general idea got a precise form. Around that time Beilinson formulated his 
famous conjectures. Beilinson conjectured that for all q > 0 there should exist 
complexes of sheaves Z(g) on the big Zariski site of regular schemes that should 
satisfy (among others) the following properties: 

(1) Z ( 0 ) = Z J Z ( l ) = O*[-l] 
(2) Vanishing conjecture: for q > 0 the complex Z(q) is acyclic outside [l,g], 

the sheaf Hq(Z(q)) coincides with the sheaf Kjjf of Milnor Jf-groups 
(3) Relationship to algebraic Jf-theory: there exists a spectral sequence 

that is split up to standard factorials by means of Chern classes. 
Here and below we denote by H^4(X,'Ii(q)) the Zariski hyp er cohomology 
of X with coefficients in the complex Z(q) 

(4) Relationship to etale cohomology: set Z/l(q) = Z(q) ®L Z/Z, then, restrict
ing to the subcategory of schemes over Spec Z[l/Z], we have a functorial 
quasiisomorphism Z/l(q) = r<qRir*(pfq) where n : (Sch)et —> (Sch)z&T is 
the canonical morphism of sites and r<q denotes the degree q truncation 
of the complex. 

Several approaches to the construction of motivic complexes and motivic 
cohomology were proposed during the last years — see [Bl], [FL], [FG], [G], [L], 
[VI], [V2], [V3]. All these approaches are based on the theory of algebraic cycles. 
We'll discuss below two of these constructions. Even though a significant part of 
the theory may be applied in a more general situation of arbitrary noetherian 
schemes we always restrict ourselves to the category of schemes of finite type over 
a field. 
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Foundation. 
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1 The triangulated category of motives 

The general framework for the development of the theory of motives was laid down 
in a scries of works of Voevodsky [VI], [V2], [V3], [FV]. Fix a field F and denote 
by Sch/F (resp. Sm/F) the category of schemes of finite type over the field F 
(resp. the category of smooth schemes of finite type over F). Any "reasonable" 
cohomology theory should be a contravariant functor TL : Sch/F —> Ab, satisfy
ing the property TL(X]\Y) = H(X) © TL(Y). Moreover TL should be equipped 
with transfer homomorphisms TrX/s ' TL(X) -+ TL(S) defined (at least) for finite 
surjective morphisms f \ X —+ S with X integral and S smooth and irreducible. 
Finally TL should bc homotopy invariant: H(X x A1) = H(X) for any X E Sch/F. 
This observation leads to the following definition: 

DEFINITION 1.1 [SVI]. A presheaf with transfers on the category Sch/F is a 
contravariant functor TL : Sch/F —> Ab, satisfying the property TL(X\[Y) — 
TL(X)(BTL(Y), and equipped with transfer homomorphisms TrX/s • W(X) —> TL(S) 
defined for unite surjective morphisms X —> S with X irreducible and S smooth 
and irreducible. These transfer homomorphisms should satisfy the following com
pati bility properties: 

(1.1.1) If f : X —» S is an isomorphism, then Trx/s coincides with (7 - 1 )* . 
(1.1.2) Let S* —> S be a morphism of smooth irreducible schemes. Set X' = X x$ 

Sf, denote components of X* by X[, and by ni denote the corresponding 
multiplicities. Then the following diagram commutes: 

n(x) —> u«ra 
Trx x/s T,n%-Trxt /s, /s' 

H(S) > H(S') 

In many cases it is preferable to work with smooth schemes only. For a pair 
X, Y of smooth schemes over F denote by Cor(X, Y) the free abelian group 
generated by integral closed subschemes Z C X x Y that are finite and sur
jective over a component of X. Elements of Cor(X,Y) are called finite corre
spondences from X to Y. One defines easily the composition homomorphism 
Cor(Y,T) x Cor(X,Y) -> Cor(X,T) (ß x a h-> ß o a<). In this way we obtain 
an additive category SmCor/F whose objects are smooth schemes over F and 
HomSn\Cor/F(X,Y) = Cor(X,Y). Associating to a morphism X —> Y its graph 
we get a canonical functor Sm/F —> SmCor/F. 

DEFINITION 1.2 [V3]. A presheaf with transfers on the category Sm/F is a con
travariant additive functor H : SmCor/F —> Ab. We say that 7i is a Zariski 
(Nisnevich, etale . . . ) sheaf with transfers on the category Sm/F if the composed 

functor Sm/F —> SmCor/F —> Ab is a sheaf in the corresponding topology. 

The Nisnevich topology is very convenient when dealing with presheaves with 
transfer in view of the following lemma, which is false in the Zariski topology. 
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LEMMA 1.3 [V3]. Let T be a presheaf with transfers on the category Sm/F and 
let J7^ denote the associated sheaf in the Nisnevich topology. Then J7^ has a 
canonical structure of a Nisnevich sheaf with transfers. 

This lemma implies in particular that the category Shvms(SmCor/F) of 
Nisnevich scheaves with transfer is abelian. 

For any scheme X G Sch/F denote by L(X) a presheaf with transfers on the 
category Sm/F given by the formula: 

L(X)(S) = the free abelian group generated by closed integral subschemes 
Z C X x S that are finite and surjective over a component of S. 
One verifies easily that L(X) is a Nisnevich sheaf with transfers. 

PROPOSITION 1.4 [V3]. Let X bea smooth scheme over F and let K bea bounded 
from above complex of Nisnevich scheaves with transfers. Then for any i G Z we 
have a canonical isomorphism 

HomD-{shv^{SmCor/F))(L(X),K[i}) = H^ls(X,K). 

For any X G Sm/F and any presheaf with transfers T define a new presheaf 
with transfers TLom(X,T) by means of the formula Hom(X,J7)(S) = T(X x S). 
Note that TLom(X, T) is a Nisnevich (Zariski, etale . . . ) sheaf provided that T 
is. A presheaf J7 is called homotopy invariant if the canonical homomorphism 
T —> 7iom(A1,J7) is an isomorphism. A presheaf T is called contractible if there 
exists a presheaf homomorphism (j) : T —> Hom(A1,J7) such that ÌQ(J) = 0, i\(j) = id, 
where io,ii : TLom(A1,J7) —> T are homomorphisms defined by points 0,1 G A1 

respectively. One checks immediately that the Nisnevich (Zariski, etale . . . ) sheaf 
associated with a contractible presheaf is again contractible. The corresponding 
statement for homotopy invariant sheaves is much more difficult. 

THEOREM 1.5 [V2]. Assume that the field F is perfect. Let J7 be a homotopy 
invariant presheaf with transfers on the category Sm/F, then 

(1) the sheaf J7^ is strictly homotopy invariant, i.e. ^zar(^'-^Zar) = 

W(X x A1, JF~ar) for alii and all X e Sm/F. 
(2) the sheaf T£ia coincides with J7^, moreover for any X G Sm/F we have: 

HZa.v (X> -Tzkr) = ^ N i s C*") -^Nis) • 

Define the triangulated category of motives over a field F DM (F) to be 
the full subcategory of D~(Shv^ls(SmCor/F)) consisting of complexes with ho
motopy invariant cohomology sheaves. 

Let A' be the standard cosimplicial scheme: An = Spec F [To,... ,TTl]/(T0 + 
• • • + Tn — 1). For any presheaf with transfers J7 denote by C^J7) a simplicial 
presheaf given by the formula G^J7) — Hom(An, T) and by hi(T) denote the «th 
homology presheaf of the complex G_^(T). Let further G*(T) be the complex of 
global sections of the complex of presheaves C+(X) and £T2

smff(.F) be the group of 
global sections of the presheaf h^J7), i.e. H*™9^) = H^C^J7)). For any n > 0 
define singular homology and cohomology of T with finite coefficients Z /n via the 
formulae: 

Hfnff(JF,Z/n) = fTi(a( .F)®LZ/n), f f V ^ Z / n ) = H^RHom^^^/n). 
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Passing to the cohomology notations (i.e. setting Ç_n(!F) — C~n(!F)) we get a 
functor C* : D~(ShvNis(SmCor/F)) -> D~(ShvNis(SmCor/F)). An immediate 
verification shows that presheaves hi(T) are homotopy invariant. Theorem 1.5 
shows now that the image of the functor Ç* lies in DM(F). Moreover we have the 
following result: 

THEOREM 1.6 [V3]. The functor Ç* induces an equivalence between the localiza
tion of D~ (ShvN\s(SmCor/F)) with respect to a thick subcategory of complexes 
quasiisomorphic to complexes consisting of contractible sheaves and the category 
DM(F). 

For any scheme X define its motive M(X) as the image of L(X) in DM(F) 
under the action of the localizing functor Ç*. The category DM(F) has a canonical 
tensor structure characterized by the property M(X) ® M(Y) = M(X x Y). The 

closed embedding SpecF *—> P1 and the projection P1 —> SpecF give a splitting 

M(PX) = M(S]jecF)eM(F1). Define the Tate motive Z(l) as M ^ 1 ) ^ ] . Define 
further Z(77,) as the nth tensor power of Z(l). One checks easily that the motive 
of the projective space P n splits into the direct sum of Tate motives M(Pn) = 
U"=o Z(rz)[2n] so that essentially the study of Tate motives Z(n) is equivalent to 
that of motives M(Pn) corresponding to projective spaces. 

Now we can define motivic cohomology of any scheme X via the formula 

H*M(X,Z(n)) = HomDM{F)(M(X),Z(nM) 

If X is smooth, then using Proposition 1.4 and Theorems 1.5 and 1.6 we conclude 
that 

IPM{X,Z(n)) = HomD-(ShvmB{Smcor/F))(L{X),Z{n)\i}) 

= H*NÌS(X,Z(n)) = HÌai.(X,Z(n)Y 

Thus, this definition of motivic cohomology fits into the picture predicted by the 
Beilinson cojecture. 

2 /i-topologies 

Another important innovation of Voevodsky was the introduction of several new 
topologies on the category of schemes — /z-topologies. Roughly speaking, the h-
topology is obtained by declaring all proper surjective morphisms to be coverings 
(all finite surjective morphisms in the case of g/Zi-topology), more precisely we 
have the following result: 

PROPOSITION 2.1 [VI]. The h-topology is stronger than the qfh-topology, which 
is stronger than the etale topology. Every finite surjective morphism is a qfh-
covering, every proper surjective morphism is an h-covering. Furthermore, let S G 
Sch/F be a normal connected scheme. Then 

(1) Every qf h-covering of S has a refinement of the form (Yi —> S)iei, where 
Y —> S is the normalization of S in a finite normal extension of the held 
F(S) and (Y{ —> Y)iej is a Zariski open covering ofY. 
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(2) Every h-covering of S has a refinement of the form (Yi —> S)iei, where 
(Yi —• Y)iEi is a Zariski open covering of the scheme Y, Y —> Z is the 
normalization of the scheme Z in a finite normal extension of the field 
F(Z) and Z —> S is a blow up of a closed subscheme of S. 

Even though the h-topology is stronger than the etale topology the corre
sponding cohomology groups coincide in many cases. For example we have the 
following result: 

THEOREM 2.2 [SVI]. For any scheme S G Sch/F and any integer n > 0 we have: 

H*et(S,Z/n) = H*qfh(S,Z/n) = H*h(S,Z/n). 

The following important rigidity theorem is proved in [SVI]. The proof is 
similar to the proof of the rigidity theorem in algebraic if-theory — see [SI], but 
at a certain moment one has to use resolution of singularities, which at the moment 
is known in the characteristic zero case only. 

THEOREM 2.3 [SVI]. Assume that F is an algebraically closed field of character
istic zero. Assume further that J7 is a homotopy invariant presheaf with transfers 
on the category Sch/F. Then for any n > 0 we have canonical isomorphisms 

Ext*et(F~t,Z/n) = Ext*qfh(^fh,Z/n) = Ext*h(^,Z/n) = Ext*Ab(F(F),Z/n). 

Analyzing two hyperhomology spectral sequences associated with the com
plex Çi^J7) we derive from theorem 2.3 the following result: 

THEOREM 2.4 [SVI]. Let F be an algebraically closed field of characteristic zero. 
Let further J7 be a presheaf with transfers on the category Sch/F. Then both 
arrows in the diagram 

induce isomorphisms on Ext*(—, Z/n). In particular, for any n > 0 we have canon
ical isomorphisms 

H;ing(F,Z/n) = Extq}h{T~fh,Z/n) = Ext*h(^,Z/n). 

3 Sheaves of equidimensional cycles 

Every qfh-sheaî has canonical transfers [SVI]. The Nisnevich sheaf L(X) intro
duced in the first section was defined on the category Sm/F only, however it 
admits an extension to the category Sch/F. To do so one has to define a pullback 
of a cycle finite and surjective over the base scheme S in the case when S is not 
necessarily regular. This can be done using elementary Galois theory (see [SVI]). 
It turns out however that multiplicities of components are no longer integers, but 
might have the exponential characteristic of F in the denominator. Thus, denoting 
the exponential characteristic of F by p we get a qfh-sheal L(X)[l/p\. Moreover 
this sheaf coincides with the free qfh-sheaf of Z[l/p]-modules Z[l/p](X) gener
ated by X. Applying Theorem 2.4 to the qfh-sheaî Zqfh(X) we get the following 
corollary: 
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COROLLARY 3.1 [SVI]. Let F be an algebraically closed field of characteristic 
zero, then for any X G Sch/F we have canonical isomorphisms 

H:ing(X,Z/n) = H*qfh(X,Z/n) = H*et(X,Z/n). 

For schemes over C we can do even better. Note that the simplicial abelian 
group C,(X) coincides with Hom(A-,U™=QSd(X))+, where Sd(X) is the dth 
symmetric power of X and + stands for the group completion. By restricting the 
algebraic maps A n —> Sd(X) to the usual topological simplex A"op C A n we get 
a canonical morphism of simplicial abelian groups 

oo oo 

Hom(A-, J ] Sd(X))+ —> Homtop(Atop, J J Sd(X(C)))+ 

and hence the induced homomorphism on the homotopy groups Ht%ng (X, Z/n) —> 
H*(X(£),Z/n). 

COROLLARY 3.2 [SVI]. The canonical homomorphism 

Hfn9(X,Z/n) -> H*(X(C),Z/n) 

is an isomorphism for any quasiprojective scheme X G Sch/C 

The sheaf Z[l/p]qfh(X) is just one example of the sheaves of equidimensional 
cycles. The general construction of sheaves of relative cycles is given in [SV2]. In 
particular for any scheme X G Sch/F and any t > 0 one can consider a qfh-sheaf 
zt(X), which is characterized by the following property: for any normal irreducible 
scheme 5 one has Zt(X)(S) — a free Z[l/p]-module generated by closed reduced 
irreducible subschemes Z C XxS which are equidimensional of relative dimension 
t over S. 

Note that the sheaf ZQ(X) coincides with Z[l/p]qfh(X) when X is proper over 
F. If X G Sch/F is any separated scheme then one can choose an open embedding 
X <-^> X with X proper. Let X^ denote X \ X considered as a closed reduced 
subscheme of X. The sequence of gjf/i-sheaves 

0 —-• zQ(X00) —> z0(X) —• z0(X) —> 0 

is left-exact but not right-exact. However it becomes right-exact if one replaces all 
qfh-sheaves involved by the associated /i-sheaves — see [SV2]. Using this fact and 
Theorem 2.2 we obtain 

PROPOSITION 3.3. Ext*qfh(zQ(X),Z/n) = Extl(zQ(X)^,Z/n) = H£(X,Z/n), 
where H* stands for etale cohomology with compact supports. 

Applying Theorem 2.4 to the sheaf ZQ(X) and using Proposition 3.3 we get 
the following result: 

THEOREM 3.4. Let F be an algebraically closed field of characteristic zero and let 
X G Sch/F be any separated scheme. Then Hfn9(zQ(X),Z/n)# = H*(X,Z/n), 
where # stands for dual (i.e. Hom(-
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4 Higher Chow groups 

Higher Chow groups introduced by Bloch in 1985 [Bl] give an alternative approach 
to motivic cohomology. In this way we won't be able to construct the motivic 
complexes Z(n) but at least we get a rather direct approach to the computation of 
motivic cohomology groups H^/l(X). What is more important, so far higher Chow 
groups give the only known construction of the spectral sequence relating motivic 
cohomology to algebraic if-theory. 

Let X G Sch/F be any equidimensional scheme. Denote by Zq(X,n) the 
group of cycles of codimension q in X x A n that intersect properly all faces X x 
A m C X x An . Zq(X,—) is a simplicial abelian group and higher Chow groups 
CHq(X, n) are defined as its homotopy groups (i.e. homology of the corresponding 
complex) — see [Bl]. It's evident from the definition that CHq(X,0) coincides 
with the group CHq(X) of codimension q cycles modulo rational equivalence. The 
following is a list of further properties of higher Chow groups: 

(4.1.1) Homotopy invariance (see [Bl]). CHq(X,n) = CHq(X x A1,™) 
(4.1.2) Functoriâl behaviour (see [Bl], [B2]). Any morphism / : X -> Y of 

smooth equidimensional quasiprojective varieties induces homomorphisms 
/* : CHq(Y,n) —> CHq(X,n). Every proper morphism of equidimen
sional schemes / : X —• Y induces homomorphisms /* : CHq(X,n) —> 
CHq~d(Y,n), where d = dim X - dim Y. 

(4.1.3) Higher Chow groups of codimension < 1 (see [Bl]). For any smooth equidi
mensional scheme X we have: 

CH°(X,n) 

CH1(X,n) 

HQ(X,Z) n = 0 

0 n > 0 

J T ^ C T ) n = 0 

H°(X,G*) n = l 

0 n> 1 

(4.1.4) Localization exact sequence (see [B2]). Let X be an equidimensional quasi
projective scheme and let Y C X be a closed subscheme of pure codimen
sion d. Then denoting the open subscheme X \ Y by U we have a functorial 
long exact sequence 

• CHq(Y,n) -> CHq+d(X,n) - • CHq+d(U,n) - • CHq(Y,n- 1) - • • • • 

(4.1.5) Relations to Milnor if-theory (see [NS]) 

f 0 n< q 
CHq(SpecF,n) = { M, x 

K P J \ K™(F) n = q 

The following important result due to Bloch and Lichtenbaum relates higher 
Chow groups to algebraic ÜT-theory: 
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THEOREM 4.2 [BL]. For any held F there exists a natural spectral sequence of 
cohomological type 

E™ = CH-'iSpec F, -p - q) => K-P-q(F). 

Higher Chow groups are related to motivic cohomology according to the 
following theorem of Voevodsky [V3]. 

THEOREM 4.3. Let X G Sch/F be an equidimensional scheme over a held F of 
characteristic zero. Then higher Chow groups of X coincide with motivic Borel-
Moore homology of X, so that if X is smooth then higher Chow groups coincide 
with motivic cohomology of X, more precisely: CHq(X,n) = H^l~

n(X,Z(q)). 

Theorems 4.2 and 4.3 give a desired spectral sequence relating motivic coho
mology to algebraic K-theory, at least in the case of fields. A different approach to 
the construction of the spectral sequence relating motivic cohomology to algebraic 
K-theory was suggested by Grayson [G]. The spectral sequence constructed by 
Grayson has extremely nice functorial properties. Its second term resembles mo
tivic cohomolog}'. Whether it coincides with motivic cohomology or not remains 
unclear. 

Computation of higher Chow groups with finite coefficients for varieties over 
an algebraically closed field of characteristic zero is fullfilled using the following 
result: 

THEOREM 4.4 [S2]. Denote by Z%qui(X,n) the subgroup of Zq(X,n) generated 
by cycles Z C X x An that are equidimensional (of relative dimension dim X — q 
over An. Assume that X/F is an affine equidimensional variety and q < dim X; 
then the evident embedding of complexes Z% -(X, —) -̂> Zq(X, — ) is a quasiiso-
morphism. The same statement holds for any quasiprojective scheme X if F is a 
field of characteristic zero. 

COROLLARY 4.5. In conditions of Theorem 4.4 the group CHq(X,n) coincides 
withH™B(zdimX_q{X)). 

Assume that X is an affine equidimensional variety over an algebraically 
closed field of characteristic zero F and set d = dim X. According to Corollary 4.5 
the higher Chow groups of X with finite coefficients CHd(X, n; Z/m) coincide with 
H1

s
l
in9(zQ(X),Z/m). Dual to the last group coincides with H^ing(zQ(X),Z/m) = 

H^(X,Z/m) and because this group is finite we conclude that CHd(X, n; Z/m) = 
H^(X, Z/m)#. Using the localization exact sequence this computation generalizes 
to any quasiprojective variety. Furthermore, for any q > d we may apply the 
previous computation to X x Aq~d. Using the homotopy invariance of higher Chow 
groups we finally come to the following theorem: 

THEOREM 4.6 [S2]. Let X G Sch/F be an equidimensional quasiprojective scheme 
over an algebraically closed held of characteristic zero F. Set d = dim X. Then 
for any q > d we have: 

CHq(X,n;Z/m) = H^d~q^n(X,Z/m(d - q))# . 
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If furthermore X is smooth then this formula simplifies to 

CHq(X,n;Z/m) = H^~n(X,Z/m(q)). 

Let X G Sch/C be a smooth variety of dimension < 2. Ah higher Chow 
groups of X may be expressed in terms of etale cohomology: if q < 1 we may 
use (4.1.3) and if q > 2 we may use Theorem 4.6. Because both higher Chow 
groups and etale cohomology respect filtered limits the same relationship holds 
for the function field C(X). Consider now the spectral sequence of Bloch and 
Lichtenbaum 

E™ = CH-q(Spec C(X), -p - q\Z/m) => K^p^q(C(X),Z/m). 

All differentials in this spectral sequence are zero by dimension considerations. 
Using further easy multiplicative properties of the spectral sequence we get the 
following canonical direct sum decompositions: 

K0(C(X),Z/m) = f & (C(X),Z/m) 

K2k(C{X),Z/m) = H°t{C(X),Z/m(k)) ® Hl(C(X),Z/m(k + 1)), k > 0 

K2k+1(C(X),Z/m) = Hlt(C(X),Z/m(k + 1)). 

From these computations we conclude that Bott multiplication ß : Ki(C(X),Z/m) 
—• ifâ+2(C(-X),Z/ra) is an isomorphism in degrees i > 0 (in all degrees if X is 
a curve). Using the localization exact sequence in algebraic if-theory we derive 
immediately from the previous remark that Bott multiplication ß : K[ (X, Z/m) —> 
K'iJrtl(X,Zlrn) is an isomorphism for i > dim X for any irreducible scheme X 
of dimension < 2. According to the theorem of Thomason [Th] this implies the 
following theorem: 

THEOREM 4.7 (QUILLEN-LICHTENBAUM CONJECTURE FOR CURVES AND SUR

FACES). Let X G Sm/C be a smooth variety of dimension < 2. Then the canon
ical homomorphism Ki(X,Z/m) —> KJop(X(C),Z/m) is an isomorphism when 
i > dim X. 
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Modules of Covariants 
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1. The Hochster-Roberts theorem 

Let G be a reductive group over C and let VF be a finite-dimensional representation 
of W. Set R = SW, the symmetric algebra of W. Then it follows from the famous 
Hochster-Roberts theorem [7] that RG is Cohen-Macaulay. In this setting this 
means that there exist homogeneous r i , . . . , r^ G RG such that 

• The C-algebra RQ generated by r i , . . . ,r^ is a polynomial algebra. 
© RG is a finitely generated free i?o-module. 

Hence one may view this result as giving, at least in principle, a unique repre
sentation for each invariant. Indeed if m i , . . . ,mv is a basis of RG over RQ then 
each / G RG may be written uniquely as X^^( r i? • • • i7"/*)771* where the Pi are 
polynomials in h variables. 

The original Hochster-Roberts theorem had a long and complicated proof, 
based upon reduction mod p. Subsequent simplifications by Kempf yielded the 
following result. 

THEOREM 1.1. [9] Assume that there is a pure homomorphism S —> T between 
commutative rings of finite type over a field. Then if T is regular, S is Cohen-
Macaulay. 

Pure means that for any M G Ä-mocl the induced map M —> T ®s M is 
injective. This happens for example if S is a direct summand of T as 5-moclule. 
This is the case relevant for invariant theory. Indeed, the Reynolds operator defines 
an i?G-linear splitting for the inclusion RG ^-> R. 

Nowadays there are short proofs of stronger versions of the Hochster-Roberts 
theorem. One of these is due to Boutot [2]. He proves that if T/S is pure and T has 
rational singularities then S has rational singularities. This implies the Hochster-
Roberts theorem as there are implications 

regular =>• rational singularities => Cohen-Macaulay. 

Boutot's proof, which is very short, uses the deep Grauert-Riemenschneider van
ishing theorem, whose proof uses analysis. 
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Another new proof for the Hochster-Roberts theorem is due to Höchster and 
Huneke [6] who prove that "F-regularity" is preserved under pure maps. Again 
this implies the original Hochster-Roberts theorem as 

regular => F-regular =>> Cohen-Macaulay. 

This new approach is still based upon reduction mod p. For a self-contained sum
mary of the proof of Höchster and Huneke, see [11]. 

One has the impression that the Hochster-Roberts theorem is a very subtle 
result. This feeling is strengthened when one considers the obvious generalization 
to covariants which turns out to fail rather drastically (Theorem 4.3). Therefore I 
would propose the following question. 

QUESTION 1.2. Does there exist a proof for the Hochster-Roberts theorem that 
does not use reduction mod p and that is completely algebraic (and hence docs 
not use results such as the Grauert-Riemenschneider vanishing theorem) ? 

In the setting of invariant theory the answer is known to be yes in the case 
that G is a torus [5], [16] and in the case that W is sufficiently big [18]. 

2. Covariants 

We let G, W be as before and we let U be another finite-dimensional G-represen-
tation. Then the module of covariants associated to U is defined as (R®c U)G. It 
is eas}' to see that this is a finitely generated iî^-niodule. The definition is clearly 
compatible with direct sums, so henceforth we assume that U is irreducible. An 
element of some (R®U)G is called a covariant. It corresponds to an equivariant 
polynomial map W* —> U. 

The notion of covariants stems from the classical invariant theory of forms. In 
modern terms this would correspond to G = SLn(C), W = (SuCn)*, U = SvCn. 
One of the reasons that classical invariant theorists studied covariants rather than 
just invariants is probably that these allowed for greater flexibility. Indeed the 
forms themselves represent canonical covariants, and from these other covariants 
can be derived using equivariant differential operators such as transvectants. 

More recently the interest in modules of covariants has revived because of 
their connection with the theory of inhomogeneous linear diophantine equations 
[16] and with the theory of PI-algebras and trace rings [13]. 

Given the Hochster-Roberts theorem, and the fact that R (g) U is a free R-
module, it is rather natural to pose the following question. 

QUESTION 2.1. Is (R®U)G a Cohen-Macaulay ^ -modu le? 

We are asking whether (R®U)G is a finitely generated free module over a 
polynomial ring in RG. It is rather easy to see that the answer to this question is 
"no" in general. 

EXAMPLE 2.2. Let G = T = C*, a one-dimensional torus and let x • T —> C*: 
a i—> a be the identity character. Define U = I>x-i, W = Lx © Lx © £ x - i where 
Lx is the one-dimensional T-representation associated to x- Then R = C[x,y,z], 

M =f U®R = C[x, y, z] where T acts on R and M as follows: take a ET, f-E Ä, 
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g G M. Then a-f = f(ax,ay,a~1z), a-g = a~x f(ax,ay,a~l z) RT = C[xz,yz] = 
C[s,t], MT = xRT + yRT = z~1(xzRT + yzRT) êë (s,t) C C[s,t}. So MT is not 
free over RT, which is a polynomial ring, and hence MT is not Cohen-Macaulay. 

3. Isotypical components 

There is a direct sum decomposition R = (BRG where the sum is over all irreducible 
characters of G and where RG denotes the sum of all irreducible subrepresentations 
of R with character x- Let x be the character of an irreducible representation U. 

Then it is easily seen tha t RG = (R <8> U*)G (8> U so tha t the Cohen-Macaulayness 
of (R (8> U*)G is equivalent to tha t of RG. 

4. Some basic results 

In this section we indicate the extremal situations with regard to Question 2.1. 
Indeed, we will show tha t sometimes all modules of covariants for a given (G, W) 
are Cohen-Macaulay, but tha t usually this is only t rue for a finite number of them. 
The latter result was proved by Brion in [3]. We give a somewhat weaker version 
with a simple proof. 

T H E O R E M 4 . 1 . [12, Section 5.1] Every RG is Cohen-Macaulay if and only if the 

quotient map from Spec R to Spec RG is equidimensional (that is, the generic fiber 

has the same dimension as the zero-fiber). 

Proof. Assume tha t Speci? —> S p e c i e is equidimensional. Let RQ C RG be a 
graded polynomial ring such tha t RG/RQ is finite. Then SpecR—• S p e c i f is an 
equidimensional map between smooth varieties, and hence is flat by [1]. Because 
RG is a direct summand of R this implies tha t RG is flat over RQ, and because 
RG is in addition finitely generated this yields tha t RG/RQ is free. The converse 
is proved by reversing the above argument. • 

R E M A R K 4.2. • The above result applies when G is finite. 
• If G is semisimple then, up to trivial summands, there are only a finite number 

of W such tha t Speciü —> SpecRG is equidimensional [12, Section 5.9]. 
• If Specie —> SpecRG is equidimensional and G is connected then it is conjec

tured tha t RG is itself a polynomial ring. This would imply tha t all modules 
of covariants are actually free, and hence R/RG would also be free. 

Now we state a weak version of Brion's finiteness result. For the full version we 
refer to [3, Section 4.2]. Define X = S p e c i f W*) and Xs = {x G X \ Gx = t r iv}. 

T H E O R E M 4 .3 . Assume that the generic orbit in X is closed and that codim(X — 
X3,X) > 2. Then there are only a finite number of irreducible U such that (R®U)G 

is Cohen-Macaulay. 

Proof. Let RQ C R G be a graded polynomial ring such tha t RG/RQ is finite. 
Define ft = rlom(RG, R0). This is in a natural way a graded jRG-module that is 
isomorphic to the dualizing module of RG, suitably shifted. I t follows from [10] 
tha t Q = (R (8) Lx)

G(q) for some x e Hom(G,C*) and some q G N. 
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Let M = (R®U)G. Then M = llomBo(M,RQ) is the (shifted) Cohen-
Macaulay dual of M. We have 

M = HomÄD(M)Ä0) 

= Hörnte (M, ÎÎ) 

= KomBa((R®U)G,(R®Lx)
G(q)) ( ' 

= (R®U*®Lx)
G(q). 

The last equality is true on Xs//G by descent and because of the fact that the 
quotient map Xs —• Xs//G is a principal G-bundle (this follows from the Luna 
slice theorem). Then this equality is true on X//G because X —> X//G contracts 
no divisor and hence all modules of covariants are reflexive [3, Section 1.3]. 

The only thing we actually need from (1) is that the dual of an arbitrary 
module of covariants lives in degree > — q. 

Assume now that M is Cohen-Macaulay. Then M is graded free over RQ. So 
as a graded i?o-module 

n 

M = 0 f l o ( - o i ) 
i=l 

for suitable Ĝ  G N. Because M = HOIIIRD(M, i?o) = RQ(O>ì) lives in degrees > — q 
we deduce that a* < q, from which it follows that M contains an element of degree 
< q. Hence U* is contained in ®?=0S*W. So there are only a finite number of 
possibilities. • 

REMARK 4.4. » I n [19], in the case where G is a torus, necessary and suffi
cient conditions are given for the existence of only a finite number of Cohen-
Macaulay modules of covariants. 

• The proof of Theorem 4.3 yields a necessary condition for (R®U)G to be 
Cohen-Macaulay. This condition is in general far from sufficient. However 
consider the following case [3] G = Sln(C), W = (C n ) n + 1 . Then the hypoth
esis of Theorem 4.3 is satisfied, and furthermore RG is a polynomial ring. 
Thus, we may take q = 0. Then it follows that the only U for which (R®U)G 

is Cohen-Macaulay is the trivial representation. 
• If G is semisimple and connected, then, up to trivial summands, there are 

only a finite number of W for which the hypothesis of Theorem 4.3 is not 
satisfied. 

5. The torus case 

In this section we assume that G = T = (C*)s is an s-dimensional torus. Let 
7i,72, • • • ,7d e X(T) = Hom(T,C*) be the weights of W. So R = C[xu... ,xd] 
with, for z G T, z • Xi = ^ì(Z)Xì. Let x £ X(T). Then there exist <[> = (^ij)ij, 
a = (oti)i such that 7 ^ 1 , . . . ,zs) = zfu • • • zf», x{*u • • • , zs) = *T ' " " zfB Then 
it follows that 

RT = ®*ß=Qiß>GCxßl . • • xß
d
d c R 

Rx = ^ß=atß>oCxßl • • • Xß
d

d C R . 
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So RT, Rx have a basis that is indexed by the solutions of a system of respectively 
homogeneous and inhomogeneous linear diophantine equations. This observation 
was used by Stanley to make a connection between combinatorics and commutative 
algebra [16]. 

Because R is Zd-graded in the natural way, and this grading is compatible 
with the T-action on R, we may define the Zd-graded Hilbert series of Rx, 

F(Rl «) = £ dimfjÇ),«* . . . « * = £ « * . . . « * . 
ß£Zd &ß=a 

Thus, F(Tx,u) is the generating function for the solutions to $ß = a. It is easily 
seen to be a rational function. 

The Hochster-Roberts theorem, and also the proof of Brion's result, suggest 
that in order for Rx to be Cohen-Macaulay, x should in some sense be small 
compared to W. An appropriate notion of smallness was found by Stanley. 

DEFINITION 5.1. A character x £ X(T) is strongly critical for (T, W) if and only 

if X = E t i Mi7i i n X(T) ®z R, with pi G] - 1,0]. 

THEOREM 5.2. [15] Assume that x is strongly critical for (T, W). Then 

(1) Rx is Cohen-Macaulay. 
(2) Assume that the generic orbit in W* is closed. Then the following identity 

holds for the Zd-graded Hilbert series of Rx (the "Monster reciprocity theo
rem") 

FiR^u-1) = ±u i • • • u d F ( i F x _ £ V u ) . (2) 

The reciprocity theorem implies "reciprocity" results for the solutions of 
$ß = a [14]. 

Stanley proved Theorem 5.2 (2) first in [14] by writing F(RX, u) as an integral 
over a complex torus (the "Molien-Weyl" formula). Then repeated application of 
the residue theorem yields the result. 

In [15], [16] the results 5.2 (1) and 5.2 (2) are proved using commutative 
algebra. It turns out that 5.2 (1) implies 5.2 (2). 

REMARK 5.3. The terminology of strongly critical weights is mine, but the notion 
was introduced by Stanley in [15] as a special case of so-called critical weights, a 
slightly more general concept. 

6. Strongly critical characters in the general case 

In this section we let G be general again and we let T C G be a maximal torus. 
Let x '• G —> C be an irreducible character and let x I T — Xi H \~Xi where the 
Xi are characters of T. Let VL be the set of roots of G. 

DEFINITION 6.1. x i s strongly critical for (G, W) if and only if, for all S C Ü and 
for all i G { 1 , . . . d}, it is true that 

Xi-J^P (3) 
pes 

is strongly critical for (T, W). 
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Again the strongly critical characters are those that are sufficiently close to 
the trivial representation. 

The motivation for Definition 6.1 is the following result by Stanley. 

THEOREM 6.2. [15] Assume that x is strongly critical for (G, W) and that the 
generic T-orbit in W* is closed. Then the Z-graded Hilbert series of RG has the 
property 

F(RG,u-1) = ±udF(R$,u) (4) 

where iß(g) = x(9~1)K9~1)) w^1 ^ ^le character of AdW (so in the notation of 
Section 5, X = Yllì)-

Proof. We will only sketch the proof. If we expand the integrand in the Molien-
Weyl formula for F(RG,u), then we see that it is a sum of F(RT,u) where the 
/i's are weights of the form (3). Then (2) applies to each of these terms, and one 
obtains (4) by summing. D 

If one compares Theorem 5.2 with Theorem 6.2 then one is naturally lead to the 
following conjecture. 

CONJECTURE 6.3. If x is strongly critical for (G, W) then RG is Cohen-Macaulay. 

This conjecture was proved by the author under some reasonable additional 
hypotheses [18]. For example it is true if G is semisimple, and the generic orbit of 
W* has a finite stabilizer. 

7. Local cohomology 

Let us specialize to our setting the standard local cohomology criterion for a mod
ule to be Cohen-Macaulay. 

LEMMA 7.1. RG is Cohen-Macaulay if and only if HiRG^+(RG) = 0 for i = 

0 , . . . , h — 1, where h is the Krull dimension of RG. 

There are many equivalent definitions of local cohomology. One of them is as 
follows. Choose f\,... , /& homogeneous such that r ad ( / i , . . . , fk) — (JRG)+. Then 
H?RG}+(RG) is the homology of the complex 

o - * ? -» © ( * ? ) / . - © ( * ? ) / . / , - • • • - ( * ? ) / . - / . - o (5) 
i j>i 

with standard alternating boundary maps. Suppose now that G = T is a torus. 
Then Stanley found a combinatorial way to describe (5). Because T is a torus we 
may choose the f\,... ,fjz to be monomials and then (5) is compatible with the 
Zd-grading on R. Furthermore if we fix ß G Zd and we restrict (5) to degree ß then 
it is easy to see that one obtains the chain complex of a simplicial complex. Then 
further results in algebraic topology are used to study these simplicial complexes. 
This eventually leads to a precise criterion for Rx to be Cohen-Macaulay, and also 
to the proof of Theorem 5.2. 

As beautiful as this method is, it has the drawback of being restricted to 
the torus case. Our goal is to study the general case; thus, a different approach is 
needed. 
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Let G be general again. Comparing (5) with the complex 

£• : o - Ä -> 0 Ä / f -> 0 Ä / 4 / j -> • • • - (R°)fl...fk - 0 
i j>i 

we find that H*RG)+(RG) = H*(L)G = H*(R)G where I = r ad ( / i , . . . , /*)• This 
formula was stated in [9]. It essentially says that Hj(R) encodes the information 
about the Cohen-Macaulay property for all modules of covariants. Of course, given 
the difficulty of computing Hj (R) for an arbitrary ideal I C R, this doesn't appear 
to be much progress. Things become clearer when we go to the associated varieties. 
Put X ^ S p e c i f W*). Then we have V(I) = Xu where Xu is the so-called null-
cone or unstable locus in X. That is 

Xu = {xeX\oeGx~}. 

So we have Hj(R) = HXU(X,Ox). This leads us to the following more general 
formulation of our original question. 

QUESTION 7.2. What is the structure of HX„(X, Ox) as G-module? 

At this stage, it is useful to make another generalization, which turns out 
to clarify matters. Let T>x be the sheaf of differential operators on X. Then it 
is standard that the (sheafifications of) HXU(X,ÖX) are holonomic X>x-modules 
with regular singularities. Thus we ask 

QUESTION 7.3. What is the structure of Hxu(X,Ox) as (G,T> x)-module ? 

A very useful fact is that if G is connected then the G-structure on HXU(X, Ox) 
is encoded in the D^-structure [20, Section 3.1]. 

8. Geometric invariant theory 

Insight into the structure of Xu is provided by geometric invariant theory. Let 
T C B C G be a maximal torus and a Borei subgroup of G. Let À G Y(T) be a 
one-parameter subgroup of T. Define 

Xx = {x G X | lim X(t)x = 0} 
t—>o 

P\ = {g £G\ ììmX^gX^y1 exists} . 

It is easy to see that X\ is a linear subspace of X and P\X\ = X\. In addition it 
was shown by Kempf [8] that P\ is a parabolic subgroup of G. 

Now the Hilbert-Mumford theorem yields that 

Xu= (J GXX. 
Px^B 

Furthermore the projection map G xPx X\ —* GX\ is usually a resolution of 
singularities. 
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9. The torus case revisited 

Here we indicate how one may answer Question 7.3 in the torus case. The notation 
is as in Section 5 and Section 7. By Section 8: Xu = \JXEY(T) ^ A - Let 7i> • • • i7d 
be the weights of W, with corresponding weight vectors wi,... ,Wd. Then Xx C 
X(=W*) is the linear span of those w* for which (A, 7*) < 0, where ( , ) denotes 
the canonical pairing between Y(T) and X(T). This description of X\ still makes 
sense if A G Y(T)^, so we extend the definition of X\ accordingly. If U C F(T)^ 
then we put Xu = \J\eu ^ - ^ ^ C Y(T)R is the open unit ball for some norm 
on Y(T)R then with this notation Xn = Xß- The key lemma is the following. 

LEMMA 9.1. Assume that U\,U2 C Y(T)^ are convex and that U\ U C/2 is also 
convex. Then 

xUl n Xu2 = xUinu2. 

Lemma 9.1 leads to a Mayer-Vietoris sequence 

~» Hkinu2 (*. Ox) - ^ (X,Ox) ffi HXU2 (X, Ox) -» ^ U i U [ / 2 (X, O x ) -» 
This observation makes it plausible that by "cutting up" B in small pieces, the 
computation of Hxu(X,Ox) may somehow be reduced to that of Hx (X,öx) 
for a C B so small that there exist A G er such that X\ = Xa. The appropriate 
technical tool to do this is to use a certain spectral sequence which is shown to 
degenerate [19]. 

Now we will state the main result from [19] but first we have to introduce 
some more notation. We set s = diniT and if X, p G Y(T)^ then we set A ~ p if 
X\ = Xfl. We let A be a set of représentants for B/ ~ and if A G A then we set 
B\ = {p G B | p ~ A} and $x = Bx — B\. It is easy to see that Q>x may be given 
the structure of a finite CW-complex. 

THEOREM 9.2. There exists a filtration on HXu(X,Ox) as (T,VX)-module such 
that 

gvHx„(X,Ox) = ®XeAHd
x\(X,Ox)®

u^ 

where ui)X = d i m f ^ - * * - 1 ^ * ) , dx = codim(XA,X). 

To apply the above theorem, one needs to know the ^-action on Hx (X, Ox) 
but this can be very easily computed [19]. This yields a description of the T-
structure of Hxu (X, Ox) from which we can obtain the local cohomology modules 
H?RT}+(RX). Inspection reveals that there should bc a connection between the $x 

and the simplicial and polyhedral complexes introduced by Stanley, but the nature 
of this connection is not at all clear. 

EXAMPLE 9.3. Let T = (C*)2. Then X(T),Y(T) may be identified with Z2. Take 

w - ^(-i,o) ® ̂ (o.i) ™ ^(i,i) ® ^ ( i - i ) • 

In Figure 1 we have given a graphical representation of this example. The 
weights of W have been indicated by fat dots. Hence there are four fat dots, each 
representing a weight of multiplicity two. The interior of the white area represents 
those x s u c n t n a t Rx is Cohen-Macaulay. In particular there are only a finite 

file:///J/eu


360 Michel Van den Bergh 

FIGURE 1 

number of such weights, in accordance with Theorem 4.3. The interior of the 
region bounded by the dashed lines is the strongly critical weights. Because this 
is not all of the white area, we see that the converse to 5.2 (1) is false. 

10. The general case 

Theorem 9.2 may to some extent be generalized to arbitrary G. Let the notation 
be as in Section 7 and Section 8. We need the following conditions. 

CONDITION (*). • If A, p G Y(T) such that Xx ^ Xß then GXX ^ GXß. 
• If A G Y(T) then there exist p G Y(T) with Xß = Xx such that the projection 

map G xpv Xß —> GXß is small. (A map n : Y —> X is said to be small if 
for any n > 0, codim{?/ G Y \ dinnr~1y >n}> 2n.) 

Then we have [20]: 

THEOREM 10.1. Assume that condition (*) holds. Then there is a filtration on 
HXu(X,Ox) as (G,VX)-module such that 

grHx4X,Ox) = ®XeY(T)£(GXx,X)®u^ 

where UiiX G N and C(GXX,X) is the unique simple subquotient of HQXX(X,öX) 

with support equal to GXX. 

REMARK 10.2. (1) As in Theorem 9.2 one may give explicit formulas for the u^x 
in terms of the reduced cohomology groups of certain finite CW-complexes. 

(2) The G-structure of C(GXx^X) may be explicitly computed. 

11. Some examples 

We conclude with a few examples that can be computed using Theorem 10.1 and 
Remark 10.2. 

First let G = S12(C) and W = 0 ^ 5 ^ C 2 with aU <fc > 0. Define for n > 0 

f(n + l)2 

Q(n) 4 
n(n + 2) 

if n is odd 

if n is even 
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dominant weights 

O =roots 

• =weights 

FIGURE 2 

and set s = Y2S^- It follows from Stanley's criterion that (R®SUV)G is Cohen-
Macaulay if u < s — 2. In this case it turns out that the converse is almost true. 
We separate the following cases: 

(A) W = C2,52C2, C2 0 C2, C2 © 52C2,52C2 0 S2C2, S3C2,SAC2; 
(B) All dj, are even and u is odd; 
(C) All other cases. 

THEOREM 11.1. [4], [17], [20] In case (A) the module (R ® SUC2)G will always 
be Cohen-Macaulay. In case (B) (R®SVC2)G = 0. In case (C) (R®SUC2)G is 
Cohen-Macaulay if and only if Stanley }s criterion holds. 

Now let us look at the case G = Sl3(C), W = (C3)n. Let u)\, U)2 be the fundamental 
weights and let x ^ e a character of G with corresponding highest weight xuj\ -\-yw<i, 
% > 0, y > 0. Then RG is Cohen-Macaulay iî x < m — 3, y < 771 — 3. On the 
other hand x is strongly critical for (G, W) if x + y + 4 < m. This is represented 
graphically in Figure 2 which is for 777, = 5. 
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Bounds for L-Functions 

J O H N B . F R I E D L A N D E R 
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This paper is a report on joint work, in part with Bombieri, and in part with Duke 
and Iwanicc. We shall consider a number of different kinds of L-functions L(s). 
All of these will, however, share the following properties: 

(PI) In the half plane a = Res > 1, the function L(s) is given by an absolutely 
convergent Dirichlet series 

n>l 

with coefficients an satisfying a\ = l and an <C n°^\ 

(P2) The function L(s) has a meromorphic continuation to the whole complex 
plane, has (at most) finitely many poles, and satisfies a functional equation 

j 

®(s)L(s) = *(1 - s)L(l - s), where $(s) = wQs J[ T (XjS + pj) 

where \w\ = 1, Q > 0, Xj > 0, and Re/ij > 0. By f(s) we mean f(s). 

It follows by a well-known argument (cf. [T]) that the number N(T;L) of 
nontrivial zeros (that is, those not located at the poles of the T factors) of L(s) 
satisfying 0 < t = Im s ^ T, is given asymptotically by 

N(T;L) = £ l o g ( G L T 2 A ) H-O(logT), (1) 

where A = ^ Aj and CL = c^Q with cr = Ylj^j J• 
3 = 1 

The choice of the parameter Q and the gamma factors in the above decompo
sition of <[>(s) is not quite uniquely determined, due to the multiplication formula 
for the gamma function. However, A and CL are uniquely given by L(s) so that 
the order of magnitude of Q is almost prescribed. Throughout we allow implied 
constants to depend on the Xj,pj. Once these are fixed, Q is determined by L. 
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The basic problem with which we shall be concerned is that of obtaining 
upper bounds for |L(s)|. It follows already from (PI) that for each 8 > 0 we have 
L(s) <^ 1 uniformly for a > 1 + 8. It then foUows from the functional equation 
(P2) that for o < — 8 we have, uniformly in any fixed vertical strip, 

L(s) < (QTA) 
l - 2 c r 

where r = max{l, | i |}. 
These bounds are best possible and the more interesting (and important) 

problem is to obtain bounds in the critical strip 0 < a < 1. From the Phragmén-
Linclelöf convexity principle and the above bounds it follows that we have there 

£(*)«, {Or*)1-** ; (2) 

we shall refer to this as the convexity bound. Our goal is to improve the exponent 
1 — a. The best we can hope for is 

i ( S ) « E ( Q r A ) e , (3) 

valid for a > \. One can't hope for such a bound for a < \, because if this were 
true at say a = ^, then the functional equation would imply too good a bound 
on a = | . By convexity, (3) gives L(s) <Ce (QTA) °" E for 0 < o < \ and the 
bound (3) holds for fixed a > \ once it is known to hold on a = ^. 

Without losing anything essential in the generality of the problem we shall 
restrict to a — \. The bound (3) is the "generalized Lindelöf hypothesis". It follows 
rather easily from the Generalized Riemann Hypothesis (the assumption that the 
nontrivial zeros of the L-function are on the central line a = | ) but may be true 
more generally. Note that the Generalized Riemann Hypothesis is not true for 
every L-function satisfying (PI), (P2). 

There is a second, essentially equivalent, way of deducing the convexity 
bound (2). Given an L-function satisfying (PI), the Dirichlet polynomial D = 
Y^n<x an^~s offers a reasonable approximation to L in the region a > 1. Once we 
are given also the property (P2), then the approximation continues to hold in the 
critical strip as long as we stay away from the poles and as long as a: is reasonably 
large. 

If we allow the replacement of D by other Dirichlet polynomials Dx(s) = 
^2n<x an(x)n~s j m particular those that give smoother truncations of the Dirichlet 
series, then it is possible to approximate L(s) more closely, but still with the same 
restriction on the size of x, namely that x > (QrA) . By taking advantage of the 
functional equation it is possible to use shorter polynomials in an approximation 
to L(s) (called the approximate functional equation) of the form 

L(s) = Y2 an^s + x(s) ] P än7^s_1 + small, (4) 
n<x n<y 

where x(s) = $(1 — s)$(s) 1 and we now only require that xy > ( Q T A ) A\2+e 
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Choosing s — ~ + it and x = y we ma}', using only trivial bounds, recover 
the convexity bound (2). This seems a more complicated way to achieve the same 
result but, with (4) as a starting point, we may hope to develop nontrivial estimates 
for the Dirichlet polynomials involved and thereby sharpen this bound. Thus, we 
have broken up the problem of bounding L(s) into two relatively independent 
subproblems: 
(A) Finding good approximations to L functions by short Dirichlet polynomials. 
(B) Finding techniques to detect cancellation in and give nontrivial bounds for 

Dirichlet polynomials. 

(A) Dirichlet polynomial approximation 

In joint work with Bombieri we have been studying the admissible lengths of 
such approximations. More precisely, consider Dirichlet polynomials Dx(s) with 
a\(x) bounded away from zero and an(x) «C 7i°(1) and let I(a,T) denote the 
interval {a + it,T < t < (1 + e)T}. For fixed a there are always on I(o~,T) such 
approximations with 

L(s)=Dx(s) + 0(T~E) (5) 

(and in fact with much sharper error term) as long as we have x > (\-\-2E) CLT2A. 

In case a > ^ the problem of the existence of very much shorter approximations 
is, in a rough sense, equivalent to the Lindelöf Hypothesis, but for a < | it is 
possible to show that, under the assumption of a very weak zero density estimate, 
one really cannot find approximations shorter than the above. More precisely we 
have: 

THEOREM 1. Assume that L(s) satisfies (PI), (P2) and that, for each fixed o > 
\, the number N(a,T) of zeros g = ß + ry with ß > a, 0 < 7 < T satisfìes 
N(o-,T) = o(T log T). Suppose that we have for some E,E' > 0 the approximation 
(5) on 1(1- e ' ,T). Then x > T2A~°^. 

The exponent 2A in Theorem 1 is optimal but if one is willing to strengthen 
the assumptions a little, then one can derive a more precise conclusion. 

THEOREM 2. Assume that L satisfìes (PI), (P2) and, for each fixed a > \, the 
stronger density hound N(a, T) = o (T(log T ) - 1 ) . Suppose that the approximation 
(5) holds on I(-e',T). Then x > (1 - o(l)) CLT2A, where CL is given in (1). 

Here not only the exponent but also the constant CL is optimal for every L 
function satisfying (PI) and (P2). 

The basic idea behind the proofs of these theorems is to compare in a large 
rectangle the number of zeros (perhaps with suitable weights) of the function L(s) 
with that of the Dirichlet polynomial Dx(s). These should be nearly equal if the 
approximation is good. One can use (1) to give an asymptotic formula for the 
former. One may expect, on the other hand, that it is not possible for a Dirichlet 
polynomial to have too many zeros and that one can give an upper bound for the 
number of these, which is too small in the case where x is too small. The following 
result of this type provides a bound that is sharp and suffices to yield the above 
theorems. 

file:///-/-2e
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PROPOSITION. Let N(a, T,T + H; Dx) denote the number of zeros of Dx(s) sat
isfying a>a,T <t<T-\-H, where H <T. Then, uniformly for -H < a < -1, 
we have 

N(a,T,T + H;Dx) < ^ l o g * + 0( |a |*JT* logs). 
Z7T 

In Theorems 1 and 2 we have treated the L-function as fixed and dealt with 
the problem only in its T-aspect. One may also consider Q as a variable and it 
would be of interest to have a Q-analogue to these results that shows that the 
above approximations are still optimal. This is definitely possible under certain 
conditions, if not in general. 

In a different direction, it would seem natural to conjecture that the known 
approximate functional equations are also optimal and that in any approximation 
such as (4) we must necessarily have xy > (1 — o(l)) CLT2A. Here however the 
method used to prove Theorems 1 and 2 appears to break clown and a new idea is 
wanted. 

(B) Cancellation in Dirichlet polynomials 

Although the results of the previous section are rather precise and shed light on 
the problem (A), they do not help us to improve the convexity bound (2) and we 
are left with the problem of finding some cancellation in the sums occurring in the 
approximate functional equation. 

The considerations of the previous sections and, in particular, the convexity 
bound (2) apply rather generally to the L-functions that we have been considering. 
By contrast, the methods that have been used to improve upon this bound have, 
until recently, been of a more specialized nature. 

(i) Riemann zeta function 

In the case of this, the prototypical example, the first progress was made in the 
years around 1915-1920 based on ideas of Weyl [W], some of which were discovered 
independently by Hardy and Littlewood, and on a somewhat different method of 
van der Corput, cf. [T, Chapter V]. 

Weyl's method proceeds as follows. By the approximation we are led to study 
sums Yin n~^~%t and, by partial summation, bounds for these may be inferred from 
bounds for sums Y^n71^ = 2™ e (—2^1°8n)> w n e r e> as usual, e(u) = e2nlu. By 
Taylor's theorem such sums may be approximated by sums Yn

 e (^/(n))> w n e r e / 
is a polynomial with real coefficients. 

In the case of a linear polynomial this is just the sum of a geometric pro
gression. A nontrivial bound for the general case may be deduced from this, by 
induction on the degree, using the identity 

I E e ( i / ( n ) ) l 2 = E E e W ( n i ) - / ( n 2 ) ) ) = E E e W / ( r i + / i ) - / ( " ) ) ) • 
n n i n 2 h n 

Here the diagonal terms h = 0 can only be estimated trivially but are few in 
number, thus giving a small contribution to the total, whereas, for each fixed 
h^Q, the polynomial f(n + h) — f(n) has had its degree reduced by one. 
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The van der Corput method is somewhat different, using approximations 
to the above exponential sums by exponential integrals, but both rely on the 
continuous nature of the function log n and this limits their applicability to L-
functions with relatively simple coefficients. On the other hand, for the Riemann 
zeta function itself the above ideas form only the beginnings of a topic that has 
been extensively developed. The most recent breakthrough, due to Bombieri and 
Iwaniec [Bl] and carried forward by Huxley, partly in joint work with Watt, was 
reported in [H] in the proceedings of the previous ICM in Kyoto. 

(ii) Dirichlet L-functions 

In the case where one considers a single fixed Dirichlet L-function the problem 
reduces to (a very small modification of) that for C(s)- I*1 the case where one 
considers the whole class of Dirichlet L-functions and wants a bound explicit in 
its dependence on Q (and herein lie the most interesting applications), then the 
problem becomes new, with additional difficulties. 

Henceforth we shall consider the case where t is fixed and Q is the only 
variable. This isolates the problem of most central interest, although there still 
remains then the not insignificant problem of getting "hybrid" bounds that are 
simultaneously strong in their dependence on both variables. In this case we have 
Q — (9/71")* î where q is the conductor of x- Because s is taken to be fixed we may as 
well (by partial summation) take our Dirichlet polynomial at s = 0 and hence the 
relevant sum is the character sum S(N) = Yn<N x(n)- With this normalization a 
bound S(N) «C N^qa+E leads by partial summation to a bound L(s,x) «C Qa^E 

on cr = 75. The first nontrivial bound for S(N), the Pólya-Vinogradov inequality 
[P], [V], gives S(N) < g ä logg, sufficing only to recover the convexity bound 

L(l+it)<:ettq
i+e. 

Actually the factor qE can be sharpened; we ignore throughout improvements 
that are smaller than a fixed power. The problem of improving these bounds for 
S(N) and consequently for L(s,x) was first successfully accomplished by Burgess. 
Amongst a number of character sum bounds, he showed that S(N) «C JV2çïG+ E 

from which one deduces [B] that, for fixed s = \ + it, 

L(s,x) <<71G +E 

which is still the best known bound. Like the earlier methods for studying the t 
aspect, this one is somewhat special, making essential use of the special structure 
of the coefficients an = x(n)-

Roughly speaking, one may argue as follows. If 1 < a < A, 1 < b < B, and if 
AB is small compared to N, then S(N) is approximated by Yln<N x ( n + a0) aim< 

hence, doing this for each a, b, S(N) is essentially bounded by 

(^)"1EEE^+ßö)U(^r1EEE^n+ö)l 
a b n a n b 

= (AB)-1 E «/(y)|Exfo + *0|, 
ymadq b 
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where ä is the multiplicative inverse of a mod q, and v(y) is the number of pairs 
(a,n) with an = y (mod q). Applying Holder's inequality to this we reduce to 
the problem of bounding the sum Yly(q) v2(y)i which counts solutions of a simple 
congruence and may be done in elementary fashion, and bounding 

EIE*(^)I4 = E--EE* 
y(q) b bi ò4 y 

(y + h)(y + b2) 
(y + b3)(y + bA) 

For this last sum over y, Weil's theorem provides a sharp bound and, with optimal 
choice of A,B, this yields the above Burgess estimate. 

(iii) More recondite L-functions 

In the following sections we shall describe some of the workings behind a new 
approach that we have been developing in a series of joint works with Duke 
and Iwaniec. This leads to improvements in the convexity bound in the above-
mentioned cases (albeit with weaker exponents than the best previously known; 
see [FI] for the case of Dirichlet characters) but also applies more generally to a 
number of L-functions for which the earlier methods do not. 

For the most part this method has been applied to the automorphic L-
functions arising in connection with the modular group and its congruence sub
groups. In the first place [DFIi], one may take a fixed modular form, for example, 
a holomorphic cusp form g of weight k for the modular group 

g(z)^f29n^k-1)/2e(nz)., 
7 1 = 1 

where here the coefficients have been normahzed so that gn <C nE. We consider the 
twist of g by a primitive Dirichlet character x m ° d q and the associated L-function 

0 0 

Lg(s,X) = 2_^9nX(n)n s-
n=l 

Here one has a functional equation proven by Hecke that is, due to the above 
normahzation, of type (P2) and with, say, Q = q/ir. We then have the estimate of 
[DFIi]: 

THEOREM 3. With Lg as above, 

Me+^x)«9Ä+e- (6) 
This improves the convexity bound, which would have | in place of ^-. 

Rather than twists of a single cusp form, a natural alternative [DFI2] is 
to consider the space of holomorphic cusp forms of weight k on the congruence 
group To(q) and to study, for any individual one of these, the dependence of the 
corresponding L-function Lf on the level q. We may again normalize the Fourier 
coefficients aj(n) so that the Deligne-Ramanujan bound a/(n) <C nE holds and so 
that we have a functional equation of type (P2) with, say, Q = q* /2TV. In [DFI2] 
the convexity exponent of \ is improved to: 
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THEOREM 4. For any normalized cusp form f of weight k > 2 that is a new form 
on To(q), we have 

Lf(l+it)^qL<-\ 
where 8 = ^ • 

For k = 2 the above includes the L-functions of modular elliptic curves over Q. 
Other examples to which the method applies have been considered in [I2] and 

[IS]. The final example [DFI3] we mention does not begin with 5L(2), although 
the study of the problem leads there soon enough. In this case we consider the 
imaginary quadratic field Q(y/—D) and the dependence on D of the L-functions 
attached to the characters x of the class group. In the case of the principal character 
this is just the Dedekind zeta function of the field, and in any case where x is r e a l 
it may be, by a theorem of Kronecker, expressed in terms of Dirichlet L-functions 
to which the Burgess estimate may be applied. In the general case we are now 
able to give a subconvexity bound D*~6 with 8 = 1/1156, if D is free of large 
prime factors as in the work of Graham and Ringrose [GR] or for more general 
discriminants, but then only subject to the assumption of any one of a number of 
unproven hypotheses. This is due to a serious auxiliary problem that arises in this 
case; we shall return to this later. 

(iv) A new method 

We sketch some of the main ideas involved in the estimates of the previous section. 
As before the problem may be reduced by approximation to the estimation of 
coefficient sums of the form 

Sb(M) = £ Km). 
771 -~ M 

Here m ~ M means that m runs over the interval M < m < 2M and the b(m) 
are either the coefficients am of the L-function or else some close relatives. Thus, 
it may be convenient for reasons of convergence to take b(m) = amh(m), where 
h(m) is a smooth weight function. Alternatively, it will often be more convenient 
to find a bound for an approximation to some power LK(s) rather than to L(s) 
itself. 

In order for our method to work we need to find some family T of "compan
ions" to our sequence b of coefficients. In the above examples these companions 
come from the other characters of the relevant group or, in the case of the space 
of cusp forms, the other members of an orthogonal basis. We have need of a mean 
value theorem in the form of an upper bound for a sum of the type 

S=^ElEQnM«)r (7) 
f£F n~N 

with fairly general complex coefficients an and F — \!F\ being the number of family 
members. To establish such a mean value theorem we require some orthogonality 
properties within the family T. Expanding (7) we have 

B = 2_^2^ a'ni a'^ A ( n i 'n 2) ' 



370 John B. Friedlander 

where A(ni,n2) = ^ S / e ^ / f a i ^ / C 7 ^ ) - ^ w e a s s u m e that the sequences bf have 
been normalized so that bf (n) <Ce n

E, then we expect (and rather generally get) a 
bound 

B ^ (1 + F-1N)\\a\\2(FN)E , (8) 

where ||a|| denotes the ^-norm. Here the first term on the right arises from the 
diagonal terms ni = n2 combined with the trivial bound for A while the second 
term arises from the remaining terms and Cauchy's inequality and assumes that, 
for n\ ^n<i, the orthogonality gives almost complete cancellation in A. 

The bound (8) is the best that one can hope for in general, but for certain 
choices of the sequence an it can be improved using more sophisticated techniques. 
Because there is no cancellation coming from the diagonal terms, any hope of 
improvement must come from the others and so we want N to be larger than q 
and we need a nontrivial treatment of the off-diagonal terms. One way to achieve 
this and to simultaneously retain the special sum Y2n bm which it was our goal to 
estimate, is to introduce the modified mean value 

ßc = ^EIEc<M0|2lE6/M2, w 

where the complex coefficients Q are arbitrary. 
In case the bf are completely multiplicative then this is actually a special 

case of the previous sum with a = c * 1 but, in general, it is slightly different. 
Sums of this type have been used in the study of the zeros of the zeta function. 
There the sum A = Y,£~L C*&/C0I *S called a "mollifier" and the coefficients eg are 
chosen so that it imitates the inverse of the target function and thereby acts to 
mollify or smooth out some of the irregularities in its behavior. Here we intend to 
choose the coefficients eg to achieve the opposite effect so that A behaves as an 
"amplifier" increasing the contribution of the target function b within the family. 
If, as happens in all of our examples, we have F = Q*"^1) for some integer K, 
then, with the trivial amplifier A — 1, the estimate (8) is just sufficient to recover 
the convexity bound, provided that we take our coefficient sums to approximate 
the function LK(s) rather than L(s), in order to balance the two terms on the 
right-hand side of (8). 

In the general case we may hope to attain a bound for Bc of the shape: 

Bc <C (1 + LAF~8) \\c\\2M(FLM)E. (10) 

Here A is a large positive constant, hopefully not too large, and 8 is a small positive 
constant, hopefully not too small. 

We may choose the coefficients eg by eg = b(€), where ò is the target function, 
to amplify the contribution to Bc coming from this term. Presumably the contri
bution of the terms coming from the companion functions is, by orthogonality, 
small, but we do not need to quantify this as we may by positivity drop all of 
these, getting the lower bound 

BC^WEKOI 2 ) | £ « I 2 (n) 
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and, combining this with (10), 

Y^ &("0 < (l + L^F-*} \\c\\-1F1^M^(FLM)E. (12) 
777.~M 

Here, in comparison with the convexity bound that follows from the mean 
value estimate (8), we have saved a factor ||c|| that we should like to be large. 
This leads to two distinct problems, the first being that we would like the size of 
L to be large. This is obviously constrained by the exponents A and 8 that we 
can achieve in the mean value bound (10). The second problem concerns the size 
of the coefficients eg. In the case of Dirichlet L-functions we have \cg\ ^> |x(-0|, 
which has modulus one when (£, q) = 1 so that for L = q11 with any fixed 77 we 
have ||c|| ^> L*q~E. We should like to have a similar bound more generally but, 
in practice, this sometimes proves to be a problem. 

Nevertheless, it is clear that, provided we have (12) for the sums Ylm~M °(m) 
approximating LK with some A > 0, 8 > 0, and provided ||c|| ^> IP for L = F71 

with some ip > 0, 0 < 77 < 8A~l, then we get a bound L ( | -f it) <C Q*~e for 
some 6 > 0, and this improves the convexity estimate. 

(v) The mean value theorem 

An upper bound for the sum Bc given in (9) may be quickly deduced from a bound 
for the sum 

^ = ^ E W I E M ™ ) | 2 (is) 
fer m 

as long as there is some multiplicativity that allows the expression of bf (ii)bf (£2) in 
terms of bf (H). In the cases considered this may be achieved by the multiplicativity 
of Dirichlet (or class group) characters or of Hecke eigenvalues. 

The sum Bg looks a lot more like the sum considered in the similar mean 
value (7) and we ma}' expand in the same way getting Bg = ^]^A(77i-i,m2), 

•m\ 777.2 
where now 

A(mi,m2) = pYl ò/Wò/(mi)ò/(m2)-
ft? 

In the case of complete multiplicativity this is the same as before, and in the 
other cases considered it is not too radical a departure therefrom. 

One now derives the mean value theorem from the orthogonality properties 
of T. This reduces to an equidistribution problem of some sort, but the proofs are 
somewhat long and complicated and it is difficult to describe them briefly or in a 
unified fashion. 

(vi) The amplifier 

As already mentioned, in the case where the coefficients eg may be chosen essen
tially to be xW f°r X a Dirichlet character we have \cg\ ^> 1 for (£, q) = 1 and ||c|| 
has a good lower bound. This includes the case of Dirichlet L-functions and also 
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the case of the twists of a single automorphic L-function. In the case [DFI2], where 
eg are chosen as Hecke eigenvalues, one can make use of a trick. The fact that for 
such À/ we have Xf(£)2 — Xf(£2) = 1 for primes I \ q means that we cannot have 
I Xf I small at both Ü and £2 and hence ||c||2 ^> L2 (logL) - 1 . 

In the case of class group L-functions, a more serious problem emerges. It 
turns out that, choosing say eg to be x summed over ideals of norm I, we require, 
in order to get a nontrivial result, a contribution coming from ideals made up of 
primes of first degree. But because L is to be a small power of D it is a well-known 
unsolved problem to show the existence of such ideals. This leads to an interesting 
question but also to the conditional nature of some of the results in connection 
with this type of L-function. 

(C) Equidistribution 

The improvement in Theorem 3 of \ to ^-, or indeed to \ — 8 for any positive 
8, has a significant application. Via the Shimura correspondence the form g is 
related to a certain half integral weight form on To (4) and a well-known theorem of 
Waldspurger expresses, for — q a fundamental discriminant, the Fourier coefficient 
c(q) of the latter in terms of the special value L 5 (^ ,x g ) , where Xq is the r e a l 
primitive character Xq(n) — ( ^ ) -

The bound in Theorem 3 then translates into a bound c(q) <C #22+e, which is 
sufficient to settle the celebrated Linnik problem of the equidistribution of integer 
points on the sphere. See the paper [D] for more details and for the original solution 
of the Linnik problem. 

The above example illustrates a phenomenon that is present in other circum
stances. An older example of this in relation to Dirichlet characters may be found 
in [BS] and a number of applications coming from L-functions of higher degree 
may be found in [S]. The achievement of a subconvexity bound is roughly equiv
alent to the fact that "something or other is equidistributed" and thus can have 
application to a problem that superficially appears unrelated. 

The original solution of the Linnik problem depends on estimates of Iwaniec 
[Ii] for certain sums of Salie sums. Recently, with Duke and Iwaniec [DFI4] we 
have established the equidistribution of angles of Salie sums. This follows as a 
consequence of the following theorem establishing the equidistribution of roots of 
a quadratic congruence as the modulus runs through the primes. 

THEOREM 5. Let f(x) — ax2-\-bx-\-c have integer coefficients and negative discrim
inant b2 — Aac. Let 0<a<ß<lbe fixed and let S (a, ß; P) denote the number 
of those solutions x of the congruence f(x) = 0 (mod p) for which ap < x < ßp, 
summed over all primes p < P. Then 

S(a,ß;P)={ß-a + o(l)}S(0,l;P). 
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Polylogarithms in Arithmetic and Geometry 

ALEXANDER B. GONCHAROV* 
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The classical polylogarithms were invented in the correspondence of Leibniz with 
Bernoulli in 1696 [Lei]. They are defined by the series 

OO fc 

Lin(z)^Y,^ 1*1 <l 

fc=l 

and continued analytically to a covering of CP 1 \ {0 ,1 , oo}: 

fz dt 
Lin(z) := / L i n - i ( t ) - r , Lii(z) = - l og ( l - z). 

Jo t 

1. The dilogarithm 

This was studied by Spence, Abel, Kummer, Lobachevsky, Rogers, Ramanujan, 
. . . [L]. The main discovery was that the dilogarithm satisfies many functional 
equations. For example Rogers' version of the dilogarithm L2(x) := Li2(x) + 
\ log(x) log(l — x) — 2 ^ - f o r l > : c > 2 / > 0 satisfies the relation 

L2(x) - L2(y) + L2(y/x) - L2(\^^) + L2(\^-) = 0. (1) 
1-y L 1 - 7 / 

After a century of neglect the dilogarithm appeared twenty years ago in 
works of Gabrielov-Gelfand-Losik [GGL] on a combinatorial formula for the first 
Pontryagin class, Bloch on K-theory and regulators [Bll], and Wigner on Lie 
groups. 

The dilogarithm has a single-valued cousin: the Bloch-Wigner function 

£2(z) := ImLi2(z) + a,rg(l - z)log\z\. 

Let r(x\,... ,3:4) be the cross-ratio of four distinct points on CP 1 . Then 
4 

^ ( - l ) ^ 2 ( r ( z 0 3 . . . , * , - . . , ZA)) =0 zteCP1. (2) 
i=0 

If (z\,..., 25) = (oo,0, l,x,y) the arguments here are the same as in (1). 
Choose x G CP 1 . Then (2) just means that the function cs(go,... ,53) := 

£2(r(gox,... ,g$x)), where gi G GL2(C) and giX ^ gjX, is a measurable 3-cocycle 
on GL2(C) (Wigner). 

The function log|:c| is characterized by its functional equation log \xy\ = 
log I a: I + log \y\. The 5-term equation plays a similar role for the dilogarithm: any 
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measurable function f(z),z EC satisfying (2) is proportional to C2(z) [Bll]. More
over, any functional equation for C2(z) is a formal consequence of (2). 

Let us show how to prove (2). For a set X denote by %[X] the free abelian 
group generated by symbols {x}, x E X. Let F be a field. Consider the homomor
phism [Bll] 

62 : Z[P*\1] —> A2P*, {x} »—> (1 - x) A x . 
Let JR.2(F) be the subgroup of Z[P*\1] generated by the elements J2(~lYir(zQi 
. . . , Zi, . . . , z/\)} where Zi ^ Zj E Pp. One can check that S2(R2(F)) = 0- This 
together with the formula 

dC2(z) — —log |1 — 21darg \z\ + log |z|darg(l — z) 

(which reminds us of the definition of 62) implies (2). 
Setting B2(F) := Z[F*\1]/Ä2(F) we get the Bloch complex [DS], [SI] 

B2(F) - ^ A2P*, {x} ^(l-x)Ax. (3) 

By the Matsumoto theorem Coker^ = / ^ ( P ) . Suslin proved [SI] that 
Kerfi2®Q = K^d(F)Q. Here K$ld(F) is the cokernel of the multiplication K^F)®3 

—> Ks(F), and the subscript Q means tensoring with Q. 
If P = C any real-valued function f(z) defines a homomorphism / : Z[C] —> 

R, {z} i—> f(z). Thanks to (2) we have a homomorphism L2 : B2 (C) —> R. 
Combined with the above homomorphism K$ (C) —> Ker62 it gives an explicit 
formula for the Borei regulator K$ (C) —> R and hence [Bo2] a formula for CF(2) 
for any number field P (see Section 5 below). 

Let TL3 be the 3-dimensional hyperbolic space. Denote by I(ZQ, . .. ,z$) the 
ideal geodesic symplex with vertices at points ZQ , . . . , 23 of the absolute dH? = 
CP1 . Then v o l i l o , . . . , z3) = 3/2£2(r(z0,... , z3)) (Lobachevsky). 

Any complete hyperbolic 3-fold of finite volume V3 can be represented as a 
formal sum of ideal geodesic simplices. So vol V3 = 3/2 ]T £2(2^)- ^ turns out the 
condition "V3 is a manifold" implies 62 E f e } = °- (Thurston, [DS], [NZ]). 

At first glance many features of this picture seem special for the dilogarithm. 
For example the classical n-logarithms are functions of just one variable, but for 
n > 2, GLn does not act on P 1 , dTLn is no longer a complex manifold, and so on. 
In this lecture I will explain how most of these facts about the dilogarithm are 
generalized to the trilogarithm and outline what should happen in general. 

2. The trilogarithm and CF(3) [G2] 

A single-valued version of Li^ (z) is 

£3(2) := Re(Li3(z) - Li2(z) • log \z\ + -Lii(z) • log2 |*|J . 

Denote by {x}2 the image of {x} in B2(F). Set 

Z[P*] -^ B2(F) ® P*, 63 : {x} .-> {x}2 » a , {1} ^ 0 . (4) 

Let P be a number field with r\ real and r2 complex places, {o~j} be the set of 
all possible embeddings P -̂> C numbered so that o"ri+fc = o"ri_|_ra+fc, and dp be 
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the discriminant of P . For x E Z[P*] one gets numbers £3(0^(3;)) defined via the 

composition Z[P*] ^ Z[C*] -^ R. 

THEOREM 1. For any number field F there exist elements y\,... ,yri+ra £ Ker#3(8> 
Q C Q[P*] sucft that 

CF(3) = 7T3r*dF^ det |£3(^(2/0)l , (1 < hj < ri+r2) . (5) 

It was conjectured by Zagier, who gave many numerical examples [Zl]. Here 
is one of them: 

If a := 1+
2 and ä := 1~2 then a • ä = —l,a + ä = 1, so {a}2 <8> a — {ä}2 (8> ä — 

({cv}2 + {1 — a}2) <8) a = 0 modulo torsion because 6 • ({x}2 + {1 — z}2) E R2(F). 
Let A : G —• G x G be the diagonal map. An element x E Hn(G) is called 

primitive if A*(x) = x (8) 1 + 1 <8> x. For any field P one can define ifn(P)Q as the 
subspace of primitive elements in Hn(GL(F),Q). 

Let H*(G,M) be a continous cohomology of a Lie group G. It is known 
that LT*(GL(C),R) = A* (cu c3,... ) where c2 n- i E H2n~1(GL(C),R) are certain 
classes. For example c\(g\,g2) = log | det ojf1^!- Considered as a functional on 
homology C2n-i induces a map rc(n) : K2TI-I(C)Q —> R. It is called the Borei 
regulator [Bo2]. Let P be a number field. Then the image of the composition 

r(n) : K2n.x{F) — ©Hom(F,c)^2n-i(C)Q ^"W*"1' z^m ^ R ( n _ 1} 

is invariant under the complex conjugation. So we get a regulator map r(n) : 
K2n_i(F) —» R(n — l)dn. Here dn = T\ + r2 for odd n and r2 for even. We will 
use notation a ~ b if a/ò G Q*. Borei proved that r ^ n ^ i ^ n - i ^ ) ) is a lattice with 
covolume ~ dj ^ ( n ) ^ ) - 7 " * " - 1 . 

The proof of our theorem is based on an explicit description of the regulator 
Ä ö ( C ) —» R by means of the trilogarithm £3. The key step is a formula for a 
measurable 5-cocycle of GL(C) representing the class C5. For GLs(C) it appears 
as follows. 

Let V3 be a 3-dimensional vector space over P . Choose a volume form LJ E 
A3(V3)*. For 6 vectors h,... ,lß in generic position in V3 set A(li,lj,lk) := (tJ,^ A 
ljMk)EF\ Let A l t e / f t , . . . ,Zfl) := E f f G s B ( - l ) k l / ( ^ ( i ) , • • • ,/*(6))- Set 

r f/ / Ì - Alt f^ l^2^4)A(Z 2 , /3^5)Aa 3 ,Z 1 ^6) l „ , „ „ , * 

^3 ('1 » - - - jta) clearly does not depend on the lengths of vectors k and so is a 
generalized cross-ratio of 6 points on the projective plane. 

THEOREM 2. (a) For any 7 points (mi , . . . ,7717) in generic position in CP2 

7 

^ ( - l ) z £ 3 ( r 3 ( m i , . . . ,rhi , . . . ,m7)) = 0. 



Polylogarithms in Arithmetics and Geometry 377 

(b) Choose x E CP 2 . Then the function cs(gv,... ,£5) := £3^3(00:2;,.. • ,#5^)) de-
fined for gi E GL^(C) such that (g^x,... ,g§x) is in general position is a measurable 
5-cocycle representing a nontrivial cohomology chss of the group GLs(C). 

3. The trilogarithm and algebraic /^-theory [G3] 

Let R$(F) be the subgroup of Z[P*] generated by the elements {x} + { z - 1 } and 
Y2i=i (~l)^3(?77'i5 • • •, A», . . . , 777,7) where (mi,..., my) run through all generic con
figurations of 7 points in P2. Then 63i^3(P) = 0. Let B$(F) be the quotient of 
Z[P*] by Rs(F). We get a complex 

BF(3) : B3(F) -^ B2(F) ® P* 6^\d A3P* 

placed in degrees [1,3]. Here 62, 63 were defined in (3) and (4). 
According to [S2], Hn(GLn(F),Q) = Hn(GL(F),Q). Let 

K^{F)Q
 : = I<n(F)Qnlm^Hn(GLn_i(F),Q) -> Hn(GLn(F),Q)) 

be the rank filtration. Denote by Kn (F)Q its graded quotients. 

THEOREM 3. There are canonical maps KQS^(F)Q —> i P (£ F (3 ) (8) Q). 

They should be isomorphisms. This is known for i = 3 [S2]. 

4. Classical polylogarithms and motivic complexes [Gl] 

The following single-valued version of Lin(z) was invented by Zagier [Zl]. 

It is continuous on CP 1 . Here e2
2^1 = Y2kLoßkxk- A Hodge-theoretic interpreta

tion of Cn(z) was given by Beilinson and Deligne [BDI]. 
Let us define inductively for each 77, > 1 a subgroup lZn(F) C Z[Pp], which 

for P = C will be the subgroup of all functional equations for Cn(z). 
Set Bn(F) := Z[P^]/Tln(F). Set K^F) := ({x} + {y}-{xy}; {0}; {00}).Then 

ßi(P) = F*. Let {x}n be the image of {x} in Bn(F). Consider homomorphisms 

y r p i i V j B n - i ( F ) ® F * : n > 3 
77, = 2 

^ ^ { ( f c ) ^ ! û = 2 ^:{oo}){0}l{l}-0. (8) 

Set An(F) := Ker 8n. Any element a(t) = En* {/*(£)} G Z [ P L J has a specializa

tion a (to) := 5]77,i{/i(to)} G ^[Pp] at each point to E Pp. 

DEFINITION 4. Hn(F) is generated by elements {oo}; {0}, and a(0) — a(l) where 
a(t) i-uns through all elements of An(F(t)). 
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One can show that 6n1Zn(F) = 0 [Gl, 1.16]. So we get homomorphisms 

Sn : Bn(F) —> Bn-i(F) ® P*3 n > 3; 62 : ß 2(P) —• A2P* 

and finally the following complex T(F,n): 

Bn -^ Bn-i (8) P* ^> ß n _ 2 » A2P* -^ • • • - i B2 (8) An~2P* - i AnP* 

where 5 : {x}p (8> A?=iP2/t - • M W P ) A Nì=I Vi n a s degree +1 and ß n = ß n (F) 

placed in degree 1. One can prove that £nf 7cn(C) j (see [G2, Theorem 1.13]. 

CONJECTURE 5. Let f(z) be a measurable function such that /(7£n(C)) = 0. Then 
f(z) = XoJCn(z) + AiAi-i(s) log \z\ + • • • + An_2£2(z)(log \z\)n-2, Xi E C. 

This is true for n — 2 [Bll] and TT, = 3 (unpublished). 
Let 7 be the Adams filtration on Kn(F)q. Hypothetically it is opposite to 

the rank filtration. For number fields gr^KTn(F)Q = 0 if m ^ 2n — 1. 

CONJECTURE A. (a) For any field F one has i T r ( P , n ) <8>Q = grZK2n-i(F)<^^. 
(b) The compositiongr^K2n-i(C)Q —> Ü^I^C, U)Q —» IR Z'S a nonzero rational 

multiple of the Borei regulator. 
For number fields the isomorphism K2n_i(F)q = Ker<5n was conjectured 

(slightly differently, without the complexes T(P,n)) by Zagier [Zl]. 
HnT(F,n) = KM(F) by definition. So we get a hypothetical description of 

Quillen's if-groups by symbols that generalizes Milnor's approach to if-theory: 

Km{F)Q I ®nH
2n-m(T(F, n) ® Q) . (9) 

This suggests that T(P, n) (8) Q should be the weight n motivic complex con
jectured by Beilinson and Lichtenbaum [Bl], [Li]. Another approach is shown in 
[B12]. 

For a compact smooth z-climensional variety X over Q Beilinson defined a reg
ulator map to Deligne cohomology [Bl] r s e : 9^K2n-i(X) —> H^,(X/R,R(n)). 

A model X% of X over Z defines a subgroup gr^K2n-i(Xz) C gr%K2n-i(X). 
For 77, > i + 1 they should coincide. Beilinson conjectured that rBe(g^Z^2n-i(^z)) 
is a lattice whose covolume with respect to the natural Q-structure provided by 
iLppf/M, Q(n)) up to a standard factor coincides with the value of L-function 
L(hL(X),s) at s = i. Unfortunately, the definition of the regulator is rather im
plicit. 

Conjecture A, together with Beilinson's conjecture on regulators [B2], should 
give explicit formulas for special values of the L-functions of varieties over number 
fields in terms of classical polylogarithms. Below two examples are discussed: Ç-
functions of number fields and L-functions of elliptic curves. 

5. Zagier's conjecture 

Conjecture A (b) and Borel's theorem [Bo2] lead to 

CONJECTURE 6. For any number field F there exist elements y\,... ydn E Ker£n<8) 
Q C Bn(F)Q such that 

(F(n) = TT^-^dpdetlCn^yiW , (1 < i,j < dn) . (10) 
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This was stated in [Zl]. The case n = 2, essentially proved in [Z2], follows 
from the Borei theorem and the results of Bloch [Bll] and Suslin [S2] (see Section 
1); for a simpler proof see in Section 2 of [Gl]. It is not proved for ?7- > 3. 

T H E O R E M 7. Po7^ any number field F there is a map ln : Ker £n(8>Q —> K2n^i(F)q 

such that for any a : P -̂> C 077e has rc(n)(o~ o l„(y)) = £n(a(y)). 

This was proved by Beilinson and Deligne [BD2] and later De Jeu [J]. It can 
be deduced from the existence of the triangulated categoiy of mixed Tate motives 
over Spec(P) constructed by Levine [Le] and Voevodsky [V], see [BDI]. 

6. Motivic complexes for curves [Gl] 

Let K be a field with a discrete valuation v, the residue field kv, and the group of 
units U. Let u —> ü be the projection U —> k*. Choose a uniformizer 7r. There is a 
homomorphism 6 : A n P * —> An~1F* uniquely defined by the following properties 
(Uì E U): 

6 (TT A Tii A • • • A v i ) = ü i A • • • A ü n - i ; 0 (u\ A • • • /\un) = 0 . 

It is clearly independent of -jr. Let us define a homomorphism sv : Z[P^] •—> Z[P^ ] 
setting sv{x} = {x} if x is a unit and 0 otherwise. It induces a homomorphism 
sv : Bm(K) —> Bm(kv). Set 

dv:=av®0: Bm(K) » An'mK* —> Bm(kv) (g) A " " " 1 " 1 * ; . 

This defines a morphism of complexes dv : F(K,n) —> T(hv,n — 1)[—1]. Let 
X be a regular curve over a field P and Fx be the residue field of a point x E X. 
Let us define the motivic complex T(X, n) as follows: 

Bn(F(X)) -*-> Bn^(F(X)) ®F(X)* - ^ . . . -?-> AnF(X)* 

Uxexi Bn-i(Fx) ^ . . . ^ Uxex> A " " 1 ^ ( " ) 

Here the group Bn(F(X)) is placed in degree 1. 

C O N J E C T U R E 8. For a regular curve X one has 

iP(r(X,7V) ® Q) = grZK2n_i(X)Q. 

7. Exphcit formulas for regulators in the case of curves [G6] 

Let me recall tha t , for a curve X over R and 77, > 1, 

Hl(X/R,R(n)) = iJ1(X,M(7i - 1))+ 

where "+" means invariants of the complex conjugation acting bo th on X(C) and 
IR(77, — 1). Beilinson's regulator for curves over Q is a homomorphism 

rBG(n) : K2n-2(X)Q —> HUX/R,R(n)). 

The cup product with UJ E ^(X) identifies iJ1(X,R(?7, - 1)) with H^X^1)*. 
Thus, we will view elements of H%(X/R,R(n)) as functionals on u ° ( X , f ì 1 ) v . 

Set a(f,g) := log | / | d log \g\ - log | 5 | d log | / | . 
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THEOREM 9. LetX be a curve overQ. Then for each element ry2n-2 £ K2n-2(X), 
n = 3,4, there are rational functions fi,gi E Q(X)* such that Yìiifiìn-i ® 9i ^s 

a 2-cocycle in (11) and for any UJ E Û^(X) one has (an,bn E Q*): 

/ 7"Be(n)(72n-2) A W = fl™ * YI / ^n-l(fi) dlog |ft| A CJ (12) 
JX(C) V ^ ( c ) 

= &n • V / log | ^ | log71"3 | / , | a ( l - fi, fi) A u (13) 

For n = 2 this is the famous symbole modéré of Beilinson and Deligne. 
Hypothetically (12) should be true for all n. 

EXAMPLE. For n = 3 the condition "Yli{fi}2 ® 9i is a 2-cocycle in (11)" means 
that £ . ( 1 -_/<) A fi A fi =0 in A3Q(X)* and £ . **(<&){/*(*) >2 = 0 in B2(Q) for 
any x E X(Q). Here vx is the valuation defined by a point z. 

8. Special values of L-functions of elliptic curves [G6] 

Let E be an elliptic curve /<Q> and F := ü i (P(C) ,Z) . A holomorphic 1-form UJ 
defines an embedding V <—> C together with an isomorphism P(C) = C / r = T (8 
R/T. The intersection pairing V x V —> Z(l) provides a pairing (•, •) : E(C)xT —> 
U(l) C C M f T = Zu + ZTJ C C with Im(u/v) > 0, then 

(2,7) = exp A( r ) _ 1 (z7 — 27) where ACT) = —^(üTJ — UTJ). 

Consider the generalized Eisenstein-Kronecker series (7^ E T) 

T-- - -+7n- i )Qz , ' 

l7 i | 2 l72 | 2 - - - |7n 
K (T „ 7\ - V 7 (^:7l)(^72 + • • • + 7n-l)fo7n)(7n ~ 7n-l) > „ 
Kn{X,y,Z).- 2^ ÛJ2|^J2 Û7Î2 ' - ö • 

7 i + - + 7 n = 0 

They are invariant under the shift (x, y, z) —> (x + t, 2/ + t, 2 + i) and so live actually 
on P(C) x P(C). For n = 2 set K2(x,y,z) := ̂  ^ P ^ 1 -

Let a; G H°(E, î î^VQ), ^ = J^VJM ^ be the real period of P . Let / ^ be the 
conductor of E. 

CONJECTURE 10. (a) Let E be an elliptic curve / Q and n > 3. Then there exist 
functions fi,gi E Q(E)* such that Yliifiin-i ®9i ^s a 2-cocycle in (11) and 

q.L{E,n)=(^^-Y~1n-YiKn{xi,yiizi) (14) 

where Xi,yi,Zi are divisors of fi,gi,l — fi, and q E <Q>*. 
(b) For any fi,gi E Q(E)* as above formula (14) holds with (possibly 0) q E Q. 

For n = 2 (14) is Bloch's conjecture [Bll] and for n = 3 it was conjec
tured (slightly differently, using Massey products) by Deninger [Den]. A conjec
ture for any elliptic curve over a number field involves determinants with entries 
Kn(x,y,z). 

THEOREM 11. Conjecture 10 holds for modular elliptic curves over Q in the cases 
n = 3 and n = 4. 
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The proof uses Theorem 3, a similar result in weight 4, Theorem 9, and the 
weak Beilinson's conjecture for modular curves proved in [B3]. For example, for 
77, = 3 we get the formula 

27rA(r)\2 ^ ' ( ^ , 7 1 ) ^ , 7 2 ) ^ , 7 3 ) L(£,3)~(^Ü)«.E E 

In a similar conjecture about L(SnE,n-\-1) determinants appear whose en
tries are the classical Kronecker-Eisenstein series ]C7er a-ì7 (a + b = 2n + 1). 
Their motivic interpretation was given in [BL]. One should have it also for functions 
Kn(x,y,z), and, more generally, for functions needed to compute L(SnE,m). 

9. Motivic Lie algebra L(F)m [G2] 

Beilinson conjectured [Bl], [BD2] that for any field P there should exist a Tan-
nakian (i.e. abelian, with inner Horn and (8), .. • ) category AAT(F) of mixed Tate 
motives over P. It is generated (as tensor category) by an invertible object Q(1)M 
(the Tate motive). For any n E Z set Q(U)M := Q ( l ) ^ \ The crucial axiom is: 

Ext^ T ( F ) (Q(0)^ ,Q(7^)^) S* gr%K2n-i(F)Q . (15) 

Any object M of this category carries canonical increasing weight filtration 
WmM such that gr2\M = ®Q(-k)M and gr^^M = 0. There is a canonical 
fiber functor u) from MT(F) to the category of finite-dimensional graded Q-vector 
spaces: UJ(M) := ©Hom(Q(-/c)M,gr2%Ad). Let U(F)m := Endo; be the space of 
all endomorphisms of the functor CJ. It is a graded (pro) Hopf algebra over Q. 

Let L(F)9 be the Lie algebra of all derivations of CJ. It is naturally graded: 
L(F)9 = © n>!L(P)_ n and U(F)9 is its universal enveloping algebra. The functor 
UJ is an equivalence of the category MT(F) with the category of finite-dimensional 
graded modules over L(F)%. 

The degree 11 part of the cochain complex (A*(L(P)^),9) of the Lie algebra 
L(F)9 forms a subcomplex (here Vv is dual to V, and Lsf_n is in degree 1): 

rv ^ - - - - ^ L \ (8 A " - 2 L ^ - ^ A"L\ (16) 
-n 

Its cohomology is predicted by formula (15). Moreover it should be quasiisomorphic 
to the weight 77, motivic complex for Spec(P): (15) provides its key property. So 
Conjecture A suggests that it should be quasiisomorphic to our complex T(P, 77,). 

One can argue (see Section 13 below) that one should have canonical injective 
homomorphisms ln : Bn(F) ,L-> L(F)y_n. They should be isomorphisms for n < 3. 
However complex (16) is much bigger then r(P,77,). For example, for 77, = 4 in 

degree 2 of (16) appears A2Ly_2(F) = A2B2(F), which is absent in T(P,4). 
It turns out that Conjecture A is essentially equivalent to the following con

jecture about the structure of the Lie algebra L(F)m. Set i . := ®n
cL2L(F)-n and 

let Hl
{n)(I(F)%) be the degree n part of Hl(I(F).). 

CONJECTURE B. (a) I(F)m is a free graded pro-Lie algebra. 
(b) H}JI(F)9) = BU(F)Q for n > 2, i.e. I(F)9 is generated as a graded 

pro-Lie algebra by the spaces Bn(F)y of degree — n. 
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(e) The action ofL./I. = P* v on H[n)(I(F).) = Bn(F)^ coming from the 
extension 0 —> Hi(I9) —• L . / [ / . , / . ] —» L . / J . —> 0 is described by the homomor
phism dual to ön : BU(F)Q —> BU-I(F)Q (8) F*. 

Assuming Conjecture B it is easy to see that the Hochschild-Serre spectral se
quence for H?JL(F)9) with respect to the ideal J . reduces exactly to the complex 
r ( P , TT,). Indeed thanks to (a) and (b) we have 

f A * * 3 ® B n _ p ( F ) Q : q = l 
E%« = CP(L.II.,Hln_v)(I9)) = I A-F^ :q = Q,n = p 

[ 0 : otherwise 

and the differentials coincide with the ones in T(F, n) because of (c). 

10. Framed mixed Tate motives and U(F)9 [BMS], [BGSV] 

A mixed Q-Hodge structure H is called a Hodge-Tate structure if all the quotients 
gr™ H are of Hodge type (p,p). It is an n-framed Hodge-Tate structure if supplied 
with nonzero vectors v E gr^JT and / E (gr^H)*. 

Consider the finest equivalence relation on the set of all TT,-framed Hodge-Tate 
structures for which Hi ~ H2 if there is a morphism of mixed Hodge structures 
P i —• H2 respecting the frames. Let TLn be the set of equivalence classes. It 
has an abelian group structure: (H;v,f) © (Hf;vf, f) := (H © if'; (v,vf), f + / ' ) 
and Q(0) © Q(n) represents zero. Set HQ := Z. The tensor product of mixed 
Hodge structures induces the commutative multiplication /.i : TCk <8 Td —• Tik+i-
A comultiplication v = 0^, v^.n-h '• Wn —> 0 f e Hk <8 Hn-k is defined as follows. 
Let {CJ} and {eJ'} be dual bases in gr^Hq and gr^Hq. Set Vkin-k((H]v>f)) : = 

E j - C f f ; « , ^ ) ® ^ . / ) -
Then TL9 := (B/Hn is a commutative graded Hopf algebra. 
Similarly the equivalence classes of n-framed objects in the category M.T(F) 

form a commutative graded Hopf algebra M9. It maps to U(F)^\ the value of the 
functional defined by (u(M),v,f) on A G Endo; is < / , Av >. This map is an 
isomorphism of Hopf algebras. In particular, 

Ker(u(Fy_n - * • ®kU(F)v_{n_k) ® U(F)Y.k) * grlK2n.x{F)Q . (17) 

A variation of mixed Hodge structures over C P 1 \ {0,1,00} related to the classical 
n-logarithm (see [BDI]) was discovered in the 1970s by Deligne. 

It seems that any example of variation of framed mixed Tate motives should 
be of great interest; the corresponding Hodge periods deserve to be called polylog
arithms (don't confuse them with the classical polylogarithms!). Below I discuss 
two such examples where periods are hyperlogarithms and volumes of noneuclidian 
geodesic simplices. Another example is shown in [BGSV]. 

11. Hyperbolic geometry [G4] 

THEOREM 12. Let V5 be a 5-dimensional complete hyperbolic manifold of finite 
volume. Then there are algebraic numbers Zi E Q* such that 

^ { * » } 2 ® * = 0 in f l 2 (Q)®Q* <™d v o l ( y 5 ) = ^ £ 3 O z O -
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A similar result for hyperbolic 3-manifolds was proved in [DS] and [NZ]. 

CONJECTURE 13. Let y2n~1 be a (2n — 1)-dimensional complete hyperbolic man
ifold of finite volume. Then there are algebraic numbers Zi E Q C C such that 
(n > 3) «„(£ ,{*}„) = 0 and voUT2"-1) = £ , £>(*) . 

A geodesic simplex M in the hyperbolic space TLm defines a mixed Tate mo
tive. Indeed, in the Klein model TLm is the interior of a ball in Rm and geodesies are 
straight lines. So a geodesic simplex is the usual one inside the absolute: sphere Q. 

Let us complexify and compactify this picture. We will get CP m together with 
a quadric Q (the absolute) and a collection of hyperplanes M = (Mi , . . . , M m + i ) 
((77, — l)-faces of a geodesic simplex). Hm(CPm \ Q, M) is a Hodge-Tate structure. 

Let 777 = 2n — 1 and Q(x) = 0 is a quadratic equation of Q. Set 

, = V ^ ^ E ^ C - l ^ r f s o A - dxj A dx2n-i 
U)Q' (2ni)™ Q(x)n 

The sign depends on the choise of a generator in the primitive part of Hn~l (Q, Z). 
It is provided by the orientation of 7i2n~1. The simplex M defines a chain A ^ 
representing a generator in H2n(&P2n~l, M). Then vol(M) == JA UJQ. 

The scissor congruence group V(TLm) is an abelian group generated by pairs 
[M, a] where M is an oriented geodesic simplex and a is an orientation of TLm. 
The relations are: [M, a] = [Mi, a] + [M2, a] if M = Mi U M2; [M, a] changes sign 
if we change orientation of M or a, and [M, a) = [gM,ga\ for any g E 0(rn,l). 
Similarly, there are the spherical scissor congruence groups V(Sin). 

The volume provides homomorphisms V(Hm) -> R and V(Sm) -> M/Z. 
We have a vector [UJQ] in ffan-^CP2«"1^) = gr\*nH(Q,M) and a func

tional [AM] on H2n~1(CP2n-1,M) = gifH(Q,M). So we get an 77,-framed 
Hodge-Tate structure associated with [M, a]. This construction defines a homo
morphism of groups V(H2n~1) -> Tin and similarly V(S2n~1) -> TLn-

One can show that V(S2k) — 0. Let us define the Dehn invariant 

V(H2n-ij ^ ®kv(n2k-1)^v(s2^n-^-1). 

Each (2k — l)-face A of M is a hyperbolic simplex h(A). In the orthogonal plane 
A1- M cuts a spherical simplex s(A). Choose orientations a A and ßA of A and A1-
such that OLA ®ßß = ex. Then D^([M,a]) := £ A [ f t ( ^ W ] (8) [s(A),^A]-

THEOREM 14. T/ze following diagram is commutative: 

p(W2n-l) ^ ©fcP^fc- l^p^Cn-fc)-!) 

I I 
Wn ~^ ©fcWfc®Wn-fc 

A similar motivic interpretation has the spherical Dehn invariant 

Dn : V(S2n~1) —• ©fcPCS2*-1) ® ^ ( S 2 1 " " ^ " 1 ) . 

So (17) leads to 
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C O N J E C T U R E 15. There are canonical injective homomorphisms 

KerDfaQ — [gr^K2n^(C) ®Q(n)]~ KerDs
n®Q -> [grZK2n-i(C)®Q(n))+ 

whose compositions with Beilinson's regulator coincide with the volume homomor
phisms. 

For n = 2 these homomorphisms exist and are isomorphisms by the results 
of [D], [DS], and [SI]. 

Each complete hyperbolic (2n — l)-manifold can be cut on geodesic simplices 
and so produces an element in V(TC2n~1). Its Dehn invariant is equal to zero. So 
Conjecture 13 follows from Conjectures 15 and A. 

12. Hyperlogarithms [G5] 

These were considered by Kummer [Ku], Poincaré, Lappo-Danilevsky, etc. We 
define them as the following iterated integrals: 

, N f1 dt dt 
V , . , m i (ai,... , at) := / o — o • • • o 

JQ t — ai t 

dt dt dt dt 
— o • • • o o — o • • • — 
t t — a i t t 

mi times mi times 

This formula means the following. Let TT, := m i H + mi and 

A : = { ( t i , . . . , t r i ) c M n | 0 < t1-a1<t2<--.<trni<tmi+1-a2 

< ^mi+2 " " " < tmL }• 

Let L be a coordinate simplex in C P n related to coordinates (t0 : • • • : tn) and 
UJL := ^ A • • • A ̂ . Then tfmii...|fni (au . . . , a<) = J A UJL. 

Let M be a collection of all the hyperplanes corresponding to codimension 
1 faces of A. Then H(L,M) := Hn(CPn\L,M) is a Hodge-Tate structure. It 
has canonical 77,-framing: [cjrj is a vector in Hn(CPn\L) — gr\^H(L,M) and 
A produces a class [A] E Hn(CPn,M) = gr^H(L,M). So we get an element 
^ìnlì...ìml(

aii- • • >ai) £ ^ n - According to the general philosophy a mixed Hodge 
structure in the cohomology of a (simplicial) variety is a realization of a mixed 
motive. So we should have an n-framed mixed Tate motive 3 / ^ mi(ai,... ,ai). 

More generally, if P is a field and a^ E F* one should also have an n-framed 
mixed Tate motive ^ l i i i i i m i ( a i , . . . ,at) related to Hn(P£\L,M). 

There is a remarkable power series expansion of the hyperlogarithms. Namely, 
consider multiple polylogarithms (which were also thought of by Zagier) 

xklxk2...xkl 

$ T n l l . . . t m l { n i ì . . . ì X i ) : = ( - 1 ) 2 _ ^ L T H I h m 2 T m T • 

0</ci<fc2<"-<fci i l L 

T H E O R E M 1 6 . [G5]. Suppose | O ì / O ì _ I | < 1. Then 

T ( \ rh / a 2 a 3 1 v 

^mi,...,mi \ali • • • , al) = ^m1,...,mi \ j 3 • • • 5 j • 
û l Û2 a>i 

In particular, £(777-1,... ,mi) := $ m i j . . . j m i ( l , 1 , . . . , 1) are the multiple zeta 
values of Euler [E], rediscovered and studied in [Z3] ; see also [Dr] and [Ko]. 
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CONJECTURE 17. (a) Any n-framed mixed Tate motive over F is a sum of hyper-
logarithmic ones \E';££ (a\,... , ai), where n = 777,1 + • • • + 777,// ai E F*. 

(b) Any n-framed mixed Tate motive over Spec(Z) is a sum of motivic mul
tiple zeta}s (M(m\,... ,777,/). 

The first part of the conjecture is motivated by the following 

PROPOSITION 18. (Universality of hyperlogarithms,) Any iterated integral F(z) = 
J uj\ o • • • o ujn of rational 1-forms UJì on a rational variety X is a sum of hyper
logarithms, i.e. there exist f.• (z) E C(X)* such that 

F(z) = J2*,„<<> mco (/iW(*),• • • . / /°(*)) + C (Cisa constant). 
i 

13. Motivic interpretation of the "weak" part of Conjecture A 

For any a E P* the 77,-framed mixed Tate motive ^ ^ ( a _ 1 ) (corresponding to 
Lin(a)) provides a homomorphism ln : Z[P*] —> U(F)Y_n. Denote by ln its compo
sition with the canonical projection U(F)Y_n —> L(F)Y.n. 

One should have ln(lln(F)) = 0, so ln : Bn(F) -> L(F)y_n. It turns out that 
d(ln{a}) = ln_i{a}Afl (we identified L(F)Y_i with FQ). Therefore homomorphisms 
{li} provide a canonical homomorphism of the complexT(F,n) to the complex (16). 
Using (15) we get canonical maps Hl(T(F,n) (8)Q)-> gr^K2n-i(F)q. 

14. The quantum dilogarithm [FK] 

Mixed Tate motives give the best explanation all of the different appearances 
of the dilogarithm discussed above. However recently the dilogarithm appeared in 
conformai field theory and exactly solvable problems of statistical mechanics. Here 
is one example. 

Let ^(x) := n £ L i ( ! ~ ^ ? 1 ) , \q\ < L Then for q = exp(e), Im(e) < 0. 

*(x) = -7=L=exp(Li2(x)/e)(l + 0(e)), e^O. 
Vl - x 

THEOREM 19. ([FK]) Suppose Û and V satisfy ÛV = qVÛ. Then 

V(V)V(Û) = 9{Û)9(-ÛV)9(V) 

and in the classical limit we get the 5-term relation for the Rogers dilogarithm. 

Acknowledgment. I am grateful to Professor A. Borei for many useful remarks 
about a preliminary version of the paper. 
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Unexpected Irregularities in the Distribution of 
Prime Numbers 

A N D R E W G R A N V I L L E * 

Department of Mathematics 
University of Georgia 
Athens, Georgia 30602, USA 

In 1849 the Swiss mathematician E N C K E wrote to G A U S S , asking whether he had 
ever considered trying to estimate ir(x), the number of primes up to x, by some 
sort of "smooth" function. On Christmas Eve 1849, GAUSS replied that "he had 
pondered this problem as a bof' and had come to the conclusion that "at around 
x, the primes occur with density 1/loga;." Thus, he concluded, ir(x) could be 
approximated by 

Li(z) r— 
J2 log* Ioga: + log 2 x 

+ 0 
log3 a; 

Comparing G A U S S ' s guess to the best da t a available today (due to D E L E G L I S E 
and R I V A T ) , we have: 

X 

108 

109 

10lü 

IO11 

IO12 

IO13 

IO14 

IO15 

IO16 

IO17 

IO1« 

ir(x) 

5761455 
50847534 
455052511 
4118054813 
37607912018 
346065536839 
3204941750802 
29844570422669 
279238341033925 
2623557157654233 
24739954287740860 

[U(x)-7r(x)} 

754 
1701 
3104 
11588 
38263 
108971 
314890 
1052619 
3214632 
7956589 
21949555 

The number of pr imes, 7T(:E), up to x. 

This d a t a certainly seems to support G A U S S ' S prediction, because Li(x) — ir(x) 
appears to be no bigger than a small power of TT(X). In 1859, R I E M A N N , in a 
now famous memoir, illustrated how the question of estimating ir(x) could be 

*) The author is an Alfred P. Sloan Research Fellow; and is also supported, in part, by the 
National Science Foundation. 
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turned into a question in analysis: Define Ç(s) := Y2n>i n _ S ^o r ^ e ( s ) > 1> a n d 
then analytically continue Ç(s) to the rest of the complex plane. We have, for 
sufficiently large x, 

xb~E < max \w(y) - U(y)\ < xb+E where b := sup /3. (1) 

The (as yet unproven) Riemann Hypothesis (RH) asserts tha t b = 1/2 (in fact 
tha t /? = 1/2 whenever C(ß+i"y) = 0 with 0 < ß < 1) leading to the sharp estimate 

ir(x) = Li(a0 + O(a:1 / 2 loga:) . (2a) 

It was not until 1896 that H A D A M A R D and D E L A V A L L é E - P O U S S I N independently 

proved tha t ß < 1 whenever ((ß + ry) = 0, which implies the prime number 
theorem: tha t is, G A U S S ' S prediction tha t 

TT(X) ~ Li(x) 
Ioga: 

In 1914, L I T T L E W O O D showed, unconditionally, tha t 

*(*) - u(x) = n± («v» logl^gx), (2b) 

the first proven "irregularities" in the distribution of primes.1 

As G A U S S ' S vague "density assertion" was so prescient, CRAA4ÉR [4] decided, 
in 1936, to interpret GAUSS's statement more formally in terms of probability 
theoiy, to t ry to make further predictions about the distribution of prime numbers: 
let Z2,Zs,... be a sequence of independent random variables with 

P rob(Z n = l) = ^ — and P r o b ( Z n = 0) = 1 - 1 

log 11 log 77, 

Let S be the space of sequences T — z2,23,... and for each x > 2 define 

KT(X) = YI Zn ' 
2<n<x 

The sequence P = ir2,7T3,... , where irn = 1 if and only if n is prime, belongs to S. 
C R A M E R wrote: "In many cases it is possible to prove that, with probability 1, a 
certain relation R holds for sequences in S ... Of course we cannot in general 
conclude that R holds for the particular sequence P, but results suggested in 
this way may sometimes afterwards be rigorously proved by other methods." For 
example C R A M E R was able to show, with probability 1, tha t 

m ^ M ^ - L K y ) ! - ^ . 1 ^ ^ , 

1f{x) — tì±{9Ìx)) means that there exists a constant c > 0 such that /(œ_j-) > cg{x+) and 
f(x-) < — cg(x-) for certain arbitrarily large values of x±. 
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which corresponds well with the estimates in (2); and if true for T — P implies 
RH, by (1). 

GAUSS'S assertion was really about primes in short intervals, and so is best 
applied to tr(x + y) —ir(x), where y is "small" compared to x. The binomial random 
variables Zn are, more-or-less, the same for all integers n in such an interval. If we 
take y = À log x so that the "expected" number of primes À in the interval is fixed 
then we would expect that the number of primes in such intervals should follow 
a Poisson distribution. Indeed, we can prove that for any fixed À > 0 and integer 
k > 0, we have 

#{integers x < X : TTT(X + A log x) — irT(x) = k} ~ e~x—X (3) 
k\ 

as X —> oo, with probability 1 for T e S. In 1976, GALLAGHER [11] showed that 
this holds for the sequence of primes (that is, for P) under the assumption of 
a reasonable "uniform" version of HARDY AND LITTLEWOOD'S Prime k-tuplets 
conjecture [14]. This conjecture is the case where we take each fj(x) to be a linear 
polynomial in SCHINZEL [22] 

HYPOTHESIS H. Let F = {fi(x),f2(x),... , fk(x)} be a set of irreducible poly
nomials with integer coefficients. Then the number of integers n < x for which 
each | fj (n) \ is prime is 

* , ( , ) = {Cr + °(1),iog|/.W|log IAWI-.log IAWI 

• * - * , - n 0 - ^ ) / K ) ' . 
p prime N *- / / \ r / 

and UJF(P) counts the number of integers n, in the range 1 < n < p, for which 
fi(n)f2(n)...fk(n)=0 (modp).2-3 

Estimates analogous to (2a) should hold for the number of primes in intervals 
of various lengths, if we believe that what almost always OCCLUS in S should also 
hold for P. Specifically, if 10 log2 x < y < x then 

7TT(x + y) - TTT(X) = Li(z + y) - Li(z) + 0(y^2) (4) 

with probability 1 for T G S. In 1943 SELBERG [23] showed that primes do, on the 
whole, behave like this by proving, under the assumption of RH, that 

ir(x + y) -ir(x) - (5) 
Ioga; 

for "almost all" integers x, provided y /log x —> oo as x —> oo. 
MONTGOMERY [17] has shown that one can deduce estimates about primes 

in short intervals by understanding local distribution properties of the zeros of 

CM: 
2Elementary results on prime ideals guarantee that the product defining Cp converges if 

the primes are taken in ascending order. 
3 The asymptotic formula proposed here for ITF(X) has a "local part" Cp, which has a factor 

corresponding to each rational prime p, and an "analytic part" x/Tli l°ë\fi(x)\- This reminds 
one of formulae that arise when counting points on varieties. 
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P A I R C O R R E L A T I O N C O N J E C T U R E ( P C ) . Assume R H . For any fixed a > 0, the 

average number of zeros 1/2 + ry' of ((s) "close" to a given zero 1/2 + ry, that is 
with 7 < 7 ; < 7 + 27rci'/log(|7| + 1), is 

(6a) 

Inspired by the work of M O N T G O M E R Y and others, G O L D S T O N [12] showed tha t 
(6a) holds for eveiy fixed a > 0 if and only if for every fixed ß > 0, 

TJ 

.. . s \ 2 dx a l o g 2 T 

• ^ ) - r ) ^ ~ ^ ^ ^ ' 
(6b) 

where ^ ( z ) := ^ „ m ^ l o g p . Because (6b) is predicted by C R A M E R ' S model, thus 
so is P C . D Y S O N predicted an analogous density function for the correlation of 
7i-tuples of zeros of C(s)>4 which presumably may bc shown to be equivalent to 
estimates for primes in short intervals, and thus be predicted by C R A M E R ' S model. 

C R A M E R ' S model does seem to accurately predict what we already believe to 
be t rue about primes for more substantial reasons.5 To be sure, one can find small 
discrepancies6 but the probabilistic model usually gives one a strong indication of 
the t ru th . C R A M E R made one conjecture, based on his model, tha t does not seem 
to be attackable by other methods: if p\ — 2 < p2 = 3 < p 3 = 5 < . . . is the 
sequence of prime numbers then 

max ( p n + 1 -pn) ~ log2 x. 
pn<X 

This statement (or the weaker 0( log 2 x)) is known as "Cramer's conjecture"; there 
is some computational evidence to support it: 

Pn 

31397 
370261 
2010733 
20831323 

25056082087 
2614941710599 
19581334192423 

Pn+1 ~Pn 

72 
112 
148 
210 
456 
652 
778 

(Pn+l - Pn)/log* Pn 

.6715 

.6812 

.7025 

.7394 

.7953 

.7975 

.8177 

Record-breaking gaps between primes, up to 10 14 

4Based somewhat surprisingly on the fact that (6a) also describes the distribution of eigen
values of random Hermitian matrices, which arise in physics as models for various naturally 
occurring quanta. The "Fourier transforms" of these pair correlation and 7i-tuple correlation 
conjectures for the zeros of Ç(s) are now known to hold in a natural restricted range, under the 
assumption of RH (see [17] and [21]). 

5Though HARDY AND LITTLEWOOD [14] remarked thus on probabilistic models: "Probabil
ity is not a notion of pure mathematics, but of philosophy or physics". 

6As has been independently pointed out to me by SELBERG, MONTGOMERY, and PINTZ: 
for example, PINTZ noted that the mean square of \ip(y) — y\ for y < ce, is ^» x2b~E (with b as in 
(1)), in fact x x assuming RH, whereas the probabilistic model predicts X x logx. 
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In 1985 M A I E R [16] surprisingly proved t ha t , despite S E L B E R G showing (5) holds 
"almost all" the t ime when y = log 5 x (assuming RH) for fixed B > 2, it cannot 
hold all of the t ime for such y. This not only radically contradicts what is predicted 
by the probabilistic model, but also what most researchers in the field had believed 
to be t rue , whether or not they had faith in the probabilistic model. Specifically, 
M A I E R showed the existence of a constant 6B > 0 such tha t for occasional, but 
arbitrarily large, values of x+ and z _ , 

-B-l s 7 r ( z + + l o g * z + ) - * " ( * + ) > ( l + A^Jlog^ - x+ 

and ?v(x-+logBX-)-TT(X-) < (1 - < 5 ß ) l o g ß - 1 : 
(7) 

Outline of the Proof. There are ~ e~1x/ log z integers < x, all of whose prime 
factors are > z, provided z is not too large. Among these we have all but ir(z) 
of the primes < x, and so the probability tha t a randomly chosen such integer is 
prime is ~ e 7 log zj log x. Thus, in a specific interval (x,x-\-y\ we should "expect" 
~ e7<Ë> log z/ log x primes, where <£> is the number of integers in the interval tha t are 
free of prime factors < z. Now if we can select our interval so tha t $ ^ ^~1y/ log z 
then our new prediction is not the same as tha t in (5). 

If x is divisible by P = YiP<z P ^ n e n 

<Ê> = $(y, z) := # { 1 <n<y : p\n => p > z} ~ Lü(U) 
log z 

for y = zu wi th u fixed (see [3]), where CJ(U) = 0 if 0 < u < 1 and satisfies 
the differential-delay equation uu(u) = 1 + J"" u(t) dt if u > 1. Obviously 
limu_>00cj(ii) = e - 7 . IWANIEC showed tha t LJ(U) — e~ 7 oscillates, crossing zero 
either once or twice in every interval of length 1. Thus, if we fix u > B, chosen 
so tha t u(u) > e Y or < e _ 7 (as befits the case of (7)), select y = log x and 
z — y1/™, and "adjust" x so that it is divisible by P, then we expect (5) to be 
false. 

To convert this heuristic into a proof, M A I E R considered a progression of 
intervals of the form (rP, rP -\- y], with R < r < 2R for a suitable value of R. 
Visualizing this as a "matrix", with each such interval represented by a different 
row, we see t h a t the primes in the matrix are all contained in those columns j for 
which (j, P) = l. 

RP + l 
{R+1)P+1 

{R + 2)P+1 

(R + 3)P+1 

(2R - 1)P + 1 

RP + 2 
{R+l)P + 2 

{R + 2)P + 2 

{2R - 1)P + 2 

AP + 3 
(Ä + 1)P + 3 

{i,j)th entry: 
(R + i)P + j 

RP + y 
••• (R+l)P + y 

••• (2R-l)P + y 

The "Maier matr ix" for ir(x + y) — TV(X) 
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Now, for any integer q > 1, the primes are roughly equi-distributed amongst those 
arithmetic progressions a (mod q) with (a, q) — 1: in fact up to x we expect that 
the number of such primes 

*(*;*«) ~ -±±. (8) 

If so, then the number of primes in the j th column, when (j, P) = 1, is 

*(2X;P,j)-K{X;P,j) ~ ^ p j ^ where X = RP. 

To get the total number of primes in the matrix we sum over all such j , and then 
we can deduce that, on average, a row contains 

${Viz) 1 RP y P 1 7 / N Ï/ 
~ t J M i i r : i 7 m u . D D ~ e7<j(u)-E (ß(P) log P P v y l o g ^ ^ ( P ) l o g P P v ' l o g P P 

primes. MAIER'S result follows provided we can prove a suitable estimate in (8). 
D 

In general, it is desirable to have an estimate like (8) when x is not too large 
compared to q. It has been proved that (8) holds uniformly for 

(i) All q < log0 x and all (a, q) = 1, for any fixed B > 0 (SIEGEL-WALFISZ). 

(ii) All q < y^ / log 2 + E x and all (a,q) = 1, assuming GRH.7 In fact (8) then 
holds with error term O (y/xlog2(qx)). 

(iii) Almost all q < v
/ ï / log 2 + E x and all (a,q) = 1 (BOMBIERI-VINOGRADOV).8 

(iv) Almost all q < a;
1/2+o(i) w j t n ^^^ _ ^ for ßxecj a ^ Q (BOMBIERI-

FRIEDLANDER-IWANIEC, FOUVRY). 

(v) Almost all q < x/ log2+E x and almost all (a, g) = 1 (BARBAN-DAVENPORT-
HALBERSTAM, MONTGOMERY, HOOLEY). 

Thus, when GRH is true, we get a good enough estimate in (8) with R = P 2 

to complete MAIER'S proof. However MAIER, in the spirit of the BOMBIERI-

VINOGRADOV theorem, showed how to pick a "good" value for P (see [8, Prop. 
2]), so that (8) is off by, at worst, an insignificant factor when R is a large, but 
fixed, power of P (thus proving his result unconditionally). 

In [15], HILDEBRAND AND MAIER extended the range for y in the proof above, 
establishing that there are arbitrarily large values of x for which (4) fails to hold for 
some y > exp ((loga:)1/3_£); and, assuming GRH, for some y > exp ((loga;)1/2-^). 
Moreover, they show that such intervals (x,x -f y] occur within every interval 
[X,2X].9 

It is plausible that (5) holds uniformly if logy/ log logo; —> oo as x —> oo; and 
that (4) holds uniformly for T = P if y > exp ((loga;)1/2"^) (at least, we can't 

7The Generalized Riemann Hypothesis (GRH) states that if ß-\-ry is a zero of any Dirichlet 
L-function then ß < 1/2. 

8This result is often referred to as "GRH on average". 
9 A far better localization than those obtained in any proof of (2b). 
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disprove these statements as yet). We conjecture, presumably safely, that (4) and 
(5) hold uniformly when y > xE. 

One can show that there are more than x/exp ((logx)CB) integers x± < x 
satisfying the unexpected inequalities in (7). Although this may not be enough to 
upset (6b), it surely guarantees that the error term there will not be as small as 
might have been hoped. Thus, we should not expect the pair correlation conjecture 
to hold with as much uniformity as might have been believed. Evidence that this is 
so may be seen in the computations represented by [19, Figures 2.3.1,2,3]: the pair 
correlation function for the nearest 106 zeros to the 1012th zero fits well with (6a) 
for a < .8 and then has larger amplitude for .8 < a < 3; also, the pair correlation 
function for the nearest 8 x 106 zeros to the 1020th zero fits well with (6a) for 
a < 3 and then has larger amplitude for 3 < a < 5. 

MAIER'S work suggests that CRAMER'S model should be adjusted to take into 
account divisibility of n by "small" primes.10 It is plausible to define "small" to 
mean those primes up to a fixed power of log n. Then we are led to conjecture that 
there are infinitely many primes pn with pn+i — pn > 2e_ 7 log2pn , contradicting 
CRAMER'S conjecture!11 

If we analyze the distribution of primes in arithmetic progressions using a 
suitable analogue of CRAMER'S model, then we would expect (8), and even 

ir(x;q,a) = 5 4 + o f f - V log(gz)] , (8') m 
to hold uniformly when (a, q) = 1 in the range 

q<Q = x/logBx, (9) 

for any fixed B > 2. However the method of MAIER is easily adapted to show that 
neither (8) nor (8') can hold in at least part of the range (9): for any fixed B > 0 
there exists a constant 6 B > 0 such that for any modulus q, with "not too many 
small prime factors", there exist arithmetic progressions a± (mod q) and values 
x± £ [(ß(q) log Qi 20(c) log q] such that 

n(x+;q,a+) > (l + 5 f l ) ^ ± 2 and 7r(^_;g,a_) < ( l _ Ä f l ) ? f e l . (10) 

The proof is much as before, though now using a modified "Maier matrix" : 

1 0 One has to be careful about the meaning of "small" here, because if we were to take into 
account the divisibility of n by all primes up to y/n, then we would conclude tha t there are ~ 
e *x/\ogx primes up to x. 

1 1 It is unclear what the "correct conjecture" here should be because, to get at it with this 
approach, we would need more precise information on "sifting limits" than is currently available. 
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RP RP + q 
(R+1)P (R+l)P + q 

{R + 2)P (R+2)P + q 

(R + 3)P ': 

(2Ä - 1)P (2R -l)P + q 

RP + 2q 
{R+l)P + 2q 

{i,j)th entry: 
(R + i)P + jq 

RP + yq 
••• (R+l)P + yq 

••• (2R-l)P + yq 

The Maier matrix for n(yq; q, a) 

The BOMBIERI-VINOGRADOV theorem is usually stated in a stronger form than 
above: for any given A > 0, there exists a value B = B(A) > 0 such that 

V^ max max n(y\q,a) -
TT(Z/) 

*{q) 
< 

log X 
(11) 

where Q = y^ / l og x. It is possible [6] to take the same values of R and P in 
the Maier matrix above for many different values of q, and thus deduce that there 
exist arbitrarily large values of a and x for which 

£>*«-$} Q<q<2Q 
(<7 ,a)=l 

» z ; (12) 

thus refuting the conjecture that for any given A > 0, (11) should hold in the 
range (9) for some B = B(A) > 0. In [10] we showed that (11) even fails with 

Q = a;/exp ((A - e)(loglogz)2/(loglogloga;)) . 

We also showed that (8;) cannot hold for every integer a, prime to q, for 

(i) Any q > xjexp ((logz)1 /5 - 6). 

(ii) Any q > a;/exp ((logx)1/3"8) that has < 1.5 log log log ç distinct prime 
factors < logg.12 

(iii) Almost any q E (y,2y], for any y > xj exp ((loga:)1/2_£). 

Moreover, under the assumption of GRH we can improve the values 1/5 and 1/3 
in (i) and (ii), respectively, to 1/3 and 1/2. 

It seems plausible that (8) holds uniformly if log(a;/ç)/log logg —> oo as 
q —> oo; and that (11) holds uniformly for Q < x/exp ((loga:)1/2+E). At least we 
can't disprove these statements as yet, though we might play it safe and conjecture 
only that they hold uniformly for q, Q < xl~E. 

Notice that in the proof described above, the values of a increase with x, 
leaving open the possibility that (8) might hold uniformly for all (a, q) = 1 in the 

12Which, by the TURAN-KUBILIUS inequality, includes "almost all" integers. 
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range (9) if we fix a.13 However, in [8] we observed that when a is fixed one can 
suitably modify the Maier matrix, by forcing the elements of the second column 
to all be divisible by P: 

1 1 + (RP - 1) 
1 1 + ( ( Ä + 1 ) P - 1 ) 

1 1 + {(R+2)P-1) 

1 : 

1 1 + ((2Ä - 1)P - 1) 

1 + 2(RP - 1) 
l + 2 ( ( f l + l ) P - l ) 

(i,j)th entry: 
l+j((R + i)P-l) 

l + y(RP-l) 
••• l + y((R+l)P-l) 

••• l+y{{2R-l)P-l) 

The Maier matrix for ir(yq; q,l) 

Notice that the jth column here is now part of an arithmetic progression with 
a varying modulus, namely 1 — j (mod jP). With this type of Maier matrix we 
can deduce that, for almost all 0 < \a\ < x/log x (including all fixed a / 0 ) , 
there exist q G (xj log x, 2x/log x], coprirne to a, for which (8) does not hold. 
However (8) cannot be false too often (like in (12)), because this would contradict 
the BARBAN-DAVENPORT-HALBERSTAM theorem. So for which a is (8) frequently 
false? It turns out that the answer depends on the number of prime factors of a: 
In [9], extending the results of [2], we show that for any given A > 1 there exists 
a value B = B(A) > 0 such that, for any Q < x / l og ß x and any integer a that 
satisfies 0 < \a\ < x and has <C log log x distinct prime factors,14 we have 

(x;q,a) -
Q<q<2Q 
(q,a)=l 

n(x)\ 

mi < 
log X 

(13) 

On the other hand, for every given A,B > 0, there exists Q < z / l o g ^ z and 
an integer a that satisfies 0 < \a\ < x and has < (loglog^)6/5+e distinct prime 
factors, for which (13) does not hold (and assuming GRH we may replace 6/5 + e 
here by 1 + e). 

Finding primes in (x, x + y] is equivalent to finding integers n < y for which 
f(n) is prime, where f(t) is the polynomial t-\-x. Similarly, finding primes < x that 
belong to the arithmetic progression a (mod q) is equivalent to finding integers 
n <y := x/q for which f(n) is prime, where f(t) is the polynomial qt + a. Define 
the height h(f) of a given polynomial f(t) — Y2i c%k% to be h(f) := > / ^ c 2 . In the 
cases above, in which the degree is always 1, we proved that we do not always get 
the asymptotically expected number of prime values f(n) with n <y = log0 h(f), 

1 3Which would be consistent with the BARBAN-DAVENPORT-HALBERSTAM theorem. 
1 4Which includes almost all integers a once the inexplicit constant here is > 1 (by a famous 

result of HARDY AND RAMANUJAN) . 
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for any fixed B > 0. In [7] we showed that this is true for polynomials of arbitrary 
degree d, which is somewhat ironic because it is not known that any polynomial of 
degree > 2 takes on infinitely many prime values, nor that the prime values are ever 
"well-distributed". NAIR AND PERELLI [18] showed that some of the polynomials 
FR(IT) — fid + RP attain more than, and others attain less than, the number of 
prime values expected in such a range, by considering the following Maier matrix: 

*Wi(i) 

FR+2(1) 

FR+3(1) 

F2R-I(1) 

FR(2) 
FR+I(2) 

FR+2{2) 

F2R-I(2) 

FR(3) 

* W I ( 3 ) 

(i,j)th entry : 
FR+i(j) 

••• F„(y) 
••• FR+1(y) 

••• F2R-i{y) 

The Maier matrix for 71 (̂7/) 

Notice that the j th column here is part of the arithmetic progression j d (mod P). 
Using Maier matrices it is possible to prove "bad equi-distribution" results 

for primes in other interesting sequences, such as the values of binary quadratic 
forms, and of prime pairs. For example, if we fix B > 0 then, once x is sufficiently 
large, there exists a positive integer k < Ioga: such that there are at least 1 + 6B 
times as many prime pairs p,p + 2k, with x < p < x + log0 a:, as we would 
expect from assuming that the estimate in Hypothesis H holds uniformly for n <̂C 
logBh((t + x)(t + (x + 2k))) . 

We have now seen that the asymptotic formula in Hypothesis H fails when 
x is an arbitrary fixed power of log h(F)(:= ^ ^ log h(fi)), for many different non-
trivial examples F. Presumably the asymptotic formula does hold uniformly as 
log xj log log h(F) —> 00. However, to be safe, we only make the following predic
tion: 

CONJECTURE. Fix e > 0 and positive integer k. The asymptotic formula in 
Hypothesis H holds uniformly for x > h(F)E as h(F) —> 00. 

Our work here shows that the "random-like" behavior exhibited by primes in many 
situations does not carry over to all situations. It remains to discover a model that 
will always accurately predict how primes are distributed, as it seems that minor 
modifications of CRAMER'S model will not do. We thus agree that: 

"It is evident that the primes are randomly distributed hut, unfortunately, 
we don't know what random7 means." — R.C. VÀUGHAN (February 1990). 
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Final remarks 

Armed with M A I E R ' S ideas it seems possible to construct incorrect conclusions 
from, more or less, any variant of C R A M E R ' S model. This flawed model may still 
be used to make conjectures about the distribution of primes, but one should be 
very cautious of such predictions! 

There are no more than 0(x2/log3B x) arithmetic progressions a (mod q), 
with 1 < a < q < z / l o g ^ r r and (a, q) = 1, for which (8) fails, by the BARBAN-
D A V E N P O R T - H A L B E R S T A M theorem. However, our methods here may be used to 
show tha t (8) does fail for more t han a;2 /exp (( logz) e) such arithmetic progres
sions. 

Maier's matr ix has been used in other problems too: K O N Y A G I N recently used 
it to find unusually large gaps between consecutive primes. M A I E R used it to find 
long sequences of consecutive primes, in which there are longer than average gaps 
between each pair. SHIU has used it to show that every arithmetic progression a 
(mod q) with (a, q) = 1 contains arbitrarily long strings of consecutive primes. 

BALOG [1] has recently shown tha t the prime fc-tuplets conjecture holds "on 
average" (in the sense of the B O M B I E R I - V I N O G R A D O V Theorem).1 5 

As we saw in the table above, Li(x) > TT(X) for all x < 1018. However, (2b) 
implies t ha t this inequality does not persist for ever; indeed, it is reversed for 
some x < IO370 ( T E R I E L E ) . Recently, however, R U B I N S T E I N AND S A R N A K [20]16 

showed tha t it does hold more often than not, in the sense that there exists a 
constant 6 « 1/(4 • 106) such tha t the (logarithmically scaled) proportion of x 
for which 7v(x) >Li(a;) exists and equals 6. Such biases may also be observed in 
arithmetic progressions, in tha t there are "more" primes belonging to arithmetic 
progressions tha t are quadratic nonresidues than those tha t are quadratic residues. 
In particular they prove tha t 7r(:c;4,3) > ir(x;A, 1) for a (logarithmically scaled) 
proportion 0.9959 . . . of the time. 

Delicate questions concerning the distribution of prime numbers still seem 
to be very mysterious. It may be tha t by taking into account divisibility by small 
primes we can obtain a very accurate picture; or it may be that there are other 
phenomena, disturbing the equi-distribution of primes, tha t await discovery . . . 

"Mathematicians have tried in vain to discover some order in the sequence 
of prime numbers but we have every reason to beheve that there are some 

mysteries which the human mind will never penetrate. " 
— L. E U L E R (1770). 

Acknowledgments: I'd like to thank Red Alford, Nigel Boston, John Friedlander, 
Dan Goldston, Ken Ono, Carl Pomerance, and Trevor Wooley for their helpful 
comments on earlier drafts of this paper. 

1 5Which was improved to the exact analogue of (11) by MiKAWA for k = 2, and by KAWADA 
for all k > 1. 

16A11 of their results are proved assuming appropriate conjectures such as RH, GRH, and 
that the zeros of the relevant L-functions are linearly independent over (Q). 
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Fonctions L p-adiques 

BERNADETTE PERRIN-RIOU 

Université Paris-Sud 
Bât. 425, F-91405 Orsay Cedex, France 

Ce qui suit est une présentation d'un travail que l'on peut trouver dans [P92], [P93], 
[P94], [Pa], [Pb]. Le but principal est d'attacher à toute représentation p-adique 
galoisienne V: 

• un module de fonctions L p-adiques défini par utilisation de cohomologie 
galoisienne non ramifiée en dehors d'un nombre fini de places et de la théorie 
de Fontaine; 

• une fonction L p-adique lorsque V est la réalisation p-adique d'un motif M 
par interpolation des valeurs de la fonction L de M (conjecturalement); 

et de les relier (conjecturalement encore). 
Nous insistons ici sur l'étude locale préliminaire dans laquelle une sorte de lo
garithme étendu aux modules d'Iwasawa locaux est défini et nous en tirons au 
passage quelques conséquences sur la continuité des logarithmes de Bloch-Kato. 

On fixe un nombre premier p impair. On fixe une clôture algébrique Q (resp. 
Qp) de Q (resp. Qp) et un plongement de Q dans Qp. Si K est une extension 
de Q (resp. de Qp) contenue dans Q (resp. dans Qp), on note GK le groupe de 
Galois de Q (resp. Qp) sur K. Si M est un G^-module topologique, on note 
^(K, M) = ^(GK^M) les groupes de cohomologie continue. 

1. Etude locale 

1.1. Exponentielle et logarithme de Bloch-Kato. 

1.1.1. Soit V une représentation p-adique de Gqp, c'est-à-dire un Qp-espace vec
toriel de dimension finie d muni d'une action linéaire et continue de GQ , que 
l'on suppose cristalline; on note Dp(V) le y?-module filtré associé par la théorie 
de Fontaine: c'est un Qp-espace vectoriel de même dimension que V, muni d'un 
endomorphisme bijectif </? et d'une filtration FiPDp(V) décroissante, exhaustive 
et séparée: ainsi, Dp(V) = (Bcris (g) V)GQP (pour la définition des anneaux Bcris, 
BdR, Acris, voir [Bu]). 
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1.1.2. EXEMPLES, (i) Si Zp(l) est le module de Tate associé aux racines de l'unité 
d'ordre une puissance de p et V = Qp ®ZP(1), DP(V) est Qp, (p agit par multipli
cation par p - 1 , la filtration est donnée par F i l - 1 Bp(V) = DP(V), Fil°Dp(V) = 0. 
On note Qp(k) = Qp(l)®fc si k > 0, = HomQp(Qp(-fc),(!2p) si k < 0. Si x est le 
caractère cyclotomique, l'action de Galois sur Qp(k) est donc donnée par xk-

(ii) Si V est la représentation p-adique associée à une variété abélienne de 
dimension g définie sur (Q)p et ayant bonne réduction, T)P(V) est essentiellement son 
module covariant de Dieudonné. La filtration est donnée par F i l - DP(V) = DP(V), 
Fil0 DP(V) de dimension g, Fil1 VP(V) = 0. 

(iii) Si X est une variété projective lisse définie sur QPi V = Qp ® Hl, (X). 

(iv) Si V est une représentation p-adique, on pose V(k) = V ® Qp(k). On 
identifie dans ce texte les Qp-espaces vectoriels DP(V) et Dp(V(k)), la lettre (p 

-désignant alors l'cndomorphismc de-Dp(T^)v 

1.1.3. On a la suite exacte de GQP-modules 

0 - > Q p - • B e r » ~ * Bcris © BdR/ F i l 0 BdR - • 0 ( 1 ) 

où la seconde application est donnée par b »—> ((1 — ip)b, b mod Fil0 A ì R ) . De plus, 
cette suite exacte est scindée en tant que suite exacte d'applications continues. 
Soit K une extension finie de Qp. En tensorisant la suite (1) par V et en prenant 
la suite exacte de cohomologie, on obtient la suite exacte 

0^H*(KîV)-+DP(V)K0 -> Bp(V)Ko®tv(K) 
-> H^K^^H^I^BcrisŒV) [Z) 

où KQ est la plus grande extension de Qp non ramifiée contenue dans K et 
Dp(V)Ko = KQ <8>Dp(V), où le if-espace vectoriel tv(K) = ((BdR/Fil° BdR) (g) 
V)GK = K ® ty avec ty = Dp(V)/Fil° DP(V) est appelé espace tangent de V sur 
K ;Dp(V)I<0 -> DpOOKo^ ty^ ) est donnée par 2 H-> ((l-<^)z,;cmodFii0Dp(y)). 
Bloch et Kato ont noté HJ(K, V) le noyau de Hl(K, V) -> ff^if, Scr i f l (8) V). La 
suite exacte (2) devient: 

0 - H°(K, V) -> Dp(y)X o -> DP (V>D © ty {K) -> ff}(üf, V) - 0 . (3) 

On appelle exponentielle de Bloch-Kato l'application ty(K) —> Hj(K, V) qui s'en 

déduit et on la note e x p y / r . Lorsque Dp(V)j£~ est nul, cette application est bi-
jective, on note alors logy^ l'application réciproque. 

1.1.4. EXEMPLES, (i) On a cp = 1 sur Dp(Qp), si Knr est la plus grande extension 
non ramifiée de K, on a HJ(K,QP) = RomZp(Gal(Knr/K),QP). On a tQp{1)(K) = 
K, Hl(K,Qp(l)) — Qp ® UK Où UK est le groupe des unités de K, l'exponentielle 
est l'exponentielle p-adique classique. 

(ii) Si V est attachée à une variété abélienne A ayant bonne réduction en p, 
Hl(K,V) est naturellement isomorphe à Qp ® A(K) par la théorie de Kummer 
sur la variété abélienne, l'espace tangent ty est l'espace tangent usuel et expy X 

l'application exponentielle classique. 



402 Bernadette Perrin-Riou 

(iii) Supposons que Fil°Dp(Vr) = 0 et que p~1 n'est pas valeur propre de 
ip sur DP(V)K0- Alors, l'application logyK est un isomorphisme de Hl(K,V) = 
H)(K, V) sur K (8)Dp(V). 

1.1.5. Le cup-prodmt induit une dualité ^(K^V) x i ï 1 (HT, 1^(1)) -> Qp où 
V*(l) = HomQp(V,Qp(l)).1 Bloch et Kato ont montré que le sous-espace vec
toriel Hj(K,V) est l'orthogonal de Hj(K,V*(l)). D'autre part, dans la dualité 
naturelle BP(V) x Dp(V*(l)) —> Qp, le sous-espace Fil°Dp(V) est l'orthogonal de 
Fil0Dp(V*(1)). La transposée de tv*{1)(K) -> H)(K,V*(1)) pour cette dualité 
donne une application Ày = XV}K: HX(K, V)/H)(K, V) -> K (8) Fil0 BP(V). 

1.2. Quelques problèmes. On note T un réseau de V stable par Gqp et M un 
réseau de Dp(V) que l'on munit de la filtration induite. 

1.2.1. Problème A. Les constructions qui ont été décrites pour V ont bien sûr un 
sens pour V(k) = V (8) Qp(k) pour tout entier k. Remarquons que pour k ^> 0, 
par exemple k > ko, Fil°Dp(V(k)) = 0. On peut se poser le problème de la 
continuité de logy/fe\ Q en fonction de k de la manière suivante: On pose T(k) = 
T(8)Zp(fc). Prenons deux entiers k > ko et k' > ko congrus modulo (p—l)pn. Disons 
que x G H1(Qp,T(k)) et x e H1(Qp,T(k/)) sont congrus modulo p n + 1 si leurs 
images respectives dans i?1(Qp,T(/c)/pn+1T(/c)) et dans H1(Qp,T(k/)/pn+1T(k/)) 
se correspondent par l'isomorphisme naturel T(k)/pn+1T(k) = T(/c/)/pn+1T(/c/). 
La question est alors: si x et x1 comme ci-dessus sont congrus modulo p n + 1 , que 
peut-on dire de \ogv{J^qv(x) et de logy(/c,)jQp(:z;') ? 

1.2.2. Problème B. Soit u) un élément non nul de detq ty(K) ; on introduit 
un nombre TamCJjj^(T) défini de la manière suivante: 

si detQptv(K) 9Ê detqpH)(K, V) ® (detQpH°(K, V))* 

est l'isomorphisme (défini au signe près) déduit de la suite exacte (3), Tam^^iT) 
est l'élément de pz vérifiant 

Tam^T)-1^ = detZpH}(K,T) (8) (detZpH°(K,T))* . 

Ainsi, lorsque 1 n'est pas valeur propre de (p et si Lp(V, 1) = det(l — </?|Dp(V))_1, 
Lp(V, l)~1Tam(JjiK(T) est, à une unité près, le déterminant de 

expVtK:tv(K)^H}(K,V) 

dans la base u et dans une base du Zp-module det%pHl(K,T). 
Que peut-on dire de ces nombres et de l'image de Hj(K,T) dans K®Dp(V) 

lorsque K varie le long de l'extension cyclotomique ? Que peut-on dire par exemple 
deTamü; i i ,(r)/Tamw^(r(l)) ? 

Donnons tout de suite une réponse conjecturale à cette dernière question 
(celle-ci s'étend au cas où V est semi-stable à condition d'introduire les facteurs 
e de V). Posons hi(V) = dimQpFi\iDp(V)/Fui+1Dp(V) et tH(V) = Ei^V). 
Notons eT une base du Zp-module (de rang 1) (ttH^AcriS (8) det%pT)GQp où t est 

xSi W est un Qp-espace vectoriel, on pose W* = Horn^ (W, Qp), si U est un Zp-module 

de type fini, on pose C/* = Homzp(C/, Zp) ; si UJ est une base, on note UJ-1 la base duale. 
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un générateur de l'image de Zp(l) dans BcrjiS. Posons T*(j) = (j — 1)! si j > 0 et 

1.2.3. CONJECTURE. Pourv e det^i}tv{K), w' e det^ìttv^\){K) tels queujÇÇuj'-1 

engendre (detziÖK)®d(8)%'peT ' p vu comme sous-module de detqp(K®DP(V)), 

Tamu,K(T) ,-t„(v*(i)) TTr*f-»r','<v>[if!<M (4) 
Tam„,iK(T*(l)) K \ l l ' [ ) 

où dj< est le discriminant de K sur Qp.
2 

La formule (4) a été montrée par Bloch et Kato pour V = QP(r) et K non ramifié 
sur Qp, Elle est vraie aussi pour les représentations p-adiques ordinaires et K non 

TarnîHe. ÖrTnöteraT\?i(T) ïïiiréseau de;.BP(V) tel quëWt^M(T)~=~(tfn(v )A~HsW 
detZpT)G^. 

1.2.4. Problème C. L'application Ày est extrêmement importante. Elle mesure le 
défaut d'un élément de ü"1(Qp,T) à être dans Hj(Qp,T) et intervient dans les 
problèmes de "loi explicite de réciprocité" 3. Comment la calculer? 

1.3. Résultats. 

1.3.1. Soient Kn = Qp(ßpn+i), G^ = G al ( J ^ / Q p ) , x : G«, ^ Z£ le caractère 
cyclotomique. Si X est une indéterminée, on fait agir G^ sur \-\-X par r.(l-\-X) = 
(1 + X)*(T) et on prolonge cette action par linéarité et continuité à A = Zp[[Goo]]. 
D'autre part, on fait agir ip sur Qp[[^f]] par ip(l + X) = (1 + X)p. Fixons un 
générateur (multiplicatif) e = (Çn) de Zp(l). Notons Aj le composé de l'évaluation 
en xj et de la projection Bp(V) -> Dp(V)/(l-pjp) et Ä = ©A^. Si g E A®Bp(y) 
vérifie A(#) = 0 (il n'y a qu'un nombre fini de conditions), on montre qu'il existe 
un élément G E QP[[X]] (8>Q Dp(V) convergeant sur le disque unité ouvert, tel 
que (1 — ip)G = g.(l + X) ((p agit ici de manière diagonale). On pose Eny(g) = 
(P®<p)-(n+1HG)(Çn - 1) e (Kn ®Qj, D p ( l / ) ) /D p (VT = 1 -

Notons Z^(T) la limite projective relativement aux applications de corestric-
tion des Hl(Kn,T). C'est un A-module de rang d. Son sous-A-module de torsion4 

est isomorphe à TG/C°°. On définit un isomorphisme, noté Twe: x H-> X (8) e, de 
ZL(TU)) dans Z^Tfj + l)) et induit par les isomorphismes Hl(Kn,Tn(j)) -> 
H\Kn,Tn{j)) ®/v+i = H^K^T^j + 1)), avec Tn = T/p^T. 

Définissons W(Goo) comme le tensorisé avec Zp [Gai(Qp(ßp)/Qp)] de la sous-
algèbre de Qp[[7 - 1]] formée des / = J2n

 an(l - 1)™ avec sup n > 0 ^ < oo pour 
un r convenable (ici, 7 est un générateur topologique de Gal(/<"00/Qp(/ip)))- Soit 
fc(Goc) l'anneau total des fractions de TL(G00). Notons Tw l'application de twist 
induite par 7 1—> x(l)l-

2a ~ b si a = ub avec u unité 79-adique 
3voir aussi les démonstrations "à la Kolyvagin". 
4 V pour chacune des composantes relativement à l'action de Gal(J<o/Qp) 

file:///-/-X
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1.3.2. THÉORÈME. Pour tous entiers h etj, il existe un unique A-homomorphisme 
injectif 

fyU)th : (A® Dp(VC0))Ä=° - K(Goo) ®A (Zl(T(j))/T(jf«-) 

tel que: (i) pour tout entier h > 1, supérieur à la longueur de la filtration de Hodge 
de V et tel que Fil - '1 Bp(V) = Bp(V) et pour tout entier j tel que Fil0 Bp(V(j)) = 

0, iivü),h+j est à valeurs dans ft(£oo) ®A (ZL(TÜ))/TÜ)GKO°); Vour n>0,le 
diagramme suivant est alors commutati/ 

(A®Dp(V(j)))*=° > £(<?„) ®A (ZUTU))/TU)a«-) 

Hn,V(j) I 

où l'application verticale de droite se déduit de la projection naturelle; 
(ii) pour tous entiers j et h, on a 

Twe o ne
v{j)ih+j o Tw = -Sle

v{j+1)ih+j+1 ; 

(iii) pour tous entiers j et h, ßyy j^+ i = lh^v{j)th avec lh = h - log7/logx(7) 
et 7 élément de G^ d'ordre infini. 

1.3.3. On en déduit une famille d'isomorphismes cle /C(G00)-modules 

fif,h : £ (0« , ) ® (A ® Dp(y(j))) -> /CfGoo) ®A Z£>(TÜ)) , 

que l'on peut voir comme une sorte d'exponentielle au niveau des modules d'Iwa-
sawa. Notons 8^(V) (resp. 8zPih(V)) le sous-Qp <8> A-module (resp. sous-A-module) 
de /C(Goo) engendré par le déterminant de £tyh dans des bases des Qp (8) A-modules 
A (8) detQpBp(V) et Qp (8) detAZ^(T) (8) (de t A ' ^ (T))* 5 (resp. des A-modules A (8) 
detZpM(T) et de^Z^T) ® (detAZl(T))*). 6 

1.3.4. T H é O R è M E , n ^ - ^ - / ™ ^ * P oh(V) est indépendant de h et contenu 
dans Qp (8) A. 

1.3.5. CONJECTURE. t^(V) = Uj>_hlJ?^™1BplV^zpth{V) est égal à A. 

La conjecture est indépendante du choix de T. 

5Ici, * désigne HomA(—,A) 
6Nous emploierons désormais le langage des déterminants pour les A-modules: rappelons 

que pour un A-module M de type fini et de A-torsion, det\M se plonge canoniquement dans 
l'anneau total des fractions de A et est égal à / _ 1 A où / est une série caractéristique de M. 
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1.3.6. PROPOSITION. Si Fil°Dp(V) = 0 ou DP(V) et si 1 et p~x ne sont pas 
valeurs propres de (p, avec les notations de 1.2.3, 

nr*(-0^(V)IK":WdgV*(1))î,'>"»u,.irn(î,)/î,«nv-',irn(3,'(l)) 
i 

est égal (à une unité près) à J7 ij(f) où f est un générateur de 8%p (V) et où 77 
parcourt les caractères de G&l(Kn/Qp). 

Ainsi, la conjecture 1.3.5 implique la conjecture 1.2.3. D'autre part, à condition de 
supposer vraie la conjecture 1.3.10 qui suit, on peut enlever l'hypothèse sur Fil . 

Supposons Fil0 Dp (y) = 0. Alors, TamUJtiKn(T*(l)), pour u)' base canonique, 
est le cardinal du quotient de (V* (1)/T* (l))Gl<™ par sa partie divisible et est borné 
par rapport à n. On déduit alors de 1.3.4 que, si u)n est une base de det^ (OK <8> 

-MiT-Vr- — — 

i T] 

(c constant pour n assez grand). Ainsi, si 1.3.5 est vraie, 

ra,7^,7<„(T)~p-p"("-1)(™-^)t"(y*(1»J]r*(-i)-/l'(v)p' ,(p-1)Pc 

i 

où c est constant pour n assez grand. Sans la conjecture 1.3.5, il faut rajouter 
ppp +*" où fi et A sont des constantes. 

1.3.7. EXEMPLE. Pour Qp(r), la conjecture 1.3.5 est démontrée. Pour ujn base de 
M(Zp(r))®detZpOKn et r > 0, on a TamUniK„(Zp(r)) ~pcd)^(r _ l)!-Pn(p-i). 

1.3.8. Revenons au problème A et prenons h comme dans le théorème 1.3.2. Soit 
x E Z^T). On déduit du théorème précédent qu'il existe un unique élément Lh(x) 
de /C(Goo) (8) Dp(V) tel que pour tout entier j^>0, 

l o g y m o P(x®e®i) 

x->(Lh(x)) = ( - I ) ^ M ^ ^ m — - (5) 
où P(x (8> e®-7) désigne la projection de x (8) e®-7 dans H1(Qp, V(j)) et où 

p,(¥») = (i-p-V)(i-^-v-1r1-
Les propriétés d'analycité de Lh(x) ont des conséquences sur la fonction j H-> 
X~^(^h(x))i e n particulier sur sa continuité. Remarquons que L/X(T) est entière
ment déterminée (par continuité) par ses valeurs aux entiers j ^> 0. Rappelons 
que M est un réseau fixé de Dp(V). On déduit des théorèmes précédents que pour 
tout fc G Zp, sauf un nombre fini, il existe une constante C telle que, pour n assez 
grand et j = j ' = k mod pn(p - 1), j > fc0, f > fc0, si a; G ^(Q^T^)) et x' E 

H\Qp,T(j>)) sont congrus modulo p»+\ P ^ ^ ß l ^ l ot Pjl{v)^^p. 
sont congrus modulo C~lpnM. Si la conjecture 1.3.5 est vraie, l'ensemble excep
tionnel est contenu dans la réunion des k tels que V(k)°Qp ou V(1 — k)°Qp est non 
nul et des entiers compris entre —h et JQ. Sinon il faut aussi enlever les zéros d'un 
générateur de 6%p(V). 
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1.3.9. Soit <, >y l'application Z^T) x Z^(T*(1)) —> A qui est A-sesquilinéaire 
(relativement à i : A —» A induit par T i—> T - 1 pour r G GQQ) et induit par le 
cup-produit: < x,y >y= lim«-,«, YlTeGa.\(Kn/Qp)(

T~lxn u Vn)r. Notons [ , ]vp(v) 
la dualité naturelle Dp(V) x Dp(V*(l)) —> Qp. On note de la même manière les 
formes obtenues par extension des scalaires à ^ ( G ^ ) . 

1.3.10. CONJECTURE. Pour tous x G (A<8)Dp(V))Ä=0
; y G (A <8>Dp(V*(l)))À=0

; 

( -1 ) " - 1 < n ^ ^ . n ^ u ^ . f c ^ ) > y = [z,2/]Dp(y) • (6) 

1.3.11. En prenant la valeur de (6) au caractère unité et en utilisant le (iii) du 
théorème 1.3.2, on obtient une formule que l'on peut voir comme une description 
de l'application Ay(_r) et qui pour Qp redonne la loi explicite de réciprocité de 
Bloch-Kato. Soit r un entier tel que Fil0 Bp(V(r)) = 0 et a G Bp(V(r)). Pour 
/ i » 0 e t r 0 > / i - r , Fil0 Dp(V*(l + rQ)) = 0, si y G tf^Qp, V*(l - r)), il existe 
9h e ^(Goo) ® Dp(y*(l + r0)) tel que P ( ^ , ( 1 + r o ) h ( ^ ) (g) c®(-^-r)) = y. S o i t 

G^ tel que (1 - ^)G?fc = ^ ( 1 + a:). Alors, 

, x ^ ^ [ a , D ^ ( G ^ ) ( 0 ) ] D p ( y ) 
< e z p y ( r ) ) Q » , y > = ± ( r + r o _ h ) [ • 

On en déduit facilement une formule pour Ay*(i_r). 

1.3.12. Une autre conséquence de (6) est que pour r < —h, Fi l rD p(y) = Dp(V), 

X (hh(x)) = ±(1 - p ip)(l-pr <p ) — r*(h + r)\ " 

Ainsi, le membre de droite est une limite pour j tendant p-adiquement vers r et 
tendant vers l'infini dans M, d'expressions du type (5). 

2. Etude globale 

A partir de maintenant, V est une représentation p-adique de GQ non ramifiée 
en dehors d'un ensemble fini S de nombres premiers (avec p G S) et cristalline 
en p, on désigne par T un réseau de V stable par GQ. On pose Fn = Q(p,pn+i)i 

Goo = GalCFoo/Q) et A = Zp^G«,]]. Si M est un Zp[Gai(Q(pp)/Q)}-module, on 
note M± le sous-module sur lequel la conjuguaison complexe agit par ±. Si F est 
une extension de Q contenue dans (Q), on note GS,F Ie groupe de Galois de la plus 
grande extension de F non ramifiée en dehors de S sur F. 

2.1. Point de vue arithmétique. 

2.1.1. Soit H^ S(T) la limite projective des H7,(Gs,FniT) relativement aux ap
plications de corestriction. Ces A-modules de type fini sont nuls pour i différent 
de 1 et 2. On montre que rgA±H^s(T) - rg^H^T) = d_±(y) où d+(V) = 
dimQpyGai(c/]R) etd_(V)=d-d+(V). 
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2.1.2. CONJECTURE. Le A-module H^ S(T) est de torsion. 

Dans les cas classiques, cette conjecture est ce qu'on appelle la conjecture faible de 
Leopoldt. Elle est équivalente à la nullité de H2(GS)F00-IV/T). Elle est démontrée 
pour V = Qp(r), pour les représentations associées aux courbes elliptiques à mul
tiplication complexe, définies sur Q et ayant bonne réduction en p à quelques 
exceptions près (Rubin, [Me]). Les résultats de finitude de Flach impliquent cette 
conjecture pour le carré symétrique d'une forme modulaire de poids 2 (et pour 
certains espaces propres relativement à Gal(Q(/ip)/(Q))). De manière un peu anec-
dotique, on peut aussi montrer que les conjectures à la Bloch-Kato sur l'ordre du 
zéro de la fonction L énoncées comme en [FP94] impliquent cette conjecture. Enfin, 
des critères vérifiables numériquement peuvent être donnés. Par exemple, Rubin et 
Silverberg [RS] ont calculé des polynômes a^ (t) et bjj (t), CD (t) tels que pour tout 
t G <Q>, si El ' est la courbe elliptique y2 = x3 + ao(t)x2 + bD(t)x + cjr>(t), le GQ-
module E[ '[5] soit isomorphe à £[S\ où S est la courbe d'équation y2 = x3 — Dx. 
On peut alors montrer en utilisant les calculs numériques de [BGS84] que si 
D = 1 , - 1 , - 2 , 3 , 9 , - 2 7 , . . . et t G Z(5), Dt2 ^ 3mod5, la conjecture de Leopoldt 

faible pour la courbe E\ * et p = 5 est vraie. 

2.1.3. Nous supposons désormais la conjecture 2.1.2 vraie. Si E est un ensemble 
fini de places de Q, on pose Z^T) = l im© w | w e E JT(F n | M , r ) et AB™3(T) = 

detAH^T) ŒdetAH^T)*. Posons A £ 5 ( T ) = d e t A Z ^ ( T ) ® d c t A ^ ( T ) * 

et AocsCn* = A£S(T) ® A** (T)*. 
Donnons deux définitions possibles du module des fonctions L p-adiques at

tachées à V: 

2.1.4. DéFINITION. Si UJ = ujgiob ^^loc est un élément de Aoo^T1)* avec u)Qi0b £ 
A^(T) et "ioc e A ^ S ( T ) et si 8 E Ad^v^Dp(V), on note \Vistht±(<»W) 
Vêlement de JC(GOQ)± défini par 

Av,S,hl±(uO(fi)<<± = Ad ± ( v )(q^,±)(<5) A uj;^t± (7) 

Le sous-A±-module de Kom.Qp(A
d±^Dp(V),IC(G00)±) engendré par l'image de 

Aoo,s(T)* est notélaritht[00tPyth{T)±. 

2.1.5. DéFINITION. Le sous-A-module de FLomQp(A
d±^Dp(V),IC(G00)±) défini 

pour 8 G Ad±^Bp(V) par 

larithi{ooMAT)±{ä)detZpM(T)= J ] ^;^F i H D p 0° 
3>-h (8) 

^ A Ä - M ^ S A ^ • 

est noté laritìh{o0ìP}ìh{T)±-
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2.1.6. Si la conjecture 1.3.10 est vraie, ces deux définitions coïncident. Dans la 
suite, nous laissons l'ambiguïté. Ces modules généralisent la notion de "série ca
ractéristique d 'un module de Selmer" dans le cas où V est ordinaire en p. Dans 
les cas particuliers, il arrive qu'un choix de h s'impose. La dépendance en h est de 
toute façon simple et se déduit du théorème 1.3.2, (iii). 

2.2. Point de vue analytique. Nous arrivons dans le domaine purement conjec
tural . Les énoncés s'appuient sur les conjectures de Beilinson et Deligne sur les 
valeurs spéciales des fonctions L des motifs. Ce qui suit tient de la loi-cadre. Nous 
renvoyons à [FP91] et [FP94] entre autres pour des bases plus précises et à [Pb] 
pour des "énoncés" plus complets. 

2.2.1. Soit M un motif donné par ses réalisations de de Rham MdR, de Betti MB 
et i-adiques M\ pour tout l. Rappelons que MdR est un Q-espace vectoriel muni 
d'une filtration Fil* MdR, MB est un Q-espace vectoriel muni d'une involution c (on 
note MB les parties ± pour cette involution), Mi est une représentation Z-aclique de 
G Q . NOUS supposons que V = Mp vérifie les hypothèses des paragraphes précédents 
et est en particulier cristalline en p. On a des isomorphismes de comparaison 
C®MdR ^ C®MB,Bcris®MdR *è Bcris®Mp et Qp®MdR 2É D p (Mp) 7 compatibles 
avec les différentes structures supplémentaires. On note Q le motif trivial, Q( l ) le 
motif de Tate et Q(j) = Q( l )® j si j > 0 et H o m ( Q ( - j ) , Q ) si j < 0. Pour tout 
entier j , on définit le motif M(j) twist de M par Q(j). 

Fixons une Z-structure M. sur M, c'est-à-dire un réseau M de MB tel que 
Zi ® M vu dans Mi soit stable par G Q . On choisit une base de la Z-structure 
canonique Z( l ) de Q ( l ) . On fixe sur M une orientation c'est-à-dire des bases ujj^ 
de det-^M^ et ^jtf(i) ^ e det%M(l)+. On en déduit alors pour tout j une base 
uM(j) d e det%M(j)+. 

Soit j un entier tel que F i l - 1 M<IR(J) = 0. Conjecturalement, on définit un Q-
espace vectoriel Hj(Q, M(j)) de dimension d_(M(j)) et une application Q-linéaire 
Hl(Q,M(j)) —> Hj(Q,M(j)p) qui devient un isomorphisme lorsqu'on tensorise 
par Qp ; on définit un isomorphisme R ® Hj(Q,M(j)) —> R® MùR^/MB^)*. 
D'où une application 

detQH}(Q, M(j)) ® (detQMdR(j)Y ® detQMB(j)+ -> R . 

Si o; G (detQMdR(j))* ® det<QHj(Q,M(j)), on note Per^^M^w) l'image de CJ (8) 

CJ^J/ x par cet isomorphisme. De même, en utilisant l 'application exponentielle de 

M(j)p, on définit une application 

detQpH}(Q,M(j)p) ® (detQpT>p(M(j)))* ® Ad^M^Bp(M(j)) -> Q p . 

Si a; G (detQpDp(M(j)))* ®detQpH}(Q,M(j)p) et si 8 E Ad^M^Bp(M(j)), on 

note PerPiM(j)p(w)(8) l'image de UJ®8 par cet isomorphisme. Ainsi, PerP}M^ (UJ) 

appartient à Horr iQ p (A d+(M^^Dp(M0')) , Qp). 

L'élément Per^^^j^u))-1 ® PerPtM(j) (u)(8) de R ® Qp ne dépend pas de 

UJ G (detqMdR(j))* ® detqHj(Q,M(j)). Un choix possible pour 8 est un élément 

7On pose Dp (M) = DP(MP) 
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de detzp(Zp®M^~), qui dépend du choix d'une conjugaison complexe, ce qui n'est 
pas toujours naturel dans le cadre p-adique. Cela explique la dissymétrie entre les 
définitions complexe et p-adique.8 

2.2.2. Au motif M est associée une fonction L: on note L ? ^ i ( M , s) = 

n / - é p ^ / ( M , s) la fonction incomplète en p. Les conjectures de Beilinson prédisent 

que, avec les notations précédentes, 

PerooMU)(uj) 

2.2.3. C O N J E C T U R E . Il existe un unique générateur L? , ^(-M) du A-module 

^aritht{ooìP}ìh('Mp) tel que pour tout entier j ^> 0, on a Végalité d'éléments de 

~HomQ„ (À d +( M «»D P (M P ) , %) 

A « M « Ü » ( ( 1 _pJip)-i{1_p-j-i(p-i))x-Sv,Bo^h{M) 

= ( f t + J--1) ! r f +(M(J))2-r f +(M(J))Lro0 ,P}(M(^o)P e r p M ( , ) p H (9) 

p o w w G (detQMdR(j)Y ®detQHJ(Q,M(j)). 

Cette conjecture, d'ailleurs totalement inabordable car elle présuppose déjà les 
conjectures de Beilinson, comporte en fait une partie d'interpolation (existence, 
pour h assez grand, d'un élément de HOITIQ (A d + ( M ^ '^Dp(Mp) ,W(G 0 0 ) ) vérifiant 
les équations (9)) et une partie "conjecture principale" (lien entre le module 
arithmétique et la fonction d'interpolation analytique). D'autre part , des conjec
tures sur l'ordre du zéro de L7? , ^(M) e t sur le terme dominant en x J pour tout 
j peuvent être formulées ([Pb]). Ces conjectures que l'on peut aussi voir comme un 
analogue p-adique des conjectures à la Bloch-Kato sont essentiellement démontrées 
pour le module des fonctions L p-adiques de Mp. 
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The Role of Smooth Numbers in 
Number Theoretic Algorithms 
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Athens, Georgia 30602, USA 

1 Introduction 

A smooth number is a number with only small prime factors. In particular, a posi
tive integer is y-smooth if it has no prime factor exceeding y. Smooth numbers are 
a useful tool in number theory because they not only have a simple multiplicative 
structure, but are also fairly numerous. These twin properties of smooth numbers 
are the main reason they pia}' a key role in almost every modern integer factoriza
tion algorithm. Smooth numbers play a similar essential role in discrete logarithm 
algorithms (methods to represent some group element as a power of another), and 
a lesser, but still important, role in primality tests. 

In this article we shall survey some of the more interesting theoretical and 
practical algorithms for factoring, computing discrete logarithms, and primality 
testing, and will especially highlight the central role of smooth numbers in the 
subject. 

2 A "fundamental lemma" 

We begin with a problem that does not appear to have anything to do with our 
main topic. We shall first see that smooth numbers play an essential role in both 
the theoretical and algorithmic solution of the problem. We next shall show how 
the problem is the key ingredient in a robust class of factoring algorithms. 

Suppose we choose integers independently and with uniform distribution 
in the interval [l,a;]. How many should we choose so that almost surely some 
nonempty subset of our choices will have a product that is a square? The answer 
depends on the function exp(\/hi ^ ln ln x), which we shall abbreviate as L(x). 

Lemma 2.1. Let E be an arbitrarily small positive number. If we choose L(xy2+E 

integers from [1, x] (independently and with uniform distribution), then asx —> oo, 
the probability tends to 1 that some nonempty subset product is a square, whereas 
if we choose L(xy2~E integers, the probability tends to 0. 

A proof of the first statement, which is considerably easier than a proof of the 
second, is implicit in [BLP, Theorem 10.1], and explicit in [P4, Proposition 4.1]. 

*) Supported in part by a grant from the National Science Foundation. 
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A proof of the entire result will be given in a forthcoming paper of the author. 
For our purposes it will be interesting to see why Lemma 2.1 is true. In addition, 
there is an algorithmic problem implicit in Lemma 2.1. Namely, if you are actually 
choosing the random integers and want to explicitly find a subset product that is 
a square, what is an efficient way to do this? 

If we choose a number n E [1, z] with a large prime factor p, then it is unlikely 
that p2 divides n and it will probably be a long wait before we ever see another 
number m E [1, x] divisible by p. Thus, it is unlikely that we can use n in a subset 
product that is a square. That is, the numbers that we can potentially use in the 
subset product are smooth numbers. Let y be some positive number, which we 
shall specify shortly. If we have chosen more y-smooth numbers than there are 
primes up to y, then some nonempty subset of these numbers has a product that 
is a square. This follows from a simple linear algebra argument. Each ^/-smooth 
integer n has an exponent vector v(n) of length the number of primes up to y. 
Indeed, if p < y is prime, then the coordinate in v(n) corresponding to p is the 
exponent on p in the prime factorization of n. Let ir(y) denote the number of 
primes up to y. So if we have more than ir(y) of these exponent vectors, they must 
be linearly dependent. In particular, they are dependent over the field F2 of two 
elements. A dependency here is represented as a nonempty subset sum being the 
0-vector, which corresponds exactly to the corresponding subset product being a 
square. 

Let i/)(x,y) denote the number of ^/-smooth integers up to x. Then the ex
pected number of choices of random integers in [1, x] to find one y-smooth number 
is x/ijj(x, y), so that the expected number of choices to find ir(y)-\-l such 2/-smooths 
is x(7v(y) + ï)/îjj(x,y). We thus wish to choose y as a function of a: so as to min
imize this expression. It turns out that the optimal value of y is about L(xy2'2, 
and the resulting expected number is about L(xy2. This is how the upper bound 
in Lemma 2.1 is shown. 

This proof sketch also serves to suggest how the algorithmic problem implicit 
in Lemma 2.1 may be efficiently solved. Namely, for y = L(xy2f2, test each choice 
of a number n E [1, x] to see if it is y-smooth, discarding those that are not. When 
ir(y) + 1 successes n have been found, create the exponent vectors v(n), and with 
Gaussian elimination over F2, find a subset product that is a square. 

The lower bound in Lemma 2.1 shows us that we cannot do substantially 
better; that is, smooth numbers are essentially forced upon us. The proof is tricky, 
but not especially deep, the idea being that for each fixed k, almost surely a 
subset whose product is a square will contain a number with fcth largest prime 
factor maximal over the subset and k other numbers in the subset, each divisible 
by a different one of these k large primes. Further, a calculation shows that it is 
unlikely that we will see such a (A: -f- l)-tuple if we only choose L(x) v2/c/(fe+1)~e 

numbers. Because k may be taken arbitrarily large, we get our result. 

The upper and lower bound calculations in Lemma 2.1 depend on an estimate 
for the number ijj(x,y) of 2/-smooths up to x: for any fixed, positive real number a, 
we have ij;(x,L(x)a) = xL(x)~1^2a^+°^ as x —> 00, see [CEP]. For more on the 
distribution and application of smooth numbers, see [HT] and [V]. 
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3 Combinations of congruences 

In this section we shall discuss the connection between Lemma 2.1 and factoring. 
An old factoring method due to Fermât is to represent the number to be factored 
as the difference of two squares. For example, one can verify mentally that 8051 = 
902 - 72, so that 8051 = 83 x 97. The problem with this method is that it is often 
very difficult to find two squares that work. 

Instead, one may search for two squares whose difference is a multiple of 
the number to be factored. If u2 = v2 mod n and u ^ ±v mod n, then the great
est common factor of u — v and n, which may be computed rapidly via Euclid's 
algorithm, is a nontrivial factor of n. 

Assume n is an odd composite that is not a power. Suppose we choose a 
„random integer _A e_[l,_n]_and computejhe least positive residue Q = A2 mod n.__ 
Then Q is "close" to being a random integer in [1,77,]. If Lemma 2.1 is applicable, 
we would expect to find a set of such numbers Q, with their product a square, 
after taking about L(ny2 values of A. Multiplying the corresponding congruences 
Q = A2 mod 77, would thus give rise to a congruence of the shape u2 = v2 mod n, 
from which we would have a chance of factoring n. (It is not certain that such a 
congruence could split n because it may be that u = ±v mod 71.) 

I have just described the "random squares" factorization method of Dixon. 
It can be proved that the likelihood of Q being smooth is about the same as a uni
formly distributed random integer in [1,77,], so that this step in the above heuristic 
method can be made rigorous. It is also not hard to show that the final congru
ence is nontrivial with probability at least 1/2, so the random squares method is a 
completely rigorous probabilistic factoring algorithm. With special subroutines to 
determine if the numbers Q are smooth and to do the linear algebra over F2, the 
expected running time for the random squares method is L(ny2+°^l\ see [P3]. 

A simple, but crucial fact about smooth numbers is that large numbers are 
less likely to be ^/-smooth than small numbers. In the random squares method 
we are presented with a stream of random auxiliary numbers Q that we examine 
for smoothness, discarding the majority that are not, and stopping when we have 
found sufficiently many that are smooth. If we could alter the stream so that the 
numbers Q are smaller, then each would have a better chance of being smooth, 
and we would not have to examine so many. 

One simple way to make Q smaller is to replace it with Q — n if it exceeds 
n/2; that is, to use the residue closest to 0 rather than the least positive residue. 
To make a square, we now would also have to worry about the sign of the product, 
but this can be easily handled by adding one extra coordinate to the exponent 
vectors v(Q) to represent the sign of Q. However, reducing the size from 77, to 7"i/2 
is not sufficient to substantially affect the complexity estimate. 

If Ai/Bi is the zth convergent in the continued fraction expansion of y/ri, 
then the residue Qi of A2 mod n that is closest to 0 satisfies \Qi\ < 2y/îï. Further, 
the numbers Ai, Qi are easy to find by a simple recursive procedure. If it could be 
shown that the numbers Qi are sufficiently random, then indeed we would have 
a significant improvement over the random squares method, with a complexity of 



414 Carl Pomerance 

In some cases it can be shown that the numbers Qi are definitely not suffi
ciently random. For example, if the period of the (periodic) continued fraction for 
y/n is too short, then the pairs Ai, Qi may begin repeating before we have found 
enough smooth values of Qi. However, for most numbers n this phenomenon does 
not occur, and even when it does, looking at the continued fraction for A/CLU for a 
small integer a seems to solve the problem. 

This method, due to Brillhart and Morrison [MB], is known as the continued 
fraction method. It completely majorizes the random squares method. However, 
no one has proved that it is likely to work. Of course, the number n we are trying 
to factor does not know this! The continued fraction algorithm, like all modern, 
practical factoring algorithms, does not have a rigorous complexity analysis. How
ever, heuristic analyses help us to compare various methods, and to see which may 
be worthy of further tinkering. 

The fastest factoring algorithm that has been rigorously analyzed is the class 
group method (see [LP]). This method uses the group of primitive binary quadratic 
forms with discriminant either — n, or a small multiple of —n. Smooth numbers 
play a key role here as well. The algorithm generates random forms (Q, R, S) in the 
class group by looking at random words on a small generating set. Corresponding 
to the prime factorization of Q, we get a factorization of (Q, R, S) into correspond
ing "prime forms". By accepting only those cases where Q is smooth, we collect 
relations between the generating forms and the prime forms. When enough such 
relations are collected, we can use them, again via a linear algebra step over F2, 
to construct an "ambiguous form", namely one whose square is the identity. From 
Gauss, we may use such forms to factor the discriminant, which is exactly what 
we wish to do. The expected running time of this algorithm is L(n)1 +°^1 \ which 
is the same as for the simpler continued fraction method discussed above. In con
trast though, the class group method is rigorous. It is surely not practical, being 
majorized in practice by other methods that will be discussed below. 

4 Smoothness tests 

When presented with an integer n < x, how long does it take to determine if n is 
2/-smooth? If one uses trial division with the primes up to y, it takes about n(y) 
steps to determine if most numbers are y-smooth. In factoring algorithms such as 
the ones above, the overwhelming majority of the auxiliary numbers Q presented 
are not ^/-smooth. If it takes us iv(y) steps per candidate to discover if a number 
is 7/-smooth, then this step of the algorithm dominates all others. It is greatly in 
our interest to find a smoothness test faster than trial division. 

In [PI] an "early abort strategy" is described, which suggests that one give 
up on the trial division of a particular candidate Q if at various strategic points 
below y not enough of Q has been partially factored. This method loses some y-
smooth numbers, but not many. The average time per number is only about sjy. 
In addition, trial division may be replaced with a fast Fourier transform method 
of Pollard and Strassen (see [P4]), which further reduces the amortized time per 
candidate to about 7/1'4. 

The elliptic curve factoring method of Lenstra [LI], [L2] (see Section 6 below) 
has the feature that its expected running time to completely factor a number is 
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a small function of the second largest prime factor of the number. In particular, 
it recognizes ^/-smooth numbers below x in 0(yE In x) steps, for any E > 0. It is 
with this subroutine as a smoothness test that the complexity estimates of the last 
section are achieved. 

A few comments are in order. The elliptic curve method is not completely 
rigorous. However, it is possible to show that most smooth numbers will be fac
tored quickly with the method. Thus, as with the early abort strategy above, it 
is not crucial that a few y-smooths may pass unrecognized. Nevertheless, it is of 
theoretical interest if a smoothness test can be devised that recognizes y-smooth 
numbers in time about yE and that has no exceptions. This is provided in a recent 
method that is similar to the elliptic curve method, but uses Jacobian varieties of 
hyperelliptic curves of genus 2 (see [LPP]). 

- Is it ever practical to use the elliptic curve method as a subroutine to recognize 
smooth auxiliary numbers? We know of no case where it is. This is largely due to 
the existence of a far better smoothness test that is applicable when the stream of 
auxiliary numbers presented happens to be the consecutive values of a polynomial 
with integer coefficients. 

Everyone knows the sieve of Eratosthenes as an efficient method of finding 
all of the primes up to some point. However, this sieve can also be used to find 
y-smooth numbers. One sieves with the primes up to y (and possibly their powers), 
and instead of crossing off the multiples of each prime, one keeps a tally at each 
number of how frequently it has been "hit". This tally may be done by adding 
the (single precision) logarithms of the primes that hit, and if the sum exceeds a 
threshold, the number is reported as being y-smooth. 

What makes this sieve work is that the multiples of a given prime p occur in 
a regular pattern, namely an arithmetic progression of difference p. If instead of 
the consecutive integers to some point, one has the image of this interval under a 
polynomial with integer coefficients, one still has regularity for the multiples of p. 
They now form the union of several arithmetic progressions of difference p, and we 
may sieve just as efficiently as before. For example, no value of £2 -f 1 is divisible 
by 3, and the multiples of 5 are found in the progressions t = ±2 mod 5. 

However, the streams of auxiliary numbers Q described in the previous section 
are not the consecutive values of a polynomial, and there is no discernible regularity 
to where the multiples of a given prime p appear. In the next section we shall 
describe two algorithms that can make use of sieving as a smoothness test. 

5 The quadratic sieve and the number field sieve 

Say we wish to factor the odd number n, which has been already verified to be 
composite and not a power. Consider the quadratic polynomial Q(t) = t2 — n. For 
E small and \t — y/rl\ < nE, we have \Q(t)\ < 377,1/2+E. Thus, the values of Q(t) for 
t close to yjn are relatively small. If it could be assumed that the values of Q(t) 
for t in this range are about as likely to be smooth as random integers of the same 
size, then Lemma 2.1 suggests that with x — 37i1//2+E, before L(x)y^2JrE < L(n)1Jt2E 

values of t are examined, there will be a nonempty subset such that the product 
of the corresponding values of Q(t) is a square, say u2. If v is the product of these 
values of t, then because Q(t) = t2 mod n, we have u2 = v2 mod n. So, as before, 
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the greatest common factor of u — v and n may provide a nontrivial factor of n. 
This algorithm then is exactly the same as the random squares method and the 
continued fraction method discussed in Section 3, but now the stream of auxiliary 
numbers Q(t) are the consecutive values of a polynomial with integer coefficients, 
so that we may use a sieve as a smoothness test. 

This is the basic quadratic sieve method (see [PI]). Though the values Q(t) 
are slightly larger than the auxiliary numbers Q in the continued fraction algo
rithm, sieving is so good a smoothness test that this small defect is not important. 
When the quadratic sieve method is used today, we do not use only one polyno
mial, but a family of many polynomials of the form at2 + 2bt + c, where a, 6, c 
are chosen in a certain range and with b2 — ac = n. This idea of Montgomery 
(see [P2]) mitigates somewhat the growth of the size of the polynomial values, 
for when the values of orie polynomial become large, we switch to another. The 
multiple polynomial quadratic sieve currently enjoys the record for the factoriza
tion of the largest number of no special form and without small prime factors that 
has ever been factored. This number is the 129-digit composite announced as a 
cryptographic challenge in Martin Gardner's Scientific American column in 1977. 
It was factored in 1994 by D. Atkins, M. Graff, A. Lenstra, P. Leyland, and a host 
of others who volunteered time on their workstations. 

A word must be said about the linear algebra subroutines used to assemble 
the congruences into congruent squares at the final stage of the algorithm. To 
achieve the complexity estimate L(?^)1+0^1) for the quadratic sieve (and the earlier 
algorithms mentioned), one cannot use Gaussian elimination as the linear algebra 
subroutine. Instead, there are methods due to Wiedemann, Lanczos, and others 
that are used. These methods exploit the facts that the matrix of exponent vectors 
is sparse, and that the algebra is done over the field F2 of two elements. In practice 
so far, we have largely been able to get by with Gaussian elimination and variations 
of it. Although it is easy to distribute the sieving stage of the algorithm to many 
unextraordinary computers, so far it is awkward to do this with the linear algebra 
stage, and for the record numbers factored these days, supercomputers are used for 
the matrix. Clearly more work is needed for this step of combination of congruences 
algorithms. For more on this subject, see [C], [LO], [M], [PS]. 

The reader may have noticed that many factoring algorithms seem to end 
up with either rigorous or heuristic complexity of L(n)1+°^. This is due to the 
auxiliary numbers that we examine for smoothness, which in the algorithms we 
have described so far (except for the random squares method) are all bounded 
by the common expression n1'2^0^. If we could reduce the size of these num
bers that we hope to find smooth, we could reduce the complexity of the algo
rithm. The number Held sieve allows us to do just this. In this algorithm the 
auxiliary numbers are about exp(c(ln?7,)2/3(lnlnn)1/3). Putting this bound in for 
x in Lemma 2.1 suggests that the complexity of the number field sieve is about 
exp((4c/3)1/2(ln72)1/3(lnlnn)2/3). In the original version of the number field sieve, 
invented by Pollard in the late 1980's, only numbers near a high power are fac
tored, and in this case, the number c turns out to be (16/3)1/3. This method was 
later generalized to arbitrary numbers n by Buhler, H. Lenstra, and the author, 
but at the cost of increasing the number c to (64/3)1/3. 
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In sum, the number field sieve is asymptotically fast because it achieves a 
dramatic reduction in the number of digits of the auxiliary numbers: they have 
about the 2/3 power of the number of digits of 77,, as opposed to about half the 
number of digits of n in the quadratic sieve. How then does the number field sieve 
work? 

Suppose / , g are irreducible, monic polynomials over Z for which there is 
an integer 777. with /(?77,) = g(m) = 0 mod n. Say a, ß are complex numbers with 
f(a) = g(ß) = 0. Consider the substitution homomorphisms 0 : Z[OJ] —> Z/(?^), 
ij) : Z[ß] —> Z/(n), where (ß(a) = ip(ß) = m + (77,). Thus, for any integers a, b 
we have the congruence <p(a + ba) = ij)(a + bß) mod n. It is via this family of 
congruences as a, b vary over small (coprirne) integers that we hope to assemble 
our congruent squares. But we actually will construct the squares in the rings Z[a], 
Z[/3], which is no loss because the-homomorphic image of a square is a square. Not-
only is there no loss, there can be a substantial gain. 

We define a member of Z[a] to be smooth if its norm to Z is smooth. How
ever, the norm function masks the proliferation of prime ideals that may lie over 
a rational prime. Taking this into account, and adding some extra information 
afforded by a few random quadratic characters (to get over the obstructions of 
possibly complicated class groups, unit groups, and quotient groups of Z[a], Z[ß] 
in their maximal orders), our above method using exponent vectors allows one 
to construct squares. Finding the square roots of these squares is not as simple 
as before, but it is a tractable problem. The auxiliary numbers we wish to find 
smooth are the products of the norms to Z of a + ba and a-\-bß, where a, b run 
over small coprirne integers. This is a polynomial in a and b, and we may use a 
sieve as a smoothness test. The size of these auxiliary numbers depends on the 
largest coefficients of / and g and their degrees. 

One way to construct the polynomials / and g is to first pick d, the degree of 
/ , next pick 777. = [77,1//d], and write n in the base m, so that 77, = md + Cd-\md~l -\-
• • • + Co. Then we let f(t) = td + Cd_itd-1 + • • • + CQ and g(t) —t — m. There are 
other strategies too, and in particular it is not essential that the polynomials be 
monic. For more on the number field sieve see [LL] and [P4]. 

The largest number of no special form that the number field sieve has factored 
has 119 digits, a recent accomplishment of Contini, Dodson, A. Lenstra, and Mont
gomery. It is likely though that this will change soon. The very favorable heuristic 
complexity estimate has concentrated much attention on the number field sieve, 
people are beginning to find the improvements necessary to make it a practical 
algorithm, and it is thought that before long it will replace the quadratic sieve as 
the champion method for numbers of no special form. 

6 The elliptic curve method 

The elliptic curve method of H. Lenstra uses smooth numbers in an intrinsically 
different way than the previous factorization methods discussed. Based on a beau
tiful method of Pollard to discover those prime factors p in a number for which 
p — 1 is smooth, it makes use of the following observation. If G is a finite group 
(written additively), then there is a simple algorithm to test if the order of an 
element g E G is a y-smooth number below x. Indeed, let M be the least common 
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multiple of the y-smooth numbers below x and form Mg. This calculation can be 
done in 0(ir(y) lnx) group operations by the repeated doubling method. Then the 
order of g is a y-smooth number below x if and only if Mg is the identity. 

This observation is used as follows. Suppose p < q are prime factors of the 
number n we wish to split. Let a, b be integers with 4a3 + 27ò2 coprirne to TT, and 
let P = (xo,yo) be an integer point on the elliptic curve E : y2 — x3 + ax + b. Let 
E(p), E(q) be the elliptic curve groups mod p and mod q, respectively. If P mod p 
has 2/-smooth order in E(p), but P mod q does not have y-smooth order in E(q), 
then we can use this to split n. Indeed, let M be the least common multiple of the 
y-smooth numbers below (n1/4 + l)2- We cannot directly work in the groups E(p) 
and E(q) because we do not know p and q. However, we can try to acid points on 
E modulo n. If the addition law breaks down it is because we are trying to invert 
a nonzero, noninvertible residue modulo n. But Euclid's algorithm, which is used 
for inversion, would in this case split n. The addition law breaks down when we 
try to add two points R, S such that R + S is the identity modulo some factor of n, 
but not the identity modulo some other factor of TT,. This is exactly what happens 
when we try to compute MP modulo n, because this is the identity in E(p) and 
it is not the identity in E(q). 

We can attempt to do this calculation even if we do not know beforehand 
that P has ^-smooth order in E(p), but not in E(q). If it works we have split n. 
If it does not work, we have the option of trying again with a larger value of y, or 
more interestingly, trying again with another triple a, b, P. We can easily generate 
many such triples by choosing a, XQ, yo at random, and solving for b. 

This then is the elliptic curve method. If the prime p has sufficiently many 
smooth numbers near it in the "Hasse interval" ((y/p — l ) 2 , (\/p+ l)2)? then it can 
be shown rigorously that the method is expected to find p as a prime factor of 
numbers TT, divisible by p. It is conjectured that this interval does contain enough 
smooth numbers, but it has not been proved. It is interesting that in the longer 
interval ((\Jp— l ) 4 , ( \ /p+ l)4) ,we can prove that there are many smooth numbers, 
which is why the hyperelliptic curve method can be rigorously analyzed — see 
[LPP]. 

An important contrast between the elliptic curve method and combination of 
congruences methods, is that in the latter we need to be able to find many smooth 
numbers for success, but each auxiliary number is quickly dealt with. In the elliptic 
curve method we are successful if just one auxiliary number (which is hidden from 
us) is smooth, but it takes a fair amount of time for each trial. The two opposite 
effects balance out. In the worst case the number 77, has its least prime factor near 
y/n, and so the numbers we hope to find smooth are also near y/n. So in the worst 
case, the elliptic curve method takes L(n)1+°^ steps. However, most numbers are 
not in the worst case, so that the elliptic curve method can be considerably faster. 
Thus, when presented with a number to factor, one usually tries the elliptic curve 
method before attempting the quadratic sieve or the number field sieve. 

7 Discrete logarithms and the search for smoothness 

Given a cyclic group G = (g) (written multiplicatively), and an element h in G, the 
discrete logarithm problem is to find an integer n with gn = h. In this problem the 
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representation of the group G is of paramount importance. For example, suppose 
p is a prime. Then (Z/(p))* is a cyclic group of order p — 1, as is the additive group 
Z/(p — 1). However, solving the discrete logarithm problem in the latter group is 
a triviality — one uses Euclid's algorithm to solve a linear congruence. But the 
discrete logarithm problem for the former group is hard, or at least apparently so. 

One can find discrete logarithms in the group (Z/(p))* by an algorithm similar 
to the random squares method discussed in Section 3. With g the cyclic generator 
on which logs are based, consider random powers gm. Elements of the group are of 
course residue classes; say we represent these residue classes by their least positive 
member. That is, we represent group elements by positive integers less than p. If 
gm is represented by a smooth integer, we keep it, and otherwise, we discard it. 
If we can find sufficiently many independent "relations", where a power of g is 

"congruent mod p to"a ^-smooth number, we can use linear algebra (over the ring 
Z/(p — 1)) to solve for the logs of the primes q up to y. Once this pre-calculation 
is done, it is now fairly simple to find the log of an element h. Namely, consider 
gmh, where again m is a random integer. If this is represented by a ^-smooth 
number, say ü t f 1 ' where the q^s run over the primes up to y, then \oggh is 
—77i + ^ ai logg qi. To minimize the expected running time we take y = L(py2/2, 
Then the running time of the first phase of this algorithm (to compute the logs 
of all of the primes up to y) is about L(py2 and the running time to compute an 
individual log is about L(py2/2. See [P3] for more details. 

Can these ideas be generalized to the multiplicative group of a finite field Fg? 
In particular, what would it mean to call a member of F* "smooth"? If ç = pk

ì 

where k is large, then the usual representation of Fq is ¥p[x]/(f), where / is an 
irreducible polynomial in Fp[x] of degree k. We may represent a group element 
as the member of the residue class of least degree. Because Fp[a;], like Z, is a Eu
clidean domain, we may give a definition of a smooth element. Say a polynomial 
is smooth if it factors completely into low degree irreducibles. There is a theory of 
the distribution of smooth polynomials in Fp [x] that is analogous to the distribu
tion of smooth integers — see [Loi], [O], [So]. We thus obtain a rigorous discrete 
logarithm algorithm analogous to the one above. 

When q = ph with fc > 1 and k small, the above representation of F* is not 
particularly useful for computing discrete logarithms. Indeed, say k = 2. Then 
every residue class representative has degree 0 or degree 1, and so everything is 
smooth. Instead, we represent the field as OK/(P), where K is an algebraic number 
field of degree fc over the rationals and for which the prime p remains inert. In this 
case we call a field element smooth, if a canonical representative of the residue 
class has smooth norm. A problem is how to define a canonical representative. 
This is solved in the case fc = 2 in [Lo2] where a rigorous algorithm is described. 

Although we have not found a way to use something resembling the elliptic 
curve method or the quadratic sieve to compute discrete logarithms in F*, we 
have found a way to use analogs of the number field sieve — see [A], [G], [S]. As 
with factoring, the analysis is heuristic. Whether these algorithms are practical is 
unclear. 
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There are of course many other groups around. For example, one may consider 
a prime p for which the elliptic curve group E(p) (see Section 6) is cyclic. Does 
it make sense to say an element of E(p) is smooth? No one has thought of a way 
to make sense of this (except for some very special cases), and for this reason, we 
know of no fast ways to compute discrete logs in elliptic curve groups. These groups 
have been proposed as vehicles for public key cryptography precisely because we 
have no notion of smoothness for them. 

8 Smooth numbers and primality testing 

The central problem in primality testing is to decide if a given input is prime or 
composite. This problem is generally considered much easier than factoring com
posites. One of the simpler ideas in the subject involves Fermat's "little theorem": 
av = a mod p for all integers a. It is computationally easy to compute the residue 
of ap mod p, and if this is not a, then p has been proved composite. 

This simple test done with a = 2 is enough to recognize most composite 
numbers. However, for any fixed base a there are infinitely many pseudoprimes to 
the base a, namely composite integers n for which an = a mod n. In fact, there 
are infinitely many Carmichael numbers. These are composite integers n for which 
an = a mod n for every integer a. It had been conjectured that there are infinitely 
many Carmichael numbers essentially by Carmichael himself when he introduced 
them in 1910. The proof that there are infinitely many was accomplished in 1992 by 
Afford, Granville, and the author [AGP], and is based on a 1956 heuristic argument 
of Erdös. This heuristic method begins by assuming that there are many primes 
p for which p — 1 is ?/-smooth. In fact, there should be a positive proportion of 
all primes below yc with this property, where c is an arbitrary but fixed number. 
Erdös himself had proved such a result in 1935 for some particular c > 1, and 
recently Friedlander proved it for any c < 2\[e. With this and other tools, we were 
able to prove that there are more than x2/7 Carmichael numbers up to x, when x is 
sufficiently large. It is interesting that the Erdös heuristic method in fact suggests 
that there are more than z 1 - e Carmichael numbers up to x. 

There are stronger tests than Fermat's little theorem for which there is no 
analog of a Carmichael number, and such that on input of a composite number, 
the test is expected to prove the number composite in only O(l) iterations. One 
of these is using Selfridge's strong pseudoprime test to random bases, a result 
of Rabin. From the work of Miller, Bach, and others we know that every odd 
composite n will fail a strong pseudoprime test to some base less than 21n 77,, 
provided that the Riemann hypothesis for Dirichlet L-functions holds. Thus, if 
this hypothesis holds, we have a deterministic polynomial time primality test. In a 
sequel to [AGP], the authors show that there are infinitely many odd composites 
n that pass the strong pseudoprime test for each base up to ( l nn ) c / l n l n l n n . 

Do we have unconditional tests that end up proving a prime input is prime? 
Surely we should not be satisfied with a probabilistic composite recognition test 
that fails to recognize our input as composite after several tries. 

There are in fact very fast primality proving algorithms. The fastest known 
deterministic test has complexity (ln?i)cll l lnlnTL, and so is "almost" polynomial, 
see [APR]. As with the discussion above on Carmichael numbers, this test uses 
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auxiliary primes p for which p — 1 is ?/-smooth. Certain versions of this test are 
quite practical, see [BH], [CL]. There is a probabilistic test t ha t expects to find a 
rigorous proof of primality in expected polynomial time. Though not very practical, 
simpler, but heuristic versions of it have been used on very large primes, see [AH], 
[AM], [GK], [L2]. 

The central unsolved problem in primality testing is to see if there is a deter
ministic, polynomial time algorithm to distinguish between primes and composites. 
Towards this end, one may ask for a deterministic, polynomial t ime algorithm tha t 
succeeds in proving prime most or many primes up to a bound x. Recently, Konya-
gin and the author [KP] have described such an algorithm tha t proves prime more 
than xx~E primes up to x. It is no mystery on which primes the algorithm works. 
It works on precisely those primes p for which p — 1 has a large smooth divisor. 

The author gratefully acknowledges W. Afford, A. Granville, and H. Lenstra 
for their helpful critical comments on an earlier draft of this paper. 
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The best known example of a non-archimedean period domain is the Drinfeld up
per half space Çtd

E of dimension d — 1 associated to a finite extension E of Qp 

(complement of all -E-rational hyperplanes in the projective space P d _ 1 ) . Drinfeld 
[D2] interpreted this rigid-analytic space as the generic fibre of a formal scheme 
over OE parametrizing certain p-divisible groups. He used this to p-adically uni-
formize certain Shimura curves (Cherednik's theorem) and to construct highly 
nontrivial étale coverings of flE. This report gives an account of joint work of Zink 
and myself [RZ] that generalizes the construction of Drinfeld (Sections 1-3). In 
the last two sections these results are put in a more general framework (Fontaine 
conjecture) and the problem of the computation of £-adic cohomology is addressed 
(Kottwitz conjecture). In this report we return to the subject of Grothendieck's 
talk at the Nice congress [G, esp. Section 5] where he stressed the relation between 
the local moduli of p-divisible groups and filtered Dieudonné modules. 

Throughout this report we fix a prime number p. Denote by k a fixed alge
braically closed field of characteristic p. Let W(k) be its ring of Witt vectors and 
KQ = W(k) ®z Q. Let o be the Frobenius automorphism of KQ. For most results 
one must assume p^2. 

1. Formal moduli of p-divisible groups 

If O is a complete discrete valuation ring with uniformizer 7r, we denote by Nilp0 

the category of locally noetherian schemes S over Spec O such that the ideal 
sheaf 7T • Os is locally nilpotent. We denote by S the closed subscheme defined by 
7T • 0$. A locally noetherian formal scheme over Spf O will be identified with the 
set-valued functor on Nilp0 it defines. A morphism X —> y of formal schemes is 
called locally formally of finite type if the induced morphism Xred —> 3A-ed between 
their underlying reduced schemes of definition is locally of finite type. 

In what follows, by a quasi-isogeny between p-divisible groups X and Y over a 
scheme S G Nilpz we mean a global section / of the Zariski sheaf Hom(X, Y) ®z Q 
for which there exists locally on S an integer n such that pnf is an isogeny. 

THEOREM 1.1. LetlL be a p-divisible group over Spec k. We consider the functor 
M on Nilpfl^k), which associates to S E Nilpw,(fc) the set of isomorphism classes 
of pairs (X, g) consisting of a p-divisible group X over S and a quasi-isogeny 
g : X Xspec k S —> X x$ S of p-divisible groups over S. Then M is representable 
by a formal scheme locally formally of finite type over Spf W(k). 
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This represent ability theorem [RZ, Section 2] allows one to show tha t certain 
functors of p-divisible groups endowed with endomorphisms and level structures 
(case (EL)) resp. with polarizations and endomorphisms and level structures (case 
(PEL)) are also represent able. These functors depend on certain "rational" and 
"integral" da ta tha t we now formulate in both cases. 

Case (EL): The rational data consists of a 4-tuple (B, V, b, p), where B is a finite-
dimensional semi-simple algebra over Qp and V a finite left 5-module. Let G = 
GLB(V) (algebraic group over Qp). Then b is an element of G(K^). The final 
da tum j.i is a homomorphism G m —> GK defined over a finite extension K of 
KQ . Let V ® Q P K = 0 Vi be the corresponding eigenspace decomposition and 
Vft = 0 i : > . Vi the associated decreasing filtration. We require tha t the filtered 

isocrystal over K, (V ® Q P KQ, b(id ® 0"), V£), be the filtered isocrystal associated 
to a p-divisible group over Spec OK ([G], [Fol], [Me]). The integral data consists 
of a maximal order OB in B and an O^-lattice chain C in V [RZ, Section 3]. 

Case (PEL): In this case the rational data are given by a 6-tuple (B, *, V, ( , ),b,p). 
Here B and V Eire as before. Furthermore, B is endowed with an anti-involution * 
and V is endowed with a nondegenerate alternating bilinear form ( , ) : V ® Q P V —> 
Qp such tha t 

(dv,v,) = (v,d*v/), deB. (1) 

The remaining da ta are as before relative to the algebraic group G over Q p whose 
values in a Qp-algebra R are 

G(R) = {g G GLB(V ® R); (gv,gv') = c(g)(v,v'), c(g) eR*}. 

We require tha t the rational da ta define the filtered isocrystal associated to a p-
divisible group over Spec OK endowed with a polarization (= symmetric isogeny 
to its dual). The integral data are as before. We assume tha t OB is stable under * 
and tha t C is self-dual w.r.t. ( , ). 

In either case let E be the field of definition of the conjugacy class of p, a 

finite extension of Q p contained in K. Let E = E.KQ, with ring of integers O^. 

T H E O R E M 1.2. We fix data of type (EL) or (PEL). Let X be a p-divisible group 

with action of OB over Spec k with associated isocrystal isomorphic to (V®qp 

KQ, b(id (8) o~)). In the case (PEL) we endow X with an OB-polarization defined by 

the alternating form on V ® Q P KQ . We consider the functor M on N i l p 0 w ; which 

associates to S the isomorphism classes of the following data. 

(1) A p-divisible group X^ over S with OB-action, for each A G C. 

(2) An OB-quasi-isogeny g^ : X Xs p e c k S —+ X& Xs S, for each A G £ . 

Among the conditions these data are required to satisfy we mention only the 
following. 

(i) For each A e C we have d e t 0 s ( d ; L i e X A ) = detK(d; V^/V^), deB 
(Kottwitz condition [Ko3] j . 

(ii) Let M(XA) be the Lie algebra of the universal extension of X&- Then 
locally on S there is an OB-isomorphism M(X&) ~ A ®z Os- If A C A', the 
quasi-isogeny g^ o g^1 lifts to an isogeny X\ —> X^* of height logp |A' /A| . 
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The functor M is representable by a formal scheme locally fomnally of finite 
type over Spf O^. 

REMARKS 1.3. (i) To the pair (G, b) there is associated the algebraic group J over 
Qp with points in a Qp-algebra R 

J(R) = {ge G(R (g)Qp üf0); o-(g) = b^gb}. 

The group J(QP) of quasi-isogenies of X acts on the left of M, via 

g • ( A ' A , g A ) = ( X A , g A o g - 1 ) . 

Let A be the abelian group dual to the group of Qp-rational characters of G. 
The group J(QP) acts on À by translations. There is a canonical J(Qp)-equivariant 
map ft : M —> A [RZ, Section 3]. 

(ii) We conjecture that M is flat over Spf O^. This conjecture can be reduced 
to a similar statement on the local model, an explicit closed subscheme of a finite 
product of Grassmannian varieties over Spec OE associated to the moduli problem 
[RZ, Section 3]. In the numerous special cases where this conjecture is proved, the 
singularities of M have turned out to be roughly of a "determinantal nature", 
comp. [CN], [dJ]. For a moduli problem of type (EL) the scheme Mrcd turns out 
in all known cases to be "elementary". For instance, the zeta function of a model of 
A (̂red over a finite field is given by an elementary expression. On the other hand, 
for type (PEL) there are simple examples where the irreducible components of 
MVGd fibre over nonrational curves [KO]. Laumon has pointed out the similarity 
with the behaviour of the varieties connected with the local harmonic analysis of 
G [H]. 

(iii) The formal scheme M is equipped with a canonical Weil descent datum 
from Spf Oß to Spf OE [RZ, Section 3]. Even though this is not effective, a suitable 
completion of M can be written in a canonical way as M x gpf oE Spf O^ for a 
(pro-)formal scheme M over Spf OE [HZ, Section 3]. 

EXAMPLES 1.4. (i) Let B be a division algebra with invariant 1/d over its center 
F, with maximal order OB- Set E = F and E = E.KQ. Drinfeld [D2] considers 
the moduli problem classifying quasi-isogenies of special formal OB-modules (X, g) 
over schemes S E Nilp0 „ (it can be identified with a moduli problem of type (EL)). 
He exhibits in this case an isomorphism 

M = ]JÛd
ExSp{oESp{0Ë. (2) 

7iGZ 

Here 0,^ is the formal scheme over Spf OE associated by Deligne to the local 
field E and the integer d [D2]. The disjoint sum decomposition is induced by the 
function (X, g) \—> height (g). 

This example (and trivial variants of it) is the only one we know where the 
formal scheme M. is 7>adic, i.e., p • 0 ^ is an ideal of definition. 

(ii) Let F be a finite extension of Qp, set E = F and E = E.K$. Let M be 
the moduli problem (of type (EL)) over Nilp 0 . classifying quasi-isogenies (X, g) 

of formal Oir-modules of dimension 1 and height d. In this case Mre(j is a discrete 
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set indexed by height (g) G Z. The infinitesimal deformation theory of Lubin and 
Tate yields a (noncanonical) isomorphism 

M = ]lSpîOË[[Tlt...,Td^}]. 
nez 

(iii) Consider the moduli problem A4 over Spf W(k) (of type (EL)) classifying 
quasi-isogenies (X, g) of ordinary p-divisible groups of height 2n and dimension n 
(i.e. deformations of X = GJ^ x (Q p /Zp) n ) . There is an isomorphism (Serre-Tate 
canonical coordinates [Ka]) 

M = ]lSpfW(k)[[TluT12i... ,T n n ] ] . 

The index set is equal to (GLn(Qp)/GLn(Zp))
2. 

2. Non-arcriimedean uniformization of Shimura varieties 

In this section we use slightly different notation. Let B be a finite-dimensional 
algebra over Q equipped with a positive anti-involution *. Let V be a finite B-
module with a nondegenerate alternating bilinear form ( , ) with values in Q 
satisfying the identity (1). We define the algebraic group G over Q in complete 
analogy with the case (PEL) in Section 1. Let h : Resc/B.Gm —> G R be such tha t 
(G, h) satisfies the axioms of Deligne defining a Shimura variety over the Shimura 
field E C C We fix an order OB of B such tha t OB ® Zp is a maximal order of 
B ® Q Qp stable under *, and a self-dual OB ®Z Zp-lattice chain £ in V ® Q Q p . 
We fix an open compact subgroup Kp C G(AK). Let Q be the field of algebraic 
numbers and fix an embedding Q —> Q p . Let v be the corresponding place of E 
above p and Ev the completion of E in v. 

These da t a define a moduli problem of PEL-type parametrizing triples 
(A, X,fjp) consisting of an £-chain of O^-abelian varieties, a Q-homogeneous OB-
polarization and a Kp-level s tructure tha t is represent able by a quasi-projective 
scheme AK? over Spec OEU (cf. [RZ, Section 6] for details). The generic fibre of 
AKP contains the Shimura variety of (G, h) as an open and closed subscheme. 

We take for k the algebraic closure of the residue field of OEV- We fix a 
point (Ao,Ao,77o) of . /4JO(/C). Let NQ be the isocrystal associated to Ao. We fix an 
isomorphism NQ — V®QPKQ tha t respects the actions of B®KQ and the alternating 
bilinear forms on both sides. This allows us to write the Frobenius operator on ÌVQ 
as ö(id (8) o-), with b G G(KQ). Let M. be the (pro-)formal scheme over Spf OEU 

associated to the da ta of type (PEL), (B ® Q p , *, V (8) Q p , ( , ), b,p, OB ® Z p , £ ) , 
cf. Remark 1.3, (iii). It is acted on by the group J(Qp), Remark 1.3, (i). Here p 
denotes a 1-parameter subgroup of G defined over a finite extension K of KQ in 
the conjugacy class defined by h. 

T H E O R E M 2 . 1 . Assume that (AO,AO,7/Q) is basic, i.e. the corresponding element 
b G G(KQ) is basic [Kol]. Then 

(i) The set of points (A,X,fjp) of AKP (k) such that (A,X) is isogenous to 
(AQ,AO) is a closed subset Z of AKP-
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(ii) Let AKP\Z denote the formal completion of AKP along Z. There is an 
isomorphism of formal schemes over Spf OEU) 

J(Q) \ [M x G(Ap
f)/K

p] ^ + AKp\Z. 

Bere I is an inner form of G such that /(Q) is the group of quasi-isogenies 
of (A),Ao) that acts diagonally through suitable natural embeddings of groups, 

J(Q) —» J ( C U J(Q) — G(A') . 

The source of this isomorphism is a finite disjoint sum of foimal schemes of 
the fonn F\M, where T c J(QP) is a discrete subgroup that is cocompact modulo 
center. 

REMARKS 2.2. (i) In the Siegel case (principally polarized abelian varieties with 
level structure prime to p) the subscheme Z is the supersingular locus. In general 
it may be conjectured that there always exist basic points (v4o,Äo,77ß) G AKv(k). 

(ii) It is not understood when it happens that the subscheme Z is open in 
the special fibre (existence of p-adic uniformization), as in Cherednik's theorem 
[D2]. This is a very subtle property that occurs only rarely (cf. Example 1.4, (i)). 
However, there are examples [RZ] uniformized by the disjoint sum of unramified 
forms of formal schemes of the form r \ Û^, where E is any finite extension of Qp 
and d any integer. 

(iii) There also exists a version of Theorem 2.1 for nonbasic isogeny classes. 
Because these do not in general form a closed subset the formulation becomes 
more technical. 

3. The period morphism 

In this section we return to the notation of Section 1. Let M be the formal scheme 
over Spf Ofc given by Theorem 1.2 and let (XA, gA\ A E C) be the universal object 
over M. 

Let Mrig be the rigid-analytic space over E associated to M (the generic 
fibre of M in the sense of Raynaud-Berthelot [RZ, Section 5]). By Grothendieck's 
rigidity theorem [G] the quasi-isogenies gA yield canonical isomorphisms V ®QP 

Öyŷ iig = M(XA) ® ö „ öjüvifr- The resulting surjective homomorphism of locally 
free Oj^rig-modules 

V ®Q„ O * " . — Lie(*A) ® 0 j a 0^ , , E (3) 

is independent of A. 
Let J7 be the projective algebraic variety over Spec E parametrizing the 

subspaces of V in the G-conjugacy class of V^. Set T' = T Xspec E Spec E. Then 

(3) corresponds to a rigid-analytic morphism TT1 : Mllg —> J- . Let TT2 : MYlg —> A 
be the rigid-analytic morphism to the discrete rigid-analytic space associated to 
the map K, cf. Remark 1.3, (i). The product morphism 

7f = TT1 x TT2 : Mris —^ JF ig x A 

is called the period moiyhism associated to the moduli problem M. We list some 
properties of the period morphism [RZ, Section 5]. 
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P R O P E R T Y 3 .1 . The morphism TV is étale and J (Qp)-equivariant. 

Here J(QP) acts diagonally on T x A, via its embedding in G(E) on T and 
via translations on A. In the rest of this section we shall assume tha t the algebraic 
group G is connected. We also make the assumption tha t jM r i g is nonempty (this 
would certainly follow if the flatness conjecture 1.3, (ii) were true). 

P R O P E R T Y 3.2. Assume the validity of the conjecture of Fontaine [Fo2] t ha t a 
weakly admissible filtered isocrystal over a finite extension K of KQ , with filtration 
steps contained in [0,1] comes from a p-divisible group over Spec OK- Let T be 

Kj r i g 

the admissible open subset of T formed by weakly admissible filtrations, cf. 
Proposition 4.1 below. Then the image of TT is of the form T x A ' ; where A ' is 
a union of cosets of a subgroup of finite index in A. 

P R O P E R T Y 3 .3 . For all A £ £ the rational p-adic Tate module VP(XA) yields 

a constant Qp-sheaf on MT1& with typical fibre V. Let Kc be the subgroup of 
G(Qp) tha t fixes the lattice chain £. For any subgroup K of finite index in Kc 

we introduce the finite étale covering MK of A4 r i g t h a t classifies the trivializations 
a : {Tp(XA)} —y £ mod K of the chain of p-adic Tate modules (Tp(XA); A G £ ) . 
On the tower of étale coverings 

{ M x ; K C Re of finite index } 

of A4 r i g = M x £ the group G(QP) acts as a group of Hecke correspondences. Let 
KK '- M ^ —> T x A be the resulting morphism. The fibre of TXK through a point 

may be identified with G(QP)1 /K. Here G(Qp)1 is the set of points of c7(Qp) where 
the values of all Qp-rational characters of G are units . 

E X A M P L E S 3.4. (i) Historically the first such period morphism was defined by 
Dwork for Example 1.4, (iii), cf. [Ka]. 

(ii) The period morphism for Example 1.4, (ii) induces on each connected 
component of A4 r i g a surjective morphism of the open unit polydisc of dimension 
d— 1 to P ^ - 1 . The period morphism in this case is due to Gross and Hopkins [HG] 
(their construction is slightly different). Their paper is at the origin of the results 
of this section. The passage to the rigid category is the essential novelty compared 
to Grothendieck [G, Section 5]. 

(iii) In Drinfeld's Example 1.4, (i) the period morphism coincides with the 
composition of the isomorphism (2) with the na tura l inclusion ( ^ ) r i g x Z C 
(pd-i)r ig x z e d u c e d by the identification (Ù%)T'lë = ft% (Faltings). This example 
(and trivial variants of it) is the only known one where the period morphism is 
quasi-compact. There are examples where the period morphism has finite fibres 
but is not quasi-compact. 

4. Non-archimedean period domains 

Let TT(K)wa denote the Qp-tensor category of weakly admissible filtered isocrys-
tals over the finite extension K of KQ [FO2], [Fa]. Assuming the validity of his 
conjecture (weakly admissible => admissible [Fo2]) Fontaine constructs an exact 
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fully faithful functor from this category to the category of p-adic Galois represen
tations of Gal(K/K). Composing this functor with the natural fibre functor on 
the latter (forgetting the Galois action) we obtain a fibre functor w of JrT(7<')wa 

over Qp. 
Let now G be a linear algebraic group over Qp and fix b G G(KQ). Let 1Z£V(G) 

be the tensor category of Qp-rational representations of G. Let p : Gm —» GK. Then 
to any V G 1Z£V(G) we have an associated filtered isocrystal T(V) = TfjL(V) = 
(V ®QP jrYTo, &(id ® o-),Vj}) over K, where V£ is the filtration associated to p, cf. 
Section 1. We call p weakly admissible (w.r.t. b) if T(V) is weakly admissible for all 
V G 1Z£V(G). Let p be weakly admissible. Then, assuming Fontaine's conjecture 
and composing the functor X with u) we obtain a fibre functor of 7l£V(G) over Qp. 
Let CJO be the natural fibre functor of 1Z£V(G) over Qp. Then the right G-torsor 
Hom(cJo,o; o î ) defines a cohomology class 

c ls&fOEff^Qp.G). (4) 

When G is a connected reductive group with simply connected derived group there 
is an explicit expression for this class [RZ, Section 1]. 

From now on we fix an algebraic closure KQ of KQ and take K to be any 
finite extension of KQ inside KQ. TWO 1-paramcter subgroups p,p! : Gm —> GK 
will be called equivalent if they induce the same filtrations on each V G 1Z£V(G). 
We fix a conjugacy class {p} of 1-parameter subgroups of G over KQ and denote 
by E C KQ its field of definition and E — E.KQ. Then the equivalence classes 
of 1-parameter subgroups in {p} form a projective algebraic variety F(G, {/i}) 
defined over E that is homogeneous under GE- We write T for J-(G, {pi}) if this 
is unambiguous and T = T Xspec E Spec E. 

PROPOSITION 4.1. The weakly admissible points form an admissible open subset 

T of J- stable under the action of J(QP). 

Here J is the algebraic group associated to (G,b), cf. Remark 1.3, (i). We 
call T the non-archimedean period domain associated to (G,b,{p}). From now 
on we assume that G and hence J are connected reductive groups over Qp. We 
also assume that T ^ 0 . The fundamental open question in this context is the 
following. We introduce the free abelian group A as in Section 3. Let G1 be the 
inner form of G defined by the image of cl(b,p) in H1(Qp, Gad), cf. (4) (the class 
cl(b,ji) should only depend on (b, {p})). 

HOPE 4.2. There exists a canonical tower of rigid-analytic spaces 

{MK>\ K' C G"(Qp) open compact } (5) 

each of which is equipped with an action of J(QP) and an equivariant étale mor
phism 7TKf '• M/<' —> J~ x A with image of the form T x Af, where A' is a 
union of cosets of a subgroup of finite index in A. We furthermore want Gf(Qp) to 
act on (5) as a group of Hecke correspondences covering the action on T x A, 
which is trivial on the first factor and by translations on the second factor. 

Heuristically speaking, the tower (5) should be given by the "if'-level struc-
" wa 

tures on the local system on T defined by the fibre functor u) olx, as x varies 
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" wa„ 
in T ", but it is not clear how to make sense of this. The tower of Property 3.3 
is a typical candidate (in this case we have G = G'). In Examples 1.4, (i)-(iii) this 
tower does indeed exist. 

REMARKS 4.3. (i) Assume b is basic. In the few known cases the fibres of 7^, over 
a point in A have turned out to be connected. We do not know whether to expect 
this in general when the derived group is simply connected. 

(ii) Assume b basic and that cls(&, p) is trivial. Then the triple (J,b~1,p~1) 
satisfies the same assumptions as (G,b,p) and the group associated to (J,b~1) is 
G. One might wonder whether there exists a rigid-analytic space X with an action 
of G(QP) x J(Qp) such that the towers associated to (G, b, p) resp. (J, b~l, p~x) are 
obtained by taking the quotients of X by open compact subgroups of G(QP) resp. 
J(Qp). The pair formed by Example 1.4, (i) and the moduli problem of formal 
0^-modules of dimension d — 1 and height d (dual in some sense to Example 1.4, 
(ii)) are in this kind of duality and the question was raised in this case by Gross. 

One can characterize T by geometric invariant theory as follows. To {p} 
there corresponds an essentially unique ample line bundle £onT that is homoge
neous under the derived group Gder - - For any maximal Qp-split torus T C J let 

E 

ÌF{T)SS be the Zariski-open subset of T formed by the points that are semi-stable 
w.r.t. the action of TE D Gder - on (T, £). 

E 

THEOREM 4.4. (Totaro): We have 

ïwa= p| T(T)SS. 
T C J 

\j r i g 

The admissible open subsets of T appearing on the right-hand side have 
been considered by van der Put and Voskuil [PV]. 
REMARK 4.5. The period domain ÙE (= complement of all ^-rational hyper-
planes in P^T1) has the following properties. 

(i) It is a Stein space [SS]. 
(ii) The quotient by any discrete co-compact subgroup of PGLd(E) exists 

and is a proper rigid-analytic space over E. In fact, it is a projective algebraic 
variety [Mu]. 

(iii) Let Gx be the stabilizer in PGLd(E) of a point x G P^ - 1 - Then x G Q.% 

iff Gx is compact. In fact, there is an equivariant map from ÙE to the Bruhat-Tits 
building of GLd(E) [Dl]. 

None of these statements continue to hold for general period domains. This 
raises interesting questions (cohomology of coherent sheaves, stratification by the 
amount of noncompactness of stabilizers, etc). 

5. £-adic cohomology 

If X is a rigid-analytic space over the local field E we denote by H^(X) the ith 
^-adic cohomology group with compact supports, for a fixed prime number £ ^ p 
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and a fixed algebraic closure Q^ of Q ,̂ 

HÌ(X) = HÌ(X ®E Ë; Qe). 

We continue with the set-up of the previous section but assume in addition 
that b is basic, i.e. J is an inner form of G. The tower {M/^; K1 c G'(Qp)} (with 
its Weil descent datum from E to E, cf. Remark 1.3, (iii)) — in the cases where 
it exists, cf. Hope 4.2 — defines the ^-adic representation 

HÌ((GA{rì)) = KmHÌ(MK,) 
K1 

of the product group Gf(Qp) x J(Qp) x WE- Here WE denotes the Weil group 
of E. Drinfeld [D2] has conjectured in his Example 1.4, (i) that these modules 
give a geometric realization of the Langlands correspondence on the supercuspidal 
spectrum of GLd(E), comp. [C]. Partial results in this direction are due to Carayol, 
Faltings, Genestier, and Harris. We now describe a conjecture of Kottwitz in the 
general case, which describes the contribution of the discrete Langlands parameters 
to the Euler-Poincaré characteristic in the appropriate Grothendieck group, 

H;((G,6,{/ì})) = £(-i)':ffc((G,M/4)). (6) 

Let ip : WQ —>L G = G x WQP be a discrete L-parameter, i.e. the connected 
component S^ of the centralizer group S^ = Cent^,(y?) lies in Z(G)r. We assume 
that G is obtained from a quasi-split inner form G* by twisting with a basic element 
ò* G G*(KQ), i.e. G is the inner form associated by Remark 1.3, (i) to (G*,b*). 
(This is automatic if the center of G is connected.) We use the maps [Ko2] 

G(K0) ±£* X*(Z(Gf), JÏ^Qp.G) —» X*(Z(G)r). 

These maps define elements 

Ab* - AG*(6*), Xb = XG(b), and cls(ù,/i) G X*(Z(G)r), cf. (4) . 

According to Kottwitz, generalizing the notion of strong inner forms of Vo
gali, there should be bijections nf \—> TV resp. n H-> rn that yield identifications of 
the L-packets on G1 resp. J corresponding to ip, 

ny,(G
f/) = {irreducible repns r of S^; r\Z(G)v = A&* + cls(b,p)}, 

n ^ ( J ) = {irreducible repns r of S^; r\Z(G)r = Xu + A^}. 

Even though these identifications depend on auxiliary choices, the function (7r',7r) 
>—> 7v ® rn should be well defined and associate to (TT',?!) a representation of S^. 
Here and elsewhere " denotes the contragredient representation. Let r^y be the 
finite-dimensional representation of G x WE defined by {p} [Ko2]. If ìCE denotes 
the restriction of ip to WE, then r^fly o ipE is in a natural way a representation of 
Stp x WE, via r{lly cnpE(s,w) = ^{/i}(s • VE(W))-

CONJECTURE 5.1. (Kottwitz): Let nf ® it ® g be an irreducible representation of 
Gr'(Qp) x J(Qp) x WE that contributes in a nontrivial way to (6). Then n' lies 
in an L-packet corresponding to a discrete L-parameter iff 7V does and then these 
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L-packets correspond to the same L-parameter up to equivalence. The total contri
bution of all (equivalence classes of) discrete L-parameters is given up to sign by 
the following expression: 

^2 ] C 7r' ® fi ® Hom^ (TV (g) TW, r{ßy O ipE) . 
ip discrete (7r/

l7r)Gn¥,(G/)xnv,(J) 

REMARKS 5.2. (i) Kottwitz has the prudence to assume in his conjecture that {p} 
is minuscule, as in the examples of Section 3. Based on some heuristical principles 
he has checked that the above conjecture is compatible (in the sense of Theorem 
2.1) with the corresponding global conjecture on Shimura varieties [Ko2]. 

(ii) Let b be the basic element, unique up to o--conjugacy such that A& coin
cides with the element of X*(Z(G)r) defined by {p}. Up to an obvious equivalence 
relation the representation Hl

c((G, {p})) = Hl((G,b,{p})) is independent of the 
choice of b. If the derived group of G is simply connected the above conjectural 
formula for H*((G, {p})) simplifies because then cls(b,p) = 0 and G' is isomorphic 
t oG . 

(iii) To extend this conjecture to include certain nondiscrete L-parameters, 
one might be tempted to replace cohomology with compact supports by some kind 
of "middle intersection" cohomology (?), as is done in the global case of Shimura 
varieties. 

A problem independent of the determination of (6) is the calculation of the 
cohomology of the non-archimedean period domains themselves. We describe a 
result for E.*(T ) — H^(T ®E E,Qi) as a virtual representation of J(QP) x 
Gal(Ë/E). Let P0 be a minimal parabolic subgroup of J, M0 a Levi subgroup of 
Po j a n d Ao the maximal split torus contained in the center of MQ. Let A be the 
set of simple roots of AQ in the unipotent radical of Po • F° r a parabolic subgroup 
P containing Po, with Levi subgroup M containing MQ, let Ap be the maximal 
split torus contained in the center of M, and set ap = climAp — dimAj. For 
x G X+(AQ) <8>ZR let 

Ax = {t tGÄ; (x,LJa) > 0 } , 
where uja is the fundamental weight corresponding to a, and let Px be the unique 
parabolic subgroup containing P0 such that A^ is the set of simple roots occurring 
in its unipotent radical. Any element p G {p} factoring through MQ defines a 
unique element ß G X*(AQ) <S>Z B- such that (p,x) — X ° ß f° r ^ Qp-rational 
characters x °f ^ o - Let {p}o C X ^ A Q ^ Z R be the finite subset of points obtained 
in this way. Then Gsl(Ë/E) acts on {/i}o-

THEOREM 5.3. (Kottwitz, Rapoport): The representation of J(QP) x Gal(Ë/Ë) 
on H^J7 ) is admissible for each i. In the Grothendieck group of admissible 
representations we have 

H*C{T™)= Y, ( - 1 ) " ^ , 

where Vp denotes the unique irreducible quotient of the representation of J(QP) on 
C°°(J(Qp)/P(Qp)). The action ofGa\(Ë/E) is through permutation of the indices. 
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R E M A R K S 5.4. (i) The theorem has been proved with the help of Huber suppos
ing tha t certain foundational questions concerning the ^-adic cohomology of rigid 
spaces can be resolved (the case of torsion coefficients was developed by Berkovich 
and by Huber). The proof is modeled on the approach of [AB] to the calculation of 
the cohomolog}' of the space of semi-stable vector bundles on a Riemann surface. 

(ii) All available evidence seems to indicate tha t the contribution of ß is in 
degree aJ

p_ + 2£(ß), where ß(ß) is the number of root hyperplanes separating ß 
from the positive Weyl chamber corresponding to Po. This is indeed proved by 
Schneider and Stuhler [SS] in the case of ÙE. Their paper is at the origin of the 
above theorem. 

(iii) As we have in general little control over the morphisms TTK' in the tower 
(5) (cf. Example 3.4, (iii)), the above result gives almost no information on the 
nature of (6). 

In conclusion, I express my strong belief tha t there exists a theory in the 
equal characteristic case tha t closely parallels the one outlined here. 

Acknowledgments. I thank Gross, Kottwitz, Laumon, Messing, and Zink for their 
help with this report. 
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Introduction. We will describe in a special case the conjectural relationship among 
automorphic forms, Z-adic representations, and motives. To make the discussion 
concrete, we shall restrict ourselves to weight 2 modular forms for GL^. In this case 
the modular forms can be thought of either as certain harmonic forms on products 
of the upper half complex planes and hyperbolic three spaces or as cohomology 
classes for certain quotients of these products. As such, they are relatively concrete 
and often computable topological objects. Similarly, we shall restrict attention to 
irreducible two-dimensional Z-adic representations that are de Rham with Hodge-
Tate numbers 0 and —1, and to certain abelian varieties. 

In the first section, we shall describe in some detail exactly what modular 
forms we wish to consider. In the second, we shall describe the conjectural rela
tionship to Galois theory and algebraic geometry. Finally, in the third, we shall 
describe what is currently known about these conjectures. 

Of course the situation we consider is very special and the conjectures admit 
enormous generalization (see for example [Cl]). We concentrate on this very special 
case because it is more concrete, yet the conjectures are already extraordinary and 
the difficulties seem immense. 

Modular Forms. Let Z% denote C —M and let Z^ denote a hyperbolic three space, 
that is the set of quaternions z = x + jy G IH = C © jC for which y G M>o- Then 
Z2 has an action of GL<i (R) by Möbius transformations 

a
c
 b

d):z^(az + b)(cz + d)-\ 

The same formula defines an action of SX 2 (^) on Z$ and we can extend this to an 
action of GLz(C) by letting the center act trivially. We will let c denote complex 
conjugation. 

Now let K be a number field. We decompose the set of embeddings K <—* C 
as 7^ U JC U CJC, where JR denotes those embeddings with image in R, Jc denotes 
half the remaining embeddings, and cJc denotes the set of composites c o r with 
r G Jc • We let r^ and re denote the cardinalities of JR and Jc. We let d = r^ + 2?̂ c 
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denote the degree of K over Q. We set ZK = (^tY* x %ic:> s o t n a t GL2(K) acts 
on 2j<- via 

7((^r)rG/ H U/ c ) = ((T7)(^r))rE/KUlc-

We let OK denote the direct product of all completions of the ring of integers OK 
of K at finite primes and A™ denote the ring of finite adeles of K, i.e. ÖK®OK K- If 
n is an ideal of OK then we define Ui(n) to be the subgroup of GL2(OK) consisting 
of matrices 

a b 
c d 

with c and d— 1 G XIÖK- We will write Ti(n) for the intersection Ui(n)nGL2(ÖK)-
Our main object of study will be the orbifold 

yi(n) = GL2(K)\((GL2(A^)/U1(n)) x ZK\ 

It is an orbifold of dimension 2d — re- If K has strict class number 1, it is nothing 
other than TI(Xì)\ZK, in general, it is a finite union of quotients of ZK by discrete 
groups. If K = Q, it is the complex points of a modular curve; if K is totally real, 
it is the complex points of a Hilbert-Blumenthal variety; whereas if K is imaginary 
quadratic it is an arithmetic hyperbolic 3-orbifold. 

We shall be interested in the cohomology groups Hd(Yi(n),C), which are 
finite-dimensional complex vector spaces. Analytically, JJd(Yi(n),C) can be iden
tified with a space of certain harmonic forms on (GL2(A™) /Ui(n)) x ZK that are 
invariant under the action of GL2(K) (see [H]). This provides the link with more 
usual definitions of modular forms. For example if K = Q then we obtain 

^ ( ^ ( t O . C ) S M2(T1(n))(BS2(T1(n)), 

where M2 (resp. S2) denotes the classical elliptic modular forms (resp. cusp forms). 
It is not simply the finite-dimensional vector space iJd(Yi(n),C) that is of 

so much interest, but more importantly, it comes equipped with a natural set of 
linear operators. Suppose that p is a prime of OK not dividing n. Let zup denote 
a uniformizer of Kp. Then there are two finite maps 7Ti and 7T2 : Y±(np) —> Yi(n) 
induced by the maps Id and rjp xld : GL2(A%)/U1(n)xZK -> GL2(A%)/U1(np) x 
ZK, where r]p denotes right multiplication by the element 

1 0 
0 vu«, 

G GL2(KP) C GL2(A%). 

We let Tp denote the composite 

Tn* OTT* : Hd(Yl(n),C) -> JJ d (Yi(n) ,C) . 

Similarly, there is a map a : Y\ (n) —• Yi (n), which is induced by right multiplica
tion by tÂ7gjl2 G GL2(KP). We let Sp denote cr*. The linear operators Tp and Sp 

for p / n commute among themselves; they are called Hecke operators. We let Ti(n) 
denote the Z-algebra generated by these Hecke operators in the endomorphisms 
of iJd(Yi(n),C). As the Hecke operators preserve Hd(Yi(n),Z), Ti(n) is a finitely 
generated Z-module. Also Ti(n) ® C embeds in Endc(iJd(Yi(n),C)). 
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It is the eigenvectors of T\(N) on Hd(Yi(n),C), or more precisely the corre
sponding sets of eigenvalues, that will be our main object of study. Equivalcntly 
we shall be interested in the ring homomorphisms (characters) 

9 :Ti(n) —>C. 

We shall call 9 trivial if 0(T(W)) = 1 + ì^OK/(^) for every totally positive prime 
element w G OK with w — 1 G n. It is known that the generalised eigenspaces of 
nontrivial 9 are in fact eigenspaces. We call 9 and & of levels n and n' equivalent 
if for all primes p not dividing nn' we have 9(Tp) = 9'(Tp). 

We remark that if 9 : Ti(n) —> C then its image generates a number field 
that we shall denote EQ. 

Conjectures. The expectation is that these characters 9 encode subtle arithmetic 
information of a completely different nature. We will give some of the standard 
conjectures below. Before doing so we need a couple of definitions. 

DEFINITION 1. If L and F are finite extensions of Qi we say that a continuous 
representation 

p : Gal(L/L) —> GL2(F) 

has weight two if either (or both) of the following conditions hold. 

(1) There is a finite extension VjL and an l-divisible group A/O^i such that 

P\GEì\(L7/L') *S eau^v°Ie^ t° Üie Tate module ( (lim A[Zn](L')) ®^ Q J of A as 

a Q^G^U/Lf))-module. __ 

(2) There is a finite extension L'/L and an unramified character x of GB\.(U / V) 

SUch that PlcalfLVLO ® X ^s °f ^ie form 

Xi * 
0 1 

where xi denotes the cyclotomic character. 

DEFINITION 2. Let K be a field and E a number field. 

(1) By a generalized elliptic curve over K with multiplication by E we mean 
an abelian variety A/K of dimension [E : K] together with an embedding 
E^End°K(A). 

(2) By a false generalized elliptic curve over K with multiplication by E we mean 
an abelian variety A/K of dimension 2[E : K], a quaternion algebra (possibly 
split) D with center E and an embedding D <—> End^ (A). 

(3) We shall say that an abelian variety A/K has CM over K if there is a number 
field of degree 2 dim A that embeds in Endj^ (A). 

We note that there is a natural injection from generalized elliptic curves 
over K with multiplication by E to false generalized elliptic curves over K with 
multiplication by E, which sends (A,i) to (A2,M2(E),M2(i)). We shall use this 
without mentioning it. 

We are now in a position to state the conjectures that will interest us. 
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CONJECTURE 1 (Generalized Ramanujan-Peterson Conjecture). 
If 9 : Ti (n) —> C is a nontrivial character then 

| 0 ( T P ) | < 2 ( # C V P ) 1 / 2 

for all p /n. 

CONJECTURE 2. If 9 : Ti(n) —> C is a nontrivial character then there is a finite 
extension FQ/EQ and for each prime X of FQ there is a continuous irreducible 
representation 

PQiX:G8l(K/K)—+GL2(FGiX), 

such that if pjyd (with I the residue characteristic of X) then pQt\ is unramified 
at p and pö^Frobg,) (which is a well-defined conjugacy class in GL2(FQ^)) has 
characteristic polynomial 

X2-9(Tp)X + 0(Sp){#OK/p). 

Moreover if p\l then PG^IQ^UK^/K ) ^as we^9^ %• 

We remark that in fact for any prime p)fl, PO^IQ^UK^/K ) should be com
pletely describable in terms of 9 as is described in [Ca]. 

CONJECTURE 3. If 9 : Ti(n) —> C is a nontrivial character then there is a false 
generalized elliptic curve A/K with multiplication by EQ such that for all p /n we 
have 

#A(0K/p) = # O B / ( 1 - fl(Tp) + 0 ( S P ) ( # Ö K / P ) ) 2 . 

Moreover A does not have CM over K. The quaternion algebra D implicit here 
can be taken to be split by E.K. If K has a real place the false generalised elliptic 
curve arises from a true one. 

Note that Conjecture 3 implies Conjectures 1 and 2. Conjecture 1 follows by 
using the theorems of Hasse and Weil. Conjecture 2 follows on looking at the Tate 
module. 

Further, it is now standardly conjectured that the constructions implicit in 
Conjectures 2 and 3 give rise to bijections between the following classes of objects: 

(1) Equivalence classes of nontrivial characters 9 : TTi(n) —> C, for variable n, but 
for fixed K ; 

(2) Isogeny classes of false generalized elliptic curves A/K which do not have 
CM over K; 

(3) Continuous irreducible representations 

p : Gzl(K/K) —• GL2(Qt) 

that are unramified outside a finite set of primes and that have the property 
that whenever p is a prime of K above / then PIQ^UJ^/K ) n a s weight 2. 
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Results. If K = Q, Conjectures 1, 2, and 3 are all theorems. The seminal step 
was taken by Eichler in 1954 [E]. He proved Conjecture 1, but for To(n) not 
r i (n) , and he only checked it outside an unknown finite set of primes. Shimura 
generalized this to Ti(n) [SI] and Igusa determined the possible bad primes [I]. 
Although in retrospect Eichler's paper contains most of the ingredients to prove 
Conjecture 3 (and hence also Conjecture 2), it seems that the idea of decomposing 
under the action of the Hecke algebra was a long time in arising. To the best 
of our knowledge, Conjecture 3 was proved by Shimura in his book of 1971 [S4]. 
We note that Ribet [R] proved the irreducibility of the representations. Carayol 
[Ca], following Deligne and Langiands, determined the restriction of the Z-adic 
representation to the decomposition group at any prime not dividing /. 

All this work relied on realizing the modular curve Yi(n) over the rational 
numbers and finding the desired abelian variety as a factor of the Jacobian of 
its completion. The hard part is to calculate the action of Frobenius on the Tate 
module of this Jacobian. Eichler pioneered the so-called Eichler-Shimura congru
ence relation to do this. Langlands later developed a second approach based on 
the Selberg trace formula (see [La]). 

We note that given an elliptic curve A/Q one can in practice usually check 
that A arises from some 9 : Ti(n) —> C. Indeed one can take n to be the conductor 
of A, then one can compute the first few values 9(Tp) for all 9 with that value 
of n and this should allow one to rule out all but one 9. To show that A is in 
fact associated to this 9 it suffices to show that PQì2 is isomorphic to the action 
of Gal((Q)/(Q)) on the 2-adic Tate module of A. According to the Faitings-Serre 
method [Li] it suffices to check that the traces agree on an explicit finite set of 
Frobenius elements. This is often a rather easy calculation. Whenever one makes 
such a calculation for an elliptic curve A/Q, one proves that its L-function is entire 
and satisfies a functional equation. 

Over a totally real field the situation is nearly as good. Conjectures 1 and 2 
are known, except that the Z-adic representations are not always known to be of 
weight 2 at primes dividing I. Carayol [Ca] has computed the restriction of these 
Z-adic representations to the decomposition groups at all primes not dividing I. 
Conjecture 3 is known in many cases, but not all. Specifically, it is known if K has 
odd degree or if 9 is discrete series at some finite prime, a condition that we will 
not make explicit here (see [Ca]). 

In the cases where K is of odd degree or where 9 is a discrete series at some 
finite place, Conjecture 3 (and hence Conjectures 1 and 2) follow on combining 
the results of [S3], [JL], and [A]. Indeed Jacquet and Langiands prove that in 
these cases 9 can be realized as a character of a Hecke algebra for a Shimura 
curve (part of their argument was only sketched and was completed by Arthur), 
whereas Shimura had proved the analogue of Conjecture 3 for characters of Hecke 
algebras on Shimura curves by an analogue of Eichler's method. In the remaining 
cases Conjecture 1 was proved by Brylinski and Labesse [BL] except that the set 
of bad primes was not known exactly. They used Langlands' method to analyze 
the intersection cohomology of a certain compactification of Yi(n) defined over 
Q. Wiles and the author [Wi], [Tl] settled Conjecture 2 in the remaining cases, 
except that they did not show that the Z-adic representations were of weight 2. 
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This was done by constructing congruences to characters that were discrete series 
at some finite place and then piecing together the Z-adic representations already 
constructed. Combined with [BL] this proves Conjecture 1 at all good primes. 

Whenever K is not totally real there is no known direct fink to algebraic 
geometry. The orbifolds Yi(n) do not have a complex structure. The only positive 
results in these cases (except for CM forms or base changed forms) are when K 
is imaginary quadratic. In this case there has been, for some time, considerable 
computational evidence to support Conjecture 3 (see [GHM], [EGM] and [Cr]). 
With Harris and Soudry we have recently proved (see [HST], [T4], and [FH]) the 
following slightly weakened version of Conjecture 2 in this case. 

THEOREM 1. Suppose that K is an imaginary quadratic field. If 9 : Ti (n) —> C 
is a nontrivial character such that 9(SP) = 9(Spc) for all p, then there is a finite 
extension FQ/EQ, and for each prime X of FQ there is a continuous irreducible 
representation 

peA : Gd(K/K) —» GL2(FgiX), 
such that PQ7X is unramified outside Znnc and the discriminant of K/Q. Moreover 
for all primes outside an explicit set of Dirichlet density zero PQ}\(Frobp) has 
characteristic polynomial 

X2-9(Tp)X + 9(Sp)(#0K/p). 

Combining this theorem with the Faitings-Serre method, one can prove for 
many explicit pairs 9, A/K that 

#A(öK/p) = 1 + # (0* /p ) - 0(TP) 

for all p outside a set of Dirichlet density zero. With Cremona, we carried this out 
in the case K = Q(v/=-3), 0 the unique homomorphism T((17 + v /-3)/2) --> C, 
and A the elliptic curve y2 + xy = x3 + (3 + v

/ z 3)^ 2 / 2 + (1 + y/-3)x/2. From this 
one can deduce that for this 9 and for all p outside a set of Dirichlet density zero 
we have that 

|0(Tp)|<2(#ev/p)1/2-
To prove the above theorem one considers a set of twists 9 <8) rj as rj runs over 

quadratic characters of K and where 9<8>rj(Tp) = 9(Tp)rj(p) and 9®rj(Sp) = 9(SP). 
The fact that GL2(K) is closely related to a fourvariable orthogonal group and 
the theta lift from that orthogonal group to GSp^iffj are used to construct from 
many of these 9 ® rj a character of the Hecke algebra of a space of holomorphic 
Siegel modular forms of genus 2 and weight 2 (see [HST] and [FH] for a refine
ment). Essential use is made of the disconnectedness of the orthogonal group to 
get a holomorphic lift. To ensure that the lift is nonzero for many rj we require a 
nonvanishing theorem for L-functions. We originally used a result of Waldspurger 
[Wa] and but for the result quoted above we need a stronger result of Friedberg 
and Hoffstein [FH]. Congruences between these characters and characters of higher 
weight Siegel modular forms (which also occur on the Z-adic cohomology of Siegel 
threefolds), the Eichler-Shimura congruence relation for Siegel threefolds [S2], [D], 
[CF], and the method of pseudo-representations [T2] allow one to construct for 
many 77 an Z-adic representation R^ of Gal(Q/Q) such that for almost all rational 
primes p that split p = ppc in K, ^ (Frobp) has eigenvalues contained in the 
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set of roots of (X2 - 9(TP)X + 9(Sp)p)(X2 - 9(TP*)X + 9(Sp)p), whereas for al
most all inert primes p, Jü7?(Frobp) has eigenvalues contained in the set of roots of 
XA - 9(TP)X2 + 9(Sp)p

2. See [T2] and [T3] for details. One can then show tha t 
there is a two-dimensional Z-adic representation r of Gal(K/K) such tha t for many 
i] we have R^ = r (8> t] © (r ® i])c (see [T4]). It is then not hard to see tha t r is the 
desired representation. 
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on Ricci Curvature 
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There is a well-develop ed theory of the behavior of Riemannian metrics on smooth 
manifolds, which have uniform bounds on the sectional curvature K. The com
pactness theorem of Cheeger-Gromov [Ch], [Gr] implies that the space of metrics 
satisfying the bounds 

\K\ < A, vol > v, diam < D, (0.1) 

is C1 , a precompact. Thus, given any sequence of metrics gi satisfying the bounds 
(0.1), there is a subsequence {i'} and a sequence of diffeomorphisms cj)^ of M, 
such that the isometric metrics g[ = (<pi')*gi> converge, in the C1,a topology on 
M, to a C1,a: metric g^ on M, Vo/ < a < 1. If the volume or diameter bounds 
are removed in (0.1), one no longer has such compactness, but the degeneration 
of the sequence {gi} is well understood, through the works of Cheeger-Gromov 
[CGi], [CG2] and Fukaya [F], cf. also [CGF]. The manifolds (M,^ ) divide into 
two regions, the thick part ME and the thin part ME. Roughly speaking, on Me 

the metrics converge, as above, to a limit Cli0t metric, while the complement M£ 

is e-collapsed along a well-defined topological structure, called an F-structure, or 
more generally an Af-structure. 

Here, we are basically concerned with the possible extensions of such a theory 
to spaces of metrics with bounds imposed on the Ricci curvature, in place of the full 
curvature. There are several (related) reasons why it is important to consider such 
extensions. First, both the metric and the Ricci curvature are symmetric bilinear 
forms. Thus, the problem of controlling the behavior of metrics with bounds on 
Ricci curvature is, roughly speaking, a determined problem. Assuming bounds on 
the full curvature corresponds to a highly overdetermined problem. To illustrate 
this, there are very few manifolds, in general dimensions, that admit metrics of 
constant curvature. It is not unreasonable to expect that most manifolds admit 
metrics, or possibly metrics with mild singularities, of constant Ricci curvature, 
i.e. Einstein metrics. Second, one of the main applications of an understanding 
of convergence and degeneration of sequences of metrics would be to establish an 
existence theory for canonical or distinguished metrics on compact manifolds, as for 
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instance has so beautifully been carried out on the space of connections by Taubes 
and Uhlenbeck. Such canonical metrics would typically be minima or critical points 
of natural functionals on the space of metrics. For such variational problems, one 
needs to understand the behavior of spaces of metrics with (various) bounds on 
the Ricci curvature; assuming bounds on the sectional curvature is too strong a 
restriction to be directly applicable for existence questions. Similar remarks apply 
for the study of the moduli space of such canonical metrics. 

In this report, we will survey some aspects of recent progress in this area. 
The discussion will be concerned, by and large, only with Riemannian metrics; for 
a survey of the substantial progress for Kahler and Kähler-Einstein metrics, see 
[Ti]. 

1 Einstein Metrics 

The existence and moduli of Einstein metrics on surfaces, i.e. constant curvature 
metrics, is classical, and answered by the uniformization theorem and Teichmüller 
theory. Ideally, one would like to develop a similar theory for higher dimensional 
manifolds. There are well-known obstructions to the existence of Einstein metrics 
in dimensions 3 and 4, although presently none are known in higher dimensions. 
This, together with the generally observed phenomenon that geometry appears 
to be tied closer to topology in low dimensions, makes the existence and moduli 
question possibly most interesting for low-dimensional manifolds. 

For 3-dimensional manifolds, this essentially corresponds to the Thurston 
Geometrization program [Th]. In fact, Thurston's Haken manifold theorem [Th] 
remains to date the sole result (for non-Kähler manifolds) that establishes the 
existence of an Einstein metric in dimension > 2 under topological hypotheses. It 
would appear that in dimension 3, one has the best chance to carry out a complete 
existence program; however, this will not be discussed here, and we refer to [A7] 
for further details. In dimensions 4 and above, the existence theory for Einstein 
metrics still seems to be out of reach. However, there has been much progress on 
the structure of moduli of Einstein metrics on 4-manifolds. One hopes that these 
results might also shed light on the existence question. 

Let M be a closed 4-manifolcl. Let 8 denote the moduli space of Einstein 
metrics on M, of volume 1. Let 8X, 8\, and 8° denote the metrics in 8 of scalar 
curvature > A, < A, and 0 respectively. Also, let 8X, 8\, and 8° denote the com
pletions of these spaces with respect to the Gromov-Hausdorff topology [Gr]. 

An Einstein orbifold (V, g) is a 4-dimensional orbifold with a finite number of 
singular points {qi}, such that on the complement, g is a smooth Einstein metric. 
The singular points are cones on S3/T, for a finite subgroup of 0(4) and, when 
lifted to the universal cover BA \ {0} of C(S3/T) \ {0}, the metric 0 is required 
to extend smoothly across {0}. An orbifold singular Einstein metric on M is a 
symmetric bilinear form of the form g = ir*(g), where TV : M —> V is a resolution of 
the Einstein orbifold (V,g). Thus, TT is a continuous map and, off the degeneration 
set D = UDi, Di = Tv~1(qì), TT is a diffeomorphism onto its image V0 = V \ U{çi}. 

The coarse structure of moduli spaces of Einstein metrics on 4-manifolds 
bears a strong resemblance to the moduli of constant curvature metrics on sur
faces. The descriptions given in Theorems 1-3 below should be compared with the 
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description of moduli of constant curvature metrics on surfaces of genus 0 , 1 , and 
g > 2 respectively. 

THEOREM 1. [Ai], [BKN]. For any X > 0, the completion 8X is compact and 
consists of smooth and orbifold singular Einstein metri.cs on M. 

THEOREM 2. [A4]. The completion 8° is locally compact but generally noncompact, 
and again consists of smooth and orbifold singular Einstein metrics on M. A 
sequence {gi} G 8° diverges in the Gromov-Hausdorff topology if and only if {gi} 
collapses, in the sense of Cheeger-Gromov [CG2], metrically on the complement 
of an a priori bounded number of small balls {BZk(EJ)}, e7; —> 0 as i —» 00. In 
particular, inj9i (x) —> 0, \/x G M. 

THEOREM 3. [A4]. For any A < 0, the completion 8\ is locally compact and 
generally noncompact, and again consists of smooth and orbifold singular Einstein 
metrics on A4. A divergent sequence {gi} G 8\ in the Gromov-Hausdorff topology 
either collapses, as in Theorem 2, or gives rise to an a priori bounded number of 
cusps TV/.. Each N^ is a complete, noncompact (possibly orbifold singular) Einstein 
4-manifold, with diam N^ = 00 and vol N^ < 1. Each N^ can be smoothly embedded 
in A4, and the complement is collapsed to a lower dimensional space under {gi}. 

Somewhat more general results than Theorems 1-3 can be found in [A4]. 
The orbifold-singular Einstein metrics on A4 arise from degenerations of non-
compact Ricci-flat 4-manifolds, which are asymptotically locally Euclidean (ALE), 
i.e. asymptotic to the flat metric on the cone C(S3/T) at infinity. Roughly speak
ing, if {gi} is a sequence of Einstein metrics, converging to an orbifold singular 
metric, then regions where the curvature goes to infinity metrically and topologi
cal^ resemble rescalings of Ricci-fìat ALE spaces. Because the curvature may go 
to infinity at different rates or scales near a given point, in general one has a finite 
set of such spaces associated to an orbifold singularity. The detailed analysis of the 
metric and topological degeneration near such a singularity has been carried out 
by Bando [B], cf. also [ACi],[A4]. In particular, the orbifold singularities typically 
crush (some) essential 2-spheres in A4 to points. 

Ricci-flat ALE spaces were first systematically studied by physicists, cf. [GH]; 
the half-conformally flat, Ricci-flat ALE spaces have been classified by Kronheimer 
[Kr]. 

There are numerous examples, mostly arising from Kahler-Einstein metrics 
on complex surfaces, that illustrate the results of Theorems 1-3. One particular 
application of these results is a new proof of the Global Torelli and Surjectivity 
theorems for K3 surfaces [A4]. 

Relatively few moduli spaces 8 of (real) Einstein metrics on 4-manifolds are 
explicitly known. The Gauss-Bonnet theorem implies that the Euler characteristic 
x(A4) > 0 for Einstein 4-manifolds, with equality iff A4 is flat. Thus, all Einstein 
metrics on a flat 4-manifold are necessarily flat. Whether the 4-sphere SA admits 
a nonstandard Einstein metric has been a long-standing open problem. Recently, 
as a corollary of their very interesting work on the Minimal Volume problem of 
Gromov, Besson-Courtois-Gallot [BCG] have shown that if M 4 admits afrypcrbofic 
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metric, then this metric is the unique Einstein metric on M 4 , thus generalizing 
the Mostow rigidity theorem in this context. 

The only other moduli space that is explicitly known is the moduli of Einstein 
metrics on the K3 surface, and its quotients. The Hitchin-Thorpe inequality cf. 
[Be] implies that all Einstein metrics are then hyper-Kähler; this rigidity gives the 
moduli close ties with the cohomology of the K3 surface. 

It is unknown to what extent Theorems 1-3 generalize to higher dimensions. 
These results do remain valid in all dimensions, for those domains in the moduli 
spaces on which there is a bound on the scale-invariant norm J \R\n/2 < A, n = 
dimM. 

We list several conjectures and questions raised by these results. 

CONJECTURE 1. If {gi} is a divergent sequence in 8\, for A < 0, then the sequence 
cannot collapse, in the sense of Theorem 2. In particular, there are points Xi G M 
such that injXi(M,gi) > 6 = S(X) > 0. 

This conjecture is motivated by the case of surfaces, for which it is of course 
true. 

CONJECTURE 2. If {gi} is a sequence in 8 that collapses, in the sense of Theorem 
2, then Af is a resolution of a flat 4-manifold with isolated singularities. In fact, 
we conjecture that in a collapsing sequence, all of the curvature concentrates in 
the singularities, i.e. the small balls {BZk(e)}. 

Note that if {gi} collapses, then the set of singularities must be nonempty, if 
the metrics are not flat. Namely, the absence of singularities implies, by Theorem 
2, that M admits an F-structure [CGi] and thus x{M) = 0. 

QUESTION 1. Are there only finitely many components Ci to the moduli space 8 
on 4-manifold Ml A related question is whether the completions Ci locally have 
the structure of a real analytic variety. 

If g is a smooth Einstein metric on M, then a neighborhood of g in 8 does 
have the structure of a real analytic variety, cf. [Ko]. 

QUESTION 2. Does every simply connected 4-manifold admit an orbifold singular 
Einstein metric? 

This is motivated by the fact that orbifold singularities arise from a collapse 
of essential surfaces in M, and that the structure of H2, via the Hitchin-Thorpe 
inequality, sometimes serves as an obstruction to the existence of Einstein metrics. 

A natural collection of questions is to what extent the converses of Theorems 
1-3 hold. For instance, 

QUESTION 3. Let (V,g) be a 4-dimensional Einstein orbifold. Does there exist 
a smooth 4-manifold M and a smooth family of Einstein metrics gt on M that 
converge to (V, g) in the Gromov-Hausdorff topology? 

The only known case where this has been answered (affirmatively) is for 
hyper-Kähler orbifolds. Recently, Joyce [J] has constructed Ricci-flat metrics, in 
fact metrics of holonomy G2 or Spin(7), on closed 7 and 8-manifolds, by resolving 
certain singular flat metrics. 
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It is natural to ask if analogues of Theorems 1-3 hold for other "canonical" 
metrics on 4-manifolds, for instance metrics that are critical for the functionals 
II2 = f\R\2 or W2 = J\W\2, where R (resp. W) is the Riemann (resp. Weyl) 
curvature tensor. For example, half-conformally flat metrics are critical (in fact, 
minima) for W2. Recently, it has been shown that Theorem 1, with slight modifi
cations, holds for critical metrics of 1Z2 and W2 , as well as other functionals [Ag]. 
Whether Theorems 2 and 3 hold for these metrics remains unknown. 

2 Metrics with | Rie | < A 

In this section, we will be concerned with the extension of the results of Section 
1, i.e. convergence and degenerations of metrics of constant Ricci curvature, to 
metrics of bounded Ricci curvature. Besides the intrinsic interest of this ques
tion regarding relations of geometry to topology of manifolds, perhaps the main 
motivation is toward the study of the existence problems mentioned above. 

First, the following result shows that Theorem 1 generalizes (via the Myers 
theorem) to metrics with bounds on Ricci curvature. 

THEOREM 4. [A3]. Let A4 be a closed J^-manifold. Then for arbitrary positive X, 
v, D, the closure in the Gromov-Hausdorff topology of the space of metrics on A4 
satisfying the bounds 

I Rie I < A, vol > v, diam < D, (2.1) 

is compact and consists of C1 '" smooth and orbifold-singular metrics. 

The orbifold singular metrics are as described in Section 1. The same result 
holds in all higher dimensions, provided one assumes in addition a bound 

/ \R\n/2 < A. (2.2) 

For instance, if n is odd, then one has a smooth compactness theorem under 
the bounds (2.1) and (2.2). One may compare this with the Cheeger-Gromov 
compactness theorem mentioned in the introductory section. 

The key ingredient in passing from Theorem 1 to Theorem 4 is the notion 
of harmonic radius, introduced and studied in [A3] and [AC2]. For example, the 
L2,p harmonic radius of a smooth closed 77,-manifold (A4,g) is the radius r^ of 
the largest geodesic ball B = Bx(rh) on which one has harmonic coordinates 
U = {ui} : B —> Mn, such that the metric g^ in these coordinates satisfies the 
(scale-invariant) bounds 

e oij < g%j S e Oij, 

There are similar definitions for the LkiP harmonic radius. A useful feature of this 
radius is that it is continuous in the (strong) Lk,p topology, provided k — ̂  > 0, 
corresponding to the Sobolev embedding. 
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Theorem 4 implies that there is almost a smooth compactness theorem for 
metrics on fixed 4-manifolds, under the boimds (2.1); the possible degenerations 
of the metric are well understood. However, an associated finiteness result for the 
possible topological types under the bounds (2.1) remains unknown. On a fixed 
4-manifold, the bounds (2.1), via the Gauss-Bonnet theorem, imply a bound on 
the Jy2 norm of the full curvature; this bound is required in the proof of Theorem 
4. We conjecture that such a bound is in fact not necessary: 

CONJECTURE 3. For a given (X,v,D), there are only finitely many diffeomorphism 
types of 4-manifolds admitting metrics satisfying (2.1). 

Whether Conjecture 3 holds also in higher dimensions is of course also an open 
question. There is however less evidence on which to make a definite conjecture. 

The analogues of Theorems 2 and 3 also hold for metrics with bounds on 
the Ricci curvature. Thus, suppose {gi} is a sequence of metrics on a closed 4-
manifold M satisfying |Ric| < A, i.e. the volume or diameter bounds in (2.1) 
are removed. Then, modulo diffeomorphisms, a subsequence either collapses, on 
the complement of an a priori bounded number of (arbitrarily) small balls, or 
converges, in the pointed Gromov-Hausdorff (and C1,a) topology, to a countable 
collection of complete cusps, possibly with orbifold singularities, cf. [As]. 

Finally, these results, and their proofs, remain valid for sequences of metrics 
satisying an IP bound on the Ricci curvature, in place of an L°° bound, provided 
p > n/2. The only distinction is that the cusps may not be complete, and that 
the limit metrics are no longer C1,Ci, but only L2,p. The proofs remain identical, 
cf. again [Aß], with the use of the isoperimetric inequality of Gallot-Yang [Ga],[Y], 
compare also [Y]. 

3 Metrics with Rie > -A 

There has a been a great deal of progress recently on the behavior of metrics with 
a lower bound on Ricci curvature. In this section, we briefly report on some of 
these developments. 

Much of this activity began with the celebrated examples of Sha-Yang [SYi] 
on metrics of positive Ricci curvature on manifolds of dimension > 7, with arbi
trarily large Betti numbers &&, k > 2. Shortly thereafter, this result was improved 
to all dimensions > 4 by Sha-Yang [SY2] and independently, and by a different 

k 

method, in [A2]. For instance, # S x S2, for arbitrary k, carries metrics of positive 
1 

Ricci curvature. 
The construction of examples in [SYi], [SY2] is by a delicate metric surgery, 

using two-fold warped products. The construction in [A2] is based on the gravita
tional instantons (Ricci-flat ALE spaces, cf. Section 1), constructed explicitly in 
[GH]. Somewhat later, it was shown in [A5] how the Sha-Yang construction can be 
conceptually understood and recaptured by using other Ricci-flat models, namely 
the n-dimensional Schwarzschild metric. This is a Ricci-flat manifold, topologically 
Wl~2 x S2, that is asymptotically locally flat (ALF), i.e. asymptotic to the flat 
metric on R71'1 x S1 . 
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For instance, suppose (N,g) is a closed (n — l)-manifold with Rie > 0, and 
let M1 — Nr x Sl, with product metric. For an arbitrary disjoint collection of small 
balls Bi C N, one may perform surgery on Bi x S1, replacing these regions in A4' 
by R"'~2 x S2, to obtain a closed ?i-manifold A4. It is easily seen that a suitably 
scaled Schwarzschild metric on En~2 x S2 may be smoothly joined to the product 
metric on A4' on the complement of these regions, preserving nonnegative Ricci 
curvature. 

When these metrics of positive Ricci curvature are normalized to have di
ameter 1, all have the property that the volume goes to 0, as some Betti number 
o/. —> oo. This raises the question (cf. [A2]) of whether there are metrics satisfying 

Rie > 0, vol > v > 0, diam = 1, (3.1) 

on manifolds with arbitrarily large Betti numbers b^, k > 2; compare with Conjec
ture 3. Recently, Perelman [P2] has constructed such examples in dimensions > 4, 

fc 
for instance # C P 2 carries such metrics. The idea is to construct certain complete 
metrics on CP2\ball that are asymptotically conical, and rescaling these spaces, 
glue them metrically onto SA, with a singular metric of K > 0. 

All these examples indicate that the degeneration of sequences of metrics 
satisfying the bounds 

Rie > -A, vol > v, diam < D, (3.2) 

or 
Rie > -A, diam < D, (3.3) 

are likely to be rather complicated. Namely, the Ricci-flat ALE spaces discussed 
in Section 1 lead to orbifold singularities in limits of sequences of Einstein met
rics, or metrics with two-sided bounds on Ricci curvature, on a fixed 4-manifold. 
These (topological) singularities of the limit correspond to a collapse of topology 
in (A4,gi) to a point. On the other hand, in regions where the limit is smooth, one 
has good convergence to the limit, cf. [A3]. 

Now, rescalings (blow downs) of the examples above show that the degen
erations, both topological and metric, within the classes (3.2), (3.3) are likely to 
be very complicated locally, and lead to rather complicated singularities of limit 
spaces. 

Thus, consider first the case of sequences satisfying (3.2) or (3.3), whose 
Gromov-Hausdorff limits are smooth. To what extent are the geometry and topol
ogy of the limit related to those of the sequence? The first result along these lines is 
that the space of metrics satisfying bounds stronger than (3.2), namely the bounds 

Rie > —A, inj > i0, diam < D, (3.4) 

is compact w.r.t. the Ca topology, cf. [AC2]. Thus, both the topology and the 
metric are well preserved under limits. 

A significant advance was achieved by Perelman with the following sphere 
theorem, answering a question in [A2]: 

THEOREM 5. [Pi]. There is an e = E(TI) such that if A4n satisfies RìCM > (n — 1) 
and vol A4 > (1 — E) • vol5'n(l), then A4n is a homotopy sphere. 
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This improved a previous result [A3] where in addition an upper bound on 
the Ricci curvature was assumed. This assumption yields however the stronger 
conclusion that M is diffeomorphic to the sphere Sn, and the metric C1,a close to 
Sn(l). 

Until recently, it was not known to what extent the metric or topology was 
preserved for smooth Gromov-Hausdorff limits. Thus, suppose (Mi,gi) is a se
quence of Riemannian rc-manifolds satisfying (3.3), which converges in the Gromov-
Hausclorff topology to a limit space (X, g), which is a smooth (or C°) Riemannian 
n-manifold. The author and Cheeger conjectured that vo\gi(Mi) —>• vol9(X), i.e. 
the volume is continuous for the space of smooth manifolds satisfying (3.3) under 
the Gromov-Hausdorff topology. If this were true, when combined with Theorem 
5, it would follow that the manifolds Mi are homotopy equivalent to the limit 
manifold X, for i sufficiently large. This conjecture has recently been solved by 
Colding: 

THEOREM 6. [Co]. Let (Mi,gi) be a sequence of closed n-manifolds, satisfying the 
bounds (3.3), that converges to a smooth Riemannian n-manifold (X,g) in the 
Gromov-Hausdorff topology. Then 

lim vol M = vol X. 
i—>oo g% g 

In fact, Colding has shown in addition that M» is homeomorphic to X, using 
the controlled /i-cobordism theorem and related results from controlled topology. 
Thus, when the limit space has no singularities, and is of the same dimension, one 
has quite good convergence properties for the topology. 

We note that the dimension assumption here is sharp. If (Mi, gì) is a sequence 
of n-manifolcls satisfying (3.3), and converges in the Gromov-Hausdorff topology 
to a smooth Riemannian manifold (X, g) of dimension < n — 1, then Mi may not 
be topologically related to X in any simple way, e.g. as a bundle or fibration over 
X, as shown in [A5]. In fact, examples constructed there may be chosen to have 
bk(Mi) > i, for any given k > 2. 

Colding's theorem, and its method of proof, have opened up the possibil
ity of studying in more detail the local structure of spaces satisfying Rie > — A, 
diam < D, and their limits in the Gromov-Hausdorff topology. For instance, 
Cheeger-Colding [CCi] have very recently proved the Splitting conjecture, a gener
alization of the Cheeger-Gromov splitting theorem. Thus, if (Mi, gì) is a sequence 
of Riemannian n-manifolds, with Rie > —A, which converges in the Gromov-
Hausdorff topology, to a limit space X containing a fine L, then L splits off iso-
metrically in X, X = X1 x L. In addition, they have begun a study [CC2] of the 
regularity of limits X of spaces with a lower bound on Ricci curvature, as has been 
carried out with such success for Alexandrov spaces. 
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Minimal Foliations and Laminations 

V I C T O R B A N G E R T 

Mathematisches Institut der Universität Freiburg, 
Hebelstr. 29, 79104 Freiburg, Germany 

1. Introduction 

Usually one looks for a compact minimizer to a variational problem, as for exam
ple in the classical Plateau problem. Here we concentrate on problems in which 
the minimizers are noncompact and complete while the surrounding manifold is 
usually compact. This gives the area a dynamical flavor because notions like limit 
sets, recurrence, etc., naturally appear. Consequently the theory of dynamical sys
tems and foliations will play an important role. Because of its great interest in 
Hamiltonian systems the theory of one-dimensional minimizers is best developed, 
cf. the lectures by Bolotin and Mane at this congress, the lecture by Mather at 
the ICM 1986, and Section 3. 

Section 2. treats the "Plateau problem at infinity" where one considers the 
universal cover A4 of a compact Riemannian manifold A4 with infinite fundamental 
group and assumes that it has some "ideal boundary" doo A4 at infinity. Then jane 
prescribes the boundary of the sought volume-minimizing submanifold in d^M. 

The following phenomenon is fundamental for the results surveyed in Sec
tion 4. If we have a noncompact complete minimizing hypersurface without self-
intersections in A4 then by the maximum principle its limit hypersurfaces form a 
lamination of A4, i.e., they are pairwise disjoint injectively immersed lrypersurfaces 
whose union is a closed subset K of A4. In many cases K will look like a Cantor 
set in directions transverse to the hypersurfaces. But we may also have K — A4 
so that we obtain a foliation of A4 by minimal hypersurfaces. This situation is 
pretty well understood if A4 is an 7i-torus: for small perturbations of flat metrics 
KAM-theory yields foliations by minimal hypersurfaces, whereas in general one 
can only expect laminations. 

In many cases, however, the minimizers may have self-intersections, as, e.g., 
the geodesies on compact surfaces of negative curvature. In [G] Gromov sketches 
a framework — worked out in particular instances — that allows for dynamical 
considerations also in such cases. 

Section 5. is devoted to the stable norm on the fcth real homology Hk(A4n,M) 
of A4n — an interesting invariant of a Riemannian manifold that is closely related 
to the existence of minimizers with certain homological properties. The results 
presented concern primarily the cases k = 1 and k = n — 1. 

If one tries to characterize standard Riemannian structures by the properties 
of their minimizers one obtains geometrically interesting rigidity problems — a 
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prototype being the Hopf conjecture recently solved by Burago and Ivanov [Bll], 
see Section 6. 

There are interesting relations to geometric measure theory and to the theory 
of foliations that are not yet worked out: a measured lamination by oriented ho
mological minimizers can be considered as a minimizing real current in the sense 
of geometric measure theory. On the other hand, there is a rich literature on folia
tions that admit a Riemannian metric such that the leaves are minimal, see, e.g., 
the short survey by Sergiescu [S]. 

2. The asymptotic Plateau problem in hyperbolic manifolds 

In this section we consider a complete simply connected manifold (Mn,g^) of 
negative curvature — b2 < K < — a2 < 0 together with a second Riemannian metric 
g that is Lipschitz equivalent to go, i.e., there exists c > 1 such that c-2oo < 9 < 
c2go. This situation arises if one lifts an arbitrary metric on a compact manifold of 
negative curvature to the universal cover. In this setting the existence part of the 
"fc-dimensional asymptotic Plateau problem for (Mn,g)" has a very satisfactory 
solution for every 1 < k < n — 1 while there will not be uniqueness in general. The 
fundamental idea goes back to Morse [M]. 

If we have a #-volume minimizing compact A;-dimensional submanifold D Ç 
Mn with boundary, i.e., vol^(D) < vol^(J)') for every compact k-dimensional 
D' Ç Mn with dD = dDf then obviously D satisfies volf (D) < c2kvol9

k°(Df), i.e., 
D is c2fc-quasiminimizing with respect to g^. The fundamental result in the exis
tence problem is a uniform estimate for quasiminimizing submanifolds in (Mn, g^). 
Frequently, the Plateau problem can not be solved in the class of smooth sub-
manifolds; thus, we use notions from geometric measure theory: locally rectifiable 
Z2-currents (if 1 < k < n — 1) and locally rectifiable (Z-)currents (if fc = ra — 1). 

THEOREM 2.1 [BL] Let (Mn,go) be a simply connected complete Riemannian 
manifold with sectional curvature —a2 < K < — 1. Let S be a k-dimensional 
X-quasiminimizing Z2-current (L-current if k = n — 1) with compact support in 
(Mn,go) and let G denote the convex hull of spt(dS). Then 

dist(z, C) < d 

for all x G spt(S') where d is a constant depending only on a, X, k and n. 

In conjunction with results from [An3] and [Mor] Theorem 2.1 implies that for 
fc > 1 the asymptotic Plateau problem is solvable in (Mn,gç)) if the prescribed 
boundary W Ç d^M71 is a compact topological submanifold. 

If fc = ra— 1 and (Mn ,^o) is hyperbolic space then Lang [La2] determines the 
optimal constant d in Theorem 2.1, d — \^/X2 — 1. Moreover, he shows that in this 
case one can solve the asymptotic Plateau problem for all boundaries W Ç d^H71 

that satisfy W = dA for some A Ç d^H71 with clos (int A) = A. Finally he gives 
an example showing that the asymptotic Plateau problem cannot be solved for 
slightly more general W. In the case ra = 3 Lang [Lai] also obtains the same 
optimal estimate for area-quasiminimizing (or "homotopically quasiminimizing") 
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planes in H3. The Plateau problem at infinity for (A4n,go) itself has been treated 
by Anderson [Ani, An2]. 

In general the solution to the Plateau problem at infinity is not unique. 
Uniqueness fails even in hyperbolic 3-space for fc = 2 as follows from [An2]. Under 
additional assumptions, however, one has uniqueness results [Ani], [HL], see also 
[P]. In general the nonuniqueness prevents one from filling a given foliation of S ^ M 
by a foliation of A4 with #-minimizing leaves. However, in this context Gromov [G] 
proved the following interesting perturbation result. 

THEOREM 2.2 Let (A4,go) be a compact manifold with sectional curvature K = 
—1 and let gt be a deformation of go that is continuous in the C2-topology. Let 
Grfc(M,£o) denote the bundle of k-planes over A4 that is foliated into k-dimen-
sional leaves consisting of the tangent planes to totally geodesic immersed sub-
manifolds of (A4,go). Then there exists e > 0 and a family of continuous maps 
Xt'. Gvfz(A4,go) —> A4, t G (—e,E), sending the leaves of Gr&(M,go) to immersed 
gt-minimal submanifolds of A4. 

3. The one-dimensional case: Geodesies 

We let (A4,g) be a compact Riemannian manifold. Geodesies will always be as
sumed to be parameterized by arclength. 

DEFINITION 3.1 A geodesic c: R —> A4 is minimal if for every pair s <t m R and 
every curve 7: [s,t)—>A4 homotopic to c|[flji] with fixed endpoints we have 

V{c\[aA)<tf(i). (1) 

We say that c is homologically minimal if (1) even holds for all 7 homologous (say 
over Z) to c|[Sjij. 

Observation: A minimal geodesic exists on (A4, g) iff A4 has infinite fundamental 
group. A homologically minimal geodesic exists on (A4,g) iff H\(A4,R) ^ 0. 

Minimal geodesies have first been introduced by Morse [M] under the name 
"geodesies of class A". Their lifts to the universal cover are sometimes called 
"lines" because they are the shortest connections between any two of their points. 
A large class of Hamiltonian systems on cotangent bundles can be described by 
a variational principle that leads to an analogous definition of "action-minimizing 
orbit". This more general case is intensively studied, cf. [Ma3] and [Her]. Here we 
only describe some of the results that shed light on the case fc > 1. 

The concepts of "rotation vector" and "stable norm on H\(A4,R)" have 
proved useful in the study of homologically minimal geodesies. 

Rotation set of a curve. Suppose 7: R —> A4 is parameterized by arclength. An 
element v G J/i (A4, R) belongs to the rotation set R(j) Ç Hi (A4, R) of 7 if there 
exist sequences Si < ti in R with l i m ^ o o ^ — Si) = 00 such that for all closed 
1-forms 6 on A4 

rU 
([9},v)= lim (U-Si)'1 / 6(<y(t))dt. (2) 
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Here ( , ) denotes the bilinear pairing between iJx(M,R) and iJi(M,R). If (2) 
holds for a set of 0 whose cohomology classes generate H1 (M, R) then (2) holds 
for all closed 1-forms. If we set ||0||* = maxpGM |0p|* where |0p|* denotes the 
Riemannian norm of 0P G TM* then |ö(-y(*))| < ||0||*. This implies R(j) ^ 0. 

Stable norm on JZ"i(M,R) ([F],[GLP]). If v* G Jfi(M,R) is a real class corre
sponding to some v G H\(M,Z) we define \\v^\\ = limm_>oo ^M(m • v) where 

i L 

M(v) = inf < 2_] \ni\ ^3{li) | Tii E Z, 7i are closed curves and ]T) nili = v \ • 
i=i 4=1 J J 

It is not difficult to show that || || has a unique extension to a norm on iJi(M,R). 
Note that #(7) is contained in the unit ball B of || || if I7I = 1. This follows 

from the fact that || || is dual to the quotient norm || ||* on JT1(M, R) induced 
from the norm || ||* on 1-forms defined above, cf., e.g., [GLP, 4.35]. 

Now we can state the main results from [Ba5]. 

THEOREM 3.1 For every homologically minimal geodesic c: R —> M there exists a 
supporting hyperplane H of B such that the rotation set R(c) is contained inHC\B. 

THEOREM 3.2 For every supporting hyperplane H of B there exists a nonempty 
closed set of homologically minimal geodesies whose rotation sets are contained in 
HHB. 

As there exists a basis of H\(M, R) consisting of exposed points of dB, i.e., points 
v G dB with a supporting hyperplane H satisfying H PI B = {v}, we obtain at 
least &i = dimiJi(M,R) geometrically distinct homologically minimal geodesies. 
To some extent this result is optimal: [Ba5] determines quite explicitly the minimal 
geodesies in an example of a Riemannian 3-torus due to Hedlund [He]. Here B 
is an octahedron and there exist three minimal periodic geodesies Q such that 
R(Cì) = {vi} where v\, v2, v$ are linearly independent vertices of B. Moreover, 
every minimal geodesic c is asymptotic in each of its senses to a reparameterization 
of one of the Q . 

Elegant proofs for Theorems 3.1 and 3.2 can be given using Mather's theory 
of minimal measures [Mai] which in [Ma3] is applied to the more general setting of 
Lagrangian systems on TM x S1. In our case one would define minimal measures 
as follows. Let p be a Borei probability measure on the unit tangent bundle UM 
that is invariant under the geodesic flow. We can associate to p a rotation vector 
R(p) G iJi(M,R) by requiring 

([9}iR(p))= f ( 
JUM 

e dp 

for all closed 1-forms 0. Note that R(p) G B. We call p minimal iff R(p) G dB. 
Now the results from [Ma3] imply: 

THEOREM 3.3 Let H be a supporting hyperplane of B, let AAH
 oe the set of mini

mal measures with R(p) G H, and set MH = clos([J {spt(/.i) | p G MR }) Ç UM. 
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Then the geodesies with tangent vectors in A4u are homologically minimal and they 
form a Lipschitz lamination of A4. 

In the Hedlund example these laminations only consist of the unions of the three 
periodic geodesies c7;(R). 

Now we come to two special situations in which much stronger results arc 
true. We first consider small perturbations of flat metrics. In this case KAM-theory 
applies, cf. [SZ]: 

THEOREM 3.4 Let (Tn,go) be a flat torus. For every I > A(n — 1) -f- 2 there exists 
a neighborhood U of go in the Cl -topology on the space of Riemannian metrics on 
Tn such that the following holds for all v G Rn satisfying diophantine conditions 

\j-v\>j\j\~T (forallQ^jeZn) 

with'y > 0 andn—1 <r< lj^: If g G U there exists a foliation ofTn by g-minimal 
geodesies that is conjugate to the foliation ofTn by straight lines with direction v. 
Adoreover the conjugating diffeomorphism is of class C1~2T~~2 if I — 2r 0 H. 

Here o-minimality of the geodesies follows from the fact that KAM-tori are always 
Lagrangian, cf., e.g., [Her]. The stability (under perturbations) of the (sufficiently) 
irrational foliations that is guaranteed by this deep theorem is in striking contrast 
to the instability of foliations with rational direction: these obviously disintegrate 
into finitely many periodic geodesies for an arbitrarily small generic perturbation 
of go-

Finally we treat two-dimensional tori (T2,g). This case is closely related to 
Aubry-Mather theory for monotone twist maps of the annulus, cf. [BP] and [Ba3]. 
Suppose v\ and v2 are linearly independent integer classes in iJ i (T2 ,R) . Then 
it is an important fact that essentially goes back to the work of Morse [M] and 
Hedlund [He], see, e.g., [Ba3], that there exist closed geodesies Ci in Vi such that 
I>g(ci) = libili ? * — 15 2. Because c\ and C2 intersect transversely their conjunction 
c\ * C2 is not a geodesic. Hence 

IK + v2\ < L9(CI *c2) = |K|| + IKII • 

As a consequence the unit ball B of || || is strictly convex. Now Theorem 3.2 
implies that for every v G dB the set Mv of minimal geodesies c with R(c) = {v} is 
nonempty. If v is not an R-multiple of some nonzero integer class then the geodesies 
in Mv form a lamination (possibly a foliation) of T2. If v is an integer class then 
generically Mv consists of one periodic minimal geodesic c and two intersecting 
geodesies that are forward and backward asymptotic to reparameterizations of c. In 
the next section we shall see that much of this situation generalizes to codimension 
one problems in Tn. 

4. Minimal hypersurfaces in tori 

It was Moser [Mol] who noticed that many of the results of Aubry-Mather theory 
(resp. on minimal geodesies on a two-torus) generalize to variational problems for 
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hypersurfaces in an ra-torus. First we mention his stability result [Mo4] for minimal 
foliations. This is a surprising application of KAM-theory to a partial differential 
equation problem. 

THEOREM 4.1 Let (Tn,go) be a flat torus and for some 7 > 0; r > 0 let a G Rn 

satisfy the diophantine condition 

n 

^(aikj-ctjki)2 > 7 l ^ r r 

for all fc E Z n \{0}. Then there exists a neighborhood U of go in the C°° -topology 
on the set of Riemannian metrics on Tn such that for every g EC/ there exists 
a unique foliation ofTn by g-minimal hypersurfaces that is C°°-conjugate to the 
linear foliation ofTn by hyperplanes a • x = const. 

Actually this theorem is proved in the following more general framework. We 
consider a "variational integrand" F : R n x R x M n - > l that is Zn+1-periodic in 
the first ra -f-1 variables x — (x,u) E R n + 1 and assume that it satisfies 

n 

s\t\2< £ W * > P ) & 0 < <5~W (3) 

for some 6 E (0,1) and all (x,p) E R n + 1 x W1, £ E W1. Moreover we assume 

\Ft(x,p)\<c(\p\2 + l) (4) 

for some c > 0 and all (x,p) E R n + 1 x Rn . We look for "(F-)minimal solutions" 
u\ Rn —» R that minimize 

/ 
F(x,u(x),ux(x)) dx 

with respect to arbitrary compactly supported variations of u. The standard ex
ample is the Dirichlet integral F = ^ |p| whose minimal solutions are precisely 
the harmonic functions on R™. If g is a Zn+1-periodic metric on R n + 1 then the ri
dimensionai g-volume of graphs of functions u: Rn —» R is obtained by integrating 
an F as above that does not satisfy (3) uniformly in p. This is irrelevant in the 
perturbation Theorem 4.1 as it uses F(x,p) only for p in a compact neighborhood 
of some po- For "global" problems, however, one cannot reduce the parametric 
problem to the nonparametric one so that results for an integrand F as above 
are in this sense weaker than analogous results for minimizing hypersurfaces of a 
Riemannian metric on T n + 1 . Note that in both cases the foliation by extremals 
provided by Theorem 4.1 consists automatically of minimizers, cf. [Mo3]. 

Prior to his perturbation result Moser [Mol], see also [Mo3], had studied 
existence and properties of minimal solutions for an arbitrary F E C2ìE(TnJrl x 
Rn ,R) satisfying (3) and (4). His results will be described subsequently. Because 
of the periodicity of F we have a Zn+1-action T on the set of F-minimal solutions 
u by 

(Thu) (x) = u(x - fc) -h fcn+i 
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where k = (fc, fcn+i) E Z71+1. This action corresponds to translating graph(u) by fc. 
A special class of minimal solutions consists of those "without self-intersections", 
i.e., those satisfying for all fc E Z n + 1 : 

if (Tfcvl)(xo) = u(xo) for some xo E Rn then T^u = u. 

If n = 1 no minimal solution has self-intersections, see, e.g., [Mo2], whereas for 
n >2 every nonaffine harmonic function minimizes the Dirichlet integral and has 
self-intersections. Obviously the condition "no self-intersections" is necessary if 
one wants the graph to belong to a lamination of T n + 1 . 

If a continuous function u\ Rn —> R has no self-intersections in the above sense 
then in analogy to the rotation number of a circle homeomorphism there exists a 
"rotation vector" a E Rn and C > 0 such that 

| u(x + y) — u(x) — a • y | < C 

for all x, y E R71. For an integrand F as above we let M = M (F) denote the set 
of minimal solutions without self-inter sect ions. Then M = UQGR" Ma where Ma 

consists of the u E M with rotation vector a. Moser proved that for every a. E Qn 

there exists a "periodic" u E A4a, i.e., a u satisfying T^u = u for all fc E Z n + 1 

with fc • öL = 0 where ä = (a, — 1). Moreover, he proved a compactness result for 
minimal solutions so that one can take limits of the periodic solutions to obtain: 

THEOREM 4.2 For every a E R71\Q71 there exists a nonempty lamination ofT11^1 

by graphs of minimal solutions in Ma. 

In [Bal] it is shown that the action of T on Ma has a unique minimal set if (—a, 1) 
is rationally independent. This implies that the above laminations are essentially 
unique. In [Ba4] the possibilities for the dynamics of T | ^ n are completely deter
mined for all a E Rn. By a sufficiently large perturbation of the Dirichlet integral 
one can achieve that the laminations in Theorem 4.2 indeed have gaps (i.e., they 
are not foliations) for all a in a bounded set, cf. [Ba2]. 

For minimal hypersurfaces in a Riemannian torus (Tn,g) one has results 
analogous to Theorem 4.2 only in the case n — 3 for area-minimizing planes [Ba6], 
[Ba7]. 

One of the main open problems in this area is if there is a Liouville type 
result for minimal solutions. Suppose u is a minimal solution and u grows at most 
linearly. Is then u without self-intersections, i.e., u E Ma for some a E Rn? Special 
cases of this question are treated in [Ba4] and [MS]. 

If the dimension fc of the minimizing objects lies between 2 and n — 2, no 
general statements — as, e.g., Theorems 3.1, 3.2, 4.2 — are known. However there 
is a perturbation result by Moser [Mo5] for pseudoholomorphic curves in almost 
complex 27i-tori that is related to the case fc = 2. According to Wirtinger's inequal
ity the pseudoholomorphic curves in Theorem 4.3 below are homologically area-
minimizing for a Riemannian metric associated with the almost complex structure. 
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THEOREM 4.3 Let Jo be a constant complex structure on T2n and for some 7 > 0; 

r > 0 let p E R2n satisfy the diophantine condition 

i/°-fci>7ifcr 
for all fc E Z\{0}. Then there exists a neighborhood U of Jo in the C°°-topology 
on the set of almost complex structures on T2n such that for every J E U there 
exists a unique foliation ofT2n by J-holomorphic curves that is C°° -conjugate to 
a linear foliation ofT2n containing the direction Rp. 

5. The stable norm on Hk (M, R) 

Existence and properties of homologically volume-minimizing submanifolds are 
closely related to the stable norm, which is a global invariant of a compact Rie
mannian manifold (M,g), interesting in itself. 

DEFINITION 5.1 [F],[GLP] The mass M(v) of ve Hk(M,Z) is defined by 

M(v) = inN 2_[ KI vo rfcK) I ]Cni°"i an integer Lipschitz cycle representing v >. 
i 

The stable norm of v E Hk (M, R) is defined by 

\\v\\ = inf< 2_\ KI vorfc(°"i) I Ylriai a real Lipschitz cycle representing v >. 
i 

Fédérer [F] proved that for every v E Hk (M, Z) one has 

HVRII = lim \M(jv) 

where v^ denotes the real class corresponding to v. There are simple examples 
showing that iM(ji>) > | K | | for all j > 0 is possible. However, if Mn is orientable 
and fc = ra- 1 then M(v) = \\VRW for all v E i J n _i (M n ,Z) , cf. [F]. This generalizes 
the "important fact" mentioned at the end of Section 3.. 

In general only little is known about the properties of the stable norm. Using 
the results on minimal geodesies on two-tori one can show, cf. [Aul], [Ba8], [Ma2]: 

THEOREM 5.1 For a Riemannian two-torus the unit ball B Ç Hi(T2,M) of the 
stable norm is strictly convex, i.e., dB does not contain nontrivial line segments. 
It has a unique supporting line at all points v E dB such that Xv $ iJi(T2 ,Z) for 
all À / 0. If v E dB and Xv E Hi(T2,Z) for some X ̂  0 then dB has a corner at 
v unless the periodic geodesies in the class Xv foliate T2. 

In a different setting Aubry [Au2] obtained a result that should translate into the 
following statement for the stable norm: if all minimal geodesies of (T2,g) are 
contained in a region of T2 with negative curvature (it is easy to construct such 
g) then the sum of the angles at the corners of dB is 27r, i.e., all the curvature of 
dB is concentrated in the corners. 

file:////vrW
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There is intensive research on the stable norm on Hi(Tn,M), cf. [Bll]. Katok 
[K] proved — in a different setting — that dB is twice differentiable with positive 
second fundamental form at a point v E dB if there exists a KAM-torus whose 
orbits have rotation vector v. 

The following surprising result by Burago [Bu] has an interesting proof. For 
ve 2fi(M,Z) define 

L(v) = inf< L9(j) | 7: S1 —> A4 represents v >. 

Obviously, we have L(v) > M(v) > |K | | . 

THEOREM 5.2 For every comjiact Riemannian manifold (A4,g) there exists a con
stant C such that L(v) < \\vu\\ + G for all v E H1(A4,Z). 

A complete generalization of Theorem 5.1 and some more results in this direction 
were obtained by Senn [Sel], [Se2], [Se3], [Se4] for Moser's nonparametric varia
tional problem for hypersurfaces in T n + 1 , cf. Section 4.. Here the analogue of the 
stable norm is the "minimal average action" A: Rn —> R defined by 

A(a) = lim \Br\~ / F(x,u(x),ux(x))dx 

where u E Ma(F) is any minimal solution with rotation vector a E Rn and where 
\Br\ denotes the volume of the ball of radius r in Rn. To state Semi's results 
we say that Ma gives rise to a foliation if the graphs of the functions u e Ma 

form a foliation of Rn + 1 . We let Vj~ denote the orthogonal complement in Rn of 
Va = spanR { fc E Z n I a • fc E Z }. 

THEOREM 5.3 The minimal average action A is strictly convex. If A4a gives rise 
to a foliation then A is differentiable at a. If Ma does not give rise to a foliation 
then the directional derivative of A at a in the direction ß E Rn \{0} exists iff 

These results are closely related to questions in crystallography, cf. [Se5]. Prior to 
Semi, Vallet [V] treated a more special two-dimensional problem of this type. 

The stable norm in the intermediate dimensions 2 < fc < n — 2 has only been 
computed in specific examples. Lawson [Law] has shown that the situation can 
already be surprisingly complicated for flat tori. Furthermore, there is work by 
Gluck, Morgan et al., see, e.g., [GMM], who — using the method of calibrations 
— compute minimal representatives and the stable norm for natural metrics on 
some Grassmann manifolds. Remarkably, the unit balls of the stable norms are 
polyhedra in all these cases. 

6. Rigidity problems 

The archetype of the rigidity results in this area is E. Hopfs theorem [Ho] that Rie
mannian two-tori without conjugate points are flat. The longstanding question of 
whether this is true also for tori of arbitrary dimensions has recently been answered 
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affirmatively by Burago and Ivanov [Bll]. In a torus without conjugate points every 
geodesic is minimal and the periodic geodesies in every homology class foliate the 
torus. The proof in [Bll] is short and elegant, and combines the Birkhoff ergodic 
theorem, integral geometry, and an inequality on convex sets. Hopf s proof is more 
dynamical and uses the Riemannian character of the metric only in the final step in 
the form of the Gauss-Bonnet theorem. Using Hopfs method Dazord [D] was able 
to extend Hopf s theorem to Finsler two-tori of Landsberg type because for these 
a Gauss-Bonnet theorem holds. In the general Finsler case the rigidity problem is 
rather a regularity problem tha t is unsolved even on T2: the unit tangent bundle 
of a Finsler two-torus without conjugate points is foliated into invariant two-tori 
consisting of the tangent vectors to geodesies with the same rotat ion vector, cf. the 
end of Section 3.. How regular is this foliation? The same question can be posed in 
higher dimensions where it is a result due to Heber [Heb] that , taking limits of the 
invariant tori formed by the tangent vectors to the periodic geodesies in integer 
homology classes, one obtains a foliation of the unit tangent bundle. 

An interesting application of Hopf s method to a different area is Bialy's [Bi] 
characterization of the circular billiard by its dynamical properties. 

In view of the results in Section 4. it seems reasonable to ask for a rigidity 
result in the codimension one case. 

Problem. Suppose (Tn,g) is a Riemannian torus such that for every prime class 
v e Hn-i(T

n,Z) there exists a foliation of Tn by ^-minimal (ra — l)-tori in the 
class v. Is g flat? 

Other rigidity results concern the marked length-spectrum [CFF], [Ba8] and 
the asymptotic volume growth [Bab], [BI2]. 
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Harmonic maps are nonlinear analogues of harmonic functions or, if one considers 
their differentials, harmonic 1-forms. As such, one can expect analogues of Hodge-
theoretic results about harmonic 1-forms. Harmonic maps arise as critical points 
for the energy functional on maps between two Riemannian manifolds. If A4, N 
are Riemannian manifolds and / : A4 —> N is a smooth map between them, then 
the energy is defined by 

E{f) = ! W\\ 
J M 

where df is the differential of / . If / has finite energy, then we can ask whether / 
is a critical point for E; the corresponding Euler-Lagrange equation is D*df = 0, 
where D is the exterior derivative operator associated to the natural connection 
on f*TN and df is regarded as a 1-form on A4 with values in f*TN. The latter is 
the harmonic map equation. It is a nonlinear analogue of Laplace's equation. 

Existence theory for harmonic maps is well behaved when the target manifold 
N is nonpositively curved. The first important result is due to Eells and Sampson 
[ES]. 

THEOREM 1. If A4,N are compact Riemannian manifolds, and N has nonpositive 
sectional curvature, then any homotopy class of maps from, A4 to N has a harmonic 
representative. 

In some situations, it is necessary to consider more general classes of maps. 
Many of the applications to be discussed here are related to representations of 
the fundamental group of a manifold A4 in a semisimple Lie group G. In that 
case, it is natural to consider equivariant maps from the universal cover of A4 to 
the symmetric space X — G/K associated to G; here, K is a maximal compact 
subgroup of G. We shall refer to such a map as a twisted map from A4 to X. In 
this setting, the appropriate existence result in this case is proved in [C2]; related 
results were proved by Diederich-Ohsawa [DO], Donaldson [D], Labourie [L], and 
Jost-Yau [JY1]. 
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THEOREM 2. Suppose M is a compact Riemannian manifold, G a linear semisim-
ple Lie group, and p : TVI(M) —> G a homomorphism. Then there exists a p-
equivariant harmonie map from M to X if and only if the Zariski closure of the 
image of p is a reductive group. 

Harmonic maps are a natural tool to apply in trying to prove rigidity the
orems for nonpositively curved manifolds. For example, Mostow's strong rigidity 
theorem for a locally symmetric space would follow if one had techniques for prov
ing that harmonic maps are isometries. However, the first progress in this direction 
did not occur until the work of Siu [Si], 15 years after that of Eells and Samp
son. His basic observation, later extended by Sampson [S], was that there was an 
analogue for harmonic maps whose domain is a Kahler manifold of the decompo
sition of a harmonic 1-form into a holomorphic (l,0)-form and an antiholomorphic 
(0,l)-form. The Siu-Sampson result depends on the notion of complex sectional 
curvature. N has nonpositive complex sectional curvature if, for any pair X, Y in 
the complexified tangent space of N at n, we have 

(R(X,Y)Y,X) <0. 

The Siu-Sampson result is the following. 

THEOREM 3. Suppose f is a (possibly twisted) harmonic map from a compact 
Kahler manifold to a manifold of nonpositive complex sectional curvature. Then f 
satisfies the equation ddf = 0, i.e. f is harmonic when restricted to any complex 
subvariety. 

Siu [Su] used this result to give a strengthening of the Mostow strong rigidity 
theorem in the case of Hermitian locally symmetric spaces. It has since been ap
plied in a number of different directions, including the development of a nonabelian 
Hodge theory, as described by Simpson at the 1990 ICM. A recent development is 
the use of this circle of ideas by Reznikov [R] to prove a conjecture of Bloch [B] con
cerning the Chern classes of flat vector bundles over smooth projective varieties. 
Suppose M is a smooth complex projective variety, and p : TTI(M) —+ SL(n,C) is 
the monodromy of a flat vector bundle E. The flat structure on E induces in par
ticular a holomorphic structure, so E has Chern classes Ci(E) in the Chow group 
that are torsion in homology. Under the Abel-Jacobi map, these induce classes in 
H2'l~1(M,R/Z). The result conjectured by Bloch, and proved by Reznikov, is the 
following. 

THEOREM 4. The images under the Abel-Jacobi map of the Chern classes of a flat 
bundle with trivial highest exterior power are torsion. 

To prove this, Reznikov first uses the fact that these classes are rigid un
der deformations, and reduces to the case where the monodromy is contained in 
SL(n, Os), where ös is a ring of iS-integers in a number field. The classes under 
consideration can be obtained by pullback of classes in H2l~1(BSL(n, 05-),M/Z). 
To prove they are torsion, it suffices to show that the corresponding map from 
H2i-1(BSL(n, O s ) ,R) to i J ^ - ^ M , ^ ) is zero. By a result of Borei, the first group 
is generated by the so-called Borei regulators, essentially pullbacks of invariant 
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forms on symmetric spaces. The Siu-Sampson result is used to show that the pull-
backs of these classes to a Kahler manifold vanish. 

It is natural to ask whether the Siu-Sampson result has an analogue for holo-
nomy groups other than the unitary group. The author [Cl] found such analogues 
by considering Riemannian manifolds with parallel differential forms, generalizing 
the Kahler case, which corresponds to the existence of a parallel symplectic form. 
The main result is the following. 

THEOREM 5. Suppose A4 is a compact Riemannian manifold with a parallel differ
ential form UJ. If N is a Riemannian manifold with nonpositive curvature operator 
and f is a (possibly twisted) harmonic map from A4 to N, then f satisfies 

D*(df ALJ) =0. 

Here the curvature condition on N can often be weakened, as in the Siu-
Sampson result, but the precise condition under which the result holds is some
what complicated to state. The resulting equation is typically highly overde-
termined, and thus one can hope that it imposes strong constraints on a har
monic map. As an example, we may consider the case of quaternionic Kahler 
manifolds, which are Riemannian manifolds of dimension An whose holonomy 
group is contained in Sp(n)Sp(l). These carry a parallel 4-form UJ, called the 
quaternionic Kahler form. A typical example is the quaternionic hyperbolic space 
HM — Sp(™, 1)/Sp(rc) Sp(l), which is a negatively curved Riemannian symmetric 
space with sectional curvature pinched between —1 and —4. (We shall alwa} ŝ be 
considering the case n > 1.) Another holonomy group that shares many features 
with the quaternionic Kahler case is that of the holonomy group Spin(9) in di
mension 16. Here, the only examples are locally isometric to the elliptic Cayley 
plane jF4/Spin(9) and the hyperbolic Cayley plane HQ = F4

_20/Spin(9). In this 
case, there is a parallel 8-form with which one can work. For these examples, the 
result above implies the following. 

THEOREM 6. Let A4 be a compact Riemannian manifold with holonomy Spin(9) 
or Sp(7i)Sp(l). If N and f are as in the previous result, then f is necessarily 
totally geodesic. 

A fairly direct consequence of these ideas (extended slightly so as to allow 
A4 to be merely of finite volume) leads to an extension of Margulis' superrigidity 
results [M] to certain locally symmetric spaces of rank one. 

THEOREM 7. Suppose Y is a lattice in Sp(7i, 1) or F^20, and p : Y —> G is a 
homomorphism into a semisimple real algebraic group with Zariski dense image. 
Either G is compact or p extends to a homomorphism from the ambient group 
into G. 

This result has a geometric generalization that leads in particular to a metric 
rigidity result for manifolds that are locally quaternionic or Cayley hyperbolic. 

THEOREM 8. If A4 is a finite volume quotient of H^ or HQ, then any complete 
Riemannian metric on A4 with nonpositive curvature operator is locally symmetric. 
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Subsequently, Mok-Siu-Yeung [MSY] and Jost-Yau [JY2] (in less generality) 
found formulas that apply in greater generality and with weaker assumptions on 
curvature. The result of Mok-Siu-Yeung is the following. 

THEOREM 9. Suppose M is a compact locally irreducible symmetric space either of 
rank at least two or locally isometric to the quaternionic or Cayley hyperbolic space. 
If N is a Riemannian manifold with, in the former case, nonpositive sectional 
curvature or, in the latter case, nonpositive complex sectional curvature, and f is 
a (possibly twisted) harmonic map from M to N, then f is totally geodesic. 

The idea of the proof is related to Matsushima's technique for proving the 
vanishing of the first cohomology of certain locally symmetric spaces, although it 
is necessary to make somewhat more careful choices in the nonlinear setting. In the 
higher rank case, this result allows one to recover Margulis' superrigidity results 
over the reals for cocompact lattices in simple groups, as well as Gromov's metric 
rigidity theorem. Hernandez [H] and Yau-Zheng [YZ] have shown that any manifold 
with negative pointwise ^-pinched sectional curvature has nonpositive complex 
sectional curvature. Using this and the Siu-Sampson result, they proved that a 
Riemannian metric on a finite-volume complex hyperbolic manifold with pointwise 
^-pinched sectional curvature is necessarily locally symmetric. The result of Mok-
Siu-Yeung allows one to extend this to the quaternionic and Cayley hyperbolic 
cases. Gromov [G] indicated a different method for obtaining this extension based 
on a theory of harmonic maps from manifolds with foliations. 

Margulis' results apply to homomorphisms into p-adic Lie groups as well, and 
it is natural to ask whether there is an approach to this by means of harmonic 
maps. This requires one to study harmonic maps from Riemannian manifolds into 
the Bruhat-Tits building A associated to a semisimple p-adic group. The Bruhat-
Tits building is a metric simplicial complex whose every simplex is isometric to a 
simplex in Euclidean space. Furthermore, for each point of A, there is at least one 
subspace containing it that is isometric to a Euclidean space of the same dimension 
as A; these subspaces are called apartments. Gromov and Schoen developed a 
theory of harmonic maps into such spaces. As in the classical case, it is based on a 
notion of energy. Suppose / is a (possibly twisted) Lipschitz map from M to A. If 
we consider an isometric embedding of A in a Euclidean space MN (meaning that 
the lengths of curves in A are the same whether measured in A or M.N), then we can 
define the energy density e(f) to be the pointwise squared norm of the differential 
of the resulting Lipschitz map from M to RN. This function is independent of the 
choice of embedding. The energy of / is then the integral of e(f) over M, and / 
is said to be harmonic if it minimizes the energy among all nearby maps. In this 
situation, A is to be regarded as an analogue of a nonpositively curved manifold, 
so one does not expect to have to deal with the more general notion of a critical 
point for the energy. 

Gromov and Schoen [GS] have proved an analogue of Theorem 2 in this 
setting. To apply this, one needs to be able to apply the vanishing theorems of 
Siu-Sampson, the author, Jost-Yau, and Mok-Siu-Yeung. The first step toward this 
goal is to observe that there is a large subset of M on which / can be regarded 
as a map into a manifold. Define TTì G M to be a singular point for f il m has 
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no neighborhood whose image under / is contained in an apartment. An informal 
examination suggests that the set of singular points has codimension two. Gromov 
and Schoen show the following. 

THEOREM 10. Suppose f is a (possibly twisted) harmonic map from A4 to A. The 
singular set of f has Hausdorff codimension two. 

On the complement of the singular set, one can proceed as before: the dif
ferential of the map / is well defined away from the singular set, and can be 
interpreted as a harmonic 1-form with values in a flat orthogonal vector bundle. 
To prove the analogous vanishing theorems, one needs to perform an integration 
by parts in order to show that the harmonic form df Au is co closed. This requires 
the fact above about the size of the singular set and information on the way in 
which the derivatives of / decay on approach to the singular set. Gromov and 
Schoen prove such a result, leading in particular to the following consequence. 

THEOREM 11. Suppose Y is a lattice in Sp(n, 1) or F4~20. If Y acts on the Bruhat-
Tits building A by means of a homomorphism into the corresponding p-adic Lie 
group, then there is a fixed point for the action, either in A itself or at infinity. (In 
fa,ct, a more refined analysis shovis that there must be o, fixed, point in A itself.) 

This is an analogue for these lattices of Margulis' p-adic superrigidity results 
for higher rank lattices. It implies the following long-conjectured result. 

THEOREM 12. Any lattice in Sp(7i, 1) or F^20 is arithmetic. 

Thus, the question of whether irreducible lattices in a semisimple Lie group 
are necessarily arithmetic is now open only for the group SU(n, 1), n > 3. 

Twisted harmonic maps from compact Kahler manifolds to trees have been 
studied by Gromov-Schoen and Simpson. Their basic observation is that such a 
map factors through a holomorphic map into a holomorphic curve with orbifold 
singularities (i.e. an orbicurve). Simpson exploited this fact to prove the following. 

THEOREM 13. Suppose A4 is a smooth complex projective variety and p : TTI(A4) —> 
SX(2,C) is a homomorphism with Zariski dense image. If p is not locally rigid, 
then there is an orbicurve G and a holomorphic map f : A4 —> C such that p is 
induced by a homomorphism -K\(A4) —> SL(2,C). If p is locally rigid, then there is 
a Hilbert modular orbivariety V and a holomorphic map f : A4 —> V such that p 
is the pullback of one of the standard representations of 7V\(V) in SL(2,R). 

Simpson and the author have worked on extending this to quasiprojective 
varieties. 

Zimmer has been developing a program of using superrigidity and the ideas 
behind it to study questions about actions of lattices and semisimple groups on 
manifolds. One of the principal tools he has used is an extension of superrigidity 
to cocycles. In joint work, the author and Zimmer [CZ] have extended some of 
these results to the rank one case. The main technical tool is the theory of foliated 
harmonic maps first developed by Gromov [G]. As an example of the geometric 
consequences of these ideas, we mention the following. 
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T H E O R E M 14. Suppose m > 2n. Then there is no discrete subgroup o /Sp (m,2 ) 
that acts freely, properly dis continuously, and cocompactly on Sp(m, 2)/Sp(ra, 1). 

Korevaar and Schoen have also obtained a superrigidity result for cocycles 
in the rank one case, based on a generalization of Schoen's work with Gromov. 
They have developed a theory of harmonic maps from Riemannian manifolds into 
length spaces of nonpositive curvature. This is a very general class of metric spaces, 
not requiring, for example, tha t the target space be locally compact. A particu
lar example would be the space of Riemannian metrics on a compact manifold 
compatible with a fixed volume form and endowed with an appropriate L2 metric. 
Application of the general theory to this example leads to the result on cocycles. 

Acknowledgment: To reflect on the way in which my understanding of this subject 
has developed is to be reminded very forcefully of what is, in some circles, referred 
to as the dependent arising of phenomena. Many mathematicians have contributed 
to t ha t understanding in many ways; it would be a hopeless task to t ry to list them 
all. All I can do is offer my gratitude. 
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Homological Geometry and Mirror Symmmetry 

ALEXANDER B. GIVENTAL* 

Department of Mathematics 
University of California-Berkeley 
Berkeley, CA 94720, USA 

0. A popular example 

A homogeneous polynomial equation in five variables determines a quintic 3-fold 
in CP 4 . Hodge numbers of a nonsingular quintic are known to be: hPiP = 1, 
p = 0,1,2,3 (Kahler form and its powers), h3'0 — h°>3 = 1 (a quintic happens 
to bear a holomorphic volume form), /i2 '1 = /i1,2 = 101 = 126 — 25 (it is the 
dimension of the space of all quintics modulo projective transformations, and h2,1 

is responsible here for infinitesimal variations of the complex structure) and all 
the other hp>q = 0. 

Consider the family of quintics xi---x& = À1/5(a:f H h z§) invariant to 54 

multiplications of the variables by 5th roots of unity. The quotient by these sym
metries will generate singularities. Resolve the singularities. The result is known 
to be a family Y\ of 3-folds with the table of Hodge numbers mirror-symmetric to 
that of the quintics X: h™(Y) = h3~™(X). 

Manifolds with mirror-symmetric Hodge tables are called geometrical mir
rors. Discovered accidentally in a computer experiment, such mirror 3-folds very 
soon took their place in various string models of the 10-dimensional universe. As 
it is clear now, the so-called Arnold's strange duality of exceptional singularities 
[1] was probably the first manifestation of mirror phenomena — for if3-surfaces. 

Current interest to mirror manifolds is due to the so-called mirror conjecture 
and its first applications to enumerative algebraic geometry. The idea is that along 
with the equality hlil(X) = h2,1(Y) of moduli numbers of Kahler structures on X 
and of complex structures on Y, whole symplectic topology on X is equivalent to 
complex geometry on Y, and vice versa. 

This idea has led to a number of beautiful predictions (see for instance [6], [5]) 
in enumerative algebraic geometry, in particular - for numbers of rational curves 
of each degree on the quintics. 

1. Singularity theory 

Given a complex manifold Yn, a holomorphic volume form CJ, and a holomorphic 
function / : Y —> C, one can study exponential integrals 1^ = Jr e^y^huj, their 
asymptotics at h —> 0, and their dependence on parameters. 
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EXAMPLE. Let / be a weighted-homogeneous polynomial of deg / = 1 on n com
plex variables (yi,..., yn) of some positive weights d e g ^ = a^ > 0 with an isolated 
critical point y = 0 of multiplicity /i, ai, . . . , a^ = 1 •— monomials representing 
a basis in the local algebra H = C[y]/(df/dy), f\ = f + Aiai + • • • + X^a^ — a 
mini versai deformation of the critical point. The formal stationary phase approx
imation gives 

/.(A) = fe^yyhai(y)dy1 A • • • A dyn ~ h^2e^^'h-^^= 

for each of \i critical points y*(A) of f\, where J\ — det(d2f\/dy2). These asymp
totics satisfy Hdlj/dXi ~ YlkcijW^ where cf. are structural constants of the 
algebra H\ = C[y]/(dfx/dy) of functions on the critical set: a^aj — J2cijak m H\-
The cycles of integration can be described as real n-dimensional Morse-theoretic 
cycles of the function Re / and thus correspond to the critical points and repre
sent classes in the asymptotical homology group Hn(C

n,Ref = — oo). Then the 
residue pairing 

(a b) = V a(y*)b(y*) =
 1 f a(y)b(y)dy1 A • • • A dyn 

^ J(y«) (2ni)n J\df/dy\=const dfx/dy1---dfx/dyn 

becomes an asymptotical intersection pairing between the cohomology for / and 
—/ and is known to extend without singularities to À = 0. 

THEOREM 1 [16]. These stationary phase asymptotics can be made exact by a suit
able choice of the volume forms uj\ instead of dy\ A • • • A dyn and in special coor
dinates A on the parameter space instead of (X\,..., A^). 

In particular this means that the differential equations Jldil — [ai] • I with 
[ai], I(X) G H^ form a family Vn = hd — Y2[ai]dXi of connections flat for all h. 
They are identified with the Gauss-Manin connections in the cohomological bundle. 
The residue pairing therefore literally coincides with the intersection pairing and 
induces (see [17]) on the parameter space a flat complex metric. The coordinates 
A are defined as flat coordinates of this metric. 

In the contemporary language this theorem means that the integrals define 
on the parameter space the structure of a Frobenius manifold [7] and thus satisfy 
axioms of Topological Conformai Field Theory (TCFT) (Landau- Ginzburg models 
of TCFT). 

One can at least try to extend this theorem based on deep properties of vari
ations of Hodge structures to arbitrary families (Y, f, u)\. Consider a degenerate 
case where Y is a compact Kahler manifold. For this, Y should bear a holomor
phic volume form (hn'° = 1). Then / is necessarily constant, and the exponential 
integrals turn into periods J u;n'° of the volume form. The periods depend on the 
complex structure on Y and satisfy some linear differential Picard-Fuchs equations 
(describing variation of pure Hodge structures). The algebra H\ of the critical set 
Y should be replaced by its cohomology Hn(Y). It is a separate problem whether 
one can derive from these "massless" Landau-Ginzburg data complete models of 
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TCFT (they are called B-models, after Witten), but in many cases one can con
struct flat coordinates on moduli spaces of complex structures. The family of 
quintic-mirrors Y\ is one of them. 

2. Symplectic topology 

Let Xn be a compact Kahler manifold. Given m cycles Ai,..., Am C X, an inte
gral homology class D G #2(AT) and a configuration (x\,... ,a:m) of m points on 
CP1, one may ask: How many holomorphic maps (p : CP1 —» X with cp^CP1] = D 
and ip(xi) G Ai are there?The answers (let us denote them Fm>JD[A]), being prop
erly understood as intersection indices in certain moduli spaces of holomorphic 
maps, turn out to depend only on homology classes of Ai and homotopy type 
of almost Kahler structure on X and provide symplectic invariants of X called 
Gromov-Witten invariants. They are not independent, and the universal identi
ties for them can be interpreted as the associativity constraint of the quantum 
cohomology algebra H*(X) and compatibility of some linear PDEs. 

Pick an integral basis p i , . . •, Pfc of symplectic classes in H2 (X), denote 
(Di,..., Dk) coordinates of D in the dual basis and put (ai|a2| • • • |am) = Y2D 
QDFmiD[Ai,..., Am] where Ai are Poincaré dual to cohomology classes a .̂ 

THEOREM 2 [14], [15]. Gromov-Witten invariants are well defined at least if 
ci(-AT) > 0; (ai|ß2) coincides with the Poincaré pairing (01,02) on H*(X) = 
H*(X,C[[g]]); (ai|a2|fl3) ojre structural constants (a\ * 023^3) °f a skew-commu
tative associative multiplication * on H*(X), which at q = 0 coincides with the 
usual cup-product, and (ai\ • • • \am) = (ai*- • -*am, 1). Besides this, the differential 
equations Hqidqil = Pi * I, i = 1 , . . . , k, for a vector-function I(q) G H*(X) form 
a compatible system (i. e. a flat connection) for each h. 

The *-product is graded if one assigns usual degrees degûj = codim Aj to 
the cocycles and nontrivial degrees dega^ = 2o\ to the parameters where dipi + 
••• + dkpk = c^X). 

Actual definitions of Gromov-Witten invariants involve nonintegrable per
turbations of the complex structure on C P 1 x X, and rigorous computation of 
quantum cohomology is a nontrivial problem. The following examples, except for 
the first one, are reasonable conjectures rather than theorems. 

EXAMPLES. (1) H^CP71'1) ~ C[p,q]/(pn - q), and the differential system is 
equivalent to the scalar equation HndnI/dtn = el where t = log q. The intersection 
pairing is given by the residue formula § a(p)b(p) dp/(pn — q) and similar formulas 
hold in all other examples below. 

(2) For the space Fn of complete flags in Cn , denote An the (n x n)-matrix 
with u\,..., un on the diagonal, qi,..., qn-i right above, — l's right under the di
agonal, and zeros otherwise. Set E» = trAl

n. Then (see [11]) H*(Fn) ~ C[u, g]/(E). 
In fact T>i coincide with conservation laws of a Toda lattice on n particles with 
potentials qi = — e * 1 - ^ 1 (see [11]). The question of why the algebra H*(Fn) is 
isomorphic to the algebra of functions on the singular invariant variety of the Toda 
lattice, is open. 
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(3) Let X = CN//Tk be a toric manifold obtained by the Marsden-Weinstein 
reduction from the standard Hermitian space by a subtorus in the maximal torus 
TN. Denote (niij) the integral (k X AQ-matrix of the natural projection Lie*TAr —> 
Lie*Tk. Then the quantum cohomology algebra of X is given by the generators 
(ui,...,uN,pi,...,pk,qi,...,qk) and relations Uj = £ \ m ^ P i , qi = Uju

m^ (Batyrev, 
see also [9] where a discrete version of quantum cohomology of toric manifolds had 
been computed as a byproduct of a symplectic fixed point theorem). 

(4) Let X 3 be a nonsingular quintic in CPA. Its hyperplane section p generates 
in H*(X) a subalgebra HGyen — C\p]/(pA) with the intersection form (pl, 1) = 0 for 
i ^ 3 and (p3,1) = 5. Its quantum deformation is almost the same except for p*p = 
K(q)p2 or, equivalently, (p*p,p) = K(q) where K(q) = 5 -+- X̂ d̂ =i ndd3qd/(l - qd) 
(see [2]). Here rid is the number of degree-d, rational curves in X: on a generic 
(almost)-Kähler 3-fold with c\ — 0 rational curves are discrete and all contribute 
to the quantum cup-product (which now respects the usual grading, i.e. degg = 
0). The corresponding differential system is equivalent to (VjK(q))n — 0 with 
' = hqd/dq. It is degenerate in the sense that it is independent on h and easy to 
solve, except that the numbers Ud with d > 3 are unknown! 1 

In fact, we have described only a few of all Gromov-Witten invariants (see 
[18]), which form a complete set of "correlation functions" of a sigma-mo del, or 
A-model of TCFT and, when computable, provide algebraic geometry with very 
nontrivial new enumerative information [13]. 

3. The mirror conjecture 

The mirror conjecture predicts equivalence of A and B models of TCFT on an 
algebraic Calabi-Yau manifold to B and A models on its geometrical mirror. In 
our "down-to-earth" language: for geometrical mirrors X and Y the differential 
system of HGVGn(X) should coincide with the Picard-Fuchs equation for Y taken 
in flat coordinates (and vice versa). Authors [6] of this formulation exploited it in 
order to predict numbers na for quintics. 

Tluyy start with one of the periods I\ — J w^ = ]>]](5A;)!Afc/(/c!)5, reconstruct 
the Picard-Fuchs equation: D4I = 5A(5£> + 1)(5D + 2)(5D + 3)(5£> + 4)/ , where 
D = Xd/dX, bring it in a neighborhood of the singular point A = 0 to the form 
(Jff/k(q)),f = 0, conjecture that k(q) = K(q), and find from this 7ii = 2875, 
7̂ 2 = 609250, ?i3 = 317206375 (eventually in coherence with available data) and 
predict nA to be 242467530000. 

Bringing the equation to the simple form involves: (1) finding the solution 
Ii = log (A) i i + 1 with I holomorphic and vanishing at A = 0, (2) introducing the 
new local coordinate q = Aexp(i"/ii), and (3) computing the equation satisfied by 
Ji = Ii/Ii, i = 1,2,3,4, as functions of q. 

Our previous discussion suggests the following generalization of the mirror 
problem: 

Is there a natural map (functor?) from (a class of) TCFT-models (symplectic 
sigma-models, or Frobenius manifolds, or quantum cohomology algebras) to gen
eralized Landau-Ginzburg data? Simpler, how to solve the differential equations 

^ e e however [12]. 
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hdl = A A I by means of exponential holomorphic integrals? We will partially 
answer this question for the class of toric manifolds. 

From such a point of view the Picard-Fuchs equation for Y should have 
an intrinsic interpretation in terms of the problem of computing Gromov-Witten 
invariants for X. We will point out some. 

The (open) question of why the above computational procedure (for an equa
tion that had already been intrinsically attributed to X) yields quantum cohomol
ogy of X, is probably related to the problem of in what sense the above "functor" 
is an involution on its invariant subset that the class of algebraic Calabi-Yau man
ifolds seems to constitute. 

All these problems lead to the same question: What is the intrinsic meaning 
of solutions of the quantum cohomology differential system? 

4. A project: Equivariant Floer cohomology 

Let LX be the space of contractible loops in a compact Kahler manifold X. It 
inherits the Kahler structures from X and additionally carries the action of S1 

by isometries (translations in the source). The Hamiltonian of this action is the 
action functional: to a contractible loop it assigns the symplectic area of a disk, 
contracting the loop, and can be multiple valued. Applying Morse-Novikov theory 
for the action functionals H : LX - > E o n the universal covering of LX, one comes 
to the definition of the Floer homology FH of X (isomorphic to H*(X, C[g±x])) [8]: 
gradient trajectories of H in LX are holomorphic cylinders in X. If one introduces 
multiplication in F H using the "map" LX x LX —> LX of composition of loops (= 
holomorphic pants in X), it leads to the construction of quantum multiplication 
in H*q(X) (see [11]). 

Project: Construct S1-equivariant Floer cohomology FH$i (LX). 

Let wi,..., cjfc be Kahler forms on LX corresponding to the integral basis of 
Kahler forms on X, and let Hi,..., Hk be corresponding Hamiltonians (of the same 
S^-action!) on the covering LX —> LX with the group of covering transformations 
Zk = H2 (X, Z). The generators g i , . . . , qk of the group Zfc commute with the 51-
action, preserve the forms Ui lifted to LX from LX, but transform Hi : g*(iïj) = 
Hj -6ij. 

Denote C[fi] the coefficient algebra ^(BS1) = H*(CP°°) of the equivariant 
theory and introduce Duistermaat-Heckman equivariantly closed forms pi = Ui + 
hHu see [3]). 

PROPOSITION, piqj — qjPi = hqiöij as operators on an equivariant Floer complex. 

COROLLARY. FH$I(LX) should carry the module structure over the algebra V of 
differential operators generated by qi — eli-, andpj = hd/dtj. 

A semi-classical limit h —> 0 should give rise to the subalgebra in H*(X) 
generated by the Kahler classes pi and ĝ . In particular relations between them 
should describe a Lagrangian variety with respect to the Poisson bracket {pi,qj} — 
Qiöij — the characteristic variety of the V-module. 
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5. Realization: Toric manifolds 

Holomorphic maps CP 1 —> X to a toric manifold X = CN //Tk can be described 
as equivariant maps C2 —> C^. This compactifies the-map spaces up to toric 
manifolds Xd = CN^~D /jTk. Here the homology class d of maps can be identified 
with an integral point in LieTfe such that Vj — 1, . . . , Af, Dj = ]£\ iliadi > 0, and 
D = J2 Dj • We can interpret the map spaces as approximations of LX by algebraic 
loops (S£ c CP1) , define FHsi(X) as a certain limit (see [10]) of H+^Xd), and 
using the explicit toric description of Xd, compute the V-module. 

The algebra H = H*(X) is generated by the integral Kahler classes P i , . . . , 
P/c (see [3]). Denote (•,•) intersection pairing on H, ft : H —> H — the automor
phism generated by Pi \—> —Pi. Introduce notation: Uj = E?7T^P7;, DJ — Timidi, 
ti = loggi, dj = llUmijd/dti, and set 

r\M (x _J_ m \ 
A;: = 0,(0, - h) • • • (dj - (r - l)h), M[x]\ = fiMy=~°° 

for any M E Z . 

THEOREM 3 [10]. Suppose ci(X) > 0. Then 
(1) F H si — V/J where the left T>-ideal J is generated by all operators 

AÏ1 • • • A]? - qdA[1 • • • A ^ with rj > 0, lj > 0, and rj - ld = Dj. 
(2) The kernel of this linear differential system is generated by the components 

of the following vector-function oft with values in the cohomology algebra H: 

edt 

fh(t) = ^~NePt^ä^Di[Ui]l_ mDN[ÜN]V 

(3) E d e d T / x d ^ ( * ~ T ) / f t = n N~ f c(Ä(*) ' n / - f t (T)) ' wherePi are Duistei-maat-
Heckman forms Ui + hHj on each Xd corresponding to our basis in Lie*Tk ~ 
H2(Xd) and the S1-action. 

(4) Suitable limits to h = 0 give rise to the algebra H* (X) and a generating 
series for symplectic volumes of Xd-

EXAMPLE. For k = 1, N = n, and (my) = ( 1 , . . . , 1), we get X = CP71'1. Then 
Pn = 0 and components of / = ePt £ X 0 edt/[(P + 1) • • • (P + d)]nhnd give all n 
solutions of (hd/dt)nI = eH, and the first one (P = 0) is ^g d / (d ! ) n / î n d . 

6. Toric complete intersections 

Given Tk-invariant homogeneous polynomials on C^ , one can plug components of 
a rational curve C2 —* C^ into them and equate to zero identically. In the spaces 
Xd the solutions form the zero locus of a PST^C)-invariant holomorphic section 
of a suitable equivariant vector bundle. If such sections were transverse to the zero 
section the loci would represent equivariant Euler classes of these bundles. One may 
hope to reconstruct the î>-modules and quantum cohomology algebras of complete 
intersections X' C X from such classes, substituting them for fundamental cycles 
of the map spaces Xl

d. 
For simplicity let us consider the case of Calabi-Yau complete intersections 

in X — CP71"1. Let l\,..., lr > 0 be Chern numbers of r line bundles with l\ + 
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hZr = n. Introduce the algebra H = C[P] / (P n _ r ) with the intersection pairing 
(P*-*-1,1) = h ... Ir (the image of H*{X) - • H*(X')) and denote El

d(p, fi) the 
51-equivariant Euler class of that "suitable" vector bundle over Xd-

THEOREM 4 [10]. 

E£0e*- / ^t-r^ft^(p lfi) = (-i)B-1fi1+r-Tl(äW,nÄW) 

where 

T/ie 7T, — r" components of gi in H provide a complete solution to the differential 
equation (D = d/dt) 

Dn~rI = h... lre
l(hD + 1 ) . . . (hD + h - 1 ) . . . (lrD + 1) •.. (ZrZ> + Jr - 1)/-

This is exactly the equation that was found in [5] as the Picard-Fuchs equa
tion for mirrors of projective Calabi-Yau complete intersections, satisfied by the 
"hypergeometric" series Y2d h]- • • • lr

]-Qd/(d\)n. 
In particular we have obtained the equation D4I = 5e* (hD + 1 ) . . . (5D + 4)1 

entirely in topological terms of map spaces and not as a Picard-Fuchs equation of 
a Landau-Ginzburg model. Furthermore, its solution 

Pt^A5P + l)...{5P + 5d) 
j ^ q (P+l)5 . . . (P + d)5 ' 

rewritten as 

ePt(G1+G2P + G3P
2 + G4P

3) = G1(q)+P(G1(q)\ogq + G2(q)) + ---, 

yields I\ as G\ and / as G<i. 
Thus, each coefficient of G\,..., G4 should hide some enumerative informa

tion about rational curves in CP 4 relative to (one or many) quintics: what appeared 
meaningless in the Picard-Fuchs equation because of accidental choice of the co
ordinate À in the family of quintic-mirrors, turns out to be related directly to the 
exterior geometry of quintics in CP 4 . 
PROBLEM. Recover this information. 

7. Integral representations 

It is not surprising that toric geometry provides integral formulas for some hy
pergeometric series. However they will illuminate the possible nature of mirror 
manifolds. 

DEFINITION. A function F : E —> C on the fibered space TT : E —• B generates the 
Lagrangian variety L = {(p,t) G T*B\\3x G 7r_1(t) : dF\x = 7r*(p)}. 

LEMMA. Theorem 1 with k = N and mij = 6ij formally gives P = 0 and f = 

£ d e z - ß d t M ! • • • dN\hN\d\ = exp(E e*'/ft). 



Homological Geometry and Mirror Symmetry 479 

THEOREM 5 [10]. Let X = CN//Tk be a compact toric manifold with ci > 0. 
Then 

(1) The quantum cohomology algebra H*(X) is the algebra of functions on 
the Lagrangian variety generated by F = u\-\- • • • + u^ : C^ —> C with n : u v-> q 
given by qi = Yl u"j%2 • 

(2) Introduce the holomorphic volume foim on 7r_1(g) as 

g i . . . g/. du\ A . . . A duN 

U\... UN dqi A . . . A dqk 

Then integrals 
I(logq)= [ 

(«) 
u)q e(

UlJr-+UN)/h 

over cycles Y corresponding to dim if* (X) critical points of F\ir 1(g) provide a 
complete set of solutions to the differential system of Theorem 1 (1). 

Notice that dim7r-1(g) = N — k = d imc^- According to our formulation 
of the mirror problem we should call the Landau-Ginzburg data (E —> B,F,UJ) a 
family mirror-symmetric to the toric manifold X. 

Furthermore, set Xq = P - 1 ( i ) H T T " 1 ^ ) , w'q = ujq/d(F\7r~1(q)). 

THEOREM 6 [5], [10]. All solutions of the differential equation of Theorem 2 with 
r = 1 a7"e integrals J ujq over compact cycles Tf G Xq. 

In order to obtain the same result for r > 1 one should split u\ + • • • + u^ 
into r sums of length l\,... , lr and consider the sums as equations of a complete 
intersection Xf in the fibers of 7r. 

Theorem 4 matches well to the remarkable Batyrev's construction [4] of ge
ometrical mirror pairs of toric hypersurfaces: fibers 7T_1(g) are the complex tori 
that, when suitably compactified into a toric variety, meet P _ 1 ( l ) along Batyrev's 
Calabi-Yau hypersurface, and UJ' extends to its holomorphic volume form. Thus, 
Batyrev's mirrors of toric hypersurfaces are hypersurfaces in the mirrors of their 
ambient toric manifolds. 

EXAMPLE. Replace the homogeneous equation g1/5(a;f + • • • + x\) — x\... x§ 
with the affine equation in Zg-invariant coordinates Ui — ql^x^/x\ .. .x$. Then 
u\... u§ — q, and the equation is u\ + • • • -\-u§ = 1. This corresponds to our matrix 
(my) = (1,1,1,1,1). 

8. Homological geometry 

Along with the differential equations of Theorems 1 and 2 the above integral formu
las have intrinsic cohomological meaning in toric geometry. In fact the description 
of H* (X) by j/V+fc generators and relations is a g-deformation of the following simi
lar description of H*(X). A symplectic quotient CN//Tk can be identified with the 
free quotient CN/T$ of some domain in CN, and H*(CN//Tk) — with the equi
variant cohomology H^k(C

N). One begins with H^N(CN) = H*(BTN) = C[u], 
then computes H^N(CN), which causes factorization by some "multiplicative" 
ideal, and finally reduces the group TN to Tk, which imposes the additive rela
tions. 
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Therefore our (ui,... ,UN) are in fact characteristic classes of TN, and the 
function F = Y2 uj ^s the universal 1st Chern class c\ (of all toric manifolds — 
quotients of C ^ ) . Our solutions to the quantum cohomology differential systems 
are given by integrals in SpecH*(BTN) over Morse theoretic cycles of the function 
Re(c i ) . It suggests tha t in general mirror manifolds should live in some cohomolo-
gies of each other. 

The integral formulas can be recovered from our Z)-module approach: one 
should first compute an "equivariant Floer cohomology" tha t is equivariant also 
with respect to the maximal torus TN /Tk of A u t ( X ) , and then get rid of this extra 
structure. The first step adds variables, the second expresses / as a De Rham class 
in excessive variables. 
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Constant Mean Curvature Surfaces in Euclidean Spaces 

N I K O L A U S K A P O U L E A S * 

Department of Mathematics, Brown University 
151 Thayer Street, Box 1917 
Providence, RI 02912, USA 

A variant of the isoperimetric problem is to classify and study the hypersurfaces in 
the Euclidean space E n + 1 that have critical area subject to the requirement that 
they enclose a fixed volume. In physical terms this is equivalent to having a soap 
film in equilibrium under its surface tension and a uniform gas pressure applied to 
one of its sides; hence, such surfaces are often called soap bubbles. The geometric 
condition for such a surface is that its mean curvature H is a nonzero constant. 
The precise value of the constant is not important because it can be changed to any 
desired value by a nomothetic expansion. We will be using the abbreviation "CMC 
surface" to mean "complete smooth hypersurface properly immersed in E n + 1 with 
H = 1". Notice that the above definitions do not require embeddedness. 

Although it has been known and proven for a long time that the round 
spheres are the unique answer to the isoperimetric problem, only recently has the 
corresponding question been settled for soap bubbles. Actually up to 1980 the only 
known examples of CMC surfaces of finite topological type were the rotationally 
invariant ones in E3 studied by Delaunay in 1841 [5]. This, combined with various 
nonexistence results we will now review, led to the suspicion — sometimes called 
the Hopf conjecture although it is not clear that Hopf ever took sides on this 
question — that the round sphere is the only closed bubble in E3. 

Jellet [11] had already proved in 1853 that starshaped closed CMC surfaces 
are round spheres. A century later Hopf [9] proved that a CMC surface homeo-
morphic to S2 is a round sphere. His proof uses the so-called Hopf differential, 
which is a quadratic holomorphic differential for the underlying Riemann surface 
structure of the surface M defined by 

* = (Xzz, i/) dz2 = {(An - A22 - 2iA12)dz2 , 

where z = u -\- iv = x\ -\- ix2 is a local isothermal coordinate, X : M —> E3 is 
the immersion in consideration, v : M —> E3 its Gauss map, (., . ) the standard 
inner product in E3, and Aij the second fundamental form. The Cauchy-Riemann 
equations establishing the holomorphicity amount to the Codazzi equations once 
H = 1 is used. Clearly (by Liouville's theorem for example) holomorphic quadratic 

*) Partially supported by NSF grants DMS-9404657 and NYI DMS-9357616 and a Sloan 
Research Fellowship. 
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differentials on S2 vanish. Hence, A = H g (g is the first fundamental form), g has 
constant curvature, and X immerses to a round sphere. 

In 1956 Alexandrov [2] proved that all embedded closed CMC surfaces (any 
n) are round spheres. His method uses moving planes to establish by the use of 
the maximum principle that there is a plane of symmetry parallel to any given 
plane; hence, the surface is a round sphere. Both Hopfs and Alexandrov's methods 
have found numerous applications to other problems; actually there is currently no 
other method of the wide applicability of Alexandrov's in dealing with questions 
of uniqueness and symmetry in nonlinear problems. More recently, Barbosa and 
doCarmo [3] showed that local minimizers of the variational problem are round 
spheres. 

In the 1980s the general picture changed. In 1982 Hsiang [10] demonstrated 
that Hopfs theorem is not valid in higher dimensions by constructing nonround 
CMC spheres. His method was to reduce the problem to an ordinary differential 
equation (ODE) by imposing nonstandard rotational symmetry. In 1984 Wente [27] 
in a surprising development disproved the so-called Hopf conjecture by producing 
toroidal soap bubbles in E3. Because a torus can be covered conformally by C we 
can arrange that the Hopf differential lifts to <Ë> = dz2 where z = u + iv is the 
standard coordinate on C. By writing then the fundamental forms as 

\e2w\dz\2, A = ^-r^dv? + ^ ± d v 2 

4 ' ' A A 

the Gauss equation reduces to the sinh-Gordon equation 

Aiu + ^sinhiu = 0, 

hence solutions of this equation integrate on C to conformai CMC immersions. 
Wente using partial differential equation (PDE) methods found a 2-parameter 
family of highly symmetric doubly periodic solutions w and he demonstrated that 
the parameters can be arranged so that the corresponding CMC immersion X is 
also doubly periodic. Abresch [1] subsequently realized that one can find the solu
tions w Wente used by separation of variables and he demonstrated that there are 
Wente tori with only 3 positively curved regions. Walter [26] expressed the immer
sion X in closed form using theta functions and gave a very detailed description 
of the geometry of these surfaces. 

Soon afterwards Pinkall and Sterling [22] classified all the doubly periodic so
lutions w and hence the CMC tori; this result could be thought of as the analogue 
of the Enneper-Weierstrass representation for minimal surfaces. Bobenko [4] no
ticed the analogy with the classical soliton theory where one has the sine-Gordon 
equation instead, and he improved and generalized this classification. Many other 
people have been working in this direction. An interesting result, for example, of 
Ercolani, Knörrer, and Trubowitz [7] has been the proof that there are continuous 
families of CMC tori of arbitrarily large number of parameters. One should men
tion at this point the Hsiang-Lawson conjecture that the only minimal embedded 
torus in S3(l) is the Clifford torus. In spite of the fact that all the attempts have 
failed up to now, there is still hope that the classification of the minimal tori in 
S3(l) [4] will help in settling this conjecture. 
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All the CMC surfaces of finite topological type known by the above methods 
are topological spheres, cylinders, planes, tori, or tori with two ends. Attempts 
to extend to other topological types have been unsuccessful up to now for two 
reasons. First, umbilics always exist then. Second, the fundamental group is not 
commutative as in the case of a torus and hence the induced representation into 
the Euclidean group does not have to consist of Euclidean motions sharing a 
common axis. Fortunately, there is another general construction [12]-[16] that gives 
a plethora of examples for almost any finite topological type, including examples of 
closed surfaces of any genus besides genus 0 and 1, and also embedded (complete) 
examples of any genus and enough ends. Most of the remaining discussion will 
concentrate on this construction. 

The most ambitious formulation of the construction would be to give general 
conditions under which the following is possible: start with a collection of unit 
spheres in E n + 1 from each of which a number of small discs is removed, and a 
collection of complete minimal surfaces rescaled to small size from which a neigh
borhood of infinity is removed. Span then the existing boundaries with surfaces so 
that a complete surface is obtained that is subsequently perturbed to a CMC sur
face. Such a construction seems plausible because all known CMC surfaces come 
in families containing surfaces that can be decomposed as above: small perturba
tions of unit spheres minus small discs, rescaled complete minimal surfaces minus a 
neighborhood of oo, and regions connecting the two. The main difficulty in having 
such a general construction is the construction of the connecting surfaces. At the 
moment we can only borrow the connecting parts from the Delaunay or the Wente 
cylinders, whose geometry we proceed to describe. 

The Delaunay family of surfaces can be parametrized by a single parameter 
r to be defined later. Each surface is obtained by rotating a periodic curve around 
the axis, r can take both positive and negative values; for positive r the curve is 
the graph of a function and the surface is embedded, whereas for negative r it is 
not. Actually, Delaunay produced these curves as the loci of a focus of an ellipse 
(r > 0) or a hyperbola (r < 0) rolling on the axis. {K = 0} on the surface (K 
denotes the Gauss curvature) is a union of circles whose removal disconnects it into 
components that we call almost spherical regions (asr's for short) for reasons that 
will become clear later. We call an asr positive or negative according to the sign of 
K on it. If \T\ is small a positive asr minus a small neighborhood of its boundary 
approaches a round sphere of radius 1 — recall H has been normalized to be 1 
and we assume the conventions that give H = 1 on Sn(l) — minus two small 
antipodal discs. Similarly, an enlarged negative asr by a factor of | r | _ 1 suitably 
placed approaches a catenoid {x2 -\- x2 — cosh2a;i} on any large ball centered 
at the origin of the coordinate system Ox\x2x^ in consideration. In the limit as 
r —> 0 the surface becomes a string of unit spheres touching externally and with 
centers on the axis while the negative asr's shrink to points. The rescaled as above 
negative asr's tend to catenoids. 

There is a translation along the axis of the Delaunay surface that carries a 
positive asr to one that is separated from the previous one by a single negative 
asr. The length of this translation is an increasing function of r, for r = 0 being 
2. Finally, to define r precisely, consider the corresponding physical system of 



484 Nikolaos Kapouleas 

soap film and enclosed gas in pressure. If one separates it into two components 
by cutting with a surface, then the part on the left exerts a force on the part on 
the right, r is so defined that this force is 7rre, where e is the unit vector in the 
direction of the axis of the Delaunay surface pointing from right to left. Notice that 
this force is attractive or repulsive according to the sign of r and does not depend 
on the cutting surface because the (finite) part of the system isolated between two 
different cuts has to be in equilibrium. 

We turn our attention now to the Wente surfaces. By suitably choosing one 
of the free parameters of the Wente construction it is possible to arrange for the 
immersion X : C —• E3 to have a period. This way we obtain a 1-parameter family 
of Wente cylinders. We call the parameter r again although we do not have a 
nice definition for r as before. In this case r is restricted to positive values. The 
Wente cylinders like the Delaunay ones are periodic, the period now is however 
a rotation around an axis instead of a translation. The angle of this rotation 9 
varies continuously with r and 9 —> 0 as r —» 0. The Wente cylinders close up to 
tori whenever 9/-K is rational. There is a plane of symmetry P of the whole surface 
that is perpendicular to the axis. 

We define asr's as before, the only difference being that {K = 0} is a highly 
connected union of curves now. For small r each positive asr — excluding as usual 
a small neighborhood of its boundary — approaches a unit sphere minus one 
small disc. Each negative asr enlarged by a factor of | r | _ 1 approaches similarly 
an Enneper's minimal surface. Asr's come in pairs, each pair contains one positive 
and one negative asr and their common boundary. The boundary of each pair 
consists of two circles, each of which is a generator of the fundamental group of 
the cylinder. Each of these circles immerses as a planar "figure 8" of maximum 
symmetry. Its plane is parallel to the axis at distance 1/2. Successive planes form 
an angle of 9/2. The bisector of the angle of two successive planes is a plane of 
symmetry of the pair in between, and so is P. The self-intersection q of each figure 
8 is the projection on the plane of the figure 8 of the intersection p of the axis with 
P, each line pq is a line of reflectional symmetry of the whole cylinder. Using such 
reflections the whole cylinder is generated by a single pair of asr's. 

An important difference from the Delaunay case, besides the complicated 
nature of {K = 0}, is the fact that each asr is attached to the rest of the surface 
at one place only. Hence, the force exerted on it by the rest of the physical system 
has to vanish, whereas in the Delaunay case we have two nonzero forces exerted, 
one at each of the two antipodal attachments, canceling each other. We could 
consider the two forces exerted on a pair of asr's (we have two attachments then), 
but these also vanish. 

We go back now to discussing the construction of new CMC surfaces. At 
the present stage of development of this construction we are restricted to the 
following approach: fuse positive asr's from Delaunay or Wente cylinders or tori 
and unit spheres, thereby creating a CMC surface M on which H — 1 is supported 
on some of the positive asr's — called central in the rest of the discussion. Find 
then a function <ß : M —> E such that X^ := X + <f>v is a CMC immersion (X 
and v are the initial immersion and its Gauss map)'. Examples of such M's are 
a sphere to which a number of Delaunay ends has been attached, two spheres 
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connected by a Delaunay neck, or two Wente tori placed symmetrically so that 
two particular positive asr's, one from each, are fused together so that a genus 
2 closed surface is obtained. It is clear from the second example that there must 
exist an obstruction to the construction because otherwise we would contradict 
both Hopfs and Alexandrov's theorems. 

The idea for finding cj) is to use perturbation methods, based on the fact that 
if the r parameters of the Delaunay and Wente ingredients are small, then H — 1 
is small (actually of order r ) . We would like to linearize and correct for H — 1, 
and then correct for the higher order terms. This can be phrased in the language 
of fixed point theorems. Let H^ be the mean curvature of X^, then 

i^ = tf+±£0 + Q0, 

where £ = A + \A\2, \A\ is the length of the second fundamental form, and Q^ 
is quadratic and higher order in cj) with geometric invariants of X as coefficients. 
Given cj), let u, v be the solutions to the linear equations 

Cu = 2(1 - H), £v = 2Q(f}. 

Clearly then, a fixed point of the map cj) —> u — v provides us with the desired cj). 
Our approach hence requires us to be able to invert £ and to be able to 

have good enough estimates for the solutions and the higher order terms. The 
higher order terms in particular create various technical difficulties because the 
coefficients blow up as r —> 0 on the negative asr's. The main difficulty however is 
that it is not clear that £ is even invertible. Actually on the unit spheres and the 
complete minimal surfaces one obtains in the limit as r —> 0, £ is not invertible 
because the translations give rise to a 3-dimensional kernel. 

In order to resolve these difficulties it is helpful to employ the conformai 
covariance of the Laplacian in dimension 2 to appropriately change the equations 
and facilitate their study. By changing the metric to h — \\A^g the linearized 
equation changes to £u = 4|A|~2(1 — H), where £)x \— A/t -J- 2, while the metric 
on the positive asr's changes very little and on the negative asr's changes to make 
them isometric to the positive asr's. £]x has then 3 small eigenvalues for each asr 
of M corresponding to the 3-dimensional space of translations. We call the space 
spanned by the corresponding eigenfunctions an approximate kernel. Moreover, 
the components of the Gauss map on each asr are functions close in L2 to this 
approximate kernel. Hence, there is no hope of bringing our construction to a 
successful conclusion unless |A| - 2(1 — H) is (approximately) orthogonal to these 
functions. This is the obstruction we have been expecting and by using the physical 
model one can see it amounts to the requirement that the forces exerted on each 
central asr by the rest of the system have vanishing resultant. This is identical — 
but in the language of physics — to applying the balancing formula in [18], where 
such balancing arguments were first developed for CMC surfaces. 

As we have already seen, each Delaunay piece attached to a central asr exerts 
a force 7rre, where e is in the direction of the axis of the Delaunay and points 
away from the asr towards the piece. The Wente pieces do not contribute to the 
resultant force. We assume from now on that the balancing condition is satisfied 
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by M; that is, for each central asr we have ^ i~e = 0, the summation being over 
all the Delaunay pieces attached to the asr in consideration. We can then solve the 
linear equations in our scheme modulo small elements of the approximate kernel. 
Assuming the required weighted estimates for the smallness of Q^, we can ensure 
the existence of a 0 such that H^ — 1 is a small element of the approximate kernel. 

It remains to correct for this approximate kernel. To this purpose we intro
duce some further perturbation of M that will introduce H — 1 with approximate 
kernel content canceling the one we want to remove. If there are only Delaunay sur
faces used in the construction, we can prescribe any small element of approximate 
kernel by perturbing M as follows: prescribing the projection to the approximate 
kernel of H — 1 is approximately the same as prescribing fs(H — 1)Uì on each asr 
S, where the zVs are the components of the Gauss map. This is in turn the zth 
component of the resultant force exerted on S by the rest of the system. In the 
Delaunay case the rest of the system has two components; thus, we can create a 
resultant by changing the parameters of one of them (r or the direction). The force 
then exerted by this Delaunay piece does not balance anymore the force exerted 
by the other. 

This approach clearly fails when there are Wente surfaces incorporated in 
the construction. One needs again to be able to prescribe a resultant force to each 
asr of the Wente surface, but now there is only one component on the rest of the 
system and this exerts no force for any value of the parameter. Nevertheless, it 
is still possible to create such a force as follows: excise most of each asr from the 
Wente surface to leave a small neighborhood N of {K = 0}. The first Dirichlet 
eigenvalue of £h on N is (large) positive and N is stable. Thinking of the boundary 
components of N as wires we can move them to new positions without destroying 
the soap film; this repositioning should be resisted by forces trying to bring the 
wires to their original positions. By reattaching the excised parts of the asr's at 
the new positions we should have been successful in creating |A| - 2( i7 — 1) with 
approximate kernel content. 

This is indeed so and one way to make it precise is as follows: Let 7 b e a 
Killing vector field of the ambient E3. Clearly then £h(v -Y) = 0 . Hence, if / is 
some function on some domain ft of M we have using integration by parts that 

/ dphv-Y Chf= [ V(f)vY-fV(vY), 
Jn Jon 

where V is the outward unit normal to dfl tangent to M. If we ignore higher order 
terms the left-hand side is the projection to v • Y of the |A | _ 2 ( i î — 1) produced 
by changing X to Xf. For example, suppose that we construct / on the Wente 
cylinder W as follows: solve the Dirichlet problem 4 / = 0 on JV (as above) with 
/ = 0 on dû \ S and / = u • e on dN (1 S, where S is an asr and e is a unit vector 
parallel to the intersection of the two planes of symmetry of S. Extend / to be 
v • e on S \ N and 0 on the rest of W. Finally smooth it out by changing it on 
a neighborhood of dN. Clearly then, the left-hand side above with D, = S and 
Y = e is up to a constant the approximate kernel created corresponding to e on S, 
whereas the right-hand side can be calculated to be of order | log r | _ 1 by arguing as 
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follows: / is approximately harmonic on N. Most of SnN is conformally isometric 
to a cylinder S1(l)x[0,ß], where E « | | logr|. Because harmonicity is conformally 
invariant, / œ 1 on dNnS, and — as it turns out — / « 0 on 95 , we see that the 
flux of / through the generator of ivi(S n N) is of order | logT| _ 1 . In this case the 
flux is the dominant term on the right-hand side and the argument is complete. 
This general approach of creating approximate kernels can be summarized by what 
we call the Geometric Principle: 

GEOMETRIC PRINCIPLE. Creation of (H - 1)|^4|~2 in the approximate kernel di
rection amounts to repositioning the asr's reiati ve to each other. 

Notice that in the earlier approach in the Delaunay case this is definitely 
valid because changing the parameter (and hence the period) or the direction of 
the axis clearly repositions the asr's. It is conceptually illuminating also to notice 
that for the above / we have essentially proven that £]%f has a projection to one 
of the eigenfunctions of the approximate kernel of order | l og r | - 1 . Because / has 
a projection of order 1, the corresponding eigenvalue is also of order | logr | _ 1 . It 
turns out that the small eigenvalues of £]x in the fusion of Wente tori are of two 
kinds: those of order | logr | _ 1 , and those of order y/r. From all this we can con
clude that our approach amounts to effectively inverting the linearized operator in 
the direction of the approximate kernel. This method and the "geometric princi
ple" should be widely applicable in all similar problems where small but nonzero 
eigenvalues appear. 

Although the above gives the philosophy of how to prescribe the creation 
of the kernel in the Wente case, much more work is required to actually do so. 
The difficulty is due to the fact that in a short distance from an asr there are 
many (their number tends to oo as r —> 0) asr's. One succeeds by using the 
precise information one has for v • Y on the figure 8's separating pairs of asr's, the 
symmetries of the Wente cylinders, the approximate harmonicity of the various / ' s 
as above, the conformai invariance of the harmonic condition, and various other 
ideas for which we refer the reader to [16]. We only remark here that it fits with the 
rotational character of the Wente cylinders that in the end one has to prescribe not 
only forces through the figure 8's but also torques. These are created by a relative 
rotation of the two components of the complement of the figure 8 in consideration 
around the axis of the cylinder. 

We would like to make some final comments concerning the construction of 
closed surfaces by this method. If one uses Delaunay surfaces only, then one has 
to have a number of central spheres. Because of the balancing condition, at least 
3 Delaunay pieces have to emanate from each central sphere; hence, there are 
at least 4 central spheres and the genus is at least 3. To satisfy the balancing 
condition at an outermost central sphere one has to use Delaunay pieces of both 
the embedded and nonembedded kind so that some of the forces are repulsive and 
some attractive. In this case there is another difficulty [14] as well: once all but 
one of the Delaunay pieces are placed, one has to place a final one to connect 
central spheres whose positions are fixed already. In general this last piece will not 
fit. This difficulty can be overcome by using a free parameter one has available to 
adjust the distance of the two spheres to that required by the piece to fit in. This 
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requires the use of very long Delaunay pieces, which magnifies this effect. Now 
using Wente cylinders one can produce closed surfaces of genus 2 as well, as in the 
example we have already mentioned. Here again we have a period problem, which 
comes into the construction in a subtler fashion; for details see [16]. 

In the case of complete embedded surfaces we can only use Delaunay pieces 
connecting central spheres and Delaunay ends. The ends of the surfaces we obtain 
decay exponentially to the Delaunay ends at oo. Korevaar, Kusner, and Solomon 
[19], extending partial results of Meeks [21], proved that this is the case in general; 
that is, every embedded CMC surface in E3 has ends that decay exponentially 
at oo to Delaunay ends. More recently, Korevaar and Kusner [18] have further 
restricted the structure of a general embedded CMC surface to resemble more the 
structure of the ones constructed as above. Concerning the general structure an 
extra piece of information comes from a construction of Grosse-Brauckmann [8]. 
Extending methods of Lawson [20] and Karcher [17] he constructed a 1-parameter 
continuous family of CMC spheres of maximum symmetry with n ends (n > 3). 
The family starts with surfaces like the ones already discussed, where n embedded 
Delaunay ends are attached to a central sphere. The parameter r then of the ends 
increases to a maximum value and then decreases again towards 0. These last 
surfaces have n Delaunay ends of small r > 0 joined in the middle by an n-noid. 

In summary we can say that in the last few years there has been enormous 
progress in the subject. We now understand that there is a rich variety of CMC 
surfaces and we have made substantial progress in understanding the subject in 
its totality. Still, there are many unanswered questions and some which come to 
mind are the following: 
(1) Very little is known in higher dimensions. 
(2) Classify the connected components of the moduli. In the embedded case a lot 
of progress has been made [19]. In the immersed case the statement should be 
modified somehow so that all Wente tori count as being in the same component, 
for example. 
(3) Understand better the structure of each component in the spirit of [8]. Perhaps 
a more general construction based on minimax methods would be useful here. 
(4) As an introductory step, understand the geometry of the CMC tori; in partic
ular, what kind of minimal surfaces appear in their degenerations. 

Finally, we mention that perturbation methods have been used in other geo
metric problems, for example with great success for instantons [17], [6] and mininal 
surfaces [24]. Closer in spirit are constant scalar curvature constructions [23]. There 
are other proposed constructions, for example for minimal surfaces or Einstein 4-
manifolds, which in some respects are very similar to the one we discussed and 
which are still open. 
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Intersection Pairings on Quotients and Moduli Spaces, 
and Witten's Nonabelian Localization 

FRANCES KIRWAN 

Balliol College, Oxford 0X1 3BJ, United Kingdom 

Many moduli spaces in complex algebraic geometry can be expressed as quotients, 
in the sense of Mumford's geometric invariant theory [18], of nonsingular complex 
projective varieties X by actions of complex reductive groups G. Any such quotient 
can also be identified with a symplectic quotient (or Marsden-Weinstein reduction) 
of the variety X by a maximal compact subgroup K of the reductive group G [14], 
[18], [19]. This symplectic quotient is /i -1(0)/if, where p : X —> k* is a moment 
map for the action of K on X equipped with a suitable symplectic form. 

Suppose now that X is any compact symplectic manifold acted on by a 
compact connected Lie group K. If the action of K is Hamiltonian (in other words, 
if there is a moment map p : X —> k*), then we may form the symplectic quotient 
p~1(Q)/K. The inclusion map io : / i - 1(0) —> X induces a ring homomorphism 

on equivariant cohomology (we shall consider only cohomology with complex co
efficients throughout). Using Morse theory and the gradient flow of the function 
| / i |2 : X —> M, it is proved in [14] that the map i^ is surjective. 

Suppose in addition that 0 is a regular value of the moment map p. This 
assumption is equivalent to the assumption that the stabilizer Kx of x under the 
action of K on X is finite for every x G /i_1(0), and it implies that the quotient 
p~1(0)/K is an orbifold, or V-manifold, which inherits a symplectic form LJQ from 
the symplectic form u on X. It also implies that there is a canonical isomorphism 
H*(p~1(0)/K) —> jFf*c(//

_1(0)) (because we are only considering cohomology with 
complex coefficients). Composing the inverse of this isomorphism with ZQ , we have 
a surjective ring homomorphism 

H1C(X)-+ITQM-1{0)/K). 

Henceforth, if 77 G H^(X) we shall denote its image in H* (n~1 (0)/K) by 770. 
The image of a set of generators of H^(X) is therefore a set of generators of 

H*(p~1(Q)/K). (In fact generators of Hj<(X) are given by generators of H*(BK) 
together with extensions to H^(X) of generators of H*(X), because the spectral 
sequence of the fibration X XK EK —> BK degenerates [14].) It follows that if 
the kernel of the map 77 \-> 770 is known then generators and relations for the 
cohomology ring iJ*(/i_1(0)//<') can be determined from generators and relations 
inff£(*)(cf.[4],[16]). 
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One way to determine this kernel is based on the observation that because 
H* (pT1 (0) /K) satisfies Poincaré duality, a cohomology class 77 G H^(X) maps to 
0 in H*^"1 (0)/K) if and only if for all Ç G H^(X) the intersection pairings 

IJDCO^-1(0)/K] = (I7C)O[^-1(0)/ä], 

given by evaluating the product of 770 and £0 o n the fundamental class of p~1 (0)/K, 
are zero. It therefore suffices to determine these intersection pairings. 

There is a natural pushforward map fx : H^(X) —> H^. Here H^ is the 
equivariant cohomology of a point, which can be identified with the space of K-
invariant polynomials on the Lie algebra k. This pushforward map can be thought 
of as integration over X. If T is a compact connected abelian group (i.e. a torus) 
and £ G H^(X), there is a formula (the abelian localization theorem) for j x £ in 
terms of the restriction of £ to the components of the fixed point set for the action 
of T. It says that 

Jx éTtJF CF F£F" 

where T is the set of components of the fixed point set of T, and if F G T then 
ep is the equivariant Euler class of the normal bundle to F in X and ip '• F —• X 
is the inclusion. The right-hand side is to be interpreted as a rational function 
on the Lie algebra t. This formula was first proved by Berline and Vergne [3], 
and Atiyah and Bott [2] subsequently gave a cohomological proof motivated by 
the Duistermaat-Heckman theorem [5] on the pushforward of the symplectic or 
Liouville measure under the moment map. For a general compact Lie group K 
with maximal torus T there is a canonical map H^(X) —> H^(X), and we may 
apply the abelian localization theorem to the image in H^(X) of any ( G H^(X). 

Witten in Section 2 of [22] gives a nonabelian localization theorem, which 
applies to actions of arbitrary compact connected Lie groups. This interprets the 
evaluation 770 [/.i-1 (0) /'K] of 770 on the fundamental class of the quotient in terms 
of data on X. Let s be the dimension of K, and let 11| be the norm induced by a 
fixed invariant inner product (•, •) on k, which we shall use throughout to identify 
k* with k. For e > 0 and £ G H^(X), Witten defines an integral 

and he expresses it as a sum of local contributions. In fact it reduces to a sum of 
integrals localized around the critical set of the function |/u|2 on X. This critical 
set can be expressed as a disjoint union of closed subsets Cß of X indexed by a 
finite subset B of the Lie algebra t of the maximal torus T of K, which is explicitly 
known in terms of the moment map PT for the action of T on X [14] .If ß G B then 
the critical subset Cß is of the form Cß = K(ZßCip~1(ß)), where Zß is a union of 
connected components of the fixed point set of the subtorus of T generated by ß. 
The subset /i_1(0) on which \p\\2 takes its minimum value is Co. Witten's result 
can then be expressed in the form 
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THEOREM 1 If K acts freely on p~l(G), then 

r(C) = Coee0[/i-1(O)/K]+ J2 [ CV 
ßeB-{o}JUß 

Here, the class 0 G HA(p~l(tì)/K) = Hf<(p~1(Q)) is the image under the natural 
map H x —> Hj<(p~1(0)) of the class in H^ represented by the polynomial function 
—1|0|2/2 of cj) G k. The Uß are open neighbourhoods inX of the nonminimal critical 
subsets Cß of the function \\p\\2 and the £'ß are certain differential foims on Uß 
obtained from (. 

In the case of the formal equivariant cohomology class ( = 77 exp zu), where 77 G 
Hft(X) and ü)((j>) = u) + p((ß) is the standard extension of the symplectic form 
to to an element of Hf<(X), Witten's results imply the following estimate on the 
growth of the terms Jv Ç'̂  as e —> 0: 

THEOREM 2 Suppose ( = 77expia) for some 77 G Hj<(X). If ß G B - {0} then 

lu Ç'ß ~ e_"^" ^2ehß(e)> u)here \ß\\2 is the value of\\p\\2 on the critical set Cß and 

\hß(e)\ is bounded by a polynomial in e_ 1 . 

Thus, one can think of e > 0 as a small parameter, and then use the asymptotics 
of the integral Xe over X to calculate the pairings 77oeE0e7a;D[/i_1(O)//<r], because 
the terms in Theorem 1 corresponding to the other critical subsets of | | /J|2 vanish 
exponentially fast as e —> 0. Notice that when Ç = 77 exp zw, the vanishing of p on 
/i_1(0) means that Co = Vo expzwrj, where UQ is the symplectic form induced by u) 
on/z-^Oj/Ä". 

Of course, if 77 G Hf<(X), where d is the real dimension of the quotient 
p-x({))/K, then 

77oc^eÊ e[/i-1(0)/X]=77o[^1(0)/K]. 

Thus, the intersection pairings we wished to determine can be calculated in this 
way. 

Witten's argument runs along the following lines. He introduces a /^-invariant 
1-form / on I , and shows that Xe (() = Te((^expsDl), where D is the differential 
in equivariant cohomology and s G M+. He then does the integral over 0 G k and 
shows that in the limit as s —• 00, this integral vanishes over any region of X 
where l(V^) ^ 0 for at least one of the vector fields V"-7, j = 1 , . . . ,s, given by 
the infinitesimal action of a basis of k on X indexed by j . Thus, after integrating 
over (j) G k, the limit as s —> 00 of le(() reduces to a sum of contributions from 
sets where l(V^) = 0 for all the V^. In the case when X is a symplectic manifold 
and the action of K is Hamiltonian, Witten chooses l(Y) = d\\p\\2(JY), where J 
is a Jf-invariant almost complex structure on X. Thus, Te(() reduces to a sum of 
contributions from the critical sets of |/i||2. 

In the case when X is a symplectic manifold and ( = rjexpiu) for any 
77 G Hft(X), there is a way to prove a variant of these results that bypasses 
the analytical difficulties relating to integrals over neighbourhoods of the critical 
sets, and reduces the result to fairly well-known facts about Hamiltonian group 
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actions on symplectic manifolds [10]. The key steps in the proof are as follows. One 
assumes that 0 is a regular value of p, or equivalently that K acts on p_1(0) with 
finite stabilizers. One observes that integrals of ÜT-invariant functions on k may be 
replaced by integrals over the Lie algebra t of the maximal torus. Then, applying 
properties of the Fourier transform, one rewrites Xe as the integral over t* of a 
Gaussian Ge (which is a constant multiple of y »—> e~sl2e^v^ /(2e)) multiplied by 
a function Q = D^R, where R is piecewise polynomial and D^ is a differential 
operator on t*: 

J v\ 
Ge(y)Q(y)[dy]. 

yet* 

The function Q is obtained by combining the abelian localization theorem above 
with facts on Fourier transforms of the sorts of functions that arise in the formula 
for the pushforward. 

The function Q is smooth in a neighbourhood of the origin when 0 is a 
regular value of p, so there is a polynomial Qo = DVJRQ that is equal to Q near 0. 
It turns out that the cohomological expression eeeeLUiQ[p~1(0)/K] is obtained as 
the integral over t* of the Gaussian Ge multiplied not by Q but by the polynomial 
Qo: 

eeBeiu° [p-\0)/K]= f Ge(y)Qo(y)[dy]. 
J vet* 

This result can be deduced from an equivariant normal form for u in a neigh
bourhood of / i - 1(0), given in [8] as a consequence of the coisotropic embedding 
theorem. 

To obtain an analogue of Witten's estimate for the asymptotics of the differ
ence Xe - eeee iwo[/x -1(0)/if] as e - • 0, one then writes 

[p-\0)/K] = [ Ge(y)D„(R - RQ)(y)[dy]. 
J vet* 

Te _eeQeiu0 

Jyet 

Here, R — RQ is piecewise polynomial and supported away from 0. By studying 
the minimum distances from 0 in the support of R — RQ an estimate similar to 
Witten's can be obtained. 

The same methods lead to the following explicit formula (the residue formula, 
Theorem 8.1 of [10])), in terms of the components F of the fixed point set of T 
on X, for the evaluation of a class 770 G H* (p-1(0) j'K) on the fundamental class 
[/.i-1(0)/if], when 770 comes from a class 77 G H^(X). 

THEOREM 3 (RESIDUE FORMULA) Let 77 G H^(X) induce rjQ G H*(p-1 (G)/K). 
Then we can eguate 

with 

(2ir)«-»|WlTOl(T) . 
\ F£J-

ReJ^M £ ^F^JF
l^pm 
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In this formula, s and I are the dimensions of K and its maximal torus T, and PT 
is the moment map for the T-action. The Weyl group is denoted by W and 7i+ is 
the number of positive roots of K, while vofy) = IXyx^WO ^s ^ie product of the 
positive roots. T is the set of components of the fixed point set of the maximal toiiis 
T on X. If F G T then ip is the inclusion of F in X and ep is the equivariant 
Euler class of the normal bundle to F in X. 

Here, the residue map Res (whose domain is a certain class of meromorphic dif
ferential forms on t ® C) is a linear map, but in order to apply it to the individual 
terms in the statement of the residue theorem some choices must be made. The 
choices do not affect the residue of the whole sum. When K is SU(2) or SO(3) 
acting effectively on X, the formula becomes 

[,-H°)/K} = -lRes0U £ ^FmjF"k~^ V0e™°< 

where Reso denotes the coefficient of 1/I/J, and T^ is the subset of T consisting 
of those components F of the T fixed point set for which PT(E) > 0. Results for 
the case when K = S1, which are related to the residue theorem of [10], may be 
found in the papers of Kalkman [13] and Wu [23]. 

The case when 0 is not a regular value of the moment map p and /Lj_1(0)/if 
is singular can be treated using intersection homology, at least when X is a non-
singular complex projective variety [12]. There is now a natural surjection [15] 

H*K{X)^IH*{»-\ü)lK) 

and a modification of the residue formula applies to the image 770 e IH*(fi~1(Q) 
/K) a! any V £ BÜX). 

When X is a Kahler manifold with a holomorphic line bundle £ on which 
K acts, and whose first Chern class is CJ, the residue formula is related to an old 
result of Guillemin and Sternberg [7]. When K acts freely on /i_1(0) the quotient 
p~1(0)/K is a Kahler manifold and the line bundle £ on X induces a holomorphic 
line bundle CK o n M _ 1 ( 0 ) / ^ - Their result identifies the Riemann-Roch numbers 
RRK(C) and RR(CK) defined by 

RRK(C) = ^2(-l)j dimHj(X,C)K 

and 
RR(CK) = ^2(-l)j dimWhi^W/K^K). 

Recently Guillemin [6], Meinrenken [17], and independently Vergne [21] have used 
the ideas behind the residue formula to prove that RRK(C) = RR(CK) in a wider 
class of situations where X need not have a if-invariant Kahler structure. A special 
case is discussed in [11]. 

Witten applies the ideas in [22] described above in an infinite-dimensional set
ting to give formulas for intersection pairings of cohomology classes in the moduli 
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spaces A4 (n, d) of semistable holomorphic bundles of coprirne rank n and degree 
d over a fixed Riemann surface E of genus o. These formulas agree with the calcu
lations of Thaddeus [20] in the rank two case. In order to describe them we need 
a set of generators for the cohomology ring of M(n, d). Following [1] we take as 
generators the slant products 

ar e\H2r(M(n,d)), 

ò j ^ 2 M ( M ( n , d ) ) 

and 
PreH^-\M{n,d)) 

of the Chern classes cr G H2r (T, x M(n, d)) with standard bases of i î 0 (S) , i?1(S), 
and H2(T,), respectively. 

In [22] Witten obtains formulas for generating functionals from which it is 
possible to extract all the intersection pairings 

n 2g 

r=2 kr=l 

For example, if the mr are sufficiently small to ensure convergence of the sum, he 
obtains 

fiT-PAM-OI - £ ^ £ = K f e S § 
r = 2 

|n1(ÜT)|(27r)(25-2)dim^X)(A)25- 2 ' 

where K = SU(n) and T> is the product of the positive roots of K, and rr is the 
r th elementary symmetric polynomial. The sum runs over those elements of the 
weight lattice that are in the interior of the fundamental Weyl chamber of K. The 
element 

c = e a w* d / ndiag( l , . . . l l ) 

is a generator of the centre of K, and if A is a weight then cx is defined to be etX^ 
for any c in the Lie algebra of the maximal torus of K such that exp c = c. There 
are similar formulas for more general pairings. 

The moduli spaces of semistable holomorphic bundles over a fixed compact 
Riemann surface can be regarded as symplectic quotients of finite-dimensional 
group actions on "extended moduli spaces" [9] and algebro-geometric versions of 
these, as well as the infinite-dimensional actions used by Witten. It seems that 
this leads to another derivation of Witten's formulas for pairings on the moduli 
spaces when the rank and degree of the bundles are coprirne, and also to formulas 
for intersection cohomology when the rank and degree are not coprirne [12]. 
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Anti-Self-Dual Metrics and Kahler Geometry 
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Stony Brook, NY 11794, USA 

1. Four-Dimensional Geometry 

The fact that the Lie group 50(4) is nonsimple gives 4-dimensional geometry an 
extremely distinctive flavor. Indeed, the choice of a Riemannian metric g on an 
oriented 4-manifold M splits the bundle of 2-forms 

A2 = A+®A (i) 

into the rank-3 bundles of self-dual and anti-self-dual 2-forms, respectively defined 
as the ±l-eigenspaces of the Hodge star operator * : /\ -> / \ ; this just reflects 
the fact that the adjoint representation of 50(4) on the skew (4 x 4)-matrices 
is the sum of two 3-dimensional representations, as indicated by the Lie algebra 
isomorphism so(4) = so(3)©so(3). The decomposition (1) is conformally invariant, 
in the sense that it is unchanged if g is replaced by ug for any positive function u; 
but reversing the orientation of M interchanges the bundles / \ . 

The central importance of (1) stems from the fact that curvature tensors are 
bundle-valued 2-forms and thus, on a Riemannian 4-manifold, can be broken up 
into self-dual and anti-self-dual parts. For the Riemannian curvature of our metric 
g, however, one can go even further; using the metric to reinterpret the curvature 
tensor as the curvature operator endomorphism 7£ of the bundle of 2-forms, it is 
apparent that 7 £ : / \ ®/\~—>/\ © A~ m a y ^ e considered as consisting of more 
primitive pieces 

n 
w+ + é 

B* 

B 

W- + Û 

(2) 

where trace W± = 0. Whereas s is just the scalar curvature, and 2B is just the 
trace-free Ricci curvature, the remaining two tensors W± may seem less familiar. 
However, their sum W = W+ + W- is exactly the classical Weyl curvature, which 
vanishes identically if and only if g is locally conformally flat; and, as you might 
therefore expect, W± are both conformally invariant. 
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2. Anti-Self-Dual Manifolds 

Familiar or not, W+ plays an important role in 4-dimensional geometry, as will now 
be explained. For any oriented Riemannian 4-manifold (M,g) one can construct 
an associated almost-complex manifold (Z,J), the underlying real manifold Z of 
which is the 52-bundle 5 ( / \ + ) of length-y/2 self-dual 2-forms. The automorphism 
J of TZ, which satisfies J 2 = — 1 and so makes TZ into a complex vector bundle, 
preserves the decomposition of TZ into horizontal and vertical components with 
respect to the Levi-Civita connection: 

0 / • 

\ 

^ \ s(A+) 

E^l 

On the tangent spaces of the fiber 52 's, J simply acts by rotation by —90°. Mean
while, in the horizontal subspace at aS G S(/\ ), which we identify with Tp^M 
via the derivative of the canonical projection p, J acts as o _ 1 o 0. Although it is 
hardly obvious, this almost-complex structure J is actually conformally invariant 
— despite the fact that replacing g with ug changes the horizontal subspaces on 
Z = (A+-0)/M+. 

Although the action of J on each tangent space is isomorphic to the action of 
i = >/—! on C3 by multiplication, we may not be able to find C3-valued coordinate 
charts on Z that put J in this standard form simultaneously at all points of their 
domains. In general, the obstruction [17] to finding such complex charts on an 
almost-complex manifold is encoded by a vector-valued 2-form called the Nijenhuis 
tensor; but in our case [1], [18] the Nijenhuis tensor of (Z,J) is determined by 
the self-dual part W+ of the Weyl curvature of (M,g). When this vanishes, the 
adapted complex charts are then interrelated by biholomorphisms, and Z acquires 
the structure of a complex manifold: 

THEOREM 1 (PENROSE/ATIYAH-HITCHIN-SINGER) The almost-complex mani
fold (Z,J) is a complex 3-manifold iff W+ — 0. Moreover, a complex 3-manifold 
arises by this construction iff it admits a fixed-point-free anti-holomorphic involu
tion a : Z —> Z and a foliation by u-invariant rational curves CPi, each of which 
has normal bundle 0(1) ©0(1) . Finally, the complex manifold (Z, J) and the real 
structure a suffice to determine the metric g on M up to conformai rescaling. 

This 4-dimensional analogue of the conformai surface/complex curve dictio
nary clearly merits the introduction of some terminology: 
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DEFINITION 1 An oriented Riemannian A-manifold (M, g) is called anti-self-dual 
if its Weyl curvature satisfies W+ = 0. 

DEFINITION 2 The complex 3-manifold (Z, J) associated with an anti-self-dual 4-
manifold (M, g) by Theorem 1 is called the twistor space of M. 

Because reversing the orientation of M interchanges W+ and W-, there is but 
a looking-glass difference between anti-self-dual manifolds and self-dual manifolds, 
which by definition instead satisfy W_ = 0. Our preference for anti-self-duality 
will have certain technical advantages, however, as we now describe the geometry 
and topology of compact anti-self-dual manifolds. 

3. Positive Scalar Curvature 

Because the condition W+ = 0 is conformally invariant, classification problems 
for anti-self-dual metrics have reasonable answers only if one either works modulo 
conformai rescalings g \—> ug, or else imposes some extra condition to single out 
preferred representatives in each conformai class. A particularly natural program of 
the latter type would have us insist that the metric in question have constant scalar 
curvature in addition to being anti-self-dual. For M compact, this normalization is 
always possible [21], and the sign of the resulting constant s provides an important 
global invariant of our anti-self-dual conformai class. To determine this sign, it is 
actually unnecessary to find a representative with s = constant; it is quite enough 
to produce a representative for which s does not change sign. 

This said, let's now examine some anti-self-dual 4-metrics of positive scalar 
curvature [13] on m-fold connected sums CP2# • • • #CP2", here CP2 denotes the 
oriented 4-manifold obtained from CP2 by reversing its orientation, while the con
nected sum operation # is carried out by deleting balls and identifying the resulting 
S3 boundaries. 

The metrics in question are determined by a choice of m points p\,..., p m in 
hyperbolic 3-space 7i3. Given such a choice, we set X = H? — {p\,... , p m } , and 
define V : X - • M+ by 

e2rd _ 1 ' 

where rj denotes the hyperbolic distance from pj. The latter function is a solu
tion of the Laplace-Beltrami equation d-kdV = 0, and the resulting de Rham class 
[^*dV] is, moreover, an element of the integral cohomology H2(X,1A) C H2(X,M). 
Thus, by the Chern-Weil theorem, there exists a circle bundle P —> X with con
nection 1-form 9 whose curvature is *dV. Now let r denote the hyperbolic distance 
from any reference point. The metric 

<? = (sech2r) (Vh + V^e®2) (3) 

is then anti-self-dual, and its metric-space completion is a smooth Riemannian 4-
manifold, the added points of which consist of a 2-sphere and m points P i , . . . , p m . 
Indeed, let D3 denote the closed unit ball in M3, and identify the interior of D3 with 
TÙ3 via the Klein projective model. Then M = P U S2 U {pi , . . . ,pm} can be made 
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into a smooth 4-manifold with circle-action in such a manner that S2U{pi, . . . ,p?n} 
is the fixed-point set and D3 is the orbit space. The projection to D3 is thus as 
follows: 

M = P U S2 U {p i , . . . 5 p m } 
I 1 I I 

D3 = X U 3D3 U { p i , . . . , p m } 
The metric g of equation (3) then extends to M so as to jdeld a compact anti-sclf-
dual 4-manifold diffeomorphic to CP 2 # • • • #CP2, and the scalar curvature s = 
1 2 F - 1 of this metric is positive almost everywhere, implying that our conformai 
class has a representative of positive scalar curvature: 

THEOREM A For every m > 0; there exist anti-self-dual metrics with s > 0 on 

TTiêrY" CP2#—• # C P ^ 
v v ' 

m 

When 771 = 0,1, the constructed anti-self-dual metrics are respectively conformai to 
the standard symmetric-space metrics on S4 and CP2; when 771 = 2, they coincide 
with the metrics discovered by Poon [20]. For related results, see [6], [7], [10]. 

In order to describe the twistor spaces of the above manifolds, let 0(k,t) 
denote the unique holomorphic line-bundle over CPi x CPi with degree k on the 
first factor and degree £ on the second. Because TL3 may be identified with the 
set of unit future-pointing time-like vectors in Minkowski 4-space R3»1, the data 
points p\,... , p m E H3 C M3'1 determine m sections 

Vi,...,Vm eT(C¥1 x C P i , 0 ( l , l ) ) ^ C 4 = R 3 ' 1 ®C. 

Let B denote the total space of the CP2-bundle 

B := F(0(m - 1,1) © 0(1, m - 1) © O) —> CPi x C¥1 , 

and define an algebraic variety Z C B by the equation 
ra 

xy = t2HVj , 
J=I 

where x G 0(m - 1,1), y G ö(l,m - 1), and teO = O(Q,0). The twistor space 
Z of the constructed metric is then obtained from Z by making small resolutions 
of the singular points and blowing down the surfaces x = t = 0 and y = t = 0 to 
CPi's. Notice that these twistor spaces are all Moishezon, meaning that they are 
bimeromorphic to complex projective varieties. 

These examples are, in a rough sense, topologically typical: 

PROPOSITION 1 Let (M,g) be a compact anti-self-dual manifold with s > 0. Then 
the intersection form 

H2(M,R) x H2(M,R) - ^ R 

is negative definite. If ni(M) is finite, then, as an oriented topological J^-manifold, 

M«CP 2 #- - -#CP 2 , m >0. 
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Proof: If CJ is a self-dual 2-form on any Riemannian 4-manifold, the Weitzenböck 
formula [2] yields 

JM \\M\2dß = jM [i| |vw | |2 - W+(CJ,W) + S-M dp 

If W+ = 0 and s > 0, it thus follows that every harmonic 2-form has vanishing 
self-dual part, and the intersection form is therefore negative definite. 

If our manifold has a finite fundamental group, both M and its universal 
cover have x + T = 2(1 — òi + &+) =2, and hence 7Ti (M) = 0. The conclusion then 
follows" from Donaldson's thesis [5]. D 

Geometrically, however, the constructed metrics are not so typical; they carry 
nontrivial Killing fields, in contrast to their generic anti-self-dual deformations for 
m > 3. More importantly, the condition s > 0 does not impose any a priori restric
tion on the size of the fundamental group of M. Indeed, by replacing hyperbolic 
space TL3 with a hyperbolic handle-body H3/(Z * • • • * Z), the above construction 
yields [11], [14] positive-scalar-curvature anti-self-dual metrics on connected sums 
C P 2 # • • • # C P 2 # ( S 1 x S3)# • • • #(SX x S3). 

4. Kahler Surfaces 

When the scalar curvature is positive, we've just seen that an anti-self-dual man
ifold must have negative-definite intersection form. In the s = 0 case, the same 
argument implies that any harmonic self-dual form u must satisfy Va; = 0: 

PROPOSITION 2 Let (M,g) be an anti-self-dual 4-manifold with s = 0. If M has 
indefinite intersection form, then (M, g) is a Kahler manifold. 

Recall that a Riemannian 2n-manifold (M2ri,g) is called Kahler if it admits an 
isometric almost-complex structure J : TM —> TM, J2 = —1, J*g = o, that is 
invariant under Riemannian parallel transport. Such an almost-complex structure 
is automatically integrable, and the 2-form u(-, •) = g(J-, •), known as the Kahler 
form, is both closed and of type (1,1), meaning that J*UJ = LJ. Conversely, a 
closed (1, l)-form a; on a complex manifold (M, J) determines a Kahler metric by 
the formula g(-, •) = u(-, J-) provided that this last expression is positive-definite. 

Because the complex structure J of a Kahler manifold (M, g) satisfies V J = 0, 
its curvatine tensor 1Z = V A V is J-linear, and so 1Z G f\ ' (8) A ' • ^ u t m r 2n = 4 
one has f\ ' = Ma; © /\~, and (2) this tells us that 

w++û 
s 

— W ® CJ 
16 

As a converse to Proposition 2, one thus observes [8] that a Kahler manifold of 
complex dimension 2 is anti-self-dual iff its scalar curvature is zero. This makes it 
convenient to introduce the following definition: 

DEFINITION 3 A compact Kahler manifold (M, J, g) of complex dimension 2 and 
s = 0 will be called a scalar-flat Kahler surface. 
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Scalar-flat Kahler surfaces have a number of other interesting features, any 
one of which would justify their study. First, they are solutions of the Einstein-
Maxwell equations 

Rab — 2i7'ac^faC — yFcd.FC dab , 

where the harmonic 2-form F representing the electromagnetic field is half the sum 
of the Kahler and Ricci forms. Second, they are L2-critical; in fact, such metrics 
are absolute minima of the functional 

/ \\n2dß=-sA^+x)+ f mw+r + udß 
JM JM 1 Z 

on the space of all Riemannian metrics on M. Finally, they are solutions of Calabi's 
_extremal-Kahler-metric problem [4]. -

Scalar-flat Kahler surfaces also exhibit some remarkable properties from the 
twistor-theoretic perspective, and this will play a key role below. The Kahler form 
u) obviously gives us a section of p : S(/\ ) —• M, and a quick inspection of our 
construction of the twistor complex structure shows that this map is a holomorphic 
embedding of M into Z\ in particular, the twistor space of a scalar-flat Kahler 
surface contains a complex submanifold D that meets every fiber of p in exactly 
one point. Conversely [3], [19], if the twistor space Z of a compact anti-self-dual 
4-manifold (M, g) with b\ (M) even contains a complex hypersurface D with this 
property, the metric g is globally conformai to a scalar-flat Kahler metric. 

Let us now observe that one can construct many explicit scalar-flat Kahler 
surfaces by a modification [14] of the "hyperbolic ansatz" of Section 3. Indeed, let 
E be a compact Riemann surface of genus g > 2, and observe that 7 = M x E can 
be given a curvature —1 metric by setting h — dt2 + (cosh £)/i£, where t is the 
tautological coordinate on M and h^ is the unique curvature —1 Hermitian metric 
on E. Let p i , . . . ,pm G Y be given, let Gj be the corresponding hyperbolic Green's 
functions, and let 

m 

on X = Y — {pi , . . . ,pm}. If there's a circle-bundle P with connection 1-form 9 
whose curvature is *dV, then the completion M of (P, g), where 

p = (sech2t)(Vrfc + Vr"1fl®2) , 

will be a scalar-flat Kahler surface, and the canonical projection M —• E will 
be a holomorphic map with generic fiber CPi ; the only catch lies in showing that 
[^•A-dV] is an integral cohomology class. This integrality condition is actually non-
trivial, but for all ???, ^ 1 there are configurations {pi , . . . ,pm} that satisfy it, and 
for these values of ??i one thus constructs scalar-flat Kahler surfaces diffeomorphic 
to (E x S 2)#mCP 2 . 

These examples are all ruled surfaces, meaning that they are obtained from 
holomorphic CPi -bundles over a complex curve E by blowing up — that is, suc
cessively replacing certain points by CPi's of self-intersection —1. In particular, 
deforming these explicit solutions allows one to prove [15] 
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PROPOSITION 3 Let E be any compact complex curve of genus > 2. 7/E x CPi is 
blown up at m > 2 points in general position, the resulting complex surface admits 
s calar-flat Kahler metrics. 

On the other hand, because the total scalar curvature of a Kahler surface 
is given by JM s dp = ATKCI U [UJ] , the Enriques-Kodaira classification of surfaces 
implies the following [23]: 

PROPOSITION 4 (YAU) Let (M,J) be a compact complex surface that carries a 
Kahler class [u] for which J s dp > 0. Then either M is ruled, or else M is 
covered by a complex torus or K3 surface. 

As the nonruled cases appearing here admit Ricci-flat Kahler metrics [24], Propo
sition 3 begins to seem rather satisfying, especially because any ruled surface can 
be obtained from a product surface E x CPi by blowing up and down. What we 
still lack, though, are examples of scalar-flat Kahler metrics on ruled surfaces that 
fiber over curves of genus < 1. Fortunately, these can also be shown to exist: 

PROPOSITION 5 J/CPi xCPi is blown up at 13 suitably chosen points, the resulting 
complex surface admits scalar-flat Kahler metrics. 

PROPOSITION 6 Let E « T2 be any curve of genus 1. J /CPi xE is blown up at 
6 suitably chosen points, the resulting complex surface admits scalar-flat Kahler 
metrics. 

These metrics are produced by the following quotient construction [12]: 

THEOREM 2 Let (N, JN,9N) be a nonminimal compact complex surface with sca
lar-flat Kahler metric, and let $ : N —> N, <Ê>2 = 1, be a holomorphic isometry 
with only isolated fixed points. Let (M,JM) be obtained from N/Q by replacing 
each singular point with a CPi of self-intersection —2. Then there exist scalar-flat 
Kahler metrics g M on (M, J M)-

By a variation on the technique of Donaldson and Friedman [6], this result is proved 
by constructing the desired twistor spaces with divisors as smoothings (Zt,Dt) 

of a singular model (Z_,Z}_) U (Z+ ,Z)+) with normal crossing singularities Q. 
Here Z + is a desingularization of the obvious Z2-quotient of the twistor space of 
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N, whereas Z- is the disjoint union of an appropriate number of copies of Hitchin's 
Eguchi-Hansen twistor space [9]. The requirement that Af be nonminimal — that 
is, be obtained from another complex surface by blowing up — is used to guarantee 
that the smoothing problem is unobstructed. 

With this tool in hand, one can now construct scalar-flat Kahler metrics on 
(CPi x CPi)#13CP2 = CP2#14CP2 by smoothing a suitable Z2-quotient 

—* H— 

N 

tLZ> 

9 E 

of a 2-point blow-up of CPi x E, where E has genus 2. The proof of Proposition 
6 is similar; and in both cases the number of blow-ups can be increased at will. 
This allows one [12] to prove 

THEOREM B Let (M, J) be a compact complex 2-manifold that admits a Kahler 
metric for which the integral of the scalar curvature is nonnegative. Then either 

• (A4, J) admits a Ricci-flat Kahler metric; or else 

• any blow-up of (M, J) has blow-ups (M, J) that admit scalar-flat Kahler 
metrics. Moreover, any blow-up of such an (M, J) admits scalar-flat Kahler 
metrics, too. 

Forming connected sums [6], [7] of the manifolds of Proposition 5 also proves [16] 

THEOREM C Let m > lAn. Then ?iCP2#77iCP2 admits anti-self-dual metrics. 

COROLLARY 1 Let M be a smooth simply connected compact oriented 4-manifold. 
Then the connected sum MftmCFï is homeomorphic to an anti-self-dual manifold 
provided that m > 14b+ (M). 

On the other hand, Taubes [22] has proved a much deeper result. 

THEOREM 3 (TAUBES) Let M be a smooth compact oriented 4-manifold. Then 
the connected sum M#777,CP2 admits anti-s elf-dual metrics provided that m is suf
ficiently large. 

Unfortunately, however, the latter theorem gives us no estimate of the necessary 
size of 771. Thus, many further results along the lines of Theorem C would seem to 



506 Claude LeBrun 

be required to a t ta in a bet ter understanding of the fascinating new diffeomorphism 
invariant implicit in Taubes ' result. 
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The Geometry of Moduli Spaces 
of Vector Bundles over Algebraic Surfaces 

JUN Li 

Mathematics Department 
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The study of moduli problems is one of the central topics in algebraic geometry. 
After the development of GIT theory, the moduli of vector bundles over curves 
were constructed and in the 1970's, Gieseker constructed the moduli space of vector 
bundles over algebraic surfaces. Since then, many mathematicians have studied 
the geometry of this moduli space. For projective plane, Horrocks discovered the 
very powerful monad constructions of vector bundles over CP2. The proof that 
the moduli space of bundles over CP2 is either rational or unirational and is 
irreducible, and the recent development in understanding its cohomology ring rest 
on this construction. Brosius [Br] gave a simple description of vector bundles over 
ruled surfaces. In [Mu], Mukai studied the geometry of moduli of vector bundles 
over K3 surfaces. In particular, he constructed nondegenerate symplectic forms on 
these moduli spaces. Recently, Friedman has provided us with a description of the 
global structure of the moduli of bundles over regular elliptic surfaces [Fri]. 

As to the geometry of moduli of vector bundles over general surfaces, the 
picture has emerged only recently. To begin with, Bogomolov's inequality says 
that the Chern numbers of any stable sheaf E obey 

2r 
-c2(E) - ci(E)2 > 0, r = rank E. 

r — 1 

On the other hand, works of [Gi2], [Ta2] show that when r — 2, stable E with 
ci(E) = 0 does exist if c2(E) > 2(pg(X) + 1). The major breakthrough in this 
area comes from Donaldson's generic smoothness theorem, which point out that 
deformation of general vector bundles of sufficiently large second Chern classes is 
unobstructed. This discovery contrasts sharply to the counter examples of [Gi2] 
for small 02(E). 

Speaking of moduli of vector bundles over algebraic surfaces, we have to 
discuss the influence of gauge theory. In short, based on works of [Do], the under
standing of the moduli of vector bundles will provide us valuable information on 
the topology of the underlining algebraic surfaces. 

In this lecture I will report on the recent progress in understanding the ge
ometry of these moduli spaces. I will concentrate on topics that arise from both 
algebraic geometry and gauge theory and are solved (mainly) by using algebraic 
geometry means. 
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1 Moduli of Stable Vector Bundles 

To begin with, let's first recall the notion of stable vector bundles and its relations 
with gauge theory. Let X C CP n be a smooth algebraic surface and let H be the 
pullback hyperplane line bundle on X. 

DEFINITION 1.1. (1) (Gieseker [Gil]) A (coherent) torsion-free sheaf E on X is 
said to be stable (resp. semistable) if for any proper subsheaf F C E, we have 

1 1 
XF(U) < jjXE(n) (resp. < ) for n » 0, rank F rank E 

where XE(IT>) is the Poincaré polynomial of E as follows: 

XE(n) = '-n2H2 + nE • (Cl(E) - ^Kx) + X(E)i r = rank E. 

(2) (Mumford) A vector bundle E on X is said to be /i-stable (resp. p-
semistable) if for any subsheaf F C E with 0 < rank F < rank E, we have 

1 -MF)-H<-^-=Cl{E)-H ( resp.<). 
rank F rank E 

In 1977, Gieseker first constructed the moduli space of semistable sheaves 
over X and showed that it is projective [Gil]. More precisely, for any r G N and 
(I,d) G Pic(X) x H4(X, Z), there is a coarse moduli space M(r,I,d) parameter
izing the equivalent classes of rank r semistable sheaves E satisfying det E — I 
and c2(E) — d. Because being /i-stable is stronger than being stable, the moduli 
of rank r /i-stable vector bundles E with ArE = I and c2(E) = d is an open 
subset M(r,I,dy C M(r,I,d). Following Kobayashi and Donaldson, M(r, I, d)^ 
is isomorphic to the space of gauge equivalent classes of irreducible Anti-Self-
Dual (ASD) connections on the principal bundle associated to vector bundles in 
M(7-, / , d)^. In particular, M(2,0, d)fl is the space of gauge equivalent classes of 
ASD SU(2)-connections. 

2 Local Structure of the Moduli Spaces 

In the next four sections, we will study the geometry of the moduli of rank 2 
vector bundles. Let r = 2 and / G Pic(X) be fixed throughout and let M^,/ be 
the moduli space M(2, / , d). In contrast to the case of vector bundles over a curve, 
Mdj iu general is singular and there are examples constructed by Gieseker [Gi2] 
showing that the dimension dime M^,/ can be bigger than the virtue dimension 
Vd = 4d — 3x(Ox) — I2 predicted by Riemann-Roch. In the 1980's, Donaldson [Do] 
(later generalized by Friedman [Fr2] and Zuo [Zu]) proved the following generic 
smoothness result, which opened the gate for studying Mdj for general surfaces. 

THEOREM 2.1. (Donaldson [Do], Friedman [Fr], Zuo [Zu]) There are constants 
a\ and a2 depending on (X,H,I) so that the singular locus Smg(Md,/) of M^,/ 
has dimension at most 3d + a\\/4d — I2 + a2. In particular, for sufficiently large 
d, Mdj has pure complex dimension 4d — x(@x) — I2 o,nd is smooth at general 
points. 
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Based on this generic smoothness result, one can improve the understanding 
of the singularities of Mdj. 

THEOREM 2.2. (Li [Li2]) There is an N depending on (X, H, I) such that whenever 
d> N, then TS/Ldj is normal and, further, it is a local complete intersection scheme 
away from the closed points corresponding to strictly semistable sheaves. 

The proof of this theorem is a straightforward application of deformation 
theory. 

3 Compactifications and the Polynomial Invariants 

When there is a universal sheaf ^ o n l x M ^ j , one can use the Künneth component 
c2(£)2,2 G H2(X) <g> H2(MdJ) of c2(E) to define a homomorphism [OG1] 

ß = c2(S)2>2 : H2(X, Z) —> H2(MdJ, Z). (3.1)i 

Otherwise, by applying the descent technique to the moduli space, one obtains a 
homomorphism 2Pic(X) —> Pic(Mci)i) [Lil] that induces a homomorphism 

p,:H1'1{X,B)^H2{X,l)—,H2{MdJ,Z{^\). (3.1)2 

Assuming dimMd,/ = vd is the expected dimension, then the ring structure of 
Jf*(Mdi/;R) and (3.1)i give rise to a multilinear map 

(pVd : SymmVdH2{X, Z) —» R, (3.2)! 

or in the case of (3.1)2, 

(pVd : Symm™* (H^&R) n H2{X, Z)) -» R. (3.2)2 

These intersection numbers are important in understanding the ring structure of 
H*(MdJ). 

If we only consider the open set M^ 7 C M^j , we recover the /Li-map defined 
by Donaldson in gauge theory. In order to define intersection pairing similar to 
(3.2), which is the polynomial invariants when pg > 1, Donaldson introduced the 
so-called Uhlenbeck compactification M ^ (of M^7), which is derived by studying 
the limits of ASD connections. 

In order to understand the polynomial invariants in the algebro-geometric 
setting, one needs to understand the two compactifications of M^j : the Uhlenbeck 
compactification M *̂J and the Gieseker compactification M^j (which is the closure 
of M£j in MdiI and when d » 0, M ^ = Mdj). Note that M ^ is different from 
M^j as M^j — M^ 7 is a real codimension 2 subset whereas M^ j — M^ 7 is a real 
codimension 4 subset. 

THEOREM 3.1. (Li [Lil]) The Uhlenbeck compactification M^j is a contraction of 
the Gieseker compactification M ^ j . More precisely, there is a projective scheme 
structure on M^j such that under this scheme structure, there is a morphism 

F : M£V —> M $ 

that extends the inclusions M£ 7 C Mf\ and M ^ C MV1}. 
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Although the Uhlenbeck compactification M^ j is defined purely by analysis, 
it is remarkable that it still carries a projective scheme structure and, under this 
scheme structure, M^*} is a contraction of M^j . The theorem was proved as follows: 
By a descent technique, we first construct a (determinant) line bundle L on M^j , 
which is an analogy of the theta divisor for moduli of bundles over curves. The 
difficult part is to construct sufficiently many sections. This is carried out by using 
a restricting and extending technique: Let C G \nH\ be a smooth divisor and 
let Mc be the moduli of vector bundles over C. Then there is a rational map 
Wldj • Mc so that L is the pullback of an ample line bundle on Mc. So 
by pulling back sections on Mc, we obtain a lot of meromorphic sections of L®k. 
By using GIT theory, we show that all these sections are regular. In this way, we 
get a morphism FL '.Mdj —> CP^. It is proved that the image scheme F L ( M ^ J ) 

is homeomorphic to M^1}. The proof is tricky because theJbwo spaces are defined^ 
based on degenerations by different means. This is carried out by using the quotient 
bundles technique. 

The relation of (pVd with the Donaldson polynomial invariants is as follows: 

THEOREM 3.2. (Li [Lil], Morgan [Mo]) Assume pg > 1; then there is a constant 
N depending on (X, I) so that for any d> N and d-generic ample divisor H, the 
polynomials (3.2J coincide with the Donaldson polynomial invariants of X. 

I shall point out that Morgan [Mo] has constructed the map ipd : M^j —> M^1} 
and established its continuity. 

Because the polynomial invariants are the top intersection of H2(M.dti)i they 
are nontrivial because p(H) is big. Hence ipVd(H,... ,H) > 0. In this way, we have 
recovered the Donaldson nonvanishing theorem of ip*. 

THEOREM 3.3. (Donaldson [Do]) LetX be any smooth algebraic surface withpg > 
1 and H an ample divisor. Then for sufficiently large k, <Pk(H-> • • • » H) > 0-

There is another nonvanishing theorem that goes as follows. If 6 is a holomor
phic symplectic form nondegenerate at general points of M^ j , then when Vd = 0(2), 

/ A ^ 0 ® A ^ 8 > 0. 

By using the symplectic form of Mukai, O'Grady proved the following nonvanishing 
theorem of the polynomial invariants. 

THEOREM 3.4. (O'Grady [OG1]) Assume X is a surface of general type and as
sume there is aO G H°(Kx) such that 6~1(0) G X is reduced. Then for sufficiently 
large k, y?fc(([0] + [Q])k) > 0 provided vd = 0(2). Here [9] e H2(X;R) is the class 
associated to 9. 

The original assumption (in [OG1]) that 9~1(0) is smooth can be relaxed by 
a technical lemma in [Li2]. 
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4 The Kodaira Dimension of the Moduli Spaces 

One important question about the geometry of the moduli space Mdj is to deter
mine its Kodaira dimension. It has been known for a long time that the moduli 
space of vector bundles over CP2 is either rational or imirational depending on the 
choice of / and d. In particular, ft(Mdj) — —oo. The same conclusion holds for 
all surfaces of K(X) = —oo. For moduli spaces of bundles over K3 surfaces, their 
Kodaira dimensions are zero following the work of Mukai [Mu]. For elliptic sur
faces, the description given by Friedman for bundles over regular elliptic surfaces 
suggests that Mdj are birational to fibrations whose generic fibers are Abelian 
varieties. 

For surfaces of general type, we have the following theorem. 

THEOREM 4.1. (Li [Li2]) Let X be a minimal surface of general type. Assume 
there is a reduced canonical divisor and that x(@x) + 1 2 is even; then there is an 
N depending on (X, H, I) so that for d> N, Mdj is of general type. 

The proof consists of two parts. First, one needs a description of the canonical 
sheaf of Mdj so that many pluri-canonical forms can be constructed. This was done 
by using a determinant line bundle similar to the proof of Theorem 3.1. (This was 
also carried out independently by [Hu].) The second part is to work on a resolution 
Md,i of Mdj (as Mdj is always singular) and construct pluri-canonical sections of 
Md,i- The obvious thing one tries to do to obtain pluri-canonical forms of Mdj is 
to look at the pullbacks of the pluri-canonical forms of Mdj a n c l hope that they 
are regular. We do not know whether Mdj has only canonical singularities. Thus, 
the question of whether these pullbacks are regular is a very delicate problem. This 
problem is solved with the aid of Mukai's symplectic form LJ on Mdj. Under the 
technical conditions on X, one can show that deto; is a nontrivial two-canonical 
form that vanishes along the exceptional divisor of TT : Mdj —> Mdj. Hence, for any 
pluri-canonical form 9 on Mdj, (detcj)®0, ® TV*9 is a regular pluri-canonical form 
of Mdj for some fixed integer a. Hence, enough pluri-canonical forms of Mdj can 
be constructed and the theorem follows. 

5 Topology of the Moduli Spaces 

The questions we deal with here are how many irreducible components does Mdj 
have and what are its Betti numbers. There are examples of surfaces X of which 
the moduli Mdj are not irreducible for some d. But this does not occur for large 
d. 

THEOREM 5.1. (Gieseker-Li [GLI]) There is a constant N depending on (X,H,I) 
such that whenever d> N, then the moduli scheme Mdj is irreducible. 

The crucial part in proving this theorem is to establish the following existence 
theorem. 

THEOREM 5.2. (Gieseker-Li [GLI], O'Grady [OG2]) There is a constant N de
pending on (X, H, I) such that whenever d> N, then every irreducible component 
M C Mdj contains nonlocally free sheaves. 
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After that, an algebraic geometry analogy of Taubes' work [Tal] shows that 
for sufficiently large d, Mdj is irreducible. As this argument is rather simple, we 
will sketch it here. First of all, let A^ be the set of all irreducible components of 
Mdj, For large d, we can define a map fd : A^ —> A^+i as follows: Let M G A^ 
be any component and let E E M be a general point. Then a sheaf F C E with 
E/F = Cx is stable and has c2 = d + 1. Hence F identifies a unique component in 
Md-fi that is defined to be fd(M). According to Theorem 5.2, for sufficiently large 
d, fd is surjective. Theorem 5.1 will follow if we can show that for any d, there is 
an n so that 

fd+n ° • • • ° /d(Ad) = single point. 

Indeed, for M1, M2 G A^ and Ei 6 M l, we can find an ample line bundle L so that 
JEi belong to theexact sequences _ _ _ 

0 —> L" 1 •—> Ei —> L®I®1Z% —> 0. 

Then we can find subsheaves Fi C Ei so that Fi belongs to the exact sequence 

0 — > L _ 1 —>F* — > L ® I ® l Z l U Z 2 —>0. 

Let n= length(zi). Clearly, Fi is a sheaf in fd+n ° • • • ° fd(Ml). On the other hand, 
Fi and F2 belong to the same irreducible component because they are elements 
of a family parameterized by ~Extl(L ® J ® TZl^Z2,L~l). Hence F\ and F2 are 
contained in the same irreducible component and thus #(kd+n) < #(A^). This 
completes the proof of Theorem 5.1. 

I shall point out that for many surfaces, for instance, projective planes, ruled 
surfaces [Qi], and K3 surfaces [GH], the moduli Mdj are irreducible for all choices 
of I and d. 

Next, we shall discuss the higher Betti numbers of Mdj or M^7 . First of all, 
works of Taubes show that there is a "weak" limit 

l i m M g ^ M o o 
d a'1 

and the stable limit lim^ Hi(M^j) is isomorphic to if^Moo), which is a homotopy 
invariant of X. The generalized Atiyah-Jones conjecture states that (in our setting) 
for any smooth algebraic surface X, there is a sequence {qd}-, qd —> oo, such that 
for i < qd, Hi(Mj j) is isomorphic to iJ^Moo). Recently, there have been many 
attempts to solve this conjecture, notably, [BHMM], [Ki], [SE], [Ti], and [Yol] for 
projective planes, [HM], [Yo2] for ruled surfaces, [Be] for a large class of rational 
surfaces, and [GH] for K3 surfaces. For general surfaces, the author recently proved 
the following. 

THEOREM 5.3. (Li [Li3]) For any algebraic surface (X,H) and I G Pic(X); there 
is a constant N such that for d > AT, ffi (M£ I ; Q) = Hi (X; Q) and H2 (M(f 7 ; Q) = 
A2H1(X;Q)®H2(X,q). 
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The proof goes as follows: By using the construction in [GLI] and [Tal], one 
gets a canonical homomorphism 

r(d)i : HiiMfc Q) —> ^ ( M ^ + 1 ; Q), (5.1) 

which fits into the following commutative diagram 

HiiM^j) —> fli(B5) 
I i 

where ß^ is the space of gauge equivalent classes of irreducible connections on 
an appropriate principal bundle and t(d)i :fZi(M£7) —> Hi(B^) is induced by the 
inclusion M£ 7 C ß;j. Taubes showed that H^B*,) k Hi(B*d+1) and for d > z, t(d); 
is surjective and Ker{t(d)^} is contained in 

Ker{r(d i ^ o - . - o r(d) J 

for large Z (depending on d and z). Hence an easy diagram chasing shows that 
Hi(M^j) = Hi(B*i) for large d if we can show that (5.1) is surjective. By using 
the Lefschetz hyperplane theorem and the deformation constructed in [OG2], the 
surjectivity of r(d)\ and r(d)2 for large d is established in [Li3]. 

6 Moduli of High Rank Vector Bundles 

It is interesting to see how many properties of M(2,I,d) can be generalized to 
moduli space M(r, I, d) of high rank vector bundles. As is clear from this exposition, 
the first challenge is to prove the generic smoothness of M(r, I, d) for large d. This 
was first accomplished by Gieseker and the author. 

THEOREM 6.1. (Gieseker-Li [GL2]) For any surface ( I , F ) , r G N and I G 
Pic(X); and for any constant C, there is an N such that for d> N, 

dimM(r,I,d) = 2rd-(r - 1)I2 - (r2 - l)x(Ojr), 

which is the virtue dimension ofM(r,I,d), and further 

codim(SingM(r,I,d),M(r,I,d)) > C. 

With this generic smoothness result, Theorems 2.2, 3.1, and 5.1 are general
ized to M(r, / , d) [GL2], [OG3]. 

7 Effective Bounds 

One observes that all results mentioned about M(r, I, d) for general X hold only 
for sufficiently large d. This is necessary because for small d, we can find coun
terexamples to each result mentioned. On the other hand, a deeper understanding 
of M(r, I, d) inevitably relies on finding an optimal (lower) bound of the second 
Chern class d for which the previous theorems hold. The recent work of O'Grady 
has made progress along this direction. 

THEOREM 7.1. (O'Grady [OG3]) For any ample divisor H and r G N ; there are 
functions X2(r), \\(r,X,H) and, \^(r,X,H) such that X2(r) < 2r and 

dim Sing M(r, I, d) < X2 A + Ai (r, X,H)\fK+ A0 (r, X, H), 

where A = d— T^I2. Here the functions XQ, XI, and X2 are determined effectively 
depending on the numerical invariants of the arguments involved. 
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One should compare this bound with the fact tha t the expected dimension 
oîM(r,I,d) is 27^ + 0 (1 ) . Based on his technique, O'Grady also derived effective 
lower bounds tha t depend only on (r,X,H) so that Theorems 2.2 and 5.2 hold as 
well. 
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Introduction 

-Consider the following problem: 

Let Mj be a collapsing sequence (i.e. Vol Mj —* 0) of complete Riemannian man
ifolds of bounded dimension, with sectional curvatures uniformly bounded below. 
What can be said about the Gromov-Hausdorff limit M of such a sequence? And 
what is the relation between the topology and geometry of A4 and that of manifolds 
Mj, with large j ? 

After the seminal work of Gromov (see [G1],[GLP]), questions of this type, 
with various assumptions on curvatures, and other geometric characteristics, have 
been receiving much attention. Cheeger, Gromov, and Fulraya developed a far-
reaching theory of collapse under the two-sided curvature bounds (see [CFG]). 
One of the simplest conclusions of this theory is that the limit space M in this 
case has a stratification, each stratum being a totally geodesic Riemannian mani
fold. (This stratification is nontrivial unless Mj admits a structure of locally trivial 
fibration over M.) This conclusion can be explained by the following argument (see 
[GLP, 8.30] for details). 

Suppose that Mj have sectional curvatures between —1 and 1, and let pj G Mj 
converge to some point p G M. Then the balls Bj of radius 7r/2 centered at pj are 
covered by convex balls Bj of the same radius in the tangent spaces at pj, endowed 
with the lifted metrics. The sequence Bj has the same curvature bounds and, in 
addition, a uniform lower bound on the injectivity radius; therefore its limit B is a 
manifold. Now each Bj is a quotient of Bj by an isometric (pseudo)group action, 
hence a ball B in M centered at p must be a quotient of B by the limit action; 
this leads to a stratification of B with totally geodesic strata. 

No such argument is known for manifolds with curvature bounded only below. 
Still, it can be proved that M has a natural stratification, with (in some sense) 
totally geodesic strata; the strata need not be smooth, but each of them is a 
topological manifold; there is a nontriviality criterion similar to that in the case 
of the two-sided curvature bound. 

The author considers this statement as a kind of experimental result, which 
needs some (at least heuristic) theoretical explanation. The question can be vaguely 
formulated as follows: Is there any "algebraic" reason for this stratification to 
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appear? The author expects that a solution to this problem may be achieved 
through an investigation of the spaces of semiconcave functions, but he does not 
have the slightest idea of how to do it. 

The statements about limit spaces are corollaries of the corresponding state
ments for general Alexandrov spaces with curvature bounded below. In the follow
ing sections we review the relevant part of the theory of Alexandrov spaces, and 
outline the proof of the main result about stratification. The final section contains 
some speculations. 

1 Basic Notions and Results 

This section is a summary of [BGP]. Many of the notions discussed here were 
introduced by Alexandrov [Al], [A2]; see also the surveys [BN], [R]. 

1.1 Recall that a length space is a metric space where the distance between any 
two points equals the infimum of the lengths of curves connecting these points. A 
triangle in a length space M consists of three points, say, p, q, r, and three shortest 
geodesies pc[iW>W- Given a real number k, a comparison triangle pqr is a triangle 
on the surface of constant curvature A;, with the same side lengths. Its angles are 
called the comparison angles and denoted by Zpqr, etc. A comparison triangle 
exists and is unique whenever k < 0 or k > 0 and \pq\ + \pr\ + \qr\ < 2n/^/k. 

1.2 DEFINITION. A length space M is called an Alexandrov space of curvature 
> k if any x G M has a neighborhood Ux, such that for any a, h, c, d G Ux 

(1) Zbac + lead + Zdab < 2TY . 

For locally compact spaces this is equivalent to the more familiar Alexandrov-
Toponogov distance comparison. 

1.2A DEFINITION. A locally compact length space M is called an Alexandrov 
space of curvature > k if any x G M has a neighborhood Ux such that for any 
triangle pqr in Ux and any qi G pq, r± G pf, we have \q\Ti\ > \qiril, where qi,ri 
are the corresponding points on the sides pq,pr of the comparison triangle pqr. 

1.3 If M is complete then the local conditions in Definitions 1.2 and 1.2A imply 
the corresponding global conditions. (For Riemannian manifolds this is essentially 
the content of the celebrated Toponogov comparison theorem.) In particular, if M 
has curvature > k > 0, then any triangle in M has perimeter at most 2r<l\fk, and 
the diameter of M does not exceed ir/^/k. 

As (1) is a purely metric condition, we can immediately conclude that a 
Gromov-Hausdorff limit of complete Alexandrov spaces of curvature > k is an 
Alexandrov space of curvature > k. 

1.4 The Hausdorff dimension of an Alexandrov space is either integer or infinite; 
it is semicontinuous with respect to Gromov-Hausdorff convergence. In fact, a 
collection of all compact Alexandrov spaces with diameters < D, dimensions < n, 

file:///q/Ti/
file:///qiril
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and curvatures > k, for some D,n,k, is compact in Gromov-Hausdorff topology. In 
this paper we will consider only complete locally compact spaces of finite Hausdorff 
dimension; general Alexandrov spaces are discussed in [BGP, Sections 2-6], [PI], 
[PP2, Appendix]. 

1.5 EXAMPLES 

(a) A complete Riemannian manifold with empty or convex boundary and with 
sectional curvatures > k is an Alexandrov space of curvature > k. 

(b) A convex hypersurface (with its intrinsic metric) in a space of curvature > k 
is expected to have curvature > k\ this is known if the ambient space is 
Riemannian, see [B]. 

(c) A cone on a (complete) space of curvature > 1 has a natural metric of non-
_^ negative curvature. A spherical suspension of such a space, or more generally, 

a join of two such spaces, has a natural metric of curvature > 1. A product 
of nonnegatively curved spaces is nonnegatively curved. 

(d) If a group acts on an Alexandrov space by isometries, and all its orbits are 
closed, then the quotient space is an Alexandrov space with the same lower 
curvature bound. (A more general result was obtained by Berestovskii.) 

Each of these examples is a guiding one for a particular branch of the the
ory. Namely, Example (a) provides insight into the global gometry of Alexandrov 
spaces, Example (b) suggests what kind of analytical results one might or might 
not expect, Example (c) shows the local topological structure, and Example (d) 
indicates the properties of the stratification. 

At the same time, it is not known whether any Alexandrov space can be 
obtained from Examples (a), (b) using constructions (c), (d) and taking Gromov-
Hausdorff limits. 

1.6 The angle between two shortest geodesies pq,pf in an Alexandrov space M is 
defined as Zqpr = lim{Z#ipri : q\ G pq, r\ G pf, q\,T\ —> p}; the existence of the 
limit follows from Definition 1.2A. 

The set of equivalence classes of shortest geodesies starting at p, with the 
angular distance, is a metric space; its completion is called the space of directions 
at p and denoted by Ep. It is an important and nontrivial fact that Ep is compact 
(M-finite dimensional). Moreover, Ep is an Alexandrov space of curvature > 1, 
and dim E p = dimM — 1. 

A cone Cp on Ep is called the tangent cone of M at p; it is an Alexandrov 
space of nonnegative curvature, dim Cp = dimM. Alternatively, the tangent cone 
can be defined as the pointed Gromov-Hausdorff limit of (A • M,p), A —> oo. 

The space of directions Ep depends semicontinuously on p; that is if pi tend 
to p and Epz converge in the Gromov-Hausdorff sense to some space E, then Ep 

admits a noncontracting map into E. Moreover, according to a result of Petrunin 
[Pet2], the space of directions is constant along a shortest geodesic, with endpoints 
excluded. 

1.7 The boundary of an Alexandrov space is defined inductively: if dim M — 1 then 
M is a 1-dimensional manifold with (possibly empty) boundary, and the definition 
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is clear; if dim M > 1 then dM — {p G M : 9EP ^ 0}. It can eventually be proved 
that dM is a closed codimension 1 subset of M, which can be characterized by 
local topological properties. Furthermore, the double of an Alexandrov space with 
nonempty boundary is an Alexandrov space with empty boundary having the 
same lower curvature bound. Petrunin [Peti] proved that one can similarly glue 
two different Alexandrov spaces with (intrinsically) isometric boundaries. 

1.8 A point p G M is called singular if Cp is not isometric to euclidean space. The 
set of singular points in M\dM has Hausdorff codimension at least 2. Moreover, 
the nonsingular set is totally convex; that is, any shortest geodesic with nonsingular 
endpoints contains no singular points. On the other hand, the set of singular points 
may be dense. 

A point p G M can be called weakly singular if the volume (i.e. Haus
dorff measure) of Ep is close to that of the standard unit sphere, say Vol(Ep) > 
(1 — ö)Vol(Sn) for some fixed small 8 > 0. (Note that nonsingular points are weakly 
singular according to this definition.) The set of weakly singular points is open and 
totally convex. Furthermore, each weakly singular point has a neighborhood, al
most isometric to a euclidean ball. 

1.9 A Lipschitz function / in a domain U C M is called A-concave if for any 
shortest geodesic 7 in U the function / o 7(E) + At2 is concave in t. lî M has 
nonempty boundary, it is convenient to modify this definition, requiring that the 
tautological extension of / to the double of M is A-concave in the double of U. A 
function / is semiconcave in U if for any x G U there exists a neighborhood Ux 

and a number A ,̂ such that / is A^-concave in Ux. 
The basic examples of semiconcave functions are distance functions: if P C M 

is compact then the distance function from P, distp, is semiconcave in M\P. 
Moreover, M has nonnegative curvature iff dist2 is (—1)-concave in M for each 
p G M; similar characterization exists for other lower curvature bounds. 

Semiconcave functions / have (directional) derivatives f at each point p; 
that is, / o ry(t) = f(p) -f- tfv(£) + o(t) for a shortest geodesic 7 starting at p in 
direction £ G Ep. The derivative fp is a Lipschitz spherically concave function on 
Ep; the latter condition means 

sin IfCl/pfa) > sin \trj\fp(0 + sin \vC\fP(0 , whenever r? E^ . 

The derivative of a distance function / = distp at a point q G M\P is 
given by /£(£) = — cos |P'f |, where P' denotes the compact set of directions of all 
shortest geodesies qp such that p G P and \pq\ = \qP\. 

2 Elementary Morse Theory 

In this section we discuss the topology of Alexandrov spaces, according to [P]. Our 
main tool is the critical points theory for semiconcave maps. Critical points the
ory for distance functions, in the context of Riemannian manifolds with sectional 
curvature bounded below, originated in the work of Grove and Shiohama [GS], 
and was developed further by Gromov [G2], and Grove and Petersen [GP] ; similar 
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arguments for concave functions appeared even earlier in the work of Cheeger and 
Gromoll [CG]. For simplicity we consider only distance maps here. 

2.1 Let P be a compact subset of M, f = distp. A point q G M\P is called a 
regular point for / if fq(£) > 0 for some f G Eg. 

More generally, let P i , . . . , Pm be compact subsets of M, fi = distpi5 and let 
/ denote the map with components fi. 

A point q G M\ U7- Pi is called a regular point for / if for some £ G Eg we 
have f[q(i) > 0 for all i, and /Lpiqpj > 7r/2 for all pi G Pi, pj G Pj such that 
\qPi\ — \qpi\, \gPj\ — \qPj\, i ¥" 3 ( t n e second condition ensures "independence" 
of fi). It is easy to see that the set of regular points is always open. 

2.2 PROPOSITION. 

(à) J is a topological submersion near its'regular point. 
(b) if f is proper and has no critical points in some domain U C M, then 

f\u is a locally trivial fibration. 

In the next subsection we indicate how to show that / is open near its regular 
point. 

2.3 LEMMA. Let E be a compact Alexandrov space of curvature > 1, and let 
u i , . . . , n m + i be its closed subsets, such that |n^Hj| > 7r/2 for all i ^ j . 

Then for any pair i ^ j there exists a point i]ij G E such that 

\HiVij\ < n/2 > lnj?fc| > 7r/2 , \U£i]ij\ = 7r/2 for all l^i,j . 

This lemma is proved by induction on m and dimension of E. 
Now let q be a regular point for / , and let £ G Eg satisfy f[q(£) > 0 for 

all i. Apply our lemma for Eg taking n m + i = £, n^ = P't for 1 < £ < m. We 
get directions rji = ?7i,m+i G Eg such that fiq(i]i) < 0, f-q(iij) = 0 for i ^ j . 
This allows us to prove that / is open near its regular point, using consecutive 
approximations: we can always improve our current approximation by moving in 
direction 77̂  if the ith coordinate of the goal is smaller than that of / (ç) , or in 
direction f, if all the coordinates of the goal are bigger. 

2.4 The proof of the proposition is more involved. We use reverse induction on m. 
The base m — dimM is relatively easy; in this case / is a local homeomorphism 
near its regular point. To carry out the step of induction, we assume that / is 
regular and incomplementable at q (that is, one cannot add to / another compo
nent / m + i , so that the map (f\,..., fm, fm+i) is still regular at q), and construct 
a function g, strictly concave near q, and such that 0 has exactly one point of 
maximum on each "fibre" of / near q, and the map ( / 1 , . . . ,fm,g) is regular at 
all points near q except those maximum points. Thus a neighborhood of q looks 
like a cylinder, with fi as the height functions and g as the radial function, and 
using the inductional assumption (b) for the map (f\,... , / m , ^ ) we conclude that 
such a neighborhood is actually homeomorphic to a "cylinder", thus verifying the 
assertion (a) for / near q. The implication (a)=>(b) is automatic for a certain class 
of stratified spaces, according to a theorem of Siebenmann [S], and our inductive 
argument allows us to verify the assumptions of this theorem just before it is used. 
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2.5 Because a distance function from a point p has no critical points in a small 
punctured neighborhood of p, the proposition implies that a small spherical neigh
borhood of p is homeomorphic to a cone on its boundary. With some more work, 
and using another theorem from [S], we can prove that in fact it is homeomorphic 
to the tangent cone at p. This easily implies by induction that an Alexandrov 
space is stratified into topological manifolds. 

Similiar arguments prove that two compact Alexandrov spaces with the same 
dimension and lower curvature bound must be homeomorphic, if they are suffi
ciently close in Gromov-Hausdorff topology. 

3 Extremal Subsets 

The extremal subsets of Alexandrov spaces were defined and studied in [PP1]. 

3.1 Loosely speaking, an extremal subset is a subspace whose spaces of normal 
directions at each point have diameters at most 7r/2. More formally, a closed 
subset F C M is called extremal if for each distance function / = clistp, p ^ F, 
we have sup{/g(£) : £ G Eq} < 0 whenever q G F and \pF\ = \pq\. (For subsets of 
Alexandrov spaces of curvature > 1 (usually denoted by E) there are additional 
restrictions in exceptional cases: the empty set is extremal in E only if diam E < 
7r/2, and a single point £ G E is an extremal subset only if diam E^ < 7r/2 and 
|£rç| < 7r/2 for each 77 G E.) 

One can see typical examples of extremal subsets in the quotient spaces; 
namely, if A is a compact group of isometries of an Alexandrov space M and T is 
a closed subgroup of A, then the projection of the fixed points set of V into M/A 
is extremal there. 

3.2 It is not hard to show that F C M is extremal if and only if each of its 
spaces of tangent directions T>pF, p G F, is extremal in the corresponding space 
Ep. Moreover, if Fi, F2 C M are distinct extremal subsets then F± U F2, i*\ fi F2, 
clos(i<i\F2) are extremal as well. This is proved by induction on dimension. 

A compact Alexandrov space has only finitely many extremal subsets. 

3.3 An extremal subset is called primitive if it is not covered by its proper extremal 
subsets. Of course, any extremal subset is a union of primitive ones. The interior of 
a primitive subset is the complement of its proper extremal subsets. The interiors 
of all primitive subsets of M form a disjoint covering of M. It turns out that this 
stratification is finer than the topological one; in particular, the interior of each 
primitive subset is a topological manifold. This is proved by the Morse-theoretic 
arguments, outlined in the previous section, the crucial observation being that if 
under the assumption of Lemma 2.3 E contains an extremal subset $, then the 
points rjij can be found in <Ê>. Here we indicate a simpler argument, which shows 
that the top stratum is a manifold. 

Indeed, we have to check that the set F of all topological singularities of M is 
an extremal subset. Take / = distp, p £ F, and find q G F such that \pq\ = \pF\. 
If the extremality condition is violated then ç is a regular point for / . Therefore, 
according to 2.2(a), there is an isotopy of a small neighborhood of q, which moves 
q closer to p. This contradicts the definition of F and the assumption \pq\ = \pF\. 
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3.4 Our next goal is to relate the extremal subsets to the problem of collapsing, 
discussed in the introduction. First recall that if Mj collapse to M with lower 
curvature bound, and M happens to be a Riemannian manifold, then, according to 
a theorem of Yamaguchi [Y], Mj admits a structure of locally trivial fibration over 
M. The same is true if M is an Alexandrov space with only weak singularities. In 
the general case we get a fibration over a "large" open subset of M that consists of 
weakly singular points, the fibre Fj being a manifold of dimension dimMj — dimM. 

We expect that the fibration result is true whenever M has no proper extremal 
subsets. At the moment we can prove a weaker statement, that if M has no proper 
extremal subsets then the Serre sequence for homotopy groups of Mj, Fj, and 
M is exact. The proof is based on Morse-theoretic arguments as in the previous 
section. 

3.5 In this subsection we explain in what sense the extremal subsets are totally 
geodesic. We need the notion of quasigeodesics in Alexandrov spaces, cf. [PP2]. 

Recall that a geodesic in a Riemannian manifold is both the locally shortest 
curve and the straightest one. In singular spaces the straightest curves, called 
quasigeodesics, need not be locally shortest. Alexandrov introduced quasigeodesics 
on convex surfaces in M3, see [Al]; an appropriate definition of quasigeodesics in 
piecewise euclidean spaces of arbitrary dimension was proposed by Milka, and in 
general Alexandrov spaces by Petrunin. Loosely speaking, a curve, parametrized by 
the arclength, is called a quasigeodesic if the restriction of each distance function 
to this curve is at least as concave as the restriction of such a function in a model 
surface of constant curvature to a geodesic. 

It can be shown that this definition is equivalent to a local one, which is in
dependent of the value of the lower curvature bound, and that every quasigeodesic 
in a Riemannian manifold is a geodesic. Unlike geodesies in Alexandrov spaces, 
quasigeodesics can be constructed (not always uniquely) for arbitrary initial data, 
are extendable, and have a natural compactness property. 

The totally geodesic property of extremal subsets F means two things: 

(a) Every connected component of F has an intrinsic metric, and every shortest 
geodesic in this intrinsic metric is a quasigeodesic in the ambient space. 

(b) Given a point on F and a direction at this point, tangent to F, there is an 
infinite quasigeodesic (of the ambient space) with prescribed initial data, 
contained in F. 

The property (a) is a generalization of a lemma, proved by Liberman [L] for the 
intrinsic metric of a convex surface in M3. 

4 Speculations 

4.1 The previous discussion makes it natural to expect that the intrinsic metric 
of the interior of a primitive subset inherits the lower curvature bound of the 
ambient space. However, Petrunin recently constructed counterexamples to this 
conjecture; in particular, he has shown that the Veronese embedding of MP2 into 
5 5 is an extremal subset of its convex hull there. (The question is still open for 
extremal subsets of codimension 1 and 2.) Petrunin also proved that the first 
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variation formula is valid for an intrinsic metric of any extremal subset, see [Peti] . 
The author believes t ha t extremal subsets should be considered as examples of 
(yet undefined) spaces with bounded integral curvature. 

4.2 Probably the most comprehensive conjecture about Riemannian manifolds of 
nonnegative sectional curvature is the rational ellipticity conjecture, see [GH]. If 
one believes in such a conjecture, one should expect tha t some of its version is valid 
for nonnegatively curved Alexandrov spaces. Most likely, such a version would take 
into account not only the topological data, but also the extremal subsets. Perhaps 
the conjectures about positively curved manifolds can also be included in the same 
statement because suspensions and joins of such manifolds are positively curved 
Alexandrov spaces. 

4.3 It would be interesting to obtain realistic estimates of the number of primitive 
subsets in nonnegatively curved Alexandrov spaces of a given dimension. Such an 
estimate would probably eventually lead to an estimate for Betti numbers; on the 
other hand, the problem for primitive subsets looks easier. 

The author adapted the argument of Danzer and Grunbaum [DG] to prove 
a sharp estimate 2 d i m M for the number of zero-dimensional primitive subsets in a 
nonnegatively curved space M . The proof is very simple: 

Let ai, 1 < i < N, be our extremal points; consider "homotheties" of 
M with respect to ai with multiple ^, tha t is, let Mi = {x G M : x is a 
midpoint of some shortest geodesic aißi, Xi G M}. By the volume comparison, 
Vol(Mi) > 2 - d i m M V o l ( M ) . On the other hand, the sets Af. are essentially disjoint. 
(Indeed, if z G Mjf iMj and, say, \a,ix\ > \O,JX\, then applying the Toponogov angle 
comparison a couple of times we get ZaiajXi > ir/2, which is impossible because 
dj is extremal.) Therefore, N < 2 d i m M . 
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1. Introduction 

It has been observed by physicists for a long time that symplectic structures arise 
naturally from boundary value problems. For example, the Robbin quotient 

V = domD*/domD, 

associated to a symmetric (but not self-adjoint) operator D : domD —• H on a 
Hilbert space H carries a symplectic structure 

UJ(V,W) = (D*v,w) — (v,D*w). 

Self-adjoint extensions of D correspond to Lagrangian subspaces of V and, more
over, the kernel of D* determines such a Lagrangian subspace whenever D has a 
closed range. If D is a symmetric differential operator on a manifold with boundary, 
then, by partial integration, the form CJ is given by an integral over the boundary. 
For example, if D is the Hessian of the symplectic action functional on paths in 
M2n, then the space V = R2n x M2n corresponds to the two boundary values of 
the path and the symplectic structure is (—OJQ) © CJQ where UJQ — Y^j dxj A dyj is 
the standard symplectic structure on M2n. A more interesting example is given by 
the Chern-Simons functional on 3-manifolds with boundary, and we shall discuss 
this in Section 2. 

In another closely related direction there is a formal analogy between sym
plectic manifolds with symplectomorphisms and Lagrangian submanifolds on the 
one hand and oriented Riemann surfaces with orient at ion-preserving diffeomor
phisms and 3-dimensional bordisms on the other. If S is a compact oriented Rie
mann surface we denote by Ë the surface with the opposite orientation. Likewise 
we denote by Af a symplectic manifold without mentioning the symplectic form u 
explicitly and by M the manifold with reversed symplectic form (i.e. UJ is replaced 
by — UJ). The following diagram (next page) summarizes the correspondence. 

The last correspondence between the gluing operation for 3-manifolds with 
boundary and symplectic reduction of Lagrangian submanifolds is the most im
portant one. The manifold Y1 is obtained from Y by identifying the boundary 
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oriented Riemann surface E symplectic manifold M 
Ë M 

or. près, diffeomorphism symplectomorphism 
E = Ei U E2 M = Mi x M2 

3-mfld y with 9Y = E Lagrangian submfld L C M 
y = Yi U y2 L = Li x L2 C Mi x M2 

gluing symplectic reduction 
fly = E U Ë U E' L C M x M x M', 

» y , = E/ L' = {z' G M'I 3a:: (a;, a;, a:7) G L}. 

„components E and Ë via the identity map. Similarly, N = A x ML is a coisotropic 
submanifold of MxM x M' with symplectic quotient M', and L' is obtained from 
L via symplectic reduction. Of course, this analogy can be extended to dimensions 
other than 2. In the 0-dimensional case where Riemann surfaces are replaced by 
points and 3-manifolds with boundary by intervals the correspondence is given by 
the symplectic action. In dimension 2 it is given by the Chern-Simons functional; 
this will be discussed in Section 2. In Section 3 we shall see that this leads to a 
natural extension of Floer homology in the form 

HF*(Y,L), L c M E , 

where Y is a 3-manifold with boundary dY = E, ME denotes the moduli space of 
flat SU(2) (or SO(3)) connections over E, and L C M^ is a Lagrangian subman
ifold. Such groups were also considered by Fukaya [11] but his definition differs 
slightly from the one discussed here. Our goal in this note is to explain the defini
tion of these Floer homology groups and to show how they can be used to prove the 
Atiyah-Floer conjecture for Heegaard splittings of homology-3-spheres. We shall 
only outline the main ideas of the proofs. Details will be published elsewhere. 

2. Chern-Simons functional 

Let y be a compact 3-manifold with boundary dY = E and consider the trivial 
bundle YxG with structure group G = SU(2) and Lie algebra g = su(2) = Lie(G). 
The space A = A(Y) = ^ ( l ' g ) of SU(2)-connections on Y carries a natural 1-
form defined by 

a^FA(a) = f(FAAa) (1) 

for a G TAA = n ^ f l ) . Here (£,77) = trace(£*??) for £,77 G g and FA G H2(y, g) 
denotes the curvature of A. The 1-form (1) is invariant and horizontal with respect 
to the action of the gauge group G(Y) = Map(y, G). But it is not closed because 

dFA(a,ß)= [ (dAa/\ß)- [ (aAdAß)= [ (ahß). 
JY JY JdY 

This is the standard symplectic structure on the space .A(E) = nx(E,g) of con
nections on E. It reflects the failure of the operator *dA : VL1{Y,Q) —» H ^ I ' g ) to 
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be self-adjoint. This operator can be interpreted as the differential of the vector 
field A \—> *FA oh A(Y) associated to the 1-form T. 

In order to obtain a closed 1-form we pick some Lagrangian submanifold 
£ C ./4(E) and consider the subspace A(Y, £) C A(Y) of those connections on 
y that have boundary values in £. The restriction of T to this space is closed 
precisely when £ is Lagrangian. Moreover, in order to preserve the invariance of T 
under the gauge group we should also assume that £ is invariant under the action 
of ö(E) = Map(E, G). But this is equivalent to the condition 

CcARatÇZ) = {AeA(Z)\FA = 0} 

and thus £ determines a Lagrangian submanifold 

of the moduli space ME of flat SU(2)-connections on E. This is a (6g — 6)-
dimensional symplectic manifold (with singularities). We shall assume that L is 
simply connected and contains the equivalence class of the zero connection. Note 
that in this case the space £ is not simply connected, but the fundamental group 
of £ cancels with that of £(E). Now the 1-form T : TA(Y, £) -> R is closed. But 
because £ is not simply connected T is not exact. However, it is the differential 
of the multi-valued Chern-Simons functional CS : A(Y, £) —> M/47r2Z defined by 

CS(A) = \ j ((AAdA) + J([AA A]AA)\ + f [ (A0(t)AÀQ(t)) dt. 

Here Ao(t) G £ is a path with AQ(0) = 0 and AQ(1) = A\^. The homotopy class 
of this path is not unique and hence the right-hand side is only well defined up to 
an integer multiple of 47T2. 

Now the 3-manifold Y itself also determines a Lagrangian submanifold 

CY CY = {A\v\AeABat(Y)}. 1 Q(T.y 

Note that under the correspondence Y »-> Ly (from bordisms to Lagrangian sub
manifolds) the summing of 3-manifolds along common boundaries translates into 
symplectic reduction. Note also that the flat connections on Y are in fact the zeros 
of the 1-form T = dCS. Hence there is a map 

Crit(CS) -+ LY H L 

which assigns to every critical point A G .Aflat (y, £) of CS the equivalence class 
[A\Y] in Ms = .Aflat(E)/Ç(E). In some cases, e.g. when y is a handlbody, the 
connection A G .Aflat(y) is uniquely determined (up to gauge equivalence) by A|s 
and in this case the above map is a bijection. 
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3. Floer homology 

Let y be a 3-manifold with boundary 8Y = E and £ C Aflat(E) be a Lagrangian 
submanifold with simply connected quotient L = £/Q(T>). Then the gradient flow 
lines of the Chern-Simons functional CS : A(Y, £) —> M/4n2Z are smooth maps 
R -> Ü1 (y, g) x n° (y, g):th-> (A(t), *(t)) that satisfy the boundary value problem 

j 4 - c k t f + *jFU = 0, A | E G £ , * A | E = 0. (2) 

For any such gradient line the connection A + \T' di on the 4-manifold 1 = 7 x 1 
is a self-dual Yang-Mills instanton with Lagrangian boundary condition on 8X = 
E x K. Under suitable conditions on Y and £ the Yang-Mills energy of such an 
instanton is finite if and only if (in a suitable gauge) there are limits 

lim A(t)=A±, lim tf'(t) = 0 (3) 
t—»±oo t—»±oo 

where A^ G .Aflat (y,£) are flat connections and hence critical points of CS. If 
these limits are regular and nondegenerate (i.e. the extended Hessian is bijective) 
then one can prove that equations (2) and (3) form a well-posed nonlinear elliptic 
boundary value problem and so, for a generic metric, the space M(A~,A+) of 
solutions modulo gauge equivalence is a finite-dimensional manifold of dimension 

àìmM(A-, A+) - p(A~) - p(A+) (mod 8) 

for some function p : Crit*(y, £) —> Z/8Z on the set of irreducible flat connections 
in A(Y, £). Here the dimension depends on the component in the space of paths 
in A(Y,£) running from A - to A + , in contrast to the closed case where airy two 
paths are nomotopic and the index ambiguity only comes in after dividing by the 
gauge group. 

REMARK 3.1 The well posedness of (2) and (3) extends to general 4-manifold X 
with boundary 8X = E x M and cylindrical ends. The proof involves an estimate 
for the operator D = d~A © d\ : Sl\ (X, g) -> fì2'~ (X, g) © ft0 (X, g) where fîj. (X, g) 
denotes the subset of all a G Q1(X,g) that satisfy 

ci'lsxt £ Ht) = TA\^f£, a o UBX = 0. 

There is an inequality 

II l|2 
\wi,2 < c (\\Da\\2

L2 + \\a\\l*) + / (dAaAa) 
v ' JdX 

and, in view of the Lagrangian boundary conditions, the boundary term can be 
estimated by 

l/< 
\Jdx 

(dAaAa) ^ C I H I L 2 ( ö X ) - c IMIw1-^*) IIQ'IIL2(AO 

Now the elliptic estimate ||a'||w,i,2 < c(||Z)a'||L2 + | |Q' | |L 2) easily follows. This has 
to be combined with elliptic regularity at the boundary to obtain the required 
Fredholm theory. 
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To obtain finiteness in the case where the index difference is 1 we must 
employ Uhlenbeck's compactness theorem in the case of bounded curvature and 
combine this with the usual bubbling argument if there is only an L2-bound on 
the curvature. Such a bound is always guaranteed as 

\\FA{t) \\
2
L2{Y) dt = CS(A-) - CS(A+) 

-oo 

for every solution of (2) and (3). However, bubbling near the boundary produces 
nontrivial finite-energy instantons on a half-space 

H4 = {x = (x0,x1,x2,x3) GM4|a;o > 0} , 

which on the boundary M3 = M x R2 are flat on each M2-slice. Such instantons 
should have Yang-Mills energy equal to an integer multiple of 87r2. 

CONJECTURE 3.2 Let A = Y^=o Ajdxj G ^ ( f f ^ g ) be a connection such that 

• ^ 0 1 = ^ 2 3 » • ^ 0 2 = ^ 3 1 » • ^ 0 3 = ^ 1 2 , A Q \ Q M 4 = 0 , i ^ l ö H 4 = 0 » 

where Fij — diAj — djAi + [Ai, Aj\. Then either Fij = 0 for all i,j or 

yM(A) = \f £|i^|2>87r2. 
1 ^ iKj 

The proof will go along the lines of Uhlenbeck's removable singularity the
orem. At the time of writing I have not carried out the details. If this holds 
then in the case of index difference 1 the space A4 (A - , A+) will consist of only 
finitely many connecting orbits (moduli time shift) and, as in the case of closed 
3-manifolds [9, 6], counting these gives rise to a Floer chain complex 

CF*(Y,£)= 0 Z(A) 
[A]e.A*at(Y,£)/S(Y-) 

generated by the gauge equivalence classes of irreducible flat connections. The 
boundary operator is defined by 

fl(A-) = 5^#{M1(A-,A+)/R}(A+) 
A+ 

where the sum runs over all equivalence classes [A+] G A^&t(Y,£)/Ç(Y) with 
p(A+) = p(A~) — l(mod 8) and A4i denotes the 1-climensional components of 
the moduli space. As in Floer's original work [9] one uses a gluing theorem to prove 
that 92 = 0. The resulting Floer cohomology groups are denoted by HF*(Y,L) = 
H*(CF,d). They are graded modulo 8. 

REMARK 3.3 (i) To make these ideas work we must impose certain conditions 
on y and L that guarantee that there are no reducible flat connections 
in A(Y,£) other than the equivalence class of the zero connection. Here 
reducible means that the kernel of dA : Qü(Y,Q) —> ^(YJQ) is zero. For 
example, we may assume that L = Lyi where Y' is a handlebody with 
fly' = Ë and y Us Yf is a homology-3-sphere. 
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(ii) A connection A G Afìni(Y,£) is called nondegenerate if every a G ^(Y,^) 
with dAa = d\a — 0 and *a|s = 0, a\^ G TA£ is equal to zero. If there 
are degenerate flat connections then we must choose a perturbation of the 
Chern-Simons functional (as in the case of closed 3-manifolds) to obtain 
well-defined Floer homology groups. 

(iii) The Floer cohomology groups HF* (Y, L) are independent of the choice of 
the metric and the perturbation used to define them. They depend on the 
Lagrangian submanifold L only up to Hamiltonian isotopy. More precisely, 
for different choices there are natural isomorphisms of Floer homology. 

(iv) In [11] Fukaya proposed an alternative construction of Floer homology groups 
on 3-manifolds with boundary. 

CONJECTURE 3.4 If Y = YQUEYì is a homology-3-sphere, andY^ is a handlebody, 
then there is a natural isomorphism HF*(Y) = HF*(Yi,LyQ). If Y\ is also a 
handlebody (i.e. in the case of a Heegaard splitting) there is a natural isomorphism 

HF*(Y)^HF*(V x [0,1],LYo x LYl). 

At the time of writing the details of the proof have not been carried out. 
However, here is the main idea. Choose a map / : E x [0,1] —> YQ that identifies 
E x {1} with fly0 and shrinks E x {0} onto the 1-skeleton of y0. Then the pullback 
of any connection on YQ onto E x {0} is in £y0. (A connection on a 1-manifold is 
just given by the holonomy.) The ASD equation on E x [0,1] X M with the pullback 
metric then takes the form 

dsA - dA® + *s(fltA - dAtf ) = 0, flfl* - flt$ + [$, tt] + * S F A = 0 (4) 

where the change of the metric is not in the same conformai class and degenerates 
at s = 0. Note that (4) is just the ASD equation on (half of) the closed manifold 
7 x R . If, however, we consider the equation on the interval s > E for some E > 0 
then we obtain a genuine boundary value problem. The solutions of these should 
converge to those on the closed manifold as E —> 0, and this will prove Theorem 3.4. 
Note that the degeneration of the metric at s = 0 is related to the choice of the 
Lagrangian boundary condition in LyQ. The case E = S2 is slightly simpler. In 
this case Yi = B3 and we can take the map S2 x [0,1] —> B3 : (a;, s) H-> sx. Then 
the change in the metric is conformai and so the Hodge-*-operator on 1-forms is 
independent of s while *SFA = s~2 * FA. Similar equations were recently studied 
by Fukaya [12]. 

4. Atiyah-Floer conjecture 

In [8] Floer introduced what is now called Floer homology for Lagrangian intersec
tions. Assume for simplicity that (M, UJ) is a compact simply connected symplectic 
manifold that is positive in the sense that the first Chern class ci = c\ (TM) (with 
respect to an UJ-compatible almost complex structure) is a positive multiple of the 
cohomology class [CJ]. We also assume that the minimal Chern number N, defined 
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by (ci,7T2(M)) = N*L, is at least 2. Then for any two Lagrangian submanifolds 
LQ,LI C M with torsion fundamental group there are Floer homology groups 

^ s y m p ^ O ^ l ) 

that are graded modulo 2N. In this theory the critical points are the intersection 
points x G LQ D L\ and the connecting orbits are J-holomorphic strips u: [0,1] x 
R -> M that satisfy 

dsu + J(u)dtu = 0, u(0,t) G L0, u(l,t) e Li, lim u(s,t)=x±, (5) 

where a;^ G Lo H Li and J is an almost complex structure on M, which is com
patible with UJ in the sense that (£,77) = uj(J^,rj) is a Riemannian metric. This 
construction requires transversal intersections of the Lagrangian submanifolds and 
surjectivity of the linearized Cauchy-Riemann operators. These conditions can be 
achieved by a suitable Hamiltonian perturbation and, as before, the resulting Floer 
homology groups are indepedent of the almost complex structure and the Hamil
tonian perturbation used to define them [8], [15]. 

Now consider the case where M = MY is the moduli space of flat SU (2)-
connections on a compact oriented Riemann surface E and Li = Lyz for i = 0,1 
where YQ and Yi are handlebodies with 8YQ = E and 9Yi = Ë. Then the manifold 
MY, is simply connected and positive in the above sense with minimal Chern 
number 4. Moreover, the Lagrangian manifolds LQ and Li are diffeomorphic to 
the quotient of SU(2)ff by simultaneous conjugacy and hence are obviously simply 
connected. However, some care must be taken when extending symplectic Floer 
homology to MY in view of the singularities. To obtain a well-defined theory we 
must assume that Y = YbU^Yi is a homology-3-sphere so that 0 is the only singular 
intersection point of Lo and L\. Another point is to give the right definition of 
holomorphic curves when they pass through the singular part of MY, • The correct 
definition should be that they can be represented locally by a smooth map C —> 
.A(E)©O 0 (E)ef ì 0 (E) : s + it ^-> (A(s,t),$(s,t),y(s,t)) suchthat 

dsA - dA$ + *(dtA - dAtt) = 0 , FA = 0. (6) 

Using the local Coulomb gauge in .A(E), in a neighborhood of a (possibly singular) 
connection Ao = A(0,0), one can show that every Vy1,p-solution of (6) is gauge 
equivalent to a smooth solution. One should then be able to use a tr ans vers ality 
argument in the moduli space .Aflat (£)/So (^) of flat connections modulo pointed 
gauge transformations to prove that generic holomorphic curves avoid the singular 
set, because it is of codimension larger than 2 if the genus of E is at least 3. 

As a result there are symplectic Floer cohomology groups for (MY , LyQ, LYl ) 
whenever Y = YQ UE YI is a Heegaard splitting of a homology-3-sphere. It was 
conjectured by Atiyah and Floer that there should be a natural isomorphism 

HF*(Y) = HF:ymp(Mv,LYo,LYl). 

In view of Conjecture 3.4 this reduces to the following. 
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CONJECTURE 4.1 For every Heegaard splitting Y = y0 U^ Yi of a homology-3-
sphere there is a natural isomorphism of Floer cohomologies 

HF*(12 x [0, l],Ly0 x LYl) <* HF:ymv(Mv,LYo,LYl). 

The proof of Conjecture 4.1 follows the line of argument in [7] for mapping 
cylinders. The key idea is to conformally rescale the metric on E by a factor E2 > 0 
and prove that in the limit E —> 0 the ASD instantons on E x [0,1] X M degenerate 
into holomorphic curves. More precisely, the ASD equation on E x [0,1] x M with 
respect to the rescaled metric takes the form 

8SA - dAQ + *(fl<A - dA*) - 0, fla* - ft* + [*, tf ] + i * FA = 0, (7) 

with boundary conditions 

A(0,t) G £yQ, A(l,t) G £Yl, *(0,t) = * ( l , t ) = 0. (8) 

The proof that for E —> 0 the solutions of (7) and (8) converge to those of (6) is 
almost word for word the same as in [7]. An important ingredient in the proof 
is the observation that the Yang-Mills energy (with respect to the e-dependent 
metric) of a connection S = A + * ds -f- \E' dt that satisfies (7) is given by 

yMe(S) = J" J (\\d*A - ^*IIL>(=) + ^ ll^fL2(E)) dsdt. 

The main differences in the proof are that, first, the estimates on the curvature 
in [7], Section 7, must be established near the boundary, second, the bubbling argu
ment requires Conjecture 3.2, and third, care must be taken near the singularities 
of the moduli space. Details will be carried out elsewhere. 

5. Products 

There are interesting product structures on Floer cohomology due to Donaldson. 
Let (M, UJ) be a compact simply connected symplectic manifold that is positive 
in the above sense with minimal Chern number N > 2. Then there is a quan
tum category CM whose objects are the Lagrangian submanifolds L C M with 
torsion fundamental group and whose morphisms are Floer cohomology classes. 
Thus Mor(Lo,Li) = HF*ymv>(Lo,Li). The composition rule appears as a product 
structure 

^ B y m p ^ O ^ l ) ^ ^ s y m p t ^ l ' ^ ) ~> HF*ymp(LQi L2). 

On the chain level this homomorphism is given by counting J-holomorphic trian
gles. More precisely, one considers J-holomorphic maps u : ft —> M defined on 
a domain Vt C C with three smooth boundary components and three cylindrical 
ends that map the boundary components to LQ, L\, and L2, respectively, and in 
the cylindrical ends converge to intersection points. To obtain a well-defined Fred-
holm theory one can choose Hamiltonian perturbations in the cylindrical ends. 
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The resulting product is associative in homology but not on the chain level. The 
proof of associativity involves domains with four cylindrical ends and leads to the 
Aoo-category of Fukaya [11]. 

Now there are similar product structures for homology-3-spheres. If YQ, Yi, 
y 2 are three handlebodies with boundary flYj = E such tha t the manifolds Yi U Yj 
are homology-3-spheres for i ^ j then there is a product 

HF*(YQ u Yi) ^HF*(Y1 u y 2 ) - • HF*(Y0 U Y2). 

This can be defined in terms of ASD instantons on a cobordism X tha t is obtained 
from fìxEby gluing YQ X R, Yi x R, Y2 x R to the three boundary components 
(which are all diffeomorphic to E x R). The natural extension of the Atiyah-
Floer conjecture asserts tha t these two product structures should correspond under 
the isomorphisms of Conjectures 3.4 and 4.1 if in the symplectic case we choose 
M = MY and Li = LYi. This can be proved with the same techniques as above. 

An interesting special case occurs when the symplectic manifold M is replaced 
by Af x M and Lo = À, L i = graph (0), L 2 = graph (VJCJJ). This gives rise to Floer 
cohomology groups 

tf^ynpM = HF:yiap(M x M, A,graph (0)). 

Intuitively, the Floer cohomology of <f> can be interpreted as the middle-dimensional 
cohomology of the space ft^ of paths 7 : [0,1] —> M with 7(1) = (£(7(0)) 

HF:ymp(<p) = Hi™^). 

These groups are invariant under conjugacy, i.e. HF*yrnp((j)) = H F^^^yj^1 cßi/j), 
and the Donaldson product structure takes the form 

tfiCympW ® ^ m p W O - ^ p W ) ' (9) 

In the case </> = vj = id there is a natural isomorphism HF* (id) = H*(M) (with 
the grading made periodic with period 2N) and the above product reduces to 
quantum cohomology [17]. (See [14] for an exposition of quantum cohomology.) 

Let us now specialize further to the case where M — MY is the moduli space 
of flat connections on the nontrivial SO(3)-bundle P —> E. The mapping class 
group of E acts on this space by symplectomorphisms (/>f : MY —> MY (modulo 
some finite ambiguity in the choice of a lift). An automorphism / : P —> P also 
determines a mapping cylinder Y) and there are corresponding Floer cohomology 
groups HF*(Yf), defined in terms of ASD instantons on Y} x R. In [7] it was shown 
tha t there are natural isomorphisms 

HF*(Yf)^HF:ymp(<l>f). 

Now there is again a product structure 

HF*(Yf) 9 HF*{Yg) - HF*(Ygf) (10) 

defined in terms of ASD instantons on suitable 4-dimensional cobordisms. In [16] it 
is shown tha t these agree with the products in (9) under the above isomorphisms. 
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REMARK 5.1 (i) In his thesis [4] Callahan examines these product structures in 
detail and uses them to find examples of symplectomorphisms cßf : MY —> 
MY that are nomotopic to the identity but not symplectically so. In his 
examples the automorphism / is generated by a Dehn twist on a loop that 
divides E into two components. 

(ii) There is an alternative way to interpret these product structures (in the case 
o = id) by intersecting the spaces of connecting orbits with suitable sub
manifolds of finite. codimension in either By — A(Y)/G(Y) or (ì^. In the 
symplectic context this gives rise to an action 

JT(fy) ® HFZymp(<l>) -» HF:ymp(<t>). 

Intuitively, HF*ymp((ß) = H*00^^) and this is the cup-product in ü^. The 
map ÌÌ0 —> M : 7 H-» 7(0) induces a homomorphism H*(M) —> i J * ( ^ ) and 
the resulting product H*(M) ® HF*ymp(cß) —> HF*ymp(<j)) agrees with (9) in 
the case ip = id. 

(iii) A loop 7 : 5 1 —> Y determines a submanifold Vn C By via Donaldson's map 
p : H\(Y) —> H3(By), and the induced homomorphism of Floer cohomology 
appears as the second boundary map in the Fukaya-Floer cohomology groups 
iLFF* ( Y, 7) [3]. In the symplectic context these operators correspond to 
the action of H*(ïï,<f,) on HF*ymp(aS). If M = MY and cß = aSf for some 
automorphism / : P —> P then a loop 7 : S1 —> Yf determines a codimension-
2 submanifold W^ C f l ^ and there is a commuting diagram 

HF*(Yf) ^ HF*(Yf) 

I i 
HF:ymp(cjjf) ^ HF:ymp(cßf) 

If the loop 7 lies entirely in E x {0} then these maps can be interpreted in 
terms of the product structures (9) and (10) with g = id and vj — yjg = id. 
In [5] Donaldson has computed the quantum cohomology of MY for a surface 
of genus 2. 

(iv) In the instanton case the maps in Floer's exact sequence can be interpreted in 
terms of the Donaldson product structures [2]. It was proposed by Donaldson 
and Callahan [4] that there should be a symplectic analogue of this exact 
sequence. In special cases this should be related to Floer's original sequence 
by the Atiyah-Floer conjecture. 

(v) There is a related question of what the effect of symplectic reduction is on Floer 
homology. This should also be related to the quantum product structures 
discussed here. An interesting example is provided by surgery on a loop 
7 C Y in a 3-manifold with boundary dY — E. Cut out a neighborhood U 
of 7 and write Y = U UT (Y - U). Then the disjoint union U U (Y - U) 
has three boundary components T U T U dY. Different ways of gluing in U 
correspond to different symplectic reductions in MT U MT U MY • 
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(vi) If Y is a 3-manifold with boundary dY = E then the quantum category CM^ 
acts on the Floer cohomology groups HF*(Y,L) via natural product type 
maps 

HF*(Y,L0) ® ffFs;mp(Lo,£i) - HF*{YM)-

This was already observed by Fukaya [11]. So far these product structures 
are little understood. 
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1 Symplectic manifolds, their Lagrange submanifolds and generating functions 

A symplectic form on a manifold is a closed two form UJ, nondegenerate as a skew-
symmetric bilinear form on the tangent space at each point. Integration of the 
form on a two-dimensional submanifold S with boundary 8S in M associates to S 
a real number (positive or negative) the "area of 5", which due to Stokes' formula 
only depends on the curves dS, and the homology class of S rei dS. If moreover 
the form is exact, that is UJ = dX, the area of S is obtained by integrating A over 
dS. In this case it is also possible to integrate A on loops nonhomologous to zero 
and we get the notion of "area enclosed by a loop ". However this area depends 
on the choice of A. If this choice is fixed once for all, we shall then talk about an 
exact manifold. One should be careful about the fact that this notion is slightly 
different from that of a symplectic manifold with exact symplectic form (because 
in the latter case we have not chosen the primitive of CJ). 

It is a theorem of Darboux that the simplest example, R2n with the constant 
symplectic form o = Y^j=i ^xj A dy3, is also the universal local model (i.e. any 
symplectic manifold is locally symplectomorphic to (M2n,cr). 

The main example for us will be the exact manifold T*N, the phase space of 
Af, where the exact form is the "contraction tensor" given in local coordinates by 
£]j=17JjdçJ, where qj are local coordinates on N and pj are the dual coordinates. 

Submanifolds of a sjunplectic manifold inherit naturally the 2 form induced 
by UJ. This is naturally a closed form, but only exceptionally nondegenerate. In this 
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case the submanifold is called symplectic. Other remarkable cases occur if the form 
vanishes on the submanifold, which is then called isotropic (if 2-dim(y) < dim(M)) 
or Lagrangian (if 2 • dim(Vr) = dim(M)). It is then maximal among isotropic 
submanifolds. In terms of area, any contractible curve on a Lagrange submanifold 
has zero area. In an exact manifold, any two homologous curves on L have the same 
area. If moreover any two curves have the same area (which is then necessarily 
zero), the Lagrange submanifold is called exact. This is equivalent to the exactness 
of the pullback of A on L. 

In T*N there is a particularly simple family of Lagrange submanifolds. To 
any closed one form a we may associate La = {(q,a(q)) \ q E N}. The form 
induced by A on La is just a; thus, UJ = dX induces da = 0. In particular, if a = df 
is exact we get an exact Lagrange submanifold. 

A remarkable property of a Lagrange submanifold in T* N is that it intersects 
the zero section more often than a differential topologist would expect. For Lf, we 
see that points in Lf Ci ON are in one-to-one correspondence with critical points 
of / . In any case, as AT is compact, there are at least two such points. One of the 
Arnold conjectures, partially solved by Hofer in 1983 (see [H]), claims that for L 
exact and obtained from the zero section by a Hamiltonian isotopy, the number 
of points in L D OJV is bounded from below by the Lusternik-Shnirelman category 
of N (i.e. the minimal number of critical points for a function on N). For Lf this 
conjecture is obvious. However, the Lagrange submanifolds that may be written 
as Lf are exactly those for which the projection p : T*N —> N restricts to a 
diffeomorphism. 

Our main interest will be on Lagrange manifolds, and we shall represent 
them through their generating functions, an idea first introduced by Hörmander 
for different purposes (see [Hö]). 

A generating function for the Lagrange submanifold L is a function S : E —• 
R, defined on a vector bundle E over N, and such that 

L = < ( x, —— ) —- = 0 > where x is in N, and £ in the fibre 
IV dxJ 9£ J 

(assuming that 0 is a regular value for | f ) . Generating functions have the advan
tage of preserving the following interesting property: the points in L$ H ON ^G 

in one-to-one correspondence with the critical points of S. The apparent draw
back is that there are of course functions on E with no critical points (because 
E is noncompact), but this may be restored if we restrict ourselves to Generating 
Functions Quadratic at Infinity (abbreviated as G.F.Q.I.s): 

DEFINITION (G.F.Q.I.). A generating function Sis aG.F.Q.I. if and only if there 
exists a fibrewise quadratic nondegenerate form Q(x, £) such that S(x, £) — Q(x, £) 
has compact support. 

The main example is associated to a symplectic diffeomorphism </> that we 
assume to be the time one flow of a compact supported Hamiltonian. Then T^ = 
{(z,(j)(z)) | z G R2n} is a Lagrange submanifold of R2n_x R2n (R2n is simply R2n 

with the symplectic form -UJ). We shall identify R2n x R2TI with T*(A) = T*(TId) 
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(where A is the diagonal). Note that if <j)t has compact support, Y^ coincides 
with the zero section outside a compact set. We may thus compactify the base of 
T*(A) to T*(S2n), and simultaneously compactify Y^ to f̂ . Then f̂  coincides 
with the zero section near the point at infinity on S2n, and is obtained from 0$*™ 
by a Hamiltonian isotopy. We shall usually work in this last setting, as it is more 
pleasant to work with compact bases. 

2 Existence and uniqueness theorems for generating functions 

Prom now on, except in Section 4, we shall only consider generating functions 
quadratic at infinity. Let £ be the space of Lagrange submanifolds Hamiltonianly 
isotopie to the zero section, Q the set of G.F.Q.I. of elements of £. The obvious 
projection Q —> £ is denoted by TT, and GL will be ir~1(L). 

For S,T two G.F.Q.I. on E and F, we denote by S © T the G.F.Q.I. on 
E © F defined by (S © T)(x,£, rj) = S(x, £) + T(x, rj). 

Let us introduce the following two equivalence relations on Q\ 
(a) S\ ~ S2 if a n d only if there are nondegenerate quadratic forms Q\,Q2 

on Fi, F% and a fibre-preserving diffeomorphism $ ; E\ © F\ —> E"2 © Fi such that 
(S i©Qi) = ( S 2 © Ç 2 ) o $ . 

(b) S\ ~ S*2 if and only if there are G.F.Q.I. for the zero section Xq,£2 
defined on F\, F<i, and a vector bundle isomorphism \f' from E\ © F\ —> E^ © Fi 
such that (Si © Si) = (S2 © E2) o ty. 

Note that in (a) there are more permissible "stabilizations" but fewer iso
morphisms than in (b). However the equivalence relation (b) seems weaker than 
(a). The point of using (b) is that it makes certain proofs easier, without unduly 
weakening the conclusions. Making the quotient of Q by one of these equivalence 
relations a topological space and a CW complex is needlessly complicated; it is 
better to notice that the concept of a continuous map from a cube in G/ — (where 
~ is one of the equivalence relations (a) or (b)) is clear to everyone: it is the pro
jection of a continuous map from the cube to Q. It is then clear what a continuous 
map from a polyhedron to Q/ ~ will be. Smooth maps from a finite-dimensional 
manifold to G/ — are similarly defined . 

The existence and uniqueness results may now be stated as follows. 

THEOREM (EXISTENCE AND UNIQUENESS OF G.F.Q.I.) ([LS], [VI], [Th], [V2]). 
Let G be one of the quotient spaces corresponding to (a) or (b). Then the map 
fr : G —> £ induced by iv is a Serre fibration. The fibre is reduced to a line described 
by the set of S + C with C G R , and S any element of G-

As an application, it is easy using the equivalence relation (b) to see that 

COROLLARY (GF SYMPLECTIC HOMOLOGY) ([El], [Tr]). Given any two G.F.Q.I.s 
for L there is a unique integer m and a unique real number I, such that Hk(Sh, Sa) 
_ Hk~m(Sb~l,Sa~l) for any pair of real numbers a <b. 

In particular, if we normalize in any reasonable way the constant, we have a 
well-defined ring H*(Sb,Sa), for any pair of real numbers (a,b). Note moreover, 
that there is an action by the cup product of H*(E) = H*(N) on this ring (so 
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it is actually an H*(N)-module). This is in particular the case if we consider the 
Lagrange submanifolds Y<f, associated to a compact supported Hamiltonian isotopy 
cß. Then because Y^ coincides with the zero section of T*(S2n) outside a compact 
set, the generating function has a unique critical point over the point at infinity. 
We shall normalize S so that this critical level is zero. 

REMARK. Note that, as was pointed out by Eliashberg and Gromov, G.F.Q.I.s 
yield more precise information than just their homologies. For instance, if the base 
space N has a nontrivial fundamental group, the Reidemeister torsion may be 
recovered from S, a more refined information than just the homology of the space. 
Also, for families of Lagrange (or Legendre) submanifolds, invariants coming from 
pseudo-isotopy may be obtained (see [EG]). It also implies a priori more critical 
points than one may expect from the Morse inequalities, or the ring structure of the 
cohomology (using Lusternik-Shnirelman theory). In fact, because we are dealing 
with real topological spaces, we get for free the secondary operations, which yield 
also more critical points (see [V6]). 

As an example of this last fact, we may consider the manifold N, total space 
of a nontrivial circle bundle over the 2-torus. Even though its cup length is 3, any 
function on N has four critical points. Moreover, for any Hamiltonian isotopy (j)t 

on T*N, 0i(Ojv)nOjv has at least four critical points (and not 3 as'one may expect 
from Floer's theory). 

REMARK. There is no reason to limit oneself to the cohomology functor. In fact, 
any strongly stable homotopy functor is invariant through the equivalence relation 
(a) (for (b) it is more delicate).1) We shall see below how this is connected to the 
idea that there exists a stable Floer homotopy (see [CJS]). 

3 Symplectic invariants, solutions of Hamilton-Jacobi equations 
and applications 

We shall briefly sketch a particularly simple construction of a symplectic invariant, 
related to the "capacity" defined by Ekeland and Hofer in [EHI] and [EH2], and 
also a new class of solutions for first order Hamilton-Jacobi equations. 

Let S(x,£) be a G.F.Q.I. for the Lagrange submanifold L. Note that for c 
large enough, EC,E~C has the homotopy type of D(E~),S(E~), where E~~ is the 
sum of the negative eigenspaces of the quadratic form defined by S at infinity. 

Given a cohomology class a in H* (N), the Thorn isomorphism T : H* (N) —> 
H*+d(D(E~),S(E~)) associates the class TUp*(a). Now to S, we may associate 
the critical level 

c(a, S) = inf {A | T U a is nonzero in H*(EX,E~C)}. 

To simplify notation, we shall again denote by a the class T Up*(a). 

1) By a strongly stable homotopy functor F we mean that given an orientable vector bundle, 
E over X, and D(E),S(E) its unit disc and sphere bundle, respectively, then F(X) is 
isomorphic to F(D(E)/S(E)). if-theory, for instance, would be such a functor. 
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The number c(a, S) is a critical value for S, which implies that the corre
sponding level of S contains at least one critical point. In turn, this jdelds an 
intersection point of Ls and 0^. 

Let PL be the generator of Hn(N), and 1 the generator of H°(N). The 
number ^f(L) = c(p, S) — c(l, S) is a sort of "norm" for L: j(L) — 0 if and only if 
L = 0N. 

REMARK. This holds only for embedded Lagrange submanifolds. There are im
mersed Lagrange submanifolds admitting a G.F.Q.I. , such that ^(L) — 0 but 
L ^ ON (however it is always true that L contains ON)-

The most interesting case is when L = Y(f). Then using the compactification 
explained at the end of Section 1, we get two critical values c(l,S) and c(p,S), 
which we denote as c_(0) and c+(</>), respectively. The main properties of c_|_ and 
c_ are summarized in the following theorem: 

THEOREM (PROPERTIES OF C_(0) AND c+(</>)). 

(i)c^) = -c+(^). 
(ii) c_(0) < 0 < c+(0) and C(0) = 0 = c+(</>) holds only if' cj) = Id. 

(iii) c + ( ^ 0 _ 1 ) = c+(yj) and the same holds for c_. 
(iv) c^((/)yj) < c+(0) + c+(yj), and the equality is reversed for c+ replaced by c_. 

The only nontrivial result is (iv). 
Most of the basic results of symplectic homology can be proved very simply 

using this approach. One defines a symplectic invariant, the capacity, by setting 
c(U) = sup{c+(0) | 0 is the time one map of a Hamiltonian isotopy generated by 
a Hamiltonian supported in U}. 

Clearly, c(yj(U)) = c(U) for any symplectic diffeomorphism yj, and if U C V, 
we clearly have c(U)J < c(V). As we may also prove that c(B2n(r)) = c(B2(r) x 
M2n_2) = irr2, we immediately get Gromov's theorem 

THEOREM (GROMOV). If there is a symplectic embedding from B2n(r) into 
B2(r') x R2n~2, then we must have r < rl. 

This implies for instance that the group of symplectic diffeomorphisms is 
closed for the C° topology in the group for all volume-preserving diffeomorphisms. 

A particular feature of the invariant we defined is to be suited for comparing 
the capacity of a set with the capacity of a symplectic reduction. This follows for 
instance from the fact that we have the following inequalities. Let L be a Lagrange 
submanifold in T*(N x P), and for each p G P, let Lp = (LnT*N x T*P)/T*P, 
which we consider as a submanifold of T*N. Then, if S is a G.F.Q.I. for L, we 
have that Lp has Sp as a G.F.Q.I. , where Sp(n,£) = S(n,p,£). 

Let us now see how generating functions may be used to find some remarkable 
solutions of Hamilton-Jacobi equations (this is partially due to Chaperon and 
Sikorav, [C2]). 

The idea is that if L is a Lagrange submanifold in T*(N X J[0,T]) contained 
in the hypersurface r-\-H(t, x,p) = 0, and if L has a G.F.Q.I. S, then the function 
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defined by 

u(x) = inf {A | the generator of H*(E*,E~C) in H*(EX,E~C) is nonzero} 

"satisfies the Hamilton-Jacobi equation" 

du rr, du. 
^ + F ( M , - ) = 0. 

Moreover this is a C° solution, satisfying the equation almost everywhere, and 
having a certain number of additional properties. Our main result is that these 
solutions extend to the case where H and UQ(X) = u(x,0) are only continuous. 

THEOREM. Let J be the map from Ck(N)xCk([0,T]xT*N) intoC^([0,T]xN)} 

which associates to (UQ,H) the above constructed solution of the equation 

du du. 
— + H(t,x, — ) = 0 ; u(0,x) =UQ(X). 

This map is continuous for the natural topology on each space. Then J extends to 
a map J from C°(N) x C£ip([0,T] x T*N) to C°([0,T] x N) (which also sends 
CL[v(N) x CLiP([0,T] x T*N) to CLiP([0,T] x N)). Moreover u = J(uQ,H) solves 
almost everywhere the above Hamilton-Jacobi equation. 

Here C^ip([0,T] x T*N) means continuous in the p variable, and Lipschitz 
in the q variable. 

The remarkable class of solutions thus defined is different from the one defined 
by Lions under the name of "viscosity solutions", as was shown by Ottolenghi 
(personal communication). 

4 Generalized generating functions and applications to 
Floer homology computations 

The first idea in this section is to give two infinite-dimensional extensions of the 
notion of a generating function, and to prove a suitably adapted uniqueness theo
rem. 

The first adaptation of the definition of G.F.Q.I. to the infinite-dimensional 
setting is easy under some natural assumptions. First we may replace the finite-
dimensional vector bundle over AT, by a Banach bundle over N. Then S : E —> R 
is a smooth function satisfying the Palais-Smale condition. The smoothness and 
transversality assumptions clearly extend to the Banach space setting. And finally, 
our proof of uniqueness can be also extended without adding any new ingredient 
to this case. Note however that the G.F.Q.I. should be such that the quadratic 
function at infinity should have finite index. A typical example is as follows. Let 
L(t, q, q) be a Lagrangian on TN such that §^L is invertible. 

/ L(t,q,q) 
Jo 

S(q)= / L(t,q,q)dt 
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defined on the Banach bundle V = {q : [0,1] -> AT | q(0) = 0} and n : V -> AT is 
given by 7r(ç) = ç(l). We claim that S is a generating function for ^i(Ojv) where 
(j)t is the flow associated to the Hamiltonian H obtained from L by Legendre 
duality. The computation is omitted, since a very similar one follows. S will never 
be quadratic at infinity, but if L(t, q, q) = \\q\\2 outside a compact set, it is easy to 
show that H*(EC,E~C) = H*(N) for c large enough (it is easy to prove this by 
comparison with L— ||#||2). 

Now we turn to the more subtle version of infinite-dimensional generating 
functions, which we shall call Floer generating functions. 

This relies on Floer's idea to deal with the variational theory of the action 
functional, as there was not, prior to Floer's work, any reasonable approach to 
the variational study of this functional on a general manifold (see [R] for a finite-
dimensional approach in the case of R2n). 

One way to understand the introduction of generating functions is to consider 
the action functional as such a function. Let S be the set of paths, S = {7 = (q,p) : 
[0,1] -> T*N \ p(0) = 0} (we do not specify the regularity of the path, as it is of 
no interest for the moment) and TT : S —> N be the map 7 —> q(l). Then consider 
the function AH defined as 

AH(l)= I \pJi-H(t,q,p)}dt. 
Jo 

We have that 

/•l f)TI F)TI 
DAH(1)81 = / [(Jq - — )6p - (Jp - —)6q}(t,q,p) dt + p(l)6q(l). 

Thus, the set of 7 such that the derivative of AH in the direction of the fibres 
of 7T vanishes corresponds to solutions of 

• 9H n . 8H n 

that is 7(t) = <^t(7(0)) = 0t(ç(O)5O)- Now because for such a 7, §^M\ = p(l)5 so 

the set of points (g(l), f4fy) is 0i(O;v)-
The function AH is particularly difficult to study from a variational point of 

view, because all its critical points are of infinite index and coindex. As a result, we 
have for example that H*(Ab

H, A^) vanishes. In a famous series of papers, Floer 
explained, using some ideas of Thorn, Smale, Conley, and Witten, how to define 
the groups FH*(Ab

H, A^) that are a sort of middle-dimensional cohomology of 
(Ab

H,Aa
H) (see [Fl], [F2], and also [FHW]). 

In particular these groups only depend on L, so we denote them by 
FH*(L; a, b). Now we have: 

THEOREM (UNIQUENESS OF SYMPLECTIC HOMOLOGY). 

FH*(L;a,b) = GH*(L;a,b). 
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This circle of ideas may be adapted to the periodic orbit problem. In general 
one studies the number of fixed points for a Hamiltonian flow on M. The periodic 
orbits are critical points of the action functional JD2 u*u — Jsl H(t,z)dt, where u 
is any map such that u\si — z. Of course the value of JD2 U*UJ may depend on the 
choice of u, not only on z, but this is not the case, provided CJ vanishes on ^(M), 
that we shall henceforth assume. Then one encounters the same difficulties and cure 
(through Floer methods) as in the Lagrangian case. With the above assumptions, 
for compact M, one has the isomorphism 

FH*(M)=H*(M). 

Of course such an equality is not perfectly honest, unless we say which struc
tures are transported from the right-hand side to the left-hand side. For instance, 
the original statement of Floer only deals with the additive group structures. In 
[V3] we proved also that the multiplicative structure extends to FH* (M) (and the 
isomorphism between FH* (M) and H* (M) preserves this structure). This implies 
a weak version of the Arnold conjecture for these manifolds, and has been extended 
to more general manifolds by several authors (Floer, Hofer-Salamon, etc.). Work 
by Cohen-Jones-Segal and Fukaya seems to indicate that much more structure is 

-defi-ned-on-^i^fAf)-(-fer-ex^mple-eo 
On noncompact manifolds, however, the situation is more interesting. For 

example in T*N, let us look for periodic orbits of a Hamiltonian H, such that 
Hfap) = ||p||2 at infinity. 

We shall denote the Floer homology associated to H as FH*(T*N). It is clear 
as in the compact case, that the Floer homology only depends on the behavior of H 
at infinity. Now for H(q,p) — ||p||2, the Hamiltonian flow is the geodesic flow, and 
we know perfectly well its periodic orbits: they are in one-to-one correspondence 
with closed geodesies. There is however another functional with the same critical 
points: the energy functional E(q) = Jsl q2 defined on the loop space of N, AN. 
This is not enough to prove that FH*(T*N) = H*(AN); for this one would have 
to show that the connecting trajectories for the gradient flow of E are in one-to-one 
correspondence with the Floer trajectories, solutions of dju = —VH. 

As this is not easy to prove, we shall use an approach derived from the ideas 
of Section 2. Indeed, we introduce the notion of a Floer generating function as a 
generating function of the form: 

* H . S ( 7 . 0 = A H ( 7 ) © 5(7(1). 0 

where S is a G.F.Q.I. for Ls- It is not hard to see that, formally, F is a generating 
function for 0 _ 1 (Ls) . But beside this, we want to define FH*(Fb, Fa). This is done 
as in Floer homology, by considering critical points and connecting trajectories. 

It is easy to see that for H = 0, FH*(Fb, Fa) = H*(Sb, Sa), whereas for S = 
0, FH*(Fb,Fa) = FH*(L;a,b). These are the main ingredients of the theorem's 
proof. 

REMARK. Let us notice that the isomorphism between F and G homology has 
not been proved to be natural. If this were true, as it seems likely to be, it would 
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have quite interesting consequences, as all cohomology operations that are easily 
defined for G-homology would automatically bc well defined on Floer cohomolog}', 
a much less trivial fact. Of course, if one could prove that the spaces Sb/Sa may 
be canonically identified up to suspension, we would have realized the program of 
Cohen-Jones-Segal of defining the "stable Floer homotopy type" in this setting. 

5 Applications to Hamiltonian dynamics and obstructions 
to Lagrange embeddings 

The previous theorem has a number of important applications. The first one will 
deal with the following question: 

Given L,N, is there a Lagrange embedding from L to T*N1 
The answer is of course yes for L = N, and no other example is known if 

we moreover require the embedding to be exact. On the other hand, without the 
exactness assumption, it is not even known whether there is a Lagrange embedding 
of the Klein bottle into M4. In the sequel, all Lagrange embeddings will be assumed 
to be exact. 

A conjecture by Arnold claims that the only such embeddings are obtained by 
applying a symplectic diffeomorphism to the zero section. At least, since proving 
this statement seems to be out of reach, we may try to show 

CONJECTURE. Let L be an exact Lagrange submanifold in T*N. Then the projec
tion of L onto N has nonzero degree. 

Note that this implies Gromov's theorem, claiming, in Sikorav's formulation, 
that there is no exact embedding into T*M for open M (remember that L is 
always compact). 

The connection with the former section is as follows. A Lagrange embed
ding j of L into T*N extends to an embedding of a neighborhood of the zero 
section of T*L into T*N. This induces a map from the Floer cohomologies, from 
${j) : FH*(T*L) = H*(AL) -> FH*(T*N) = H*(AN), satisfying the following 
algebraic property: 

*Ü)(a:UAOTG/)) = $Ü)(aOUy. 

It is easy to construct, for many pairs of manifolds (L,N), obstructions to 
the existence of such maps. We refer to [V6] for many examples. Let us just quote 
the solution to a previously open question (cf. [Lal-S]). 

THEOREM. There is no exact embedding from T2 to T*S2. 

REMARK. The method of proof in [V7] (see also [V5]) is more complicated, because 
the relation between Floer cohomology and generating functions had not been 
established yet. Thus, the whole proof is based on generating functions methods. 

We also mention another application of the above computation to the Wein
stein conjecture in a cotangent bundle. A compact hypersurface in a symplectic 
manifold is said to be of contact type if there is a conformai vector field (i.e. 
Lçu) — UJ) defined in a neighborhood of the hypersurface, and transverse to it. The 
characteristic flow on a hypersurface is the flow of a time-independent Hamiltonian 
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having the hypersurface as a regular energy level. The special feature of a contact 
type hypersurface is tha t a neighborhood of it is foliated by hypersurfaces having 
diffeomorphic characteristic flow. 

The conjecture of Weinstein claims that such a hypersurface always has a 
periodic characteristic. This was first proved in M2n by the author ([VI]), later 
extended in joint work with Hofer and Floer ([HV1], [FHV], [HV2]). In particular 
in [HV1], it is proved tha t the conjecture holds for a contact hypersurface in T*N 
surrounding the zero section. But , strangely enough, it was left open for a general 
contact hypersurface inT*N, even though, as pointed out by Chaperon, if N has 
a Lagrange embedding in R2n, then the Weinstein conjecture in T*N holds as a 
consequence of it holding in M2 n . 

The above computation, together with the information on the structure of 
the ring H' * (AN) in the simply connected case due to Goodwillie (see [Go]), may 
be exploited to prove (see [V7]): 

T H E O R E M ( W E I N S T E I N C O N J E C T U R E IN S.C. C O T A N G E N T B U N D L E S ) . The We

instein conjecture holds in T*N for N a simply connected compact manifold. 
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Smooth 4-manifolds and Symplectic Topology 
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One of the famous problems of topology is the classification problem for simply 
connected 4-manifolds. In the context of topological manifolds (up to homeomor
phism), Freedman reduced the problem in 1981 to the classification of Z-quadratic 
forms ([F]; see also [FQ]). However, for smooth manifolds (up to diffeomorphism) 
the problem remains wide open, and it is currently the focus of intense research. 
Henceforth, we only consider smooth (compact, boundaryless) manifolds. Most 
of our knowledge about such simply connected 4-manifolds has descended from 
work of Donaldson. In particular, his invariants [D] allow us for the first time to 
distinguish different diffeomorphism types within a given homotopy type of such 
manifolds — or equivalently in this context, within a given homeomorphism type 
[F]. We now know that many homeomorphism types each contain infinitely many 
diffeomorphism types (a situation that is not possible in any other dimension). 
This explosion of distinct examples has left topologists struggling to find order 
amid the confusion. 

In this article, we will consider two approaches to the problem of organiz
ing simply connected 4-manifolds. The first approach, which predates Donaldson's 
work, is easily motivated by considering 2-manifolds. Every orientable 2-manifold 
admits a complex structure — in fact, diffeomorphism types of orientable 2-
manifolds correspond bijectively to deformation types of complex 1-manifolds (i.e., 
complex manifolds with 1 complex dimension or 2 real dimensions). Similarly, one 
might try to understand simply connected 4-manifolds by reducing to the theory 
of complex surfaces (complex manifolds with 2 complex, or 4 real, dimensions). 
We will see that problems have recently arisen with this approach. An alternative 
approach will be suggested — that of replacing complex structures in the theory 
by related structures called symplectic forms. Although these forms are less well 
understood than complex structures, they have the advantage of greater flexibil
ity. It is hoped that a parallel development of 4-manifold theory and symplectic 
topology can lead to major advances in both fields. 

*) Partially supported by NSF grant DMS-9301524. 
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1 4-manifolds and complex surfaces 

The first question that arises when comparing 4-manifolds and complex surfaces 
is whether every simply connected 4-manifold admits a complex structure. This is 
easily seen to be false — in fact, the connected sum of two complex surfaces (with 
their complex orientations) can never be complex.1 To bypass this difficulty (and 
the 4-dimensional Poincaré conjecture) we define a 4-manifold to be irreducible if it 
cannot be split as a connected sum without using a homotopy 4-sphere summand. 
We can then ask the following question, which was open for many years: Is every 
irreducible, simply connected 4-manifold (other than the 4-sphere) complex? This 
question was answered in the negative in 1990 by the author and Mrowka [GM]. 
Since then, numerous mathematicians have expanded the techniques, producing 
many other examples of irreducible, simply connected 4-manifolds that do not 
admit complex structures [FS1], [FS2], [K], [L], [S], [Sz], [Y]. Some of these are not 
even homotopy equivalent to complex surfaces [FS1]. The evidence now suggests 
that among irreducible, simply connected 4-manifolds, those that admit complex 
structures are relatively scarce. 

These new manifolds are all created from complex surfaces by cutting and 
pasting. In practice, it seems that most manifolds produced by such techniques ac
tually split as connected sums of simple pieces (such as complex projective planes 
with both orientations). Thus, it seems important to examine in detail those con
structions that produce irreducible manifolds. 

One such construction, called (generalized) logarithmic transformation, con
sists of finding a 2-torus T embedded with a trivial normal bundle in a 4-manifold 
M, cutting out a tubular neighborhood of T, and regluing the neighborhood by 
any diffeomorphism of the 3-torus boundary. When T is a complex submanifold 
of M, it is well known that the resulting manifold is frequently complex [Ko]. 
However, complex surfaces typically contain many essential noncomplex tori, and 
logarithmic transformations on such tori typically yield infinitely many diffeomor
phism types of irreducible manifolds that are homeomorphic to M. In contrast, 
most homotopy types of 4-manifolds contain at most finitely many diffeomorphism 
types of irreducible complex surfaces. In this sense, noncomplex 4-manifolds seem 
to form an overwhelming majority. Fintushel and Stern [FS2] have shown that 
logarithmic transformation can usually be described in terms of a more general 
operation, which they call rationally blowing down. This consists of removing a 
neighborhood of a certain transverse collection of embedded spheres, and replacing 
the neighborhood by a certain plug with trivial rational homology. New irreducible, 
noncomplex manifolds result from this generalization. 

The only other cut-and-paste operation that is currently known to be useful 
for producing irreducible 4-manifolds is connected-summing along surfaces. Begin 
with 4-manifolds Mi and M*i and embedded orientable surfaces Fi C M{ with 
the same genus g and opposite self-intersection numbers ±71 (so that the normal 

1This follows from the observation that if the tangent bundle of a 4-manifold reduces to a 
complex vector bundle, then its first Chern class is a characteristic element of the cup-product 
pairing [MH], so c\ is congruent to the signature mod 8. It follows that the signature plus the 
Euler characteristic must be divisible by 4 (because c\ = 2c2 + pi = 2e + 3a), a condition that 
cannot be preserved under connected sums. 
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bundles are orientation-reversing isomorphic to each other). Remove a tubular 
neighborhood of Fi from each Mi, and glue the resulting complements together 
along their boundaries. Without loss of generality, we can assume (unless g = n = 0) 
tha t the gluing diffeomorphism preserves the fibers of the normal circle bundles 
comprising the boundaries. (For g > 1 or n ^ 0, no other diffeomorphisms are 
possible, and for g = 1, n = 0 we can reduce to this case by first performing a 
logarithmic transformation.) This technique allows (for example) the construction 
of irreducible, simply connected 4-manifolds that are not homotopy equivalent to 
complex surfaces [FS1]. 

Where does this leave our program for reducing 4-manifolcl topology to com
plex surface theory? Most irreducible, simply connected 4-manifolds do not admit 
complex structures. Of course, there is a canonical procedure for repairing any 
conjecture by expanding it to include all known counterexamples. In this case, it 
is already being asked whether all irreducible 4-manifolds are obtained from com
plex surfaces by the constructions given above. There is actually some justification 
for this via analogy with 3-manifolds. Thurston's geometrization conjecture asserts 
tha t if an arbi t rary 3-manifold is decomposed by cutting it into as many nontriv-
ial pieces as possible along spheres and tori, then the resulting pieces should all 
admit simple geometric structures. One might hope for a similar decomposition of 
4-manifolds along circle bundles over surfaces. However, in 3-dimensional topology 
there is a well-developed theory tha t shows how to decompose 3-manifolds maxi
mally along spheres and tori. In the absence of any such theory in dimension 4, it 
seems prudent to examine alternative approaches for organizing simply connected 
4-manifolds. 

2 Symplectic manifolds 

To shift our viewpoint on 4-manifolds, we first consider a different sort of struc
ture. A symplectic manifold is a manifold (necessarily of even dimension) endowed 
with a symplectic form — tha t is, a closed 2-form UJ tha t is nondegenerate as a 
bilinear form on each tangent space. (In other words, no nonzero vector should be 
orthogonal to the entire tangent space.) Note that if CJ were symmetric instead of 
skew-symmetric, nondegeneracy would be the condition tha t we were dealing with 
a Riemannian or Lorentzian metric. The closure condition, du = 0, is analogous to 
requiring a metric to have vanishing curvature. It guarantees t h a t u has no local in
variants — any point has a neighborhood tha t is symplectomorphic (diffeomorphic, 
preserving CJ) to an open set in M?n with the standard form Yn=i dx2%~x A dx21. 
Thus, symplectic manifolds can be thought of as skew-symmetric analogs of flat 
(or hyperbolic or spherical) Riemannian manifolds. 

The relation of symplectic geometry to our previous discussion comes through 
the notion of a Kahler manifold. This is a complex manifold with a symplectic 
form tha t is compatible with the complex structure. (Specifically, the form should 
be the imaginary par t of a Hermitian metric.) Any smooth (complex projective) 
algebraic variety is Kahler. Because any complex surface with b\ even (hence, 
any simply connected complex surface) can be deformed into an algebraic surface 
[Ko], our previous discussion will be nearly unchanged if we shift from the complex 
to the Kahler viewpoint. Now we are free to reject complex structures as being 
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too rigid, and focus on the underlying symplectic structures as natural tools for 
understanding 4-manifolds. 

We now have an obvious question — have we gained anything? Until recently, 
few examples of (compact) symplectic manifolds were known, other than Kahler 
manifolds. Around 1976, Thurston [T] produced some symplectic 4-manifolds with 
bi = 3. These could not be homotopy equivalent to Kahler manifolds, because 
the odd-index Betti numbers of a Kahler manifold are always even. McDuff [Mc] 
produced simply connected examples in dimensions > 10, with b$ = 3. However, 
until recently it was unknown whether simply connected symplectic manifolds 
in dimension 4 (or 6 or 8) could be essentially non-Kähler. In the absence of 
such examples, our generalization would not be useful. Fortunately, a technique 
originating in 4-manifold topology has changed the situation radically [G]. 

The new advance began from the idea that the process of forming con
nected sums along codimension-2 submanifolds is essentially symplectic in na
ture. More precisely, suppose that Mi, M2, and N are symplectic manifolds, with 
co dimension-2 symplectic embeddings Af c—> Mi (i = 1,2). Suppose that yj is 
any orientation-reversing isomorphism of the two normal bundles over N. Then yj 
determines a gluing map for a connected sum along N. It can be shown that the re
sulting manifold always admits a canonical symplectic structure. This is most easily 
seen (and most useful) in the case where the normal bundles of N are trivial: in this 
case, Weinstein's technique [W] easily produces symplectic embeddings N xDE

 t—> 
Adi (where DE is a sufficiently small e-disk in M2 with symplectic form da;1 A dx2). 
The gluing map is given by id^j x tp, where ip symplectically turns DE — {0} in
side out. (Such maps tp are easy to construct, because a symplectic form on a 
2-manifold is just an area form — for example, tp(r, 6) = (\/e2 — r2, —9) works.) 

The applications of this technique are multitudinous [G]. One can construct 
many simply connected symplectic 4-manifolds that are not diffeomorphic to com
plex surfaces. Some of these (including, for example, many of the manifolds con
structed in [GM]) are homeomorphic to complex surfaces. Others are not even 
homotopy equivalent to complex surfaces. A simple construction realizes all pos
sible pairs of integers in a large region of the plane as the Euler characteristic and 
signature (or equivalently, the Chern numbers) of simply connected, symplectic 
4-manifolds. We can also answer the question of which groups are realized as fun
damental groups of symplectic 4-manifolds. Although "most" finitely presented 
groups are not realized by Kahler manifolds, one can develop a sort of surgery 
(by summing along tori) that realizes all finitely presented groups by symplectic 
4-manifolds. For any fixed group, the Euler characteristic and signature can be 
chosen with nearly as much freedom as in the simply connected case. One can also 
apply the construction profitably in higher dimensions. Combining these construc
tions, we obtain 

THEOREM. [G, Theorem 0.1]. For any even dimension n > 4 and any fìnitely 
presented group G, there are (compact) symplectic n-manifolds with fundamental 
group G that are not homotopy equivalent to any Kahler manifold. 

Thus, we have obtained extensive additional freedom in passing from the 
complex to the symplectic viewpoint on 4-manifolds. 
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3 4-manifolds and symplectic topology 

We have been led to the following general question: Which 4-manifolds admit 
symplectic structures? In general dimensions, only two obstructions to existence 
are known. First, nonclegeneracy of the symplectic form CJ is equivalent to the 
assertion that the top exterior power of CJ be nowhere 0 — i.e., a volume form. 
Thus, the top exterior power of the cohomology class [CJ] must be nonzero. For 
example, any symplectic manifold must be oriented and have a nonzero b^. Second, 
the form CJ determines (up to fiber homotopy) a complex structure on the tangent 
bundle of the manifold. The existence of such structures is a tractable problem in 
obstruction theory. For example, the footnote of Section 1 shows that an ordinary 
connected sum of two symplectic 4-manifolds can never be symplectic. 

As in Section 1, we are now led to a more restricted question: Is every irre
ducible, simply connected 4-manifold (other than the 4-sphere) symplectic? This 
time, however, our discussion is much different. We have seen that all known irre
ducible, simply connected 4-manifolds are constructed by means of the operations 
of connected summing along surfaces and rationally blowing down. We have seen 
that the first of these operations is essentially symplectic in nature, which shows 
(for example) that many of the noncomplex examples of [GM] admit symplec
tic structures. A pivotal question is whether rationally blowing down (and hence, 
logarithmic transformation) should also turn out to be symplectic under weak hy
potheses. If so, it seems reasonable to expect that all known irreducible, simply 
connected 4-manifolds (^ S4) will turn out to be symplectic. Perhaps symplectic 
structures are sufficiently flexible that irreducibility guarantees their existence — 
if not, then constructing counterexamples may require radically new techniques. 

The converse of the question is also interesting: When can we decompose a 
symplectic 4-manifold as an ordinary connected sum? There is one simple situation 
in which this is possible. In the context of complex surfaces, we can always blow 
up a point. This has the effect of connected summing any complex surface with a 
copy of CP2 with its orientation reversed. A complex surface is called minimal if 
it is not obtained from any other complex surface by blowing up. For symplectic 
4-manifolds, an analogous theory exists [Mc]. Thus, we should restrict attention 
to minimal symplectic 4-manifolds. It is then reasonable to conjecture that every 
minimal symplectic 4-manifold is irreducible [G]. 

Why is this conjecture reasonable? After all, the only known obstructions to 
the existence of a symplectic structure on a 4-manifold depend only on its homo
topy type, whereas the conjecture would provide a much more subtle obstruction. 
For example, the conjecture would imply that the connected sum of 3 projective 
planes (oriented as complex surfaces) could not admit a symplectic structure, even 
though this cannot be inferred from the classical obstructions. In addition, a sum 
of copies of the KS surface and S2 x S2 could not be symplectic, even though 
many such sums are homeomorphic to Kahler surfaces. The reasonableness of the 
conjecture is based on empirical evidence. Many of the examples of [G] are turn
ing out to be irreducible [FS2], [GM], [S], [Sz], [Y], and none has been shown not 
to be. In contrast, examples that are constructed by similar but nonsymplectic 
methods frequently split as connected sums of simple pieces. For example, sums 
along surfaces tend to split if they mismatch ambient orientations, as do sums 
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along surfaces tha t cannot bc made compatible with a symplectic structure. We 
have already noted that most cut-and-paste constructions result in such splittings, 
but the author has been unable to produce any symplectic 4-manifolds tha t split 
(other than those that are constructed to be obviously nonminimal). It is tempt
ing to speculate tha t the remarkable success of logarithmic transformation and 
connected summation along suitably chosen surfaces results from an underlying 
symplectic nature of these constructions. 

In conclusion, there seems to be an intimate relationship between irreducible 
4-manifolds and symplectic topology. The main difficulty with using this approach 
to understand 4-manifolds is tha t symplectic topology is in a primitive state com
pared with the highly developed theory of complex surfaces. However, we have seen 
that techniques from 4-manifold theory have opened a new avenue through sym
plectic topology, which has in tu rn led to new families of irreducible 4-manifolds. 
The parallel development of 4-manifold theory and symplectic topology should 
continue to result in new insight into both disciplines. 
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1. Introduction 

There is a rich mathematical structure attached to the cobordism invariants of 
manifolds. In the cases described by the index theorem, a generalized cohomology 
theory is used to express the global properties of locally defined analytic objects. 
Hirzebruch's theory of multiplicative sequences gives an expression for these in
variants in terms of characteristic classes, and brings to focus their remarkable 
arithmetic properties. Quillen's theory of formal groups and complex oriented co
homology theories illuminates the generalized cohomology theories themselves. 

Around eight years ago a new invariant, the elliptic genus, was introduced 
[17]. It is a cobordism invariant of oriented manifolds that takes its values in a 
certain ring of modular forms. Witten [23], [22] proposed an analytic interpreta
tion of the elliptic genus using analysis on loop spaces. Landweber, Ravenel, and 
Stong [13] constructed a corresponding cohomology theory (elliptic cohomology), 
and it is believed that there is an "index" theorem relating analysis on loop space 
to elliptic cohomology. So far, a satisfying mathematical theory is lacking. 

In the same papers [23], [22] Witten introduced a variant of the elliptic genus, 
now known as the Witten genus. The Witten genus takes its values in modular 
forms when applied to Spin manifolds with ^ = 0. The cohomological significance 
of this invariant has remained unclear. 

The point of this note is to describe a generalization of theories of Hirzebruch 
and Quillen to the cobordism of Spin manifolds with ^ = 0. It turns out that 
in the presence of an elliptic curve there is a canonical cobordism invariant. This 
invariant coincides with the Witten genus in the case where the elliptic curve is 
the Tate curve, though it is most natural to consider all elliptic curves at once. 
This leads to a cohomological expression for the modular invariance of the Witten 
genus (of a family), and to a new generalized cohomology theory. The coefficient 
ring of this new cohomology theory is the ring of topological modular forms. It is 
related to the ring of modular forms over Z, but is not torsion free. The torsion 
groups in this ring represent new invariants of Spin manifolds with ^- = 0, and it 
would be interesting to describe these invariants in terms of geometry and analysis. 

Most of this paper represents joint work with Matthew Ando and Neil Strick
land. The construction and computations with the new cohomology theory are 
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joint work with Mark Mahowald and Haynes Miller. Some of the results described 
here represent work in progress. 

2. Genera and their characteristic series 

Let R be a commutative ring. An R-valued genus is a ring homomorphism $ from 
some type of cobordism ring to R. Thus a genus is a function <[> that assigns to 
each manifold M an element $(M) G R, and that satisfies 

*(Mi JJ M2) = </>(Mi) + 0(M2) 

*(Mi x M 2 ) = 0(Mi)0(M2) 

*(SM) = 0. 

The cobordism rings usually considered are the ring MU* of cobordism classes 
of stably almost complex manifolds, and the ring M SO* of cobordism classes of 
oriented manifolds. The structure of these rings has been determined [20], [14], 
[16], [21], and there are isomorphisms 

Mt / I ,®QwQ[CP 1 ,CP 2 , . . . ] 

M SO* (8> Q « Q[CP2, C P 4 , . . . ]. 

When R is torsion free, a genus is determined by its values on the complex 
projective spaces. There are two natural generating functions that collect these 
values 

log* (z) = Y, $ ( C P " ) ^ ï (logarithm) 

K$>(z) = y—r, (characteristic series) 

where exp$(;z) = log$ (z). A genus <D> with values in a torsion free ring factors 
through Ad SO* if and only if the characteristic series is even 

K*(z) = K*(-z). (2.1) 

The characteristic series determines a stable exponential characteristic class 
with values in H*( — ; Ä ® Q) as follows. By the splitting principle, such a class is 
determined by its value on the complex line bundle L over BS1 associated to the 
identity character. Setting z = c\(L), the characteristic class is then defined by 

K*(L) = K*{z) eH*{BS1\R^Q). 

The following formula of Hirzebruch [10] expresses $(M) in terms of characteristic 
(Pontryagin or Chern) classes: 

$(M) = (K*(TM),[M\). 

Here are some examples. 

(1) The genus whose characteristic series is z/(l — e~z) is the Todd genus. The 
log of the Todd genus is the power series 

- l o g ( l - s ) = ^ ^ - , 
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so its value on CP77, is 1. It can be shown that the Todd genus of a stably almost 
complex manifold is an integer. 

(2) The genus with characteristic series 

z/2 _ z 
K(z) 

sinh(^/2) e*/2 - e-*/2 

is the A genus. It is an invariant of oriented manifolds. The Â-genus has the 
property that it assumes integer values on manifolds that admit a Spin structure. 

(3) The genus with logarithm 

log*(z) = ! (l-26t2 + et4)-idt 
Jo 

is the elliptic genus of Ochanine [17]. The associated characteristic series is even, 
so it is an invariant of oriented manifolds. 

(4) The Witten genus [23], [22] is the genus with characteristic series 

z/2 Yj (1 - qn)2 

n sinh(,z/2) AA (l-q^ez)(l-qne-z)' 

This is an even function of z, and so defines a cobordism invariant of oriented 
manifolds. The Witten genus takes values in Z[[g]] when applied to manifolds that 
admit a Spin structure. 

There is a dimension 4 characteristic class of Spin bundles, twice which is p\. 
Let's denote this class ^-. If M is a Spin manifold of dimension n, and ^-(TM) — 0, 
then the Witten genus of M turns out to be the (/-expansion of a modular form 
for the group JSX 2 (Z) . This means that after setting q = e2lT%r, the Witten genus 
of M can be written as f(r), where / is a holomorphic function on the upper half 
plane R e r > 0, and satisfies the functional equation 

/ ( - l / r ) = ( - r ) V ( r ) . (2.2) 

3. Genus of a family 

The underlying geometry of a genus begins to be revealed when its definition is 
extended to families. Let Ms be a family of manifolds parameterized by the points 
of a space S. The manifolds Ms are allowed to transform through cobordisms, but 
are required to be equidimensional of dimension, say, n. Such a family defines an 
element of the generalized cohomology group M_ n(S), where M is the cohomology 
theory associated to the type of cobordism being considered. 

For a genus $ the quantities &(MS) form some kind of structure parameter
ized by the space S. It is best to think of this structure as representing an element 
of a generalized cohomology group E~n(S). A genus for families of manifolds is 
then a multiplicative map 

M - » E 

of generalized cohomology theories. 
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The process of extending the definition of a genus to families is not at all 
canonical, and is intimately connected with the expression of the genus in terms 
of geometry and analysis. 

Several kinds of cobordisms will be used in this paper. They are displayed 
below. The diagram on the left is a diagram of classifying spaces. The map labeled 
^- is the universal characteristic class of the same name, and the spaces BU(6) 
and BO(8) are the homotopy fibers of the map ^ and its restriction to BSU, 
respectively. The diagram on the right is the corresponding diagram of cobordism 
theories. For example, a BO(8)-manifold is a manifold equipped with a lift to 
BO (8) of the map classifying its stable tangent bundle, and A40(8) is the coho
mology theory associated to the cobordism of BO(8)-manifolds. 

BU(6) > BO(8) MU(6) > M 0(8) 

BSU > BSpin —^—> K(Z,A) M SU > MSpin 

BU > BSO MU > A4SO. 

The "families" versions of the genera of Section 2 are as follows. 

(1) The natural domain for the Todd genus is AdU, the theory of complex cobor
dism. The target of the Todd genus can be taken to be ordinary cohomology with 
coefficients in the rational numbers. This, however, obscures the fact that the Todd 
genus of each individual manifold is an integer. If the Todd genus is thought of as 
a formula for the dimension (Euler characteristic) of certain cohomology sheaves, 
then the natural target appears as if-theory [4], [1]. 

(2) The A genus is most interesting when applied to Spin manifolds, making the 
natural domain the cohomology theory MSpin. Atiyah and Singer [2] showed that 
the A-genus is the index of the Dirac operator, and portrayed the natural target 
of the "families A-genus" as the cohomology theory KO (bundles of vector spaces 
over R). This refinement represents more than an accounting of the integrality 
properties of the genus. The groups 

KO» (S8fc+1) « KO° (S8k+2) « Z/2 

correspond to torsion invariants of families of Spin-manifolds. These invariants can 
be described in terms of analysis but can not be calculated in terms of Pontryagin 
classes [3]. 

(3) In the case of the elliptic genus, it can be shown that the functor 

E l f ( - ) = M S O * ( - ) ® Z[A 6,E,A,A-1]/(26E(62 - E)2 - A) 
MSOm 

defines a generalized cohomology theory [13], [12], [9] on the category of finite cell 
complexes. This represents a natural extension of the elliptic genus to families, 
but, at present, there is no known geometric interpretation of Ell (see, however, 
the exposé of Segal [19]). 
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(4) The natural domain for the Witten genus is the cohomology theory M0(8). 
There is a map 

MO(8) - • KOM 

representing the Witten genus. It accounts for the integrality properties, and has 
some associated torsion invariants. On the other hand it factors through MSpin, 
and so cannot possibly express the transformation properties with respect to the 
modular group. This is related to the fact that behavior with respect to the trans
formation r \—> 1/T is very difficult to understand from the point of view of power 
series in q. 

4. Cubical Structures 

A deeper understanding of the Witten genus of a family requires investigating 
the genera attached to the cobordism theories MU(6) and MO(8). The result of 
Hirzebruch, that a genus can be calculated by integrating a stable exponential 
characteristic class over the manifold, remains valid for these theories. However, a 
stable characteristic class is not determined by its value on L. In fact it does not 
even have a value on L, as the structure group of L does not lift to BO (8). On 
the other hand, the (virtual) bundle 

V3 = (Li - 1) ® (L2 - 1) ® (L3 - 1), (4.1) 

over (BS1)3, admits a canonical lift of its structure group to BU(6). Furthermore, 
there is a "splitting principle" that allows one to formally express any BU(6) 
bundle as a sum of trivial line bundles and bundles of this kind. The cohomology of 
(BS1)3 is a polynomial algebra in three variables, so one expects the characteristic 
series of an MU(6) genus to be a function of three variables. This is indeed the 
case, and the series that arise satisfy a certain functional equation. There is a 
geometric interpretation of this functional equation that is particularly suited to 
the study of elliptic spectra. It is known as a cubical structure, and was introduced 
by Breen [5] in order to codify the the rich structure attached to line bundles on 
abelian varieties coming from the theorem of the cube. 

Let G be an abelian group, and £ a line bundle over G. The group G might 
be a discrete group, an algebraic group, a topological group, or a group of some 
other kind. The line bundle £ consists of a collection of lines £x for x G G, and 
should be thought of as varying discretely, algebraically, continuously, or in some 
other manner, depending on the kind of group. 

Given G and £, let 0 (£) be the line bundle over G3 whose fiber at (x,y,z) 
is 

r\(rx\ _ A'x+y+z*'x**y*<'z 
^ W C x . J / , « ) ~ rx rx rx rx J 

*-Jx+y*iJx+z*'ty+z*-'e 

where e G G is the identity element. In this expression, multiplication and division 
are meant to indicate tensor product of lines and their duals. 

The functor 9 is a kind of "second difference" operator. If the terms "line 
bundle" and "tensor product" are replaced with "function" and "addition," then 
8 becomes the operator whose kernel consists of quadratic functions. 
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A cubical structure on £ is a section s of 0(£) satisfying 

(rigid) s(e,e,e) = 1 
(symmetry) s(xa{1),xa(2),Xa(3)) = s(x1,x2,x3) 
(cocycle) s(w + x,y,z)s(w,x,z) = s(w,x -\-y,z)s(x,y,z). 

The two sides of these equations are sections of different bundles, so a com
ment is in order. In each case a canonical identification can be made. For example, 
the section s(e,e, e) is an element of 6(£)(ejEje), which is the tensor product of 
four copies of £ e with its dual. Contracting the lines with their duals gives an 
identification of this with the trivial line, and it is via this identification that the 
equation labeled "rigid" takes place. There are similar canonical identifications 
that need to be made for the other equations. 

The set of cubical structures on £ will be denoted C3(G;£). 
If the line bundle £ comes equipped with a symmetry isomorphism 

£ ; XJX ~ »*-'—œ 

then the fiber of 0(£) over the point (x, y, —x—y) admits a canonical trivialization. 
A T.-structure on £ is a cubical structure s with the property that 

s(x,y,-x-y) = 1. (4.2) 

The set of E-structures on £ will be denoted CQ(G;£,£). 

5. Formal groups and complex orientable spectra 

The group that arises in homotopy theory is the formal group attached to a com
plex orientable cohomology theory [18]. Recall that a cohomology theory E is com
plex orientable if there is a class x G E*BS1 whose restriction to E*S2 « E"*~2(pt) 
is a unit. A choice of such an x gives rise to a very rich structure, and in particular, 
to a theory of E-valued Chern classes for complex vector bundles. 

Suppose that E is a multiplicative, complex orientable cohomology theory 
with the additional properties that 

E*(pt) is commutative (5.1) 

E2{pt) contains a unit. (5.2) 

With these assumptions, the ring E°(BS1)n is isomorphic to a formal power series 
ring in n variables over J50(pt). The multiplication map 

BS1 x BS1 -> BS1 

gives the formal spectrum G = spf E°BS1 the structure of a formal group. In terms 
of "physical" groups, it provides the abelian group structure on the functor G = 
Hom(E°BS1, — ), from the category of augmented EQ(pt)-algebras with nilpotent 
augmentation ideal, to the category of abelian groups. 

The formal group G is the one of interest. The ring of functions on G is 
isomorphic to a formal power series ring in one variable over E°(pt). Let £ be the 
line bundle O(-e), whose local sections are functions that vanish at the unit. The 
module of global sections of £ is the reduced cohomology group E^BS1. This line 
bundle comes with an obvious symmetry isomorphism t : £ x « £-x-
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6. A homology calculation 

Now let R be a commutative ring, and suppose E is as above. A map 

EQBU(6) - • R 

can be composed with the map classifying V3 (4.1), to yield an E° (pt)-module 
map from EQ (BS1) to R. This can be thought of as an R-valued function / on 
G3. It satisfies the following equations (in which the symbol "+" refers to addition 
in the group G): 

f(e,e,e) = 1 
/(Zff(i)iZ<r(2)iZff(3)) = f(xi,x2,x3) 

f(w + x, y, z)f(w, x, z) = f(w, x + y, z)f(x, y, z). 

The first two of these equations are obvious. The last arises from the tensor product 
of (L4 — 1) with the equation 

( L i L 2 - l ) ( L 3 - l ) + ( L i - l ) ( L 2 - l ) 

= (Lx - 1)(L2L3 - 1) + (L2 - 1)(L3 - 1). 

Stated another way, the function / defines a cubical structure on the trivial line 
bundle OQ-

THEOREM 6.1. The map described above gives rise to a natural isomorphism 

spec EQBU(6) « C3(G;OG) 

of functors on the category of multiplicative complex orientable cohomology theories 
E satisfying (5.1) and (5.2). 

For multiplicative cohomology theories E and F, let Mult(i£, F) be the set of 
multiplicative transformations from E to F. In terms of the representing spectra, 
this is the set of homotopy classes of homotopy multiplicative maps. 

The following theorem is proved by applying the Thorn isomorphism to The
orem 6.1. 

THEOREM 6.2. The map described above gives rise to a natural isomorphism 

Mult(MU{6),E)nC3(G;£) 

of functors on the category of multiplicative complex orientable cohomology theories 
E satisfying (5.1) and (5.2) ; with associated formal group G. If'\ E E°(pt), or if 
E is K(n)-local for some Morava K-theory K(n), with n < 2, then this descends 
to a natural isomorphism 

Mult(MO(8),£) « Cl(G;Z,t). 

There are even more general criteria guaranteeing the validity of the second 
assertion, but they involve a lengthy discussion. 

Theorem 6.2 is analogous to the result that a genus with values in a torsion 
free ring is determined by its characteristic series. The role of the characteristic se
ries is played by a cubical structure. The analogue of the symmetry condition (2.1) 
is condition (4.2). 
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7. Elliptic spectra 

Theorem 6.2 is most interesting when the formal group G is extended to an elliptic 
curve. For the purposes of this paper, an elliptic curve is a generalized elliptic curve 
in the sense of [8, Definition 1.12], all of whose geometric fibers are irreducible. 

DEFINITION 7.1. An elliptic spectrum consists of 

(1) a complex orientable spectrum E satisfying (5.1) and (5.2), with associated 
formal group G; 

(2) an elliptic curve E over J5°(pt); 

(3) an isomorphism t : G —> Ef from G to the formal completion of E. 

The third condition requires explanation. The elliptic curve E gives rise to an 
abelian group-valued functor on £"°(pt)-algebras, by associating to an algebra R 
the abelian group of R-valued points of E. Restricting this functor to the category 
of augmented E° (pt)-algebras with nilpotent augmentation ideal gives a formal 
group Ef. This is the formal completion of E. The isomorphism G —> Ef is then an 
isomorphism of formal groups. 

The collection of elliptic spectra forms a category, in which a map consists 
of a multiplicative map of cohomology theories, and a map of elliptic curves that 
is compatible with the associated map of formal groups. 

THEOREM 7.2. Attached to each elliptic spectrum E is a multiplicative map 

uE : AdU(6) -* E. 

This map is modular in the sense that if f : E —» F is a map of elliptic spectra, 
then ap = f o a E • If \ E E, or if E has the property that E*(pt) is torsion free 
and concentrated in even degrees, then AdU(6) can be replaced with Ad0(8). 

In the case where E = If [g], and E is the Tate curve, the map 

7T*aE : AdO(8)* - • Zfe] 

can be shown to be the Witten genus. The modular invariance of the genus aE 

is an expression of the modular invariance of the "families" Witten genus. In the 
next section it will be explained how this reduces to "modular invariance" in the 
classical sense, when the parameter space S consists of only one point. 

The main tool used to deduce Theorem 7.2 from Theorem 6.2 is the theorem 
of the cube. 

THEOREM 7.3 Theorem of the cube. If £ is a line bundle over an abelian variety, 
then 0 (£) is trivial. 

Topologically this result follows from the facts that line bundles are classified 
by H2( — ;Z), and H2 is a quadratic functor. The theorem of the cube is the 
analogue of this assertion for algebraic line bundles. 

It follows from the theorem of the cube that any line bundle over an abelian 
variety has a canonical cubical structure. Indeed, the only sections of 0(£) are 
constants, and any potential cubical structure must assume the value 1 at the 
unit. The "rigid," "symmetry," and "cocycle" conditions become identities between 
constant functions that assume a prescribed value at the unit. 
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Proof of Theorem 7.2, given Theorem 6.2. The unique section s of B(£) satisfy
ing s(e, e,e) = 1, and extending to a section of B(ÖE(—e)), is automatically an 
element of CQ(C7;£,£) . Take aE to be the multiplicative map associated to s by 
Theorem 6.2. D 

8. Modularity 

The point of this section is to relate the "modular" invariance of the maps aE to 
modular forms. This leads naturally to two new cohomology theories. 

Let A4 EH be the category whose objects are elliptic curves 

E A S 

with identity section e, and in which morphisms are cartesian squares 

E' > E 

S. 

This is the elliptic moduli stack (see [15], [8], [7]), as is denoted A4i in [8]. 
For an elliptic curve E/S let a;E/s = e*^E/s ^ e ^ n e ^m e bundle over S con

sisting of invariant 1-forms along the fibers. For each k G Z, let uk be the functor 
on A4 EH whose value on E/S is the abelian group of global sections of WE/sk- The 
collection of functors LJk forms a functor CJ* on A^EII with values in graded rings. 
The ring of modular forms over Z is the graded ring 

R* =hm^E11o;*. 

This ring has been determined [6, Prop. 6.1], and there is an isomorphism 

Ä, « Z[c4, c6, A\/(c\ -c\- 1728A). 

The grading is such that the class cn is homogeneous of degree n. 
The ring R maps to the classical ring of modular forms by restricting to 

the inverse limit over the full subcategory of A4EH whose only object is the usual 
family of elliptic curves over the upper half plane. The automorphism group of 
this object is the group SL2(Z). This map sends C4 to 24 • 32 • 5 • E2 and CQ to 
25 • 33 • 5 • 7 • E3, where E2 and E3 are the Eisenstein series of weights 4 and 6 
respectively. The element A maps to the discriminant. 

Attached to each elliptic spectrum E is the elliptic curve E over S = spec TTQE. 

The isomorphism G œ Ef determines an isomorphism 

E°(S2k) = E~2k (pt) « LJk(E/S). 

It turns out that there are enough elliptic spectra that there are isomorphisms 

hm E~2k(pt)^Rk, 
E elliptic 

lim £ 2 f e + 1 ( p t ) « 0 . 
E elliptic 
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Moreover, Theorem 7.2 shows that the orientations aE give rise to a map 

Ad0(8)* -> lim E*(pt). 
E elliptic 

This proves that the Witten genus takes its values in R*. One can, however, hope 
for a more refined statement. This is the subject of the next section. 

9. Topological modular forms and eo2 

The category of elliptic spectra is closely related to the elliptic moduli stack. There 
is one important difference. Whereas there is no "good" colimit of the objects in 
A4 EH, the homotopy inverse limit in spectra, of the category of elliptic spectra, 
can be formed. The resulting spectrum is no longer elliptic, but it still represents 
an interesting cohomology theory. 

In practice it is necessary to "rigidify" the category of elliptic spectra by work
ing with a certain subcategory of A^ etale elliptic spectra. The A œ condition has 
to do with higher homotopy associativity of E, and the etale condition is that the 
map spec ITQE —• A4 EH which classifies E is etale and open. The other conditions 
defining this subcategory arise from obstruction theory and will remain unspeci
fied. Though the notation is slightly misleading, the homotopy inverse limits that 
follow are taken over this subcategory. 

Define eo2 to be the connected cover of 

holim E 
E, AQO etale elliptic 

and let E02 be the spectrum 

holim E. 
E, AQO etale elliptic 

E smooth 

These spectra are topological models for the moduli space of elliptic curves. There 
is a spectral sequence 

Ì^MKU^ => 7T2fc-fle02, (9.1) 

so it makes sense to call the ring eo2*(pt) the ring of topological modular forms. 
The spectrum E02 is closely related to a spectrum constructed by the author 

and Miller, and the spectrum eo2 is closely related to one constructed by the author 
and Mahowald [11]. 

This spectral sequence (9.1) has been computed by the author and Mahowald. 
It terminates at a finite stage. One interesting feature is that the discriminant A 
is not a permanent cycle, whereas the forms 24A and A24 are. The form A24 is 
not a divisor of zero. There is an isomorphism 

£0 2 , ( - )« (A 2 Ve 0 2 , ( - ) . 

The cohomology theory E02 is periodic with period 242 = 576. 
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The torsion in eo2* is annihilated by 24. It has a very rich structure. The 
cohomology theory eo2 can be used to account for nearly everything that is known 
about the stable homotopy groups of spheres in dimensions less than 60. 

Regarding the Wit ten genus, the more refined statement for which one can 
hope is tha t the maps oE assemble to a multiplicative map 

MO(8) - • eo2. 

This is consistent with many calculations, and is the subject of work in progress. 
It is the most natural target for the "families" Wit ten genus, and would define 
new torsion invariants of Spin-manifolds with ^ = 0. It would be very interesting 
to have an explanation of these invariants in terms of geometry and analysis. 
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Applications dont la source est un classifiant 
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2 place Jussieu, F-75251 Paris, France 

0 Introduction 

Depuis la fin des années 70 un grand nombre de travaux ont été consacrés aux 
espaces fonctionnels hom(5G, — ) dont la source est le classifiant d'un groupe de 
Lie compact G (par exemple un groupe fini). Rappelons la terminologie : l'espace 
fonctionnel hom(X, Y) est l'espace des applications d'un espace X dans un es
pace Y. Les motivations originales étaient les conjectures de Segai et Sullivan. La 
conjecture de Segal concernait l'espace fonctionnel hom(BG, QS°), G désignant 
un groupe fini et QS° la limite directe des espaces de lacets ÇlnSn. Un cas parti
culier de la conjecture de Sullivan, celui traité en premier par H. R. Miller [Mi], 
concernait les espaces fonctionnels hom(B(Z/p),Y) avec Y un CW-complexe fini. 

La théorie des espaces fonctionnels h.om(BG,— ) avec G un groupe de Lie 
compact apparaît comme un jeu de construction dont la pièce élémentaire est le 
cas G = 7i/p,p premier. Nous nous proposons dans cet article de résumer la théorie 
des espaces fonctionnels hom(5(Z/p), —) [Lal][La2], et de décrire quelques-unes 
de ses interventions en théorie de l'homotopie. 

Pour alléger la notation, on pose ci-après a = Z/p. 
Une généralisation de l'espace fonctionnel hom(Ba, Y) est l'espace des points 

fixes homotopiques Xha d'une action de a sur un espace X, c'est-à-dire l'espace 
fonctionnel homCT (Ea, X) des applications a-équivariantes de Ea dans X, Ea 
désignant comme d'habitude le revêtement universel de Ba; hom(Ba,Y) n'est 
donc rien d'autre que l'espace des points fixes homotopiques de l'action triviale de 
a sur Y. En fait cornmme honv (Ea, X) est la fibre en l'identité de l'application 
hom(Bo-, Ea x aX) —> hom(Ba, Ba) l'analyse des points fixes homotopiques d'une 
action quelconque se ramène à celle d'une action triviale. 

Venons-en à la question essentielle : Pourquoi peut-on dire des choses raison
nables sur les espaces fonctionnels hom(Ba, — ) alors que l'on sait si peu, par ex
emple, sur les espaces hom(5n, — ) ? 

Ceci tient aux propriétés de la cohomologie modulo p de l'espace Ba, à la 
fois comme module et algèbre instable sur l'algèbre de Steenrod modulo p, qui en 
font ce qu'on pourrait appeler un co-espace d'Eilenberg-Mac Lane. 

1 Propriétés de H* (Ba; Fp) 

Pour exprimer ces propriétés il nous faut introduire les analogues du bifoncteur 
hom(—, —) dans les catégories des modules et algèbres instables sur l'algèbre de 
Steenrod modulo p. 
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On note : 
- A l'algèbre de Steenrod modulo p ; 
- U la catégorie des A-modules instables (pour p — 2, un A-module M est 

instable si Sqlx — 0 quand i est strictement plus grand que le degré de x) ; 
- /C la catégorie des A-algèbres instables (la cohomologie modulo p d'un espace 

Y, notée H*Yi est l'exemple type d'une telle algèbre). 

Dans la catégorie des espaces (en fait ensembles simpliciaux) on définit le 
foncteur Y \—> hom(X, Y) comme l'adjoint à droite du fondeur Z \-^> X x Z : 

Hom(X x Z,Y) = Rom(Z,hom(X,Y)). 

Il n'est pas difficile de transposer cette définition dans les catégories U et K. Soient 
C l'une de ces deux catégories et K un objet de C, que l'on suppose de dimension 
finie en chaque degré, on montre sans peine que le foncteur C —> C, N \-> K ® N 
admet un adjoint à gauche, que l'on note Ad \-> (Ad : K)c (et qu'il est raisonnable 
d'appeler la division par K dans la catégorie C). On a donc par définition 

Home (M, K®N) = Homc((M : K)CiN). 

Supposons H*X de dimension finie en chaque degré (rappelons que H* est une 
abréviation pour H*(;FP)). L'application d'évaluation 

Xxhom(X,Y)-^Y 

induit en cohomologie modulo p un /C-morphisme naturel 

H*Y -> H*X (g) H*hom(X, Y) 

qui donne par adjonction un /C-morphisme tout aussi naturel (une sorte d'homo-
morphisme d'Hurewicz) 

h : (H*Y : H*X))c -> iThom(X, Y) . 

La bonne surprise, comme nous le verrons au §2, est que h est "très souvent" 
un isomorphisme pour X = Ba. Mais n'anticipons pas et revenons à H*Ba. 

Nous notons T le foncteur U —> U, Ad i-> (Ad : H*Ba)u ; les propriétés de 
H*Ba qui nous intéressent peuvent s'exprimer de la façon suivante : 

T H é O R è M E 1.1. 

(a) Le foncteur T est exact. 
(b) Le foncteur T commute aux produits tensoriels. 
(c) Si Ad est une A-algèbre instable, alors TAd possède une structure naturelle 

de A-algèbre instable et TAd munie de cette structure coïncide avec (Ad : 
H*Ba)K. 
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Le point (a) concerne la structure de A-module instable de H*Ba. Les points 
(b) et (c) concernent la structure de A-algèbre instable de H*Ba ; en particulier 
on utilise le produit de H*Ba pour définir la transformation naturelle T(—® —) —> 
T(—) ®T(—) dont le point (b), dans sa formulation précise, affirme que c'est un 
isomorphisme. 

Plus généralement, soit V un p-groupe abélien élémentaire (c'est-à-dire un 
groupe isomorphe à ad pour un certain entier d) ; nous notons Ty le foncteur 
U -^U, M \-> (Ad : H*BV)u. Comme H*BV est isomorphe au produit tensoriel 
H*Ba®H*Ba<g>. • .<&H*Ba, d fois, le foncteur Ty est équivalent à la composition 
T o T o . . . o T, d fois, et l'on peut dans le théorème 0.1 remplacer T par Ty : 

T H é O R è M E 1.2. 

(a) Le foncteur Ty est exact. 
(b) Le foncteur Ty commute aux produits tensoriels. 
(c) Si M est une A-algèbre instable, alors TyM possède une structure naturelle 

de A-algèbre instable et TyM munie de cette structure coïncide avec (M : 
H*BV)K. 

Les propriétés des A-algèbres instables H*BV que l'on exprime ainsi sont tout 
à fait exceptionnelles ; en fait ces algèbres sont "caractérisées" par les "restrictions 
en degré zéro" de (a) et (b). 

Précisons un peu. Considérons une A-algèbre instable de dimension finie en 
chaque degré K et posons V = (K1)*, (K1)* désignant le Fp-espace vectoriel dual 
de K1, alors les deux propriétés suivantes sont équivalentes : 

(i) Le /C-morphisme canonique H*BV —> K est un isomorphisme. 
(ii) Le foncteur M i—> t(M) = ((M : K)u)° est exact (en d'autres termes, le 

A-module instable sous-jacent à K est injectif) et commute aux produits 
tensoriels (i.e. la transformation naturelle t(— (8) —) —> t(—) ®t(—), induite 
par le produit de K, est un isomorphisme). 

2 Conséquences homotopiques 

Il existe plusieurs méthodes pour exploiter ces propriétés magiques de H*BV. La 
plus facile à esquisser, que l'on doit à E. Dror Farjoun et à J. Smith [DS], procède 
de la façon suivante. 

On considère d'abord la classe des espaces Y, que j'appellerai p-7r*-finis, tels 
que 

- TTQY est fini ; 
et pour tout choix du point base, 

- 7TnY, n > 1, est un p-groupe fini ; 
- 7rnY est trivial pour n » 0. 

T H é O R è M E 2.1. Pour un espace p-ir*-fini Y l'application naturelle 

hY : TVH*Y - • H*hom(BV,Y) 

est un isomorphisme. 
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Esquisse de démonstration. On peut supposer Y connexe. Dans ce cas il existe une 
suite finie de fibrations principales Ys —> Ys-i, 0 < s < r, avec groupe structural 
K(Z/p,ms) (ms > 1), Y-i étant un point et Yr ayant le type d'homotopie de Y. 
On démontre le théorème 2.1 en vérifiant de proche en proche que les hyB sont des 
isomorphismes ; cette escalade s'effectue avec le matériel suivant : 

LEMME 2.1.1. L'application JiK(%/P}n) est un isomorphisme. 

Démonstration. En fait, pour tout espace X avec H*X de dimension finie en 
chaque degré, on a un /C-isomorphisme 

H*hom(X,K(Z/p,n)) *ê (H*K(Z/p,n) : H*X)K . 

LEMME 2.1.2. On considère une fibration Z —> Y —> K(^L/p,n) ; on suppose 
H*Y et H*hom(BV, Y) de dimension finie en chaque degré. Alors si hy est un 
isomorphisme, il en est de même pour hz • 

Indications sur la démonstration. Soient E(l) et E(2) les suites spectrales d'Eilen-
berg-Moore des fibrations Z-^Y -^K(Z/p,n) et hom(BV,Z) -> hom(BV,Y) -> 
h,om(BV,K(Z/p, n)) ; E(l) et E(2) sont des suites spectrales de A-modules insta
bles. On vérifie que le théorème 1.2 fournit un isomorphisme de suites spectrales 
TVE(1) —> E(2) compatible avec hz-

Spécialisons le théorème 2.1 en degré zéro. Le fait que hy soit en particulier 
un isomorphisme en degré zéro se traduit par l'énoncé suivant : 

T H é O R è M E 2.2. Pour un espace p-ir*-fini Y l'application naturelle 

[BV,Y] -> HomjcCETy,JTJBIO 

est une bijection (d'ensembles finis). 

(La notation [—,— ] désigne l'ensemble des classes d'homotopie libre d'applica
tions). 

Voilà pour les espaces p-7r*-finis. On considère ensuite des tours d'espaces 
P-7T*-finis et on "passe à la limite". 

Soit Y le p-complété de Bousfield-Kan de Y. Quand H*Y est de dimension 
finie en chaque degré (ce que nous supposerons toujours) Y est la limite inverse 
d'une tour fonctorielle d'espaces p-7r*-finis (et coïncide à homotopie près avec le 
p-complété de Sullivan de Y). En passant à la limite respectivement dans les 
théorèmes 2.2 et 2.1, on obtient : 

T H é O R è M E 2.3. Pour tout espace Y dont la cohomologie modulo p est de dimen
sion finie en chaque degré, l'application naturelle 

[BV,Y] -> Hom/c(irY,iTW) 

est une bijection (homéomorphisme d'ensembles profinis). 
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T H é O R è M E 2.4. Soit Y un espace dont la cohomologie modulo p est de dimension 
finie en chaque degré et nulle en degré un, alors l'application naturelle 

TVH*Y -> i T h o m ( W , Y) 

est un isomorphisme de A-algebres instables. 

(L'existence des applications naturelles ci-dessus résulte par exemple cle celle d'une 
application naturelle H*Y —> H*Y). 

On peut remplacer Y par Y clans 2.3 et 2.4 (et avoir ainsi des énoncés 
d'apparence moins technique) si l'on est prêt à faire des concessions sur le ITI 
de Y, par exemple : 

T H é O R è M E 2.5. Pour tout espace simplement connexe Y dont la cohomologie 
modulo p est de dimension finie en chaque degré, l'application naturelle 

[BV,Y] -+ Hom/c(iTY,H*Y,H*BV) 

est une bijection. 

T H é O R è M E 2.6. Soit Y un espace simplement connexe dont la cohomologie mod
ulo p est de dimension finie en chaque degré. Si TyH*Y est de dimension finie en 
chaque degré et nulle en degré un, alors l'application naturelle 

hy : TVH*Y - • H*hom(BV, Y) 

est un isomorphisme de A-algebres instables. 

Enfin on obtient également le résultat suivant : 

T H é O R è M E 2.7. Soient Y et Z deux espaces dont la cohomologie modulo p est 
de dimension finie en chaque degré ; soit u) une application BV x Z —> Y (on 
observera que se donner UJ revient à se donner une application Z —> hom(BV, Y)). 
Alors les deux conditions suivantes sont équivalentes : 

(i) l'homomorphisme de A-algèbres instables TyH*Y —> H*Z, adjoint de UJ* : 
H* Y —> H*V (g) H* Z, est un isomorphisme ; 

(ii) l'application Z —> hom(BV,Y) induite paru; est une équivalence d'homo
topie. 

L'implication (i) => (ii) fournit une méthode pour déterminer le type d'homo
topie de l'espace fonctionnel ham(BV, Y), à des problèmes de p-complétion près, 
quand on a un candidat Z pour celui-ci : il suffit de vérifier la condition algébrique 
(i). En particulier on obtient ainsi une preuve de la conjecture de Sullivan sur les 
points fixes homotopiques. 
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3 Quelques utilisations en théorie de l'homotopie 

Pour terminer, nous citons quelques travaux dans lequel la théorie précédente 
intervient plus ou moins directement. 

3.1. Soient TT un p-groupe fini et X un espace muni d'une action de TT. Considérons 
une suite exacte 1—* n —> TT —> a —> 1 ; les espaces de points fixes homotopiques 
satisfont, à homotopie près, le même type de formule que les espaces de points 
fixes ordinaires : 

\Wi7r n*; f jr1iK\hcr 

On peut donc obtenir par récurrence des informations sur l'espace des points 
fixes homotopiques d'une action d'un p-groupe fini ix à partir du cas TT — a. 

D. Dwyer et A. Zabrodsky ont déterminé ainsi le type d'homotopie de l'espace 
hom(.07r,BG) des applications entre classifiants d'un p-groupe fini et d'un groupe 
de Lie compact [DZ]. Ils obtiennent en particulier : 

T H é O R è M E 3.1.1. Pour tout p-groupe fini TT et tout groupe de Lie compact G, 
l'application naturelle 

R e p ^ G ) - » [BTT,BG] 

est une bijection. 

(La notation Rep(7T, G) désigne l'ensemble des représentations de TT dans G, 
c'est-à-dire des homomorphismes modulo conjugaison dans G.) 

D. Notbohm a montré ensuite que l'on pouvait remplacer dans la théorie 
de Dwyer-Zabrodsky le p-groupe fini TT par un groupe p-toral, c'est-à-dire une 
extension d'un tore par un p-groupe fini, en passant cette fois à la limite à la 
source [Noi]. En particulier : 

THÉORÈME 3.1.2. Pour tout groupe p-toral P et tout groupe de Lie compact G, 
l'application naturelle 

Rep(7T,G)-> [BTT,BG] 

est une bijection. 

Idée de la démonstration. Expliquons brièvement comment montrer que l'appli
cation naturelle Rep(S'1,G) —> [BS1,BG] est une bijection ; on suppose, pour 
simplifier, que G est connexe (ce qui équivaut à supposer que BG est simple
ment connexe). Comme l'algèbre H*(BG;Q) est polynômiale, engendrée par des 
générateurs (de degré pair) en nombre fini, la théorie de Sullivan [Su] permet de 
ramener sans trop de difficultés la détermination de l'ensemble [BS1,BG] à celle 
des ensembles [BS1, (BG)*], p premier (p étant variable, le p-complété de BG est 
ici noté (BG)* ) . Soit II le sous-groupe de S1 formé des éléments d'ordre une puis
sance de p ; on a donc II = colini{L/pn;n G N}. Comme l'application canonique 
-Bu —> BS1 induit un isomorphisme en nomologie modulo p, elle induit également 
une bijection [BU, (BG)*] = [BS1, (BG)*}. On se convainc alors que l'on a la 
suite de bijections suivante : 

[Bn, (BG)$] * lim{[B(Z/pn), [BG)^n 6 N} 

S lim{Rep(Z/p'\ G) ; n G N} S Rep(II, G). 

file:///Wi7r
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3.2. Le travail de S. Jackowski, J. McClure et R. Oliver [JMO] dont nous allons 
parler à présent, n'est relié à la théorie des espaces fonctionnels hom(Ba, —) que 
par l'intermédiaire de celui de Dwyer-Zabrodsky évoqué ci-dessus. 

Soit G un groupe de Lie compact. Jackowski, McClure et Oliver montrent 
d'abord que BG peut être vu, à homotopie et p-complétion près, comme la limite 
directe homotopique d'un diagramme de classifiants cle sous-groupes p-toraux (et 
donc finalement de p-sous-groupes finis). 
Le cas facile est celui où p ne divise pas l'ordre du groupe de Weyl de G. On a 
alors une équivalence d'homotopie : 

(BG)* £ê (EW x WBT)* , 

T désignant "le" tore maximal de G et W son groupe de Weyl. Le cas où p divise 
l'ordre de W est beaucoup plus subtil et son analyse est la contribution principale 
de [JMO]. 

Ils sont alors en mesure d'étudier certains espaces fonctionnels dont la source 
est BG. Par exemple, ils déterminent complètement le monoïde [BG, BG] pour G 
un groupe de Lie compact connexe simple. Ce monoïcle est fait des automorphismes 
extérieurs de G et des "applications d'Adams instables" yjk, k premier à l'ordre 
de W ; yjk est caractérisée, à homotopie près, par la commutativité du diagramme 

BG 
î 

BT 

i/i* 

Bk 

BG 
T 

BT, 

k désignant, dans la notation Bk qui apparaît ci-dessus, l'endomorphisme multi
plication par k du groupe abélien T. 

3.3. La théorie des espaces hom(5V, —) est l'un des ingrédients utilisés pour 
montrer que le type d'homotopie de la p-complétion du classifiant de certains 
groupes de Lie compact est uniquement déterminé par sa cohomologie modulo p 
[DMW1][DMW2]. Voir aussi [No2]. 

3.4. W. Dwyer et C. Wilkerson montrent dans [DW1] que le foncteur T satisfait 
une "Théorie de Smith algébrique" (voir aussi le travail de S. Zarati et de l'auteur 
[LZ]). Ils en déduisent dans [DW2] des théorèmes de points fixes homotopiques 
analogues aux théorèmes de points fixes classiques. Par exemple : 

THÉORÈME 3.4. Soit X un espace muni d'une action de a. On fait les hypothèses 
suivantes : 

- l'homologie H*(X;FP) est finie ; 
- les espaces X et Xhej sont p-complets. 

Alors H^(Xh(7;¥p) est finie et l'on a la congruence 

X(Xhn = x(X) modp, 

x(—) désignant la caractéristique d'Euler du Fp-espace vectoriel gradué fini 
H*(—;FP). 
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(Un espace X est dit p-complet si l'application canonique X —> X est une 
équivalence d'homotopie.) 

Ils utilisent alors ces théorèmes de points fixes homotopiques pour montrer 
que les espaces de lacets dont l'homologie modulo p est finie, partagent une grande 
partie de la riche structure interne des groupes de Lie : tores maximaux, groupes 
de Weyl ... (la référence est toujours [DW2]). 
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Spaces of Algebraic Cycles 
Levels of Holomorphic Approximation 
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There is a fascinating phenomenon, observed in recent years in a wide range of 
contexts, which is roughly that: 

As degree increases, holomorphic data approximates topological data. (*) 

In certain situations, for example in studying maps from Stein spaces to elliptic 
spaces, there is a general theory due to Grauert and Gromov [G]. However, in 
many cases, often ones of particular interest to mathematicians, this phenome
non appears a wonderful surprise, and we have as yet no deep understanding of 
it. An early example was Segal's Theorem [Si] that the inclusion Hol^P^P 1 ) C 
Mapd(P1 ,P1) 2i Mapo(P1,P1) of the holomorphic self-maps of the 2-sphere of de
gree d into the space of all continuous such maps is d-connected. Subsequently there 
have been many related results. Another case is the recently established Atiyah-
Jones Conjecture for self-dual connections over the 4-sphere [BHMM]. Further 
examples of current interest come from algebraic cycles and spaces of morphisms. 

To understand a phenomenon such as (*) it is useful to study cases where it 
fails and develop a sensitive measure of this failure. With luck this measure can 
be encoded in geometric invariants with independent interest and other interpre
tations. 

Hodge Theory provides a good example. Consider the inclusion i : (n^o l , d) C 
(Çîc°° > °0 °f ^ n e complex of holomorphic differential forrns into the smooth forms 
over C on a complex manifold X. When X is Stein, this induces an isomor
phism in homology. For general X it does not. However there is a filtration 
• • • c T*** C J7p~1'* c • • • of n^oo by subcomplexes, where Tv'* consists 
of forms ^aijdz1 A dzJ with aj^j — 0 if |I | < p. This induces a filtration 
i* '• HL\(X) -* Fk,k c Fk~^k C '• • • C ^°' f e = iJ£oo(X). When X is compact 
and Kaehler (e.g., projective), i* is an isomorphism. The Fp,k represent "levels of 
holomorphic approximation". 

We shall see this again in the more geometric (rather than analytic) cases to 
be discussed here: spaces of algebraic cycles on an algebraic variety, and spaces of 
algebraic maps between varieties. 

Recall that an algebraic subvariety of a complex projective space is a subset 
that is defined in homogeneous coordinates by a finite number of homogeneous 
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polynomial equations, and that is irreducible in the sense that it cannot be de
composed as a nontrivial union of two such subsets. Connected submanifolds are 
examples. In fact, on any subvariety V C P ^ the set of manifold points is con
nected and dense. This gives V a well-defined dimension. The complement Sing(V) 
of the manifold points in V is a finite union of subvarieties of lower dimension. 
There is a semi-algebraic triangulation of P ^ such that both V and Smg(V) are 
unions of simplices (cf. [H]), and V determines a cĵ cle in the associated complex. 
In particular V has a homology degree in PA \ Furthermore, the set of manifold 
points of V has finite Hausdorff 2p-measure, and integration of forms over this set 
defines an integral current of boundary zero in the sense of Federer [Har]. 

Fix a complex projective subvariety X of dimension n and an integer p, 0 < 
p < 77,, and denote by VP(X) the set of p-dimensional subvarieties contained in X. 
These are the p-dimensional points of X in the sense of Grothendieck. It is natural 
to consider abelianizations of this set, namely 

CP(X) = Z+ • VP(X) and ZP(X) = Z • VP(X), 

the free abelian monoid and the free abelian group generated by VP(X). Points of 
ZP(X) are called p-cycles on X, and those in CP(X) are called effective p-cycles. 
At this point there enters some magic of fundamental importance: the monoid 
CP(X) can be written as a disjoint union CP(X) = \\^CPid(X) where each CPyd(X) 
has the structure of a projective algebraic set for which addition is an algebraic 
map [ChW], [GKZ]. (The index d corresponds to projective degree.) In particular, 
each CPid(X) is a compact Hausdorff space. This gives ZP(X) the structure of an 
abelian topological group. It has been shown by Lima-Filho that the topologies on 
these spaces have several alternative characterizations that allow their extension 
to general algebraic varieties [L14]. 

Both CP(X) and ZP(X) are beautiful and basic objects. The components of 
CP(X), conventionally called Chow varieties, are moduli spaces for algebraic p-
cycles on X. The associated abelian topological group ZP(X) is a CW-complex. 
In fact it has a filtration (as a group) by finite subcomplexes, and its topology is 
the one compactly generated by this filtration. 

When studying a monoid such as CP(X) it is customary to consider its 
homotopy-theoretic group completion VtBCp(X) (loops on the classifying space 
of the monoid) rather than the naïve topological Grothendieck group ZP(X). This 
is because flBCp(X) carries the "limiting topology" of the monoid (cf. [McSe]). In 
our context there is a surprising and very important theorem due to Lima-Filho 
[Li2]. (See also [FG].) 

THEOREM 1. The natural map ÜBCP(X) —• ZP(X) is a homotopy equivalence. 

We observe as a general principle that in measuring the failure of holomorphic 
approximation (*) one must let the degree go to infinity. It is a direct consequence 
of Theorem 1 that, up to homotopy equivalence, Zp(X) = limCPid(X) and so 
Zp(X) is the limit of the CPid(X) as the degree goes to infinity. 

Now there is a natural continuous inclusion 

zP{X) ^32p(x) (l) 
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into the topological group of all integral 2p-cycles on X (cf. [Fed]). We want to 
measure the failure of this map (1) to be a homotopy equivalence. 

Note that whenp = 0 the map (1) is the identity. In positive dimensions this is 
far from true. Nevertheless, there is a large family of spaces of "Grauert-Gromov" 
type, for which (1) is a homotopy equivalence. We say that a variety X has a 
cell-decomposition if there is a filtration by subvarieties XQ C XI C • • • C Xk — X 
such that for each i, Xi — Xj_i is a disjoint union of affine spaces LÎ C™*. The 
following was proved in [Li] for X = P n and in [Lix] in general. 

THEOREM 2. If X has a cell decomposition, then (1) is a homotopy equivalence. 

Note that Theorem 2 vastly generalizes the well-known fact that if X has 
a cell decomposition, then every class in H±(X;Z) is represented by an algebraic 
cycle. This corresponds to the bijection of connected components in (1). 

In general the inclusion (1) is not a homotopy equivalence. For example, it is 
neither universally surjective nor universally injective on connected components. 
A basic result of J. Moore states that an abelian topological group is determined 
up to weak homotopy equivalence by its homotopy groups (up to abstract group 
isomorphism!). Hence the induced homomorphisms 

-KjZ^X) — Tr^apPO = H2p+j(X; Z) (2) 

(where the equivalence on the right is a theorem of Almgren-Dold-Thorn [A],[DT]) 
measure the failure of the approximation (1) to be a weak homotopy equivalence, 
and the groups TTJZP(X) are just the invariants we were looking for. They were 
introduced in [Li] and in [Fi] in a very general algebraic context, and have been 
developed by Friedlander, Lima-Filho, Mazur and Gabber. 

The invariants have been formulated as "homology groups" 

LpHk(X) =f 7Tk-2pZp(X) for 0<2p<fc 

where one thinks of k as the homology degree and p as the holomorphic level. 
By Dold-Thom [DT] we have a natural equivalence LQHk(X) 2* Hk(X; Z). On the 
other hand, as observed by Friedlander [Fi], there is an isomorphism: LpH2P(X) = 
Ap = {algebraic p-cycles on X}/{algebraic equivalence}, a group of interest to 
algebraists that can sometimes be infinitely generated. This theory is now highly 
developed and features the following properties. 

(i) L*!!*(•) is a covariant functor on the category of algebraic varieties and 
proper algebraic maps. There are Gysin "wrong way"maps associated to 
flat morphisms ([Fi], [Lii], [L14]). 

(ii) There is a natural transformation of functors $ : LpHk(9) —> Hk(*;Z) for 
a l l2p<fc([FM 1] , [L13]). 

(iii) There are localization long exact sequences ([Lii], [LÌ2]). 
(iv) There is a ring of functorial operations isomorphic to Z[s,h] where 

s : LpHk —> Lp-iHk and h : LpHk —> Lp-iHk-2- The natural trans
formation in (ii) is given by sp ([FMi]). 

(v) There are filtrations on iï*(«; Z) and on ,A*(«) induced by the s-operation. 
They are subordinate to filtrations of Grothendieck and Bloch-Ogus and 
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have geometric characterizations in terms of cycles carried by algebraic 
correspondences ([FMi], [FM2], [F2]). 

(vi) There is a graded ring structure on L*H*(m) induced by the intersection 
of cycles. There is in fact a full intersection theory ([FG]). 

(vii) There is a projective bundle theorem leading to Chern class maps from the 
higher algebraic /^-groups of a variety to L*#*(•) ([FG]). 

(viii) There is a local-to-global spectral sequence for L*H*(») t ha t is analogous 
to that of Quillen in algebraic K-Theory. If LpTik denotes the Zariski sheaf 
on a variety X associated to the presheaf U \—> LpHk(U), then this spectral 
sequence has the form ([FG]) 

Ep,Q = H^^iXiCrKn+q) =>* LrHp+q(X). 

(ix) £*#*( • ) carry (limits of) mixed Hodge structures (Hain [FMi]). 
(x) There are natural transformations from Bloch 's higher Chow groups to 

£*#*( • ) ([FG]). 
A key result making much of this possible is the following algebraic suspension 

theorem first proved in [Li] over C and algebraicized in [Fi] to work over arbitrary 
algebraically closed fields. Given a subvariety V in FN and a point P° disjoint from 
V, we denote by "fiV the subvariety consisting of the union of all lines joining P° to 
V. Topologically fiV is the Thorn space of the dual of the tautological line bundle 
of P ^ restricted to V. This construction extends by linearity to cycles. 

T H E O R E M 3. For any projective variety X and any p < d im(X) , the homomor
phism }C : Zp(X) —> Zp+i(fiX) is a homotopy equivalence. 

COROLLARY 4. Zp(¥
n) ^ K(Z, 0) x K(Z, 2) x • • • x K(Z, 2(n - p)) 

This corollary follows from [DT] and the fact that pFn = P n + 1 . 
In general for a quasi-projective variety U written as U = X — X ^ (where 

X and XQQ are projective varieties) we define Zp(U) = Zp(X)/Zp(XOQ) with the 
quotient topology. This is independent of the choice of compactification X of U 
[Lii]. Another version of Corollary 4 is the following intriguing equivalence, which 
gives an algebraic model for Eilenberg-MacLane spaces: 

Zp{Cn) - K(Z,2(n-p)). (3) 

Algebraic suspension is a special case of an important elementary binary 
operation on cycles given as follows. Fix P m ]J P n C p m + 7 1 + 1 corresponding to 
a decomposition of homogeneous coordinates C m + 1 © C n + 1 = C m + n + 2 . Given 
irreducible subvarieties V C P m , W C P n , of dimensions p and q, respectively, 
we define the algebraic join V#W C P " ^ 7 1 ^ 1 to be the variety consisting of the 
union of all lines joining V to W. If C(V) C C m + 1 denotes the closed cone in 
homogeneous coordinates sitting above V, then C(V#W) — C(V) x C(W), from 
which it is clear tha t V#W is an algebraic subvariety of dimension p + q + l. Note 
that p/ = V#F° and pn+1V = V # P n . For varieties X c P m and Y C P n the 
algebraic join gives a continuous biadditive map Zp(X)/\Zq(Y) —» Zp+q+i(X#Y). 
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In particular, we have the map Zp(X)AZq(¥
n) -> Z p + g + i ( £ n + 1 X ) ^ Zp+q-n(X) 

where the equivalence comes from Theorem 3. This leads to an induced pairing 
on homotopy groups. Setting X = P m leads to the ring of Friedlander-Mazur 
operations mentioned in (iv) above, and with general X this pairing gives L*H*(X) 
the structure of a module over this ring. 

We now turn our attention from cycles to spaces of holomorphic maps. Let 
X and Y be complex algebraic varieties and denote by Wlox(X,Y) the space of 
algebraic maps from X to Y, by which we mean continuous maps whose graphs are 
subvarieties of X x Y. As above it is natural to abelianize this space by considering 
multi-valued maps Wlox(X, S P* (Y)) where SP*(Y) = Y ] JSP 2 (Y) U • • • denotes 
the disjoint union of symmetric products of Y. Group completing this monoid 
gives a space that we denote %Jlox(X,ZQ(Y)). More generally, we might replace 
ZQ(Y) with 

Z3(Y) d=lf Zm_s(Y) 

where m = dim(Y). Then letting Y = C m we would obtain via (3) an algebraic 
analogue of the space Map(X, K(Z, 2s)) whose homotopy groups are H2s~*(X; Z). 
Taking homotopy groups of 9Jlox(X, Zs (C™1)) then gives a bigraded theory with 
a natural transformation to H*(X; Z), which measures the levels of holomorphic 
approximation of the inclusion 

Wlo*(X,Zs(Cm)) —^Ms^(X,Zs(Cm)). 

This rough outline is carried through in [FLi]. Here are some details. Let 
X be a quasi-projective variety and Y a projective variety of dimension m. One 
defines an effective algebraic s-cocycle on X with values in Y to be an algebraic 
map ip : X —» CS(Y) = CmsÇY), and one denotes by Wlox(X,CS(Y)) the space of 
all such cocycles. There is a graphing construction that gives an embedding 

Mox(X,Cs(Y)) ^ Cs(XxY), (4) 

and we introduce on $Jlox(X, CS(Y)) the subspace topology. This is the topology of 
uniform convergence on compacta with bounded degree, and when X is compact it 
is the usual compact-open topology. It makes Wlox(X, CS(Y)) an abelian topologi
cal monoid. We denote by Wlox(X, Zs (Y)) its associated topological Grothendieck 
group (naïve topological group completion). 

There is an algebraic suspension theorem for these spaces that asserts a 
homotopy equivalence Wlox(X, Zs (Y)) ^ Wtox(X, Zs(fiY)). 

If Y = Y — YQO is a difference of projective varieties, then dJtox(X, Z3(Y)) 
is defined via a quotient of Y-valued cocycles by Yoo-vahied cocycles [FLi], [F3]. 
One then introduces morphic cohomology groups 

LsHk(X) = 7T2s_fc9Jtor(X,Z5(Cm)) 

for 2s > k. By the suspension theorem these groups are independent of m. They 
have the following properties established in [FLi]. 

(i) L*!!*(•) is a contravariant functor on the category of quasi-projective va
rieties and algebraic maps. There are Gysin "wrong way" maps associated 
to flat morphisms. 
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(ii) There is a ring structure on L*iJ*(«) whose multiplication is induced by 
the pointwise join of cocycles. 

(iii) There is a natural transformation of ring-valued functors <& : LsHk(») —> 
Hk(m;Z) for all 2s > fc. 

(iv) There is a ring of functorial operations isomorphic to Z[s,/i] where 
s : LsHk -> Ls+1Hk and h : LsHk -> Lfl+1iffc+2. 

(v) There are filtrations on #*(»;Z) induced by (iii) and (iv) that are subor
dinate over Q to the Hodge filtration. 

(vi) There is a Kronecker pairing LsHk ® LpHk —> Z for 2s > fc > 2p. 
(vii) There are Chern classes ck G LkH2k defined for algebraic bundles that 

transform under <t> to the standard ones. 

One of the most intriguing and seductive features of morphic cohomology is 
that on smooth varieties it satisfies "Poincaré duality" with the cycle homology 
above. The general form of this duality for projective varieties is the following. 

THEOREM 5 [FL3]. If X and Y are nonsingular, the continuous homomorphism 

Wlox(X, ZS(Y)) <-+ Zs(XxY), (5) 

induced by the graphing map (4), is a weak homotopy equivalence. 

The proof of this theorem is based, following suggestions of Gabber, on a 
Chow moving lemma for families. This moving lemma, established in [FL2], has 
some independent interest and holds in a broad algebraic context. It is useful for 
example in rigorizing some of the classical constructions of the Chow ring. An 
important consequence of the Duality Theorem 5 is the following. 

THEOREM 6. Let X be a smooth projective variety of dimension n. Then the 
graphing map (5) induces isomorphisms 

LSH"(X) —> Ln_siJ27i-fcPO 

that carry over under the natural transformations $ to the Poincaré duality map 

Hk(X; Z) - ^ H2n-k{X; Z). 

These results have many consequences [FL3]. For example, they yield a coho
mological version of the Dold-Thorn theorem: For any smooth projective variety 
X of dimension n there is a natural isomorphism 

7T*DJlox(X,Z0(C
n)) ^H2n~*(X;Z). 

This contrasts with the statement ir*Zo(X) = H*(X; Z) of the classical Dold-
Thom theorem. Another consequence is that if X and Y are smooth projective 
varieties with cell decompositions, then the inclusion 

Mox(X,ZQ(Y)) —• Map(X,20(Y)) 
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is a weak homotopy equivalence. Furthermore, for any smooth projective variety 
of dimension n and integers p, k with p + fc <n, there is a homotopy equivalence 

Wlox(Fk,Zp(X)) 9É ZP(X) x ZP+1(X) x • • • x Zp+k(X). 

In particular, the space of parameterized rational curves on ZP(X) is homotopy 
equivalent to ZP(X) x Zp+i(X). There are also many consequences within the 
theory that come by transferring deep results of [FG] to spaces of morphisms. 

The Duality Theorem holds also for quasi-projective varieties where even 
further applications are realized. Details appear in [F3]. 

The ideas here concerning algebraic cycles have had some direct applications 
to homotopy theory. To set the stage we recall the homotopy equivalence 

Zq d= Zn_q(F
n) s* K(Z,0) x K(Z,2) x K(Z,4) x • • • x K(Z,2q) (6) 

of Corollary 4. This equivalence is canonically determined by algebraic suspension 
and the requirement that Z0(P9) —> Y\K(Z, 2%) be generated additively by a map 
¥Q —» Y\K(Z,2i), each factor of which classifies the canonical generator. The 
following two theorems were proved with Michelsohn. A rational homotopy version 
of Theorem 7 was also obtained by Friedlander. 

THEOREM 7 [LMi]. Under the canonical equivalence (6), the algebraic join pair
ing 

ZqAZq' —> Zq+q' 

discussed above classifìes the cup product in integral cohomology. 

Observe that the Grassmannian Gq(Fn) of codimension-ç planes in P71 is the 
component of degree 1 of Cq(Fn). This gives a map Gq(Fn) -> Zq(Fn). 

THEOREM 8 [LMi]. Under the canonical equivalence (6), the inclusion 

c:Gq(Fn) «-> Zq(Fn) (7) 

classifies the total Chern class of the tautological q-plane bundle over Gq(Fn). 

Letting q,n —> 00 in (7) we obtain a map 

c-.BU —• K(Z, ev) d= YI K{Z, 2i) (8) 

which corresponds to the universal total Chern class c = 1 + c\ + c<i -\ . 
Our next observation is that the join operation, when restricted to linear 

subspaces, is merely the direct sum. Thus, Theorems 7 and 8 together reprove the 
classical Chern duality c(EÇBEf) = c(E)c(E') for complex vector bundles. Indeed 
they lead to much more. The join is a completely natural extension of the direct 
sum pairing. It yields a morphism of topological monoids 

(G*(P*) .©)->( -Z*(n .#) - (9) 
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In 1975 Segal asked whether the map (8) could be extended to a transfor
mation of cohomology theories, with standard K-theory on the left. In dimension 
zero it would be given by the total Chern class c : K(X) —> E2*(X; Z) where the 
"addition" • on the right is standard in degree 0 but is given on elements x,y of 
positive degree by the multiplication of the units (l + x)U(l-{-y) = l-\-x*y. Segal's 
question is equivalent to asking for an infinite loop structure on K(Z,ev) compat
ible via c with Bott's delooping oï BU. Several such structures were proposed and 
eventually shown not to work. However, the naturality of the join product yields: 

THEOREM 9 [BLLMM]. The multiplication in K(Z,ev) induced by the algebraic 
join enhances to an infinite loop space structure such that the total Chern class 
(8) is an infinite loop map. 

The proof utilizes the naturality of the join to make the map c compatible with 
actions of the linear isometries operad of Boardman and Vogt. This task is sub
stantially simplified by invoking May's theory of T^-functors [May]. This essentially 
reformulates the morphism (9) in invariant terms. To each hermitian vector space 
V of dimension v we consider the spaces GV(F(V © V)) and CV(F(V © V)) with 
distinguished point {F(V © 0)} and with pairings given by © and # . One verifies 
rapidly that these are 2*- functors and the inclusion GV(¥(V©V)) C CV(F(V®V)) 
is a natural transformation between them. This leads to the theorem and a little 
more. One can consider the stabilized spaces T>(d) — limqinC

q
l(F

n) of cycles of 
degree d. Note that V(l) = BU and Z>(oo) = K(Z,ev). One"obtains in [BLLMM] 
that V = ]jT>(d) is an E^-ring space in the sense of [May]. 

All the results of the previous page cany over to algebraic varieties over R 
in the modern sense. Here it is necessary to consider a certain "Galois quotient" 
of cycle spaces. In the analogues of Theorems 7, 8, and 9 one finds the product in 
Z/2Z-cohomolog3'r and the total Stiefel-Whitney class. See [Lam]. 

There are also intersection versions of this theoiy including an intersection 
Dold-Thom theorem due to Gajer [Gai], [Ga2]. 

Much of what has been said above carries over to the category of complex 
G-varieties where G is a finite group. This world is richly structured and spaces of 
cycles lead to fascinating invariants. Foundations for the theory on general varieties 
appear in [LM2]. Concentrating on projective space leads to the construction of 
new equivariant cohomology theories and an equivariant analogue of Theorem 9. 
This is done in [LLMi] roughly as follows. Suppose V is a unitary representation 
space for G of dimension v. Then the inclusion GV(F(V © V)) C ZV(F(V © V)) 
together with the join pairing becomes a natural transformation of Z*-functors 
in the category of G-spaces. We let U — VQ © Vb © • • • where Vb is the regular 
representation of G, and we consider the limits BUQ = limycw GV(F(V © V)) and 
ZG(U) = limvcu ZV(F(V © V)). 

Using results from [LMS] one shows that ZQ{U) enhances to become the 
degree 0 space in an E^-ring G-spectrum ZQ{U). This is a new equivariant co
homology theory with natural geometric origins. It is ^(G)-graded and admits a 
natural transformation to Borei cohomology. Coefficients in the theory have been 
directly computed in mairy cases. They are also shown to be related to Bredon 
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cohomology by a new equivariant suspension theorem [LLM2] and beautiful equi
variant versions of the Dold-Thom theorem due to Lima-Filho [LÌ5]. 

There is a natural equivariant Chern class map 

c:BUG —+ ZG(U) 

into the 0-space of this spectrum that transforms to the usual one in Borei coho
mology. Applying [LMS] again shows that the map c : BUQ —• %G(M)I into 
the degree-1 component enhances to a map of G infinite loop spaces, i.e., to a 
transformation of equivariant cohomology theories (G-spectra) 

bu G — > òh 

where bue is connective equivariant ÜT-theory. The Borei analogue of %Q is the 
group of units {1} x H'Q(X;Z)Borei in even Borei cohomology. This gives the 
equivariant version of Theorem 9. 

Rather than enter into more details let me describe the utility of cycles spaces 
in this setting. For any G-space X there is a natural induced action of G on the 
topological group ZQ(X). The assignment X 1—• ZQ(X) is a functor (in the world 
of G-spaces and maps). In fact it is better than this. Assigning to if < G the fixed-
point set Zo(X)Hhas the natural structure of a topological Mackey functor, i.e. it 
satisfies the axioms of Dress [D] in the world of topological groups and continuous 
homomorphisms. Consequently applying any homotopy functor to this leads to 
an ordinary Mackey-functor-valued theory on G-spaces. For example, Lima-Filho 
shows in [LÌ5] that ir*Zo(X) is exactly Bredon cohomology with values in the 
Mackey functor Z. Applying the construction to spectra he obtains the ordinary 
i^O(G)-gracled cohomology with values in the Burnside ring. 

Now if we turn attention to varieties X then for each p, Zp(X) gives a topo
logical Mackey functor. Taking 7r+ (or other homotopy invariants) gives analogous 
algebraic invariants that measure the levels of G-equivariant holomorphic approx
imation. 
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Dehn Surgery on Knots in the 3-Sphere 
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The Dehn surgeiy construction is a way of obtaining a closed 3-manifolcl from a 
knot in the 3-sphere. The construction depends on two parameters, the knot and 
the surgery slope, and this article discusses theorems and conjectures describing 
the way the topology and geometry of the 3-manifold constructed depend on these 
parameters. We focus on knots in the 3-sphere, but certainly one can consider 
knots in arbitrary 3-manifolds and the Dehn surgery construction there. Most of 
the theorems discussed here apply in that context as well. [Gol] is an excellent 
survey at this level and I recommend it as a companion to this article. My intent 
here is to update some of the issues in [Gol] as well as to draw attention to some 
tantalizing aspects of specializing to knots in the 3-sphere. 

If M is a manifold we will hereafter use the notation dM to mean the bound
ary of M. 

Let K be a knot in the 3-sphere. The exterior of K, denoted XK, is the 
complement in the 3-sphere of an open tubular neighborhood of K. Thus, XK 
is a compact 3-manifold and 8XK is a 2-dimensional torus. Let a be a slope 
on 8XK, that is, the isotopy class of an essential simple closed curve in 8XK. 
The Dehn surgeiij of K along a, denoted K(c\), is the closed 3-manifold obtained 
by attaching a solid torus N to XK via a homeomorphism from 8XK to 8N 
whereby a loop of slope a in 8XK bounds a disk in Af. If ci'i and Q'2 are two slopes 
on 8XK denote by A(a'i,a'2) the absolute value of the homological intersection 
number between a\ and a 2 on 8XK- Finally, note that 8XK is parametrized by the 
meridian and longitude of XK- Thus, we may write a slope a as p/q, meaning that 
airy loop in class a goes p times meridianally and q times longitudinally around 
8XK- We will often write K(p/q) for K(a). If a'i = p i /ç i and a.'2 = P2/Q2 then 
A(a'i,a<2) = \p1q2 -P2Qi\-

The focus of this article will be progress on the following: 

QUESTION. When does a hyperbolic knot in the 3-sphere admit a nonhyperbolic 
Dehn surgery? 

A 3-manifold will be called hyperbolic if it admits a complete Riemannian 
metric of constant sectional curvature —1. A knot K will be called hyperbolic if 
the interior of XK is a hyperbolic 3-manifold with finite volume. 
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THEOREM 1 [T]. If K is a hyperbolic knot then K(p/q) will be hyperbolic for all 
but finitely many p/q. 

This fundamental result of Thurston says that one expects to see a hyperbolic 
manifold arising from Dehn surgery on a hyperbolic knot. 

DEFINITION. If K is a hyperbolic knot and K(p/q) is not a hyperbolic 3-manifold 
then p/q will be called an exceptional surgery on K. 

Are those hyperbolic knots that admit exceptional surgeries special? More 
specifically, if K is a hyperbolic knot that admits an exceptional surgery, p/q, can 
one say something about p/q and about the topology of K (the topology of X#)? 

The following guiding light of 3-manifold topology (due to Thurston) de
scribes the conjectured topological obstructions to a closed 3-manifold being hy
perbolic. 

GEOMETRIZATION CONJECTURE. A closed 3-manifold M is hyperbolic unless one 
of the following holds: 

(1) M contains an essential 2-sphere. An embedded 2-sphere in M is essential 
if it does not bound a 3-ball. 

(2) M contains an essential 2-torus. An embedded 2-torus in M is essential if 
its fundamental group injects under inclusion into the fundamental group 
ofM. 

(3) M is a Seifert ßbered space. A Seifert fibered space is an S1-bundle over a 
surface where one allows a finite number of exceptional circle fibers around 
each of which the fibration is not locally trivial (but a (p, q)-fibration of 
the soHd torus neighborhood off its core). 

Conditions 1-3 are obstructions to M being a hyperbolic 3-manifold. The 
conjecture part of the above is that these are the only obstructions. 

Conditions 2 and 3 overlap. In fact a (closed) Seifert fibered space contains 
an essential 2-torus unless its orbit surface is a 2-sphere and has at most three 
exceptional fibers. Furthermore, a Seifert fibered space with orbit surface a 2-
sphere has a finite fundamental group if and only if it has at most two exceptional 
fibers (and is not S2 x S1) or has three exceptional fibers whose orders form a 
Platonic triple. 

To get a feel for our problem we describe some examples of knots admitting 
surgeries that are not hyperbolic manifolds. 

Example A. The Trivial Surgery 

For any knot K, ÜT(meridian) = if (1/0) = 3-sphere. One sees this by noting that 
in the 3-sphere a meridian of 8XK bounds a disk in the solid torus neighborhood of 
K. The 3-sphere is not a hyperbolic manifold (category 3 above). As this surgery 
does nothing at all to the ambient 3-sphere we call it the trivial surgery and will 
exclude it from consideration. In particular, it will not be an exceptional surgery. 
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Example B. Cable Knots 
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A cable knot admits a Dehn surgery containing an essential 2-sphere. Let L be 
any knot in the 3-sphere. Let NL be a solid torus neighborhood of L and let K be 
an essential simple closed curve on 8NL that winds at least twice around NL- K 
is then a knot in the 3-sphere called a cable knot or a cable of L. The complement 
of K in 8NL restricts to an annulus A properly embedded in XK- See Figure 1. 
The boundary of A consists of two curves in 8XK-

Figure 1 

Let a be the slope corresponding to each of these two curves. In K(a) we obtain 
an embedded 2-sphere by capping off the boundary of A with disks lying in the 
attached solid torus. This 2-sphere turns out to be essential in K(a). 

Example C. The 4/1 Surgery on the Figure-Eight Knot 

Let K be the figure-eight knot. Then XK contains a properly embedded once-
punctured Klein bottle F. See Figure 2. 
Let a be the slope of the boundary of F in 8XK (® — 4/1). Then we get an 
embedded Klein bottle F in K(a) by capping off the boundary of F with a disk 
lying in the attached solid torus TV. The existence of F means that K(a) could 
not be hyperbolic. For let S be the 2-torus that is the boundary of a neighborhood 
of F in K(a). One of the following must hold: 

(1) S is essential in K(a); 
(2) S bounds a solid torus in K(cx), hence K(a) is Seifert fibered; or 
(3) K(a) contains an essential 2-sphere. 

Each of these is an obstruction to K(a) being hyperbolic as described in the 
Geometrization Conjecture above. 
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Figure 2 

Example D. (-2,3,7)-Pretzel Knot 

Let K be the (-2,3,7)-pretzel knot of Figure 3. 

Figure 3 

16 K(p/q) is not hyperbolic when E E {^ 
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is a Seifert fibered space with finite fundamental group. Using Jeff Weeks' computer 
program Snappea one can see that these are the only exceptional surgeries on this 
knot [H]. To motivate the theorems of Section 1 we make the following observations 
about this list of exceptional surgeries. First, note that the denominator of these 
surgeries has absolute value at most 2. In fact, usually the denominator is 1 — 
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tha t is, usually the exceptional surgeries are integers. Second, note tha t there are 
six exceptional surgeries. 

Let K be a hyperbolic knot and p/q an exceptional surgery for K. Sections 
1 and 2 address restrictions that have been or might be placed on p/q and on the 
topology of XK • 

Section 1: Restrictions on p/q 

Theorem 1 tells us that the number of exceptional surgeries on a hyperbolic knot 
is finite. But how many can there be and what do these slopes look like? An 
elementary argument by Thurston and Gromov already goes a long way in this 
direction. The following is an improved version from [BH]. 

T H E O R E M 2. If K is hyperbolic then K(p/q) has a Riemannian metric of negative 
sectional curvature for all but at most 24 values of p/q. 

In fact, when K has tunnel number larger than 1, Corollary 2.7 of [A2] 
shows tha t all but at most 16 surgeries on K admit metrics of negative sectional 
curvature. 

It is conjectured that a 3-manifold tha t is negatively curved is hyperbolic. 
In particular, it is known that a negatively curved manifold cannot contain an 
essential 2-sphere or 2-torus, nor can it be a Seifert fibered space. 

However, it seems as if more can be said. In particular, examples indicate the 
following conjectures to be good guides. 

C O N J E C T U R E 3. If K is hyperbolic and K is not the figure-eight knot, then K 
admits at most six exceptional surgeries. 

In fact, the (—2,3, 7)-pretzel knot of Example D seems to be the only knot 
known to have as many as six exceptional surgeries. 

C O N J E C T U R E 4. If K is a hyperbolic knot and p/q an exceptional surgery on K, 
then \q\ < 2. 

Over the past ten years, a lot of work has been done in determining ac
curate restrictions on the slopes of exceptional surgeries by treating separately 
the different types of obstructions to hyperbolicity (as in conditions 1-3 of the 
Geometrization Conjecture above). 

T H E O R E M 5 [GLul], [GLu5]. If K(p/q) contains an essential 2-sphere then \q\ — 
1. Furthermore, if K(a\) and K(oi2) each contains an essential 2-sphere then 
A(a'i,ct'2) < 1. In particular, there are at most two such surgeries on K. 

In [BZ2] the authors give a new proof of this result. Furthermore, they demon
strate tha t if K(c\'i) contains an essential 2-sphere and K(oi2) has a cyclic funda
mental group then A(ci'i,a.'2) < 1. 

T H E O R E M 6 [GLu3]. Let K be a hyperbolic knot. If K(p/q) contains an essential 
2-torus, then \q\ < 2. Furthermore, [Go2], if K(cx.i) and K(ct2) each contains 
an essential 2-torus, and K is not the figure-eight knot, then A(a' i ,a '2) < 5. In 
particular, there are at most seven such surgeries. 

The following improves Theorem 6 when K(p/q) is a Seifert fibered space. 
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THEOREM 7 [BZ2]. Let K be a hyperbolic knot. Assume K(a\) contains an 
essential 2-torus and is also a Seifert fibered space. If iri(K(a2)) is cychc then 
A(QI,OJ2) = 1. In particular, if CL\ =p/q, then \q\ = 1. 

An important class of Seifert fibered spaces that do not contain essential tori 
are those with a finite fundamental group. 

THEOREM 8 [CGLS]. Let K be a hyperbolic knot. Ifni(K(ai)) and n1(K(a2)) 
are both cyclic then A(«1,0^2) < 1. In particular, if ni(K(p/q)) is cyclic then 
\q\ < 1, and there are at most two (non-trivial) cyclic surgeries on K. If there are 
two then the slopes are consecutive integers. 

THEOREM 9 [BZ1]. Let K be a hyperbolic knot. 

(1) If iTi(K(ai)) is cyclic and iri(K(a2)) is finite then A(a i , a 2 ) < 2. In par-
ticular ifTTi(K(p/q)) is finite then \q\ < 2. 

(2) If iTi(K(ai)) and TTI(K(Oì2)) are unite then A(ai,Q<2) < 5. Furthermore, 
there are at most six finite surgeries on K. 

REMARKS. (1) Even though we are applying Theorems 7, 8, and 9 in the con
text of obstruction (3) of the Geometrization Conjecture, these theorems assume 
only information about iri(K(p/q)). For example, these theorems would still ap
ply if K(p/q) were a counterexample to the Geometrization Conjecture with finite 
fundamental group. 

(2) Theorems 7-9, and Theorems 11 and 12 below, build on the fundamental 
work of Culler and Shalen developed in [CS] and [CGLS], which analyzes an alge
braic variety of representations of a knot group. A nice exposition of this is given 
in [S]. 

(3) [M] categorizes the finite groups that can be fundamental groups of 3-
manifolds. When iri(K(p/q)) is finite of one of certain special types, [BZ1] gives 
strong restrictions on p/q beyond those mentioned in Theorem 9. 

Theorems 5-9 do not tackle all nonhyperbolic manifolds that could arise by 
Dehn surgery on a knot. We do not as yet know good restrictions (that is, say, 
supporting Conjectures 3 and 4) when K(p/q) is a Seifert fibered space over the 2-
sphere having exactly three exceptional fibers in which the orders of the exceptional 
fibers form a parabolic or hyperbolic triple. Theorems 5-9 would also not apply to a 
K(p/q) that was a counterexample to the Geometrization Conjecture with infinite 
fundamental group (for example, if K(p/q) were a negatively curved 3-manifold 
that was not hyperbolic). 

More can be said regarding Conjecture 3. Theorems 5-9 show that there are 
at most seven nontrivial surgeries of a given non-hyperbolic type. These bounds, 
for the most part, come from restrictions on A(ai , 0.2) when K(a\) and K(c*2) are 
nonhyperbolic of the given type. If one could show that A ( Q I , «2) < 5 for any two 
nonhyperbolic surgeries a\, a.2 on a knot K, then we would have that there are at 
most seven exceptional surgeries on K. In this direction we would like restrictions 
on A(ai ,a2) when K(a\), K(ot2) are nonhyperbolic of different types: 

THEOREM 10 [GLi]. Let K be a hyperbohc knot. If K(a\) contains an essential 
2-sphere and K(c*2) contains an essential 2-torus then A(a i , CK2) < 5. 



Dehn Surgery on Knots in the 3-Sphere 591 

THEOREM 11 [BZ2]. Let K be a hyperbolic knot. If K(a\) contains an essential 
2-sphere and -K\(K(a2)) is finite, then A(a'i,Q'2) < 5. 

THEOREM 12 [BZ2]. Let K be a hyperbolic knot. Suppose that K(ct\) contains an 
essential 2-torus and is also a, Seifert fibered space. If K (cx.2) has unite fundamental 
group then A(a.'i,a'2) < 5. 

Theorems 5-9 give strong support to Conjecture 4. Indeed, very often they 
prove more — that is, that a certain type of exceptional surgery must be inte
gral. The only known examples of exceptional surgeries of the form p/2 are where 
K(p/2) contains an essential 2-torus. This situation is captured by Theorem 13 
below. As background we note that the (—2,3,7)-pretzel knot of Example D is 
one knot in several infinite families of strongly invertible, hyperbolic knots K such 
that K(p/2) contains an essential 2-torus [EM]. 

THEOREM 13 [GLu3], [GLu4]. Let K be a hyperbolic knot. If K(p/2) contains an 
essential 2-torus then there is an essential 2-torus that intersects the solid torus 
N in exactly two meridiana] disks (where K(p/2) — XK U N). This 2-torus then 
restricts to an essential, twice-punctured 2-torus in XK that separates XK into 
two genus-2 handlebodies. In particular, K is strongly invertible. 

It seems believable that the only exceptional surgeries on a hyperbolic knot 
that arc nonintegral are those containing an essential 2-torus — hence subject to 
the description of Theorem 13. If there are other nonintegral, exceptional surgeries, 
one would expect them to be extremal and consequently subject to a description 
as in Theorem 13. 

The arguments of Theorems 6 and 13 use the beautiful idea of the thin 
position of a knot in the 3-sphere developed by Gabai in his proof of the Property 
R Conjecture [Gal]. For a nice exposition of this idea see [Ga2]. These theorems 
also use the combinatorial techniques developed in [CGLS] and [GLu2]. 

Section 2: Restrictions on K 

If K admits an exceptional surgery, what can you say about K — that is, about 
the topology of XK? This is a challenging question, as evidenced by the fact that 
the answers are conjectural. Theorem 13 is the kind of theorem we are looking for, 
except that it applies only when the surgery slope is of the form p/2. We give a 
collection of intriguing conjectures that describe potential answers to this question 
and that suggest directions in which to look for answers. 

In Example B we showed how a cable knot admits a Dehn surgery containing 
an essential 2-sphere. The following Cabling Conjecture says that this is the only 
way a 2-sphere is created under a Dehn surgery on a knot in the 3-sphere. 

CONJECTURE 14 [GS]. If a Dehn surgery on K contains an essential 2-sphere, 
then K is a cable knot. In particular, K is not hyperbolic. 

A curve in the boundary of a handlebody is said to be primitive if there is a 
properly embedded disk in the handlebody that intersects it exactly once. 
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CONJECTURE 15 [B]. If a Dehn surgery on K is a lens space then there is a 
standardly embedded genus-2 handlebody H in the 3-sphere such that K can be 
isotoped onto 8H where it is primitive in both H and in the complement of H. 

Let If be as in the conclusion to Conjecture 15, and isotope K onto 8H. Then 
8H restricts to a twice-punctured 2-torus T in XK- If ct is the slope corresponding 
to a component of the boundary of T, we can cap off the boundary components of T 
with disks in K(ot) giving a 2-torus T. The primitivity condition on K guarantees 
that each side of T in K(a) is a solid torus. Thus, K(a) is a lens space and T 
is a Heegaard torus for K(a). We refer to a surface in a closed 3-manifold as a 
Heegaard surface if it divides the manifold into two handlebodies. If Ka denotes 
the core of N in K(a) = XK U N, then Ka intersects T twice. Thus, T separates 
Ka into two arcs, and the primitivity condition guarantees that each of these arcs 
is isotopie (rei endpoints) into T. An equivalent form of Conjecture 15 is: if K(a) 
is a lens space then there is a Heegaard torus T of K(a) intersecting the core of 
the attached solid torus Ka twice; furthermore, each of the two arcs into which T 
divides Ka is isotopie (rei endpoints) into T. 

From this point of view, Conjecture 14 may be rephrased as: If K(a) contains 
an essential 2-sphere then it contains an essential 2-sphere that intersects the core 
of N, the attached solid torus, exactly two times. 

Looking at Conjectures 14 and 15 in this way and recalling Theorem 13 raises: 

QUESTION. If K is hyperbolic and K(a) = XK U N contains an essential 2-torus, 
is there an essential 2-torus in K(a) that intersects the core of N exactly two 
times?1 

If the answer is yes then the exterior of any hyperbolic knot K admitting 
such a surgery would either contain a closed, essential surface of genus 2 (in this 
case, K sits on a knotted genus-2 handlebody in the 3-sphere) or could be written 
as the union of two genus-2 handlebodies along a twice-punctured torus (in this 
case, K is strongly invertible). 

The Geometrization Conjecture says that if a closed 3-manifold is not hy
perbolic then it contains an embedded surface of small genus (at most two) that 
is either essential or a Heegaard surface. It seems reasonable to hope that this 
property in a Dehn surgery on K implies it in XK-

CONJECTURE 16. There is an integer n (hopefully small) such that if K is a hy
perbolic knot admitting an exceptional surgery then XK contains a closed surface 
of genus at most n that is either essential in XK or a Heegaard surface in XK-

A Heegaard surface for XK is one that divides XK into a handlebody and a 
"compression body" [CG]. This is related to the tunnel number of K. 

One way to approach these conjectures is through Theorem 2. The mechanism 
there shows that if the cusp volume of a hyperbolic knot K is large enough then 
all nontrivial surgeries on K admit metrics of negative curvature. Thus: 

1 Added in proof. Eudare-Munoz has recently shown that the answer to this question is 
no, by providing a knot K where K{cx) contains an essential 2-torus but no such 2-torus may 
intersect N twice. In this example there is an essential torus intersecting the core of N four times. 
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Q U E S T I O N . How is the cusp volume of a hyperbolic knot expressed in terms of 
other topological aspects of K or XK? In particular, is there a good measure of 
the complexity of a knot so that the more complex the knot the larger the cusp 
volume? 

For work in this direction see [Al],[A2],[ALR],[BH]. 
Finally, Conjecture 16 is related to the following outstanding conjecture, 

which describes the topology of K(pjq) in terms of the topology of K. 

C O N J E C T U R E 17. There is a function UJ : N —> N such that if K(p/q) has a 
Heegaard surface of genus g then XK has a Heegaard surface of genus uj(g). 

In this direction we have the following theorem: 

T H E O R E M 18 [MR]. Let K be a hyperbolic knot and g be an integer such that 
every Dehn surgery on K has an irreducible Heegaard splitting of genus at most 
g. Then 

(1) There is a finite collection of surfaces E i , . . . , E r embedded in XK so that, 
for all but finitely many slopes p/q, every irreducible Heegaard splitting 
surface of K(p/q) of genus at most g is isotopie to one of the E^. 

(2) If Ei is not a Heegaard surface for XK then there is a unique simple closed 
curve on 8XK that is isotopie to a simple closed curve on E^. 
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The classification of stable actions of finitely presented groups on M-trees has found 
a number of applications. Perhaps one of the most striking of these applications 
is the theory of canonical JSJ-decompositions of hyperbolic groups developed by 
Sela in his seminal paper [Se]. 

An analysis of the argument of Sela reveals that the assumption of hyper
bolicity is not essential for this theory, and, in fact, it can be developed in much 
greater generality; namely for finitely presented groups, and, possibly, even in a 
much more general setting. 

To simplify the statements, we shall restrict to the case of finitely presented, 
freely indecomposable, torsion free groups. 

The motto of this research is to try to understand groups from the point 
of view of low dimensional topology. In fact, we develop a little vocabulary that 
translates topological notions into algebraic ones. This leads to a number of results 
that are analogs and/or generalizations of the corresponding topological results. 

The first item of our vocabulary is: 

Voc 1. A Simple Closed Curve 

(a) For a separating s.c.c, the corresponding algebraic notion is a free prod
uct with infinite cyclic amalgamation, G = A*c B, C = Z. 

(b) For a nonseparating s.c.c, the corresponding notion is an HNN-group 
over Z; G = A*c7, C = Z. We call these elementary Z-splittings. 

To fix notation, we introduce here some general definitions: 

DEFINITION. Graph of Groups 

A graph of groups consists of a graph (V, E) and an assignment of groups: 
G(v) for each v eV,G(e) for each e G E, together with boundary monomorphisms 

a : G(e) —» G(8Q(e)) and u : G(e) —> G(81(e)) 

where 8Q(C) and 8\(e) denote the initial and terminal vertices of an edge e. We 
require that G(e) = G(e) so that passing from e to ë switches a and UJ. 
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We recall that the fundamental group of a graph of groups 7r(ö(V, E)\T) with 
respect to a maximal subtree T is given by 

< G(v) for all v G V, te for all e G E \ tetë = 1 for all e e E, 

te = 1 for all e G T and a(g)te = teu(g) for ali e e E,g G G(e) > . 

DEFINITION. Splitting 

By a splitting of a group G, we understand a triple S = (G(V,E),T,cß) 
where G (y, E) is a graph of groups, T is a maximal subtree of (V,E), and 0 : 
7T(ö(V7 ,£ ,) ;T) —> G is an isomorphism. 

With an abuse of language we will omit mention of T and 0 unless we need 
to specify them. 

DEFINITION. Z-Splitting 

A splitting is called a Z-splitting if G(e) — Z for all e G i£. Elementary Z-
splittings are Z-splittings for which the graph of groups contains one edge. We 
shall only consider splittings with V and E finite. 

DEFINITION. Refinements and Collapses of Splittings 

An elementary refinement of a graph of groups G(V, E) consists of an el
ementary splitting of one of its vertex groups G(v) — A *c B or G(v) = A*c 
compatible with boundary monomorphisms; that is, for any e E E with 8o(e) = v, 
Oi(G(e)) Ç A or a(G(e)) Ç B. The. new graph of groups is obtained from G(V,E) 
by replacing the vertex v by a one edge graph; a segment of groups or a loop of 
groups. 

A refinement (=blow-up [Ji]) of a graph of groups is the result of a sequence 
of elementary refinements. A collapse is an inverse operation to a refinement. 

An elementary splitting corresponding to an edge e of a graph of groups is 
the result of the collapse of all edges other than e. Thus, any elementary splitting 
of a vertex group compatible with boundary monomorphisms can be extended to 
an elementary splitting of the whole group: perform the corresponding elementary 
refinement that introduces a new edge, and collapse all other edges. 

This construction can be used for a basic example that will 
(a) provide an ample family of elementary Z-splittings of a group, and 
(b) demonstrate that Z-splittings need not have common refinements. 

EXAMPLE. 

Let F =< xi,..., xm > be a free group o n i i , . . . , xm, and let ft = {wi,... 
,Wk} be a quadratic set of words; that is, the total number of occurrences of each 
letter Xi in the words w\,..., w^ is 2 or 0. 

Let G (Vj E) be a graph of groups. Let v G V and let e\, e<i,..., e^ be all edges 
with 8Q(Cì) = v. We suppose that G(v) = F, that no Wi is conjugate in F to Wj or 
its inverse. Suppose also that 

a(S(ei)) = < v>i >>a(S(e2)) =<w2 >,...,a(G(ek)) =< wk > . 

Following [RSI], we call such a vertex a QH-vertex. 
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In the geometric picture, F is the fundamental group of a punctured surface 
S and w\,... ,Wk correspond to cycles around the punctures. So every s.c.c. on S 
gives an elementary Z-splitting of F compatible with boundary monomorphisms, 
and hence an elementary Z-splitting of the whole group. 

Thus, we obtain a family of elementary splittings in which any two have 
common refinements if and only if the corresponding s.c.c. are disjoint (up to 
isotopy). 

Let us now consider more closely two distinct elementary Z-splittings of a 
group: G = AI*QBI (or ^ i * c a ) , and G = A2*c2B2 (or A2*c2) where C\ = < c1 >, 
C2 = < c2 >. 

The element c2 is called elliptic with respect to the first splitting if it is 
contained in a conjugate of A\ or B\, and hyperbolic otherwise, and similarly for 
ci with respect to the second splitting. 

LEMMA. If G is freely indecomposable, then either c\ and c2 are simultaneously 
elliptic (in which case there is a common refinement), or simultaneously hyperbolic. 

Now we are led to the next item of our vocabulary. 

Voc 2. Intersecting Simple Closed Curves 

The algebraic analog is a pair of elementary Z-splittings that are hyperbolic-
hyperbolic. We call them intersecting elementary Z-splittings. 

We now state: 

MAIN LEMMA. Let G be a fìnitely presented, freely indecomposable, torsion free 
group, not isomorphic to a surface group. Suppose that G admits two Z-splittings 
G = n(Gi(V1,E1);T1), G = 7v(G2(V2ìE2);T2), where vx G Fi and v2 G V2 are QH-
vertices corresponding to punctured surfaces Si and S2. Assume that for some 
s.c.c. 71 on Si and 72 on S2, the corresponding elementary Z-splittings of G are 
intersecting. Then there exists a Z-splitting G = ir(G(V,E);T) and a QH-vertex 
v e V such that Gi(vi) and 02(^2) are conjugate to subgroups ofQ(v), and the 
elementary Z-splittings corresponding to 71 and 72 are conjugate to elementary 
Z-splittings originating from intersecting s.c.c's *y[ and 72 on S. 

To give some indication of the method of proof, consider again two elementary 
Z-splittings; G — Ai *Q BI (or Ai*cO» and G — A2 *c2 B2 (or A2*c2) where 
Ci = < ci >, C2 = < c2 >. The next idea is to introduce: 

Voc 3. Dehn Twists 

If G = Ai *Cl Bi, define Dx : G —> G by 

^ i ( ß i ) = ai f°r all ai £ Ai 

Di(h) = cibici1 for all &i G Bx. 

If G = Ai*Gl = < Ai,ti I hcitï1 = ci >, define Dx : G —> G by 

Similarly for D2: G 

1 ilCl*!* = 

Dl(Ol) = 

Dl{t): 

G. 

- c[ > , define D\ 

= a\ for all a\ e 

= tei. 

:G 

Ar 
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Consider now 

<j)k = D™kD™k ... D^D^D^D7?1 

where K m i < n i C m 2 C n 2 C - - - < m f c < n f e . 
Let p : G x T —> T be the action on a tree T induced by (say) the first 

splitting. 
Using <f)k we define new actions 

pk:GxT —> T by (pk(g))(x) = p($k(g))(x). 

We now apply a method of Paulin [P], [BS] and Bestvina [B] to produce from 
these actions an action of G on an M-tree using the Gromov-Hausdorff convergence. 
One shows that this action is nontrivial and small, and has trivial tripod stabilizers. 

The next step is to use the classification of stable actions of a finitely pre
sented group on an M-tree [BF2] and [Ri]. As G is freely indecomposable, we are 
left with one minimal component. For the same reason, the axial, simplicial and 
Levitt (=thin [BF2]) cases are excluded, and we are left with one minimal surface 
component that corresponds to a QH-vertex. 

With a short additional argument, one shows that both elementary Z-split
tings are conjugate to elementary Z-splittings originating from intersecting s.c.c's 
on this surface. 

In order to deal with the general case, one needs more complicated expressions 
for (ßk involving Dehn twists corresponding to various s.c.c's on Si and S2, whereas 
the rest of the argument is similar. 

DEFINITION. QH-subgroup 

Let H be a subgroup of G. We call H a QH-subgroup if it is free, and there 
exists a Z-splitting G = ir(G(V,E);T) and a QH-vertex v G V with G(v) = H. 

PROPOSITION. Let G be as in the Main Lemma. 
(a) Every QH-subgroup is contained in a maximal QH-subgroup. 
(b) There are fìnitely many conjugacy classes of maximal QH-subgroups. 
(c) There is a Z-sphtting G = 7r(G(V,E);T) with QH-vertices vi,... ,Vh 

such that G(vi), G(v2), . . . , G(vh) are representatives of all conjugacy 
classes of maximal QH-subgroups. 

This proposition is a consequence of the Main Lemma and a theorem of 
Bestvina and Feighn [BF1] that bounds the cardinality of vertices and edges 
for small splittings of G without redundant edges. (Here redundant means that 
a(G(e)) = G(8o(e)) and 8Q(e) ^ 8i(e).) 

DEFINITION. QH-saturated Z-spHttings 

Z-splittings satisfying part (c) of the proposition are called QH-saturated 
Z-splittings. 

We introduce a quasi-order on the set of all QH-saturated Z-splittings of G 
requiring that Si < S2 when S2 is obtained from Si by a refinement of non-QH-
vertices, or by a collapse of redundant edges. 
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DEFINITION AND VOC 4. JSJ-Splitting 

If G is a closed surface group, we define the trivial (=one vertex, no edges) 
splitting to be the JSJ-splitting of G. If G is not a closed surface group, then 
maximal reduced elements with respect to this quasi-order are called JSJ (for 
Jaco-Shalen-Johannsen)-sp/z££m#s of G. 

The existence of JSJ-splittings is a consequence of the above-mentioned the
orem of Bestvina and Feighn, and a theorem of Sela stating that there can be no 
infinite sequence of proper unfoldings of elementary Z-splittings (see below for the 
definition of folding; unfolding is an inverse operation to folding). 

The uniqueness of JSJ-splittings is the subject of the following theorem: 

THEOREM. Any two JSJ-splittings, Si and S2, ofG are equivalent in the following 
sense: S2 can be obtained from Si by a finite sequence of operations from the 
following list: 

(1) conjugation; 
(2) sliding; 
(3) modifying boundary monomorphisms by conjugation. 

DEFINITION. Conjugation, Sliding, Modifying Boundary Monomorphisms by 
Conjugation 

(1) is usual conjugation; 
(2) sliding is a modification of a graph of groups corresponding to the rela

tion 
(A *Cl B) *c2 D ** (A *Cl D) *c2 B 

in the case when C\ Ç C2\ 
(3) let H = A*c —< A,t \ ta(c)t~x — LJ(C) for all c G C >. For an arbitrary 

element a G A we replace a by ad(a)-a, (where ad(a)(g) = aga-1) and t 
by ta~l. The corresponding modification of the graph of groups is called 
modifying boundary monomorphisms by conjugation (for edges outside 
the maximal subtree). 

COROLLARY 1. Let G = ir(G(V,E);T) be a JSJ-splitting and let vi,... ,vh be 
its QH-vertices. All elementary Z-splittings of G are conjugate to ones from the 
following list: 

(1) elementary Z-splittings corresponding to s.c.c's on punctured surfaces 
corresponding to QH-vertices vi,... ,D/t; 

(2) elementary Z-splittings corresponding to edges ofG(V,E); 
(3) foldings of elementary Z-splittings from (2). 

DEFINITION. Folding of a Z-splitting 

If H = A*CB and C Ç Ci Ç A, where C =< c = dn > and d =< d >, then 
the splitting H = A*cxBi with Bi = Ci*cB is called a folding of H = A*c-S along 
Ci. The tree associated to the new splitting is obtained from the tree associated 
to the old splitting by folding. 

If H = A*c = < A,t | tct~l = 7(c) for all c G G > and C Ç Ci Ç A 
then H = Ai*Ci is called a folding of the Z-splitting H = A*^ along Ci, where 
Ai = A * 7 ( c ) (tCit-1), 7i : d —> Ai, and 71(a) = igt'1 for all g G Cx. 
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In the following, we assume tha t G is not a surface group: 

C O R O L L A R Y 2. Dehn twists of elementary splittings described in part (1) of Corol
lary 1 generate in Out(G) a subgroup isomorphic to a direct product of mapping 
class groups of punctured surfaces. 

R E M A R K S . 

(1) One can remove the restriction tha t G is torsion free by modifying the 
definition of a QH-vertex so as to include the case of an orbifold instead 
of a surface [RS 2]. 

(2) The following are possible directions for further generalization: to re
place "finitely presented" by "finitely generated" and "Z-splittings" by 
"small splittings" (see [BF1]). 

A C K N O W L E D G M E N T S . 

This talk is based on joint work with Z. Sela. While completing this work, 
the author was on a sabbatical leave from Hebrew University visiting Columbia 
University. He wishes to express his thanks to the faculty at Columbia for an 
extremely stimulating atmosphere, especially to Professor Hyman Bass, Professor 
Mike Shapiro, Lisa Carbone, and Ilya Kapovich. 
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1. Introduction 

Max Dehn introduced a number of important decision problems in algebra and 
topology. For groups, the isomorphism problem is to decide if two finite presen
tations represent isomorphic groups or not. The analogous question for manifolds 
is to decide if two compact n-dimensional manifolds are homeomorphic or not. 
For manifolds, the method of presentation could be via triangulations or handle 
descriptions. 

Markov [Ma] (see also [BHP]) showed that both questions are undecidable 
in the class of finitely presented groups and manifolds of dimension at least 4. On 
the positive side, recently the isomorphism problem for word hyperbolic groups 
has been announced to have a positive solution l:ry Sela [Se]. Haken gave a solution 
to the homeomorphism problem for an important class of 3-manifolds, now called 
Haken manifolds. This used a solution to the conjugacy problem in the mapping 
class group of a surface that was found by Hemion [He] and Hatcher and Thurston 
[HT]. Haken had to assume that both of the manifolds under consideration were 
irreducible, i.e any embedded 2-sphere bounded a 3-ball. Our solution to the recog
nition problem for the 3-sphere of course gives an algorithm to recognise the 3-ball. 
Hence in Haken's work, irreducibility can now be replaced by an assumption of 
asphericity, i.e the second homotopy group vanishing. 

Our method is to use the minimax procedure of Poincaré and Birkhoff. This 
was employed l:ry Pitts [Pi] to show that any closed Riemannian manifold has an 
embedded minimal hypersurface that is regular in dimensions up to six. Further 
refinements were given in the unpublished Ph.D. thesis of Smith [Sm] with Simon, 
where it is proved that for an arbitrary Riemannian metric on the 3-sphere, there 
is an embedded minimal 2-sphere. In works of Pitts and the author [PR1]-[PR3], 
the case of a general class of 3-manifolds that are decomposed into a union of two 
handlebodies by a strongly irreducible Heegaard surface S is considered. Note that 
strong irreducibility means that any pair of essential disks for the two handlebodies 
must have intersecting boundaries. In [PR3] it is established that for a strongly 
irreducible splitting of a closed orientable irreducible 3-manifold with a bumpy 
Riemannian metric, the Heegaard surface S can be isotoped to be minimal with 
index of instability one, or else there is a closed nonorientable embedded minimal 
surface K and S is isotopie to the boundary of a regular neighborhood of K with 
an unknotted tube attached running across the regular neighborhood. 
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Here a polyhedral version of [PR3] is discussed. In particular, a new theory 
of unstable polyhedral minimal surfaces is sketched. In [JRI], [JR2], two different 
approaches to a piecewise linear concept of minimal surface were given. Both these 
theories were very suitable for discussing stable minimal surfaces, which are very 
useful in many aspects of the topology of 3-manifolds. Heegaard splittings give 
rise naturally to unstable minimal surfaces. Moreover, deeper applications to the 
structure of 3-manifolds may be available from a general theory of minimal surfaces 
with arbitrary index of instability. 

In Section 2 of the paper, a discussion is given of polyhedral minimal surfaces 
of index one. The approach here is to augment Haken's normal surface theory 
[Hal]-[Ha3] with the PL minimal surfaces of [JR2] and use minimax to give a 
constructive version of the main result of [PR3]. Note that such minimal surfaces 
are called almost normal surfaces as they only differ from normal surfaces in one 
tetrahedron. We will only treat the case of 2-spheres sweeping out a 3-sphere and 
refer the reader to [Ru] for more details of the general case. This is the key step 
in the recognition algorithm for the 3-sphere — the result that any triangulation 
on the 3-sphere admits a polyhedral minimal 2-sphere of index one, i.e an almost 
normal 2-sphere. 

In the Section 3 various results using almost normal surfaces are given. The 
two main theorems are that there is an algorithm to find the Heegaard genus 
of any closed orientable triangulated 3-manifold and a solution of a conjecture 
of Waldhausen [Wa], namely there is a finite number of inequivalent Heegaard 
splittings of a fixed genus of any such 3-manifold up to ambient homeomorphisms. 
A corollary is a solution of the homeomorphism problem for 3-manifolds with 
Heegaard genus at most 2. 

In Section 4 a general theory of higher index polyhedral minimal surfaces 
is outlined. The index is defined to correspond with critical points for surface 
complexity under multi-parameter sweepouts. The measure of surface complexity 
we use is essentially the same as in [JR2], namely the lexicographically ordered pair 
(w, I), where w is the normal surface weight, i.e the number of intersections of the 
surface with the edges of the triangulation, and I is the length of the graph where 
the surface meets the 2-skeleton. When dealing with sweepouts, the surface may 
compress into several components and the number of such connected components 
also has to be built into the complexity. For simplicity we assume the surface 
remains connected here. The 2-skeleton of the triangulation is given a metric by 
gluing together hyperbolic metrics on triangles for each 2-simplex, so that the 
angles are all some very small number. This number is chosen so that for a given 
sweepout, the penalty for a surface going through a vertex is large as compared 
with an estimate of the sum of the lengths of all the edges of the graph where 
the surface meets the 2-skeleton. Ideal triangle metrics used in [JR2] are not as 
convenient for sweepouts as then lengths become infinite. 

A remarkable property of index in this context is that locally we see octagonal 
saddle shaped disks properly embedded in tetrahedra, each contributing index one, 
or normal disks connected by small unknotted tubes. In particular, for fixed genus 
surfaces, there is a bound to their index of instability in this theory. Note that 
we are excluding the case of arbitrarily large index arising from many parallel 
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spheres being tubed together, as this case does not occur for critical surfaces in 
sweepouts. Parallel octahedra in a single tetrahedron also cannot arise for the same 
reason. Note also it has been conjectured that this index bound is true for analytic 
minimal surfaces in bumpy Riemannian metrics, but this has only been established 
for the special case of positive Ricci curvature metrics by the compactness theorem 
of Choi-Schoen [CS], A bumpy metric as defined in [Wh] has the property that 
minimal surfaces have no Jacobi fields, i.e are isolated critical points for area. 

In the final section we discuss applications of higher index polyhedral minimal 
surfaces in 3-dimensional knot and link theory and in the generalized spherical 
space form problem. For the former, we define higher index thin position pictures 
of arbitrary knots and links. Thin position was introduced by Gabai [Ga], and 
has proved an invaluable tool. It can be viewed as an index one minimal 2-sphere 
arising from a-minimax sweepout of the 3-sphere, where the complex^ is the^ 
number of intersections with the knot or link. By classical Lusternik-Schnirelmann 
theory, there are canonical 7i-parameter sweepouts of the 3-sphere by families of 
2-spheres, where the number of parameters n varies from 1 to 4. We discuss the 
interpretation of the corresponding index n thin position pictures. The hope is that 
these additional thin position descriptions may assist in some of the remaining 
difficult problems about surgery on knots and links. Notice that the existence of 
four thin position descriptions of a knot or link would seem to encode in a strong 
way the fact that the knot or link is actually in the 3-sphere, rather than another 
3-manifold. 

The generalized 3-dimensional spherical space form problem asks to show that 
any finite group action on the 3-sphere is topologically conjugate to an orthogonal 
action. This has been proved for groups where some element has a one-dimensional 
fixed set, by the orbifold theorem of Thurston (see e.g [Ho]). The latter includes 
the Smith conjecture as a special case (see [Mo]). Fixed point free actions have only 
been classified in the case where the group has order 2k x 3 m . (See the discussion in 
[Ts].) In Hamilton's work on Ricci flow [Hm] the generalized 3-dimensional space 
form problem is solved if there is an invariant metric of positive Ricci curvature. 
In particular, any 3-manifold with positive Ricci curvature admits a metric of 
constant positive curvature. In [PR2] a program was outlined to give an alternative 
proof of part of Hamilton's theorem using multi-parameter sweepouts, Hatcher's 
solution of the Smale conjecture [Ht], and the Choi-Schoen compactness theorem 
referred to above. We finish by outlining a proof of the following result. 

THEOREM 1 Any action of a cyclic group of prime order on the 3-sphere is equiv
alent to an orthogonal action. Any free action of a direct product of a binary 
polyhedral group, other than the binai^y dodecahedral group, by a cyclic group of 
relatively prime order on the 3-sphere, is equivalent to an orthogonal action. Any 
finite group that acts freely on the 3-sphere admits a free orthogonal action on the 
3-sphere. 

Remarks. This theorem is established by combining the program of [PR2] with 
the theory of higher index polyhedral minimal surfaces. 
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To complete the classification of free actions of cyclic groups on the 3-sphere 
it remains to solve the Smale conjecture for all 3-dimensional lens spaces. This 
should follow from Hatcher's techniques and then only the case of the binary 
dodecahedral group would remain. This is a nice challenge! 

2. Polyhedral minimal surfaces and the recognition algorithm 

Recall that a normal surface in a triangulated 3-manifold intersects each tetra
hedron in disks that are all either triangles or quadrilaterals. Note that every 
boundary arc, which is the intersection of such a disk with a 2-simplex, must cross 
from one edge to a different one. Such an arc is called normal. There are 4 distinct 
isotopy classes of triangular disks and 3 quadrilaterals. These are called normal 
disk types. The normal coordinates of such a surface is the vector of nonnegative 
integers given by the multiplicity or weight of each disk type. The Haken sum 
of two normal surfaces is defined by adding the corresponding vectors. A normal 
surface is called fundamental if it is not a nontrivial sum of two normal surfaces. 
The key result of Haken's theory is that there are finitely many such fundamental 
surfaces and they can be systematically constructed. 

An almost normal surface or polyhedral minimal surface of index one consists 
of normal disk types in all tetrahedra except one where there is a single exceptional 
piece, which is either an octagonal disk or two normal disks joined by an unknotted 
tube. The boundary of the octagon consists of normal arcs, and it is easy to see 
there are 3 isotopy classes of such octagons in each tetrahedron. The tube being 
unknotted refers to the fact it is boundary compressible. 

THEOREM 2 Suppose M is a triangulated 3-manifold homeomorphic to the 3-
sphere. Then M has an embedded almost normal 2-sphere. Moreover this can be 
chosen disjoint from a maximal collection of disjoint normal 2-spheres and with 
an octagon as an exceptional piece. 

Proof. Choose a component of the complement of a maximal collection of embedded 
normal 2-spheres that has one boundary surface. Moreover this component, which 
we denote by M*, can be chosen not to be a cone on a link of a vertex. Let S be the 
boundary sphere of M * and consider a sweepout of M* by a family of embedded 
2-spheres denoted by Sti for t between 0 and 1. Therefore So is a point and Si is 
S. We put a metric on the 2-skeleton of M as described in the introduction, i.e 
each 2-simplex is identified with an ideal hyperbolic triangle. 

Now choose a sweepout of M* that has the smallest maximum complexity 
of St for some value t0 of t. This is called the minimax surface. (In general there 
are several such surfaces but we assume only one.) The minimax surface has the 
crucial 2-site property. This means there cannot be two disjoint pieces of the surface 
that can be isotoped keeping their boundaries fixed to decrease complexity. The 
reason is that if the 2-site property fails, then just before the maximum complexity 
is reached in the sweepout, we can apply one of the local isotopies to decrease 
complexity in a site disjoint from the last move across the triangulation. Then we 
do the last move, go on past the minimax, and finally restore the isotopy in the 
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disjoint site. This creates a new sweepout with smaller maximum complexity, a 
contradiction. 

To complete the proof of Theorem 2, the 2-site property can be used to show 
that the minimax surface has all normal arcs of intersection with the 2-skeleton, 
which are in fact geodesies in the hyperbolic triangle metrics. This uses the second 
factor of hyperbolic length in the measure of complexity. There are many possible 
properly embedded disks and planar surfaces in a tetrahedron with all boundary 
arcs of this type. However, using the first factor of complexity, i.e the weight or 
number of intersections with the 1-skeleton, only the octagon or annulus with a 
single unknotted tube connecting two normal disks can have the 2-site property 
and also behave like a local maximum for complexity under a sweepout. Finally, 
by our choice of M*, the case of an annulus is ruled out because M* has only its 
boundary as an embedded normal-2-sphere.1, __ __ __D„ 

3. Heegaard splittings and decision problems 

In [Ru] a number of results are sketched, using polyhedral minimal surfaces and 
Heegaard splittings to define sweepouts of general 3-manifolds. We summarize the 
key points here. 

THEOREM 3 Any strongly irreducible Heegaard splitting of a closed orientable ir
reducible 3-manifold can be isotoped to be an almost normal surface. 

THEOREM 4 There are finitely many Heegaard splittings of bounded genus of any 
closed orientable irreducible 3-manifold up to ambient homeomorphism. 

THEOREM 5 There is an algorithm to construct all smallest genus Heegaard split
tings of any closed orientable irreducible 3-manifold. In particular, there is an 
algorithm to determine the Heegaard genus of any such 3-manifold. 

COROLLARY 1 There is an algorithm to solve the homeomorphism problem for the 
class of closed orientable irreducible 3-manifolds of Heegaard genus at most two. 

Remarks. 

(1) Theorem 3 is proved by a similar technique as that used for Theorem 2 
above, with the addition of the iteration minimax technique contained in 
[PR3]. The problem is that the minimax process may give an almost normal 
surface of smaller genus than the strongly irreducible splitting if only done 
once. The trick is to use this almost normal surface as a "barrier" and run 
the minimax again. 

1Note added in proof: The minimax surface obtained may not be transverse to the 1-skeleton 
and a small deformation may be needed to achieve an almost normal surface. I would like to 
thank W. Haken for painting this out. 
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(2) Theorem 4 is proved in two steps. First the result is established for strongly 
irreducible splittings by using Theorem 3 to realize such surfaces as almost 
normal. Then Haken's technique is adapted to show that such almost normal 
surfaces can be written as Haken sums of fundamental normal and almost 
normal surfaces with no summands of positive Euler characteristic and a 
bounded number with zero Euler characteristic, after possibly Dehn twisting 
about incompressible tori. 

Finally, the general case of irreducible splittings is treated by the method 
of [PR3], where it is shown that an irreducible but not strongly irreducible 
Heegaard splitting contains a twice punctured incompressible surface. So 
such a Heegaard surface can be divided up into strongly irreducible com
pression body decompositions of the 3-manifold split along some orientable 
incompressible surfaces. 

(3) Theorem 5 and Corollary 1 follow from Theorem 4. The proof of Corollary 
1 uses Thurston's orbifold theorem (see e.g [Ho]), plus the well-known ob
servation that 3-manifolds of Heegaard genus 2 are 2-fold branched covers of 
the 3-sphere over a knot or link. 

(4) Hass has recently proved a result similar to Theorem 4 using different meth
ods. Johannson also established Theorem 4 for the important case of Haken 
manifolds earlier (see [Jo]). 

4. Higher index polyhedral minimal surfaces 

As in the proof of Theorem 2, we define an n-parameter sweepout of a 3-manifold 
as a map F from In to the space of maps from a surface S to M with the following 
properties: 

• F(X) is an embedding for each point X in intl77, 

• F(X) is a map of 5 to a graph for each point in the boundary of In 

• F represents a nontrivial cycle in the homology of the space E, which is the 
union of all embeddings of S and the maps of S to a graph, relative to the 
subspace G of maps of S to a graph. 

A key example arising from Lusternik-Schnirelmann theory is n-parameter 
sweepouts of the 3-sphere by 2-spheres, for n between 1 and 4. Note that by 
the Smale conjecture, the space of embeddings of the 2-sphere into the 3-sphere is 
homotopy equivalent to a real projective 3-space. So the space E above is homotopy 
equivalent to a real projective 4-space with an open 4-ball removed. There are then 
obvious nontrivial cycles in Hq(E,G\Z2) in dimensions q = 1 to 4 as asserted, 
giving the required sweepouts. Jost [Jt] has used these sweepouts to show that for 
any Riemannian metric on the 3-sphere there are at least four embedded minimal 
surfaces. Our observation here is that as in Sections 1 and 2, using the complexity of 
PL minimal surfaces we can show that given such an n-parameter sweepout there is 
a critical point giving an index n polyhedral minimal surface. Such a surface must 
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meet every 2-simplex in arcs that are hyperbolic geodesies, because otherwise there 
is a local isotopy decreasing length. We concentrate on describing higher index 
disks properly embedded in tetrahedra. For the most interesting applications to 
knots, links, and finite group actions on the 3-sphere, S is a 2-sphere or torus, 
so there is a bound on the number of tubes connecting disks. (If there are many 
tubes then it is easy to see that these tubes must connect parallel spheres and 
this case cannot occur for critical points of sweepouts. Note that a tube must be 
unknotted if it is to contribute to the index, i.e to allow a boundary compression 
of the surface across an edge.) 

Now a disk is an 777,-gon for some m. Such 777,-gons can be conveniently classi
fied by passing to the orbifold universal cover of the 4 punctured sphere, which is 
4 equilateral Euclidean triangles glued together. The boundary circle of the disk 

_can be collapsed onto an arc.joining two-of-the vertices in two ways. This arG-
lifts to an interval in the orbifold universal cover, which can be isotoped to be a 
geodesic. So taking the equilateral triangle tesselation of the Euclidean plane, the 
arcs are classified by picking straight lines joining the lifts of two different vertices. 
It is easy to see then that the corresponding 777,-gons have m = Ak. The case of 
777, = 8 gives a disk that contributes index one to the corresponding surface S. 
For 777, = 12, it can be shown that the disk cannot occur as a minimax in a one 
parameter sweepout. In fact there is an edge of the tetrahedron met 3 times by 
the boundary of the disk. There is a pair of 2-gons on either side of the disk giving 
boundary compressions to this edge. The 2-gons meet at one point and so the disk 
can be simultaneously boundary compressed using these 2-gons. This "flattens" 
the maximum complexity occurring at this disk and so the disk cannot be viewed 
as having index one. Also the disk does not have index two because it cannot be 
a local maximum in a 2-parameter sweepout. 

In the general case of an 777,-gon, where in — Ak for k at least 3, the disk has k 
boundary compressions or 2-gons on each side, giving local moves of the disk across 
edges decreasing the weight by two. However there are alwaj^s pairs of 2-gons on 
each side as in the example of the 12-gon with the property that the 2-gons meet at 
a single point. These 2-gons can be used to perform two boundary compressions of 
the disk at the same time as before. Using Cerf theory [Ce], a region R in the space 
E can be found where all the embeddings in R are isotopie to each other without 
changing the intersection pattern with the 1-skeleton. At the boundary B of R all 
the embeddings have langendes with edges of the triangulation. We can assume 
for simplicity that these tangencies all occur for various boundary compressions 
of the m-gon under consideration. Note that in general we have to consider births 
and deaths of critical points, not just saddle tangencies. 

As an example, a 16-gon can be used to define a local maximum of a 2-
parameter family, using two 2-gons A and A! on one side and J and J1 on the other. 
Here only A and J meet, as do A! and J'. For example, suppose J" is another 2-gon 
that meets both A and A' in one point and is disjoint from J and J', so that A, 
A', and Jn define boundary compressions to an edge intersected by the 16-gon in 
four points. (See Figure 1.) Then the effect of simultaneously doing the boundary 
compressions defined by A, A!, and Ju is to give a new 2-parameter sweepout 
where the maximum complexity is decreased. Indeed the boundary compression 
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Fig. 1 

using J" is "compatible" with all the other boundary compressions and so can be 
done throughout the sweepout. Note that in general several different choices of 
additional boundary compressions may need to be made to achieve this outcome. 

Our conclusion is that no m-gon actually occurs as a critical surface of maxi
mum complexity for an n-parameter sweepout for ra bigger than 8! I appreciate a 
very helpful conversation with Thompson on this argument. Note also that if two 
parallel octagons occur in the same tetrahedron, then the surface cannot occur 
as a critical point for an index one or two sweepout. Hence no configuration with 
parallel octagons occurs in an n-parameter sweepout. 

To finish we discuss higher order thin position in the sense of Gabai [Ga]. 
Suppose a knot or link, denoted K, is given in the 3-sphere. As above there are 
TV parameter sweepouts of the 3-sphere by 2-spheres for n between 1 and 4. We 
use as a measure of complexity the number of intersections of the moving sphere 
with K. For a one parameter sweepout, a minimax surface is said to be in thin 
position. It has the crucial property that if 2-gons are given on either side of the 
2-sphere with one boundary arc on K and the other on the sphere then the 2-gons 
intersect. Note the obvious connection to the 2-site argument. Also, as the thin 
position surface is a local maximum for complexity there must be such intersecting 
2-gons above and below it. (Intersection of 2-gons must be at a point other than a 
2-gon vertex — if 2-gons only share such a vertex we consider them to be disjoint.) 

Next suppose we choose the canonical 2-parameter sweepout and find a crit
ical surface with regard to this measure of complexity. The analogous property of 
index 2 thin position is that there are four 2-gons, A and A! above the sphere and 
J and J' below it, so that only A and J plus A! and J' intersect. Moreover any 
other 2-gon on the A, A! side must intersect either J or J' and similarly a 2-gon 
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on the other side must meet A or A!. The definitions of index 3 and 4 thin position 
are similar. 

5. Finite group actions on the 3-sphere 

We end with a discussion of the proof of Theorem 1. The idea comes from [PR2]. 
As an illustration consider the case of a prime odd cyclic group acting on the 
3-sphere. Let g denote a transformation generating this action. To show that the 
action is equivalent to a linear action it suffices to show that there is an invariant 
unknotted torus. 

Bjr the S male conjecture, the space T of such unknotted tori is homotopy 
equivalent to the product of a 2-sphere with itself divided out by a free Z^ action. 
We now get an induced action of the prime cyclic group, on T without a fixed 
point, if the action is not standard. Our aim is to find a contradiction. 

There are easily shown to be nontrivial equivariant Zv cycles in T in all 
dimensions. We can then realize these by sweepouts, although in general the pa
rameter space will be a chain rather than In modulo its boundary, as before. 
However each such equivariant cycle in dimension n jdelds a critical surface of 
index n. Note that this surface may have several pieces, which arc one torus and 
a number of 2-spheres joined by thin tubes. The total index is measured as above, 
with unknotted tubes contributing as well as octagonal pieces that are "isolated" 
in tetrahedra. 

But then there is a bound on the index of surfaces we can generate in this 
way and we get a contradiction to the assumption that the action on the torus 
space T was free. Hence there is an invariant unknotted torus and the action on 
the 3-sphere is equivalent to a linear action. 

For the other assertions in Theorem 1, we need to clarify the argument in 
[PR2] about how larger finite group actions are built up by successive applications 
of the same argument. The main problem is to avoid dealing with a space of surfaces 
for which the homotopy type cannot be computed, as the Smale conjecture has not 
been shown for all 3-dimensional space forms, only the class of prism manifolds by 
the work of Ivanov [Iv] and some other examples in [McR]. 

For example, suppose we want to deal with a dihedral group of order Apq 
acting freely on the 3-sphere. There is a cyclic normal subgroup of order 2pq. By 
our previous discussion, a subgroup of this order p acts linearly. Using a theorem 
of Myers [My], it then follows that a subgroup of order 2p acts linearly, so the 
quotient space is a standard lens space L(2p,r), for some r. Finally we observe 
that the dihedral group has a subgroup that is dihedral of order 4p, which contains 
this cj'clic subgroup of order 2p (and is of course not normal). Again by Myers' 
theorem, the action of this dihedral group of order Ap is equivalent to a linear 
action. Now the surface space we use, which plays the role of T above, is the space 
of invariant Heegard tori T* in the lens space L(2p, 7̂ ), which are flipped over by 
the involution giving the D(Ap) action. By results of [Iv], (see also [McR]), the 
homotopy type of T* can be computed because it is the same essentially as the 
space of Klein bottles embedded in the prism manifold with fundamental group 
D(Ap). There is an induced action of the dihedral group D(2q) on T* and this 
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can be analyzed by the above technique. T h e result is the proof of the existence 
of a D(2q) invariant torus, showing tha t the quotient manifold under the D(Apq) 
action on the 3-sphere contains an embedded Klein bottle. This completes a sketch 
of the main features of the argument for Theorem 1. 
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1 Introduction 

In this paper I would like to survey and strengthen some of the connections be
tween topology and other areas of mathematics, pure and applied, and areas be
yond mathematics as well. One type of problem that appears in many areas of 
mathematics, applied mathematics, physics, economics, and probably other sci
ences concerns the summing of the values of a function over a discrete set of 
points in a prescribed region of space. Slightly more precisely, let L be a lattice 
in Euclidean space Rn , such as the set of points with integral co-ordinates. Let 
S C Mn be a region, and let / be a (reasonable) function. Then how can one write 
(or approximate) the sum J2xeLns f(x) m terms of quantities that are continuous 
or continuously computed from / and the (static) geometry of the region S? For 
example, if / = 1, one is asking for a computation of # (L D S), the number of 
lattice points in S, in terms of its geometry. 

The classical Euler-MacLaurin formula provides a solution to this problem 
for S = [a, b] C M1, a and b integers: 

b fb 1 °° R r i 

£ / ( * ) = / / (s)+5[ / (a)+/(fc)]+D-^ (°) 
a Ja 2 

for the case when / is a polynomial (or in general when the remainder term goes 
to zero). Here Br is the rth Bernoulli number. 

In dimension two, for A C M2 a convex polygon with integral vertices (a 
"lattice polygon"), and / = 1, Pick's theorem says 

# ( A n L) = vol(A) + "Perimeter" A + 1. (1.2) 

"Perimeter" is the sum of normalized lengths of the edges, where the normaliza
tion is to require that adjacent lattice points on each edge have distance one. In 
dimension three, Mordell gave a formula, involving Dedekind sums, for counting 
the lattice points of a certain lattice tetrahedron. As one consequence of his work 
of singular toric varieties, Pommersheim obtained the corresponding result for all 
tetrahedra. 
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For certain special polytopes, Khovanski and Pukhlikov obtained an inter
esting result with a somewhat different flavor, by considering infinitesimal parallel 
motions of the codimension one faces. Assume that minimal lattice vectors paral
lel to the edges meeting any given vertex of the convex lattice polytope A form 
a lattice basis. (This is equivalent to the smoothness of the toric avriety X A ; see 
Section 5.) Let h = (hi,... , hk) parametrize parallel motion of the k codimension 
one faces of A, and let A/t be the resulting convex polytope. Let 

^ i ô = nr^==r- (L3) 

Then YI f(x)=T(d/dhi,...,d/dhk) [ f\ . (1.4) 

_ Cappell and I found a complete and explicit solution for convex lattice poly-
topes in any dimension. Our results have the following form: 

1.5 There exist infinite order linear partial differential operators PE, E any face 
of A, with constant rational coefficients, such that for any f, 

XELnA E<A **E 

Here VE is Lesbesgue measure, normalized so that the fundamental domain 
in the intersection of L with the plane of E has volume one, and the operators PE 
are unaffected by parallel translation of facets ( "fan invariance" ). The collection 
{PE I E < A} will be called an Euler-MacLaurin expansion for A. 

Cappell and I give an explicit description of the operators PE in terms of the 
geometry of A ; see Section 6. The coefficients of the operators reflect the geometry 
of A in the same way that Bernoulli numbers reflect the geometry of intervals. 
The constant terms in the operators PE yield formulae for the Hilbert-Ehr hart 
polynomial PA(^) = # ( £ H A;A) in all dimensions, extending Pick's theorem for 
dimension two and calculations of Mordell and Pommersheim's calculation dim 
A = 3. Partial expansions with remainder will be discussed elsewhere. 

Topologists seek to classify spaces up to homeomorphism or other suitable 
notions of equivalence (e.g. piecewise linear homeomorphism or diffeomorphism), 
usually by means of distinguishing invariants. For example, let 

e(X) = ^ ( - 1 ) * #(cellsof dimensioni), (1.6) 

the Euler-Poincaré characteristic. Then e(X) turns out to be a topological invari
ant, and a compact orientable surface is determined by this invariant. 

This classification endeavor, often called "surgery theory", had many suc
cesses in the study of manifolds, starting with the work of Kervaire and Milnor, 
and then of Browder, Novikov, Sullivan, Wall, and many others. The L-classes 
Li(M) G #n-4i (M n ;Q) , which will be described in Section 2, play a key role 
throughout this theory, as illustrated by the celebrated early result of Browder-
Novikov. 

1.7 The diffeomorphism type of a closed smooth manifold of dimension at least 
five is determined up to a finite number of jjossibilities by its homotopy type and 
its L-classes. 
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Their results also show: 

1.8 In a homotopy type every possible L-class can arise, at least up to a finite 
index and satisfying the Hirzebruch signature theorem [H]. 

Gradually, however, topologists were forced to ventine more and more out
side the world of manifolds. For example, motivated by questions in transformation 
groups, Browder and Quinn extended the manifold theory to the category of strat
ified spaces and isovariant transverse maps. In our work exhibiting topologically 
conjugate but linearly distinct real representations of finite groups Cappell and 
1 were implicitly working with a stratified situation, and this became explicit in 
our further work with Steinberger, West, and Weinberger. Most relevant for the 
present discussion, nontrivial stratifications also arose in my earlier work with 
Cappell on piecewise linear submanifolds; see Section 3. 

The introduction of intersection homology by Goresky and MacPherson gave 
an enormous impetus to the study of stratified spaces. In particular they and 
Cheeger defined L-classes for stratified spaces with even codimension strata. For 
example, Cappell and Weinberger, proved the analogue of 1.7 for stratified spaces 
with even codimension strata. In this paper I will describe how Cappell and I 
studied these classes and how we applied our methods and results to invariants 
and classes of algebraic geometry and to the problems mentioned above. 

2 L-classes 

Let £ be a vector bundle over a reasonable space (e.g. a finite complex) X. Factor 
formally the total Chern class of the complexification of £, 

1 + ci(£ ® C) + . . . = (1 + T I ) . . . (1 + 7 f c). (2.1) 
Then 

actually lies in H*(X; Q) and defines the Thorn-Hirzebruch L-classes of £. In fact, 
these are universal polynomials L — £(pi,... ,pn,...), where Pi(£) = (—l)*C2i(£ <8> 
C). Recall 

1 OO j - , 

If M is a manifold, we set C(M) = C(TM), TM the tangent bundle. For example 

£ (CP n ) = ( l - h c 2 ) n + 1 , (2.4) 

where c is a generator of H2(CPn). 
All this is beautifully explained in [H]. For M oriented, the signature a(M) 

is the index of the intersection pairing on i?2/c(Af) and the famous Hirzebruch 
signature theorem asserts: 

a(M) = [ C(M). (2.5) 
JM 
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For manifolds let L(M) = C(M) n [Af] be the Poincaré dual of C(M). Just 
for a moment, let M be a complex 71-manifold whose stable tangent bundle splits 
as a sum of line bundles with Chern classes ai,..., a^. Let Td(M) be the Poincaré 
dual of the Todd class of M. Let M^...^ be a submanifold of M dual to G^1 . . . a%£ 
(such a submanifold always exists). Let 

T(M) = [M] + 2Td2 n_2(M) + 4Td 2 n_ 4(M) + . . . . 

Then (omitting inclusion induced maps from the notation) 

T{M)= £ L(Maii...aih). (2.6) 
7 i< . . .<» fr 

This result is a homological restatement of something Hirzebruch used to 
derive the Riemann-Roch theorem from the signature theorem. 

Let V1 C V x Mn_?: C Mn be a submanifold with trivial normal bundle, and 
let ipH [M] = [V] E Hi(M) (we omit inclusion induced maps from the notation). 
Then (2.5) implies 

a{V) = j <p. (2.7) 
JL(M) 

Thorn showed that (2.7) can be used as a definition of L(M) G H*(M;Q) for M 
a piecewise linear manifold, and for suitable spaces, e.g. algebraic varieties, (2.7) 
can be viewed as the definition of an invariant L(X) — the Goresky-MacPherson-
Cheeger L-class — extending the above Thom-Hirzebruch class to stratified spaces. 
For more sophisticated definitions, see [Si], [CSW]. 

One should note that these classes are homeomorphism invariants. For man
ifolds, this was proven by Novikov. For stratified spaces this essentially is a conse
quence of the local character of the sheaf-theoretic proof of Gorensky-MacPherson 
of homeomorphism invariance of intersection homology (cf. [CSW]). 

3 Mapping theorems for L-classes 

This section will describe some results of Cappell and myself relating L(X) and 
L(Y), when X and Y are stratified spaces and f'.X —> Y is a map. When X 
and Y are manifolds and / a bundle map or a smooth embedding, there are many 
classical results [H], [CHS], [At] but such maps are actually fairly rare. 

One could work with various notions of stratified space. Although Quinn's 
homotopy-theoretic definition is in many ways the most flexible and advantageous, 
here I will stay closer to geometry. A stratification of a space is a filtration 
cj) = X-i C XQ C . . . C Xn = X such that, first of all, the open i-stratum 
Xi — Xi-i is an i-manifold (or empty). Let Vx be the set of components of open 
strata. Then, in addition, it is assumed that near x E V G Vx,X looks like 
D% x cone(Ly), where i = dim V and Ly is a stratified space of dimension n — i — 1, 
with x = {0} x {cone point}. It will also be assumed that n — dim V is even. For 
example, a complex algebraic variety has such a stratification (even satisfying 
Whitney's conditions), with the additional property that V is a subvariety; see 
[GM3] for references. 



616 Julius L. Shaneson 

A (surjective) map / : X —> Y is stratified if for each V G V y , / - 1 ^ is a 
union of components of open strata of X, and / | f~1 V is a locally trivial map. (In 
Thorn's theory one assumes that the derivative of / is surjective on each stratum 
in the inverse image and then uses the first isotopy lemma to prove local triviality.) 
Again, algebraic morphisms are stratified. 

Given / stratified, for each V in Vy, with dim V < climY, we define 

Ny = NVJ = / - ^ c o n e L y ) U c o i i e t f " 1 ^ ) ) , 

a stratified space with even codimension strata. For dim y = dim y , let JVV = 
f~1(v)i some v in V. 

3.1 Assume each V G Vy is simply connected. Then f*(L(X)) = }^L(V)a(Ny). 

The terms on the right in (3.1), for singular strata, can be viewed as describing 
in terms of the singular structure the difference between f*(L(X)) and what we 
would expect — (L(Y)a(f~1 (pt)) — from the bundle case (see [CHS]). 

Without simple connectivity, the terms on the right become L-classes of V 
with coefficients in the nonsingular intersection pairing on IH™ (Ny), dim Ny = 
2c, viewed as affording a form-preserving representation of TTIV. This situation can 
sometimes be analyzed as in [At] for bundles, but a completely general description 
in terms of some kind of product of characteristic classes of the stratum and of 
the representation remains to be found. 

Actually, the interest of Cappell and myself on these questions goes all the 
way back to our work on piecewise linear embeddings in the early 1970s, in which 
we discovered an at first somewhat surprising result (see [CS3], also Cappell's ICM 
talk [C]). 

3.2 Let Mn be a smooth of piecewise submanifold ofWn+2,n > 4. Let h:Nn —> 
M be a homotopy equivalence. Assume M is simply connected. Then the composite 

g: N —> M (ZW is homotopie to a piecewise linear embedding. 

This result was surprising because if g is a smooth or PL locally flat em
bedding (i.e. locally smoothable), then g*L(N) = L(M). On the other hand, 
according to 1.8, there are many N in the homotopy type of M, with different 
L-classes. Qualitatively, this means that the embedding N C W must fail to be 
locally smoothable in a rather dramatic way: the set of non locally smoothable 
points must carry a cycle representing L(N) — g~1L(M). 

In fact, the degree on non-local-smoothability imposes a nontrivial stratifi
cation V on AT" (with connected strata), such that near each point of y G V, the 
pair (W,N) looks like Dl x cone(Gy,Fv) with i = dimK Because W and N are 
manifolds, Gy ** S71-^1 and Fv ^ S"-*-1 . 

Using a torsion pairing on intersection homology with local coefficients in 
the ring Q[£,£-1] of Laurent polynomials, we were able to recover all the usual 
invariants, e.g. the signature, of knot cobordism for such very general singular p.l. 
knots. For any p.l. embedding of a stratified space Xn in a manifold Wn+2, with 
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even codimension strata (e.g. a hypersurface in a complex algebraic variety), let V' 
be the set of components of singular strata, and assume each Y simply connected. 
Then the relation between singularities and characteristic classes is made explicit 
by the formula [CS9] 

[X] n o*£ {P(W) U (1 + x2)'1} - HX) = £ L ( V > ( G V ; Fy). (3.3) 
v 

Again, without the simply connected hypothesis one must use L-classes for rep
resentations of mV preserving the appropriate torsion pairing. Actually, (3.3) is 
a special case of a result valid for any characteristic class associated to a knot 
cobordism invariant. The result (3.3) for the term of maximal dimension affected 
by singularities, i.e. (Gy\Fy) a smooth knot, was proven, but not published, by 
Cappell and myself in the 1970s. A similar argument proves the top dimensional 
case of (3.3), at least for X a manifold. 

The equivariant class AG(X) G K^(X;l4^0^) defined by Cappell, Wein
berger, and myself [CSW], where G is a finite group acting on X, also obeys an 
equivariant version of the mapping formula. 

4 Genera for algebraic varieties 

The goal of this section is the study of a morphism of complex varieties. It will 
be assumed that / : X —> Y is a projective morphism, Y is irreducible, and / has 
been stratified so that the strata are subvarieties; this is always possible (see, e.g. 
[GM3]). In principle, the results of the previous section are perfectly applicable to 
this situation. However, (3.2) has the disadvantage that if X and Y are algebraic 
and / an algebraic morphism, Ny, V G V, will usually not be a variety at all. 
To remedy this problem, we use algebraic analogues of the topological notion of 
neighborhood, and complete by projectivizing instead of coning. More precisely, 
for Z an irreducible subvariety of a variety Y, defined by a sheaf of ideals £, the 
normal cone is defined as 

CzW
r = Spec[0r i /r+ 1 | 

Let P(CzW © 1) be its projective completion. (See [Fl, Appendix B]). Let 
Py}Y be the general fiber of the natural map P(Cy © 1) —> V, and let Pyj be 

the general fiber of P(Cf-iy © 1) —• f~lV -^ V. Define inductively L(V) G 

H*(V]Q)by 
L(V) = L(V)- ] T o-(PViW)L(W), 

w<v 

where the sum is over W G Vy with W C V. 
Let F be the general fiber of / . Then assuming either simple connectivity of 

the strata of Y or some kind of triviality of monodromy, we obtain [CS10]: 

f.L(X) = a(F)L(Y) + £ {a(PVJ) - a(F)a(Pv,Y)} L(V). (4.1) 



618 Julius L. Shaneson 

This property of a characteristic class will be called the stratified multiplicative 
property. When simple-connectivity of strata is not assumed, it must be rephrased 
in terms of L-classes with coefficients in a representation of TTI, as in Section 3. 

If one assumes that the normal cones above actually describe the topological 
normal structure of strata and their inverse images, then (4.1) can be derived from 
(3.2), additivity of signatures, and the fact that the signature of a suspension is 
always zero. However, this assumption is usually not valid, and we prove (4.1) 
using some much more algebraic geometric techniques. 

Moreover, Cappell and I were able to use these methods to prove much more. 
for X a projective variety over C, Saito [S] proved the existence of a pure Hodge 
structure. Let Ihp,q(X) be the corresponding Hodge numbers. Let h?'q be the 
Hodge numbers of Deligne's mixed Hodge structure on H%(X;C). Consider the 
genera 

%,(*) = £ $>ir^r*(x) 
z,q 

tf and IXy(X) = £ J2(-i)W(x) VP-

For example, X-i = e is the Euler-Poincaré characteristic, Ixi = cr is the 
signature discussed above, and Ixo and xo are two possible extensions of the 
arithmetic genus to singular varieties. These genera extend to characteristic classes 
Ty and ITy whose values in dimension zero are the different genera. For example, 
T-i is the total MacPherson-Chern class, ITi — L is the L-class, and To is the 
image in homology of the Baum-Fiilton-MacPherson Todd class [BFM1,2] that 
appears in the generalized Grothendieck-Riemann-Roch theorem. 

4.2 The genera Xy>IXy> and their characteristic classes satisfy the stratified mul
tiplicative property. 

For example, let X be obtained from Yn by blowing up a point y. Let D — 
P(C{y}) = f~1(y) be the exceptional set. Then 

e(X) = e(Y) + 2e(D) - e(P(C{y} © 1). (4.3) 

If y is a smooth point, D and P(C^yy © 1) are projective spaces, and this is the 
well-known result 

e(X) = e(Y) + n - 1 (4.4) 

for blowing up a smooth point. 
The result 4.2 for the Euler characteristic (in the version involving nontriv-

ial monodromy) essentially includes results like the generalization of Riemann-
Hurwitz given in [DK], [I], [K, (III, 32)]. 

5 Toric varieties 

Toric varieties provide one way of relating the two problems discussed in the in
troduction. Let An C M71 be a lattice polytope. Let J7 be the set of codimen
sion one faces of A. For each face E < A let TE = {F G T\E C F}, so that 
E = f]{F\f G TE\- Let np G L be a minimal lattice vector orthogonal to L, 
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pointing into A. Let Tn = Rn/L be the 7i-torus. Let V£ = 0 ^ RnF,E a face 
of A, be the orthogonal subspace to E. Let L^ = Vjjr D L. Let TE C Tn be 
the subtorus TE = V^/Lj^ C Rn/L. (This notation will also be needed in the 
next section.) Then let XA bc defined as the quotient of A x Tn by the relations 
(x,t) ~ (x, st) for x e E and s e TE. 

From this definition it is clear that XA is compact and has an action of Tn 

without quotient A. Let TT:XA —> A. Then XE = n~1(E) is also a toric variety, 
and XA is stratified with strata X°E = 7r~1(E°). Usually XA is really singular, 
even for polytopes in the plane. The condition needed in (1.4) is equivalent to 
smoothness of XA. 

Just from topological considerations, it is clear that invariants of XA are 
related to properties of A. For example, the fixed set (XA)T of the T"-action is 
finite and . _ 

e(XA) = # (XAfn] = # o f vertices of A. (5.1) 

However, the important applications require the algebraic structure which is more 
readily apparent from the definition of XA in terms of the dual fan E A • The cones 
a E of this fan are spanned by rays R>QIIF, F G TE- For any cone a in a fan E, let 

Ua = Spec {C [n G L | n • u > 0 for all u G a}} . 

These affine pieces fit together to form a variety X^, and X^A = XA. The relation 
between invariants of XA and counting lattice points in A is a consequence of the 
Riemann-Roch theorem: 

5.2 Let Td(X^) G H*(X&;Q) be the (image of the) Todd class, and suppose that 

Td(X) = J2 *E[XE\-
E<A 

Then for the Ehrhart-Hilbert polynomial PA(k) = #(&A H L) one has PA(k) = 
ank

n H h aik + ao with am = J2dim E=m aE^(E), where v(E) = JE dvE is the 
normalized volume as described above. 

All this was well understood before 1980, and is clearly explained in many 
references, e.g. [Kh], [D], [O], [F2], in chronological order. For ease of exposition 
we will also assume that A is simple (77, edges meeting each vertex). In this case, 
[D], [O], [F2] also include the explicit calculation of #*(ÀV,Q) = A* (X) ® Q ^ 
# * ( ^ A ; Q ) - (For the general case, see [FS]). 

Cappell and I realized already in the mid-1980s that sufficiently powerful 
mapping theorems for characteristic classes, together with what was already known 
about toric varieties, would lead to a computation of their Todd classes, and hence 
to the calculation of the Ehrhart-Hilbert polynomial. However, the first significant 
result for singular toric varieties was obtained by Pommersheim in his 1991 Ph.D. 
thesis. He calculated Td2n_4 (denoted Td2 in [P]), which is the highest dimensional 
Todd class that can be affected by singularities. A resolution of X^ can be obtained 
as Xw, where the fan E' is obtained by defining E by adding more rays to make 
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the cones nonsingular. Pommersheim used the canonical and explicit procedure 
for doing this through cones of dimension two described, for example, in [O], 
and the fact, also in the above references, that 7r*(Td(Xs')) = Td(X^) to make 
his calculation. He formulated his results by defining a "mock" class TD(XA) as 
the Todd polynomial in the homology classes [XE] — which would equal Td in 
the smooth case — and calculating Td2n-4(-^A) — T D 2 T I _ 4 ( X A ) . In particular, 
he obtained a formula for an_2; because an = vol(A),an_i = \^2pv(F), and 
a0 = 1 were known, the computation of P A for tetrahedra follows. Pommersheim 
also used his computation in dimension two to reprove and extend the reciprocity 
formulae [Mo], [R] for classical Dedekind sums. The results of this section and 
the next imply many reciprocity-type formulae for generalized Dedekind sums. 
(Cappell and I are grateful to Pommersheim for explaining his work to us prior to 
publication.) 

In contrast to this direct attack, Cappell and I take advantage of the relation 
of Todd classes and L-classes and use our mapping theorems. From (2.6) and the 
above mapping theorems, even the topological versions, it follows that 

T(XA) = [XA] + 2Td 2 n_ 2 (XA ) + 4Td 2 n_ 4(XA) + •.. 

is a linear combination of the (images under the maps inclusions of the) classes 
L(XE), E < A. But by using the algebraic versions of Section 4 and taking advan
tage of some known facts about invariants of toric varieties (e.g. x ( ^ s ) = 1 from 
[D] and others), we obtain 

T(XA) = J2 L(XE). (5-3) 
E<A 

Hence the problem is reduced to computing L-classes, which we do by con
sidering branched coverings corresponding to certain sublattices of L of rank n 
and applying appropriate versions of methods from transformation groups, such 
as the G-signature theorem (see [H], [CSW]). 

To describe our result, define mock L-classes and T-classes as 

and 
T^(XA)= ^LW(XE). (5.5) 

E<A 

Then let G E = L^/Z{TIF\F G TE}, a finite group whose order is by definition 
the multiplicity m(E). (Note: XA is smooth iff m(E) = 1 for E < A.) Let mf G 
L^, F G TE, be the minimal elements with rn^muF' = 0 for F ^ F( and raj^n^ > 
0. For g G GE the coset of m G L, let ^(g) = (m • mp)/(nF • m^)_1, and let 

G°E = {ge GE\^(g) £ ZforallF G TE}. 

Let .AA = 1 and for E < A let 

^ = J^y E II c o t h
 \^F(9) + l[XF}} • (5.6) 
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Then our general calculation of Todd classes in toric varieties is then given 
by the formula: 

T(XA)= ^T^(XE)AE- (5.7) 
E<A 

Finally, note that Pommersheim's mock class T D ( X A ) and T^(XA) are 
not the same, even up to powers of two. In fact 

TDi(XA) = (2)'"" £ mW^lJrHXB). (5.8) 
E<A 

Using this, one recovers the results of [P] on Td2n_4 mentioned above. For 
other valuable perspectives and results on Todd classes and toric varieties, see the 
work of Brion [B] and Morelli [Mr]. 

6 Euler-MacLaurin formulae 

Finally, here is the promised determination of the operators PE in (1.7). For / 
constant; i.e., for counting lattice points, it would be enough to apply (5.7) and the 
known calculation of H(XA\Q). In general, one has to consider an infinite family 
of toric varieties lying over XA, associated to monomials in variables measuring 
suitably normalized distances from facets, and show that the bits of information 
obtained from each fit together compatibly to obtain the result that will now be 
described. In effect one is defining and computing a Todd class in some type of 
enhanced Chow ring and using it to derive an Euler-MacLaurin formula, but the 
presentation here will use a language more analogous to the polytope algebra [Mc] 
(see also [FS]). The role of ground ring will be played by V = Q [[di,..., dn]], the 
ring of formal power series in n variables. For in = (mi,... ,mn) we set Dm = 
midi + • • •m n S n . 

Let HE = {F G T - TE\FnE ^ $}. Let P0(A) be the polynomial algebra 
over T> on generators Up, F G T. Let S(A) be the quotient of this algebra by 
the ideal generated by the elements C/^ UF2 •. • Upk for F\ f i . . . D F^ = cj), and the 
elements 

Dm + y^(m • UF)UF 
T 

for 771 G L. (Of course, it suffices to consider any n linearly independent elements 
of L.) Let p be the quotient map, and let W = PQ(UF). 

Let V(A) C Po (A) be the graded £>-submodule generated in dimension k by 
monomials UF1 • • • Upk with Fi,...,F/~ pairwise distinct and F\ f i . . . C\Fk ^ (ß. Let 
p:V(A) —> Q(A) be the V-module map defined by setting 

p(UFl ...UFk)= m(Fi n . . . n Fk)WFl • • • WFk • 

6.1 The map p is surjective. 
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The proof (see [CS 11]) actually provides an inductive procedure for lifting 
elements. For E a face of A let 

Note from (6.1) tha t 0 ( A ) is closed under completion with respect to mono
mials in the WF. Let U(A) = 1 and for E < A let 

u w = ^ ë ) E I I c o t h { * * £ ( * ) + \ W A • 

GE FK 

Then set T(A) = ]T T(E)U(E). 
E<A 

6.2 Let d operate on polynomials by partial differentiation d/dxi. Let 

s=Yl PEUE e ^( A ) 
E<A 

where PE G V and UE = YlrE UF (UA = 1), with p(E) = T(A). Then 

XELHS E<AJE 

dv E-

It is not hard to see tha t for A an interval, this result gives the classical 
Euler-Maclaurin formula. For illustration in detail of the case of a polygon, see 
[CS11]. 
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Positive Scalar Curvature Metrics — Existence 
and Classification Questions 

S T E P H A N S T O L Z * 

Department of Mathematics 
University of Notre Dame 
Notre Dame, Indiana 46556, U.S.A. 

1 Introduction 

Let M be an n-dimensional manifold (all manifolds considered in this paper are 
smooth, compact, and, unless otherwise specified, their boundary is empty). In 
this note we discuss what is known with respect to the following 

QUESTIONS. 

(1) Under which (topological) conditions docs M admit a positive scalar cur
vature metric, i.e., a Riemannian metric whose scalar curvature function 
is positive everywhere? 

(2) What is the number of connected components of the space of positive scalar 
curvature metrics on Ad? 

Concerning the first question, the work of Liclmerowicz [Li], Hitchin [Hi], and 
Rosenberg [Ro2] shows that the existence of a positive scalar curvature metric on 
a spin manifold M implies the vanishing of a topological invariant a(M). This 
invariant is a generalization of the Â-genus A(M). It can be interpreted as the 
"index" of a (generalized) Dirac operator and lives in KOn(C*ir), the real if-theory 
of the (reduced) C*-algebra of 7r, the fundamental group of M (cf. 4.3). 

According to the Gromov-Lawson-Rosenberg conjecture, the vanishing of 
cx(M) is necessary and sufficient for the existence of a positive scalar curvature 
metric on spin manifolds M of dimension n > 5. This conjecture has been verified 
for simply connected manifolds [Stl], and for manifolds with certain fundamental 
groups (cf. 4.5). A weaker version of the conjecture, the "stable conjecture" (5.2) 
has been verified for finite fundamental groups [RS2], [RS3], and for large classes 
of torsion free groups (cf. Corollary 5.5, Theorem 5.6). 

The second of the above questions can of course be vastly generalized; one can 
wonder about the homotopy groups, the homology groups, or the homotopy type 
of the space !ÎH+(M) of positive scalar curvature metrics on M. However, even the 
classification of the components eludes us so far. To the author's best knowledge, 
there is not a single manifold M except the 2-sphere or the real projective plane, 
for which 7TQ(9ì + (M)) is nonempty and has been completely determined! 
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The situation becomes a little easier if we replace 7TO(ÜH+(M)) by TTQ(9V~(M)), 

the concordance classes of positive scalar curvature metrics on M. Here, in analogy 
to the corresponding terminology for diffeomorphisms, we call two positive scalar 
curvature metrics on M isotopie if they are in the same connected component of 
9i+(M) and concordant if there is a positive scalar curvature metric on M x [0,1] 
that is a product metric near the boundary and restricts to the given metrics on 
the boundary. It is known that (as for diffeomorphisms) isotopie positive scalar 
curvature metrics are concordant, but the following question is wide open. 

QUESTION. Are concordant positive scalar curvature metrics isotopie? 

In the case of diffeomorphisms, it is known that the difference between isotopy 
and concordance is measured by algebraic if-theory, and one might speculate that 
the same is true here. 

The main result concerning 7TQ(9{+(M)) is that it depends only on the fun
damental group 7T = 7Ti (M) and the first two Stiefel-Whitney classes of M. More 
precisely, there is an abelian group depending only on the dimension, the funda
mental group, and the first two Stiefel-Whitney classes of M, which acts freely 
and transitively on 7To(9l+(M)) (cf. Theorem 3.9 and [St3]). This group is defined 
geometrically as a bordism group. In this paper we restrict ourselves to spin man
ifolds which simplifies the exposition. The relevant group Rn+i(B7r) is defined in 
3.7 (here n is the dimension of M). 

These groups are of central importance in the understanding of positive scalar 
curvature metrics. Besides classifying positive scalar curvature metrics up to con
cordance, they play the rôle of obstruction groups for the existence of positive 
scalar curvature metrics (cf. Theorem 3.8), similar to Wall's Ln-groups in surgery 
theory [Wa]. Unfortunately, none of these groups have been calculated, not even if 
7T is the trivial group! This is basically due to the fact that unlike the Ln-groups, 
which have an algebraic definition as well as a description as a (relative) bordism 
group [Wa, Section 9], so far there is no algebraic definition of the i2n-groups. 

There are, however, results showing that the groups Rn(Bir) are frequently 
nontrivial; e.g., results of Hitchin and Carr (cf. [LM, Chapter IV, Section 7]) 
concerning the nontriviality of 7r0(9t+(M)), or results of Botvinnik-Gilkey [BG] 
can be reinterpreted in this way. A systematic way to derive all these results is to 
study the "index homomorphism" 

0 : i 4 ( £ 7 r ) ^ KOn(C;>ir), 

which maps the bordism class represented by a manifold M to the index of the 
Dirac operator on M. It is tempting to conjecture that 0 is an isomorphism, as 
this would imply the Gromov-Lawson-Rosenberg conjecture. In the author's opin
ion, this is too optimistic, because the if-theory groups are periodic of period 
eight, whereas there is no obvious periodicity in the groups Rn(Bir). However, 
we can enforce periodicity by "inverting the Bott-manifold" B. Here B is any 
simply connected 8-dimensional spin manifold with A(B) = 1. Multiplication 
by B induces a homomorphism Rn(Bir) —> Rn+s(E7r), and hence we can form 

RniBirftB-1] = lim Rn+8k(B7r). 
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CONJECTURE. 9 induces au isomorphism Rn(B7r)[B~1] -^ KOn(C*7v). 

Supporting evidence for this conjecture is that this map is rationally surjec
tive for finite groups 7T [St3]. Furthermore, injectivity of the map implies the Stable 
Conjecture, which as mentioned above has been proved for many groups n. 

2 Scalar curvature 

Let g be a Riemannian metric on a manifold M of dimension n. The scalar curva
ture is a smooth function s: M —> R, which is obtained from the curvature tensor 
by contracting twice. More geometrically, the scalar curvature at a point p is a 
measure for how fast the volume of the ball of radius r around p is growing with r. 
More precisely, we compare vol Br (M, p), the volume of the ball of radius r around 
p, with vol Br (M71,0), the volume of the ball of radius r in n-dimensional Euclidean 
space Wl, by expressing their quotient as a power series in r. Up to a dimension 
dependent normalization constant, the coefficient of r2 turns out to be the scalar 
curvature at p [Be, 0.60]: 

vol Br(M,p) _ s(p) 2 

volB r(K",0) 6 ^ + 2) K } 

In particular, if a Riemannian manifold has positive scalar curvature then the 
volume of (small) balls grows slower than the volume of Euclidean balls of the same 
radius. Examples of manifolds with positive scalar curvature are the 77,-dimensional 
sphere Sn, with its usual metric, as well as certain quotients of Sn, like projective 
spaces (real, complex, or quaternionic), equipped with the metric induced by the 
standard metric on Sn, n > 2. 

3 Bordism results 

A method that has been used successfully for studying manifolds is to decompose 
them into "handles", which is similar to the cell decomposition of a CW-complex. 
We recall that a "handle" is a product of two discs, say Dk x Dn~k. The boundary 
of this handle consists of the two parts Sk~l x Dn~k and Dk x Sn~k~1. Given an 
embedding of 5 , fc_1 x Dn~k into the boundary dW of an n-dimensional manifold 
W, we can construct a new manifold 

W = WU3k-ixDn-k Dk x Dn~k 

by taking the disjoint union of W and the handle Dk x Dn~k and identifying 
points in Sk~1 X Dn~k with their image in dW. One says that W is obtained by 
attaching a k-handle to W. 

It is natural to ask whether a positive scalar curvature metric on W can be 
extended to a positive scalar curvature metric on W. Here the Riemannian metrics 
we have in mind are product metrics near the boundary; i.e., a neighborhood of 
dW is isometric to the product of dW with an interval. 

3.1 CONVENTION. All Riemannian metrics considered in this paper are product 
metrics near the boundary. 
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3.2 HANDLE EXTENSION THEOREM (GROMOV-LAWSON [GLI], SCHOEN-YAU 

[SY], GAJER [Ga]). Let W he an n-dimensional manifold with boundary, and 
let W be obtained from W by attaching a k-handle. Ifn — k, the "codimension" of 
the handle, is greater than or equal to 3, then any positive scalar curvature metric 
on W can be extended to W. 

We note that dW is obtained from dW by "surgery", namely by removing 
Sh~l x Dn~k from dW, and sewing in Dh x Sn~k~1. In particular, considering 
W = Mx[0,l], the above result implies that if M admits a metric of positive scalar 
curvature and M is obtained from M by a surgery of codimension n — k > 3, then 
also M admits such a metric. In fact, this is what Gromov-Lawson and Schoen-Yau 
prove (independently); the more general statement (3.2) is due to Gajer. 

The idea of the proof of the Handle Extension Theorem is to deform the 
metric on W near the place where the handle will be attached in such a way that 
the deformed metric and the product metric on the handle Dk x Dn~k fit together 
to give a metric on W (here the metric on the discs is given by regarding them 
as hemispheres of the appropriate spheres). The deformation can be visualized as 
pulling out a "neck". If the codimension is > 3, this can be done in such a way 
that the scalar curvature of the deformed metric is still positive. 

The Handle Extension Theorem can be generalized as follows. 

3.3 EXTENSION THEOREM. Let W be a bordism between n-dimensional closed 
manifolds M, N; i.e., W is a manifold whose boundary is the disjoint union of M 
and N. If n > 5; and the inclusion M —> W is a 2-equivalence (i.e., the induced 
map on TTì is an isomorphism for i < 2, and surjective for i = 2), then any positive 
scalar curvature metric on N extends to a positive scalar curvature metric on W. 

Proof. Morse theory implies that W can be obtained by successively attaching 
handles to N x [0,1]. If the handle decomposition can be chosen to contain only 
handles of codimension i > 2, then the Extension Theorem implies that every 
positive scalar curvature metric on N extends to W. 

We note that a handle decomposition of W can be interpreted in two ways: 
we either (as above) think of W as being built from N x [0,1] by attaching handles, 
or we can think of W as being built from M x [0,1] by attaching handles. Each 
handle of codimension i in the first interpretation corresponds to an ^-dimensional 
handle in the second interpretation. Thus, our goal is to build W from M x [0,1] 
by attaching handles of dimension i > 2. 

Finding such a handle decomposition implies that W is homotopy equiva
lent to a CW complex obtained by attaching cells of dimension i > 2 to M. In 
particular, the inclusion map M —> W is a 2-equivalence. If n, the dimension 
of M, is greater than or equal to 5, the handle cancellation techniques used in 
the proof of the s-cobordism Theorem show that the converse is true as well. 

D 

The Extension Theorem shows that under certain conditions if a manifold 
M is bordant to another manifold N admitting a positive scalar curvature metric, 
then M admits a positive scalar curvature metric, too. In particular, it suggests 
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that whether a manifold M has a positive scalar curvature metric might depend 
only on its bordism class in a suitable bordism group. This is in fact true; however, 
for a general manifold M, the definition of the relevant bordism groups is somewhat 
technical [RSI, Section 3]. To simplify the exposition, we restrict our discussion to 
spin manifolds and passing remarks on more general cases. 

3.4 DEFINITION. Given a space X, let ü^in(X) be the set of bordism classes of 
pairs (N,f), where N is an 7i-dimensional spin manifold without boundary and 
f:N—*X is a map (two such pairs (Af, / ) , (Nf, f) are bordant if there is a bordism 
W between Af and N; (with compatible spin structure), and a map F: W —>• X 
restricting to / (resp. / ' ) on N (resp. N')). Disjoint union gives Cl^m(X) the 
structure of an abelian group known as the n-dimensional spin bordism of X. 

Let n*v'm>+(X) be the subgroup of Sì^ìn(X) represented by pairs (N,f), for 
which N admits a positive scalar curvature metric. 

3.5 BORDISM THEOREM (GROMOV-LAWSON [GLI], ROSENBERG [Rol]). Let A4 
be a spin manifold of dimension n > 5 with fundamental group IT, and let u: M —> 
BIT be the map classifying the universal covering of M. Then M has a positive 
scalar curvature metric if and only if the bordism class [M,u] is in the subgroup 
n^in^(B7r). 

Proof. Assume that [M, u] is in the subgroup Ç}^m,+ (B7r). This means that (M, u) 
is bordant to a pair (TV, / ) such that AT has a positive scalar curvature metric. Let 
(W,F) be a bordism between (M,u) and (N,f). 

After doing surgery on W, we can assume that F: W —> B-n is a 3-equivalence. 
Here we need the assumption that W is spin; otherwise, it might happen that we 
cannot kill ^(W) by surgeries because an embedded 2-sphere in W might have a 
nontrivial normal bundle! 

By construction, the inclusion M —> W composed with the 3-equivalence 
F'.W —> Bn is the map u, which is a 2-equivalence. This forces the inclusion map 
to be a 2-equivalence, and hence the Extension Theorem implies that the positive 
scalar curvature metric on N extends over W. D 

There is a relative version of the Bordism Theorem due to Hajduk, which we 
state after introducing the necessary notation. Let Pn(X) be the bordism group of 
triples (N,f,g), where N is an 77,-dimensional closed spin manifold, f:N-^Xis 
a map, and g is a positive scalar curvature metric on N (two such triples (N, f, g), 
(N', ff, gf) are bordant if there is a bordism (W, F) between (N, f) and (N', f) as 
in Definition 3.4, and 0, gl extend to a positive scalar curvature metric G on W). 

Forgetting the metric gives a homomorphism Pn(X) —> ü^in(X), whose im
age is the group Çl^m>+(X). As usual for natural transformations between bordism 
groups, this homomorphism can be embedded in a long exact sequence 

-» Pn(X) -> ntn(X) -» Rn(X) A Pn_i(X) ->, (3.6) 

where the 'relative' bordism group Rn(X) is defined as follows. 
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3.7 D E F I N I T I O N O F T H E ì ^ - G R O U P S . Rn(X) is t he bordism group of triples 
(N,f,h), where N is an n-dimensional spin manifold (possibly with nonempty 
boundary), f:N —> X is a map, and h is a positive scalar curvature metric on the 
boundary dM. Two triples (N,f,h), (Nl, f ,hf) are bordant if 

(1) There is a bordism (V,F,H) between (8N,fldN,h) and (dN1 ,f{dNI,ti) 

(considered as triples representing elements of Pn-i(X)), and 
(2) the closed spin manifold NUQN VUQW N', obtained by gluing N, V, and 

N' along their common boundary components, is the boundary of some 
spin manifold W. Moreover, there is a map E: W —> X restricting to / 
(resp. / ' , resp. F) on N (resp. Nf, resp. V). 

Now we can state the following relative version of the Bordism Theorem; its 
proof is completely analogous. 

3.8 E X I S T E N C E T H E O R E M ( H A J D U K [Ha]). Let M be a spin manifold of dimen

sion n > 5 with fundamental group n, and let u: M —* BIT be the map classifying 
the universal covering of M. A positive scalar curvature metric h on dM extends 
to a positive scalar curvature metric on M if and only if (M, u, h) represents the 
trivial element of ^(BTT). 

In other words, the element [M, u, h] G R71(B-K) is precisely the "obstruction" 
to extending h over M , and ^(Bir) plays the role of an "obstruction group". At 
the same time, Rn+^B-x) classifies concordance classes of positive scalar curvature 
metrics in the following sense. 

3.9 CLASSIFICATION T H E O R E M ( S T O L Z [St3]). Let M be a spin manifold of di

mension n>5 with fundamental group n, and let h be a positive scalar curvature 
metric on dM that extends to a positive scalar curvature metric on M. Then the 
group Rn+ifóir) acts freely and transitively on 7r0(ÜH+ (M rei h)), the concordance 
classes of positive scalar curvature metrics on M extending h. 

4 The Gromov-Lawson-Rosenberg Conjecture 

4.1 T H E O R E M ( L I C H N E R O W I C Z [Li]). Let M be a spin manifold of dimension 
n = Ak with a positive scalar curvature metric. Then the Hirzebruch genus A(M) 
vanishes. 

The A-genus of an orientable manifold Af is a rational number, obtained by 
evaluating a certain polynomial in the Pontryagin classes of M on the fundamental 
class of M. 

Proof. If M is a spin manifold, the "Dirac operator" D on M is defined, and the 
Atiyah-Singer Index Theorem implies 

A(M) = index(D) = dim kcr D — dim coker D. 

On the other hand, it follows from the "Weitzenböck formula" tha t the Dirac 
operator is invertible if the Riemannian metric used in the construction of D has 
positive scalar curvature, and in particular the index of D is zero in tha t case. D 
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Lichnerowicz' result has been generalized by Hitchin and later by Rosenberg. 
The}' consider "Dirac operators" whose index is not just an integer, but ra ther 
an element in a if-theory group. More precisely, if M is an n- dimensional spin 
manifold, and / : M —> Bn is a map to the classifying space of a discrete group n, 
Rosenberg uses a Dirac operator D whose "index" lives in KOn(C*n) [Ro2]. Here 
C*n is the (reduced) C*-algebra of TT, a suitable completion of the real group ring 
Rn, and KOn(C*n) is the real if-homology of C*n. These if-homology groups 
are a special case of the i f if-groups of Kasparov [Ka]. More topologically, the}' 
can be defined by 

KOn(C;n)=nn(BGL(C;n)), 

where BGL(C*n) is the classifying space of the (infinite) general linear group with 
coefficients in C*n. 

4.2 N O T A T I O N . Given an 77,-dimensional spin manifold M and a map f:M —> Bn 
to the classifying space of a discrete group n, we write a(M,f) E KOn(C*n) for 
the index of the Dirac operator mentioned above. If M has fundamental group n, 
and u is the map classifying the universal covering of M, we simply write a(M) 
instead of a(M,u). 

The same argument as in the proof of Lichnerowicz' Theorem proves the 
following generalization. 

4.3 T H E O R E M ( R O S E N B E R G [Ro2]). If A4 is a spin manifold that admits a positive 
scalar curvature metric, and f:M—> Bn is a map to the classifying space of a 
discrete group n, then a(M, f) vanishes. 

We remark tha t for n = 1,2 mod 8, n > 9, there are n-dimensional spin 
manifolds E n , homeomorphic to the 77,-dimensional sphere Sn with a(Y,n) ^ 0 [Hi]. 
In particular, these manifolds do not admit metrics of positive scalar curvature. 
This shows tha t the answer to the question of whether a manifold M admits a 
positive scalar curvature metric might depend on fairly subtle properties of M ; 
e.g., its differentiable structure. 

4.4 C O N J E C T U R E ( G R O M O V - L A W S O N [GL2], R O S E N B E R G [Rol]). Let M be a 

spin manifold of dimension n > 5 with fundamental group n. Then M has a 
positive scalar curvature metric if and only if the element a(M) G KOn(C*n) 
vanishes. 

We would like to mention tha t there is a more general version of the Dirac 
operator, whose construction doesn't need the assumption that M is spin, but only 
the weaker assumption tha t the covering of M classified by some map f\M —> 
Bn is spin [St3]. The index of this operator lives in KOn(C*(n, 111,112)), where 
C*(n,ui, U2) is a Z/2-graded real C*-algebra, which depends on n, as well as co
homology classes Ui E H'L(Bn;Z/2), whose pullback via / are the Stiefel-Whitney 
classes Wi(M). If the cohomology classes U{ are trivial, C*(n,ui,U2) agrees with 
C*7T; in general C*(n, 111,112) is constructed from C*n by using a 2-cocycle repre
senting U2 to change the multiplication, while ui determines the Z/2-grading. 
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4.5 . The Gromov-Lawson-Rosenberg conjecture has been verified for spin mani
folds with the following fundamental groups: 

(1) trivial group [Stl] 
(2) odd order cyclic groups [Rol], [KwSc] 
(3) Z / 2 [RSI] 
(4) groups whose Sylow subgroups are cyclic or quaternion [BGS] 
(5) free groups, free abelian groups, and fundamental groups of orientable sur

faces [RS2]. 

We remark that result (2) is originally stated as saying that a spin manifold 
with odd order cyclic fundamental group has a positive scalar curvature metric if 
and only if its universal covering has such a metric. Combining this with result (1) 
proves the conjecture for these fundamental groups. 

Result (2) is proved by showing that for I odd all bordism classes in the 
reduced bordism group Q^^BZ/l) = k e r ^ p i n ( 5 Z / Z ) - » ns/in(pt) can be rep
resented by manifolds with positive scalar curvature metrics, and then applying 
Bordism Theorem 3.5. This strategy works in case (2), and none of the others. The 
basic reason is tha t fì*pm(p£) (and hence Q^m(Bn)) contains a lot of 2-torsion tha t 
we don't know how to represent by explicit manifolds. All cases except (2) were 
proved using the following result, which shows tha t in the Bordism Theorem spin 
bordism ü^m(X) can be substi tuted by connective real if-theory kon(X). We 
recall tha t these generalized homology theories are related by means of a natural 
transformation [ABP] 

D:ns^(X)-^kon(X). 

4.6 T H E O R E M ( J U N G [JU] , S T O L Z [St2]). Let M be a spin manifold of dimension 

n > 5 with fundamental group n, and let u:M —> Bn be the classifying map of 
the umversal covering. Then M has a positive scalar curvature metric if and only 
ifD[M,u] is in ko+(Bn), the image of D restricted to Ç}sv'in>+(Bn). 

Sketch of proof. It suffices to show kerD Ç Çi^lIii+(Bn). Away from the prime 2 
this is proved by Jung, who gives a Baas-Sullivan description of ko*(X) ® Z [ | ] . In 
particular, [M, u] G ker D implies tha t the connected sum of 2 r copies of (M, u) 
for some r bounds a manifold with singularities, and Jung uses this to construct 
a positive scalar curvature metric on the connected sum. 

The result at the prime 2 is due to Stolz, who proves tha t an odd multiple 
of a bordism class in the kernel of D can be represented by the total space of 
an HP2-bundle. Here an HP 2 -bundle is a fiber bundle with fiber the quaternionic 
projective plane HDP2, whose structure group acts on H P 2 by isometries (with 
respect to the standard metric). The condition on the structure group implies tha t 
these total spaces admit metrics of positive scalar curvature [St3, p. 512], which 
proves the theorem. 

The proof of the statement tha t (at the prime 2) the kernel of D consists of 
bordism classes of total spaces of EDP2-bundles is the "technical heart" of Theorem 
4.6. After translating the s ta tement into stable homotopy theory, it boils down 
to showing tha t a certain m a p between spectra is a split surjection. In [Stl], it is 
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shown that this map induces a surjection on homotopy groups, and this is enough 
to prove the statement when X is a point. In [St2] the general case is proved by 
using Adams spectral sequence arguments to show that the spectra in question 
split into simple pieces, which can be controlled homologically. D 

5 The Stable Conjecture 

The real if-theory groups of a real C*-algebra are 8-periodic. This periodicity is 
given by multiplication by the generator b of KO$(M) = Z. Geometrically, we can 
find a simply connected spin manifold B of dimension 8 with a(B) — b. There 
are many possible choices for B, but just pick one, and call it the "Bott mani
fold". Given an n-dimensional spin manifold M with fundamental group n, Bott 
periodicity implies that cx(M) G KOn(C*n) vanishes if and only if a(M x B) G 
if On+s(C*n) vanishes. This shows that the Gromov-Lawson-Rosenberg conjecture 
4.4 is true if and only if the following two conjectures hold. 

5.1 CANCELLATION CONJECTURE. Let M be a spin manifold of dimension n > 5. 
Then M has a positive scalar curvature metric if and only if M X B does. 

5.2 STABLE CONJECTURE. Let M be a spin manifold. Then the product of M 
with sufficiently many copies of B has a positive scalar curvature metric if and 
only if a(M) vanishes. 

We note that Theorem 4.6 has the following corollary (alternatively, this 
follows from the geometric description of KO*(X) of Kreck-Stolz (cf. [KrSt], [RS2, 
Theorem 4.3]). 

5.3 COROLLARY. Let M be a spin manifold with fundamental group n, and let 
u: M —> Bn be the classifying map of the universal covering. Then the product 
of M with sufficiently many copies of B has a positive scalar curvature metric if 
and only ifp(D[M,vi\) is in KO+(Bn). Herep: kon(X) —* KOn(X) is the natural 
map from connective to periodic K-homology, and KO+(X) Ç KOn(X) is the 
image of ÇQk>Qko^,8k(Bn) under p (we identify KO^^(Bn) with KOn(Bn) 
using periodicity). 

Let M be an 77,-dimensional spin manifold, and let / : M —> Bn be a map to 
the classifying space of a discrete group n. We remark that the invariant a(M, f) G 
KOn(C*n) depends only on the class p(D[M, f]) G KOn(Bn). In fact, there is a 
homomorphism known as the assembly map 

A. KOn(Bn) -> if On(C;n), (5.4) 

which maps p(D[M,f\) to a(M,f) [Ro2]. Combining this with Corollary 5.3, we 
conclude: 

5.5 COROLLARY. If the assembly map (5.4) is injective, then the Stable Conjecture 
5.2 is true for the group n. 

The Novikov conjecture (or rather, a form of it) claims that A is injective for 
torsion free groups. It has been proved for many groups, notably for torsion free, 
discrete subgroups of Lie groups [Ka]. The assembly map is definitely not injective 
for some groups, e.g., finite groups. Still, there is the following result. 
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5.6 THEOREM (ROSENBERG-STOLZ [RS2], [RS3]). The Stable Conjecture 5.2 is 
true for finite groups. 

To prove this, it suffices by Corollary 5.3 to show that the kernel of the 
assembly map is contained in if 0+ (Bn). This is proved first for cyclic groups by 
an explicit construction. Using the fact that for a finite group n the if O-homology 
of Bn can be expressed in terms of the splitting of J£TT as a product of matrix 
rings over R, C, and H, "Artin induction" is used to show that the statement 
kerA = KO^(Bn) for finite cyclic groups implies this statement for a general 
finite group. 

The fact that the Stable Conjecture is true for such a variety of groups, finite 
groups on one hand, and many torsion free groups on the other hand, gives strong 
evidence for this conjecture. Concerning the Cancellation Conjecture, the evidence 
is less convincing, and the author has lingering doubts about it. 

At this point the reader might be curious about how the i^-groups fit into 
the discussion of the Stable Conjecture. The answer is best expressed in terms of 
the following commutative diagram, which represents a factorization of the map 
n s /n(S7r) -» KOn(C*7r) given by [MJ] -» a(MJ). 

f£pln(B7T) — 2 - » kon(Bw) > Rn(BTT) 

V e (5.7) 

KOn(Bn) — ^ KOn(C;n). 

Here, as mentioned in the introduction, 6 maps the bordism class represented by 
(M,f,h) to the index of the Dirac operator determined by M and / . We note 
that, unlike the situation for closed manifolds, the index of the Dirac operator on 
manifolds with boundary in general does not depend continuously on the metric. 
In fact, the ordinary Z-valued index jumps whenever an eigenvalue of the Dirac 
operator on dM crosses the origin. However, by the Weitzenböck formula, this 
does not happen as long as the metric on dM has positive scalar curvature. 

Crucial for the proof that 6 is well defined is the additivity of the KOn(C*n)-
valued index, which was proved recently by Bunke [Bu]. 

The diagram (5.7) and the Existence Theorem 3.8 show that the injectivity 
of 0 implies the Gromov-Lawson-Rosenberg Conjecture. Similarly, the injectivity 
of the map 

Rn(Bn)[B-1] - KOn(C;n) (5.8) 

would imply the Stable Conjecture (5.2). Unfortunately, the converse is not true, 
and presently there are no techniques available to prove injectivity. If n is the 
trivial group, proving injectivity of the map (5.8) is equivalent to showing that 
a positive scalar curvature metric h on S71-1 can always be extended — after 
crossing with enough copies of B — to a positive scalar curvature metric on the 
disc Dn (or rather Dn x B x • • x B), provided the index of the Dirac operator 
on Dn (with respect to some metric extending h) vanishes. 
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However, it is known tha t the map (5.8) is rationally surjective for finite 
groups n and this supports the conjecture that it is an isomorphism. Beyond this 
conjecture, the following might be interesting to know. 

5.9 Q U E S T I O N . Is Rn(Bn) a functor ofC*n (resp. Zn?); i.e., is there an algebraic 
description of Rn(Bn) in terms of the C*-algebra C*n or the integral group ring 
ZTT? 
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A topological manifold is, by definition, a Hausdorff topological space where each 
point has a neighborhood homeomorphic to Euclidean space. The geometrical 
topology of manifolds is a beautiful chapter in mathematics, and a great deal is 
now known about both the internal structure of manifolds (transversality, isotopy 
theorems, local contractibility of homeomorphism groups, etc.) and their classifi
cation (cobordism theory, surgery theory, etc.). The subject that I would like to 
explore is the extension of this picture to a larger class of intrinsically interest
ing spaces (finite-dimensional ANR homology manifolds). Part of our exploration 
is motivated by an analogy between homology manifolds and orbifolds, that is, 
spaces that are modeled not on Euclidean space, but rather on the quotients of 
representation spaces by their finite linear actions. 

1 The Topological Characterization of Manifolds 

There are several different ways that one can be lead to the nexus of problems 
considered here. One useful way is to ask: How can one tell whether or not a space 
that arises in some natural fashion is a manifold? 

In low dimensions, there are some classical criteria. A connected space is a 
circle if no point separates it, but each pair of points separates it. There is a similar 
characterization of the 2-sphere in terms of nonseparating points and separating 
circles, due to R. L. Moore. However, in dimension 3 and higher this is not possible 
because of the existence of homology manifolds: A homology manifold will be, 
until the very last section, a finite-dimensional ANR X with H*(X,X — x) — 
ü*(]Rn,IRn — 0) for every point x in X. Such spaces have many of the properties 
of manifolds. They satisfy Poincaré duality, and therefore will be separated by 
exactly the same spaces that would separate a manifold. 

The simplest example of a homology manifold that is not a manifold is the 
cone on a nonsimply connected (manifold) homology sphere. All deleted neighbor
hoods of the cone point are nonsimply connected, so this space is not a manifold, 
but it is a trivial calculation to see that the local homology is as required. 

Another way to obtain many more and much wilder examples is that of 
decomposition spaces, pioneered by Bing.2 One starts with a manifold M and 

1) Partially supported by the NSF. 

2) The earliest striking application was the construction of a nonmanifold whose product with 
R is a manifold. 
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describes a (suitably semicontinuous) collection of subsets that are in some weak 
sense contractible (technically, cell-like), and identifies each of these subsets to a 
point. This identification space X is the image of a natural CE map3 M —> X. 

Because every homology sphere bounds a contractible manifold (see [K] for 
high dimensions and [Fr] for dimension 3) the first example is a special case of the 
second. In fact, for quite some time it seemed as if every homology manifold could 
be obtained in this fashion: 

RESOLUTION CONJECTURE (Cannon): Every homology manifold (of dimension at 
least five) is the decomposition space of some cellular decomposition of a manifold. 

This conjecture was attractive in light of an amazing theorem of Edwards 
(see [Dav, E]). 

THEOREM (Edwards). A CE map f : M —> X71, n > 5; can be approximated by 
homeomorphisms iff X satisfies the disjoint disks property (DDP), that is iff any 
pair of continuous maps D2 —> X can be e-approximated by maps with disjoint 
images. 

COROLLARY: A resolvable homology manifold is a manifold iff it has the DDP.4 

COROLLARY: A resolvable homology manifold xM2 is a manifold. 

With some diffidence, I would like to suggest calling homology manifolds 
with the DDP nonlocally linear manifolds. The conjectures made in [BFMW1] 
suggest that these will be locally modeled on some new (topologically homogenous) 
spaces and that they will share many of the geometric properties of manifolds. For 
instance, in [BFMW2] the resolution conjecture is verified with nonlocally linear 
manifolds replacing manifolds. However, alone, this conjecture does not give us 
any insight into what the local geometry of such spaces can be. 

An important rigidification of the situation was made by Quinn [Ql]. He 
showed: 

THEOREM (Quinn). There is a locally defined i(X) G H°(X;Z) valued invariant 
of homology manifolds. Thought of as a function on components, it assumes values 
in 1 + 8Z; and equals 1 (on every component) iff X is resolvable. 

This integer is a signature, and it would be appropriate to think of it as the 
Oth Pontryagin class of (the "tangent bundle" of) X. We call it the local index 
oîX. 

Its definition is about the same level of depth as the topological invariance 
of Pontryagin classes (Novikov's theorem) as it requires defining L-classes in a 
topological fashion for ANR homology manifolds (and in particular for topological 
manifolds). L-classes for homology manifolds are constructed in [FP] and [CSW], 
and we will return to this in Section 3. 

3) A map is CE if, when restricted to the preimage of any open subset of the range, the map 
is a homotopy equivalence. 

4) For an example of how dramatically the DDP can fail, see [DW]. 
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The locality of Quinn's obstruction implies that for connected X if some open 
subset of X is resolvable, then X is. In particular, any "manifold with singularities" 
is resolvable by a manifold. Thus, constructing nonresolvable homology manifolds 
involves building the whole space simultaneously. 

THEOREM ([BFMW]). For every number i G 1 -f- 8Z there is a homotopy sphere5 

that is a DDP homology manifold with local index i. 

We conjecture these spaces to bc uniquely determined by i and dimension, 
at least if the dimension is > 4. 

2 Lacunae in the Theory of Topological Manifolds 

In this section, I would like to show how the theory of manifolds itself cries out for 
some missing spaces. The spaces turn out to be supplied by the nonlocally linear 
manifolds (DDP homology manifolds). 

DEFINITION: For M a manifold of dimension > 5, let S(M) denote the set of 
homotopy equivalences modulo homeomorphisms. That is, 

S(M) ={h : Mf —> M a simple homotopy equivalence 

with h : dM1 —> dM a homeomorphism} 

/homeomorphism (rei d). 

THEOREM (Siebenmann, as corrected by Nicas, [KS, Ni]). Let M be a manifold 
of dimension > 5. If dM is nonempty, one has 

S(M) ^S(MxD4). 

In general, there is an exact sequence 

0 -> S(M) -> S(M x D4) -> Z. 

This means that S(M x D4) can be as much as a Z larger than S(M). 
The simplest manifold, the sphere, gives an example of this. S(Sn) = 0, but 
S(Sn x D4) = Z. From the point of view of periodicity there should be a Zs 
worth of homotopy spheres. These are filled in by the homology manifolds. (For 
manifolds with boundary, the boundary condition forces the domain homology 
manifold mapping to M to be a homology manifold — essentially because of 
locality, so that using homolog}' manifolds would not increase the size of S.) 

THEOREM ([BFMW1]). Let X be a homology manifold of dimension > 5, and let 
SH(X) denote {h : X' —> X a simple homotopy equivalence with h : dX1 —> dX a 
homeomoiyhism}/s-cobordism (reld). Then if dM is nonempty, one has 

SH(X) 9* SH(X x D4) (^ S(X x D4), if X is a manifold). 

5) In fact every simply connected manifold has an "evil twin" with given local index, but 
typically aspherical manifolds do not. 
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Thus, periodicity is true in the category of homology manifolds. The pe
riodicity map interchanges manifolds and homology manifolds. We have to use 
s-cobordism rather than homeomorphism as our equivalence relation because we 
cannot yet prove an s-cobordism theorem for DDP ANR homology manifolds. 
Nonetheless, this enables us to ignore any DDP conditions in the definitions of 
our structure sets. (There can be no s-cobordism theorem without assuming DDP 
because a CE map has as mapping cylinder an s-cobordism, which cannot be a 
product unless the quotient space is a manifold!) 

THEOREM ([BFMW1]). SH(X) can be computed as the fiber of the assembly map 
(see [R]).6 Consequently it is an abelian group, which is functorial for orientation 
true7 maps between manifolds of dimension that differ by multiples of 4-8 

Using S(M) one loses functoriality for maps where the dimension of the target 
is smaller than that of the domain. So the theory of homology manifolds has better 
formal properties than the theory of manifolds. In particular, pushing manifolds 
forward leads to (nonresolvable) homology manifolds. 

These theorems imply that the rigidity theory of high-dimensional topology 
adapts gracefully to include homology manifolds. For instance any DDP homology 
manifold homotopy equivalent to a nonpositively curved manifold is homeomorphic 
to it (see [FJ]).9 Moreover, existence theorems in our larger category work out a 
little more nicely: 

THEOREM ([BFMW]). Any Poincaré space Z homology equivalent to a nonposi
tively curved manifold, is homotopy equivalent to a closed DDP homology manifold, 
which is unique up to s-cobordism. 

However, such a Poincaré space is not necessarily homotopy equivalent to 
a closed manifold.10 Another example where such spaces occur naturally is the 
following result of Smith theory: 

THEOREM ([CW]). Tame semifree circle actions on a manifold have ANR homol
ogy manifolds as fixed sets. If the fixed set has codimension 2 mod 4,11 any equiv
ariant homotopy equivalent free circle action on (a manifold homotopy equivalent 
to) the complement of the fixed set of this action extends to a unique concordance 
class of circle actions. 

6) This is a more modern formulation of surgery theory in the topological category than one 
finds in Wall's book. 

7) That is, a map that preserves the orientation character of curves. 

8) There are reindexing tricks that allow one to define functoriality for a related theory for 
all orientation true maps. 

9) A simpler approach would be to show that the local index is necessarily 1, which is of the 
depth of the Novikov conjecture: it is a kind of tangentiality statement (see [FW] for this 
point of view, taken in a different direction). Then resolution implies it is a manifold, and 
the usual rigidity takes over. 

10) There is a nonresolvable homology manifold proper homotopy equivalent to a symmetric 
space of noncompact type iff it has g-rank greater than 2. ([BW]) 

11) There is a rather different analysis for the case of codimension 0 mod 4. 
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If one doesn't allow homology manifolds to arise there is a Z obstruction to 
the existence of a semifree manifold completion for the free action. 

3 Properties of Homology Manifolds 

In the previous section we described some systematic features of the class of homol
ogy manifolds. In particular, we described the result of surgical classification for 
these spaces. Next, we describe the cobordism classification (suggested by David 
Segal). 

THEOREM ([BFMW]). Fom > 6; the formula Q*H ^ n*Top[l+8Z] (monoid ring) 
is correct additively. At least rationally, this formula gives the correct multiplicative 
structure. 

Note that unlike the classical manifold case, not all bordism classes are repre
sented by connected spaces. Locality implies that there is no analogue of connected 
sum. I conjecture that the bordism calculation is multiplicative^ correct even in
tegrally. 

Unlike the usual proofs of bordism results, this is not achieved by direct 
analyses of transversality, but rather by using the fact that all topological bor
dism classes have simply connected representatives, and applying the "evil twin" 
theorem of Section 1. 

There are obstructions to transversality, as one can see by the following rea
soning. Consider a homotopy equivalence (say) from a manifold to a homology 
manifold, and assume that it could be made transverse to a point; then the "funny 
local type" would be present in a manifold giving a contradiction. One can cross 
this example with a manifold to see that this is not an oddity because of low-
dimensional preimages. 

Similarly, if one embeds a nonresolvable homology manifold in high-dimen
sional Euclidean space, one cannot stably hope for any "normal bundle" structure 
because of multiplicativity properties of the local index.12 

The following calculation demonstrates the systematic failure of transversal
ity: 

THEOREM (Stabilized structure calculation). One has an isomorphism: 

limSH(M x K I K) ^ limSH(M x Rn j Rn) ( 2 ) . 

Here the j denotes controlled structures, and the if's run over the DDP 
ANR homology manifolds proper homotopy equivalent to Euclidean spaces ( "fake 
Euclidean spaces"). The right-hand side is a convenient stabilization of S, and only 
differs from the usual S when there is some algebraic if-theory present (see e.g. 
[R], [We]) — in particular, for M simply connected it is the structure set SH(M). 

12) There is another kind of structure present: a teardrop neighborhood (see [HTWW]). It is 
to a bundle what a CE map is to a homeomorphism in the sense that the same homotopical 
data as is present for the classical notion arises here but with respect to open subsets of 
the range. 
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If there were transversality, then the part of S(M) caught by characteris
tic classes could not die on crossing with any manifold: by projecting down to 
that manifold, the transverse inverse image of any point would recover this data. 
However, the theorem asserts that all odd torsion is lost. 

Another version of this theorem describes when a map between manifolds is 
stably homotopie to an s-cobordism: iff it is stably tangential at 2 (it is a classical 
theorem of Mazur that one has the same condition for stable homeomorphism if 
stabilization is with Euclidean spaces, except that one does not localize.) 

A good analysis of transversality obstructions could lead to the calculation 
of the multiplicative structure of bordism suggested above. A final ramification 
of transversality, classically, is Sullivan's KO[l/2] orientation for manifolds (see 
[Su]). Here we have a variant: 

THEOREM (See [CSW]). For every homology manifold X there is a canonical 
KO[l/2] clasSj the signature class, that is an orientation iff X is resolvable. 

Thus, the orient ability is closely related to transversality, but independently 
of transversality, homology characteristic classes can in any case be defined, and 
used. Sullivan's formulation of surgery in terms of these classes is implicit in the 
theory adumbrated in Section 2. Away from 2 the homology normal invariant is 
just the difference of these signature classes. 

REMARK: There is a refinement at 2 related to the Morgan-Sullivan class [MS]. 
The method of proof is to understand the chain complex of X as a self-dual sheaf 
and recognize the Witt group of such (away from 2) as KO-homology. (This is 
dependent on the work of Quinn and Yamasaki — or alternatively, Ferry and 
Pederson — for nonconstructible sheaves, as arise here.) A little thought checks 
that the local calculation one would do of this invariant agrees with the local index 
(up to powers of 2). 

REMARK: The assignment of characteristic classes to self-dual sheaves has a num
ber of other applications. For instance, one has a close parallel to classical surgery 
theory for spaces with even codimensional strata and simply connected links by 
making use of the intersection sheaves (see [GM II]), see [CSW], and also [Shi] for 
other applications of cobordism of self-dual sheaves. 

4 Conjectured Properties of Homology Manifolds 

We have already alluded several times to a conjectured view of homology manifolds. 

VAGUE CONJECTURE: High-dimensional homology manifolds with the disjoint disk 
property (nonlocally linear manifolds) share all the geometrical properties of man
ifolds. 

Obviously one cannot include transversality among the geometrical properties 
we have in mind! On the other hand, general position holds. We will be guided 
somewhat by the analogy presented in the next section. Until then, let us be more 
precise and list the following package of conjectures [BFMW]: 

CONJECTURE (Homogeneity): Nonlocally linear manifolds are homogenous. 
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For manifolds this is a triviality. If the signature class is an orientation then, of 
course, it is true because of the work of Edwards and Quinn cited above: the space 
is a manifold. Because the deviation from "manifoldness" is entirely measured by a 
conventional top locally finite homology class (or O-dimensional cohomology class), 
an algebraic sort of homogeneity is guaranteed. Still, the conjecture has eluded us. 
The next conjectures are somewhat stronger, and we will discuss some progress by 
analogy in the next section: 

CONJECTURE (5-bordism): For nonlocally linear manifolds of dimension > 6, the 
s-cobordism theorem holds. 

In the smooth category this is Smale 's theorem (or rather its generaliza
tion by Barden-Mazur-Stallings) and is true in the topological category by Kirby-
Siebenmann's reinstitution of handlebody theory. 

CONJECTURE (CE-approximation): If dim > 5, any CE map from a nonlocally 
linear manifold to another is approximable by homeomorphisms. 

If one assumes the domain and range are conventional manifolds, then this 
is a theorem of Siebenmann, if just the domain is, then it is Edwards' result, and 
if just the range is, then one obtains this as a consequence of the work of Edwards 
and Quinn. 

CONJECTURE (Local contractibility of homeomorphism groups): Every homeomor
phism sufficiently close to the identity can be canonically isotoped to the identity. 

For manifolds, this is due to Cernavski, and Edwards-Kir by. 

5 The Analogy to Orbifolds 

It is somewhat reassuring that there are other settings in which one can both define 
objects in terms of explicit models, or alternatively in terms of local homotopy 
properties, and the latter not only fill in lacunae in the theory of the former, 
but they themselves possess many nice geometric properties, and homogeneity, in 
particular. 

One such setting is that of orbifolds (although much of what follows is a 
special case of a general theory of stratified spaces). 

DEFINITION: A locally linear orbifold is a space that is locally modeled on the 
orbit space of an orthogonal representation of a finite group. 

DEFINITION: A nonlocally linear orbifold is a space that is locally the quotient 
of a disjoint disk homology manifold under a finite group, where the fixed sets 
of all subgroups are (not necessarily locally linear) homology manifolds that are 
embedded in one another in a "locally homotopically trivial fashion". This local 
condition (aside from codimension 2) asserts that in the local chart, small 2-disks 
in one fixed set can be homotopeel (in an arbitrarily small way) disjoint from a 
smaller fixed point set. (See [Q2], [We].) 

REMARK: In the second definition, if one is trying to imagine phenomena not 
stemming directly from the existence of nonresolvable homology manifolds, not 
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much is lost in assuming that one is locally the quotient of an action on a manifold 
where all of the fixed point sets are submanifolds. The local homotopy condition 
(by work of Bryant, Chapman, and Quinn) boils down to the assertion that these 
fixed sets are locally flat. 

Now for the analogous theorems to what we discussed above. 

(CE APPROXIMATION) There is an equivariant CE approximation theorem13 (see 
[StW] for the locally linear case, and [Hu], [We] in general). The analogue of the 
resolution conjecture would be the coincidence of the two definitions of orbifolds. 
However, it is quite simple to see that the cone on a falce real projective space 
(which are produced in profusion by surgery theory, but are not hard to come 
by explicitly, using linear involutions on Brieskorn spheres, for instance) is never 
resolvable by a linear orbifold! 

(SURGERY) The analogue of the surgery exact sequence was established for odd 
order locally linear group actions by [MR] by a complex induction depending 
on transversality methods. Simultaneously with establishing transversality, they 
proved that there is an equivariant Sullivan orientation E KO^ [1/2] for the actions 
they considered. Unfortunately for nonlocally linear actions, and for even order 
groups, equivariant transversality fails, and although subsequently [RtW] (see also 
[RsW]) a signature class14 was constructed for more general actions, it was not an 
orientation. This necessitates a deviation from the Sullivan-Wall exact sequence 
of classical surgery theory, and is given in [We]. 

The new sequence boils down to an equivariant extension of the homological 
form of surgery theory due classically to Quinn and Ranicki (see [R]). Indeed, 
that theory naturally has Siebenmann's periodicity built into it, and is the one 
alluded to in Section 2. Moreover, in this formulation, all the theories (including 
the topological theory for all statified spaces) take a beautiful "local-global" form: 

• • • - • L(X x / ) - > S(X) -+ HQ(X;L(loc)) -> L(X) -> 

where L denotes a surgery spectrum (a generalization of the notion of surgery 
groups, and adapted to stratified spaces), which when applied to open subsets 
gives a cosheaf of spectra. The difference between the L-cosheaf homology and a 
global L-spectrum gives rise to the spaces stratified homotopy equivalent but not 
homeomorphic to X.15 

As for the conjectures. 

(HOMOGENEITY) The version of homogeneity is due to Quinn [Q2]. It asserts that 
generally a "manifold stratified space" will have all of its connected strata homoge
nous. Quinn has also established an /i-cobordism theorem for these. (Steinberger 
had independently done the locally linear case.) 

13) And even an «-approximation theorem [CF]. 

14) The original method for doing this was analytic, but the paper [CSW] referred to above 
sketches a topological approach. 

15) There is a deviation at the prime 2 that we are ignoring here. 
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( L O C A L C O N T R A C T I B I L I T Y O F T H E H O M E O M O R P H I S M G R O U P ) Local contractibil-

ity is also true, according to [Si2] for locally linear orbifolds, and [Hu] for general 
ones. 

To sum up, the definitions of orbifolds suggested parallel the possibilities of 
definitions of manifold and DDP homology manifold in the unequivariant setting. 
(With a little twist: even order locally linear orbifolds are not oriented by their 
signature classes, and correspond to a "manifold type category in which transver
sality fails".16.) In both settings the analogues of simple homotopy theory and 
surgery are understood. 

Regarding the local structure, one is in much better shape in the orbifold 
setting, assuming the s t ra ta are manifolds, ultimately because inductive arguments 
are possible. Interestingly enough, it is the same basic ideas tha t are responsible 
for our advances in both of these directions: the methods of controlled topology. 
However, as of yet, it does not seem natural to combine the detailed arguments of 
these two situations. It seems to me tha t the explicit nature of the stratification 
in the orbifold setting suggests methods for exploring the problems of homology 
manifolds at least at the level of conjecture. 

On the other hand, in the case of homology manifolds, we have a very good 
feel of what the aggregate of local structures should be: there are a Z's worth of 
them. For the orbifold case, the algebraic problems are much more subtle: see [tD] 
for the underlying local homotopy theory, and, e.g. [Sh2] for some of the geometry: 
the part of identifying what role the linear examples play. The signature class can 
fail, even rationally, to be an orientation, which should mean tha t the failure 
of transversality is more striking in the orbifold setting than in the homolog}' 
manifold case. Consequently, problems in group actions should be addressable by 
finding their concomitants in the theory of homology manifolds, and working out 
the easier algebra there. For instance, the stable structure calculation above, in 
contrast to Mazur's theorem, should lead, by analogy, to interesting phenomena 
in the cancellation problem for nonlinear similarity. 

Finally, and most speculatively, the first method for obtaining signature 
classes for orbifold was by doing Lipschitz or quasiconformal analysis of signature 
operators. One would hope that homology manifolds, which have more algebraic 
signature classes, also support a suitable type of analysis: one tha t must be based 
on something other than calculus and linear approximation. 

6 Some Remarks on Infinite Dimensions 

One can also inquire regarding the nature of infinite-dimensional homolog}' mani
folds. These are d-dimensional homology manifolds by the homological definition, 
but which have infinite covering dimension. 

They exist as a consequence of work of Edwards (see [WI] ) and the construc
tion of an infinite-dimensional space of finite homological dimension by Dranish-
nikov [Dr]. The following begins a study of their geometrical topolog}' 

16) In the orbifold case, there isn't the same close connection between the signature class 
being an orientation and local linearity. However, in light of homogeneity, there are locally 
defined obstructions that tell you when you're locally linear: examine the local structures 
at a few strategic points! 
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T H E O R E M ([DF]). There are infinite dimensional homology manifolds that do not 
have any finite-dimensional resolution. When a resolution exists, it need not be 
unique. However, according to a theorem of Ferry, the number of s-cobordism 
classes of resolutions is finite. 

This has had applications [DF] to constructing pairs of manifolds tha t con
verge to each other in Gromov-Hausdorff space, through metrics with some fixed 
local contractibility function. 

It has also been applied to large-scale geometry in the construction of a 
uniformly contractible manifold with no degree one Lipschitz map to Euclidean 
space [DFW] and the failure of a bounded analogue of the rigidity conjecture for 
aspherical manifolds. Their further s tudy promises to contain many more surprises. 
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Mumford-Stabilität in der algebraischen Geometrie 

GERD FALTINGS 

Max-Planck-Institut für Mathematik 
Gottfried-Claren-Straße 26 
D-53225 Bonn-Beuel, Germany 

1. Einleitung 

Das Thema des vorliegenden Vortrags ist etwas erklärungsbedürftig. Es bot sich 
an, weil der Mumfordsche Stabilitätsbegriff ganz überraschend an vielen Stellen 
in der mathematischen Arbeit des Verfassers auftrat. In der Annahme, daß die 
Organisatoren des Kongresses einen Bericht über diese erwarteten, und um die 
verschiedenen Themen des Vortrags einigermaßen zu bündeln, wählte der Verfas
ser dann die Stabilität als Oberthema. Außerdem ergibt sich damit die Gelegen
heit, einmal einige allgemeine Überlegungen zum Thema zusammenzustellen. Der 
Verfasser entschuldigt sich vorweg dafür, daß der Akzent sehr auf den eigenen 
Resultaten liegt. 

David Mumford hat seinen Stabilitätsbegriff ursprünglich eingeführt, um 
Modulräume zu konstruieren, siehe sein Buch [M]. Dabei tritt oft das folgende 
Problem auf: 

Man erhält ein Schema X, welches das zugehörige Modulproblem zusammen 
mit einigen zusätzlichen Eigenschaften darstellt, wie zum Beispiel multikanonisch 
eingebettete Kurven im projektiven Raum oder Vektorbündel mit einer Basis der 
globalen Schnitte. Auf diesem Raum operiert eine Gruppe G, und der wirklich 
gewünschte Modulraum ist der Quotient X/G. Dabei stößt aber die Konstruktion 
des Quotienten oft auf Schwierigkeiten. Um diese zu behandeln, sind im wesentli
chen zwei verschiedene Ansätze entwickelt worden: 

Die Theorie der algebraischen Felder ( "stacks" ) kann etwas verkürzend dahin
gehend beschrieben werden, daß man für viele Betrachtungen den Quotienten gar 
nicht braucht. Zum Beispiel kann man statt kohärenter Garben auf X/G auch 
einfach G-äquivariante Garben auf X betrachten, und ob der Quotient eigentlich 
ist, läßt sich mit Bewertungsringen testen. Dieser Ansatz ist dann sehr flexibel und 
wird zum Beispiel beim Beweis der Verlinde-Formel angewandt ([Fa3]). Allerdings 
reicht er, wie zu erwarten, nicht immer aus. 

In Mumfords Theorie wird X als quasiprojektiv vorausgesetzt, mit einem 
G-äquiVarianten amplen Geradenbündel. Man findet offene Unterschemata Xs C 
X3S C X, welche die stabilen (bzw. semistabilen) Punkte darstellen. Der Quotient 
Xs/G läßt sich sehr gut bilden, der Quotient Xss/G schon etwas schlechter, aber 
er hat den Vorzug, daß er für projektive X wieder projektiv ist. Dies folgt aus 
der geometrischen Invariantentheorie. Ein typisches Beipiel für Stabilität erhält 
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man wie folgt: Sei V ein endlichdimensionaler Vektorraum über einem Körper k, 
{F£\l < v < r} eine endliche Familie von (absteigenden) Filtrierungen von V. 
Das heißt, die F$ sind fc-Unterräume, F£ C F$~l, und für genügend großes Af ist 
F? = (0) und F~N = V für alle v. 

Für jeden fc-Unterraum (0) ^ W C V erhält man induzierte Filtrierungen 
FP(W) = FP H W. Definiere die Invariante ß(W) als 

p(W) = dim(H0_1 Ysp ' àim(FV(W)/F£+1(W)). 

Die Summe geht über alle v und p. 
Dann ist der durch die Filtrierungen {F£} bestimmte Punkt in dem diese 

klassifizierenden Produkt von Fahnenmannigfaltigkeiten genau dann stabil (bzw. 
semistabil), falls für alle echten Teilräume W C V auch p(W) < p(V) (bzw. 
ß(W) < n(V)) gilt. 

Der Hauptzweck dieser Note ist zu zeigen, daß diese Art von Bedingun
gen auch in vielen anderen Fällen auftritt, in denen man nicht unbedingt an der 
Konstruktion von Quotienten interessiert ist. Bevor wir dazu kommen, sei noch 
erwähnt, daß man manchmal die geometrische Invariantentheorie durch die direkte 
Konstruktion von G-invarianten Funktionen (oder Schnitten von Geradenbündeln) 
auf X ersetzen kann, wie dies zum Beispiel in [CF], [Fa2] oder [Fa4] geschieht. Die 
direkte Konstruktion benutzt in diesen Fällen verallgemeinerte Thetafunktionen. 
Der Begriff der Stabilität bleibt aber auch hier sehr wichtig. 

2. Allgemeine Eigenschaften der Stabilität 

Es sei wie bisher V ein endlichdimensionaler Vektorraum über einem Körper k, 
{F?} eine Familie von Filtierungen. Zur Vereinfachung sprechen wir im folgenden 
meist nur von V, wenn wir in Wirklichkeit V zusammen mit den Filtrierungen Fg 
meinen. Diese Räume (mit fester Indexmenge {1,... ,r} für die v) bilden eine Kate
gorie, wobei Hom(Vi,V2) aus fe-linearen Abbildungen f:Vi —> V2 besteht, für die 
fiFSiVi)) C FP(V2) gilt. Für semistabile VX,V2 mit /x(Vi) > ß(V2) verschwindet 
Hom(Vi, V2): während für p(Vi) = ß(V2) jedes filtrierte / : V\ —> V2 strikt ist, mit 
semistabilcm Kern, Bild und Kokern. 

Falls V nicht schon selbst semistabil ist, so wähle man einen nichttrivialen 
Unterraum W mit maximaler Invariante p(W)(> p(V)) und mit maximaler Di
mension unter den Unterräumen mit dieser //-Invariante. Dann setze man diese 
Konstruktion fort mit dem Quotienten V/W und seinen induzierten Quotienten-
filtrierungen. Auf diese Weise erhält man eine aufsteigende Filtrierung 

(0) = Vb c 7 i C V 2 C - C Vn = V, 

so daß die Quotienten Vi/Vi-i semistabil sind mit Invarianten ßi,ßi > p2 > • • • > 
\in. (Kanonischerweise sollte man Vi durch pi parametrisieren). Diese Filtrierung 
heißt die Harder-Narasimhan-Filtrierung von V. Sie ist durch diese Eigenschaften 
eindeutig bestimmt und wird von jedem filtrierten Homomorphismus respektiert. 
Somit muß man zum Testen der Semistabilität von V nur Unterräume W C V be
trachten, die von allen Endomorphismen respektiert werden: Wenn für diese schon 
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stets p(W) < p(V) gilt, so ist die Harder-Narasimhan-Filtrierung trivial, somit 
V semistabil. Es folgt auch leicht daraus, daß die Harder-Narasimhan-Filtrierung 
invariant ist unter separablen Körper er weit er ungen k C k'. In der Tat gilt dies für 
beliebige Körpererweiterungen: 

Man reduziert auf den Fall, daß k! durch Adjunktion einer p-ten Wurzel aus 
k entsteht (p = Charakteristik von k) und daß V schon semistabil ist. Dann erhält 
man eine Derivation d von k' mit Kern k. Dann ist V = 9®fcl ein Endomorphismus 
von V1 — /c'(8)fc V, welcher die Filtrierungen respektiert und die Leibnizregel erfüllt: 

V(A • v) = d(X) -v + \- V(v) (X ek',v<E V). 

Falls Wr C Vf die erste Stufe der Harder-Narasimhan-Filtrierung bezeichnet, so 
induziert V einen filtrierten /c'-linearen Homomorphismus Wf —> V jW', welcher 
notwendigerweise trivial ist. Somit ist W' V-stabil, also über k definiert, und 
ii{W')<ß{V)=ß{V). 

Trivialerweise ist auch das Duale eines semistabilen Vektorraums V wieder 
semistabil. Sehr viel interessanter ist das Tensorprodukt. 

LEMMA Seien Vi und V2 semistabil. Dann ist auch das Tensorprodukt Vi ®fc V2 

(mit den Produktfiltrierungen) semistabil, mit p(Vi ®fc V2) = p(Vi) + ß(V2). 

Beweis: Wir benutzen die Methoden von G. Lafaille [L]. Wir dürfen annehmen, 
daß für V = Vi die Invariante p(V) ganzzahlig ist. Andernfalls sei N das klein
ste gemeinsame Vielfache der Nenner in p(Vi), und man wiederholt einfach jede 
Filtrierung AT-mal (so daß man nun insgesamt N • r Filtrierungen hat). Wir er
weitern den Körper zu K = k((t)) (Laurentreihen über k) und definieren einen 
Automorphismus 3> = tß^ <g)fc id von K <8>fc V. 

Sei M C K ®fc V ein Gitter, d.h. ein endlich erzeugter fc[[t]]-Untermodul, 
welcher eine Basis enthält. Für 1 < v < r definiert man ein neues Gitter durch 

M M = ] T t~p • (M H K ®fc FS). 

Wendet man diesen Prozeß sukzessive an für jüle i/, so erhält man ein Gitter 
M = AfWW-M. Man sieht leicht, daß $(det(M)) = det(M), und daß für jeden 
Unterraum W gilt 

det(Af n f ) Ç tß(w)dim{w) . d e t ^ n wy 

WirJ)ehaupten, daß V genau dann semistabil ist, wenn ein Gitter M existiert mit 
$ (M) = M: 

Die eine Richtung folgt aus obiger Betrachtung von Determinanten. Für einen 
über k definierten Unterraum W gilt nämlich 

tM(v>dim(w) . d e t ( M n W) = det(*(M n W)) Ç ^(w)-dim(w) . det(M n W), 

und so weiter. 
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Für die Umkehrung sei V semistabil. Ausgehend von einem beliebigen Gitter 
M — M°_definiert man eine absteigende Folge von Gittern Mn durch M n + 1 = 
Mn H $(Mn). Dann erhält man eine Folge von Injektionen 

$(M' l+1)/Mn+1 n $(Mn+1) -> ®(Mn)/Mn n $(Mn). 

Da alle auftretenden k[[t]]-Moduln von endlicher Länge sind, sind diese In
jektionen für große n Isomorphismen. Durch Andern der Indizierung dürfen wir 
annehmen, daßdies schon für alleji > 0 gilt. Falls die Moduln dann verschwinden, 
so ist M Ç $(M), also M = ®(M), da die Determinanten übereinstimmen. Wenn 
nicht, so zeigen wir, daß V nicht semistabil jst. Dazu sei L = M°° der Durch
schnitt aller Mn,M°° der Durchschnitt aller Mn und W1 der von L aufgespannte 
Unterraum. Wir zeigen, daß p(W') > ß(V) gilt. 

Man sieht leicht, daß L = M°° (für ähnliche Argumente siehe [L], Beweise 
von Lemma 2.9 undvon Lemmar io) und daß 4>(Z)/L = ^ ( M ^ J / M 0 0 H $(M°°) 
isomorph ist zu $(M)/(M H $(M)), also nicht trivial. Eine Betrachtung der De
terminanten liefert p(Wf) > p(V), und V ist nicht semistabil. 

Dies beendet die Konstruktion guter Gitter. Sie impliziert die Behauptung 
des Lemmas, da das Tensorprodukt guter Gitter wieder gut ist. Es sei bemerkt, daß 
man in Charakteristik 0 auch die Existenz guter hermitescher Metriken benutzen 
kann (siehe [FW], vereinfacht von B. Toharo. Ein neuer Beweis findet sich in [T]). 
Ein wirklich elementarer Beweis des Lemmas ist mir aber nicht bekannt. 

Aus dem Lemma folgt die Verträglichkeit der Harder-Narasimhan-Filtrierung 
mit Tensorprodukten. Man kann dann (in Charakteristik 0) die Überlegung aus 
[Fa2] auf filtrierte halb einfache Liealgebren anwenden, und erhält aus der Harder-
Narasimhan-Filtrierung eine kanonische instabile parabolische Unteralgebra. 

3. Stabilität in der diophantischen Approximation 

Diese tritt zuerst in den Arbeiten von W. Schmidt (siehe [S]) auf. Dazu sei k eine 
Zahlkörper, {v\,... ,vr} eine endliche Menge von Bewertungen von k. Man sucht 
Endlichkeitsaussagen für die Teilmenge ü des projektiven Raums Fd(k), welche 
durch die folgende Eigenschaft charakterisiert ist: 

Sei x = (XQ, ... ,Xd) C Pd(/c) ein rationaler Punkt. Ferner sei für jede Stelle 
Vi eine endliche Anzahl homogener Polynome {Gij} in &[T0,... ,T^] gegeben (Li
nearformen bei Schmidt), dij = grad(G7;J), und für jedes Gij eine reelle Zahl jiij-
Dann liegt x in H, falls für alle (i,j) die folgende Ungleichung gilt, wobei || \\i die 
^i-adische Norm bezeichnet: 

llG^O^IIi/ll^f1'-7 < Konstante -H(x)~^^. (*) 

Natürlich ist dabei H(x) die Höhe von x. 
Das Wesentliche hier sind gewisse Filtrier ungen der Polynomalgebra R = 

fc[Trj,... ,Td\. Für jede Stelle Vi definiert man nämlich eine Filtrierung Ff von 
R durch die Regel, daß Ff(R) C R das Ideal ist, welches von allen Produkten 
von Gij (mit beliebigen j) erzeugt wird, für die die Summe der pij mindestens 
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gleich p ist. Das heißt, G liegt in Ff(R), falls aus den Voraussetzungen an x eine 
Ungleichung 

H^MHi / IMI* ' ' < Konstante -H(x)~p (*) 

folgt. 

Seit fast fünf Jahren gibt es eine neue Methode, u m solche Endlichkeitsaussa
gen in höheren Dimensionen anzugehen, nämlich den Produktsatz ([Fai]). Wenn 
man diesen hier anwenden will, so benötigt man untere Abschätzungen für die 
/.i-Invarianten von Quotientenfiltrierungen auf Algebren R(X). Dabei ist I c F d 

eine über k definierte projektive Untervarietät und R(X) der zugehörige Koordi
natenring. Diese Abschätzungen folgen nun leicht aus der Stabilitätstheorie. Wenn 
zum Beispiel alle Gij Linearformen sind, so hat man nur für alle i die entspre
chenden Filtrierungen Ff auf den linearen Polynomen V = kd+1 zu betrachten. 
Falls V semistabil ist, mit ^-Invariante p(V) > 1 (bei geeigneter Normierung), so 
sind auch alle symmetrischen Potenzen Sq(V) semistabil, mit /i-Invariante > q, 
und die daraus folgende Abschätzung liefert zusammen mit dem Produktsatz die 
Endlichkeit von Ü (siehe [FW]). 

4. Stabilität und p-adische Galoisdarstellungen 

In diesem Abschnitt sei k eine perfekter Körper der Charakteristik p > 0, VQ = 
W(k) der Ring der Wittvektoren, KQ sein Quotientenkörper und K D KQ eine 
endliche total verzweigte Erweiterung mit ganzen Zahlen V. J.M. Fontaine hat 
eine Korrespondenz konstruiert zwischen best immten p-adischen Darstellungen 
von Gal(K/K), und bestimmten "kristallinen" Objekten (siehe [Fo]). Diese beste
hen aus einem endlichdimensionalen ko-Vektorraum DQ , einem Frobenius-linearen 
Automorphismus $ von DQ und einer absteigenden Filtrierung {Fq} auf D = 
K ®K0 T)Q . Mit der offensichtlichen Definition von Abbildungen bilden diese eine 
additive Kategorie, und Fontaines Funktor ist volltreu und respektiert Tensor
produkte und Duale. Es ist aber im allgemeinen nicht bekannt, welche Tupel 
(DQ, $ , {FQ}) als Bild auftreten können. Eine notwendige Bedingung ("faiblement 
admissible" ) ist die folgenden "schwache Zulässigkeit", welche stark an Mumfords 
Stabilität erinnert: 

Sei EQ C DQ ein ^-stabiler Unterraum. Wir definieren zwei Invarianten 
P^(EQ) und PF(EQ) wie folgt: P$(EQ) ist die durchschnitthche "Steigung" des 

Frobenius, das heißt dim(I£o) • ^(EQ) ist die p-Potenz in der Determinante des 
Frobenius auf EQ. Die zweite Invariante PF(EQ) benutzt die induzierte Filtrierung 
auf E = K ®KQ FQ und ist gegeben durch 

PF(EQ) = d i m ( ^ o ) - 1 5 > • dim(grq
F(E)). 

Dann lautet die Bedingung, daß für jeden Unterraum PF(EQ) < P$(EQ) gilt, mit 
Gleichheit für EQ = DQ. Falls sie verletzt ist, erhält man wieder eine Harder-
Narasimhan-Filtrierung, angefangen mit einem Unterraum EQ mit maximaler Dif
ferenz PF(EQ) — P$(EQ), und so weiter. 
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Man kann nun mit unseren Methoden zeigen, daß die Menge der dieser Be
dingung genügenden (DQ,$, {Fq}) zumindest stabil unter Tensorprodukten ist. 
Dies sieht man wie folgt: 

Man darf annehmen, daß der Restklassenkörper k algebraisch abgeschlossen 
ist. Dann kann man DQ zerlegen in eine direkte Summe 

A) = 0A),Q, 

wobei der Frobenius auf DQì0, reine Steigung a E Q hat. Weiter ist jedes JDojQ. 
direkte Summe der irreduziblen Objekte Ua mit Steigung et, d.h. 

A),a = Ua ®K Va , 

die Va sind über Qp definiert, und «^-stabile Unterräume von DQ sind genau die 
direkten Summen von Ua ®K Wa, Wa C Va beliebige Qp-rationale Teilräume. Ins
besondere ist (DQ, <[>) schon über Qp definierbar, und die semistabilen Filtrierungen 
{Fv} sind die if-rationalen Punkte eines rigid-analytischen Raumes ÇI(DQ). SI(DQ) 
ist enthalten in der entsprechenden Fahnenmannigfaltigkeit. 

Wähle nun eine ganze Zahl N, so daß Af • cu ganz ist für alle in DQ^ und DQì2 

vorkommenden Steigungen a und definiere eine Operation p von Gm auf DQ^ und 
DQì2 durch die Regel, daß z G Gm auf DQ^ als zN'a operiert. Dann definie
ren die Invarianten unter p(p~1) • $N auf DQJ die Struktur eines Vektorraumes 
über QpN, der unverzweigten Erweiterung von Qp vom Grad N. Außerdem sind 
alle ^-stabilen Unterräume von DQ^ ® DQ}2 auch p-stabil, und schon über QpN 
definiert. Falls unsere Behauptung falsch ist, gibt es einen ^-stabi len Unterraum 
W C A),i ® ^o,25 und einen K-rationalen Punk t in fìfJDo^] x fi^o^], so daß die 
Semistabilitätsbedingung für den Unter raum W und die entsprechenden Filtrie
rungen verletzt ist. Bei festem W definiert dies eine abgeschlossene analytische 
Menge in nfDo.i] x fifA)^], welche über QPN definiert ist und damit auch einen 
rationalen Punkt in einer endlichen Erweiterung von QpN besitzt. Wir sind dann 
in der folgenden Situation: Es gibt eine endliche Galoiserweiterung K von Qp, und 
auf Di = K®DQti (i = 1,2) Filtrierungen {Fq(Di)}, so daß (D0ii, $ , {Fq(Di)}) 
beide schwach zulässig sind, aber nicht ihr Tensor pro dukt. 

Wir dürfen dabei annehmen, daß K eine Af-te Wurzel pl/N, die Einheitswur
zeln PN-N* der Ordnung N • Af*, sowie QPN enthält. Dabei sei N* eine genügend 
große natürliche Zahl mit der Eigenschaft, daß die Einschränkung von p auf PN-N* 
schon die verschiedenen Eigenräume von p in DQ^, DQì2 und DQ^ (g) DQì2 unter
scheidet. 

Nunmehr setze man den R'obeniusautomorphismus von QpN zu einem Auto
morphismus cj) von K fort und definiere damit semilineare Automorphismen 0 (g) $ 
auf Di und D2. Sei G die von p(p~1/N) • ( 0 ® $ ) , P({J>N-N*) und Gal (K/QpN)®id 
erzeugte Untergruppe von Aut (Di)x Aut (D2). G ist endlich (da <&N = p(p) 
auf Qp-rationalen Punkten in D0^), und Unterräume von D\,D2 oder D\ ®K D2 

sind genau dann G-invariant, wenn sie von «^-stabilen Unterräumen in DQ^ ®QPN , 
DQì2 ®QpN bzw. DQ^ ® DQ}2 <8>QPN induziert sind. Die schwache Zulässigkeit ist 
daher äquivalent zu einer gewichteten Semistabilität bezüglich der endlich vielen 
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G-Transformierten der Filtrierung {Fq}, und der Beweis unseres Lemmas liefert 

Git ter Mi = $ (M; ) C A - Dabei ist wieder Mi = M ^ 1 ) ( 2 ) " ( r ) , wobei nun 

M^ = Y^p~q-{F?nMi). 

Der Beweis der Behauptung ergibt sich nun aus der Betrachtung des Gitters 
Mi <g> M2 in Vi (8) V2. Wie bisher folgt daraus die Verträglichkeit der Harder-
Narasimhan-Filtrierung (induziert durch pp — ß$ ) mit Tensorprodukten mit den 
üblichen Konsequenzen für halbeinfache Liealgebren. 

Man kann die schwach zulässigen Tupel (DQ, $ , {Fq}) durch rigid-analytische 
Räume parametrisieren, welche ein p-adisches Analogon zu den klassifizierenden 
Räumen für Hodgestrukturen bilden. Besonders interessant sind darunter die Pen
dants der symmetrischen Räume. Das wichtigste Beispiel stammt hier von V. Drin
feld (siehe [D]) und parametrisiert gewisse Typen formaler Gruppen. Kürzlich hat 
H. Voskuil (in [V]) diese für behebige p-adische reduktive Gruppen verallgemei
nert . Ist G eine solche Gruppe, P C. G eine parabolische Untergruppe, T C G ein 
maximaler Torus, X = G/P der zugehörige homogene Raum und £ ein homogenes 
amples Geradenbündel auf X, so funktioniert die Konstruktion in den Fällen, wo 
auf X semistabile und stabile Punkte (bezüglich der T-Operation auf £) über
einstimmen. Insbesondere gilt dies für fast alle C, wenn P — B eine Borelgruppe 
ist. Der p-adische symmetrische Raum über einem lokalen Grundkörper K ist der 
Durchschnitt aller T-semistabilen Punkte für alle if-rationalen maximalen Tori T. 
Voskuil konstruiert dafür ein gutes formales Modell, dessen Singularitäten lokal 
durch die Toruseinbettung zum Bruhat-Tits-Gebäude von G beschrieben werden. 
Allerdings parametrisieren diese formalen Modelle im allgemeinen keine forma
len Gruppen. Dies wird zum Beispiel in [Fa5] für die Grassmannvarietät G(2,5) 
gezeigt. 
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1 Introduct ion 

Consider the following general problem: Given a smooth affine curve U over an 
algebraically closed field k, find the fundamental group TTI(U), and its set of (con
tinuous) finite quotients TTA(U). When k = C, U is a Riemann surface, and ni 
can be computed using loops. If U is obtained by deleting S — {£o5---5£r} 
from a compact Riemann surface X of genus g, we thus obtain classically that 
7Ti has generators ai,..., ag, bi,... , bg, CQ, ..., cr subject to the single relation 
n?=i [ a j> ty] Yll=oci = 1- (Here [a,b] = aba~1b~1.) This is isomorphic to the free 
group on 2g + r generators, so TTA(U) is the set of finite groups with 2g -\-r gen
erators. Thus, these are the Galois groups of finite unramified Galois covers of U, 
or equivalently of finite branched covers of X with branch locus disjoint from U. 

Over other algebraically closed fields k, loops do not make sense. But it does 
make sense to speak of finite unramified covers of U, and of TTA(U). SO let U = 
X — S, where X is a smooth projective fc-curve of genus g > 0, and S = {£o3 • • •, £r} 
(r > 0); we call this an affine curve of type (g, r). The result over C no longer holds 
if the characteristic of k is p > 0, e.g. because of Artin-Schreier covers of the affine 
line. In 1957, Abhyankar [Abl] posed: 

A B H Y A N K A R ' S C O N J E C T U R E (AC). In characteristic p, if U is an affine curve 
of type (g^r), then a finite group G is in TTA(U) if and only if every prime-to-p 
quotient of G has 2g + r generators. 

Equivalently, writing p(G) for the subgroup of G generated by the Sylow p-
subgroups, AC asserts tha t G G TTA(U) if and only if G/p(G) is in ITA of a complex 
curve of type (g,r). 

Here Abhyankar allowed p = 0. Later, Grothendieck showed [Gr2, XIII, Cor. 
2.12] t ha t AC holds for p = 0 and tha t tri of a curve of type (g, r) is the same over 
all algebraically closed fields of characteristic 0. This was proven by specialization 
techniques, as was a weak form of AC in the p > 0 case: tha t the prime-to-p part 
of 7Ti is the same in characteristic p and in characteristic 0, and tha t the tame 
fundamental group n\(U) over k is a quotient of TTI of a complex curve of the same 
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type. (If U = X — S, 7T\(U) is defined via branched covers of X that are unramified 
over U and tamely ramified over S.) 

Grothendieck's results imply that the forward implication of AC holds; that 
a primc-to-p group G is in KA(U) if and only if it has 2g + r generators; and that 
not all groups conjectured to be in 7TA(£/) can arise from branched covers of X 
that are tamely ramified over S and unramified elsewhere. This suggests: 

STRONG ABHYANKAR CONJECTURE (SAC). In characteristic p, if U = X -
{£o> • • • ? fr} with X of genus g and r > 0, and if each prime-to-p quotient of G lies 
in TTA(U), then G is the Galois group of a Galois étale cover of U whose smooth 
completion is tamely ramified over X except possibly at f o . 

As a result of recent work of Raynaud and the author, we now have 

THEOREM [Ra2, Ha6]. SAC (and hence AC) holds for all affine cuwes. 

Abhyankar's Conjecture was stated in 1957, but evidence began to accumulate 
only about 1980. The case of U = A1 was considered first; there AC says that 
7TA consists of the quasi-p-groups (i.e. groups with p(G) = G). Nori (cf. [Ka]) and 
Abhyankar (cf. [Ab2]) showed that various finite groups, especially certain simple 
groups, lie in 7TA(A1). Later Serre [Sel] proved AC over A1 for solvable quasi-p-
groups. Rajmaud [Ra2] then showed the full AC for A1 using rigid analytic patching 
and semi-stable reduction. The author's proof of SAC [Ha6] used another form of 
patching, involving formal schemes, as well as relying on [Ra2]. 

The structure of the rest of this paper is as follows. Section 2 describes formal 
and rigid patching, and Section 3 sketches the proof of AC. Finally, Section 4 
discusses variants and open problems. 

2 Formal and rigid patching 

2.1 Formal and rigid geometry. Over the complex numbers, one can construct 
covers with desired properties by "cutting and pasting." In the proof of AC, ana
logous (formal or rigid) techniques are used to handle curves in characteristic p. 
The point is that the Zariski topology is too weak to use in mimicking complex 
constructions, as there are no "small" open sets. But the formal and rigid ap
proaches provide smaller sets that can be cut and pasted usefully. Here we work 
over a complete field, e.g. K = k((t)), which in some ways is analogous to C. 

The formal approach is based on Grothendieck's formal schemes [Grl, EGA 
I, Sect. 10]. The rigid setting, due to Tate [Ta] and Kiehl [Ki], is more intuitive, but 
its foundations have not been worked out as thoroughly. The relationship between 
these two frameworks has been presented in [Rai], [Me], [BL], and [BLR]. 

Consider a curve over K = k((t)). One can speak of metric open discs, and can 
attempt to do analytic geometry, in analog}'' with complex curves. Unfortunately, it 
is insufficient to use the naive approach of working with such discs and their rings 
of holomorphic functions, because the metric topology is totally disconnected, and 
so the geometry obtained would be "flabby." Instead, the rigid theory introduces a 
subtler notion of an affinoid set and its ring of functions. (See also [Ra2, Sect. 3].) 
This enables cutting and pasting that behaves more as desired. 
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Meanwhile, in the formal context, we begin with a curve over k, and consider 
"thickenings" to R = k[[t]]. If X is a smooth projective fc-curve, then such a 
thickening is XR = X x^ R, with generic fibre XK- On the other hand if U = 
Spec(E) is an affine curve, then a thickening is U* = Spec(E[[t]\). This is "smaller" 
than UR = U XfrR, which is a Zariski open subset of XR. For example, if X = Pj. 
and U = &\, then U* = Spec (fc[z] [[*]]) and UR = Spec(fc[[t]][a;]). As 1 - xt is a 
unit in fc[a:][[t]] but not in &[[£]] [z], the point (1 — xt) in UR is missing from U*. 
Geometrically, we can think of UR as a "uniformly thick" tubular neighborhood of 
U, whereas U* is a neighborhood tha t "pinches down" near points at infinity. (For 
projective curves X, there are no points at infinity, and X* = XR.) We can also 
consider thickenings of other subschemes of X, e.g. complete local neighborhoods 
Spec (Ôx^) of any point £ of X. In this case we obtain Spec(Ôx,f [[£]])• 

For U C X, the thickening U* is a surface whose closed fibre is U. Concerning 
the connection to rigid geometry, consider the generic fibre of U*, obtained by 
deleting the closed fibre. This is an affine scheme Spec(A), where A is the ring of 
functions of an affinoid subset U of UK- For example, if X = Pj. and U = A\, 
then U is a disc about the origin. And if X = P£ and U = A\. — (x = 0), then hi 
is a "corona" (annulus) whose complement has two components (one containing 
the point (x = 0) and the other containing (x = oo)). Under this correspondence, 
points of ÌÀ correspond to curves in U* not lying in the closed fibre, and two points 
of U are "close" if the corresponding curves have a high order of contact. 

2.2 Patching. In the proof of Abhyankar's Conjecture, the main idea is to construct 
G-Galois covers over k by working inductively on the order of G, and to paste 
together Galois covers having smaller groups. Given an affine fc-curve U, if G-
Galois covers are constructed over the induced if-curve UK (where K = k((t)) ), 
then a specialization argument (the "Lefschetz principle") implies t ha t there is a 
G-Galois cover of U. Thus , it suffices to work over the complete field K. 

Consider the following situation over C, which we wish to mimic in character
istic p . We have a compact Riemann surface X\ a subset Ui obtained by deleting a 
small disc D; a disc U2 t ha t is slightly larger t han D; and the overlap UQ = UiCiU2, 
which is an annulus. Given a structure (a vector bundle, a branched cover, etc.) 
over Lii and U2 together with an agreement over UQ, we wish to pa tch the da ta 
together to obtain such a structure over X. 

Analogs of these discs and annuii exist in the rigid setting. Meanwhile, in 
the formal setting, consider a point £ on a smooth projective fc-curve X. Let 
U\ = X — {£}, U2 = Spec(Ôx,^), and UQ = Spec(/Cx,^), where 1Cx£ is the fraction 
field of öx£- Then the formal analog is given by X*, U*, U%, and UQ. Here, one 
can patch structures such as vector bundles or Galois covers. This is by a formal 
patching theorem [Ha5, Theorem 1] which is a variant on Grothendieck's Existence 
Theorem [Grl, EGA III, 5.1.6], and can be regarded as a "formal GAGA": 

P A T C H I N G T H E O R E M [Ha5, Theorem 1]. In the above situation, consider finite 
projective modules Mi and M2 over U* and U^} together with an isomorphism 
between the induced modules over UQ. Then up to isomorphism, there is a unique 
finite projective öx-'^odule M inducing M\ and M2j compatibly with the identifi-
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cation over UQ . Moreover, this association con^esponds to an equivalence of cate
gories, and so the result carries over to finite projective algebras, and to covers. 

This is proven by reducing to a local analog for modules over discrete valuation 
rings O (where projective modules are free). Set /C = frac(CJ) and /C = frac(O). The 
problem is to patch together free modules over Ô[[t]] and K.[[i\] with agreement over 
/C [[£]], and to obtain a free O[[t]]-module inducing the given modules together with 
the identification. This is done by factoring the transition matrix M G GLw(/C[[t]]) 
as a product of change-of-basis matrices in GL#(Ö[[£]]) and GLw(/C[[£]]). 

As an application of this patching theorem, we consider the following result, 
which permits the inductive construction of covers of curves. First we introduce 
a bit of terminology. Pick roots of unity {(n | char(fc) does not divide n} C k 
such that £"n, = fn. Given a G-Galois cover of curves Y —> X, let n £ Y be a 
ramification point lying over £ E X, with local uniformizers y G Oyì7ì and x G Ox£ 
satisfying yn = x. We call g G G the inertial generator at 77 if g(y) = Çny. (If fc = C, 
this can be interpreted via the lifting to Y of counterclockwise loops around £.) 

COROLLARY . Let Hi, H2 be subgroups generating a finite group G; Y —> X a 
connected Hi-Galois cover of fc-curves with branch locus B c X; and W —> P 1 

a connected H2-Galois cover with m branch points. Let g G G be the inertial 
generator at a tame point 77 G Y over £ G B, and suppose that g~l is the inertial 
generator at a tame point UJ G W over one of the 111 branch points. Then there is 
a connected G-Galois cover Z —> X that is branched at B and 111 — 2 other points, 
and whose inertia groups over B — {£} are the conjugates of those ofY—>X. 

To prove this result over fc = C, we induce each of the given covers up to G, by 
taking a disjoint union of copies of the cover, indexed by the cosets of Hi in G. 
We then cut out small discs around £ G X and p G P 1 , where UJ lies over p. The 
two disconnected G-Galois covers agree over the boundaries of the excised discs 
(because the two boundary orientations are opposite, and the inertial generators 
are g,g~1)] by pasting along the boundaries we obtain the desired cover Z —> X. 
Here, the base is still isomorphic to X, and the pasting can be done so that one 
of the new branch points coming from W —> P 1 is now positioned at £. 

For fc of characteristic p, using formal geometry, consider the union X1 of X 
and P 1 crossing transversally (identifying £ G X with p G P1) . By blowing up the 
point (£,0) on X* = X Xkk[[t]] and pulling back by 11—> tn (where n — ord(o) ), we 
obtain an irreducible k[[t]]-thickening X1* oîX' with generic fibre X^t^, and given 
near the singular point by xu = tn. By choosing a finite morphism X1* —> PjLmi 
and working over P1 , we can apply the above formal patching theorem [Ha5, 
Theorem 1]. So there is a G-Galois cover of X'* consisting of copies of thickenings 
of Y and W away from the node (first altering W to move a branch point to 00), 
and copies of Spec(fc[[?/, w, t]]/(yn — x, wn — u,yw — t)) near the node. The generic 
fibre is a fc((t))-cover with the desired properties. (Its connectivity follows from 
that of the closed fibre, which uses G = HiH2.) Now apply the Lefschetz principle 
to obtain such a cover over fc. 
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3 Proof of Abhyankar's Conjecture. 

3.1 Outline of the proof of AC. Let fc be an algebraically closed field of charac
teristic p. In 1990, Serre proved the following result: 

THEOREM [Sel, Theorem 1]. Let 1—»Af—> G ^ H —> 1 be an exact sequence of 
finite groups, with G quasi-p and N solvable. If H G 7TA(A^) then so is G. 

Taking H = 1, we obtain Abhyankar's Conjecture for solvable groups over A1. For 
the proof, induction reduces to the case of N an elementary abelian /-group on 
which H acts irreducibly. Because cc^A1) = 1 [Sel, Prop. 1], we may replace H by 
a subgroup of G, and so assume that the exact sequence is split. The proof proceeds 
cohomologically. The most difficult case is that of Z ^ p. There, the given üT-Galois 
cover might not be dominated by any G-Galois cover of A1 (i.e. the corresponding 
embedding problem over A1 might have no solution). Instead the iü-Galois cover 
may have to be altered, before obtaining a G-Galois cover dominating it. 

Using Serre's result, together with rigid patching and semi-stable reduction, 
Raynaud [Ra2] proved Abhyankar's Conjecture over A1 in 1992. That is, he showed 
that if G is a finite quasi-p-group, then G is a Galois group over A1. The proof 
proceeds inductively on the order of G. For P a Sylow p-subgroup of G, let G(P) be 
the subgroup of G generated by all the proper quasi-p-subgroups H C G such that 
P contains a Sylow p-subgroup of H. There are three cases: (i) G has a nontrivial 
normal p-subgroup; (ii) G(P) = G for some P; (iii) otherwise. 

Case (i) follows from Serre's result and the inductive hypothesis, since p-
groups are solvable. Case (ii) uses rigid patching methods; cf. Section 3.2 below. 
Case (iii) uses semi-stable reduction in mixed characteristic; cf. Section 3.3. 

Using Raynaud's result and formal patching, the author proved the general 
case of AC, including the stronger form SAC. This is discussed in Section 3.4. 

3.2 Proof of AC for A1 in case (ii). As discussed in Section 2 above, it suffices to 
construct a G-Galois cover of the if-line, where K = k((t)). Let G i , . . . , Gr be the 
proper quasi-p-subgroups of G having Sylow p-subgroups contained in P. By the 
inductive hypothesis, each Gi is the Galois group of a cover Xi —> A1. Pulling back 
by a cover of the form yn = x and using Abhyankar's Lemma, we may assume 
that these G^-Galois covers have p-groups Qi C P among the inertia groups over 
infinity. The restriction of Xi to a corona Ci centered at infinity is a disjoint union 
of copies of some Qi-Galois cover Ui —^ Ci. 

Choose r + 1 points o~i,..., or, oo G P ^ together with copies of the r coronas 
Ci centered at the points cr̂ . Also let G = VX

K — {cri,... ,crr,oo}. These points 
and coronas can be chosen so that the union C = \JiCi is disjoint and extends 
to a disjoint union on the corresponding discs, and so that (C,C) is a Runge pair 
— i.e. so that P ^ — G contains a point in each component of the complement of 
C. Possibly after replacing if by a finite separable extension, there is a P-Galois 
cover Y —> C whose restriction to each Ci is a disjoint union of copies of Ui —> Ci. 
(This is shown [Ra2, Cor. 4.2.6] using cohomology and induction on the order of 
the p-group P.) Now induce up to G, pasting each Xi to Y over Ci. This yields a 
G-Galois cover, which is connected because we are in case (ii). 



Fundamental Groups of Curves in Characteristic p 661 

This case of the proof can also be shown using formal patching. See [Ha8, 
Application 2.2] for a discussion of this. 

3.3 Proof of AC for A1 in case (iii). Because G is a quasi-p-group, there is a G-
Galois cover Yj< —» P}<- with p-powcr inertia groups, over a field K of characteristic 
0. Here K can bc chosen to be the fraction field of a complete discrete valuation 
ring R with residue field fc. For suitable K and R, there is an R-model Y —» X of 
this cover with semi-stable reduction and fibre Yk —> Xk, such that Xk is a tree 
of Pfc's; the inertia group Is at each component s of Yk is a p-group; and Is is 
nontrivial unless s lies over a terminal component of the tree Xk. 

Because Xk is a tree of Pj.'s, there is a natural partial order on the compo
nents, with the "base component" o' minimal and terminal components maximal. 
A partially ordered tree A of components of Yk is constructed above it, with some 
o over ol minimal. It is chosen so that G0 = G, where for each component s of A, 
Gs C G is the subgroup generated by {p(Dt) | t in A, t > s} (where Dt is the 
decomposition group at t and p(-) is as in Section 1). 

Let s in A be maximal such that Gs = G. If Ls ^ 1 then a group theory 
argument (using the fact that we are not in case (i)) shows Gs C G(P) for some 
P — contradicting Gs = G, as we are not in case (ii). So actually Ls — 1, and s 
is a terminal component, with Ds = G. Its image s' in Xk is a copy of P£. As s 
is a terminal component of the tree A, s* meets the rest of the graph at only one 
point. Deleting this point yields a G-Galois cover of the affine line. 

3.4 Proof of SAC for general affhie curves. This proof relies on AC for A1 (which 
in that case is equivalent to SAC). The key step is to show the result for A1 — {0}. 
Once that is done, the general case can be shown as follows. Under the hypotheses 
of SAC, let Q = p(G) and F = G/Q. By [Gr2, XIII, Cor. 2.12], there is an F-Galois 
cover U —> X branched only at {£o,... , £ r } . Let G be an inertia group over £o, 
with inertial generator g G G (cf. Section 2.2). By group theory, we may assume 
that the exact sequence 1—> Q —> G —> F —> 1 splits and that E — Q • C is a 
semi-direct product. Using the case of SAC for A1 — {0}, we obtain an S-Galois 
cover of A1 — {0} that is tamely ramified over 0, with G an inertia group there 
and (after pulling back by some x \—> x^) inertial generator g~x. Because E and 
F generate G, the result follows from the Corollary to the Patching Theorem in 
Section 2.2 above. 

To prove SAC for A1 - {0}, let Q = p(G), let G = G/Q, and let P be a 
Sylow p-subgroup of G. Thus, G is cyclic of order n prime to p. By group theory 
we reduce to the case that 1—> Q —> G —> C —> 1 splits and H = P • G is a semi-
direct product. By AC for A1, there is a Q-Galois cover W —> A1 = Spec(fc[z]). By 
enlarging inertia (e.g. by [Ha5, Theorem 2]), we may assume that P is an inertia 
group over (x = oo). By [Hal, Cor. 2.4], there is a P-Galois cover Y —> A1 that 
agrees locally with W —> A1 over Spec(fc((a;_1))). Using the moduli space of P-
covers of the affine line [Hal], one may construct a P-Galois cover Z —> P 1 x P 1 of 
the (x, £)-space that is étale over A1 x A1 and totally ramified elsewhere, whose fibre 
over A1 x (t = 1) agrees with Y —> A1, and whose composition with (x, t) \—> (x, tn) 
is ii"-Galois [Ha6, Prop. 4.1] over the (x,s)-space P 1 x P 1 (where s = tn). 
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For a suitable blow-up T of the (x, s)-space, there is a covering morphism 
from T to (u, w)-space P 1 x P 1 whose fibre over (v = 0) consists of two lines 
Xi (over s = 1) and X2 (over x = oo) crossing at a point r. The restriction 
T* —> P 1 x Spec(fc[[?;]]) has generic fibre isomorphic to the s-line over K = k((v)). 
Pulling back the above üf-Galois cover of the (x, s)-space to T* and normalizing, 
we obtain an iJ-Galois cover B* —> T*. Its fibre over X[ = X\ — {r} is isomorphic 
to the disconnected iJ-Galois cover Indp Y —> A1 induced by Y —> A1. The generic 
fibre B*° —• T*° is branched precisely at (s = 0) and (s = oo), with inertia groups 
C and H, respectively [Ha6, Prop. 5.1]. So the cover is unramified over X[, and 
the fibre over the thickening X[* (cf. Section 2.1) is Indp Y*. 

Because the covers W —• A1 and Y —• A1 agree locally over Spec(fc((a;-1))), 
their thickenings W* and Y* agree locally over Spec(fc((z-1))) ; hence so do W* 
and B* (over Specf/Cx^r)*)- Since the base space T* is fibred over PLr^ii, we may 
apply the formal Patching Theorem in Section 2 [Ha5, Theorem 1] to Ind^P* and 
IndgW*, in order to cut out copies of Y* from B* and paste in copies of W*. 
This yields an irreducible G-Galois cover of T*. Its general fibre is an irreducible 
G-Galois cover of the s-line P ^ that is branched only at (s = 0) and (s = oo), 
with inertia groups G and H, respectively. This solves the problem over K, and 
using the Lefschetz principle we obtain SAC for A^ — {0}. 

The above proof used formal patching, but it is also possible to prove SAC 
for &\ — {0} using rigid methods. Namely, Raynaud has observed that his result 
on Runge pairs discussed in Section 3.2 above [Ra2, Cor. 4.2.6] can be generalized 
in a way that can yield the rigid analog of the above construction. See the Remark 
after [Ha6, Prop. 5.2] for a further discussion of this. 

4 Complements and open problems 

4.1 Structure of 7Ti- Abhyankar's Conjecture describes 7TA of an affine curve of 
type (g,r) in characteristic p, and in particular shows that it depends only on the 
integers (g,r). But the fundamental group 7Ti of an affine curve in characteristic p 
remains unknown, even for the affine line. Moreover, 71*1 depends on the cardinality 
of the field fc, as covers in characteristic p can have "moduli" (e.g. consider the 
family yv —y — tx of p-cyclic covers of the affine ar-line, parametrized by the t-line 
with (t = 0) removed.) And even for a fixed algebraically closed field fc, TTI does 
not simply depend on the type (g,r). Indeed, even two affine curves of the form 
P 1 — {0, l,oo, A} can have nonisomorphic 7Ti's [Ha7, Theorem 1.8]. 

Also, for U — X — {£0,. . . , £r} and G G TTA(U), it is unknown which subgroups 
Gi C G can be inertia groups over £̂  of G-Galois branched covers of X that are 
étale over U. For U = A1, it is known that the inertia group can be taken to be a 
p-group (by Abhyankar's Lemma), and in general it is known that if a p-subgroup 
can be an inertia group then so can every larger p-subgroup [Ha5, Theorem 2]. 
Hence, the Sylow p-subgroups can be inertia over infinity for covers of A1. There 
is also an obvious necessary condition on a subgroup of a quasi-p-group to arise 
as inertia over infinity [Ha7, Prop. 1.4]. But it is unclear if this is sufficient. 

4.2 Anabelian conjecture. The discussion in Section 4.1 suggests the following 
problem: For given values of g, r > 0, consider the moduli space MSj7._|_i of smooth 
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fc-curves of genus g with r + 1 points deleted. Is there a dense open subset of 
MgtT+i on which 7Ti of the corresponding affine curves is constant? Or, at the 
other extreme, does ni(U) essentially determine the curve UI In particular, if 
iTi(Xi) « 7Ti(X2), where Xi is a curve of genus gi with rj > 0 points deleted, then 
must gi = g2 and i\ = r2l Also, must X\ and X2 be isomorphic over the prime 
field? If fc is the algebraic closure of a finite field, a more precise version of this 
question is given by Grothendicck's "anabelian conjecture," which here says: 

CONJECTURE [Gr3]. Is an affine curve X over Fq determined up to Fq-isomor-
phism by 7T\(X) together with the surjective homomorphism 7Ti(X) —> Gal(Fg/Fg) ? 

An analogous result of Nakamura [Nm] provides support for this: Two open subsets 
of PQ are isomorphic if and only if their fundamental groups are isomorphic as 
Gal(Q/Q)-modules. Also, birational versions of the conjecture have been proven 
by Uchida [Uc] and Pop [Pol], and a birational version for number fields (rather 
than for function fields of curves, as above) is due to Neukirch [Ne]. 

4.3 Projective case. Although there is no conjecture describing ITA of a projective 
curve X of genus g > 1, Grothendieck [Gr2, XIII, Cor. 2.12] showed that 7Ti(X) 
is some (unknown) quotient of 7Ti of a complex curve of genus g, and he gave an 
explicit presentation of the maximal prime-to-p quotient of ITI(X). Thus, Ki(X) is 
finitely generated, and so is determined by 7TA(^Q [FJ, Proposition 15.4]. 

For a given genus g > 1, curves with unequal p-rank (Hasse-Witt invariant) 
have distinct 7Ti's; while for g > 2, even the genus and p-rank do not determine 
ITi (or 7TA) [Kt], [Njl]. Also, Nakajima [Nj2] has found a necessary condition for 
a group G to lie in 7TA(#) = {G G 7TA(^Q | genus(X) = g}, viz. that the ideal 
{ S 7 G G a7 " 7 I S a 7 = 0} C fc[G] has g generators. 

Recently, formal and rigid patching methods (as discussed in Sections 2 and 
3) have been used to obtain more information about 7TA(ö')- In their 1994 theses, 
K. Stevenson [St] and M. Saïdi [Sa] have found quotients of TTI that are "bigger" 
than the profinite group on g generators. In particular, TTAW) D 7TA(#) whenever 
gf > g\ and TTA(9) contains all finite groups that have g generators (e.g. all finite 
simple groups, if g > 2), among others. 

4.4 Embedding problems. Given a finite group G, a quotient map G —> H, and an 
if-Galois unramified cover of fc-curves Y —> X, we can ask if there is a G-Galois 
unramified cover Z —> X inducing Y —> X. It is necessary that G G TTA(X), but 
this is not sufficient; cf. the proof of Serre's result on AC for solvable groups (see 
Section 3.1 above) in the split case with N an elementary abelian /-group, I ^ p. 

On the other hand, if we instead permit branched covers, then this embedding 
problem can always be solved [Ha8], [Po3] using a patching construction (in fact, 
with some control on the additional branching). Moreover, for each such embedding 
problem, the cardinality of the set of solutions is equal to that of the base field fc. 
As a result, the absolute Galois group of the function field of X is a free profinite 
group. This proves the function field version of a conjecture of Shafarevich: If K is 
a global field, then the absolute Galois group of its maximal cyclotomic extension 
is free profinite. This conjecture remains open in the number field case. 
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4.5 Other base fields. Let $ be the class of fields K such that every finite group is 
the Galois group of a (geometrically irreducible) Galois branched cover of P ^ . It is 
classical that C G $. By [Gr2, XIII, Cor. 2.12] and Abhyankar's Conjecture, every 
algebraically closed field is in $. Earlier [Ha2] this was shown (with less control 
on branching) by formal patching. Similarly [Ha3], the author showed that if R is 
the completion (or henselization) of a domain at a nonzero maximal ideal, then 
K = frac(P) is in <£. In particular, Qp and the algebraic p-adic field lie in $, as 
do k((t)) and the algebraic Laurent series field (for any field fc). 

Many other fields lie in $, including the fields Q tr of totally real [DF] and 
Q t p of totally p-adic [De] algebraic numbers, as well as PAC fields (see [FV] in the 
characteristic 0 case). More generally, fc G $ (and even a stronger condition holds, 
concerning embedding problems [Po2, Theorem 1.5]) if fc is existentially closed in 
k((t)), or equivalently if every geometrically irreducible fc-variety with a k((t))~ 
point has a fc-point. (PAC fields are trivially existentially closed; Q t r and Q t p are 
by [GPR,1.4] and [Po2, Lemma 1.8].) The reason is that k((t)) G $, so there is 
a domain A C k((t)) of finite type over fc and a G-Galois cover Z —• P^ whose 
fc-fibres ZQ —> P£ are irreducible. Because A C k((t)), the fc-variety Spec(A) is 
geometrically irreducible, and taking a fc-point yields that fc G $. 

Combining model theory with the above fact that PAC fields lie in $ yields 
the following conclusion (observed by Jarden, Fried-Völklein, and Pop): If G is 
a finite group, then G is the Galois group of a branched cover of Pp for all but 
finitely many finite fields F. But it remains unknown whether finite fields lie in $. 

Similarly, it is unknown if number fields lie in $. But by "rigidity," Matzat, 
Belyi, Thompson, Feit, Fried, Malle, Völklein et al. have realized many finite groups 
as Galois groups over P Q and hence over Q. See [Se2, Chap. 8] for more details. 

Another approach to the problem over Q [Ha4] used formal patching to find, 
for G any finite group, G-Galois (ramified) extensions of domains over Z[[t\] and 
Z{t} ~ {/ G Z[[£]] | / converges on \t\ < 1}. (These rings are analogous to fc[z][[£]] 
and fc[[£]][#]-) Such a G-Galois extension of Z{t} induces G-Galois extensions of 
Zr+[M] := {/ £ Z[[t]] | / holomorphic on \t\ < r} for all 0 < r < 1, and these 
descend to a compatible system of G-Galois extensions of the subrings Zr+[[t]]h of 
algebraic power series. It is tempting to expect that these extensions are induced 
by a G-Galois extension of Z{£}h, the ring of algebraic power series in 1{t}. As 
Z{£}h is a subring of Q(t), this would imply that Q G $. Unfortunately not all 
such systems of extensions descend to Z{i}h, but it would suffice to have at least 
one such system descend for each G (cf. [Ha4]). 

Given the fields that are known to be in $, and the expectation that number 
fields and finite fields are in $, the following conjecture seems reasonable: 

CONJECTURE. Every field lies in $. Hence every finite group is a Galois group 
over every field of the form K(x)} and also over every Hilbertian field. 
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Mixed Motives, Motivic Cohomology, and Ext-Groups 

U W E J A N N S E N 
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Weyertal 86, D-50931 Köln, Germany 

The standard cohomology theories for algebraic varieties show some fascinatingly 
parallel behavior. A well-known instance is the phenomenon of "independence o f f 
for ^-adic cohomology. But there are even more mysterious relations between the 
latter and Hodge theory. The theory of motives is the suitable setting for describ
ing and studying these issues. Whereas Grothendieck's theory of pure motives is 
designed as a universal cohomology theory for smooth projective varieties and is 
linked to algebraic cycles, the theory of mixed motives concerns the cohomology of 
arbitrary varieties and was related to algebraic if-theory by Beilinson and Deligne. 
A new phenomenon of the mixed case is the existence of nontrivial extensions. The 
aim of these notes is to discuss some of these ideas and to report on the problems 
and a few results. 

1 Pure motives and Horn 

The following principle underlies the notion of weights for motives. 

PRINCIPLE 1.1. For a smooth projective variety X, Hl(X) is pure of weight i. 

In this paper, we shall consider a base field k of characteristic 0 (unless stated 
otherwise) and the following cohomology groups: 
H^(X) := Hl(X%n,Q) (singular cohomology), where a : k *—> C is any embed

ding and X%n = (X Xfc)CT C)(C) as a complex manifold, 
H\(X) := Hl,(X, Qj>) (f-adic étale cohomology), where ß is any prime, and X = 

X Xk k for an algebraic closure k of k, 
Hdnfó) := H^r(X, Çï'x/k) (^e ^ n a m cohomology), the Zariski hypercohomology 

of the algebraic de Rliam complex. 

(1.2). The Hodge decomposition Hl
a(X) ®Q C = ®p+q=iH™, H^ = H™, 

defines a pure Q-Hodge structure of weight i on Hl
a(X). 

(1.3). By functoriality, Gk = Gal(k/k) acts on H^(X). If k is finitely gen
erated (as a field), then this finite-dimensional, continuous (^-representation is 
pure of weight i, i.e.: there exists a ring R of finite type over Z having k as 
its field of fractions such that (1) the action of Gk factors through Gal(L/k), 
where L is the maximal extension of k which is unramified over R, (2) for every 
closed point x E Spec R , the eigenvalues of a corresponding geometric Frobenius 
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Frx G Gal(L/k) are algebraic numbers with complex absolute values (Nx)1/2, 
where Nx is the cardinality of the finite residue field of x. 

(1.4). By using crystalline cohomology, there is also a structure on H^R(X) 
leading to weights. This will not be discussed in the following. 

Weights provide a grading: there are no nontrivial structure preserving mor
phisms between objects of different weights. Negative weights are introduced by 
the so-called Tate twists: for m G Z and a (Q^-Gfc-representation V one sets 
V(m) = V ®Q£ Q*(l)®m, where Q*(l) = (lim/.^n) ® z Q^ as a Gfc-representation 

<—n 

(of weight -2). For a Q-Hodge structure H one defines H(m) = H ®Q Q(l)®m, 
where Q(l) = Q • ^TTV^-T) is of type ( - 1 , - 1 ) , by definition. 

PRINCIPLE 1.5. The cohomology of X carries a semi-simple structure. 

In fact, H^(X) is a polarizable Hodge structure, and hence completely decom
posable. It is conjectured by Grothendieck and Serre that H^(X) is a semi-simple 
representation of G^, if k is finitely generated, but this is not known in general. 
The idea of decomposing the cohomology into factors leads to the following 

DEFINITION 1.6 A pure motive (of weight i — 2m) over k is a direct factor of 
H%(X)(m), for X a smooth, projective variety over k and i,m G Z. 

To make this precise we have to specify the considered theory and factors, 
but it is hoped that all natural choices lead to the same answer, and that the 
factors in different cohomology theories correspond. For example, for the trivial 
factors one has: 

PRINCIPLE 1.7. Let HS be the category ofQ-Hodge structures. 
(i) ra = dimQHomjffJs'(Q,iy^J(X)(i7')) should be independent of a. 

(ii) If k is finitely generated, then 77 = rg(k) = dimQ£H.ouìGk(QeìHE
3(X)(j)) 

should be independent of I, and ra = max{r^(/c/)|/c//^ finite}. 

To establish links between the different theories, one may use the canonical 
comparison isomorphisms 

W = flJW®QC-
Ii,7F:Hi(X)®QQt-

^Hi
dR(X)9k^C 

^HÌ(X) 

(G. deRham) 

(M. Artin), 

where a : k <̂-> C is any embedding extending a : k -̂> C, as well as the cycle maps 

ch : CHj(X) -> H?(X)(j), ? = a,£or dR. 

Here and in the following, CH3 (X) denotes the Chow group of Q-linear algebraic 
cycles of codimension j on X modulo rational equivalence (we shall not need 
integral coefficients). For z G CH3(X), the family (cl(T(z),cl£(z),cldR(z))ai\\ a£ is 
known to lie in the group AHj(X) = {(xa,xe, ,xdR)\xa. G H2j(X)(j) fi H™,xg G 
H2j(X)(£)Gk,xdR G Hl3

R(X),I00)(T(x(T) = xdR,I^(xa) = x?} of so-called absolute 
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Hodge cycles. Hence CH3(X)hom — Ker elf is independent of ? = a,I or dR, and 
via the (injective!) projections na and 7T/? we obtain a diagram 

HomffS(Q, H? (X)(j)) Borna, (Qe,H? (X)(j)) 

\\ß* _ IIA 
HV(X™,QU))nHy l^AW{X)^ HV(X,QeU))G* (1.8) 
Hodge cycles J 7 Tate cycles 

liomMh.(Q,h(X)(j)) = Ai{X) d^f CHi(X)/CW(X)hom 

The identifications ß? send morphisms / to / ( l ) , and the bottom equality holds 
by Grothendieck's definition of an additive category Mk of (sums of) pure motives 
over k. This category contains objects h(X) for each smooth, projective variety 
X such that RomMk(h(X),h(Y)) = Ad(X x Y) if X is pure of dimension d, 
and such that composition is given by composition of correspondences. A general 
object can be written as a triple (X,p,j), where p e Ad(X x X) is a projector 
(p2 = p) and j G Z. One has h(X) = (X, id, 0), a natural tensor law with unit 
Q = ft(Spec fc), and a notion of Tate twists (X,p,j)(n) := (X,p,j -f 7i). The 
functors X »-> H?(X) = (Bì>QH?(X) induce covariant functors on Mk hy setting 

H?((X,p,j)):=pH?(X)(j) , ? =a,e ov dR, 

the image of p for its natural action on cohomology. In this sense, the motive 
(X,p,j) corresponds to "taking the factor of cohomology cut out by p and applying 
the j-fold Tate twist". Mk should be a semi-simple abelian category. This would 
follow from Grothendieck's standard conjectures [KI], but at present is only known 
for the variant categories M1™™ and M^11 obtained by replacing the groups A'(-) 
by their quotients modulo numerical equivalence and by the groups AH'(—) of 
absolute Hodge cycles, respectively. In fact, the standard conjectures are trivially 
true for absolute Hodge cycles [DM], and one has: 

THEOREM 1.9. [J3] A category of motives, defined as above by quotients of Chow 
groups, is semi-simple abelian if and only if one takes the quotients modulo nu
merical equivalence. 

A priori the functors H-? might not exist on .MjJ11111, but the standard conjec
tures would imply that Mk and M1™™ are the same. They would also imply a grad
ing h(X) = ©^>o/zl(X) corresponding to the decomposition H^(X) = CBì>QH%(X), 

giving weights on Mk such that hl(X)(m) has weight i — 2m. The equality 
of Mk and MkH would follow from the Hodge conjecture (stating the bijec-
tivity of nid o 7 for fc = C) or the Tate conjecture (stating the bijectivity of 
(7T£0 7)(g)(Q)£ : A

j(X)®Q/> -> H2j(X,Q£(j))
Gk for finitely generated fc). Moreover, 

by (1.8) and the formula Hom(M, N) = Horn(l,M" (8) N) for the natural duals 
and tensor products on both sides, the Hodge conjecture means that for fc = C the 
Hodge realization functor Ha : Mk —> HS is fully faithful and hence that the 
motivic factors correspond to the factors of Hid(X) as a Hodge structure. Some
thing analogous holds for the Tate conjecture, a Q^-linear version of Mk and the 
Galois factors of H^(X). Note however, that 1.7 (i) would already follow from the 
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bijectivity of -Kid for fc = C (this is Deligne's conjecture that every Hodge cycle is 
absolute Hodge, and was proved by him for abelian varieties) while the first part 
of 1.7 (ii) would follow from the bijectivity of -Kg ® Qe for finitely generated fc. 

2. Mixed motives and Ext1 

The cohomology of nonproper or nonsmooth varieties will not in general be pure, 
but the following holds (cf. [Dl]): 

PRINCIPLE 2.1 The cohomology of an arbitrary variety Z over k is mixed. More 
precisely, there exists an ascending (weight) filtration ... Ç Wm_i Ç Wm Ç . . . on 
H\Z) such that Gr^H^Z) := Wm/W^^is pure of weight m. 

First of all, the above data H%
dR(Z),H\(Z),H'la(Z),I00ia,Ig^ also exist for 

arbitrary varieties (defining HdR(Z) suitably for singular Z). But now we have: 
(a) By Deligne's fundamental result [D2], Va = Hl

a(Z) carries a mixed Q-Hodge 
structure, i.e., an ascending filtration W. and a descending filtration F' on 
Va ®Q C such that F' defines a pure Hodge structure of weight m on Gr™Va. 

(b) Using the same techniques one can show that Vg = H\(Z) carries an ascending 
Gk -equivariant filtration W. such that Gr^Vg is pure of weight m [Dl], [J2]. 

(c) Similarly, HdR(Z) carries filtrations W. and F' by fc-subspaces, and 
(d) the comparison isomorphisms 1^^ and Ig^ are compatible with the occurring 

filtrations [J2]. 
It is useful to formalize these structures by defining an abstract category 

MRk of mixed realizations over fc consisting of data 

V = (VdRi Ve, Vor, J Q O . C T J ^ ö O J prime,o-:/c-->C,ä:fc^>C 

as described in (a)-(d) above, with the obvious notion of morphisms: families 
{fdR,fi,fa) of maps fdR : VdR -> VdR etc. respecting all structures, cf. [D4], [J2]. 
Then MRk is an abelian category, it has an obvious tensor product ®, duals V", 
Tate objects Q(n) (having the Tate objects of Section 1 as components), and exact 
functors Wm : MRk —• MRk by applying Wm in each component. 

THEOREM 2.2. (i) There are contravariant functors H1 : (varieties /fc) —• 
MRk having the components described in (a)-(d). 
(ii) These functors extend to a twisted Poincaré duality theory in the sense of 
Bloch and Ogus [BO], with values in MRk. 

The first statement is just a reformulation of (a) - (d) above. In fact, these 
functors even extend to simplicial varieties Z. over fc, and this is an important tool 
for their construction and the existence of Chern classes. Statement (ii) was proved 
in [J2] (by using techniques of Deligne and Beilinson) and means that one has also 
cohomology with supports and homology in the setting of mixed realizations, with 
the usual functorial properties; so in particular the usual long exact cohomology 
sequences are compatible with the comparison isomorphisms. 

DEFINITION 2.3 A mixed motive is a successive extension of pure motives, which 
arises from geometry. 
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There is no precise Grothendieck style definition of a category M Mk of mixed 
motives over fc yet. The only (unconditional) approach so far is to define MMk 
as a certain subcategory of MRk or some similar category, cf. [D4], [J2]. But in 
contrast to the pure case there are various, possibly different candidates. Define 

MMf, MMf, MMf (2.4) 

as the full abelian tensor subcategories of MRk generated by the realizations of 
all varieties, all simplicial varieties, and all realizations of geometric origin [SM], 
respectively. Then MM™ is contained in MM^ and MM^, and it would be 
interesting to know the relation of the latter two, cf. Theorem 3.9. 

The conjectural category MMk should possess a realization functor H : 
MMk —* MRk, and the above construction is based on the hope that H is fully 
faithful. It is further justified by the fact that for each of the three categories above 
the subcategory of semi-simple objects can be identified with MkH, by [J2] for 
the first two, and private communication of S aito for MM^ . 

A new phenomenon in the mixed case is the existence of nontrivial extensions: 
the weight filtration does not split in general. A counterpart of Principle 1.7 is 

PRINCIPLE 2.5. Let 77 : 0 —> A —> E —> B —> 0 be exact in MMk, and denote by 
rjg and rja- the associated extensions of l-adic and Hodge realizations, respectively. 

(i) 77 splits <=> r]a splits for all o <=> i]a splits for one a. 
(ii) For finitely generated k, 77 splits <=> r\g splits for all £ & rjg splits for one L 

For example, let X be a smooth projective variety, let z be a cohomologically 
trivial cycle of codimension j on X, and set U — X — \z\, where \z\ is the support 
of z. Then by Theorem 2.2 (ii) and purity one has an exact sequence in MM™ 

0 -> H^-\X){j) -> HV-\U)(j) - H*{X)V) 4 HV(X)(j) 

and a local cycle class cl(z) : (Q)(0) —* H^AX)(j). The composition of cl(z) and 6 
gives the cycle class of z in H2j(X)(j), and therefore vanishes. Pulling back with 
cl(z) we get an exact sequence 

V-.O^HV-HXW)-* E ^Q{0)-+0 (2.6) 

in MM"kar. By passing to the £-adic or Hodge realizations (i.e., by doing the same 
in £-adic or singular cohomology), we obtain extensions r\g of Q^-G^-representations 
and r]a in the category MHS of mixed Q-Hodge structures, respectively. 

PROPOSITION 2.7. (i) [Be2], [Ca], [J2] The class of i]a is the image of z under 
the Abel-Jacobi map 

df. : CW{X)hom - H ^ x a ^ ^ l F j = ExtWstQ,^'-1™)) 

(ii) [J2] The class of r\g is the image of z under the l-adic Abel-Jacobi map 
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The identification ßa was constructed independently by Carlson and Beilin
son ([Be2], [Ca]) and the £-adic Abel-Jacobi map is defined via (3.4) and (3.5) 
below. Principle 2.5 predicts that Ker cVa is independent of a and coincides with 
Ker clg for all Î if fc is finitely generated. Because cl^ and c^(fc f.g.) are injective 
for divisors, and 77 depends only on the class of z in CH3(X) [J2,9.8], one gets 

COROLLARY 2.8. Principle 2.5 holds for (2.6) and j = 1 ; and 77 splits in this 
case if and only if z is zero in CH1(X)\lom. 

For j > 1 the Abel-Jacobi maps are not in general injective as examples of 
Mumford and Bloch show (cf. [J2]), and one is led to the following considerations. 

3. Filtrations on Chow groups and motivic cohomology 

Extending ideas of Bloch and Deligne, Beilinson [Be3] stated the following 

CONJECTURE 3.1 There is a descending filtration F' on CH3 (X) for each smooth 
projective variety X over fc and each j > 0 such that 

(1) F° = CH^X^F1 = CW(X)hom, 
(2) F' is respected by pull-backs f* and push-forwards /* for morphisms f : X —> 

Y, and Fr • Fs Ç Fr+S under intersection, 
(3) Grv

FCH3(X) only depends on the motive h23~u(X), 
(4) Fv = 0 / o r O > 0. 

This assumes the existence of the hr(X), i.e., that the Künneth compo
nents 7ro,...,7T2d (d = dim X) of the diagonal Ax = id G Ad(X x X) are 
algebraic [KI]. Note that by (1) and (2), the action of correspondences on GrF 

factors through homological equivalence, so GrF only depends on h(X). The 
motivic background is as follows. More generally, define motivic cohomology as 
H'^/i(X, Q(j)) = K2J-ì(X)Q , the subspace of algebraic if-theory where all Adams 
operators i/jk act as multiplication by k3, and recall Grothendieck's isomorphism 
H%(X,Q(j)) = Ko(X)$ ^ CH3(X). There should be complexes RTM(X) in 
the derived category Db(MMk) with homology objects h%(X), and isomorphisms 

HUXMJ)) =KomDb{MMk)(®,RrM(X)(j)[i\). (3.2) 

The canonical filtration on RTj^(X) would induce a descending filtration F on 
H'^4(X,Q(j)) and isomorphisms 

Gr»FWM(X,®(j)) = E^MMk(Q,h^(X)(j), (3.3) 

and the standard conjectures would imply that FuHj^(X,Q(j)) = 0 for u > j (in 
[J4] this was only stated for Chow groups; the general case follows similarly, using 
Soulé's result [Sou] that H*M(X,Q(j)) = 0 for i > dimX+j ) . The filtration F' is 
the motivic analogue of the filtration F't induced by the Hochschild-Serre spectral 
sequence for continuous cohomology 

E™ = HP(Gk,Hi(X,Qe(j))) => JP+*{X,®e(j)) (3.4) 
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and for fin. generated fc should correspond to it via the cycle and regulator maps 

ck : CH3(X) -> H23(X,Qe(j)), n : H*M{X,Q(j)) -> H^X^U) (3.5) 

(so that cl~l(Fl) = Ker cl[ = F2CHj(X), cf. the previous section). 
In [J4] it was shown that 3.1 is equivalent to a conjecture of Murre [Mu] 

on a "Künneth decomposition" of Chow groups. In particular, there would be 
idempotents ü7; in CHd(X x X) lifting the ?T7; such that 

FUCH3(X) = Ker U2j H Ker n 2 j _ i H...H Ker n 2 j - „+ i . (3.6) 

A related, but unconditional proposal for F' was given by S. Saito [SS]. Here is 
yet another description. Set F° — CH3(X), and define F]J for v > 0 inductively 
by setting 

FUCH3(X) = Y, M r , : F'^CH^Y) -> CH3(X)), (3.7) 

where Y runs over all smooth projective varieties and Y over all correspondences in 
CHc\\mY-r+j(Y x x)hom, all r > 0. This filtration satisfies Conjecture 3.1 (1) and 
(2) (this becomes clear after noticing that (2) is equivalent to the condition that 
Fr o Fs Ç Fr+S under composition of correspondences), and one can show that 
it must coincide with Beilinson's filtration given the formalism (3.2) (by using 
induction starting from FiJ = 0(/> ^> 0) and the fact that a ^-extension is the 
Yoneda product of a (v-1)-extension and a 1-extension). 

Conjecture 3.1 would have remarkable consequences, cf. the discussion in [J4]. 
In particular it predicts strong relations between the behavior of Chow groups 
and properties of cohomology. In recent years several authors have exhibited and 
studied such relations, in particular between the coni veau or level filtration of 
cohomology on the one hand, and the injectivity of cycle maps or represent ability 
of Chow groups on the other (cf. [Lw], [SS], and [Sell], as well as [J4] and the 
literature cited therein). All aspects are present in the following extreme case: 

THEOREM 3.8. Let X be a smooth, projective variety over an algebraically closed 
field fc. Then (a) <=> (b) <=> (c) =>> (d) for the following statements: 

(a) CH'(Xçi)\XOYn — 0 for a universal domain £1 ~D k. 
(b) The diagonal Ax G CHdimX(X x X) can be written as Ylaj x ßj> where 

Œj x ßj is the exterior product of cycles c\.j and ßj on X. 
(c) CH(X) <g> HM(Y,Q(-)) ^ HM(X x Y,Q(-)) for any smooth variety Y via 

exterior product, and clg : CH'(X) (g) Qg —> H'e(X) for I ^ char fc. 
(d) H' (X) is generated by algebraic cycles for any Weil cohomology [KI]. 

The implication (d) => (a) would follow from Conjecture 3.1. 

This is a slight extension of [Ja,3.4,3.6], where the last claim and the im
plications (a) => (b) => (d) are proved. Obviously, (c) implies (b), and from 
(b) one easily deduces that the motive associated to X in the category M™1 

of so-called Chow motives (defined by Grothendieck's method, but using the full 
Chow groups instead of the quotients A'(—)) is isomorphic to ©i>oQ(—i)02', where 
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&2i = diniQ CH'L(X) < oo. This implies (a), (c) and (d); note that the functor 
X i-> H'M(X x Y,Q(-)) only depends on the Chow motive. Property (b) holds for 
generalized flag manifolds G/P and more generally for the "linear" varieties intro
duced in [J2]: Using their inductive definition one easily shows the surjectivity of 
the exterior product GH.(X)®CH.(Y) —> GH.(Xx Y) for (not necessarily smooth 
or projective) varieties Y and linear varieties X. Cf. [To] for related results. 

Hanamura [Ha], Levine [Lv], and Voevodsky [Vo] have proposed different con
structions of triangulated categories T>k of mixed motives such that an analogue 
of (3.2) holds. The problem is to define a nice t-structure on T>k such that the as
sociated heart serves as a category MMk (and, optimistically, T>k = Db(MMk))-
Another line of investigation is to verify parts of the conjectural picture in the 
setting of mixed realizations. This is also important for several applications, e.g., 
in connection with the conjectures of Beilinson-Bloch-Kato [Bel], [BK]. 

Concrete questions are: A. Do elements in if-theory give rise to extension 
classes in MRk7 B. In which sense are these motivic? C. Can one characterize 
motivic realizations and extensions intrinsically? As for A and B one has 

THEOREM 3.9. Let X be a smooth variety, (i) [SM] There are natural maps 

d : CH*{X) - KomDHMMïr)(®,R(ax),®x(j)[2j}), 

where R(ax)*Qx is a certain complex with homology H'(X) G ob(MMkar) • 
These are surjective if Mk = M£H, e.g., if the Hodge conjecture is true. 
(ii) [Hu] There are a full subcategory MM of MRk containing MMSk and 
MM%°, a triangulated category T>j~- with a t-structure and associated heart 

MM, objects RT(X) in V -77fM with Ht(RT(X)) = H'(X), and natural maps 

H^XMJ)) - Bomv^{Q,HT{X)(j)[i[). 
M.M. 

(iii) [Sci] There are natural maps 

HU(XM3)Um - E x t ^ ^ Q , ^ - 1 ^ ) ^ ) ) . 

Here i ^ ( X , Q ( j ) ) h o m = H*M(X,Q(j)) for i ^ 2j and the naturality in 
particular means that the maps are compatible with the cycle and regulator maps 
(3.5) and their Hodge theoretic analogues. We refer to the cited papers for more 
precise and somewhat stronger statements. For (i), Saito uses perverse sheaves, 
and for (ii), Huber uses an interesting description of K-groups and regulators via 
hypercoverings. Both extend Theorem 2.2 to a "derived" setting. Scholl obtained 
(iii) by extending Proposition 2.7 to Bloch's higher Chow groups [Bl]. 

As for question C, there is only a proposal for the ^-adic realization functor: 

CONJECTURE 3.10. (i) If fc is a number field, then an l-adic representation V 
of Gk is motivic (i.e., a subquotient of Hg(M) for a mixed motive M) if and only 
if V is mixed [DS] and potentially semistable [Jl], [Fo2] at all places v\l. 
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(ii) Let X be a smooth projective variety over a number field fc. Then the l-adic 
regulator maps induce isomorphisms 

n : IPM{X,QU)) ®Qe -» H^G^IP^pC^iJ))) 

where Hlt(Gk,V) = {x G /drl(G?/r,y)|a: is unramified at almost all places v and 
restricts to 0 in Hx(kv, V ® Bsi(kv)) for all v\l}. 
(iii) Let fc be a finitely generated field of characteristic p > 0, and let I ^ p be 
a prime. Then an l-adic representation of Gk is motivic if and only if it is mixed 
and the graded quotients for the weight filtration (cf. [D3]) are semi-simple. 

Here Bsi(kv) is the ring defined by Fontaine [Fo2] at the completion kv. The 
"if" part of (i) is a (weaker) variant of a conjecture of Mazur and Fontaine [Fol]. 
The passage from pure to mixed motives is related to (ii), since H^t classifies 
potentially semi-stable extensions. A variant of (ii) (with Bst replaced by BJJR), 

equivalent in the presence of (i), was formulated by Bloch and Kato [BK]. One 
may extend (i) to finitely generated fields fc of characteristic 0, defining semi-
stable representations for these in the spirit of (1.3). Part (iii) is related to the 
considerations in [J2, Section 9]. 

4. The category of 1-niotives 

Deligne defined a category of 1-motives for which many aspects of the conjectural 
picture can be verified. 

DEFINITION 4.1. ]D2] A 1-motive over fc is a morphism u : X —> G of group 
schemes, where X is a finitely generated free Z-module on which Gk acts discretely 
(regarded as an étale group scheme), and G is a semi-abelian variety over fc, i.e., 
an extension of an abelian variety A by a torus T. 

For example, if fc = fc and X = Zn , then u corresponds to a tuple (gi,... , gn) 
of elements in G(k). A 1-motive can be regarded as a 2-term complex of group 
schemes, and morphisms of 1-motives are just morphisms between such complexes. 

Each object has a canonical weight filtration 

0 

1 
0 

c 
0 

1 
T 

c 
0 

1 
G 

c 
X 

Ï 
G 

with successive quotients T[— 1], A[— 1], X of weights —2, —1, and 0, respectively. 
(Thus the category (1-motives /fc) can only form a small part of the category 
MMk-) Note that the morphism sets are finitely generated free abelian groups, 
and not Q-vector spaces. It is better to compare them to a category MRf of 
integral mixed realizations, which is defined by adding Z-lattices Ta Ç Va and 
Gk-invariant Z^-lattices Ti C Vt to the defining data of MRk, requiring that 

PROPOSITION 4.2. (i) There is a canonical, weight preserving, fully faithful 
realization functor H : (1-motives/fc) —> MR%. 

(ii) For fc = fc, each component Ha : (1-motives/fc) —> (mixed Z-Hodge 
structures) is fully faithful. 
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This follows from the results in [D2, Section 10]. For the weight graded parts 
the components can be read off the following table 

Hg Ha HdR 

T[-l] 
A[-l] 

X 

TtT fli^.Z) Lie(T) 
TtA f f i ^ . Z ) Lie(^) 
X X X®zk 

where TiG = \imG(k)[£n] is the £-Tate module of a group scheme G, X = 
<—n 

YimX/P^X, and A^ is the universal vector extension of A. 
<— n 

THEOREM 4.3. (i) H ® Q : (1-motives/k) -> MRk has image in MMv
k
ar• 

(ii) For 1-motives M,M* over a finitely generated field k one has isomorphisms 

Hom(M, M') ® Zj -^ UomGk(Hi(M), Hi(M')). (chark ^ t) 

Indication of proof. As for (i), one reduces to the case that A = Jac(C), the 
Jacobian of a smooth, projective, geometrically irreducible curve G over fc, and 
that X '= Z and T = Gm . Then H(X - • G)Q is a subquotient of H1 (C)(1) G 
ob(A4.Mj£ar), where the curve G is obtained from C by contracting points Q i , . . . , 
Qn to one single point and deleting further points P i , . . . , P m . The verification 
of this is largely contained in [D2] and [Br], cf. also [Sc2]. Claim (ii) is trivial 
on Gr^2 and Gr™, and on Gr^x follows from the Tate conjecture for abelian 
varieties proved by Faltings [F]. Then by some Ext-sequences it suffices to show 
the injectivity of the map (for an abelian variety A and a torus T') 

Ext1 (A,T')® Zi - E x t ^ f c ( ^ ( A ) , ^ ( T ' ) ) , 

which holds by the Morclell-Weil theorem, applied to the dual abelian variety A. 
In particular, 4.3 (ii) generalizes Falting's theorem [F] to semi-abelian varieties. 
This case has been obtained independently by F. Yan [Ya]. 

Finally, let us mention the following for 1-motives over number fields: the 
associated -£-adic representations are known to be potentially semi-stable [Fo2], 
and the finiteness of Tate-Shafarevich groups would imply that for 1-motives Mi 
and Mi any extension of Hi(Mi) by Hg(M2) comes from a 1-motive. 

5. Two arithmetic aspects of Ext2 

In connection with his conjectures on L-functions, Beilinson stated 

CONJECTURE 5.1. If k is a number field, then Ext%lMk =0foru>2. 

More generally it is expected that for a finitely generated field fc of Kronecker 
dimension d (= Krull dimension of the model R as in (1.3)) the motivic cohomo
logical dimension is d. For global fields of positive characteristic, results supporting 
this conjecture were obtained by Raskind [Ra], and one can show that the category 
described in 3.10 (iii) has cohomological dimension dim fc. It is an open problem 
to show this for the category in 3.10 (i). For the subcategory of 1-motives one has: 

PROPOSITION 5.2. For any field k one has Ext" = 0 for v > 2 in the abelian cate
gory (1-motives/k) ®Q of iso-1-motives (obtained from (1-motives/k) by tensoring 
the morphism sets with Q). If fc is a finite field, then Ext" = 0 for v > 1. 
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Sketch of proof. An argument of weights shows that the only nontrivial 2-
extcnsions arise from Ext2(Q,G7n[— 1] ® <Q>) and that these extensions arc Yoneda 
products of elements xi C Ext^Q, A[-1]®(Q>) and X2 E Ext1(A[-l]^Q,Gm[-l](gi 
Q) for a suitable abelian variety A. Then it is easy to construct a 1-motive M with 
successive quotients Gm[—1],A[—1] and Z such that M/W-2M realizes 771̂ 1 and 
W-\M realizes n\2 for suitable 771,??, G N. This implies Xi U Xi = 0- The second 
claim follows from the fact that semi-abelian varieties have only finitely many 
points over a finite field. 

In view of Theorem 3.9 (iii) the above conjecture suggests that the categories 
(2.4) coincide for global fields. 

So far, we just have discussed motives over fields. The following definition 
(cf. [DN]) is of arithmetic interest. Let fc be a number field and let Ok be its ring 
of integers. It is classical and a starting motivation for Arakelov theory that the 
formal "compactification" Spec Ok = Spec Ok U {u|oo} (obtained Ijy adding the 
archimedea!! places v of fc) is the analogue of a smooth projective curve. 

DEFINITION 5.3 A motive over Spec Ok is a (mixed) motive over fc such that 
(i) the weight filtration of H^(M) splits over fc"r (the maximal unramified exten
sion of the completion kv of k at v) for all v J( I • 00, 
(ii) the mixed W-Hodge structure Ha(M) ® R is split for all a : fc c—> C. 

There is a canonical isomorphism fcx ® Q -^ Ext(1_moWtiefl/fc)g)Q(Q,(Q(l)) 
sending x G fcx to the 1-motive [Z —> Gm , 1 \—> x) (where we have identified 
Gm[-1] <8>Q with iJ (Gm [ - l ] ) ® Q = Q(l) in MRk). Let MM be any full subcat
egory of MRk containing (1-motives/fc) (g) Q. 

THEOREM 5.4. Assume fcx ®<Q) —• ExtJV/f<M(Q,Q(l)) is an isomorphism, and let 
MMQ be the full subcategory of MM whose objects satisfy Definition 5.3 (i) 
and (ii). 
(i) There is a canonical injection Ext2

MM_ (Q, Q(l)) <—> CH\Y(Ok) into the 

Arakelov-Chow group of Ok-
(ii) Let X be smooth and projective of dimension d over fc a?7,d assume that MM 
contains the extensions (2.6) for j andd—j. Then the associated Abel-Jacobi maps 
CHr(X)hom -> Extj^(Q,H2 r~ l{X){r))(r =j,d- j) factor through Vxtl

MM_ , 

and the height pairing CHj(X)hom x CHd^~^(X)hom -> R (cf. [Be3], [Sc2]) is 
induced by the Abel-Jacobi maps and the pairing 

^ E x t ' (Q,Q(1)) ^CHl(Ok)
d^R, 

where degAr is the Arakelov degree map. In particular, ~ExtMM_ (Q,Q(1)) 7̂  0. 

This was proved by Deninger and Nart [DN], building upon results of Scholl 
[Sc2]. In [DN] MM is assumed to be a tensor category, but this assumption can 
be removed. In particular, we can deduce the unconditional result 
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Rational Curves on Algebraic Varieties 
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Introduction 

The aim of this article is to give a brief review on recent developments in the theory 
of embedded rational curves, which the author believes is a new, useful viewpoint in 
the study of higher dimensional algebraic varieties. By an embedded rational curve, 
or simply a rational curve, on a variety X, we mean the image of the projective 
line P1 by a nontrivial morphism to X, hence complete, one-dimensional, but not 
necessarily smooth. 

The topics covered here are summarized into the following two mottos: 
- Find tractable criteria for the existence and/or nonexistence of (sufficiently 

many) rational curves on a given variety. 
-Study the structure of varieties with sufficiently many rational curves on 

them. 
Roughly speaking, the existence of rational curves on a given variety X more 

or less measures the complexity of X. A very general algebraic variety, which 
usually has complicated structure, tends to be hyperbolic in the sense of Kobayashi 
[17] and, in particular, carries no rational (or elliptic) curve. On the contrary, 
when a variety has simple birational structure, then we can expect to find rational 
curves on it. If, furthermore, it contains sufficiently many rational curves, then the 
locus of the rational curves passing through a given general point will extract a 
simple factor out of the variety, thereby providing us significant information on its 
geometry. 

This principle will be explained in Sections 1 and 2 and two applications will 
be discussed in Section 3. 

Because of the lack of space to elaborate, the reader is referred to the com
prehensive treatise [19] by Kollâr for details. 

For simplicity of the statements, varieties are assumed to be defined over the 
complex numbers throughout this article. Note, however, that we need reductions 
modulo p to obtain several results below. 

1 Existence of rational curves 

Unfortunately, it is categorically impossible to find an ideal characterization of 
the varieties that carry rational curves, because such a property is not invariant 
under smooth deformation. For example, a general hypersurface of high degree, say 
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d > 50, in P3 is known to be hyperbolic (Brody-Green [4]), but it deforms to the 
Fermât hypersurface Xf} + Xf -f- X% + X$ = 0, which clearly contains several lines. 
Two varieties that are mutually deformations of the other are indistinguishable by 
means of ordinary invariants, and we have to give up the idea to get a perfect and 
practical test for the existence of embedded rational curves. 

Thus, we will focus on more feasible targets: 
(A) sufficient conditions for varieties to carry rational curves, 
(B) a criterion for the existence of a sufficiently large family of rational 

curves, and 
(C) sufficient conditions for varieties not to carry too many rational curves, 

where each condition should fit in with the framework of birational classification 
theory. Towards these objectives, the most powerful method ever known is the 
bend-and-break technique discovered by Mori [30], the essence of which is the fol
lowing: 

If f : C —* X, a morphism from a smooth projective curve to a smooth 
projective variety, has sufficiently many deformations {fs : C —> X}, then we can 
find a rational curve in some limit of the {fs(C)}. If deg/*(—Kx) > 0, we ca?7, 
produce many deformations of f after taking modulo p reductions and replacing f 
by the composite of f with geometric Frobenius of high degree, where Kx denotes 
the canonical divisor. 

This shows that a smooth projective variety contains a rational curve when
ever its canonical divisor is not nef, thus giving an answer to Problem (A) above: 

THEOREM 1.1 (Mori [30], Miyaoka-Mori [29]). Let X bc a smooth projective 
variety with ample divisor H and let Kx denote the canonical divisor. Assume 
that there exists an irreducible curve T such that (T,—Kx) > 0. Then, for each 
point x G T, there is a rational curve G C X passing through x such that the 
degree (C,H) is bounded from above by ^ r?-K À anc^ ^ i a t 0 < (C,—Kx) < 
dimX + 1. 

The bend-and-break technique, and hence the proof of (1.1), hinge on the 
algebraicity of the variety, because (1) the proof uses reductions to positive char
acteristics in order to produce sufficient iy many deformations, and (2) the com
pactness of the space of cycles, which guarantees the existence of limits of curves 
{fs(G)}, fails in the category of compact complex manifolds. 

An immediate corollary to (1.1) is a characterization of varieties with suffi
ciently many rational curves, or a solution of Problem (B): 

THEOREM 1.2 (Miyaoka-Mori [29]). A smooth projective variety X is uniruled if 
and only if there is a family of irreducible curves {Ts}ses on X such that 
(1.2.1) [jTs contains an open dense subset of X, and that 
(1.2.2) (Ts,-Kx)>0. 

Recall that a variety X is said to be uniruled if there is a family of (possi
bly singular and reducible) rational curves {Ct} on X such that [jCf = X. By 
definition, a variety consisting of a single point is not uniruled. 
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Uniruledness is respected by dominant, generically finite rational maps and 
by smooth, projective (or Kahler) deformation (Fujiki [11], Levine [25]). Uniruled 
varieties do not have minimal models, and their Kodaira dimension is —oo. The 
converses are also believed to be true. Namely: 

-The minimal model program, completed in dimension three by Mori [32], 
presumes that a variety without a minimal model will carry a fibre space 
structure, a general fibre being a Q-Fano variety of positive dimension (called 
a "Mori fibre space", see Clemens-Kollâr-Mori [8]). Here by a Q-Fano variety 
we mean a normal projective variety with only terminal singularities (for the 
definition, see Reid [38]) and with ample anti-canonical divisor. An arbitrary 
Q-Fano variety of positive dimension is uniruled, and hence so is a Mori fibre 
space, see (1.3) below. 

- T h e abundance conjecture, verified up to dimension three (Miyaoka [27], 
[28], Kawamata [16]), asserts that the class of the varieties without minimal 
models (or, conjecturally, the uniruled varieties) will be identical with that 
of the varieties with Kodaira dimension —oo. 
As an application of (1.2), we can show that a class of varieties including 

Q-Fano varieties are uniruled, by looking at suitable smooth models: 

COROLLARY 1.3 (Kollâr cited in [31] when X is smooth; Miyaoka-Mori [29] for 
general case). Let X be a projective variety such that the dualizing sheaf LJX is 
invertible in codimension 1. IfuJx1 has positive degree on one-dimensional general 
complete intersections (on which LJX IS invertible), then X is uniruled. In par
ticular, every irreducible (possibly nonnormal) hypersurface X C P n + 1 of degree 
< n + 1 is uniruled. 

The uniruledness results (1.2), (1.3) are stated in terms of the degree of the 
canonical divisor, which amounts to the positivity of the integration of the Ricci 
form over curves. There is a refinement, which uses a sort of non-seminegativity 
of tangent bundles, or of the bisectional curvature: 

THEOREM 1.4 (Miyaoka [26], Shepherd-Barron's article in [20]). Let X be a 
smooth projective variety, Tx the tangent bundle, and 0 ^ F Q Tx a subsheaf. Let 
{Ts} be a family of irreducible curves on X such that (a) {JTS contains an open 
dense subset Ç X and (b) Tx®>0Ts /F®0Ts is locally free on Ts. If (Ts, det F) > 0, 
then X is uniruled. 

This theorem is usually stated in the following formulation: 

COROLLARY 1.5. If a smooth projective variety X is not uniruled, then the cotan
gent sheaf Six is semi-positive if restricted to a general complete intersection curve 
by high multiples of ample divisors. 

Note that the above results (1.1)—(1.5) give no information when a variety 
X has nef canonical divisor (i.e. X is a minimal variety). The case where X has 
trivial canonical class is of special interest. 

Smooth projective varieties (or compact Kahler manifolds) with trivial canon
ical divisors are, up to finite étale covering, products of abelian varieties (or com
plex tori), symplectic manifolds, and SU-manifolds (Bogomolov [2], Beauville [1]). 
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Smooth deformation preserves this decomposition. Though complex tori do not 
contain rational curves, all known examples of projective symplectic manifolds 
and SU-manifolds (which are automatically projective) contain (perhaps infinitely 
many) rational curves, thus suggesting the following 

QUESTION 1.6. Does every simply connected, smooth, projective variety with 
trivial canonical class carry (infinitely many) rational curves? Is the union of the 
rational curves Zariski dense on it? 

The answer to the first half of this question is affirmative in dimension 2: 
an arbitrary algebraic K3 surface contains a rational curve as well as a one-
dimensional family of elliptic curves (Bogomolov and Mumford, see Mori-Mukai 
[34]). It is plausible that the second half also holds true in this case. In dimension 
3, the question is closely related to the so-called mirror symmetry for Calabi-Yau 
3-folds. A standard conjecture (Candelas, Green, Morrison, etc.) predicts that de
formation data of the mirror manifold compute the number of rational curves of 
given degree (with respect to a fixed polarization) on the original Calabi-Yau 3-
fold. If true, the conjecture would imply that the number of the rational curves 
on a Calabi-Yau manifold would be infinite and it is rather likely that the union 
of such curves is Zariski dense on it. 

In case (1.6) is affirmatively solved, it would follow that there are always 
lots of nonconstant holomorphic mappings C —> X for a projective manifold X 
with trivial canonical class (the image of such a mapping might not necessarily 
be an algebraic subvariety in X). Then, by virtue of the Iitaka fibration, the 
same will then hold true for algebraic varieties of Kodaira dimension 0 through 
cX\n\X — 1. The varieties with Kodaira dimension — oo are, conjectural^, uniruled 
varieties, hence containing a large family of rational curves. In short, if the Kodaira 
dimension of a variety is not maximal, many holomorphic mappings from C to X 
are expected to exist, another potential answer to (a variant of) Problem (A). 

When the Kodaira dimension is maximal, the situation is supposed to be 
quite different: 

CONJECTURE 1.7 (Lang). Let X be a smooth projective variety of general type, 
i.e. the Kodaira dimension is equal to the complex dimension. Then there exists 
a proper closed algebraic subset Y C X such that every nonconstant holomorphic 
mapping C —> X factors through C —> Y. In particular, the locus of the rational 
curves on X is contained in Y and is not Zariski dense. 

This conjecture, which is not 3'et proved even for surfaces without an extra 
condition (Bogomolov [2]), would settle Problem (C) above if verified. 

2 Structure of uniruled varieties 

We want now to study the structure of uniruled varieties, whose characterization 
was given by (1.2). 

Let us first review the theory of surfaces of Kodaira dimension —oo. The 
Enriques classification tells us that an algebraic surface X with Kodaira dimension 
—oo is either rational or a fibre space over a curve of genus > 1, a generic fibre 
being P1 . These two cases are distinguished from each other by the dimension (0 
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or 1) of the image of the Albanese map. In the former case, every two points on 
X can be connected by a chain of rational curves on X, while in the latter, two 
points can be joined by rational curves if and only if they sit in the same fibre. 
Thus, the structure of the locus of embedded rational curves separates rational 
surfaces from irrational ruled surfaces. 

In order to generalize this observation to higher dimensions, we introduce the 
notion of rationally connected varieties. A smooth projective variety X is said to 
be rationally connected if the following four equivalent conditions are satisfied (cf. 
Kollâr-Miyaoka-Mori [23] ) : 
(2.0.1) Two general points x,y G X are connected by a chain of rational curves 

on X. 
(2.0.2) Two general points x, y G X are connected by a single rational curve on 

X. 
(2.0.3) Every two points x,y G X are connected by a chain of rational curves on 

X. 
(2.0.4) There is an irreducible rational curve C C X such that the restriction of 

the tangent bundle Tx to G is ample. 

In general, a variety is said to be rationally connected if a nonsingular projec
tive model is rationally connected. As convention, a single point is understood to 
be rationally connected. A rationally connected variety of positive dimension is 
uniruled. 

In view of (2.0.1) or (2.0.2), rational connectedness is respected by dominant 
rational maps (and, in particular, by birational equivalence). Furthermore, it turns 
out to be invariant under smooth deformation by (2.0.3) and (2.0.4). 

A typical example of rationally connected varieties are unirational varieties 
or, equivalently, the images of projective spaces by rational maps. 

Despite its elementary definition, unirationality is hard to deal with in the 
framework of the classification theory. To begin with, it is extremely hard to check, 
unless by chance you find an explicit dominant rational map from FN to the va
riety in question, or unless the variety has a very special property (compare, for 
instance, Morin [35], Ramerò [37], Campana-Flenner [6], Ebihara [10] for several 
sufficient conditions for unirationahty). Second, we do not know if smooth defor
mation preserves unirationality. 

Compared with unirationality, rational connectedness is far easier to handle. 
Moreover, rationally connected varieties enjoy almost every geometric property 
the unirational varieties are known to share in common. For instance, they have 
trivial fundamental group and trivial CHQ (Chow group of 0-cycles of degree zero), 
and all the global holomorphic forms vanish. 

A principal structure theorem for uniruled variety is the existence of a canon
ical rational fibring with rationally connected fibres: 

THEOREM 2.1 (Campana [5], Kollâr-Miyaoka-Mori [23]). Let X be a variety. Then 
there is a dominant rational map iv : X • • • —» Z, unique up to birational equiva
lence, that has the following two properties: 
(2.1.1) A general fibre ofn is irreducible and rationally connected; 
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(2.1.2) If a, rational curve C C X passes through a general point of a general fìbre 
of TT, then C is contained in the fibre. 

X is nonuniruled [resp. rationally connected] if and only if Z is birational to X 
[resp. Z is a single point]. 

Note that, as rational connectedness is a birational invariant, a "general fibre" 
makes sense even if 7r is not a morphism in general. We call the unique dominant 
rational map 7r the MRC (= maximal rationally connected) fibration of X. When 
dimX = 2, the MRC fibration of a uniruled (ruled, in this case) surface is identical 
with the Albanese map. Theorem 2.1 is thus regarded as a natural generalization 
of the Enriques classification of surfaces of Kodaira dimension — oo. 

A dominant rational map 0 : X • • • —> Y is called a rationally connected 
fibration if it satisfies the condition (2.1.1) above. Given a rationally connected 
fibration cj) : X • • • —> Y, one can find a dominant rational map iß : Y • • • —> Z 
such that the composite %j) o 0 is the MRC fibration 7T. In other words, the MRC 
fibration has a universal property. Because rational connectedness behaves nicely 
under deformation, so does the MRC fibration. 

The MRC fibration of X is constructed via a certain equivalence relation 
between points on X. Let G C X be a rational curve and / : P 1 —> X the 
generically one-to-one morphism induced by the normalization. G is said to be a 
free rational curve if f*Tx is semi-positive (i.e. isomorphic to a direct sum of line 
bundles of nonnegative degrees). Two points on X are defined to be equivalent if 
they are connected b}̂  a chain of free rational curves. If Xx stands for the points 
on X that are equivalent to x, then the correspondence x H-> [XX] defines the 
MRC fibration n : X • • • —> Z C Chow(X), with generic fibre Xx over [Xx]. Here 
* denotes the Zariski closure of *. 

If the target Z of the MRC fibration of X is again uniruled, we can take the 
MRC fibration of Z. Reiterating this process, we can describe uniruled varieties 
as a tower of fibre spaces, where the bottom is a nonuniruled variety (possibly 
a point) and general fibres in each step are rationally connected. However, we 
suspect that a single step might suffice: 

QUESTION 2.2. Is the target Z of the MRC fibration not uniruled? 

One can easily reduce this to the following: 

QUESTION 2.3. Is the total space of a family of rationally connected varieties 
parametrized by (an open subset of) P1 rationally connected? 

When the dimension of the fibre is 1 or 2, the answer is affirmative (classical if 
the dimension is one, and by a theorem of Colliot-Tlicìène [9] when the dimension is 
2), yielding a canonical decomposition of uniruled 3-folds into rationally connected 
varieties and nonuniruled varieties: 

THEOREM 2.4 (Kollâr-Miyaoka-Mori [23]). Let X be a smooth algebraic 3-fold. 
Then precisely one of the following four cases occurs according to the dimension 
of the image Z of the MRC fibration: 
(2.4.0) X is rationally connected; 
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(2.4.1) X is a fibre space over a curve of genus > 1, with rational surfaces as 
general fibres; 

(2.4.2) X is birational to a conic bundle over a surface of Kodaira dimension > 0; 
(2.4.3) X is not uniruled. 

In terms of global differential forms, the four cases above respectively correspond 
to the clearly distinguished cases below: 
(2.4.0') H°(X, (0^)®*) = 0 for all k> 0; 
(2.4.1') H°(X, (n2

x)®
k) = 0 for all k> 0 and H°(X, Q^) ^ 0; 

(2.4.2') H°(X, (n3
x)®

k) = 0 for all k> 0 and H°(X, (Ü2
X)®1) ^ 0, for some I > 0; 

(2.4.3') H°(X, (n3
x)®

k) ^ 0 for some k> 0. 

The equivalence of (2.4.3) and (2.4.3') is due to Mori [32] and Miyaoka [27] 
and the other equivalences are classical. 

Theorem 2.4 gives a nice picture of the interplay between the spaces of holo
morphic forms and the birational structure of 3-folds. 

If one could affirmatively solve (2.2) (or equivalently, (2.3)) and prove the 
abundance conjecture, one would expect to naturally extend Theorem (2.4) to 
varieties of arbitrary dimension. 

3 Fano manifolds and Q-Fano varieties 

From the viewpoint of the minimal model program, the Q-Fano varieties form 
a specifically important class of varieties because, as mentioned above, the min
imal model conjecture asserts that a variety has either a minimal model or the 
structure of a Mori fibre space with Q-Fano fibres. In this sense, Q-Fano varieties, 
together with minimal varieties, constitute the fundamental components that build 
up general algebraic varieties, and we need to understand their structure to further 
conduct the study of uniruled varieties. 

The best way to do so would be to give a complete list of such varieties. The 
biregular classification of smooth Fano surfaces (known as Del Pezzo surfaces) into 
10 deformation classes is well known and well understood. Iskovskih [13], [14] and 
Mori-Mukai [33] extended the classification of Fano manifolds to dimension 3. But 
the complexity of such lists, as well as the technical difficulty needed, increases 
very fast as the dimension grows. The number of deformation classes of smooth 
Fano 3-folds exceeds 100, and it is almost hopeless to completely enumerate Fano 
4-folds. In dimension 4 or higher, we should instead be content with the theoretical 
possibility of the classification, or the boundedness. 

A set of polarized varieties {(Xì,Hì)}ì^J is said to be bounded if there is a 
family of polarized varieties {(Ys,Ls)}s£s parametrized by a scheme of finite type 
S such that every (Xi,Hi), up to isomorphisms, appears as a member (YS,LS) in 
the family. If {X{\ is bounded, then discrete invariants of the Xi such as topological 
invariants take only finitely many values. In particular, there are only finitely many 
possibilities for their Hilbert polynomials, so that general theory tells us that we 
can in principle enumerate all JQ's up to isomorphisms. 

It is still an open question whether the 7-i-dimensional Q-Fano varieties are 
bounded or not. However, if we restrict ourselves to the smooth ones (i.e. Fano 
manifolds), we can affirmatively answer the question. 
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THEOREM 3.1 (Nadel [36], Kollâr-Miyaoka-Mori [22] for manifolds with Picard 
number one; Campana [5], Kollâr-Miyaoka-Mori [24] for the general case). There 
is a function v(n) in n EN such that, for an arbitrary n-dimensional Fano manifold 
X, the degree Kx is bounded by p(n) from above. In particular, the n-dimensional 
Fano manifolds (with anti-canonical polarization) are bounded by a theorem of 
Kollar-Matsusaka [21]. 

This theorem is proved, after an idea of Fano, through the rational connected
ness of Fano manifolds and the estimate of the minimum of the degrees of rational 
curves joining two general points: 

THEOREM 3.2 (Campana [5], Kollar-Mfyaoka-Mori [24]). A Fano manifold X is 
rationally connected. Two given general points on X are connected by an irre
ducible rational curve C C X such that (C, —Kx) is bounded by a function in 
dimX. 

Our upper bound for (C, —Kx) so far has exponential growth as a function 
in dimension. There will hopefully be a bound of polynomial order, which is known 
to be the case when the Picard number is one [36], [22]. 

The key to the proof of (3.2) is to show that a rational connected fibration of 
a Fano manifold contains many rational curves that are not contained in the fibres. 
A modified version of the bend-and-break technique indeed gives the following 

PROPOSITION 3.3 (Campana [5], Kollâr-Miyaoka-Mori [24]). Let n : X • • • —> Y 
be a rational map from a Fano manifold onto a variety of dimension > 1. Then, for 
a given general point x G X, there is a rational curve C C X that passes through 
x and does not lie in a fibre of IT. 

QUESTION 3.4. Is an arbitrary Q-Fano variety rationally connected? Are the Q-
Fano varieties of given dimension bounded? 

This has been checked up to dimension 3 (Kawamata [15]). 
In this question, it is essential that only terminal singularities are allowed. A 

normal Gorenstein variet}^ with ample anti-canonical divisor, though always uni
ruled by (1.3), is not necessarily rationally connected. A typical example is a cone 
over a curve of degree 3. 

Now that we have the boundedness of Fano manifolds of given dimension, 
a second problem would be how to characterize "interesting" Fano manifolds in 
terms of reasonable data. 

Embedded rational curves play an important role in overcoming this kind 
of challenge. A good example is a stronger version of the Hartshorne conjecture 
formulated as follows: if the restriction of the tangent bundle Tx to G is ample for 
ever y rational curve C on a Fano manifold X, then X must be a projective space, 
the simplest variety of all (Mori [30]). 

Mori's theorem is one of the most famous and strongest results in this di
rection, yet it would be better if one could replace the condition on the tangent 
bundle with a numerical one, because the former, involving richer information, is 
far harder to check than the latter. 

More explicitly, the following would be an interesting problem: 
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Q U E S T I O N 3.5. Is a smooth Fano n-fold X isomorphic to Fn if (C, -Kx) > n + 1 
for every rational curve C on X? 

If t rue, it would imply several preceding characterizations of projective spaces 
like the ones (a) of Hirzebruch-Kodaira [12] via the topological type, (b) of Siu-
Yau [40] via the positivity of the holomorphic bisectional curvature (Frankel con
jecture) , (c) of Mori [30] via the ampleness of the tangent bundle (Hartshorne's 
conjecture), and (d) of Kobayashi-Ochiai [18] via the maximal divisibility of the 
canonical class. 

A possible counterpart for hyperquadrics will be: 

Q U E S T I O N 3.6. Is a Fano n-manifold X isomorphic to a quadric hypersurface 
C P7 7^1 if the minimum of the degrees (C, —Kx) of the rational curves on X is 
equal to n? 

Prior works related to (3.6) are: (a) Brieskorn [3], (b) Siu [39], (c) Cho-Sato 
[7] and (d) Kobayashi-Ochiai [18], which are natural analogs of the corresponding 
results in the case of projective spaces. 
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Vector-valued differential forms are frequently used to give cohomology classes on 
manifolds with values in local systems. In particular, certain automorphic forms 
serve this purpose on certain locally symmetric spaces. Such a representation does 
not help in deciding whether of not the cohomology class is rational. For example 
the normalized holomorphic Eisenstein series of weight 2k on the upper half plane 
gives an elt. of H1(SL2i Sym2/c_2 C2), thanks to Eichler. That this comology class 
is rational was proved by Deligne using weight considerations. A direct proof of 
this follows from the work of Beilinson and Levin on the elliptic poly logarithm. 

It turns out that the Eisenstein cohomology classes alluded to in the previous 
paragraph can be generalized to obtain elements of Hn~1(T,Symk V), where V 
is a rational vector space of dimension n and T is an arithmetic subgroup of 
GL(V). These classes result from superimposing the singular chain complex of 
the complement of S in V(M) on a truncated Koszul complex, where S is a finite 
union of cosets of a lattice in V, done equivariantly for the action of an arithmetic 
subgroup of Aff(V). The construction is so simple that we hope it generalizes to 
other groups and representations as well. 

There is no unique way of representing these classes by differential forms. 
The method we have chosen is connected to the Sullivan minimal model. 

Integrating these differential forms then yields the rationality of special values 
of zeta functions of ideals in totally real fields. These rationality statements were 
obtained by Klingen and Siegel by studying SL,2(F), where F is a totally real 
field. Our approach is different — we embed Fx in GLn(Q) and then pull back 
rational cohomology classes (of arithmetic subgroups) of GLn(Q) to Fx to obtain 
the rationality of values of zeta functions. Sczech has defined the notion of an 
Eisenstein cocycle on GLn(Q) and used it to calculate values of zeta functions. It 
is therefore quite likely that this work overlaps with his. 

1. Two Standard Chain Complexes 

The construction is as follows. Aff(V) is the semi-direct product of GL(V) and 
V. Set G = A (y (M) — S) = the singular chain complex of the complement of S 
in V(M), where S is a finite union of cosets of a lattice L in V, as said earlier. 
The stabilizer of S in V is an arithmetic subgroup of Aff(V), and the complex C 
has a natural action of this arithmetic subgroup. Let G denote the kernel of the 
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augmentation e : C —> Z. Let Z[S) denote the free Abelian group with S as basis. 
Wc then have 

Hi(C) = Z[S] ® Hn(V(R), V(R) - 0) if i = n - 1 

and is zero otherwise. 
Next set R = Sym V\ Thus, R is a power series ring in n variables. Let Q[V] 

denote the group ring of V and let p : Q[V] —> R be the ring homomorphism given 
by p(v) = exp(i>) for all v in V. Let K bc the standard Koszul complex: 

AnV <g> R -> A n _ 1 y ® Ä - • • y <8> Ä -> Ä. 

Let D be the sub complex of K given by Z)?, = Ki iî i < n and JD^ = 0 
otherwise. Once again, let D denote the kernel of the augmentation e : D —> 
(Q>. All the homologies of D vanish except the (n — l)th and this coincides with 
Kn = AnV ® R. Now, if and D are complexes of JR-modules, and R is an algebra 
over Q[y], and this gives an action of the group V on both of these complexes. 
Furthermore, there is a natural action of GL(V) on both. Combining these actions 
we see that Aff(V) acts on K and on D. 

We wish to get a homomorphism from G to D commuting with the augmen
tations up to a scalar. That would induce an arrow g : Hn-\(C) —> Hn-\(D). Any 
such g is uniquely given by g(s) = exp(s) • f(s), where / : S —> R® p(V) is any 
function. 

Here fi(V) = AnV ® Hn(V(R), V(R) - 0). 
If C —> D is to commute with the action of some arithmetic subgroup of 

Af f(V), we need g to have the same property. The conditions (a) and (b) on / 
below ensure this. The only / we consider satisfy the following: 

(a) the image of / is contained in p(V), and 
(b) / is invariant under translation by some lattice in V. 

Now, every lattice L in V defines a canonical element 6(L) in p(V). In fact, a 
basis Vi of L induces an orientation À G if71 (y(M), V(U) — 0) and 6(L) ^ ^ A ^ A 
• • • A vn (g) À defines Ö(L) independent of the choice of basis. Furthermore, if M is 
a sublattice of L, then 8(M) = [L : Ad]6(L). So, for / as above, if L is a lattice 
such that translation by L leaves / invariant, (J f)6(L) = ^Ses/Lf(s) defines J f 
independent of the choice of the particular lattice L. This definition of integral 
also remains unaltered if / is extended by zero to a larger Sf. 

The exact sequence 0—> C —> C —»Z—> 0 gives rise to a distinguished 
triangle, denoted by TR(C), and in a like manner, we obtain a distinguished 
triangle TR(D) from the complex D and its augmentation. 

PROPOSITION: Let n be an arithmetic subgroup of Af f(V) leaving the above S and 
/ invariant. Then there is a unique homomorphism of triangles F(f) : TR(C) —> 
TR(D) in the derived category of complexes of 7r-niodules, so that 

(1) F(f) induces multiplication lyy f f on Z —• (Q), and 
(2) F(f) induces g : C -> D. 

The proposition is easily deduced from the following observations. The obstructions 
to the existence and uniqueness of F(f) are elements of Hl(ix,Kn) for i — n and 
i = n — 1 respectively (for the existence, this is a consequence of the axiom (TR 3) 
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for triangulated categories in Verdier's article on Derived Categories, to be found in 
SGA 4 | ) . The intersection of n with y is a lattice L in V and ^(L, Kn) vanishes 
if i is different from n. The Hochschild-Serre spectral sequence now shows that 
H%(Iï, Kn) vanishes for i < n and injects into LP(L, Kn) for i = n. The uniqueness 
of F(f) follows. Furthermore, the existence of F(f) is a consequence of 

(A) there is an L-equivariant TR(C) —> TR(D) with the desired properties. 
Now, let Kw denote the Koszul complex with coefficients in a field W of character
istic zero, and let Dw denote again the truncated complex. Then Hn(L, (Kw)n) = 
W and the other cohomologies vanish. We deduce that F(f) exists if 

(B) there is F(f)w : TR(C) -> TR(DW) satisfying properties (1) and (2) of 
the proposition. 

In the section on differential forms and Eisenstein series, condition (B) is verified 
for the field of real numbers. That provides a second proof of the existence state
ment of the proposition. A quick first proof is obtained by verifying condition (A) 
directly. For this, consider the simplest case when S is a translate of a lattice L and 
/ is the constant function 8(L) so that J f = 1. Choose a basis for L and let X{ be 
the dual basis. Let B be the subset of V(M) given by xix2 • • • xn = 0 and choose 
v G y so that Y = B + L + v is contained in V(R) — S. This inclusion is then a 
homotopy equivalence. Now Y has a natural L-equivariant cell decomposition and 
the associated chain complex is once again obtained from the Koszul complex for 
the group ring Z[L] and the system {vi — 1, v2 — 1 , . . . , vn — 1} by deleting the nth 
term. Thus, A(y(M) — S) is quasi-isomorphic to this truncated Koszul complex 
and producing an L-equivariant homomorphism is now easy. One only needs to 
observe that the constant coefficient of (exp(i) — l)/t is 1. The general case in (A) 
is obtained by taking linear combinations of this special case. This completes the 
proof of the proposition. 

2. The Eisenstein Operator 

We shall apply the proposition as follows. With TT as in the proposition, let T 
denote the intersection of TT with GL(V). We have homomorphisms 

i : Z -> G and j : Z -> D 

in the derived category of complexes of T-modules given by j ( l ) = 1 and i(l) = [0], 
where [0] denotes the zero-simplex of V(M) — S at the origin of y(R). Now E(f) = 
F(f) o i — (J f) o j , by the remarks following the proposition above, is identified 
with an element of Hn~1(T,Kn). Composing with the projection R —> Symfe(y) 
we get Ek(f) G H71'1^, AnV(gSym* V). The Ek(f) depend linearly on the / and 
thus we get an Eisenstein operator, for each nonnegative integer k: 

Ek : So (A/ ® y) ® p(V) - • 7 T - 1 ( A n y (8) Symfc(y)). 

In the above, TCL(X) denotes the direct limit of Hl(T, X) taken over all arith
metic subgroups T of GL(V), for X any GL(y)-module. 

A^ denotes the finite adeles, S(Af (8) V) denotes the space of compactly sup
ported locally constant functions with values in Q, and finally, SQ(Af (8) V) is the 
subspace of such functions vanishing at the origin. 
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The Ek is equivariant for the action of GL(V). In particular, if a is a positive 
rational number, we see that Ek(f o a - 1 ) = akEk(f)> If k is positive and if a is 
different from 1, we see that 

Ek(f) = (1 - cxk)~lEk(f - f o a'1) for all / G S0(Af ® y ) . 

The above formula can be used to define Ek(f) for all / G S(Af®V), because 
(/ — J o a - 1 ) vanishes at the origin. Thus, for k different from 0, we have: 

Ek : S(Af ® V) -> WTl"1(A"y ® Symfc y ) 

3. Differential Forms and Eisenstein Series 

We shall next represent the Ek(f) by differential forms. It suffices to consider the 
simple case considered before where S is the translate of a lattice L by a G V 
and / is the constant function 5(L) on S. The TT in the proposition is then the 
stabilizer of L in Aff(V). 

Let P denote the positive definite matrices in Hom(y*, V) ®R. Let Q denote 
the de Rhani complex of y(R) with polynomial coefficients, and let Ç}t denote 
the complex obtained from £1 by deleting the 7ith term. Thus, Hn~1(Çli) = Hn. 
Fix an orientation of V(M) and let 9 be the unique constant coefficient 77,-form 
on y(R) so that $yt^\/LQ — 1- Let A denote the de Rhani complex of smooth 
forms on the product P X (V(R) — S). Then Hn~1(A) is simply the space of all 
functions on S, because an orientation has been fixed. We want a TT-equivariant 
homomorphism U : ut ~* A that takes h • 9 G fln = Hn(Çit) to the function 
h\S\S->Rm Hn~1(A), for all polynomials h on V(M). Now, Hom(îî ,R) = KR 

and Horn (fit , R) = DR and thus such a U would induce a homomorphism from the 
singular chain complex (the real vector space with the smooth simplices as basis) 
of P x (y(R) — S) to DR, the truncated Koszul complex with real coefficients. This 
singular chain complex is quasi-isomorphic to C(g)R, and we thus have a candidate 
for F(f)^. We find U of the following shape: 

U(UJ) = CJ if deg .u) < n — 1 

(the pullback of UJ to P X (V(R) — S) being denoted by LJ again) 

U(u) = UJ -\- ip(duj) if deg .UJ — n — 1. 

To ensure that U is a homomorphism of complexes that has the right value 
on LP1-1 , we need the î/J : Qn —> An_1 to be a 7r-equivariant homorphisni that 
satisfies 

I: di/)[h • 9) = h(6s - 1)0. 

Actually the U and I/J have their images contained in (Bp+qA
PiQ, where Ap'q denotes 

the space of smooth p- forms on P with values in g-currents on y(R) that are 
smooth on y(R) — S. And 63 = Dses-5S, where 6S is the Dirac delta distribution 
on y(R) at s. Choose a basis Vi of L and let Xi be the dual basis so that 9 = 
dx\ A dx2 A . . . dxn. We define $, a formal power series in the Vi with coefficients 
in ÇBp+q=n-i>AP}Q by the formula 

<f> = exp(£* - Vi • Xi) • i/)(exp(IliVi • Xi)9). 
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The L-equivariance of ip is equivalent to the assertion that 0 is a power series 
in the Vi with coefficients in forms on P x (y(R) — S) that are invariant under 
translation by the lattice L. Denoting the monomials in the Vi by v^ and putting 
<p = E ^ ^ • vß, I above translates into eq. I' for <p and eqs. I" for 0M given below: 

I': d<P + (Y>Vidxi) A<p=(ös- 1)9 
I;/: # 0 = (6S - 1)9 

dcßi + dxi A 0o = 0 
d^i j + dzi A 0j + dzj A (pi = 0 

The equations I" say that the </>M are the forms required to construct a part of 
the Sullivan minimal model of the complement of a point in the torus V(R)/L. 
Precisely, if n > 2, the Sullivan minimal model has generators the dx^ in degree 
1, and the (pß in degree (ri — 1), and more generators in higher degrees that need 
to be studied. (An aside — it is clear that the Sullivan minimal model of our 
space has a natural CL(y)-action. However, there does not exist a T-equivariant 
homomorphism from all of this minimal model to the de Rham complex, at least 
for n = 2; indeed, some of the Ek(f) arise as obstructions to this problem.) Given 
the (pß, we can construct the desired ip. A canonical method of constructing the <p 
will ensure the 7r-equivariance of ip. One such method is given below. 

Each point of P induces a metric on y(R) and we get d* from m-currents 
on y(R) to (m - l)-currents on V(R), and this extends to d* : AUrn -> A1*™"1. 
Any system of (pß contained in d*(the L-invariant elements of ©p+q=n Ap'q) and 
satisfying the equations I" is unique. The solutions of these equations would then 
be currents, but the standard regularity theorems (for the Laplacian on V(R) with 
a constant coefficient metric) would ensure their smoothness outside S. To solve 
for the <p we write its Fourier series: 

0 = £z.GHom(L,z) e x P ( 2 ^ v / - 1(1*>X)) • fo
in the above, x denotes a point of (yR), and the <pi* is a formal power series 

in the Vi with coefficients in the direct sum, taken over p + q = (n — 1) of Xp,q 

— smooth p-forms on P tensored with constant coefficient q-forms on y(R). Any 
l* G Hom(L,Z) extends to a linear form on y(R), and its differential is denoted 
by d(l*), and we set Ai* = ( 2 ^ ^ — l)d(l*) + ^Vidxi. Eq. I7 now reads as 

II: d((pi*)+Ai*(pi* = exp(27Tv/—1(Z*, — s))9 il I* is nonzero, and the left-hand side 
vanishes if Z* = 0. The right-hand side of this equation is clearly independent 
of the choice of s G S. 

For T e P and Z* G Hom(L,Z) as above, we get T(l*) G V(R). We may regard 
T ( r ) as a vector field on P x y(R) and interior multiplication with T(l*) gives 
an operator ii* : Xp,q —> Xp>q~1. That p is in the image of d* is now equivalent to 
the assertion 

HI: fo e ^ ( © p + g = n l M ) . 

The operators Ci* = d + Ai* and ii* satisfy: 

IV: Ci* o Ci* = ii* oil* — 0 and Ci* o it* -f- it* o Ci* is an isomorphism. 
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In fact, d o i}* + i}*. o d = N is the Lie derivation on P x V(R) given by the vector 
field T(l*) and because N(Xlhq) is contained mXp+1,q~1 we sec that it is nilpotent 
on Ç&Xp'q. And A^ oi\* -Mj* oA|* = J is multiplication by a function j = tH-E^i^ 
where £ and £7; are complex-valued functions on P, and therefore J and Af commute. 
Explicitly, t(T) = 2 7 i y - 1(1*,Tl*) and TZ* = E , ; ^ . The "constant term" t(T) 
being nonzero, we see that J and J + N are isomorphisms. Now, C/* annihilates 
the R.H.S. of eq. II, and thus the unique soin, for (pi* satisfying II and III is given 
by evaluating the operator i/* o (Cj* oij+ -\-if* o Q * ) _ 1 on the R.H.S. of eq. II. We 
have explicitly 

V: fo = Em(-l)™(27rV - 1(1* ,Tl*) + TZ*)-(m + 1V(d o »,*)m(exp27r>/ 
-l(-fl , i*))fl . 

The coefficient of the monomial u^ in the mth term of the above summation is a 
function on P bounded above by || I* ||-(m+/c+1) when T lies in a compact subset 
of P, where k = deg.(p), and this shows that p given by (V) above is a power 
series in the Vi with coefficients in ÇBp+q=n-iA

p,q. Sending T to (T, 0) gives an 
inclusion of P in P x (V(R) — S) and the E(f) are simply obtained by restricting 
the (p to P via this inclusion. The mth term in (V) above belongs to x m , n ~ ' " + 1 

and thus vanishes when restricted to P, when m is different from n — 1. Denoting 
the coefficient of the monomial v11 in the mth term in (V) above by foìllìmì we see 
that E/, GHom(L,z)-o fo,fi,(n-i) ' exp(27iV - 1(1*, x)) actually converges if deg .p is 
positive. Thus, the coefficient of v11 in Ek(f) for k positive is obtained by setting 
x = 0 in the above formula. If #(n - 1) denotes the (n — l)-form on y(R) obtained 
by contracting the volume form 9 with the Euler vector field on y(R), and if 
ei* : P —> V(R) is given by e\+ (T) — T(l*), we have explicitly for k positive: 

VI: L;fc(/)(T)(-l)-+fc-1^!((7i + k - I)!"1) = 

E^HomfL^-o e x p ( 2 ^ 
The above formula is valid when S is a translate of L and / is the constant 

function 5(L). The preceding remarks apply when S ^ L. The case S = L follows 
simply from the definition of Ek(f) when / does not vanish at the origin. 

Finally, if we set V = F, a totally real field of degree n, we have the inclusion 
of F — 0 = Fx in GL(V) and we can now restrict the Ek(f) to arithmetic groups 
of Fx. These cohomology groups vanish if n does not divide k and is isomorphic 
to Q otherwise. Restricting the Ekn therefore, we get a rationality statement (due 
to Klingen and Siegel): 

Let F be a totally real field of degree n, and let R and D be the regulator 
and discriminant of F respectively. Let L be a lattice in F and set M = L1- and 
let a G F. Let U be the subgroup of totally positive units of F that stabilize both 
L -f Za and L and act trivially on L + Za/L. 

(Ä> /ß)"1(27r> / - l)"n ( f c + 1 )Sm e M-o/L/(exp(27r>/- l)traceF/Q(am)) • NF/Q(m)k^ 

is rational. 
The case k = 0 has been omitted, and therefore the values of the L-series of 

F at s = 1 have yet to be obtained by this method. 
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Moscow, Russia 

1. Introduction 

Enormous progress was made in the last twenty years in studying the moduli of 
algebraic vector bundles and sheaves. In the last ten years a considerable under
standing was gained for a particular case of the moduli problem — for vector 
bundles or sheaves with "zero dimensional moduli" or so-called rigid sheaves on a 
Fano variety and especially on a Del Pezzo surface. Our aim is to descibe results 
on the construction and properties of rigid sheaves on Fano varieties. 

Many of these results were discussed in the author seminar "Vector bundles" 
and were developed by the people who were for some time participants of the 
seminar. I am indebted to all of them and especially to A. Bondal, A. Gorodentsev, 
M. Kapranov, B. Karpov, A. Kuleshov, D. Orlov, A. Tyurin, and S. Zube. 

1.1. Rigid sheaves on a Del Pezzo surface. By Fano variety we mean a smooth 
projective variety X over a field k with an ample anticanonical bundle K^1. Tra
ditionally two-dimensional Fano varieties are called Del Pezzo surfaces. Projective 
spaces Pn are the most common Fano varieties. 

All the sheaves in the following are meant to be algebraic coherent sheaves 
on a varietjr. 

DEFINITION 1.1 A sheaf F is called rigid if Ext1 (F,F) = 0. 

DEFINITION 1.2 A sheaf E is called exceptional if Ext1 (E, E) = 0 fori ^ 0 and 
Exi°(E,E) = k. 

It happens to be that on a Del Pezzo surface indecomposable (into a direct 
sum) rigid sheaves are closely related to exceptional ones. 

THEOREM 1.1 (KULESHOV [18]) Let k be an algebraically closed field. Then any 
rigid sheaf on a Del Pezzo surface is a direct sum of exceptional ones. 

(For a projective plane this was proven in [5].) 

* While writing the paper the author was partially supported by ISF grant MKU000. 
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1.2. Exceptional sheaves on a Del Pezzo surface. Let X be a Del Pezzo surface. 

THEOREM 1.2 [18] An exceptional sheaf E on a Del Pezzo surface is either locally 
free or a torsion sheaf, which is a direct image of an invertible sheaf 0(k)c from 
an irreducible exceptional curve C. 

There is a natural anticanonical polarization on a Del Pezzo surface, and in 
the following, referring to stability, we will mean Giesecker stability relative to this 
polarization. 

THEOREM 1.3 If a sheaf F on a Del Pezzo surface has no torsion then the follow
ing are equivalent: 
(i) F is exceptional, 
(ii) F is rigid and stable, 
(iii) F is stable and the discriminant A(F) < 1/2. 

THEOREM 1.4 If an exceptional sheaf E on a Del Pezzo surface has no torsion 
then it is uniquely determined among exceptional sheaves by its rank and the first 
Chern class and among stable sheaves by its rank and the Chern classes. 

These results were first proven for X = P2, then for Del Pezzo surfaces with 
moving anticanonical class and at last for all Del Pezzo surfaces [5], [22], [9], [18]. 

To study further exceptional sheaves it is practical to use a braid group 
action, which is defined in the following, but permit me to tell about properties of 
the action before describing its definition. 

1.3. Properties of the braid group action. 

DEFINITION 1.3 A system EQ, ... ,Em of sheaves is called an exceptional system 
(of a size m) if the sheaves EQ, ..., E^ are exceptional and Exkk(Ej,Ei) = 0 for 
i <j. 

So there is an m + 1 element in a system of size m. Let a braid group with 
m + 1 threads be denoted by Bdm so that Bd\ is isomorphic to the additive 
group Z. 

THEOREM 1.5 There exists a braid group Bd^ action on a set of exceptional sys
tems of size m of sheaves on a Del Pezzo surface. 

PROPOSITION 1.4 Let k be algebraically closed, X be a Del Pezzo surface, and 
PicX = Zl, where t = 1 , . . . ,9. Then there exist exceptional systems of any size 
up to lx = t + 1, which is the maximal possible size. 

THEOREM 1.6 Let k be algebraically closed. Any exceptional system on a Del 
Pezzo surface could be enlarged to a system of size lx- The braid group action 
on systems of maximal size lx is transitive. 
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In particular this means that airy exceptional sheaf is an element in an exceptional 
system of size lx • 

These results were proven first for P2 also [5], [22], then for a quadric surface 
[23],[27], and at last in general [18]. 

1.4. The braid group action for sheaves on a projective plane. The braid group 
action can be described fairly explicitly for X = P2. 

LEMMA 1.5 Let E\,E2 be an exceptional pair on P2. 
Then Extl(Ei,E2) = 0 for i > 0 and the morphism 

can : Rom(Ei, E2) ® E\ —> E2 

is an epimorphism and the morphism 

can* : E1 —> Hom(JSi,B2)* ® #2 

is a monomorphism. 

DEFINITION 1.6 The action of Bd\ of exceptional pairs on P2 is defined by the 
condition that the generator X of Bd\ acts as follows: 

(EuE2)—,(E+,El) 

where E^ is defined by an exact sequence 

0 —> E£ —> Rom(E1,E2) <8> E1 —> E2 —> 0. 

It easy to see that A - 1 acts as follows: 

(Ei,E2) —> (E2,E±) 

where E± is defined by an exact sequence 

0 —> Ex —> Hom(#i ,£2)* ® E2 —> E^ —> 0. 

PROPOSITION 1.7 There is an action of Bd2 on exceptional systems of size 2 that 
is defined so that its generators \\, X2 change as above the first or the second pair 
of a system respectively and do not change the sheaf that does not belong to the 
pair. 

Similar action exists on Pn for systems of size n and it was practically defined in 
[ii]. 

THEOREM 1.7 Any exceptional sheaf on P2 belongs to an exceptional system of 
size 2. The action of Bd2 on the set of exceptional systems of size 2 is transitive. 

The field k is not supposed to be algebraically closed here. 
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THEOREM 1.8 For an exceptional system EQ,EI,E2 on P2 let ri — rkEi. Then 

rl + r\+rl = 3rQr1r2 

(Markov equation). 

The most simple exceptional systems on P2 are fine bundle systems. They are of 
a type: 

(0(i),0(i + l),0(i + 2)) 

and they correspond to the minimal solution of the Markov equation. Thus, all 
others are made from those by the braid group operators and all exceptional 
sheaves appear this way. 

2. Braid group action in a derived category 

Let V be a derived category Db(AlgSh(X)). It is possible to define a braid group 
action on exceptional systems in V for any projective X [10]. 

DEFINITION 2.1 Let us call E E Obj V an exceptional object if 

Hom(E, E) = k and 

Ext*(jE;,jB) =0 fori^O. 

DEFINITION 2.2 A system EQ,... , i?m of elements of ObjV is called an excep
tional system (of a size m) if EQ,. .., Em are exceptional and 

Ext* (Ej,Ei) = 0 fori < j . 

Systems of a type Ei,... , Ei+k of size k are called subsystems in EQ,. .., Em. 

DEFINITION 2.3 The action of Bd\ on exceptional pairs in V is defined by the 
condition that the generator X of Bd\ acts as follows: 

(E,F)^(F+,E) 

where F + is defined by an exact (distinguished) triangle 

F+ —> 0 H o m ( £ [ p ] , F ) ® E\p] —^ F —• F+[l]. 
v 

There are standard inclusions Bdk —> Bdm where an image of Bdk con
sists of braids having threads outside of k consecutive ones just straight. Bdm is 
generated by images of m such inclusions for Bdi. 

PROPOSITION 2.4 There exist braid group actions of Brm on a set of exceptional 
systems of size m where an image of a standard inclusion Bri —> Brm acts as 
was described above on a corresponding pair and does not change elements outside 
of the pair. 
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DEFINITION 2.5 The minimal full triangular subcategory containing EQ, . . . ,Em 

is called the subcategory generated by EQ,.. .,Em. 

DEFINITION 2.6 We will say that an exceptional dimension of a category V is 
m, exdim î> = m, ifV coincides with a subcaiegory generated by an exceptional 
system of size m. 

It is clear that the Grothendieck group of a subcategory generated by an 
exceptional system of size 777- is isomorphic to Zm^~ and that the subcategory 
does not contain such a system of bigger size. All exceptional systems in one Bdm-
orbit generate the same subcategory. Let us remember that the size is less by 
one than the number of elements in the system, so one could conclude from the 
Beilinson theorem that 

exdim Db(AlgShPn) = n 

and generalizations of Beilinson theorem one could interpret as similar computa
tions of "exdim" for other varieties. It is known that 

exdim Db(AlgShX) = dim A' 

for projective spaces, odd dimensional quadrics [14] and for some three-dimensional 
Fano varieties [21]. 

THEOREM 2.1 If there is a dualizing sheaf Kx for X and 

exdim Db(AlgShX) = dimX 

and there exists an exceptional system EQ, ..., Em of sheaves on X of size m, then 
all the systems in the Bdm-orbit of EQ,. .. ,Em are systems of sheaves also. 

This is proved by Bondal in [2] as a way to generalize the helix approach, which 
was used to prove a similar result for Pn in [11]. 

THEOREM 2.2 Let EQ, . . . ,Em be an exceptional system that generates T> and 
such that Extk(Ei,Ej) = 0 for k ^ 0 and i ^ j . Then for E = © U 7 î we have 
Extk (E,E) = 0 for k ^ 0 and V is equivalent to Db(mod-A) where A = 
Uom(E,E). 

One could interpret this theorem as making a "tilting functor" for a sheaf category 
[2], [12]. The object E in the theorem is a tilting object in V (see history remarks 
in [13, pp. 93-94]). 

3. Braid group action for Del Pezzo surfaces 

Construction of the braid group action for exceptional systems of sheaves on a 
Del Pezzo surface is based on the following theorem. 
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THEOREM 3.1 (GORODENTSEV [9], [18]) Let X be a Del Pezzo surface and E 
be an exceptional object from a derived category V = Db(AlgShX). Then E is 
isomorphic to some translation of an exceptional sheaf (provided that as usual a 
sheaf category AlgSh X is considered a full subcategory in V and translation (or 
shift) comes for changing numeration in a complex). 

So there is "forgetting of the translation" map from exceptional objects in V 
onto exceptional sheaves. It could be applied to exceptional systems also. 

PROPOSITION 3.1 There exists a braid group Bdm action on a set of exceptional 
systems of size m of sheaves on a Del Pezzo surface where the result of applying 
ß G Bdm to EQ, ... ,Em coincides with "forgetting of translations" in the system 

ß ' (EQ,. . . jErn) , 

which is made by the braid group action in V. 

One could compute more explicitly what this means for an exceptional pair. 

PROPOSITION 3.2 If E, F is an exceptional pair of sheaves on a Del Pezzo surface 
then the generator X of Bd\ acts as follows: 

(E,F)-+(F+,E) 

where either 
0 —> F+ —• Uom(E, F)®E —> F —• 0 

is an exact sequence, or 

0 —• Rom(E,F) ®E —>F —> F+ —>0 

is exact, or 
0 —> F —• F+ —» Ext1 (E,F)®E —• 0 

is exact and Ext (E, F) = 0 in any case. 

So one could calculate the results of the braid group action quite explicitly. This 
permits us to construct all exceptional sheaves on a Del Pezzo surface provided 
that the field k is algebraically closed because of Theorem 1.6. Those calculations 
especially for a quadric surface were an inspiration for the results. Some of them 
are described in [25], [23]. 

4. Applications and related topics 

4.1. Monads and Beilinson type spectral sequences. Relationship between ex
ceptional systems and Beilinson type spectral sequences were first noticed for pro
jective planes and projective spaces of higher dimension [5], [11]. Then a way was 
found to generalize this to Del Pezzo surfaces where spectral sequences get more 
complicated [9]. 
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Along with this were found ways to use exceptional sheaves to construct 
monads in a form 

M : 0 V Ï ®Ei —• 0 W j ® #,-

and thus to get information about moduli varieties of sheaves. The details can be 
found in [6], [7], [16]. 

4.2. Chern classes for stable sheaves. The ver}'' first paper where exceptional 
sheaves were considered [8] was devoted to describe ranks and Chern classes pos
sible for stable sheaves on P2. The authors J.-M. Drezet and J. Le Potier found a 
nice "fractal type" border for points of the form (p, A) where p is the slope and A 
the discriminant of a nonexceptional stable sheave, and described separately those 

_ of exceptional sheaves. _Tlie_same description isalso given for sheaves on a quadric 
surface [26]. 

4.3. Quiver representations. It was proven recently in [4] that there could be 
defined a braid group action for exceptional systems of quiver representations and 
that the action is transitive on a set of sj^stems of "maximal" size (equal to "exdim" 
of the category). 

5. Open questions and conjectures 

There are several things that look promising to do. The first is to look at sheaves 
on a Del Pezzo surface over a field which is not algebraically closed. Let us say 
that a sheaf E is quasi-exceptional if Ext1 (E,E) = 0 for i ^ 0 and Hom(E, E) is 
a division algebra over k. 

CONJECTURE 5.1 A rigid sheaf on a Del Pezzo surface is a direct sum of quasi-
exceptional ones. 

Probably it is possible to define a braid group action on quasi-exceptional systems 
and prove that there is a finite number of orbits. To find this number is likely to 
be more difficult. 

The second task is to study the braid group action for Pn where n > 2. 

CONJECTURE 5.2 The braid group Bdn acts transitively on exceptional systems 
of size n on Pn. 

This is known for n = 1, 2, 3 (the last is proved in [19]). 

CONJECTURE 5.3 Any exceptional sheaf on Pn can be included into an exceptional 
system of size n. 

The same questions are open for quadrics, grassmanniaiis, and other varieties of di
mension more than two where the existence of exceptional sheaves and exceptional 
systems is known. 
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C O N J E C T U R E 5.4 There is a finite number of orbits for the braid group action 
on exceptional systems of maximal size in a derived category Dh(AlgShX) of 
algebraic coherent sheaves on a Fano variety X. 
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0 Introduction 

0.1. Let X be a complex projective variety. Then each cohomology group of X 
admits a Hodge structure, that is a decomposition of Hk(X,C) = Hk(X,Z) ® C 
into a direct sum © H™(X), where H*«(X) ~ H^(üp

x) c Hk(X, C) is the set 
p+q=k 

of classes that can be represented by a closed fc-form everywhere of type (p, q). We 
will be concerned in this paper with the relations between Hodge structures and 
Chow groups CH\X), where CHi(X) is the group of ^-cycles (= arbitrary integral 
combinations of •£-dimensional subvarieties) modulo rational equivalence [5]. 

0.2. The simplest way to go from Chow groups to Hodge structures is to use 
the cycle class map c : CHk(X) —> H2n~2k(X), which to a cycle V = Y,niWi 
associates c(r) = T,nic(Wi), where c(Wi) is the Poincaré dual of the current of 
integration over Wi. The cycle class c(r) is easily seen to be a Hodge class; that 
is, to belong to H2k(X,Z) n Hkjk(X). The famous Hodge conjecture asserts that 
H2k(X,Q) n Hkik(X) is equal to Ime (8) Q. Not much is known except for the 
case k = 1 (due to Lefschctz) and particular cases for k > 1 (see e.g. [35], [36], 
[37]). But recently an important theoretical evidence for it was given by Cattani, 
Deligne, and Kaplan, who proved: 

0.3. THEOREM [10]. Let X —> B be an algebraic family of smooth algebraic vari
eties X\y parametrized by a quasi-projective variety B. Then the set {(b, X), b £ B, 
X E H2k(X\),'L) nHk,k(Xi))} is a countable union of finite covers of algebraic sub-
varieties of B. 

These sets are called Hodge loci or Noether-Lefschetz loci and were studied 
in [4], [34], [IVHS,II]. 

The class of a cycle is sometimes a very poor invariant: for example the 
class of a zero-cycle Un^pi is just its degree En^ E Z. Of course a much deeper 
relation between CH(X) and Hodge structures on X is expected (see [5], [28], 
[30]); however, for Z a cycle in a family of varieties (A^)bGs, the Hodge class of 
Z carries very much information on the family of cycles Z\xb £ CH(Xb)-> and this 
will be the main topic of Section 1. 
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0.4. One way to refine the cycle class map is to consider the Deligne cycle class CD : 
CHP(X) -> H2p(X,Z(p)) (Deligne cohomology) where H%(X,Z(p)) = M2p(0 -> 
Z -> Ox -> Six -> ••• -* ft*"1 -* °) ( see [20], [17]). Its restriction to the set 
of codimension p-cycles homologous to zero was first defined by Griffiths [26] and 
called the Abel-Jacobi map. It takes values into the pth intermediate jacobian: 

j2p-i(X) = H2p-1(X,£)/FpH2p-1®H2p-1(X,Z). 

(Here and in the sequel we use the notation FkHt(X) := © Hp>£-p(X).) 
P>k 

0.5. Deligne cohomology groups also appear as the targets of regulator maps, which 
are defined on higher Chow groups ([6], [27]). Regulators have the same formal 
properties, from the point of view of infinitesimal variations of Hodge structurer
as Abel-Jacobi maps, and we will see in the next section that the result of [23] 
holds as well for them. To give an idea of what they are, consider for simplicity 
the case of K^X)^1) ~ CHp+l(X, 1) ~ Hp

ar(X, /Cp+i). Using Bloch's definition 
or using the Gersten resolution of the sheaf /Cp+i [5], this group is generated by 
sums a = Y,(Zi,ipi), where Zi C X is irreducible of codimension p and ipi is a 
non-zero rational function on Zi, subject to the condition: T,div(ipi) = 0 as a cycle 
of codimension p + 1 on X. The regulator map R will send it to an element of the 
partial torus 

H2p+1(X,Z(p+l)) ~ H2p(X,C)/Fp+1H2p(X,C) ®H2p(X,Z). 

Modulo the image of {[Zi]) ® C in this torus, R(a) is constructed as follows: 
let Z = [J Zi, U = X\Z. Because Ediv(y?i) = 0 it follows that the one forms 

i 

Wi = 2^^- on Zi satisfy: Res^nz, wi + R*esz1nzl
 wj = 0, hence determine an 

element wa of 
H2/+1(X) G^H^ZAiJZjnZ,). 

Hg (X) carries a mixed Hodge structure [14], induced by the mixed Hodge 
structure on ©Ä' 1 (Z i \ [J ZidZj), and because Wi have a class in H*(Zi\ [j ZiH 

Zj,Z) H F1H1(Zi\ [J ZiHZj), it follows that 

wa e Fp+1H2
z
p+1(x)nH2

z
p+1(x,z). 

Consider the exact sequence: 

0 —> H2p(X)/ < Zi >—-> H2p(U) —* H2p+1(X) —• H2p+1(X). 

Clearly wa vanishes in H2p^(X) because F^1H2^1(X) H H2p+1(X,Z) = 0. So 
wa admits liftings in Fp+1i?"2p(l7") and in H2p(U,Z), whose difference will give 
R(a) e H2p(X,C)/Fp+1H2p(X)®H2p(X,Z)®C[Zi). (We have made abstraction 
here of singularities but the construction works in general [27].) 
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0.6. One way to study the objects described above is to look at their variation 
when X varies in a family: suppose X -^-> B is a smooth family of complex pro
jective varieties parametrized by a smooth complex variety B ; then the inclusions 
FpHk(Xb) C Hk(Xb,C) determine a C°°-subbundle FpHk

00 C H^ of the bundle 
TL^ with fiber Hk(Xb,C). TL^ is a flat bundle w.r.t. the Gauss-Manin connection 
V, so in particular it has a natural holomorphic structure, and we will denote by 
Hk the sheaf of its holomorphic sections. We have TLk — Rkn*C ® ÖB- The most 
important results of Griffiths are the following [25] : 

0.7. THEOREM. 

(i) FPTC^0 is a holomorphic subbundle of W^ ; we will denote by FpHk C Hk 

its sheaf of holomorphic sections. 

(ii) (Transversality) The Gauss-Manin connection V : 7ik —> TLk (8) £lB satisfies: 

vFpnk c Fp~xnk (g) nB. 

(iii) (Description of the differential of the period map): The ÖB -linear map 

V : Fp/Fp+1Hk —> Fp~1/Fpnk^nB 

np,k-P —> np-ltk-p+1^nB 

obtained from V by passing to the quotient, gives for any b E B a map: 
TBb -> Hom(^ r / c~p(np

t ,J,iJ f c-p + 1(np
ir

1)), which identifies to the composite: 

Kodaira-Spencer , , 
TB(b) > Hl(TXb)^Rom(Hk-P(Üp

Xb), Hk-P+1{Üp-1)), 

where the last map is given by the interior product. 

0.8. To deduce consequences of this theorem, one needs to know much about the 
structure of the couplings H1^) (8) Hk~p(np

Xb) - • Hk~p+l(n^1). Their de
scription is especially beautiful in the case of hypersurfaces {F = 0} in projective 
space P n (and more generally sufficiently ample hypersurfaces in any variety [22]). 
In this case, the spaces considered (modulo the cohomology of Pn) are homoge
neous pieces of the jacobian ring R(F) = C[XQ, ... ,Xn]/ < dF/dXi >ì=Q}...>n, of 
F and the coupling is just multiplication [9]. [16], [21] provide a thorough study 
of the algebraic properties of these rings. 

0.9. The Transversality Theorem 0.7 (ii) has its analog for the Abel-Jacobi maps 
or regulators, known as "quasi-horizontality of normal functions" [44], [IVHS,III], 
which follows in fact from 0.7 (ii) for variations of mixed Hodge structures, if 
one constructs the Abel-Jacobi invariants as extension classes [8], [17] (see also 
0.5). Concretely it says the following: let X —> S be a smooth family and let 
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Z C X be a codimension p cycle, whose support is flat over B, and such that 
Zb C Xb is homologous to zero, Vo G B. The family of intermediate jacobians 
(J2p~1(Xb))beB has a natural complex structure, for which the sheaf of holomor
phic sections is J2p~l = H2^1 / FpTL2p-1 © H^1. The cycle Z gives a normal 
function vz G 32p~l defined by vz(b) = $xb(Zb). (The analog of 0.7 (i) is that 
Vz is holomorphic.) 

0.9.1. The horizontality property is the following: let Vz G W2p_1 be a local lifting 
ofvz. Then Vî>z G Fp-lrK2p~x ®ftB. (Note that this is independent of the choice 
of the lifting by 0.7 (ii).) A similar statement holds for the regulator. 

0.10. In Section 1 we will explain how to exploit this property to study the Abel-
JacobLmap in families. 

In Section 2, we will state a criterion due to Green for the density of the 
Noether-Lefschetz locus (0.3), and describe its consequences on the Abel-Jacobi 
map of certain threefolds. In Section 3, we describe briefly Nori's work, which is 
the most important recent contribution in the field. 

1 Infinitesimal invariants 

1.1. Let X -^-> B be a family of smooth complex projective varieties. Let Hp,q = 
iTPftP+g/iTP+iftP+ç b e theJHodge bundles and let V : H™ -> HP'1^1 (8) UB be 
the map of 0.7 (iii). Define V ( s ) : H™ ®iïs

B
1 -> ftP"1.^1 ®ÜS

B, by V(s)(cr<8>a) = 
V(o-) A a. Using the fact that V is obtained from V by passing to the quotient, 
and the integrability of V, one finds that V(B+i) o V(s) = 0. So for fixed (p, q) we 
get a complex on B\ 

Kp>q : O -> H™ ^ HP-1'"*1®^ ^ HP~2^2®VL2
B -> > H^p+q®np

B -> 0. 

This complex is in fact the pth graded piece of the De Rharn complex of (Hp^q, V) 
for the decreasing filtration (introduced by Deligne and Zucker [44]): 

Kp(DRHp+q) := 

o -> Fpnp+q ^ Fp-lrHp+q®nB ^ i Fp-2npJrq®n2
B -+ — > F°np+q®np

B -> o. 

Now, by the degeneracy of the Leray spectral sequence of TY [14], one has 
(non canonically): Hn(X,C) = © Hr(B, RsirX) and the Hodge filtration [15] 

r+s=n 

on Hn(X,C) induces on Hr(B,Rs7rX) = Mr(B,DR(Hs)) a filtration that is the 
one induced by Kp, if one imposes "logarithmic growth at infinity", that is if one 
works with the subcomplex DR(Hs)(logdB). 

1.2. The first infinitesimal invariant associated to a Hodge class on X is a holo
morphic section of one of the cohomology sheaves of the complexes KPiQ. Pre
cisely let a G FnH2n(X) ; (integrality of a does not play any rule here). Assume 
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a G Hk(B,R2n-kTT*C) ; so aeFnHk(B,R2n-k7rX)=^k(KnDRn2n-k(\ogdB)). 
Then the infinitesimal invariant 8a G H°(B,nk(Gr^(DRH2n-k))) is just the 
image of a under the composite map: 

Mk(KnDRH2n-k(logdB)) ->Hfc(Gr^DRH2n~k(log dB)) 

-> H°(Hk(Gr%DRH2n-k)). 

This is a local invariant of a, which can be as well obtained by looking at the 
image of a in H0(Rn7V^D,7x), and by studying the spectral sequence associated to 
the filtration of tl^ by the subbundles 7r*£lp

B A ^~p. 
Now we want to describe more concretely these invariants and explain how 

to use them: 

(A) Infinitesimal invariants of normal functions ([23], [44], [IVHS,III]): 

1.3. Let X - % B be as before and let a G H2p(X,Z) fi FpH2p(X); assuming 
H2p~1(X) = 0, a determines aD G H2p(X,Z(p)), and if a]Xb = 0 in H2p(Xb,Z), 
<*D\xb G J2p~x(Xb) C HD

p(Xb,Z(p)), and we get a section i/a of J 2 p _ 1 , (cf. 0.9), 
defined by ua(b) = aD\Xb. 

When a is the class of a cycle Z, one has va —vz- The infinitesimal invariant 
of a is in the cohomology at the middle of the sequence: 

w*-1 - ^ wp"1,p ® nB ^ i W P - 2 ' ^ 1 ® n | , 

and we construct now the infinitesimal invariant 6va of va, which lies in the same 
sheaf, as follows. Let va be a local lifting of va in H 2 p _ 1 ; then by 0.9.1 Vz>a G 
Fp-in2p-i ^ çiB m i t is then easily seen tha^the projection of Vz/Œ in H p _ 1 ' p ® ÜB 

is in Ker V(2) and well-defined modulo Im V. It is shown in [38] that 8vOL = 8a. 

1.4. Clearly the vanishing of 8vCL is equi valent to the fact that z/a has a local lifting 
Va. G TL2p~1 satisfying the stronger horizontality condition: Vva G FpH2p~1 ®Q,B. 
One can then construct a second infinitesimal invariant [23] living in 

Ker V (2) : H™'1 ®SlB-^ Up~^p ® Q2
B 

Im V : ftP+i.P-2 -> u™-1 ® ÜB ' 

which measures the obstruction to the existence of a lifting that satisfies: Vî/a G 
Fp + 17Y2 p _ 1 ® QB. Finally, if all the cohomology sheaves involved vanish, one can 
continue this process to get a flat lifting of vŒ in 7i 2 p _ 1 . Under mild assumptions 
on the IVHS, this flat lifting will be unique up to a section of Hz

p~ . Now the 
necessary vanishing assumptions are true for the universal family of hypersurfaces 
of degree > 6 in P4 , modulo isomorphisms (one uses there 0.8 and the symmetrizer 
lemma [16]), and a standard monodromy argument shows that flatness of normal 
functions implies their triviality mod. torsion, hence we get: 

1.5. THEOREM (Green [23], Voisin, unpublished). Let X c P4 be a general hyper
surface of degree > 6. Then the Abel-Jacobi map of X is of torsion. 
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Green proved in fact the analogous result for all dimensions. 
Green and Müller-St ach have generalized this result to any sufficiently am

ple linear system in any even dimensional variet}^ [24]. To be precise, they show 
that for X C Y, dimY = 2n, X a general member of a sufficiently ample lin
ear system on Y, the image of the Deligne-Abel-Jacobi map CJJ : CHn(X) —> 
HD]l(X, Z(?7-)) is equal, up to the torsion, to the image of the composite map 
CHn(Y) -> H^l(Y,Z(n)) -> H2?(X\Z(n)) — and that the last restriction map is 
injective. 

As Bloch and Nori mentioned to me, the same argument applies as well to 
the regulator map (0.5). This gives the following: 

1.6. THEOREM. Let S be a general surface of degree at least five in P3 ; then the 
image of R : ^(^(S)) -» H2(S,C)/F2H2(S) © H2(S,Z) is of torsion modulo 

TicS-gC*r=(cf(CT5(l)))®(C*~ " " 

As in the previous theorem, the assumption d > 5 is necessary. In the case 
d = 4 (K3-surfaces), Oliva (work in progress) shows the nontriviality of R(S) mod. 
torsion, using the method of [39]. 

Theorem 1.6 disproves a conjecture of Beilinson [27], stating that the real 
Deligne cohomology is generated by the regulator. 

As for the geometric content of the infinitesimal invariant 8U, we mention the 
following result of Collino and Pirola: 

1.7. Let A^3 be the moduli space of curves of genus three and let J —> M% be 
the associated jacobian fibration. For C G M3, one can choose an Abel-Jacobi 
embedding C C Jc-, and the Abel-Jacobi image of the one-cycle C — (—C) in 
the primitive part of the intermediate jacobian of Jc does not depend on the 
embedding. The normal function so obtained on M 3 has an infinitesimal invariant 
defined as in 1.3, and one has: 

1.8. THEOREM [13]. This infinitesimal invariant at C lives in a space naturally 
isomorphic to SAH°(Kc), and for C non-hyperelliptic, it is non-zero and gives the 
equation of C in its canonical embedding. 

(B) Infinitesimal invariants for families of zero-cycles on surfaces: 

1.9. Let S —> B be a family of smooth regular projective surfaces, and let Z C S 
be a codimension two cycle, Z = Y>mZi, with Z7; —> B flat and T>nid°Zi/B = 0. The 
class [Z] of Z has then an infinitesimal invariant 8[Z] in H°i2®iï2

B/V(2)('H1,1®ïï>B). 
If Z satisfies the assumption: Vu G B, Zb is rationally equivalent to zero in Sb, a 
multiple of Z is homologous to a cycle supported over a proper Zariski closed 
subset of B, and we conclude that 5[Z] vanishes on a Zariski open set of B. 

1.10. Now, using Serre's duality one finds an isomorphism: 

(H0'2 ® n!/imv ( 2 )) ( 6 ) * (H°(n»Sb ®v*Kel/oSb)Y, 
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where N = dim B. The geometric content of 8[Z] is then the following. Suppose 
Z = T^riiai(B), where ai : B —> S are sections, and Er^ = 0. At b G B one 
has of : (^s\s )*»(&) ~> ^B(b) ~ ^B(b)i a n d ^I^L as a n element of H°(Q%S ® 
rr^Kß1)*, is given by 8[Z] = Era* of > which factors through the quotient H°(Q,g,s ® 
ir^Kß1 /ösb) by the assumption £r^ = 0. 

1.11. In [43] it is shown that if Sn —> B is the family of smooth hypersurfaces of 
P 3 of degree > 7, modulo isomorphism, the bundle S7^5 I^^B{b) is v e r v ample 
on Sb, Vb G B. Prom 1.9, 1.10, 1.11 one deduces: 

1.12. THEOREM [43]. Let S c P3 be general of degree > 7. Then two distinct 
points of S are not rationally equivalent. 

2 Green's iruinitesiinal criterion and the nontriviality of the Abel-Jacobi map 

2.1. Consider a family of surfaces cS —> B. Inside B, we have the Noether-Lefschetz 
loci, characterized by the existence of a certain Hodge class in H2 of the fiber; 
that is, by the Lefschetz theorem, by the presence of an "extra" line bundle on 
the fiber. It is better to consider as in 0.3, the NL loci as contained in the C°° 
vector bundle H^1, with fiber i ï " 1 , 1 ^ ) n H2(Sb,R) at 6 G B. The NL locus will 
be then defined as the set {(A,ò)/A G Hlìl(Sb)nH2(Sb,Q)}. Green's lemma gives 
the following purely algebraic criterion for the density of this locus: 

2.2. LEMMA (Green, [29]). Suppose that for some b G B, A G i f ^ f ì s j , the map 
V(A) : TB(b) —> H2(Osb) is surjective. Then the Noether-Lefschetz locus is dense 
in TL^ . 

2.3. In [40], the criterion was checked for sufficiently ample hypersurfaces in Calabi-
Yau threefolds. 

2.4. Now this lemma gives a way to produce interesting cycles in threefolds: if 

S - > X a n d A e H^(S) n Ker(iJ2(5, Z) -^ HA(X, Z)), A determines an element 
3 

of Pic S (assuming S regular), hence a one-cycle on S, which will be homologous to 
zero in X. The next question is to decide whether the cycles Z\ so obtained have 
non-trivial Abel-Jacobi invariants. If the expected dimension of the components S\ 
of the NL locus is strictly positive, it is possible to study formally the differential 
of the Abel-Jacobi map $ : S\ —> JX, ®(S, A) = ^X(Z\), and to show that it is 
nonzero. This method was used in [41] to solve the generalized Hodge-Grothendieck 
conjecture for certain sub-Hodge structures on certain threefolds. (See [2] for a 
more geometric solution of a similar example.) 

2.5. In the case of a Calabi-Yau threefold, the expected dimension of the NL locus 
is zero, but one can deform X together with the zero-dimensional components 
of this NL locus. Using the same construction as above, this will now give nor
mal functions on the family of deformations of X, and the nonvanishing of their 
infinitesimal invariants gives: 
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2.6. THEOREM [40]. Let X be a Cala,bi-Ya,u threefold that is nonrigid; then a 
general deformation of X has a non-torsion Abel-Jacobi map. 

This theorem was known previously for the quintic threefold (see [26] and 
[12] for a much stronger statement) but the cycles in [26] were easy to get. They 
are the lines on X. 

3 Nori's theorem 

3.1. The essential point in 1.4, 1.5 was the vanishing of some cohomology sheaves of 
the complexes KPiQ, on the family of all hypersurfaces of sufficiently large degree. 
Nori realized that these vanishing statements and their generalizations to the case 
of complete intersections of large degree in any"variety are partial aspects of ~a~deep~ 
vanishing theorem for the cohomology of the universal hypersurfaces or complete 
intersections, which is the following: 

3.2. CONNECTIVITY THEOREM [32]. Let X be projective of dimension n + k. Let 
k 

L\,...,Lk be ample line bundles, and for n\,...,n^ G N; let S := YI H°(X,L1-'"). 
i 

Let Ys C X x S be the universal complete intersection. Then for Ui large enough, 
and for any submersive map T —> S, one has Hk(X x T, Yp) = 0, k — 0 , . . . , 2n. 

The most striking application of this theorem is the proof of the existence 
of cycles homologous and Abel-Jacobi equivalent to zero but not algebraically 
equivalent to zero: 

3.3. THEOREM [32]. Using notation as above, let Z be a cycle on X of codimension 
d < n: suppose that [Z] ^ 0 in H2d(X,Q), or that the Abel-Jacobi image of Z is 
not contained in the algebraic part of JX. Then for n» such that the conclusion of 
3.2 holds, Z\YS is not algebraically equivalent to zero, for general s. 

3.4. Griffiths in [26] proved the existence of cycles homologous to zero but not 
algebraically equivalent to zero, but he used the Abel-Jacobi invariant, which van
ishes on cycles algebraically equivalent to zero when the intermediate jacobians do 
not contain a nontrivial algebraic part. 

Albano and Collino [1] have even shown that the kernel of the Abel-Jacobi 
map can be nonfinitely generated modulo algebraic equivalence. This was obtained 
as a consequence of 3.3, and of the following result (an analog of Clemens' theo
rem [12]): 

3.5. THEOREM [1]. Let X C P8 be a general cubic sevenfold; then J7(X) has no 
algebraic part and the image of the Abel-Jacobi map Q>x '• GHs(X)]lom —> J7(X) 
is a countable infinitely generated group. 
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