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Genuine Representations of the Metaplectic Group 
and Epsilon Factors 

JEFFREY ADAMS* 

Mathematics Department 
University of Maryland 
College Park, MD 20742, USA 

Introduction 

Generalizing results of Waldspurger [14], and motivated in part by the conjectures 
of Gross-Prasad [5], Kudla has made a series of conjectures about the theta cor
respondence for the dual pairs (Sp(2n),0(2n + 1)) over a local or global field. 
This paper concerns these local conjectures over R. For a discussion of the case of 
unitary groups over a p-adic field see [9]. 

The first main result is that the theta correspondence defines a bijection be
tween the genuine irreducible representations of the metaplectic group Sp(2rc,R), 
and the irreducible representations of the groups SO(p, q) with p-\- q = 2n + 1 and 
the parity of q fixed (Theorem 1.4), [2]. In particular this relates the representation 
theory of the nonlinear group Sp(2n, R) to that of the linear orthogonal groups. 

The second main result relates this lifting to symplectic root numbers, i.e. 
epsilon factors of symplectic representations of the Weil group of R. A genuine 
irreducible representation 7r of Sp(2n,R) lifts to a unique SO(p,q), and there is a 
relation between the epsilon factor of this lift, the central character of 7r, and the 
Kottwitz invariant of SO(p,q) (Theorem 4.9). 

Sections 1 and 2 are joint work with Dan Barbasch [2]. Thanks are due to 
Steve Kudla for explaining his conjectures and for many useful discussions. 

1 Theta correspondence 

Let W be a vector space of dimension 2n over R equipped with a nondegenerate 
symplectic form < , > , with isometry group Sp(W). Let V be a vector space of 
dimension 2rc + 1 over R with nondegenerate symmetric bilinear form (, ) and 
isometry group 0(V). Then W = W<g>V comes with the symplectic form <, > ®(, ), 
and with the natural embeddings tv : 0(V) - • Sp(W) and tw : Sp(W) -» 5p(W), 
(Sp(W),0(y)) is a reductive dual pair in Sp(W) [6]. 

Let Sp(W) be a metaplectic group, i.e. a connected two-fold cover of Sp(W). 
Any two metaplectic groups are isomorphic by a unique map inducing the identity 
on Sp(W). Unless otherwise noted G will denote the inverse image in Sp(W) of 

*) Partially supported by NSF Grant #DMS-9401074. 
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722 Jeffrey Adams 

a subgroup G of SpÇW). We say an irreducible representation of G is genuine if 
it is nontrivial on the kernel of the covering map p : G —> G, i.e. if it does not 
factor to G. The covers of a subgroup arising from different metaplectic groups 
are canonically isomorphic. 

Fix a nontrivial unitary additive character iß of R, and let v(iß) be the as
sociated oscillator representation of SpÇW). Restriction of u(iß) to the dual pair 
defines a bijection between subsets of the irreducible admissible representations of 
Sp(W) and Ö(V) [6, Theorem 1]. 

Let K be a maximal compact subgroup of 5p(W), and consider the Fock space 
T(iß) of K-finite vectors in v(iß). For G = Sp(W) or 0(V) let g be the complexified 
Lie algebra, K a maximal compact subgroup, and let Ggenuine be the set of equiv
alence classes of genuine irreducible (g, X)-modules. The restriction of F(iß) to 
the dual pair defines a bijection between subsets of Sp(W)^enuine and 0(V)~ n u i n e 

[6, Theorem 2.1]. If 7T e Sp(W)^enuìne corresponds to irf e Ö(V)~n u i n e we write 
7r' = 9'(V,iß)(-IT) and n = 0(W,iß)(irf). If n does not occur in the correspondence 
we say 0(V,iß)(ir) = 0, and similarly n'. 

We consider correspondences for fixed W as V varies. Let V be a set of 
representatives of the isomorphism classes of vector spaces of dimension 2n + 1 
together with a symmetric bilinear form. Because the form is determined up to 
isomorphism by its signature, V = {V^?q|p + q = 2n + 1} where the signature 
of VPiq is p, q. The groups Sp(W) arising from different W = W ® V may be 
canonically identified via the unique isomorphisms over the identity map of Sp(W). 
The discriminant det(VPiq) of VPmQ is (—l)q. 

Let sgn be the one-dimensional representation sgn(#) = sgn(det(#)) = det(#) 
of O(V), which by composing with projection 0(V) —• 0(V) is a nongenuine 
character of 0(V). Tensoring with sgn defines an involution without fixed points 
on the set of genuine irreducible representations of 0(V). 

THEOREM 1.1 [2]. Fix tß and 6 = ±1. The theta correspondences 0(V,ip) dehne 
a bijection between 

upyVV ^genuine 

and a subset of 

U <Ws /genuine 

det(V)=6 

For every -K G Ö(V)^enxline precisely one of it and n <8> sgn occurs in the image. 

Note: The question of which representations occur in the image is subtle — see 
Proposition 4.1. 

An important role is played by a certain character £. 

DEFINITION 1.2. Fix a symplectic vector space W, a metaplectic cover Sp(W) 
of Sp(W), a maximal compact subgroup K of Sp(W), and an additive character 
iß. Let £(W,iß) be the character of K acting on the unique K-invariant line in 
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T(iß). We use the same notation to denote this character restricted to the center 

ofSp(W). _ 
For Ö(V) C Sp(W) as above, we use the same notation to denote the restric

tion of£(W*iß) from K to K = K Pi 0(V), as well as the unique extension of this 
to a genuine character of Ö(V). Finally we define a bijection 

o(v)^nu[ne^o(vr 
7T -+ 7f (1.3a) 

by tensoring with the genuine character £ _ 1 : for x e 0(V) let 

W(x) =£(W,iß)-1(x)7r(x) (xep~1(x)) (1.3b) 

(independent of the choice ofx). 

If iß or W is understood we drop them from the notation. Roughly speaking 
£ = \/det; to be precise under an appropriate isomorphism of K with U(n), £2 

factors to the determinant of U(n). Note that the restriction of £ to the center is 
independent of the choice of K. 

We refer to the map Sp(W)~enuine -> SO(V)~ given by TT -> 0{V,rp)(ir) 
restricted to SO(V) as the modified theta correspondence. 

THEOREM 1.4 [2]. Fix iß and 6 = ±1. The modifìed theta correspondences define 
a bijection 

vev 
det(V)=6 

Recall that the union is over {V^Jp + q = 2n + 1, (—l)q = Ö}. For fixed ô the 
union is over one group from each isomorphism class of real forms of SO(2n + 1 ) . 
The correspondence is computed explicitly in [2]. 

This was conjectured by Kudla, and the case n = 1 is given in [14]. A similar 
result for the dual pairs (0(2p,2q),Sp(2n,R)) withp + q = rc,n + l is given in [10] 
(the metaplectic group plays no role here). 

The bijection of Theorem 1.4 is one of similarity rather than duality. For 
example it preserves the property of being a discrete series representation. The 
same holds for "small" representations, for example the two one-dimensional rep
resentations of SO(n + l ,n) correspond to the even halves of the two oscillator 
representations. 

An important problem in the representation theory of reductive groups over a 
local field is the extension of the local Langlands conjecture [4] to nonlinear groups. 
Theorem 1.4 suggests that one could define an L-group for genuine representations 
of Sp(2n,R) to be the L-group Sp(2n, C) x Z/2Z of SO(2n-\-1). Such a possibility 
was suggested by Jim Arthur. 

For example one could define a genuine L-packet for Sp(2n, R) to correspond 
to a (Vogan) L-packet for the groups SO(p, q); then these packets are parametrized 
by maps of the Weil group into Sp(2n, C). Indeed such a definition may play some 
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role in explaining L-functoriality for dual pairs involving odd orthogonal groups 
[1], and hence in applications to lifting of automorphic forms. 

Some care is necessary with this definition. For example the central character 
of the representations in such a packet would not be constant (cf. Section 4). 
More significantly, the Kazhdan-Lusztig character relations are not preserved by 
the bijection. These character relations are fundamental to the proof of Arthur's 
conjectures for a linear group G [3], in which the representations of G are related 
to the geometry of a space X. Here X is on the "dual" side; it is a quotient of the 
space of maps of the Weil group into the L-group of G. Therefore the character 
relations for genuine representations of 5p(2n, R) are not encoded (at least in the 
obvious way) by the space X for the groups SO(p, q) (p + q = 2n + 1). 

What is lacking is a functorial or geometric explanation of the local Langlands 
correspondence (for linear groups), in the form of [3] or any other version. Theorem 
1.4 might then give an idea of how to extend this to nonlinear groups. 

Somewhat similar relations between the representation theory of a nonlinear 
and a linear group are found in [7] and [13]. In these cases the root systems are 
self-dual, and the correspondence is between a cover of a group and the group 
itself. 

2 Theta correspondence: Further properties 

We collect a few results from [2] that are needed for the application to epsilon 
factors. 

Let G = Sp(W). We choose an isomorphism of K with U(n) so that, with the 
usual compact Cartan subgroup and positive roots of U(n), £(W^)2 (Definition 
1.2) corresponds to the weight (1 , . . . ,1) . Then K* is parametrized by weights 
( a i , . . . , an) with a\ > • • • > an and â  G Z + \ for all i. 

The irreducible representations of the compact group 0(m) are parametrized 
by "weights" ( a i , . . . ,a[iny,6) with a» £ Z, ai > • • • > a^ > 0, and 6 = ±1. This 
parametrization follows [15] and is obtained by restriction from U(m). With 0(m) 
embedded in U(m) in the usual way the representation of 0(m) with highest 
weight ( a i , . . . , a^ ,0 , . . . , 0; 8) is the highest weight component of the irreducible 
representation of U(m) with highest weight 

( a i , . . . , a f c , l , l , . . . , l , 0 , . . . , 0 ) . 

In particular if m is odd the element —Id of the center of 0(m) acts by 6(—1)^ ai. 
Now let G = 0(V). If V has signature p,q we may choose an isomorphism, 

canonical up to inner automorphism, of G with 0(p,q) (defined by the form 
diag(ip, -Iq)) and of K with 0(p) x 0(q). 

LEMMA 2.1. 

(1) The K-type \i = ( a i , . . . , a&, 0 , . . . , 0; 6)(bi,..., 6 ,̂ 0 , . . . , 0; rj)(; is contained 
in the space of joint harmonics [6] if and only if k + ^r(p — 2k) + £ + 
^(q-2£)<n. 
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(2) For n an irreducible representation of 0(V), 9(Wiiß)(n) ^ 0 if and only 
if every lowest K-type of 7r (in the sense of Vogan) occurs in the space 
of joint harmonics. It is enough to check this condition on a single lowest 
K-type \i. 

(3) If ir is a discrete series representation then the lowest K-type of n is of 
minimal degree (regardless of whether or not 0(W< */>)(7r) ^ 0). If0(W, iß) (ir) 
is nonzero then it is a discrete series representation. 

For induced representations it is useful to have another formulation of con
dition (2). 

Let (M, or) be "Langlands data" for a genuine irreducible representation 7v 
of 0(V). Thus a is a discrete series representation of the Levi component M of 

a cuspidal parabolic subgroup P , and 7r is a constituent quotient of Ind^ (<r). 
Here M is a Levi factor 

M ~ O(V0) x GL(l)a x GL(2)b (2.2a) 

of 0(V), for some a, b and a nondegenerate orthogonal subspace Vo of V and 

M ~ O(V0) x GL(l)a x GL(2)b (2.2b) 

is its inverse image in 0(V). 

Note that M is a member of a dual pair (M, M') where 

M' ~ Sp(W0) x GL(l)a x GL(2)b (2.3a) 

is a Levi factor of Sp(W) and dim(W0) + 1 = dim(Vb); (O(V0), Sp(W0)) is a dual 
pair in Sp(W0 = VQ <g) W0). Let 

M' ~ Sp(WQ) x GL(l)a x GL(2)b. (2.3b) 

Let (T0 be the Ö(V0) component of a, and let a\ = ^ ( W ) " ^ ( W 0 ) . Then trj 
may be identified with a genuine representation of the inverse image of 0(Vo) in 
Sp(W) and hence is a candidate for a theta-lift to Sp(Wo). 

Write cr = co <8> cri 0 • • • 0 <ra+5 corresponding to the decomposition (2.2b). 
We normalize the theta-lift for the pair (M,Mf) so that 

0(M',iß)(<j) = 6(WQ,iß)(*l) 0 a ï 0 ••• 0 < + f e . (2.4) 

PROPOSITION 2.5. e(W,iß)(ir) ^ 0 if and only ifO(M\iß)(a) ^ 0. 

Note: If the condition of the proposition holds then (M ,0(M'^)(o-)x) is Lang-
lands data for 0(W,iß)(7r), where M is a certain cover of Mf and \ is a certain 
genuine character on a covering of the GL factors. In some sense the theta corre
spondence is "functorial". 



726 Jeffrey Adams 

3 Epsilon factors: Generalities 

We establish notation, and some generalities about e-factors over R. This section 
is independent of the oscillator representation. 

For iß a nontrivial unitary additive character of R and 0 a representation of 
the Weil group WR of R, we define e(<ß) = €L((ß,iß) as in [12, Section 3], cf. [5, 
Section 9]. This is multiplicative on direct sums. We fix iß(x) = e27rix and compute 
e(0) explicitly for 0 irreducible. 

For 6 = 0,1 and s G C let a(<5, s)(x) = \x\s sgn(:r)6, a character of R*, and 
also of WR by the abelianization map WR —> R*. For n G Z and s G C let ß(n,s) 
be the two-dimensional representation /3(n, s) = lud™®(\z\s(z/z)%) of WR. This is 
irreducible if and only if n ^ 0, and ß(n:s) ~ ß(—ri, s). We assume n G N, and 
then every irreducible representation of WR is equivalent to precisely one a(6, s) 
or /3(n, s). From [12, Section 3] we conclude 

e(a(6,s))=is, e(ß(n,s))=in+1. (3.1) 

Now let 7T be an irreducible representation of SÖ(V), with dim(F) = 2n + 1. 
The L-group of SO(V) is isomorphic to Sp(2n,C) x Z/2Z. The L-parameter <ß 
of 7T may be considered as a map <j> : WR —> Sp(2n,C), which we treat as a 
representation of WR via the standard embedding Sp(2n, C) t-^ GL(2n,C). Let 
e(7r) = e(0), and for 7r a representation of O(V) let e(7r) = e(7r|so(v)). 

We identify an infinitesimal character for SO(V) with an element of t* where 
T is a compact Cartan subgroup. The infinitesimal character of a discrete series 
representation is of the form ( a i , . . . , an) with â  G Z + \. 

LEMMA 3.2. Let it be an irreducible representation of SO(V). Then 

(1) e(7r) = ±1 and is independent of iß. 
(2) Suppose 7T is a discrete series representation of SO(V) with infinitesimal 

character (o i , . . . , a n ) . Then e(7r) = n i ( - 1 ) | a i | + ^ -

Proof. The first statement is [5, Proposition 9.5]; it follows from [12, Section 3.6] 
and the fact that <ß is self-dual and of determinant 1. For (2) the L-parameter of 
7T decomposes as /3(2ai,0) © • • • 0 /3(2an,0), and (2) follows from (3.1). D 

For G a connected reductive algebraic group over a local field F let K(G) = ±1 
be the "Kottwitz invariant" of G [8]. Over R, 

K(G) = (_l)è(dim(G/K)-dim(Gqs/iCqs)) ( 3 3 ^ 

where Gqs is the quasisplit inner form of G. In particular for G ~ SO(p, q) with 
p + q odd 

K(G) = (-l)i«p-q)2-1). (3.3b) 

Note that n(SO(p,q)) for fixed p + q depends on p,q mod (4). Let K(0(V)) = 
K(SO(V)). 

The irreducible representations of 0(p,q) (p + q odd) are obtained by induc
tion from SO(pj q). Such an induced module is the direct sum of two nonisomorphic 
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irreducible summands 7r © (n 0 sgn). It follows that if 7r is an irreducible discrete 
series representation of 0(p, q) it is determined by a Harish-Chandra parameter 
for SO(p, q) and one of two possible lowest K-types p, (the other choice being 
p 0 sgn). A calculation shows the two choices of p are obtained by taking 6 = ±1 
in 

f (zi, . . . ,a:[ |] , l)<8)(j/i , . . . ,2tt ,0,. . . ,0;Ä) pevemçodd 
/i = < (3.4) 

t (xi,..., xk, 0 , . . . , 0; 6) ® (2/1,. . . , V[%]; 1) p odd, g even. 

Here xpj > 0 (resp. t/pj > 0) if p (resp. g) is even. For p of this form write 
6(fi) = I 

LEMMA 3.5. Let n be a discrete series representation ofG = 0(p, q) (p-\- q odd) 
with lowest K-type p. Then 6(p) and the central character of it are related by: 

6(p) = c(7r)7r(-J)K(G) . (3.6) 

Proof. Assume p = 2po + 1, q = 2qo. Write the Harish-Chandra parameter of n as 

A = (ai , . . . ,Op0)(6i , . . . ,6g o) (3.7) 

and p as in (3.4). The central character of p is p(—I) = (—l)^Xi+^yj6. Now p 
(restricted to SOe(p,q)) and À are related by p = A + pn — pc where pn (resp. 
pc) denotes one-half the sum of the noncompact (resp. compact) roots defined by 
A. For an element 7 G \/—ÏÏQ let E(7) be the sum of the coordinates. An easy 
computation gives S(pn) = Potfo + ^Qo and E(pc) = \p% + ^qo(qo - 1), and it 
follows that £(p n — Pc) = Qo — ̂ (Po — Qo)2• Therefore (recall a*,bj G Z + | ) 

TT(-J) = p(-I) 

= (-lf^6(p) 
= ( - i jE^+E^+ço-Kpo-qo) 2^) (38^ 

= (_i)E(oi+è)+E(bj+è)-è(po-9o)-è(po-go)2g(/i)e 

From this Lemma 3.2(2) gives 7r(-J)e(7r) = (-l)-è(po-g0)-è(Po-<?o)2s(ß). Finally 
plugging p = 2p0 + l,q = 2q0 into (3.3b) gives «(G) = (-l)-è(po-go)-èbo-go)2

7 

and Lemma 3.5 follows. D 

Let (, )R be the Hilbert symbol of R. The following identity, which follows 
by direct calculation, gives a reformulation of Lemma 3.5. Let H be the Hasse 
invariant and D the discriminant, of an orthogonal space V of dimension 2n + 1. 
Then 

K(0(V)) = H(D, - 1 ) S ( - 1 , - l ) n ^ + 1 ) / 2 (3.9a) 

= Jï£>n(-l)n<n + 1>/2 (3.9b) 

Note: This may be proved by induction on n, which also gives (a) over Qp. 
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4 Epsilon factors and the theta correspondence 

We return to the setting of Section 1, and the dual pair (0(V), Sp(W)). 

PROPOSITION 4.1. Let n be a genuine irreducible representation ofO(V). Then 
0(W,</O(?r) ^ 0 if and only if 

e(ïr)T(-Id)K(0(V)) = 1. (4.2) 

Recall 7f was defined in Definition 1.2. 

Proof. Let p, q be the signature of V, and assume p = 2p0 + 1,9 = 2q0 (the other 
case is similar). We first assume 7r is a discrete series representation. The (Vogan) 
lowest if-type p = / i£_ 1 of W is of the form (3.4). By Lemma 2.1(1) p occurs in 
the space of joint harmonics if and only if k + * g (p — 2k) + qo < ra, and using 
Po + <7o = n and k < p0 this is easily seen to hold if and only if 6(p) = 1. By Lemma 
2.1(3), Theorem 1.1, and [6, Lemma 4.1] 0(W,^)(TT) ^ 0 if and only if 6(p) = 1, 
and the result follows upon inserting 6(p) = e(^)W(—Id)n(0(V)) from (3.6). 

Now let 7T be arbitrary, with Langlands data (M, a) as in Section 2. The proof 
in this case follows from the inductive properties of the three terms on the left-
hand side of (4.2). Because the nonvanishing of the theta-lift of n is determined on 
the 0(VQ) factor of M (Proposition 2.5) we need a Lemma saying the GL factors 
play no role in this condition. 

The map 0 : WR —> Sp(2n. C) corresponding to W (restricted to SO(V)) 
factors through an embedding of the L-group of M in Sp(2ra, C). This embedding 
takes each GL(k) factor to GL(k) x GL(k) (k = 1,2) via the map g —• (g^g'1). 
The image is contained in a subgroup of 5p(2n, C) isomorphic to 

5p(2c, C) x GL(1, C)2a x GL(2, C)20 (4.3) 

where dim(Vb) = 2c + 1. We group the GL terms together to write (ß = fa x §GL 
and a = &o ®&GL-

LEMMA 4.4. e(cßGL)aGL(-Id)K(GL) = 1. 

Proof. Because GL is quasisplit K(GL) = 1. Because both e and a(—Id) are multi
plicative on direct products, the problem reduces to GL(1) and GL(2). For GL(1) 
suppose a is the character a(ô, s) (cf. Section 3). Then (ß ~ a(£, s) 0 a(£, — s) and 
then e((ß) = i26 = (-1)6. Because a(6,s)(-l) = (-1)6 this proves the lemma for 
this case, and the argument is similar for the GL(2) factors. D 

Returning to 7r, by Proposition 2.5 (using the notation of the proposition) 

0(W,</O(TT) ^ 0 o Q(M',iß)(<j) ^ 0 (4.5a) 

^0(Wo,VO(4)^O (4.5b) 

«» e(*l)äl(-Id)K(O(V0)) = 1 (4.5c) 

« e((ßo)äQ(-Id)K(0(VQ)) = 1. (4.5d) 
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We proceed to justify these steps. Steps (a) and (b) are Proposition 2.5, and 
(c) follows from Proposition 4.1 applied to the discrete series representation CTQ 
if Ö(Vo). The definition of the operations t and —, together with the definition 
e(ä0) = e(0o), gives (d). 

Now multiply both sides by €($GL)O~GL(—Id)n(GL) = 1 to give 

** e((ß0)e((ßGLpo(-^)(TGL(-Id)K(0(Vo))K(GL) = 1 

& e((ß)ä(-Id)K(M) = 1 (4.6) 

*> e((ß)7f(-Id)K(G) = 1 

where the last line follows from the fact that (M,a) is inducing data for W and 
n(M) = «(G), which is a basic property of the Kottwitz invariant [8]. This com
pletes the proof. D 

Now suppose 7T G *Sp(W)genuine and IT' = 0(V.iß)(ir) ^ 0. The centers of 

0(V), Sp(W), and 5p(W) coincide. Therefore there is a relation between the cen
tral characters of 7r and IT' which together with Proposition 4.1 gives a relation 
between e(7f') and the central character of 7r. 

DEFINITION 4.7. (Waldspurger [14]). For -K G Sp(W)^enuine let l(^,iß) = ±1 be 
defined by the relation 

^(W,iß)-1(X)7T(X) = e(7T,lß) • Id 

for all x e p'1 (-Id). 

As 7T and £ are genuine and the center has order 4 it follows that e(7v,iß) = ±1 
and is independent of the choice of x. 

For V a space of dimension m with a symmetric bilinear form, let \v be the 
quadratic character of R* given by 

Xv(x) = (x, ( - l ) ^ 1 ^ detOOk- (4-8) 

THEOREM 4.9. Suppose n G Sp(W)genuine has nonzero theta-lift to Ö(V), and let 
TT' = 0(V,iß)(7r). Then 

ê(7T, iß) = xv(-l)ne(7ï')K.(0(V)). (4.10) 

Proof. Choose x G p~l(-Id) G Sp(W). Then 

7r'(x)=7r'C(W,iß)-1(x)C(W,iß)(x) 

= Tf(-Id)C(W:*ß)(x), (4.11a) 

which by Proposition 4.1 gives 

TT'(X) = e(w')K(0(V))£(W,iß)(x) • Id. (4.11b) 
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On the other hand 
TT(X) = ë{ir,i/))è(W,ip){x) • Id (4.11c) 

and setting (b) equal to (c) we need to show 

^(W.tfXaOflW.V)-1^) - xv(-l)n. (4.12a) 

It is not hard to see tha t for g G K ~ U(n) and tw(9) G K ~ U(n(2n + 1)), 

d e t ( ^ ( 0 ) ) = de t (0 ) p " 9 . (4.12b) 

Because £2 = det it follows tha t 

£ ( W , ^ ) ( z ) = £ ( W , ^ ) ( x ) p " 9 (4.12c) 

and writing p — q =p + q — 2q = 2n — 2q+l gives 

= det(p(x)r-«£(W,^)(:r) 

= (-1)"("-<*)£(W, ^)(x). (4.12d) 

Finally (a) follows upon inserting (d) into (a) and the elementary observation 

Xv(-l) = (-l)n~q- D 

This is a version of "epsilon dichotomy" as conjectured by Kudla (cf. [14] 
for the case n = 1 and [9] for the unitary group case). In the p-adic case there 
are two quadratic spaces with given discriminant, which are distinguished by their 
Hasse (equivalently Kottwitz) invariant; epsilon dichotomy refers to the fact tha t 
which lift is nonzero is determined by an epsilon factor. In the real case the epsilon 
factor only determines for which of two families of groups the lift is nonzero; these 
families are determined by p and q mod (4). 

Theorem 4.9 gives an interpretation of the epsilon factor of a map (ß : W R —• 
Sp(2n, C) in terms of the central characters of the lifts to Sp(2n. R) of the rep
resentations in the (Vogan) L-packet of the groups SO(p,q) defined by (ß. For 
another interpretation of symplectic root numbers see [11]. 

As K(0(P, q)) (with fixed discriminant) varies with p and ç, Theorem 4.9 
shows tha t the central character may fail to be constant on an L-packet for 
Sp(2n, R) as defined at the end of Section 1. 
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The Irreducible Characters 
for Semi-Simple Algebraic Groups and for Quantum Groups 
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1 The problem 

Let G be a reductive algebraic group over an algebraically closed field k of prime 
characteristic p. The first question that presents itself when we look at finite-
dimensional representations of G is the problem of how to determine the irreducible 
characters. This is the problem we want to discuss in this lecture. 

It is well known how a solution of this problem also solves the problem of 
determining the irreducible modular characters for the finite Chevalley groups 
G(¥q) (as well as their twisted versions), see e.g [St]. We shall not comment further 
on this relation here but shall instead explore connections to analogous problems 
for semi-simple complex Lie algebras, Kac-Moody algebras, and quantum groups. 

An easy reduction allows us first to assume that G is semi-simple and then 
that G is almost simple. To simplify things we shall make this last assumption 
from now on. 

Choose a maximal torus T of G. Our assumption means that the root system 
R for G w.r.t. T is indecomposable. Fix a set of positive roots R+ C R. All further 
notation will be introduced as we go along. 

2 The classification of irreducible representations 

Let X ~ Z n denote the character group of T and let X+ ~ Nn be the subset 
consisting of the dominant characters (or weights) relative to Ä+. Then we have 
a classification (going back at least to [Ch]) of the finite-dimensional irreducible 
representations of G via their highest weights. For A G X+ we let L(X) be the 
corresponding irreducible representation. 

One way to realize the irreducible representations of G is to obtain them 
as submodules of the G-modules consisting of the global sections of line bundles 
on the flag manifold for G. Pick a Borei subgroup B in G containing T. Then 
each X e X induces a line bundle Cx on G/B. We set H°(X) = T(G/B,£X), i.e. 
H°(X) = {f:G — k | / is regular and f(gb) = X(b)~1f(g),g e G,b e B}. This 
may also be viewed as the G-module induced by the 1-dimensional ß-module À. If 
we choose B to correspond to the negative roots —-R+ then, H°(X) ^ 0 iff A G X + . 
One then checks that for such A the G-module H° (A) contains a unique irreducible 
submodule and this is our L(A). 
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of Mathematicians, Zürich, Switzerland 1994 
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3 The conjecture 

In 1979 G. Lusztig proposed a conjecture [LI] that in terms of an algorithm gives 
the answer to our problem for p > 2h — 3, h denoting the Coxeter number. This 
goes as follows: 

If V is an arbitrary finite-dimensional T-module, then V = ®xex V* where 
Vx = {veV\tv = X(t)v, t G T}. We set 

[V] = ^ ( d i m F A ) e A G Z[X] 
x 

and call this the (formal) character of V. (Alternatively, we may view [V] as the 
image of V in the Grothendieck group.) 

Elementary character considerations show that for A G X+ we may write 

[LW] = E c*-ÀH°(rì] 
fiex+ 

for some (unique) integers c\iß. Moreover, cx.x = 1 and c\tß = 0 unless \i < X (in 
the ordering < on X induced by R+). Now because of Kempf's vanishing theorem 
(see [Ke] or [A2], [Ha]) the character of H°(fi) equals the Euler character of Cß for 
all fi G X+ and is therefore given by Weyl's character formula. Hence determining 
[L(A)] is equivalent to calculating the integers (c\,ß)fJLex+-

As our next step let us point out that we only need to consider a finite number 
of A's. We set Xp = {X G X+ \ (A,av) < p for all simple roots a} (here a v is the 
coroot of a). This is called the set of restricted weights. 

For any A G X + we may write A = A0 -f pA1 for some (unique) A0 G Xp and 
A1 E X+. Then Steinberg's tensor product theorem [St] says 

L ( A ) ~ L ( A ° ) 0 L ( A 1 ) ^ . (3.1) 

Here L(X1)^ is the Frobenius twist of L(XX). 
It follows that it suffices to determine [L(A)] for A in the finite set Xp. Equiv

alenti^ it suffices to calculate c\ffl for all X e Xp and /x < A. 
Recall that the affine Weyl group Wp is the group generated by the reflections 

Sa,n'-X —> X, a G R+, n G Z, defined by san.X = sa.X-\-npa = A— (A + p , a v ) a + 
npa, XeX with p = \ EaeR+ a-

By the linkage principle [Al] we have 

CA,/I = 0 unless ß G WP.X (3.2) 

so this reduces further the relevant cx.^s to be calculated. 
Consider the alcove Ap given by 

Ap = {X G X | 0 > (A + p, Q V ) > - p , a G Ä+}. 

Then the closure of Ap, 

Ä P = { A G X | 0 > <A + p , a v ) >-p,aeR+}, 



734 Henning Haahr Andersen 

is a fundamental domain for the action of Wp on X, i.e. each A G X may be written 
A = w.v for some w G Wp and some unique v G Äp. 

Fix now A G X+. Let ^ G Äp be the unique element in the Wp-orbit of A and 
choose w = w\ G Wp minimal (in the Chevalley order) such that A = w.v (in the 
terminology of [J] A is then in the upper closure of w.Ap). We set cUKy = c\iVM for 
all y G Wp with y.v G X+. Then wc have (cf. [LI]) 

3.1 CONJECTURE (LUSZTIG 1979). If(X + p,ay) <p(p-h + 2) for alla G R+, 
thencWìy = (-l)l^y)pyìW(l). 

The PyìW appearing in this conjecture is the so-called Kazhdan-Lusztig poly
nomial associated to the pair (y,w), see [KL1], and I is the length function on 
Wp. 

3.2 REMARKS, (a) The assumption in Lusztig's conjecture is only satisfied for all 
A G Xp when p > 2h — 2. There is a variant of the conjecture (see e.g. [Kat]) that 
gets this bound down to p > h. To my knowledge there is no conjecture that covers 
all A when p < h. 
(b) One consequence of the conjecture is that the cWiV are independent of p for 
all relevant w,y. One of the main results in [AJS] says (independently of whether 
Lusztig's conjecture is valid) that this much is true for all large primes. 

(c) For the validity of the conjecture for large p see Section 5 below. 

4 Related conjectures 

4a. The original Kazhdan-Lusztig conjecture 
Let g denote the finite-dimensional semi-simple Lie algebra corresponding to G. 
Then X (identified with the set of integral weights for a Cartan subalgebra in a) 
parametrizes the simple a-modules in the highest weight category Ö. For A G X we 
may realize the corresponding simple g-module L(A) as being the unique simple 
quotient of the Verma module M (A) (defined via some Borei subalgebra in g). 
With notation analogous to the one used above we write 

[LW] = E c^[M(/*)] 
xex 

for'certain (unique) c\iß G Z, CA,A = 1, and c\:ß = 0 unless [i < X. Because the 
character of M (A) is known, the problem of determining [L(A)] is again equivalent 
to the calculation of the CA,M'S. 

As before we have a linkage principle that ensures that c\itl = 0 unless fi G 
W.X where W is the (finite) Weyl group generated by {s a = sQ,o | OL G R+}. This 
time we set 

A = {XeX\ (A + p , a v ) < O f o r a l l a G i * + } 

and we have (see [KL1]) 

4a.l CONJECTURE (KAZHDAN-LUSZTIG 1979). For allX G A,y,w G W, we have 

\L(w.\)} = Y,(-i)l{vw)P«,MM(y-Vi-
new 
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This conjecture was proved in 1981, see [BB] and [BK]. There are, roughly 
speaking, two ingredients in the proof: a topological part and an algebraic part. 
The topological part was dealt with by Kazhdan and Lusztig [KL2], It consists 
of relating the local intersection cohomology on Schubert varieties in G/B to the 
Kazhdan-Lusztig polynomials. The algebraic part on the other hand consists of 
setting up a correspondence between representations of g and P-modules on G/B, 
see [BB] and [BK]. Then the Riemann-Hilbert correspondence makes a bridge to 
perverse sheaves supported on Schubert varieties. 

4a.2 REMARK. There are various generalizations of the Kazhdan-Lusztig conjec
ture. First we should point out that translation arguments allow us to drop the 
assumption that A is regular. Also, it is possible to extend to the case where A is 
no longer integral, see e.g. [S]. 

Now replace g by a Kac-Moody algebra. In the symmetrizable case the con
jecture and its proof may be carried over to describe those irreducible characters 
whose highest weights are linked to a dominant weight, see [Kai], [KT1] or al
ternatively [CI]. For the negative level case for an affine algebra see Section 4b 
below. 

Let Uq(#) denote the quantized enveloping algebra over Q(q) associated with 
g (where g now again denotes a finite-dimensional semi-simple Lie algebra). There 
is a completely analogous conjecture in this case, see [L3]. A proof in this case is 
obtained by using the Drinfeld equivalence of categories, see [D] or [KL3, III]. In 
the case where q is specialized to a root of unity, see Section 4c below. 

For analogous conjectures in the case of real semi-simple Lie groups, see [V]. 

4b. The affine Lie algebra negative level case 
Let now g be an affine Lie algebra with Cartan subalgebra \). For any A G f)* we 
have a Verma module M(X) (defined via induction from a Borei subalgebra b D ï)) 
with a unique simple quotient L(A). Also, in this case the family {L(A) | A G [)*} 
constitutes up to isomorphism the set of simple modules in the category Ö for g, 
see [K]. 

Denote by {ao, a i , . . . , a n } the set of simple roots and by W the Weyl group 
generated by the corresponding reflections. Note that W is an affine Weyl group. 
Choose p G rj* such that (p, ay) = 1 for all i and set 

A = {Xe ï)* | (A + p,az
v) G Z < 0 , i = 0 , l , . , . , n } . 

Recall from [DGK] that for each A G A, w G W, the Verma module M(w.X) has 
finite length and its composition factors have the form L(y.X) for certain y G W 
with y <w. 

4b.1 CONJECTURE (LUSZTIG 1990). Let X G A. Then for any w eW we have 

[L(w.X)\ = ^ ( - l ) / ^ ) p y ^ ( l ) [ M ( 2 / . A ) ] . 
yew 
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4b.2 REMARKS, (i) Conjecture 4b.1 can be found in [L3], see also [L5]. A proof was 
announced in 1990 by Casian [C2], but its validity is still controversial. Earlier this 
year Kashiwara and Tanisaki [KT2] announced a proof along the same lines as the 
proof of the original Kazhdan-Lusztig conjecture — or rather their generalization, 
cf. Remark 4a.2, to the symmetrizable Kac-Moody algebra positive level case. To 
handle the negative level case they have to deal with a category of right P-modules 
on the infinite-dimensional flag variety with support on finite-dimensional Schubert 
varieties. 

(ii) Let c G g denote the canonical central element. Recall that the level of A G ï)* 
is the complex number (A, c) and that c acts on M(X) as multiplication by that 
number. In particular, the level of p is equal to the dual Coxeter number h of g. 

Suppose again A G A. Then the level of A is a negative integer (< — 2ft) and 
this level coincides with the level of w.X for all w G W (as (QJ,C) = 0 for all i). 
Hence Conjecture 4b. 1 breaks up into a family of conjectures, one for each such 
negative integer. In order to be able to compare with the quantum case (see below) 
we now give a reformulation of the conjecture at a fixed negative level: 

Let us assume that {a\,..., an} are the simple roots for our finite root system 
R. Then we may identify X with {A G f)* | A G Rai © • • • © Ra„ and (A,QV) G 

Z, i = 1 , . . . , n). Fix l G N, / > ft, and set (cf. Section 3) 

Ai = {X G X I 0 > (A + p, a v ) > -I for all a G R+}. 

Also as in Section 3 let Wi denote the affine Weyl group generated by the reflections 
Sa,n, <* G iï+, n G Z, given by sQ,n.A = sa.X + nia, X e X (then W and W\ may 
be identified). 

Let us for any X e X denote by Mi (A) the Verma module with highest weight 
A on which c acts as multiplication by —I — ft. Its unique simple quotient is then 
denoted by L/(A). 

The level —I —h conjecture then reads 

CONJECTURE (LUSZTIG 1990). Let X G AI. Then for any w eWi we have 

Mw.X)} = £ (-l)lMpy,w{l)[Ml(y.\)]. 
yewi 

In the non-simply laced case one should be careful to note that the affine Weyl 
group coming into play here is the one corresponding to the dual root system, cf. 
[L5]. 

(iii) It is shown in [Ku] that the validity of Conjecture 4b. 1 for A = —2p implies 
the conjecture for all A G Ä (the "closure" of A). The above level —I —h conjecture 
(suitably formulated for A G Â/, as in Section 2) therefore holds for all l G N. 
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4c. The quantum case at roots of unity 
Let (aij)ij=iimmmin be the Cartan matrix for our root system R. Choose di G {1,2,3} 
minimal such that (diüij) is symmetric. Denote by v an indeterminate. If m G N 

we set [m] = ^ J j C T and [m]\ = [m][m - 1] • • • [1]. If also t G N we define [7] = 

Y\tj=1
 v™ 3

vjZ
Vy-7 —• For each i we put vi = vdi and obtain [m]i, [m]J, and [™]f 

from the above formulas by replacing î; by ^ . 
The quantum group (or quantized enveloping algebra) associated with (a^) 

is the Q(i>)-algebra U with generators E{, Fi, Kfl, i = 1 , . . . ,ra, and relations 

K{Kj = KjKi, KiKi = 1 = Ki Ki, 

T?.J? _ 7? TP. — A l ~ * 
LJiJT j JTjJZ/i — Uij * 

Vi - « , l 

E (-DS 

r+s=l—<Lij 

E (-DS 

r + s = l — Q i j 

1 — a * j 

1 — a* 

ETEjE'^O 

FTFjFt = 0 

In addition to the algebra structure on U there is also a comultiplication A, 
a counit e, and an antipode S that make U into a Hopf algebra. We refer to [L4] 
for these definitions. 

Set A = Z[v,v_1] and let UA be Lusztig's *4-form in U, i.e. the ,4-subalgebra 
r«(m) jp(m) Here L^m) = jSJj and a generated by Kf1, El"lJ, JFJW;, i = l , . . . , n , m G 

similar form holds for F^ . Then one checks that U^ is in fact a Hopf subalgebra 
of U. For any ^-algebra we set Uk = U^ &A k and call this the quantum group 
over k. 

Choose now a nonzero q G C and make C into an .4-algebra by specializing 
v to q. We'll denote the corresponding quantum group over C by Uq. 

The finite-dimensional simple £/q-modules are parametrized by X+ x { ± l } n . 
For (A, e) G X+ x {±1} we let Lq(X, e) denote the corresponding simple Uq-modu\e. 
When e = ( 1 , . . . , 1) we write Lq(X) instead of Lq(X,e). Because the other simple 
t/ç-modules can be obtained (via conjugation by algebra automorphisms of Uq) 
from the Lq(A)'s, we'll limit our discussion to those. 

Just as in the modular case (Section 2) we can realize Lq(X) as the socle of 
an induced module: Let U^ (resp. U^) be the subalgebra of U^ generated by Ki 
and 

Ki\e 
m 

_fiAj*-"--«y-t c£ 
i = i 

vi - vT3 m G l , . . . , n , 

(resp. by F^\ i = 1 , . . . , n, m G N). Set £/J° = U^U% By 17°, £/~, and U^° we 
understand the corresponding subalgebras of Uq. 
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Any A G X defines a character of U^ and Uj via the formulas 

A(*) = «<*"*>, H[^ C 1) = [<A'1? + C] , A(^ )=0 
L J L Ai 

for all i, m, c. Specializing v to g we get a character of Uq and U^° that we also 
denote by A. If now M is a U®-module we set 

MA = {x G M I tx = X(t)x, t G C/J}, 

and if M is a t/g-module we set 

F(M) = | x G 0 Mx | L ^ z = 0 = F^s)x for all s » 0, z = 1, . . . , n } . 
xex 

Then F(M) is a C/g-submodule of M. 
The C/g-module induced by A G X is (cf. [APW]) 

#g°(A) = F ( { / G Homc(«7Q,C) | f(bu) = X(b)f(u), b G Uf\ u G *7J) . 

Here Hom(C/g,C) is a [/^-module via w/:x i—> f(xu), u,x G Î7q, / G Hom<c(£/g,C). 
In analogy with the situation in Section 2 we have 

fl£(A)^0iff A G X + . (4c.l) 

We let iJ* denote the 2th right derived functor of induction from U^° to C/g. 
Then we have the following g-analogue of Kempf's vanishing theorem. 

4c. 1 THEOREM. IfX + pe X+, then H\(X) = 0 for all i > 0. 

This result was proved with some restriction on q in [APW] and [AW] by a reduc
tion to the classical case v = 1. (See also [PW] for type A.) Recently, Ryom-Hansen 
[R-H] has established the result in full generality by using some of the nice prop
erties of Kashiwara's crystal base [Ka2]. 

This result implies (just as in the modular case) that [if°(A)] is given by 
Weyl's character formula. Hence the problem of determining [Lq(A)] is equivalent 
to finding the integers c\iß for which 

[£,(*)] = E CA,Ä°(M)]. 
nex+ 

If q is not a root of unity, then Lg(A) = #°(A) for all A G X+ and the 
category of finite-dimensional !7q-modules is semi-simple. This follows, for instance, 
immediately from the q-version of the Borei-Weil-Bott theorem, see [APW]. 

Assume now for the rest of this subsection that g is a root of unity and let 
V denote its order. Set I = V if /' is odd and Z = ^ if /' is even. We shall assume 
I > 2max{di}. Then we have a situation very similar to the modular case treated 
in Section 2. There is a linkage principle [APW], [AW] that says that CA,M = 0 
unless /i G Wi.X (Here Wi again denotes the affine Weyl group acting on X as 
before.) The analogue of Conjecture 3.1 is (see 4b above for the definition of Ai) 
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4c.2 CONJECTURE (LUSZTIG 1989). Let X G X+ and choose w G Wi minimal 
such that u'_1.A G Äi. Then 

[L„W] = E ( - I ^ J W I M ä ? ^ - 1 ^ ) ] . 
yeWi 

yw-^xex^ 

4c.3 REMARKS, (i) The difference between this conjecture (which was stated in 
[L2], [L3], [L5]) and Conjecture 3.1 is that there are no upper bounds on A. This 
means that it always (i.e. for all /) gives all finite-dimensional irreducible characters 
oft/ , . 

(ii) There is a g-analogue of Steinberg's tensor product theorem, see [L2], [AW], 
which in the notation from Section 2 says 

If A = A0 + IX1 with A0 G Xh A1 G X+, then Lq(X) ~ LQ(A0) <g> L(A')M . (4c.2) 

Here L(AX) is the irreducible representation with highest weight A1 of the semi-
simple complex Lie algebra corresponding to (a^) or to t(o>ij) and L(X1)^ is the 
C/q-module obtained from it via the quantum Frobenius homomorphism, see [L4]. 

The result reduces the problem of determining [Lg(A)] to the (finite) case 
A G Xi. It follows from [Kat] that Conjecture 4c.2 is compatible with equation 
(4c.2). 

(iii) Suppose our Cartan matrix (a^ ) is symmetric. Then with a very slight bound 
on I (no bound for type A and at worst I > 32 for type E$) it is shown by 
Kazhdan and Lusztig [KL3] that the category of finite-dimensional [/^-modules is 
equivalent to a subcategory of the category ö\ for the affine Kac-Moody algebra 
corresponding to the extended Cartan matrix associated to (a^ ). Here the index / 
in ö\ means that the modules in the category all have fixed negative level —l — h 
(see 4b). It follows (see Remarks 4b.2 (i) and (iii)) that conjecture 4c.2 holds in 
this case. 

In the case where (a^) is not symmetric, Lusztig has shown [L5] that a 
modification of this procedure for proving Conjecture 4c.2 still works provided 
Conjecture 4b. 1 can be extended to certain nonintegral negative level cases. 

(iv) Suppose now7 that k is an arbitrary field that is made into an ,4-algebra by 
specializing v to q e k\{0}. We'll use the same notation as above. 

If char(fc) = 0 everything remains unchanged. Also if char(fc) = p > 0 and q 
is not a root of unity, we still have Lg(A) = H®(X) (see [T]). 

Suppose on the other hand that q G k is an Jth or a 2/th root of unity. Then 
(l,p) = 1. We then have an analogue of the Steinberg tensor product theorem 
completely identical to equation (4c.2) above except that the last factor L(Xl) on 
the right-hand side is now the modular irreducible module with highest weight A1. 

In this case the analogous conjecture should read 

CONJECTURE. Suppose p > ft. Let X G X+ and suppose (A + p,av) < Ip for all 
a G R+. For w G W\ as before we have 

yeWi 
yw~1.xex+ 
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Because of the analogue of the Steinberg tensor product theorem just men
tioned, this conjecture still gives all irreducible characters for Uq in this case. As 
evidence for it we note that for fixed I it is easy to deduce it from its characteristic 
zero counterpart for all p ^> 0. Moreover, direct calculations based on the sum 
formula and the translation principle [T] show that it holds for all p when the 
Cartan matrix has rank 2 or is type A$. 

5 From the quantum to the modular conjecture 

One of the main theorems in [AJS] says that the quantum conjecture (Conjecture 
4c.2) implies the modular conjecture (Conjecture 3.1) for large primes. Here we 
give a brief sketch of how this result is obtained. 

Let g be the p-Lie algebra of G. Its p-operation is denoted X i—> X^\ X G g. 
We have a triangular decomposition of g, g = n~ © f) © n+, with Ï) being the Lie 
algebra of T. Then we set U = U(Q)/I where U(Q) is the enveloping algebra of 
g and I is the two-sided ideal in U(&) generated by {Xp - X^ \ X G n~ U n+}. 
We set U° = U(l)) and *7± = image in U of Ufa*) so that U = U~U°U+. The 
adjoint action of T on U(Q) induces an action of T on U and for v G X we let Uu 

denote the z/-weight space in U for this action. 
Suppose now that A is a Noetherian commutative ring with a ring homomor-

phism 7r: U° —• A. Then we define CA to be the category of all [/<8>A-modules M 
such that 

(i) M = @ MM (as right A-modules) 
»ex 

for some finitely generated ^-modules Mß with MM = 0 except for finitely many 

vex. 
(ii) UyMß C Mv+p, p,,veX 

(iii) sm = ra7r(/i(s)), s G(7°, m E M^. 

Here fi: U° —> U° is the algebra homomorphism that takes H into H + p*(H), 
H el). 

If A = k and n: U° —> k is the augmentation map (i.e. 7r(H) = 0 for all 
H el)) then it is easy to see that Ck coincides with the category consisting of all 
finite dimensional GiT-modules where G\ denotes the (first) Frobenius kernel in 
G. 

It is well known that the irreducible G\T-modules are parametrized by X. We 
denote the irreducible GiT-module with highest weight A by Li(A). Then by [Cu] 
we have Li(A) = L(A) for all A G Xp and hence to determine {[L(A)] | A G X+} is 
equivalent to determine {[Li(A)] | A G Xp}. 

As in the characteristic zero category O case, the Li(A)'s may be realized as 
the unique quotients of (baby) Verma modules, which in this context are denoted 
by Zi(A), A G X. We say that a module M G Ck has a Z-filtration if it may be 
filtered by submodules whose quotients are isomorphic to Zi(A)'s for appropriate 
X e X. Among the modules in Ck that have a Z-filtration we find the projective 
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covers Q\(X) of the simple modules Li(A), A G X. Moreover, we have the Brauer-
Humphreys reciprocity [H] 

For all A,p G X we have [QX(X) : ZI(JA)] = [Zi(/i) : Li(A)]. (5.1) 

Here the first number denotes the number of times Z\ (p) occurs in a Z-filtration of 
Qi(A), whereas the second number is the composition factor multiplicity of Li(A) 
inZi(A). 

We see that to find [Li(A)], A G Xp, is equivalent to finding [Qi(A)], A G Xp, 
i.e. to determine the numbers [Qi(X) : Z\(/i)], A G Xp, p G X. 

Let now A be the local ring at the maximal ideal generated by {H \ H G f}} 
in U° and let n: U° —> A be the natural embedding. The construction of Verma 
modules works just as well in CA (giving the modules ZA (A), X e X) and it turns 
out that the projective modules Qi(A) lift to projective objects QAW in CA, 
X G X. In the obvious notation we have 

[QA(X) : ZA(p)\ = [Qi(X) : Zx (//)], A,// G X. (5.2) 

Assume p > ft. It is then well known that Qi(X) may be obtained as a dis
tinguished summand of the module one gets by applying a sequence of translation 
functors to the Steinberg module Sti = Z\((p—l)p) = Li((p—l)p) = Q\((p—l)p). 
Hence we are lead to study the endomorphism rings of these translated Steinberg 
modules. We do this by constructing a fully faithful functor V'.CA —> K>A where 
KA is a "combinatorics" category consisting of modules over various localizations 
of A. Moreover, it is possible to define translation functors on /CA that correspond 
to the translation functors on CA- Some rather elaborate explicit computations 
verify that this may actually be done independently oik. In fact, we check that if 
S denotes the symmetric algebra (over Z) of a Z-form of I) then there is a category 
ÌCs with translation functors such that the objects in ICA and the corresponding 
Horn-spaces of interest to us are obtained via the base change S —> A. 

Suppose Q e Ck is a translated Steinberg module (as described above). Then 
there exists QA G CA with QA ® k ~ Q. Moreover, there exists QelCs such that 
VQA ^Q®SA and 

EndCfc (Q) * EndcA(QA) ®A k ~ End,cA (VQA) ®Ak~ E n d ^ ( f i ) ® 5 * (5.3) 

(for the last step we actually need gradings on /CA and /Cs that make it possible 
via dimension counts to establish the desired isomorphism). 

Set now kf = Q(£) where ( is a primitive Ith root of 1 with / > ft. Then U, 
Ck, CA and /CA have quantum analogues U', Ck>. CA', and K,A>- There is a module 
Q' e Ck', which corresponds to Q. Setting £ = End/cs(Q) <S>s Z (where Z is an 
5-algebra via the augmentation map S —• Z) we get from (5.3) 

£(g>zfc~EndCfc(Q). (5.4) 

Analogous arguments show 

£®zk' - E n d q (<?')• (5.4') 

It follows that the integers cWiV considered in Section 2 (cf. Remark 3.2b) are 
independent of k for all fields k with p = char(fc) » 0. The same is true for the 
quantum case at roots of unity of order I > ft. In particular, we obtain 

5.1 COROLLARY. Suppose I = p » 0 and let X e Xp. Then [L(X)] = [L9(A)]. 
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5.2 R E M A R K . This corollary is of course a consequence of Lusztig's conjectures. 
By the results mentioned in Section 4 it verifies the modular conjecture for p ^> 0 
(once the nonintegral negative level affine algebra case is proved, see Remark 4c.3 
(iii)). This condition on p means tha t there exists pò e N depending only on R 
such tha t the conjecture holds for all p > po. Unfortunately, our methods do not 
give a good estimate for po-
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ABSTRACT. We discuss how modular forms and automorphic forms can be written 
as infinite products, and how some of these infinite products appear in the theory of 
generalized Kac-Moody algebras. This paper is based on my talk at the ICM, and is 
an exposition of [B5]. 

1 Product formulas for modular forms 

We will start off by listing some apparently random and unrelated facts about 
modular forms, which will begin to make sense in a page or two. A modular 
form of level 1 and weight k is a holomorphic function / on the upper half plane 
{r e C|9f(r) > 0} suchthat f((ar + b)/(cT + d)) = (cT + d)kf(r) for Q e SL2(Z) 
that is "holomorphic at the cusps". Recall that the ring of modular forms of 
level 1 is generated by E±(r) = 1 + 240^n > 0o"3(^)çn of weight 4 and E$(T) = 
1 — 5 0 4 j ] n > 0 a5(n)qn of weight 6, where q = e2™T and 0fc(n) = Y2d\n dk• There is 
a well-known product formula for A(r) = (E4(r)3 - EQ(T)2)/H2% 

AM^nt1-^)2 
x _ r » M 4 

n>0 

due to Jacobi. This suggests that we could try to write other modular forms, for 
example E± or EG, as infinite products. At first sight this does not seem to be very 
promising. We can formally expand any power series as an infinite product of the 
form qh ] ln>o( 1 ~ qn)a{n\ and if we do this for EA we find that 

E4(T) = 1 + 240<? + 2160g2 + 6720c3 + • • • 

= (1 - <?)-240(l - <72)2676°(1 - ^-4096240 . . . ( L 1 ) 

but this infinite product does not even converge everywhere because the coefficients 
are exponentially increasing. In fact, such an infinite product can only converge 
everywhere if the function it represents has no zeros in the upper half plane, and 
the only level 1 modular forms with this property are the powers of A. On the 
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other hand there is a vague principle that a function should have a nice prod
uct expansion if and only if its zeros and poles are arranged nicely. Well-known 
examples of this are Euler's product formulas for the gamma function and zeta 
function, and Jacobi's product formulas for theta functions. (Of course the region 
of convergence of the infinite product will usually not be the whole region where 
the function is defined, because it cannot contain any zeros or poles.) The zeros of 
any modular form are arranged in a reasonably regular way which suggests that 
some modular forms with zeros might still have nice infinite product expansions. 

For a reason that will appear soon we will now look at modular forms of level 
4 and weight 1/2 that are holomorphic on the upper half plane but are allowed to 
have poles at cusps. Kohnen's work [Ko] on the Shimura correspondence suggests 
that we should look at the subspace A of such forms / = Ylnez c(n)Qn whose 
Fourier coefficients c(n) are all integers and vanish unless n = 0 or 1 mod 4. It 
is easy to find the structure of A: it is a 2-dimensional free module over the 
ring of polynomials Z[7*(4T)], where j(r) is the elliptic modular function j(r) = 

E±(T)3/A(T) = g - 1 + 744 + 196884g H . Equivalently, any sequence of numbers 
c(n) for n < 0 such that c(n) = 0 unless n = 0 or 1 mod 4 is the set of coefficients 
of qn for n < 0 of a unique function in A. The space A has a basis consisting of 
the following two elements: 

0(r) = ^ < ?
n 2 = l + 2<7 + 2<7

4 + - . . 

nez 

•4,{r) = F(T)6{T){0(T)4 - 2 F ( T ) ) ( 0 ( T ) 4 - 16F(r ) )E 6 (4r ) /A(4r ) + 6O0(r) 

= q~3 + 4 - 240g + 26760g4 - 85995g5 + 1707264g8 - 4096240g9 + • • • 
(1.2) 

where 

F(r)= J2 a1(n)g" = g + 4g3 + 6g5-.-. 
n>0,nodd 

The reader will now understand the reason for all these odd definitions by com
paring the coefficients of -0 in (1.2) with the exponents in (1.1). This is a special 
case of the following theorem. 

T H E O R E M 1.1. ([B5]) Suppose that B is the space of meromorphic modular forms 
$ of integral weight and level 1 for some character of SL2 (Z) such that $ has inte
gral coefficients, leading coefficient 1, and all the zeros and poles of$ are at cusps 
or imaginary quadratic irrationals. Then the map taking f(r) = Ylnez c(n)Qn £ A 
to 

$(T)=qh Y[(i - qn)c{n2) 

n>0 

is an isomorphism from A to B. (Here h is a certain rational number in ^ Z 
depending linearly on f.) The weight of $ is c(Q), and the multiplicity of the zero 
of$ at an imaginary quadratic number of discriminant D < 0 is Yln>o c(n2D)-

E X A M P L E 1.2. If f(r) = 126(r) = 12 + 24q + 24<?4 + • • • then c(n2) = 24 for 

n > 0, so * ( r ) = ^ r W 1 - Qn)c{n2) = « Z E U D U ~ <?n)24 = A M , which is 
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the usual product formula for the A function. The fact that f(r) is holomorphic 
corresponds to the fact that A(r) has no zeros, and the constant term 12 of f(r) 
is the weight of A. 

EXAMPLE 1.3. Most of the common modular forms or functions, for example the 
Eisenstein series E4, E§, Es, Em, and £14, the delta function A(r), and the elliptic 
modular function j ( r ) , all belong to the space B and can therefore be written 
explicitly as infinite products. It is easy to work out the function / corresponding 
to $ by using the remarks about weights and multiplicities of zeros at the end of 
Theorem 1.1; for example, if 4>(r) = j(r) — 1728, then $ has a zero of order 2 at 
every imaginary quadratic irrational of discriminant —4 and has weight 0, so the 
corresponding function / E A must be of the form 2q~4 + 0q° + 0(q) and must 
therefore be 20(r)(j(Ar) - 738) - 4^(r) . 

Theorem 1.1 looks superficially similar to the Shimura correspondence; both 
correspondences use infinite products to take certain modular forms of half integral 
weight to modular forms of integral weight. However there are several major dif
ferences: the Shimura correspondence uses Euler product expansions, only works 
for holomorphic modular forms, and is an additive rather than a multiplicative 
correspondence. 

2 Product formulas for j(a) — j(r) 

In this section we describe three different product formulas for j(o~) —j(r) (where 
j(T) = 12n c(n)Qn = Q~l + 744 H is the elliptic modular function). 

The simplest one is valid for any a, r with large imaginary part (> 1 will 
do), and is 

j(a)-j(r)=p-1 J ] (1-Pmqn)c{mn) (2-1) 
m>0,uGZ 

where p = e2irleT. This is the denominator formula for the monster Lie algebra; see 
Example 5.2. 

The next product formula was found by Gross and Zagier [GZ]. We let d\ 
and d2 be negative integers that are 0 or 1 mod 4, and for simplicity we suppose 
that they are both less than —4. Then 

n ü(ri)-i(7s))=± n 
[TL]J[T2] x€Z,n,n'>Q,x2-\-4nn'=did2 

where the first product is over representatives of equivalence classes of imaginary 
quadratic irrationals of discriminants d\, d2, and e(nf) = ±1 is defined in [GZ]. 
An example of this given by Gross and Zagier is 

- ( i ± ^ ) = - 2 ' 5 3 3 5 3 i i I + 2 , W 2 3 3 2 9 3 

= 21537537213 x 139 x 331. 
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In the first product formula a and r were both arbitrary complex numbers 
with a large imaginary part, and in the second they were both fixed to run over 
imaginary quadratic irrationals. The third product formula is a sort of cross be
tween these, because we allow r to be any complex number with a large imaginary 
part, and make a run over a set of representatives of imaginary quadratic irra
tionals of some fixed discriminant d. For simplicity we will assume d < — 4 and d 
squarefree. In this case we find that 

\{((3{r)-3^)) = q-hX[(l-qn)c{n) 

[a] n>l 

where the numbers c(n) are the coefficients of the unique power series in the space 
A of 1.1 of the form q~d + 0(q), and h is the class number of the imaginary 
quadratic field of y/d. This follows from Theorem 1.1 because it is easy to see that 
the product on the left lies in the space B. Conversely, the analogue of this product 
formula for all values of d together with the Jacobi product formula for the eta 
function implies Theorem 1.1. 

Strangely enough, there seems to be no obvious direct connection between 
these three product formulas. In particular, assuming any two of them does not 
seem to be of any help in proving the third one. (Proposition 5.1 of [GZ] almost 
gives a fourth product formula: it expresses log | j(a) — j(r)\ as a limit of an infinite 
sum.) 

3 Automorphic forms for Os+2.2(M) 

Theorem 1.1 is essentially a specialization of a product formula for automorphic 
forms on higher dimensional orthogonal groups Os+2,20&)+- Before giving this 
generalization we recall the definitions of automorphic forms on orthogonal groups 
and of rational quadratic divisors. 

We will show how to construct the analogue of the upper half plane for these 
groups. Suppose that L is a Lorentzian lattice of dimension s + 2, in other words, a 
nonsingular lattice of dimension s + 2 and signature s. The negative norm vectors 
in L (g> R form two open cones; we choose one of these cones and call it C. We 
define H to be the subset of vectors r e L <g> C such that 9 ( r ) G C, so that if 
L is one dimensional, then H is isomorphic to the upper half plane. There is an 
obvious discrete group acting on H generated by the translations r —• r + À for 
X e L and the automorphisms O L ( Z ) + of L that map C into itself. When H is the 
upper half plane this group is just the group of translations r —• r + n for n e Z. 
In this case we can enlarge the group to SL2 (Z) acting on the upper half plane 
(by (crf)(r) = (or + &)/(cr + d)) by adding an extra automorphism r —> — 1/r. 
The analogue of this for unimodular Lorentzian lattices L is the automorphism 
T - 2 T / ( T , T ) . 

An automorphic form of weight k on the upper half plane H is a function 
satisfying the two functional equations 

/ ( r + n) = / ( r ) (n € Z) 

f(-l/r)=rkf(r) 
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(and some conditions about being holomorphic). By analogy with this, if L is an 
even unimodular Lorentzian lattice, we define an automorphic form on if to be a 
holomorphic function f on H satisfying the functional equations 

/ ( T + A) = / ( T ) (AeL) 
f(w(r)) = ± / ( T ) (W e O L ( Z ) + ) 

/ ( 2 r / ( r , r ) ) = ± ( ( r , r ) / 2 ) f c / ( r ) . 

The group generated by all these transformations is isomorphic to a subgroup of 
index 2 of the automorphism group of the lattice M = L © / ^ , where II\,\ is 
the 2-dimensional even Lorentzian lattice (with inner product matrix (°o))-

Suppose that h e L and a, c G Z, with (h, b) > 2ac. The set of vectors 
y G L 0 C with a(y,y)/2 + (6, y) + c = 0 is called a rational quadratic divisor. 
A rational quadratic divisor in the upper half plane is the same as an imaginary 
quadratic irrational. 

We choose some vector in — C that has a nonzero inner product with all 
vectors of L, and we write r > 0 to mean that r G L has a positive inner product 
with this vector. 

We have seen in Theorem 1.1 that a modular form with integer coefficients 
tends to have a nice infinite product expansion if all its zeros are imaginary 
quadratic irrationals. The next theorem shows that a similar phenomenon occurs 
for automorphic forms on Os+2i2(M)+, provided we replace imaginary quadratic 
irrationals by rational quadratic divisors. 

THEOREM 3.1. ([B5]) Suppose that f(r) = ^2nc(n)qn is a meromorphic modular 
form with all poles at cusps. Suppose also that f is of weight —s/2 for SL2(Z) and 
has integer coefficients, with 24|c(0) if s = 0. There is a unique vector p G L such 
that 

$(vj _ e-2ni(p,v) T7(l _ e-2ni(r,v)y(-(r,r)/2) 

r>0 

is a meromorphic automorphic form of weight c(0)/2 for OMC^)^~- (Or more pre
cisely, can be analytically continued to a meromorphic automorphic form, because 
the infinite product does not converge everywhere.) All the zeros and poles of $ lie 
on rational quadratic divisors, and the multiplicity of the zero of $ at the rational 
quadratic divisor of the triple (b, a, c) (with no common factors) is 

£c(n 2 (ac-(ò ,ò) /2)) . 
n>0 

We see that just as in Theorem 1.1, the coefficients of negative powers of q 
in / determine the zeros of $, and the constant term of / determines the weight 
o f $ . 

Notice that the zeros of rational quadratic divisors with a = c = 0 can be seen 
as zeros of factors of the infinite product, but the other zeros cannot be seen so 
easily; they are not zeros of any of the factors of the infinite product and therefore 
lie outside the region where the infinite product converges. 
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4 Generalized Kac-Moody algebras 

Some of the infinite products giving automorphic forms appear in the theory of 
generalized Kac-Moody algebras, so in this section we briefly recall some facts 
about these. 

Generalized Kac-Moody algebras are best thought of as infinite-dimensional 
analogues of finite-dimensional reductive Lie algebras. They can almost be defined 
as Lie algebras G having the following structure [B4] 

(1) G should have a nonsingular invariant bilinear form (, ). 
(2) G should have a self-centralizing subalgebra H, called the Cartan subalgebra, 

such that G is the sum of eigenspaces of H. 
(3) The roots of G (i.e., the eigenvalues of H acting on G) should have properties 

similar to those of the roots of a finite-dimensional reductive Lie algebra. In 
particular, it should be possible to choose a set of "positive" roots a > 0 
with good properties, a set of "simple roots", and there should be a "Weyl 
group" W generated by reflections of real (norm > 0) simple roots. Also G 
has a "symmetrized Cartan matrix", whose entries are the inner products of 
the simple roots. 
An earlier characterization [Bl] identified generalized Kac-Moody algebras 

as Lie algebras with an "almost positive definite contravariant bilinear form", but 
the one summarized above is easier to use in practice because it avoids the rather 
difficult problem of proving positive definiteness. 

There is a generalization of the Weyl character formula for the characters 
of some irreducible highest weight representations of generalized Kac-Moody al
gebras, and in particular there is a generalization of the denominator formula 
(coming from the character formula for the trivial representation), which is 

J ] det(w)w(epS) = ep J J (1 - ea)mui^a) (4.1) 
weW a>0 

where mult (a) is the multiplicity of the root a, i.e., the dimension of the corre
sponding eigenspace. The vector p is a "Weyl vector", and 5 is a correction term 
depending on the imaginary (norm < 0) simple roots. For finite-dimensional re
ductive Lie algebras, and more generally for Kac-Moody algebras, there are no 
imaginary simple roots, so S = 1 and we recover the usual Weyl-Kac denominator 
formula. 

The best-known examples of generalized Kac-Moody algebras are the finite-
dimensional reductive Lie algebras, the affine Lie algebras, and the Heisenberg Lie 
algebra (which should be thought of as a sort of degenerate affine Lie algebra). 
Beyond these there are an enormous number of nonafnne generalized Kac-Moody 
algebras, which can be constructed by writing down a random symmetrized Cartan 
matrix, and then writing down some generators and relations corresponding to it. 
Most of these Lie algebras seem to be of little interest, and it does not usually 
seem possible to find a clean description of both the root multiplicities and the 
simple roots. (It is not difficult to find large alternating sums for these numbers 
by using the denominator formula, but these sums seem too complicated to be of 
much use; for example, they do not lead to good bounds for the root multiplicities.) 
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There is a handful of good nonafnne generalized Kac-Moody algebras, for which 
we can describe both the simple roots and the root multiplicities explicitly. (See 
the next section for some examples.) These all turn out to have the property that 
the product in the denominator formula is an automorphic form for an orthogonal 
group OS+2,2(ïï&)+î where s + 2 is the dimension of the Cartan subalgebra. This 
suggests that this property of the denominator function being an automorphic form 
can be used to separate out the "interesting" generalized Kac-Moody algebras from 
the rest. (Something similar happens for the affine Kac-Mòody algebras: in this 
case the denominator function is a Jacobi form [EZ].) 

5 Examples 

We finish by giving some applications and special cases of Theorem 3.1. 

EXAMPLE 5.1. If we have an automorphic form for the group 0S+2;2Q&)+ with an 
infinite product expansion we can restrict it to smaller subspaces to obtain auto
morphic forms for smaller groups Os-n+2,2(M.)+ with infinite product expansions. 
For example, if we restrict 4> to the multiples rv of a fixed norm —2N vector v G L 
(for T in the upper half plane) we get a modular form of level N. In particular, 
by specializing the forms in Theorem 3.1 we obtain many ordinary modular forms 
for SL2(M) (which is locally isomorphic to Oii2(M)) with infinite product expan
sions, and this can be used to prove Theorem 1.1. Similarly, we can get examples 
of Hilbert modular forms and genus 2 Siegel modular forms with infinite product 
expansions by using the fact that the groups SL2(M) x SL2(M) and Sp4(M) are 
locally isomorphic to 02,2(M) and 03,2 W -

EXAMPLE 5.2. The simplest nontrivial case of Theorem 3.1 is when L is the 
lattice / / i , ! and f(r) is the elliptic modular function j(r) — 744 = ^nc(n)qn. In 
this case Theorem 3.1 says that the infinite product 

p-i Yl (l-pmqn)<rnn^ 
m>0,n6Z 

is an automorphic function on H x H (where H is the upper half plane). This 
product is just the right-hand side of 2.1, and using the fact that it is an automor
phic function with known zeros it is easy to identify it as j(a) —j(r). This identity 
2.1 is the denominator formula 4.1 for the monster Lie algebra, a generalized Kac-
Moody algebra acted on by the monster simple group, which is the Lie algebra of 
physical states of a chiral string on an orbifold of a 26-dimensional torus [B3]. 

EXAMPLE 5.3. Suppose we take L to be the 26-dimensional even unimodular 
lattice i725,i> and take f(r) to be 1/A(r) = £nP24(rc + l)qn = q~x +24 + 324ç2 + 
• • •. Then by Theorem 3.1 we know that 

$(v\ _ e-2ni(p,v) Tin _ e-27ri(r,i;)^24(l-(r,r)/2) £5 -g 

r>0 

is a holomorphic automorphic form of weight 24/2 = 12. We can identify it ex
plicitly using some facts about singular automorphic forms on 0 S + 2,2W + - Any 
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holomorphic automorphic form on O s +2,2(^)+ can be expanded as a power series 
q>(v) = Ylrec c(r)e_27^^(^'^',) where the coefficients c(r) are zero unless r lies in the 
closure C of the cone C. If the coefficients c(r) are zero unless r lies on the bound
ary of C then we say that $ is singular. It turns out that $ is singular if and only if 
its weight is a "singular weight", and for Os+2,2 W + the singular weights are 0 and 
s 12. (Moreover any automorphic form of weight less than s/2 must be constant of 
weight 0.) In particular, the form $(v) above has singular weight 12 = 24/2 so its 
coefficients c(r) vanish unless (r, r) = 0. But for any automorphic form it is easy 
to find the multiplicities of the coefficients c(r) with (r, r) = 0, and if we do this 
for $ we find that 

$(v) = J2 det(w)A((v,w(p))) (5.2) 
wew 

where p is a norm 0 vector and W is the reflection group of the lattice II2$.\. If we 
compare 5.1 with 5.2 we obtain the denominator formula for another Lie algebra 
called the fake monster Lie algebra [B2], which is the Lie algebra of physical states 
of a chiral string on the torus M25'1///25,i [B3]. 

Incidentally we also get a short proof of the existence of the Leech lattice (a 
24-dimensional even unimodular lattice with no roots), because it is not hard to 
show that if p has norm 0 then the lattice /r1jp is extremal (i.e., has no vectors 
of norm < s/12), and the fact that c(p) = 1 is nonzero implies that p must 
have norm 0 because $ is singular. It is also possible to prove the uniqueness 
of the Leech lattice and the fact that it has covering radius y/2 using similar 
arguments. Unfortunately this argument does not seem to produce examples of 
extremal lattices in higher dimensions because the forms $ no longer have singular 
weight. 

The two examples above are particularly simple because the coefficients c(r) 
vanish for (r, r) ^ 0, so it is easy to identify them all. Most of the automorphic 
forms constructed in Theorem 3.1 do not have this property and seem to be harder 
to describe explicitly. Moreover, most of them do not seem to be related to gen
eralized Kac-Moody algebras, because all the positive norm roots of a generalized 
Kac-Moody algebra with root lattice IJs+i5i must have norm 2, which means that 
the function f(r) cannot have any terms in qn for n < —2. 

We conclude with an example of a generalized Kac-Moody algebra related to 
one of the modular forms in Theorem 1.1. 

EXAMPLE 5.4. The product formula 

E6(T) = 1 - 5 0 4 ^ a5(n)qn 

n>0 

= 1- 504<? - 16632c2 - 122976g3 

= l[{l-qn)eln2) 

n>0 

= (l — o ) 5 0 4 ( l — o 2 ) 1 4 3 3 8 8 ( l _ Q 3 \ 5 1 1 8 0 0 2 4 
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where 

n 

= fl(T)(j(4r)-147O)-20(r) 

= g~4 + 6 + 504g + 143388g4 + 565760g5 + 18473000g8 + 51180024g9 + 0 ( g 1 2 ) 

is the denominator formula for a generalized Kac-Moody algebra of rank 1 whose 
simple roots are all multiples of some root a of norm —2, the simple roots are 
no. (a > 0) with multiplicity 504^3 (n), and the multiplicity of the root na is 
c(n2). The positive subalgebra of this generalized Kac-Moody algebra is a free 
Lie algebra, so we can also state this result by saying tha t the free graded Lie 
algebra with 504o5(n) generators of each positive degree n has a degree n piece of 
dimension c(n2). There are similar examples corresponding to the infinite products 
for the Eisenstein series E\Q and E\±. The identity for E\± is easy to prove directly 
because it follows from 2.1 by dividing both sides by p — g, setting p = g, and using 
the fact tha t j'(r) = E14(T)/A(T). 
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Introduction 

Consider a connected reductive algebraic group G over an algebraically closed field 
k, a Borei subgroup B of G, and a closed subgroup H C G. The homogeneous 
space G/H is spherical if B acts on it with an open orbit. Examples include flag 
varieties (H is parabolic in G); more generally, G/H is spherical whenever H 
contains a maximal unipotent subgroup of G. Another class of examples consists 
in symmetric spaces; here H is the fixed point set of an involutive automorphism 
of G. More exotic examples are G2/SL% and the quotient of SL2 x SL2 x SL2 by 
its diagonal. 

The notion of a spherical homogeneous space has its origin in representation 
theory (Gel'fand pairs, multiplicity-free spaces). Namely, in characteristic zero, the 
homogeneous space G/H is spherical if and only if it satisfies the following condi
tion: for any simple, rational G-module M, and for any multiplicative character \ 
of H, the x-eigenspacc of H in M is zero or a line. If moreover G/H is quasi-afnne 
(e.g. if H is reductive), then this condition can be replaced by the following: the 
space of if-fixed points in any simple, rational G-module is zero or a line. If G/H 
is spherical, then its algebra of G-invariant differential operators is commutative; 
the converse holds when H is reductive. 

More generally, define a spherical variety as a normal algebraic variety with 
an action of G and a dense orbit of B. In the case where G is a torus, we recover the 
definition of a toric variety. The rather abstract notion of a spherical variety leads 
to a very rich geometry, which is only partially understood. It combines features of 
flag varieties (e.g. the Bruhat decomposition and the Borei-Weil-Bott theorem) and 
of symmetric spaces (the little Weyl group and its role in equivariant embeddings; 
the Harish-Chandra isomorphism). As for toric varieties, the geometry of fans and 
convex polytopes plays a role, too. 

Finally, spherical varieties are a test case for studying actions of reductive 
groups. Namely, several phenomena, first discovered for spherical varieties, have 
been generalized to arbitrary varieties with reductive group actions; see work of 
Knop. However, many results find a simpler and more precise formulation in the 
case of spherical varieties. 

After some preliminaries, we survey several aspects of the theory of spherical 
varieties where recent progress has occurred, but where basic questions are still not 
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completely answered: cohomology groups of line bundles, classification of spherical 
varieties by combinatorial invariants, and orbits of a Borei subgroup. These topics 
interplay, and they are ordered here in a rather arbitrary way. We refer to Ahiezer's 
article [A] for an exposition of other topics concerning spherical varieties over C: 
local structure theorems, orbits of a maximal compact subgroup of G, and relations 
with symplectic geometry. 

1 First properties of spherical varieties 

1.1. Complexity and rank of G- varieties 
For an algebraic variety X with an action of B, we define its complexity c(X) as 
the minimal codimension of a £?-orbit in X. By a classical result of Rosenlicht, 
c(X) is the transcendence degree of the extension k(X)B jk where k(X) denotes 
the function field of X, and k(X)D its subfield of 13-invariants. The set of weights 
of eigenvectors of B in k(X) is denoted by T(X). Then T(X) is a free abelian 
group of finite rank r(X); this number is called the rank of X. A motivation for 
these notions is the following result, due to Vinberg [Vi] in characteristic zero, and 
to Knop [Kn6] in general. 

THEOREM. For any G-variety X, and for any closed, B-stable subvariety Y C X, 
we have c(Y) < c(X) and r(Y) < r(X). 

Observe that the spherical varieties are exactly the G-varieties of complexity zero. 
So the theorem implies readily the following. 

COROLLARY. A G-variety X is spherical if and only if X contains only finitely 
many B-orbits. 

In particular, any spherical variety contains only finitely many G-orbits, and all 
of them are spherical. On the other hand, for any nonspherical G-variety X, there 
exists a G-variety X that is G-birational to X and that contains infinitely many 
G-orbits (in fact, a family of orbits with c(X) parameters). 

The rank of a G-variety is an important invariant; it generalizes the rank of 
a symmetric space. The G-varieties of rank zero are just unions of flag varieties. 
There is a very useful classification of homogeneous spaces of rank one (see [A] 
for the spherical case, and [Po] for the general case). Namely, several theorems on 
spherical varieties use reduction to rank one. 

1.2. Cohomology groups of G-line bundles over spherical varieties 
Recall the definition of a G-vector bundle E over a G-variety X. It consists in 
a vector bundle p : E —* X with a G-action on E, such that p is G-equivariant 
and that G acts linearly on the fibers of p. Then it is known that the cohomology 
groups Hl(X,E) are rational G-modules. Assume further that k has character
istic zero; then the groups Hl(X,E) are direct sums of finite-dimensional simple 
G-modules, with multiplicities. When X is spherical, all multiplicities of the G-
module H°(X,E) are at most equal to the rank of E. This leads to the following 
(easy) characterization of spherical varieties [Bi], [Br5]. 
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PROPOSITION. For a normal quasi-projective G-variety X, the following condi
tions are equivalent: 

(i) For any G-line bundle L —> X, the G-module H°(X,L) is multiplicity-free. 
(ii) There exists an ample G-line bundle L —• X such that all multiplicities of 

the G-modules H°(X, L®n) are bounded independently of the integer n > 1. 
(iii) X is spherical. 

The space of sections of a G-line bundle L on a spherical variety X admits a 
more precise description (it generalizes the well-known correspondence between 
projective toric varieties with an ample divisor class, and convex polytopes with 
integral vertices, see [O]). Namely, there exists a dominant weight 7r(L) and a 
rational convex polytope C(L) c T(X) <g> R such that the set of highest weights 
of simple submodules of H°(X,L) is -K(L) + (C(L) D T(X)). Moreover, we have 
7r(L®n) = mr(L) and C(L®n) = nC(L) for any integer n > 1. We refer to [Br2] 
for a description of line bundles over spherical varieties and of their associated 
polytopes, and to [Br4] for a dual study of curves in spherical varieties, in relation 
to Mori theory. 

Much less is known about higher cohomology groups: the following qualitative 
result is proved in [Br5]. 

THEOREM. For any spherical variety X, there exists a constant C(X) such that for 
any G-vector bundle E —» X, the multiplicities of all cohomology groups Hl(X, E) 
are at most C(X) rank(E). 

In particular, the multiplicities of cohomology groups of line bundles over a fixed 
spherical variety are uniformly bounded. But a complete description of these 
groups is only known for toric varieties (see [O]) and for flag varieties (the Borel-
Weil-Bott theorem). 

1.3. A vanishing theorem for line bundles over spherical varieties 
The following vanishing theorem is proved in [BI] by reduction mod p and Frobe-
nius splitting. 

THEOREM. Consider two spherical varieties X and X', a proper G-equivariant 
morphism 7r : X —• X1, and a line bundle L —> X that is generated by its sections 
over X'. Then R%-K*L = 0 for any i > 1. 

In particular, we have Hl(X, L) = 0 for i > 1, whenever L is a globally generated 
line bundle over a complete spherical variety X. As another application, consider 
a spherical variety X and an equivariant desingularization 7r : X —• X. Then the 
theorem can be applied to the trivial line bundle over X, and hence the singularities 
of spherical varieties are rational. This property does not hold in general for normal 
G-varieties with a dense orbit and positive complexity; see [Po]. 

The theorem above can be refined by a close study of instable curves on 
spherical varieties, see [Br6]. Namely, to any closed, irreducible, instable curve in 
X, we associate a positive integer n(C), as follows. If C is contained in a projective 
G-orbit G/Q (with Q D B) then C is an orbit of a parabolic subgroup P D B 
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with P minimal. Denote by a the corresponding simple root, and denote by pQ 

the half-sum of roots of the unipotent radical of Q. Then n(C) = 2(p®,â). On the 
other hand, if G is not contained in any projective orbit, then n(C) = 1. 

Now, in the vanishing theorem, the assumption that L is generated by its 
sections over X' can be replaced by: (L • C) + n(C) > 0 for any curve C as above, 
such that 7r(G) is a point. Here (L • C) denotes the degree of the restriction of 
L to C. In this statement, the numbers n(C) cannot be made smaller in general. 
For example, when X = G/B and X' is a point, then we obtain the vanishing of 
Hl(G/B, L) for i > 1 and L associated to a weight A such that p + X is dominant. 
This last statement is sharp by the theorem of Borei-Weil-Bott. 

2 Classification of spherical varieties 

2.1. Embeddings of spherical homogeneous spaces 
An embedding of a homogeneous space G/H is a normal G-variety with an open G-
orbit isomorphic to G/H. The embeddings of a given spherical homogeneous space 
G/H are classified by combinatorial objects called colored fans, which generalize 
the fans associated with toric varieties. This theory, due to Luna and Vust in 
characteristic zero, has been simplified and extended to all characteristics by Knop 
[Kn2]. Here a basic role is played by the set V(G/H) of G-invariant valuations of 
the field k(G/H), with rational values. It can be shown that V(G/H) identifies with 
a convex polyhedral cone in the Q-vector space Q(G/H) := Hom(r(G/i /) ,Q). In 
characteristic zero, this cone turns out to be a fundamental domain for some finite 
reflection group W(G/H) acting on Q(G/H) (see [Br3]; if G/H is symmetric, then 
W(G/H) is its little Weyl group). This surprising fact was the starting point for 
deep investigations of Knop [Knl,3,4] who defined and studied a little Weyl group 
W(X) for any G-variety X. 

An embedding X of spherical G/H is called toroidal if the closure in X of 
any ß-stable divisor in G/H contains no G-orbit. Toroidal embeddings of G/H 
are classified by fans with support in V(G/H), i.e. partial subdivisions of V(G/H) 
into convex polyhedral cones that contain no line. Smooth, toroidal embeddings 
are regular in the sense of [BDP], i.e. they satisfy the following conditions: 

(i) Each G-orbit closure is smooth, and is the transversal intersection of the 
smooth orbit closures that contain it. 

(ii) The isotropy group of any point x acts on the normal space to the orbit G • x 
with an open orbit. 

Conversely, if a homogeneous space G/H admits a complete regular embedding 
X, then G/H is spherical and X is toroidal. The compactifications of symmetric 
spaces constructed by DeConcini and Procesi [D] are exactly their smooth, toroidal 
embeddings; see [Vu]. 

2.2. The canonical embedding 
Consider a spherical homogeneous space G/H, and denote by NG(H) the normal-
izer of H in G. Then the quotient group NG(H)/H is diagonalizable (up to a finite 
p-group in char. p). Moreover, NG(H)/H is finite if and only if the valuation cone 
V(G/H) contains no line; see [Kn2]. In this case, there is a canonical embedding X 
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of G/H, namely the toroidal embedding associated with the whole cone V(G/H). 
This embedding is projective, and it has at most quotient singularities (this last 
result holds in characteristic zero). Further, its G-orbit structure is especially sim
ple. Namely, denoting by r the rank of G/H, there are r irreducible, G-stable 
codimension one orbits 0\,..., Or. Moreover, there is an order-reversing bijection 
between subsets of { 1 , . . . , r} and orbit closures, given by J —• C\iej Oi. In partic
ular, X contains a unique closed orbit. It turns out that any projective embedding 
with one closed orbit is dominated by X. On the other hand, an embedding is 
toroidal if and only if it dominates X. 

In characteristic zero, the canonical embedding can be constructed as follows. 
Denote by Q, H the Lie algebras of G, if, and denote by L the variety of Lie 
subalgebras of Q. Then L is a projective G-variety, and the G-orbit closure of 
H in L is a (perhaps nonnormal) projective embedding of G/NG(H), called the 
Demazure embedding. 

THEOREM. The canonical embedding of G/H is the normalization of the De
mazure embedding in k(G/H). 

This result, first discovered by Demazure in some special cases, has been extended 
by DeConcini and Procesi to symmetric spaces, and to spherical spaces in [Br3]. 
There it was conjectured that the Demazure embedding is smooth whenever H = 
NG(H). A large part of this conjecture has been confirmed by Knop, who proved 
the following in [Kn5]. 

THEOREM. For any spherical homogeneous space G/H with H = NG(H), the 
canonical embedding of G/H is smooth. 

2.3. Towards a classification of spherical homogeneous spaces 
The problem of classifying spherical spaces by combinatorial invariants is still open; 
here are some partial results. Besides the well-known classification of symmetric 
spaces, there is a list of spherical homogeneous spaces G/H with G semisimple and 
H reductive; see [Kr] for simple G, [Mi] and [Bri] for arbitrary G. This list relies on 
the description of maximal subgroups of semisimple groups. A more conceptual and 
fruitful approach has been followed by Luna; it leads e.g. to a complete description 
of solvable spherical subgroups, see [L]. We sketch part of Luna's results. 

Assume for simplicity that G is semisimple and adjoint, and that H is equal to 
its normalizer. By results in 2.1, the valuation cone V(G/H) C Hom(r(G/if) ,Q) 
can be written uniquely as an intersection of r closed half-spaces, where r denotes 
the rank of G/H. Let 7 1 , . . . , 7 r be defining inequations for these subspaces. We 
normalize the 7̂  by demanding that they are in T(G/H) and that they cannot 
be divided in this group. It turns out that {71, . . . ,7 r } = S (G/H) is a basis of a 
reduced root system R(G/H) with Weyl group W(G/H) (see [Br3], [Kn5]; if G/H 
is symmetric, then R(G/H) is the reduced root system associated to the restricted 
roots). The 7* are called the spherical roots of G/H. 

By reduction to rank one, the set of all possible spherical roots (for a fixed G) 
can be described; in particular, this set is finite. For example, the spherical roots 
for G = PSLn+i are the positive roots and the elements 2a^, a» + ctj (i < j — 1), 
cti-i + 2oii + «i+i, where OL\, ..., an are the simple roots. 
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On the other hand, denote by V(G/H) the (finite) set of 5-orbits of codi-
mension one in G/H. Any D e V(G/H) defines a normalized valuation VD of 
k(G/H). For any spherical root 7, choose f1 e k(G/H), which is an eigenvec
tor of B, of weight 7. Then f1 is uniquely defined up to scalar multiplication. 
Therefore, the number vn(f7) only depends on D and 7. We define a pairing 
p : V(G/H) x S(G/H) - Z by setting: p(D,1) = - i ; D ( / 7 ) . 

A geometric definition of this pairing is as follows. Let X be the canonical 
embedding of G/H. Then the G-orbits of codimension one in X are indexed by the 
edges of the valuation cone, and hence by S (G/H). For 7 e S (G/H) we denote 
by ö1 the corresponding orbit. By computing the divisor of the rational function 
/ 7 , we obtain the following relations in the Picard group of X: 

e7= £ P(D,I)D. 
DeV(G/H) 

In the case where G/H is symmetric, the spherical roots are just the simple re
stricted roots. If moreover the center of the connected component H° is finite, 
then the pairing p is given by the Cartan matrix of the restricted root system. 

For a spherical homogeneous space G/H with G semisimple adjoint and H 
equal to its normalizer, the triple (V(G/H), S(G/H), p : V(G/H)xS(G/H) -> Z) 
should determine G/H uniquely. Furthermore, there should be a characterization 
of all "admissible" triples by conditions arising from spherical spaces of low rank. 
This program has been completed by Luna for solvable H (see [L]) and for G = 
PGLn+\ and arbitrary H (work in progress, 1994). 

3 Orbits of a Borei subgroup 

3.1. 5-orbits and cells 
It follows from work of Bialynicki-Birula that any complete, smooth spherical 
variety X has a cellular decomposition. Namely, choose a one-parameter subgroup 
À : k* —» X in general position; i.e., the fixed point set Xx is finite (the existence 
of A follows from finiteness of the number of G-orbits in X). Then for any x e Xx, 
the set 

X(X,x) = {zeX \ limX(t)z = x} 

is an affine space (the A-cell of x). 
This cellular decomposition is related to the decomposition into £?-orbits, as 

follows. For A as above, denote by G(A) the set of all g e G such that X(t)gX(t)~x 

has a limit when t —> 0. Then G(A) is a parabolic subgroup of G. Moreover, we 
may choose A in general position, so that G(A) = B. In this case, all cells are 
instable. In the case where X is a flag variety, it is known that each cell is a single 
5-orbit. In the general case, we have the following result [BL] in characteristic 
zero. 

THEOREM. Let X be a smooth, complete, toroidal variety; choose X in general 
position with G(X) = B. Then the intersection of each X-cell with a G-orbit is 
either empty or a single G-orbit. 

This result extends work of DeConcini and Springer [DS] who obtained formulas 
for Betti numbers of complete symmetric varieties. Namely, the theorem above 
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suggests a parametrization of 5-orbits in X by a set of pairs consisting in a fixed 
point of a maximal torus of B, and in a cone in the fan of X. This parametrization 
can be worked out in the symmetric case; the general case is still open. 

3.2. Symmetries in the set of 5-orbits 
Denote by B(X) the set of 5-orbits in the spherical variety X. There is a partial 
ordering on B(X) by inclusion of closure; it may be called the Bruhat order. If 
moreover X = G/H is homogeneous, then all closed ß-orbits have the same di
mension d, namely the dimension of the flag variety of H. Then we define a length 
function on B(X) by setting 1(0) = dim(O) — d. Although no precise description 
of B(X) is known in general, this set turns out to have interesting symmetries. 

Denote by W the Weyl group of G, identified with the set of double cosets 
B\G/B via w —> BwB. Then W can be turned into a monoid W*, by defining 
w * w' as the open double coset in the closure of BwBwfB. More concretely, W* 
is generated by the set S of simple reflections, with relations s2 = s for all s e S, 
and with the braid relations. 

Observe that W* acts on B(X) by defining w * O (for weW amdO e B(X)) 
as the open ß-orbit in the closure of BwO. Moreover, this action has the following 
properties: (i) O C w * O; (ii) if O C O' then w * O C w * Ö'; (iii) / is strictly 
monotonie for the Bruhat order; and (iv) if Ö ^ s * Ö then l(s * Ö) = 1(0) + 1 
(properties (iii) and (iv) only make sense for homogeneous X). This observation 
is implicit in Matsuki's proof [Ma] of the finiteness of B(X). For homogeneous X, 
the Bruhat order on B(X) turns out to be the weakest partial order that satisfies 
conditions (i)-(iv) above. This is proved in [RS] together with more precise results 
concerning B-orbits in symmetric spaces. 

On the other hand, an action of W on the set B(X) has been constructed 
by Knop [Kn6]. This action is not compatible with the Bruhat order, but it has a 
surprising connection with the little Weyl group W(X). Namely, denoting by XQ 
the open ß-orbit in X, and by P(X) the stabilizer in G of the set XQ, we have 
the following result [Kn6]. 

THEOREM. For the W-action on B(X), the isotropy group of XQ is the semidirect 
product of W(X) and W C\ P(X). 

In fact, a version of this result holds for any G-variety X, see [Kn6]. In this 
case, B(X) is defined as the set of all nonempty, closed, irreducible, and B-stable 
subvarieties of X. There is still a W-action on B(X); it is used in the proof of the 
Theorem in Section 1.1. On the other hand, W acts on the subset BQ(X) consisting 
in all Z e B(X) that contain a family of 5-orbits with c(X) parameters. 
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Rigidity Properties of Group Actions on CAT(0)-Spaces 

MARC BURGER 

Institut de mathématiques, Université de Lausanne 
CH-1015 Lausanne-Dorigny, Switzerland 

In this lecture we shall discuss certain aspects of the general rigidity problem 
of classifying isometric actions of a given group A on a CAT(0)-space Y. The 
CAT(O) property, introduced by Alexandrov [Al], [Wa], generalizes to singular met
ric spaces the notion of nonpositive curvature. Among such spaces one finds simply 
connected non-positively curved Riemannian manifolds and Euclidean buildings; 
in particular, geometric rigidity problems and the linear representation theory of 
A over local fields are put into the same framework. There are various types of 
additional structures on A that lead to different rigidity properties. In this lecture 
we shall discuss the following three situations. 

1. Let A be a subgroup of a locally compact group G, satisfying T < A < 
Corner where T is a sufficiently large discrete subgroup of G and Comer = {g e 
G : g~lTg and T share a subgroup of finite index} is the commensurator of 
T in G. One expects then that any isometric action of A on a CAT(0)-space, 
which satisfies a suitable geometric irreducibility property, extends continuously 
to the closure A C G. Rigidity properties of this type were already established by 
Margulis in the early 1970s, in the case where T is a lattice in a semisimple Lie 
group G, and led to his arithmeticity criterion [Ma 1], [Ma 4]. 

In Section 2, we state two recent results in this direction. The first result, due 
to Margulis, concerns the case where T is a cocompact, finitely generated lattice 
in a locally compact group G, and is based on his theory of generalized harmonic 
maps. The second, based on ergodic theoretic methods introduced by Margulis 
in [Ma 3], treats the case where the discrete subgroup T < G admits a (T,G)-
boundary (see Section 3 for examples). In Section 5 we apply these results to the 
study of the commensurator of uniform tree lattices. 

2. Let A be an irreducible lattice in a group G = I1Q=I ^ a (&<*)? where Ga is a 
semisimple algebraic group defined over a local field ka. In this lecture, a local field 
is a locally compact nondiscrete field. Thanks to Margulis' work, one has a fairly 
complete criterion for the existence of a continuous extension to G of an action 
by isometries of A on a CAT(0)-space Y when ^2Q rankfcQGQ > 2, and either the 
A-action comes from a linear representation over a local field [Ma 4, VII. 5,6] or Y 
is a tree [Ma 2]. The case of irreducible representations leads to his arithmeticity 
theorem [Ma 4, IX. Theorem A], whereas the case of actions on trees gives a 
classification of those lattices A that are nontrivial amalgams [Ma 2, Theorem 2]. 
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Thus, one would like to understand in general when an isometric action of A on 
Y extends continuously to G. This is understood when y is a locally compact 
CAT(—l)-space; see Section 4. 

3. Let A = 7Ti (M) be the fundamental group of a compact manifold M, where 
M is equipped with a nontrivial action of a semisimple Lie group G of higher rank 
preserving some geometric structure, for instance an "if-structure" [Zi 2] or a finite 
measure and a connection [Zi 3], [Sp-Zi]. Following Zimmer's program one expects 
that the higher rank hypothesis on G implies strong restrictions on the class of 
CAT(0)-spaces that admit 7Ti(A/factions without fixed points. We illustrate this 
in Section 4 by a recent result of Adams, generalizing [Sp-Zi, Theorem A]. 

1 CAT(0)-spaces 

A geodesic space is a metric space in which every pair of points x, y is joinable by 
a geodesic segment, i.e. a continuous curve of length d(x, y). A geodesic triangle is 
obtained by joining pairwise three points with geodesic segments; it maps sidewise 
isometrically to a geodesic comparison triangle in the Euclidean plane E2 or in the 
hyperbolic plane M2. A geodesic space is CAT(O) (resp. CAT(—1)) if the compar
ison maps of its geodesic triangles into E2 (resp. M2) are not distance decreasing. 
Observe that a CAT(—l)-space is CAT(O). Many global geometric properties of 
Cartan-Hadamard manifolds (see [B-G-S]) generalize to CAT(0)-spaces and we re
fer the reader to [Gr 2], [Bri-Ha], [B] for general expositions. The following basic 
properties of the distance function of a CAT(0)-space Y hold: 

PI . Convexity of distance: for any geodesic segments ci,C2 : / —• Y, I C K, 
the function t —• d(ci(t),c.2(t)) is convex; 

P2. Uniform convexity of balls: for every R, a > 0, there exists e = e(R, a) > 0 
such that given any three points a:,2/1 »2/2 £ Y with d(x,yi)<R and d(yi,y2)>a, 
the midpoint m on the geodesic segment [2/1,2/2] satisfies d(x,m)<R — e. 

A geodesic space Y is UC (uniformly convex) if it satisfies PI and P2. 
Whereas PI implies that Y is uniquely geodesic, P2 often serves as a substitute to 
local compactness. Finally we mention that a CAT(0)-space Y has a visual bound
ary y(oo); when Y is locally compact and complete, the space Y :=Y U Y(oo) is 
an Isom(y)-equivariant compactification of Y. 

EXAMPLE (1). Lp-spaces are UC for 1 < p < oc. Hilbert spaces are CAT(O); 
more generally, if 5 is a finite measure space and X is CAT(O), then L2(S,X) is 
CAT(O) [Ko-Sc]. 

EXAMPLE (2). Simply connected Riemannian manifolds of sectional curvature 
K<0 (respectively K< — 1) and their convex subsets are CAT(O) (respectively 
CAT(-l)) [B-G-S]. 

EXAMPLE (3). Euclidean buildings are CAT(O) [Bru-Ti], [Bro, VI. 3]. 

EXAMPLE (4). For every Coxeter system (W,S), there exists a piecewisc Eu
clidean cell complex E which is CAT(O) for the induced length metric and on 
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which W acts properly discontinuously by isometries with compact quotient. Fur
thermore, E admits a piecewise hyperbolic CAT(—l)-structure if and only if W 
does not contain Z2 . See [Mou] and the expository paper [Da]. 

EXAMPLE (5). Complexes of groups with a metric of nonpositive curvature are 
developable and their universal covering is CAT(O) [Ha], [Sp]. 

EXAMPLE (6). Two dimensional complexes with prescribed link Lv at every 0-
cell v and whose 2-cells are regular polygons in E2 (resp. EI2). Conditions for 
their existence and for the induced length metric to be CAT(O) (resp. CAT(—1)) 
are given in [Hag], [Be 1], [Be 2], [B-Br]. First examples of such polyhedra were 
constructed by Gromov, see [Gr 1, Section 4. C"]. 

EXAMPLE (7). Metric trees are CAT(-l)-spaces. 

2 Rigidity properties of commensurators 

2.1. For a finitely generated group T and a homomorphism 7r : T —> Isom(Y), 
where y is a UC space, we introduce the properties: 

HP1. For some (and hence every) finite generating set S C T, the sublevels 
of the function ds : Y —> R+, ds(y) =max d(y, 7r(^y)y), are bounded subsets of Y. 

-yes 
HP2. For every yi ^ y2 in Y, there exists 7 E T such that the geodesic 

segments [2/1,^(7)2/1], [2/2? n" (7) 2/2] are not parallel, meaning that if c parametrizes 
[2/1?2/2], t —> d(c(t),Tt(i)c(t)) is not constant. 

Observe that if y is CAT(O), locally compact and complete, HP1 is equivalent 
to the property that 7r(r) does not have a fixed point in Y(00). 

THEOREM 1. [Ma 5] Let V be a finitely generated, cocompact lattice in a locally 
compact group G, A < G with T < A < Corner and p : A —> Isom(y) a homo
morphism into the group of isometries of a complete UC space Y, such that 

(1) A acts c-minimally on Y, 
(2) any subgroup of finite index in V satisfies HP1 and HP2. 

Then p extends continuously to A. 

REMARKS: (1) A group action by isometries on a geodesic space is c-minimal if 
it admits no nonvoid proper closed convex invariant subspace. 

(2) Theorem 1 applies to the case where Y is the Euclidean building asso
ciated to a connected fc-simple group H defined over a local field k, the image 
p(A) C M(k) is Zariski dense in HI, and p(T) C M(k) is not relatively compact. 

The proof of this theorem relies on uniqueness properties of generalized har
monic maps [Ma 5]. By definition such maps are critical points, in the space of 
T-equivariant measurable maps ip : G —> Y, of an "energy " functional 

Jù 
dM9i)^(92))ph(g1 g2)dg1dg2 

A(r)\GxG 
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where p > l , A(r) := {(7,7) : 7 e r } and h is a suitable positive continuous 
function. The basic problem for applying this method to discrete subgroups T 
of locally compact groups G is to find a positive continuous function h and an 
exponent p > 1 such that there is at least one equivariant map tp : G —• Y of 
finite energy. When T is a finitely generated cocompact lattice in G, p > 1, and n 
satisfies HP1, HP2, there is a unique harmonic map and it is continuous; Theorem 1 
follows then from the fact that such a map is automatically A-equivariant. These 
results apply notably when T is a cocompact lattice in a connected Lie group, 
or in I l û = i ^ a W where GQ is a semisimple connected group defined over a 
local field ka, or in the automorphism group AutT of a uniform tree (see Section 
5). Indeed, in all these cases T is finitely generated. The above method applies 
also to irreducible lattices in semisimple connected Lie groups all of whose simple 
factors arc noncompact and not locally isomorphic to SX(2,R). Notice that lattices 
need not be finitely generated. For example, noncocompact lattices in G = G(fe), 
where G is a simple fc-group of fc-rank one defined over a local field A: of positive 
characteristic, are never finitely generated (see [Lu] for the structure of lattices in 
G(k)). Also when G is not compactly generated, cocompact lattices are not finitely 
generated, see 3.3 (b) for an example with dense commensurator. 

2.2. Let G be a locally compact group, H <G a closed subgroup, and B a standard 
Borei space endowed with a Borei action GxB —> B preserving a <r-finite measure 
class p. We call (B.p) an (H,G)-boundary if it satisfies the properties: 

BP1: the if-action on (B,p) is amenable; 

BP2: the diagonal if-action on (B x B,p x p) is ergodic. 

THEOREM 2. Let T be a discrete subgroup of a locally compact, second countable 
group G and A < G with T < A < Comer. We assume that there exists (B,p), 
which is a (Tf, G)-boundary for any subgroup of finite index V < T. 

A. Let HI be a connected adjoint k-simple group, where k is a local field, 
and 7T : A —• M(fc) a homomorphism such that 7r(A) is Zariski dense in M and 
7r(T) C M(k) is not relatively compact. Then n extends continuously to A. 

B. [Bu-Mo] Let Y be a locally compact, complete CAT(—l)-space and n : A —> 
Isom(y) a homomorphism such that 7r(A) acts c-minimally on Y and 7r(T) is not 
elementary. Then -IT extends continuously to A. 

REMARKS: (1) A group of isometries of a CAT(—l)-space Y is called elementary, 
if it has an invariant subset A c F consisting of one or two points. 

(2) In the case where T is a lattice in the automorphism group of a d-regular 
tree Td (d > 3) and y is a locally finite tree, Theorem 2B is due to Lubotzky-
Mozes-Zimmer [L-M-Z]. 

(3) Gao has recently (October 94) proved Theorem 2B in the case where T 
is a divergence group (see Section 3.3) in G = Isom(X), X is locally compact 
complete CAT(—1), and Y is separable complete CAT(—1). 

The proof of Theorem 2 relies on uniqueness properties of suitable ubound-
ary" maps. For 2A one shows that, if (B,p) is a (r',G)-boundary for every 
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subgroup of finite index T' < T, and IT : T —> M(k) is a homomorphism with 
Zariski dense and unbounded image, there is a proper fc-subgroup L < HI such 
that for any T' < T, of finite index, there exists a unique T'-equivariant measur
able map ip : B —> H(fc)/L(fc) (see [Zi 1], [A'C-Bu] for different constructions of 
boundary maps). In case 2B one shows that, if (B,p) is a (r , G)-boundary and 
7T : T —> Isom(y) a homomorphism such that 7r(r) is not elementary, there is a 
unique T-equivariant measurable map if : B —• y(oo) (see [Bu-Mo]). 

3 (r, G)-boundaries and commensurators 

Theorem 2 is of interest when (r, G) admits a boundary and Corner is not discrete. 
We have the following sources for such groups: 

3.1. Arithmetic lattices. Let us consider G = I l L i ^ f c ) an (* P — I I ^a (&<*), 
where G a is a connected, simply connected fca-almost simple, ^-isotropic group 
and P a < G a a minimal ka -parabolic subgroup of GQ. The homogeneous space 
B := G/P with its G-invariant measure class is a (r, G)-boundary for any lattice 
r < G. When the lattice T is arithmetic, its commensurator is dense in G. By 
Margulis' arithmeticity theorem this is always the case when £]rankfcaGa > 2 
and T is irreducible. 

3.2. Regular tree lattices. Consider G = Aut Td, d>3, and P < G the stabilizer of 
a point in T^(oo). Again the homogeneous space B := G/P with its G-invariant 
measure class is a (r , G)-boundary for any lattice V < G. Here BP2 follows from 
the Howe-Moore property of Aut Td [Lu-Mo]. We remark that cocompact lattices 
in Aut Td have dense commensurators, sec Section 5. 

3.3. Divergence groups. Let X be a locally compact and complete CAT(—l)-space, 
H < Isom(X) a closed subgroup, and 

6H = inf{s > 0 : Px(s) = f e-
sd(hx>x)dh < +00} 

its critical exponent, which does not depend on the choice of x e X. A nonelemen-
tary, discrete subgroup T < Isom(X) is called a divergence group if or < +00 and 
Px(f*r) = +00. Generalizing the Patterson-Sullivan theory of Kleinian groups (see 
[Pa], [Su], and [Bo] for compact quotients of CAT(—l)-spaces), one constructs a 
canonical measure class pr on X(oc) that is invariant under G := Com I som(x)r < 
Isom(X) and such that (X(oo),/xr) is a (r',G)-boundary for any subgroup T' of 
finite index in T. Hence when T is a divergence group, Theorem 2 may be applied 
to any subgroup A < Isom(X) with T < A < ComIsom(x)F- Concerning property 
BP1, Adams [Ad] has shown that when X is at most of exponential growth, the 
action on X(oc) of any closed subgroup of Isom(X) is universally amenable. 
We mention the following examples of divergence groups (see [Bu-Mo]): 

(a) any lattice in Isom(X) with Isom(X)\X compact, is a divergence group; 

(b) let A be a tree of finite groups with edge indexed graph (see [Ba-Ku] for 
definitions), 

b a\ 1 02 1 
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where b>2 and not all a^'s are 1. Let R be the radius of convergence of the power 
series P(x) := ]Cfcli(afc ~~ l)afc-i • • • aixk » T the universal covering tree, and T the 
fundamental group of A. Then T is a divergence group if and only if P(R)>-^. 
This happens for example if P is rational. When the edge indexed graphs associated 
respectively to AutT\T and A coincide (e.g. b ^ a* + 1, Vi) then T is cocompact 
in AutT and AutT is not compactly generated. One can show that no (r, Aut T)-
boundary is a homogeneous space of AutT. Finally, one can choose the vertex and 
edge groups of A in such a way that C o r n e t TT is dense in AutT. 

(c) Let T < Aut T4 be the fundamental group of the Cayley graph of the 
free abelian group on two generators. Then T is a divergence group whose com
mensurator is dense in Aut T4. 

4 Lattices in higher rank groups and CAT(-l)-spaces 

THEOREM 3. [Ad], [Bu-Mo] Let T be an irreducible lattice in G = ] la=i &<*(ka), 
where GQ is a simply connected, ka-almost simple, ka-isotropic group and $^Q=I 
rankfcQGQ > 2. Let Y be a locally compact, complete CAT(-l)-space and n : F —> 
Isom(y) a homomorphism with nonelementary image. Let X C Y be the closed 
convex hull of the limit set of7r(T). Then -IT :T —> Isom(X) extends to a continuous 
homomorphism of G, factoring through a proper homomorphism from a rank one 
factor of G into lsom(X). 

When all the almost simple factors of G have rank at least 2, 7r(r) must 
be elementary; when Isom(y) has finite critical exponent, stabilizers of boundary 
points are amenable and, as T has property T, 7r(r) is relatively compact and 
hence fixes a point in Y. 

See [Ad, Theorem 11.2] in the case where G = G(R) (n = 1) and [Bu-Mo] in 
the general case. 

THEOREM 4. [Ad] Let M be a connected, compact real analytic manifold equipped 
with a nontrivial real analytic action of a simple Lie group G of real rank >2. 
Assume that G preserves a probability measure and a real analytic connection. 
Then iri(M) cannot act properly discontinuously on a locally compact CAT(-l) 
space that is at most of exponential growth. 

5 Uniform tree lattices 

A uniform tree is a locally finite tree X whose automorphism group contains a 
discrete subgroup T such that T\X is finite. In particular, such a subgroup T is a 
cocompact lattice in Aut X. Uniform trees are characterized by the property that 
Aut X\X is finite and Aut X is unimodular [Ba-Ku]. It is a remarkable fact that 
for a uniform tree X, the commensurators of any two cocompact lattices in Aut X 
are conjugate [Le], [Ba-Ku]. Denoting by C(X) a representative of this conjugacy 
class of subgroups, we have 

THEOREM 5. [Li] C(X) is dense in Aut X. 
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This was conjectured by Bass and Kulkarni who proved it for regular trees, 
see [Ba-Ku]. 

Theorem 1 and 2B are useful in studying the problem of whether C(X) 
determines X. The analogous problem of whether Aut X determines X was solved 
by Bass and Lubotzky, see [Ba-Lu]. Concerning the former, we have a complete 
answer only in the case of regular trees. 

COROLLARY 1. [L-M-Z] If p : C(Td) —> C(Tm) is an isomorphism, then d = m 
and p is conjugation by an element of Aut T^. 

In [L-M-Z] it is also shown that C(Td), d>3, is not linear over any field. The 
proof of this fact used a description of the commensurator of certain cocompact 
lattices in Aut Td in terms of "recolorings" of d-regular graphs. This was also used 
there to give a proof, via length functions, of Theorem 2B for the case where 
A = C(Td), Y is an abitrary tree, and the lattice T is cocompact. 

Applying Theorem 2 one has 

COROLLARY 2. [Bu-Mo] Let X be a uniform tree all of whose vertices have degree 
>3. Assume that Aut X acts c-minimally on X and is not discrete. Then C(X) 
is not linear over any field. 

Observe that if Aut X is discrete, the group C(X) = Aut X is virtually free 
and finitely generated, hence linear. In connection with Corollary 2, the subgroup 
Au t + X generated by all oriented-edge stabilizers plays an important role. It follows 
from a theorem of Tits [Ti] that if X is uniform and Aut X acts c-minimally, then 
Au t + X is simple. In the proof of Corollary 2 one shows that if 7r is a linear 
representation of C(X), the subgroup Ker 7r D Au t + X is nonamenable. It would 
therefore be interesting to know whether C(X) fl Au t + X is simple. 

Acknowledgments. I thank Norbert A'Campo and Shahar Mozes for sharing their 
insights with me. 

References 
[A'C-Bu] N. A'Campo and M. Burger, Réseaux arithmétiques et commensurateurs 

d'après G. A. Margulis, Invent. Math. 116 (1994), 1-25. 
[Ad] S. Adams, Reduction of cocycles with hyperbolic targets, preprint (1993). 
[Al] A. D. Alexandrov, Über eine Verallgemeinerung der Riemannschen Geome

trie, Schriftenreihe des Forschungsinstituts für Mathematik, Berlin, Heft 1 
(1957), 33-84. 

[B] W. Ballmann, Lectures on spaces of non-positive curvature, preprint (1994). 
[B-Br] W. Ballmann and M. Brin, Polygonal complexes and combinatorial group the

ory, Geom. Dedicata 50 (1994), 165-191. 
[B-G-S] W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of nonpositive cur

vature, Progr. Math. 61, Birkhäuser, Boston, MA, 1985. 
[Ba] H. Bass, Covering theory for graphs of groups, J. Pure Appi. Algebra 89 

(1993), 3-47. 
[Ba-Ku] H. Bass and R. Kulkarni, Uniform tree lattices, J. Amer. Math. Soc. 3 (1990), 

843-902. 



768 Marc Burger 

[Ba-Lu] H. Bass and A. Lubotzky, Rigidity of group actions on locally finite trees, 
preprint. 

[Be 1] N. Benakli, Polyèdres à géométrie locale donnée, C R . Acad. Sci. Paris, t. 313, 
Série I (1991), 561-564. 

[Be 2] N. Benakli, Polyèdres hyperboliques à groupe d'automorphisme non discret, 
C R Acad. Sci. Paris, t. 313, Série I (1991), 667-669. 

[Bo] M. Bourdon, Actions quasi-convexes d'un groupe hyperbolique, flot géodésique, 
Thèse, Univ. de Paris-Sud, 1993. 

[Bri-Ha] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, in 
preparation. 

[Bro] K. Brown, Buildings, Springer, Berlin and New York, 1993. 
[Bru-Ti] F. Bruhat and J. Tits, Groupes réductifs sur un corps local L Données radi-

cielles valuées, IHES Pubi. Math. 41 (1972), 5-251. 
[Bu-Mo] M. Burger and S. Mozes, CAT(-l)-spaces, divergence groups and their com

mensurators, preprint (1993), revised version (1994). 
[Da] M. W. Davis, Nonpositive curvature and reflection groups, Lectures given at 

the Eleventh Annual Western Workshop in Geometric Topology, Park City, 
Utah, June 1994. 

[Gr 1] M. Gromov, Infinite groups as geometric objects, Proc. Internat. Congress 
Math., Warszawa (1983), 385-392. 

[Gr 2] M. Gromov, Hyperbolic groups, in: Essays in group theory, (S. M. Gersten, 
ed.), M.S.R.I. Publications 8, Springer, Berlin and New York (1987), 75-263. 

[Ha] A. Haefliger, Complexes of group and orbihedra, in: Group theory from a 
geometrical viewpoint, (E. Ghys, A. Haefliger, and A. Verjovsky, eds.) ICTP 
Trieste, World Scientific, Singapore (1991), 504-540. 

[Hag] F. Haglund, Les polyèdres de Gromov, C R . Acad. Sci. Paris t. 313, Série I 
(1991), 603-606. 

[Ko-Sc] N. J. Korevaar and R. M. Schoen, Sobolev spaces and harmonie maps for 
metric space targets, Comm. Anal, and Geom. 1, 4 (1994), 561-659. 

[Le] F. T. Leighton, Finite common coverings of graphs, J. Combin. Theory Ser. 
B 33 (1982), 231-238. 

[Li] Y.-S. Liu, Density of commensurability groups of uniform tree lattices, J. Al
gebra 165 (1994), 346-359. 

[Lu] A. Lubotzky, Lattices in rank one Lie groups over local fields, G.A.F.A. 1 no 
4 (1991), 405-431. 

[Lu-Mo] A. Lubotzky and S. Mozes, Asymptotic properties of unitary representations 
of tree automorphisms, in: Harmonic analysis and discrete potential theory 
(M.A. Picardello, ed.), Plenum Press, New York (1992), 289-298. 

[L-M-Z] A. Lubotzky, S. Mozes, and R. J. Zimmer, Superrigidity of the commensura
bility group of tree lattices, Comm. Math. Helv. 69 (1994), 523-548. 

[Ma 1] G. A. Margulis, Discrete groups of motions of manifolds of non-positive cur
vature, Amer. Math. Soc. Transi. 109 (1977), 33-45. 

[Ma 2] G. A. Margulis, On the decomposition of discrete subgroups into amalgams, 
Selecta Math. Soviet 1 2 (1981), 197-213. 

[Ma 3] G. A. Margulis, Arithmeticity of irreducible lattices in semisimple groups of 
rank greater than one, Invent. Math. 76 (1984), 93-120. 

[Ma 4] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebn. 3. Folge 
17, Springer (1991). 

[Ma 5] G. A. Margulis, Superrigidity of commensurability subgroups and generalized 
harmonic maps, preprint, preliminary version, June 1994. 



Rigidity Properties of Group Actions on CAT(0)-Spaces 769 

[Mou] G. Moussong, Hyperbolic Coxeter groups, Ph.D. thesis, Ohio State Univ. 
(1988). 

[Pa] S. J. Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976), 
241-273. 

[Sp] B. Spieler, Nonpositively curved orbihedra, Ph.D. thesis, Ohio State Univ. 
(1992). 

[Sp-Zi] R. J. Spatzier and R. J. Zimmer, Fundamental groups of negatively curved 
manifolds and actions of semisimple groups, Topology 30 no. 4 (1991), 591-
601. 

[Su] D. Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geo
metrically finite Kleinian groups, Acta Math. 153 (1984), 259-277. 

[Ti] J. Tits, Sur le groupe des automorphismes d'un arbre, in: Essays on topology 
and related topics: Mémoire dédié à Georges de Rham (A. Haefliger and R. 
Narasimhan, eds.), Springer-Ver lag, Berlin and New York (1970), 188-211. 

[Wa] A. Wald, Begründung einer Koordinatenlosen Differentialgeometrie der Flä
chen, Ergebnisse eines mathematischen Koloquiums 7 (1935), 2-46. 

[Zi 1] R. J. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, Basel and 
Boston, MA (1984). 

[Zi 2] R. J. Zimmer, Actions of semisimple groups and discrete subgroups, Proc. 
Internat. Congress Math., Berkeley (1986), 1247-1258. 

[Zi 3] R. J. Zimmer, Representations of fundamental groups of manifolds with a 
semisimple transformation group, J. Amer. Math. Soc. 2 (1989), 201-213. 



Smooth Representations of p-adic Groups: 
The Role of Compact Open Subgroups 

COLIN J. BUSHNELL 

King's College London 
Department of Mathematics 
Strand, London WC2R 2LS, United Kingdom 

This article concerns the method of investigating the smooth (complex) represen
tations of a reductive p-adic group via the method of restriction to compact open 
subgroups, and amounts largely to a report on joint work of the author and Kutzko. 
Let G denote the group of F-points of some connected reductive algebraic group 
defined over the non-Archimedean local field F. The basic idea of the method is 
to isolate a family T of irreducible smooth representations of compact open sub
groups of G, and then to describe a given irreducible smooth representation of G 
in terms of those members of T that it contains. 

This is the approach of [7], where G = GL(N, F) and T is the family of simple 
types. Simple types are defined directly and explicitly (see Section 3 below). They 
have the following properties: 

(1) an irreducible smooth representation of G contains at most one simple 
type, up to G-conjugacy; 

(2) the irreducible representations containing a fixed simple type can be clas
sified via an isomorphism of Hecke algebras; 

(3) an irreducible supercuspidal representation of G contains some simple type, 
and is induced from a related representation of an open compact mod center 
subgroup of G. 

One can extend (2) to obtain a classification of all the irreducible smooth rep
resentations of G; not every such representation contains a simple type, but one 
reduces to this case via an easy parabolic induction. This classification is obtained 
without any recourse to either global methods or the Zelevinsky classification [1], 
[22] (see also [21] for a convenient exposition). Moreover, many properties of the 
parabolic induction functors central to the Bernstein-Zelevinsky approach can be 
recovered from the compact open subgroup approach. 

When one relates the simple type classification to the Zelevinsky classifica
tion, one uncovers what now seems a significant fact: simple types are examples 
of what we call s-types, for certain points s of the "Bernstein spectrum" B(G) of 
G. (Definitions will be given below.) This is the viewpoint of [8]. The notion of 
s-type in G can be formulated when G is the group of F-points of any connected 
reductive group defined over F . One can then ask whether an s-type exists for 
every s G B(G). (The approach of [8] is slightly more general; we have simplified 
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it here to save space.) If this property holds for G one can take for T above the 
set of all s-types, and one obtains a complete description of the category of all 
smooth representations of G, along with (slightly weaker) analogues of (l)-(3). 

One has the necessary results for GL(N) [8], [9], and many of them for SL(N). 
They constitute a method whose power we are only beginning to appreciate. For 
more general groups, little is currently known, but some recent results (see Section 
5) seem consistent with this approach. 

The axiomatic approach of [8] is so simple that we describe it first, after some 
preliminaries. We then summarise the existence theorems that lend it substance 
in the case of linear groups. 

Throughout, F denotes a non-Archimedean local field with discrete valuation 
ring OF- We write pp for the maximal ideal of Op and assume that the residue field 
lcF = op/pF is finite. 

1 Hecke algebras and compact open subgroups 

For this section, G denotes a locally profinite group, by which we mean that G is 
locally compact, totally disconnected, and has a countable base of open sets. We 
also require that G be unimodular. Let dg be some Haar measure on G. The space 
H(G) of locally constant, compactly supported functions (j) : G —> C is then an 
algebra under convolution, 

4>*1>(g) = I <ß(x)*ß(g-1x)dx, geG, faiß e H(G). 
JG 

Let K be a compact open subgroup of G, and p an irreducible smooth representa
tion of K on some (necessarily finite-dimensional) complex vector space W. This 
defines a function ep e H(G) by 

ep(g) = < measK 
[0 if geG, g£K. 

Here meas denotes measure with respect to dg and trw the trace for endomor-
phisms of W. The function ep is an idempotent element of H(G), ep * ep = ep, so 
we get a subalgebra ep * H(G) • ep of H(G) with unit element ep. 

Next, let 7T be some smooth representation of G on a complex vector space 
V. As usual, we extend 7r to give an action of H(G) on V, 

TT(0)V = / <j)(g)7r(g)vdg, 0 e H(G), v e V. 
JG 

Let Vp denote the space of p-isotypic vectors in V. Thus, Vp is the sum of all 
irreducible K-subspaces of V that are equivalent to p. We say that (7r, V) contains 
p if Vp T̂  {0}. We have Vp = 7r(ep)V, whence Vp becomes a module over the 
algebra ep • H(G) * ep. This leads to the following elementary observation. 

(1.1) The process V >—> Vp induces a bijection between the set of equivalence 
classes of irreducible smooth representations VofG that contain p and the set of 
isomorphism classes of simple ep * H(G) • ep-modules. 
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(Here and throughout, if we have a ring R with unit 1^, we only consider R-
modules M with the property IRTU = m,m e M.) This straightforward generality 
gives the first indication that one might try to classify irreducible representations 
of G via modules over certain Hecke algebras. For this purpose, there is a more 
convenient algebra. Let (pv , Wy) denote the contragredient of (p, W). Let H(G, p) 
denote the space of compactly supported functions $ : G —+ End<c(Wv) such that 
$(kigk2) = pv(ki) o $(g) o py(k2), g e G, fc* e K. This is an algebra under 
convolution, called the Hecke algebra of compactly supported p-spherical functions 
on G. We then have 

(1.2) There is a canonical isomorphism 

H(G, p) ®c Ende(W) —^-> ep • H(G) * ep 

ofC-algebras with 1. 

For this (and other matters above), see [7], Chapter 4. In particular, the two Hecke 
algebras attached to (K, p) are canonically Morita equivalent and have identical 
module theories. The version H(G,p) is usually more convenient for structural 
investigations. 

Let us recall the classic example in which one uses a method of this kind. Let 
G denote the set of F-points of some connected reductive algebraic group defined 
over F . Let K be an Iwahori subgroup of G and let p be the trivial character of K. 
The irreducible smooth (therefore admissible) representations of G that contain 
p, i.e., that have a nontrivial Iwahori-fixed vector, are canonically parametrized 
by the set of simple modules over the algebra H(G,p). Here, of course, H(G,p) 
is just the subalgebra of H(G) consisting of Zf-bi-invariant functions. One has an 
explicit description of H(G,p) in terms of generators and relations [13]. When G is 
additionally of adjoint type, there is a parametrization [14] of the simple modules 
over H(G,p) in terms of L-group data. 

2 The Bernstein decomposition and types 

This starts with a précis of parts of [2], in slightly different language. For a more 
careful translation, see [8]. Again, F denotes a non-Archimedean local field, but 
in this section G is the group of F-points of a connected reductive algebraic group 
defined over F . We write (591(G) for the category of all smooth (complex) repre
sentations of G. 

We consider pairs (L,<r) consisting of (the group of F-points of) a Levi 
subgroup of G (defined over F) and an irreducible supercuspidal representation 
a of L. We allow the possibility L = G. For such a subgroup L, let Xaig(L) 
denote the group of F-rational homomorphisms L —• GL(1,F), and X(L) the 
group of homomorphisms L —> C x generated by those of the form I \-> ||x(0lls> 
where x ^ Xaig(L), s e C, and || || is the standard absolute value on F . Two 
such pairs (Li,ai) are equivalent if there exist g e G and \ £ ^(L2) such that 
L2 = L\ = g~xL\g and a2 = <T9 (8) x- We write B(G) for the set of equivalence 
classes here, and call it the Bernstein spectrum of G. 
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An irreducible smooth representation 7r of G determines an element 3(7r) of 
B(G) as follows. There exists a parabolic subgroup P of G, with Levi subgroup L 
say, and an irreducible supercuspidal representation a of L such that 7T is equiva
lent to a composition factor of the representation of G smoothly induced from the 
inflation of cr to P. We define 3(n) to be the equivalence class of (L,a) in B(G). 

Given an element s G B(G), we define a full subcategory 69t s(G) as follows. A 
smooth representation 7r is an object of 691 s (G) if and only if, for every irreducible 
subquotient 7To of 7T, we have 3(7r0) = s. From [2, (2.10)] we get: 

(2.1) The abelian category 691(G) is the direct product 

631(G) = Yl ®*S(G). 
sGß(G) 

In other words, if (ir, V) is a smooth representation ofG, the space V has a unique 
maximal G-subspace Vs such that Vs is an object of 691 s (G), and 

V= ]J Vs. 
seB(G) 

Moreover, for smooth representations (7^, Vi) of G, we have 

HomG(V!,V2) = Yl HomG(Vs, V|). 

Now we need some more generalities. Let K be a compact open subgroup of G and 
p be an irreducible smooth representation of K. We use the notation of Section 
1; in particular, if (7T,V) is a smooth representation of G, we write Vp for the 
/o-isotypic subspace of V. We also write V[p] for the G-subspace of V generated by 
Vp. We let &*Rp(G) denote the full subcategory of 691(G) whose objects are those 
V e |69t(G)| that satisfy V = V[p). We note in passing that 69lp(G) is not usually 
very interesting. In particular, it is not always closed under taking subquotients 
in 69t(G). However, we do have a functor 

mp : e?Kp(G) —> ep • H(G) • ep-OToD 

given by V i-> Vp. Composing with the Morita equivalence implied by (1.2), we 
get a functor 

Mp : 69t ,(G) —• H(G, p)-Moi). (2.2) 

(2.3) DEFINITION. Let s e B(G). Let K be a compact open subgroup of G and p 
be an irreducible smooth representation of K. The pair (K, p) is called an s-type 
if it has the following property: an irreducible smooth representation (n, V) of G 
contains p if and only if3(n) = s. 

We remark that this is slightly less general than the definition in [8]; its principal 
advantage here is brevity. 
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(2.4) THEOREM. Let s e B(G) and let (K, p) be an s-type. Then, for any smooth 
representation (7r, V) ofG, we have V[p] = Vs. Moreover: 

(1) If V is a smooth representation of G such that V = V[p], then every irre
ducible subquotient ofV contains p. 

(2) For any smooth representation V of G, the subspace V[p] is a direct Sum
mand ofV. 

(3) As subcategories of 691(G), we have 

6SRs(G) = 69tp(G). 

(4) The functor Mp of (2.2) is an equivalence of categories 

Mp : 69tp(G) — ^ W(G,p)-9rtoo. 

This is taken from [8, Section 4]. It demonstrates that the existence of types has 
powerful repercussions for the structure of 69Î(G). Among other things, it shows 
that the irreducible representations 7r with 3(TT) = s are parametrized by the 
simple modules over the Hecke algebra of an s-type. 

There are nontrivial examples of types. We shall consider one family below. 
However, another family has been known for a long time. Let s be the class of (L, a) 
in B(G), where L is a minimal Levi subgroup of G and a is its trivial representation. 
If K denotes an Iwahori subgroup of G and p the trivial representation of G, then 
(K,p) is an s-type: see [11, Theorem 3.7] for an exposition of this matter (due 
to Borei [3] and Casselman [12]). In this particular case, (2.4) retrieves, with very 
little effort, the results of [3] without recourse to the finiteness hypotheses imposed 
there. 

3 Simple types in linear groups 

We now construct a family of compact open subgroups of GL(N, F) and a family 
of irreducible smooth representations of these. This is taken from [7], especially 
Chapters 3 and 5. 

Let V be a finite-dimensional F-vector space and set A = Endir(Vr), G = 
Autir(V). If 21 is a hereditary o^-order in A with Jacobson radical ^3 (see [7, (1.1)] 
for a summary or [20] for a complete account), we write E/(2l) = t/°(2l) = 21x and 
t/n(2l) = 1 + q3n, n > 1. We also set £(») = {x e G : x~l^x = 21}. In fact, Ä(Ä) 
is the G-normalizer of C/(2l). Recall that a stratum in A is a 4-tuple [21, n, m.b], 
where 21 is a hereditary o^-order in A with radical 9ß, n > m are integers, and 
b e yß~n. Two strata [2l,rc,ra, hi) are equivalent if òi = b2 (mod ^ß~m). 

A stratum [21, n, m, ß] is called pure if the algebra E = F[ß] is a field, with 
Ex C £(21), and ,0.21 = ^ß~n. In this situation, we have an adjoint map ap : A —• A, 
x i—> ßx — xß. We define a quantity &o(/3.2l) by 

W , » ) = min{t G Z : «P* n aß(A) C aß(^)}. 

We then have fc0(A2l) = —oo (this is the case E = F) or else ko(ß,$l) ^ — n. If 
&o(/?,2l) < — n, we call ß minimal over F . 

A pure stratum [2l,ra,ra,/3] is called simple if m < — fc0(/3,2l). The following 
result (taken from [7, (2.4.1)]) is fundamental: 
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(3.1) THEOREM. Let [21, n, ra, ß] be a pure stratum. There exists a simple stratum 
[2l,n,m,7] equivalent to [2l,n,m,/3]. The field degree [F[-y] : F] divides [F[ß] : F], 
and we have equality here if and only if [21, n, ra, ß] is simple. 

We take a simple stratum [21, rc, 0,/?]. To this, we attach two o^-orders 

£(/3, a ) C 3(ft2l) 

in A as follows. First, set E = F[ß], B = E n d ^ V ) , and 93 = 21 fi B (which is 
a hereditary o^-order in B). We write f)n = 9) Pi ^3 n , ra ^ 1, and similarly for 3-
Suppose first that ß is minimal over F . We set 

^(/3,2t) = S3 + «pW+ 1 , 

3(&2l) = Q3 + <pHH. 

Here [ ] denotes the greatest integer function. Suppose now that ß is not minimal 
over F . Thus, &o(/3,2l) = —r, where 0 < r < n. The stratum [21, n, r, /3] is not 
simple, but it is equivalent to a simple stratum [21, n, r, 7] by (3.1). Inductively, we 
can assume we have defined #(7,21), 3(7,21). We then set 

$(/3,2l) = «B + $W + 1 (7 ,2 l ) , 

003,21) = 9 3 + 3 ^ ] (7,21). 

Much effort has to go into proving that ft and 3 are indeed rings, and that the 
definitions (3.3) are independent of choices. We write H* = 1 + #*, J1 = 1 + 3 S 
O 1, and J = 3 X -

The next step is to define a finite family C(2l,/3) (= C(2l,0,/3) in [7] nota
tion) of abelian characters of the group #*(/?, 21). Again the definition is quite 
straightforward, but much work is required to show it that is a definition. For 
this, we need to choose a continuous character ipp of the additive group of F , 
with conductor pp. We set iß A = V>F ° ^A/F- For b e A, we write ^ for the 
function x 1—> -0^(o(a: - 1 ) ) , I G A . Suppose first that ß is minimal over F , so that 
JET1 (ft a ) = t /1(»)t /[n /2]+ 1(2l) . The set C(2l,/3) then consists of all characters 0 
of H1 such that 

0 | £ / [ ? ] + 1 ( 2 l ) = ^ , 

ö|C/1(Q5) = 0 o d e t ß , 

for some character <ß of U1(OE), where detß is the determinant mapping Bx —• 
F x . In the general case (3.3), we have Hl(ß,VL) = l / ^ B J f l W 2 ' * 1 ^ * ) . Here 
C(2t, /5) consists of those characters 6 such that 

9 I if[5]+1(7 ,2l) = (fib I ff[S]+1(7,2l)) - ^ - 7 , 

0 I * / 1 (33) = g o d e t s , 

for some #o € C(2l, 7) and some character (j> of Ï71(û£). 
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In the third step, we transfer attention to the group J 1 . 

(3.4) PROPOSITION. Let [2l,ra,0,/?] be a simple stratum in A as above, and let 
0 e C(2l,/3). There exists a unique irreducible representation rj of J1 (ß, 21) such 
that rj | ff1(/3,2l) contains 0. Indeed, the restriction of n to H1 is a multiple 
of 0. Further, an element g e G intertwines the representation rj if and only if 
g e JBXJ, where J = J(ßM). 

The fourth step is rather more subtle. 

(3.5) PROPOSITION. Let rj be as in (3.4). There exists an irreducible representa
tion K of the group J(ß, 21) with the following properties: 

(1) K\ J1(/3,2l)=r?; 
(2) every g e G that intertwines ra also intertwines K. 

Further, these conditions determine K uniquely up to tensoring with a character 
of the form (j) o detjg, where </) is a character ofU(ûE) that is trivial on U1(OE)-

By definition, we have J(/3,2l) = U(1B)Jl(ß&), so J/J1 * U^/U1^). We 
now assume that 21 is a principal order; this has the effect that 

J(ß, 21)/J1 (ß, 21) s* GL(f, kE)e, (3.6) 

for integers e, / such that ef[E : F] = diniF(V). We take an irreducible cuspidal 
representation of GL(f, k#), form its e-fold tensor power, and inflate this to a 
representation o of J(ß, 21). We then form the representation A = ft<g>cr of J(ß, 21), 
with K as in (3.5). Pairs (J(/?,2l), A) constructed in this way are what we call 
simple types in G. (We have omitted a special case here. This corresponds to the 
situation where E = F , J(/3,2l) = C7(2l), and where ra is trivial: see [7, (5.5.10)] 
for the full definition.) 

The next task is to compute the Hecke algebra H(G,X) for one of these 
simple types (J, A). If K is a local field whose residue field has qx elements, and if 
l m denotes the trivial character of an Iwahori subgroup of GL(m,K), the Hecke 
algebra H(GL(m,K), l m ) has an explicit description in terms of generators and 
relations: see [7, (5.4)] for the version we have in mind. The main point is that 
this description depends only on the parameters ra and qx> We therefore write 
n(GL(m,K),lm) =H(m,qK). 

(3.7) THEOREM. Let (J, A) be a simple type in G as above. We then have 

H(G,\)^H(e,qE), 

as C-algcbras with 1, with e, f as in (3.6). 

This isomorphism is canonical up to composition with a rather trivial family of au
tomorphisms oîTi(e,q*E). Invoking (1.1), the irreducible representations of G that 
contain A are parametrized by the simple H(e, ç^)-modules. These are known from 
[14] (which here amounts to a very special case of the Zelevinsky classification). 
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4 Main theorems for linear groups 

Again, we take G = Autir(V) = GL(N,F). Suppose we have a simple type (J, A) 
in G defined from a simple stratum [21, ra, 0,,ö] as in Section 3 (the notation of 
which we continue to use). We call (J, A) a maximal simple type if the parameter 
e of (3.6) is equal to 1. 

(4.1) THEOREM. Let (J, A) be a simple type in G as above, and assume it is 
maximal. Then: 

(1) The representation A extends to a representation A of ExJ(ß, 21). 
(2) The representation 7r0 = Ind(yl) of G smoothly induced by A is irreducible 

and supercuspidal. 
(3) An irreducible smooth representation n of G contains A if and only if 

7T = 7To &> X ° det, for some unramified quasicharacter \ of Fx. 
(4) Let s e B(G) be the equivalence class of the pair (G, 7To). Then (J, A) is an 

s-type. 

The first three assertions come from [7, Chapter 6] and (4) follows from (3). Note 
in (3) that the representation 7r is induced from A <g> \ ° det. This result has a 
partial converse. 

(4.2) THEOREM. Let 7r be an irreducible supercuspidal representation ofG, and 
suppose that n contains some simple type (J, A). Then (J, A) is maximal. 

To complete the picture regarding supercuspidal representations, one needs the 
following: 

(4.3) THEOREM. Let it be an irreducible supercuspidal representation ofG. Then 
7T contains some simple type. 

This presently requires a rather elaborate argument, occupying most of Chapter 8 
of [7]. There, one invents a new family of "split types" ; a representation containing 
no simple type must contain a split type, and a representation containing a split 
type cannot be supercuspidal. 

We now need to describe the set of representations of G that contain a non-
maximal simple type. The following is taken from [7, (8.4.3)], filtered through the 
viewpoint of [8]. 

(4.4) THEOREM. Let (J, A) be a simple type in G = GL(N,F) and dcfìne the 
integer e by (3.6). There exists a maximal simple type (JQ,\O) in GL(N/e,F) 
with the following property: 

View GL(N/e,F)e as a Levi subgroup of G, and let s e B(G) denote the 
equivalence class of the pair (GL(N/e, F)e,7To ® . . . ® 7To), where 7TQ is some ir
reducible (necessarily supercuspidal) representation ofGL(N/e,F) containing A0. 
An irreducible smooth representation it then contains A if and only if 3(7r) = s. 

In particular, (J, A) is an s-type. 

We have so far said nothing concerning uniqueness. Two simple types that occur 
in the same irreducible representation of G must intertwine in G for elementary 
reasons, so the uniqueness question is answered by: 
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(4.5) THEOREM. Let (J*, A*), i = 1,2, be simple types in G = GL(N<F), and 
suppose that they intertwine in G. There then exists g e G such that J2 = Jf and 
A2 = A?. 

In other words, simple types that intertwine arc conjugate. This version of the 
result is [8, (5.6)], but it depends heavily on results from [7]. 

Remarks: 
(1) Underlying the Hecke algebra isomorphism (3.7) is the fact that one can 

find explicitly the set of g e G that intertwine a given simple type. The same is 
true of the intermediate stages of the construction. This is what effectively leads 
the whole procedure culminating in the simple types. 

(2) One can give a systematic, but intrinsically noncanonical, procedure for 
listing the conjugacy classes of simple types in GL(N, F). See [10] for a discussion 
of such matters. 

(3) The analogues of Theorems (4.1)-(4.5) and (3.7) all hold for SL(N, F); 
see [8] and [6]. In particular, any irreducible supercuspidal representation of the 
group SL(N,F) is induced from a compact open subgroup. 

(4) The Hecke algebra procedure is also effective for describing the discrete 
series: see [7, (7.7)] and [6, Section 8]. 

5 Further results 

In the case G = GL(N,F), we can combine (4.5) with (2.4) and (3.7) to get a 
complete description of the factors &9is(G) when s e B(G) is of the form in (4.5). 

For GL(N,F), one can show that there exists an s-type for any s e B(G). 
This requires the "semisimple types" of [9], which are constructed directly from 
simple types. Their Hecke algebras are just what one would expect, namely tensor 
products of affine Hecke algebras of the form H(m, qF), where qp is the cardinality 
of kp. 

In the general case, where G is just a connected reductive group over F , one 
can at least ask whether every s G B(G) gives rise to an s-type. (There is a slightly 
looser and more credible version of this idea in [8].) There are no more than hints 
about this at present. The paper [18] gives a collection of candidates for s-types 
for certain s in general groups, and [17] suggests further possibilities in classical 
groups. Historically, simple types arose from refining the fundamental strata of [4], 
repeatedly using ideas of [15]. Analogues of fundamental strata are available for 
classical groups in [16], and something very similar for a wide class of groups in 
[19]. Whether these are susceptible to a similar analysis at present remains to be 
seen. 

In a totally different direction, even the bare précis here shows that simple 
types in GL(N) are arithmetical, or at least field-theoretical, objects. This leads 
naturally to the question of whether they reflect any of the "functoriality" prop
erties demanded by the Langlands conjectures. There is some definite evidence to 
support this, in the context of tamely ramified base-change; see [5]. 
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1. Introduction 

Let G be a Lie group and T be a lattice in G; that is, T is a discrete subgroup 
such that G / r admits a finite Borei measure invariant under the action of G (on 
the left). On the homogeneous space G/T there is a natural class of dynamical 
systems defined by the actions of subgroups of G. The study of these systems 
has proved to be of great significance from the point of view of dynamics, ergodic 
theory, geometry, etc. and has found many interesting applications in number 
theory. The systems have been explored from various angles; however, I would like 
to concentrate here on giving an exposition of certain recent developments on the 
theme of the following classical theorem on orbits of what are called the horocycle 
flows. 

THEOREM 1 (Hedlund, 1936). Let G = SL(2,R) andT be a lattice in G. ForteR 

let ht = [ ) and let H = {ht \ t e R}. Then every H-orbit on G/T is either 

periodic or dense in G/T. If G/T is compact then all orbits are dense, whereas 
if G/T is noncompact then the set of points with periodic orbits is nonempty and 
consists of finitely many immersed cylinders, each of which is dense in G/T. 

In the compact quotient case the action is "minimal", as there are no proper 
closed invariant subsets. It may be recalled that by Kronecker 's theorem the same 
holds for the translation flows on the ra-dimensional torus, given by actions of 
{(elOLlt,..., etCLnt) 11 e R} where a\,... ,an eR are linearly independent over Q. 
Similar minimality results are also known for one-parameter flows (and also affine 
transformations) on nilmanifolds and more generally for solvmanifolds, thanks to 
the work of Furstenberg, Parry, Auslander and Brezin etc.; see [D6] for some details 
and references. In many of these results minimality is concluded from "unique 
ergodicity", namely uniqueness of the invariant probability measure. The same 
was proved in the compact quotient case of Theorem 1 by Furstenberg: 
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THEOREM 2 (Furstenberg, 1972). Let G, T, and H be as in Theorem I. Suppose 
further that G/T is compact. Then the G-invariant probability measure is the only 
H-invariant probability measure on G/T. 

The result implies in particular that every orbit is "uniformly distributed" 
with respect to the G-invariant measure; in the general notation, the orbit of 
x e G/T under a one-parameter subgroup {ut} (we implicitly assume t varying 
in R, in using this notation) is said to be uniformly distributed with respect to a 
measure p on G/T if for any bounded continuous function (p on G/T 

— I ip(utx)dt-+ I ip dp as T 
T Jo JG/r 

The minimality and unique ergodicity assertions for horocycle flows (in the 
compact quotient case) were generalized by several authors, including Bowen, 
Veech, Ellis and Perrizo and also the present author, to what are called horo-
spherical flows, on more general Lie groups (see [D6] for some details). 

At this point I should also mention that satisfactory criteria were known by 
the 1970s for ergodicity of subgroup actions on homogeneous spaces (see [M3] and 
[D6] for some details). Ergodicity, which means that there is no measurable invari
ant subset that is nontrivial in the sense that the set as well as its complement are 
of positive measure, implies in particular that orbits of almost all points are dense. 
Similarly, by BirkhofFs ergodic theorem it also implies that orbits of almost all 
points are uniformly distributed with respect to the measure in question. Though 
the results in this stream pertain mainly to orbits of "almost all" points, many 
developments in this regard play a crucial role in the understanding of closures of 
arbitrary orbits in special cases. 

Another feature of Theorem 1, of main interest to us in this article, is that 
for the systems considered, even when there are both dense as well as nondense 
orbits (as in the noncompact quotient case) the closures of all orbits are "nice" 
objects geometrically. A search for such a phenomenon in a more general set up 
got an impetus from an observation of Raghunathan, my teacher, that a well-
known conjecture going back to a paper of Oppenheim from 1929, stating that 
for any nondegenerate indefinite quadratic form in three or more real variables 
the set of values at integral points is dense in R unless the form is a scalar mul
tiple of a rational form, would followT if it is shown that all orbits of SO(2,1) 
on SL(3, R)/SL(3,Z) are either closed or dense. In this context he proposed the 
following conjecture. 

CONJECTURE 1 Let G be a Lie group and T be a lattice in G. Let U be a unipotent 
subgroup of G (that is, Adu is a unipotent linear transformation for all u e U). 
Then the closure of any U -orbit is a homogeneous set; that is, for any x e G/T 
there exists a closed subgroup F of G such that Ux = Fx. 

(In [D2] where the conjecture first appeared in print the statement is some
what weaker, on account of the author's predilection at that time.) 

The minimality results mentioned above confirm the conjecture in their re
spective cases. In a paper in 1986 I verified the conjecture for horospherical flows 
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on not necessarily compact homogeneous spaces of reductive Lie groups; a par
tial result was obtained earlier in a joint paper with Raghavan and was applied 
to study orbits of euclidean frames under actions of SL(n,Z) and Sp(n,Z) (see 
[M3] and [D6] for some details). The result was generalized to all (not necessarily 
reductive) groups by Starkov (see [D6] for details). 

In [Dl] and [D2] I obtained a classification of invariant measures of maximal 
horospherical flows on not necessarily compact homogeneous spaces of reductive 
Lie groups. The SL(2,R) case of this was later applied to obtain a result on the 
distribution of the orbits of the horocycle flows as in Theorem 1, in [D3] for the 
case of T = SL(2,Z) and in [DS] for any lattice in SL(2,R). 

THEOREM 3 (Dani and Smillie, 1984). Let the notation be as in Theorem 1. Then 
every nonperiodic orbit of {ht} on G/T is uniformly distributed with respect to the 
G-invariant probability measure. 

A measure analogue of Raghunathan's conjecture was also formulated in [D2]. 
In keeping with the set up of Conjecture I, it may be stated as follows. 

CONJECTURE 2 Let G, T, and U be as in Conjecture I. Let p be a U-invariant 
ergodic probability measure on G/T. Then there exists a closed subgroup F of G 
such that p is F-invariant and supp/z = Fx for some x e G/T (a measure for 
which this condition holds is called algebraic). 

In a remarkable development both of these conjectures were recently proved 
by Ratner, through a series of four papers (see [RI], [R2] and the references there). 
In fact, she proved the results for a larger class of actions; for connected Lie 
subgroups U her result on invariant measures may be stated as follows. 

THEOREM 4 (Ratner, 1991). Let G be a connected Lie group and T be a discrete 
subgroup of G. Let U be a Lie subgroup that is generated by the unipotent one-
parameter subgroups contained in it. Then any finite ergodic U-invariant measure 
on G/T is algebraic. 

(I may mention here that recently Margulis and Tomanov have given another 
proof of the above theorem in the case of algebraic groups; their proof bears a 
strong influence of Ratner's original arguments but is substantially different in its 
approach and methods; see [MT].) 

Using Theorem 4 together with a result from [D4] (similar to Theorem 12 
below) Ratner proved in [R2] the following result on the distribution of orbits of 
unipotent one-parameter subgroups, generalizing Theorem 3; the same conclusion 
was also deduced from Theorem 4 by Nimish Shah [SI] for reductive Lie groups 
of R-rank 1. 

THEOREM 5 (Ratner, 1991). Let G be a connected Lie group and T be a lattice 
in G. Let U = {ut} be a unipotent one-parameter subgroup of G. Then for any 
x e G/T there exists an algebraic probability measure p such that the {ut}-orbit of 
x is uniformly distributed with respect to p. 

From this she deduced Conjecture I and also the following stronger assertion. 
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THEOREM 6 (Ratner, 1991). Let G and U be as in Theorem 4- Let T be a lattice 
in G. Then for any x e G/T, Ux is a homogeneous subset with finite invariant 
measure; that is, there exists a closed subgroup F such that Fx admits a finite 
F-invariant measure and Ux = Fx. 

From Raghunathan's observation noted earlier, a case of the theorem with 
G = SL(3,R) and T = SL(3,Z) yields Oppcnheim's conjecture. The conjecture 
itself was however proved in the meantime by Margulis (see [Ml] and [M2]). The 
reader is referred to [M3] for an account of the earlier work on the conjecture and 
to [DM2] and [D5] for some elementary proofs. 

Let G, T, and {ut} be as in Theorem 5. A point x e G/T is said to be 
generic for the {wt}-action if there does not exist any proper closed subgroup F 
containing {ut} such that Fx admits a finite F-invariant measure. By Theorem 5 
for any generic point the orbit is uniformly distributed with respect to the G-
invariant probability measure on G/T. Is the convergence of the averages involved 
in this (for any fixed bounded continuous function) uniform over compact subsets 
of the set of generic points? Similarly, what happens if we vary the unipotent one-
parameter subgroup? These questions were considered in [DM3] and the results 
were applied to obtain lower estimates for the number of solutions in large enough 
sets, for quadratic inequalities as in Oppenheim's conjecture; see Corollary 9 below7. 
One of our results in this direction is the following. 

THEOREM 7 (Dani and Margulis, 1992). Let G be a connected Lie group, T be a 
lattice in G, and m be the G-invariant probability measure on G/T. Let {u\l'} be 
a sequence of unipotent one-parameter subgroups converging to a unipotent one-
parameter subgroup {ut}; that is u^ —• ut for all t, as i —> oo. Let {Xì} be a 
sequence in G/T converging to a point x e G/T. Suppose that x is generic for the 
action of {ut}. Let {Ti} be a sequence in R+, Ti —> oc. Then for any bounded 
continuous function tp on G/T, 

— / <p(utXi)dt—> / tp dm as i —» oo. 
-** Jo J G/T 

(I learned later that Burger had pointed out to Ratner in December 1990, 
before we started the work, that such a strengthening of her theorem can be derived 
applying her methods; our method is substantially different.) 

I will next describe another "uniform version" of uniform distribution that 
applies to a large class of nongeneric points as well, together with the generic 
points. The unipotent one-parameter subgroup will also be allowed to vary over 
compact sets of such subgroups; the class of unipotent one-parameter subgroups 
of G is considered equipped with the topology of pointwise convergence, when 
considered as maps from R to G. 

Let G and T be as in Theorem 7. Let H be the class of all proper closed 
subgroups H of G such that H Pi T is a lattice in H and Ad (H D T) is Zariski 
dense in Ad if. It turns out that H is countable (see [DM4]; see also [Rl]). For 
each H e Ti and any subgroup U of G let 

X(H,U) = {g€G\UgÇgH}. 



784 S. G. Dani 

It is easy to see that if U = {ut}, gT is not generic for the {uj}-action for any 
g e X(H,U), H e Ti: conversely, it can be verified that any nongeneric point is 
contained in the (countable) union \JHen X(H, U)T/T. The following result deals 
simultaneously with averages for generic as well as nongeneric points, except for 
those in certain compact subsets from only finitely many X(H, U)T/T. 

THEOREM 8 Let G, T, and m be as before. LetU be a compact set of unipotent one-
parameter subgroups of G. Let if be a bounded continuous function on G/T, K be 
a compact subset of G/T, and let e > 0 be given. Then there exist H\,..., Hk e Ti 
and a compact subset C of G such that the following holds: for any U = {ut} e U 
and any compact subset F of K — uf=1 (C H X(Hi, U))T/T there exists a TQ > 0 
such that for all x e F and T > TQ, 

— / y(utx)dt- I ipdm | < 
1 Jo JG/T 

e. 
G/r ' 

In [DM4] this was proved for singleton Ws; essentially the same proof goes 
through for the above statement, but the formulation as above was not thought of, 
the condition having been stated a little differently there. From the result we get 
the following asymptotic lower estimates for the number of solutions of quadratic 
inequalities in regions defined by {v e Rn \v(v) < r} , as r —» oc, where v is a 
continuous "homogeneous" function on Rn; we call a function v homogeneous if 
u(tv) = \t\v(v) for all t e R and v E Rn . We use the notation # to indicate 
cardinality of a set and À for the Lebesgue measure on Rn. 

COROLLARY 9 Let n > 3, 1 < p < n, and let Q(p, n) denote the set of all quadratic 
forms on Rn with discriminant ±1 and signature (p,n — p). Let K be a compact 
subset of Q(p,n) (in the topology of pointwise convergence). Let v be a continuous 
homogeneous function on Rn , positive on Rn — {0}. Then we have the following: 

(i) for any interval I in R and 0 > 0 there exists a finite subset £ of JC such that 
each Q e £ is a scalar multiple of a rational form and for any Q e JC — £ 

#{z e Zn | Q(z) e I, v(z) < r} > (1 - 6)\({v e Rn I Q(v) e I, v(v) < r}) 

for all large r; further, for any compact subset C of K — S there exists ro > 0 such 
that for all Q eC the inequality holds for all r > ro. 

(ii) if n > 5, then for e > 0 there exist c > 0 and ro > 0 such that for all Q e JC 
and r > ro 

#{z e Zn | | Q(z) I < e, v(z) < r} > cX({v e Rn \ | Q(v) | < e, i/(v) < r}). 

The condition in (ii) that n > 5 is related to Meyer's theorem. It can be 
verified that the volume terms appearing on the right-hand side of the inequalities 
are of the order of rn~2. A particular case of interest is of course when v is the 
euclidean norm, in which case the regions involved are balls of radius r. I may 
mention that for a single quadratic form that is not a multiple of a rational form, 
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an estimate as in (i) was obtained by Mozes and myself, with a (possibly small) 
positive constant in the place 1 — 6 as above (unpublished). 

Our proofs of Theorems 7 and 8 and other related results (see below) are 
based on an observation about how polynomial trajectories move "near" algebraic 
subvarieties in linear spaces; this was also involved in [DM1] and then in [SI]. The 
observation is used together with Ratner's classification of invariant measures, 
namely Theorem 4; it may be noted however that we do not assume her uniform 
distribution theorem (Theorem 5) and our method provides in particular an alter
native way (simpler in my view) of deducing it from Theorem 4. The method has 
also been used recently in [MS], [S2], and [EMS] and has led to several interesting 
results: Mozes and Shah [MS] show that the set of probability measures on G/T 
that are invariant and ergodic under the action of some unipotent one-parameter 
subgroup is a closed subset of the space of probability measures. Shah [S2] applies 
the method to extend Ratner's uniform distribution theorem to polynomial trajec
tories and multivariablc polynomial maps into algebraic groups; using the latter 
he also generalizes Theorem 5 to actions of higher-dimensional unipotent groups. 
Eskin, Mozes, and Shah [EMS] consider sequences of the form {gip}, where {^} 
is a sequence in G and p is an algebraic probability measure corresponding to 
some closed orbit of a subgroup H that may not necessarily contain any unipo
tent element, and give satisfactory conditions for the convergence of {gip} to the 
G-invariant probability measure. Using the results they make important contribu
tions to the problem of understanding the growth of the number of lattice points 
on a subvariety of a linear space, within a distance r from the origin, as r —• oo. 

2. Distribution of orbit segments 

In this section I will sketch the proof of Theorem 7 and also discuss related results; 
the proofs of Theorem 8 and the other results are similar, though some of them 
are technically more involved. Let G be a connected Lie group, T be a lattice in 
G, and U be any subgroup of G that is generated by the unipotent one-parameter 
subgroups contained in it. Let Ti and X(H, U), H e Ti, be as introduced earlier. 
By ergodic decomposition, Theorem 4 then implies the following. 

COROLLARY 10 LetG, T, andU be as above. Let p be a finite U-invariant measure 
such that p(X(H, U)T/T) = 0 for all H e Ti. Then p is G-invariant. 

Another point to be noted is that X(H, U) are essentially "algebraic subsets" 
of G. Specifically, for each H e Ti there exists a representation pn '• G —• GL(V# ), 
where VH is a finite-dimensional real vector space, and a pn e VH such that if 
rjH : G —» VH denotes the orbit map g »-> PH(g)PH and AH is the Zariski closure 
of VH(X(H,U)) in VH, then X(H,U) = n-l(AH) = {g e G \ r,H(g) e AH}: 
we choose pu to be the /ith exterior power of the adjoint representation of G, 
where h = dim H, and pn to be a nonzero point in the one-dimensional subspace 
corresponding to the Lie subalgebra of H\ see [DM4] for details. 

The question of distribution of orbit segments involved in Theorems 7 and 8 
may be formulated as follows. Let <S be the collection of all segments of orbits of 
unipotent flows, namely subsets a of the form {utx | 0 < t < T}, where {ut} is 
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a unipotent one-parameter subgroup of G, x e G/T, and T > 0. To each such a 
there corresponds canonically a probability measure pa given by the normalized 
linear measure along the segment; namely pa(E) = T~ll({t e [0,T] \utx e E}) 
for any Borei subset E of G/T; I denotes the Lebesgue measure on R. The problem 
of distribution of orbit segments is essentially the question of understanding the 
limit points of the collection {pa \ a e S}, in the space of measures on G/T. For 
convenience we set X to be the one-point compactification of G/T and consider 
the limits in the space of probability measures on X. 

Let {ai} be a sequence in S, say Oi = {u^Xi\0 < t < Ti}, where {n\ } is 
a sequence of unipotent one-parameter subgroups, {Xì} is a sequence of points in 
G/T, and {Ti} is a sequence of positive real numbers. In considering limits, by 
rescaling the segments Gì as above and passing to a subsequence if necessary, we 
may assume that u[l) —> ut for all t e R, where {ut} is a unipotent one-parameter 
subgroup of G. We may also assume that {Xì} converges in X and Ti —> oo. We 
set U = {ut}. Our proof of Theorem 7 is achieved via the following 

THEOREM 11 Let the notation be as above. Suppose that {Xì} converges in G/T, 
say Xi —• x e G/T. Let p be a limit point of {p(Ti}. Then p(X(H, U)T/T) = 0 for 
all H eTi such that x £ X(H, U)T/T. 

The main ingredients in the proof of this are as follows. First we prove that 
if A is an algebraic subvariety in a vector space V, then for any compact subset 
C of A and e > 0 there exists a (larger) compact subset D of A such that for any 
segment the proportion of time spent near C to that spent near D is at most e; 
specifically, for any neighborhood $ of D there exists a neighborhood ^ of G such 
that for y £ $, any unipotent one-parameter subgroup {vt} of G and T > 0, 

l({t e [0,T]\vty e *}) < el({t e [0,T]\vty e $}). 

This depends on certain simple properties of polynomials and the fact that orbits of 
unipotent one-parameter subgroups in linear spaces are polynomial curves. Now 
consider VH and any compact subset C of AH and let D be the corresponding 
subset as above. Let gì e G be such that gjT = Xi for all i. We apply the above 
to the segments {u\ g^PH |0 < t < T J , 7 G T. It turns out that there exists 
a neighborhood $ of D such that for at most two distinct 7 the points gjpH 
arc contained in $, if we restrict to g e G such that gT lies in a compact set 
disjoint from the "self-intersection set" of X(H,U)T/T, namely the union of its 
proper subsets of the form (X(H,U) n X(H, U)o)T/T, a e T. Using this and 
an inductive argument for the points on the self-intersection set, we can combine 
the information about the individual segments and conclude that /^(^1(G)) < e. 
Varying C and e we get that p(nj^ (A)T/T) = 0, as desired. 

Observe that Theorem 7 is equivalent to the assertion that if x as in Theo
rem 11 is not contained in X(H, U)T/T for any H eTi, then any limit point p as 
in the theorem is nothing but the G-invariant probability measure on G/T (viewed 
as a measure on X with 0 mass on the point at infinity). This would follow from 
Corollary 10 and Theorem 11 if it is proved that p({oc}) = 0, oc being the point 
at infinity. This is achieved using a result from [D4] on the proportion of time 
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spent by the trajectories of unipotent flows in compact subsets of G/T: inciden
tally, this is involved in Ratner's proof as well. The conclusion is transparent from 
the following variation of the result in question. 

THEOREM 12 Let G be a connected Lie group and T be a lattice in G. Let F be a 
compact subset of G/T and let e > 0 be given. Then there exists a compact subset 
K of G/T such that for any unipotent one-parameter subgroup {ut} of G, any 
xeF andT>0, 

l({te[Q,T}\utxeK})>(l-e)T. 

When x e X(H, U)T/T for some H eTi or x = oc, the point at infinity, the 
limit measure p may not in general be G-invariant. However applying the method 
one can get the following. 

THEOREM 13 Let {?4 } oe a sequence of unipotent one-parameter subgroups such 
that Ut —> ut for all t, let Ui = { 1 4 } for all i and U = {ut}. Let {Xì} be a 
convergent sequence in G/T such that for any compact subset of $ of G, {i e 
N\Xì e ($ n X(H, Ui))T/T} is finite. Let x be the limit of {Xì}. Then for any 
H e Ti such that x e X(H,U)T/T there exists a sequence {Tì} of positive real 
numbers such that the following holds: if ai = {u\l'xi\0 <t< Ti}, where {T^} is 
a sequence in R + , and {pai} converges to p then 

(i) i/limsup(7i/T?:) = 00 then p(X(H,U)T/T) = 0 and 

(ii) if limsup(Ti/Ti) < oc then there exists a curve ip : ([0,1] — D) —> X(H,U), 
where D is a finite subset of [0,1], such that rjn ° ty extends to a polynomial 
curve from [0,1] to VH, supp/i meets ip(t)N°(H)T/T for all te [0,1] — D and is 
contained in their union; here N°(H) denotes the subgroup of the normalizer of 
H in G consisting of elements g for which the map h \-* ghg~l preserves the Haar 
measure on H. 

An analogue of this result can also be proved for divergent sequences, that 
is, when Xi —> oc in X, for oc in the place of X(H, U)T/T. Theorem 13 yields, in 
particular, an ergodic decomposition for p. The theorem also readily implies that 
for {u\l } and {Xì} as in the hypothesis there exists a sequence {r^} of positive real 
numbers such that the conclusion as in Theorem 7 holds for any sequence {Ti} 
such that Ti/Ti —> 00. In the same vein, by a more intricate argument we prove 
the following. 

THEOREM 14 Let {u\l)} and {Xì} be as in Theorem 13. Then there exists a se
quence {ti} mR+ such that {utiXi} has a subsequence converging to a generic point 
with respect to the limit one-parameter subgroup. Further, {ti} may be chosen from 
any subset R ofR+ for which there exists an a > 0 such that l(Rn [0,T]) > aT 
for all T > 0. 

Before concluding this discussion on the dynamics of unipotent flows I would 
like to mention that analogues of many of these results hold in p-adic and 5-
arithmetic cases (see [MT]); Ratner has also extended the results in this direction. 
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3. Integral solutions of quadratic inequalities 

The study of unipotent flows can be applied to various problems in diophantine 
approximation; see [M3] for a survey of the applications; see also [EMS]. I will how
ever discuss here only the problem of lower estimates for the number of solutions 
as in Corollary 9. Let n > 3, G = SL(n,R), and T = SL(n,Z): the latter is well 
known to be a lattice in G. One associates to each (not necessarily continuous) 
function iß on Rn vanishing outside a compact subset, a function iß on G/T by set
ting iß(gT) = Yly^gZ" ip(v): note that as iß vanishes outside a compact subset, the 
expression on the right-hand side is actually a finite sum. By a theorem of Siegel, 
if iß is integrable on Rn then iß is integrable on G/T and fRn ißdX = JG/T iß dm, 
where A denotes the Lcbesgue measure on R" and m is the G-invariant probability 
measure on G/T. Now let Q be a nondegencrate indefinite quadratic form and let 
SO(Q) be the corresponding special orthogonal group. Let {ut} be a unipotent 
one-parameter subgroup of SO(Q); the condition n > 3 ensures that such a one-
parameter subgroup exists. Let iß be the characteristic function of a small open 
subset B of Rn such that the values of Q on B form a small subinterval of the 
given interval / . Let K > 1 be a fixed number close to 1 and for g e SO(Q) and 
T > 0 consider the equality 

/ Evegzniß(utv) dt = / iß(utgT)dt, 
JT JT 

which is immediate from the definition of iß. One can see that the left-hand side 
is bounded by a multiple of the number of integral points in the tubular region 
{g~lu-tv\v e B,T < t < KT}, by a constant depending on B. On the other 
hand, using Siegel's theorem stated above and Theorem 8 one can see that, except 
for g in a certain exceptional set, for large T the right-hand side is approximately 
a constant multiple of the volume of the tubular region as above; further, under 
certain conditions on B the two constants are almost the same. In these cases 
the number of integral points in the tubular region as above has a lower bound 
comparable to its volume. Note also that the range of values of Q over the region 
is the same as over B. The proof of the first assertion in Corollary 9 is then 
obtained by showing that, except for a certain finite set of forms determined by 
the exceptional set in the application of Theorem 8 as above, the regions as in the 
statement of the Corollary can be closely filled in an essentially nonoverlapping 
manner by tubular regions for which this observation holds. 

The argument for the second assertion is similar, except for the fact that using 
Meyer's theorem, which asserts that any nondegenerate indefinite quadratic form 
over Q in five or more variables has a nontrivial rational zero, we can ensure that 
unlike in the first case the exceptionalities while applying Theorem 8 do not give 
rise to any exceptionality with regard to the lower estimates as in the Corollary. 
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Singular Automorphic Forms 

JIAN-SHU LI* 

University of Maryland 
College Park, MD 20742, USA 

In the context of holomorphic forms on tube domains, singular automorphic forms 
were studied by Maass [Maa], Freitag [Pre], and Resnikoff [Res], among others. A 
holomorphic form is singular if it is annihilated by certain differential operator (s). 
It is known that this is the case if and only if all its "nondegenerate" Fourier 
coefficients vanish, and if and only if it has one of the "singular weights". The 
equivalence of these properties are far from trivial, and they constitute some of 
the basic results in the theory. 

The representation theoretic treatment of singular automorphic forms was 
pioneered by Howe [Howb]. By introducing the notion of rank for classical groups 
over local fields, Howe reduces the study of square integrable singular forms to that 
of unitary automorphic representations of low rank. The central question is then 
whether all such singular forms can be generated by theta series. In this note we 
present (partial) solutions in the form of several inequalities relating multiplicities 
of automorphic representations. 

1. Basic properties of singular forms 

Let fc be a number field and D a division algebra over k with an involution i. We 
assume that the subspace of fixed points of i is precisely k. Let U be a left vector 
space over D with a nondegenerate sesquilinear form ( , ) such that 

(x,y)L =rj(y,x) (x,y e U). 

Here 77 = ±1 is fixed. Let G Ç GL(U) be the Zariski connected component of the 
identity of the group of isometries of ( , ). 

Fix a decomposition 
U = A r 0 £ / o © X * (1.1) 

where X and X* are totally isotropic subspaces of the same dimension, say n, and 
UQ is an anisotropic subspace orthogonal to X © X*. The subspaces X and X* 
are naturally linear duals of each other under the pairing by ( , ). Let P = MN 
be the maximal parabolic subgroup of G preserving X. Here N is the unipotent 
radical of P. The Levi factor M may be taken to be the subgroup of G preserving 
the decomposition (1.1). Thus, M = GL(X) • Go, where Go is the subgroup of G 
leaving X and X* pointwise fixed. 
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In what follows, we shall exclude the case D = k and n = 1, as there is not 
much to be said in such case. Let Z be the subgroup of N leaving the subspace 
UQ pointwise fixed; this is the center of N. We have a short exact sequence 

1 —• Z —• N —> HomD(*70, X) —• 1. 

Let B(X) be the space of all sesquilinear forms on X that are Hermitian (resp. 
skew-Hermitian) in case n = — 1 (resp. n = 1). Similarly define B(X*). These two 
spaces are naturally linear duals of each other, as we will now describe. Define an 
involution 

* : EndD(U) —• EndD(£7), T ^ T* 

by the identity 
(Tu , v) = (u , Tv) (u , v e U). 

This involution will preserve ììOUìD(X , X*) (which is to be identified with the 
endomorphisms of U that vanish on X* © UQ and have their images contained in 
X*). Similarly, it preserves Hom£>(X*, X). We have natural isomorphisms 

B(X) ~ {x e HomD(X,X*) |x* = -nx} 

fl(X*) ~ {y e rlomD(X*,X) \ y* = -ny} 

Thus, given x e B(X) and y e B(X*) the composite x • y is an endomorphism 
of X*. etc., and the bilinear form 

< x, y >= tr(x • y) = tr(y • x) 

exhibits the duality involved. Here tr(a) denotes the sum of diagonals of a + a1. 
There is a natural isomorphism 

B(X*) ~Z, ò i-> z(b) 

where z(b) is given by 

Z(b)(x + UQ + X*) = X + UQ + X* + b(x*) (x G X, UQ G UQ, X* G X*) . 

The example to keep in mind is D = k, n = — 1, in which case G is the symplectic 
group of rank n and Z = N. 

Let A be the ring of adeles of k. Fix a nontrivial character iß of A/k. To each 
0 e B(X) we associate a character ißß of Z ~ B(X*) by the formula 

ißß(z(b))=iß(tr(ß-b)). (1.2) 

Then the map ß i-> ißß establishes an isomorphism between (the ^-rational points 
of) B(X) and the Pontryagin dual of Z(k)\Z(A). 

Let / be a continuous function on G(k)\G(A). We may expand / in a Fourier 
series along Z: 

f(zg)= JT fß(9)M*) (zeZ(A),geG(A)) 
ßeß(x) 

where 

fß(9) = ! 
Jz 

f(zg)ißß(z)dz. 
Z(fe)\Z(A) 



792 Jiaii-Shu Li 

DEFINITION 1.1 Let I be an integer between 0 and n. We say the function f is of 
rank < I if for all ß G B(X) with rank > l, fß = 0. If in addition there is a ß of 
rank I with fß ^ 0 . then f is of rank I. 

Now let 7T = ®7rv be an irreducible admissible representation of G(A). For 
technical reasons, assume also that each nv is unitary. Then the notion of Z(kv)-
rank is defined for each irv [Howe], [Sea], [Lia]. A convenient characterization is as 
follows. Let iß = Ylv ißv, where -ißv is a character of kv for each v. The Pontryagin 
dual of Z(kv) may be identified with B(X)V = B(X) ® kv by the same formula 
(1.2), with ißv replacing iß, etc. We denote the character associated to r G B(X)V 

by ißv,T • Then irv has rank at most I if for any compactly supported smooth function 
/ on Z(kv) with the property that / , the Fourier transform of / , vanishes on the 
subvariety of B(X)V of elements of rank < I, we have nv(f) = 0 . Here the Fourier 
transform of / is defined by the formula 

/ > ) = / / (*M;.r(s) dz, r e B(X)V . 

We say nv is of rank I if it is of rank < I but not of rank < I. 
Let H be the space of n, and let H°° be the subspace of smooth vectors. 

Assume that H00 is realized as a space of smooth functions on G(fc)\G(A). We 
will also assume that for any ß G B(X), the linear functional / »-> fß(l) is con
tinuous with respect to the smooth topology on H00. Then the same is true for 
any functional / »—> fß(g), where g is any fixed element of G(A). In other words 
the map / »-* fß is continuous when Goc(G(A)) is given the topology of pointwise 
convergence. 

LEMMA 1.2 [Howb] The following conditions are equivalent. 

(a) For any nonzero f G H00, the rank of f is I. 

(b) For every place v, the representation 7rv has rank I. 

(c) There is at least one place v such that irv is of rank I. 

Let nx be the maximal possible rank of elements of B(X). If D = k and 
rj = 1, B(X) consists of skew-symmetric forms on X and nx will be the largest 
even integer not greater than n = dim(X). In all other cases, we have nx = n. 
The integer I in the preceding lemma will be called the rank of ir. We will say that 
7T is singular, or of low rank, if I < nx • 

Suppose 7T is singular. Then the Z (kv)-spectrum. of TTV is supported on (the 
closure of) a single equivalence class, say Cv in B(X)V. We refer to [Howb], [Lia] for 
this fact as well as the notion of Z(A;)i;-spectrum. Note that the parabolic P(kv) 
acts on Z(kv) via conjugation and hence dually, on B(X)V. An equivalence class 
of forms in B(X)V is nothing but an orbit under P(kv), or equivalently, under 
M(kv). The rank of the orbit Cv is defined to be that of any of its members. 

If ß e B(X) then for each place v it defines a form ßv G B(X)V by extension 
of scalars. Two global forms ß and ß' are said to be locally equivalent if ßv is 
equivalent to ß'v for all places v. In the following lemma we do not assume 7r to be 
of low rank. 
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LEMMA 1.3 Suppose that for each place v the Z(kv)-spectrum of nv is supported 
on the closure of a single orbit Cv. Suppose ir is automorphic as above. Then the 
collection of local orbits {Cv} must be coherent. That is, there must be a global form 
ß e B(X) representing the equivalence class Cv at each place v. In particular, all 
orbits Cv must have the same rank, say I. All rank I forms ß G B(X) with respect to 
which 7T has a nonzero Fourier coefficient must belong to the same local equivalence 
class, namely the class determined by the collection of local orbits {Cv}. 

REMARK 1.4 Excluding the case D = a quaternion algebra, n = 1, the Hasse prin
ciple implies that a local equivalence class is the same thing as a global equivalence 
class. In particular, there is exactly one P(k)-orbit of ß's in B(X) of rank I, with 
respect to which n has a non-zero Fourier coefficient. In the excluded case B(X) 
consists of skew-hermitian forms over the quaternion algebra D, and the Hasse 
principle fails. If s denotes the (even) number of places where D ramifies, then 
there are exactly 2S~2 global equivalence classes within each local equivalence class. 
See [Sch] for these facts, where the word "isometry" is used in place of "equiva
lence". In the following we shall refer to this case as "Case Ql": 

Case Ql : D is a quaternion algebra, and n = 1. 

Let 7T be as in Lemma 1.3. We fix ß G B(X) so that ßv G Cv for all v. Let Rß 
be its radical and set V = X/Rß. Then ß induces a nondegenerate form ( , )' on 
V. Let Gl be its isometry group. Then (G, G') is a reductive dual pair in the sense 
of [Howa]. To avoid any mention of nonlinear groups, we shall assume that àìmoU 
is even in case D = k,n = 1. For each place v let uv be the oscillator representa
tion of the dual pair G(kv),G'(kv) associated to the character ißv [Howa]. Because 
of our assumption just made, this will be an ordinary (as opposed to projective) 
representation of G(kv) x Gl(kv). Let av be an irreducible admissible represen
tation of Gf(kv). The local theta Ufi of av, if it exists, is the unique irreducible 
representation of G(kv), written 9(av), such that there is a nontrivial intertwining 
map from LJV to 9(av) <g) av. Here av denotes the contragredient of av. 

THEOREM 1.5 Suppose n is unitary, automorphic, and singular. Then for each v 
there is an irreducible unitary representation av ofG'(kv), and a unitary character 
Xv of G(kv) such that nv ~ Xv ®0(o~v). Both Xv and &v are unramified for almost 
all v, and so it makes sense to set \ = <8>Xvi o~ = 0<7V. Then \ is automorphic; 
that is x(l) = 1 for all 7 G G(k). 

2. The first inequality 

Let Soc be the set of archimedean places of k. We set 

Coc = n G ^ • 
vesx 

Let g be the Lie algebra of G^ , U(Q) the universal enveloping algebra of g, and Z(a) 
the center of U(g). Choose a maximal compact subgroup Koc of G^ . Let A(G) 
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be the space of automorphic forms on G, consisting of functions on G(k)\G(A) 
of moderate growth that are K^ and Z(a) finite, and are fixed by some open 
compact subgroup of G(Af). Here Â - denotes the finite adeles of k. 

Recall also (from [Cas] or [KRS, p. 496], say) that for each integer n there 
is defined a Fréchct space AUmg,n(G) consisting of certain smooth functions on 
G(k)\G(A) of uniform moderate growth. The following can be deduced from work 
of Casselman [Cas]. 

LEMMA 2.1 [KRS] Let n be a smooth irreducible representation of G(A) on a 
Fréchet space E and let EK^ be the corresponding subspace of Kx -finite vectors. 
Let 

A:EKx^A(G) 

be a (g,A'oc) x G (A j)-intertwining linear map. Then there exists an integer n such 
that the image of A is contained in Aumg,n(G), and that A extends to a unique 
continuous G (A)-intertwining map from E into Aumg,n(G). 

Notation: The space of all intertwining maps described in the above lemma will 
be denoted rlom(7r, A(G)). The dimension of this space is denoted m(-K,A(G)). 

We place ourselves in the setting of the previous section; we shall allow the 
case rank(/3) = dim^V = nx- Let a = ®o~v be any irreducible admissible unitary 
representation (automorphic or not) of G'(A). It is known [Lib] that for each v the 
local theta lift 0(av) exists, and is irreducible unitary. Set 6(a) = ®v6(av). 

THEOREM 2.2 Excluding Case Ql, we have 

m(6(a), A(G)) < m(a, A(G')). (2.1) 

We sketch a proof in the case UQ = {0}; thus, N = Z. Let X\ Ç l b c a 
complement to Rß so that 

X = Xi © Rß . (2.2) 

Let e : X —• V be the canonical projection. The restriction of e to X\ will be an 
isomorphism, which we will denote by e\. Define a subgroup G\ Ç GL(X) c P b y 

Gl = {e^lohoel\heG'}. 

The group G\ will act trivially on Rß. It is clear that G\ preserves ißß. Thus, for 
any / G Coc(G(k)\G(A)) the restriction of fß to Gi(A)N(A) will be automorphic, 
i.e. left invariant under G\(k)N(k). 

If A e Hom(7T,,4(G)) let Aß be the composition of A with the map / i—> 
fßldN, where the last denotes the restriction of fß to Gi(k)N(k)\G\(A)N(A). 
The following lemma implies that Aß corresponds to an intertwining operator from 
a to A(G'), and Lemma 1.3 implies that the map A i—• Aß is injective. 

LEMMA 2.3 Let ißv,ß denote the restriction of ißß to Z(kv). Let 6 be any smooth 
representation of G'(kv) and 6\ its composition with the isomorphism G\ ~ G'. 
Then 

Homc^k^N^^e^)00,8i (8) ißv%3) ~ HomG,{kv)(<j™,6). 
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The long and technical proof of this lemma depends heavily on the construc
tion of the local theta lift in [Lib]. We omit it. 

In the Case Ql wc may obtain a similar version as follows. Let ß = ß\,..., ßt 
be the rational forms in B(X) that are locally equivalent to ß, here t = 2 s - 2 and s is 
the number of ramified places of the quaternion algebra D. Let Gj be the isometry 
group of ßj. For any place v and 1 < i,j < t we have G'^ky) ~ Gj(kv). Hence 
a = >%>vo~v may be considered a unitary representation of G^(A) for any 1 < j < t. 
To the map A G Hom(7r, A(G)) we may associate the t-tuple (Aß1,... *Aßt). The 
same argument as before shows that this map is injective. We obtain 

THEOREM 2.4 Suppose D is a quaternion algebra and n = 1. Then in the above 
notations we have 

t 
m(0(a), A(G)) < ] T m(a, A(G,

j)). (2.3) 

3. Theta series and inner products 

We impose a condition on rank ß = dim V. Set 

D0 = {£ G D\e = vO 

and 

d = dinifci}, do = diuikDo. e = —- . 
a 

We assume 
2n + dimD UQ = dimD U > dimD V + 4e - 2. (3.1) 

Note that because dim/} V < n, this condition is almost always satisfied. 
Set w = ®LJV: this is a representation of G(A) x G'(A). Let W = U®D V and 

endow it with the symplectic form 

< , >= t r D / f c ( ( , ) ' » ( , )')• 

Here tro/k(d) = d + dL for d G D. Let W = Y ©y* be a direct sum decomposition 
of W into the maximal totally isotropic subspaces Y and Y*. We may realize UJ 
on S(Y(A)), the space of Bruhat-Schwartz functions on Y (A). This is the usual 
Schrödinger model realization of u [Gel]. Define the theta distribution on this 
space by 

0(cß)= E * ( « • 

As is well known, this distribution is invariant under G(k) x Gf(k). Set 

0*{g) = 6(u:(g)(ß), (cß G S(Y(A)),g G G(A)). 

Condition (3.1) ensures that 0$ is square integrable on G(k)\G(A). It is easy to see 
that each 0$ is of rank < d i m 0 F . Let B be the linear span of all 0$, (ß G S (Y (A)), 
and let 0 be its closure in Z,2(G(fc)\G(A)). Let 6Q be the space of smooth functions 
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in B having rank < d im^F. It is known [Howb] that Bo and its closure Bo are 
invariant under G (A). Thus, we have an invariant orthogonal decomposition 

B = S*@ B0 

where B* is the orthogonal complement of Bo- Let V : B —• B* be the orthogonal 
projection onto the first summand. 

THEOREM 3.1 For any (ß\,<ß2 e S(Y(A)) we have 

I V(0^)(g)V(0^)(g)dg= £ M7)*i,fc) (3-2) 
JG(k)\G(A) i€G,{k) 

where 

(u(g)$i,fc)= I uj(g)fa(y)My)dy (geG(A)) 
JY(A) /y(A) 

is the matrix coefficient associated to (ß\, cß2. 

It is not difficult to express the right-hand side of (3.2) in terms of (a certain 
kind of inner product of) the /3th Fourier coefficients (00i)ß, j = 1,2. Using this 
and Mackey Theory, one may deduce 

THEOREM 3.2 Let 

L2(G'(k)\G'(A))= [ adv(o) 
JM 

be the direct integral decomposition of L2(G'(k)\G'(A)) into irreducible unitary 
representations ofG'(A). Then 

B„ = f 0(a)dv((j 
JM 

) 

is the direct integral decomposition of 6* into irreducible unitary representations 
ofG(A). 

4. The second inequality 

Set 
A2(G) = A(G) n L2(G(k)\G(A)) 

and let ra(7r, A2(G)) be the dimension of the space of intertwining operators from 
(the space of ) w to A2(G) (cf. Lemma 2.1.). We can now derive the following as 
an obvious consequence of Theorem 3.2. 

THEOREM 4.1 Let a = ®av be any irreducible unitary representation of G'(A) 
and let 0(a) = ®0(CTV). Then 

m(0(a),A2(G)) > m(cr,A2(G
f)). (4.1) 
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In Case Ql (4.1) is not strong enough. Assume we are in the setting of 
Theorem 2.4. When ß = ßi is replaced by ßj, 1 < j < t, the objects 0,0$, @ will 
be denoted by the same symbols with the superscript j , namely 0J, 0^,0°, etc. 
Similar notations apply to other objects associated to ßj. As was explained in the 
paragraph before Theorem 2.4, if a = ®vav is an irreducible admissible unitary 
representation of G'(A) then it can be considered one for every G^-(A), 1 < j < t. 

For each j we have a closed invariant subspace B*. We wish to show that 
there is no linear dependence between these spaces. We do this by showing that 
if i ^z j then the ßjth Fourier coefficient of any smooth function in 6* is zero. 
This is easy to see for elements of 6*; the difficult part is to show the same for all 
smooth functions in 6*. In any event, we arrive at 

THEOREM 4.2 Suppose D is a quaternion algebra and n = 1. Then 

t 

m(0(a),A2(G)) > J2™(o-,A2(G'j)). (4.2) 
3=1 

5. Examples and concluding remarks 

If G' is anisotropic over k then A2(G') = A(Gl). In Case Ql, the form ß = ßi is 
anisotropic over k if and only if all the ßj, 1 < j < t, are. Thus, (2.1), (2.3) and 
(4.1)-(4.2) give 

PROPOSITION 5.1 Suppose ß is anisotropic overk. Then 

(a) Excluding Case Ql, we have 

m(0(a),A(G)) = m(0(a),A2(G)) = m(a,A(G')). (5.1) 

(b) Assume D is a quaternion algebra and n = 1. Then 

t 

m(0(a),A(G))=m(0(a),A2(G)) = Y^m(a,A(Gfj)). (5.2) 
i= i 

In the case D = k and rj = — 1, the second equation in (5.1) was already 
proven by Howe in [Howb]. 

The inequalities (2.3) and (4.2) provide many examples of automorphic forms 
with multiplicity > 1. For example, denoting the trivial one-dimensional represen
tation of G'(A) by a = 1, we get 

m(0(l),A(G)) = m(0(l),A2(G)) = 2S~2 (Case Ql) (5.3) 

(recall that t = 2S~2 and s is the number of place of k at which D ramifies). 
Again suppose we are in Case Ql. Consider the special case dim^V = 1. 

Then the forms ßj aie all represented by multiples of ß: we have ßj = tj • ß where 
tj e kx (see [Sch]). It follows that Gj = G' for 1 < j < t. It is easy to see that 
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m(a,A(G')) < 1 for all a. Let a be automorphic, tha t is m(a,A(G')) = 1. Then 
(2.3) and (4.2) give 

m(0(a),A(G)) = m(0(a),A2(G)) = 2 s " 2 (Case Q l , d i m D V = 1) . (5.4) 

It can be shown in the case n = 1. UQ = {0} tha t 0(a) is cuspidal if and only if a 
is nontrivial. 

The case when D = k,i] = —1, d imV = 2, and ß is split will be referred to as 
"split binary quadratic". This is the only case where the volume of G'(k)\G'(A) 
is infinite. Suppose we are not in this case, and tha t a is one dimensional. Then 
clearly 

m(a,A(G')) = m(a,A2(G')) = 0 or 1. 

Combining this with (2.1) and (4.1) we get 

P R O P O S I T I O N 5.2 Suppose that a is one dimensional. Assume we are not in either 
the split binary quadratic case or Case Ql. Then 

m(0(a),A(G))=m(0(a),A2(G))=m(a,A(G')) < 1. (5.5) 

In the split binary quadratic case we still have (by Theorem 2.2) 

m(0(a),A(G)) <1 

and it can be shown tha t 
m(0(a),A2(G))=O 

for any a. 
When D = k, n = — 1, and a is the trivial character, (5.5) is due to Kudla, 

Rallis and Soudry [KRS] for n = 2, and Kudla and Rallis [KuR] for n > 2. 
To end, we remark tha t the results presented here can be used to compute 

the dimensions of certain L2-cohomolgy spaces of some arithmetic manifolds. 

References 

[Cas] W. Casselman, Introduction to the Schwartz space of T\G, Canad. J. Math. 41 
(1989), 285-320. 

[Fre] E. Freitag, Siegeische Modulfunktionen, Grundlehren der math. Wiss. 54, Sprin
ger-Verlag, Berlin-Heidelberg-New York, 1983. 

[Gel] S. Gelbart, Examples of dual reductive pairs, Proc. Sympos. Pure Math. 33, Amer. 
Math. Soc, Providence, RI, 1979. 

[Howa] R. Howe, 0 series and invariant theory, Automorphic forms, representations, and 
L-functions, Proc. Sympos. Pure Math. 33, Amer. Math. Soc, Providence, RI, 
1979, 275-285. 

[Howb] R. Howe, Automorphic forms of low rank, Non-Commutative Harmonic Analysis, 
Lecture Notes in Math. 880, 1980, 211-248. 

[Howe] R. Howe, On a notion of rank for unitary representations of classical groups, 
C.I.M.E. Summer School on Harmonic Analysis, Cortona, ed., 1980, 223-331. 

[KuR] S. Kudla and S. Rallis, A regularized Siegel-Weil formula: The first term identity, 
to appear in Ann. of Math. (2). 



Singular Automorphic Forms 799 

[KRS] S. Kudla, S. Rallis, and D. Soudry, On the degree 5 L-function for Sp(2), Invent. 
Math. 107, (1992), 483-541. 

[Lia] J-S. Li, On the classification of irreducible low rank unitary representations of 
classical groups, Compositio Math. 71 (1989), 29-48. 

[Lib] J-S. Li, Singular Unitary Representations of Classical Groups, Invent. Math. 97, 
(1989), 237-255. 

[Maa] H. Maass, Siegel's modular forms and Dirichlet series, Lecture Notes in Math., 
Springer-Verlag, Heidelberg-New York, 1971. 

[Res] H. Resnikoff, On singular automorphic forms in several complex variables, Amer. 
J. Math. 95 (1973), 321-332. 

[Sea] R. Scaramuzzi, A notion of rank for unitary representations of general linear 
groups, 1985, Thesis, Yale University. 

[Sch] W. Scharlau, Quadratic and Hermitian Forms, Springer-Verlag, Berlin-Heidel
berg-New York, 1985. 



Gradings on Representation Categories 
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1. Selfduality of Category O 

Let g D b D I) be a complex semisimple Lie algebra, a Borei, and a Cartan. Let 
Ö be the category of all finitely generated g-modules that are locally finite over b 
and semisimple over f), see [BGG76]. This category is of interest, as it is a close 
relative of the category of Harish-Chandra modules for the corresponding simply 
connected complex algebraic group G, considered as a real Lie group, see [BG80]. 
For example, for g = si(n, C) one takes G = SL(n, C). 

It is known [BGG76] that every object of Ö has finite length and that there are 
enough projective and injective objects. Let U = U(g) be the universal enveloping 
algebra of g. For A e f)* consider in Ö the Verma module M(X) = U ®u(b) CA^ 
its unique simple quotient L(X), and an injective hull I(X) of L(X) in ö\ i.e., an 
injective object with unique simple submodule L(X). This I(X) is unique only up 
to nonunique isomorphism. Every simple object of Ö is isomorphic to some L(X) 
for unique A e ()*. 

Let Z C U be the center and Z + = Ann^C the annihilator of the trivial 
one-dimensional representation of g. Let L be the direct sum of all simples L(X) 
with Z+L(A) = 0. There are but finitely many of those, parametrized by the Weyl 
group. Let I be the direct sum of their respective injective hulls. We are now ready 
to state the ''selfduality theorem for category 0" . 

THEOREM 1. [Soe90], [BGS91] There exists an isomorphism of finite-dimensional 
C-algebras End0J = Ext£>(L.L). Furthermore, the graded ring on the right is 
Koszul. 

REMARKS. 1. Here Ext" stands for the direct sum of all Ext2, made into a ring 
via the cup-product. 

2. The object I is only unique up to nonunique isomorphism, so we cannot 
expect the isomorphism of the theorem to be canonical. See however [BGS91, 
3.8] for more canonicity. 

3. Let (W,S) be the Weyl group and its simple reflections corresponding to 
b e g . Let p e ï)* be the halfsum of the roots of b. For x e W, X e Ï)*, 
define x • A = x(X + p) — p. Then L = ÇBxewL(x • 0), I = 0 x G w/ ( # • 0). Let 
w0 e W be the longest element of the Weyl group. The isomorphism of the 
theorem can be chosen in such a way that the projection onto I(x • 0) on the 
left corresponds to the projection onto L(x~1w0 • 0) on the right (which lies 
inEnd 0 L = Ext^(L,L)). 
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4. A "Koszul ring" is by definition [Pri70], [BGS91] a positively Z-graded ring 
A = © i > 0 A1 such that (a) A0 is semisimple and (b) the left A-module .4° = 
A/A>0 admits a graded projective resolution • • • —> P2 —• Pi —> P0—»A° 
such that Pi is generated by its elements that are homogeneous of degree i; 
i.e., Pi = AP/. For example, the standard Koszul complex shows that the 
symmetric algebra over a finite-dimensional vector space is Koszul. 

We can reformulate (b) as follows: Let A-gr denote the abelian category 
of all Z-graded A modules M = 0 M\ (b)' If M, N e A-gr are concentrated 
in one degree, say M = Mm, N = Nn, then Ext*A_gr(Af,iV) = 0 unless 
i = n — m. Thus, Koszulity is an analogon of semisimplicity for Z-graded 
rings. 

5. Set O0 = {M eO\ (Z+)nM = 0 for n » 0}. Because I e ÖQ is an injective 
generator, the functor 

Hom0( ,1) : O0 -> End0J-mof 

from Oo to the category of finitely generated End0/-modules is an equivalence 
of categories. The theorem says that End0 J admits a Z-grading. Thus, in some 
sense (which can be made precise) the category O0 admits a Z-grading and 
is even "graded semisimplc". 

The same is true for all other blocks of Ö. This is proven in [BGS91] for 
blocks with integral central character and then follows for arbitrary blocks 
with [Soe90, 2.5]. 

6. Let us explain what is selfdual about this theorem. If A is any positively 
Z-graded ring, we may form another positively Z-graded ring E (A) = 
Ext*A(A°, A0). If A is Koszul and A1 is finitely generated as a left A°-module, 
one can prove [Löf86], [BGS91] that E(A) is Koszul too and there is a canon
ical isomorphism E(E(A)) = A. For this reason E(A) is called the Koszul 
dual of A. But now the Koszul ring A appearing in our theorem is selfdual: 
Indeed, under the equivalence O0 = Amof the direct sum L of all simple ob
jects of ÖQ corresponds to the direct sum A0 of all simple objects of A-moî, 
and hence 

E(A) = ExfA(A°,A°) ^ Ext^(L,L) ^ End07 = A. 

2. Representation of Hecke algebras via Bimodules 

To establish the isomorphism of Theorem 1, we will describe both sides combi-
natorially. This section explains the combinatorics involved, which might be of 
independent interest. Let (W,S) be an arbitrary Coxeter system, < the Bruhat 
order on W and / : W —> N the length function, see [Bou81]. The Hecke alge
bra H = H(W,S) is a free Z[t,t~^-module H = @xÇzwZ[t,t-l]Tx with basis 
Tx indexed by x e W. Its multiplication is given by the rules TxTy = Txy if 
l(x) + l(y) = l(xy) and Ts

2 = (t2 - 1)TS + t2Te for s e S, where e G W denotes the 
identity. 
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Suppose now that S is finite. Consider the geometric representation E of W, 
its complexification Ec = E ®R C, and the ring R = R(Ec) of regular functions 
on Ec alias the symmetric algebra of ££. We equip R with the "even" Z-grading, 
defined by the prescription deg££ = 2. 

Let P-mobfz-P be the category of all Z-graded P-bimodules that are finitely 
generated as left modules and as right modules. Let (P-mobfe-P) denote its split 
Grothendieck group; i.e., the free abelian group generated by the objects modulo 
the relations (A) = (A') + (A") if A = A' 0 A". Certainly this is a ring via ®R. 

THEOREM 2. [Soe92a] There is a ring homomorphism £ : H —> (P-mobfe-P) such 
that £(TS + 1) = (P ®fl* P) for every s e S (here Rs are the s-invariants) and 
£(t) = (P[—1]) (where R[— 1] stands for the R-bimodule R with its grading shifted 
by one in the positive direction). 

Kazhdan and Lusztig [KL80] defined a new basis C'x of H over I\t,t~l). It 
can be characterized as follows. Let i : H —• H be the involutive algebra homo
morphism with i(t) = t~l,i(Tx) = (T x - i ) _ 1 . Then we have 

1. i(C'x) = C'x 

2. Cx = t-l^Y,x>yPT,y(t)Ty with PXiy e Z[t), Px.x = 1, and d e g P ^ < 
l(x) - l(y) if z ^ y. 

Because of property (1) this is often called the selfdual basis. Condition (2) is 
some kind of minimality condition that ensures uniqueness. The Px^y are called 
the Kazhdan-Lusztig polynomials. For s e S one checks easily C's = t~l(Ts + 1). 

THEOREM 3. Suppose W is a Weyl group. Then there are indecomposable bimod-
ules Bx e P-mobfz-P such that £(CX) = (Bx). 

REMARKS. 1. The Krull-Schmidt theorem holds in P-mobfe-P, hence the Bx 

are unique up to isomorphism. 
2. Here are some examples. We have Be = R, Bs = R ÇÇR* R[l] for s e S, and 

BWo =R®RwR[l(w0)}. 
3. From the theorem one can deduce the conjectures of Kazhdan and Lusztig 

concerning composition series of Verma modules in an elementary way 
[Soe90]. However, the proof of the theorem is not elementary and uses the 
decomposition theorem of [BBD82]. It would be very interesting to have an 
elementary proof. 

4. It would be very interesting to know whether this theorem holds for an arbi
trary Coxeter group, or at least for any finite one. 

5. It would be very interesting to know for which finite characteristic analogous 
results hold. An equivalent problem is to determine the intersection coho
mology with coefficients in a finite field of complex Schubert varieties. This 
would determine some composition factor multiplicities for Weyl modules in 
the same characteristic. 

Let me finish this subsection with some indications on how these theorems 
are proven. For Theorem 2 one just has to remark that H is generated over Z[£, t~l] 
by the (Ts + 1), s e «S, subject only to the quadratic relations (Ts + l ) 2 = (Ts + 
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1) +t2(Ts +1) and relations involving two generators. So we only need to establish 
isomorphisms 

P ®Ä- P ®Ä* P ^ (P ®Ä- P) 0 (P ®R* P[-2]) 

for all s e S and isomorphisms between similar objects involving two elements 
s,t e S. This is a bit tricky, but not deep. 

The only way I know to prove Theorem 3 is to interpret Bx as the equivariant 
intersection cohomology group of some Schubert variety. Namely choose G D B 
a linear complex algebraic group with a Borei subgroup such that (W,«S) is the 
corresponding Coxeter system. One knows [Ara86] how to identify the equivariant 
cohomology ring H%(G/B) with P ® ß w P , where P are the regular functions on 
the Lie algebra of a maximal torus in B. Using this identification we can interpret 
the equivariant intersection cohomology groups of Schubert varieties as objects of 
P-mobf^-P. One then shows that these objects satisfy the conditions on the Bx 

required in Theorem 3. 

3. Combinatorics of Category Ö 

To prove the "selfduality" Theorem 1, we will show that both sides admit the 
same combinatorial description. Let us start describing the left-hand side. Choose 
an exact functor V : OQ —» C-mod that transforms the simple Verma module 
M(—2p) to a one dimensional vector space and annihilates all other simple objects 
from oo- Such a functor exists, is unique up to nonunique isomorphism and can 
be given as V = Hom0( , I(—2p)). By functoriality this gives a functor 

V : O0 -> Z-mod. 

PROPOSITION 1. [Soc90] The functor V is fully faithful on injective objects; i.e., 
for any two injectives I,JeOo it induces an isomorphism 

Hom0(L J) ->Hom z (VJ,VJ) . 

By the way, an analogous statement holds for every block of O. Now7 we 
describe VI(x • 0). Set S = 5(f)) and consider the Harish-Chandra homomorphism 
f : Z -̂> 5 normalized by the condition £(z) — z e Un, where n C b denotes 
the nilradical. So in particular ^ _ 1 ( ^ + ) = %+• Via £ every S-module becomes a 
Z-module, and in [Soe90] it is proven that VI(x~l • 0) = BX/BXS+. From this we 
deduce 

End0 J = EndzVI 
= Endz(®xBx/BxS+) 
= Ends(®xBx/BxS+), 

the last equality as (Z+)nI = 0 for n ^> 0 by definition of O0 and £ induces 
isomorphisms Z/(Z+)n -> S/(S+)n. 

We next describe combinatorially the right-hand side. Let G be as before, 
B D N connected algebraic subgroups with Lie algebras b D n. Let Db(G/B) 
denote the bounded derived category with algebraically constructible cohomology 
of sheaves of complex vector spaces on G/B. Let Db

N(G/B) C Db(G/B) be the 
full subcategory of objects that are smooth along Àr-orbits alias Bruhat cells. 
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Localization [BB81] along with [Soe86] determines an equivalence of cate
gories (see [Soe89, Prop. 6]) 

Db(O0)^Db
N(G/B) 

mapping L(xw0 -0) to the intersection cohomology complex ZCX = lC(Nx~lB/B) 
of the closure of a Bruhat cell. Recall the ring P = 5(f)*) of regular functions on 
the Lie algebra of a maximal torus. Via the Borei homomorphism R—»Hm(G/B, C) 
hypercohomology gives us a functor 

BT : Db(G/B) —> P-mod. 

PROPOSITION 2. [Soe90] The functor Mm induces an isomorphism 

0 H o m D ( J C r , ICy[i]) - • HomR(BriCx, ETICy). 
i 

In addition, we establish the isomorphisms W1CX = BX/BXR+. Let us set 
C = Ç&X1CX. From the preceding we now deduce 

Ext'a(L, L) = ©f. RomD(C, £[%]) 
= EndR(WC) 
= EndR(®xBx/BxR+). 

So indeed the left-hand side of the selfduality theorem equals the right-hand side, 
once we identify S with P; i.e.. f) with f)*. This already suggests that from the 
very beginning it would have been more natural to take the Langlands dual Lie 
algebra on one side of our selfduality isomorphism. This point of view allows a 
partly conjectural generalization of Theorem 1, as explained in the next section. 

4. Real groups 

Let X be a complex algebraic variety and H a complex algebraic group acting on 
X with finitely many orbits. Then we can form a positively graded ring Ext#X, 
the "geometric extension algebra", as follows. Let T>H(X) be the equivariant de
rived category, see [BL92]. Let C e T>H(X) be the direct sum of all simple H-
equivariant perverse sheaves on X (i.e. take one from each isomorphism class). 
Then set Ex t^X = @irlomVH^X)(£,£[*])• K H C K is a closed subgroup, then 
the "induction equivalence" gives Ex t^X = Ex.tm

K(K x # X). 
In our new notation Theorem 1 can be rewritten as 

(90^Ext*Vv(Gv /Pv)-mof 

where G v D P v D iVv are Langlands dual to G D B D N. Let Ö0 be the category 
of all finite length g-modules with all their composition factors from ÜQ. AS a 
variant of the above, one proves [Soe92a] 

Ö 0 ^ E x t ^ v ( G v / P v ) - n i l 

where for a positively Z-graded C-Algebra A9 we denote by Anil the category 
of finite-dimensional Amodules annihilated by A1 for i » 0. Now by [Soe86] the 
category OQ is equivalent to the category H of Harish-Chandra modules for G with 
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trivial central character. On the other hand E x t ^ v ( G v / P v ) = Ex t^ v (G v xBv 
G v / P v ) , and X = Gv x ß v G v / P v is just the modified Langlands parameter 
space associated by [ABV92] to H. So we may write 

W^Ext^vX-ni l , 

and written in this form it is clear how the theorem should generalize to real and 
p-adic groups. Some special cases are checked in [Soe92b]. 

5. Positive characteristic 

The Koszulity statement in Theorem 1 seems to have an analogon in positive 
characteristic. Let P be a root system, p a prime, G the corresponding simply 
connected semisimple algebraic group over Fp , and g = LieG its Lie algebra. This 
comes equipped with a formal p-power map X \—• X^, X e g. For example, for 
P = A.n we get g = s l (n+1, Fp) and X^ = Xp is just the pth power in the matrix 
ring. Let U^ = U(Q)/(XP — X^) be the restricted enveloping algebra of g. (Be 
careful that here Xp stands for the pth power in 17(g)!) This is a finite-dimensional 
Fp-algebra. 

CONJECTURE 1. [AJS94] Suppose p is at least the Coxeter number. Then U^ 
admits a Koszul grading compatible with its natural ZR-grading. 

REMARK. By a Koszul grading on a ring we mean a Z-grading that makes the 
ring a Koszul ring. The conjecture says that the category of GiT-modules should 
be "graded semisimple". In [AJS94] we construct a Z-grading on U^ and prove 
that it gives a Koszul grading on the regular blocks of U^ if Lusztig's conjecture 
holds; i.e., if p ^> 0 (for P fixed). So the problem is to treat singular blocks and 
small p. 
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I. Les problèmes 

(a) Soient F un corps local non archimédien de caractéristique nulle, à corps 
résiduel fini, et G un groupe réductif connexe défini sur F. Munissons G(F) d'une 
mesure de Haar. Plus généralement, pour tout sous-groupe fermé unimodulaire 
H C G (F), munissons H d'une mesure de Haar et H\G(F) de la mesure quotient. 
Notons C^(G(F)) l'espace des fonctions sur G(F), à valeurs complexes, localement 
constantes et à support compact. Pour / G C^(G(F)) et x e G(F), posons 

0G (*,.f)= / f(y-lxy)dy 
JZa(x)°(F)\G(F) ZG{x)°(F)\G(F) 

où ZG(X)° est la composante neutre du commutant de x dans G. L'intégrale est 
absolument convergente ([Rao]). Fixons un ensemble de représentations UG C 
G(F) des classes de conjugaison unipotentes, pour la conjugaison par G(F). 

PROPOSITION (Shalika [Sha]). Pour tout u e UG', il existe une fonction TG sur 
G(F), dont le germe au voisinage de 1 est uniquement déterminé, de sorte que 
pour toute f e C^(G(F)), il existe un voisinage Vf de 1 dans G(F) tel que, pour 
tout x eVf, on ait Végalité 

<f{x..f)= £ T°{x)èG{u,f). 
ueuG 

Ces fonctions TG sont appelées germes de Shalika. Le premier problème (et 
le plus profond) est le : 

PROBLèME A. Calculer les germes de Shalika TG. 

(b) Notons G?(F)freg l'ensemble des éléments fortement réguliers de G(F) (i.e. les 
x e G(F) dont le commutant est un tore) et F la clôture algébrique de F. Soit T 
un sous-tore maximal de G (défini sur F). Pour x G T(F) fi G(F)frcë, l'ensemble 
{y~1xy;y G {T\G)(F)} est la classe de conjugaison stable de x, i.e. l'ensemble 
des xf G G(F) conjugués à x dans G(F). Le groupe G(F) agit naturellement sur 
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(T\G)(F). L'ensemble des orbites s'identifie naturellement à un sous-groupe de 
i f 1 (Gal(F/F) ,T(F)) . Notons k(T/F) le groupe dual de ce sous-groupe. Chaque 
élément de k(T/F) définit une fonction sur (T\G)(F). Munissons (T\G)(F) d'une 
mesure déduite d'une forme différentielle invariante sur T\G. Pour K G k(T/F), 
f G C?(G(F)) et x G G(F), posons 

4>G'K(xJ)= f K{y)f{y-lxy)dy. 
J(T\G)(F) HT\G)(F) 

Pour K: = 1, on écrit (j)G,st au lieu de 0 e ' 1 . On conjecture que les intégrales (j)G,K 

sont égales à des intégrales (j)H st sur des groupes H plus petits que G, ses "groupes 
endoscopiques". 

Fixons une forme intérieure G* de G, quasi-déployée sur F, et un isomor-
phisme ''intérieur" ip:G —• G*. Notons LG = G x Wp le L-groupe de G ([B] 
1.2). Soit (H,H.,s,Ç) une donnée endoscopique de G ([LSI] 1.2) : H est un groupe 
réductif connexe sur F, quasi-déployé, H est une extension scindée de Wp par H, 
s est un élément semi-simple de G, Ç.H —> LG est un L-homomorphisme injectif 
tel que Ç(H) C ZLG(S), et Ç(H) = Z^(s)°. Il y a une application naturelle 

J classes de conjugaison 1 J classes de conjugaison 1 
^ semi-simples dans H(F) j \ semi-simples dans G(F) j ' 

On dit qu'un élément de H (F) est fortement G-régulier si l'image de sa classe est la 
classe d'un élément fortement régulier de G(F). Notons H(F)c-{reg l'ensemble de 
ces éléments. Supposons pour simplifier H = LH (cf. [LSI] 4.4 pour le cas général). 
Pour y G H(F)c-heg et x e G(F)freg, on définit un facteur de transfert A(y,x) 
([LSI] §3). Il n'est non nul que si les classes sur F de y et x se correspondent. Pour 
/ G C?(G(F)) et y G H(F)G.{reg, on pose 

X 

où l'on somme sur un système de représentants des classes de conjugaison par 
G(F) dans G(F)freg. Supposons qu'il existe x tel que A(y,x) ^ 0. Fixons un tel 
x, posons T = ZG(x). On montre qu'il existe Ao G C x et K G k(T/F) tels que 

d>GH(y,f)=A0ct>G^(x,f). 

PROBLèME B. Soit f e C^(G(F)). Existe-t-il un "transfert" fH G C?(H(F)) 
tel que pour tout y G H(F)G-hcg, on ait Végalité (j)H,st(y, / / / ) = 0G , H(y, / ) ? 

Pour u G UG et y G H(F)G-freg- posons 

rt"(2/)=£A(i,,:r)r£(z), 
X 

où la somme est comme ci-dessus. Quand G = H, on écrit TG>st au lieu de TG,G. 

PROBLèME B \ Soitu e UG. Le germe TG,H est-il combinaison linéaire de germes 
T^st pour v G UH ? 
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Langlands et Shelstad on montré qu'une réponse affirmative à cette question 
pour tout couple (G, H) impliquait l'existence du transfert ([LS3) 2.3). 

(c) Soient G et H comme ci-dessus, supposons toujours H = LH, supposons de 
plus G et H quasi-déployés, déployés sur une extension non ramifiée de F, et qu'il 
existe une telle extension E/F et un diagramme commutatif 

LH - ^ LG 

i i 
H x Gsl(E/F) - ^ G x Gsl(E/F) 

Soient KG un sous-groupe compact maximal hyperspecial de G(F) et 
M(G,KG) l'algèbre des fonctions sur G(F), à valeurs complexes, à support com
pact et biinvariantes par KG- Notons Gss l'ensemble des éléments semi-simple 
de G, Fr G Gal(£ /F) l'élément de Frobenius et (G.ss x {Fr})/G l'ensemble des 
classes de conjugaison par G dans le sous-ensemble Gss x {Fr} C G x Gal(E/F). 
L'isomorphisme de Satake identifie H(G, KG) aux fonctions "polynômes" sur 
(Gss x {Fr})/G. Posons des définitions analogues pour le groupe H. Comme Çp 
définit une application 

(Hss x {Fr})/H — (Gss x {Fr})/G, 

on en déduit une application b:M(G,KG) —* M(H,KH). 

PROBLèME C ("lemme fondamental"). Existe-t-il c ^ 0 tel que pour toute f G 
M(G, KG) et tout y G H(F)G-heg, on ait Végalité 

<!>H'st(y,b(f))=c<t>GH(y,f) 

(cf. [Ll] §3, [H3]) ? 

REMARQUES 1. La motivation des problèmes B et C est la stabilisation de la 
formule des traces de Arthur et Selberg ([Ll]). Ce problème s'est posé pour la 
première fois pour SL(2) dans [Lab-L]. 

2. On peut généraliser le problème C au cas où l'on se donne un automorphisme 
9 de G, défini sur F, et un caractère u; de G (F) et où l'on remplace les intégrales 
(j>G(x,f) par 

C>,/)= / ^(y)f(y~1x0(y))dy 
JzG,o(x)°(F)\G(F) 

où Zc,e(x) = {y e G:y~1x0(y) = x}. L'intégrale n'est définie que pour les x tels 
<lue v\zGte(x)(F) = 1- (Cf. [KS].) 
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II. Premiers résultats sur les problèmes A et B 

(a) Le calcul des germes pour les unipotents réguliers (i.e. les u G UG tels que 
dim ZG(u) = rang G) et sous-réguliers (i.e. les u G UG tels que dim ZG(u) = 
rang G -h 2) a été effectué pour G = GL(n) et G = SL(n) par Repka ([Rei, Re2, 
Re3]). 

(b) Si T est un sous-tore maximal de G défini sur F, on dit que T est elliptique 
s'il n'est pas contenu dans un sous-groupe parabolique propre de G défini sur F. 

PROPOSITION (Rogawski [Ro]). Supposons les mesures convenablement normali
sées, soit T un sous-tore maximal défini sur F. Alors le germe TG, restreint à 
T(F) CiG(F)freg, est constant au voisinage de l'unité, égal à 1 siT est elliptique, 
à 0 si T n'est pas elliptique. 

Notons que, si T n'est pas elliptique, les intégrales orbitales (j)G(x,f), pour 
x G T(F), sont égales à des intégrales (j)M(x, fp), où M est un sous-groupe de Levi 
contenant T d'un sous-groupe parabolique propre P de G défini sur F, et fp une 
fonction sur M(F) déduite de / . On peut donc se limiter dans nos problèmes au 
cas où T est elliptique. 

(c) Si G(F) est compact modulo son centre, le problème B' se résout positivement 
pour tout H ([LS2], corollaire 2.5). 

III. La variété des étoiles 

(a) Soient T un sous-tore maximal de G défini sur F , 5 un sous-groupe de Borei de 
G contenant T, non nécessairement défini sur F, A l'ensemble des racines simples 
de T associé à B, W le groupe de Weyl de T (sur F). Notons B la variété des sous-
groupes de Borei de G. La variété des étoiles S est l'ensemble des (B(w))wew e 
Mw tels que pour tous w G W et Q G A, il existe y G G(F) tel que B(w) = 
y~1By, B(saw) C y~xPay^ où sa est la symétrie associée à a et Pa le sous-
groupe parabolique de G contenant B, de rang semi-simple 1, associé à Q. Soit Xe 

l'ensemble des (x, (B(w))w^w) e G x S tels que x G B(w) pour tout w G W et x 
est fortement régulier. Soit X la clôture de Xe dans G x S. On a des applications 

X 

/ \ 

définies ainsi : -K est la projection sur le premier facteur; pour x = (x. (B(w))wew) 
G X, soit y G G(F) tel que B(l) = y~lBy, alors p(x) est l'image de yxy~l 

par la projection naturelle B —> T. On peut munir X d'une structure sur F de 
sorte que -K et ip soient définies sur F. Soit t G T(F) D G(F)freg. Alors ^p~1(t)(F) 
s'identifie à (T\G)(F). Pour n G k(T/F) et / G C?(G(F)), on peut interpréter 
(j)GiK(t,f) comme une intégrale sur (p~l(t)(F). Soit C (Z T une courbe définie 
sur F, passant par l'origine, de tangente à l'origine en position générale. Soient 
y ° = {x G X°;ip(x) G G}, Y la clôture de Y° dans X. On peut trouver une 
désingularisation p\Yc —> Y telle que Ton puisse appliquer la théorie d'Igusa ([I]) 
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à l'application ipop: Yc —> G. On obtient un développement explicite de (j)G'K(t, f), 
quand t G C(F) tend vers 1, en termes de parties principales d'intégrales sur les 
composantes définies sur F de (ip op ) _ 1 ( l ) . Les orbites unipotentes interviennent 
de la façon suivante : pour toute composante E de (if o p ) - 1 ( l ) , il existe une 
(unique) orbite unipotente Ö de G(F) telle que les clôtures de Zariski de 7rop(E) 
et de O soient égales. 

Cette construction, due à Langlands ([L2]), permet le calcul des germes de 
Shalika quand on connaît une description suffisamment maniable de la désingula-
risation Yc. 

(b) Le calcul a été mené à bien pour G = SL(3), SU(3) ([L2], [LS2]), GSp(4) ([Hl]), 
Sp(4) ([H4]), G2 et SL(4) ([Jl,2]); pour G quelconque et une orbite unipotente 
sous-régulière ([H2]). 

(c) L'utilisation de la variété des étoiles a permis à Shelstad de calculer les germes 
pour les orbites régulières ([S]). Supposons G quasi-déployé, soient u G UG un 
élément régulier, T C G un sous-tore maximal défini sur F, x e T(F) D G(F)freg. 
On note A(x) la valeur absolue du déterminant de 1 — Ad(x) agissant sur le 
quotient d'algèbres de Lie (LieG)(F)/(LieT)(F). Shelstad définit trois éléments 
inv(a;), mwT(u) et inv(T) de H1(Gol(F/F),T(F)). On a alors l'égalité 

^GU, _ f A(x)" 1 / 2 , si inv(a;) = invT(u)/inv(T), r^) = {A(T 
u v ' [ 0, sinon, 

(il s'agit de l'égalité des germes de ces fonctions au voisinage de 1). 

IV. Le cas de GL(rc) 

Rappelons la définition suivante. Soient F'/F une extension finie, F' et F les corps 
résiduels des anneaux d'entiers de F' et F, e(Ff/F) l'indice de ramification, vpt 
la valuation normalisée de Ff et Dp une uniformisante de F. Soit x G FfX. On 
dit que x est F'/F-cuspidal si pgcd(vp'(x),e(F'/F)) = 1 et si la réduction de 
X<F'/FÌìJJ~VF'{X) engendre F' sur F. 

Soit T un sous-tore maximal elliptique de G = GL(n), défini sur F. Identifions 
T(F) au groupe multiplicatif d'une extension E/F de degré n. Pour tout u G UG 

et tout x G Ex tel que x soit régulier et vp(x — 1) > 0, on définit TG(x) (cf. plus 
loin section VI(a)). Supposons E/F modérément ramifiée et n > 1. Soit x G Ex, 
régulier, tel que vp(x — 1) > 0. Il existe alors z G Fx, y et x1 G Ex tels que 

(i) x = z(l + yx'); 
(ii) en posant F' = F (y), y est F' /F-cuspidal; 

(iii) vF(z - 1) > 0, vE(xf - 1) > 0. 
Fixons de tels éléments. Soit G' = ZG(y)- Alors G'(F) ~ GL(n' ,F ;) , où n' = [E : 
F']. Pour tous u eUG, u' G UG>', on définit p(u,uf) G C et l'on montre que 

rîfc)= £ p(u,«')rSV). 
u'euG' 

Les p(u, u') s'explicitent en fonction des constantes de structure de l'algèbre de 
Hall des groupes linéaires sur un corps fini. La formule ci-dessus fournit un calcul, 
par récurrence sur n, des germes pour GL(n) ([Wl,2]). 
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V. Résultats sur le lemme fondamental 

(a) Le problème est résolu pour certains groupes de petit rang : SL(2) ([Lab-L]). 
U(3) ([BR], [K4]), GSp(4) ([We]). 

(b) Pour G = GL(n), Drinfeld a calculé les intégrales orbitales de certaines fonc
tions / G M(G,KG) (il n'a pas publié ce calcul, cf. [Lau], theorem 4.6.1). 

(c) Soient G = GL(n), d un diviseur de n, E l'extension non ramifiée de F de 
degré d, u un caractère de F x dont le noyau est le groupe des normes de Ex. 
On plonge H (F) = GL(n/d,E) dans G(F). Pour x G H (F) et f e C?(G(F)), on 
pose 

(j)H-G(x, f)= f üJO det(y)f{y-1xy)dy. 
J ZG(x)(F)\G(F) 

On définit un transfert b: H(G, KG) -> M(H, KH) et un facteur AH'G: H(F)G-hog 
—> C. Soit p la caractéristique résiduelle de F, supposons p > n. On prouve que 
pour x G H(F)G-heg e t / £ H ( G , ä ' G ) ?

 o n a l'égalité 

A" 'G(x)0"<G(x, / ) = 0 " (*,&(/)). 

La preuve se fait par récurrence comme en section IV ([Ka], [W2]). 
Le lemme fondamental pour SL(rc) s'en déduit (pour p > n). 

(d) Soient G quelconque vérifiant les hypothèses de section 1(c), E une extension 
non ramifiée de F, Fr le Frobenius de E/F. Le groupe G(F) agit sur lui-même par 
Fr-conjugaison, i.e. par l'application 

G(E) x G(E) —• G(E) 
(y,x) »-> y~1x(Fry). 

Pour x G G(E), on définit sa classe de Fr-conjugaison, sa classe de Fr-conjugaison 
stable C\Fl,st(x), son centralisateur "tordu": 

ZG(E)MX) = {y ^ G(E);y-lx(Fvy) = x}. 

On définit une "norme" TV: 

{ classes de Fr-conjugaison 1 J classes de conjugaison 1 
stable dans G(E) J [ stable dans G (F) J 

(cf. [K2]). On définit aussi un transfert 

b'M(G(E),KG{E)) ^M(G(F),KG(F)), 

avec des notations évidentes. Soient x G G(E) et f e C^(G(E)). Supposons que 
N(C\Fr'st(x)) soit une classe fortement régulière. On pose alors 

fâE)'8t(x,f) = W f(y-lAFry))dy 
x> JZolEhFr(x')\G(E) 
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où l'on somme sur un système de représentants des classes de Fr-conjugaison dans 
ClFr>st(x). 

On prouve que pour tout y G G(F)freg et toute / G W(G(E),KG(E)), on a 
les égalités 

(i) <^F><<%,Ò(/)) = < ^ E ) ' S W ) , 
si x est un élément de G(E) tel que N(C\Fr,st(x)) soit la classe de conjugaison 
stable de y (alors ClFr,st(x) est uniquement déterminée): 

(ii) d>G^st(y,b(f)) = 0, 
si la classe de conjugaison stable de y n'est pas dans l'image de N ([C]; voir 
aussi [Kl], [AC], [Lab]). 
La preuve utilise des arguments globaux (formule des traces). Pour les utiliser, 

il est essentiel de connaître préalablement le résultat quand / est la fonction car
actéristique de KG(E)- Ce résultat est dû à Kottwitz ([K2]). 

(e) Haies a généralisé la méthode précédente et montré que, dans le cadre de 
section 1(c), le lemme fondamental résultait du même lemme pour la fonction 
caractéristique de KG ([H5]). 

VI. Résultats reliés 

(a) Supposons G classique et quasi-déployé, soit g son algèbre de Lie, que l'on 
plonge dans une algèbre de matrices. On pose 

g(F)tn = {X e g(F): lim Xn = 0}. 
n—>oc 

Soit K C G(F) le fixateur d'un sommet de l'immeuble de G, on définit son algèbre 
de Lie k C g(F) et l'on pose 

Ktu = {xeK: lim x^ = 1}, 
n—»oc 

où p est la caractéristique résiduelle de F. Supposons donné un homéomorphisme 
e: A: D g(F)tn —> Ktu vérifiant des propriétés proches de celles de l'exponentielle. 
Pour u G UG, on définit TG sur tout Ktu D G(F)frcg de sorte que 

TG(e(p2X)) = \p\d^TG(e(X)) 

pour tout X G k Ci g(F)tn tel que e(X) G G(F)freg et tout p G Fx tel que 
VF(P) > 0, où d(u) est un certain entier explicite. 

PROPOSITION. Supposons p uassez grand'7, notons f la fonction caractéristique 
de K et soit x G Ktu n G(F)freg. Alors on a l'égalité 

ueuG 

(cf. [W4]). 
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(b) Dans la situation de section 1(c), pour / G H(G, KG) et x e G(F)freg, on 
peut exprimer (j)G(x,f) en termes de la transformée de Satake de / . L'expression 
fait intervenir des "traces pondérées" de représentations sphériques de G(F) ([W3] 
dans le cas de GL(n), [Al], §9 et [A2] dans le cas général). Dans certains cas, on 
peut aussi donner une expression de (j)G(u,f), pour u G UG ([MA]). 

(c) Les notions d'intégrales orbitales, de classe de conjugaison stable, de facteur 
de transfert etc. se descendent aux algèbres de Lie. Fixons sur g(F) une forme 
bilinéaire ( , )g symétrique non dégénérée et invariante par l'action adjointe de 
G(F) et fixons un caractère îp: F —• C x continu et non trivial. Pour / G C^(f(F)), 
on définit sa transformée de Fourier / G C^(g(F)) par 

f(X)= f f(Z)*P((X,Z)g)dZ 

pour tout X G g(F), où dZ est la mesure autoduale. Pour X G g(F), on définit 
une distribution <j)G(Xr) par <j)G(X,f) = (ßG(X,f) pour toute / G C^(g(F)). Il 
existe une fonction iG: g(F)veg x g(F)rcg —» C, localement constante, telle que pour 
toute / G C^(g(F)), on ait l'égalité 

0G(X, / ) = / iG(X, Z)f(Z)A(Z)-'dZ 

où A est l'analogue de la fonction définie en section III(c). 
Les distributions (j)G(X, •) doivent être considérées comme des analogues pour 

l'algèbre de Lie g(F) des caractères de représentations de G(F). Cette interpréta
tion conduit à la conjecture suivante. Dans la situation de section 1(b), soit h 
l'algèbre de Lie de H. On déduit de ( , )g une forme ( , )h sur h(F). On définit 
deux constantes explicites 7^(0) et ^(h). 

CONJECTURE ([W5]). Soient Y e h(F)G-Veg et Z e g(F)reg. On a légalité 

^(h) Y, w(ZTl^(Z\Z)iH(Yf,Zf)=j4g)Y,^y^)iG(X,Z), 
Y',Z' X 

où on somme en Y', resp. Z',X, sur un ensemble de représentants des orbites pour 
Taction adjointe de H(F), resp. H(F),G(F), dans la classe de conjugaison stable 
de Y, resp. dans h(F)G-reg? dans g(F)Teg et où w(Zf) est le nombre d'orbites dans 
la classe de conjugaison stable de Zf. 

Cette conjecture est vérifiée quand Y et Z "tendent vers l'infini". Quand Y 
et Z "tendent vers 0", elle résout le problème B'. 
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ABSTRACT. One important problem arising in algebraic geometry is the computation 
of effective bounds for the degree of embeddings in a projective space of given alge
braic varieties. This problem is intimately related to the following question: Given 
a positive (or ample) line bundle L on a projective manifold X, can one compute 
explicitly an integer mo such that mL is very ample for m > mo ? It turns out that 
the answer is much easier to obtain in the case of adjoint line bundles 2(Kx +mL), 
for which universal values of mo exist. We indicate here how such bounds can be 
derived by a combination of powerful analytic methods: theory of positive currents 
and plurisubharmonic functions (Lelong), L2 estimates for d (Andreotti-Vesentini, 
Hörmander, Bombieri, Skoda). Nadel vanishing theorem, Aubin-Calabi-Yau theo
rem, and holomorphic Morse inequalities. 

1 Basic concepts of hermitian differential geometry 

Let X be a complex manifold of dimension n and let F be a C°° complex vector 
bundle of rank r over X. A connection D on F is a linear differential operator D 
acting on spaces C°°(X, APj9T£ 0 F ) of F-valued differential forms, increasing the 
degree by 1 and satisfying Leibnitz' rule 

D(fAu)=dfAu+ (- l)d e g / / A Du 

for all forms / G C°°(X Aa '6T£), u e C°°(A", A™7£ 0 F). As usual, we split 
D = Df + D" into its (1,0) and (0,1) parts, where 

D' + D" : C°°(X,A™TZ®F) —•* Coc(X, Ap+1>qT£®F)®C00(X, A™+1r£<g>F). 

With respect to a trivialization r : F^Q -—> fìxP.aconnection D can be written 
Du ~ T du + T A u, where r = T' + r " is an arbitrary (r x r)-matrix of 1-forms 
and d acts componentwise. A standard computation shows that D2u ~ r 0(D)Au, 
where 9(D) = dT + T A T is a global 2-form on X with values in Hom(F,F). 
This form is called the curvature tensor of F. In the important case of rank 1 
bundles, 0 ( F ) = dT is a d-closed form with complex values; it is well known that 
the De Rham cohomology class of 0(F) := ^G(F) = ^D2 is the image in De 
Rham cohomology of the first Chern class c\ (F) e H2 (M, Z). For any line bundles 
F i , . . . ,F p on X and any compact p-dimensional analytic set Y in X, we set 

FpY = J ^ci(Fi)A...Aci(Fp). 

Proceedings of the International Congress 
of Mathematicians, Zürich, Switzerland 1994 
© Birkhäuser Verlag, Basel, Switzerland 1995 



818 Jean-Pierre Demailly 

If F is equipped with a Cx hermitian metric h, the connection D is said to be 
compatible with h if 

d(u,v)h = (Du,v)h + (u,Dv)h 

for all smooth sections u, v of F . This is equivalent to the antisymmetry condition 
T* = —r (in a unitary frame), i.e. T" = —T'*. In particular, a compatible connec
tion D is uniquely determined by its (0, l)-componcnt D". If F has a holomorphic 
structure, we precisely have a canonical (0, l)-connection D" = d obtained by 
letting d act componentwise. Hence, there exists a unique (l,0)-connection D' 
that makes D = D' + d compatible with the hermit ian metric. This connection is 
called the Chern connection. Let (e^) be a local holomorphic frame of F^Q and let 
H = (h\ß), h\ß = (e\,eß) be the hermitian matrix representing the metric. Stan
dard computations show that the Chern connection and curvature are given by 

D' ~ r d + H~ldH A . = H~ld(H.), 6 ( F ) = d(H~ldH). 

In the special case where F has rank 1, it is convenient to write the unique coef
ficient H = /in of the hermitian metric in the form H = e~2<p. The function ip 
is called the weight of the metric in the local coordinate patch Q. We then find 
0 ( F ) = 2ddip. It is important to observe that this formula still makes sense in the 
context of distribution theory if tp is just an arbitrary L\oc function. As we shall 
see later, the case of logarithmic poles is very important for the applications. 

DEFINITION. A singular hermitian metric on a line bundle F is a metric given in 
any trivialization r : F\Q ^-» Q x C by 

U\\ = \T(t)\e-«x\ s e n , ÇGF,, 

where ip e L1
1
oc(fi) is an arbitrary function. The associated curvature current is 

d(F) = -ddtp. 
7T 

The Lelong-Poincaré equation states that ^991og| / | = [Dj], where / is a holo
morphic or meromorphic function and [Df] is the current of integration over the 
divisor of / . More generally, we have 

-dd\og\\cT\\ = [D(T}-0(F) 
7T 

for every section a G H°(X,F), as follows from the equality \\o~\\ = | / | e - v \ if 
/ = r(a). As a consequence, the De Rham cohomology class of [Da] coincides 
with the first Chern class ci(F)R G i 7 ê R ( X ^ ) -

2 Positivity and ampleness 

Let (z\,...,zn) be holomorphic coordinates on X and let (e,\)i<A<r be an or
thonormal frame of F . Let the curvature tensor of F be 

0 (F ) = Yi CjkXßdzj A dzk 0 e * A ^ eM. 
l<j :fe<n,l<A,/i<r 
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Clearly, this tensor can be identified with a hermitian form on Tx <8> F , namely 

®{F)(t) = Y^ cjkXßtjXt^, * = ] L ^ < ^ ® e * G T x ® F-

DEFINITION. (Kodaira, Nakano, Griffiths) A holomorphic vector bundle F is 

• positive in the sense of Nakano if 0 ( F ) (t) > 0 for all nonzero tensors t e 
Tx®F; 

• positive in the sense of Griffiths if 0(F)(£ ® v) > 0 for all nonzero decom
posable tensors £ ® v e Tx 0 F . 

7n particular j a holomorphic line bundle F is positive if and only if its weights (p 
are strictly plurisubharmonic (psh), i.e. if (d2ip/dzjdzk) is positive definite. 

EXAMPLE 1. Let D = Y2aj^j D e a divisor with coefficients ctj e Z and let 
F = O(D) be the associated invertible sheaf of meromorphic functions u such 
that div(u) -f D > 0 ; the corresponding line bundle can be equipped with the 
singular metric defined by ||u|| = \u\. If gj is a generator of the ideal of Dj on 
an open set ft C X, then r(u) = u\\g^3 defines a trivialization of 0(D) over ÇI; 
thus, our singular metric is associated with the weight <p = X]Q j 1°6 Ì9j\- By the 
Lelong-Poincaré equation, we find 

-e(0(D)) = -ddip = [D] > 0, 
7T 7T 

where [D] = ^2,OLJ[DJ] denotes the current of integration over D. 

EXAMPLE 2. Assume that <TI, . . . , <T,V are nonzero holomorphic sections of F . Then 
we can define a natural (possibly singular) hermitian metric on F by 

\r(Ì)\2 

W Ei<j<^k(^(^))l2 

with respect to any trivialization r. The associated weight function is tp(x) = 
log (Yl l r(a"j(x))|2)1 ' /2- I n t n i s c a s c ^ is a psh function; thus, i0(F) is a closed 
positive current. Let us denote by E the linear system defined by a\,..., ajv and 
by BY. = f]o'~1(0) its base locus. Let 

$ s : X \ BY - P * " 1 , x ~ {ax{x) : a2(x) : . . . : aN(x)) 

be the associated map. Then 6(F) = -^ log(|<7i|2 + • • • + |CTJV|2) is the pullback 
over X \ BY of the Fubini-Study metric O;FS on PA r _ 1 . 

DEFINITION. A holomorphic line bundle F over a compact complex manifold X 
ts 

very ample, if the map $\jr\ : X —* FN * defined by the complete linear 
system \F\ = P(H°(X,F)) is a regular embedding (this means in particular 
that ß ) F | = 0); 
ample, if mF is very ample for some positive integer m. 
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Here we used an additive notation for Pic(X) = Hl(X,0*), i.e. mF = F®m . By 
Example 2, every ample line bundle F has a smooth hermitian metric with positive 
definite curvature form; indeed, if 4>|mF| is an embedding, then we get a positive 
definite curvature form 0(F®m) = ^tmF\(^Fs) and we need only extract the rath 
root of this metric to get the desired smooth metric on F . The converse is also 
true: 

KODAIRA EMBEDDING THEOREM (1954). A line bundle F is ample if and only if 
F can be equipped with a smooth hermitian metric of positive curvature. 

In this context, Fujita [Fuj87] has raised the following important conjecture. 

CONJECTURE (FUJITA, 1987). If L is an ample line bundle on a projective n-
fold X, then Kx + (n + l)L is globally generated and Kx + (n + 2)L is very 
ample. 

Here Kx = AnTx is ^he canonical bundle. The example of curves shows that Kx 
is needed to get a uniform answer (if L is a bundle of degree 1 on a curve, then in 
general rnL does not have any nonzero section unless m > g = genus). Also, the 
example of projective spaces show that Fujita's bounds would be optimal, because 
KFn = 0(-n - 1). 

Such questions have attracted a lot of attention in recent years. First, the 
case of surfaces has been completely settled by Reider; in [Rei88] he obtains a 
very sharp criterion for global generation and very ampleness of line bundles in 
dimension 2. In higher dimensions, let us mention [Dem90,93,94,95] and the works 
of Fujita [Fuj87,94], Rollar [Kol93], Ein-Lazarsfeld [EL92,93], Lazarsfeld [Laz93], 
and Siu [Siu93,94]. Our goal is to describe a few powerful analytic methods that 
are useful in this context. 

3 Bochner technique and vanishing theorems 

Let X be a compact complex n-fold equipped with a Kahler metric, namely a 
positive (1, l)-form u = i^ujjkdzj A d2k with du = 0. Let F be a holomorphic 
vector bundle on X equipped with a hermitian metric, and let 

A' = D'D'* + D,icD', A" = D"D"* + D"*D", 

be the complex Laplace operators associated with the Chern connection D. Here 
the adjoints D'*, Dn* are the formal adjoints computed with respect to the L2 

norm ||w||2 = Jx\u(x)\2 dVUJ(x), where \u\ is the pointwise hermitian norm and 
dVu = ujn/n\ is the volume form. The fundamental results of Hodge theory imply 
isomorphisms 

Hq(X, iip
x®F) = H%q(X, F) ~ Hpq(X, F) 

between sheaf cohomology groups, Dolbeault 9-cohomology groups, and the space 
Hp,q of harmonic (p, g)-forms A"u = 0. The next fundamental fact is an identity 
originally used by Bochner to prove vanishing results for Betti numbers. Slightly 
later, the identity was extended to the complex situation by Kodaira and Nakano. 
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BOCHNER-KODAIRA-NAKANO FORMULA (1954). For allu = J2 ujtK,\dzihdzj® 
e\ of class C°° and type (p,q), we have 

A"u = A'tx + Apgju, 

where Â?pq
u is the hermitian endomorphism such that {A^^u, u) = 

/] CjkXfj, uJ,jS,X Uj,kS,ß + 22 CJkX» u^R,KtX
 ujR,K,ti - 2^ CÜX» Uj>K-x UJ,K,V> 

and the summations are extended to all relevant indices 1 < j , k < n, 1 < À, p < r, 
and all relevant multiindices \J\ —p, \K\ = q, \R\ = p — 1, \S\ = q — 1. 

As (A'u, u) = {{D'u^ + WD^uW2 > 0 the Bochner-Kodaira-Nakano formula implies 

<A"u,ti)> f (Applu,u) dV«. 
Jx 

If A™^ is positive definite, every (p, ç)-harmonic form has to vanish and we con
clude that Hq(X, ÇLP

X <g> F) = 0. In the special case of rank 1 bundles, we can take 
at each point x e X simultaneous diagonalizations 

UJ(X) = i^^dzj Adzj, Q(F)(x) = i^^jj(x)dzj Adzj, 

where j\(x) < • • • < jn(x) are the curvature eigenvalues. Then Cjj\ß — 7j and 

( A F % U > u ) = Y 2 ( Y 2 7 J ' ~ 1 2 1 7 V \ U j K \ 2 ^ ( 7 i + • • • H - 7 9 - l n - p + i l n ) \ u \ 2 . 

J,K j£K j£J 

Assume now that i0(F) is positive. The choice UJ = i0 (F) yields 7j = 1 for 
j = 1,2,... ,n and (A^u, u) = (p + q — n)\u\2. From this, we immediately infer: 

AKIZUKI-KODAIRA-NAKANO VANISHING THEOREM (1954). If F is a positive line 
bundle on a compact complex manifold X, then 

H™(X, F) = Hq(X, üp
x ® F) = 0 forp + q>n + l. 

The above vanishing result is optimal. Unfortunately, it cannot be extended to 
semipositive or numerically effective line bundles of bidegrees (p, q) with p < n, as 
shown by a counterexample of Ramanujam [Ram74]. 

4 Hörmander's L2 estimates and existence theorems 

The basic existence theorem is the following result, which is essentially due to 
Hörmander [HÖ65] and, in a more geometric setting, to Andreotti-Vesentini [AV65]. 
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THEOREM. Let (X,UJ) be a complete Kahler manifold. Let F be a hermitian vector 
bundle of rank r over X, and assume that A = A™^ is positive definite everywhere 
on A ^ T J ^ F, q > 1. Then for any form g e L2(X, hPqT^ <g) F) with 

D"g = 0 and [ ( (A™)" 1 <?,<?) dV„ < +oo, 
Jx 

there exists a (p,q — T)-form f such that D"f = g and 

f \f\2dVu< f ((A^)-1g,g)dVul. 
Jx Jx 

The proof can be ultimately reduced to a simple duality argument for unbounded 
operators on a Hilbert space, based on the a priori inequality 

\\D"u\\2 + ||£>"*u||2 > / (Applu,u) dV» 
Jx 

The above L2 existence theorem can be applied in the fairly general context of 
weakly pseudoconvex manifolds (i.e. manifolds possessing a weakly psh exhaustion 
function), thanks to the fact that every weakly pseudoconvex Kahler manifold 
(X, UJ) carries a complete Kahler metric. In particular, the existence theorem can be 
applied on compact manifolds, pseudoconvex open sets in Cn , Stein manifolds, etc. 
By regularization arguments, the existence theorem also applies when F is a line 
bundle and the hermitian metric is a singular metric with positive curvature in the 
sense of currents. In fact, the solutions obtained with the regularized metrics have 
weak L2 limits satisfying the desired estimates. Especially, we get the following 
more tractable version in the case p = n. 

COROLLARY 1. Let (X,UJ) be a Kahler weakly pseudoconvex complex manifold of 
dimension n. Let F be a holomorphic line bundle on X7 equipped with a sin
gular metric whose local weights if e L\oc satisfy i0(F) = 2iddip > eu) for 
some e > 0. For every g e L2(X,An'qTx ® F) with D"g = 0, there exists 
f e L2(X,\™~lT^ ® F) such that D"f = g and 

i \S\2e-^dVu<-( \g?e-2*dV„ 
Jx Q£ Jx 

This result leads in a natural way to the concept of multiplier ideal sheaves, accord
ing to Nadel [Nad89]. The basic idea was already implicit in the work of Bombieri 
[Bom70] and Skoda [Sk72]. 

MULTIPLIER IDEAL SHEAVES. Let (p be a psh function on an open subset ii c X. 
We define l(ip) C Ox to be the sheaf of germs f e OQìX such that \f\2e~2^ is 
integrable on a small neighborhood V of x with respect to the Lebesgue measure. 

MAIN PROPERTY ([Nad89], [Dem93]). The ideal sheaf l(tp) C Ox is a coherent 
analytic sheaf. Its zero variety V(T(tp)) is the set of points in a neighborhood of 
which e~2ip is nonintegrable. 
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A basic observation is that the zero variety V(l(if)) is closed related to the sublevel 
sets of Lelong numbers of (p. 

DEFINITION. The Lelong number of a psh function <p at a point x e X is the limit 
v(y>,x) := liminf2_x <p(z)/ log \z — x\. The function ip is said to have a logarithmic 
pole of coefficient 7 if 7 = v((p,x) > 0. 

LEMMA ([Sk72]). Let tp be psh on Q and let x e ft. 

• If u(ip,x) < 1, then e~2<p is integrable near x => l(<p)x = Oç\iX. 
If v(ip, x) > n + s, s e N, then e~2* > C\z - x\-2n~2s near x and l(ip)x C 

ra; 
s+1 

SIMPLE ALGEBRAIC CASE. Let ip = J2aj l o§ Ì9jl aj e Q+? D e associated with a 
normal crossing Q-divisor D = YlajDj, Dj = gjx(0). An easy computation gives 

!(¥>)= 0 ( - 5 > i J ÖJ) = °(-LAI), 
where [ctj\ = the integral part of aj. If the assumption on normal crossings is 
omitted, a desingularization of D has to be used in combination with the following 
fonctoriality property for direct images. 

BASIC FONCTORIALITY PROPERTY. Let p : X' —> X be a modification (i.e. a 
proper generically 1 : 1 holomorphic map), and let tp be a psh function on X. 
Then 

p+(0(Kx>)®I(vop))=0(Kx)®l(<p)-

Let us now consider the case of general algebraic singularities 

^ ~ | l o g ( | / i | 2 + --- + |/,v|2) 

with a e Q4" and fj holomorphic on an open set Q C X. By Hironaka's theorem, 
there exists a smooth modification p, : X —» X of X such that p*(fi,... ,fN) is an 
invertible sheaf O(-D) associated with a normal crossing divisor D = Yl^j^j-
Then 

i(ip) = P,O-(Y2(PJ - L^J)D, ) , 
where R = Y^PjDj 1S t n e z e r o divisor of the jacobian JM of the blow-up map. In 
this context, wre get the following important vanishing theorem, which can be seen 
as a generalization of the Kawamata-Viehweg vanishing theorem (see [Kaw82], 
[Vie82], [EV86]). 

NADEL VANISHING THEOREM ( [ N A D 8 9 ] , [ D E M 9 3 ] ) . Let (X,u) be a Kahler weakly 
pseudoconvex manifold, and let F be a holomorphic line bundle over X equipped 
with a singular hermitian metric of weight if. Assume that i0 (F) > eu; for some 
continuous positive function e on X. Then 

Hq(X, 0(KX + F) <g>l(<p)) = 0 forallq>l. 

Proof. In virtue of Hörmander's L2 estimates applied on small balls, the 9-complex 
of L2

oc (n, g)-forms is a (fine) resolution of the sheaf 0(Kx + F) <& l((f). The global 
L2 cohomology is also zero by the L2 estimates applied globally on X.H 
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COROLLARY 2. Let x\,..., x^ he isolated points in the zero variety V(X((p)). Then 
there is a surjective map 

H°(X,KX+F)^> 0 (0{Kx+L)®Ox/I{<p))Xj. 

In particular, if the weight function ip is such that v(<p, x) > n -j- s at some point 
x e X and v(w,y) < 1 at nearby points, then H°(X,Kx + F) generates all s-jets 
at x. 

REMARK. It is an easy exercise (left to the reader!) to show that Corollary 2 
implies the Kodaira embedding theorem. 

5 Numerical criteria for very ample line bundles 

The simplest approach to this problem is a recent technique due to [Siu94], which 
rests merely on Nadel's vanishing theorem and the Riemann-Roch formula. We 
formulate here a slightly improved version (see also [Dem94,95]). 

THEOREM. Let L be an ample line bundle on a projective n-fold X. Let Xj e X 
and Sj e N be given, 1 < j < N. For 

m>rao = 2+ E ( n ) 
Kj<N ^ ' l<jf 

H°(X,2Kx+mL) generates simultaneously jets of order s j at all points Xj. In par
ticular, 2Kx + mL is very ample for m > 2 + (3n^hl) • 

Proof. By a result of Fujita, Kx + mL is ample for ra > TUQ (in fact Fujita has 
shown that Kx -+- mL is nef for ra > ra + 1 and ample for ra > n. + 2). The idea 
is to use a recursion procedure for the construction of psh weights (<£i/)i/>i on 
Kx + TïIQL such that 

(a) the curvature of Kx+m^L is positive definite: idd(p„ > EVUJ for some ev > 0, 
where v is the Kahler metric; 

(ß) v(i$v,Xj) >n + Sj for all j ; 
(7) T ^ + i ) 2 Z(ifv) whenever dimV(l((pu)) > 0. 

Indeed, Nadel's vanishing theorem implies 

Hq(X, 0(2KX + mL) ® 0/l(ipu)) =0 for ra > ra0 and q>\. 

Hence, h° = \ is large for some ra G [rao, 2ra0 — 1], and the existence of a section a 
vanishing at order 2(n + Sj) at all points Xj follows by the Riemann-Roch formula 
and an elementary count of dimensions. We then set inductively 

<^+l = log(e*" + e(l-W2mo)</y|l/2)7 

where ^ is a weight for a smooth metric of positive definite curvature on L. Con
dition (7) guarantees that the process stops after a finite number of steps.D 

One weak point of the above result is that large multiples of L are required. 
Instead, we would like to find conditions on L implying that 2(Kx + L) is very 
ample. For this, we need a convenient measurement of how large L is. 
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DEFINITION. Let L be a numerically effective line bundle, i.e. a line bundle such 
that LP • Y > 0 for all p-dimensional subvarieties Y. For every S C X, we set 

p(L,S)= min (Lp-Y)l'p, 

where Y runs over all p-dimensional subvarieties intersecting S. The main pro
perties of this invariant are: 

• Linearity: Vfc > 0, p(kL, S) = k p(L, S) ; 
• Nakai-Moishezon criterion: L is ample if and only if p(L,X) > 0. 

THEOREM ( [ D E M 9 3 ] ) . Let s,m e N, s > 1, m > 2. If L is ample and satisfies 

(ra - 1) p(L, X) > 6(n + s)n - s, 

then 2Kx + mL generates s-jets. Moreover, the result still holds with 6(n + s)n 

replaced by 12nn if s = 1; in particular, 2Kx + l2nnL is always very ample. 

Proof. By Corollary 2 of Section 4, the main point is to construct psh weights 
ip that achieve the desired ideals T(ip)Xj for the jets. This is done by solving a 
complex Monge-Ampère equation 

I UJ H—ddip ] = / , w = 6(L), 

where / is a linear combination of Dirac measures 6Xj and of a uniform density 
with respect to u)n. The solution <p does exist by the Aubin-Calabi-Yau theorem, 
but in general, the poles of if are not isolated. Hence, the Lelong numbers have to 
be estimated precisely: this is indeed possible by means of intersection inequalities 
for positive currents. We refer to [Dem93,94] for details.D 

6 Holomorphic Morse inequalities 

The starting point is the following differential geometric asymptotic inequality, in 
which X(<q,L) denotes the set of points x e X B,t which 0h(L)(x) has at most q 
negative eigenvalues. The proof is obtained by a careful study of the spectrum of 
the complex Laplace operator A". See [Dem85,91] for details. 

STRONG MORSE INEQUALITIES ( [ D E M 8 5 ] ) . Let X be a compact complex n-fold 
and (L,h) a hermitian line bundle. Then, as k —> +oc, 

J2 (-l)q-jV{X,kL) < ^ / (-l)«{0h(L))n + o(kn). 
0<j<q ^ JX(<q,L) 

SPECIAL CASE (ALGEBRAIC VERSION). Let L = F - G, where F and G are nu

merically effective. Then for all q = 0 , 1 , . . . , n, 

J2 (-i)q-jv(x,kL)<^ Y, (-1)9"'(n)Fn~ j•Gj+°(fcn). 
0<7<<7 U' 0<j<q ^ ' 

In particular, for q = 1 we get 

hQ(X,kL)-h1(X,kL) > 1^-(Fn-nFn-1 -G)-o(kn). 
nl 

COROLLARY 1. If F,G are nef and Fn > 0, then k(mF — G) has sections as soon 
asm> nF71-1 • G/Fn and k » 0. 
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COROLLARY 2. If F, G are nef and Fn > 0, then H°(X, Kx + mF - G) ^ 0 for 
some ra < raF71-1 • G/Fn + n + 1. 

Proof. Set ra0 := | r a F n - 1 - G / F n J + 1. By Corollary 1, mQF-G has a psh weight ^ 
with iôôcp » 0; thus, Hq(X, 0(KX +mF-G) 01(ip)) = 0 for q > 1 and ra > ra0. 
The Hilbert polynomial is thus equal to 

/i°(X, 0(KX +mF-G)® l(ip)) > 0, 

and it must be nonzero for some ra G [rao,rao -h ra] because there are at most ra 
roots.D 

A similar proof yields 

COROLLARY 3. If F,G are nef with Fn > 0, and Y is a p-dimensional subvariety, 
then H0(Y,LJY ® Ov(mF - G)) ^ 0 for some m < pF^~l • G • Y/F* • Y -h p + 1, 
w/iene cjy is the L2 dualizing sheaf of Y. 

A proof by backward induction on dim y then yields the following effective version 
of the big Matsusaka theorem ([Mat72], [KoM83]), improving Siu's result [Siu93]. 

T H E O R E M ([Siu93], [ D E M 9 4 , 9 5 ] ) . Let F and G be nef line bundles on a pro
jective n-fold X. Assume that F is ample and set H = Xn(Kx + (ra + 2)F) with 
À2 = 1 and Xn = (3n

n
hl) — 2ra for ra > 3. Then mF — G is very ample for 

ra > {2n)(^-^(Fn-1-(G + ^))(3"-1
 + D / 2 ( F n - l . H ) 3 - » ( „ / 2 - 3 / 4 , - l /4 

^n)3"- 2 (n /2- l /4)+l /4 

In particular mF is very ample for 

, / irn-l IC \3"-2(n/2+3/4)+l/4 

with Cn = (2ra)( 3 r ' " 1 - 1 ) / 2 (A n ) 3"" 2 ( - / 2+ 3 / 4 )+ 1 /4 . 
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Meromorphic Functions: Progress and Problems 

D A V I D D R A S I N 

Mathematics Department, Purdue University 
West Lafayette, IN 47907, USA 

Zürich is a special place to workers in meromorphic function theory. Rolf Nevan
linna was Professor both at the ETH and University of Zürich. His address at the 
1932 Zürich ICM centered on connections between his new theory of meromor
phic functions and the Riemann surface of / _ 1 , a perspective that continues to 
yield insights. Lars Ahlfors accompanied Nevanlinna to the ETH in 1928, where 
he developed his fundamental distortion theorem and proved Denjoy's conjecture 
that an entire function of order p has at most 2p distinct finite asymptotic values. 
Zürich has been one of the main venues of the Nevanlinna Colloquia through the 
years, and the home of Pólya and Pfluger. 

Goldberg in [20] and (with Levin and Ostrovskii) [22] has produced thorough 
surveys whose bibliographies contain 862 + 413 entries. 

1 Introduction 

We study (nonconstant) functions / meromorphic in D(R) = {\z\ < R}, 0 < r < 
oo, in terms of the exhaustion of D(R) by disks D(r), r < R. If a e C, 0 < r < 
R < oo, set 

ra' (r,oo) = ipog+|/(reiS)|<i9, 

1 f2n 1 
m^a)-^J0

 l0ë+|/(re**)-a|dg (° G C)' 
N(r, a)= (n(t, a) - n(0, a))t~l dt + n(0, a) log r, 

Jo 

with n(t,a) the number of roots of / = a in D(t) counted with regard to multi
plicity; ÎV and n count multiple roots of f(z) — a once. Define m(r, f) = m(r, oo), 
N(r,f) = N(r, oc), and the (Nevanlinna) characteristic by 

T(r)=T(r,f)=m(r,f) + N(r,f). 

The first fundamental theorem asserts that 

r ( r ) = T ( r , - i - ) + 0(l) (I) 
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for any a e C (Jensen's formula). Once (I) is known, we may define all quantities 
using n and N, and extend them formally to quasiregular mappings g [35]. 

When R = oo (as we usually assume) Nevanlinna's second fundamental the
orem is the inequality 

Ì2N{r,a„) >(q- 2 ) 7 » + Nt(r) + S(r), (II) 
i 

where Ni(r) = N(r, 1//') + 2N(r, f) — N(r, / ' ) measures the total ramification of 
/ in D(r) and the "error term" 

F q F 
S(r) = m(r, J-) + m(r, V —i ) + O(l) = o(T(r)) (r -> oo, r i E), (1) 

/ ~ * ~ a" 

where E has finite measure and is empty when the order of / 

p = lim sup T(r)j log r 
i »oc 

is finite. 
If we set 

c, x ,. • rm( r>a) at \ v • fN(r,a)-N(r,a) 
6(a) = km ìnf , 0(a) = hm inf -— , (2) 

r—»oc 1 \r) i >oc i \r) 

so that 0(a) > 0, 6(a) > 0, 6(a) + 6(a) < 1, (II) is conveniently summarized by 

5^«(o) + fl(o)<2 (II;) 

and, in particular, 
5^^(a)<2. (If) 
aec 

These give very precise conditions that a nondegenerate map / defined in C must 
satisfy. Further analysis shows that N(r, a) ~ T(r) as r —• oo for all a outside a 
set of capacity zero, and we call such a a normal value of / . 

Inequality (II ) is sharp in the sense that any sequence of nonnegative 6U, 6V 

(with 6V -f 6V < 1) can be associated to any sequence au by some meromorphic 
function / : / solves the inverse problem. This was obtained by Drasin [5] after a 
long series of partial results by others (a solution to the restricted problem (II ) 
for entire functions was obtained in [19]). In general (see (4)) / must be of infinite 
order. We first construct a quasiregular formal solution g to the problem and let 
a; be a quasiconformal homeomorphism of C that solves the Beltrami equation 

wi = p(z)uz (p = gz/gz). 
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where p is small near oo, so that / = gou) is meromorphic in the plane. As UJ docs 
not map circles exactly onto circles, it is necessary that T(r, / ) / log r approach 
infinity quite slowly as r —• oc to guarantee that / inherit the data {6u,6lf} from 
g. Thus the function / obtained in [5] has 'small' infinite order. No doubt there 
exist solutions to this inverse problem of arbitrarily rapid growth. 

A generalization of (II ), suggested by Nevanlinna, is to consider small func
tions a(z) with T(r,a) = o(T(r)), and define 6(a) as in (2) with a = a(z). Only 
rather recently has (II ) been established for small functions [32], [41]. 
Problem (a) Given a countable collection of functions {ay(z)} and sequence 6V, 0 < 
6y < 1, find a meromorphic function f(z) with T(r,av) = o(T(r,f)) for each v 
and 6(au,f) = 6y. 

(b) Is something more suggestive of (II) valid for small functions: 

£ N(r, au) >(q- 2)T(f) + o(T(r)) (r - oc, r £ E)ï 
1 

This would have applications to the uniformization of algebraic curves. 

2 Logarithmic derivative, error terms 

During the past decade, formal analogies have been observed between value-
distribution theory and Diophantine approximation in number theory, and this 
analogy inspired Osgood's proof of (II ) for small functions. In [42, p. 34] is a 
"dictionary" between the two subjects. This also intrigued Lang [27], who asked 
for precise estimates of S(r) in (1), and proposed the bound (3), based on the trans
lation to function theory of his long-standing conjecture on rational approximation 
of irrational numbers. By an insightful reexamination of R. Nevanlinna's proof of 
(II) and the analysis of [21], Hinkkanen [25] developed a continuum of estimates 
for S(r) and ra(r, / ' / / ) • The simplest to state is: if t~l(j)(t) | , J^ (j)(t)~l dt < oc, 
then 

S(r)<log<j>(T(r,f)) (r i E), (3) 

E of finite measure; examples show that (3) and its variants are very precise. 
The best known estimates for S(r) in the multidimensional case have been 

obtained in [44], based on methods of F. Nevanlinna and Ahlfors. These require 
that an unbounded term be added to the right side of (3), so they may not be 
sharp. 

Ru and Wong [36] recently used ideas from multidimensional Nevanlinna 
theory to extend the Thue-Siegel theorem and thus give conditions that limit the 
number of integral points in the complement of certain hyperplanes in P n . 

By further analyzing / ' / / , Fuchs [18] (a = 1/2) and Hayman [23] (a > 1/3) 
proved that if p < oc, then 

^6(a„)a < oo. (4) 

Weitsman [44], using other methods, obtained (4) when a = 1/3. According to [11], 
Weitsman's theorem together with (II ) give necessary and sufficient conditions 
that the {6U} = {6(au)} must fulfill for functions of finite order, except in the 
special situations that ^6U = 2 or max£„ = 1 (almost-entire functions). 
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It is far more difficult to construct entire functions (6(oc) = 1) with p < oo 
and infinitely many 6V > 0. Arakelyan [1] was the first to do so, and conjectured 
that for entire functions, (4) should be replaced by ^( log^/Ä, , ) )" 1 < °°? but this 
has recently been shown false by Eremenko [13], who in turn asks if (4) holds for 
all a > 0 or if, for all p > 1, 

£(iog(i/M)-p < oo. 

The only positive result is the theorem of Lewis and Wu [29], which gives (4) with 
a = 1/3 — 2~260 . In addition, they prove a conjecture of Littlewood about poly
nomials, one of whose consequences, stated informally, is that an entire function 
assumes most of its values on a small subset of C. Lewis and Wu used work of 
Eremenko and Sodin, who had obtained a weak form of the Littlewood conjecture, 
and one form of this application to entire functions. 

3 Extremal functions 

If / is rational of degree ra, then 

J2 6(a) + 0(a) = 2-n~1, ^ *(a) ^ L 

What this suggests, and what is true, is that cases of equality in (II ) are legion, 
whereas (II ) is usually strict. 

THEOREM 1. If f is meromorphic in the plane with 

£ % , / ) = 2 p o c , (5) 

then each 6(a) is an integral multiple of p~x so that 2p — 1 is a natural number. 

(If / is entire, p must be a positive integer [34].) F. Nevanlinna and Hille 
gave examples that show Theorem 1 best possible by considering meromorphic 
functions / = wi/u)2, where wi, w^ are linearly independent solutions to 

w" + Pw = 0, (6) 

P a polynomial; / has order (ra + 2)/2, where ra = degP. They deduced that the 
singularities of the Riemann surface of f~l consist of a finite number of logarithmic 
branch points; even today one way to study Stokes multipliers for solutions to (6) 
uses the geometry of these surfaces [40, Chapter 8]. In these examples, 

Ni(r)=Q, (7) 

and only recently have Bergweiler and Eremenko [4] been able to obtain a function-
theoretic proof that (7) characterizes these surfaces: they show that whenever g is 
meromorphic with p < oc, the only possible singularities of the Riemann surface 
of g~l are algebraic branch points, limits of algebraic branch points, and (by an 
extension of Ahlfors's theorem) a finite number of logarithmic branch points. 

Theorem 1 was conjectured by F. Nevalinna [30] in 1929, and proved by 
Drasin [6] who performed a quasiconformai modification of f(z2): to introduce a 
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quasiconformal map v with small dilatation and set g(z) =ujof(z2). The role of a; 
is that 0 and oc become (essentially) Picard values of g. This reduces the problem 
to the (known) case of entire functions, and because of the specific form of UJ it is 
possible to directly read off all information required of / . 

Soon after [6] appeared, Eremenko [12] presented an alternate proof of The
orem 1, based on potential theory and convergence properties of 6-subharmonic 
functions. From this point of view, asymptotic equalities and inequalities become 
precise relations among the limit functions obtained by renormalization and nor
mality considerations. In other papers, some joint with Sodin [16], [17], this view
point is systematically pursued and extended to small functions and meromorphic 
curves; see Section 4(C) for another application. It is very powerful but requires 
sophisticated potential theory when dealing with the limit functions that arise 
(however, the translations of these papers are inadequate). As an example of this 
point of view, their version of (II ) becomes 

THEOREM 2. Let u\,..., uq be subharmonic in a domain ficC. If for each k ^ £ 

u = maxuj = max{wfe,w4 
j 

then Y^ Uj — (q — 2)w is subharmonic in Q. 

Eremenko [14] applies this method to obtain the deepest modern result in 
the theory: equality is forced in (II ) by a purely geometric hypothesis (compare 
with (7)). Because functions that satisfy (7) occupy a significant role in several 
contexts, these insights should have further application (the case p < 1/2 is in 
[39]). Eremenko proved 

THEOREM 3. Let f be meromorphic in the plane with p < oc and suppose that 

Nx(r) = o(T(r)) (r — oo). (8) 

Then 2p — 1 is a positive integer and f satisfies (5). 

Problem. For a given order p < oo find the best upper bound for the left side of 
(II ) among all entire/meromorphic functions of order p. 

This is one of the oldest problems in the theory, settled for p < 1 by [8] and 
[43] (entire) and by [9] and [27] (meromorphic). I know of no sharp bounds for any 
values of p > 1 other than when (5) holds. The conjectured extremals appear in 
[31, p. 18] and [7]. This problem should be on our list for a long time. 

4 Further topics 

(A) Picard properties and normal families. A long-standing principle (Bloch) is 
that properties P that render a function defined in the plane constant may be 
mated with those that yield normal families for a collection of functions in a domain 
Q. Examples of such P are: that / omit three fixed values; that / ^ 0, f^ ^ 1 
for some fixed k > 1; that f'fm ^ 1 for some fixed ra > 1; see [37] and [46] for the 
history. 



Meromorphic Functions: Progress and Problems 833 

A uniform and elegant path between these two settings for a large class 
of P has been refined in recent years, using renormalizations and compactness 
arguments. The most recent ingredient is from Pang [33] (the case h=0 due to 
Zalcman): if T is not normal at z0 e ft and — 1 < h < 1 is given, there exist 
fn e T, zn -* zo, pn —> 0, such that 

9n{0=fkfn(Zn+PnC)->9(0 (9) 
with g meromorphic in the plane, nonconstant, and of finite order. The other 
direction goes back to the beginning of the century: if / is meromorphic and 
nonconstant in the plane, the family T = {ÌR(Z) = f(zo + Rz):R > 0, \z\ < 1} 
cannot be normal in the disk. These principles permit a uniform treatment of these 
P, and should have further applications. 

(B) Complex iteration. Baker [3] used Ahlfors's theory of covering surfaces to 
prove that the Julia set J (nonnormality set) of iterates of an entire function / is 
the closure of repelling fixed points (of all orders); for rational maps this is Julia's 
theorem. These theorems now have a compelling short proof due to Schwick [38], 
based on (II). In (9), take as T the family of iterates, h = 0, and ZQ e J such 
that the system {ZQ = f(wo),wo = <?(Co)} has unramified solutions; the desired 
fix-points arise at once. By (II), there can be at most four exceptional ZQ e J, but 
as J is perfect these exceptional ZQ may be ignored. 
(C) Quasiregular mappings. The limit function technique of Section 3 has been 
used by Eremenko and Lewis [15] to give a potential-theoretic proof of the 

THEOREM OF RICKMAN [35]. There exists q0 = qo(n, K) < oc such that ifq > qQ 

and f : Rn —* W1 \ {a i , . . . ,aq] is K-quasiregular, then f is constant. 

Holopainen and Rickman [26] in turn have used [15] to extend Rickman's 
theorem to maps / :Rn —> M = N\ {a i , . . . ,aq}, N any oriented compact differ
ent ia te ra-manifold and quasiconformality defined with respect to a Riemannian 
metric on M; [15] allows technical matters about path families to be bypassed. 
(D) A return to / and / ' . Nevanlinna's analysis of m(r, / ' / / ) yields at once that 

lim sup : T(r,fW) / 1 (/entire) 

{l T(r, f) \ k + 1 ( / meromorphic), 

where \E\ < oc. Nevanlinna was optimistic that lower bounds might be as simple, 
but many counterexamples have been given to this, principally by Toppila. Hayman 
and Miles [24] combine estimates of 5R{z/''/'/} with a geometrical analysis of the 
image of {|z| = r} under / and the { / ^ } to show that given K > 1, there exists 
a set FK of positive lower logarithmic density, with 

^TW>-{ 
(2eK)~l (f entire) 

(3eK) x (f meromorphic), 
r£FK 

independent of k. 
Langley suggests that perhaps lim sup T(r, ff)/T(r, f) = 1 if / is entire with 

i >oc 

p < 1/2; by [28] this would be sharp. 
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Introduction 

There are two rather separate sections to this paper. In the first part we indicate 
how the geometry of Teichmüller space and moduli space can be used to study 
the dynamics of rational billiards and more generally the dynamics of foliations 
defined by flat structures or quadratic differentials. In the second part of the paper 
we study random walks on the mapping class group of a surface and on Teichmüller 
space and show how the sphere of foliations defined by Thurston can be realized 
as the boundary of the random walks. 

Rational billiards, flat structures, and quadratic differentials 

Suppose one has a point mass moving at unit speed in straight lines in a polygon 
A in the plane. At a side the angle of reflection equals the angle of incidence. At 
a vertex the reflection is undefined. This gives a flow defined on the set of unit 
tangent vectors to A except for those vectors determining orbits that hit a vertex. 
This flow is called the billiard flow. If the vertex angles are all rational multiples 
of 7T, the billiard is called rational. 

Billiard flows in domains with smooth boundaries have been studied using 
standard techniques in dynamical systems. See [S] and the extensive list of refer
ences there. These methods have not been applied successfully to rational billiards 
to answer some of the standard questions in dynamics such as existence and num
ber of periodic orbits, and ergodicity. In this section we describe results on rational 
billiards that have been obtained using methods in Teichmüller theory. 

For each side s of A let rs e 0(2) be the linear part of the reflection in s. 
That is, rs is the reflection in the line parallel to s passing through the origin. The 
rationality assumption on the vertex angles implies that the subgroup T of 0(2) 
generated by the ra is finite. This means that for given initial angle of the billiard 
ball only finitely many angles appear after all possible reflections. 

We may build an invariant surface for the flow. Index copies of A by elements 
of T. Then glue copy A7 l to copy A72 isometrically along the side s, if 71 ors = 72. 
Instead of reflecting the orbit in A7 l in side s, the orbit continues in A72 in the 
same direction. The result of these gluings is a surface that locally is isometric 
to Euclidean space, except at points corresponding to vertices. At these points 
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a certain number of copies of A are glued together to form an angle around the 
vertex that is 2c7r, where c is a positive integer. We call the resulting structure a 
flat structure with cone angle 27rc singularities. At the 27rc singularity the metric 
can be expressed as 

ds2 = dr2 + (crdO)2. 

The billiard flow on A with initial angle 6 becomes a flow ft by straight lines on 
the flat surface. 

A classical example is A a square. Then T is the group of order 4 generated 
by reflections in the coordinate axes. The flat surface is the flat torus. Four copies 
of A are glued around each vertex so these points do not give rise to singularities. 
The billiard flow in direction 9 gives rise to the linear flow in direction 0 on the 
torus. If the slope is rational, every orbit in that direction is periodic. If the slope 
is irrational, the Kronccker-Weyl theorem says the flow ft is minimal, which means 
every orbit is dense, and furthermore it is uniquely ergodic. 

DEFINITION. A Row ft on a compact space X is uniquely ergodic if for every 
continuous function h on X, 

1 rT 

lim - / h(ft(x)) dt 

converges uniformly. 

Unique ergodicity is equivalent to saying that X has a unique ft invariant 
probability measure p, and in that case the above limit is 

/ h(x) dp. 
Jx 

In the flat torus case for irrational flows, Lcbesgue measure is the unique invariant 
measure. 

Another example of a rational billiard is the 

(7r/2,7r/5,37r/10) 

right triangle. Here T is the dihedral group Dio- The flat surface has genus 2 with 
one cone angle 6n singularity coming from 20 copies of the table glued around the 
vertex with angle 37r/10. 

More generally we define a flat structure with cone angle singularities as the 
result of gluing a finite number of Euclidean polygons isometrically along sides. 
We require that every side be glued to exactly one other, and that the total angle 
around a vertex is kir, where k is a positive integer. For an example that is not 
a billiard, glue two copies of a square pairwise along sides. Because two copies of 
the square are glued around each vertex, the resulting flat surface is a sphere with 
four cone angle 7r singularities. 

Given a flat structure and a direction 6, the straight lines in that direction 
give a foliation FQ . It is a measured foliation, in that the local Euclidean structure 
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allows one to define an invariant measure on each transversal. More precisely, we 
may find local coordinates (x, y) in which the foliation is given by dy. Then the 
transverse measure is \dy\. The foliation is a flow if it is orientable. 

We may also describe a flat structure by a meromorphic quadratic differ
ential on a compact Riemann surface with at most simple poles. Away from the 
vertices, the Euclidean polygons determine local coordinates z = x + iy. Because 
the polygons are glued isometrically, dz2 is invariant, and so describes a quadratic 
differential. A cone angle A;7r singularity determines a zero of order k — 2. The 
lines in direction 0 are the 0 trajectories of the quadratic differential. Conversely, 
suppose q(z)dz2 is a quadratic differential; P is a nonzero point of q, z are lo
cal coordinates near P with P corresponding to z = 0. Choose a branch of the 
holomorphic function q1^2(z) near 0 and set 

w(z)= /V/2(C)dC-
Jo 

Then w are new holomorphic natural coordinates and 

dw2 = q(z)dz2. 

The coordinates w define the local Euclidean structure. We may reconstuct the 
surface by gluing together rectangles in these coordinates. 

A third formulation is via measured foliations. The vertical foliation and 
the perpendicular horizontal foliation of a quadratic differential define a pair of 
transverse measured foliations. Conversely, suppose F and G are a pair of trans
verse measured foliations. We may find local coordinates (x, y) for which F and G 
are locally given by dx and dy, respectively. Then F and G are the vertical and 
horizontal foliations, respectively, of a quadratic differential 

dz2 = (dx + idy)2. 

We are interested in the dynamics of the 1-parameter family of measured foliations 
FQ. Unlike the case of the flat torus, in general it is not the case that all leaves of 
FQ are cither closed or dense. For each 0 the surface decomposes into a union of 
annuii of closed homotopic parallel leaves of FQ of the same length, and minimal 
domains; domains in which every leaf of FQ is dense in that domain ([St], [Z-K], 
[B-K-M]). Moreover, except for a countable set of 0 every leaf of FQ is dense. The 
existence of directions with annuii of closed leaves was settled by 

THEOREM [Ml]. Let q he any flat structure. For a dense set of directions 0, Fe 

has an annulus of closed leaves. 

In the case of the flat torus the growth rate in the number of closed orbits 
is quadratic, and it is possible to give asymptotic estimates on the growth rate. 
Veech [V3] was able to find asymptotic estimates for the growth rate for right 
triangular billiards with one angle 7r/n. In general we have 
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THEOREM [M2], [M3]. For any Hat structure q there exist positive constants 
c\ < C2 such that the number of parallel families of closed leaves of length < T is 
between c{T2 and c2T

2. 

What is perhaps surprising here is that the quadratic growth rate does not 
depend on the genus of the surface. We turn now to ergodicity questions. Again, 
unlike the case of the flat torus, minimality does not imply unique ergodicity. The 
study of minimal nonergodic phenomena was initiated by Furstenberg [Fl] who 
found an example of a minimal flow on the torus that is not uniquely ergodic. Sub
sequently, Veech [VI] found an example that can be adapted to rational billiards. 
Take two copies of the unit circle with a segment of length 1 — a marked off on 
each, counterclockwise from the origin. Rotate a point on a circle counterclockwise 
by angle 0 until it lands in the segment. Then take the same point on the other 
circle, rotate by 0 until landing in the segment, move back to the first circle, and so 
forth. Clearly, Lebesgue measure on each circle is an invariant measure for this dy
namical system. Veech showed that if a is irrational, there are uncountably many 
0 for which this dynamical system is minimal but not uniquely ergodic. In fact, for 
each such 0, a set of orbits of positive measure asymptotically spends more than 
half its time in one circle. The dynamical system is equivalent to a billiard flow in 
direction ö o n a rectangle with sides of length 2 and 1 with a slit of length 1 — a 
centered at the midpoint of one long side. The group of the billiard again has order 
4 as in the case of the square, but now the corresponding flat structure is a genus 
2 surface with two cone angle An singularities corresponding to two copies of the 
endpoint of the slit. Equivalently, the quadratic differential has two zeros of order 
2. 

QUESTION. HOW common is this minimal nonergodic phenomenon? 

Given a flat structure q let 

NUE(q) = {0 : FQ is minimal but not uniquely ergodic}. 

THEOREM [K-M-S]. NUE(q) has Lebesgue measure 0. 

This result was sharpended in 

THEOREM [M4]. The Hausdorff dimension of NUE(q) is at most 1/2. 

The method used to prove the above theorems is to study the action of 
SL(2,R) on a moduli space of flat structures. Fix a topological surface M of 
genus g and a finite set E = p\,... ,pn e M. We say an (ra + l)-tuplc 

G = (cri,... ,an:e), 

where &{ are positive integers and e = ± is admissible if 
(1) E r = 1 ( ^ - 2 ) = 4 5 - 4 . 
(2) e = — if ai is odd for any i. 
(3) a ^ ( 0 ; - ) , ( 1 , - 1 ; - ) , (3 ,1 ; - ) , ( 4 ; - ) . 

We say a flat structure q is realized by the data a, if 
(a) q has a cone angle Oì-K singularity at pi. 
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(b) the foliations Fe are orientable if e = +. 
(e) the foliations Fe are nonorientable if e = —. 

Condition (1) is necessary to realize the data a by the Gauss-Bonnet formula, 
or equivalently the well-known formula that the sum of the orders of the zeros 
minus the sum of the orders of the poles of a quadratic differential is Ag — 4. 
Because a foliation is orientable in a neighborhood of a singularity if and only 
if the cone angle is an even multiple of 7r, clearly (2) is also necessary. It turns 
out [M-S 2] that (3) is also necessary for a to be realized, and these necessary 
conditions are also sufficient. 

Now fix an admissible a. Let h(M, E) be the group of orientation-preserving 
homeomorphisms of M that fix E, and ho(M, E) the subgroup of homeomorphisms 
nomotopic to the identity. Now ho(M, E) acts by pullback on the set of flat struc
tures that realize a. The quotient Q(o~) is a manifold [V2], [M-S 1]. Because a flat 
structure also gives a complex structure to M we have a map Q(CT) —> Tg, where 
Tg is the Teichmüller space of that genus. The space Q(o~) is called a stratum 
because for a fixed genus g, the strata of flat structures of that genus with all cone 
singularities at least 3n fit together to form the bundle of holomorphic quadratic 
differentials over Tg. There is an SL(2,R) action on each Q(a). The rotation re 

cos 0 sin 0 
— sin 0 cos 0 

acts by preserving the flat structure q but by rotating directions by angle 0. In 
complex analytic terms this is the same as multiplying q by e%e. The diagonal 
action gt, 

IV 0 
[0 e- f 

is the Teichmüller map with initial quadratic differential q, terminal quadratic 
differential gt(q), and maximal dilatation e2t. It deforms the flat structure by 
contracting vertical lengths by a factor of e* and by expanding horizontal lengths 
by é. Now let 

The group T acts on each stratum Q(v) with quotient MQ(a). The SL(2,R) 
action commutes with the action of T giving an SL(2, R) action on MQ(a). 

We give an indication of how the SL(2,R) action is used to prove Theorem 
[Ml] for flat structures q in the stratum Q(6:+); in particular for periodic orbits 
for the 

(7r/2,7r/5,37r/10) 

billiard. One checks first that there is a dense set of directions 0Q with a simple 
closed geodesic in direction 0o joining the singularity to itself. Rotate the flat 
structure using the re action so that the geodesic is vertical. Then apply the 
diagonal action gt and let t —> oo. The geodesic shrinks in length. The genus 
2 surface degenerates as this curve is pinched, and one sees that any limit flat 
structure is a flat torus. For t large there is an isometry from the complement of a 
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small neighborhood of the shortened geodesic to the complement of a small convex 
set in the torus. Find a closed orbit on the flat torus that misses this convex set. 
The isometry gives a closed orbit on the approximating flat surface gt (q) and this 
yields a closed orbit on q in direction 0 close to 0o-

If the flat surface has more singularities, we use the SL(2, R) action to per
form two simplifying operations. The first is to coalesce two lower order singular
ities to a higher order singularity. The second is to squeeze along a simple closed 
geodesic to reduce the genus. After a combination of these operations, one is re
duced as above to a flat torus or possibly a sphere with 4 cone angle n singularities. 
On these flat structures, we have closed leaves and these are used to find closed 
leaves on the given flat surface. 

The proofs of Theorems [K-M-S] and [M4] on the size of NUE(q) are based 
on the following ideas. As we saw above, if we apply the diagonal action gt to a flat 
structure with a vertical closed geodesic, one or more geodesies become pinched. 
The Riemann surfaces of the deformed flat structures leave every compact set of 
the moduli space Mg of Riemann surfaces, the quotient of Teichmüller space by the 
mapping class group. The next theorem says that minimal nonergodic directions 
exhibit the same "rational" behavior as directions with a closed geodesic. 

THEOREM [M4]. Suppose q is a flat structure with minimal nonergodic vertical 
foliation. Then gt(q) eventually leaves every compact set in Mg. 

Thus, these geodesies are nonrecurrent in Mg. One uses this fact, the SL(2, R) 
action, and the Deligne-Mumford compactification of Mg in the proofs of Theorems 
[K-M-S] and [M4]. 

Our next question concerns lower bounds on the size of NUE(q). Of course 
for q a flat torus, NUE(q) = 0, and the same is true for spheres with 4 cone angle 
7T singularities, because a double cover gives a flat torus. We call strata of these 
flat structures exceptional. Veech [V3] has shown that in every stratum there is a 
dense set of flat structures for which NUE(q) = 0. Concrete examples are provided 
by billiard tables of right triangles 

(7r/2,7r/n,(ra-2)7r/n). 

Veech showed that the affine self-maps of the resulting flat structure of the billiard 
form a lattice in SL(2,R), and in that case minimality implies unique ergodicity. 
In addition, if 0 is a nonminimal direction, then every orbit is closed. However, we 
have 

THEOREM [M-S 1]. For every nonexceptional stratum Q(a), there exists 6 = 
6(a) > 0 such that for almost every q e Q(a), NUE(q) has Hausdorff dimension 
6. 

Veech's results say that the almost everywhere statement cannot be replaced 
by everywhere. Because rational billiards form a set of measure 0 inside each 
stratum, this theorem does not give information about rational billiards. It is 
an interesting open question to form criteria on a rational billiard to guarantee 
minimal nonuniquely ergodic directions. 



842 Howard Masur 

We give an outline of the proof of this theorem to show how Teichmüller the
ory is used. A metric cylinder is a family of parallel closed leaves. We construct an 
infinite set of metric cylinders forming a family tree. There will be a single cylinder 
at the top of this tree. It will have a finite number of offspring. Each offspring will 
in turn have a finite number of offspring. We construct this tree so that if we follow 
any infinite sequence of offspring Ao,Ai... , then the corresponding sequence of 
directions of waist curves 0O ,01 ? . . . will converge to a limiting direction 0X and 
the foliation Fß^ will not be ergodic. The set of limiting directions Aq will be a 
Cantor set of positive Hausdorff dimension. 

The tree of cylinders will be constructed inductively. The inductive step is the 
following: given a cylinder A on the flat surface, we find a collection of cylinders 
Bi, which are the offspring and are disjoint from A. The number, directions, and 
lengths of these offspring are chosen to satisfy certain a priori bounds. The bounds 
are used to show that the limiting directions arc not ergodic and the Cantor set 
of limit directions has positive Hausdorff dimension. The procedure used to find 
the offspring is much like the procedure described earlier to find closed leaves. We 
use the SL(2, R) action to shrink the cylinder A and then successively to shrink 
geodesic segments to limit on a torus or sphere. The disjoint cylinders then arise 
from closed orbits on the latter flat structures. There are obstructions to carrying 
out this procedure, such as the ability to limit on a torus or sphere. This is reflected 
in the almost everywhere statement. 

Random walks on Teichmüller space and the mapping class group 

In this section we assume M is a closed surface of genus g > 1 and 

r = Difff(M)/Diff0(M) 

is the mapping class group of M. When g = 1,T\, the Teichmüller space of a torus, 
is hyperbolic space H2 and T is SL(2, Z). In his famous 1976 paper Thurston [T], 
[F-L-P] introduced the space VM.T of projective measured foliations and proved 
that it is a natural compactification of Teichmüller space Tg. Moreover, the proper 
discontinous action of T on Tg extends to the natural action on VM.T. Thurston 
used the compactification of Tg by TM.F to give his classification of elements of T 
as periodic, reducible, or pseudo- Anosov, generalizing the classification of elements 
of SL(2,Z) as finite order, parabolic, and Anosov. Recall also that T acts by 
isometries on Tg with respect to the Teichmüller metric dr(-, •)• ^n certain contexts 
a geometric space on which a group acts can be constructed as the boundary of the 
group. For example, cocompact Fuchsian groups are word or Gromov hyperbolic 
and the Gromov boundary is the circle at infinity. For geometrically finite Klcinian 
groups Floyd [Fl] showed that one can put an incomplete metric on the Cayley 
graph and recover the limit set on the sphere at infinity as the metric completion 
minus the group. Kerckhoff has asked whether a similar construction of VMJ7 from 
T is possible. Now T is not word hyperbolic because it contains abelian subgroups 
of rank at least two, and it appears the Floyd boundary reduces to a point. Our 
approach to this problem is via the theory of the boundary of random walks, 
introduced by Furstenberg [F2], [F3] to study rigidity of lattices in SL(n,R). We 
review the relevant definitions restricting ourselves to countable groups. 
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Let p be a probability measure on a countable group T. This gives a right 
random walk on T; 

Prob (7 - 77') = MV)-

Set the product measure /i00 = p x p x • • • on the infinite Cartesian product n ^ T . 
We have a map 

(7i>72,--.) -* (e,7i,7i72,-.-) 

from n ^ a r to the trajectory space T00 of paths gn = 7 1 . . . j n through the identity. 
The image of p00 under this map is the probability measure Pß on r°° . 

Let (B, v) be a probability space on which T acts. Let p*v be the probability 
measure on B, which is the image of p x v under the action 

T xB-^B. 

Equivalently, for any measurable E C B, 

p*v(E) = ^p(1)v(1-
1E). 

7er 

The measure v is said to be stationary for p if 

H * v = v. 

DEFINITION. (B, V) is a p-boundary ofT if 
(1) v is a stationary measure for p. 
(2) gnv converges to a Dirac measure for P^ a.e. sample paths (gn). 

DEFINITION. (B, V) is the Poisson boundary of (T, p) if it is maximal with respect 
to (1) and (2); namely, for any (B\, v\ ) satisfying (1) and (2) there is a T equivariant 
map 7T : B —> B\ such that nis = v\. 

There is a connection with harmonic functions. A function h : T —> R is 
//-harmonic if 

h(l) = E M(7>(77')-

Condition (1) allows us to introduce the Poisson integral 

P:Loc(B,v) ^H°°(T,p), 

where H00^^) arc the bounded harmonic functions, by the formula 

PifKl) = f fix) d(Tu){x). 
JB 

A /x-boundary is a Poisson boundary if P is an isomorphism. 
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THEOREM [K-M]. Suppose p is a probability measure on T whose support gen
erates T as a semigroup. Then there is a unique stationary measure v$ on VM.T 
supported on the uniquely ergodic foliations such that (VM.J7, UQ) is a p-boundary 
ofT. If in addition, the measure p has Unite first moment with respect to the Teich
müller metric; 

^2ß(j) dT(o,-yo) <oo , 
1er 

where o is some origin in Teichmüller space, then (VMT, VQ) is the Poisson bound
ary of (T,p). 

COROLLARY. Under the same hypotheses, if p has unite first moment with respect 
to the word metric | • | on T defined by any finite set of generators; 

7er 

then (VMT,VQ) is the Poisson boundary of (T,p). 

We sketch some ideas in the proof of Theorem [K-M]. The first point is that 
stationary measures UQ exist for fairly general reasons. Start with any probability 
measure v on VM.T. Any weak limit of 

— (i/ + / x * i / + / i * ( / x * i / )H ) 
n 

is stationary. The next step is to show that i/o is nonatomic. One first shows that 
one can replace p with a measure supported on all of T with the same UQ as 
stationary measure. Then if i/Q were atomic there would be a point x e VMT 
maximizing v§(x). The definition of stationary gives 

7€r 7er 

which implies iyo(j~1(x)) = VQ(X) for all 7. Now T(x) is an infinite set, and so we 
contradict VQ a probability measure. 

A basic tool now is the intersection number of measured foliations. For a and 
0 simple closed curves, i(cx,ß) gives the minimum number of intersections for any 
curves in their homotopy class. The intersection number extends to a continuous 
function i(-, •) defined on pairs of foliations. Let MXJ\f be the set of minimal 
foliations. Define an equivalence relation ~ on MXM by F ~ G if F and G are 
topologically equivalent. This is equivalent to the condition 

i(F,G)=0. 

For HQ e MXM let Ho denote its equivalence class. The equivalence class reduces 
to HQ precisely when HQ is uniquely ergodic. For a foliation F that is not minimal, 
there is a set of simple closed curves 0 such that i(F,0) = 0. There is a graph 
in the surface consisting of closed critical leaves of F such that the homotopy 
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class of each such 0 is represented in the graph. We can write VMT — MTM 
as a countable union of sets of foliations that determine the same graph, and an 
argument similar to the one that proved the measure is nonatomic gives 

VQ(VMT - MTM) = 0. 

Now it is a consequence of the martingale convergence theorem that for Pß a.c. 
sample paths (gn), gnVQ has a limit measure A and that the limit measure A 
is supported on MTM. With the use of the intersection number i(-,-) one then 
shows that either A is a Dirac measure or supported on an equivalence class HQ, 
where HQ e MXM. This implies that the space MXM j ~ with quotient measure 
UQ is a //-boundary. We then use Theorem [M4] to conclude that the VQ measure of 
the set of foliations that are not uniquely ergodic is 0. Thus, (VMJ7,^) is itself 
a /A-boundary. 

To show that finite first moment implies that (VMJ7, VQ) is the Poisson 
boundary, we apply a theorem of Kaimanovich. 

THEOREM [K]. Let T be a countable group and assume p has finite fìrst moment 

7€r 

with respect to some metric | • | on T. Assume p has finite entropy 

- ^2 V{l)l°8 M7) < 00. 
7er 

Define a reflected measure ßonT by ß(*y) = jz(7 - 1 ) and let (B, v) be aß boundary. 
Suppose there is a measurable map that assigns to v x v a.e. pairs (b,b), a set 
A(b, 6) C T such that 

lim -log \A(b. b) n Bn\ = 0, 
n—>oc n 

where Bn is the ball of radius n centered at the identity. Then (B, v) is the Poisson 
boundary of (T, p) and (B, v) is the Poisson boundary of (T, p). 

To apply this theorem we show first that finite first moment with respect to 
the Teichmüller metric implies finite entropy. For this we show that the volume 
of balls in Tg grows at most exponentially. Now fix a positive number M and an 
origin o eTg. For v xv a.e. pairs 

(F.F)eVMTxVMT 

we take the Teichmüller geodesic I = lF p with F and F as endpoints. The subset 
A(F, F) C T of group elements 7 e T such that 7(0) lies in the M neighborhood 
of I satisfies the hypotheses of Theorem [K]. 

As an application of our methods and the methods of Furstenberg, we prove 
a theorem first proved by Ivanov [I]. 
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THEOREM [K-M]. T is not isomorphic to a lattice in SL(n, R). 

Because T contains an element that commutes with every element of a free 
group of rank 2, it cannot be a lattice in SL(2,R). Suppose T were a lattice in 
SL(n,R) for n > 3. By [F2] one can construct a probability measure p on T so 
that the Poisson boundary of (T,p) is the Poisson boundary of SL(n,R), which 
is a flag space. According to [F2] there exists e > 0 so that there does not exist a 
pair of p harmonic functions hi, h'2 defined on T satisfying 

(i) 0 < hi < 1 
(ii) hi(e) > 1/2 - e. 

(iii) mm(h1(gn),h2(gn)) —• 0 for any sequence gn —> oo. 
However, just as in the case of a lattice in SL(2,R) we show that we can 

construct harmonic functions on T satisfying (i)-(iii) and therefore T cannot be a 
lattice. (This is how Furstenberg shows that a lattice in SL(2, R) is not isomorphic 
to a lattice in SL(n,R) for n > 3.) Applying Theorem [K-M] (VMT, VQ) is a p-
boundary for a unique VQ. Using the theory of train tracks we can find disjoint 
closed subsets Qi and Q2 of VMT and an open set V D VMT —MXM such that 

(a) MQi)> 1 / 2 - 6 / 2 
(b) UQ(V) < 6/2. 
(c) If Fi e Qi,i = 1,2, then Fi and F2 are not topologically equivalent. 

We then define harmonic functions on T by the Poisson integral formula 

hid) = I d(-yvQ)(x) = 1VQ(Qì - V). 
JQi-V 

By (a) and (b) hi satisfies (i) and (ii). The fact that (iii) is satisfied comes from a 
description of all limit measures A = lim^n^o- One shows that any limit measure 
(not just a.e. limit measure) A = \imgnVQ n ° t supported on MTM is supported 
on a set of the form 

Ea = {F:i(F,a)=0}, 

where a is a simple closed curve. If A is a Dirac measure or supported on an 
equivalence class HQ then (c) implies gnVü(U) —> 1 on an open set U that is either 
disjoint from Q\ or disjoint from Q2, and so gnVQ(Qi) —> 0 for that set. If A is 
supported on Ea, then gnVQ(V) —> 1 and so gn^o(Qi — V) -^ 0. 

We now give an example of how such measures /.i may be constructed. Fursten-
berg's construction of measures on lattices used Brownian motion on the relevant 
symmetric space. The Teichmüller metric is not Riemannian so there is no known 
useful concept of a Laplacian. Our tool to replace Brownian motion is a geodesic 
random walk in Tg defined in [M5]. At each point x e Tg the holomorphic quadratic 
differentials at x form a Banach space with norm 

lw)\ 
Jx 

dz2 

There is a natural Lebesgue measure on the unit ball so that it has measure 1 and 
this gives a measure on the unit sphere. We fix a number L. We randomly choose 
a quadratic differential at x. We also randomly choose a number L < t < L + 1 
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according to Lebesgue distribution. We then move along the Teichmüller geodesic 
in the direction of the quadratic differential the given distance t. At the new point 
xf we again choose a random direction and new distance and so forth. This defines 
a Markov process on Tg. Now Tg is known not to have negative curvature, and in 
fact the infinitesimal Teichmüller metric is difficult to understand. Nevertheless, 
we have 

THEOREM [M5]. For L sufficiently large, almost every path in the L geodesic 
random walk starting at x converges to a point in VMT. The hitting measure vx 

on VMT for the random walk starting at x is supported on the set of uniquely 
ergodic foliations, is nonatomic, and positive on open sets. Moreover, {i/x : x eTg} 
define the same measure class. In addition, there is a T invariant Q C Tg such that 
ii/T is compact such that for x e fJ, the expected return time to Q is uniformly 
bounded. 

More generally, if 0 is a measure on Tg we can define a hitting measure VQ on 
VMT hy 

ve(E) = f ux(E) d0(x). 
J TQ 

An important aspect of the theory is Harnack's inequality, which can be stated as 
follows. Let B C Bf be relatively compact open sets. For each x e B define Xx 

to be the first hitting distribution in the complement of Bf for Brownian motion 
starting at x. Then the Radon-Nikodym derivative d\x/d\y is uniformly bounded 
in B. We do not know if a Harnack's inequality holds for the geodesic random 
walk. 

THEOREM [M5]. There is a modifìcd measure on the sphere of quadratic differ
entials at each point in Tg such that the L geodesic random walk defìned by the 
modifìed measure satisfies all the conclusions of the last theorem. In addition, 
Harnack's inequality is satisfied for the modified random walk. 

For each x e Tg let 7rx denote the probability distribution on Tg for the 
modified geodesic random walk. It is supported in the domain {y : L < dr(x,y) < 
L + 1}. A function h on Tg is harmonic if 

h(x) = j h(y) dnx(y). 

We let H(Tg) denote the set of bounded harmonic functions. Let v denote the 
measure class {i/x} given by the theorem. There is a Poisson integral operator 

P : L°°(VMT,v) -+ H(Tg) 

defined by 

P\fK*) = f / (») dvx{y). 
JVMT 
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T H E O R E M [K-M]. The linear operator P above is an isomorphism so (VMT, v) 
is the Poisson boundary of the geodesic random walk. Moreover, for each x e Tg, 
there is a probability measure [ix on T with finite first moment 

5 ^ M 7 ) dT(o,-yo) < o c 
7er 

such that (VMT,ux) is the Poisson boundary of (T,fix). 
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Fibering Compact Kahler Manifolds over 
Projective Algebraic Varieties of General Type 
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Regarding compact Riemann surfaces S, the Uniformization Theorem gives a tri
chotomy according to the genus of S. Other than the Riemann sphere P1 (of genus 
0) and elliptic curves (of genus 1), 5 is conformally equivalent to the quotient of the 
unit disc by a torsion-free cocompact Fuchsian group of Möbius transformations, 
and as such is equipped with a Hermitian metric of constant negative curvature. 
For n-dimensional compact complex manifolds X this precise trichotomy in terms 
of the genus is replaced by the rough classification according to the Kodaira di
mension K(X) = —oo, 1, 2, . . . , 72, which is the transcendence degree of the field 
of meromorphic functions arising from pluricanonical sections, i.e., holomorphic 
sections of positive powers of the canonical line bundle Kx- When K(X) = n > 1, 
X is said to be of general type. They are the analogues of compact Riemann sur
faces of genus > 2. In 2 complex dimensions the Enriques-Kodaira classification 
of compact complex surfaces gives an essentially complete description for X of 
Kodaira dimension —oo, 0, 1. If X is a compact Kahler surface with K(X) < 2 
and with infinite fundamental group, then either some finite unramified covering 
of X is biholomorphic to a compact complex torus, or X is an elliptic surface over 
a compact Riemann surface S of genus > 1. 

In the classification theory of higher-dimensional projective-algebraic and 
more generally compact Kahler manifolds a central theme is to study holomorphic 
fibrations. For compact Kahler manifolds X and Y in this article we will say that 
X can be holomorphically fibered over Y if and only if there exists a surjective 
holomorphic map a : X —» Y with connected fibers. Our point of departure is 
the following conjecture on the structure of compact Kahler manifolds X with 
infinite fundamental groups, which in the case of dimension 2 follows from the 
Enriques-Kodaira classification of compact complex surfaces. 

CONJECTURE. Let X be a compact Kahler manifold of complex dimension n 
whose fundamental group 7Ti(X) does not contain an abelian subgroup offìnite in
dex and of rank < 2n. Then for some finite unramified covering X' of X and some 
modification X of X' there exists a surjective holomorphic mapping o : X —> Z 
onto some projective-algebraic manifold Z of general type. 
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In the notation of the Conjecture we will say that X' can be meromorphically 
fibered over Z. The Kahler condition is necessary in the Conjecture. In fact, by a 
theorem of Taubes [T], given any orientable compact smooth 4-manifold S, there 
exists some Sf with 7Ti(S") = 7r\(S) such that 5 ' admits an anti-selfdual connection. 
The twistor space Z over S", Tï\(Z) = 7Ti(S), is then a compact complex 3-fold 
that is non-Kähler and carries no nontrivial meromorphic functions except in very 
special cases. 

1 Holomorphic fibrations arising from the Albanese map 

To give credence to the Conjecture and to explain the relevance of the Kahler 
condition, we remark that it is valid in the special case when 7T\(X) contains an 
abelian subgroup of finite index. More generally we have 

PROPOSITION 1. Let X be an n-dimensional compact Kahler manifold whose first 
Betti number b\(X) exceeds 2n. Then for some projective-algebraic variety Z of 
the general type there exists a surjective holomorphic map a : X —> Z. 

Here we say that Z is of the general type if and only if it is birational to 
a projective-algebraic manifold of the general type. To prove Proposition 1 we 
consider the Albanese map. As X is Kahler by Hodge Theory the complex di
mension of the vector space of closed holomorphic 1-forms v is at least n + 1. Let 
a : X —> Alb(X) be the Albanese map and write S C Alb(X) for the image of X 
under a. Because there exists at least ra + 1 C-linearly independent v%, S cannot 
be a sub-torus. By a theorem of Ueno (cf. [I]) on subvarieties of abelian varieties, 
which can be easily adapted for the general Kahler case of compact complex tori, 
S is a locally trivial holomorphic torus bundle over a projective-algebraic variety 
Z of the general type. 

2 Kahler groups — Summary of relevant results 

Following Gromov, the fundamental group of a compact Kahler manifold will be 
called a Kahler group. The Conjecture may be regarded as one on the representa
tion theory of Kahler groups and is intimately related to factorization theorems. 
Let X be a compact Kahler manifold and $ : K\(X) —• G be a representation 
into some group G. Replacing X by some finite unramified covering if necessary, 
we look for meromorphic fibrations of X over some compact Kahler manifold Z 
such that the representation $ : 7T\(X) —> G arises from some representation 
# : 7Ti (Z) —» G. This type of theorem in which Z can be chosen to have special 
complex-analytic properties (e.g., being of the general type) will be referred to as 
a factorization theorem. 

In the last fifteen years quite a number of methods have been developed 
to study Kahler groups. In this article, we will be primarily concerned with the 
method of harmonic maps. There is first of all the method of harmonic maps 
into Riemannian manifolds of nonpositive curvature. In [SI, 1980] Siu established 
the Bochner-Kodaira formula for harmonic maps between compact Kahler man
ifolds in order to prove strong rigidity for compact quotients N of irreducible 
bounded symmetric domains of complex dimension > 2. This method was further 
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developed by Siu [S2, 1982] and Zhong [Zh, 1984] to prove holomorphicity or anti-
holomorphicity of harmonic maps / : X —+ N on compact Kahler manifolds X 
provided that the rank of / is sufficiently large. Jost-Yau [JY, 1983] resp. Mok 
[Ml, 1985; M2, 1988] used the Bochner-Kodaira formula to prove the strong rigid
ity of irredicible quotients of bidiscs resp. polydiscs. Sampson [Sa, 1986] generalized 
Siu's formula to the case when the target manifold is Riemannian. Based on this 
generalized formula, Carlson-Toledo [CT, 1989] proved factorization theorems for 
harmonic maps into Riemannian locally symmetric spaces. Mok [M4, 1992] proved 
factorization theorems for discrete Zariski-dense representations of Kahler groups 
into semisimple real Lie groups. The existence theory for harmonic maps in this 
context goes back to Eells-Sampson [ES, 1964] and were generalized by Corlette 
[C, 1988] and Labourie [L, 1991].) More recently, Gromov-Schoen [GS, 1992] and 
later Korevaar-Schoen [KS, 1993] and Jost [J, 1993] developed the existence the
ory for harmonic maps into Bruhat-Tits buildings. In the Kahler case this allows 
Simpson [Si3, 1991], Katzarkov [K, 1993], Jost-Zuo [JZ, 1993], and Zuo [Z2, 1994] 
to study Zariski-dense representations of Kahler groups into semisimple groups 
over local fields and, among other things, to prove factorization theorems. Other 
methods include the use of Higgs bundles (Simpson [Sil, 1992], Zuo [Zl, 1993]) 
and the method of L2-cohomology on universal covers as developed by Gromov 
[G, 1991]. 

In this article we will be primarily concerned with the method of harmonic 
forms and harmonic maps with an emphasis on the use of harmonic maps into 
Riemannian locally symmetric spaces of the noncompact type. The main objec
tive is to explain a method developed in Mok [M4] using holomorphic foliations and 
semi-Kähler metrics. This method justifies the Conjecture in the special case when 
7Ti(X) admits a Zariski-dense discrete representation into a noncompact semisim
ple real Lie group. We will also explain how this method can be used to resolve 
the Conjecture in the special case where 7T\(X) is of subexponential growth. It 
will be shown that in this case we have to work with unitary representations on 
infinite-dimensional Hilbert spaces. 

3 The Bochner-Kodaira formula for harmonic maps 

Let (X, g) be a compact Kahler manifold and (N, h) be a Riemannian manifold. A 
smooth map F : (X, g) —> (N, h) is said to be harmonic if it satisfies the Laplace-
Beltrami equation 

Ct.ß 

d2Fi
 V J V , OF* dFk 

dZadzg + 2-< jk dzQ dz3 
Jib 

0 

where (NT)k) denotes the Riemann-Christoffel symbols of (N, h). We note that the 
connection of (X, g) does not enter into the equation. This is due to the Kahler 
property of (X, g). The terms inside the brackets define coefficients of the complex 
Hessian VdF of F. F is then harmonic if and only if the trace of VdF with respect 
to the Kahler metric g vanishes. We will say that F is pluriharmonic if and only if 
VdF = 0. We note that this property does not depend on the choice of the Kahler 
metric g on X. For harmonic maps on compact Kahler manifolds we have the dd-
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Bochner-Kodaira formula of Siu [SI], generalized by Sampson [Sa]. To formulate it 
we say that a Riemannian manifold (AT, h) is of nonpositive sectional curvature in 
the complexified sense if and only if RN(A, B; B, Ä) < 0 for the curvature tensor 
RN and for any complexified tangent vectors A and B. This curvature condition 
is in particular satisfied by Riemannian locally symmetric manifolds (TV, h) of the 
noncompact type. We have 

PROPOSITION 2 (Siu [SI], SAMPSON [SA]) . Let(X,g) be a compact Kahler man
ifold with fundamental group T, (N, h) be a Riemannian manifold of nonpositive 
sectional curvature in the complexified sense7 and $ : T —• Isom(N, h) be a group 
homomorphism. Let F : (X,g) —> (N, h) be a ^-equivariant harmonic map on the 
universal covering space (X,g). Then 

f \\VdFf + H(dF <g> dF;dF®dF) = 0 , 

where H(-,~) is a positive semidefinite Hermitian form. As a consequence, both 
terms inside the integrand vanish identically. In particular, F is pluriharmonic. 

Here the tensors appearing in the integrand are invariant under T and are thus 
interpreted as tensors defined on the quotient manifold. The first existence theorem 
for harmonic maps is due to Eells-Sampson [ES]. In the situation of reductive 
representations into semisimple Lie groups of the noncompact type the existence 
of a ^-equivariant map F was due first to Corlette [C]. Labourie then introduced 
the more general notion of geometrically reductive representations and proved an 
existence theorem of harmonic maps for such representations [L]. 

4 Meromorphic foliations and semi-Kahler structures 

The first use of Siu's Bochner formula was to prove strong rigidity. Typically, one 
starts with a smooth homotopy equivalence /o : X —• Ar between two compact 
Kahler manifolds. Under suitable conditions of nonpositivity of curvature for the 
target manifold, /o is homotopic to a harmonic map, which must then be pluri
harmonic according to the Bochner-Kodaira formula. The objective was to exploit 
the curvature in the Bochner-Kodaira formula to show that actually / is either 
holomorphic or anti-holomorphic. This is the case when N is a compact quotient 
of an irreducible bounded symmetric domain of complex dimension > 2. In certain 
cases, the curvature is not sufficiently negative and the Bochner-Kodaira formula 
does not yield strong rigidity immediately. This is the case when N is an irreducible 
compact quotient of the polydisc. In this case one can derive from the formula the 
existence of associated meromorphic foliations. The existence of holomorphic foli
ations at generic points was established by Jost-Yau [JY] and the global existence 
of meromorphic foliations was established by Mok [M2]. Siu [S3] gave a more con
ceptual proof in terms of the Frobenius condition. Carleson-Toledo then used the 
method of Siu's proof to establish more generally 

PROPOSITION 3 (CARLESON-TOLEDO [CT]). In the statement of Proposition 2 
suppose (N, h) is a Riemannian symmetric space of the noncompact type. Then 

file:////VdFf
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F*Tx can be endowed a holomorphic structure such that dF becomes a holo
morphic section with values in Qx ® F*TjÇ. Where dF is of constant rank, the 
distribution x —• Ker(dF(x)) defines an integrable holomorphic distribution and 
thus a holomorphic foliation. 

By 3>-equivariance the distribution x —> Kev(dF(x)) gives rise to a meromor
phic foliation T on X. This means that there exists a complex-analytic subvariety 
V C X of complex codimension > 2 such that T defines a holomorphic foliation 
on X — V. On the other hand, there is a Kahler semi-metric on X defined by 
the pluriharmonic map F : (X,g) —> (N,h), as follows. The Riemannian semi-
metric F*(h), as a symmetric 2-tensor field, decomposes into types in terms of the 
complex structure of X. The (l.l)-part 0 then defines a Hermitian semi-metric, 
which one can show to be a Kahler semi-metric in the sense that the corresponding 
(l,l)-form UJ is d-closed, as a consequence of the pluriharmonicity of F (cf. Mok 
[M4]). By 3>-equivariance we obtain a semi-Kähler metric 9 with a semi-Kähler 
form UJ. To describe the relationship between the meromorphic foliation T and the 
semi-Kähler form UJ we introduce the notion of semi-Kähler structures, which we 
axiomatize as follows 

DEFINITION 1. (Semi-Kähler structures) Let X be a complex manifold. A semi-
Kähler structure (X, UJ, T, V) consists of 

(a) a nontrivial closed positive (1,1)-current UJ on X; 
(b) a complex-analytic subvariety V C X of codimension > 2, possibly empty, 

such that UJ is smooth on X — V; 
(c) a holomorphic foliation T on X — V such that 
(d) the closed semipositive (1, l)-form UJ and T are compatible on a dense open 

subset U of X - V in the sense that for any x G U, Ker(u;(:r)) = 7^'°(7"). 

Returning to our situation of the compact Kahler manifold X, we have 

PROPOSITION 4 ( M O K [M4, SECTION 4]). Let (X,g) be a compact Kahler man
ifold and F : (X,g) —• (N,h) be as in the hypothesis of Proposition 2. Let T be 
the meromorphic foliation and UJ be the semi-Kähler form as defined in the above. 
Then (X, UJ, J7) is a scmi-Kählcr structure on X. Furthermore (X, UJ) is ofnonposi-
tivc bisectional curvature in the sense that for any local complex submanifold S on 
X and any x G S such that UJ\S is positive defìnite at x, (S,UJ\S) is of nonpositive 
bisectional curvature. 

Here and henceforth the subvariety V C X will sometimes be left out in 
the notation for a semi-Kähler structure. To give a second example of semi-Kähler 
structures, again in the context of harmonic maps, consider the situation in Propo
sition 2 where the d-closed (1, l)-form UJ is almost everywhere positive-definite on 
X. Then we have 

PROPOSITION 5 ( M O K [M4, SECTIONS 5,6]). We use the same hypothesis as in 
Proposition 4 and assume furthermore that the Riemannian manifold (N,h) is 
locally symmetric of the noncompact type and that UJ is positive-definite at some 
point. Then the Ricci form is defined almost everywhere. There exists furthermore 
a closed positive (1, l)-current p on X that agrees with the Ricci form wherever 
the latter is defined. Furthermore, there exists a meromorphic foliation E on X 
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such that (X,—p,£) defines a scmi-Kahlcr structure on X. In addition, where 
UJ > 0 and p is of maximal rank the leaves of the foliation are totally geodesic with 
respect to the Kahler form UJ. 

The proof of Proposition 5 is more elaborate and relies on differentiating 
the structure equations arising from the Bochner-Kodaira formula for harmonic 
maps. Because we need to differentiate the curvature formula for (X,UJ), the local 
symmetry of the target manifold (Ar, h) enters into play, local symmetry being 
characterized by the fact that the curvature R of (N, h) is parallel. 

5 Generating continuous pseudogroups of holomorphic isometries 

To make use of semi-Kähler structures on compact Kahler manifolds X our ap
proach is to show that they give rise to meromorphic fibrations or else they exhibit 
partial local homogeneity, which allows us to study the complex structure of X by 
using some form of developing maps. To start with we introduce 

DEFINITION-PROPOSITION 1. Wc say that a scmi-Kählcr structure (X.UJ,^^) 

is factorizablc if and only if all leaves L of T on X — V arc closed and the set-
theoretic closures L on X arc compact complex-analytic subvarieties of X. In this 
case there exists a modification p : X —» X, a compact Kahler manifold Z, and 
a surjective holomorphic map a : X —> Z with generically irreducible fìbers such 
that for all leaves L of T on X — V', (p~lL) is an irreducible component of a fiber 
a~1(z), z E Z, and such that UJ = o-*(v) for some closed positive (1, l)-form v on 
Z that is smooth and positive definite almost everywhere. 

Given a semi-Kähler structure (X.UJ^J7, V) it is easy to deduce that outside 
of some singular sets we have a Riemannian foliation. To generate continuous 
pseudogroups of local holomorphic isometries we study the return maps given by 
holonomy. This technique is standard in case of Riemannian foliations (without 
singularities) on compact manifolds. In this case if some leaf is not closed then we 
can always generate a continuous pseudogroup of holomorphic isometries. In our 
situation the essential problem is that there are singularities for the meromorphic 
foliation and for the semi-Kähler form. If there is a leaf on X — V with some 
limit point on X — V the standard method still applies. For the semi-Kähler 
structure (X, UJ, T, V) let p be the complex dimension of S and let I be the complex 
dimension of leaves. If £ > p then we are in the range of the Remmert-Stein 
Extension Theorem, which allows us to conclude that for any closed complex-
analytic subvariety S of X—V, the topological closure S C X is a complex-analytic 
subvariety of X. For £ < p we may have the following difficult situation: every leaf 
L on X — V is closed and such leaves are always transcendental. To take care of 
this situation in place of the Remmert-Stein Extension Theorem we have to use 
the Bishop Extension Theorem, which states that a complex-analytic subvariety 
S <Z X — V extends complex-analytically across V if (and only if) it is of finite 
volume with respect to some background Kahler form on X. By measuring leaves 
we proved 

PROPOSITION 6 ( M O K [M4, P . 574]). Let (X,UJ,F,V) be a semi-Kähler structure 
on a compact complex manifold X. Then cither 
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(a) the semi-Kähler structure is factorizable, or 
(b) there exists on X — V a distinguished polydisc U = D x D' such that (D,UJ) 

admits a continuous pseudogroup of holomorphic isometries. 

Here D and D' are polydiscs such that T is holomorphic on U and such that 
the leaves of T\u are of the form {a} x D'. 

6 A factorization theorem for discrete Zariski-dense representations 
in semisimple real Lie groups of the noncompact type 

In the case of Zariski-dense discrete representations $ of -K\ (X) into semisimple 
Lie groups G of the noncompact type, by exploiting Proposition 6 and analyzing 
the partial local homogeneity of the semi-Kähler structures arising from the semi-
Kähler form and the Ricci form we showed that nonfactorizability of such semi-
Kähler structures contradicts with the semisimplicity of G. In order to establish 
this contradiction, among other things we used some ideas on Hermitian metric 
rigidity as developed in Mok [M3]. Using the fact that (X,UJ) is of nonpositive 
holomorphic bisectional curvature and the simple Kahler case of the solution to 
the Grauert-Riemennschneider Conjecture we obtained the following factorization 
theorem. 

THEOREM 1 ( M O K [M4] ). Let X bea compact Kahler manifold with fundamental 
group 7Ti(X) = T and let G be a scmisimple Lie group of the noncompact type. Let 
$ : T —> G be a discrete Zariski-dense representation. Then there exists a finite 
unramified covering X' of X and a modification X —* X' of X', a nonsingular 
projective-algebraic variety Z of the general type, a surjective holomorphic map 
a : X —» Z, and a representation \P : ir\(Z) —> G such that $ = \& o er* on 
T' := n(X'), where a* : TT\(X) —• 7C\(Z) is induced by a and TT\(X) is canonically 
identified with TTI(X) = T'. 

In the factorization theorem above the fibers can be chosen to be connected, 
so that G : X —* Z realizes X as an analytic fiber space over Z. It may happen 
that the fibers are generically zero dimensional, so that a is in fact a modification, 
in which case X is itself of the general type and hence projective-algebraic by 
Moisezon's Theorem. This is the case in the following result. 

THEOREM 2 ( M O K [M4]). Let Q be a bounded symmetric domain and T C 
Aut(Çl) be a torsion-free discrete group of automorphisms. Let X be a compact 
Kahler manifold admitting a continuous map F0 : X —* Q/T such that the image 
of the fundamental class of X is nontrivial. Then X is of the general type and 
hence projective-algebraic. In particular, compact Kahler manifolds homotopic to 
complex submanifolds of Q/T are of the general type and projective-algebraic. 

Theorems 1 and 2 may be considered applications of semi-Kähler structures to 
the study of complex-analytic properties of compact Kahler manifolds. In another 
direction such structures can also be applied to study the complex structures of 
universal covering spaces X of compact Kahler manifolds. In Mok [M7] they are 
used to prove the Steinness of universal covers of certain compact Kahler manifolds, 
a result related to the Shafarevich Conjecture. 
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7 Generalization to the nondiscrete case 

As explained in Section 2, Theorem 1 can be generalized to include the nondis
crete case by using the theory of harmonic maps into Bruhat-Tits buildings. Let 
$ : K\(X) = r! —> G be a Zariski-dense representation into some semisimple real 
Lie group of the noncompact type. Either $ is nonrigid or it is definable over 
some number field E Galois over Q (or both). In the latter case by taking all 
conjugates under the action of Gal(E/Q) one obtains a representation ^ of T 
into the group of rational points of some semisimple Lie group defined over Q. 
Either the denominators of elements of ^ ( r ) are all bounded, in which case \I> is 
discrete, or there is some prime p for which there are denominators divisible by 
any given positive power of p. In this case we say that \£ is p-unbounded. In the 
latter case or in the nonrigid case one obtains a Zariski-dense representation into 
some semisimple Lie group defined over some local field k, which defines a con
tinuous map into some Bruhat-Tits building. The existence theory for harmonic 
maps into Bruhat-Tits buildings B developed by Gromov-Schoen [GS] (with im
provements due to Korevaar-Schoen [KS] and Jost [J]) then leads to a nontrivial 
harmonic map / : X —» B into such a building B, replacing X by a finite cover if 
necessary. In [GS] it is proved that the Bochner-Kodaira formula of Siu-Sampson 
continues to hold despite the singularities, so that / is pluriharmonic outside a 
proper complex-analytic subvariety. (At a generic point of X the map / can be 
regarded as a map into some Euclidean space.) As a consequence, outside some 
complex-analytic subvariety df defines a multivalent vector-valued holomorphic 
1-form, which can be lifted to a finite number of globally defined holomorphic 1-
forms on some possibly ramified cover X* of X, called a spectral covering of X. By 
exploiting the Albanese map on X* Simpson [Si3] obtained a factorization theorem 
for harmonic maps into trees. An important ingredient is the Lefschetz Theorem of 
Simpson [Si2] for holomorphic 1-forms. Jost-Zuo [JZ] and Katzarkov [K] obtained 
factorization theorems over projective-algebraic varieties. Basing on Jost-Zuo [JZ], 
Zuo [Z2] proved a factorization theorem over varieties of the general type. The key 
point is to use spectral coverings and apply the criterion of Kawamata-Viehweg 
[KV] for the characterization of abelian variety (and of compact complex tori by 
a simple extension). By this criterion, if a projective-algebraic manifold M admits 
a ramified covering over an abelian variety, then K(M) > 0. 

THEOREM 3 (SIMPSON [Si3], JOST-ZUO [JZ], KARTZAKOV [K], AND Zuo [Z2]). 
In the notation of Theorem 1 the conclusion holds when the semisimple real Lie 
group G is replaced by a semisimple Lie group Gk over some local field k and $(T) 
is assumed unbounded. As a consequence, Theorem 1 remains valid if we drop the 
assumption of discreteness on 3>. 

8 Construction of semi-Kähler structures when the fundamental 
group violates Property (T) 

Given a Kahler group, it is difficult to decide whether or not it admits any non-
trivial finite-dimensional representations. This limits the scope of application of 
the factorization theorems explained in the above. We propose that it should be 
easier to construct semi-Kähler structures of nonpositive holomorphic bisectional 
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curvature. We believe that they exist on any compact Kahler manifold with infinite 
fundamental group. If one can construct them, the factorization theorems above 
for finite-dimensional representations should then be applicable for the following 
reason. Because of scminegativity of holomorphic bisectional curvature imitating 
the proof of Theorem 1 we expect to have either a factorization theorem over a 
projective-algebraic manifold of the general type, or else by Proposition 6 there 
exists a positive-dimensional pseudogroup of local holomorphic isometries. The 
fundamental group T should then act on the Lie algebra of this Lie pseudogroup 
and as a consequence yield a finite-dimensional representation. One has then to 
analyze the possiblity that the representation is trivial. When the representation 
is nontrivial we have then the possibility of applying Ucno's Theorem in the solv
able case and applying the factorization theorems above in case the image of the 
representation is Zariski-dense in a semisimple real Lie group of the noncompact 
type. Although we are unable to verify all the steps of this strategy in general, 
there is at least one interesting situation where this strategy can be implemented, 
which leads in particular to a resolution of the Conjecture in the special case when 
the fundamental group 7Ti (X) = T is infinite and of subexponential growth. To 
start with, one way to construct semi-Kähler structures is to use a nonzero closed 
holomorphic 1-form v with values in some locally constant Hilbert bundle (pos
sibly infinite-dimensional). Integrating v we obtain a holomorphic map F into a 
Hilbert space H. By pulling back the Euclidean metric we obtain a T-equivariant 
Kahler semi-metric of nonpositive holomorphic bisectional curvature. The asso
ciated meromorpohic foliation lifted to X is simply defined by the level sets of 
F. In the case of finite-dimensional unitary representations $ we have Hodge de
composition and the existence of such a v amounts to the topological fact that 
HX(T,^) is non-zero. For infinite-dimensional unitary representations this is no 
longer the case. For compactly generated groups T there is a property by Kazh
dan, called Property (T), which can be characterized by the fact that HX(T,^) = 
0 for any unitary representation of T. For Kahler groups that violate Property (T) 
of Kazhdan, we can apply the following existence theorem for harmonic forms. 

PROPOSITION 7 ( M O K [M6]). For a compact Riemannian manifold X and 
a positive integer i suppose there is a unitary representation $ of TT\ (X) = T in 
some Hilbert space such that Hl(T,$) ^ 0. Then for some possibly nonisomorphic 
irreducible unitary representation ^ofT there exists on X an Ey-valued harmonic 
i-form, where Ey stands for the locally constant Hilbert bundle defined by \I>. As 
a consequence, for X a compact Kahler manifold whose fundamental group T 
violates Property (T) of Kazhdan, there exists a closed holomorphic 1-form with 
values in some locally constant Hilbert bundle. In particular, there exists on X a 
nontrivial semi-Kähler structure of nonpositive holomorphic bisectional curvature. 

The existence part on harmonic forms with local coefficients in the case of 
i = 1 overlaps with a theorem of Korcvaar-Schoen (Schoen [Sc]). 
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9 Resolution of the Conjecture for Kahler groups 
of subexponential growth 

Examples of non-T discrete groups include finitely generated groups of subex
ponential growth and finitely generated solvable groups. We can now verify the 
Conjecture for certain non-T Kahler groups. In particular, we have 

THEOREM 4 ( M O K [M8] ). Suppose X is a complex n-dimensional compact Kahler 
manifold whose fundamental group T is of subexponential growth and does not 
contain an abelian subgroup of rank < 2ra and of finite index. Then, some fi
nite covering X' of X can be mcromorphically fibered over a projective-algebraic 
manifold of the general type. 

The only "universal" unitary representations that can be defined for all dis
crete groups are the left regular representation A and representations derived from 
it. When the fundamental group is of subexponential growth, HX(T, X) ^ 0, so 
that it is a non-T group. In this case the strategy as explained in Section 8 can be 
implemented. The easiest case to explain is the case when no subgroup of finite 
index admits any nontrivial abelian representation. In this case by using the irre-
ducibility of \I> one can show that the representation of T on the finite-dimensional 
Lie algebra of the pseudogroup of local holomorphic isometries is necessarily non-
trivial and must have a Zariski-dense image in some semisimple Lie group of the 
noncompact type. In general, one can define b\ (r) to be the maximum of all first 
Betti numbers of finite unramified coverings of X. From Section 2, Proposition 1 
(from Ueno's Theorem) Theorem 4 is obvious if bi(T) > 2n. Otherwise, wc pass 
to some finite unramified covering X' of X such that 6i(r) = bi(Xr). We consider 
the Albanese map on X1, which must be surjective if the Conjecture were to fail. 
Then, the difficulty is to construct semi-Kähler structures that are in a certain 
sense transverse to those arising from closed holomorphic 1-forms. In the case 
where the fundamental group is of subexponential growth verifying the hypothesis 
in the theorem the generic smooth fiber of the Albanese fibration is also non-T. 
We can construct semi-Kähler structures on the fibers and piece them together to 
obtain a globally defined one transverse to those arising from closed holomorphic 
1-forms. For this construction we have to study variations of Hodge structures for 
harmonic forms with values in locally constant Hilbert bundles. 

One application of Theorem 4 is to the study of compact Kahler mani
folds with nef anticanonical line bundles. For such manifolds Demailly-Peternell-
Schneider [DPS] have proved that their fundamental groups are of subexponential 
growth. We obtain as a corollary 

COROLLARY 1. Suppose X is a compact Kahler manifold whose anticanoni
cal line bundle is ncf and such that the fundamental group T is infinite. Then, 
replacing X by some unramified finite covering space if necessary, either X can 
be fibered meromorphically over a compact complex torus, or it can be fibered 
meromorphically over some projective-algebraic manifold of the general type. 
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10 Concluding remarks 

The strategy as expounded in this article consists of constructing on compact 
Kahler manifolds with infinite fundamental groups Kahler semi-metrics of "non-
positive curvature". This strategy is also compatible with the use of the Albanese 
map in Section 1 and the use of harmonic maps into Bruhat-Ti ts buildings in 
Section 7. In the case of the Albanese map the use of closed holomorphic 1-forms 
leads to semi-Kähler structures of nonpositive holomorphic bisectional curvature. 
In the case of harmonic maps into Bruhat-Ti ts buildings one uses closed holo
morphic 1-forms on spectral coverings. In addition, in the use of the criterion of 
Kawamata-Viehweg [KV] on ramified coverings of abelian varieties, one can inter
pret the pullback of the flat metric as defining a Kahler semi-metric of "nonpositive 
bisectional curvature" where the curvature is supported on the ramification divi
sor. In the statement of Theorem 4, while the hypothesis tha t the fundamental 
group is of subexponential growth remains a strong condition, it gives at least a 
significant reason to believe in the validity of the Conjecture. It is not unreason
able to believe tha t compact Kahler manifolds whose fundamental groups are of 
exponential growth have more to do with "negative curvature" than those with 
fundamental groups of subexponential gowth. To deal with the Conjecture in the 
latter case we believe tha t one should work with nonunitary representations in 
Hilbert spaces. 
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Regularity of Fourier Integral Operators 

DUONG H. PHONG* 

Columbia University 
New York, NY 10027, USA 

I Introduction 

The purpose of this paper is to survey some developments in the study of Radon 
transforms. These operators and the related oscillatory integrals have long been of 
interest in harmonic analysis and mathematical physics. Lately, they have emerged 
as key analytic tools in a wide variety of problems, ranging from partial differential 
equations to singularity theory and probability. It is not possible for us to describe 
adequately the progress made in all these areas in this limited space. Instead, we 
shall focus on the more analytic aspects, and take the opportunity to describe 
some recent joint work of the author with Elias M. Stein. 

II Radon Transforms 

Let X and Y be smooth manifolds, and let C be a smooth submanifold of X x Y. 
A Radon transform with incidence relation C is an operator R : CQJ(Y) —• V(X) 
whose kernel is a Dirac measure 6c(x,y) supported on C with smooth density. If 
Cx denotes the fiber {y G Y; (x,y) G C}, we can write more suggestively 

Rf{x)= [ fdo~x, (1) 

where dox is the measure on Cx induced by 6c(x,y). Because our discussion is 
local, we always assume enough underlying structure so that (1) is well defined 
on functions, and that all measures and kernels are compactly supported. Some 
examples are: 

(a) The Radon transform on d-planes: Here Y = Rn , X is a subspace of the space 
Anid of d-dimensional affine planes in Rn , and C = {(p,y) G X x R n ;y G p}. 
The classical Radon transform and the X-ray transform correspond, respectively, 
to d = n — 1 and d = 1. When X = An>d, / can be recaptured from Rf via the 
composition formula R*R = cn^(—A)_d/2. Except in the case of hyperplanes, this 
problem is however overdetermined because An?d has dimension (n — d)(d+l). The 
problem of identifying the n-dimensional submanifolds X that suffice to recapture 
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/ (or at least its singularities) has been raised by Gelfand et al. [8] in the complex 
case, and more recently by Greenleaf and Uhlmann [11] in the real case; 

(b) Spherical means: For each t > 0, let Cx = {y G R3; \x — y\ =t}, and let dax be 
the surface measure on Cx. The corresponding operator Rt gives the solution at 
time t of the initial value problem for the wave equation. It is also closely related 
to restriction phenomena for the Fourier transform; 

(c) Scattering of plane waves by a strictly convex obstacle K in Rn : Radon trans
forms R :Rx 5 n _ 1 - > R x dK with incidence relation C = {(s,u;;t,x);s —t—< 
x,u) >= 0} have been shown by Melrose and Taylor [22] to be the key ingredient 
in the Lax-Phillips scattering operator; 

(d) Convolutions on a group G with a lower-dimensional measure da: These are 
evidently Radon transforms with incidence relation C = {(x, y) G G x G:x • y-1 G 
supp da}. Orbital measures and random walks are well-known examples in repre
sentation theory and probability; 

(e) Singular Radon transforms: Often we need to allow C and/or the density of the 
measure 8c(x,y) to be singular. Typically, Cx contains and has conic singularities 
at x, or 6c has fractional singularities along the diagonal x — y. Such is the case for 
operators arising in the Green's function in several complex variables [27], [9], in 
Guillemin's construction of Zoll-like Lorentz manifolds [14], and in the restricted 
X-ray transform [11]—[13]. 

The theory of Fourier integral operators [17] provides a framework for the 
study of Radon transforms. Henceforth we assume dim X = dim Y. A Fourier 
integral operator R is an operator whose kernel K(x,y) can be written locally as 

K(x,y)= f 
JR 

eW**vfi)a{xuO)M. (2) 
R N 

where the amplitude a(x,y,9) is a symbol of class Sm(X x Y,RA) , and the phase 
<j)(x,y,6) is a homogeneous function of order 1 in 0, nondegenerate in (x,y,6) at 
the critical points of (2). The properties of R depend on the ambient geometry 
of the wave front set WF(K) of K in T*(X) x T*(Y). The method of stationary 
phase shows that WF(K) C A, where A = {(x,y;dx(j),dy(j));dQ<j)(x,y,0) = 0}. 
The variety A is smooth and, by construction, Lagrangian. The classic theorem of 
Hörmander asserts that when the projections nx and ity from A C T*(X) x T*(Y) 
to each factor have invertible differentials, R*R and RR* are pseudo-differential 
operators of order 2m — dim X -f N. In particular, R is smoothing of order m — 
(dim X)/2 + N/2 on Sobolev spaces. When the projections nx and 7Ty drop rank 
by k, then the order of smoothing can drop by k/2. 

Because we may view C locally as (j)\(x,y) = • • • = (j>i(x,y) = 0, and the Dirac 
measure 6c(x,y) admits an oscillatory integral representation with phase 0i<j>i + 

VQifyi, Radon transforms are Fourier integral operators. Their Lagrangian is just 
the normal bundle N*(C) of the incidence relation. When AT*(C) is a local graph, 
the Radon transform R for submanifolds Cx of codimension £ is then smoothing 
of order | ( n — tj. 
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The graph condition can be written in terms of a Monge-Ampère determinant 

/ 0 ••• 0 dx(j>i \ 

det 

0 ••• 0 dx(ße 

\dyfa ••• dy<j)t d2
xyY,j=i0j(t)j(x,y)/ 

^ 0 (3) 

for any 0 G R/ \ 0 [27], [7]. It is satisfied e.g. by the Radon transform on hyper-
planes and by convolutions with measures supported on hypersurfaces in Rn with 
nonvanishing Gaussian curvature. However, it becomes increasingly restrictive as 
the codimension increases, and actually can never be satisfied when £ > n/2. When 
the condition fails, Hörmander's theorem provides bounds based on the rank of 
7Tx and 7Ty, but these usually do not reflect the geometry underlying the Radon 
transform. To illustrate this, we consider the operator Rf = f *da1: where 7 is 
a smooth curve in Rn . The natural and generic assumption that 7 has nonvan
ishing torsion implies that |cfc77(£)| < C|£ | _ 1 / n . Thus, R is smoothing of order 
1/n, whereas the order of smoothing guaranteed by the rank alone is just 0. In 
retrospect, the graph condition is a condition on the second-order derivatives of 
(ßi, and is insensitive to higher orders of contact phenomena. 

Il l Radon Transforms along Curves 

This simplest case has seen considerable progress in recent years, and may not 
be far from a complete understanding. It can be described on some basic models 
that are motivated as follows [29]-[32]. Consider the classical Radon transform 
on lines in R2. Because our discussion is local, we let (y, s) be coordinates in R2, 
parametrize a line p by (#,£) G R2, where x is the slope of p and t its intercept 
with the s axis, and introduce a cut-off \ G Co°(R2). The Radon transform can 
then be expressed as 

/

oo /«oc 

f(y, t + S(x, y))X(x, y) dy = eiXt [T(A)/(-, A)] (x) dX 
-oc J — OO 

(4) 

where S(x,y) = xy, f(y, X) is the partial Fourier transform of / with respect to s, 
and T(X) is an operator-valued multiplier of the form 

T(X)u(x) = H éxs^x(x,y)u(y) dy. (5) 
J—00 

In the present case, T(X) is just a rescaled Fourier transform, and we obtain 

||T(A)|| =0 ( |A | - 1 / 2 ) . ( 6 ) 

More generally, the graph condition (3) for operators of the form (4) reduces to the 
nonvanishing of dxdyS, and the estimate (6) follows from a well-known argument 

file:///dyfa
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of Hörmander [16]. To model degeneracies, we consider then operators of the form 
(4), (5), with a phase S(x,y) satisfying derivative conditions of higher order 

dr'dyS^O, d^-'S^O. (7) 

THEOREM 1. Assume (7) on the support ofx- (a>) 1} S(x,y) is an analytic function 
of (x,y), then the operator T(X) is bounded on L2(R) with norm 

m+n —4 

| | r ( A ) | | = 0 ( | A | - « - - — > ) . (8) 

(b) If S(x, y) is merely smooth and m = n < 4, then 

||T(A)|| = 0(|A|-1/"(log|A|)1/"). (9) 
The cases n = 2,3 are special because the variety E = {(x,y); dxdyS(x,y) = 

0} is then either empty or a smooth manifold. In these cases, the log terms in (9) 
can be dropped [16], [26]. More subtle conditions can be formulated for S(x,y) a 
homogeneous polynomial: 

THEOREM 2. Let S(x,y) be of the form S(x,y) = J2]=i CLjXjyn~1~j. Then (a) the 
decay rate ||T(A)|| = 0(|A|~~ 1/Tl) holds for an arbitrary choice of cut-off function 
X if and only if there exist nonzero coefficients UJ and a& with j < n/2 < k; (b) 
by contrast, the operator U(X) with a damping factor \dxdyS(x,y)\1^2 defined by 

/

oo 

eiXS^\dxdyS(x,y)\V2
X(x,y)u(y)dy (10) 

-OC 

is bounded on L2(R) with norm \\U(X)\\ = 0( |À | - 1 / 2 ) for arbitrary coefficients aj. 

The estimates (8)-(10) are based on estimates away from the singular set 
E, so that dxdyS is nonzero, but possibly small. Thus, we divide the (x, y) space 
into regions IZk where \dxdyS\ ~ 2~fe, and decompose T(X) accordingly as T(X) = 
^2kTk(X). Naively, the oscillations of lfc(A) should yield (cf. (6)) 

\\Tk(X)\\<C(2~k\X\)-^. (11) 

On the other hand, if Ix and Iy denote, respectively, the maxima of the x and y 
cross-sections of the region IZk, we also have 

\\Tk{X)\\<C{IxIy)
l/\ (12) 

Combining these two estimates leads to (8)-(10). Surprisingly however, (11) does 
not seem to hold for arbitrary regions IZ^. In practice, we need to decompose IZk 
further into simpler shaped boxes, whose contributions are essentially orthogonal. 
When S(x, y) is analytic, this can be accomplished by parametrizing E by Puiseux 
series [30], [32], whereas in the C°° case with m = ra, it arises via a stopping-
time argument [31]. Operators of the form (10) have proved useful in the study of 
nonlinear dispersive equations [20], [3]. The estimates (8)-(10) lead to the following 
regularity properties for the Radon transform in 2 dimensions: 
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THEOREM 3. Let R be given by (4). Then (a) R is smoothing of order (ra + ra — 
4)/2(rara —ra —ra) on Sobolev spaces H^(R2) when S(x,y) is analytic and satisfies 
(7); (b) when S(x,y) is a homogeneous polynomial satisfying a\an-i ^ 0, then R 
is smoothing from LP(R2) to Lq(R2) for (1/p, 1/q) in the intersection of the convex 
hull of the segment 0 < 1/p = 1/q < 1 and the point (2/3,1/3) with the half-plane 
(1/p) — (1/q) < l / ( n + 1); (c) when S is smooth and satisfies (7) with m = ra = 3, 
then the conclusion of (b) also holds with these values. 

The above bounds have been shown to be sharp by Christ [3]. The gen
eral case of Radon transforms along families of curves on a surface is formally 
close to the above models. In local coordinates (y,s) for R2, the curve C(x,t)

 c a n 

be parametrized by s = t + S(x,y;t), and R becomes a vector-valued pseudo-
differential operator. Although this variable-coefficient operator poses some new 
severe difficulties (see e.g. [28]), Seeger [36] has obtained some very general results, 
in particular that there is a gain of (ra + ra — 4)/2(rara — ra — ra) — e, when the 
Monge-Ampère determinant vanishes of order at most ra — 2 and ra — 2 in each 
set of variables (x,t) and (y, s). For families of curves in a manifold of higher di
mension, the problem is more difficult. A simple version based on stratifications is 
discussed in Section VI. 

IV Intermediate-Dimensional Radon Transforms 

Unlike Radon transforms along curves or hyper sur faces, the regularity of Radon 
transforms along intermediate subvarieties is still obscure. Indeed, consider the 
very simple translation-invariant case Rf = f • day in Rn , with day a smooth 
measure supported on a submanifold V of dimension d. As we saw before, nonva
nishing torsion when d = 1 and nonvanishing Gaussian curvature when d = n — 1 
are generic and natural geometric conditions that guarantee optimal regularity. 
However, for intermediate d, no condition has imposed itself as a reasonable mea
sure of how "curved" V is, nor do we know what the best possible situation can 
be for a given dimension d of the subvariety V. In this section, we shall discuss 
some approaches to these problems [33]. It turns out that there is a dichotomy in 
the behavior of the Radon transform with respect to LP — Lq smoothing on one 
hand, and Sobolev smoothing on the other hand. 

Smoothing in the Lp — LQ sense 
From dimensional analysis, it is readily seen that the best smoothing properties we 
can expect for averaging on a subvariety of dimension d is Lp to Lq, with (1/p, 1/q) 
in the closed triangle with vertices at (0,0), (1,1), and (n/(2n—d), (n—d)/(2n—d)) 
[25]. It is a remarkable recent discovery by Ricci and Travaglini [35] that these sharp 
Lp — Lq estimates actually hold for a large class of Radon transforms not satisfying 
the graph condition (3), namely convolutions with orbital measures on generic 
orbits in compact Lie groups. This suggests looking for less stringent conditions 
on the Monge-Ampere determinant that can nevertheless guarantee sharp Lp — Lq 

bounds. The following is a step in this direction: 

THEOREM 4. Let the variety V be the graph ofRd 3 t -+ S(t) G R2,, where Sj(t) 
are quadratic forms, and d = n — 2. Assume that, as a function of X, the Monge-
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Ampère determinant det < A, df.Q^ > vanishes of order < (ra —2)/2 on the circle 
\X\ = 1. Then the sharp Lp — Lq smoothing holds in the range indicated above, for 
measures day supported in a small enough neighborhood of to • 

The key to this type of behavior is a partial decay estimate for the Fourier 
transform day of the following form 

I<W(OI < c H(i+1 < e,*?, > i)-d/2(»-d\ (i3) 
i=l 

where \0j\ = 1 are suitable directions transverse to the variety V. The analytic tool 
is a method of stationary phase where however one eigenvalue of the Hessian matrix 
can be small. There is considerable room for improvement in Theorem 4, but this 
requires a uniform method of stationary phase with several small eigenvalues that 
is presently unavailable (cf. Section VI). 

Smoothing in the Sobolev sense 
To motivate the subsequent approach, we observe that the measure / • ay can 
hardly be expected to be smoothing unless its support generates Rn locally, in the 
sense that the mapping V x • • • x V 3 (xi,... ,xjy) —> x\ + • • • + XN G Rn be 
locally surjective for N large enough. In particular, there is no direction A G Rn \ 0 
that is orthogonal to all the TXj(Vys, i.e., is orthogonal to V at N points. This 
suggests measuring the "curvature" of V by the maximum number \i of points 
admitting any given direction among its normals. We note that this generalizes 
the notion of nonvanishing Gaussian curvature for a hypersurface, because that 
property is simply equivalent to /x = 1 locally. The example of the curve (t,tN) 
shows however that the counting of points has to incorporate their multiplici
ties. The multiplicity or Milnor number [24], [21] has been introduced before for 
analytic functions / : Rrf —• R at an isolated critical point a. It is defined as 
fi = dim A(a)/T[dif,..., ddf], where A(a) is the space of germs of analytic func
tions at a, and T[d\f,..., ddf] is the ideal generated by the germs of the partial 
derivatives of / at a. This leads to 

DEFINITION 1. The analytic submanifold V C Rn is said to have nonvanishing \i-
curvature if for any A G Rn \ 0, the function Rd 3 t —>< A, S(t) > has multiplicity 
at most /i (in the above sense) at any critical point. Here t —> S(t) G V C Rn is 
an analytic local parametrization of V. 

THEOREM 5. Assume V is an analytic surface with nonvanishing ß-curvature in 
Rn. Then for any e > 0, the Radon transform with measure day supported on V 
is smoothing of order v

2 — e on Sobolev spaces. 

Theorem 5 is obtained by combining some powerful estimates of Varchenko 
[38] and Karpushkin [18], [19] for oscillatory integrals, with the bounds provided 
by Kushnirenko [21] for the multiplicity of a function in terms of an Euler formula 
for its Newton diagram. We postpone to Section V a more detailed discussion of 
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these developments. It is natural to expect that a similar result holds for analytic 
subvarieties of any dimension d, with the order of smoothing given by 

It is intriguing what the best multiplicities // = /x(ra, d) can be, given the dimension 
ra of the ambient space, and the dimension d of the subvariety. Evidently, n/d—1 < 
/x(ra,d), and the gain g(fi(n,d),d) should be a nonlinear function of d, as it goes 
from 1/ra to (ra — l) /2 when d increases from 1 to ra — 1. It is easy to construct 
d-dimensional submanifolds in Rn with \i = (ra — d)d, but we should be able to do 
better. For example, the complex curve z —• (z, z2,..., W 2 ) viewed as a surface 
in R n achieves fi = ( | - l ) 2 . 

So far our discussion has been restricted to Euclidian spaces, but the same 
notion of /i-curvature can be introduced in any Lie group G. Because the tangent 
spaces at any point of a variety V can be translated to the origin, we can still 
say that V has nonvanishing //-curvature if no cotangent direction at the origin is 
normal to more than /x of these points. It should be interesting to determine the 
regularity of convolutions when such a condition is satisfied everywhere, or only 
outside a lower-dimensional subvariety of V, as is usually the case for conjugacy 
orbits. Finally, we note that the conditions in Theorems 4 and 5 are in a sense 
complementary, as they bear, respectively, on the partial derivatives in A and in t 
of the Monge-Ampère determinant. 

V Sharp Estimates for Oscillatory Integrals 

The analysis of Fourier integral operators when the graph condition fails requires 
estimates for degenerate oscillatory integrals [2]. Two seemingly opposite, but ul
timately related, themes dominate our considerations. In the first (cf. (11), (13)), 
the critical points are nondegenerate, but the estimates have to reflect how close 
they come to being degenerate. Although the. situation for arbitrary dimensions is 
very complex, we have the following complete answer in one dimension [29]: 

THEOREM 6. Let P(x) be any smooth function in one variable satisfying \P'(x)\ > 
Yli=i \x ~ ai\- assume that the function ((P'(a;))_1)' changes sign only at most N 
times. Then there is a constant Cd,N depending only on d and N such that 

| f eiXP^X(x)dx\ <C^^min(|A|nK-%l)"1/( |L|+1)- (15) 

Here L denotes any cluster of points aj, with \L\ its cardinality. 

In the second theme, we consider degenerate critical points, but seek decay 
rates that are stable under small perturbations. The well-known van der Corput 
lemma in one dimension is the simplest example of such an estimate. In higher 
dimensions, the sharpest results to date are due to Varchenko [38] and Karpushkin 
[18], [19]. We describe them briefly. Let P be an analytic real phase function in Rn , 



Regularity of Fourier Integral Operators 869 

with the origin as a critical point, and let its Newton polyhedron be the convex 
hull of all the upper quadrants in R+ with vertices at those integers (fci,..., kn) 
whose corresponding monomial Y\A=I

 xil appears in the Taylor expansion at 0 of 
P. For each face 7 of the Newton polyhedron, let P 7 be the polynomial consisting 
of the monomials on 7. Then under the generic condition that dP1 has no zero in 
( R \ 0 ) n , Varchenko shows that oscillatory integrals with phase P(x) are bounded 
by 0(|A|_ a(log I Al)5), where a is the inverse of the Newton distance, i.e. the coor
dinate of the intersection of the line x\ = • • • = xn and a face of the Newton poly
hedron, and ß is one less than the codimension of the face where the intersection 
takes place. We have actually encountered a before: in Theorem 1 (a), the decay 
rate for ||T(A)|| is just a/2, when the Newton polyhedron has vertices at (ra — 1,1) 
and (1, ra — 1). The factor 1/2 is required by dimensional analysis, as we are dealing 
here with operators and not just a single integral. The generic condition on P 7 

can be effectively removed in dimension 2 by a suitable choice of coordinates. Fur
thermore, in dimension 2, the theorem of Karpushkin guarantees that Varchenko's 
estimates are stable, with uniform constants, under deformations P —* P + Q, for 
any Q analytic and sufficiently small. This uniformity is crucial to Sobolev regular
ity, because the decay rate of a multiplier smoothing of order e has to be > e with 
constants uniform in all directions. Returning to Theorem 5, day is given pre
cisely by oscillatory integrals with phase P(t) =< X/\X\,S(t) >. The theorems of 
Varchenko and Karpushkin apply to produce estimates in terms of the Newton dis
tance. By a theorem of Kushnirenko [21], the multiplicity and the Newton diagram 
are linked by the relation ß > n\V - (ra - 1)! £ ? = i V* + (ra - 2)! Y.i<j Vij ± 1, 
where V is the volume of the complement of the Newton polyhedron in the first 
quadrant, Vi its (ra — l)-volume on the hyperplane not containing the i-th basis 
vector, and so on. By maximizing the Newton distance over all Newton diagrams 
with a fixed multiplicity, we obtain Theorem 5. 

In higher dimensions, Varchenko has produced counterexamples to uniform 
estimates for arbitrary deformations. Nevertheless, uniform estimates can hope
fully be formulated for deformations whose multiplicities do not exceed the mul
tiplicity of P. We outline here on simple examples a possible method for such 
estimates. This method may be more accessible to analysts than Karpushkin's 
versai families of deformations. It also has the attractive feature of unifying the 
first theme with the second. First rewrite the dx\ • • • dxn oscillatory integral in 
projective coordinates x\ = x, Xi = XUì as an xn~xdxdu\ • • • dun-\ integral. As in 
Theorem 6, the dx integral can be bounded by 

Jo 

d 

eiXP^x(x)x"-1 dx\ <CdiXY,™™Wi+\L\\n-l(\\\ u k -ai|)-
1/<"L"+1> 

i = l j$L 

+ | A | - n / ( d + l \ (16) 

where the ai(u)'s are critical points with respect to dx and have been ordered 
in increasing order. The difficulty resides with the sum on the right-hand side of 
(16) when the o^'s are far from 0. However, the actual proof of Theorem 6 shows 
how to localize the effects of these points. The desired estimate for the localized 
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neighborhood of the a^'s follows from the du\ • • • dun-\ oscillations, unless we are 
at a point x = ai(u) that is an intrinsic critical point of the phase function P. In 
this way we can estimate the contribution to the dx\ • • • dxn integral from the whole 
Rn , except for some well-defined pockets near each critical point away from the 
origin. The contributions of the pockets themselves can be obtained by translating 
the origin to the critical point in their center, and repeating the argument. As an 
example, we obtain 

THEOREM 7. (a) Let P(x) be a homogeneous polynomial of degree 3 in R2, and 
assume that in homogeneous coordinates (x,u), it is of the form P = x3(fio(u), 
with |0oI + |0ol never vanishing. Then for any ra, the estimate 0( |A| - 2 / 3 ) holds 
uniformly for oscillatory integrals with phase P + Q. where Q is a polynomial of 
degree < ra with small coefficients; (b) Let P(x) be a homogeneous polynomial of 
degree 4 in R3 that vanishes only at the origin. Then the phase functions Pe (x) = 
P(x) + x\x\ — ex2X2 + x\x2 have a critical point tending to 0 as e —» 0, but 
the estimate 0(|A|~3/4) still holds uniformly in e for the oscillatory integrals with 
phase Pe. 

VI Lagrangians with Folds and Cusps 

The classification of degeneracies through multiplicities initiated in Section IV for 
translation invariant operators provides one approach to a theory of degenerate 
Fourier integral operators. However, the diverse phenomena encountered so far 
suggest that, as in singularity theory, there may be no best way of describing 
degeneracies. In fact, Lagrangians with Whitney folds were the first to be studied 
systematically [22], and we discuss now the stratification viewpoint. 

A key example of a Lagrangian with Whitney folds is the normal bundle of 
the incidence relation (c) in Section II. There the projections nx and ny have one-
dimensional kernels along the shadow boundary, i.e., points where the direction w 
is tangent to dK. Furthermore, the singular variety is transverse to the kernels of 
-Kx and 7Tv everywhere. The seminal work of Melrose and Taylor [22] established 
that such Lagrangians can be conjugated to a canonical one. The corresponding 
Fourier integral operator is the Airy operator of convolution with elXx . This is 
the model operator of Section III, with ra = 3 and a\a2 ^ 0- It *s smoothing of 
order 1/3 on Sobolev spaces. Because the order of smoothing would have been 1/2 
for local graphs, we see that Fourier integral operators with Whitney folds lose 
comparatively 1/6 derivatives. 

Although the projections nx and ny have the same kernel on A, their be
havior may differ under a stratification. Lagrangians where one projection is a 
Whitney fold but the other is maximally degenerate have arisen in [11]-[14]. In 
this case, Greenleaf and Uhlmann have shown that the corresponding Fourier inte
gral operators satisfy Sobolev estimates that lose 1/4 derivative compared to local 
graphs. More recently, the assumption that one projection is maximally degenerate 
has been removed (as anticipated in [11]) first for Radon transforms along curves 
on surfaces [28], and now in full generality in Greenleaf and Seeger [10]. 

The methods of Section III provide some insight into these losses of 1/6 
and 1/4 derivatives. Consider for example the Radon transform (4). For two-sided 
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Whitney folds, both d2dyS and dxdyS do not vanish when dxdyS = 0, whereas 
for one-sided folds, only one of these third derivatives, say d2dyS, is assumed to 
be not 0. In both cases, the variety {dxdyS = 0} is a smooth manifold, and the 
(x, y) plane decomposes into simple strips where dxdyS does not change sign and 
has size ~ 2~k. If Tk(X) is the corresponding decomposition of the symbol T(X), 
||Tfc(A)|| < C(2_ f e |A|) - 1 /2 in both cases. However, in the two-sided fold case, the 
fact that both third derivatives do not vanish implies that the maximum cross-
sections Ix and Iy in both directions are of size ~ 2~h. Consequently, we also have 
\\Tk\\<C(IxIy)

ll2<2-k, and 

l ir l l^^min^-^-^^-^^OdAr1 /3) . 
k 

On the other hand, for one-sided folds we can only assert that Ix ~ 2~h and Iy < 1, 
and arrive at the weaker estimate 

||T|| < ^min( (2- f e A)- 1 / 2 ,2 - f c / 2 ) = 0(\X\-V4). 
k 

The following is a simple example of a further stratification that provides a 
generalization to families of the notion of nonvanishing torsion for a single curve: 

THEOREM 8. Let S(x,y) = (Si(x.y),... ,Sn-i(x,y)) be an (ra — 1) vector-valued 
phase function, and consider the family of curves in Rn defined by 7(x,t) = {(s, y) G 
R n _ 1 x R;s = t -h S(x, y)}. Let C = ^(t^) be the corresponding incidence rela
tion, and parametrize its normal bundle A = N*(C) by A = {(t, X,x, < X,dxS > 
;s,—X,y,< X,dyS >)}. Assume that the two varieties An{< A, aJTlf_i > = 0,2 < 

ra < ra} and A D {< A, dJL-fdy >= 0,2 < ra < ra} are empty. Then the Radon 
transform R with incidence relation C and a smooth density is smoothing of order 
£ (respectively 1^—e) on Sobolev spaces for S(x,y) analytic (respectively smooth). 

Conditions of the type discussed in Theorem 2(a) are also amenable to an 
intrinsic formulation in terms of stratifications. 

VII Composition of Operators 

The regularity of Fourier integral operators whose Lagrangians are local graphs 
is just one consequence of a precise composition law. In the degenerate case, the 
wave front calculus [17] shows that a given degeneracy or singularity will in general 
keep generating new ones upon composition. Nevertheless, there are situations 
where composition can stabilize, or arrive at known operators. We list here a few 
examples, in the hope that further investigation can detect some deeper structure: 

(a) Repeated convolutions with a measure supported on a lower-dimensional vari
ety that spans are ultimately smoothing [34]. The number of convolutions required 
to achieve an absolutely continuous density is however not known. It is presum
ably related to the multiplicity introduced in Section IV, and possibly to the phase 
transitions discussed by Diaconis for random walks [6]; 
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(b) If R is the Radon transform defined by a family T of curves, then R*R is 
another Radon transform, with the incidence relation given by the cone Cx = L\i3xl 
at each point x [11]. The density on Cx is fractional near x, so tha t from the 
microlocal viewpoint, the wave front of R*R is really the union of two Lagrangians, 
namely A = N*(C) and the diagonal. As shown in [11], Gelfand's cone condition 
implies tha t A is a flow-out, and the calculus of Antoniono-Guillemin-Melrose-
Uhlmann [1], [15], [23] applies; 

(c) Consider a Radon transform R of the form (4) in 2 dimensions, satisfying the 
double-sided Whitney fold conditions. Then 

|Ä*Ä/ | < C\L1/2M1/2f\ 

pointwise, with the operators Ls and Ms defined by 

/

OC 1 

f(x,t-v)-^ 
-oc \v\ 

/

OC J 

/ ( x - u , t + * ( : r , t , ) W . 
-OO \ U \ 

Here $(x,y) = S(x,zc(x,y)) — S(y,zc(x,y)), with zc(x,y) the solution of the 
critical equation S'z(x, z) — S'z(y, z) = 0. The Lp — Lq smoothing properties follow 
by interpolation between R e s = 0 and R e s = 1. Thus, R*R is controlled in effect 
by Ls, which for R e s = 1 is a singular Radon transform satisfying the non-infinite 
order of vanishing of Christ et al. [5] and hence is bounded on Lp for 1 < p < oo. 

These examples suggest tha t a cycle of Fourier integral operators closed upon 
composition must also include singular Radon transforms. 
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Finding Structure in Sets with Little Smoothness 
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There is an interesting tension between the topology of a space and the distribution 
of its "mass", and this tension is captured roughly by two principles. 

First Principle: Topological information about a space often implies lower bounds 
on the "size" of the space. 

Second Principle: Suitable topological conditions on a space (of the type that force 
lower bounds on the mass, as in the First Principle) in combination with upper 
bounds on the mass often imply serious restrictions on the geometric complexity 
of the space. 

The simplest manifestation of the First Principle is the classical fact [HW] 
that a metric space with topological dimension d must have Hausdorff dimen
sion > d, and even positive d-dimensional Hausdorff measure. Quantitative lower 
bounds on the Hausdorff measure can be obtained under quantified topological 
assumptions (e.g., [Ge], [GP], [Gr2], [V]). (To be honest, the quantitative "topo
logical" conditions in this paper are partially geometric.) 

The Second Principle is a complement to the first and is closer to the concerns 
of this paper. The restrictions predicted by the Second Principle must be spartan, 
because they are to be derived from simple conditions. 

As an example, let K be a compact connected set in Rn . Then ^(K) > 
diam K, as in the First Principle, where H* denotes s-dimensional Hausdorff 
measure (not cohomology!). If also H1 (K) < oo, then K is contained in a rectifiable 
curve of length < 2H1(K). Thus, K can be parameterized nicely, with bounds, in 
keeping with the Second Principle. Of course 1-dimensional sets are very special. 

Now suppose that A Ç Rn is compact, A Ç B(0,2)\B(0,1) (where B(x,r) 
denotes the ball with center x and radius r), and that A separates 0 from oo. 
This implies (as in the First Principle) that Hn~l(A) > Hn-1(Sn-1), where S n _ 1 

denotes the unit sphere. Assume also that Hn~1(A) < Co for some constant CQ. 
The Second Principle predicts that A must have some kind of good structure. 
What does this mean? Is it really correct? 

Recall that a compact set can have positive and finite Hausdorff measure 
without being at all like a nice surface. It could be fractal, like a Cantor set, or 
a snowflake curve, or a tree-like object. We want to say that this cannot happen 

*) Supported by the NSF. Many thanks to those who criticized with alacrity. 
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when A has the properties above, but the best that we can expect is that A has 
a substantial part that is well behaved, as A could be the union of a sphere and a 
fractal. Topological dimension theory provides some information of this type about 
separating sets like A — e.g., A has a compact subset K that separates 0 from oo 
and is an (n—l)-dimensional ''Cantor manifold" (so that K cannot be disconnected 
by a subset of topological dimension n — 3; see Theorem VI 11 on p. 98 of [HW], 
and use Brouwer reduction on p. 161 too) — but it does not take advantage of 
the upper bound on mass very well. Even if A is simple topologically and has 
no extraneous fractal component it can still have many corners, as is the case 
for graphs in polar coordinates of generic continuous functions a : S n _ 1 —• (1,2) 
whose distributional gradients are measures with bounded mass. Such functions 
have some nice structure, though, and are always Lipschitz on some large sets. In 
general A might enjoy an analogous property. 

CONJECTURE 1. There exist 0 > 0 and M > 1, depending only on n and Co, 
such that the following is true. If A is as above, then there is a closed subset Ao 
of A such that Hn~1(Ao) > 0 (so that Ao is a substantial part of A) and Ao is 
M-bilipschitz equivalent to a subset ofRn~l, which means that there is a mapping 
(j) : Ao —• R n _ 1 such that M~l\x-y\ < \<t>(x) — (j)(y)\ < M\x — y\ for allx,y e A0. 
(That is, (j) distorts distances only by a bounded factor.) 

When n = 2 the conjecture is true. This uses elementary topological argu
ments and a result of Guy David (see Proposition 8 and Definition 6 on pp. 167-168 
of [Dl]). When n > 2 the conjecture is unsolved. It is known that A must have 
a Borei subset A\ with Hn~l(Ai) > Hn~l(Sn~1) that is covered by a countable 
union of C1 submanifolds; this can be derived from Federer's famous structure the
orem (Theorem 3.3.13 on p. 297 of [Fe]) and other facts from geometric measure 
theory. However, this result says only that A\ is asymptotically well behaved at 
its points, without giving any quantitative or large-scale control on the structure 
of A\. The point of Conjecture 1 is to make up for these deficiencies. 

There is a more restrictive version of Conjecture 1 that has been solved in 
all dimensions, but before getting to that let us consider another example. 

Fix an integer 0 < d < n, and let D denote the closed unit ball in Rd. 
Let g denote a topological embedding of D into Rn . For the sake of definiteness 
assume that l (T 1 0 n | a ; - j / | 1 0 < \g(x) -g(y)\ < 1 0 1 0 n | x - 2 / | * for all x,y G D. This 
gives a bound on the modulus of continuity of g and its inverse, but the specific 
choice is not important. One can show (as in the First Principle) that there is a 
universal lower bound on Hd(g(D)). Let us assume also that Hd(g(D)) < C\ for 
some constant C\. This condition prevents g(D) from being a snowflake, and the 
Second Principle predicts that g(D) must have some good structure. As before, 
there are examples (like graphs) that show that g(D) can have many corners. 

CONJECTURE 2. There exist n > 0 and N > 0, depending only on n and C\, 
such that if g is as above, then there is a closed subset S of g(D) with Hd(S) > rj 
such that S is N-bilipschitz equivalent to a subset ofRd. 

Note that g itself might well have no nontrivial bilipschitz piece. 
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When d = 1 this conjecture is true. In this case g(D) is a curve, which 
we can parameterize by arclength, and one can use the same result from [Dl] 
as before. When d > 1 this conjecture is unsolved, although one can again use 
Federer's structure theorem to show that there is a Borei set So Q g(D) with 
Hd(So) bounded from below and So covered by a sequence of C1 submanifolds. 

These conjectures have known "uniform" versions, in which one replaces the 
assumptions and conclusions by conditions that are supposed to hold at all scales 
and locations, with uniform bounds. Here are the precise definitions. 

A subset E of Rn is (Ahlfors) regular with dimension d, 0 < d < n, if it is 
closed and if there is a constant C > 1 such that C~lrd < Hd(EnB(x, r)) < Crd 

whenever x G E and 0 < r <diam E. The upper mass bound is a uniform version 
of the sort of mass bound that we would normally want to assume in applying the 
Second Principle, whereas the lower bound is typically derivable from topological 
assumptions as in the First Principle. (For simplicity we shall ignore the latter 
point in the following.) A simple example of a regular set is a d-plane, but there 
are many fractal sets that are regular. Regular sets can even have noninteger 
dimension, but we shall deal only with integer dimensions here. 

A regular set E C Rn of dimension d = n — 1 satisfies Condition B (the 
uniform version of the hypothesis of Conjecture 1) if there is a constant C such 
that for each x E E and 0 < r < diam E we can find 2/1,2/2 £ B(x,r) such that 
d\st(yi,E) > C~1r, i = 1,2, and 2/1?2/2 lie in different components of Rn\E. In 
other words, instead of assuming that E separates 0 from 00, we require that E 
separate pairs of points at all scales and locations. 

For the uniform version of Conjecture 2, it is better to work with a set E 
directly rather than embeddings. Here is a suitable condition. 
(*) There is a constant K > 1 so that for each x G E and r G (0,i^_ 1diam E) 

there is a (relatively) open subset U of E that is homeomorphic to a d-ball and 
satisfies E HB(x,r) Ç U QEf)B(x,Kr). 

Actually, this condition is weaker than the hypothesis of Conjecture 1, in that 
instead of requiring bounds on the moduli of continuity of the relevant maps we 
make milder assumptions about the way that the topological balls are situated. 

Conditions B and (*) are satisfied by planes and compact C 1 manifolds (ori
entable and of dimension d = n — 1 in the case of Condition B), and also by graphs 
of Lipschitz functions. These conditions capture some features of smoothness with
out actually requiring smoothness. They prevent cusps and long thin tubes, for 
instance, but they do permit corners and spirals. Without the assumption of reg
ularity both conditions allow fractal behavior, like snowflakes. 

The uniform version of the conclusions of Conjectures 1 and 2 is called uni
form rectifiability. A set E C Rn is uniformly rectifiable if it is regular with (integer) 
dimension d and if balls centered on E contain substantial pieces of E that are 
uniformly bilipschitz equivalent to subsets of Rd, i.e., if there exist constants \i > 0 
and L > 1 such that for each x G E and 0 < r < diam E there is a closed subset A 
of EHB(x,r) such that Hd(A) > fiHd(EHB(x,r)) and A is L-bilipschitz equiv
alent to a subset of Rd. This precise definition should not be taken too seriously, 
because it is equivalent to many other conditions. Basically, it means that we can 
parameterize E, with uniform estimates, if we allow some holes and crossings. It 



878 Stephen W. Semmes 

is equivalent to the existence of a global parameterization with suitable estimates 
(but with crossings and spillovers). Practically all competing definitions of uniform 
rectifiability are equivalent to the one above [DS1]. Although uniform rectifiability 
allows bad behavior, like holes, crossings, and corners, the extent of such behavior 
is controlled and reasonably well understood. (See Theorem 5 below.) 

THEOREM 3. Suppose that E is a d-dimensional regular set in Rn. (a) ([D2]) If 
d = n — 1 and E satisfies Condition B, then E is uniformly rectifiable. (b) ([DS6]) 
If E satisfies (*), then E is uniformly rectifiable. 

Theorem 3 provides criteria under which a set can be parameterized with 
good estimates. Note the trade-offs in Part (b); we start with homeomorphic pa-
rameterizations with no bounds on the way they distort distances, and we get 
nonhomeomorphic parameterizations with very good bounds. To put this into per
spective, let us recall the striking result of Edwards that there is a finite polyhedron 
P homeomorphic to the 5-sphere S° such that any homeomorphism h : P —> S5 

maps a certain polygonal circle C Ç P to a set with Hausdorff dimension at least 3. 
(P is the "join" of a homology sphere and the circle C, and C has the property that 
P\C is not simply connected, not even locally near C.) Thus, although P is home
omorphic to S5, it is not bilipschitz equivalent to S5 (let alone piecewise-linearly 
homeomorphic to S5), and we cannot even find local bilipschitz coordinates for P 
around points in C. See [C2], [Da], [E], [SS]. This implies that it is very difficult 
to find nice geometric conditions on a set that ensure the existence of a bilipschitz 
parameterization, even locally. (Note that P satisfies (*), and even stronger ver
sions of it.) Additional examples ([Se7]) further support this conclusion for sets 
with dimension > 3, and for quasisymmetric parameterizations too. (The d = 1 
case is completely different, for simple reasons. The d = 2 case is not clear, but 
there are positive results for the existence of quasisymmetric parameterizations 
when d = 2 based on the uniformization theorem, as in Section 5 of [Se5].) 

In short, naive expectations about finding homeomorphic parameterizations 
with good estimates are wrong, and Theorem 3 offers a compromise. 

Uniform rectifiability also has nice properties in terms of analysis. 

THEOREM 4. ([DS1]) A d-dimensional regular set E in Rn is uniformly rectifiable 
if and only if the singular integral operator f(x) H-> JEk(x — y)f(y) dHd(y) is 
bounded on L2(E) whenever k(x) G C ^ R ^ O } ) is odd and \x\d+i\Vek(x)\ is 
bounded for all £ > 0. 

The "only if" part of Theorem 4 was known before [DS1], using work of 
Calderón, Coifman, Macintosh, Meyer, and David. (See [DI], [D3].) For d-planes 
and smooth submanifolds the boundedness of these operators is classical, but the 
results for nonsmooth sets are much deeper. 

Condition B originally arose in [Sel] (in a stronger form) as a geometric 
criterion for the boundedness of singular integral operators on the set E. The 
proof in [Sei] was based on analytic methods, and at the time Guy David and 
I did not know what could be said about the geometry of E, even though we 
believed that it should be pretty good. David then proved Part (a) of Theorem 3, 
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and I later found a way to use analysis to derive geometric information from (a 
stronger version of) Condition B in [Se3]. We proved Theorem 4 after that. 

It is not known whether a d-dimensional regular set E must be uniformly 
rectifiable if merely f(x)\-^>f ZZv

y\d+\f(y) dHd(y) defines a bounded operator on 
L2(E). See [DS3], [Ma] for more information. In [Se4], [Se6] there is an operator-
theoretic characterization of "almost flatness" for hyper surf aces, but the best pa
rameterizations are not known in this case [Se5]. The role of Sobolev-Poincaré 
inequalities in this subject is also not clear, but see [Se2] and Section 6 of [DS2]. 

The method of the proof of Part (a) of Theorem 3 in [D2] is complicated but 
very general. See [DJ], [DS2] for simpler arguments. In [D2] there is also a higher-
codimension version of Part (a) and a criterion for finding large bilipschitz pieces 
of a Lipschitz map. (See also [J2], the techniques of which are used in [DS2].) The 
method of [D2] is used again in the proof of Part (b) of Theorem 3 and in [DS3]. 

These are some of the reasons Guy David and I have been studying uniform 
rectifiability in recent years, and this paper is a reflection of our joint efforts. A 
broad goal is to have better technology for dealing with geometric objects with 
little smoothness, and for managing infinite geometric complexity. These are well-
established themes in complex analysis, potential theory, geometric measure the
ory, and quasiconformal mappings, but they arise in other wrays too. For instance, 
the structure of singular sets of solutions of variational problems is not well under
stood in general. One often expects singular sets to be smooth almost everywhere, 
but this is not always clear, and there ought to be better methods for establishing 
some limited regularity (as in [DS4], [DS5]). The study of compactness properties 
of families of Riemannian manifolds (à la [Grl], [Pe]) leads naturally to spaces 
with little smoothness. There are some very interesting topological finiteness the
orems ([Fr2], [GPW], [Pe]), but there ought to be better methods for controlling 
more than the topology with less than the curvature (as in Theorem 3). Geomet
ric topology generates many questions about quantitative geometric estimates. See 
[B] for a classical example. Nonsmoothable toplogical 4-manifolds [FQ] are espe
cially intriguing. One of the conclusions of [DoS] is that to do calculus on a general 
topological 4-manifold one must deal with even "worse" than quasiconformal struc
tures. In other dimensions one can always assume at least a Lipschitz structure 
[Su], but even then, calculus on topological manifolds is not exactly simple [CST]. 

Note that the properties of sets discussed here make sense locally, i.e., global 
effects are not required. The distinction between local and global is a little blurry 
in the context of scale-invariant estimates. An obstruction for doing something 
globally often implies an obstruction to doing it locally with a good estimate. 

I shall now discuss some more technical aspects of this subject. 
Comments about (*). Sets that are bilipschitz equivalent to Rd or a compact 
C1 submanifold always satisfy (*), as do finite polyhedra that are topological 
manifolds (like Edwards' example). Keep in mind that sets that are bilipschitz 
equivalent to Rd can still be quite complicated, e.g., they can have infinitely many 
corners or spirals, even locally, and they can be topologically wild. 

Controlled topological conditions like (*) have appeared before, although 
"uniform contractibility" conditions are more common. The latter entail require
ments like the contractibility of E D B(x,r) inside E D B(x, Kr). See [Fri], [Fr2], 
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[GP], [Pe]. These two types of conditions are closer than they might appear, by a 
theorem in [Fri] to the effect that uniform contractibility conditions on a topolog
ical manifold E imply conditions like (*) for E x R. For proving Theorem 3 above 
one can also work directly with (various) conditions weaker than (*). 
Examples of uniformly rectifiable sets, d-planes, compact C 1 manifolds, and finite 
polyhedra of pure dimension d are all uniformly rectifiable. Some infinite polyhedra 
are allowed, some are not. The standard construction of a Fox-Artin wild sphere 
is uniformly rectifiable. If {Sj} is a sequence of spheres with radius 2~J, j G Z+ , 
and if Sj intersects S^+i for all j , then the closure of USj is uniformly rectifiable. 
Bing's "dogbone space" (and other interesting quotients of R3, as in Section 9 
of [Da]) can be realized in a natural way as a uniformly rectifiable set. Uniformly 
rectifiable sets can have infinitely many spirals, holes, or infinite towers of handles, 
but not without restriction. (See the discussion of "Carleson sets" below.) 

Uniform rectifiability has many stability and invariance properties. An amus
ing one is that E is uniformly rectifiable if E x R is. This type of statement is 
normally dangerous in the context of bilipschitz equivalence. 
The classical theory of rectifiable sets. Fix d,n G Z+, d < n. A set E Ç Rn is 
rectifiable if there is an N Ç E with Hd(N) = 0 and a sequence of sets {Ej} such 
that E\N Ç \JEJ and each Ej is bilipschitz equivalent to a subset of Rd. 

The notion of rectifiability is incredibly stable, in the sense that many other 
conditions give an equivalent definition. For instance, sequences {Ej} of C 1 sub-
manifolds or Lipschitz images of Rd yield equivalent conditions. 

A set A is called totally unrectifiable if Hd(AC\E) = 0 for all rectifiable sets E. 
There are plenty of totally unrectifiable fractal sets A with 0 < Hd(A) < oo. The 
dichotomy between rectifiability and unrectifiability is very clean: given any set A 
with Hd(A) < oc, there is a rectifiable set E such that A\E is totally unrectifiable. 

Rectifiability can be viewed as a property of the asymptotic behavior of a set 
at almost all of its points. For instance, a set E is rectifiable if and only if there is 
an approximate tangent d-plane at Hd-almost all points of E. (Roughly speaking, 
a d-plane P is approximately tangent to E at x if the set of points in E near x but 
not asymptotically close to P has d-dimensional density zero at x. This definition 
allows E to contain all points with rational coordinates, even with little surfaces 
attached, without preventing the existence of approximate tangent planes.) See 
[Ma] (especially Chapters 16 and 17) and [Pr] for more subtle characterizations of 
rectifiability in terms of asymptotic behavior at most points. 

There is a lot of technology for checking that a set is rectifiable, or that a set 
has a nontrivial rectifiable part. One of the main tools is the structure theorem 
of Fédérer (Theorem 3.3.13 in [Fe]), to the effect that if A is totally unrectifiable, 
then its projection onto almost every d-plane has measure zero. This is useful for 
showing that a set must have a large rectifiable piece under suitable topological 
assumptions (e.g., as in Conjectures 1 and 2 above), as otherwise it would be 
too scattered. For instance, one can show that a compact set K with topological 
dimension d and Hd(K) < oo must have a rectifiable subset E with Hd(E) > 0. 

See [Fa], [Fe], [Ma], [Pr] for more information (but different terminology). 
The theory of rectifiable sets is clean and powerful, but it provides only local 

asymptotic information, with no control on the behavior of a set at definite scales. 
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Carleson sets. How smooth are uniformly rectifiable sets, and how can we measure 
this? They have tangent planes almost everywhere, but we want quantitative in
formation that is meaningful at definite scales. Let E be & d-dimensional regular 
set in Rn , and let e > 0 be given. We would like to measure the extent to which 
E looks like a d-plane inside "most" balls B centered on E. Define Q(e) to be the 
set of (good) pairs (x,r) G E x R + for which there is a d-plane P = Px,r such 
that E looks like P inside B(x,r), i.e., dist(2/, P) < er for all y in EC\B(x,r) and 
dist(2,E) < er for all ^ i n P f l B(x,r). Thus, E is nice if E x R+\(?(e) is small. 

THEOREM 5. ([DS3]) A d-dimensional regular set E is uniformly rectifiable if and 
only if E x R+\G(e) is a Carleson set for every e > 0. 

Carleson sets are relatively sparse subsets of E x R+. The precise definition 
is as follows. Let // be the restriction of Hd to E, and let A denote the measure 
on E x R + obtained by taking the product of ß with the measure i / = y on 
R+. A set A Ç E x R+ is a Carleson set if there is a constant C > 0 such that 
X(An(B(x,r) x (0,r))) < Crd for all x G E and r > 0. 

To understand this condition better set S(x) = {t £ (0,1) : (x,t) G A} and 
a(x) = i/(S(x)), and note that ^((0,1)) = oo. If A is a Carleson set, then a(x) < oo 
a.e., and in fact a(x) G L\oc. In many cases a(x) < oo a.e. is about the same as 
inf{£ G S(x)} > 0 a.e., and both correspond to nonquantitative properties like the 
existence almost everywhere of tangent planes (or differentiability a.e.). 

If F is a set of integers, and A is the set of (x, r) such that 2 J < r < 2-7+1 for 
some j G F, then A is a Carleson set if and only if F is finite. If Q is a (d— l)-plane, 
then {(x,r) G E x R+ : dist(x,Q) < r} is a Carleson set. 

In practice we think of A Ç E x R + as the set of balls B(x, r) on which some
thing bad happens, and the Carleson condition imposes scale-invariant bounds on 
the size of this set. For instance, uniformly rectifiable sets can have infinitely many 
holes, spirals, or handles, but the extent of such bad behavior is controlled by a 
Carleson set (via Theorem 5), and simple constructions show that this is sharp. 

Similarly, Carleson sets arise in quantitative versions of the fact that Lipschitz 
functions are differentiable almost everywhere. Let / : Rn —• R be a Lipschitz 
function, and let e > 0 be given. Let H(e) be the (good) set of (x,r) G Rn x R + 

such that / can be approximated to within er on B(x,r) by an affine function. 
For almost all x we have that (x, r) G H(e) for all sufficiently small r > 0, as / is 
differentiable a.e. In fact it is true that E x R+\H(e) is a Carleson set, and there 
are examples showing that one cannot do much better than this. (However, there 
is no reasonable version of the "if" part of Theorem 5 for functions.) 

See [Ga] for more information about the use of Carleson sets (and their more 
famous cousins, interpolating sequences and Carleson measures) in analysis, and 
see [DS4], [DS5] for different applications (to the Mumford-Shah problem). 

The "if" part of Theorem 5 is the more substantial of the two. The "only 
if" part is easier and less surprising (and older — see [DS1]), but it does contain 
useful information. Theorem 5 has antecedents in traditional geometric measure 
theory (in terms of "weak tangents"; see [Ma], especially Chapter 16, and p. 40-42 
of [DS3]). 
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Is Theorem 5 the definitive smoothness result for uniformly rectifiable sets? 
It depends on how the question is interpreted. If we try to measure smoothness 
in terms of the size of E x R+\G(e), then Theorem 5 is exactly the right result. 
However, uniformly rectifiable sets satisfy better smoothness conditions than the 
one given in Theorem 5 (which is called the BWGL in [DS3]). There are two basic 
types of improvements: one can get stronger (quadratic) estimates on the extent to 
which E is approximated by d-planes, as in Jones' "geometric lemma" [Jl], [J3] and 
its higher-dimensional versions [DS1], or one can control the extent to which the 
approximating d-planes Pxr spin around, using a geometric version of Carleson's 
corona construction called the corona decomposition. This last is extremely useful, 
and I prefer it to good-À inequalities for analyzing singular integral operators. See 
[DSI], [DS3], [Se3], and see [Ga] for its analytic antecedent. 

Theorem 5 has many variants based on approximating E by other models 
besides d-planes (e.g., connected sets, convex sets, symmetric sets, unions of em
planes, sets with convex complementary components, Lipschitz graphs, etc., with 
restrictions on dimensions in some cases), some of which arise in connection with 
analysis. See [DS3]. 

This kind of "geometric Littlewood-Paley theory" began in [Jl], as far as I 
can tell. One must give up the linearity of the classical theory, but there is an 
extra richness in the variety of ways to measure "oscillations" in geometry. 

Some deficiencies of current knowledge. The analysis of mass distribution, partic
ularly in connection with topology, is not very well understood. It would be very 
useful to have good criteria for quantitative rectifiability in terms of projections 
onto d-planes, just as there are for ordinary rectifiability. Conjectures 1 and 2 
would follow from such criteria. 

Geometric topology has a lot to say about finding homeomorphic parameter
izations of spaces with little smoothness (see, e.g., [CI], [Da], [E]), but not much is 
known about finding homeomorphisms with good estimates on the extent to which 
they distort distances. Edwards' strange polyhedral spheres and the examples in 
[Se7] show that one cannot hope for too much when looking for conditions on a set 
in Rn that might ensure the existence of a bilipschitz or quasisymmetric param
eterization (or even one whose inverse is Holder continuous with a not-too-small 
exponent), at least when the set has dimension d > 2. (d = 2 is special — see [Sc5] 
— and not fully understood.) The proper reconciliation between topology and es
timates is not clear. Carleson sets and corona decompositions should be relevant 
(e.g., for producing homeomorphisms with Sobolev space estimates under suitable 
conditions), but they need to be better adapted to topology. 

See [B] and the remarks at the end of Section 2 of [FS] for an interesting 
concrete and classical problem about estimates in geometric topology. 

There are many unsolved problems concerning uniform rectifiability and anal
ysis of functions and operators associated to a given set, e.g., in connection with 
holomorphic or harmonic functions on the complement of the set. In codimensions 
different from 1 it is often not clear how to formulate nice questions. 

Uniform rectifiability is not well understood in terms of intrinsic properties 
of the set (in which the ambient space Rn is not used in a serious way, if at 
all). For instance, one can try to characterize uniform rectifiability in terms of 
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rigidity properties of Lipschitz functions, as in the GWALA (Generalized Weak 
Approximation of Lipschitz functions by Affine functions) condition in [DS3]. One 
must be careful, because the Heisenberg group with the usual Carnot metric is 
very different from Euclidean geometry, even though it has many similar features 
in terms of analysis in general and Lipschitz functions in particular. 

Let me end with a philosophical comment. Many older problems in topology 
are very appealing geometrically, e.g, how is the structure of a set in Rn related to 
the topology of its complement, or to the mappings defined on it (into spheres or 
Euclidean spaces, say), what does it mean for a space to have topological dimension 
d, what do such spaces look like, etc. The old-fashioned book [HW] is wonderfully 
geometric. Traditional topology has dealt effectively with these issues in some 
ways, but not in terms of geometric estimates, e.g., estimates on the distortion of 
mappings, on the size of spaces, on geometric complexity, and so forth. 

Added in proof: Conjectures 1 and 2 have turned out to be more accessible than 
I thought or intended. Conjecture 1 has been solved by P. Jones, N. Katz, and 
A. Vargas, and also by G. David and myself. The two approaches are quite different 
and both give more information than the minimum requested in the conjecture. 
G. David and I believe that we can also solve Conjecture 2, but it is more compli
cated. 

There has also been some very surprising progress recently by P. Mattila, 
M. Melnikov, and J. Verdera [MMV] on the relationship between rectifiability 
properties of a one-dimensional set and the behavior of the Cauchy integral oper
ator and analytic capacity of the set. 
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In this paper, we discuss several aspects of Julia sets, as well as those of the Man
delbrot set. We are interested in topological properties such as connectivity and 
local connectivity, geometric properties such as Hausdorff dimension and Lebesgue 
measure, and complex analytic properties such as holomorphic removability. 

As one can easily see from the pictures of numerical experiments, there is a 
huge variety of "shapes" of Julia sets even for polynomials of a simple form z2 + c. 
And as the parameter c varies, the Julia set can drastically change its shape. In 
the Mandelbrot set, the blow-ups of different places in the Mandelbrot set can look 
totally different. Some parts look like the entire Mandelbrot set, and other parts 
sometimes look like the shape of the corresponding Julia sets. These sets often 
look very complicated but one can see rich structures inside them. They provide 
typical examples of "fractals''. 

Since Douady and Hubbard [DH] started their work on quadratic polynomi
als, there have been many developments with many new techniques in this field. In 
this paper, we try to summarize some results from the point of view of the above 
mentioned properties. 

1 Definition of Julia sets and the Mandelbrot set 

Let / be a rational map that defines a dynamical system on the Riemann sphere 
C = C U {oc}. We denote by fn the iteration of / , which is defined inductively by 
/ " + 1 = / o / " . The orbit of / with the initial point z e C is {fn{z)}%LQ. 

From the point of view of the dynamical systems, we are interested in the 
orbits of / , invariant sets, and the way these objects change their natures as the 
parameter of the system varies. 

The most important invariant set is the Julia set, which is defined in two 
equivalent ways: 

J j = { z € C | {/n}£Lo is not normal in any neighborhood of z } 

= {repelling periodic points of / } . 

(For "repelling" periodic points, see the definition below.) 
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If / is a polynomial, then there is another equivalent definition as follows. 
The filled-in Julia set is 

Kf = { z E C | the orbit {fn(z)}™=0 is bounded }. 

Then its boundary coincides with the Julia set: Jf = dKf. These sets axe known 
to be compact and perfect. 

Let us focus on the family of quadratic polynomials: 

Pc(z) = z2 + c, 

where c G C is considered as the parameter of the system. We are particularly 
interested in this family, because this is the simplest example that is not affine (the 
dynamics of affine maps is completely understood), and all quadratic polynomials 
are affine conjugate to Pc with a unique c. 

Even for a polynomial of such a simple form, we see that there is a huge 
variety of Julia sets. This is the main subject of this paper. 

Note that 0 is the unique critical point of Pc in C For simplicity, let us 
denote: 

Kc = Kpc, Jc = Jpc. 

For the connectivity of the Julia sets, we have the following dichotomy: 

THEOREM. (Fatou) 
IfOGKc then both Jc and Kc are connected. 
IfO£Kc then Jc = Kc (Kc has no interior) and they are totally disconnected. 

This suggests the following definition of the Mandelbrot set: 

M = { e G C | Jc is connected } 

= { c G C | 0 e Kc } 

= { e G C | {Pc
n(0)}~ 0 is bounded}. 

This set is known to be compact and connected (Douady-Hubbard). Moreover, 
Douady and Hubbard [DH] gave a combinatorial description of its "shape" in 
terms of external rays of rational angles. 

Let us recall some definitions concerning periodic points. 

DEFINITION. A periodic point is a point z0 G C such that fn(zo) = zo for some 
integer n > 1. The smallest n with this property is the period of ZQ , and A = 
(fn)'(zo) is the multiplier of zQ if z0 ^ oo (for z0 = oo, it is defined after a change 
of coordinate). 

We call the periodic point ZQ attracting, indifferent, or repelling, respectively, 
if |A| < 1, |A| = 1, or |A| > 1. In the indifferent case, it is called parabolic if 
A is a root of unity, and irrationally indifferent otherwise. Furthermore if the 
map is linearizable at an irrationally indifferent periodic point (i.e. fn near ZQ is 
analytically conjugate to z H-> XZ near 0), then this point is called a Siegel point, 
and if not, a Cremer point. 
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2 Hyperbolicity and stability 

DEFINITION. A rational map is called hyperbolic if the orbit of every critical point 
tends to an attracting periodic orbit. 

In particular, Pc is hyperbolic either if c ^ M or if Pc has an attracting 
periodic point (in C). 

We have a good understanding of the dynamics of hyperbolic rational maps. 
For example, they have the following properties: 

- expanding, i.e. for the spherical metric, the derivatives of iterates satisfy 

| | ( / n ) ' | | > cXn (n > 0) on the Julia set with constants c > 0 and A > 1. 

- have a Markov partition. 
- the Julia set has Lebesgue measure zero, Hausdorff dimension strictly less 

than two, and moreover the Hausdorff measure of the right dimension is 
positive and finite. 

- if the Julia set is connected, then it is locally connected. (This is the case for 
hyperbolic Pc with c G M.) 

- are J-stable (see the definition below.) 
It follows that if Pc is hyperbolic and c G M then c is in the interior intM 

of M. (It is not difficult to deduce it from the definition.) Thus hyperbolic maps 
form a very important class of rational maps. 

DEFINITION. Given an analytic family of rational maps, a map in this family is 
called J-stable in this family, if a sufficiently close map in the family is topologically 
conjugate to the first one on the Julia set. If we take the family of all rational maps 
or all polynomials, we simply say J-stable without referring to the family. 

THEOREM. (Mané-Sad-Sullivan [MSS]) For any analytic family of rational maps, 
there is an open dense set of parameters for which the map is J-stable. Moreover, 
Pc is J-stable if and only if c £ dM (i.e. c £ M or c G intM). 

In this sense, one can characterize dM as the set of c's such that Pc is not 
J-stable, so it can be considered as the locus of bifurcation. 

3 Conjectures and some results on M 

Various questions on the dynamics of the quadratic family can be stated in terms 
of the Mandelbrot set. One of the central conjectures in the theory of 1-dimensional 
complex dynamics is: 

CONJECTURE 1. (MLC) The Mandelbrot set M is locally connected. 

If this is true, then the conformai map from the complement of the unit disk 
to the complement of M extends to the unit circle continuously. This will complete 
the combinatorial description of M given by Douady and Hubbard. 

For this conjecture, there was some progress by Yoccoz and by Lyubich. To 
state this we need a definition: 
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DEFINITION. A quadratic polynomial Pc is called renormalizable, if there exist an 
integer k > 2 and simply connected open sets U and V such that 0 G U C U C V, 
Pc

fc : U —• V is a proper map of degree 2, and P^fc(O) G £/ for all n > 0. 
Moreover, if there are infinitely many fc's with the other property, then Pc is 

called infinitely renormalizable. 

It was shown by Douady and Hubbard that Pc is renormalizable if and only 
if Pc is in a "small copy" of M in M. 

THEOREM 1. (Yoccoz [Y]) If Pc (c G M) is not infìnitely renormalizable then M 
is locally connected at c. 

Lyubich [L2] has obtained the local connectivity of M at some infinitely 
renormalizable points. 

Another important question is: 

CONJECTURE 2. The set ofc's such that Pc is hyperbolic and is open and dense 
in M. 

It can be easily shown that this set is open. So the density is the question. 
By Mane-Sad-Sullivan's theorem, this conjecture is equivalent to 

CONJECTURE 2'. If Pc is J-stable, then it is hyperbolic. 

Using their theory, Douady and Hubbard were able to show: 

THEOREM 2. [DH] Conjecture 1 implies Conjecture 2. 

This shows the importance of Conjecture 1. 

As for the geometric aspect of M, we have 

THEOREM 3. (Shishikura [SI]) The boundary of the Mandelbrot set, dM, has 
Hausdorff dimension 2. 

This already shows the complexity of M, which had been observed by many 
computer experiments. The next question is on the (2-dimensional) Lebesgue mea
sure. 

CONJECTURE 3. The boundary of the Mandelbrot set has Lebesgue measure zero. 

Conjecture 2 and Conjecture 3 (and Maric-Sad-Sullivan's theorem) will imply: 

For almost all c's (with respect to the Lebesgue measure), Pc is hyperbolic. 

For Conjecture 3, we have a partial result: 

THEOREM 4. (Shishikura [S2]) The set 

{ z G dM | Pc is not infinitely renormalizable } 

has Lebesgue measure zero. 
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4 Results on Julia sets 

The results on the Mandelbrot set are usually proved through the study of the 
dynamics in the dynamical plane (2-plane), and such a study will also give several 
results on the properties of Julia sets. One often needs to classify the maps accord
ing to their dynamical behavior, then different techniques are applied to different 
types of maps. 

It is known that Pc has at most one cycle of nonrepelling (i.e. attracting 
or indifferent) periodic points in C. So first we divide into three cases — (A) 
c £ M (i.e. Jc is disconnected), (B) there is a nonrepelling periodic point, or (C) 
c G M and all periodic points (in C) are repelling. In fact, we have the following 
classification into disjoint cases: 

A. c £ M, i.e. Jc is disconnected. (In this case, Pc is hyperbolic.) 

B. Pc has a nonrepelling periodic point 
Bl . Pc has an attracting periodic point. (Hence Pc is hyperbolic.) 
B2. Pc has a parabolic periodic point. 
B3. Pc has an irrationally indifferent periodic point of Siegel type. 
B4. Pc has an irrationally indifferent periodic point of Cremer type. 

C. All periodic points of Pc are nonrepelling. 
CI. The critical point 0 is not recurrent and Pc is not infinitely renormalizable. 
C2. The critical point 0 is recurrent and Pc is not infinitely renormalizable. 
C3. Pc is infinitely renormalizable. 

The cases A and Bl are hyperbolic cases, and are the easiest ones to under
stand. The cases B2 and CI (especially the case where 0 is strictly preperiodic) 
are next easiest. These are important classes in the Douady-Hubbard's theory on 
quadratic polynomials. By the work of Yoccoz, we now have a way to study the 
case C2. He defined two subcases — persistently recurrent and nonpersistently 
recurrent. The latter is much easier than the former. There is a beautiful result 
also by Yoccoz on the linearizability of irrationally indifferent periodic points (i.e. 
on the distinction of B3 and B4). But there are still many subtle open problems, 
for example, on the topological structure of the Julia sets. Finally, the case C3 
leads to a rich structure of Julia sets. Some progress has been made by Sullivan 
(for real c with bounded type of renormalization), by McMullen (with certain geo
metric conditions) and by Lyubich (for "high" types of renormalization). This case 
contains many open problems, and, as we have seen in the previous section, one 
can give answers to the conjectures by understanding this case. 

The cases A and Bl are conjectured to be dense (Conjecture 2). The case 
C2 (nonpersistently recurrent case) is known to be generic (in the sense of Baire 
category) in dM. 

Now let us review several aspects of Julia sets. 

Local connectivity of the Julia set 

In case A, the Julia set is totally disconnected. So it can never be locally connected. 
Let us consider the case c G M. The conformai map from the complement 

of the unit disk to the complement of the filled-in Julia set conjugates z 1—> z2 to 
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Pc. If Jc is locally connected, then by Carathéodory's theorem this map extends 
continuously to the unit circle. So the dynamics on the Julia set can be presented 
as a factor of z i—• z2 on S1. 

For the cases Bl , B2, and Cl(strictly preperiodic case), Douady and Hubbard 
[DH] showed that the Julia set is locally connected. Yoccoz extended it to the case 
C2 (and all cases of CI). 

THEOREM 5. (Yoccoz [Y]) If all periodic points of Pc are repelling and Pc is not 
infinitely renormalizable then Jc is locally connected. 

There are some cases in B3 and C3 for which Jc is known to be locally 
connected (Petersen, Jiang). 

On the other hand, there are examples of c G M such that J c is not locally 
connected. Douady and Sullivan showed that this is always the case for B4. And 
a similar argument applies to some cases of B3, when the critical point is not on 
the boundary of the Siegel disk (Herman's example). Douady gave a construction 
of examples of infinitely renormalizable maps of satellite type (i.e. the limit of 
repeated bifurcations "going out of the cardioid to an attached satellite"). It is 
important to know the topological structure of the Julia set for these cases. (See 
the section on holomorphic removability below.) 

Lebesgue measure of the Julia set 

For the cases A and Bl, it was classically known that the Julia set J c has (2-
dimensional) Lebesgue measure zero. This method was extended to the cases B2 
and CI (strictly preperiodic case) by Douady and Hubbard. Using Yoccoz's tech
nique for the local connectivity and McMullen's modulus-area inequality, we can 
treat the case C2 and have: 

THEOREM 6. (Lyubich [Ll], Shishikura [S2]) If all periodic points of Pc are re
pelling and Pc is not infinitely renormalizable then Jc has Lebesgue measure zero. 

It is a completely open question for the cases B3, B4, and C3. 
However there is a striking result announced by Nowicki and van Strien [NvS] 

that for a large d (even integer) and a certain c, the Julia set has positive measure. 

Hausdorff dimension of the Julia set 

In hyperbolic cases (A and Bl) , Ruelle showed (using the idea of Bowen for 
Kleinian groups) that if 6 is the Hausdorff dimension of Jc then the ^-dimensional 
Hausdorff measure of Jc is positive and finite. Then it follows from the result on the 
(2-dimensional) Lebesgue measure that the Hausdorff dimension must be strictly 
less than 2. In fact, one can prove, using a different method, that Jc has Hausdorff 
dimension less than 2 for cases A, Bl, B2, CI. On the other hand, we have: 

THEOREM 7. (Shishikura [SI]) For generic c (in the sense of Baire category) in 
dM, the Julia set Jc has Hausdorff dimension 2. 

As remarked before, for generic c G dM, Pc is in the case C2. It is also possible 
to construct examples in case B4 and C3 such that J c has Hausdorff dimension 2. 



892 Mitsuhiro Shishikura 

Holomorphic removability 

DEFINITION. A closed set X in C is called holomorphically removable if any home-
omorphism from an open neighborhood U of X onto an open set of C that is 
analytic on U — X is analytic on entire U. 

For example, straight lines, circles, and quasi-circles are known to be holo
morphically removable. The set (Cantor set) x (interval)(c R x M ~ C) is not 
holomorphically removable. It follows from the measurable Riemann mapping the
orem that a holomorphically removable set has Lebesgue measure zero. 

In the cases A, Bl, B2, and CI, Carleson, Jones, and Yoccoz [CJY] proved 
that the complement of the filled-in Julia set is a "John domain" and that Jc is 
holomorphically removable. Kahn [K] has proved by developing Yoccoz's method 
that if all periodic points of Pc are repelling and Pc is not infinitely renormalizable 
then Jc is holomorphically removable. This in fact implies Theorem 6 by the above 
remark. 

However one can construct examples in cases B4 and C3 (satellite type) such 
that Jc contains a subset that is C1-diffeomorphic to (Cantor set) x (interval), 
hence it is not holomorphically removable. 

5 The idea of the proof of Theorems 3 and 7 

DEFINITION. A subset X of the Julia set J c is called a hyperbolic subset for Pc if 
it is closed and forward invariant (i.e. PC(X) C C) and if Pc is expanding on X 
(i.e. ||(Pc

n)'| | > cAn (n > 0) on X) with some constants c> 0 and A > 1. 
The hyperbolic dimension of Pc is defined by 

hyp-dim(Pc) = sup{ H-dim(A') | X is a hyperbolic subset of Pc}, 
x 

where H-dim(X) is the Hausdorff dimension of the set X. 

It follows from the definition and the stability of hyperbolic sets that the 
function c i-> hyp-dim(Pc) is lower semi-continuous. The Hausdorff dimension of 
Jc is greater than or equal to the hyperbolic dimension of Pc. 

Theorems 3 and 7 can be deduced from the following propositions. 

PROPOSITION 8. For e e dM, 

H - dim(ôAf) > hyp-dim(Pc). 

PROPOSITION 9. For any c G dM, there exists a sequence {cn} in dM such that 

cn —> c and hyp-dim(PCn) —> 2 (n —* oc). 

Theorem 3 follows immediately from these propositions. Theorem 7 follows 
from Proposition 9 and the lower semi-continuity of hyp-dim(Pc), because Vn = 
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{c G öM|hyp-dim(Pc) > 2 - ^} is open and dense in dM, and for c G nnVn, we 
have H-dim( Jc) = hyp-dim(Pc) = 2. 

To prove Proposition 8, we use the "similarity" between M and Jc. For 
Co G dM, there is a hyperbolic subset XCQ for PCo whose Hausdorff dimension 
is close to the hyperbolic dimension. By the stability of hyperbolic subsets, for c 
sufficiently close to CQ, there is a hyperbolic subset Xc for P c such that P c on Xc 

is conjugate to PCo on XCQ. Moreover the conjugacy is bi-Hölder with an exponent 
close to 1, and Xc depends holomorphically on c. One can show that for N > 0, 

{ c | P?(0) G Xc } C dM 

and that the left-hand side contains a set that resembles XCQ. This is the idea of 
the proof for Proposition 8. 

Proposition 9 is the hardest part. Let us consider the typical case c = Co = \. 
Then the Julia set J i / 4 is a Jordan curve and its Hausdorff dimension is strictly less 
than one. From this, one has to create a new Julia set whose hyperbolic dimension 
is close to 2. This can be done by analyzing the bifurcation of parabolic periodic 
points by means of the theory of Ecalle cylinders, which was developed by Douady, 
Hubbard, and Lavaurs [DH]. In this case, ZQ = \ is a parabolic fixed point of P1/4, 
and the interior of Jx/4 is the parabolic basin, i.e. all orbits in the interior of J1/4 
tend to | . If we perturb Pi/4, then the parabolic fixed point bifurcate into two fixed 
points and this creates new types of orbits that behave in a more complicated way. 
By choosing the perturbation carefully, it is possible to create a more complicated 
Julia set, which contains a hyperbolic subset such that its Hausdorff dimension can 
be concretely estimated and is shown to be close to 2. This will prove Proposition 
9 for c0 = \. 

For general cases, we can combine this method with Mané-Sad-Sullivan's 
result on the density of parabolic points on dM. 

6 The idea of the proofs of Theorems 1, 4, 5, and 6 

The proofs of these theorems are based on Yoccoz's idea of partition of the dy
namical and parameter planes, and on his divergence theorem. 

Let us suppose that e e M, all periodic points of Pc are repelling, and P c 

is not infinitely renormalizable (case CI or C2). Then Yoccoz constructs a graph 
consisting of external rays landing at a certain periodic orbit and an equipotential 
curve. This divides the plane C into several connected components. A bounded 
component is called a piece of level 0. Then, inductively, a connected component 
of a piece of level n is called a piece of level (n +1). It can be shown that each piece 
of any level is simply connected and its intersection with the Julia set is connected. 
Let us denote by Vn(x) the piece of level n containing x. (Here, for simplicity, we 
only consider the case where the orbit of x never falls on the periodic orbit used 
in the construction of the graph.) 

It is easy to see that Vn+i(x) c Vn(x), Fc(Vn(x)) = Vn-i(Pc(x)) and the 
map Pc : Vn(x) —* Pn-i(P c(#)) is bijective if 0 ^ Vn(x), and is a branched covering 
of degree 2 if 0 G Vn(x). 
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To obtain Theorem 5, we need to show that the diameter of Vn(x) tends 
to 0 as n —> oo. (This will prove that {Vn(x) n J c } n is a fundamental system of 
neighborhoods that are connected, hence Jc is locally connected at c.) 

If 0 is not recurrent, i.e.Pc
fc(0) £ Vn(0) for some n > 0 and all k > 1, then one 

can obtain "weak hyperbolicity" of the map on the Julia set using the Poincaré 
metric on the pieces, therefore the diameter of Vn(x) tends to 0 exponentially. 

If 0 is recurrent, then for a suitable choice of the initial graph, there exists 
a level n0 such that 7>n+i(0) C Pn(0), hence Pn(0) - Pn+i(0) is an annulus. 
Moreover, Yoccoz showed the following: 
There is a sequence of levels {rij} such that rij / oo as j —• oo, P™j(Vnj(0)) = 
Vno(0) and P™J (7^+1(0)) = Pno+i(0), where rrij = rij — no, with the notation 
An = Vn(0) — Pn+i(0), Pc

mj : Anj —• Ano is a covering map between annuii, and 
(the divergence theorem) 

oc 

y^ modulus (An. ) = oo. 
j=o 

(Such a divergence type theorem was first obtained by Branner and Hubbard in 
the study of cubic polynomials.) From this, one can deduce the local connectivity 
of J c at 0, and at other points as well, by the Grötsch principle: 

If {An} is a nested sequence of annuii in a bounded region in C and if the sum of 
the moduli of An diverges, then the intersection of bounded components ofC — An 

is a point. 

In order to obtain Theorem 1, Yoccoz constructs a similar partition for M 
and shows that there is a nested sequence of annuii A„. surrounding c such that 
the modulus of A^f, is comparable to the modulus of An (i.e. the ratio is bounded 
away from 0 and oo). Moreover the intersection of the bounded component of A„ 
and M is connected. So this gives the local connectivity of M at c. The local 
connectivity at c's for which P c has irrationally indifferent cycles is taken care of 
by an inequality that was also proved by Yoccoz. 

To show Theorems 4 and 6, we use the same partition as Yoccoz, and need 
to replace the Grötsch principle by McMullen's modulus-area inequality (or by its 
corollary): 

Let A = {A} be a collection of annuii in a bounded region in C . Then the set of 
points such that the sum of moduli of the annuii in A that surround this point 
diverges has Lebesgue measure zero. 

In fact, we can make a partition of Jc or the subset of dM in Theorem 4, into 
a countable union of sets, each of which is shown to have measure zero, either by 
the above result applied to a suitable collection of annuii, or by applying Lebesgue 
density theorem and Koebe's distortion theorem, etc. For the description of these 
partitions, we need to use the r-function, which was invented by Yoccoz to analyze 
the combinatorial recurrence of the critical point. 
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The purpose of this paper is to go over some recent results in analysis and partial 
differential equations that are related to regularity properties of solutions of the 
wave equation 

(Du(t,x)=0 

\ u(0, x) = f(x), dtu(0, x) = g(x). 

Here, D = d2 jdt2 — A, where A is either the Euclidean Laplacian on Rn or a 
Laplace-Beltrami operator on a compact n-dimensional manifold Mn (without 
boundary unless otherwise stated). 

Fixed-time Lp -» Lp estimates 

In the Euclidean case, the most basic estimate of course is the energy identity: 

/ \Vt,Mt,x)fdx= f (\Vxf(x)\2 + \g(x)\2)dx, (2) 
JR" jRn 

which just follows from integration by parts or a simple application of the Fourier 
transform. If one is interested in the L2 norm of the solution, then a related 
estimate, which also follows directly from Plancherel's theorem, is 

H^oilL^II/ll^ + a + t 2 ) 1 / ^ ^ ^ , (3) 

if L£ denotes the usual Lp Sobolev space with norm | | / | | L P = \\(I - A) Q / 2 / | | L P . 
Both (2) and (3) easily generalize to the setting of manifolds as well. 

The fixed-time Lp, p ^ 2, behavior of the wave equation is much less favor
able, and sharp estimates are harder to obtain. For the Euclidean version, Miyachi 
[31] and Perai [36] showed that for 1 < p < oo 

IN*, • )||Lp < Cp,t ( | | / | |L g p + Wgh*^ ) , % = (n - 1)1 è - ? I • (4) 

Simple counterexamples show that these estimates are sharp. If one just takes / 
to be a nontrivial cutoff times either \x\ap~n/p or (1 — | ^ | ) Q p _ 1 / p , depending on 
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whether p is < 2 or > 2, respectively, then w(±l, •) g Lp(Rn), while / G L£ if 
a < Qp. For small times, Beals [1] extended (4) to variable coefficients. 

The proofs of these fixed-time estimates relied on the fact that, in the Eu
clidean setting, or the small-time manifold setting, the kernel of the solution op
erator has a very simple form; specifically, that it is a conormal distribution. The 
techniques of [1], [31], [36] rely on stationary phase and break down when this 
is not the case. This sort of situation can of course occur for large times on a 
manifold. Using different techniques related to the plane wave decomposition of 
the solution of the Euclidean wave equation, Seeger, Stein, and the author [39] 
showed that (4) holds for all times on a manifold. In fact, a more general result 
concerning Fourier integral operators holds. 

To describe this, let us assume that a(x,Ç) G C°° vanishes for x outside of a 
compact set and satisfies 

\9£SÇa(x,t)\<Ca„{l + \Ç\)-™. 

Assume also that ip(x,£) is real, homogeneous of degree one in £, smooth away 
from £ = 0, and satisfies 

det d2tp/dxjd£k ^ 0 (5) 

on supp a. Then, if / denotes the Fourier transform of / , and if we let 

Faf(x) = f e ^ t y x , 0 ( 1 + |Ç|)° / (0 <*£, (6) 
JR™ 

it was shown in [39] that for 1 < p < oo 

Il^a/IUP(R») < CpH/HiPO»»), a = - ( n - 1)| i - Ì | . (7) 

This contains the fixed-time estimates mentioned above because u(t, • ) can always 
be decomposed into a finite sum of operators of this type acting on the data. 
The examples showing that (4) is sharp can easily be adapted to this context to 
show that (7) cannot be improved for conormal operators whose singular support 
has codimension one, or, more succinctly, for operators with phases satisfying 
rank d2(p/d£jd£k = n — 1 somewhere. 

The main step in the proof of (7) is to show that, even though the limiting 
L1 estimate with a = —(n — l) /2 is false, dyadic versions of this estimate hold. 
Specifically, if ß G Cj?( (1/2,2) ), and we set 

Txf(x)= [ c ^ 'O)9 ( | f | /A)a (x ,0 ( l + | f | ) - ^ / ( 0 d e , 

then one has 
| |TA/ | |LI < C| | / | |L . , A = 2 \ fc = l , 2 , . . . . (6') 

To do this, one breaks up the dyadic operator T\ into "angular pieces," T\ = 

E i = i ÏA, where 

3^/(1)= / e^)X,(0/3(lelM)a(z,0(l + l £ i r V / Ì 0 ^ 
jRn 
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with each \v being homogeneous of degree zero, and satisfying D7xu(0 = 0(A~2~), 
|£| = 1. Thus, one should think of { \ v } as a smooth partition of unity of K"\0, 
with each term being supported in a cone of aperture 0 (A - 1 / 2 ) , and the derivatives 
of Xv satisfying the natural bounds associated with this decomposition. The reason 
for this decomposition is that, in the right scale, £ —> tp(x,£) behaves like a linear 
function of £. Based on this, it is not hard to show that one can estimate each 
resulting piece in terms of the size of its symbol: 

mf\\v<c\-wa\\f\\Li, 
which of course yields (6'). This sort of decomposition was first used in the related 
context of Riesz means by Fefferman [11], as well as by Christ and the author [7] 
and Cordoba [8]. Also, Smith and the author [42] showed that the estimates (4) 
also extend to the setting of the wave equation outside of a convex obstacle, and 
that estimates related to (7) also hold for Fourier-Airy operators. 

Space-time Lp —> Lp estimates 

Using (4) and (7), one can apply Minkowski's integral inequality to see that u G 
Lp

oc(dtdx) if (/,#) G Z/*^ x Lp
a _v However, for many applications it is useful to 

know whether the regularity assumptions can be weakened, if one considers the 
space-time rather than spatial regularity properties of u. If p < 2, one can use the 
counterexample for the sharpness of (4) to see that, for this range of exponents, 
in general, the local space and space-time regularity properties are the same. 

On the other hand, if n > 2 and p > 2 there is an improvement. Specifically, 
given p > 2, there is an ep > 0 so that if ST = {(£, x) : 0 < t < T} 

ll«(*,*)IU-(Sr)<Ci,.r(||/||LS . +NUs , . )• (8) 
Such a "local smoothing estimate" was first obtained in [45] in the Euclidean case 
when n = 2 by the author, using related results from Bourgain [2] and Carbery [5]. 
Later, a much simpler proof was given by Mockenhaupt, Seeger, and the author 
[32], and the extension to variable coefficients and higher dimensions was carried 
out in [33]. The first local smoothing estimate for differential equations seems to 
go back to Kato [24], who showed that for the K-dV equation there is a local 
smoothing of order 1 in L2, due to the dispersive nature of the equation. 

As before, (8) generalizes to the setting of Fourier integrals. To be specific, 
let us consider operators of the form (6), where now, with an abuse of notation, 
x ranges over M1+n . Then to improve on trivial consequences of (7), one needs 
certain conditions on the phase. First, one needs the "nondegeneracy condition" 
that (5) is replaced by the condition that the Hessian appearing there has full rank 
n everywhere. This amounts to saying that the projection of the canonical relation 
into T*Rn\0 is submersive. In addition, one needs a curvature requirement that is 
based on the properties of the projection of the canonical relation into the fibers 
of the bigger cotangent bundle, T*R1 + n \0 . It turns out that the nondegeneracy 
condition implies that the images of these projections must all be smooth conic 
hypersurfaces, and they are explicitly given by 

r x = { Vx<pOr, 0 : £ G Mn\0 } C Tx*M1+n\0 = R 1 + n \ 0 . 
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Our other requirement, "the cone condition," is that at every rj G Tx there are n—1 
nonvanishing principal curvatures. Together the nondegeneracy condition and the 
cone condition make up the cinematic curvature condition introduced in [45]. This 
condition turns out to be the natural homogeneous version of the Carleson-Sjölin 
condition in [6] (see [33], [46]). 

If cinematic curvature holds, it was shown in [33] that (7) can be improved 
if n > 2 and p > 2, that is, there is an ep > 0 so that 

II^a/||LP(Ri+-) < C H / H L ^ ä » ) , a = -(n - 1)( \ - \ ) -r Ep . (9) 

The proof uses the decomposition employed for the fixed-time estimate, along with 
ideas from the related work of Fefferman [11], Carbery [5], and Cordoba [8] to allow 
one to exploit the curvature implicit in the cone condition. 

The main motivation behind (8) and (9) concerns applications for maximal 
theorems. For instance, if in R2, Atf(x) denotes the average of / over the circle 
of radius t centered at x, 

Atf{x) = f f{x-iß)dB, 
Js1 

then Bourgain [2] showed that 

|| sup \Atf(x)\ ||LP(R2) < CP | | / | |L P ( R 2 ) , p > 2. (10) 

Earlier, in effect by using an ingenious square function argument based on bounds 
that are equivalent to (3), Stein [48] obtained the higher-dimensional version of this 
result. Stein's theorem, which inspired much of the work described in this paper, 
says that when n > 3 the spherical maximal operator is bounded on Lp(Rn) 
if p > n/(n — 1). He also showed that when n > 2 no such result can hold if 
p < n/(n — 1). Thus, as 2 is the critical Lebesgue exponent for this problem in two 
dimensions, and as At is a Fourier integral operator of order —1/2, one cannot use 
fixed-time estimates like (3) or (4) to obtain (10). Hence, if one wishes to use an 
argument like Stein's for the two-dimensional setting, harder space-time estimates 
like (9) are required. 

Using these smoothing estimates one can recover (10) in a straightforward 
manner. In fact, if ß G CQ)( (1,2) ), 2 < p < oo, and e > 0, then Sobolev's lemma 
yields 

|| sup \ß(t)Atf(x)\ | | t s < Ce,p\\ (I - d2)e+iß(t)Atf(x) ||LPX . (11) 
t ' 

However, modulo a trivial error, / — > ( / - d2)**+%ß(t)Atf(x) is the sum of two 
operators of the form (6) with ip = x • £ ± t\£\ and a = — \ + -+e. Thus, if e < ep, 
(9) implies that the right side of (11) is controlled by the LP norm of / . This 
argument thus gives a slightly weaker version of (10), where the supremum in the 
left is taken over t E (1,2); however, if one uses Littlewood-Paley theory (see [33], 
[46]), a simple variation yields the full circular maximal theorem of Bourgain. 
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This argument of course also applies to certain variable coefficient maximal 
operators. For instance, if one takes the supremum over small enough radii, one 
can obtain a variant of (10) where one averages over geodesic circles on two-
dimensional Riemannian manifolds (see [45]). Also, it was shown by Iosevich [19] 
that there is a natural extension of (10) to averages over finite type curves. Also, 
in [47], the local smoothing estimates (9) were used to show that (10) extends to 
averages in higher dimensions over hypersurfaces with at least one nonvanishing 
principal curvature. 

Another application was pointed out to us by Wolff. If in the plane 

A6f(t,x) = ô-1 [ f(y)dy, 
J\x-y\e(t,t+6) 

then the above arguments yield for 0 < 6 < 1 

|| sup \A6f(t,x)\ | |LP([l i2]) < CS''1'* | | / | |LP(R2) , Ve < ep. (12) 
kl<i 

It turns out that (9) holds for any ep < 1/8 if p = 4. From (12) for p = 4, one can 
then deduce, using ideas from Bourgain [3], that a set in the plane containing a 
translate of a circle of every radius must have Hausdorff dimension > 3/2. It was 
shown by Besicovitch (see [9]) that there are such sets of measure zero; however, 
it is felt that their Hausdorff dimension must always be 2. Showing this is related 
to a deeper problem concerning the Hausdorff dimension of Besicovitch (3,1) sets: 
sets of measure zero in R3 containing a line in every direction. It is conjectured 
that such sets must have full Hausdorff dimension. Bourgain [3] showed that they 
must have dimension > 7/3, and this result has recently been improved by Wolff 
[54], who showed that, as in the previous case, the Hausdorff codimension must 
always be < 1/2, that is, every Besicovitch (3,1) set must have dimension > 5/2. 

It was conjectured in [45] that for p > 2n/(n — 1) there should be local 
smoothing of order 1/p, that is, that (9) should hold for all e < 1/p for this range of 
exponents. This conjecture would imply the Bochner-Riesz conjecture, so in higher 
dimensions it seems presently unattainable. However, in view of the Carleson-Sjölin 
theorem [6], there might be some hope of verifying the conjecture in (1 + 2)-
dimensions. If true here, it would imply the conjecture that sets of measure zero 
in the plane containing a circle of every radius must have full Hausdorff measure. 
In the radially symmetric case the conjecture for solutions of the Euclidean wave 
equation was verified in all dimensions by Müller and Seeger [34]. 

L2 —> Lq estimates 

It is much easier to obtain sharp estimates involving L2. For instance, using L2 

bounds for Fourier integrals of Hörmander [17] and the Hardy-Littlewood-Sobolev 
inequality one obtains the sharp estimate 

II ̂ a/IU^R») < Cq\\f\\L2{Rn) , a = - f + ^ , 2 < g < o o , (13) 



Smoothing Estimates for the Wave Equation and Applications 901 

if T& is as in (7). However, if T& sends functions of n-variables to functions of 
(1 + n)-variables there is local smoothing of order 1/q for a range of exponents if 
the cinematic curvature condition holds: 

l|-F«/IU.(Ri+») < Cq\\f\\L*(*«), oc = - § + a ± l , ygp- <q<oo. (14) 

This result was obtained by Mockenhaupt, Seeger, and the author [33], and it 
generalizes the important special case of Strichartz [52] for the Euclidean wave 
equation, which says that if q is as in (14) 

\Ht,x)\\Lq(Rl-n) < Cq ( | | / | |Ä„ + \\g\\Èa-, ) , a = f - 2±1. (15) 

Here H1 denotes the homogeneous L2 Sobolev space with norm ||(—A)7/2/||^2. 
Earlier partial results go back to Segal [40]. The dual version of (15) is equivalent 
to the following restriction theorem for the Fourier transform: 

/ \mu)\2^mr2{n+mp-1)/p < cP\\F\\iHR1+n), i<p<
2J$n. 

JR"-

This in turn is related to the earlier I? restriction theorem of the Fourier transform 
for spheres of Stein and Tomas [53]. Inequality (14) contains a local extension of 
(15) to variable coefficients and the latter was independently obtained by Kapi-
tanski [22]. Strichartz estimates were also obtained by Smith and the author [43] 
for the wave equation outside of a convex obstacle. 

Mixed-norm estimates and minimal regularity for nonlinear equations 

Mixed-norm estimates, where different exponents are used for the time and spa
tial norms, are often useful for applications in analysis and partial differential 
equations. If we write (x, y) G W1 x Rm = R n + m , then mixed-norms are given by 

\\F(x,y)\\L%L?(Rn+m) = ( / ( / \F(x,y)\"dy)q/pdx) 
JRn JRm 

1/q 

In analysis, typical applications arise from the case where m = 1 and p = 2, 
and the estimates involving norms of this types are called square function esti
mates. We already pointed out that square function estimates for solutions of the 
Euclidean wave equation (1) lead to Stein's spherical maximal theorem. Related 
harder estimates that are equivalent to L^L2(R2+1) estimates for (1) were used 
by Carbery [5] to obtain estimates for maximal Bochner-Riesz operators in the 
critical space L^(R2). 

Square function variants of (15) can also be used to obtain sharp estimates 
for eigenfunctions. In fact, it was shown in [33] that if one uses L2 instead of L\ 
one can improve (15) and get for ST = {(x, t) : 0 < t < T} 

IMIL*L?(S.) < CT( U/H*. + Hflll*,-! ) , OC = Syl - 2 , «gp. < q < oo . (16) 
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Thus, there is a gain of 1/2 of a derivative over the fixed-time estimates (13). In 
the Euclidean case, the bounds are independent of T, whereas they may not be 
on a compact manifold. In [43], Smith and the author showed that these estimates 
also hold on compact manifolds with concave (i.e., diffractive) boundary. When 
q = co a dyadic version of (16) holds. Using these square function estimates one 
can obtain "sharp" bounds for eigenfunctions. In fact, if —Ae\ = A2e^ on either 
a smooth compact boundaryless manifold or a (relatively) compact manifold with 
concave boundary, one has 

||eA||L,(M") < C(l + \)*M | |eA | |L2(Mn ) , (16') 

where a(q) = *=± - * if ^ < q < oo, and a(q) = (»-»£-*) if 2 < g < ^ . 
The bounds for the first range follow from (16) because if / = e\ and g = 0, 
u(t,x) = cost\e\(x), and hence the left side of (16) is comparable to the left side 
of (16'). The bounds for the other range follow via interpolation. Although the 
bounds in (16') are not sharp in general, a slightly stronger result holds that is 
always sharp. It says that (16') holds if e\ is replaced by a function with spectrum 
in [A2, (A + l)2]. In the boundaryless case these estimates were first proved by the 
author [44] using a different, but related approach, based on proving estimates for 
the standing wave operators A + A2. For the case of manifolds with diffractive 
boundaries, the estimates are due to Grieser [14] and Smith and the author [43]. 

It would be very interesting to know to what extent these bounds carry over 
to the setting of general (relatively) compact manifolds with boundary. Results of 
Ivrii [20] imply that the L°° bounds always hold. However, Grieser [14] showed 
that one cannot have (16') with a(q) = ^^ — ^ for the full range ™-\ — Q — °° 
if the second fundamental form of the metric has a negative eigenvalue at some 
point of the boundary. One might expect, though, that in this case they might hold 
if q > | ^ | , which is the largest range allowable by Grieser's counterexample. 

Mixed-norm estimates also have important applications for semilinear wave 
equations. This observation first seems to have been made by Pécher [35], where 
a variant of the energy estimate (2) was proved, with the right side dominating 
mixed-norms that scale like the left side of (2). These estimates are in the spirit 
of the Strichartz estimates (15), and they were used by Pécher to prove scattering 
theorems for equations like Du = {ul^^ on R 1 + n involving data with small energy. 
Subsequently, these type of mixed-norm estimates, along with (15), were used to 
prove Grillakis' theorem saying that there are global C°° solutions of the critical 
wave equation Du + u5 = 0 in R 1 + 3 with arbitrary C°° Cauchy data (see [15], [41], 
as well as [43] for the extension to the obstacle case). 

Mixed-norm estimates and smoothing estimates are also useful for proving 
existence theorems with minimal regularity for other powers. In [28], Lindblad and 
the author showed that if \3w = F in R 1 + 3 and if w has vanishing Cauchy data at 
t = 0, then 

H I JU, <Cq\\F\\ _*_ ^_ ,2<q<oc. (17) 
L,9"2 L^R1*3) L?~l L2+2 (R!+3) 

This inequality is related to earlier Besov space estimates of Ginibre and Velo [12], 
[13] and Kapitanski [22]. Using it and estimates for the linear Cauchy problem (1) 
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that are related to (15), it was shown in [28] that if K > 2 then there are local 
(weak) solutions of 

Du = \u\K , u(0,x) = f G i P ( R 3 ) , dtu(0,x) =ge i J 7 " 1 ^ 3 ) , (18) 

provided that 7 = max( § — ^ - , 1 - -^ ) . In the superconformai range, K > 3, 
there is also global existence for small data. Scaling arguments show that 7 must 
always be > | — ^ j , while a counterexample related to an example giving the 
sharpness of (15) shows that 7 must also be > 1 — -^j. The local existence results 
were also obtained independently by Kapitanski [23]. 

If one assumes radial symmetry, it turns out that (15) holds for a larger range 
of exponents, namely, q > ^ j . For related reasons, the counterexamples in [28] 
no longer apply, and, consequently, one expects better local and global existence 
results if / and g in (18) are assumed to be radially symmetric. In fact, recently, 
Lindblad and the author [29] have established a stronger theorem under these 
assumptions, using this fact about (15) along with a stronger version of (17) that 
only holds under the assumptions of radial symmetry, and is proved using ideas 

from [26] and [34]. Specifically, if T£ = 00 for K > 1 + \ /2, T£ = cs"*-*«-* for 
2 < K < 1 + V% and Te = e x p ^ - ^ * - 1 ) ) for K = 1 + \fl, and if c,e > 0 are 
sufficiently small there is a weak solution of (18) in [0, T£) x R3 provided that 
the data has H1 x H1~l norm < e with 7 = max( | — ^ y , | — £ ). We already 
remarked on the necessity of the first condition. The second is also needed because 
if UQ is the solution to the linear wave equation with this data, \UQ\K need not be 
a distribution if 7 < \ — \. Notice that, for positive powers, 

Also, if « < 1 + y/2, it was shown in [21], [27], and [55] that the lifespan bounds 
in the formula for T£ are optimal. 

This result is of course related to John's [21] existence theorem, which says 
that if compactly supported data (/,<?) G C 3 x C2 are fixed, then Du = \u\K, 
(u(0,x),dtu(0,x)) = e(f,g) always has a global C2 solution for small e > 0 if and 
only if « > 1 + \ /2. The positive part of John's theorem is proved by an ingenious 
argument based on iterating in the space with norm 

|| (1 + t)(l + 11 - \x\ \)K-2 sup \u(t, \x\u>)\ lu» . 

John's argument, following an idea going back to Keller [25], only involves radial 
estimates because the positivity of the forward fundamental solution for D in R 1 + 3 

allows one to reduce matters to only proving estimates for radially symmetric func
tions by first taking supremums over the angular variables UJ G S2. If one iterates 
instead in L^Lj^.L^, the arguments used to prove the sharp radial existence the
orem mentioned above also allow one to recover John's existence theorem, and 
the extensions of Lindblad [27] and Zhou [55], which say that there is a solution 
u G C2([0, T£) x R3) if 2 < K < 1 + \/2 and K = 1 + y/2, respectively. 
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A Survey of Möbius Groups 

P E K K A T U K I A 

Department of Mathematics 
University of Helsinki 
Helsinki, Finland 

Classical Fuchsian and Kleinian groups are offspring of the theory of functions 
of one complex variable. Like modern complex analysis they were born in the 
nineteenth century. They are groups of conformai homeomorphisms of the Riemann 
sphere identified either with the extended complex plane C = CU{oc} or with 
the 2-sphere S2 = {x G R3 : \x\ = 1}, and with discontinuous action on an open 
nonempty set. Poincaré [Po] had already found out that there is a natural extension 
of the group action to the upper half-space H3 = {(x1.X2.x3) € R3 : £3 > 0}. 
Poincare's extension was based on the fact that any conformai homeomorphism 
of C can be represented as a composition of inversions (also called reflections) 
on spheres, the prototypical inversion being the inversion x i—> x/\x\2 of the unit 
sphere. Obviously, an inversion is extendable to H3 (or in fact to Rn = Rn U {00} 
with arbitrary dimension n). In this manner it is possible to extend the action of 
a Kleinian group to H3. 

Not much was made of this extension until very recently. Even the theory 
of classical Kleinian groups of C was a little bit of an oddity and by and large 
one felt comfortable only with Fuchsian groups, that is with Kleinian groups with 
an invariant circle S in C and with discontinuous action on the complementary 
domains of S. I do not think that the modern theory of Kleinian groups of C began 
until the 1960s. If one wants to pinpoint the beginning, for me it was Ahlfors' 
finiteness theorem [Ah2] as well as the Ahlfors conjecture on null measure of the 
limit set of a finitely generated Kleinian group (now solved for a large class of 
groups by Bonahon [B]). In the 1980s Thurston revolutionized the area, the major 
theorem being Thurston's geometrization theorem for Haken 3-manifolds and its 
implications for Kleinian groups. Here, finally, essential use was made of the fact 
that Kleinian groups are extendable to H3. 

We currently have a rich theory of Kleinian groups acting on C and H3. 
As hinted above, it is possible to extend the action of a Kleinian group of C to 
any Rn. The origin of these groups as Kleinian groups of C can be noticed in the 
fact that R2 = C is setwise invariant under the action of the group. If we drop 
this condition, we obtain groups of Rn generated by inversions on (n — l)-spheres. 
As usual, we also regard (n — l)-planes as spheres and an inversion on such a 
plane is just a reflection. We call these groups Möbius groups of Rn. The groups 
we study often act discontinuously somewhere; that is, there are points x G Rn 
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having a neighborhood U such that gli fl U ^ 0 for only a finite number of g G G. 
Failing that, G is at least discrete with respect to some natural topology (all such 
topologies give the same definition of discreteness). 

In contrast to the classical Kleinian groups of C, the theory of n-dimensional 
Möbius groups is much less developed. We want to describe here some properties 
of these groups, with special emphasis on the differences and similarities with the 
classical theory. Even if the theory is far less extensive than the classical theory, 
there is more of it that can be covered here. Naturally, I emphasize here the areas 
that appeal to me and with which I am familiar. 

We can start with the following similarity. Although we have here presented 
n-dimensional Möbius groups as groups generated by inversions in spheres, an 
equivalent definition would be, as in dimension 2, that they are just groups of 
conformai homeomorphisms of Rn, as follows from Liouville's theorem. In the 
classical case, a Kleinian group was a group of orientation-preserving conformai 
homeomorphisms; that is, each element in the group is a composition of an even 
number of inversions. However, in the sequel we also allow orientation-reversing 
conformai homeomorphisms, sometimes called anticonformal homeomorphisms. 

We denote the group of all Möbius transformations of Rn by Möb(n). Still one 
basic similarity with the classical case is that it is possible to extend g G Möb(n) 
uniquely to a Möbius transformation of the (n + l)-dimensional hyperbolic space 
jjn+i _ {(Xl^mmm ,a;n+i) G Ä n + 1 : a:n+i > 0} so that it is a hyperbolic isometry 
in the hyperbolic metric given by the element of length \dx\/xn+\. Thus, in the 
sequel we will consider Möb(n) also acting on Hn+l and on Hn+l = ifn+1 U Rn. 

In a couple of occasions we use as the model for the hyperbolic space the 
unit ball Bn+l = {x G Rn+l : \x\ < 1} with boundary the n-sphere Sn. Now the 
hyperbolic metric is given by the element of length 2|d:r|/(l — \x\2). We can always 
change from Hn+1 to Bn+l by conjugating by some g G Möb(n + 1). 

The existence of Möbius groups 

One way to Fuchsian groups is via the uniformization of Riemann surfaces. If 
we take a Riemann surface of genus at least 2, then the universal cover is the 
upper half-plane H2 = {z G C : Imz > 0} of C and the cover translation group 
is Fuchsian. Thus, granting some knowledge of Riemann surfaces, we know that 
there are nontrivial Fuchsian groups of H2, even such that the quotient H2/G is 
a compact surface. 

It is of course easy to construct simple Möbius groups. For instance if we take 
p disjoint (n — l)-spheres Si with disjoint interiors in Rn, then the inversions on Si 
generate a discrete group. However, the construction of more complicated Möbius 
groups for general n is difficult; for instance, to find a Möbius group corresponding 
to a Fuchsian group obtained from a compact Riemann surface. Such a Möbius 
group would be a discrete group G such that if G is extended to Hn+1, then the 
quotient ifn+1 /G is compact. We call such a group cocompact. 

There are cocompact groups, but their construction is far from trivial. Sulli
van [SI] has constructed such groups in general dimension n and they played an 
important role in the deformation theory of bilipschitz and quasiconformal maps 
in [SI]. Sullivan's deformation theory later allowed the solution of the problem of 
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extending a quasiconformal homeomorphism of Rn to a quasiconformal homeo-
morphism of E n + 1 in [TV]. Thus, the existence of such groups has had some very 
interesting consequences outside the theory of Möbius groups. 

Sullivan's construction is based on the fact that it is possible to represent 
Möbius transformations of Rn as matrices of 0 ( 1 , n + 1); that is, as matrices 
preserving the bilinear form XQ-\ hx2 — x 2

+ 1 . Sullivan's construction is algebraic 
and therefore he prefers to use the group of matrices T preserving the bilinear form 
xQ-\ ^~xn~ >/2#n+i a n d with entries of the form p + qy/2 with p and q integers. 
The proof of compactness of i / n + 1 /T is not trivial. 

It would be highly desirable if one could give a geometric description of a 
cocompact group and of the quotient space. This is possible in low dimensions and 
these geometric constructions are based on the idea of a fundamental polyhedron. 
If G is a Kleinian group of i J n + 1 , then a fundamental polyhedron for G is a subset 
D of # n + 1 such that the G-transforms of D fill Hn+l so that the intersection of 
two distinct transforms of D is either empty or a common face or subface. 

In Poincaré's fundamental polyhedron theorem, one reverses this process and 
constructs the group G from a would-be hyperbolic fundamental polyhedron D C 
ifn+i. Thus, one matches faces of D that would be identified by elements of 
G. Because the G-transforms of D would have to fill Hn+l without gaps and 
overlapping, we obtain some conditions for D. They are simple and natural if 
n = 1. In higher dimensions they become more complicated, although somehow 
intuitively evident and easily believable and, beginning from Poincaré [Po], there 
are a number of proofs although most seem to be deficient in rigor, cf. [EP] for a 
discussion. 

This section would not be complete without mention of Thurston's geom-
etrization theorem. Thurston gave conditions for a Haken 3-manifold to be the 
quotient of a Kleinian group. This result was one of the highlights of mathematics 
of recent years, and as it has had much coverage we will not discuss it here. 

Rigidity 

This is perhaps the aspect where the theory of higher-dimensional Möbius groups 
differs most from the theory of Fuchsian groups and the classical Kleinian groups. 
It is well known that these groups have nontrivial deformations; i.e., if G is such a 
group, we can find homeomorphisms ft,t G [0,1], with /o = id of G conjugating G 
onto another Kleinian group Gt such that no Gt, t > 0, is conjugate by a Möbius 
transformation to G. 

It is often practical to require that each ft satisfies the regularity condition 
called quasiconformality (roughly this means that there are uniform bounds for 
the distortion of an infinitesimal (n — l)-sphcre), and instead of the nonconjugacy 
of Gt to G in Möb(n) to require that for no t > 0 the isomorphism ipt : G —> Gt 
such that <pt(g) = ftgff1 is a conjugation by a Möbius transformation (although 
it might be that Gt is conjugate to G by some Möbius transformation). This is 
the way leading to Teichmüller spaces. 

Mostow's rigidity theorem asserts definitively that this is not possible for 
groups G C Möb(n) such that MQ = Hn+1 /G has finite hyperbolic volume (proved 
in [M] if MQ is compact). If ip : G —• H is any isomorphism between two finite 
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volume Möbius groups of ffn+1, n > 2, then ip is a conjugation in Möb(n). We 
will now describe some recent extensions of Mostow's theorem. 

In the proof of Mostow's theorem, the first step was to show that if (̂  : G —• if 
is an isomorphism of finite-volume Möbius groups, then there is a quasiconformal 
homeomorphism / of the boundary Rn of the hyperbolic space inducing ip; that 
is, fg = ip(g)f for g G G. Such a map / : Rn —• Rn inducing ip is called the 
boundary map of p. In the extensions of Mostow's theorem we will consider, we 
assume the existence of the boundary map (not necessarily quasiconformal nor 
even a homeomorphism) and the desired conclusion is that the boundary map is 
in fact a Möbius transformation. 

Agard's theorem [Agi] asserts that a quasiconformal boundary map of an 
isomorphism ip : G —• H of two Möbius groups is a Möbius transformation as soon 
as G is of the divergence type: that is, the Poincaré series (see (1) below) of G 
diverges at the exponent 6 = n. 

In this direction the most powerful theorem seems to be due to Sullivan. 
His theorem concerns groups with conservative action; i.e., whenever A C Rn has 
positive measure, then g A n A has positive measure for infinitely many g G G. In 
this situation a quasiconformal boundary map is a Möbius transformation, cf. [S2] 
if n = 2 and [S4] for general n. 

For nonquasiconformal boundary maps it is possible to show that either / 
is the restriction of a Möbius transformation or somehow badly behaved. Let / 
be the boundary map of an isomorphism of groups of the divergence type. If / 
is a measurable bijection and if f~l is also measurable, then either / is a.e. the 
restriction of a Möbius transformation or / is singular in the sense that / maps a 
null set onto a set of full measure, cf. Sullivan [S4] and [T2]. 

The above theorems have a global character. The following is a more local 
one. Let ip : G —• H be an isomorphism of two Möbius groups that are not 
finite extensions of abelian groups. If / : Rn —> Rn is the boundary map of 
ip, then, unless / is a Möbius transformation, / cannot be differentiable with a 
nonsingular derivative at any conical limit point of G (cf. the last section for 
conical limit points), see [Tl]. If the group is cocompact, every x G Rn is a conical 
limit point and hence in this case either / is a Möbius transformation or it cannot 
be differentiable with a nonsingular derivative at any point x G Rn. For n > 1, 
this implies Mostow's theorem. Recently, Ivanov [I] has obtained extensions of 
these results concerning the situation where the differential of / vanishes but / 
is differentiable of order p > 1 at a point (i.e., / can be approximated by a 
homogeneous polynomial of order p at the point). 

Deformations of conformai structures 

Despite Mostow's rigidity theorem, it may be possible to deform a cocompact 
or finite-volume Möbius group G C Möb(n) if we move to a larger group, for 
instance to Möb(n 4-1). Geometrically this means the following. Recall that we 
initially regarded g G Möb(n) as a homeomorphism of Rn, but it was possible 
to extend g uniquely to a Möbius transformation of Hn+l by representing g as 
a composition of inversions on spheres. Of course, in the same manner we could 
have extended g to a Möbius transformation of Rn+l and of ifn+2. 
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Thus, we can regard G as a Möbius group of Rn+1 and of i f n+ 2 and now 
the quotient Hn+2/G is no more compact or of finite volume even if this were 
true for MQ = -ffn+1/G. Hence, Mostow's rigidity theorem does not bind us and 
it becomes possible to deform G in certain situations, for instance if MQ has a 
totally geodesic submanifold MQ of codimension 1. Totally geodesic means that 
any geodesic of MG containing two points of Mo is entirely contained in M0. 

The construction of the deformation is a kind of "bending" around the codi
mension 1 submanifold Mo. Actual "bending" is done in the universal cover of 
MG- It is possible to give a good geometric picture of the deformation if n = 1; 
that is, if G is a Fuchsian group. The visualization of the deformation is easier if 
we transform the group G by a Möbius transformation so that S1 becomes the 
invariant circle. Now the totally geodesic submanifold MQ is a topological circle of 
B2/G. 

In addition the upper hemisphere S+ = {(#i,X2?#3) G S2 : xs > 0} of S2 

is G-invariant and there is a natural G-equivariant identification of the 2-ball B2 

and of S+. In this identification Mo is a compact 1-submanifold of the compact 
surface S+/G. 

Let Li be the lifts of Mo to S+. Then Li are half-circles orthogonal to Sl. 
Because Mo does not have self-intersections, the lines Li do not intersect. Take 
one Li. It divides S+ into two parts Si and S^ forming (with Li) the hemisphere 
S_i_, and the angle between these two parts is 7r. Now we bend one of them, say 
Si, by a certain amount so that Si makes an angle a with the old position of Si. 
The bending is effected by means of a rotation in the hyperbolic space H3 around 
the line Li and so the new Si is part of a 2-sphere orthogonal to R2. The former 
smooth *S+ now consists of two parts, and the angle between them is n — a. The 
earlier circle 5+ D R2 is now the union of two half-circles making an angle at the 
points where they intersect. 

This of course breaks the symmetry of S + and it is no more F-invariant for 
a nontrivial Möbius group F. However, if we bend consistently at all the lines Li 
and if the angle a we chose is not too big, we obtain a nonsmooth topological 
hemisphere 5, invariant under a Möbius group F of R3. In addition the action of 
F and the action of G on S+ are conjugate: F = / G / - 1 for a homeomorphism 
/ : S+ —> S. It is possible to extend / to a homeomorphism of R3 still conjugating 
G onto F so that / preserves R2. If we regard G and F as groups of R2, the 
construction of F by bending around the half-circles Li in the hyperbolic three-
space is invisible. 

In this construction the topologically smooth hemisphere S+ is transformed 
to a topological hemisphere S that is smooth except on the bending lines. On the 
boundary, the smooth circle S1 = 9S+ is transformed to a very nonsmooth topo
logical circle dS C R2, which is a so-called fractal curve with Hausdorff dimension 
between 1 and 2 and has nowhere tangents. Now dS is the invariant (topological) 
circle of the so-called quasi-Fuchsian group F. 

This construction is possible for any discrete Möbius group G of Rn such 
that Sn~1 is G-invariant and that Bn/G contains a totally geodesic codimension 
1 submanifold. It follows that if S+ is the upper hemisphere of Sn \ S7 1 - 1 , then 
also S+/G contains a totally geodesic submanifold MQ such that the lifts of MQ 
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are (n — l)-dimensional half-spheres orthogonal to Rn. As above, it is possible to 
"bend" around lifts of M0 corresponding to a not too large angle a G [0, ao]. In the 
construction Rn remains invariant, but S™'1 is transformed to a very nonsmooth 
n-sphere. The conformai structure of components of (Rn \ Sn~l)/G is changed 
and so we can change the conformai structure, although we could not change the 
hyperbolic structure. 

Thus, there is a deformation theory for higher-dimensional Möbius groups. 
The example we have described is the so-called Mickey Mouse example of Thurston 
[Th, 8.7.3]. It seems that Apanasov [Api] was the first to construct a nontrivial 
deformation of G C Möb(n) in Möb(n + 1). Apanasov has also found some ways 
to deform Möbius groups other than "bending" [Ap2]. See also Kourouniotis [K] 
as well as Johnson and Millson [JM]. 

Dynamic and ergodic properties 

In this section, we change from ifn+1 to the ball Bn+1 and assume that G is a 
discrete Möbius group on Bn+l and on its boundary Sn. 

The limit set L(G) of G is the set of accumulation points of an orbit Gz, 
z G Bn+l (it is independent of z). Because G is discrete, all the accumulation 
points of Gz are on the boundary and hence L(G) C Sn. If L(G) contains more 
than two points, G is nonelementary and in this situation we will now consider the 
dynamic behavior of G on L(G). In contrast to earlier topics, here the qualitative 
dynamic behavior of G on L(G) is much the same for the classical groups (n = 1 
or n = 2) and for the higher-dimensional Möbius groups. 

In this connection, the exponent of convergence 6G of G is an important 
constant. It mirrors the growth of the orbital counting function; that is, the number 
N(r) of points in a given orbit Gz, z G Bn+l, whose hyperbolic distance from a 
given point is less than r. The exponent of convergence is defined by means of the 
Poincaré series of G, which can be given as the sum 

Pb(z) = Y<e~6d{Z'g{z))' C1) 
geG 

Here z G 2?n + 1 is an arbitrary basepoint whose choice does not affect the conver
gence or divergence of (1). The number 8 is the exponent of the Poincaré series 
and there is a certain critical value 8G, the exponent of convergence of G, such 
that (1) converges for 8 > 8G and diverges for 6 < 8G\ for 8 = 8G the series may 
converge or diverge. It is a standard result that 8G < n [Ahi] and the Poincaré 
series converges for 8 = n if the action of G is discontinuous somewhere on Sn. 

An alternative way to define the Poincaré series, more reminiscent of the 
classical definition, would be to use the series 

£lsW- (2) 
geG 

Here \g'\ is the operator norm of the derivative. For groups of BnJrl (but not of 
üTn+1), the convergence of (1) is equivalent to that of (2). 
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In the study of the dynamic behavior of G on L(G), the Patterson-Sullivan 
measure \x is of decisive importance. It was first defined by Patterson [Pa] for 
n = 1. Sullivan [S3], [S6] extended the definition for n > 1 and proved the biggest 
part of many of the following results. The measure /i is a probability measure 
supported by the limit set and satisfies the transformation rule 

p(gX) = f \g'\6 dp (3) 
Jx 

for g e G and a Borei subset X of L(G), and where 8 is the exponent of conver
gence 8G- The Patterson-Sullivan measure can be simply constructed by taking a 
basepoint z G Bn+l, an exponent 8 > 8G, putting a point mass of weight ^ ' ( z ) ^ at 
g(z), and normalizing so that the total mass is 1. Call this measure fis, let 8 —> 8G, 
and take the weak limit. In this manner we obtain a probability measure supported 
by L(G) and satisfying (3) (this follows easily from the form (2) of the Poincaré 
series), provided that the Poincaré series diverges at the exponent of convergence. 
If it converges, then the construction can be modified. 

We call a finite measure satisfying (3) a conformai measure; the number 8 is 
the dimension of the measure. For instance, the n-dimensional Hausdorff measure 
on Sn is a familiar example of a conformai measure. As another example, if G is 
of compact type; that is, (Bn+l \ L(G))/G is compact, then the ^-dimensional 
Hausdorff measure is a nontrivial conformai measure on L(G), cf. [S3]. 

If the Poincaré series diverges at the exponent of convergence, we have a good 
picture of the dynamic behavior. Now7 the measure fi is ergodic, not only with 
respect to the action of G on L(G), but also the action of (x,y) i-> (g(x),g(y)) of 
G on L(G) x L(G) is ergodic with respect to ^ x fi. Here we mean by ergodicity 
that every G-invariant subset has either full or null measure. 

This situation can also be characterized geometrically. We say that x G L(G) 
is a conical limit point if, given a point z G S n + 1 , there are Qi G G such that 
9i(z) —* x and g%(z) are at bounded hyperbolic distance from the line segment 
joining 0 and x. If the Poincaré series diverges at the exponent of convergence, the 
conical limit points have full ju-measure; otherwise, the /.^-measure is 0. 

These conditions can be reversed and the following three conditions are equiv
alent for a nontrivial conformai measure p> of dimension 8 on L(G)\ 

1. The Poincaré series diverges at the exponent 8. 
2. The conical limit points have full ^-measure. 
3. The action of G on L(G) x L(G) is ergodic with respect to JJ, x \i. 
If one of these conditions is true, then 6 = 8G, and /i is uniquely determined 
up to multiplication by a constant. 

The proof of the fact that convergence at the exponent of convergence implies null 
measure for conical limit points is fairly easy [N, Theorem 4.4.1], but the other 
direction is much more complicated. There are two main lines of proof, one of them 
due to Sullivan [S2] and the other to Thurston (given, e.g., in [Ahi]). These have 
been generalized for general conformai measures in [N] and [T3], respectively, cf. 
also [H]. 

The equivalence of conditions 2 and 3 above is due to the fact that the 
ergodicity of G on L(G) x L(G) is equivalent to the ergodicity of the geodesic flow 
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on the hyperbolic convex hull HG of L(G) (i.e., HG C Bn+1 is the smallest closed 
and hyperbolically convex set whose closure contains L(G); if L(G) = Sn, then 
HG is just £T l+1), and this is equivalent to the full measure of conical limit points. 
This result goes back to Hopf with contributions from many mathematicians, cf. 
the discussion in [S2]. In the form stated above it can be found in [N]. Now the 
uniqueness and the fact that 8 = 8G follow from [S3, Theorem 21] as there can be 
no atoms. 

We found that the ergodicity on the product L(G) x L(G) could be character
ized by means of the conical limit points. A similar characterization is possible for 
the conservativity of the action of G. We say that G acts conservatively on X with 
respect to \i if, whenever A C X is measurable and \i(A) > 0, then fi(gA D A) > 0 
for infinitely many g G G. If G is a group of measurable maps of a measure space 
A, then the following is valid in a fairly general situation. We can divide A into 
two measurable and disjoint G-invariant parts, A = A! U A", so the action is con
servative in A' and that the action of G on A" has a measurable fundamental set 
F; that is, F contains exactly one point from each orbit Gz, z G A" (cf. [Ag2] if 
G C Mob(2) and ji is atomless). 

If ji is the Hausdorff n-measure on Sn, then Sullivan [S2] has characterized 
the conservative part of the action of a discrete Möbius group in Sn as the horo
spherical limit set. A horosphere at x G Sn is an n-sphere S C f? n + 1 U {x} such 
that dS is tangent to Sn at a\ A point x G Sn is in the horospheric limit set of G, 
if inside every horosphere at x there is an infinite number of points from any orbit 
Gz, z G Bn+l. The same characterization for the conservativity of the action is 
valid for arbitrary conformai measures, at least if we change the definition of the 
horospheric limit set H(G) so that x G H(G) if and only if, given z G J3 n + 1 , there 
is a horosphere S at x such that inside S there is an infinite number of points of 
Gz (cf. [T4]). 

The property that the action of G is ergodic on L(G) is an intermediate 
property between conservative action on L(G) and ergodic action on L(G) x L(G). 
It is curious that there does not seem to be a geometric description of this situation, 
like the horospheric and conical limit point sets in the two other cases. 

The strongest form of ergodicity, ergodicity of the action on L(G) x L(G), 
is frequently met because some common categories of groups have this property. 
If (Bn+l \ L(G))/G is compact, then every x G L(G) is a conical limit point and 
hence the product action is ergodic. More generally, the product action is ergodic 
if G is geometrically finite [S6]; i.e., the action of G on Bn+1 has a finite-sided 
fundamental polyhedron. 

The weaker types of ergodic action are also met, although they are not so 
obvious. Let À be the Hausdorff 1-measure. There are Fuchsian groups on B2 such 
that the action is conservative but not ergodic on Sl with respect to A, as well 
as groups with ergodic action on S1 but not on S1 x S1, see [T2, 4F] (note that 
the inclusion relation of OHB and OG was stated in the wrong way in [T2]). The 
construction of the group with conservative but nonergodic action on S1 is based 
on the following observations. Let G be a Fuchsian group on B2 such that G is 
the universal cover translation group of C \ X where X is a closed and bounded 
subset of the real line. By [Pm, Ex. 4] the action of G is conservative on S1 if and 
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only if X(X) = 0. If the capacity of X is positive, the argument of [T2, 4F] implies 
tha t the action is nonergodic on S1. 

Some recent results allow the addition of some groups to the category of 
ergodic bu t not product-ergodic groups. Suppose tha t G is a finitely generated, 
totally degenerate Kleinian group of G; tha t is, G \ L(G) is simply connected. 
Then Bonahon's results [B] imply tha t the areal measure of L(G) vanishes and we 
can infer from Bishop-Jones [BJ, Theorem 13.2] tha t 8G = 2. Because L(G) ^ Sn, 
the Poincaré series Pg converges for 8 = 2 and so Ps converges for 8 = 8G- Hence 
the action of G on L(G) x L(G) is not ergodic with respect to the product of 
any conformai measure on L(G). On the other hand, Sullivan [S5] has constructed 
some such groups with conformai measure fi of dimension 2 on L(G) such tha t the 
action is ergodic on L(G) with respect to /i. 

The groups constructed by Sullivan are obtained from a Fuchsian group F 
by taking to the limit so t ha t one of the complementary domains of L(F) shrinks 
away. On the other hand, it is possible to take the limit in such a way tha t bo th 
complementary domains of L(F) shrink away so tha t S 2 is the limit set of the 
limit group. Such a group is geometrically tame by Bonahon [B], and Thurs ton 
[Th, 8.11] implies tha t the geodesic flow is ergodic and hence the action of G is 
ergodic on S 2 x S 2 with respect to the areal measure. 
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Introduction 

This work is founded on an analogy between complex analysis and classical me
chanics, which at first glance may not seem too meaningful. Our purpose is to 
show, however, that not only is it useful as a formal guide, but that the interplay 
is substantial at the level of mathematical proof. 

The solvable, or integrable, problems of mechanics are well known: the pen
dulum, Kepler's problem, certain tops, geodesies on a tri-axial ellipsoid, They 
have been studied extensively in recent times, as well as classically. They shed a 
great deal of light on the general theory. What are the explicitly solvable problems 
of complex analysis? 

More precisely, consider the Riemann mapping problem. For which domains 
in the complex plane is this problem explicitly solvable? Perhaps the best example 
from the point of view here is the interior E of an ellipse. In 1869 H. A. Schwarz 
gave an explicit formula for the conformai map of E onto a disc, using trigonometric 
and elliptic functions. (In 1868 E. Mathieu had shown that the eigenvalue problem 
for the laplacian was explicitly solvable; i.e. separable, for E. The billiard problem 
for E was shown to be integrable in 1927 by G. D. Birkhoff, although the essential 
reason was known to the classical geometers.) The mapping problem is also solvable 
for domains bounded by hyperbolas, parabolas, lemniscates, and cuspidal cubics. 

Recently in [25], a large family of other domains for which the Riemann map
ping problem is explicitly solvable has been found. It includes domains bounded 
by real branches of certain nonsingular cubics, binodal quartics, and bicuspidal 
quartics. These curves are termed [18] circular, bicircular, and cartesian, respec
tively. Although they have been extensively studied in the past, apparently not 
much has been written on the mapping problem for the domains that they bound. 
What is perhaps most interesting is that all the examples mentioned here have a 
common explanation: the bounding curves admit double valued reflection [25]. 

What happens in Cn for n > 2? Of course, there is no Riemann map, as 
was shown by Poincaré. Instead, for a bounded smooth strongly pseudoconvex 
domain we may consider the problem of finding a number of intrinsic objects: 
the Bergman kernel, the Szegö kernel relative to an appropriate surface measure, 
the Carathéodory and Kobayashi metrics, the Moser normal form, the chains of 
Cartan-Chern-Moser, None of these are explicitly known, except for those few 
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domains with abundant symmetries. Are some of these problems solvable for ellip
soidal domains? (Just recently, we have found that a relevant dynamical problem 
constitutes an integrable system for ellipsoids.) 

For n > 2 one can also consider real submanifolds of higher codimension. 
That the case of a real n-manifold Mn in Cn has special significance was realized 
by Bishop [3]. Generically, M is either totally real or has complex tangents along 
a subset of codimension two. If M is also real analytic, it is locally the fixed point 
set of an anti-holomorphic involution, or reflection. Near nondegenerate complex 
tangents with nonvanishing Bishop invariant 7, this reflection becomes double 
valued. Some problems considered for M are to find: analytic discs bounding on 
M, the hull of holomorphy of AI, a biholomorphic flattening (i.e. transformation 
into a real hyperplane) of M, and the normal form of [14] near suitable complex 
tangents. Considerable progress on the last two of these problems has been made 
recently in the Ph.D. thesis of Gong [7]. 

1. Double valued reflection. Complexification 

A multiple valued reflection on a complex manifold is an anti-holomorphic, invo
lutive correspondence assigning to each point z a complex subvariety Qz, 

z^Qz, zeQw «=> w eQz. (1.1) 

In the double valued case Qz is zero dimensional and has at most, and in general, 
two points. Thus we have 

Qzo ={zi,z[}, QZ1 = { 2 0 , 2 2 } , Qz2 ={zi,z3}, . . . ; 

generating a sequence 
ZQ I—» Z\ I—> Z2 »—> 23 1—> ( 1 . 2 ) 

A similar sequence is generated if we choose z[. The central problem is to under
stand the dynamics of this process. 

Consider an analytic real submanifold of codimension /, 

M = {ze Cn\R(z,z) =0,R = R= (r\.. .,r1)}. (1.3) 

Its complexification M gives rise to a family of complex subvarieties of Cn , 

M = {R(z, C) = 0}, Qw * M n {C = w}. (1.4) 

This process plays a key role in many areas of complex analysis: 

• differential invariants and normal form(Segre, Cartan, [4], [6]); 

• algebraicity of holomorphic maps [20], [21], [26] and of analytic sets [19]; 

• biholomorphic classification of ellipsoids [20], [21], [26]; 

• single valued reflection principle (Lewy, Pinchuk, [22], [17], [5], [1], [24]); 

• boundary regularity of biholomorphic maps [15]. 
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We believe that the usefulness of complexification is far from being exhausted. It 
can shed light on nearly every aspect of complex analysis relating to real subman
ifolds. We have only given a smattering of relevant references. 

The most natural (single valued) reflection fixing M is that on its complexi
fication 

p.M^M, p(z,Ç) = (Ç,z). (1.5) 

Reflection about M in Cn is double valued precisely when the two mappings 

TTi I M - C\ TTi^C) = Z,TT2(Z,0 = C, (1-6) 

are two-fold branched coverings. They then have covering involutions 

Ti : M —> M, 7TìOTì = -Ki, r2 = I, i = 1,2, r2 = pnp. (1.7) 

The process (1.2) is described in a single valued way by the dynamics of the map 

a = TXT2. (1.8) 

It is reversible; i.e. conjugate to its inverse by an involution. 

2. Real algebraic curves in the complex plane 

In this case M C C, R is a single real polynomial, and A4 C C2 is a complex 
algebraic curve. If M. admits two distinct two-fold branched coverings -K\, -K2 onto 
Pi , then a classical result says that it is either a rational curve or an elliptic curve. 
In both cases it is easy to classify the possible data (M.,T\,p) [25]. 

If M. has genus zero, one gets fractional linear involutions, which are classified 
[14] as hyperbolic, elliptic, or parabolic. These yield the ellipse, hyperbola, and 
parabola, respectively. For the ellipse, for example, -K\ is the "Zhoukowski map". 
If / is the Schwarz-Riemann map of the ellipse onto the right half plane, then 
/ o 7Ti o exp is readily given by a Weierstrass sigma quotient relative to a suitable 
rectangular lattice [25]. 

In the genus one case, M = C/A must admit a reality structure; i.e. the 
modular function must be real. Then a suitable anti-holomorphic involution p and 
a suitable holomorphic involution T\ on M. must be determined. A function 7Ti 
invariant by r\ is given in terms of the Weierstrass p-function of A. This leads to a 
real quartic curve M C C. For a particular case [25] we gave the Riemann map for 
the simply connected domain bounded by a component of M in the form 0 o p _ 1 . 
Here 0 is a Weierstrass sigma quotient relative to another lattice A determined by 
T\. 

3. Surfaces in C2 

Somewhat ironically, double valued reflection was first systematically studied in 
the higher dimensional case. In [14] we gave a holomorphic normal form for analytic 
real surfaces M2 C C2 having complex tangent at 0 with nonexceptional Bishop 
invariant 7. This was derived from a holomorphic normal form for the involution 
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pair Ti,T2 on the complex surface M. The fixed point sets of these maps are 
complex curves meeting at 0. For an elliptic complex complex tangent (0 < 7 < 
1/2) 0 is a hyperbolic fixed point of a, and the normal form converges, giving, in 
particular, a holomorphic flattening of M near 0. 

If 1/2 < 7 < 00, the surface is hyperbolic, but the map a has 0 as an 
elliptic fixed point, which entails the usual possibly complicated dynamics. For a 
countable dense set of 7 in this range (the exceptional ones) the normal form does 
not exist. But even for nonexceptional 7 > 1/2, there are surfaces that cannot 
be flattened [14], so that the transformation into normal form must therefore 
diverge. Holomorphic flattening of M is equivalent to the existence of an integral, 
or invariant function, for the reversible map a. 

If M is already holomorphically flat, does its normal form then converge? 
This reduces to the following question. Suppose that a reversible transformation 
with elliptic fixed point at 0 in the plane has a nontrivial integral. Does its trans
formation into normal form converge? There are many parallels between reversible 
and area preserving maps. Birkhoff [2] showed that the answer is affirmative in 
the area preserving case. Surprisingly, the answer is no for reversible maps, as 
was shown by Gong [10]. In [11] he gives a further study, showing that the level 
curves of the integral can be transverse to the Birkhoff curves in the reversible 
case, whereas the two families of curves must coincide in the area preserving case. 
(Birkhoff curves are curves of points that are mapped radially by some iterate of 
the map.) This has a dynamical significance beyond its application to complex 
analysis. 

Gong [8] also makes a study of surfaces under unimodular transformation of 
C2. Generally, there are more invariants, even at totally real points. For this case 
he makes use of Vey's unimodular Morse lemma. He also derives a unimodular nor
mal form at nondegenerate complex tangents, sorting out the rather complicated 
jumble of invariants. In the case 7 = 0 he proves convergence of the normalizing 
map, provided that all the invariants vanish, by adapting a KAM argument of 
Moser [13]. 

In [23] we showed that real Lagrangian surfaces (Re(d^i A dz2) = 0 on M) 
are are all formally equivalent, near generic complex tangents, via unimodular 
holomorphic transformation. In [24] a similar result was given in holomorphic 
contact geometry and applied to normalize real hypersurfaces with generic Levi-
form degeneracies. However, Gong [7] showed, using a remark of Moser on the 
linearized problem, that the normalizing transformation generally diverges. The 
theory reduces to that of a parabolic pair of involutions. Such involution pairs also 
arise in the theory of glancing hypersurfaces [12] in the standard symplectic space 
R2n . The corresponding normal forms also diverge, in general. This was shown by 
Oshima [16] for n > 3. Gong [9], by adapting the above methods, has extended 
this to n > 2. 
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1. For thirty-five years, one of the most interesting and rewarding classes of oper
ator algebras to study has been the approximately finite-dimensional C*-algebras 
of Glimm and Bratteli ([39], [7]). 

Recall that a separable C*-algebra A is said to be approximately finite-
dimensional (or AF) if it is generated by an increasing sequence 

M Ç A2 Ç . • • Ç A 

of finite-dimensional sub-C*-algebras: A = (UAn)~. 
It should be recalled that a finite-dimensional C*-algebra is isomorphic to a 

finite direct sum of matrix algebras over the complex numbers. 
One of the striking properties of AF algebras is that they can be classified. 

A classification in terms of the multiplicity data involved in a given increasing 
sequence of finite-dimensional subalgebras was obtained in [39] and [7]. A classi
fication in terms of an invariant — the ordered group K0 — was obtained in [21] 
and [22]. (Of course, the ordered Ko-group can be computed from the multiplicity 
data. It can in fact be seen directly to contain the same asymptotic information 
concerning this data that appears in the classification of [39] and [7].) 

The classification works equally well for the AF algebra — the norm closure 
of the union of the increasing sequence — and for the union itself. 

2. For thirty years, the only known AF algebras were those actually given in terms 
of an increasing sequence of finite-dimensional C*-algebras. 

An example for which this was not the case was given by Blackadar in 
[3]. Blackadar's construction still involved giving an increasing sequence of C*-
algebras, of a rather special form, but these were no longer finite dimensional. 
The algebras Blackadar used were direct sums of matrix algebras over C(T), the 
algebra of continuous functions on the circle. 

The AF algebra constructed by Blackadar was not itself new. It was in fact 
one of the most familiar such algebras — one of the infinite tensor products of 
matrix algebras over the complex numbers considered by Glimm (the case of the 
algebra of 2 x 2 matrices repeated infinitely often). 

Exploiting the symmetry of his construction, though, Blackadar was able to 
construct a finite-order automorphism of this C*-algebra that was essentially new 
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— it could not arise through any construction involving only finite-dimensional 
C*-algebras. More precisely, it could not leave invariant any increasing sequence 
of finite-dimensional subalgebras with dense union — or even leave invariant the 
union of such a sequence. This was because the fixed point subalgebra could be 
shown — by K-theoretical considerations — not to be an AF algebra. (The fixed 
point subalgebra could be easily calculated, as the closure of the increasing union 
of the fixed point subalgebras of the algebras in Blackadar's construction, because 
the automorphism was of finite order.) 

One way of putting this, perhaps, is as follows. With Blackadar's construc
tion, the theory of AF algebras changed from being basically algebraic (with a 
little spectral theory thrown in — which was almost optional) to being essentially 
topological in nature. In view of the circles appearing in the construction, one 
could even say that an AF algebra was revealed as a topological object itself, in 
a real sense. It would no longer be sufficient to view an AF algebra as just a 
topological completion of a locally finite-dimensional algebra. 

3. Topological constructions of AF algebras similar to Blackadar's were soon given 
by other authors ([48], [8], [37], [11], [13], and [65]). In addition to revealing more 
and more structure in various AF algebras, this work had other consequences. 

Perhaps most surprisingly, it led in a natural way to the question of classifying 
C*-algebras constructed in terms of increasing sequences, but which did not happen 
to be AF algebras. To begin with, if some algebras were not AF, why weren't 
they? In certain constructions, involving a choice of embedding at each stage, the 
non-vanishing of the Ki-group of the resulting algebra appeared to be the only 
obstruction to its being AF. (Other obstructions were observed later, but these 
were also K-theoretical in nature.) 

It was just a small step from this to the idea that the complete K-theoretical 
data, i.e., the (pre-) ordered group K0, the group Ki, and the space of traces on 
the algebra (at least in the simple, stable case), should determine the algebra, 
within a certain class (indeed, that this data might be all there was to see). 

This idea has now been borne out in a number of investigations, beginning 
with [24]. Some of these will be summarized below. So successful has it been, in 
fact, that one now expects these invariants to determine isomorphism within the 
class of all stable, non type I, separable, amenable, simple C*-algebras. 

4. Recall that a C*-algebra is amenable (equivalently, nuclear — see [17], [42]) 
if, and only if, its bidual is an amenable von Neumann algebra (see [16], [15]). 
Amenability itself, in either setting, is defined in terms of a fixed point property 
(innerness of certain derivations). It is equivalent to amenability of the unitary 
group — with the weak topology in the C*-algebra setting and the weak* topology 
in the von Neumann algebra setting ([44], [55]). 

Accordingly, on very general grounds, a classification of separable amenable 
C*-algebras might be hoped for in analogy with the classification of amenable von 
Neumann algebras with separable pre-dual due to Connes, Haagerup, Krieger, and 
Takesaki. 

5. Until recently, perhaps the main reason for considering the class of amenable C*-
algebras as the target for classification was that on account of the Choi-Effros lift-
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ing theorem (together with Voiculescu's theorem — which does not use amenabil
ity), two homomorphisms from a separable amenable C*-algebra into the Calkin 
algebra are unitarily equivalent if, and only if, they give rise to the same Kasparov 
KK-element. This uniqueness theorem resembles very much results that have al
ready proved useful for classifying special classes of amenable C*-algebras. 

6. Recently, Kirchberg has shown that any separable, amenable, unital, simple C*-
algebra that contains a sequence of copies of the Cuntz algebra ö2 approximately 
commuting with each element of the algebra must be isomorphic to ö2 ([47]). 
This very strong isomorphism theorem — a characterization of ö2 — although 
not formulated in terms of K-theoretical invariants, comes very close to being so. 

The desired K-theoretical form of the characterization would be that a 
nonzero, separable, amenable, unital, simple C*-algebra with the same K-groups 
as 02, namely, zero, and with no traces, is isomorphic to ö2. One would hope 
to deduce the existence of a sequence of embeddings of 02 as above from the 
K-theoretical hypotheses. 

7. A more explicit description of the invariant under consideration for stable 
simple C*-algebras is as follows. 

(i) The Ko-group, with its natural pre-order structure. (The positive cone, 
Kg", consists of the elements arising from projections in the algebra or, in the 
nonstable case, in matrix algebras over the algebra.) 

(ii) The Ki-group. 
(iii) The space T+ of densely defined, lower semicontinuous, positive traces, 

with its natural structure of topological convex cone. (This structure is most easily 
introduced by identifying the traces with the positive tracial linear functionals on 
the Pedersen ideal — the smallest dense two-sided ideal — and considering the 
pointwise convex operations and the topology of pointwise convergence.) 

(iv) The natural pairing of the cone of traces with the Ko-group. (Any positive 
tracial functional on the Pedersen ideal can be restricted to a hereditary sub-C*-
algebra contained in the Pedersen ideal — on which it must be bounded — and 
then extended to the algebra with unit adjoined and to matrix algebras over this 
algebra. In this way, by Brown's stabilization theorem, one gets a functional on 
Ko of the original algebra, which can be shown to be independent of the choice of 
hereditary sub-C*-algebra.) 

The nonstable case would involve additional information — but in the unital 
case presumably just the Ko-class of the unit. The nonsimple case would involve 
even more information — one should keep track of the ideals and also the associated 
K-theory and KK-theory data. We shall not consider these cases here. 

8. As well as the question of the completeness of the invariant (now established 
for a fairly large class of algebras), there is also the question of its range. What 
properties characterize the objects arising as above from separable, amenable, 
stable, simple C*-algebras? 

There are certain properties that the invariant is known to have, in the sep
arable, amenable, stable, simple case. 

(i) The Ko-group is countable (and abelian), and the pre-order structure is 
simple (if g > 0 and h is any element, then — rig < h <ng for some n = 1,2,... ). 
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(ii) The Ki-group is countable (and abelian). 
(iii) The cone of traces is nonzero whenever Ko ^ KQ~ and, when nonzero, 

has a compact base that is a Choquet simplex. 
(iv) The pairing of the cone of traces with K0 gives rise to all positive func

t ional on Ko, unless Kg" = 0. 
It is an interesting question whether these properties characterize what arises 

as the invariant in the stable, simple case. 
In particular, it is not known whether KQ must be weakly unperforated. (If 

g E Ko and ng E KQ~ \ 0 for some n = 2 , 3 , . . . , then must g E KQ"?) 

9. If G is any simple pre-ordered abelian group (i.e., G + + G + Ç G + and for any 
g E G + \ 0 and h E G there exists n = 1,2,... such that —ng < h < ng), then 
each of the two subgroups G + D — G + and G + — G + is equal either to 0 or to G. 
It follows that there are three cases: 

(1) G + = 0 ; 

(2) G+ n - G + = 0 and G+ - G+ = G (i.e., G is an ordered group); 

(3) G+ = G. 

The intersection of any two of these cases is the case G = 0. 

10. If A is any amenable simple C*-algebra, then the three cases enumerated 
above for the simple pre-ordered group KoA may be combined in a natural way 
with the two main cases for T + A as follows. 

Case (1) 

Case (2) 

Case (3) 

K + = 0 ; T + ^ 0 . 

K + n - K + = 0, K + - K + = K o / 0 ; T+ ^ 0. 

K + = K 0 ; T + = 0 . 

These cases are now clearly disjoint. In fact, they are also exhaustive. To see 
this, assume that A does not belong either to Case (1) or to Case (2), and let us 
verify that it belongs to Case (3). First, let us show that T + = 0. By the "zero-one 
law" of Section 9, it is enough to consider the case that KQ~ n — K j ^ 0. If r E T + 

then r is zero on KQ~ H — KQ~, and as this is not zero, in particular r is zero on a 
nonzero projection. Because A is simple, r = 0. 

Second, let us show that KQ = K0. By what we have just proved, it is enough 
to show that this follows from the property T + = 0. If K^ ^ Ko, then Ko "/= 0, 
and by Section 9 either KQ" = 0 or KQ is an ordered group. In the case that 
K0 is a (nonzero) ordered group, by [6] A has a nonzero quasi-trace, which by 
[43] is a trace. (In dealing with this case, we may assume for convenience that 
A is unital.) In the case that KQ" = 0, but Ko ^ 0, A is stably projectionless. 
(Otherwise, on passing to the stabilization of A, i.e., to A0/C, where JC is the C*-
algebra of compact operators on a separable infinite-dimensional Hilbert space, as 
A is simple, by Brown's stabilization theorem, A is isomorphic to B 0 /C for some 
unital C*-algebra B — any nonzero unital hereditary sub-C*-algebra of A. Hence, 
KQA = (K0A)+ - (K0A)+, in contradiction with K0A ^ 0, (K0^4)+ = 0.) On the 
other hand, from T + = 0 it follows by [5] (on using [43] again) that A&IC has an 
infinite projection — in particular, a nonzero projection. This contradiction shows 
that the hypotheses T + = 0 and KQ" ^ KQ are incompatible, as desired. 
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This argument also establishes statements 8 (iii) and 8(iv). Statements 8(i) 
and 8 (ii) follow from the fact that close projections or unitaries are homotopic, 
together with the use of Brown's stabilization theorem as above. 

11. In Case (1), the invariant consists of the countable abelian groups K0 and Ki, 
together with the cone T + , in duality with K0. 

Examples of Case (1), which consists of the stably projectionless simple 
amenable C*-algebras, were first constructed by Blackadar in [1]. 

Additional examples are constructed in [36], [63], and [27]. 

12. In Case (2), the invariant consists of the countable ordered abelian group K0, 
the countable abelian group Ki, and the simplicial cone T+, in duality with K0. 
The pairing of T+ with K0 is positive on KQ", and all positive functionals on K0 

arise from this pairing ([6], [43]). 
This case consists of the stably finite unital simple amenable C*-algebras, 

and the C*-algebras stably isomorphic to these. 
Constructions in [2], [4], [36], [63], and [27] realize all possibilities for the 

invariant in which Ko is weakly unperforated. (The algebra /C need not be used.) 
Whether the ordered group K0 must be weakly unperforated (i.e., whether 

ng > 0 for some n = 2 , 3 , . . . always implies g > 0) is an interesting question. 

13. In Case (3), the invariant consists of the countable abelian groups KQ and Ki. 
Examples exhausting all pairs of such groups are now known. (The algebra 

0 need not be used.) (See [57], [59], and [35].) 
The first such examples are of course the Cuntz algebras, for which the in

variant was computed in [18]. 

14. In Case (1), no isomorphism results have yet been obtained. 

15. In Case (2), the isomorphism theorem of [22] for AF algebras was succeeded 
(twenty years later) by the following result ([24], [25], [26]). 

Let A and B be stable separable amenable simple C*-algebras in Case (2). 
Assume that each of A and B is the closure of the union of an increasing sequence 
of sub-C*-algebras isomorphic to finite direct sums of matrix algebras over C(T) 
(cf. above). Suppose that the invariant for A is isomorphic to the invariant for 
B. More explicitly, suppose that there are isomorphisms, of ordered groups, tpo : 
Ko A —> KQB, of groups, tpi : K\A —• K\B, and of topological convex cones, 
ip?'- T+B —> T + A such that tpo and Ĉ T respect the pairing of T+ with Ko, i.e., 

< r, ip0 g > = < tpr T, g >, g E K0A, r E T+B. 

It follows that A and B are isomorphic. Furthermore, there exists an isomorphism 
ip: A^B giving rise to a given triple of isomorphisms (tpo, < î, <*?T) as above. 

More recently, this isomorphism theorem has been generalized to the case 
that the circle T is replaced by an arbitrary compact metrizable space of finite 
dimension; the space may vary, but the dimension must (so far) be assumed to be 
bounded. This result was proved by Gong, Li, and the author in [31]. As well as 
using the result of [26] (the case of circles), this theorem uses results in [60], [50], 
[29], [33], [32], [51], [33], [20], [40], [49], [19], and [41]. 
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All examples obtained in this way can in fact be obtained using spaces of 
dimension three or less. 

The algebras obtained by such a construction are still rather special; in par
ticular, the ordered K0-group has the Riesz decomposition property and is weakly 
unperforated. If the algebra /C is excluded from consideration, then the group KQ 
is noncyclic. Such ordered groups were considered in [23], and using the decom
position result for such ordered groups proved in [23] (due to Effros, Handelman, 
and Shen in the torsion-free case), it was shown in [30] that every simple countable 
ordered abelian group with these properties arises as ordered Ko in this class of 
algebras; at the same time, every countable abelian group arises as Ki. 

The question of what can arise as the tracial cone in this construction, and 
as the pairing of this with Ko, has been answered by Villadsen in [64] (building 
on results of Thomsen in [61] and [62]). Villadsen showed that, in the case that 
only circles are used, the only special properties of the invariant, in addition to 
those described for Case (2) in Section 8, and in addition to the properties of KQ 
described above, are that, first, Ko and Ki are torsion free, and, second, every 
extreme ray of the tracial cone gives rise to an extreme ray of the cone of positive 
functionals on KQ. 

Combining Villadsen's methods with the result mentioned before, one sees 
that the range of the invariant for the class of algebras described above (with 
spaces of dimension three in place of circles) is the same as in the case considered 
by Villadsen (circles) except with torsion allowed in Ko and Ki- In other words, 
beyond the specifications for Case (2) in Section 8, KQ is weakly unperforated, 
noncyclic, and has the Riesz property, and extreme rays of T + yield extreme rays 
in the cone of positive functionals on KQ . 

When more general examples are considered (for instance, based on subho-
mogeneous building blocks), it will be necessary to exclude the algebra /C. As 
pointed out in Section 12, all possibilities for the invariant in Case (2) allowed in 
Section 8, with Ko weakly unperforated, are realizable — without using /C. 

16. In Case (3), no isomorphism results were known until very recently. 
Three years ago, in a tour de force of mathematical physics, Bratteli, Kishi-

moto, R0rdam, and St0rmer showed in [14], using the anticommutation relations 
of quantum field theory, that the shift on the infinite tensor product of 2 x 2 ma
trix algebras, M2oo (cf. Section 2), has the noncommutative Rokhlin property of 
Voiculescu. Using this, they were able to conclude that the tensor product of the 
Cuntz algebra ö2 with M200 is isomorphic to ö2. 

Using the known connection between the Rokhlin property and stability (first 
appearing in the work of Connes, and studied in the C*-algebra context by Herman 
and Ocneanu in [45]), a number of authors — most notably, R0rdam — pushed 
rapidly forward to classify a very large natural class of algebras in Case (3), so large 
that it could very well consist of everything — i.e., all stable, separable, amenable, 
nonzero, simple C*-algebras in Case (3). (See [57], [9], [53], [59], and [35].) 

More precisely, the class of algebras in Case (3) for which the invariant con
sidered — the Ko- and Ki-groups — has been shown to be complete exhausts the 
invariant and has certain natural properties. First of all, the class can be described 
in a rather abstract way (introduced in [59]): within the class of stable, separa-
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ble, amenable, nonzero, simple C*-algebras in Case (3), consider those that are 
purely infinite, i.e., in which every nonzero hereditary sub-C*-algebra contains a 
projection that is infinite in the sense of Murray and von Neumann — equivalent 
to a proper subprojection. (This property may be automatic.) Consider those C*-
algebras in this class such that for every other algebra in the class, any KK-element 
into it is realized by a nonzero homomorphism, and a unique one up to approx
imate unitary equivalence (to within an arbitrarily small tolerance on each finite 
subset). Within this subclass, the Ko-group and Ki-group determine an algebra up 
to isomorphism. This subclass contains algebras with arbitrary Ko- and Ki-groups. 

Second, the preceding class is closed under the operation of passing to the 
closure of an increasing sequence A\ Ç A2 Ç • • • with Ai belonging to the class. In 
fact, each Ai may be allowed to be a direct sum of members of the class, provided 
that the closure of the union is assumed to be simple, which is no longer automatic. 

Although no stable, separable, amenable, nonzero, simple C*-algebra in Case 
(3) is known not to belong to the class, and many well-known ones are known to 
belong — for instance, the Cuntz algebra On with n finite and even [57], or n = oo 
[54], and the tensor products On (8) Om with both n and m finite and even [9] — 
already the algebra Ö3 is not known to belong. 

17. The isomorphism theorems described in Sections 15 and 16 have been applied 
in a number of different ways. 

The AF algebra case of the isomorphism theorem was used by Blackadar in 
his constructions of stably projectionless C*-algebras in [1] and of what he called 
unital projectionless C*-algebras in [2]. 

This case of the result was also used in the thermodynamical phase diagram 
construction of [10] (the construction of a C*-algebraic dynamical system with 
a prescribed bundle of simplices as the bundle of KMS states at various inverse 
temperatures — and with prescribed ground and ceiling state spaces at inverse 
temperatures ±00 — as well as a generalization of this to include more thermo
dynamical variables). 

What might perhaps be called the AT case of the theorem (inductive limits of 
sequences of direct sums of matrix algebras over C(T) — instead of C(pt)) has been 
used in computing the automorphism group of the irrational rotation C*-algebra 
AQ for each irrational number 0 between 0 and 1. Using the fact that this simple 
C*-algebra is AT (established in [28]), it was shown in [34] that the automorphism 
group of AQ is an extension of a topologically simple group by GL(2,Z) — the 
latter group arising as the image under the action of the automorphism group on 
Ki AQ = Z2. Although the question of the triviality of this extension was left open, 
the realization of the full automorphism group of K \AQ by automorphisms of the 
algebra answered a well-known question. (Earlier, only the automorphisms of Z2 

with determinant +1 had been realized in this way.) 
Before it was known that the irrational rotation C*-algebras are AT, it had 

been proved by Putnam in [56] that the simple C*-algebras arising (as crossed 
products) from actions of Z on the Cantor set are AT. Therefore, these algebras 
come under the purview of the isomorphism theorem. Because these algebras all 
have the same Ki-group (namely, Z), and their traces are separated by Ko, the 
invariant reduces just to the ordered group KQ (together with the class of the unit 
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of the algebra). In [46], using a construction based on a Bratteli diagram for the 
ordered group (a representation of it as an inductive limit of finite direct sums of 
copies of Z — which always exists in the AT case), it was shown that every simple 
unital AT algebra with the property that the traces are separated by Ko arises as 
above from an action of Z on the Cantor set. Thus, the simple C*-algebras arising 
from actions of Z on the Cantor set can be both characterized and classified. The 
classification, viewed at the level of the Z-action, was shown in [38] to amount 
to a refinement of orbit equivalence — called strong orbit equivalence. Ordinary 
orbit equivalence was shown also to be determined by the K-theoretical invariant: 
quite remarkably, as shown in [38], the Ko-group of the crossed product modulo 
the elements zero on traces (together with the class of the unit) is a complete 
invariant for orbit equivalence. 

It is easy to see that the C*-algebras arising (as crossed products) from tensor 
product actions of Z on M2oc (cf. above) are AT. In [12], it was shown that for a 
simple C*-algebra arising in this way (the most likely outcome), there are only two 
possibilities for the K-theoretical invariant. KQ and Ki are always the same, and 
either there is a unique tracial state, or the extreme tracial states form a circle. 
Hence by the isomorphism theorem (or, rather, the unital variant of it), precisely 
two simple C*-algebras arise in this way. 

Recently, using methods also used in the isomorphism theorem of Section 16, 
Lin showed in [52] that two almost commuting self-adjoint matrices are close to 
commuting ones, thus solving a well-known problem. This result turns out to have 
important implications for the classification question. 

There have been fewer applications so fax of the isomorphism theorem in 
Case (3), described in Section 16, but as R0rdam pointed out in [57], it was not 
even known before that 0% 0 M3 is isomorphic to 0%. 

An interesting subclass of Case (3) consists of the so-called Cuntz-Krieger 
algebras. Because these include all ön with n finite (and not just n even), as 
mentioned above this class is not known to be contained in the class for which 
the isomorphism theorem has been established. In spite of this, R0rdam showed 
in [58] that the isomorphism theorem could be applied to two particular Cuntz-
Krieger algebras, which were known (by earlier work of Cuntz) to be critical for 
deciding the classification question. As a consequence, two simple C*-algebras in 
the Cuntz-Krieger class are isomorphic if and only if they have the same K-groups 
(together with the class of the unit in K0). In particular, Ö5 0 M3 = Ö5. 

18. In addition to the isomorphism theorem of Sections 15 and 16, one has the 
following homomorphism theorem (proved by similar methods). 

Let A and B be two stable, separable, amenable, simple, non type I C*-
algebras belonging to either of the classes considered in Sections 15 and 16. Then 
any homomorphism between the invariants (in the appropriate sense) arises from 
a homomorphism between the algebras. (Presumably, this result also holds more 
generally.) 

Hence by [28], one recovers the Pimsner-Voiculescu embedding of the irra
tional rotation C*-algebra in an AF algebra with the same ordered K0-group. 
(This approach shows that the embedding is unique — up to approximate unitary 
equivalence.) 
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Note added in proof on December 1, 1994: 
Building on his results announced in [47] — basically, tha t for any separable, 
amenable, purely infinite, simple C*-algebra A, the tensor product with öoo is 
isomorphic to A, and the tensor product with 02 0 JC is isomorphic to ö2 ® /C 
— Kirchberg has now almost solved the classification problem in Case (3). More 
precisely, the problem is solved for the class of separable amenable simple algebras 
in Case (3) tha t are purely infinite (cf. Section 16) and tha t satisfy the so-called 
universal coefficient theorem in KK. (In other words, these algebras are classified 
by their Ko- and Ki-groups — together with the Ko-class of the unit in the unital 
case.) The remaining problem, therefore, is to show tha t these two properties 
always hold. 

The same result has also been obtained by Phillips — using the results of 
Kirchberg announced in [47] (stated above). 

Note added in proof on July 14, 1995: 
Recently, Villadsen has constructed a simple amenable C*-algebra in Case (2) with 
perforated positive cone K j . (Cf. Sections 8, 12 above.) 
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Many of the best-known questions about separable infinite-dimensional Banach 
spaces are of at least one of the following forms. 

(1) If X is an arbitrary space, must it have a "nice" subspace? 
(2) If X is an arbitrary space, are there nonobvious examples of operators on XI 
(3) If certain operators are known to be defined on a space X, does this imply 

anything nonobvious about the structure of XI 

Many such questions have been solved in the last three years, and surprising 
connections between them have been discovered. The purpose of this paper is 
to explain these developments. Unless otherwise stated, all spaces and subspaces 
mentioned will be infinite-dimensional separable Banach spaces. 

We begin by discussing questions of the first kind above. It is clear straight 
away that not every space has a Hilbert space, the nicest space of all, as a subspace; 
the space t\ is but one of many obvious counterexamples. However, if one asks 
whether every space contains Co or £p for some 1 < p < oo, then one already 
has a very simple question to which the answer is not at all obvious. In fact, this 
question was not answered until the early 1970s, when Tsirelson [T] used a clever 
inductive procedure to define a counterexample. The proof that his example does 
not contain Co or £p is surprisingly short (this is even more true of the dual of his 
space as presented by Figiel and Johnson [FJ]), but the ideas he introduced have 
been at the heart of the recent progress. 

There were two further weakenings of the notion of "nice" that left questions 
not answered by Tsirelson's example. For the first, recall that a Schauder basis 
(we will often say simply basis) of a Banach space X is a sequence (xn)^L1 such 
that every vector in X has a unique expression as a norm-convergent sum of the 
form Y^=i an%n- A simple result proved in the early 1930s by Mazur (see [LT2]) 
is that every Banach space has a subspace with a basis. Whether every separable 
Banach space had a basis was a famous open problem, answered negatively by 
Enfio [En] in 1973. 

The definition of a Schauder basis is unlike that of an algebraic basis for 
a vector space in that the order of the xn is important. A basis (xn)™=l with 
the property that (^7r(n))^Li is a basis for every permutation 7r of the positive 
integers is called an unconditional basis. It was shown by Mazur that (xn)^L=1 is 
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an unconditional basis if and only if there is a constant C such that, for every 
sequence (o n )^= 1 of scalars and any sequence (en)^L1 with each en of modulus 
one, we have the inequality 

oc oc 

7 1 = 1 7 1 = 1 

Such a basis is called C-unconditional. Notice that this implies that, for every 
subset A C N, the projection YinieNanxn •"> YlneAanxn has norm at most C. 
Thus, if X has an unconditional basis, then there are many nontrivial projections 
on X. A sequence that is an unconditional basis for its closed linear span is called 
an unconditional basic sequence. 

We may now ask whether every space has a subspace with an unconditional 
basis, or, equivalently, contains an unconditional basic sequence (the unconditional 
basic sequence problem). This question was first asked as soon as unconditional 
bases were defined in the 1940s and appears in print in [BP2]. The lack of a proof 
after three or four decades led many people to begin to suspect that the answer 
was no, but there still seemed to be some chance of a positive answer to a yet 
weaker question: Does every space contain co, t\. or a reflexive subspace? The 
reason this is a weaker question is that a result of James [Jl] states that a space 
with an unconditional basis not containing Co or t\ must itself be reflexive, so a 
positive answer would be implied by a positive answer to the first question. 

In the summer of 1991, Maurey and I independently discovered spaces not 
containing unconditional basic sequences. There is not room to explain the con
structions here, but we can make a few remarks. First, we introduce some notation. 
If X is a Banach space with a given basis (en)™=1, then the support of a vector 
x = Yl^Li an^n £ X is just the set of n for which an is nonzero. Given x,y e X, 
we write x < y to mean that every element of the support of x is less than every 
element of the support of y. A sequence x\ < x2 < • • • of nonzero vectors is called 
a block basis, and a subspace generated by a block basis is called a block subspace. 
A simple but very useful result of Bessaga and Pelczynski [BP1] states that every 
subspace y of a space X with a basis has a further subspace Z isomorphic to 
a block subspace of X. This reduces many problems about subspaces of Banach 
spaces to ones about block subspaces. 

The unconditional basic sequence problem is no exception. It is straightfor
ward to show that X contains no C-unconditional basic sequence if and only if 
every block subspace Y C X contains a sequence of vectors x\ < • • • < xn such 
that 

lf>l > clèt-i)"** 
i=l i=l 

(This is not quite true if X has complex scalars. In that case, sequences satis
fying the above inequality exist in every block subspace provided X contains no 
2C-unconditional basic sequence.) Therefore X contains no unconditional basic 
sequence at all if and only if such a finite sequence can be found in every block 
subspace for every C. Notice that the condition on the supports of x\,... ,xn is 
important, because otherwise a constant sequence would do. 
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Of great importance to us in constructing such a space was noticing that, for 
any fixed C, a space which had just been constructed by Schlumprecht [SI] could 
be renormed so that every block subspace did contain such a "C-conditional" se
quence. However, Schlumprecht 's space has a 1-unconditional basis, so any renorm-
ing has a C-unconditional basis for some C. To find a space with no unconditional 
basic sequence at all, one somehow had to use the ideas from the renorming of 
Schlumprecht 's space but produce a nonisomorphic space. This led to considerable 
conceptual and technical difficulties. Two other points are worth making. The first 
is that Schlumprecht's space was, like Tsirelson's space and indeed our spaces, 
constructed inductively (at first glance, the definition appears to be circular). The 
advantage of his space over Tsirelson's was that it had stronger properties related 
to the so-called distortion of Banach spaces. Indeed, his space played an important 
part in his solution with Odell [OSI] of a famous problem known as the distortion 
problem. (In one formulation this asks: Must every space isomorphic to a Hilbert 
space have a subspace almost isometric to a Hilbert space?) Again, there is not 
room to explain this connection (some indication can be found in [OS2]), but there 
is one and it is important. The second point is that the spaces that Maurey and I 
found were not in fact distinct, indicating that, however complicated, our approach 
was a natural one. The result, with some extensions that will be described in a 
moment, appears in a joint paper [GM1]. 

The first indication that the space X\ we constructed was also relevant to 
questions about operators was an observation of Johnson. He pointed out to us 
that we could alter our argument(s) and show that every continuous projection 
on X\ had finite rank or corank, and moreover that every subspace of Xi had 
the same property. This is equivalent to saying that no subspace Y of X\ can be 
written as a topological direct sum W 0 Z with W and Z infinite dimensional. A 
space with this property he called hereditarily indecomposable. Another equivalent 
form of the property, which brings out its strangeness, is that, for any two infinite-
dimensional subspaces Y and Z of X\ and any e > 0, there exist unit vectors 
y € Y and z G Z such that ||y — z|| < e. In a certain sense, the angle between any 
two infinite-dimensional subspaces is zero. 

Thus, our space gave a strong answer to a question of Lindenstrauss [L2]: Can 
every space be decomposed as a topological direct sum of two infinite-dimensional 
subspaces? (Such a space is simply called decomposable.) It showed that, for an 
arbitrary space X, one could not in general expect L(X), the space of operators 
on X, to contain interesting examples of projections. 

Another important class of operators is isomorphisms onto proper subspaces, 
and the next step was the discovery that these also did not have to exist in general. 
I constructed a variant X\j of the space X\ above, which had an unconditional basis 
[Gl]. However, it was not isomorphic to any proper subspace, and therefore solved 
the so-called hyperplane problem, which had its origins in Banach's book [B]. 
This was the question of whether an arbitrary space is isomorphic to its closed 
subspaces of codimension one. (Note that if Y and Z are distinct such subspaces, 
then Y ~ (Y D Z) 0 C ~ Z, so any two subspaces of the same finite codimension 
are isomorphic.) Equivalently, X\j is not isomorphic to X\j 0 C. (Actually, as 
Maurey recently pointed out to me, the precise question asked by Banach was 
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whether every space X is isomorphic to a subspace of its hyperplanes, but this is 
also answered negatively by X\j-) 

It was a little strange that an unconditional basis was needed to make the 
above construction work, although it did mean that a question of the third kind 
was answered. The situation became clearer with the following result [GM1], which 
underlines the importance of hereditary indecomposability. Recall that an operator 
T : X -> Y is Fredholm if the dimensions a(T) and ß(T) of the kernel of T and 
Y/TX, respectively, are finite, and that the index of such an operator is defined to 
be a(T) — ß(T). A strictly singular operator S : X —> Y is one for which there is no 
subspace Z of X such that the restriction of S to Z is an isomorphism. Equivalently, 
for every Z C X and every e > 0 there exists z E Z with ||Sz|| < e ||z||. The strictly 
singular operators share many of the smallness properties of the compact operators 
(indeed, for several spaces X, the strictly singular, and compact operators in L(X) 
coincide). For example, if T is Fredholm and S is strictly singular then T + S is 
Fredholm with the same index as T. 

THEOREM 1. [GM1] Let X be a hereditarily indecomposable space with complex 
scalars. Then every operator T E L(X) can be written in the form XI + S, where 
A G C and S is strictly singular. In particular, every operator on X is either 
strictly singular or Fredholm with index zero. 

It is easy to see that an isomorphism onto a proper subspace cannot be 
strictly singular or Fredholm with index zero, so the space X\ discussed earlier is 
another counterexample to Banach's question. (In fact the space X\ can be real 
or complex. In the case of real scalars, we have a direct proof that it satisfies the 
conclusions of Theorem 1. In general, a real hereditarily indecomposable space is 
isomorphic to no proper subspace.) Thus, in a certain sense, L(X\) is trivial and 
the answer to the second question with which we started is a simple no. On the 
other hand, it is not known whether there exists a space on which every operator 
is a compact perturbation of a multiple of the identity. 

We have left behind the question of whether an arbitrary space must contain 
Co, ti, or a reflexive subspace. For this problem, unlike the unconditional basic 
sequence problem, it is not enough to find a space such that every (block) subspace 
contains ^finite sequence of some kind. The problem is in this sense more genuinely 
infinite dimensional, and for this reason it was not obvious whether the techniques 
used for constructing the hereditarily indecomposable space X could be extended 
to give a counterexample. In the end, however, it turned out to be possible [G2], and 
the resulting space XQLR had a slightly stronger property. No subspace Y C XCLR 
contains £\ or has a separable dual. Note that it is not obvious that there even exists 
a space with a nonseparable dual not containing £\. This was a question asked by 
Banach and answered independently by examples of James [J2] and Lindenstrauss 
and Stegall [LS]. 

It would seem, then, that there is no reasonable sense of the word "nice" for 
which one can (truthfully) say that every space has a nice subspace. However, this 
conclusion, we shall see later, is premature. 

Let us concentrate on questions of the third kind. We have already seen that 
the existence of plenty of projections on a space does not guarantee that there are 
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nontrivial isomorphisms to subspaces. What about the reverse? If we are given a 
space that is isomorphic to a proper subspace, must there be nontrivial projections? 
There are many other questions of this general kind, and to answer some of them 
Maurey and I generalized the results of our first paper. We proved [GM2] that, 
under certain conditions on an algebra A, one can construct a space X = X(A) 
such that A embeds in an obvious way into L(X), and every operator on X is 
a small perturbation of (the image of) an element of A. Sometimes "small" in 
this statement simply means "strictly singular", and sometimes it means a slight 
weakening that is nevertheless strong enough for applications. 

To illustrate, let us consider what can be said about a space if it has a basis 
and the shift with respect to that basis is an isometry. From Theorem 1 we know 
straight away that the space is not hereditarily indecomposable, but this does not 
imply that there are nontrivial projections defined on the whole space. We also 
know that, writing S for the shift and L for the left shift, every operator of the 
form T,n=o anSn + Hn=i bn^n is continuous if Yln=o K I + £^=1 |6n | < oo. In 
other words, the algebra A of convolutions by absolutely summable sequences 
on Z embeds into the algebra of operators on the space. (This is not quite a 
homomorphism because LS ^ SL, but finite-rank perturbations do not matter to 
us.) Our theorem gives a space Xs for which the shift is an isometry, such that 
every operator in L(Xs) is a strictly singular perturbation of an element of A. It is 
straightforward to deduce from this that every projection on Xs has finite rank or 
corank. Thus, if Y is a subspace of Xs and there is a continuous projection onto Y 
(such a subspace is called complemented), then Y is finite codimensional. (Recall 
that subspaces are infinite dimensional unless it is otherwise stated.) Because all 
subspaces of the same finite codimension are isomorphic, the existence of the shift 
guarantees that every complemented subspace of Xs is isomorphic to Xs- A space 
with this property is called prime. Before this example, the only known examples 
were Co and £p for 1 < p < oc. Apart from i^, these were shown to be prime by 
Pelczynski [P]. Lindenstrauss [Ll] proved it for i^, the only known nonseparable 
example. 

The general philosophy here is that, often, the existence of certain operators 
on a space X implies little more than that the algebra A generated by those 
operators embeds into L(X), which is obvious anyway. Two more examples are as 
follows. For every positive integer n > 2 there exists a space Xn such that two 
finite-codimensional subspaces of Xn are isomorphic if and only if they have the 
same codimension modulo n, and there exists a space Zn such that the product 
spaces Z£ and Zn are isomorphic if and only if r and s are equal modulo n — 1. 
For example, there is a space isomorphic to its subspaces of codimension two but 
not to its hyperplanes, and there is a space isomorphic to its cube but not to its 
square. For the second class of examples, one obtains algebras An which resemble 
the C*-algebras On, which were analyzed using K-theory by Cuntz [C]. Our proof 
that the algebras An do not contain isomorphisms between Z£ and Z* when r and 
s are not equal modulo n — 1 was a modification of his argument. Notice that if 
X ~ X3 but X qk X2, then we have an example of two nonisomorphic spaces X 
and Y such that either embeds into the other as a complemented subspace. This 
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gives a negative answer to the so-called Schroeder-Bernstein problem for Banach 
spaces, originally solved in [G3]. We have another example if we take the space X2 

above, which is isomorphic to X2 0 C2 but not to X2 0 C. 
The theorem proved in [GM2] gives fairly general circumstances under which 

the third question from the beginning of this paper has a negative answer. However, 
there are certain very strong assumptions one can make about a space where our 
theorem has nothing to say. For example, a famous result of Lindcnstrauss and 
Tzafriri [LT1], solving a problem known as the complemented subspaces problem, 
states that if every closed subspace of a Banach space is complemented, then the 
space must be isomorphic to a Hilbert space. If we consider isomorphisms instead of 
projections, we get the following question of Banach [B]: If X is a space isomorphic 
to all its (closed infinite-dimensional) subspaces, must X be isomorphic to a Hilbert 
space? A space isomorphic to all its subspaces is nowadays called homogeneous. 
Are there examples other than £2? 

Szankowski [Sz] generalized Enflo's solution to the basis problem, by showing 
that, unless a space is very close to a Hilbert space in a certain technical sense, then 
it has a subspace without a basis (or even the approximation property). Because 
we have Mazur's result that every space has a subspace with a basis, it follows 
that a homogeneous space must be close to a Hilbert space. On the other hand, 
Johnson [Jol] showed that a variant of Tsirelson's space (the 2-convexificd version) 
has the property that every quotient of every subspace has a basis, but the space 
does not contain £2. 

Until recently, the most powerful result in the positive direction was also due 
to Johnson [Jo2]. He showed that if X and X* are homogeneous and have what is 
known as the GL-propcrty, a property related to, but much weaker than, having an 
unconditional basis, then X is isomorphic to £2. Then, early in 1993, Komorowski 
and Tomczak-Jaegermann proved the following result. 

THEOREM 2. [KT] Let X be a Banach space of cotype q for some q < oc. Then 
either X contains £2 or X contains a subspace without an unconditional basis. 

It does not matter too much here what it means to be of cotype q. Suffice it to 
say that, by Szankowski's result, a homogeneous space is too close to £2 to fail the 
condition of Theorem 2. It follows that a homogeneous space not isomorphic to 
(and therefore not containing) £2 must have a subspace without an unconditional 
basis. But because the space is homogeneous, it does not even contain an uncon
ditional basic sequence. Another way of saying this is that a homogeneous space 
with an unconditional basis must be £2. Theorem 2 therefore uses a stronger as
sumption on the space than Johnson, but the assumption about the dual space is 
no longer necessary. This theorem of Komorowski and Tomczak-Jaegermann pro
vided a remarkable link between Banach's homogeneous spaces problem and the 
unconditional basic sequence problem. Moreover, it was potentially very useful, 
because the examples that had been constructed of spaces not containing uncon
ditional basic sequences had, as we have seen in some cases, nowhere near enough 
operators to be homogeneous — quite the reverse! 

Let us consider the prime space Xs mentioned earlier. It is an easy conse
quence of the results of [GM2] that it contains no unconditional basic sequence. 
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We also know that it is not hereditarily indecomposable. However, it can be shown 
that Xs has a hereditarily indecomposable subspace. The same is true of the spaces 
Xn and Zn. Could this be a general phenomenon? The answer is yes. 

THEOREM 3. [G4] Every Banach space X has a subspace Y that either has an 
unconditional basis or is hereditarily indecomposable. 

The solution to Banach's question is now easy. We have seen that a homogeneous 
space X not isomorphic to £2 contains no unconditional basic sequence. Therefore, 
by Theorem 3, it contains a hereditarily indecomposable subspace. Hence, as X 
is homogeneous, X is itself hereditarily indecomposable. But this, in the light of 
Theorem 1, is a very strong contradiction. 

Before we move on, it is worth pointing out that there is no connection 
between the proofs of Theorem 2 and Theorem 3. It was a historical accident that 
they were proved in the order that they were. Similarly, Theorem 3 is completely 
independent of the actual existence of hereditarily indecomposable spaces, except 
that nobody thought to look at the notion of hereditary indecomposability until 
an example of a space exhibiting it was produced. 

We now return to the word "nice". The reason one would like to find "nice" 
subspaces is that one can say more about them than about general spaces. But if 
we take this as a vague definition of niceness, then Theorem 3 does give us a nice 
subspace. For, in a sense, we know everything there is to know about a space if 
we know that it is hereditarily indecomposable. If, on the other hand, it has an 
unconditional basis, we also have a lot of information about it. This is not just a 
quibble about words either, because we have given an example of a problem where 
this kind of niceness gave exactly the sort of control that was needed. From this 
point of view one would say that the questions that were traditionally asked about 
nice subspaces were of the wrong kind (although more examples of Banach spaces 
were needed to make this clear). It is more fruitful to look for theorems such as 
the last two, where one obtains subspaces with one of two or more very different 
properties. 

Indeed, such theorems already exist, Rosenthal's £i-theorem [Rl] being the 
most famous example (see also [R2]). It is interesting that infinite Ramsey theory, 
which can be used to prove Rosenthal's theorem [F], was also important in the 
proof of Theorem 3. We now briefly outline a very general and essentially combi
natorial result, of which Theorem 3 is an easy consequence. We shall need a small 
amount of notation. 

Given a space X with a fixed basis, let E = T,(X) denote the set of all finite 
sequences x\,... ,xn of vectors of norm at most 1, such that x\ < • • • < xn. (The 
meaning of "<" was given earlier.) Given a subset a C E, let us say that it is large 
if every block subspace Y (still infinite dimensional) contains some sequence in u. 

Every set a C S defines a two-player game as follows. The first player, S, 
chooses a block subspace X\ of X, then the second player, P, chooses a point x\ G 
X\ of finite support and norm at most 1. Then S chooses X2 and P chooses x2 G X2 

of norm at most 1 such that x\ < x2. They continue in this way, alternately picking 
subspaces and points in them. The game is won by P if at some stage the sequence 
(x\,... ,xn) is in a. If it goes on forever without this happening, then S wins. 
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Clearly, if P is to have any chance of winning, then a must at least be large, 
because otherwise S could repeatedly choose the same subspace containing no 
sequence in o. In fact, saying that P has a winning strategy for the set a is a much 
stronger statement than saying that a is large, and that is the point of the next 
theorem. If A = (b\, 82,...) is a sequence of positive reals and a C E, we will write 
0A for the set of sequences (x\,..., xn) G E "within A of <J"; that is, such that 
there exists (y\,...,yn) e a with \\x{ - yi\\ < 6i for 1 < i < n. 

THEOREM 4. [G4] Let X be a Banach space with a basis and let a be a large 
subset of E(X). Then, for every positive sequence A = (Si,62,...) there exists a 
block subspace Y C X such that, if S and P play the above game in the space Y, 
then P has a winning strategy for obtaining sequences in a A . 

Ignoring perturbations, this says that if a is large, then P has a winning strategy 
in some subspace. The proof of the theorem (and of the main result of [G5], which 
we shall mention in a moment) is related to arguments due to Galvin and Prikry 
[GP] and Ellentuck [E] concerning infinite versions of Ramsey's theorem. 

Now one of the remarks earlier was that if X contains no unconditional basic 
sequence, then for every C the set a of sequences x\ < • • • < xn with the property 
that |Er=i X*'H > C | |Sr=i(—l)1^!! ls large- Theorem 4 allows us to drop to a 
subspace Y in which P has a winning strategy for finding such sequences (say with 
C replaced by C/2). Suppose S plays a strategy that simply involves alternating 
between two subspaces W and Z of Y. Then P's strategy guarantees the existence 
of one of these sequences with the odd-numbered x^s in W and the even-numbered 
ones in Z. Letting w and z be the sums of the odd-numbered and even-numbered 
vectors, respectively, we have the inequality \\z + w\\ > C \\z — w\\. If C is large, it 
follows easily that zj \z\ and w/ \\w\\ are close. 

We have not quite managed to find arbitrarily close unit vectors in Z and 
W, because we made a fixed choice of C at the beginning of the argument above. 
However, one can repeat it for a sequence of Cn tending to infinity and obtain a 
nested sequence Y\ D Y2 D . . . of subspaces such that for each n the argument 
works for Cn in the subspace Yn. It is then easy to check that a "diagonal" subspace 
generated by a block basis y\,y2,... with yn G Yn is hereditarily indecomposable. 
Thus, Theorem 3 follows from Theorem 4. An adaptation of this proof that is in 
some ways more direct was found by Maurey and appears in [M]. 

It is noticeable that, from the point of view of the general theory of Banach 
spaces, certain examples of spaces appear to be more natural than others. The 
property that distinguishes one of these natural examples is that every subspace 
has a further subspace that is not interestingly different from the whole space. 
For example, every block subspace of Tsirelson's space mentioned earlier turns 
out to be a "Tsirelson-type" space (this statement can be made quite precise), 
Schlumprecht's space has the very strong property that every subspace has a fur
ther subspace not only isomorphic to the whole space but complemented inside it 
(see [S2]), and every subspace of the hereditarily indecomposable space X\ has a 
further subspace that, although definitely not isomorphic to X\, can be described 
in an almost identical way. Of the classical spaces, only Co and the ^-spaces are 
natural in this sense, because every classical space contains one of them. The spaces 
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Xs, Xn and Zn (for n > 2) are good examples of unnatural spaces because they 
lose what little structure they have when one passes to an appropriate subspace 
(recall that they have hereditarily indecomposable subspaces). 

It is possible that a precise definition of "natural" will emerge, but even 
without it, one can attempt to classify the natural spaces. Theorem 3 shows that 
they either have an unconditional basis or are hereditarily indecomposable. In [G5], 
a generalization is presented of Theorem 4 to analytic sets of infinite sequences (in 
a certain sensible topology), and more information is given about natural spaces 
with an unconditional basis. Loosely speaking, there is a theorem that states that 
such a space either has many isomorphisms between its subspaces or has none that 
do not follow trivially from the existence of the unconditional basis. The space X\j 
mentioned earlier is an example where the second possibility holds. 

From another point of view, the nonclassical "natural" spaces mentioned 
above are extremely unnatural. They all have Tsirelson-type inductive definitions, 
as opposed to formulae for their norms. Given a vector with support of size n, it 
does not even seem to be possible to calculate its norm in one of these spaces in a 
time polynomial in n. It is tempting to ask whether there is a meta-theorem that 
states that a norm that is in some sense directly defined must give a space that 
has some ^,-space or co as a subspace. At the moment there is not even a precise 
conjecture along these lines, but it could be that there is, waiting to be discovered, 
a theory of "easily described" Banach spaces and linear operators very different 
indeed from the theory of general spaces as outlined in this paper. 
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1. Our survey (and the reference list) does not reflect the history of tensor products 
of operator algebras. Here we make use of tensor product functors on the category 
of C*-algebras as a unifying principle. An application of our theory to the classifi
cation problem of Elliott [13] can be found at the end of this paper. Throughout 
the paper algebra means C*-algebra and vN-algebra means von Neumann algebra. 
C(H) is the algebra of bounded operators on a Hilbert space of infinite dimension. 

2.Tpf's. We call a bifunctor (A, B) => A ®Q B a tensor product functor (tpf ) if it 
is obtained by completing of the algebraic tensor product A® B oi *-algebras in 
a functional way with respect to suitable C*-norms || • | |a. 

We impose on (g>a mild nondegeneracy conditions such as A®aB Ç A<gìaB** 
and A^aD Ç A^B if D is a hereditary C*-subalgebra of B and similar conditions 
on the "first variable" A instead of the "second variable" B. Here B** is the second 
conjugate vN-algebra of B, and for C*-subalgebras E Ç A, F Ç B the notation 
E®& F Ç A®a B means that the algebraic inclusion E<3F C A®B extends to 
a C*-algebra monomorphism if we complete w.r.t. || • Ĥ  and || • ||a respectively. It 
is useful to relax the definition of tpf's and to consider also partial tensor product 
functors (ptpf's) B => A® a B, where A is a fixed C*-algebra and where we impose 
the nondegeneracy conditions on A ® a (•). For example, if A = N is a vN-algebra 
then one gets a ptpf B => N <g)nor B by considering the l.u.b. of all C*-norms 
defined by ^representations of N © B that are normal on N. 

The nondegeneracy conditions allow one to extend the functor uniquely to 
completely positive contractions, "decomposable" maps (cf. def. after Cor. 4.5 in 
[23]), C*-triple systems, Hilbert C*-modules, C*-systems, and C*-spaces (as e.g. 
B/(L -h R) for closed left and right ideals L and R of B [23]). In general a tpf 
does not extend to complete contractions, operator systems, or operator spaces 
[12], [4]. By our requirements on ptpf's, A (g>a C Ç A g)a B if there is a conditional 
expectation from B** onto C** (^ cr(£**, £*)-closure of C in £**). Thus, the 
study of a ptpf (resp. tpf) can be reduced to separable B (resp. separable A and 
B), cf. [20, Lemma 3.4, and Prop. 3.1(h)]. The functoriality is essential: the C*-
norm on AT 0 AT, which is defined by the identity correspondence (cf. [6], Ch. V, 
App. B) of the vN-algebra N = VN(F2) (generated by the regular representation 
of the free group on two generators F2) cannot come from a ptpf. 
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We call a ptpf A ©" (•) short exact (w.r.t. the second variable) if 

0 - • A © Q B -> A ©a C -» A (8)Q£> -> 0 

is short exact whenever 0—>JB—>C—>D—>0is short exact. The partial tpf 
A®a (•) is injective if A®a C Ç A®a B for every C*-subalgebra C of B. Note that 
every ptpf is projective: A ©Q B maps onto A ®Q (B/J) for every ideal J of £ . 

3. Examples. The maximal (or universal) tpf ©max is given by the maximal C*-
norm on A © B. ©m a x is short exact in both variables. The spatial (or minimal) 
C*-algebra tensor product functor © = ©min is given by AÇ)B C C(H®K) if A C 
£ ( # ) and £ C £(*0- ® is injective. The epimorphisms from A ® m a x 5 onto A ® a £ 
and from A®aB onto A® 5 define functor transformations for every tpf © a . There 
exist other injective tpf's, because C(H) ®m a x C(H) ^ £ ( # ) ©min £ ( # ) , [17]. One 
can define in a functorial way from a given C*-norm || • ||$ on £(H)Q£(H) a uniform 
operator space tensor norm a = (a n ) n>i on the category of operator spaces in 
the sense of [4, Def. 5.9] such that the completions of Mn(A © B) with respect 
to Qn coincide with the canonical C*-algebra matrix norms of the completion of 
A © B with respect to the C*-norm || • ||̂  (restricted to A © B) if A and B are 
C*-subalgebras of C(H). Thus, the conjecture at the end of [4] is wrong, and by 
[20] there exists an algebra A with unique C*-norm on Aop © A such that A is not 
approximately injective in the sense of [10]. Note that A has the WEP of [32] and 
is not amenable. Therefore A is not locally reflexive (see below). 

The question of whether there is only one short exact tpf (in both variables) 
is equivalent to the question of whether there is only one C*-norm on C*(F2) © 
C*(F2), where C*(F2) means the full group C*-algebra of the free group F2 on 
two generators. The latter question turns out to be equivalent to the question of 
whether every Hi-factor with separable predual is a subfactor of the ultrapower 
of the hyperfinite Ili-factor, or to the question of whether the predual of every 
vN-algebra is finitely representable in the trace class operators [20, Prop. 8.1]. 

We now define tpf's, that are injective w.r.t. the first variable and short exact 
w.r.t. the second variable. 

(i) Assume that (-)©aB is a partial tpf (w.r.t. the first variable). Let A®a,üB 
be the closure of A © B in C(K) ®tt B, where K is a Hilbert space and A is a 
C*-subalgebra of C(K). Then A => A ®a-il B is an injective ptpf (w.r.t. the first 
variable). If moreover ®a is short exact with respect to the second variable, then 
<S>(X,Ü is a tpf that is injective w.r.t. the first variable and short exact w.r.t. the 
second variable. 

(ii) Assume that A ®Q (•) is a partial tpf. We denote by A &^pr B the 
completion of A © B w.r.t. the maximal C*-norm among the norms induced by 
the canonical embeddings of A © B into (A ®tt C)/(A ®a J). Then B => A ©"'*"" B 
is a short exact partial tpL and A ® a ' p r B is a tpf if ®a is a tpf. If ®a is a tpf that 
is injective w.r.t. the first variable then <S)a,pr is injective w.r.t. the first variable 
and short exact w.r.t. the second variable. 

THEOREM 1. ([21, Th. 1.1]) / / B has the lifting property then N ®nor B = 
AT®m a xS. 
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It follows that there is a unique C*-norm on C(H) ©C*(F3C). This is equivalent to 
the uniqueness of the tpf which is injective with respect to the first variable and 
short exact with respect to the second variable. In particular A^'üB = A^a,pr B 
for every tpf ® a that is injective with respect to the first variable and every tpf 
<8>̂  that is short exact w.r.t. the second variable, e.g. ®max»** = ®min 'Pr. 

4. Growth conditions. Let || • ||a > || • \\$ be C*-norms on AQB. Assume that B is 
generated by X = X*, a self-adjoint linear subspace of B with 1 G X. We denote 
by Xn the span of {yiy2. ..yn: yi E X} and by 6(n) the norm of the operator 
given by A ®ß B D Xn © B -+ Xn © B Ç A ® a B. 

Then 6(2n) > 8(n) 2 and dim(Xn) > G(n) > 1. Thus || • ||a = || • \\ß if and 
only if 0(n) = 1 if and only if l im0(n) 1 / n = 1. The latter is always the case if 
the filtration of B defined by X has subexponential growth, i.e. lim dim(Xn) ltn = 
1. In particular a unital C*-algebra B is nuclear if B has a dense self-adjoint 
filtration Bn Ç B, 1 G Ä* = Bn, BnBm C Bn+m of subexponential growth 
l imdim(ß n ) 1 / n = 1 [27]. If G is a discrete group and C*(G) is nuclear, then 
G is amenable [32]. It gives a proof of the following well-known result: if G is 
discrete, finitely generated, and has subexponential growth, then G is amenable. 

5. Exactness. Let A®a (•) be a ptpf or ® a a tpf. A is called ®a-exactiî B => A®aB 
is an exact functor (i.e. is short exact and injective w.r.t. the second variable). A is 
exact if A is ®min-exact. In [2] and [10] the following properties have been studied: 
A has property (Cf) (resp. (C"),(C)) if for every C*-algebra B the canonical 
inclusion A**®B** Ç (A&B)** induces on A&B** (resp. on A**GB, on A**©5**) 
the minimal C*-norm. Obviously (C) implies (C) and (Cn). Conversely (C") and 
(C) together imply (C). It is easy to sec that (C) implies exactness of A. Every 
nuclear C*-algebra satisfies property (C), and (C) passes to quotient algebras and 
C*-subalgebras. 

Property (C") is equivalent to the (operator space) local reflexivity of A, i.e. 
for every finite-dimensional subspace X Ç C(H) and every complete contraction 
T: X —> A** there exists a net of complete contractions Ta: X —> A such that 
f(T(y)) = lim f(T(T(y)) for every y E X and / E A*. Here it suffices to consider 
self-adjoint unital X and completely positive unital T. 

Local reflexivity passes to quotient algebras and C*-subalgebras. An exten
sion 0—>A—>£—>!?—>0of locally reflexive C*-algebras A and B is locally 
reflexive if and only if the epimorphism 7r : £ —• B is locally liftable in the sense 
that for every finite-dimensional operator space X C B there exists a completely 
contractive map a: X —• E with na = idx• This implies (by the 3 x 3-Lemma) 
that an extension E of exact C*-algebras A, B is exact if and only if E is locally 
reflexive. 

6. From exactness to property (C). We consider functors B => V(B) from the 
category of C*-algebras into the sets of completely positive (= c.p.) contractions 
CPC(B, N) from an algebra B into a given vN-algebra N. We assume that 
(i) V(B) is a point-weakly closed convex set of c.p. contractions from B into N 

such that Vh G V(C) if V G V(B) and h: C -> B is a c.p. contraction, 
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(ii) ip(-)l G V(B) for every state ip on B, and V(B) contains J2ij niV(bi(m)bj)nj 
if V G V(B), h,... ,bk G B with | | £ M * | | < 1 and m, . . ' . ,nfc G AT with 

(iii) if W G CPC(B, N) and if there exist 7 G R+ and F G V(B) such that 
7V - W is c.p., then W G 'P(ß). 
A functor satisfying (i)-(iii) is called a cp-functor. A cp-functor B => P ( 5 ) 

is short exact if { V E V(B), J is a closed ideal of B and V(J) = 0 } together 
imply the existence of W G V(B/J) such that V = Wnj, where 7Tj: B —• £ / J 
is the quotient map. The cp-functor B => V(B) is called injective ïî V G P(-B) 
and £ Ç A imply the existence of W G P(A) with V = W\B. B => P ( £ ) is exact 
if it is short exact and injective. An example of an injective cp-functor is given 
by B => VnnQ(B), where Vnuc(B) is the set of weakly nuclear c.p. contractions 
from B into N. It is an open question whether or not Vnuc(B) is exact (for every 
vN-algebra N). 

A c.p. contraction V: B —» C (resp. V: B —» N) is nuclear (resp. weakly 
nuclear) if V is the point norm limit (resp. the point 0"(iV, AT*)-limit) of maps 5CTTCT, 
where TCT is a c.p. contraction from B into a matrix algebra Mka and 5CT is a c.p. 
contraction from Mka into C (resp. N). By a separation argument this is equivalent 
to saying that V®maxid: 5 ® m a x £ -> C ® m a x £ (resp. ^ ( V ® 1 ™ ^ ) : £ ® m a x £ - • 
N<g)noT E, where 7r is the canonical epimorphism AT®maxi£ —• JV®nori£) factorizes 
through £ ® E1 for every algebra £". 

For a short exact cp-functor B =>V(B) there exist, for every V EV(B), an 
algebra Q, a *-homomorphism h: B —• Q, and a W G P(Q) such that V = W/i 
and W has the following maximality property: if /c : Q —• C is a *-homorphism and 
U G P(C) with Uk = W, then t/(Ci) = W(Qi), where Qi ,Ci mean the closed 
unit balls. This comes from the fact that short exact cp-functors respect inductive 
limits. The Kaplansky density theorem is equivalent to A** = AT /ker(r — lim), 
where AT means the C*-algebra of r(A**, A*)-convergent bounded nets in A in
dexed by a suitable directed set, e.g. the set of the &(A*, A**)-compact subsets 
of A*. It implies that we can choose Q as a vN-algebra and VF as a normal c.p. 
contraction. 

If the cp-functor B => V(B) is exact (i.e. moreover injective) and iV is a 
properly infinite vN-algebra, then h: B —• Q and W G V(Q) can be found such 
that Q is an injective vN-algebra and W is normal. 

Let B => A ®a B be a ptpf, M Ç C(H) a vN-algebra of infinite multiplicity 
(i.e. M' is properly infinite), and T: A —> AI a c.p. contraction such that T(^4i) is 
weakly dense in Mi. Then B => VT,a (B) = {V G CPC(B, M')\ T © V : A © B -> 
C(H) is || • ||Q-continuous on A © B} defines a cp-functor (into M'). Vr,a is short 
exact (resp. injective, exact) if A®Q (•) is short exact (resp. injective, exact). Note 
that A<S)a (•) is exact iff A®Q (•) is injective and A^a,pr (•) = A®Q (•). In particular 
(by Theorem 1) A ® B = A ® m i n ' ^ B = A ®max>** B Ç C(H) ®m a x B iff A is exact 
and A Ç C(H), i.e. A is nuclearly embeddable in the sense that the inclusion map 
A <—> C(H) is nuclear. Together this gives Theorem 2: 

THEOREM 2. / / A ®a (•) zs a ptp/ and A zs ®Q-exac£, then for every algebra B 
and for every commuting pair d\ : A —• C(K), d2\ B —> £(Ä") 0/ *-representations 
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such that diQd2: AQB —> C(K) is || • ||Q-continuous there exists an injective W*-
algebra Q, a normal c.p. contraction W: Q —» d\(A)', and a *-homomorphism 
h: B —> Q such that d2 = Woh. Thus, A satisfies properties (C), (C), and (Cn), 
A is exact, and A®a B = A® B Ç C(H) ®m a x B for every C*-algebra B. 

In conjunction with [2] we get that A is exact iff A satisfies (C) iff A satisfies 
( C ) iff A is nuclearly embeddable, and every exact C*-algebra is locally reflexive. 

It is unknown whether local reflexivity implies exactness. ®max-exact algebras 
are the nuclear (= amenable) algebras. From Theorem 2 we see that C*-subalgebras 
and quotients of A are exact if A is exact, that exactness is preserved under induc
tive limits, cross products by (strongly Voiculescu-) amenable (quantum deformed) 
Kac algebra (e.g. by coactions of locally compact groups or by actions of amenable 
groups). If A and B are exact then A ® B and A © B are exact. Amalgamated 
reduced free products along finite-dimensional C*-subalgebras of A and B are again 
exact if A and B are exact (one can modify the proof of [21, Th. 7.2] with the help 
of Corollary 7 such that it proves the general result). 

By a continuous bundle of C*-algebras (A, Co (fi) Ç M (A)) over a locally 
compact space fi we mean the C*-algebra A of continuous sections (vanishing at 
infinity) of a continuous field (Ax)xeQ of C*-algebras. In [28] the following results 
have been obtained: an algebra B is exact iff (A ® B, Co (fi) ® 1 Ç M(A ® JB)) 
is a continuous bundle of C*-algebras for every continuous bundle of C*-algebras 
(A,C0(Q) Ç M(A)). A continuous bundle of C*-algebras (A,CQ(Q) Ç M (A)) is 
exact iff every fibre Ax is exact and, for every algebra B, (A®B, Co(fi)®l Ç M(A® 
B)) is a continuous bundle of C*-algebras. (A®maxB, C0(fi)®l Ç M ( A ® m a x £ ) ) 
is a continuous bundle for every continuous bundle (A, Co (fi) Ç M (A)) if and only 
if B is nuclear. Similar results exist for cross-products of continuous bundles by 
I.e. groups [30]. It is unknown if exact C*-algebras with the lifting property are 
nuclear. This would be true if there were only one short exact tpf. Because exact 
C*-algbras are locally reflexive, an exact C*-algebra is nuclear iff it has the WEP 
of Lance [32], [10]. 

7. Exact locally compact groups. Let G be a I.e. (= locally compact) group, A 
an algebra, and a: G —> Aut (A) a strongly continuous group homomorphism (i.e. 
g GG I—• a(g)a is a continuous map from G in A for every a G A). Then (A, a) = 
(G, a, A) is a (G-) covariant system. They form a category CS(G). The morphisms 
from (A,a) to (B,ß) are the *-homomorphisms ip: A —> B with ß(g)ip(a) = 
<p(a(g)a). 

The full (= universal) crossed product (A,a) => C*(G, a, A) = AxaG (= 
C*- hull of the convolution algebra L\(G,a, A)) is a short exact functor from 
CS(G) into the category of C*-algebras. The following are equivalent [30]: 

(i) (A,a) => C*(G,a,A) is injective (i.e. is exact), (ii) G is amenable, and 
(iii) if G acts fibre-wise on a continuous bundle of C*-algebras (A, Co(X) Ç M (A)) 
then (AxaG,Co(X) Ç M(A) Ç M(AxaG)) is a continuous bundle of C*-algebras. 

The equivalences (i)-(iii) remain valid for those subclasses of the q.d. (= 
quantum deformed) Kac algebras for which the weak and the strong Voiculescu 
amenability are equivalent. A q.d. Kac algebra (M, 4>) is weakly Voiculescu a-
menable if there exists an invariant mean on M. (M, &) is strongly Voiculescu 
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amenable if the trivial representation is weakly contained in the regular represen
tation. The regular representation dr is defined as the zero of the semigroup of 
quasi-equivalence classes of unitary (in general non-self-adjoint) representations of 
the convolution algebra (Af*, $*) of (M, $) . Strong and weak amenability are the 
same if the regular representation weakly contains a central state. For discrete 
(undeformed) Kac algebras all amenability definitions are equivalent [36]. 

A more interesting functor is (A, a) => A xQiI. G = C*(G,a,A) = image 
of C*(G,a,A) by the (regular) representation into the multiplier algebra of A ® 
JC(L2(G)). The functor (A, a) => C*(G, a, A) is injective. We say that a I.e. group 
G is exact if (A, a) => C*(G, a, A) is an exact functor. C*(G, a, A) is an exact C*-
algebra if A is exact and G is exact, because C*(G, a, A)<S>B = C*(G, a<8>id, A<8>B). 

In particular C*(G) is exact as a C*-algebra if G is exact as a I.e. group. If G 
is discrete, then G is an exact group if and only if C*(G) is an exact C*-algebra 
[30]. A I.e. group G is exact if G is amenable. We don't know if SL2(R) and SL3(R) 
are exact. 

The statements remain valid for q.d. Kac algebras with similar definitions, as 
long as we consider a subclass where weak amenability is equivalent to the strong 
amenability. 

If G is a closed discrete subgroup of a connected Lie group H and A is a 
cocompact amenable closed subgroup of H then C* (G) is a unital C*-subalgebra 
of C*(G, C(H/A)), which is nuclear by [34]. Thus, discrete closed subgroups of Lie 
groups have exact reduced group C*-algebras (Connes). The action of a (discrete) 
hyperbolic group G on its Gromov boundary dG is amenable, cf. [1]. It follows 
that C*(G,C(dG)) is nuclear and that C*(G) is exact for hyperbolic groups G. It 
is unknown if G* (G) is exact for every "bolic" discrete group G (in the sense of 
Skandalis). 

The functor (A, a) => C*(G,a,A) is the composition of (A, a) => (C*(G,a, 
A), â) with the functor that forgets the action d, where the action à means the ac
tion of the dual Kac algebra G = (VN(G), Kronecker product) (or the dual "coac
tion" ofG). The stable cocycle equivalence (A,a) = (C*(G,â,C*(G,a,A)),à) of 
Takai-Takesaki is functorial. Therefore, (A, a) => (C*(G, a, A), a) is an exact func
tor. Thus, for discrete groups G we have that G is exact iff C*(G) is exact iff the 
functor (A, à) => A (which forgets a coaction a of G on A) is exact. The latter 
is a saturation condition for invariant hereditary C*-subalgebras under (globally) 
saturated actions of the compact Kac algebras G. 

8. Nonexact algebras and weak exactness. Let G be a I.e. group. We denote by A 
and g the left and right regular representations of C*(G) on L2(G) respectively. 
Here C* (G) means the full (= universal) group C*-algebra of G. G has the factor
ization property (F) if A©£: C*(G)(DC*(G) —• C(L2(G)) is || • ||min-continuous. G 
has property (F) if G is discrete and has an injective group homomorphism into a 
I.e. group H with property (F) [20]. In particular maximally almost periodic dis
crete groups have property (F). By a lemma of Selberg, a finitely generated group 
G is maximally almost periodic if and only if G is residually finite (profinite). In 
[22] it is shown that for a class of discrete groups G containing the groups with 
Kazhdan's property (T) (and e.g. the finitely generated free groups) we have that 
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property (F) for G implies that G is residually finite. In the case of property (T) 
groups a simplified proof has been given by A. Valette [42, p. 37]. In [19] we stated 
the following generalization of results of [39], [40], and [32]: 
Let G be a I. c. group with property (F) and J the kernel of the regular representa
tion C*(G) —> C*(G) Ç C(L2(G)). If the regular representation weakly contains a 
central state, then 

0 - • C*(G) ® J -+ C*(G) ® C\G) -+ C%G) ® C;(C) -+ 0 

is exact if and only if G is amenable. 
A proof is suggested in [19] along the lines of [39], [40], and [32], and is carried 

out in [20, Sec. 7]. The result holds for q.d. Kac algebras too. In particular C*(G) 
is not locally reflexive and therefore not exact for discrete nonamenable maximally 
almost periodic G, e.g. for discrete subgroups G of noncompact simple Lie groups 
that have finite covolume. Is G* (G) nonexact for a nonamenable Burnside group G? 

A sequence $ = (ipi, (p2,... ) of irreducible states on an algebra B is free if 
the corresponding c.p. contraction V$(b): = (ipi(b),tp2(b),... ) from B into / ^ 
contains the open unit ball of co(Ç l^) in the image of the open unit ball of B. We 
call B weakly sub-Rickart if V$ maps the closed unit ball of B onto the closed unit 
ball of lm for every free sequence 3> of irreducible states on B. If B is weakly sub-
Rickart and is not a subalgebra of a matrix algebra over an abelian algebra then 
B contains a C*-subalgebra C that has C(l2) as a quotient algebra. Thus, locally 
reflexive weakly sub-Rickart algebras are subhomogeneous. If B has the property 
that for a,b G J3+ with ab = 0 there exists c G B+ with ac = 0, cb = 6, then B 
is weakly sub-Rickart. Therefore Corona algebras M(A)/A and AW-algebras are 
examples of weakly sub-Rickart algebras. In particular, a vN-algebra M is exact 
(as C*-algebra) if and only if M is a finite sum of matrix algebras over abelian 
C*-algebras. 

We say that a vN-algebra M is weakly exact iî the cp-functor B => Vid,m\n(B) 
into CPC(B,M'®C(H)) for id: M -> M is exact. Equivalently, B => Vnuc(B) Ç 
CPC(B, M) is exact. If A is exact and T: A —> M is a c.p. contraction such that 
T(Ai) is weakly dense Mi, then M is weakly exact. If N Ç M is a vN-subalgebra 
of M and there exists a net Va : M —• N of normal unital c.p. maps such that 
Va\N tends point-weakly to id,v, then N is exact if M is exact. M®C(H) is 
weakly exact iff M is weakly exact iff M' is weakly exact. A vN-algebra M on a 
separable Hilbert space is weakly exact if and only if the factors M 7 arising in the 
(/i-measurable) central decomposition of M are weakly exact for //-almost every 
7. Thus, the open question of whether every vN-algebra is weakly exact can be 
limited to Ili-factors with separable preduals. It is not known if the ultrapower of 
the hyperfinite Hi-factor (and hence every separable subfactor) is weakly exact. 

B is exact if and only if B is locally reflexive and B** is weakly exact (consider 
Pe,min(-) for e\ B c-^ B** and use Theorem 2, or see [21]). 

9. Approximation properties. Let A Ç M be a C*-subalgebra of a vN-algebra M. 
Assume that there exists a net of finite rank linear maps Va : A —> M such that 
for every b G A ® /C and UJ G (M®£(ff))*, we have that ^(V^ ® id(b)) tends to 
uj(b). Then Va tends to the inclusion map e : A -̂> M in the a(B(A, M), A<ê)°pM*)-
topology, where A<g>°pM* means the maximal (projective) operator space tensor 
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product in the sense of [4], cf. [15, Lemma 1.6, Remark 18]. If a G A © C(H) and 
/ G (M ® C(H)Y such that / is partially cr(M, M*)-continuous, then tpaj(V) : = 
f(V®id(a)) satisfies | | ^ û : / | | A Ç ||/|| | |a||mi„ and <paj is a(CB(A,M),À^°pAh)-
continuous, because / |A/ ® X is a(M ® X, (M®£(i7))*)-continuous, where X = 
{iß ® id(a): ^ 6 A*}. It follows that Vs,mm(-) is an exact cp-functor if A = e(A) 
is weakly dense in M. In the cases A = M and M = A** we get (cf. [15, Th. 2.2], 
[11], [25]): 

PROPOSITION 3. (i) If M is a vN-algebra with the weak slice map property S^ (i.e. 
with w*OAP of [15]), then M is weakly exact, (ii) If A is locally reflexive and has 
the OAF (i.e. has the slice map property for the compact operators JC [31]/, then 
A has the general slice map property (i.e. has the strong OAF). In particular, A 
is exact. 

The exactness of closed operator subspaces of /C implies that extensions of C*-
algebras with OAF have the OAF [25]. On the other hand, if A is separable and 
unital and does not have the local lifting property (e.g. if A = C*(SL2(Z))) then 
SA = Co (M) ® A has a quasi-diagonal extension E by the compact operators such 
that 0 —• /C —> E —> Go (M) ® A —> 0 is not semisplit (i.e. does not have a c.p. lift) 
[20]. In particular E is not locally reflexive. Thus, E is not exact and docs not 
have the strong OAP. The example shows that exactness cannot be characterized 
by properties of the second conjugate vN-algebra. In [15] it is shown for discrete G 
that C;(G) has the strong OAP iff C;(G) has the OAP iff VN(G) has the w*OAP. 
An algebra B is exact i f f £ ® X = { d G £ ® Y : / ® id(d) G I V / G 5 * } for every 
pair X C Y of operator spaces such that there is a completely bounded projection 
from Y** onto X** (use property (Cf)). Conjectures: C*(SL2(Z)), C;(SL3(Z)), 
and some C*-subalgebra of Af2^ do not have the Grothendieck AP (and thus do 
not have the OAP). 

10. Embeddings of exact C*-algebras. Let A C C(H) be a separable exact C*-
algebra. Because A is nuclearly embeddable there exists a sequence of unital 
c.p. maps Vn: Mkn —> Mkn^ from matrix algebras into matrix algebras such 
that A(A) ÇX: = indlim(Vri) C lx(C(H))/c0(C(H)), where A(a) = (a , . . . ) + 
co(C(H)) is the diagonal embedding. X is an example of a nuclear operator sys
tem. By an operator system Y we mean a unital self-adjoint closed subspace of 
C(K) for some Hilbert space K (with the matrix norms and matrix order unit 
structure coming from C(K), see [9]). There is a general theory of operator spaces 
(see e.g. [12]). Most of the definitions (e.g. c.p., exact, nuclear, . . . ) carry over to 
operator systems. Stinespring dilations of the Vtl's lead to Theorem 4: 

THEOREM 4. [24] For separable operator systems X, the following properties (%)-
(iv) on X are equivalent: (i) X is nuclear, (ii) The second conjugate operator 
system X** is injective. (iii) There are matrix algebras Bn = Mkn and u.c.p. 
maps Vn\ Bn —• Bn+i such that X = indlim(V^: Bn —> £ n +i ) ^ the category of 
operator systems, (iv) There exists a closed left ideal L in the CAR-algebra AI2^ 
such that X = M2^/(L* 4- L)? where L* = {a*: a G L} and the right-hand side 
means the operator space quotient. 
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Here = means unital completely isometric isomorphism. A classification of the 
positions in M2°c of the essential hereditary C*-subalgebras of M2oo would imply 
a classification of the separable unital nuclear C*-algebras. There exist separable 
nuclear operator systems that have no completely isometric unital embedding into 
an exact algebra [29]. If L is a closed left ideal in a C*-algebra A, n denotes the 
quotient map A —> A/(L* + L) and a, ò are in the open unit ball of A then there 
exists c in the open unit ball of A with \\a — c\\ < /(||7r(a) — 7r(6)||) and n(c) = 7v(b), 
where f(t) = t + (2t)1/2, [23, Cor. 3.2]. It follows that n maps the closed unit ball 
of A onto the closed unit ball of A/(L* + L). Thus, Theorem 4, Choi's inequality 
[5], and [10] together imply Corollary 5: 

COROLLARY 5 ([24, Cor. 1.5]). If A is a unital separable exact algebra then there 
exists a semisplit extension 0^>D—>E—+A-+QofAbya hereditary C*-
subalgebra D of the CAR-algebra M2oo such that E is a unital C*-subalgebra of 
the CAR-algebra. 

There exists a unitary U in M2o* such that A is isomorphic to a quotient of the 
relative commutant of U in M2oc by an AF-ideal [21]. By ö2 we mean the Cuntz 
algebra on two generators [7]. By the inclusion M2*c c 02 (or Glimm's theorem) 
there is a semisplit extension 0 -* ö2<g> K —> F -* A —+0 such that F is a unital 
C*-subalgebra of ö2. An algebra B has been called purely infinite (= pi ) if B 
is simple and nonzero, and every nonzero hereditary C*-subalgebra of B contains 
an infinite projection ([8, remark on p. 186]). 02 is a purely infinite algebra, 
[7]. An application of a lemma of Glimm on pi algebras gives a Voiculescu type 
generalization of the Weyl-von Neumann theorem. KB and M (KB) mean B ® K 
and the multiplier algebra of B ® K. 

THEOREM 6 [26]. Assume that B is a C*-algebra, C is a separable unital C*-
subalgebra of M (KB), A is a purely infinite C*-subalgebra of KB such that CA C A 
and AnC contains a strictly positive element of KB, and that V: C —• M (KB) 
is a unital completely positive map with V(C DKB) = {0}. Ifb*V(.)b is nuclear 
for every b G KB then there exists a sequence of isometries sn G AI (KB) such that 
V(y) - s*nysn G KB and lim \\V(y) - s*2/*n|| = 0 for every yeC. 

It follows that there is a sequence un of unitary operators in M (KB) with (y ® 
V(y)) — u*lyun G KB and lim || (y& V(y)) — u„yun ||= 0 for y G G if V is moreover 
a *-homomorphism. The extension group Ext'1 (A, 02) = KK(C0(R) ® A, 02) is 
zero because the identity id of 02 is homotopic to 2id and the Kasparov functor 
KK is homotopy invariant [8], [18]. 

COROLLARY 7 [26]. There exists a unital ^-isomorphism h\ from A onto a unital 
C*-subalgebra of ö2 if A is a separable unital exact algebra. 

hi is unique up to unitary homotopy (see below). For a separable unital nuclear 
algebra A we get moreover that the unital c.p. lift of A in E and hi (A) in Corollary 
5 and Corollary 7 are ranges of completely contractive projections on M2<=o and 
02 respectively. 

11. Classification of pi-sun algebras. Assume that A is unital separable and exact, 
hi : A —> 02 and h2 : 02 ® ö2 -^ ö2 are unital *-monomorphisms (from Corollary 
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7), and ho(a) : = h2(hi(a) ® 1). Further let B be a unital algebra that contains a 
(fixed) unital copy of ö2. Then h © (h0 ® idjc) : KA —• KB makes sense and is a *-
monomorphism that is nuclear if h is nuclear. We say that k : KA —• KB is unitary 
homotopic to h if there exists a strongly continuous map t G R+ »—• u(£) into 
the unitaries of AI(KB) such that l im*-^ u(t)*h(a)u(t) = k(a) for every a G /C^-
Every nuclear *-homomorphism h: KA —> KB canonically defines an extension 
[h - 0] : 0 -> SKB - E - • /CA - 0 in Extnuc(KA, SKB) ^ KKnuc(A,B), cf. 
[37]. The map tp : h e Homnuc(KA,KB) •-> [h — 0] G Ä7fnuc(i4, ß ) is a semigroup 
morphism, where we take sums /i © k on the unitary equivalence classes of nuclear 
homomorphisms h and k from /C^ into KB-

THEOREM 8 [26]. ip: h\-*[h—0] zs a semigroup epimorphism from Homnuc(KA,KB) 
onto KK(A, B), and [h - 0] = [fc - 0] in KK(A, B) if and only if h 0 (h0 ® idjc) 
and k © (ho ® icfc) are unitary homotopic. 

Since If if is homotopy invariant (and "scaling" invariant), it suffices to prove 
the related result for nuclear *-monomorphisms 

h: KA - Gfe(M+,/Cß)/G0(M+,/CB) 

and unitary equivalence. 
We say that A is pi-sun if A is a purely infinite separable unital nuclear 

C*-algebra. In the stable isomorphism class of a pi-sun algebra A there is up to 
isomorphism exactly one algebra Ast that contains a unital copy of ö2 [8]. A 
modification of a lemma of Elliott and Theorem 8 lead to Theorem 9: 

THEOREM 9 [26]. If A and B are pi-sun algebras with A = Ast and B = Bst, 
then for every KK-equivalence z G KK(A, B) there exists a unital ^isomorphism 
h from A onto B such that z = [h • — 0]. 

It follows that homotopic pi-sun algebras are isomorphic and that A = B if 
K*(A) = K*(B) and A and B are pi-sun algebras in the bootstrap class (i.e. if A 
and B satisfy the UCT of KK-theory, cf. [3]). 

Using Corollary 7, Theorem 8, and Theorem 9 one can show that every 
separable nuclear algebra is KK-equivalent to a pi-sun algebra. We get that Elliott's 
conjecture [13] in case T + = 0 is equivalent to a positive answer on questions (Ql) 
and (Q2): 

(Ql) Is every simple nuclear stably infinite algebra purely infinite? 

(Q2) Is every separable nuclear algebra in the bootstrap class? 

Question (Q2) is equivalent to the simplest looking case of Elliott's conjecture: 

(Q2') Is a pi-sun algebra A with K*(A) = 0 isomorphic to 02? 

In November 95 (when we found that Theorem 6 and Corollary 7 yield proofs 
of Theorem 8 and Theorem 9) we were informed by G. Elliott, that N. C. Phillips 
(Eugene, Oregon) had announced a programme of a proof of Theorem 9 using E-
theory and the particular isomorphisms A ® ö2 = 02 and A ® Ox = A for pi-sun 
A (consequences of Theorem 9). We showed the latter isomorphisms together with 
a proof of Cor. 7 in our lecture at ICM Satellite Meeting in Geneva (1994). 
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Another application of exactness can be found in [14] where Haagerup gave 
a proof tha t (2-)quasitraces on unital exact algebras are traces. 

The paper has profited from discussions with R. Archbold, D. Bisch, B. Black
adar, J. Cuntz, E. Effros, G. Elliott, U. Haagerup, G. Kasparov, G. Pisier, M. 
R0rdam, J .Ruan, D. Voiculescu, and S. Wassermann. 

Added in proof: Recently G. Pisier found a simpler proof of Theorem 1. 
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Many of the fundamental research problems in the geometry of normed linear 
spaces can be loosely phrased as: Given a Banach space X and a class of Banach 
spaces y does X contain a subspace 7 G u ? As a Banach space X is determined 
by its unit ball Bx = {x E X \\\x\\ <l) the problem can be rephrased in terms of 
the geometry of convex sets: Can a given unit ball Bx be sliced with a subspace 
to obtain a set in some given class of unit balls? A result of this type is the famous 
theorem of Dvoretzky (see also [L], [M6], [M4], [MS], [FLM]). 

T H E O R E M 1 [D]. For every e > 0 and integer k there exists an integer n = n(k, e) 
such that if X is an n-dimensional normed space then X contains a k-dimensional 
subspace E with d(£2, E) < 1 + e. 

Before proceeding, we define the terms of Theorem 1. For 1 < p < oc, 

% = ( » M l • UP) where \\(oi)% = ( £ * = i W P ) V P i f P < ° ° a n d H M i l U = 
maxi< n \a-i\. (lp and Co are defined analogously.) Thus, l\ is a fc-dimensional Eu
clidean space. Banach spaces X and Y are isomorphic if there exists an isomor
phism — a bounded linear invertible operator — from X onto Y. We define the 
Banach-Mazur multiplicative distance between isomorphic spaces X and Y by 

d(X,Y) = inf{| |T| | \\T~l\\ : T is an isomorphism from X onto Y} ; 

to get a t rue metric one takes log d(X, Y). Geometrically d(X, Y) < K means tha t 
the two unit balls Bx and By can be placed in the same linear space Y by an 
affine transformation T : X —• Y so tha t By Ç TBx ^ KBY. Distance close to 1 
means tha t the convex bodies TBx and By are geometrically close. 
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The Distortion Problem and Tsirelson's Space 

Theorem 1 was the starting point of what has come to be called the local theory 
of Banach spaces. This theory, whose development has exploded over the last 
quarter century, has proved to be both rich and deep (see, e.g., [PI], [P2], [Pe], 
[T-Jl], [MS], [M5]). In this paper we shall discuss primarily infinite-dimensional 
geometry: Given a certain infinite-dimensional unit ball Bx and a certain class 
C of infinite-dimensional unit balls does some infinite-dimensional slice of Bx 

belong to C? Infinite-dimensional geometry was overshadowed in the 1980s by the 
progress in local theory. The outstanding problems seemed intractable. Then in 
the 1990s most of the famous problems were quickly solved. The new development 
that made this possible was a deeper understanding of Tsirelson's construction 
(more about this later) as exemplified by the construction of the Banach space S 
[SI], [S2]. One might initially view these new Banach spaces as merely a class of 
pathological examples, but this is not the case. As we shall see, the geometry of 
S tells us much about the geometry of the Hilbert space; we obtain information 
about Hilbert space that indeed may well be otherwise truly intractable. 

Dvoretzky's theorem says that if the dimension of X is sufficiently large then 
one can slice Bx with a fc-dimensional subspace and obtain (up to e) an ellipsoid. 
Put another way, one can find a Euclidean norm | • | on a given X = (Rn, || • ||) and 
a fc-dimensional subspace E so that 

| \x\ - l | < e if x G SE = {x G E : \\x\\ = 1} . 

In the late 1960s Milman extended Dvoretzky's theorem in connection with 
the study of uniformly continuous real valued functions / defined on Sx- Let 
X be infinite-dimensional. Given e > 0 and any integer k, does there exist a 
^-dimensional subspace E Ç X so that 

osc(f,SE) = sup{|/(x) - f(y)\ :x,yeSE}<s? 

We say a G 7( / ) , the spectrum of / , if for any e > 0 and k there exists E C X of 
dimension k with 

\f(x) — a\ < e for all x G SE • 

THEOREM 2 [Ml], [M4]. For any uniformly continuous f on Sx, the spectrum 
j(f) is nonempty. 

Milman defined the notion of an infinite-dimensional spectrum 7oo(/) (a £ 
7oo(/) if for e > 0 there exists an infinite-dimensional Y Ç X so that \f(y) — a\ < e 
for all y G Sy) and asked whether 7oo(/) ^ 0- I*1 particular, one can ask the ques
tion where/ is an equivalent norm |||-||| on X (i.e., Id : (X, \\ • ||) —> (X, \\\ • |||) is an 
isomorphism) and this brings us to the topic of distortion. Henceforth, X, Y, Z,... 
will refer to separable infinite-dimensional real Banach spaces. Y Ç X means that 
y is a closed linear subspace of X. 

DEFINITION 3. (a) Let A > 1. (X, || • ||) is X-distortablc if there exists an equivalent 
norm IN • IN on X so that for all Y C X 

sup < : x, y G Sy } > A } 
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(b) Let / : Sx —• R be uniformly continuous, f is oscillation stable on X if for all 
e > 0 and all Y Ç X there exists Z Ç Y with osc(/, Sz) < e. 

Thus, X does not contain a distortable subspace Y iff every equivalent norm 
on X is oscillation stable. James [J] proved that £i and Co are not distortable. 

PROBLEMS. Which Banach spaces are distortable? For which Banach spaces X 
are all uniformly continuous functions / : Sx —> R oscillation stable? 

Milman connected these questions with what was an outstanding open prob
lem at that time: Does every X contain an isomorph of £p for some 1 < p < oo or 
c0? A wonderful characterization of spaces containing l\ was given by Rosenthal 
[Rl], who has recently also characterized spaces containing CQ [R3], [R4]. Krivine 
and Maurey [KM], inspired by a theorem of Aldous [A], proved that the answer 
is yes for a large class of X's (the stable Banach spaces). Milman [M2], [M3] 
proved that if X is not distortable then X contains c$ or £p for some 1 < p < oo. 
Tsirelson's famous example ([T], see also [FJ]) of a space T not containing Co or 
£P (1 <p < oo) showed that there are distortable spaces. 

Tsirelson's space was the first truly nonclassical Banach space. Classical Ba
nach spaces (£p, Lp, C(K), Hp, ... ) have their norms defined explicitly by a 
given formula. To describe T (we follow the description given in [FJ]) we need 
some terminology. 

Let coo be the linear space of finitely supported real valued functions on N. If 
x G coo and E ÇN, Ex G Coo is defined by Ex(i) = x(i) if i G E and 0 otherwise. 
For E,F Ç N, E < F means that max E < min F . A sequence of subsets of N, 
(Ei)™=1, is admissible if {n} < E\ < • • • < En. T is the completion of c0o under 
the norm 

IMI = m a x ( IMloo, sup \ ^2 \\EiX\\ J 

where the "sup" is taken over all admissible collections. 
Thus, the norm in T is not given explicitly but is rather the solution of an 

equation (of course it must be verified that such a norm exists). A detailed study 
of Tsirelson's space appears in [CS]. The wonderful things that could be done with 
such implicit norm descriptions were not fully realized until the last five years. 

Consider the problem: Is Hilbert space, £2, distortable? This can be shown 
to be equivalent to finding sets A,B Ç. St2 so that both sets are asymptotic (A 
is asymptotic if A D Sy ^ 0 for all Y Ç £2) and D(A,B) = mf{\\a - b\\ : a G A, 
b G B} > 0. Indeed (roughly) one can use sets of the form cö(AU-A) to construct 
the unit ball of a distorting norm. How does one find such sets? Every x G St2 

looks like every other element; x could be the first element of an orthonormal 
basis for £2. This sort of problem was hampering the solution of many of the 
outstanding problems of the sort "does every X contain a nice Y7" If not, how 
could one distinguish the "bad vectors" in every subspace? In order to overcome 
similar problems in local theory, probability has been very useful. For example, in 
regard to Dvoretzky's theorem one can actually show that probabilistically most k-
dimensional slices of X are (up to £) ellipsoids. Infinite-dimensional geometry lacks 
this tool. Although the method of infinite combinatorics (e.g., Ramsey theory) has 
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had some success it has been unable to penetrate many problems. It is worth noting 
here that Gowers [G4] has discovered a wonderful new combinatorial principle. 

Tsirelson's space T gave a clue as to how to proceed. It could be seen how 
to explicitly distort T; one could identify two types of different vectors present 
in all infinite-dimensional subspaces of T and see that T was 2 — £ distortable 
for all £ > 0. However more was needed. Tomczak-Jaegermann [T-J2] proved, for 
example, that if T is arbitrarily distortable (A-distortable for all A > 1) then £2 is 
arbitrarily distortable. This gave the first possible connection between the infinite-
dimensional geometry of a nonclassical space and that of £2. It is still open as to 
whether T is more than 2-distortable. 

In [SI] the second named author gave the first example of an arbitrarily 
distortable space S. This was the first of a new generation of Tsirelson type spaces. 
Its construction led to the solution of the unconditional basic sequence problem by 
Gowers and Maurey [GM1]. This second generation example led to many others 
and many open problems were solved (see e.g., [G2], [G3], [G5], [OS3], [KT-J], 
[GM2], [AD]). The space S is defined by an implicit Tsirelson type norm. For 
x G coo set 

hp**) \\x\\ = m a x Harlloc, sup 
n of: 

(£i)?e^ ^v 

where (f)(n) = log2(n + 1) and Tn = {(£*)? : Ei Ç N , Ei < • • • < En}. S is the 
completion of coo under this norm. The norms that arbitrarily distort S are 

||x||n = max( | |x | | a o , sup — r ^ \\EìX\\ I . 

In fact one has that S is more than arbitrarily distortable. The following definition 
is due to Gowers and Maurey [GM1]. 

DEFINITION 4. (An,An) is an A.B.S. (asymptotic biorthogonal sequence) for X 
if for all n, An Ç Sx, An Ç Bx*, An is asymptotic in X and for some sequence 
Sn I 0: 

i) for all n and x G An there exists x* G An with x*(x) > 1 — £n and 
ii) ifn / ra. x G An and x* G A^, then \x*(x)\ < £min(n,m)-

We shall say that X is biorthogonally distortable if X admits an A.B.S. 

It turns out that the norms || • ||n can be used to describe an explicit A.B.S. 
in S ([GM1], see also [SI], [S2]). Remarkably, one can transfer the A.B.S. of S to 
£2. This transference cannot be linear and involves knowing detailed information 
about the A.B.S. in S. We ultimately have the following theorems from [OS2] (see 
also [OSI]). 

THEOREM 5. Let 1 < p < 00. Then £.p is biorthogonally distortable and hence is 
arbitrarily distortable. 

Combined with the work of Milman and James cited above this gives 
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THEOREM 6. If X is not distortable then for all Y Ç X either £i or c0 embeds 
isomorphically into Y. 

Gowers [Gl] proved that every uniformly continuous / : SCQ —• R is oscillation 
stable. The fact that £2 is distortable yields (via the Mazur map discussed below) 
that £1 fails this property. 

THEOREM 7. If every uniformly continuous f : Sx —> R is oscillation stable then 
Co embeds isomorphically into every Y Ç X. 

Before proceeding to describe the transfer mechanism alluded to above we 
need some terminology. Let (xi) C X \ {0} and K > 1. (xi) is K-basic in X if for 
all n < m and (a*)™ Ç R, || J2i CLìXì\\ < K\\ Y^T a^H- If in addition the closure 
of (xi), the linear span of (Xì), equals X then (x{) is called a basis for X. (xi) 
is monotone basic if K = 1. (Xì) is K-unconditional if for all (a*)™ Ç R and 
&)? e {-1, l } m , || Y^^aiXii < K\\ JT? aiXi\\. If X has a 1-unconditional basis 
(e^) then X may be viewed as the completion of c0o under some norm || • || which 
makes X into a lattice: || |x| || = \\x\\ for all x G X where |JZa*eil = ^Cl^l^i-
A block basis (yn) of a basic sequence (xn) is a nonzero sequence given by yn = 
YlieF aixi f° r some sequence (ü{) C R and Fi < F2 < •••. 

Extending an argument in [GM1], which is in turn an extension of an argu
ment in [MR], one can prove 

THEOREM 8 [OS2]. Let X have a basis (e^) and assume that X is biorthogonally 
distortable. Let n G N and £ > 0. Then there exists an equivalent norm \\\ • \\\ on 
X with the property that if (yi)7} is any finite monotone basis and (w*)ï° is any 
block basis of(ei) then there exists a block basis (zi)™ of(wi) that satisfies: for all 

n n n 

1 1 1 

For example, given n, £2 can be renormed so as to contain in every Y Q £2, 
n-dimensional subspaces whose unit balls are (up to e) n-cubes (Bin ). 

The Entropy Map and Uniform Homeomorphisms 

Let 1 < p < oc. The Mazur map Mp : S^ —> Sip given by Mp(ai)^° = (sign 
aila*^1^)™ is a uniform homeomorphism (i.e., a uniformly continuous bijection 
with uniformly continuous inverse) [Ma], [Ri]. For 1 < p < 00, £p is distortable iff 
Sep contains asymptotic sets A, B with D(A, B) > 0. Because Mp also preserves 
block bases it is easily seen that £p (for any 1 < p < 00) is distortable iff S^ 
contains a pair of separated asymptotic sets. We shall use a generalized Mazur 
map to transfer the A.B.S. from S to £p going through S^. In order to define this 
map, which was considered earlier by Lozanovskii [Lo] and Gillespie [Gi], we need 
some further terminology. 

Let (e^) be a normalized 1-unconditional basis for X. Let S~x = {x G Sx -
x = \x\}. If h is a finitely supported vector in S^~ and y = ^yiei G X+ = {x G 
X : x = \x\} we define the entropy E(h,y) = ^,hilog(yi) (where OlogO = 0). It 
is easy to show that there exists a unique x G 5 ^ having the same support as h 
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that maximizes E(h,y) on S^- Define Fx(h) to be that x. If X is reasonably nice 
(e.g., uniformly convex and uniformly smooth) the entropy map Fx extends to a 
uniform homeomorphism between S^ and Sx- In fact, Ftv = Mp. More generally, 
one can prove the following. X is said to contain £^ 's uniformly if there exists 
C < oo and En Ç X with d(En,Q) < C for all n. 

THEOREM 9 [OS2]. Let X be a Banach space with an unconditional basis. Then 
Sx Biid Sex are uniformly homeomorphic iff X does not contain P^ 's uniformly. 

The "necessity" is due to Enfio [E]. This theorem has been extended to more 
general lattices independently by Chaatit [C] and Daher [Da]. For other results 
on uniform homeomorphisms between Banach spaces, see the fine survey paper by 
Benyamini [B]. 

The problem that presents itself in trying to use the map Fx to transfer a 
known pair of separated asymptotic sets to S^ is that, unlike the Mazur map, 
Fx need not preserve block bases and thus one cannot conclude that F^1(A) is 
asymptotic in S^ if A is asymptotic in Sx- We originally achieved the existence 
of a pair of separated asymptotic sets in S^ by an indirect argument. Maurey 
[Maul] then gave us an elegant argument showing us how our ideas could be used 
in conjunction with Fs* to show that £2 admits an A.B.S. We define a sequence 
of sets Bk Ç S^ as follows. Let (Ak, A*k) be the specific A.B.S. constructed in S 
using || • ||n (see [OS2]). Let 

Bk = i..X}°X\ :xkeAk, x*keA*k, and\xl\(\xk\)>l-£k) . 
l\\x

k
oxk\\£1 J 

Here x*ox denotes the sequence obtained by pointwise multiplication. One obtains 
ultimately the following theorem. A set C of sequences is a lattice set if x G C iff 
|x| G C. C is spreading if x = (xi) G C iff y = (0 ,0, . . . ,0,xi,0,0,X2, • • • ) G C no 
matter how the 0's are placed. 

THEOREM 10 [OS2]. The sets Ck = M2(Bk) are asymptotic, lattice, and spreading 
in £2- Moreover, for some sequence £k [ 0, (\xk\, \xe\) < £m-in(k,£) ifk ^ £, xk e Ck, 
and xe £ Ct. 

Here (•,•) denotes the inner product on £2. Thus, the sets Ck are nearly 
mutually orthogonal. Maurey [Mau3] has shown that one can also produce the sets 
Ck in such a way that each Ck is symmetric (x = (xi) G Ck iff x„ = (x^^)) G Ck 

for all permutations 7r of N). One can in certain circumstances show that the map 
Fx behaves much like the Mazur map. The following result applies for example to 
X = S(2), the convexification of S. 

THEOREM 11. Let X be a space with a normalized 1-unconditional basis (e^). 
Assume that there exists C > 0 so that for all n and all block bases (x^ of (ei)™, 

, n x 1/2 n , n v 1/2 

(ciognr^M2) <||5>|| < (X>*II2J . 
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Let (yi) be any block basis of the unit vector basis for £i, £ > 0, m G N. There 
exists a normalized block basis (zi)7? of (yi) with (Fx*zi)i

l (1 + e)-equivaient to 
the unit vector basis of t^ and having the property that if (CYì)™ G S™ then 

s n \ m 

Fx* ( ]T] cxiZi J - ^ s i g n a i l Q i l ^ F x * ^ 
^ i ' i 

< £ 

Questions concerning the relationships between the notions of being dis
tortable, arbitrarily distortable, and biorthogonally distortable remain open. No 
example of a distortable space of bounded distortion is known, although T is a 
prime candidate. 

Further Developments 

A number of further developments in distortion theory have been obtained. 
Maurey [Mau2] has proved that every super-reflexive space with an uncondi
tional basis contains an arbitrarily distortable subspace. Tomczak-Jaegermann has 
proved [T-J3] that the Schatten classes Cp of operators on a Hilbert space are arbi
trarily distortable for 1 < p < oo. Milman and Tomczak-Jaegermann [MiT-J] have 
shown that if X is of bounded distortion then X contains an asymptotic £p space; 
i.e., there exist C, 1 < p < oc and a basic sequence (xi) in X so that if n G N and 
(2/i)i is a normalized block basis of (Xì)^, then (yi)i is C-equivalent to the unit 
vector basis of £%. Argyros and Deliyanni [AD] have produced an asymptotic £1 
space that is arbitrarily distortable. They have also constructed such a space that 
does not contain an unconditional basic sequence. Casazza, Kalton, Kutzarova, 
and Mastylo have proven [CKKM] that for any C, £2 can be renormed so as to not 
contain any C-unconditional basic sequence and yet still satisfy certain modulus 
of convexity and smoothness conditions. 

Maurey and Tomczak-Jaegermann [MT-J] have proved that if XQ = (XQ,£2)Q 

is a complex interpolation space with 0 < 0 < 1 and if Xo is an asymptotic £p 

space (1 < p < 00), then XQ is biorthogonally distortable. They have also shown 
the following. For every D > 1 there exists an equivalent symmetric norm | • | on £2 
such that for any finite number of unitary operators (or even into isomorphisms) 
T i , . . . ,T/v, the norm |||#|| | = X^=i l^i^l *s a ^-distortion of £2. By definition, 
distorted norms cannot be "corrected" by passing to a subspace. The above shows 
that one cannot always correct a norm on £2 by applying a finite number of unitary 
operators. Both types of "corrections" are possible in the finite-dimensional set
ting. Dvoretszky's theorem gives the subspace correction, and the unitary operator 
correction is due to Bourgain, Lindenstrauss, and Milman [BLM]. 

Krivine's Theorem and Spreading Models 

The successes of local theory as obtained in Theorems 1 and 2 cannot be passed 
on to infinite-dimensional geometry. However, there are structural notions that 
combine elements of both the finite- and infinite-dimensional theories. The notion 
of a spreading model is due to Brunei and Sucheston ([BS]; see also [BL], [O]). A 
normalized basic sequence (e^) is a spreading model of a normalized basic sequence 
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(Xì) in some Banach space X if for all n G N, n < ii < • • • < in, and (a^™ Ç 
[-i,i]n, 

(i) y ; aoxij 
i 

< -
n 

If (Xì) is weakly null then (e^) is unconditional. From Ramsey theory and Rosen
thal's theorem [Rl] one obtains that every X admits an unconditional spreading 
model. It was recently shown [OS3] that not every X has a spreading model con
taining co or £p for some 1 < p < oo. 

Krivine [K] proved the following beautiful local theorem (see also [Le], [R2], 
[MS]). 

THEOREM 12. Let C > 1, n G N and e > 0. There exists m = m(C,n,£) G N so 
that if (xi)™ is a C-basic sequence then there exist 1 < p < oo and a block basis 
(yi)i of (xì)™ so that (yi)i is 1 + £-equivalent to the unit vector basis of £™. 

In [OS3] an example is constructed of a basic sequence (xì) with the property 
that for all 1 < p < oo, £p is block finitely represented in all block bases of (xì). 
Krivine's theorem gives rise to the following stabilization principle (see [ORS]). 

THEOREM 13. For all C > 0, £ > 0, and n G N there exists m = m(C,n,£) so 
that if (xì)™ is C-basic and if f : S(Xiyn —> R is C-Lipschitz then there exists a 
block basis (yi)™ of (xi)i so that osc(/ | S^)™) < s. 

This result, in turn, gives rise to an extended notion of spreading model 
[ORS]. Given (En), a sequence of finite-dimensional subspaces of X with dimE^ —• 
oo, there exist integers kn | oo, subspaces Gn of Ekn with dimGn —> oo and a 
spreading model (e^) so that (1) is valid whenever x^ G SQ . -

More recently Maurey, Milman and Tomczak-Jaegermann [MMT-J] have de
fined another asymptotic infinite-dimensional concept that evidently yields a richer 
theory than that of spreading models. 
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Operator Algebras and Conformai Field Theory 

A N T O N Y J . W A S S E R M A N N 

Department of Pure Mathematics and Mathematical Statistics 
University of Cambridge 
16 Mill Lane, Cambridge CB2 1SB, United Kingdom 

1 Introduction 

We report on a programme to understand unitary conformai field theory (CFT) 
from the point of view of operator algebras. The earlier stages of this research 
were carried out with Jones, following his suggestion that there might be a deeper 
"subfactor" explanation of the coincidence between certain braid group represen
tations that had turned up in subfactors, statistical mechanics, and conformai 
field theory. (Most of our joint work appears in Section 10.) The classical addi
tive theory of operator algebras, due to Murray and von Neumann, provides a 
framework for studying unitary Lie group representations, although in specific ex
amples almost all the hard work involves a quite separate analysis of intertwining 
operators and differential equations. Analogously, the more recent multiplicative 
theory provides a powerful tool for studying the unitary representations of cer
tain infinite-dimensional groups, such as loop groups or Diff S1 . It must again be 
complemented by a detailed analysis of certain intertwining operators, the pri
mary fields, and their associated differential equations. The multiplicative theory 
of von Neumann algebras has appeared in three separate but related guises: first 
in the algebraic approach to quantum field theory (QFT) of Doplicher, Haag and 
Roberts; then in Connes' theory of bimodules or correspondences and their tensor 
products; and last (but not least) in Jones' theory of subfactors. Our results so far 
include: 

(1) Several new constructions of subfactors. 
(2) Nontrivial algebraic QFT's in 1 + 1 dimensions with finitely many sectors 

and noninteger statistical (or quantum) dimension ("algebraic CFT"). 
(3) A definition of quantum invariant theory without using quantum groups at 

roots of unity. 
(4) A computable and manifestly unitary definition of fusion for positive energy 

representations ("Connes fusion") making them into a tensor category. 
(5) Analytic properties of primary fields ("constructive CFT"). 
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2 Classical Invariant Theory 

The irreducible unitary (finite-dimensional) representations of G = SU(N) can be 
studied in two distinct approaches. These provide a simple but important proto
type for developing the theory of positive energy loop group representations and 
primary fields. 
Borei-Weil Approach. This constructs all irreducible representations uniformly in 
a Lie algebraic way via highest weight theory. The representations are described 
as quotients of Verma modules, that is in terms of lowering and raising operators. 
This approach gives an important uniqueness result — such a representation is 
uniquely determined by its highest weight — but has the disadvantage that it is 
not manifestly unitary. 
Hermann Weyl Approach. This starts from a special representation, V = CN or 
AV, and realizes all others in the tensor powers V®e or (AV)®£. The key to under
standing the decomposition of V®e is Schur-Weyl duality: EndcV®^ is the image 
of CSe, where the symmetric group Se acts by permuting the tensor factors in V®e. 
This sets up a one-one correspondence between the irreducible representations of 
G and the symmetric groups and gives a manifestly unitary construction of the 
irreducible representations of G (on multiplicity spaces of Se). The irreducible uni
tary representation Vf with character \f a n d signature / : / i > • • • > / J V ( = 0) is 
generated by the vector ef = ef

Ul~h) <g> (ex A e2) s > ( / 2~ / 3 ) 0 • • • in (AV)®e. The 
signature can be written in the usual way as a Young diagram and we then have 
the tensor product rule Vf <g> VQ = © Vg, where g runs over all diagrams that can 
be obtained by adding one box to / . 

Thus, the Borei-Weil Lie algebraic approach leads to uniqueness results, 
whereas the Hermann Weyl approach leads to existence results and an explicit 
construction, giving analytic unitary properties. 

3 Fermions and Quantization 

Let H be a complex Hilbert space. Bounded operators a(f) for / G H are 
said to satisfy the canonical anticommutation relations (CAR) if [a(f),a(g)]+ = 
0, [a(f),a(g)*]+ = (f,g) • J, where / >-• a(f) is C-linear and [x,y]+ = xy + yx. 
The complex wave representation ir of the CAR on fermionic Fock space T = AH 
is given by a(f)u; = fAuj. It is irreducible. Now the equations c(f) = a ( / ) + a(/)*, 
a(f) = ^(c(f)-ic(if)) give a correspondence with real linear maps / i-> c(f) such 
that c(f) = c(f)* and [c(/),cQj)]+ = 2Re (f,g) • / . Any projection F in H de
fines a new complex structure on H, by taking multiplication by i as i on PH 
and —i on PLH. So through c, this gives a new irreducible representation nP of 
the CAR on Fock space Tp. By considering approximations by finite-dimensional 
systems, Segal showed that itp = -ïïQ iff P — Q is Hilbert-Schmidt. This leads 
to the following quantization criterion. Any u G U(H) gives a Bogoliubov auto
morphism of the CAR, au : a(f) »—> a(uf). The automorphism au is said to be 
implemented in Tp if a(uf) = Ua(f)U* for some unitary U G U(Tp), unique 
up to a phase. The quantization criterion states that au is implemented in Tp 
iff [u, P] is Hilbert-Schmidt. Thus, we get a homomorphism from the subgroup of 
implementable unitaries into VU(Tp), the basic projective representation. As a 
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special case, there are canonical quantizations: any unitary u with uPu* = P is 
canonically implemented in Fock space; and if uPu* = I — P, then u is canonically 
implemented by a conjugate-linear isometry in Fock space. 

4 Positive Energy Representations 

Let G = SU(N) and define the loop group LG = Coc(S1,G), the smooth maps 
of the circle into G. The diffeomorphism group of the circle Diff S1 is naturally 
a subgroup of Aut LG with the action given by reparametrization. In particular 
the group of rotations Rot S1 = U(l) acts on LG. We look for projective repre
sentations 7T : LG —> PU (H) that are both irreducible and have positive energy. 
This means that 7r should extend to LG x RotS 1 so that H = ©n>o#(rc), where 
the H(nYs are eigenspaces for the action of RotS 1 , i.e. rei = em0£ for £ G H (ri), 
and dim H(n) < oo with H(0) ^ 0. Because the constant loops G commute with 
RotS 1 , the H(n)7s are automatically G-modules. 

Uniqueness. An irreducible positive energy representation n on H is uniquely 
determined by its level £ > 1, a positive integer specifying the central extension or 
2-cocycle of LG, and its lowest energy space H(0), an irreducible representation 
of G. Only finitely many irreducible representations of G occur at level £: their 
signatures must satisfy the quantization condition / i — f^ < £ and form a set Y .̂ 

Existence/Analytic Properties. Let H = L2(S1) (g> V and let P be the projection 
onto the Hardy space H2^1) (8) V of functions with vanishing negative Fourier 
coefficients (or equivalently boundary values of functions holomorphic in the unit 
disc). The semidirect product LG x Diff+ S1 acts unitarily on H and satisfies the 
quantization criterion for P, so gives a projective representation of LG x Diff+ Sl 

in Tp. The irreducible summands of Tp* give all the level £ representations of 
LG and this construction shows that any positive energy representation extends 
to LG x Diff+ S1 ("invariance under reparametrization"). 

If H is a positive energy representation of level £, the G°° vectors if00 for 
Ro tS 1 are acted on continuously by LG x Ro tS 1 (or more generally LG x 
Diff S1) and its Lie algebra. This can be seen in a variety of ways, using repre
sentations of the Heisenberg group or the infinitesimal version of the fermionic 
construction. If g = Lie(G), then Lie(LG) = Lg = COC(S1,Q). Its complexi
fication is spanned by the functions ein6x with x G g. Let x(n) be the corre
sponding unbounded operators on H°° (or H°, the subspace of finite energy vec
tors) and let d be the self-adjoint generator for RotS 1 (so that re = el6d). Then 
[x(n),y(m)] = [x,y)(n + ra) + £n6n+rn^tr(xy) • J and [d,x(n)] = -nx(n). 

5 Formal Conformai Field Theory 

Purely as motivation, we sketch the standard approach to CFT based on formal 
quantum fields. 

State-Field Correspondence. For fixed level £, there should be a one-one cor
respondence between states v G H = ®feyeH^ and field operators (j)(v,z) = 
^2n (j)(v,n)z~n~hiJ'', where (j>ij(v,n) : H® —* H® and z is a formal parameter. The 
field "creates the state from the vacuum", i.e. (j)(v,0)Q = v. Fields are first defined 
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for vectors x G H0(l) = g by x(z) = J]7r(x(n))2;~n~1. For a G HQ, fields <f)(a, z) aie 
uniquely determined by <j)(a,0)fì = a, rotation invariance [d, (j)(v,n)] = —n(/)(v,n) 
and the gauge condition x(z)(j)(a,w) ~ (j)(a,w)x(z). (This notation means that, 
on taking matrix coefficients, one side is the analytic continuation of the other, 
with the domains of definition given by decreasing moduli of arguments.) The 
fields 4>(a,z) for a G H® form a vertex algebra, Borcherds' analogue of a com
mutative ring. Commutativity and associativity are replaced by <j)(a,z)(j)(b,w) ~ 
(j)(b,w)(j)(a,z) and (j)(a,z)(j)(b,w) ~ 0(0(a, 2; — w)b,w). The operator product ex
pansion (OPE) is obtained by expanding the right-hand side of this last equation 
as a power series in (z — w): the resulting coefficients are the fields arising from 
the fusion of (j)(a,z) and (j)(b,w). In this sense the x(z)'s generate the vertex al
gebra. The Hi's become modules over the vertex algebra and the gauge condition 
defines general fields as intertwiners. The fields corresponding to vectors in Hi(0) 
are called primary fields. Other secondary fields are obtained by successive fusion 
with x(z)'s. 

Braiding-Fusion Duality. If neither a nor 6 lies in HQ, the commutativity and 
associativity relations must be replaced by braiding and fusion relations: 

$j(a,z)<l>%(b,™) ~ T,hah$h&w)<l>phk(a>z) ( w h e r e aeHp,be Hq). 
^.(0,2)^(6,11;) ~ Ehßh^Mq(aiZ-w)b,w). 

These are first proved as identities between lowest energy matrix coefficients of 
primary fields and follow in general by fusion. The matrix coefficients give a 
vector-valued function /(£) of one variable £ = z/w. It satisfies the Knizhnik-
Zamolodchikov ODE f(z) = z~lPf(z) + (1 - z)'1Qf(z), with P,Q constant 
matrices, a^ and ßh are entries in the matrices connecting the solutions at 0 with 
the solutions at 00 and 1 respectively. The evident algebraic relations between 
these two matrices constitute "braiding-fusion duality". 

6 Construction of Primary Fields 

Let Hi,Hj be positive energy representations of level £ and let W be an irre
ducible representation of G. A primary field of charge W is a continuous linear 
map (f> : iff° <g> G°° (S1 , W) -> Hf> that commutes with the action of LG x Rot S1 . 
This makes sense because Hi and Hj are projective representations with the same 
cocycle, whereas C°°(S1,W) is an ordinary representation, with LG acting by 
pointwise multiplication and Ro tS 1 by rotation. Any / G Coc(S1,W) determines 
a "smeared field" 0( / ) : H?° —> Hj°, which must satisfy the covariance relation 
<t>(9 • / ) = *j(g)<f>(f)*i(g)* for geLGx Rot S1. 
Uniqueness. A primary field 0 is uniquely determined by its initial term H{(0) (g) 
W —> Hj(0), which commutes with G. The charge W must have signature / satis
fying fi—fN ^ £• Moreover the initial term must satisfy an algebraic quantization 
condition with respect to SU(2) C SU(N): (*) when cut down to irreducible sum-
mands of SU(2), the resulting intertwiners Vp <g> Vq —> Vr can only be non-zero if 
p + q + r < £ where the spins p, q, r are half integers < £/2. 

Existence /Construction. Primary fields for the vector representation of G come 
from compressing fermions Pj(a(f) ® J <g) • • • <g) I)Pi, where Pi, Pj are projections 
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onto Hì,HJ summands of T®£. More generally, primary fields arise from (an
tisymmetric) external tensor products of fermions, parallelling the explicit con
struction of highest weight vectors in (AV)®e. For v G V, define vm(6) = eim6v 
in Coc(S1, V) and a(v,m) = a(vm). Introduce the formal Laurent series a(v,z) = 
Ylm ^(v,m)z~m. At level one, the primary field for AkV corresponds to compres
sions of the formal Laurent series (ß(ei A • • • A e&, z) = a(ei,z)a(e2,z) • • • a(e\z,z) 
(essentially an external tensor product as the e '̂s are orthogonal). At level £, 
the primary fields of signature / arise as formal Laurent series <\>(w,z), uniquely 
specified by (ß(ef,z) = Pó((j)(ei,z)^h-^ <g> (ß(ei A e2,*)<8>(/2- /3) ® • • -)Pi and G-
covariance. All possible primary fields arise in this way because an intertwiner 
satisfies (*) iff it appears as a component of the map A 0 A —> A, et® ß \—>oAft 
where A is the exterior algebra (AV)®*. 

This fermionic construction of the primary fields makes manifest their con
tinuity properties on H™. In particular the primary fields for the vector rep
resentation or its dual must satisfy the same kind of L2 bounds as fermions, 
| |0(/) | | < -^Il/Ita» underlining Haag's philosophy that QFT can and should be 
understood in terms of (algebras of) bounded operators. Here there is no choice. 

7 The K-Z ODE and Braiding of Primary Fields 

When f,g G C°°(Sl) <g> V have disjoint support, the corresponding smeared fermi 
fields satisfy the anticommutative exchange rule a(f)a(g)* = —o,(g)*a(f)- Simi
larly, if a and b are test functions supported in the upper and lower semicircle of 
S1 , there are braiding relations 

<(a)tf>Fa W = E X 9 $ * & * • b K o ( e " 9 • <*)> (1) 

where the constants \g,\ig,vg are to be determined and eT(0) = elTB. The Ag's 
arise as the entries of the matrix connecting the solutions at 0 and oo of a matrix-
valued ODE as follows. Fusion of the x(z)'s shows that, up to an additive con
stant, d is given by L0 = (N + * ) - 1 E i è^ (° )*^(° ) + E n > o , i ^ ( n ) * ^ ( n ) ] ( t h e 

Segal-Sugawara formula), where (xì) is an orthonormal basis of g. Let f(z) = 
J2($(v2in)&(v3i~~n)v4ivi)zni t n e reduced 4-point function with values in (Vf ® 
VT <8> Vn ® V Q ) G . The two expressions, when d and L0 are inserted, between the 
two field operators can be simplified using the commutation relations with pri
mary fields. After the change of variable z i—> (1 — z)~x, they lead to the Knizhnik-
Zamolodchikov ODE f'(z) = z-1Pf(z) + (l-z)~1(P-Q)f(z), where P and Q are 
self-adjoint (AT x AQ-matrices with P having distinct eigenvalues, Q proportional 
to a rank one projection, and P, Q in general position. There is then an essentially 
unique choice of (non-orthogonal) basis so that 

P = 

/ 0 1 
0 0 1 

Vai 

°\ 
0 

1 
a,N 1 

, Q = 

/ 0 0 

u 
1 

b N l 
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This is the matrix-valued ODE for the generalized hypergeometric equation. En
tries of the transport matrices relating solutions at 0 and 1 are calculated by 
an extension of the classical method of Gauss and two tricks: the unitary of the 
transport matrix when the constant N + £ is made imaginary; and Karamata's 
Tauberian theorem. 

The inner product of both sides of (1) with lowest energy vectors can be 
expressed through integrals involving a, b, and the branches of f(z) at 0 and oo 
(viewed as vector-valued distributions on S1). The transport matrix between the 
branches therefore gives the braiding coefficients (and phase corrections) for the 
inner products with lowest energy vectors. Using lowering and raising operators, 
they also work for inner products with arbitrary finite energy vectors and hence, 
by continuity, with all smooth vectors. 

8 Von Neumann Algebras 

It is perhaps most natural to define von Neumann algebras as "the symmetry 
algebras of unitary groups". Thus, if if is a complex Hilbert space, von Neumann 
algebras M Ç B(H) are of the form M = G', where G is a subgroup of the 
unitary group U(H) and the commutant or symmetry algebra of 5 Ç B(H) is 
S' = {T : Tx = xT for all x G S}. If 5* = S, then S" coincides with the 
von Neumann algebra generated by S (i.e. the smallest von Neumann algebra 
containing S). It is also the strong or weak operator closure of the unital *-algebra 
generated by «S. 

If M is a von Neumann algebra, its center Z(M) = M D M' is an Abelian 
von Neumann algebra, so of the form L°°(X, /x) for some measure space (X, /J,). If 
X is atomic, then M is canonically a direct sum of factors, von Neumann algebras 
with trivial center, with one factor for each point of X. In general M has an 
essentially unique direct integral decomposition M = Jx Mxdfi(x), where each 
Mx is a factor, so the study of von Neumann algebras reduces to that of factors. 

Any von Neumann algebra is generated by its projections. Because M = 
M" = (M1)', these projections correspond to invariant subspaces or submodules 
for the von Neumann algebra Mf. Unitary equivalence of M'-modules translates 
into a notion of equivalence of projections ("Murray-von Neumann equivalence"). 
If in addition M is a factor, then simple set-theoretic type arguments show that M 
falls into one of three types: (I) M has minimal projections; (II) M has projections 
not equivalent to any proper subprojection; (III) every nonzero projection in M is 
equivalent to a proper subprojection (so that they are all equivalent). 

The type I factors have the form B(K) for some Hilbert space K. In the 
type II case, Murray and von Neumann defined a countably additive dimension 
function on projections with range [0,1] or [0, oc], with two projections equiva
lent iff they have the same dimension. This leads to the notion of "continuous 
dimension" for any M-module. The two possibilities for the range give a further 
subdivision into type Hi and type 11^ factors. Any type 11^ factor is the von 
Neumann algebra of infinite matrices with values in some type Hi factor. For type 
Hi factors, Murray and von Neumann proved that the dimension function can be 
linearized to give a trace tr on M, i.e. a state with tr(aò) = tr(ba). Conversely, any 
factor admitting such a tracial state must be a type Hi factor. 
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9 Modular Theory 

Modular theory has its roots implicitly in QFT (Haag-Araki duality for bosons) 
and explicitly in statistical physics (the lattice models of Haag-Hugenholtz-Win-
ninck). Independently Tornita proposed a general theory for any von Neumann 
algebra, developed in detail by Takesaki. For hyper finite von Neumann algebras 
(those approximable by an increasing sequence of finite-dimensional algebras), 
Hugenholtz and Wierenga gave a more elementary approach based on the lattice 
model proof. 
Tornita-Takesaki Theory. Let M C B (H) be a von Neumann algebra and let Q G H 
(the "vacuum vector") be a unit vector such that MQ and M'Q are dense in H. 
It is then possible to define an operator S = S M '• M ft —> MQ, aQ i—• a*Q. S is 
conjugate-linear, densely defined, and closeable with closure S = S^, . Let S = 
JA 1 / 2 be the polar decomposition of 5, so that J is a conjugate-linear isometry 
with J2 = I and A is a positive unbounded operator not having 0 as an eigenvalue. 
Then JMJ = M' and A**MA~'* = M. Thus, x \-+ Jx*J gives an isomorphism 
between M o p (M with multiplication reversed) and M' and at(x) = A l t#A~z t 

gives a one-parameter group of automorphisms of M and M'. 
Connes9 (2 x 2)-Matrix Trick. Connes' fundamental observation was that the image 
of at in the outer automorphism group of M is independent of the choice of the 
state ii, and thus can be used to provide further intrinsic invariants of M. 
"Trivial" Example (von Neumann). Let A be a unital *-algebra and tr a tra
cial state on A. Let L2(A,tr) be the Hilbert space completion of A for the inner 
product tr(6*a). If A and p denote the actions of A on L2(A,tr) by right and left 
multiplication, then X(A)ff = p(A)' and A = I. In particular, if A = C[r] where 
r is a discrete countable group and tr is the Plancherel trace tr(7) = 6 7 J I , then 
L2(A,tr) = £2(T) and À and p become the usual left and right regular representa
tions. If T has infinite (non-identity) conjugacy classes, e.g. if T = S«,, then A(r)" 
is a factor with a trace, so a type Hi factor. 

Easy Consequences. Connes' (2 x 2)-matrix trick shows that if M is a type I or II 
factor, then the modular group o~t must be inner. Hence, if the fixed point algebra 
M° equals C, i.e. at is ergodic, then M is a type III factor (in fact, Uli). 
Classification of Type III Factors. Connes' "essential spectrum" is defined as 
S(M) = P)Sp(An), where ii ranges over vectors cyclic for M and Mf. Then 
T = S(M) n R+ is a closed subgroup of R+, so the type III factors can be subdi
vided further into: type III0 when T = {1}; type IIIA when T = Az with A G (0,1); 
and Uli when T = RÜj_. In the type Ilio case, a further invariant is the "flow of 
weights", an ergodic flow on a Lebesgue space (the action or = id <8> Adra(e"") of 
R on the center of (M <g) B(L2(R)))a®AdX). Thanks to the work of von Neumann, 
Connes, and Haagerup (completed in 1985), any hyperfinite factor is uniquely de
termined by its type (and flow of weights). In particular, the hyperfinite type Hi 
and Uli factors are unique. 
Takesaki Devissage. If N C M is a von Neumann subalgebra, normalized by Alt, 
then A and J restrict to the corresponding operators for N on the closure of NQ. 
This result allows one to pass from the modular operators for a theory to those 
of a subtheory. Thus, if M is a hyperfinite type Uli factor with o~t ergodic, so too 
is AT. 
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10 Haag Duality and Local Loop Groups 

Geometric Modular Theory for Fermions on S1. Let J be an open interval of S1 and 
let Ie be the complementary open interval. Let Cliff (J) be the *-algebra generated 
by a(f) with / G L2(J)<g> V. Then Haag-Araki duality holds: Cliff (J)" = Cliff (Ie)1 

(graded commutant). This follows directly from the more important fact that the 
modular operators are geometric. Taking J and Ie to be the upper and lower 
semicircles, this means that J is the canonical quantization of the flip z i—• z, 
sending f(z) to zf(z). A l t is the canonical quantization of the Möbius flow fixing 
the endpoints of / . This is proved directly by "reduction to one-particle states" : 
S is the canonical quantization of an operator s. The polar decomposition of 
s gives that of S and was computed directly with Jones by two methods: by 
an analytic continuation argument à la Bisognano-Wichmann; or by considering 
representations of the algebra generated by two projections. The local algebra 
Cliff ( /)" is manifestly hyperfinite. Moreover Cliff ( /)" is a type Uli factor by the 
ergodicity of at, because A** is the direct sum of the trivial representation and 
copies of the regular representation of R. 

Loop Group Subfactors (Jones-Wassermann). Let LjG be the local loop group 
consisting of loops concentrated in J, i.e. loops equal to 1 off J, and let ni be an 
irreducible positive energy representation of level £. Haag-Araki duality and the 
fermionic construction of 7T» imply that operators in 7r(LjG) and 7r(L/cG), defined 
up to a phase, actually commute ("locality"). Thus, we get the canonical inclusion: 

7Ti(L/G)" ç TT^L/CG)' . (2) 

Consequences of Takesaki Devissage. Because the modular operators for the fer
mionic free field theory are geometric and the loop group representations are con
structed as subtheories, Takesaki dévissage can be applied to the geometric in
clusion of local algebras on T$e, T T ^ L / G ) " C (Cliff (J)®*)". It has the following 
consequences: 

Haag Duality in the Vacuum Sector. If TTQ is the vacuum representation at level 
£ (so that the lowest energy subspace, generated by the vacuum vector, gives the 
trivial representation of G), then 7To(LjG)ff = ^(LfcG)'. Moreover an argument 
of Reeh-Schlieder shows that the vacuum vector is cyclic for 7To(L/G)", and hence 
7To(£jG)'. The corresponding modular operators are geometric. So in general the 
inclusion (2) measures the failure of Haag duality. 

Local Equivalence. 7TO|LJG — TTìIL/G? so that all positive energy representations at 
level £ become unitarily equivalent when restricted to the local loop groups. (Note 
that smeared vector primary fields give explicit bounded intertwiners.) 

Type of Local Algebras. 7ri(LjG)" is isomorphic to the hyperfinite type Uli factor. 
Hyperfiniteness can also be deduced more directly, independently of the Connes-
Haagerup classification, by the factorization property. This property, inherited 
from fermions, means that the representations 7To and 7r0 ® 7r0 of LJUJG = LjG x 
LjG are unitarily equivalent if J and J are nontouching disjoint intervals. So if 
In j J, there is a type I factor Bn lying between 7ro(L/nG)" and 7r(L/n+1G)". 
Bn Î 7To(Z/jG)" forces hyperfiniteness (the "Dick trick"). 
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Generalized Haag Duality. Let n = 0 7 ^ on H = 0 i 7 * , the direct sum of all the 
level £ representations and let (j) be the primary field for the vector representation. 
Then TTCL/G)" = <*(/),*(/)* : / G C?(I) ® V)' H {@B{Hi)). 
Von Neumann Density. Let Ii and I2 be touching intervals obtained by removing 
a point from the interval J. Then -K(LhG)" V TT(L/ 2 G)" = TT(L/G)" ("irrelevance 
of points"). Jones and I first deduced this from a stronger result: the pullback 
of the quotient strong operator topology on LG under the map LG —> PU(Tp) 
makes LjxG x Lj2G dense in LjG. Von Neumann density also follows by taking 
commutants in generalized Haag duality and noting that, because of its L2 bounds, 
0 "does not see points". 

Irreducibility. If L ± 1 G = L/G x Lj*G is the subgroup of LG consisting of loops 
trivial to all orders at ±1 , then irreducible positive energy representations of LG 
stay irreducible and inequivalent when restricted to L±lG. 

11 Connes Fusion and Braiding 

Connes defined an associative tensor operation ("Connes fusion") on bimodules 
over (type III) von Neumann algebras. Let X = A^B be an (̂ 4, J9)-bimodule 
and Y = BYC a (B, G)-bimodule. Let (H0,il) be a "trivial" (B, £)-bimodule 
defined by modular theory. Let X = rlomB°p(Ho,X), y = Horns (Ho, Y) and 
define X IE Y as the Hilbert space completion of X <S> y with inner product 
(xi <8>yi,X2 (8)2/2) = (x^iy^yiQ^Q)- It is naturally an (̂ 4, G)-bimodule. If AXB 
and EXA are irreducible, Y is called conjugate to X iff X Kl Y and Y KI X both 
contain the trivial bimodule at least once. Y is then unique up to isomorphism and 
the trivial bimodule appears exactly once. Any homomorphism p : A —> B defines 
an (A, 2?)-bimodule, because p makes H0 an A-module. Connes fusion corresponds 
to composition of homomorphisms. Because all modules over a type III factor are 
equivalent, every bimodule arises this way. Many properties of Connes fusion can 
be proved in the homomorphism picture. 

Definition of Fusion (State-Field Correspondence). For representations of LG, the 
bimodule point of view comes through restricting to LjG x LjcG and Connes 
fusion can be defined without explicit reference to von Neumann algebras. Let X, 
Y be positive energy representations of LG at level £. Replace states Ç G X, rj G Y 
by intertwiners xeX = rlomLlcG(H0,X), yey = rlomLlG(H0,Y). The "fields" 
x, y create the states f = xii, r\ = yil from the vacuum. The inner product on 
X <g> y is given by the four-point formula (xi (8) 2/1, #2 <8> 2/2) = (̂ 2^12/22/1) (vacuum 
expectation). The Hilbert space completion X IE Y naturally supports a projective 
representation of LjG x LjoG. 

Braiding Properties of Bounded Intertwiners. By hermiticity, the braiding rela
tions (1) for smeared primary fields can be written symbolically as 

a/0^D0 = Y1^9bgfa9^ agBbno = £gbgfO>fo, (3) 

where \eg\ = 1 in the second Abelian relation. We call a = a/o and b = 6QO 
the principal parts. Letting Ai = afo, A2 = © l ^ l 1 / 2 ^ ^ , Bi = b\jo, B^ = 
®£g\)<g\1^2bgf, the braiding relations (3) take the form AiB{ = B^A^, A2Bi = 
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B2A1: these equations are unchanged if the Ai's or Bj's are replaced by their 
phases. The a^-'s become bounded after such a "phase correction". Each set of 
intertwiners (CìJ) can be modified in three steps so that (3) still holds but with a 
and b unitary:(i) replace Cij by X^2_n^(#n)Qjflj(^n)> with (gn) a dense subgroup 
of LjG and un partial isometries in 7TO(L/G)" with UiUj = 6ijl, Ylului = I\ (ü) 
make a phase correction on (c*j) so that the principal part c satisfies ce* = I; (iii) 
replace Cij by Cij7Tj(u) where wis a partial isometry in 7To(LjG)" with u*u = I, 
uu* = c*c If now x : Ho —> Hf and y : Ho —> H\j are arbitrary intertwiners, their 
nonprincipal parts are defined by Xij = aij7Tj(a*j0x) and ypq = bpqitqty^y). They 
satisfy the analogues of (3). 

Computation (Braiding-Fusion Duality). To prove the fusion rules Hf KI Hu — 
(&Hg, where now g G Y^, it suffices to define an explicit isometry U of Hf IE Hu 
into ®Hg, which is an intertwiner for L ± 1 G = LjG x LjcG; for by Schur's lemma 
and irreducibility for L±1G, U must be unitary making Hf IE iïrj a positive energy 
representation. By the braiding relation for intertwiners, 

\\x (8 y\\2 = (x}oXf0yu0yno) = ^ X9 (x*foy*9f
x
9oyno) = ^ \X91 (2/DO^D^D2/DO)-

The coefficients have to be positive, as the equation can be interpreted as writing 
a vector state as a linear combination of inequivalent pure states. Thus, only the 
non-vanishing of the Afl's is important. Now define U(x <g> y) = 0|A9|1/2xgn2/no^-
Braiding. The braiding map ò : X Kl Y —> Y Bl X is the unitary given by 
b(x ®y)= e_7riL° • (eiirLoye~iwLo <g> eivLoxe~ivL°). Under the "concrete" iso
morphism U on HD KI HB, UbU^^lXg^^Xgayaoii) = ®\Xg\

1/2ygnxno^ = 
®\Xg\

1,2figXguynoii, so that UbU* = ßgI on Hg. In general Hi KI • • • KI Hn 

can also be defined and computed using a 2n-point function, after having divided 
S 1 into n intervals. The 6's have a very simple concrete form, especially on H®n 

where only vector primary fields are invoked. This realization makes manifest their 
braiding and cabling properties. 

Closure under Fusion and Conjugation. By associativity and induction: each ir
reducible positive energy representation Hi appears in some H®n; the H^s are 
closed under Connes fusion; each Hi has a (unique) conjugate Hi. 
General Fusion Rules (Faltings' Trick). The fusion coefficients N^ are given by 
Hi SI Hj = ®NJ^Hk. Braiding shows that Hi Bl Hó ^ Hó KI H^ Let 1Z be the 
representation ring of formal sums J^ niiHi. 1Z is commutative with an identity and 
an involution. Thus, the complexification IZc is a finite-dimensional *-algebra with 
a nondegenerate positive trace t r ( J^CìHì) = co- So T ĉ — C M , where M = \Yi\. 
The fusion rules for HXky are deduced by combining the method used for H\j 
with properties of 1Z. From these fusion rules, the characters of IZc are given 
by [Hf] h-> ch(Hf,h) = Xf(D(h)) where h G Ye and D(h) G SU(N) is the 
diagonal matrix with D(h)kk = exp(27ri(hk + N — k — H)/(N + £)) where H = 
ÇZjhk + N — k)/N. Thus, the AT '̂s can be computed using the multiplication rules 
for the basis ch(Hf, •) of C(Ye). They agree with the Verlinde formulas in Kac's 
book. 

Summary. The positive energy representations Ho,..., H M at a fixed level £ be
come a braided ribbon C* tensor category. 
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12 Subfactors 

Let AT c M be an inclusion of type III factors in B(H), so that H becomes an 
(M, ATop)-bimodule. They act on L2(Af,tr). Let e = ei be the projection onto 
L2(N) and Mi = (M,ei)", the Jones basic construction. 

Definition. N is of finite index in M iff Mi is a type Hi factor. Its (Jones) index 
is given by [M : N] = t r ( e i ) - 1 = dim;vL2(M). So M is finite dimensional as an-
AT-module. There is an equivalent probabilistic definition due to Pimsner-Popa. 
The projection e : L2(M) —> L2(N) restricts to a "conditional expectation" E : 
M —> N satisfying E(x) > Xx for x > 0 where A = [M : AT]-1. The index yields 
the best possible value of A > 0. 

Higher Relative Commutants (Subfactor Invariants). It turns out that [Mi : M] = 
[M : N], so the basic construction can be iterated to get a tower: 

N C M C e i Mi C62 M2 C63 • • • 

The higher relative commutants are An = M' n Mn , Bn = M[ fl Mn. They are 
finite-dimensional von Neumann algebras, so direct sums of matrix algebras. The 
inclusions Bn C An increase to an inclusion of type Hi factors B C A. The 
inclusion N c M is said to have finite depth if the centers of An and Bn have 
uniformly bounded dimension. The inclusion is irreducible iff Nf n M = C 

Bimodule Picture. L2(M) is a bimodule over (M, M), (M, N), (N, M), and (N, N). 
The algebras An and Bn encode the decomposition and branching rules for the 
bimodules L2(M)®m, fused over N. 

Popa's Finite Depth Classification Theorem. If the inclusion of hyperfinite type Hi 
factors N C M has finite depth and is irreducible, then N C M = Bop c Aop. A 
version of the same theorem also holds in the hyperfinite type IIIi case, provided 
that the Pimsner-Popa inequality is taken as the definition of finite index and the 
inclusion Bop C Aop is replaced by its tensor product with the hyperfinite type 
IIIi factor. 

13 Quantum Invariant Theory Subfactors 

Classical Invariant Theory Subfactors. If V is a representation of G, we get an in
clusion of type Hi factors (UmC (8) EndGV®m)" C (UmEndGV®m + 1)" with Jones 
index dim(y)2 . When G = SU(N) and V = CN, the right-hand side is generated 
by SQC = USn and the left-hand side is obtained by applying the shift endomor-
phism p(si) = Si+i where Si = (i,i +1). The higher relative commutants are given 
by: 

An : EndGV C EndcV <8> V C EndGV (8> V <8> V C 
U U _ L^ (4) 

Bn : C C EndGV C EndGV (8) V C 

Braid Group Subfactors (Jones-Wenzl). Let tr be a positive definite trace on 
the infinite braid group B^ = UBn, generated by gi,g2,g3, •• • with relations 
gi9i+i9i = 9i+i9i9i+i and g{gj = gjg{ if \i - j \ < 2. Suppose that tr has the 
Jones-Markov property tr(ag^) = /itr(a) for a G Bn = (gi,... ,gn-i)- Form 
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L2(CBoc,tr) and let 7r be the left unitary action of B^. Assume in addition that 
the algebras 7r(CBn) are finite-dimensional and that the dimensions of their cen
ters are uniformly bounded ("finite depth"). The braid group subfactor is given 
by the inclusion 7r(^2,53, • • •)" C n(gi,g2, • • •)" and as for the symmetric group 
arises from a shift p(gi) = p i + i . It has index \p\~2. More generally, Wenzl consid
ered the irreducible parts of the inclusions 7r(0m+i,gm+2>- • • )" C n(gi,g2, • • • )"> 
obtained by reducing by minimal projections in the relative commutant. The first 
examples arose by taking <ft = aei + b with the e '̂s Jones projections and a, b 
constants. Most other examples arose from the solutions of the quantum Yang-
Baxter equations associated with quantum groups at roots of unity and restricted 
solid-on-solid models in statistical mechanics. Unfortunately, the positivity of the 
trace here only followed after a very detailed analysis of 7r(CBn) using g-algebraic 
combinatorics. 

Quantum Invariant Theory Subfactors. There is a more direct construction of the 
braid group subfactors. It is more conceptual, manifestly unitary, and allows a di
rect computation of the higher relative commutants. The data (G, V, (8>) is replaced 
by (LG, H, KI): (UmC<8>EndLG#®m)" C ( U m E n d L G # K m + 1 ) " . If H corresponds to 
the vector representation, the right-hand side is generated by B^ and the left-hand 
side is obtained from the shift p(gi) = gi+i- The Jones index equals the square 
of the quantum dimension of H. This is given by d(Hf) = ch(Hf,0) and is the 
unique positive character of 1Z. Thanks to "Wenzl's lemma", the higher relative 
commutants are obtained by replacing (G, V,<8>) by (LG,H,B) in (4). 

14 Doplicher-Haag-Roberts Formalism 

Algebraic QFT gives a translation from the bimodule to the homomorphism point 
of view. For fixed Hi, let / CC J and Ie CC K and take unitary intertwiners 
U : Ho — Hi for LjG and V : HQ — Ht for LKG. Set M = TT 0 (LIG)" . Then 
Pi(x) = V*UxU*V defines a DHR endomorphism of M and the loop group in
clusion 7Ti(LjG)" C 7Ti(LjcG)f is isomorphic to the inclusion Pi(M) C M. The 
endomorphism pi is localized in Ii = Sl\K CC / , in the sense that it fixes loop 
group elements supported in I\I\. Let T be a diffeomorphism, supported in J, 
with T(/ i ) disjoint from Ji in a clockwise sense. Define the statistics operator 
by g = u*pi(u), where u = T*pi(T). Then gpi(g)g = pi(g)gpi(g) and g lies in 
p2(M)' H M. Hence g^ = p*~l(g) gives a unitary representation of B^. Under 
the bimodule-endomorphism correspondence, the results on Connes fusion imply: 
pil+1(M)' H M ^ EndL G#f f c + 1 , with gi,...,gk identified with the Connes braid
ing; the Jones index of the loop group subfactor is d(Hi)2; and the higher relative 
commutants for the loop group subfactor agree with those of the corresponding 
quantum invariant theory subfactor. 

15 The Main Result on Subfactors 

Because the higher relative commutants agree, Popa's finite depth classification 
theorem implies: 

Theorem (Jones-Wassermann Conjecture). The loop group inclusion of hyperfinite 
type IIIi factors 7Ti(L/G)" C ^ ( L / C G ) ' is isomorphic to the tensor product of the 
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hyperfinite type IIIi factor with the quantum invariant theory inclusion of type Hi 
factors No = (UC ® EndL G iff™)" C (UEndLGflf m + 1 ) ; / = M0 . 

This result may be sharpened using the inclusion M «—• M2(M ), x ^ a ; © p(x). 

THEOREM. There is an automorphism a of M and a unitary u G M such that 
ap = Ad upa and, if pi = ap and Mi = (\Jpf{M)f n M)", then M = Mi®Mpl, 
N = pi(Mi) (8) MPl. MPl is isomorphic to the hyperfinite type IIIi factor and 
the inclusion Ni C Mi is isomorphic to No C Mo by an isomorphism preserving 
endomorphisms and braid group operators. 

16 Future Directions 

WZW Models. Other constructions of subfactors can be obtained by taking other 
compact simple groups G, not necessarily simply connected. The theory for the B, 
C, D series seems to follow from the (3 x 3)-matrix ODE of Fateev-Dotsenko. 

Minimal Models. The theory has been developed along similar lines by Loke for 
discrete series representations of Diff S1 for central charge c < 1. 

Conformai Inclusions. A subgroup H of G gives a conformai inclusion if the level 
one representations of LG remain finitely reducible when restricted to H. The 
basic construction Mi for the inclusion N = KO(LIH)" C 7r0(L/G)" = M can be 
identified with 7To(LicH)f, so N C Mi is a loop group inclusion. So N C M has 
finite index and depth. For example the conformai inclusion SU(2) C SO(ò) gives 
the Jones subfactor of index 3 + y/3. 

Disjoint Intervals. If the circle is divided up into 2n disjoint intervals and J is the 
union of n alternate intervals, the inclusion 7ri (LjG)" C ^ ( L J C G ) ' has finite index 
and probably finite depth. It is related to higher genus CFT. 

Fusion. Connes fusion can be viewed as glueing together two circles along a com
mon semicircle. This picture seems to be a unitary boundary value of Graeme 
Segal's holomorphic proposal for fusion, based on a disc with two smaller discs re
moved. When the discs shrink to points on the Riemann sphere, Segal's definition 
should degenerate to the algebraic geometric fusion of Kazhdan-Lusztig et al. 
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Brownian Motion, Heat Kernels, and Harmonic Functions 
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ABSTRACT. Although the boundary behavior of harmonic functions is an old subject 
(Fatou's theofem was proved in 1906), interesting results are still being obtained 
today. In this article we discuss some recent results concerning harmonic functions, 
heat kernels, and related topics that have been obtained using Brownian motion. In 
the following sections we will discuss the heat kernels for the Neumann Laplacian, 
the boundary Harnack principle, the Martin boundary, conditional lifetimes, and the 
conditional gauge theorem. 

1 Heat kernels and reflecting Brownian motion 

Let pD(t,x,y) denote the Neumann heat kernel for a domain D. This is the funda
mental solution to the heat equation du/dt = (1/2)Aw with Neumann boundary 
conditions. (Having Neumann boundary conditions means that the normal deriva
tive of w is 0 on the boundary of D.) pD(t,x,y) is also, of course, the transition 
density of reflecting Brownian motion in D. 

What can one say about pD(t,x,y) as a function of the domain Dl The 
heat kernel with Dirichlet boundary conditions (that is, u = 0 on the boundary 
of D) is easily seen to decrease as the domain D becomes smaller. One might 
expect that for Neumann boundary conditions, pDl (t, x, y) should be greater than 
pD2(t,x,y) if Di Ç Z}2- A small room should warm up faster than a large room. 
A little thought shows that one must assume Di and D2 are convex. With this 
assumption, the above monotonicity holds if D2 is a ball centered at x [13], if a 
sphere about x separates dDi and dD2 [19], if Di Ç D2 and t is sufficiently small 
[12], or if t is sufficiently large [13]. 

It turns out, however, that this domain monotonicity need not always hold. 
Fix t > 0. Let e > 0 and set 

D2 = {reie : r > 0,0 < 0 < 3TT/4}, DX=D2 + (S, e), 

x£ = (-£,£), yE = ( l ,e). 

THEOREM 1.1. If e is sufficiently small, 

pD*(t,x£,yE)>pD*(t,xE,y£). 
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It is easy to modify this example to come up with Di and D2 that are 
bounded, smooth, and strictly convex, and with x, y G Di Ç Di Ç D2 such that 
pD*(t,x,y)>pDi(t,x,y). 

To prove Theorem 1.1 is not difficult. The method used in [8] obtains an 
explicit expression for p°2(t, 0, •) from symmetry considerations and then uses 
translation invariance to get pDl(t,x£,y£). To estimate pD2(t,x£,-), we show that 
it can be written as Uf for a function / , where U denotes the potential with 
respect to the Green function for reflecting Brownian motion in D2. Conformai 
mapping then reduces this to an estimate on reflecting Brownian motion in the 
upper half plane. 

The domains Di and £>2 are examples of Lipschitz domains. In two dimen
sions, conformai mapping is a useful tool, but good estimates for heat kernels with 
Neumann boundary conditions can be obtained in Lipschitz domains even when 
the dimension is three or higher, and some upper bounds are available even in 
Holder domains [11]. A Holder domain is one whose boundary is locally the graph 
of a Holder continuous function. 

2 Boundary Harnack principle 

Harnack's inequality says that the values of a positive harmonic function are com
parable in the interior of a domain D. Not much can be said, in general, near the 
boundary. However, if D is a Lipschitz domain, say, and two harmonic functions 
u and v both vanish on the same portion of the boundary, then u and v tend to 0 
near that portion of that boundary at the same rate. 

This is called the boundary Harnack principle, and is a very useful tool. For 
example, it can be used to identify the Martin boundary in Lipschitz domains and 
to prove Fatou theorems for Lipschitz domains (see [3], [4]). Using probabilistic 
techniques, it was proved in [2] and [5] that the boundary Harnack principle holds 
in Holder domains of order a for a > 0. It also holds in twisted Holder domains of 
order a provided that a > 1/2, where twisted Holder domains are generalizations 
of Holder domains in much the same way that John domains are generalizations 
of Lipschitz domains. 

Let Dc denote the complement of D. As a sample of the kind of theorem that 
is proved in [2] and [5], we have 

THEOREM 2.1. Suppose D is a Holder domain of order a, a > 0. Let K be a 
compact set, and V an open set containing K. Let Xo £ D. If u and v are two 
positive harmonic functions in D such that U(XQ) = v(xo) = I, u and v vanish 
at the points of dD fl V that are regular for Dc, and u and v are bounded in a 
neighborhood of dD n V, then 

u(x)/v(x) < c, x e K fl D, 

where c is a constant that depends on D, K, V, and xo, but not u or v. 

If D happens to be the domain above the graph of a Holder continuous 
function T, and 

Q = {(xi,...,xd) : T(xi,...,xd-i) <xd< a + T(xi,... ,xd-i), 

\(xi,...,xd-i)\ < R} 
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for positive numbers a and R, it is not too hard to get estimates for the proba
bility that Brownian motion exits Q through the upper boundary of Q and the 
probability that Brownian motion exits Q through the sides of Q. The key to the 
proof of Theorem 2.1 is to combine these estimates to show that Brownian motion 
conditioned to stay in D is not too likely to exit a box such as Q by creeping along 
the boundary of D, but rather must go at least a certain amount into the interior 
oiD. 

If one replaces Brownian motion by certain diffusions corresponding to di
vergence form operators, one gets the analogue of Theorem 2.1 with harmonic 
replaced by L-harmonic, where an L-harmonic function h is one with Lh = 0. 
Here 

W*) = £ £(oiii*)§z-)('), 
i,j = l J 

and the matrix ai3 is assumed to be bounded, uniformly positive definite, and 
measurable (no smoothness is required). If instead of divergence form operators 
such as the above, one has nondivergence operators like 

d d2h 

Lh(x) = £ a^^g-ix) 
with the same assumptions on a^, it turns out that the boundary Harnack principle 
holds for positive L-harmonic functions in Holder domains of order a when a > 
1/2. It need not hold for domains when a < 1/2, unless the domain satisfies an 
additional regularity condition. See [9]. 

3 Martin boundary 

Let XQ E D and let go(x,y) be the Green function for the domain D with pole at 
y. The (minimal) Martin boundary ÔM D in a domain is an ideal boundary such 
that every positive harmonic function h in a domain D can be written 

h(x) = [ M(x,y)p(dy) 

for some measure /i supported on &MD in one and only one way, where M(x,y), 
the Martin kernel, is the appropriate extension of go(x,y)/gD(xo,y)- For Lipschitz 
domains the Martin boundary can be identified with the Euclidean boundary (first 
proved by Hunt and Wheeden [18]), and it is not hard to show this fact from scaling 
properties of Lipschitz domains and the boundary Harnack principle. Because The
orem 2.1 says that the boundary Harnack principle holds for Holder domains, one 
might wonder whether the Martin boundary must equal the Euclidean boundary 
in all Holder domains. The answer is no. However, we have the following theorem 
from [7]. 

THEOREM 3.1. Let 

Mx) = bx k g 1 0 ^ 1 / * ) 

Provided b is sufficiently small, the Martin boundary of D may be identified with 
the Euclidean boundary if D is a C1 domain. 
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A C1 domain is one in which the boundary can be represented locally as the 
graph of a function whose modulus of continuity is no worse than 7. 

This is suggestive of the laws of the iterated logarithm beloved by probabilists, 
but xloglog(l/x) is not the right borderline function. In fact for every 6 > 0 there 
is a C 7 domain with ~f(x) = bxloglog(l/x) for which the Martin boundary is 
different than the Euclidean boundary. 

The proof of Theorem 3.1 involves a careful estimate of the constant c in 
Theorem 2.1 for C1 domains. 

4 Conditional lifetimes 

Around 1983 K.L. Chung posed the conditional lifetime problem. Suppose EJ 
represents the expectation of Brownian motion in a domain D conditioned to exit 
D at the point z. Let TQ represent the exit time of D for Brownian motion. The 
conditional lifetime problem is to determine for which domains E J T D is finite. 

Cranston and McConnell [16] showed that in two dimensions, the expected 
conditional lifetime is bounded by a constant that depends only on the area of 
D and not on a: or 2. In three dimensions the lifetime can be infinite even for 
bounded domains [16], but must be finite in bounded Lipschitz domains [14]. 
Various refinements have been obtained, and in the last few years, some extensive 
generalizations have been proved ([1], [6], [17]). For example, we have 

THEOREM 4.1. Suppose p > d— 1 and D is a domain of the form 

D = {(xi,...,xd) : \(xi,...,xd_i)\ < 1, 0> xd> -f(xi,...,xd-i)}, 

where f is a nonnegative function that is in Lp(Md~1). Then ^X
ZTB < c, where c 

is a finite constant depending only on f and not x or z. 

Many refinements of Theorem 4.1 are possible. Brownian motion can be re
placed by diffusions corresponding to operators L in either divergence or nondiver-
gence form. Twisted Holder domains of order a are possible (it turns out that the 
critical a becomes 1/3). A domain need only have its boundary be given locally 
by the graph of an IP function. 

Various proofs of theorems such as Theorem 4.1 have been given. In [17], the 
Girsanov transformation is the principal tool; in [1] heat kernel estimates play an 
important part. The proof in [6] is based on the observation that the amount of 
time Brownian motion spends in a strip of width r is proportional to r2. Combining 
this estimate with the techniques used in [14] and [16] give Theorem 4.1 and its 
relatives. 

5 Conditional gauge 

In solving the Dirichlet problem using probability theory, it is possible to replace 
(l/2)Au(x) by (l/2)Au(x) + q(x)u(x), the Schrödinger operator, if one uses the 
Feynman-Kac formula. Expectations of expressions such as exp(/0

T£) q(Xs) ds) then 
play a role. To study local behavior of the solution to the Dirichlet problem, 
such as the Fatou theorems, Martin boundary, harmonic measure, etc., one uses 
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conditioned Brownian motion. It should be no surprise, then, that to study the 
local behavior of solutions to equations involving the Schrödinger operator, it is 
necessary to look at Ef exp(/Q

rD q(Xs) ds). Here Xs is Brownian motion, TD is the 
exit time from D, and Ef represents the expectation of Brownian motion started 
at x and conditioned to exit D at z. 

The above expectation is called the conditional gauge. It need not be finite 
even when q is constant and D is an interval in one dimension. However, when it 
is finite, many of the local properties of harmonic functions carry over to functions 
that are harmonic with respect to the operator (1/2)A + q. 

The conditional gauge theorems are results that say that under certain as
sumptions on q and D, if the conditional gauge is finite for one pair (x, z) with 
x ^ z, then it is finite for all pairs (x, z), and the values of the conditional gauge 
are comparable. For example, if d > 3, D is a Lipschitz domain in Rd, and q is in 
the Kato class, then the conditional gauge theorem holds [15]. For q to be in the 
Kato class means that 

lim sup sup / \q(y)\ \x - y\2~d dy = 0, 
£^0 xeDJDnB(x,e) 

where B(X,E) is the ball of radius e about x. When d = 2, \x — y\2~d in the 
definition is replaced by log(l/|x — y\). 

Various partial results have been proved for the case d = 2, but by analogy 
to the conditional lifetime results, one would expect that the conditional gauge 
theorem ought to be true in bounded domains in the plane, with no further as
sumptions on the domain necessary. This turns out to be correct [10]. 

The key to the conditional gauge theorem is to get a sufficiently good estimate 
on the Green function for conditioned Brownian motion in D, namely on the ratio 

gp(x,y)9p(y,z) 
9D(X,Z) 

where g& is the Green function for ordinary Brownian motion in D. In [10] we 
obtain the bound 

THEOREM 5.1. If D is a bounded domain in the plane, then 

9D{X,y)9D(y,*)<e[1 + + ( 1 / | g _ |} + l o g + ( 1 / | y _ z | ) ] t 

9D(X,Z) 

where c depends only on the diameter of the domain and log+ w = max(0, iogw). 

Actually, certain unbounded domains are also allowed, such as domains con
tained in a strip or domains that have finite area. 

If £ is a distance 1 from a point y, then the probability that Brownian motion 
starting at x makes a loop around y before exiting B(y,2) or hitting B(y, 1/2) is 
comparable to the probability of hitting B(y, 1/2) before exiting B(y,2). The key 
to Theorem 5.1 is to show that the same is true even if in addition we kill Brownian 
motion on hitting a set K, provided the capacity of K is sufficiently small. 
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1 Introduction 

Measure-valued Markov processes include both stochastic particle systems and 
an important class of stochastic partial differential equations. Examples of these 
arise in a variety of contexts such as mathematical genetics and reaction diffusion 
equations in random media. This paper will survey results on the long-time behav
ior of the class of critical measure-valued processes, that is, processes satisfying a 
mean conservation law. In the long-time limit processes of this type can develop an 
equilibrium structure or experience nonequilibrium cluster formation. The major 
objectives of this field are to give a precise description of these phenomena for spe
cial classes of critical systems and to develop an approach to classify such systems 
into broad "universality" classes that share the same large scale behaviors. 

We consider a multitype population with space of types 0 that is spatially dis
tributed in an environmental space E. Let C(E), B+(E), and M(E), denote the 
continuous functions, nonnegative Borei measurable functions, and Radon mea
sures, respectively, on the topological space E. The system at time t e M+ is de
scribed by a measure X(t) on E x 6 . The M(E x 9)-valued Markov process X(t) 
is said to be critical if there exists a conservative Markov semigroup {Tt : t > 0} 
with generator (<Ô,D(<Ô)) on C(E) such that 

E l f f cß(x)^(y)Xt(dx,dy)) = [ [ Tt<j>(x)<il;(y)Xo(dx,dy). 
\JEJB J J E Je 

In other words, for 0 G D(<Ô), and i/> e C(6) 

Mt((ß®yj):= [ f (ß(x)iP(y)Xt(dx,dy)- f [ f (Ô(j)(x)^(y)Xs(dx,dy) ds 
JE JG JO JE J& 

is a martingale. To complete the description of the process it is necessary to specify 
the structure of these martingales. Sections 2-4 are devoted to different martingale 
structures and the long-time behavior of the resulting processes. In the final section 
we return to the question of universality classes. 
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2 Finite-type Systems 

The simplest setting in which to describe these phenomena is the system of sto
chastic differential equations for a monotype population 

dxi(t) = ^qi-j[xj(t) - Xi(t)\ dt+>j2g(xi(t))dwi(t) (2.1) 
jes 

where X{(0) > 0, i € S, E = S is a countable abelian group, {qi-j}ijes is the 
Q-matrix of a symmetric random walk on 5, and {wi} are independent Brownian 
motions. 

Three important classes are: 

(1) interacting continuous state branching processes: state space (K+)5 and 
g(x) = x, 

(2) interacting Fisher- Wright diffusions: state space [0, l]s and g(x) = x(l—x) 
(3) nonstationary Anderson parabolic model : state space (M+)s and g(x) = x2. 

(This class will not be discussed below but has been studied in [CM].) 

There is in fact a close relationship between the first two classes. To illustrate 
this we consider the two-type system of stochastic differential equations 

dxi(t) = ^2,qi-j[xj(t) - Xi(t)]dt +y/xi(t)dwiii(t) 
3 

d2/iW = ^ f t - j f e W " 2/i(*)ld* +\ZyiWdw2,i(t) 
j 

where {wi^} and {w2ii} are independent. Letting ri(t) = Xi(t)-\-yi(t) and Zi(t) := 

Ä) w e § e t 

dn(t) = ^qi-j[rj(t) - n(t)}dt +y/ri(t)dwiii(t) 
3 

dZi(t) = - ly 5>_jr,-(t)M*) - Zi{t))dt + P ^ « 2 , i ( f ) • 

The collection {ri(t)} is an interacting system of critical continuous state branching 
(CCSB) processes. In the biological setting it is more realistic to assume that there 
is a locally finite carrying capacity and that at low densities the population is 
supercritical, which leads to the stochastic logistic system 

dri(t) = ^ P f c - i M * ) - ri(t)]dt + (ciri(t) - c2r
2(t))dt +y/r$)dwlfi{t) (2.2) 

3 

with ci,C2 > 0. 
The system (2.2) is not critical. However, if ci = C2 = c, n(0) = 1 in (2.2), 

and we take the limit c —> oc, we obtain the system conditioned to have ri(t) = 
1 Vi and t > 0. Under this conditioning the collection {zi(t)} forms an interacting 



988 Donald Dawson 

system of Fisher-Wright diffusions, which is critical. This means that the two 
species model constrained to have constant total population leads to the Fisher-
Wright system of population genetics (cf. [EM] for the infinite-type analogue that 
gives rise to interacting Fleming-Viot processes). 

We begin the discussion of the long-time behavior of these systems of sto
chastic differential equations with the following result. 

THEOREM 2.1 [CG]. Assume that 

g : [0,1] -> [0,1] is Lipschitz and g > 0 on (0,1). (2.3) 

Assume that the initial measure fi is shift ergodic and has density 0 = f xQ d\i. 
(a) If {qi} is transient, then the law C(x(t)) converges weakly as t —> oo to 

the stationary measure VQ, which is translation invariant mixing and has density 
0. 

(b) If {qi} is recurrent, then C(x(t)) => (1 — 0)<5O + 06\ as t —> oo. 

Thus, the global equilibrium (a) versus local clustering (b) dichotomy holds 
for the entire universality class governed by (2.1) and (2.3). 

The persistence-extinction phase transition behavior for the spde model in R1 

corresponding to the logistic system (2.2) has been obtained in [MT] (in particular, 
for fixed C2 > 0, extinction for small ci and persistence for large ci). The next 
section will be devoted to this for a large class of CCSB systems. 

3 Persistence and Extinction in Critical Branching Systems 

An important property of continuous state branching systems is that their laws 
are infinitely divisible, which opens up the possibility of using the many tools of 
infinitely divisible processes and measures. In this section we survey results on the 
long-time behavior of spatially homogeneous monotype branching systems in Rd. 
In addition these processes arise as limits of branching particle systems, and the 
analogous questions for the latter have been intensively studied in recent years (cf. 
[GW]). The class of processes we consider are characterized by two indices, one 
associated to the mean semigroup Tt, and the other to the continuous branching 
mechanism. To be precise, we take Tt to be the semigroup of a symmetric stable 
process of index a or a d-dimensional Brownian motion (a = 2) with generator 
A a , and the branching mechanism to be (1 + ß) CCSB. In fact to each of these can 
be associated a natural universality class (where the associated mechanisms are 
in the domains of attraction of these), but we restrict ourselves to the canonical 
objects. Because these processes are infinitely divisible, they can be characterized 
by their Laplace functionals. In particular the (a, d, ,#)-superprocess has transition 
Laplace functional 

E e x p [ - j (f)(x)Xt(dx) j X(0) = fi =exp(-u(t,x)ß(dx)J 

for every 0 G B+(Rd). The function u(t,x) is the solution of the initial value 
problem 

g = Aav - 7 * 1 + / 3 \ v(0, x) = cj>{x) (3.1) 
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with 0 < / ? < l , 0 < a < 2 . These processes can be defined with state space 
Mp(R

d) = {/x : / ( ( I + \x\)2)-pfi(dx) < oo}, with p G (d/2,(d + a)/2). Note 
that Lebesgue measure A belongs to this class and is invariant for the symmetric 
stable and Brownian semigroups. The following persistence-extinction dichotomy 
describes the long time behavior of these processes. 

THEOREM 3.1 [Dl], [K], [DP], [GW]. The (a,d,ß) process Xt with initial mea
sure Xo =0X, 0 > 0, converges in distribution ast —• co to an equilibrium random 
Held XQO with law VQ. There exists a critical dimension dc = % such that 

(1) if d<dCi then X ^ = 0 with probability one (local extinction) 
(2) if d > dCJ then E[Xoo] = 0X (persistence). 

In fact in this setting local extinction is equivalent to ||M(£)||I —> 0 as t —> oo 
and this reduces to an analytical estimate. 

This leaves open the possibility that there could be a locally finite invariant 
measure with infinite mean measure in low dimensions. However Bramson, Cox, 
and Greven [BCG] proved that 60 is the only invariant measure in dimensions d = 
1,2 if ß = 1. They also recently proved in dimensions d > 3 that {i/o, 8 E [0, oo)} 
coincides with the set of all extremal invariant measures. 

In order to describe the nature of the cluster formation consider the space-
time-mass rescaling 

X f (A) := K-ixKt(K^dßA). 

THEOREM 3.2 [DF]. Let d < a/ß. Then XK converges in distribution to the pure 
atomic process {X^}t>o in which X® is Poisson with intensity (tyßt)~1^X(0) and 
the mass of each atom evolves according to a continuous state branching. 

Roughly speaking, "at time K there are clumps of mass of order K1^ with 
interclump distance of order K1^". To describe ergodic behavior consider the 
occupation time process Yt := JQ Xs ds. 

THEOREM 3.3 [I], [FG]. For d > | with probability 1, l imt- ,« ,*" 1^ = * (in 
the vague topology). For d = ^, lim^oo t~lYt = £A where £ is a nondegenerate 
infìnitely divisible random variable with mean one. 

Theorems 3.1 and 3.3 imply that in the critical dimension d = § the mass 
of each bounded open set goes to zero in probability but nevertheless is visited by 
clumps of mass at arbitrarily large times. 

Let (j) > 0 be Holder continuous with compact support and f <j)(x) dx = 1. 
Then Iscoe and Lee [IL] and Lee [L] have obtained the following large deviation 
result for the (2, d, l)-superprocess: 

t—»oo • o / -
- lim a(t,d)'1 logPi- / (f>(x)Yt(dx) > c } > 0 

when c is greater than but close to 1 where a(t, 3) = t1/2, a(t, 4) = t/logt, and 
a(t, d) = t for d > 5. Deuschel and Wang [DW] recently obtained the corresponding 
strong large deviation principle in d = 3 and a weak large deviation principle in 
d = 4. This initially surprising large deviation behavior of the occupation time 
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measure in dimensions d = 3,4 is reminiscent of that of independent random 
walks or Brownian motions in dimensions d = 1,2 and suggests some type of null 
recurrence phenomenon, which we will make explicit in Theorem 3.5. 

An important tool in developing an understanding of these long-time phenom
ena is the historical process introduced in [DP], [DYN], and [LG]. The historical 
process is an enriched version of the basic measure-valued process that carries with 
it information on the genealogical and migrational history of the population. For 
simplicity we describe it only in the case a = 2, ß = 1. In order to describe the 
equilibrium measure we consider the process with time parameter in (—00,00). 
Let CSit = C([s,t),Rd), C = C_oc?00, and M(Cs,t) denote the space of measures on 
Csj. Given the Brownian motion {w(t) : t G M } with unnormalized entrance law 
{/JLS} we associate the C-valued process w defined by w(t) := {w(s A t)}sE(_0Cj00) 
and the associated nonhomogeneous semigroup SSitf := E(f(w(t))\w(s)), t > s. 
The historical process is an M(C)-valued time inhomogeneous Markov process with 
transition Laplace functional, 0 £ ß+(C) 

E (exp(-J cß(y)Ht(dy))\Hs\ = exp (- j\s^(y)Hs(dy)\ 

where 

- 7 / Satr((Vrìt<ì 
J s 

Vs,t(/)(y) = Ss,t(j>(y) - 7 / SSir((Vr,tW) dr. 

For s < u < t let rSiUHt denote the restriction of Ht to CSiU. Then Ht can be 
represented as a Poisson random field of clan measures in M(CSit) with Pois
son intensity n_u\ Hu and typical clan measure Et, which can be interpreted as 
the descendent population from an individual alive at time u with history y' and 
rSiUEt = Et(C)6y'. In fact this clan system can be identified with a time inhomoge
neous binary branching historical particle system starting from one particle with 
history y at time s and branching rate 1u_u\ 1 s <u <t (cf. [DP]). 

For t > s let if/ denote a realization of the historical process Ht conditioned 
to stay alive forever starting from a finite initial measure Hs = rjs G M(C-ocìS). 
Then ([RR], [EP], [E]) 

PSìTìa(Hl eA) = (^ìy'Ps^lA^^Ht,!)) 

where (//,/) := f f dp,. The corresponding normalized Campbell measure of Ht is 
then 

QsvSHl e AM e B) := (^îy'Ps^ilA^^H^B)}. 

Under QS,TJS^ {€t}t>s is a Brownian motion with initial law (ns, l)~1rjs(dy) and the 
conditional immortal clan law, Qf of Ej., the clan associated to £, corresponds to 
the measure-valued process obtained if £ "throws off historical process excursions 
at constant rate" 27. More precisely, 

Ql[exp-<->'>] = exp (- J 2 7 K , t / ( £ J du) . 
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Let \i\ denote the law of Brownian motion stopped at time t with the unique 
entrance law having Lebesgue marginals. Let 

R.M)-=JQ\WxW)-
Then lim^—oo R8jt = R-oc,t exists as a locally finite measure if and only if d > 3. 
Moreover, R-oo,t is supported by the set of infinite clan measures at time t, namely 
measures on C-^^t such that any two paths in the support have a common ancestral 
trajectory. A typical infinite clan containing an individual located at x at time t is 
constructed by running a Brownian trajectory £ backwards to time — oo and then 
collecting the mass at time t corresponding to Q l ^ . 

THEOREM 3.4 [DP], (a) Stationarity. Assume that Hs has the infinite law R-oc,s 

and t > s. Then Ht has law R-ocj. 
(b) Equilibrium clan decomposition. The equilibrium random field X^ (cf. Theo
rem 3.1) is an infìnitely divisible random measure with canonical measure R(B) = 
tf-oc,o({7T0/i e B}) where TT0/X(A) := /i({£ : £(0) G A}), A G B(Rd), p G M(C). 

This leads to a description of the equilibrium dynamics as the motion of a 
countable collection of infinite clan measures. The recurrence phenomenon alluded 
to above in dimensions d = 3,4 is made explicit as follows. 

THEOREM 3.5 [SW]. Consider the immortal clan process {E(} in dimensions 
d>3. Then 

(1) E{. populates each ball B c R d at arbitrarily early and late times if d = 3,4. 
(2) If d> 5, then Hf populates a fixed ball over only a finite time horizon. 

The immortal clans also exhibit an important scaling relation. If HQ denotes 

such a clan measure, then k~27To'E,Q(kA) = 7TQEO(A). Also R({fi : 7Toß(B(0,r)) > 
0}) = crd~2. The last two properties also form the key to understanding the 
long-time behavior of two level super-Brownian motion. Wu [W] and Gorostiza, 
Hochberg, and Wakolbinger [GHW] have established that d = 4 is the critical 
dimension for the stability-clustering dichotomy in this case. 

4 Equilibria and Clustering in Stepping Stone Models 

In this section we consider the analogue of the interacting system of Fisher-Wright 
diffusions for the infinite-type case 0 = [0,1] again constrained to have constant 
total mass one at each site. The state space is (A<i([0, l ] ) ) s and the process is 
denoted by {x^}^Gs. 

The mathematical characterization of this system of interacting Fleming-
Viot (FV) processes is given as the unique solution of a martingale problem with 
generator L given by (4.1) below. In turn this martingale problem establishes 
a connection between the probability law of this process and that of a simpler 
process, called the dual process. The dual process -K(Z) is a system of interacting 
partition elements that has the form n(t) = (ïïk(t),7tk(t)) with 

7f£ : { 1 , . . . , n} -+ { 1 , . . . , k} and 7tk : { 1 , . . . , k} ^ S. 
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This means that 7r£ is a partition of { 1 , . . . ,n} and 7Tfc assigns locations to each 
element of the partition. The process evolves as follows: 

(1) the partition elements perform continuous time symmetric random walks 
on S with rates qç-ç' 

(2) each pair of partition elements during the period they both reside at an 
element of S coalesces to the partition element equal to the union of the 
two partition elements at rate do-

In order to relate this process to the interacting FV system we require the 
family of "test functions" 

F((f,7T),((^eS)) = 

/ ••• / / K r £ ( l ) , - - - ,UTr%Xn))V*k{l)(dUl)...p,*k(k)(duk) 
^[0,1] 7[0,1] 

w h e r e / e C ( [ 0 , l ] n ) . 
The generator L of the interacting Fleming-Viot system has the usual form 

for a diffusion, namely a second order differential operator but in this case involving 
the derivative f^-(u) := ^ F ( ^ + e • 8u)\£=o- It is given by 

r si? 

ETÌS -Vi] 6H 

p r S2F 
^2 / J~.r~(u,v)[[J,t:(du)6u(dv) - ßsid^nsidv)] 
fri 7[o,i] -Ao,i] J f t ^ 

(4.1) 

dosr^ f f à2F 
+ -2 

tes 

The first term corresponds to spatial migration and the second to continuous 
sampling. In the case S = {1}, the process is the Fleming-Viot diffusion with no 
mutation. 

For functions F that belong to the special class of test functions defined above 
it can be shown that 

LF((/,7r),((/*ç)€es)) = KF((f,n),((ß^£S)) 

where K is the generator of the partition-valued dual 7r(t) with 7r(0) = (irJJ, 7rn). On 
the left-hand side the operator L acts on the variables (ß{) and on the right-hand 
side the operator K acts on the variable 7r. 

It then follows (cf. [D2, Section 5.5]) that 

E{fHh€S(F((fM0)),X(t))) = ^ ( 0)(F(( / ,7r( t)) ,X(0))) 

where TT(0) = (*£(<>), 7fn(0)) and X(0) = ( (^ fe 6 s ) . 

THEOREM 4.1. If{q^}is transient, then the process X has a one parameter family 
of nontrivial ergodic invariant measures ( { ^ ) { | ì G A / I ( E ) } } such that uß has single 
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site mean measure JJL. If {q^} is recurrent, then the extreme invariant measures are 
6sa,a G [0,1], that is, there is global fixation. 

Refer to [S] for the case of finitely many alleles, and [DGV] for the measure-valued 
case. The proofs are based on the coalescing random walk structure of the dual 
process. 

The study of long-time behavior in more detail has been carried out in two 
cases. The first involves simple random walk in the case S = Zd . In the second 
case, S = ffcjv, the hierarchical group introduced in [SF] and defined by 

Ojv = ( (&,&, . . . ) : fc E {0 , . . . , N - 1},& = 0, a.a. i ) . 

The hierarchical distance is a metric on QJSJ defined by d(£, £') = max{i : (i ^ ^'} 
and the transition rates for the random walk are given by 

sf-e-E^W.O^}. (4.2) 

Here c^/Nh represents the rate of jumping k + 1 levels in the hierarchy. If Ck = rk, 
then the random walk is transient if r > 1 and recurrent if r < 1. The subset of 
QN given by {£' : d(£,£') < k} is called the k-block containing £ and the k-block 
average is 

Xgk(t) := N~k J2 XS>' M a n d X?,o '= * f V£ E ftN . (4.3) 

The mechanism of diffusive clustering was first discovered by Cox and Grif-
feath [CGR] in the case of the voter model on Zd in the critical dimension d = 2. 
The analogue for the system of equations of the form (2.1) on ÜN in the case 
Cfe = 1 was recently established by Fleischmann and Greven [FGR] and in the 
hierarchical mean field limit in [DG]. For the interacting Fleming-Viot system on 
QN with Cfc = 1 and mean measure 0 this becomes 

{*oWtf*)}a>0 = £ iZ(° V lQg ~)}a>0 t »oc et 

where Z is a Fleming-Viot process with no mutation and initial measure 6. 

5 Equilibria and Universality in the Hierarchical Mean Field Limit 

By letting N tend to oc in (4.3) the time scales for the block averages of different 
sizes completely separate making possible a rigorous multiple time scale analysis. 
The first step involves the consideration of the k-block averages in the natural time 
scale Xfc , Xçk(T£) where -^- —> oc, N£+1 —> 0. In the hierarchical mean field 
limit (HMFL), 

{XkAT* )}{j=fc+i5fc,...;i,o} ^ ^ ( {Ej}{j=fc+i,fc,...,ifo} 
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where {Ej} is a reverse time inhomogeneous Mi[0, l]-valued Markov chain called 
the interaction Markov chain with H£+1 = 9 and transition kernel T3

e (dOj) := 
P(Ej G dOj\Ej+1 = Qj+i) (which depends on c 0 , . . . ,Cj but not k). For k > j , we 
have the (k — j + 1) step transition on A/i[0,1] 

PPM) = f ... f rjKdöorS;1^-!).• • ri (dOj). 
JMi[0,l] JMI[OA] J 

A hierarchical mean field global equilibrium {E|°} is defined by an entrance 
law for this Markov chain which describes the macroscopic behavior in exponential 
(or super polynomial) time scales. 

GLOBAL EQUILIBRIUM AND SPATIAL ERGODIC THEOREM [DGV]. 

(1) There is a one parameter family {/J.^'3} with 9 E Aii[0,1] of nontrivial 
extremal entrance laws for the interaction chain (global equilibria) if and 
only if the transience condition for the {q^} is satisfied. Otherwise the only 
extremal entrance laws are {6s(l, a G [0,1]}. 

(2) Under the global equilibrium with mean measure 9, H|° is pure atomic and 
limj-^oc Ej° = 9 a.s. 

(3) In exponential time scales TN = EN, there is convergence to equilibrium: 

{XU(EN)}{J=...,2A,0} A ^ {^j}{jG=... ,2,1,0}-

In the representation H|° = X^femi(^)^fc? mj(k) denotes the mass of the 
immortal type (clan) x^ G [0,1] in the j-block containing a fixed £. The asymptotic 
behavior of {mj(k)} as j —> oc has been studied in [DGV]. 

We have seen above in both measure-valued CCSB systems and interacting 
FV systems the formation of isolated clusters in low dimensions, diffusive cluster
ing in critical dimensions, and global equilibria in high dimensions. As mentioned 
in Section 1 some phenomena can be established for much broader classes. In fact 
we expect that there are large universality classes that share the same large scale 
behavior. There are significant difficulties in carrying out this research program for 
systems that cannot be studied directly with Laplace functionals or dual processes, 
but some progress has recently been made. The latter is based on renormalization 
group ideas from statistical physics. We will illustrate this by returning to the 
system (2.1), this time on the hierarchical group, and then considering the hier
archical mean field limit with g ^ , as in (4.2) with cu = 1. Then for each k, the 
real-valued processes X$k (Nkt) converge as N —* oo to a diffusion with generator 

go = g, and 
tiexp[-f*J^dy\dx 

0(fc+i)W = - - _ 
/ J 9 k

x o o e x p [- Je %Ä%)dy\ dx 
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T H E O R E M [DG], [BCGH] . Let g satisfy the conditions of Theorem 2.1. Then 

lim kgk(9) = 9(1 - 9) uniformly on [0,1]. 
k—»oo 

If in addition l i m i n o l o # 29(x) > 0 &nd l i m i n f ^ i t l — x) 2g(x) > 0, then there 
exist 0 < cg < Cg < oo such tha t for all sufficiently large k 

c9 ^ 
- j - < sup 
k 0e(o,i) 

\k9k(9)-9(l-9)\] < Cg 

9(1 -9) I k 

This result gives a precise meaning to the Fisher- Wright universality class in 
this setting and perhaps can serve as a prototype for the s tudy of other universality 
questions. For example, an infinite-type analogue has recently been obtained in 
[DGV]. 
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Abstract Statistical Estimation and 
Modern Harmonic Analysis 

DAVID L. DONOHO 

Department of Statistics, Stanford University 
Berkeley, CA 94708, USA 

1. Nonparametric Estimation 

Suppose that ti are equispaced points in the unit interval ti = i/n, and we observe 

Vi = f(ti)+o~Zi, i = l,...,n, (1) 

where the Zi are i.i.d. N(0,1). Our goal is to recover the object / from these noisy 
observations. In order to do so, we must know something about / (otherwise we 
have n observations and 2n unknowns). In the branch of statistics called nonpara
metric regression, it is traditional to assume quantitative smoothness information 
about / , often of the form / G T, where T is a ball in a functional class, for 
example an L2-Sobolev ball {/ : H / ^ H L 2 < C}- Performance is then measured 
by considering the minimax risk 

M(n,T) = m i n m a x £ | | / V n ) ) - /||£a(T)- (2) 
/(•) feJr 

There is a considerable body of literature in the field of mathematical statis
tics to evaluate the minimax risk and to describe optimal and near-optimal esti
mators / under various assumptions — the articles [2], [22], [30] are good starting 
points. This literature focuses on the question: What is the best way to recover / 
if all we know is that / has certain smoothness properties? 

In the author's view, modern harmonic analysis makes it possible to recast 
the problems of this literature in a more modular form, separating out key results 
into two components, one falling in the domain of harmonic analysis and one in the 
domain of statistical decision theory. This separation makes it possible for statis
ticians to avoid re-inventing the wheel; for solving the harmonic analysis part of 
their question they can fully exploit recent advances from modern harmonic anal
ysis, rather than doing an elementary and possibly inadequate job from scratch. 
This separation also makes it possible for statisticians to do what they do best, 
and which no-one else will do for them: namely, solve problems of statistical deci
sion theory. In the author's opinion, this separation will also suggest new questions 
in statistics; for example, if mathematical statisticians are not making use of all 
the tools of modern harmonic analysis, why not? Is this a sign that there are new 
problems they could be attacking and are not yet doing so? And so on. 
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2. Abstract Statistical Estimation 

To connect the concrete problem (2) with deeper mathematical questions, we dis
cuss a continuum model: the White Noise Experiment [23]. In a standard example 
of this, the object we would like to recover, / , is an unknown function on the index 
set T (e.g. [0,1]) and we have observations 

Ye(dt) = f(t)dt + eW(dt), teT. (3) 

Here W is a standard Wiener process on T, and e a formal noise level parameter. 
A typical minimax problem in this abstract model is of the form 

M*(e,T) = minmapE\\f(Y<) - / | |2
i 2 ( T ) . (4) 

Here / is known only to lie in T, a class of functions, the same type of class 
as in (2). 

The model (3) and the model (1) are closely related. Indeed, when T is the 
same in both models, and supposing that T is nice enough, for example a subset 
of Holder(1/2 + rj, C) for some rj > 0, we generally have [3] 

M(n,F) ~ Af*(<7/>/n,.F), n - • oo , 

which says in some sense that problem (4) at noise level en = cr/y/n is essentially 
the same as the problem (2). More importantly, if the minimax risk M*(en, J7) 
in the white noise model is attained by the use of a simple estimator f(e\ then 
generally one has an induced estimator attaining the minimax risk in the sampled-
data model. So by studying the continuum model one learns enough to "solve" the 
finite-sample model. 

2.1. The Abstract Normal Mean The white noise model is equivalent to a type 
of infinite-dimensional normal mean problem. To see this, suppose we are given 
an orthogonal basis (fa)^, a C.O.N.S. for L2(T). We define 0» = (/, (ßi), and 
Vi — IT ^ ì W ^ C ( ^ ) )

 a n d Zi = JT (ßi(t)W(dt). Using this we can rewrite (3) as 

yi = 0i + e'Zi, i = l , 2 , 3 , . . . , (5) 

where 9 = (9i) is a vector in sequence space, (zi) is a Gaussian white noise (i.i.d. 
N(0,1)), and e is a formal noise level parameter, taking the same value as in 
the continuum model. Moreover, the orthogonality of the fa gives the isometry 
11/ - /IIL»(T) = II* - flltë" w h e r e / ~ E i M i - Hence, letting 0 = 0(.F) denote 
the collection of sequences arising as coefficients of members of T, (4) corresponds 
exactly to 

A/*(e,6) =minmaxS| | f l (y)- f l | | | . (6) 
0() 0 € 0 

In fact, in some cases 0 happens to have a nice description. For example, if T 
is the circle [0,27r), and T = {/ : ||/^m^ ||L2 < C}, then if we choose 0» as the usual 
real sine and cosine basis of L2[0,2-ir), 0 turns out to be an infinite-dimensional 
ellipsoid {%2i &i9\ < C2}, for appropriate a .̂ In short, the minimax problem (4) is 
transformed, quite literally by harmonic analysis, into the problem of estimating 
a normal mean when that mean is known to lie in an ellipsoid in £2. 
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2.2. The Bounded Normal Mean For certain special sets 0 — those with a nice 
geometry — we know how to obtain minimax and nearly minimax estimators, 
thanks to the efforts of researchers who have studied the bounded normal mean 
problem. Interesting cases that have been studied include the following: 

• F-balls: 0 = ep(C) = {9 : | |0| |^ < C}. 

• Hyper-Rectangles: 0 = ©^(r ) = {9 : \9i\ < n}. 

• Ellipsoids: 0 = 02(a) = {9 : £ . \9i\2ai < C}. 

• ^-bodies: 0 = 0p(a) = {9 : £ . \0i\*Oi < C}. 

• Hyper-Crosses: 0 = 0 O ( M ) = {9 : #{i : |0»| ^ 0} < k}. 

• Cartesian Products of the above. 

In addition to studies of the minimax risk over such sets 0 , there have also 
been efforts to study the minimax linear risk 

M£(e,0) = min maxE\\9(y) - 0| | | (7) 
0() linear e 

and to compare this with the minimax risk. 
In these cases, there are a variety of "soft" results characterizing minimax 

estimators and identifying nearly minimax estimators. For example, minimax es
timators are typically "shrinkers", satisfying ||V-0(y)||2 < 1. There are also quan
titative results identifying behaviors of minimax risk in an asymptotic sense, as 
e —• 0. Two specific cases seem to occur. 

Case (a): Linear estimators are nearly minimax. This means that for an appro
priate diagonal affine transformation 0 = Ay + b we have a risk close to 
the minimax risk, and 

M£(e,0) < C - M * ( e , 0 ) , 

with C small (for example, with ellipsoids C < the Ibragimov-Khas'min-
skii constant /i* « 5/4, uniformly over all e > 0 [14]). 

Case (b): Linear estimators perform badly — C cannot be effectively controlled 
independently of e and the dimension d. In those cases, coordinatewise 
thresholding estimators behave well; i.e. estimators of the form 

9i = (\yi\-\i)+-sgn(yi) (8) 

work well [14], [8], [9]. 

(Note for Banach Spacers: the division into cases where linear estimators work and 
don't work has to do with the geometry of the set 0 , and interacts with the notion 
of 2-convex and 2-concave sets appearing in Lindenstrauss and Tsafriri [14].) 

2.3. Lifting These results suggest that one can estimate / in the white noise 
model (3) by following a commutative diagram: 

1. Transform the white noise observations into the abstract observations (5); 
2. Apply a minimax or nearly-minimax estimator in the abstract setting; 
3. Transform the result back to the original setting. 
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The composition of these three steps defines an estimator in the white noise model. 
Moreover, due to the orthogonality of the transform, the performance in the white 
noise model is the same as the performance in the abstract model. Thus, if 0 = 
S (J7) is the induced body of coefficient sequences of a class T, and one can find a 
minimax linear estimator for 0 in the abstract model, the induced estimator / is 
also minimax linear in the white noise model. 

We might say that methods of estimating a multivariate normal mean "lift" 
up to methods of estimating a function from white noise observations. 

The only possible catch in the above program comes in the following issue: 
given a functional class T, we need to find an orthogonal sequence that transforms 
T into a set 0 for which minimax estimators are understood. So far, minimax 
estimators are understood essentially only for very special sets of the type listed 
earlier; these are special in part because they possess a tremendous degree of 
symmetry — in particular, orthosymmetry. 

3. Examples 

So far, we have claimed that if we have a minimax estimation problem (Ye,.F) 
and also a complete orthonormal system that transforms a functional ball T into 
a geometrically very special set, such as an ellipsoid, then multivariate normal 
decision theory comes into play, and furnishes us with minimax or near-minimax 
estimates in the original function estimation problem by "lifting". 

One suspects at this point that such situations are quite rare. Fortunately 
they include almost all the cases of T that statisticians had previously been study
ing in connection with models (1) and (3), and many new situations they have only 
just begun to study. 

3.1. Pinsker's Theorem The simplest and most elegant example has already 
been alluded to, where T is the circle [0,2?r), and T = {/ : ||/(m)||L2 < C}. 
Choose (ßi as the usual real sine and cosine basis of L2[0,2n), 0 turns out to be 
an infinite-dimensional ellipsoid {Yliai^ì < C2}, for appropriate a .̂ The solution 
of this bounded normal mean problem was found by Pinsker [29], who found the 
minimax linear shrinkage estimator and showed that this estimator was asymp
totically minimax as e —> 0. The "lifting" of this normal mean estimator to the 
nonparametric regression model is due to Nussbaum [28]. The "lifting" to spec
tral density estimation and density estimation contexts is due to Efroimovich and 
Pinsker [15], [16]. 

3.2. Wavelets As the reader might suspect, outside the case of L2 smoothness 
spaces, there is no orthogonal basis that exactly transforms balls T into simple 
objects like ellipsoids. However, a key fact about wavelet bases is that, after re-
norming of standard smoothness spaces, they map coefficient bodies in such spaces 
into nice geometrical objects [26], [19]. 

Suppose that T is the circle [0,27r), and T is either an Lp-Sobolev ball {/ : 
| | / ^ | | z ,p < C}, 1 < p < oo, or, more generally, a Besov ball or a Triebel ball 
(compare [27], [20]). Choose (ßi as the usual periodized Meyer wavelet basis [26], 
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[27]. Then we can equivalently re-norm the Holder, Sobolev, Besov, or Triebel space 
so that the induced body of wavelet coefficients 0 = 0(.F) turns out to have a 
nice shape. For example, a Holder class maps into a hyper-rectangle, an L2-Sobolev 
class maps into an ellipsoid; a ball from the Bump algebra Bl^ transforms to an 
^-body {S i f l i l ^ l ^ C} ' for appropriate a^. The general Besov body transforms 
into a set ||0||ba < C, where 

11%, = E2J'S9(Ei^+fciT
/p 

\ j k=0 

and the general Triebel body transforms into a set ||0||/* < C 

( \ i /p 

Donoho and Johnstone [11] carefully studied the normal mean estimation problems 
arising from the bodies generated by the wavelet transform and found that in 
every case, simple thresholding was nearly-minimax, that is minimax to within 
constant multiples independent of e > 0. "Lifting" this result to the nonparametric 
regression problem says that for every classical smoothness condition in the Holder, 
Sobolev, Triebel, or Besov scale, simple thresholding of wavelet coefficients with 
appropriate levels is minimax to within constant factors. 

3.3. Unconditional Basis The Wavelet and Fourier examples are special cases 
of a more general picture. They are examples where the corresponding functional 
classes T admit orthogonal unconditional bases [27], [20], [21]. Such classes trans
form isometrically, under the appropriate orthogonal basis into solid, orthosym
metric sets. Nearly-minimax estimation can be treated in such cases by "lifting" 
simple thresholding estimators using the orthogonal basis. 

In detail, suppose we have a functional space F that has an unconditional 
orthogonal basis, i.e. for a certain special basis ((fo), the norm obeys 

| | Ç ± A 0 i | | F < C - | | Ç f l ^ | | F l 

% i 

for all sequences of signs ±j . Then the space can be given an equivalent quasi-norm 
in which functional balls T = { | | / | |F < C} map into coefficient bodies 0 = ©(J7) 
that are solid and orthosymmetric. Here by solid and orthosymmetric, we mean 
that if 0 G 0 and £ = (S.ì9ì)ì with \s{\ < 1 for every i, then Ç E 0 as well. 

Suppose we have data (3) with / G T. Then, as before, this is equivalent to 
data in the abstract model (5) with a priori information 0 G 0 , with 0 a solid 
orthosymmetric body. To solve this, suppose, as in [14], [8], [9], [13], that 0 has 
tail n-widths d^ = sup{£\> m 92 : 9 G 0 } that decay as fast as some power of the 
index, d^ < Const -m~3, for some ß > 0. Construct the estimator 9^e,i3\ as follows. 
Set m(e) = (_c-(2.ooi//9)j s o t h a t d ^ = 0 ^ a n d s e t x ^ = ^2\og(m(e)). The 
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estimator sets all coordinates i > m of 0^e' • ' = 0. And, in the first m coordinates, 
it sets 9i' ' = r)\{yi), where rj\ is the soft threshold nonlinearity (8). 

THEOREM 1 

sup £110^ - 0||2 < 0(log(e~1)) • A/*(e,0). e - • 0. 

In words, simple thresholding is minimax to within logarithmic factors. 

Remark 1. Because the estimator 0e'^ depends only very weakly on 0 
(through the exponent ß), a single estimator can be nearly minimax over a very 
wide range of solid orthosymmetric sets. "Lifting" this insight via wavelet bases, 
one can posit smoothness information of the form / G J7(s, C), where s is a smooth
ness parameter and C is a scaling parameter, with both s and C unspecified, and 
have a single estimator nearly minimax over a wide range of s and C. See for 
example [9], [13]. 

Remark 2. It is easy to give examples of spaces outside the usual range of 
smoothness spaces where unconditional structure is present. Modulation spaces in 
Time-Frequency analysis [17] admit orthogonal unconditional bases [6], [18] based 
on so-called Wilson bases with Gabor-like elements. In the multivariate setting, 
the Mixed Smoothness spaces studied by Vladimir Temlyakov are anisotropic and 
fall outside the usual range of isotropic Besov, Triebel, Sobolev, etc., spaces; for 
those spaces unconditional bases can be constructed from tensor products of 1-
d wavelets having different widths in the different directions. In all such cases, 
noise removal in the continuum model can be effected by "lifting" the technique 
of simple thresholding using the orthogonal basis. 

At this most general level, the thresholding technique is no longer necessarily 
a "smoother" — it is more of a "de-noiser", as Coifman likes to say. 

4. Adaptation 

Much of the activity in modern harmonic analysis has moved away from the fixed-
orthogonal-basis concept. Rather than assuming that one fixed orthogonal basis 
— Fourier, wavelets, or something else — will provide the answer to our questions, 
one constructs a special expansion adapted to the problem at hand. In some cases 
this might be a special orthogonal expansion; in other cases it might be a non-
orthogonal expansion — an "atomic decomposition". Such ideas have been used for 
example, in decomposing pseudo-differential operators, in study of boundedness of 
general operators, and even (Coifman tells me) in Fefferman's proof of Carleson's 
theorem on the almost-everywhere convergence of Fourier series. 

A leader in applying this type of thinking to signal processing has been Coif
man, who along with Meyer developed libraries of special libraries of orthogo
nal bases — wavelet packets and cosine packets — based on the tiling of the 
discrete-time time-frequency plane by assorted Heisenberg tiles, and who worked 
with Wickerhauser to create algorithms to rapidly select best-adapted orthogonal 
bases. 
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Such ideas may be of use in statistics as well; if we have a noisy oscillatory 
signal and want to remove noise, the issue is one of de-noising rather than smooth
ing, and the idea of finding a best-adapted time-frequency basis for the purposes 
of de-noising is an attractive possibility. A conceptual problem, however, in deal
ing with such possibilities, is the fact that construction of special bases or other 
expansions adapted to noisy data seems intrinsically perilous. One fears that the 
selected basis might be heavily influenced by the presence of noise. This suggests 
some new questions for statistics: (a) how to select an orthogonal basis in the 
presence of noise; and (b) how to develop a theory of what is the best performance 
possible. 

A concrete result in this direction has recently been obtained by the author 
and Johnstone [12]. Suppose we have observations yi = Si + Z{, i = 1 , . . . , n, where 
(Sì) is signal and (Zì) is i.i.d. Gaussian white noise. Suppose we have available 
a library C of orthogonal bases, such as the wavelet packet bases or the cosine 
packet bases of Coifman and Meyer. We wish to select, adaptively based on the 
noisy data (yi), a basis in which best to recover the signal ("de-noising"). Let Mn 

be the total number of distinct vectors occurring among all bases in the library 
and let tn = \j2\og(Mn). (For wavelet packets, Mn = nlog2(n).) 

Let y[B] denote the original data y transformed into the Basis B. Choose 
À > 8 and set A?l = (A • (1 -f tn))

2. Define the entropy functional 

£A(»,B) = Çminfo?[B],A£). 
i 

Let B be the best orthogonal basis according to this entropy: 

B = axgminBeCEx(y,B). 

Define the hard-threshold nonlinearity T]t(y) = yl{\y\>t}. In the empirical best 
basis, apply hard-thresholding with threshold t = \fK^\ 

êi{B\ = V^(yi[B})-

THEOREM 2 With probability exceeding 7rn = 1 — e/Mn, 

||s* - «Iß < (1 - 8/A)-1 • An • m i n £ p s - s\\2
2. 

Here the minimum is over all ideal procedures working in all bases of the library, 
i.e. in basis B, sB is just 2/;[#]l{|Si[ß]|>i}-

In short, the basis-adaptive estimator achieves a loss within a logarithmic 
factor of the ideal risk that would be achievable if one had available an oracle that 
would supply perfect information about the ideal basis in which to de-noise, and 
also about which coordinates were large or small. 

5. Speculation 

The way is clear for mathematical statisticians to study new estimation problems 
— problems outside the realm of traditional "smoothing", problems where esti
mation involves "de-noising" rather than smoothing. The key is to understand 
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classes T for which adaptive bases or adaptive atomic decompositions are the 
best way to proceed. In the fixed basis case we had the concept of unconditional 
basis; but for the more general setting we need some new concept. The author 
and Johnstone have been working on problems of edge-preserving de-noising and 
de-noising of chirps, and have been at tempting to find such a substi tute in those 
cases; hopefully harmonic analysts will find something even better. 
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1 Introduction 

Since the celebrated result of Fukushima on the connection between regular Dirich
let forms and Hunt processes in 1971, the theory of Dirichlet forms has been rapidly 
developed and has brought a wide range of applications in various related areas of 
mathematics and physics (see e.g. the three new books [BH 91], [MR 92], [FOT 94] 
and references therein). In this survey paper I shall mainly discuss the development 
of quasi-regular Dirichlet forms and their applications. 

Roughly speaking, quasi-regular Dirichlet forms on general state spaces are 
those Dirichlet forms that are associated with right continuous strong Markov 
processes. Recently an analytic characterization of quasi-regular Dirichlet forms 
has been found [AM 91c], [AM92], [AMR92a,b,c] [MR 92], [AMR 93a,b], which 
has completed the solution of a long-standing open problem of this area. The 
characterization condition has been proved to be checkable in quite general situa
tions [RS 93], and the framework of quasi-regular Dirichlet forms has been shown 
to be especially useful in dealing with very singular or infinite-dimensional prob
lems. Applications are e.g. in the study of singular Schrödinger operators [AM 
91a,b], loop or path spaces over Riemannian manifolds [ALR 93], [DR 92], infinite-
dimensional stochastic differential equations [AR 91], Quantum field theory [AR 
90], large deviation theory [Mu 93], non-symmetric Ornstein-Uhlenbeck processes 
[Sch 93], measure valued processes [ORS 93], and Markov uniqueness for infinite 
dimensional operators [ARZ 93]. 

It was also proved that a Dirichlet form is quasi-regular if and only if it is 
quasi-homeomorphic to a regular Dirichlet form on a locally compact separable 
metric space [AMR 92c], [MR 92], [CMR 93]. Hence most of the results known for 
regular Dirichlet forms can be transferred to the quasi-regular case. This trans
fer method has been used e.g. in the study of absolute continuity of symmet
ric diffusions [Fi 94], transformation of local Dirichlet forms by supermartingale 
multiplicative functionals [Ta 94], and measures charging no exceptional sets and 
corresponding additive functionals [Kuw 94]. 

Concerning the history, it should be mentioned that the analytic part of the 
theory of Dirichlet forms goes back to the pioneering papers of Beurling and Deny 
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[BeDe 58, 59]), whereas the more recent probabilistic part was initiated by the 
fundamental work of Fukushima [Fu 71a,b, 76, 80] and Silverstein [Si 74] combining 
regular Dirichlet forms and Hunt processes on locally compact separable metric 
spaces. At the same time the above-mentioned two authors already touched the 
study of the connection between nonregular Dirichlet forms and Markov processes 
by a method of regular representation [Fu 71b], [Si 74]. The case of local Dirichlet 
forms in infinite-dimensional space, leading to associated diffusion processes, was 
studied originally by Albeverio and H^egh-Krohn in a rigged Hilbert space setting 
[AH 75], [AH 77a]. More recently, many people have made contributions in the 
research direction towards extending the theory to also cover the nonregular case 
(e.g. [Dy 82], [Le 83], [FiGe], Fi 89]), especially the infinite-dimensional state spaces 
case (e.g.[Kus 82], [AR 90]). See [MR 92] for more detailed historical information 
in this connection. 

It should be mentioned that recently the area of Dirichlet forms is also very 
active in other research directions. In what follows for each activity I shall men
tion only one or two related papers with the hope that the interested reader may 
find further information from the references therein. In addition to the three new 
books mentioned at the beginning of this paper, other activities have concerned 
further extensions of the framework of Dirichlet forms, which includes the study 
of semi-Dirichlet forms [MOR 93], [AMR 94], positivity preserving forms [MR 93], 
time dependent (parabolic) Dirichlet forms [O 93], [Sta 94], and noncommutative 
Dirichlet forms ([Li 94], originated by [AH 77b]), as well as more detailed studies 
of additive functionals and smooth measures [Fu 94], [FuLe 91]. Further problems 
that have been discussed are uniqueness problems [ARZ 93], maximum Markov-
ian extensions [Ta 92] and essential self-adjointness of Dirichlet operators [AKoR 
93], Dirichlet forms and diffusions on fractals [FuSh 92], [KZ 92], application of 
Dirichlet forms to pseudo differential operators [Ja 92], [JaHo 94], application of 
Dirichlet forms to heat kernel estimates and geometry [Stu 94], application of 
Dirichlet forms to the study of nonlinear differential equations [CWZ 93], [Z 94], 
application to multiparameter processes [Hi 94], [So 94], and application to the 
study of Feynman-Kac semigroups [ABM 91], etc. It is fair to say that the area of 
Dirichlet forms has been extremely active in recent years and it seems that this 
will even increase in the future. 

The remainder of this paper is organized as follows. The analytic characteri
zation of quasi-regular Dirichlet forms will be described in Section 2. Two examples 
of applications of quasi-regular Dirichlet forms (Schrödinger operator with singular 
potentials, construction of diffusions on loop spaces) will be discussed in Section 3. 

2 Quasi-regular Dirichlet Forms and Markov Processes 

For the reader's convenience we begin this section with the definition of Dirichlet 
forms. For simplicity throughout this section let E be a metrizable Lusin space, 
i.e., a Borei subset of a Polish space. But we remark that all results represented 
in this section can be extended to general topological spaces E in an appropriate 
way (cf. Remark 2.7 below and [MR 92]). Let m be a cr-finite measure on (E,B). 
Denote by (, ) the inner product of the space L2(E: m). For a (real-valued) bilinear 
form S with domain D(£), which is a linear subspace of L2(E;m), the symmetric 
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part £ of £ is defined by 

£(u,v) = -\£(u,v) +£(v,u)]: u,v G D(£). 

DEFINITION 2.1 A bilinear form (£,D(£)) with D(£) dense in L2(E:m) is called 

a coercive closed form if: 
(i) Its symmetric part (£,D(£)) is positive definite and closed on L2(E;m), i.e., 

D(£) equipped with the inner product £a := £ + a(,), a > 0, is a Hilbert 
space for some (hence all) a > 0. 

(ii) (Sector Condition) There exists a constant K > 0 (called the continuity 
constant) such that 

|£i(ti,v)| < tf£i(u,u)1/2£i(ü,v)1/2 for all u,v G £>(£). (2.1) 

(£,D(£)) is called a Dirichlet form on L2(E;m) if in addition: 
(iii) (Dirichlet property) For every u G -0(f), w# := u+ A 1 G D(£) and £{u ± 

u#,u = F ^ ) > 0. 

Note that (ii) is equivalent to saying that £ is a continuous functional on D(£) x 
D(£) with respect to the product topology induced by the norm £x' . Let 
(L,D(L)) be the generator of a coercive form (£,D(£)) on L2(E;m), i.e., the 
unique closed linear operator on L2(E;m) such that D(L) C D(£) and £(w, v) = 
(—Lu, v) for all u G D(L), v G £)(£)• Let (Tt)t>o be the strongly continuous con
traction semigroup on L2(E;m) generated by L. We say that (£,D(£)) has the 
semi-Dirichlet property if in 2.1 (iii) it holds only that £(u + u#,u — u#) > 0. 
Then the semi-Dirichlet property for (£,D(£)) is equivalent to the sub-Markov 
property for the semigroup, i.e., if / G L2(E;m) with 0 < / < 1 then 0 < Ttf < 1 
for all t > 0. Hence, if L, (Tt)t>o denote the corresponding dual (i.e., adjoint ob
jects in L2(E;m)), then the Dirichlet property of (£,D(£)) is equivalent with the 
sub-Markov property for both (Tt)t>o and (Ti)t>o-

DEFINITION 2.2 

(i) An increasing sequence (Fk)keiN of closed subsets of E is called an £-nest if 

UkewD(£)pk is £x -dense in D(£), 

where D(£)Fk := {u G D(£)\u = 0 ra-a.e. on F%} and F£ :=E\Fk,ke IV. 
(ii) A set N C E is called £-exceptional if N C r\keiNF£ for some £-nest 

(Fk)keiN- A property holds £-quasi-everywhere (abbreviated £-q.e.) if it holds 
outside some ^-exceptional set. 

(iii) An £-q.e. defined function u on E is called £- quasi-continuous if there exists 
an £ nest (Fk)kew s u c n t n a t wlFfc is continuous for all k G IV. (In this case 
we write u G C({Ffc}).) 
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DEFINITION 2.3 A Dirichlet form (£,D(£)) is called quasi-regular if: 
(i) There exists an £-nest consisting of compact subsets of E. 

~l /2 
(ii) There exists an £1

/ -dense subset of D(£) whose elements have £-quasi-
continuous m-versions. 

(iii) There exist un G D(£), n G UV, having £-quasi-continuous ra-versions un, 
n G IV, and an ^-exceptional set N C E such that {^1™ G UV} separates 
the points of E \ N. 

Next we establish the correspondence between quasi-regular Dirichlet forms and 
Markov processes. In what follows we add an isolated point A to E. Set E& := 
EU {A} with Borei a-field B(EA) and extend ra to B(EA) by setting m({A}) = 0. 
Let M= (ft, J7, (Ft), (Xt), (Pz)zeEA) be a normal strong Markov process with state 
space E, with life time £, cemetery A, and shift operators 9±, t > 0. In this paper 
M is called a right process if it is Borei right in the sense of [Sh 88 (20.1)], (i.e., 
t »—> Xt(w) is right continuous on [0,oo[ for Pz-&.e. UJ G Q. and all z G E, and its 
transition function is Borei). 

Now let (£,D(£)) be a Dirichlet form on L2(E;m) and (Tt)t>0, (ft)t>o the 
corresponding sub-Markovian strongly continuous contraction semigroups on 
L2(E;m). We say a right process M with state space E is associated (resp. coas-
sociated) with (£,D(£)) if 

Ptf := E.[f(Xt)] is an ra-version of T t/(resp. ftf) for all / : E -> M, 

such that / is JB(£')-measurable, ra-square integrable, and all t > 0, 

where as usual we use the same symbol / for the L2-class determined by the 
function / and Ez[ ] denotes expectation w.r.t. Pz. Note that in this case the 
transition semigroup (Pt)t>o of M "respects ra-classes of functions". We say that 
a pair (M,M) of right processes with state space E is associated with (£,D(£)) 
if M is associated and M is coassociated with (£,D(£)). 

Note in general that for (Tt)t>o as above there does not exist a reasonable 
Markov process satisfying (2.2). 

The following result shows that the quasi-regularity condition is exactly an 
analytic characterization of those Dirichlet forms that are associated with right 
processes. 

THEOREM 2.4. A Dirichlet form (£,D(£)) on L2(E:m) is quasi-regular if and 
only if there exists a pair (M,M) of right processes associated with (£,D(£)). 
In this case (M,M) is always properly associated with (£,(D(£)) in the sense 
that Ptf (resp. Ptf) is an £-quasi-continuous ra-version of Ttf (resp. Ttf) for all 
/ : E —• R, iB(£')-measurable, ra-square integrable, and all t > 0. (2.3) 

Let M = (Q,Jr,(Jr
t),(Xt),(Pz)zeE^) be a right process with state space E and 

resolvent (Ra)Q>o, i.e., 

Raf(z) := f e-°itEz[f(Xt)} dt, a > 0, z G E, (2.4) 
Jo 
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for / G Bb(E) (i.e., / : E -> M, f ß(£)-measurable, bounded). We call M ra-
sectorial if for one (and hence all) a > 0 there exists a constant KQ > 0 such that 
for all / , g G B^(E), ra-square integrable, 

\(Raf,g)\ < Ka(Raf,f)
1/2(Rag,g)1/2 (2.5) 

(cf. property (2.1)). Suppose now that ra is aRQ-supermedian for all a > 0 (i.e., 
jf aRafdm < f f dm for all / #(£)-measurable, / > 0). Then each Ra "lifts" to a 
positive definite bounded linear operator Ga on L2(E: ra) which satisfies the sector 
condition. It can be seen (cf. [MR 92, Chap. II, Sect. 5] and also [MR 92 Chap. 
IV, Sect. 2]) that (GQ)Q>o is a sub-Markovian strongly continuous contraction 
resolvent. Hence (cf. e.g. [MR 92, Chap. I]) there exists a corresponding Dirichlet 
form (£, D(£)) on L2(E; ra) such that M is associated with (£, D(£)) in the sense 
of (2.2). By 2.4, (£,D(£)) is quasi-regular and M is properly associated with 
(£,D(£)). We say that two right processes M and M' are m-equivalent if they 
share a common invariant set S such that their transition functions coincide on S 
and m(E \ S) = 0. We say that two pairs of right processes (M, M) and (M', M') 
are m-equivalent if M is ra-equivalent to M' and M is ra-equivalent to M'. It was 
proved in [MR 92, Chap. IV. 6.4] that if (M, M) and (M7, M') are two pairs of ra-
sectorial right processes that are properly associated with the same quasi-regular 
Dirichlet form (£,D(£)), then (M, M) and (M' M') are ra-equivalent. Therefore 
from the above discussion we have 

THEOREM 2.5. The relation (2.3) establishes a one-to-one correspondence be
tween all the m-equivalence classes of pairs of m-sectorial right processes (M, M) 
on E and all the quasi-regular Dirichlet forms on L2(E\m). 

REMARK 2.6 Definitions 2.2 and 2.3, and Theorems 2.4 and 2.5 are taken from 
[AMR 93a], the results of which have been announced in [AMR 92b]. The notion 
of quasi-regular Dirichlet forms appeared first in [AMR 92a]. A different version of 
the conditions (i)-(iii) in Definition 2.3 was first formulated for symmetric Dirichlet 
forms in [AM 91c, 92]. A systematical study of quasi-regular Dirichlet forms with 
many examples is contained in [MR 92]. 

REMARK 2.7 

(i) If we consider ra-tight special standard processes instead of right processes, 
then Theorem 2.4 and Theorem 2.5 extend to the case where E is merely a 
Hausdorff topological space such that its Borei a-algebra coincides with its 
Baire a-algebra (cf. [MR 92]). Morover, there is a one-to-one correspondence 
between all the quasi-regular semi-Dirichlet forms and all the equivalence 
classes of sectorial ra-tight special standard processes; see [MOR 93] for de
tails. 

(ii) In addition to the above basic correspondence stated in Theorem 2.5 (and 
Remark 2.7(i)), the following further correspondences between quasi-regular 
(semi-)Dirichlet forms and ra-sectorial Markov processes have been found: 

• One-to-one correspondence between strictly quasi-regular semi-Dirichlet 
forms and equivalence classes of Hunt processes ([AMR 94], see also [MR 
92] for the Dirichlet form case) (2.6) 
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• One-to-one correspondence between quasi-regular Dirichlet forms having the 
local property and equivalence classes of diffusions ([AMR 93b], [MR 92], 
extending previous correponding work in [Fu 80]) (2.7) 

3 Applications 

3.1 Schrödinger operators with singular potentials. As a simple application of 
A 

quasi-regular Dirichlet forms consider the Schrödinger operator — L = —- + V on 

L2(IRd; dx), d>2. Here the potential V is given by 

oo 

V(x) = ^2ci\x-Xi\-ai (3.1.1) 
i=i 

where {xi}iew is the totality of points in Md with rational coefficients, {ci}iew 
a sequence of strictly positive numbers, and a^ > d for all i G W. Note that with 
the above data the potential function V is singular in every neighborhood of each 
point x G Md. In order to obtain the operator L we consider the classical Dirichlet 
form (£,D(£)) on Ld(Md;m), where ra is the Lebesgue measure and (£,D(£)) is 
defined by 

D(£) = Hh2(Rd) := {u G L2(Rd;m)\ f \Vu\2m(dx) < oo} 

£(u, v) = Vtt • Vv m(dx); u, v G D(£). 
(3.1.2) 

Here and henceforth the derivatives are taken in the distributional sense unless 
otherwise stated. Let fi(dx) = V(x)dx and consider the perturbation (£^,D(£ß)), 
which is defined by 

D(£») = {ue D(£)\ fü2fi(dx) < oc} 

£ß(u,v) = £(u,v) + / üvfj,(dx). 
(3.1.3) 

Here ü stands for a quasi-continuous ra-version of u. It was proved in [AM 91a] that 
if jji is a smooth measure in the sense of [Fu 80] then (£*1, D(£^)) is again a Dirichlet 
form. Moreover, for any given sequence of real numbers {cxi}iew, one can always 
find a sequence of strictly positive numbers {ci}iejN such that ß(dx) = V(x)dx 
with V defined by (3.1.1) is a smooth measure, and hence the perturbed form 
(£ß,D(£fl)) is a Dirichlet form. Let L with domain D(L) be the generator of 

(£^,D(£ß)), then — L = — — + V in the distributional sense and its domain 

D(L) is a dense subset of L2(Md; ra). Note that in this case there is no continuous 
function (except for the zero function) in D(£ß). Hence (£ß, D(£ß)) is by no means 
a regular Dirichlet form in the sense of [Fu 80]. Nevertheless one can prove that 
(£M, D(£ß)) is always a quasi-regular Dirichlet form and hence it is associated with 
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a diffusion process on Md. For a detailed discussion see [AM 91a,b] and references 
therein. In [AM 91a] we also obtained an improvement of the Kato-Lax-Milgram-
Nelson theorem, and necessary and sufficient conditions for a perturbed form (by 
signed smooth measures) to be bounded below in a general contex. It turns out 
that the perturbed form is bounded below if and only if the associated Feynman-
Kac functional is a strongly continuous semigroup on L2(E;m). See also [Ma 90], 
[ABM 91] for the application of Dirichlet forms to Feyman-Kac semigroups. 

3.2 Construction of diffusions on pinned loop spaces. Let (M,g, V,o) be given, 
where M is a d-dimensional compact Riemannian manifold without boundary, g is 
a Riemannian metric on M, V is a p-compatible covariant derivative, and o G M 
is a fixed base point. It will always be assumed that the covariant derivative V is 
torsion skew symmetric, i.e., if T is the torsion tensor of V, then g(T(X, Y),Z) = 0 
for all vector fields X, Y, and Z on M. We denote by C(M) the set of continuous 
paths a : [0,1] H-> M such that a(0) = a(l) = o and we equip C(M) with the 
topology of uniform convergence. The pinned Wiener measure concentrated on 
C(M) will be denoted by v. The corresponding real L2-space is denoted by L2(v). 
Recall that the coordinate maps $^a : W(M) —> M given by $^a(tr) = o~(s) are 
M-valued semi-martingales relative to the measures v. Therefore it is possible to 
define a stochastic parallel translation operator Hs(a) : T0M —> Ta^M for v 
almost every path a. 

Let H be the reproducing kernel Hibert space consisting of functions h : 
[0,1] —> T0M such that h(0) = h(l) = 0, h is absolutely continuous, and (h, h)n '•= 
/o \h'(s)\2 ds < oo, where \v\2 := g0(v,v) for v G T0M. A function F : C(M) >-• M 
is said to be a smooth cylinder function if F can be represented as F(a) = 
f(a(si),..., v(sn)), where / : Mn H-> IR is a smooth function and 0 < Si < S2 • • • < 
sn < 1. Let TC^ denote the set of all smooth cylinder functions. Note that TC^ 
is dense in L2(v) because it separates the points of C(M ) . Given h G H DC 1 and 
a smooth cylinder function F(a) as above, the /i-derivativc of F is 

n 

dhF(a) := ^ff< 7 ( S j)(V i / (^) , JffS i(a) / i (S i)) , (3.2.1) 
i=l 

where ~o := (o-(si),..., a(sn)), S7if(~v) G Ta(Si)M is the gradient of the function 
/ relative to the ith variable while the remaining variables are held fixed. 

Let 

f s(l - t) if s < t 
G(s*t) := < , which is the Green's function v • J \ t(l - s) if s > t 

d2 

for the operator — -—=• with Dirichlet boundary conditions at both s = 0 and s = 1. 
dsz 

Then one can check that G is a reproducing kernel for H. For F as in (3.2.1) we 
set 

n 
DF{tr)(8) = ^ G ( s , S i ) ^ W 1 V i / C ? ) , (3.2.2) 

i= l 
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where F(o~) = f(~<?) as specified before (3.2.1). Then 

dhF(o) = (DF(a),h)H fora l i he HOC1. (3.2.3) 

It was proved in [DR 92] tha t up to ^-equivalence DF is the unique function from 
C(M) to H tha t satisfies (3.2.3). We call DF the gradient of F. We now define 

£(F, K) := f (DF, DK)Hv(da) for F, K G TC™ . (3.2.4) 
JC(M) 

One can prove tha t (£, TC°°) is closable on L2(v) and its closure (£, D(£)) is 
a symmetric Dirichlet form on L2(v) having the local property. Moreover, one can 
check tha t (£, D(£)) is quasi-regular and hence by Theorem 2.4 and Remark 2.7(h) 
there exists a diffusion process M = (SI, J7, (Ft)t>Q, (Xt)t>o, (Pz)zeEA) associated 
with (£,D(£)), i.e., for all / G L2(v) and all t > 0, 

Ptf := E.[f (Xt)]is an £-quasi-continuous ^-version of Ttf 

where Tt := etL and L is the generator of (£,D(£)). 

Note tha t L is an infinite-dimensional Ornstein-Uhlenbeck operator over the non
linear space C(M), and L is of great interest in both mathematics and physics. 
Similarly one can construct diffusions on the pa th space over M. For a detailed 
discussion of this subsection see [DR 92]. See also [ALR 93] for the construction 
of diffusions on free loop spaces over Md. 
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ABSTRACT. Let B(t) be the set of sites reached from the origin by time t in standard 
first-passage percolation on Zd, and let Bo (roughly Mm B(t)/t) be its deterministic 
asymptotic shape. We relate the t —> oo microstructure of the surface of B(t) to 
spanning trees of time-minimizing paths and their transverse deviations and to 
curvature properties of BQ. The most complete results are restricted to d = 2. 

1 The Growing Shape of First-Passage Percolation 

In standard first-passage percolation [HW], [KI], one begins with i.i.d. nonnegative 
random variables r(e) on some (Q, T, P), indexed by the nearest neighbor edges 
e of Zd. The passage time T(r) for a finite (site self avoiding) path r consisting of 
edges e\,..., en is simply £ \ r(ei) and the passage time T(u,v) between two sites 
u, v G Zd is the inf of T(r) over all paths r from u to v. From any site x, one may 
consider the stochastically growing region Bx(t) = {y E Zd : T(x,y) < t}. 

The surface of Bx(t) (for fixed x and increasing t) is one of a variety of 
physically interesting models of growing interfaces [KS]. In this note we report on 
some initial progress in understanding the microscopic structure of this surface 
when t —> oc. The results, which have partly been obtained in collaboration with 
Cristina Licea and Marcelo Piza, are presented here in a preliminary form with 
no attempt at stating optimal hypotheses and with only sketches of most proofs. 
Complete proofs and improved hypotheses will be presented in future papers. 

Our hypotheses on the common distribution of the r(e)'s are: 
A. r(e) is a continuous random variable. 
B. E(eQT^) < oc for some a > 0. 
C. P(r(e) > u) > 0 for every u < co. 

Hypotheses A and B are much more than sufficient for the celebrated shape the
orem [R], [CD], [KI] which, roughly speaking, implies that for fixed x, t~1Bx(t) 
converges a.s. to BQ, a nonrandom, compact, convex subset of Rd (symmetric about 
the origin) with nonempty interior. Hypothesis A is also sufficient (and necessary) 
to ensure that for every u, v there is a.s. a unique time-minimizing path (which we 
denote M(u,v)) between u and v — i.e., such that T(M(u, v)) — T(u,v). 

Research supported in part by NSF Grant DMS-9209053. 
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Closely related to the analysis we present here are some recent results on 
fluctuations of Bx(t) as t —+ oc. One major result, due to Kesten and Alexander 
[K2], [A] is, roughly speaking, that the deviation of Bx(t) from tBQ is 0(t1/2 logt). 
Another version of their result (more suited to our present purposes) may be 
expressed in terms of the norm g(y) (on Rd) associated with the shape BQ : g(y) = 
inf{A > 0 : y/X G BQ}. Note that the norm g(y) and the Euclidean norm \\y\\ 
are bounded by multiples of each other. The shape theorem is essentially the 
statement that as ||y|| —• oo, T(0,y)/g(y) —• 1; Kesten and Alexander show that 
for any e > 0, 

P(\T(0,y) - g(y)\ > A) < C1exp(-C2X/\\y\\1^ (1.1) 

for ||tf||V2+« < A < ||y||3/2-E. 
In [NP], the Kesten and Alexander results, which concern longitudinal de

viations of the surface of Bx(t), are used to bound the transverse deviations of 
the finite time-minimizing paths, M(x,y). The result of [NP], roughly speaking, is 
that for any e > 0, M(x, y) stays within distance ||x — y||3/4+e of the straight line 
joining x and y when ||y|| —> oc while y/\\y\\ —> y\ here, the unit vector y is required 
to be a "direction of curvature" for BQ. In Section 3 of this paper (see the first two 
propositions there), using (1.1), we extend these transverse bounds to semi-infinite 
time-minimizing paths. This extension, which is crucial to our analysis, is based 
on an assumption of "uniform curvature" for BQ, which we discuss below. 

To study the microstructure of the t —> oc limit of the surface of B(t) (i.e., 
Bx(t) with x = 0), one natural approach is to pick a sequence yn of sites in Zd with 
\\yn\\ —• oo and 2/n/||2/n|| —> V a n d then ask whether B(t), at the time it reaches yn, 
when viewed from yn, has a limit in distribution as n —+ oo : limn(i?(T(0, yn))—Un)-
We remark that if Bo has a unique tangent plane at y = y/g(y) (which is not part 
of our uniform curvature assumption), then this limit should have a boundary 
"surface" (necessarily passing through the origin) that is asymptotically parallel 
to that tangent plane. 

The first step in our analysis is to replace B(T(0,yn)) — yn by the equidis-
tributed B~Vn(T(—yn,0)), which we denote by Ê[—yn]. The advantage of this 
replacement is that now there is a chance for an almost sure limit. Indeed, to 
have such a limit, it suffices if for each site x, T(-yn,x) — T(-yn,0) converges 
a.s. to some H(x) (nonzero for x ^ 0) because then the a.s. limit of B[—yn] 
is just {x : H(x) < 0}. Thus, we are led to the natural question of whether 
T(u, xn) — T(v,xn) has an a.s. limit (nonzero for u ^ v) as xn tends to infinity in 
some direction x. To state a theorem, we need one more definition. 

We say that BQ (or its corresponding norm g) is uniformly curved if for some 
C > 0 and any z = cxz\ + (1 — a)z^ with g(z\) = g(z2) = 1 and a e [0,1], 

l-g(z)>C[mm(g(z-zl),g(z-z2))}
2 . (1.2) 

We remark that this will be the case if for some p < oo and any point z' on the 
surface of BQ there is a ball of radius at most p with z' on its surface that contains 
the entire interior of BQ. Unfortunately, there is in general very little information 
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known about the shape of BQ, and thus, at present, no proof (for any distribution 
of the r(e)'s) that BQ is uniformly curved. We also remark that weakened versions 
of (1.2) where the square in the R.H.S. is replaced by any finite power are sufficient 
to yield the conclusions of the next theorem, but we do not know of a proof of this 
weakened hypothesis either. 

THEOREM 1.1. Set d = 2. Assume Hypotheses A, B, and C on the distribution of 
the r(e) 's and aiso assume that BQ is uniformly curved. Let v be any continuous 
distribution (i.e., probability measure with no atoms) on the unit sphere of Hi2; 
then for v-almost every x, the following is true almost surely: for every u, v in Z2, 
there is an Hx (u, v) (nonzero for u / v) such that 

lim [T(u, x) - T(v, x)} = Hx (u, v) . (1.3) 
i|x,| — oo 

x/\\x\\-+x 

The proof of Theorem 1.1 is given at the end of the next section after several 
preliminary results concerning spanning trees of time-minimizing paths. 

2 Spanning Trees 

For each x in Zd, denote by R(x) the union over all y G Zd of the time-minimizing 
paths M(x,y). Slightly abusing notation, we regard R(x) both as a set of edges 
and as the graph with that edge set and vertex set Zd. It is easy to see that for 
each x, the graph R(x) is a tree, spanning all of Zd. Thus, there must be at least 
one semi-infinite path in R(x) (starting from x). The next three theorems concern 
these semi-infinite paths; together they yield Theorem 1.1 (as we explain below) 
by giving an explicit construction of Hx(u,v) in terms of another spanning tree 
constructed out of (some of) the semi-infinite paths from the i?(x)'s. Sketches of 
the proofs of the three theorems are given in Section 3. The first theorem, valid 
for any d, is the one related to transverse deviations of semi-infinite minimizing 
paths. The second and third theorems are currently restricted to d = 2. 

If a semi-infinite path r consisting of the edges (XQ, X \ ) , (x\, #2), • • • has the 
property that £n/ | |#n| | —• £, we say that r has direction x. Let D denote the event 
that every semi-infinite path in every R(x) has a direction. For each unit vector 
x, denote by DE(X) (resp., Du(x)) the event that for every x in Zd there exists 
at least one (resp., at most one) semi-infinite path (starting from x) in R(x) with 
direction x. 

THEOREM 2.1. Assume Hypotheses A and B and also that BQ is uniformly curved. 
Then P(D) = 1 and P(DE(X) occurs for every x) = 1. 

THEOREM 2.2. Set d = 2 and assume Hypothesis A. Let v be any continuous 
distribution on the unit sphere ofR2; then for v-almost every x, P(Du(x)) = 1. 

THEOREM 2.3. Set d = 2. Assume Hypotheses A and C and also that x is a 
deterministic direction with P(Dy(x)) = 1. Then there is zero probability that 
there exist semi-infinite paths ru and rv (starting from some u and v) in R(u) and 
R(v) that both have direction x and that are site-disjoint. 
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Proof of Theorem 1.1. By Theorems 2.1 and 2.2, P(D) = 1 and we may restrict 
attention to a deterministic x with P(DE(X)) = 1 = P(Du(x)). O n D n DE(ót) H 
Du(x), we denote by su the unique semi-infinite path (starting from u) in R(u) 
with direction x\ a key observation is then that su is the limit of M(u, xn) for any 
sequence xn such that ||xn | | —• oc and xn/| |a:n | | —> x. It follows that if su and 
sv are not site-disjoint, then (i)su n sv = sw for some w = W(u, v) (which may 
equal u or v), (ii) the edge set of su U sv is the disjoint union of M(u, w), M(v, w) 
and sw, and (iii) T(u,x) — T(v,x) —> T(u,w) — T(v,w) as ||x|| —• oc, x/\\x\\ —> x. 
Consider now the graph S[x], with site set Z2 and edge set, the union of su over 
all it G Z2. It follows from (i) and (ii) that S[x] has no loops and is thus a forest 
(a union of trees). By Theorem 2.3 it is a single tree (a.s.), which clearly spans all 
of Z2. From (iii), we obtain (1.3) with 

H*(u,v) =T(u.W(u,v)) -T(v,W(u,v)) . (2.1) 

Note that replacing the minus by a plus in the R.H.S. of (2.1) would yield the 
natural distance between u and v in the spanning tree S[x]. Hx(u,v) is nonzero 
for u ^ v because Hypothesis A implies that P(T(u, y) = T(v. y)) = 0 for every y. 

D 

3 Sketches of Proofs 

We begin with some notation and a definition needed for Theorem 2.1. Denote 
by 9(x,y) the angle (in [0,7r]) between nonzero x and y in Rd and by C(x,e) the 
cone of y's in Rd with 9(y, x) < e. If R is an infinite (nearest neighbor) tree on 
Zd containing the origin 0, and x e R, we denote by i?out[x] the set of sites v in 
R such that the path in R between v and 0 touches x. For h a positive function 
on (0, oc) (generally decreasing to zero), we define R to be h-straight if for all but 
finitely many x in R, 

R°ut{x]çC(x,h(\\x\\)). (3.1) 

Theorem 2.1 is an immediate consequence of the next two propositions. 

PROPOSITION 3.1. Suppose R is a spanning tree in Zd that is h-straight, where 
h(L) —* 0 as L —• oc. Then every semi-infinite path in R (starting from 0) has a 
direction. Furthermore, for every unit vector x, there is at least one semi-infinite 
path in R (starting from 0) with direction x. 

Proof. Let XQ,X\ ... be the sequence of sites in a semi-infinite path in R. Then 
by (3.1), we have for large m that 6(xn,xni) < h(\\xrn\\) for n > m. It follows 
that £ n / | |x n | | converges. To prove the second conclusion of the proposition, note 
that simply because R is spanning, one can inductively find, for any given x, 
a semi-infinite path (2/0,3/1,...) in R such that for each j , Rout[yj] contains a 
sequence (depending on j ) xi,X2,--. with x n / | |x n | | —• x. But the already proved 
first conclusion shows that yj/\\yj\\ tends to some y and then (3.1) implies that 
x • y = 1 so y = x. D 
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PROPOSITION 3.2. Assume Hypotheses A and B and also that BQ is uniformly 
curved. Then for any e > 0, the spanning tree R(0) is a.s. h-straight with h(L) = 
L - ( l / 4 - e ) B 

Proof. We will show that for any 0 < 6 < 1/4, R = R(0) is h-straight with 
h(L) = CßL~6. Our strategy is to use the inequality (1.1) of Kesten and Alexander 
[K2], [A] to bound the probability of the event G(x,xf), that the time-minimizing 
path M(0,x) passes through x', or equivalently that x G Rout[x'], or equivalently 
thatT(0,x')-rT(x',x) <T(0,x). Let Tc(u,v) = T(u,v)-g(v-u) a n d A ^ x ' ) = 
g(x') + g(x — x1) — g(x) > 0; then 

P(G(x, x')) = P(Tc(0, x') -r Tc(x', x) - Tc(0, x) < -A(x, x')) (3.2) 
3 

<Y,(P\Tc(0.wi)\>A(x,xf)/S), 
i=l 

where w\ = x', w^ = x — xf, and w% = x. D 

Let Axi denote the set of sites y in the cone C(xf, (g(x'))~6) with g(y)/g(xf) 
in [1 — (g(xf))~26,2] and denote by dAx> its boundary (i.e., the sites not in Ax* 
that are nearest neighbors of some site in Ax»). Define diAx> (resp., d0Ax>), the 
inside (resp., outside) boundary, as those boundary sites in the just-mentioned 
cone, with g(y)/g(x') below 1 — (g(x'))~26 ( resp., above 2) and define dsAxf, the 
side boundary as those boundary sites not in the cone. Define G(xf) to be the 
event that Ront[xf] touches diAx> UdsAx'. We claim first that a.s. G(x') occurs for 
only finitely many x' and second that hence R is /i-straight wTith h(L) = CßL~6. 

To justify the first claim we bound P(G(x')) by the sum over x in diAxt U 
dsAx' of P(G(x,x')), and then use (3.2). To apply (1.1), we note the following. 
For x in the inside boundary, 

A(x,x') > g(x')-g(x) > (ff(x'))1-2* > Callx'H1-2* . 

For x in the side boundary, one can use the uniform curvature condition (1.2) with 
z\ = xf/g(xf), 22 = (x — xf)/g(x — xf), and z = x/[g(x') + g(x — x')] to again bound 
A(x,xf) from below by a multiple of ||:r'||1_20. For either case, each W{ appearing 
in (3.2) has \\Wì\\ bounded between multiples of \\xf\\ and Hx'H1-26. Because 1 — 
26 > 1/2, (1.1) can be applied with exponent proportional to | | X ' | | 1 _ 2 5 / | | W J | | 2 > 
||x' || 2 ~26. The overall bound is thus 

P(G(x')) < C4| |x / | |dexp(-C5 | | a : '^-2 6) . (3.3) 

Because S < 1/4, the Borei-Cantelli lemma now yields the first claim. 
The justification of the second claim is now deterministic. On an a.s. event, 

we have that for all large g(x'). Zlout[#'] is contained in the union of Ax> and 
the union of Rout[x] for x in dQAx>. For every x G C(x',e\), the cone C(x,e2) is 
contained in C(xf, e\ + e^)'. thus, it follows by induction that for m = 1,2,... 

E°ut\x']QC(x',em(x'))ö( ( J ROM[x}), (3.4) 
xedm{x') 
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where em(x') = Y1J=Q &j9(x'))~6 and drn(x') is the set of x in C(x',em(x')) with 
g(x) > 2rtlg(xf). Now the intersection of .Rout[a:] with any finite subset of Zd is 
eventually empty as \\x\\ —• oo and so we may let m —> oo in (3.4) to conclude that 
Rout[x'} is contained in C(x', (1 - 2~6)-1(g(xf))-6) for large g(x'), which implies 
the second claim. 

Proof of Theorem 2.2. If e = {u,v} is an edge in R = R(0) with v G Rout[u] 
and i?out[t'] infinite, we may for d = 2 inductively define an infinite path r+(e) 
in i?out[w] starting with e so that each succesive step makes as counterclockwise 
a turn as possible (among steps leading to infinite paths). Suppose x is such that 
there exist r\ and r2, two distinct infinite paths in R with direction x. Let r denote 
the one that is located asymptotically clockwise to the other. r\ D r2 is M(0,u) 
for some u: let e = {u,v} denote the first edge of r after u. It follows that r+(e) 
has direction x. Because a similar argument works for any R(x) and there are only 
countably many e's and x's, it follows that (for P-a.e. fixed us) I(UJ, X), the indicator 
of the complement of Du(x), vanishes except for countably many x's. Integrating 
I with respect to the product of P and v and applying Fubini's Theorem completes 
the proof. D 

Proof of Theorem 2.3. As in the earlier proof of Theorem 1.1, let su denote the 
(unique, if it exists) semi-infinite path (from u) in R(u) with direction x and let 
S = S[x] be the union over all u of su. Here S is either empty, a single tree, or a 
forest of two or more trees. To rule out the third case, we mimic the proof structure 
of [BK]. 

Part 1: Let N be the number of (infinite) trees in S. We show that P(N > 
2) > 0 implies P(N = oc) > 0. This uses ergodicity and the fact that d = 2. 

Part 2: Assume (w.l.o.g.) that 6(x, (1,0)) < TT/2. We show that P(N > 3) > 0 
implies P(Fk) > 0 for some k where Fk is the event that some tree in S touches 
Qk = {(0,0), (0,1) , . . . , (0, &)} but no other site with x-coordinate < 0. This is 
a "local perturbation" argument in which one begins with three trees and then 
"chops off" the middle one (using Hypothesis C) by greatly increasing re for each 
of the k + 1 edges into Qk from the left. 

Part 3: We show that P(Fk) > 0 is impossible. This uses a deterministic 
lack-of-spacc argument, as in [BK]. Consider a regular array of nonintersecting 
translates of Qk in an (L x L) square and the corresponding translates of F^. 
P(Fk) > 0 implies a positive probability that cL2 of these events occur simultane
ously and hence that there are cL2 disjoint (infinite) trees all exiting a boundary 
of size c'L, which is impossible for large L. D 

Note added in proof: For a complete proof of Theorem 2.3 (in fact, of an improved 
version which does not require Hypothesis C), see C. Licea and CM. Newman, 
Geodesies in two-dimensional first-passage percolation, Ann. Probab., in press. 
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ABSTRACT. The basic integrator processes of quantum stochastic calcu
lus, namely, creation, conservation, and annihilation, are introduced in the 
Hilbert space of square integrable Brownian functionals. Stochastic integrals 
with respect to these processes and a quantum Itô's formula are described. 
As an application two examples of quantum stochastic differential equations 
are discussed. A continuous time version of Stinespring's theorem on com
pletely positive maps in C*-algebras is exploited to formulate the notion of 
a quantum Markov process and indicate how classical Markov processes are 
woven into the fabric of the Schödinger-Heisenberg dynamics of quantum 
theory. 

1. Introduction 

Let {X(t),t G / } be a commuting family of self-adjoint operators in a complex 
separable Hilbert space H, I being an interval on the line. For any fixed unit vector 
u inH consider the functions: 

¥>U tn(xi,x2,...,xn) = {uJ^XjX(tj)u) (1.1) 

where (x\, x2,..., xn) £Rn,tj G J, and < -, • > denotes the scalar product, which 
is linear in the second variable. Then (1.1) is a consistent family of characteristic 
functions of finite-dimensional probability distributions. By Kolmogorov's theo
rem, {X(t)} together with u determine a real-valued stochastic process with a law 
P whose n-dimensional distributions have Fourier transforms given by (1.1). We 
say that the family {X(t)} of observables executes a stochastic process with the 
law P in the vector state u. This at once suggests the possibility of construction of 
models of stochastic processes by a differential analysis of expressions of the form 
dX(t) = X(t + dt) — X(t) in terms of some basic and universal operator-valued 
functions of a time variable. In this context we are reminded of the Schrödinger-
Heisenberg dynamics in quantum theory where X(t) = eltHXQe~ltH, H and XQ 
are self-adjoint operators, and dX(t) = i(HX(t) — X(t)H)dt but {X(t)} is seldom 
commutative. Is it possible to introduce some universal noise differentials and re
alize some of the well-known classical processes? Starting from standard Brownian 
motion we explore this problem and present a few illustrations. 
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2. The basic noise processes of quantum stochastic calculus 

We first express the standard Brownian motion (SBM) on R as a family {Q(t),t > 
0} of self-adjoint operators together with a vector state. To this end, denote by 
(Q, T, P) the probability space of SBM so that a sample point u in ÇÏ is a Brownian 
trajectory B. For any 0 < s < t < oo denote by !F(s, t) C T the smallest tr-algebra 
generated by the random variables {B(b) — B(a),s < a < b < t} and write 
H(s,t) = L2(fl,Jr(s,t),P). The independent increments property of B implies 
that for any partition 0 = to < h < • • • < tn < • • • of R+ = [0, oo), the Hilbert 
space H = L2(P) can be expressed as a countable tensor product: H = H(to,ti) <g> 
7~l(ti,t2) <g> • • • with respect to the stabilizing sequence {1} of unit vectors 1, the 
constant function identically equal to 1 on fi. In other words, H can be visualized 
as a continuous tensor product of Hilbert spaces. A family {X(t),t > 0} of (not 
necessarily bounded) operators on TL is called an adapted process (with respect 
to B) if, roughly speaking, for each t,X(t) = XQ(t) <g> J(t,oo) where XQ(t) is 
an operator in H(0,t) and I(t,oo) is the identity operator in H(t, oc). Care is 
needed regarding domains of unbounded operators and for details we refer to [20]. 
Denote by I(s,t) the identity operator in H(s,t). Define the commuting family 
{Q(t),t > 0} of self-adjoint multiplication operators in H by 

lQ(t)f](B) = B(t)f(B) (2.1) 

on the domain { / | / (1 + B(t)2)\f(B)\2P(dB) < oo}. Then {Q(t)} is an adapted 
process that executes SBM in the vector state 1. 

For any ip G Z/2(R+) introduce the exponential random variable e(ip) in H 
defined by 

e(v)(B) = GMp fdB - Ì y ° ° <p(s)2 ds) (2.2) 

and its normalized form 

e0(^) = ( e x p - i | M | 2 ) e M . (2.3) 

Then eo(^) is a unit vector, (e(ifi), e(<p2)) = exp(<^i, ip2) for any <pi, (p2 in L2(R+) 
and {e(ip),(p G L2(R+)} is a total and linearly independent set in H. Each e(^) 
has the important factorizability property: e(ip) = e(^l[0,t]) 0 e(^l( i?00)) for all 
t > 0. 

For any x G R, t > 0 there exist unique unitary operators Ux(t), Vx(t) 
satisfying 

Ux(t)e(ip) = e(eixl^-v), (2.4) 

x2 /*' 
Vx(t)e(ip) = [exp(-—t-rxj <p(s)ds)]e(ip-xlm) (2.5) 

for all ip G L2(R+) , l[a>fe] denoting the indicator of [a, b]. This is easily established by 
showing that Ux(t) and Vx(t) preserve scalar products on the total set of exponen
tial random variables. The unitarity of Vx(t) is also the Cameron-Martin theorem. 
Each of the families {Ux(t), x G R, t > 0}, {Vx(t), x G R, t > 0} is commutative, 



1026 K. R. Parthasarathy 

strongly continuous in x and Ux(t)Uy(t) = Ux+y(t), Vx(t)Vy(t) = Vx+y(t). Hence, 
by Stone's theorem, there exist unique self-adjoint operators A(t),P(t) satisfying 

Ux (t) = eixAW, Vx (t) = eixPW (2.6) 

and each of the families {A(t)} and {P(t)} is a commutative adapted process. 
If M(t) is any one of the operators Q(t),A(t),P(t) defined by (2.1) and (2.6) 
then for s < t the "increment" M(t) — M(s) factorizes as 7(0, s) ® M0(s,t) ® 
I(t, oo) where MQ(S, t) is a self-adjoint operator in H(s, t). Furthermore, M satisfies 
the martingale property: (e(ip), (M(t) — AI(s))e(iß)) = 0 whenever ip and if) are 
supported in [0, s] and 0 < s < t < oo. With due care paid to unbounded operators 
the following theorems hold: 

THEOREM 2.1 For any ip G L2(R+) , in the vector state e0(ip) defined by (2.3), 
{Q(t)—2fQ Reip(s)ds) and{P(t) — 2jQ Im ip(s) ds} execute SBM whereas {A(t)} 
executes a Poisson process with intensity measure A on R, given by dX = \ip(t)\2dt. 

THEOREM 2.2 The operators {Q(t), A(t),P(t)} obey the following commutation 
relations: 

[A(t): Q(s)} = -iP(s A t), [A(t), P(s)} = iQ(s A t), 

[Q(t),P(s)\ =2isAt, 

e iöA(oc)Q ( t ) e-*0A(oo) = ( c o s ö)Q(*) + (sin 0)P(t),0 G R, 

where s At denotes the minimum of s and t. 

Because there exists a rich theory of stochastic integration with respect to 
Brownian motion, and the Poisson process (and, more generally, local semimartin-
gales), Theorem 2.1 raises the very natural question of whether there could be a 
fruitful theory of integration with respect to the adapted operator processes Q, A, 
and P. In order to facilitate computations in such an investigation it is covenient 
to introduce the operators 

A(t) = \(Q(t)+iP(t)),AHt) = l-{Q{t)-iP{t)). (2.7) 

Then we have the eigen relation A(t)e(ip) = (JQ ip(s)ds)e((f) and the adjoint rela
tion (e(ip), A(t)e(vb)) = (A^(t)e((j)), e(ijj)) for all ip,yj G L2(R). Borrowing from the 
terminology of free field theory we call A1" = {A*(t)}, A = {A(t)}, and A = {A(t)} 
the creation, conservation, and annihilation processes respectively. The commuta
tion relations in Theorem 2.2 assume the form 

[A*(t),AH8)] = [A(t), A(«)] = [A(t),A(s)} = 0, 

[A(t), A(s)] = -A(t A s), [A(t), A^(s)] = A\t A a), 

[A(t),A*{a)] =sAt,eieA(x)A(t)e-ieA(°°) = e-
i0A(t). 

A*, A and A axe the basic noise processes with respect to which quantum stochastic 
integrals will be defined. 
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REMARKS. Theorem 2.2 is nothing but the canonical commutation relations 
(CCRs) of a free boson field expressed in terms of SBM. This connection be
tween SBM and CCR was first observed by Segal [24]. The pair (Q(t),P(t)) as a 
quantum Wiener process was first introduced and investigated by Cockroft and 
Hudson [8]. It follows from Theorems 2.1 and 2.2 that, for any fixed angle 0, the 
adapted process {(cos 0)Q(t) + (sin 6)P(t), t > 0} executes SBM in the vector 
state 1. A slightly more delicate result is the fact that for any À > 0, the adapted 
process {A(t) + y/XQ(t) + Xt} executes a Poisson process with intensity parameter 
A in the vector state 1. 

3. Integration with respect to the basic noise processes 
and quantum Ito's formula 

In order to describe the integrands of our calculus we need an initial Hilbert 
space HQ, called the system Hilbert space along with the noise or bath Hilbert 
space H where the creation, conservation, and annihilation processes are defined. 
The operators of interest will be in H = HQ <g> H where the system and noise 
interact. If we write H(0, t) = HQ ® H(0, t) then H = 7Î(0, t) ® H(t, oo) for every 
t > 0. If X = {X(t)} is a family of operators in H such that, roughly speaking, 
X(t) = XQ(I) <g} I(t, oc) where XQ(t) is an operator in H(0,t) for each t then 
we say that X is an adapted process. (A little more precisely, we demand that 
for a rich class of vectors / G HQ, ip G L2(R+), the identity X(t)f 0 e(ip) = 
{X0(t)f ® e(l[0,t]^)} 0 (l[tiOC)(p) should hold.) If M is any of A*,A, A we look 
upon M(t) as the operator I<HQ <g> M(t) in H. For any adapted process X it is 
important to note that for s < t, X(s) is operating in H(0, s), M(t) — M(s) is 
operating in H(s, t), and hence X(s) and M(t) — M (s) commute with each other in 
a wide sense. An adapted process X is said to be simple if there exists a partition 
0 = t0 < t\ < • • • < tn < • • • . . . of R + such that 

x=x(o)i[0ltl]+f;x(*i)i(tii*J+1]. 

For any four simple adapted processes E, F, G, H, simplicity being with respect to 
the same partition given by {tj}, we write 

/ (EdA*-rFdA + GdA + Hds) 
Jo 

= ^ { ^ - i K ^ . At)- A^tj^ A t)) + Ffo-xXAfo At)- A(tj.x A t)) 
.7 = 1 

-rG^j-x^A^j At)- A(tj_i A t)) + Hfa-xWj A t - tj-i A t)}. 

Then the right-hand side is another adapted process. Such an integration can be 
completed to a fairly rich class of quadruples (E, F, G, H) of adapted processes. If 
an adapted process X has the form 

X(t)=X(0)+ f (EdAi +FdA + GdA + Hds) 
Jo 
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we write 
dX = EdAi + FdA + GdA + H dt 

and say that X has initial value X(0). If dM denotes any one of dA*, dA, dA, dt then 
for any adapted process E, EdM = (dM)E. lîdXi = ErfA^+FidA-rGidA-rHidt, 
i = 1,2 then one has a quantum Ito's formula for the differential d(X\X2) of the 
product process X\X2 = {Xi(t)X2(t)}: 

d(X1X2) = {E1X2dA^ + FxX2dA + GxX2dA + HxX2dt) 

+(XlE2dÄ< -r XxF2dA + XxG2dA + XxH2dt) 

+(FxE2dA^ + FiF2dA + GiF2dA + Gi£ 2 dt ) , 

which can be abbreviated as 

d(XxX2) = XxdX2 + (dXx)X2 + dXxdX2 (3.1) 

where the Ito correction term dX\dX2 is computed by bilinearity and the multi
plication table 

(3.2) 

If (dMi, dM2) is any ordered pair from the set {dA^,dA, dA, di} then dM\dM2 = 0 
whenever the order of creation, conservation, and annihilation is not violated. This 
is an enriched Wick ordering with dA included. 

Because Q(t) = A(t) + A^(t) the quantum Itô's formula implies (dQ)2 = 
dt, which is the classical Itô's formula for SBM. If Nx(t) = A(t) + y/XQ(t) + Xt 
then (dN\)2 = dN\, which is the classical formula for the Poisson process. Itô's 
formula as described by (3.1) and (3.2) is derived entirely from the CCR, which 
encapsulates the Heisenberg uncertainty principle. Thus, the Ito correction in the 
case of Brownian motion as well as the Poisson process can be attributed to the 
uncertainty principle. 

The quantum Itô's formula suggests the possibility of expressing and ana
lyzing models of stochastic processes in terms of quantum stochastic differential 
equations (q.s.d.e's). We illustrate this by two examples. 

EXAMPLE 3.1 Let HQ = C so that H = H. Consider the equation 

dX = (c- l)XdA + dA* + dA, X(0) = xi (3.3) 

where X is an unknown adapted process and c is a real constant satisfying — 1 < 
c < 1. It has an explicit solution {X(c, x,t), t > 0} in terms of stochastic integrals 
satisfying the following: (i) |\X(c, x,t)\\ < \x\ + y/2t(l — c ) _ 1 ; (ii) for each fixed c, x 
it is a commutative adapted process; (iii) in the vector state 1, it is a martingale 
as well as a Markov process obeying the classical Ito's formula in terms of paths: 

df(X(t)) = (LJ)(X(t-))dX(t)-rMcf(X(t))dt 

dA 
dA 

dA* 
dt 

dAi 
dt 

dA* 
0 
0 

dA 
dA 
dA 
0 
0 

dA 
0 
0 
0 
0 

dt 
0 
0 
0 
0 
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where (Lcf)(y) = [(c - l)y]-l(f(cy) - f(y)), (MJ)(y) = [(c - l)y]-2(f(cy) -
f(y) — (c—l)yf'(y)). In the literature these are known as Azéma martingales, and 
their properties have been studied in detail by Emery [9], Chebotarev and Fagnola 
[7], and the author [19], [21]. 

EXAMPLE 3.2 Let Li, 1 < i < 4, be bounded operators in the initial or system 
Hilbert space HQ. Viewing each Li as a constant adapted process {Li(t)} where 
Li(t) = L{ <g) In in H = HQ 0 H, consider the exponential type q.s.d.e.: 

dU = (LidAf + L2dA -r L3dA + L4dt)U, £7(0) = / (3.4) 

where U is an unknown adapted process. By following a Picard type iterative 
scheme and using the quantum Itô's formula it is possible to show that (3.4) admits 
a unique unitary operator-valued adapted process U — {U(t)} as a solution if and 
only if the quadruple (L\, L?, L3, L4) has the form 

i i S - I, L3 = -L*S, L4 = -iH - -L*L (3.5) 

where S is unitary and H is self-adjoint. When L = 0, S = I, (3.4) reduces to 
the Schrödinger equation dU = —iHUdt. Thus, (3.4) may be interpreted as a 
Schrödinger equation in the presence of noise. This suggests that a detailed study 
of (3.4) would be fruitful when the operators Li are not necessarily bounded. Just 
to give a flavor of this we present two simple examples. Consider the two equations 

dU=(LidAi-L*dA--L*Lidt)U, U(0) = I, » = 1,2 (3.6) 

where 

i i = 

/ 0 0 0 
A0 0 0 
0 Ai 0 

v • • • 
, L2 = 

( 0 /xi 0 0 ••• \ 
0 0 H2 0 
0 0 0 

J V 

(3.7) 

/ 

are operators in ^2({0,1,2,.. .}), À0, À i , . . . , fii, [i2,... being complex scalars. Then 
a unique unitary solution for (3.6) in the first case exists if and only if Y^lAjl -2 = 

j 
oc. This should remind the reader of Feller's criterion for a pure birth process 
with birth rates {|Aj|2} to be nonexplosive. In fact there is a very close connection 
between the existence of unitary solutions of (3.4) and the conservativity of an 
associated minimal Markov semigroup in the sense of Feller [4]. In the second 
case there always exists a unitary solution. This corresponds to the fact that pure 
death processes are always conservative. It is interesting to note that the birth rates 
{|Aj|2} and death rates {|/LìJ|2} are being replaced by their corresponding complex 
amplitudes {Aj} and {ßj} in our description. This is in tune with the spirit of 
quantum theory. If e 0 , e i , . . . is the canonical basis of £2({0,1,2,...}) and ej labels 
the state that there are j particles in the system then L\ in (3.7) is a creation 
operator in the sense that L\ej = XjCj+i whereas L2 in (3.7) is an annihilation 
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operator in the sense that L2Cj = /ijßj_i. When the system's creation operator 
teams up with the differential of the creation process in (3.6) we get a pure birth 
process whereas in the opposite case we get a pure death process in the noisy 
Schrödinger picture. 

REMARKS. There are now three accounts of quantum stochastic calculus available 
in the form of books and lecture notes. [20] is a fairly self-contained and leisurely 
account of the subject whereas the lecture notes by Meyer [17] and Biane [5] con
tain more up-to-date, brisk, and lively accounts based on Maassen's kernel calculus 
[15] and are also aimed at an expert audience of probabilists. The quantum Itô's 
formula and its application to noisy Schrödinger equations with bounded coeffi
cients first appeared in [13] by Hudson and the author. A heuristic and preliminary 
form of Itô's formula without the conservation process appeared earlier in [14], [12]. 
The discussion on birth and death processes through noisy Schrödinger equations 
has been taken from Fagnola [11]. The topic of noisy Schrödinger equations with 
unbounded operator coefficients has recently witnessed considerable progress from 
the hands of several authors including Mohari, Chebotarev, Fagnola, Sinha, Bhat, 
etc. The bibliographical details may be found in [17]. 

4. The case of several degrees of freedom 

Let B_ = (Bi,B2,... ,Bn) denote the sample trajectory of a standard n-dimen
sional Brownian motion described by the probability measure P. For any ip = (ipi, 
</>2, • • -, Vu) in the n-fold direct sum L2(K+) © • • • ©L2(M+) define the exponential 
random variable e(ip) in H = L2(P) by 

e(ip)(B) = cxp(JX <p • dB - i H J2 ¥>?(*) da). 

The analogues of the adapted processes Q(t) and P(t) of Section 2 are now defined 
by 

[Qj(t)f](B) = Bj(t)f(B), feH, 

[eixP^e('£)](m=exp(-Çt + xj iPj{a)da)e{!p^xlmej) 

for all e(ip), where x G l and ej is the j t h element in the canonical basis of Cn . 
To define the analogue of A(t) we exploit the natural representation of the group 
U(n) in H. For any (n x n) hermitian matrix H define A#(£) in H as the Stone 
generator of the one parameter unitary group elxAfI W satisfying 

eixAH^e(ip) = e(eixl^Hip), xeR 

for all e(ip). For any (n x n)-matrix K define 

AK(t) = AK+K* (t) + JAK-K* (t). 
2 21 

If K = Eij is the elementary matrix with 1 in the ijth position and 0 elsewhere 
write 

A{(t) = AEij(t), t>0, l<ij<n 
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and put 

Then the canonical commutation relations (CCRs) can be expressed as 

[A)(s), A*(i)] = «JA*(« A t ) - «*AJ(« A t), 

[A)(s),Ak
0(t)} = -«*AJ(« At),[A*(«),A2(t)] = «£A$(« At) 

for 1 < i,j,k,£ < n. All the processes {A*(t), 0 < 2,j < n} are adapted to the 
Brownian motion. A*(£) and A^(t) are adjoint to each other on the linear manifold 
generated by exponential random variables. For a rich class of adapted processes 
{Llj(t)}, 0 < i, j < n in HQ ® H = H it is possible to define stochastic integrals 

of the form JQ Llj (s) dA\ (s) where repeated indices indicate summation over them. 
The quantum Itô's formula is expressed by 

dA}dA£ = 6\dAkj, 0 < i, j , k,£<n, 

where 6\ is the modified Kronecker delta given by 8\ = b\ if (i,£) ^ (0,0) and 
ÄJ = 0 otherwise. 

As an application of the quantum Itô's formula consider the exponential 
q.s.d.e. 

dU = (L)dA{)U, 17(0) = / (4.1) 

where L*, 0 < i,j < n, are bounded operators in HQ, viewed also as constant 
adapted processes. Then the following theorem holds: 

THEOREM 4.1 There exists a unique unitary operator-valued solution {U(t)} for 
(4-1) if and only if the following conditions are fulfilled. 
(a) 

S}-% if t > l j > l , 
Li if i> 1, j = 0, 

-J2LkS* if i = 0,j>l, 
h 

-iH-\Y,LlLk */ * = j = o; 
k 

(b) ((Sj))i<ij<n is a unitary operator in the n-fold direct sum HQ © • • • 0 HQ; 
(c) H is a bounded self-adjoint operator in HQ. 

COROLLARY 4.2 For any bounded operator X in HQ define jf(X) = U(t)*(X <g> 
In)U(t) where U(t) is determined by Theorem J^.l. Then j® is a * unital homo
morphism from B(HQ) into B(HQ ® H) satisfying 

dft{X) = ?t{d){X))dA{{t) 

L) = { 
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where B(JC) denotes the * algebra of all bounded operators in any Hilbert space /C 
and 0lj : B(HQ) —• B(HQ) are maps defined by 

(SfrXSlf-SiX if t > 1,j > 1, 
#IX\-J (S*)'[X,Lk] if i> l,j=0, 
"M)-\ [Li,X]S$ if i = 0,j>l, 

i[H, X] - \ T,k(L*kLkX + XL*kLk - 2L*kXLk) if i = 0,j = 0 

with the convention that repeated index implies summation. 
If AQ C B(HQ) is an abelian * algebra and the maps 0* leave Ao invariant 

then the family {j®(X), X £ AQ, t > 0} is commutative. 

REMARKS. Theorem 4.1 and Corollary 4.2 are proved in [13]. Mohari and Sinha 
[18] have proved an important and useful generalization of this result when the 
number of degrees of freedom is infinite. For details see [19]. Accardi, Frigerio, 
and Lu have studied several physical models leading to q.s.d.e.'s of the noisy 
Schrödinger type. A number of references on this topic may be found in [2]. Several 
interesting connections between quantum groups and q.s.d.e.'s have been discussed 
by Schürmann [23]. 

5. Quantum Markov processes 

A discrete time Markov process in classical probability theory is determined by a 
family (Xì,Tì), i = 0 ,1 ,2 , . . . of measurable spaces, an initial distribution /io on 
(XQ,TQ), and transition probabilities Pi(xi,dxi+i) from (Xi,Ti) to (Xi+i,Ti+\) 
for each i. Then there exists a unique probability measure Pß on the infinite 

oc n 

product space (ft, T) = (x)pQ,Ti) such that the projection of Pß on (x)(-Xi, Ti) 
i=0 i=0 

is given by 

fi(dxQ)PQ(xQ,dx1)Pi(xi,dx2) • • • Pn-i(xn-i,dxn) I 
EQXEIX-X E„ 

for all Ei e Ti, 0 < i < n, n. = 0,1,2, — The probability space (ft, T, Pß) describes 
the Markov process with initial distribution f.i and transition probability P?:(-,-) 
for transition from a state at time i to a new state at time i + 1. Denote by Ai 
the commutative * algebra of all complex-valued bounded random variables on 
(Xi,Ti). Introduce the positive unital operators T(i,i + l): Ai+i —>Ai defined by 

(T(i,i + l)g)(xi) = / g(xi+i)Pi{xi,dxi+i). 

For any i < k define T(i, k) : Ak -> Ai by T(i, k) = T(i, i + l ) T ( i + l , i+2) • • • T(k-
l,k) with the convention T(i,i) = identity. The family {T(i,k), i < k} of transi
tion operators obeys the Chapman-Kolmogorov equations: T(i, k)T(k, £) = T(i, £) 
for i < k < £. Let H be the Hilbert space L2(Pß) and F(i) the Hilbert space pro
jection on the subspace of functions depending only on the first i + 1 coordinates 
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(XQ,X\, . ..,Xi)oîu) = (XQ,XI,X2, . . . ) in ft. Then {F(i)} is an increasing sequence 
of projections in H. For any g e Ai define the operator ji(g) in H by 

\ji(9)v}(") = 9(xi)(F(i)v)(u), UJ=(XQ,XI,...), <peH. (5.1) 

Then ji is a * homomorphism from Ai into the * algebra B(H) of all bounded 
operators in H. The Markov property of the stochastic process (Sl,T, P^) is en
capsulated in the operator relations 

jk(l) = F(k),F(i)jk(g)F(i)=Ji(T(i,k)g), g G Ak, i < k, (5.2) 

(u,jo(go)ji(gi). ••jn(gn)v) = / (ûvg0)(x0)g1(x1)... g^x^P^éj) (5.3) 

for all u, v in the range of F(0), gi G Ai, i = 0 ,1 ,2 , . . . ,n,n = 0,1,2, — We 
may call the triple (H, F, {jfc}, k = 0,1,2, . . .) consisting of the Hilbert space H, 
the filtration of projections F(k) increasing in k, and the family {jk} of * (but 
nonunital) homomorphisms, a Markov process with transition operators {T(i,j), 
i < j}- Such a description carries forward to the continuous time case without any 
extra effort. 

We now quantize the picture given above. To this end consider a C*-algebra 
At of bounded operators on a Hilbert space K,t for every t > 0. The time index 
t here may be discrete or continuous. It is useful to imagine any hermitian ele
ment X G At as a real-valued bounded observable concerning a system at time 
t. For 0 < s < t < co, let T(s,t) : At —» As be a linear, unital, and completely 
positive map satisfying the following: (i) T(s,s) is the identity map on As\ (ii) 
T(r,t) = T(r,s)T(s,t) for all 0 < r < s < t < oo. We say that {T(s,t)} is 
a family of transition operators. Complete positivity of T(s.t) is equivalent to 
the property that for any (n x n)-matrix ((Yij)) of elements in At the matrix 
((T(s,t)(Yij) ))i<ij<n is a positive operator in the n-fold direct sum /Cs © • • • ©/Cs 

whenever ((Y^)) is a positive operator in the n-fold direct sum /C* ©• • • ©/Q. With 
this notation, the following generalization of Stinespring's theorem [25] holds: 

THEOREM 5.1 Let At be a unital C*-algebra of operators in a Hilbert space K,t for 
every t > 0 and let T(s,t) : At —> As, s < t be a family of transition operators. 
Then there exists a Hilbert space H, an increasing family {F(t)} of projections 
in H, a family of contractive * homomorphisms j t : At —• B(H), t > 0 and a 
unitary isomorphism V from /Co onto the range of F(0) satisfying the following: 
(i) jt(It) = F(t),It being the identity in JCt; (ii) for any 0 < s <t < oo, X £ At, 
F(s)jt(X)F(s) = js(T(s,t)(X)); (iii) the set { j t l ( * i ) • • • Ju>{Xn)VuM > > 
tn = 0, Xi e Ati, u e /Co} is total in H; (iv) jo(X)V = VX for all X e AQ; (V) 
for any u, v e /C0, h > t2 > • • • > tn = 0, Xt, Yi e Ati, 

(jtl(X,)... jtn(Xn)Vu, jtl(Yx) • - - jtn(Yn)Vv) 

= (u,x:(- • • r( t3 , i2)(^2^2^i)(x1*yi)y2) • • -)Ynv). 
The quadruple (H,F,{jt},V) satisfying properties (i) - (iv) is unique up to a 
unitary isomorphism. 

Our Hilbert space-theoretic description of a classical Markov process in terms 
of (5.2) and (5.3) together with Theorem 5.1 motivate the following definition: 
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suppose A , / Q and T(s,t), s < t are as in Theorem 5.1. Then any quadruple 
(H, F, {jt}, V) consisting of a Hilbert space H, an increasing family of projections 
{F(t)} in H, contractive * homomorphisms j t from At into B(H), and a unitary 
isomorphism V from /C0 onto the range of F(0) is called a conservative Markov 
flow with transition operators T(-,-) if properties (i), (ii), and (iv) of Theorem 
5.1 are fulfilled. The unique such flow satisfying, in addition, property (iii) is said 
to be minimal. It should be interesting to obtain a differential description of the 
minimal flow in the case of continuous time. For such a description, are the basic 
integrators {A*(£)} with 0 < i, j < co sufficient? 

EXAMPLE 5.2 In the notation of Section 4 consider the case when HQ is an n-
dimensional Hilbert spae with an orthonormal basis {ej}, 1 < j < n. For any 
u, v G HQ, use the Dirac notation to define the operator \u >< v\ satisfying 
\u >< v\w = (v,w)u. Consider the q.s.d.e. (4.1) where L* are as in condition (a) 
of Theorem 4.1 with Sj = \CJ >< Ci\, Li = \£i >< ei\, 1 < i, j < n. Then the 
maps 0%j of Corollary 4.2 leave the diagonal algebra .Ao of operators in the basis 
{ek} invariant and hence the family {j®(X), X G Ao, t > 0} is commutative. 
Define jt(X) = j^(X)F(t) where F(t) is the projection on the subspace H(0,t) = 
HQ®H(0, t) in H. Let Vu = u®l for all u G HQ. Then the quadruple (H, F, {jt}, V) 
yields a Markov flow with a differential description given by Corollary 4.2. In fact 
it describes the classical Markov chain with generating matrix ((vij)) given by 

| (^, e j) |2 if iïj, 
- ^ | ( ^ , e r ) | 2 if i = j . 

Thus, the intensity Uij of transition probability from the state i to the state j 
is hidden in our quantum description in the corresponding amplitude (^,Cj). It 
is possible that the flow thus described by q.s.d.e. is not minimal. It should be 
interesting to know whether minimality can be achieved by a q.s.d.e. 

REMARKS. That the study of stochastic processes can be reduced to studying the 
dynamics of changing representations of a * unital algebra is a fundamental idea 
proposed by Accardi, Frigerio, and Lewis in [1]. Theorem 5.1 has been taken from 
Bhat and the author [3]. Meyer [16] pointed out the possibility of realizing Markov 
chains through q.s.d.e. More general Markov processes were realized by the author 
and Sinha [22] using the idea of an Evans-Hudson flow. The subject is undergoing 
many interesting developments for which we refer to [16], [17], [4]. 

References 

[1] Accardi, L.; Frigerio, A.; and Lewis, J. T., Quantum stochastic processes, Pubi. Res. 
Inst. Math. Sci., Kyoto Univ. 18, 97-133 (1982). 

[2] Accardi, L., and Lu, Y. G., From Markovian approximation to a new type of quan
tum stochastic calculus, Quantum Probability and Related Topics VII (ed. Accardi, 
L.) World Scientific, Singapore (1992). 

[3] Bhat, B. V. R., and Parthasarathy, K. R., Kolmogorov's existence theorem for 
Markov processes in C* algebras, Proc. Indian Acad. Sei. Math. Sci. 104, 253-262 
(1994). 



Quantum Stochastic Calculus 1035 

[4] Bhat, B. V. R., and Parthasarathy, K. R., Markov dilations of nonconservative quan
tum dynamical semigroups and a quantum boundary theory, to appear in Ann. Inst. 
H. Poincaré. 

[5] Biane, Ph., Calcul stochastique non-commutatif, Cours présenté à fècole d'été de 
probabilités de Saint Flour, Août 1993. 

[6] Chebotarev, A. M., and Fagnola, F., Sufficient conditions for conservativity of quan
tum dynamical semigroups, J. Funct. Anal. 118, 131-153 (1993). 

[7] Chebotarev, A. M., and Fagnola, F., On quantum extensions of the Azéma martin
gale semigroup, to appear in Sern. Prob. 

[8] Cockroft, A. M., and Hudson, R. L., Quantum mechanical Wiener processes, J. 
Multivariate Anal. 7, 107-124 (1977). 

[9] Emery, M., On the Azéma martingales, Sern. Prob. XXIII, Lecture Notes in Math., 
Springer, Berlin and New York, 1372, 66-87 (1989). 

[10] Evans, M. P., and Hudson, R. L., Multidimensional diffusions, Lecture Notes in 
Math., Springer, Berlin and New York, 1303, 69-88 (1988). 

[11] Fagnola, F., Pure birth and death processes as quantum flows in Fock space, Sankhyä 
Ser. A, 53, 288-297 (1991). 

[12] Hudson, R. L.; Krandikar, R.L.; and Parthasarathy, K. R., Towards a theory of 
noncommutative semimartingales adapted to Brownian motion and a quantum Ito 's 
formula, Theory and Applications of Random Fields, Bangalore 1982, Lecture Notes 
in Control and Inform. Sciences 49, 96-110 (1983) Springer, Berlin and New York. 

[13] Hudson, R. L., and Parthasarathy, K. R., Quantum Ito's formula and stochastic 
evolutions, Comm. Math. Phys. 93, 301-323 (1984). 

[14] Hudson, R. L., and Streater, R. F., Ito's formula is the chain rule with Wick ordering, 
Phys. Lett. A 86, 277-279 (1981). 

[15] Maassen, H., Quantum Markov processes on Fock space described by integral kernels, 
Quantum Prob, and Appi. II (ed. Accardi, L., and Waidenfels, von W.) Lecture Notes 
in Math., Springer, Berlin and New York, 1136, 361-374 (1985). 

[16] Meyer, P. A., Chains de Markov finies et representations chaotique, Strasbourg 
preprint (1989). 

[17] Meyer, P. A., Quantum Probability for Probabilists, Lecture Notes in Math., 
Springer, Berlin and New York, 1538 (1993). 

[18] Mohari, A., and Sinha, K. B., Quantum stochastic flows with infinite degrees of 
freedom and countable state Markov processes, Sankhyä Ser. A 52, 43-57 (1990). 

[19] Parthasarathy, K. R., Azéma martingales and quantum stochastic calculus, Proc. 
R.C. Bose Symp. on Prob, and Stat., Wiley Eastern, New Delhi, 551-569 (1990). 

[20] Parthasarathy, K. R., An Introduction to Quantum Stochastic Calculus, Mono
graphs in Mathematics, Birkhäuser Verlag, Basel (1992). 

[21] Parthasarathy, K. R., Azéma martingales with drift, Indian Statistical Institute, New 
Delhi, preprint (1994). 

[22] Parthasarathy, K. R., and Sinha, K. B., Markov chains as Evans-Hudson diffusions 
in Fock space, Sem. Prob. XXIV, Lecture Notes in Math., Springer, Berlin and New 
York, 1426, 362-369 (1989). 

[23] Schürmann, M., White Noise on Bialgebras, Lecture Notes in Math., Springer, Berlin 
and New York, 1544 (1993). 

[24] Segal, I. E., Tensor algebras over Hilbert spaces, Trans. Amer. Math. Soc. 81, 106-
134 (1956). 

[25] Stinespring, W. F., Positive functions on C* algebras, Proc. Amer. Math. Soc. 6, 
211-216 (1955). 



Measure-Valued Branching Diffusions and Interactions 

EDWIN A. PERKINS 

Department of Mathematics 
University of British Columbia 
Vancouver, BC V6T 1Z2, Canada 

1 Introduction 

Dawson-Watanabe superprocesses (or measure-valued branching diffusions) pro
vide a stochastic model for a population undergoing random critical (or near crit
ical) reproduction and spatial migration. They arise in a variety of contexts in
cluding population genetics, stochastic partial differential equations (PDEs) and 
interacting particle systems. I will describe some of these connections and then 
present some sample path properties of super-Brownian motion. An excellent sur
vey of the field may be found in [D2]. Generality will be sacrificed for the sake of 
accessibility. 

The independence properties of these processes make them mathematically 
tractable. Recently there has been interest in the introduction of new techniques 
to study more complex models in which particles interact with each other ([DM], 
[DK], [P5]). The final section will present one approach to a class of these processes. 

2 Dawson-Watanabe Superprocesses and Their Historical Processes 

An approximating branching particle system is constructed from the following 
ingredients: 

(i) a Hunt process £ taking values in a Polish space E (for spatial migration) 
(ii) an offspring law v on Z+ with mean one and variance one 

(iii) a constant branching rate 7 > 0. 

Fix a finite nonzero measure m on E (ra G Mp(E)), let N G N, and start a collec
tion of i.i.d. particles {^ : i < Nm(E)} with law m(-)/m(E). Particles then follow 
independent copies of £ on [i(Nj)'1, (i + l ^ JV»" 1 ] , i G Z+, and at t = i(Nj)'1 

each particle dies and is replaced by a random number of offspring distributed ac
cording to v. All the individual motions and family sizes are independent of each 
other. A continuous branching model in which particles branch at rate 7 would 
lead to the same limiting law. This gives a tree {£a : a G / } of branching £-
processes. The current state of this randomly branching and migrating population 
is given by the random measure, which assigns to any A C E the value 

XJ*(A) = AT-1 x (number of particles in A at time t). 
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As N -> oc, F(XN G •) converges weakly to a law P m on tlx = C(R+,MF(E)) 
(see [W], [Dl], [DP, Theorem 7.13]). P m is the law of the Dawson-Watanabe £-
superprocess (D.W. process) and depends only on ra, 7, and the choice of £. Under 
these lawrs the canonical process Xt(uj) = wt is an Afi?(£)-valued diffusion (e.g. 
[Fl])-

Traditionally £ was taken to be a Feller process taking values in a locally 
compact space. Dynkin initiated a sequence of generalizations including branching 
according to an additive functional of £ and allowing £ to be a time-inhomogeneous 
right process (e.g. [Dy2]). Note that f* = £(• A t) is a time-inhomogeneous Hunt 
process taking values in the Polish space D(R+,E) = D(E) of right-continuous 
E-valued paths with left limits, equipped with the Skorokhod topology. Working, 
as above, with this inhomogeneous Hunt process in place of £, we define 

H?(A) = N~l ] T 1(£Q(. At) e A, Ç* alive at time t), A C D(E) = D. 

As N —> 00, P( i / A G •) converges weakly to a law Q m on 

nH = {H G C(R+, MF(ZJ)) : y = yt Ht - a.a. y Vt > 0} 

(see [DP, Theorem 7.15]). Q m (and more generally QTfm for r > 0 and ra G MF(D) 
with y = yT m — a.e.) is the law of the £-historical process Ht(u) = uJt starting 
at (0, ra) (respectively (r,ra)). (H,QTiTn) is a time-inhomogeneous MF(.D)-valued 
diffusion. Therefore the ^-historical process is just the D.W. process associated 
with the Markov process Ç* and, assuming Ç is not too degenerate, Ht will record 
the family trees of the individuals in the population at time t. Clearly the asso
ciated D.W7. process is given by Xt(A) = Ht(y : yt € A), but in general it is not 
possible to recover H from X (see Theorem 5.4). 

The historical process was introduced independently by Dawson and Perkins 
to study the small scale and large scale behavior of D.W. processes, by Dynkin to 
construct the "exit measures" from a set (see Section 3), and by Le Gall in the 
development of the path-valued process (see [Ll]). 

To prove convergence in the above limit theorems, one needs a convenient 
characterization of the limiting law. Let A be the suitably defined infinitesimal 
generator of £ (e.g. the weak generator defined in [Fl] or the strong generator if £ 
is Feller) on its domain D(A). Let //(<£) denote the integral of 4> with respect to \i 
and T* = &(XS : s <t). The following is a special case of a result in [F2]. 

THEOREM 2.1. P m is the unique law on fix such that 

V0 G D(A) Xt(d>) = m(0) + /0* Xs(A(f>) ds + Aft(0) 

Mt((j>) is a continuous T*-local martingale with MQ = 0 (KiP) 

It is relatively easy to see that each limit point of F(XN G •) satisfies (MP). 
Uniqueness in (MP) will be outlined in the next section. 
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3 Some Areas of Application 

(a) A Non-linear PDE. If <j> : E —• M+ is bounded and measurable, let Ut = Ut(j) 
denote the unique mild solution of 

-ät=AWt)-\{Ut)2, U0 = <t>. (NLE) 

Using (MP) and some Ito calculus, one can show that Ns = exp(—Xs(Ut-s)) (s < 
t) is a martingale (although there are some details to check - see [F2]) and therefore 

Pm(exp(-X t(0))) = exp(-m(C/*0)). (LT) 

As only (MP) was used to derive (LT), this gives uniqueness in (MP) because (LT) 
identifies the law of Xt and a standard result then implies uniqueness of the law 
of X. Note also that the multiplicative dependence on ra in (LT) is a consequence 
of the strong independence between individuals in the population. 

Clearly (LT) allows one to translate estimates on asymptotic results on Ut</> 
(or solutions to related equations) into probability estimates on X. Iscoe's work 
contains many nice examples of this technique (e.g. [I]). 

Dynkin ([Dyl]) extended this connection to boundary value problems. To 
illustrate his approach we consider only super-Brownian motion. Let D C Md be 
a bounded open set with a regular boundary for the classical Dirichlet problem. 
Modify the branching particle systems described earlier by starting N particles at 
x G D and stopping the particles and their branching mechanisms when each exits 
D at time TQ. Let XQ denote the random measure, which assigns mass iV_1 to 
each exit location. 

THEOREM 3.1. ([Dyl], [Dy2]) (a) X%^>XD as N -> oo. 
(b) If g : dD —» M+ is continuous then Fsx(exp(—Xo(g))) = exp(—u(x)) where 

u is the unique solution of 

Au = -fu2 on D, lim u(y) = g(x) Vx G dD. (BVP) 

This probabilistic representation of solutions to (BVP) is reminiscent of the clas
sical representation of solutions to the Dirichlet problem in terms of Brownian 
motion. The exit measures Xo may be defined directly from historical Brownian 
motion H by (Ç = i2~n) 

XD{4>) = P - lim X) / 0(»(t?))l(t?_i < rD(y) < *?) fft-(dtf). 
n—*oo ^—' / % 

z = l J 

Theorem 3.1 has led to several results for super-Brownian motion and solutions 
of (BVP) and related equations. See [L2] for an example of the latter. Dynkin's 
characterization of polar sets for super-Brownian motion is a good example of 
the former. Let S(fi) denote the closed support of a measure /i and let R = 
l im^o+ cl(\Jt>6S(Xt)) denote the range of X. If gd(x) = \x\~d for d > 1 and 
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< oc g0(x) = l+ log + \ recall that Cap (gd)(K) = 0 iff / / gd(x-y) dv(x) dv(y) 
JK JK 

implies v(K) = 0. If d < 3 then R hits points (see [DIP]). If d > 4 then (see [Dyl]) 
for each analytic set K in Md and each nonzero ra G Af^(Rd) 

K n R = 0 P m - a.s. e> Cap(gd-4)(K) = 0 

The necessity of the capacity condition was first established in [P3] by a direct 
probabilistic argument. Dynkin's proof of the more delicate converse proceeds in 
two steps (take K compact without loss of generality): 

(1) v(x) = — logP^ (R n K = 0) is the maximal solution of Ai; = jv2 on Kc 

(2) By [BP] Cap (gd-4)(K) =0<=> solutions of Av = jv2 on Kc are bounded. 
It follows that inf P$ (RC\K = 0) >p>0 and a stopping argument then shows 

xeKc 

p = 1 from which the polarity of K follows. 
(b) Fleming-Viot Processes. There are several close connections (e.g. [KS], [EM], 
[P4]) between D.W. processes and the Fleming-Viot processes used in population 
genetics to model selection, mutation, and random sampling in the distribution 
of genotypes in a population. E is now a space of genotypes and £ models the 
mutation of an offspring from the type of its parent. In the approximating par
ticle systems, the population size N now is fixed and hence we must modify the 
branching mechanism at t = i(Nj)~l. At these times particle j(j < N) is replaced 
by kj offspring where (k\,..., k^ ) has a multinomial distribution with parameters 
(N;N~X,..., AT-1). This models an essentially infinite number of potential off
spring for each parent (e.g. fish eggs) that, due to limited resources, is then culled 
down to the constant population size. In the absence of selective advantages, each 
parent is equally likely to produce an offspring that reaches maturity and the above 
multinomial distribution arises. If Vt

N(A) is the proportion of types in A at time 
t, then the Fleming-Viot process V (with law P.m) is a probability-valued process 
that is the weak limit of VN as N —> oc. 

A trivial calculation shows that if (k{,i < N) are i.i.d. Poisson (1) random 
variables then P((fa,..., kN) G -| J ] f ki = N) i s multinomial (N; N'1,..., N'1). 
Now take v to be Poisson (1) in the definition of XN above (and m(E) = 1) to see 
that P( (Xf ,s <N)e- \X?{E) = 1 Vs < Ar) = F((Vs

N,s < N) G • ). Letting 
N —• oo suggests (but does not prove) the following result from [EM]. 

THEOREM 3.2. Pm(X e • |W < e " \ \Xt(E) - 1| < e)^Vm(V G • ) as e I 0. 

More generally one can identify the regular conditional distribution of X/X(E) 
given X.(E) = /(•) as a Fleming-Viot process with sampling rate / ( - ) _ 1 ([P4]). 

(c) Stochastic Partial Differential Equations. 

THEOREM 3.3. ([KS], [Re2]) If X is super-Brownian motion in one spatial di
mension, then P m a.s. Xt(dx) = u(t,x)dx Vf > 0 where u : (0, oc) x R - > R + is 
the jointly continuous unique (in law) solution of 

-£{t,x) = -ju(t,x) + y/Tu(t,x)W, (3.1) 

where W is a space-time white noise. 
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(3.1) has several interesting features. If y/yü is replaced by ua for a G (0,1) but 
a ^ 1/2, uniqueness in law remains unresolved. Solutions to these equations may 
be interpreted as the density of a measure-valued branching process with a density 
dependent branching rate. An associated historical process was used in [MP] to 
derive qualitative properties of the solutions. An associated historical process was 
also used in recent work of Mueller and Tribe to study the wave fronts of solutions 
to a class of stochastic PDEs with Wright-Fisher noise. 

(3.1) is also a rare instance when a nonlinear stochastic PDE driven by white 
noise can be solved in higher dimensions. In [Rei] (3.1) was solved as an infinites
imal difference equation. Although for d > 1 the resulting solution was infinite on 
an infinitesimal set, when integrated out, it produced super-Brownian motion. 

(d) Aldous' Continuum Random Tree. Aldous (see [Al]) constructed a random 
probability on M.d (integrated super-Brownian excursion or ISE) by embedding 
the compact continuum random tree into Rd by running d-dimensional Brownian 
motions along the edges of the tree. In terms of super-Brownian motion, ISE is 

/»OO /»OC 

limPeÓ0( / Xtdte\ Xt(Rd) dt = 1), 
ei° JQ JQ 

i.e., the law of f£° Xt dt under the canonical measure associated with the infinitely 
divisible law P^0 conditioned on its total mass being one. (The description in terms 
of Le Gall's path-valued process is perhaps the simplest.) Aldous conjectured that 
ISE is the rescaled limit as n —> oo of uniform measure on n-vertex lattice trees 
animals for d > 8 (super-Brownian motion has double points iff d < 8 ([P3], 
[DIP])). 

4 Properties of Super-Brownian Motion 

Throughout this section Xt and Ht denote super-Brownian motion and its asso
ciated historical process, respectively (i.e., Xt G MF(Rd), Ht G Afp(C(R+,Rd))). 
Recently there have been many precise results on the qualitative behavior of X. 
What kind of measure is Xt? How fast can mass propagate? What can be said 
about the topological features of its closed support S(Xt)

r! 
Dawson and Hochberg showed that for d > 2 and t fixed, Xt is a.s. a singular 

measure supported by a Borei set of dimension two ([DH]). Here is a refinement. 
First, some notation. 

• t 
<t>d(r) - ì 2 

r2 log log 1/r d > 3 

r2 (log 1/r) (log log log 1/r) d = 2 

0 — m(A) is the Hausdorff 0-measure of A. 

THEOREM 4.1. (a) Ifd>2,3Cd > 0 such that for all m G MF(Rd) and allt>0 

Xt(A) = Cd<t>d - m(A D S(Xt)) V Borei set A P m - a.s. 

(b) Ifd>3 30 < C'd < C% < oo such that for all ra G MF(Rd) 

C'dci>d - m(A n S(Xt)) < Xt(A) < C'^d - m(A n S(Xt)) 
V Borei A,t > 0 P m - a.s. 

(c) Ifd = 2Xt±dx Vt > 0 P m - a.s. Vra G MF(Rd). 
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It is possible to prove (b) and (c) using a cluster decomposition of the Palm 
measure associated with the historical process. The original proofs in [PI], [P2] 
implicitly used the same ideas in a nonstandard model for the branching particle 
systems, (a) for d > 3 is obtained from (b) in [DP] through a 0 — 1 law for the 
Palm of the canonical measure associated with Ht. The result for d = 2 is proved 
in [LP] and relies on Le Gall's path-valued process to introduce time dynamics 
into the study of S(Xt). Note that all of these arguments work with an "enriched" 
model for X from which ancestral relationships can be derived. 

Theorem 4.1 shows that Xt spreads its mass over S(Xt) in a uniform manner. 
Although the equality of C'd and Cd in (b) remains open, for d > 3 it is possible 
to recover Xt from S(Xt) for alH > 0 a.s. by considering a Lebesgue measure on 
the e-sausage of S(Xt) and letting e j 0 (see [P7]). These results reduce the study 
of X to the study of its support process S(X.). 

THEOREM 4.2. ([DIP], [DP]) Vc> 2 36(C,LJ) > 0 Q m - a.s. such thatVt > 0 

S(Ht) C {y : \yr — ys\ < c((r — s) log + l / ( r — s)) 1 ' 2 whenever 

\r — s\ < 6}. 

The result is false for c < 2. 

The result implies that S(Xt) propagates no faster than (2 + e)(slog+ 1/s)1/2. 
Note that this is faster than a single Brownian path for which c = \f2 is critical 
by Levy's modulus. There are diffusions £ for which the associated D.W. process 
X propagates instantaneously ([DP, Sec. 8]). 

It is easy to use Theorem 4.2 to strengthen the original cluster argument of 
Dawson and Hochberg and give a simple proof of dim S (At) < 2 (which of course 
is immediate from Theorem 4.1). An elementary argument, using Kolmogorov's 
result that the survival probability of a critical Galton-Watson process after n 
generations is asymptotically cn~1, shows that 

S(Ht(y
t-ee')) = {w1,...,wM{e)} 

where conditional on T^Le, M(e) is Poisson (2Ht-€(l)e~1). Note that M (e) is the 
M(e) 

number of ancestors at t — e of the entire population at t. Decompose Xt as V^ X\ 
i=l 

where X\(-) = Ht(yt G • : yl~e = Wi) so that 

S(Xt) = ufL?S(XÌ). (4.1) 

Theorem 4.2 implies diam(SpQ)) < (4 + n)(elog 1/e)1/2 (for e < ö(u,2 + T?/2)) 

and a trivial Borei-Cantelli argument shows that (4.1) implies dimS ,(X t) < 2. 
As S(X\) and S(Xl)(i ^ j) are conditionally independent sets of zero x2 — 

ra (Theorem 4.1) they will be disjoint if d > 4 (e.g. see [DIP]). It then follows 
easily from (4.1) and the above bound on d i a m ( 5 ( ^ ) ) that S(Xt) is a.s. totally 
disconnected if d > 4. A weaker result is given in [T] for d = 3, but the total 
disconnectedness of S(Xt) remains unresolved for d = 2 or 3. 
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5 A Class of Interactive Branching Measure-Valued Diffusions 

Let b(t, K, y) G Rd, a(t, K, y) G Rdxd, and *y(t, K, y) G R+ be predictable mappings 
on R+ x fi# x C(R+,Rd). Our goal is to construct and characterize an interactive 
historical process Kt(dy) where a "particle" yl in population Kt is subject to a drift 
b(t,K,y), diffusion matrix a(t,K,y), and branching rate y(t,K,y) (continuous 
time branching). This is carried out in [P5] and [P6]. 

EXAMPLE 5.1. b(t,K,y) = fb(y't-yt)Kt(dy'), a(t,K,y) = J<J(y't-yt)Kt(dy'). 
Each particle y't in the population could, for example, exert an attractive drift 
b(y't — yt)Kt(dy') on every other particle yt. If &(x) = pe(x)Idxd, particles will 
diffuse at a rate proportional to the approximate density of nearby particles, b and 
G must be bounded Lipschitz functions for our theory to apply. 

EXAMPLE 5.2. (A variant of Adler's goats) b=f*f'Vpe(y's-yt)Ks(dy')e-oc(<t-s) ds, 

7 = exp(— Jg fpe(yf
s ~ yt)Ks(dyf)e~a^~s^ ds). These goat-like particles tend to 

drift away from regions where the population has recently grazed and depleted the 
resources. They also reproduce at a lower rate in such regions. 

To show that the martingale problem for K is well posed, we will use ana
logues of the key tools in finite-dimensional diffusion theory: Itô's stochastic dif
ferential equations (SDEs), the Girsanov change of measure techniques and the 
Stroock-Varadhan martingale problem. 

(a) Tree-indexed Stochastic Integrals and SDEs. Let H be an historical Brownian 
motion on (fi,T,T t ,P) with 7 = 1 and HQ = ra ^ 0 (Ht G MF(C) where C = 
C(R+,Rd)). Let (fi,Tt) = (fi x C,Tt x Ct) (Ct = cr(ys,s <t)). If T is a bounded 
(.Ft)-stopping time, the associated Campbell measure on fi (whose elements will 
be denoted (u;,y)) is given by 

FT(A xB)= ¥(1A(LJ)HT(B)) F(H0(1))-1. 

Under P T , y is an (^i)-Brownian motion stopped at T and therefore 

/ a(s,uj,y) dy(s) may be defined for the class D(I) of (.^-predictable functions 
Jo 

a(s,uj,y) G RnXd such that / ||a(s,o;,î/)||2 ds < 00 # t-a.a. y W > 0 a.s. 
Jo 

THEOREM 5.1. (a) If a G D(I) there is an Rn-valued (Tt)-predictable process 
I(a,t,LJ,y) such that for allT as above, 

I(v,tAT,u;,y)= / a(s,uj,y) dy(s) Vt > 0 P T - a.s. 
Jo 

(b) If I(a,t,uj,y) is another such process, then 

I(a,s,u,y) = I(a,s,uj,y) Vs<t Ht — a.a. y Vt > 0 P — a.s. 
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Therefore I(a,t,u),y) = JQ v(s,u),y) dy(s) is the stochastic integral of a along the 
branch y up to time t in the Brownian tree UJ. (b) is a trivial application of the 
predictable section theorem. 

Consider the stochastic differential equation that we denote by (HSE)7)CT)& 

(i) Ys(u;,y) =y0-r f a(r,K,Y)dy(r)-r f b(r,K,Y)dr Vs<t tft - a.a. </ 
Jo Jo 

\/t > 0 P - a.s 

(ii) ^(0) = /0(y(-AO(^^))7(^^n(^2/)^(^) yt>0,cj>ebC F-a.s. 
By (i), Y (UJ, y) solves an Ito equation along the branch y with drift b(s, K, • ) and 
diffusion matrix a(s,K,- ). Recalling that Ht is essentially uniform measure on 
those trajectories that are alive at time t, one sees that for 7 = 1, Kt is uniform 
measure over the Yf's and the solution K of (HSE) should be the desired process. 
In general, the transformation of the branching rate 7 into a mass factor in (HSE) 
will require some further adjustments. 

THEOREM 5.2. Assume (7,(7,0) are Lipschitz continuous, 7 is bounded, and 
(HQ,KQ) satisfy (HSE) (ii) att = 0. 
(a) There is a pathwise unique solution (K,Y) to (HSE)^^^. 
(b) If KQ is deterministic, K is a predictable function of H and its law depends 

only on (K0,j,(r,b). 

The proof is a contraction mapping argument. A form of Itô's lemma for the 
tree-indexed integrals is used to iterate the maps (which arise from (HSE)) in the 
appropriate Banach space. The Lipschitz condition (L) on (a, b) is the natural one 
using the Vaserstein metric on MF(C) and the associated sup-norm on fi# x C. The 
above result is false if this same condition is imposed on 7 and hence the Lipschitz 
hypothesis on 7 is more restrictive (see (C3) in [P6, Sec. 5]). This hypothesis 
is satisfied, for example, if ^(t, K,y) = J_oo(j)e(s);y(s^', K,y)ds where 0e > 0 is 
smooth and integrable, and 7 satisfies (L), or if ^(t,K,y) = ^(t.yt) and 7 is 
sufficiently smooth. 

Although the solution K of (HSE)7)CTjb will branch at rate ^y(t,K,y), the 
introduction of 7 as a mass factor also leads to additional zeroth and first order 
terms in the generator and hence this is not the desired process. To use Dawson's 
Girsanov theorem to make the appropriate changes we need a martingale problem 
for K. 

(b) A Historical Martingale Problem. Let Kt(uj) = ut on fin and set DQ = 
Wv) = i>(yt1,---,ytn) : U > 0,</> G C$°(Rnd)}. For ^ as above and y(t) = 

n - l 

(y(tM\),..., y(tAtn)), Vi/j(t, y) is the vector in Rd with jth component Y^ l(t < 
_ i=0 

Ì2+i)^id+j(2/(*)) and 

n—1n—1 

^iji^y) = ^2^21(t< *fc+i A^+i)V>fcd+i id+j(y(t)), 1 < ij < d. 
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Let a(t, K, y) G Sd (symmetric (d x d) matrices) and g(t, K, y) G R be predictable 
maps on R+ x fi# x C, and for 1/; G D0 define 

1 d d 

A ^ ( t , y ) = ^ ^ ^ ( ^ . » ^ ( t , ! / ) + b(t,K,y) • V^(t,y) + gfaK^tf). 
2=1 j = l 

The last term arises by giving certain individuals 2/ in a population if a selective 
advantage (g > 0) or disadvantage (g < 0) in branching. For r > 0 and ra G 
fijj = {K G fi/f : if.AT = K.} consider the martingale problem (denoted by 
(HMP)7;™M) 

V^ G A) tftGÊ) = ifrW + MS) + J J AK$(S,y)Ks(dy) ds 

Mt(iß) is a continuous (T*)-local martingale, ifr = ra, and 

< Af(̂ ) >t= J J-y{8,K,y)$(ya)2Ka{dy) ds. 

If 7(s, K,y) = 7 is constant, a = 7rfXd, and b = g = 0, then Itô's lemma shows that 
AK^(t,y) = Yli=i 5 î»(*»2/) is t n e generator of £ —> B1 (B a Brownian motion). 
The martingale problem (MP) for D.W. processes therefore suggests that Q r , m 

(the law of historical Brownian motion) is the unique solution of (HMP)I/™0 0 and 
this indeed is the case ([P6]). It is easy to see that the processes described at the 
outset will satisfy ( H M P ) ^ . b 0. 

THEOREM 5.3. Assume that (7,6,0-) are as in Theorem 5.2, g is bounded, 
ry~l(t,K,y) < L(t,Kt(\)), and a(t,K,y) = aa*(t,K,y) is strictly positive def
inite for Kt — a.a. y and for all t > 0. 
(a) There is a unique law Qr.m on fi# satisfying (HMP)*'™h that depends 

continuously on (r,ra). 
(b) If(-y,a,b,g)(t,K,y) = (7,a,ò,<?)(t,if t,y), tfien(QT?m = QT,m(T) ona(Ks,s > 

T) and (Kt, Qr,m0 ) is a time-inhomogeneous strong Markov process. 

The proof of (a) proceeds in two steps: 
(1) (HSE);£ f t « . (HMP);;™ . b+kaa. 7 ) . ( 7 6) for appropriate 6, g. (=>) is a simple 

exercise in stochastic calculus for tree-indexed integrals. (<=) requires the 
nondegeneracy conditions on (7, cr) to invert (HSE) and define a historical 
Brownian motion in terms of K such that K solves (HSE)^'™b. Theorem 5.2 
now shows that (HMP) r , m „ u, z .is well posed. 

v '7,00* ,b+b,g r 

(2) By redefining b and using Dawson's Girsanov theorem ([D2, Ch. 10]) to reset 
g to g, one sees that (HMPV'™b is well posed. 

REMARKS, (a) The existence of solutions to MF(Rd)-valued martingale problems 
similar to (HMP) was known by tightness arguments (see [M] or [MR]). It is easy 
to project down solutions K to (HMP) via Xt( • ) = Kt(yt G • ) to obtain Feller 
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solutions to these Markovian martingale problems, which are the weak limits of 
the natural interactive branching particle systems. 

(b) Dawson and March [DM] have adapted the parametr ix method of Stroock 
and Varadhan to prove tha t a class of interactive Fleming-Viot martingale prob
lems is well posed. This approach seems to be complementary bo th in the tech
niques used and in the areas of application. 

(c) The stochastic equation approach appears to be somewhat robust. Don
nelly and Kurtz [DK] have incorporated it with their "look-down" processes to 
s tudy Markovian spatial interactions in a general class of population models tha t 
includes bo th Fleming-Viot and Dawson-Watanabe processes. 

The historical process has been the key tool in the s tudy of super-Brownian 
motion X, its connections with nonlinear boundary value problems, and the con
struction of interactive models. Although in general this information is lost when 
dealing with X itself, it is interesting to note tha t this is not the case for sufficiently 
high dimensions. 

T H E O R E M 5.4. ([BaP]) Let Q m denote the law of historical Brownian motion H 
in d dimensions and let Xt( • ) = Ht(yt G • ) be the associated super-Brownian 
motion. LetT^ (resp., T* ) be the G-field generated by (Hs, s <t) (resp., (Xs, s < 
t)) and the Qm-null sets. Ifd>5, T? = Tf1 Vt and ifd<ZT?^ T? Vt > 0. 
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Diffusion Processes in Random Environments 
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1 Introduction 

Problems concerning limiting behavior of random processes in random environ
ments have been discussed mostly in the framework of random walks (e.g., see [1], 
[4], [6], [15], [17], [23], [24]). Most of the problems, naturally, can also be treated in 
the framework of diffusion processes. We give here a survey of some recent results 
concerning diffusion processes in random environments, mainly of one dimension, 
with emphasis on the following two examples of problems. The use of methods and 
results in theory of diffusion processes makes our argument transparent. 

(I) Localization by random centering (depending only on the environment) of a 
diffusion in a one-dimensional Brownian environment. 

(II) Limit theorems for a diffusion in a one-dimensional Brownian environment 
with drift. 

We also give a brief survey concerning 

(HI) results for a diffusion in a multidimensional Brownian environment. 

2 A diffusion in a one-dimensional Brownian environment (with drift) 

Let P be the Wiener measure on W = C(R) H {W : W(0) = 0}. The processes 
{W(t),t > 0, P} and {W(—t),t > 0,P} are thus independent Brownian motions. 
Let il = C[0, oo) and denote by uj(t) the value of a function CJ(G Œ) at time t. For 
fixed W and a given constant n we consider a probability measure P\y on Ci such 
that {uj(t),t > 0, Pw} is a diffusion process with generator 

^=yf™'i(<-wMi) 
and starting at 0, where W(x, K) = W(x) — \KX. It is well known that a version 
of Xw = {uj(t),t > 0, Pw} can be obtained from a Brownian motion through a 
scale change and a time change. We can regard W and {uj(t),t > 0} as defined on 
the probability space (W x Q,V) where V(dWduj) = P(dW)Pw(du;). The process 
X = {uj(t), t >, V} is then called a diffusion in a Brownian environment (with drift 
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if K. / 0). Symbolically one may write duj(t) = dB(t) — ^ W'(uj(t), n)dt where B(t) 
is a Brownian motion independent of W(-): however, this stochastic differential 
equation has no rigorous meaning. 

When K: = 0, X is a diffusion model of Sinai's random walk in a random 
environment [23]. In this case Schumacher [22] and Brox [3] showed that X exhibits 
the same asymptotic behavior as Sinai's random walk, namely, that the limit 
distribution of (\ogt)~2uj(t) as t —> oc exists. Kesten [14] obtained the explicit 
form of the limit distribution. Golosov [7] also obtained a similar explicit form for 
a reflecting random walk model. Some generalizations of these results were done 
in [10] and [25]. The problem (I) stated in the introduction is to elaborate the 
result of [22] and [3] by taking account of a random centering that depends only 
on the environment W. This will be discussed in the next section. It is to be noted 
that a similar localization result was already obtained by Golosov [6] for reflecting 
random walks on Z+ . 

The problem (I) is concerned with the case K ^ 0 and may be regarded as a 
diffusion analogue of what was discussed by Kesten-Kozlov-Spitzer [15], Solomon 
[24], and Afanas'ev [1]. Here we are mainly interested in limit theorems concerning 
the first passage time Tx = inf{t > 0 : u(t) = x} as x —> oc. As will be seen in 
Section 4, the result varies with n and naturally is compatible with those of [15] 
and [1]. 

3 Localization by random centering in the case K = 0 

The argument of [3] relies on the notion of a valley introduced in [23]; in order to 
state only the result, however, it is adequate to start simply with the definition 
of the "bottom" (denoted by b\) of a suitable valley around the origin. Given a 
Brownian environment W = {W(x),x G R}, let us define b\ = b\(W) following 
[14] for each A > 0. Setting 

W*(x) = W(x) - min W, 
[xA0,xV0] 

d+ = min{x > 0 : W*(x) = A}, V+ = min W, 
[0,d+] 

d" = max{x < 0 : W*(x) = A}, VA~ = min W, 
K,o] 

we first determine b$ and bA by W(b\) = Vf and W(b^) = V^ , respectively 
(such òA are uniquely determined with P-measure 1 for each fixed A > 0), and 
then define b\ = b\(W) by 

b(w) = i b> if MA+ V (FA+ + A) < MA~ V {VX~ + A)' 
M j U A i fM+V(y A

+ + A)>Af A -V(V7+A) , 

where M+ = max{W(x) : 0 < x < b$} and M^ = max{W(x) : 6A < x < 0}. 
When A = 1 we write b = b(W) suppressing the suffix 1. We also define W\(e W) 
for each A > 0 and W e W by Wx(x) = X~1W(X2x),x e R. Then {WX,P} is 
equivalent in law to {W. P} and hence the distribution of b(W\) is independent of 
A > 0 . 
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Let X = {uj(t),t > 0,V} be a diffusion in a Brownian environment (K = 0) 
starting at 0. According to Schumacher [22] and Brox [3] 

X~2uj(ex) - b(Wx) — 0 (3.1) 

in probability with respect toV as A —• oo. 
Localization by random centering arises from the following question: Under 

what scaling does the left-hand side of (3.1) admit a nondegenerate limit distribu
tion? The answer is simply that u)(ex) — \2b(W\) does. To state the result more 
precisely we need to introduce another probability measure Q on W, defined in 
such a way that {W(x),x > 0, Q} and {W(—x),x > 0,Q} are independent Bessel 
processes of index 3 starting at 0. Let /JLW be the probability measure in R of the 
form const. exp{—W(x)}dx; it is well defined for almost all W with respect to Q 
because exp(—W) G L1(R), Q-a.s. For an integer k > 1 we set u^ = ^ 0 - • -®/xw 
(the fc-fold product) and fik = $ ßy/Q(dW). 

THEOREM 1 ([26], [28]). For any ti,...,tk with 0 < ti < ••• < tk the joint 
distribution ofuj(extj) — b\(W), 1 < j < k, with respect to V converges to fik as 
A —> oc. 

This theorem was proved in [26] for k = 1. The case k > 1 was proved in [28] 
by making use of Ogura's theorem stated below. Suppose we are given a sequence 
of diffusion operators 

_ d d 
mn(dx) dSn(x)' ~ 

and denote by X*(t) the diffusion process with generator Ln starting at x. We 
assume that the following conditions (i), (ii), and (iii) are satisfied. 
(i) Sn(0) = 0 and Sn(x) tends to oo or — oo accordingly as x —» oo or x —> — oo; 

for each x, Sn(x) —• 0 as n —> oc. 
(ii) The measure mn converges vaguely to some nontrivial finite measure m as 

n —> oc. 
(iii) The measure fnn = mn o S " 1 converges vaguely to cSo as n —» oc, where S" 1 

is the inverse function of Sn, c = m(R) > 0, and So is the ^-measure at 0. 

OGURA'S THEOREM ([21]; see also [26]). For any e e (0,1) and an integer k > 1 
we set 

TKE = {(tu...,tk) G Rk : e < h < tk < l/e^j-tj^ > e (1 < Vj < A:)} (3.2) 

and consider a sequence {xn} satisfying 

\Sn(xn)\ < l/e, n>l. (3.3) 

Then for any continuous functions fj in R with compact supports, 1 < j < k, 

£Jn£(*^))|-n//;dmo 
as n —> oc uniformly in {xn} satisfying the condition (3.3) and in (t\,... ,tk) G 
Tkì£, where mo is the probability measure c~1m. 
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It is known (see [3], Lemma 1.3) that, for fixed W, the process {uj(X4t),t > 
0,Pw} is equivalent in law to {\2u(t),t > 0,P\wx}- This combined with the fact 
that bx(W) = X2b(Wx) implies that the process {uj(ext) - bx(W),t > 0,PW} is 
equivalent in law to {X2(u(X~Aext) - b(W\)),t > 0,P\wx}'i in addition, W\ and 
W are identical in law. Therefore, for the proof of Theorem 1 it is enough to show 

JEXW I n /^MA-Vt;) - b(w))) \ P{dw) 

fj dßW } Q(dW), A ^ oo. (3.4) /{n/ 
For fixed W the generator of the diffusion process {A2(a;(A Aext) — b(W)),t > 
Q,P\w} is given by {d/m™ (dx)}{d/dS™ (x)}, where 

5 f (x) = 2e~x f exp{\(W(\-2y + Ö) - W(b))} dy, 
Jo 

m%(dx) = exp{-\(W(\~2x + b) - W(b))}dx. 

LEMMA 1 ([28]). (i) S^(x) tends to 0 as A -» oo with P-measure 1. 
(ii) If we regard m™ and rh™ = m™ o (S™)~1 as random variables taking val
ues in the space of Radon measures in R equipped with the topology of vague 
convergence, then the joint distribution (under P) of m™ and m™ converges to 
the joint distribution (under Q) of exp{—W(x)}dx and cw^o as \ —> oc where 
cw = Jexp{—W(x)} dx. 

Making use of Lemma 1 and Ogura's theorem we can prove (3.4) and hence 
Theorem 1. For details see [28]. 

A similar localization problem was discussed in [11] when {^(a:)} is a step 
process arising from a random walk that is assumed to converge in law, under a 
suitable scaling, to a strictly stable process. 

4 Limit theorems in the case K ^ 0 

Let X = {uj(t),t > 0,V} denote the diffusion in a Brownian environment with 
drift (K ^ 0), and set Tx = inf{£ > 0 : uj(t) = x},ul(t) = max{uj(s) : 0 < s < t} 
and Lj(t) = inf{a;(s) : s > t}. 

THEOREM 2 ([13]). (i) If K > 1, then 
4 

lim Tx/x = - , V — a.s., 
x—»oc K, — 1 

lim Lj(t)/t = ^—, V - a.s. 

(ii) If K = 1, then (xlogx)_ 1Tx converges to 4 in probability (w.r.t. V) as x —• oo 
and each of 

t - ^ l o g t ) ^ ) , t~l(\ogt)u(t) and t~l (\ogt)u(t) 

converges to 1/4 in probability (w.r.t. V) as t —> oo. 
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(iii) I f 0 < K< 1, then 

lim V{x~l/KTX <t} = FK(t), t > 0, 
X-+OC 

lim V{t-«Lj(t) <x}= lim V{t~Kuj(t) < x} 
t-+oo £—>oc 

= lim V{t-*u(t) < x) = 1 - FK(x-VK), x > 0, 
£—»oo 

where F« is the distribution function of a one-sided stable distribution with Laplace 
transform exp(—cA*). 

REMARK. The constant c in the Laplace transform exp(—cA*) is given by 

c = J2 1 - K r (« ) H <j)(x)-2dx\ , 

where </>(x) is the solution of j ^ ^ • jg = 20,0(0) = 1,0'(O) = 0;M(x) is given 

by M(x) = 2j(p~1(x)), where *y(x) = J* z~Ke~4zdz and p_1(x) is the inverse 

function of p(y) = J* zK~1e4z dz. 

Theorem 2 is a diffusion analogue of (a part of) the results for random walks 
due to Kesten et al. [15]. We do not give a detailed proof here but we remark that 
our method of the proof, in particular, of (ii) and (iii) is different from that of [14] 
and is based on the following lemma due to Kotani. 

KOTANI'S LEMMA (1988, unpublished; see [13]). Let A > 0. Then fort>0 

Ew {e~XTt} = exp i - / Ux(s) ds\ , V - a.s., 

where U\(t) is the unique stationary positive solution of 

dUx(t) = Ux(t)dW(t) + J2A + ^-Ux(t) - Ux(t)
2\ dt. 

By virtue of Kotani's lemma, for the proof of (iii) it is enough to show that, 
with A = Çx-1'", 

lim £{e*p(-£,Tx/xlÌK)\ 

= lim B | exp I - jT Ux(s) ds\ i = e x p ( - c D , 

and the key point in proving the last equality is the use of Kasahara's continuity 
theorem [9] concerning Krein's correspondence (e.g. see [16]). A full proof is given 
in [13]. 

The following theorem is a diffusion analogue of the result of Afanas'ev [1]. 
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THEOREM 3 ([12]). (i) If-2 <K< 0, then 

V{TX < oc} ~ const.x~3/2 exp(—K2X/S), X —• oo, 

where 
oc oc oc oc 

const.= 2*+T( - / c ) - 1 f j j fz(a + z)~ xa~ K~x e~ a ' ^-Ke~ Xz u sinh u da dydz du, 

0 0 0 0 

(A = 2- 1 ( l + 2/2) + 2/coshu). 

(ii) Ifn = -2, then 

V{TX < oc} ~ (2/7r)1/2a;-1/2 cxp(-a;/2), x - • oo. 

(iii) I f« < - 2 , then 

— K — 2 
V{TX < oo} •—- • exp{(K. + l)x/2}, x -> oo. 

/e j . 

The proof of (i) relies on an explicit representation of the distribution of a 
certain Brownian functional due to Yor ([29], see the formula (6.e)). 

5 A diffusion in a multidimensional Brownian environment 

One generalization of the model discussed in Section 3 to a multidimensional case is 
to take a Levy's Brownian motion with a multidimensional time as an environment. 
Let {W(x),x€Tld,P} be a Levy's Brownian motion with a d-dimensional time 
that is supposed to be an environment. For a frozen Brownian environment W let 
Xw = {uj(t),t > 0,P\y} be a diffusion process with generator 2_ 1(A — VW • V) 
starting at 0. Existence of such a diffusion is guaranteed by the result of Nash 
([20]). As in a one-dimensional case we call X = {uj(t),t > 0,V} a diffusion in a d-
dimensional Brownian environment, where V(dWduj) = P(dW)Pw(duj). A similar 
diffusion model appeared in a heuristic argument of [18]. Durrett [4] obtained 
rigorous results on recurrence and localization for random walks on Zd described 
by a certain random potential having asymptotic self-similarity and stationary 
increments. The diffusion X may be regarded as the continuous time analogue of 
what was discussed in Example 2 (ß = 1) of [4]. Recently Mathieu [19] considered 
the diffusion X itself and discussed its long time asymptotic behavior. 

THEOREM 4 ([27]; sec also [4] for random walks). Xw Is recurrent for almost all 
Brownian environments W for any dimension d. 

This theorem can easily be proved by making use of Ichihara's recurrence test 
([8], see Theorem A) concerning symmetric diffusions. We can also use Fukushima's 
recurrence criterion [5] in terms of the associated Dirichlet form. X|w| is also 
recurrent, P-a.s.; however, X_|M/| is transient, P-a.s., for any d > 2 as can be 
proved by using Ichihara's transience test ([8], see Theorem B). From the argument 
of [27] it is also easy to see that Theorem 4 remains valid when {W(a:)} is replaced 
by any continuous random field {V(x)} in Rd satisfying the following conditions 
(i), (ii), and (iii). 
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(i) Self-similarity: there exists a > 0 such tha t the law of {X~1V(Xax)} equals 
tha t of {V(x)} , denoted by P, for each A > 0. 

(ii) {Tt,t G R } is ergodic, where Tt is a P-prescrving transformation from C ( R d ) 

onto itself defined by (TtV)(x) = e-tlCLV(etx),x G Rd. 
(iii) min{V(a;) : \x\ = 1} > 0 with positive probability. 

The argument of [19] entails the following theorem. 

T H E O R E M 5 ([19]; see also [4] for random walks). Localization takes place for X 
in the sense that 

lim hm V{\~2 max(\u)(t)\ : 0 < t < ex) > N} = 0. 
N—>oc A—•oo 

It seems that there is no proof of the existence of the limiting distribution 
of A~2o;(eA) as A —> oc. It is to be noted, however, that Mathieu [19] gave the 
existence proof together with an explicit representation of the limiting distribution 
of \~2u)(ex) in terms of the local time of \W\ at level 0 when W is replaced by 

\w\. 
The above results on recurrence and localization rely heavily on the (asymp

totic) self-similarity of W as well as the symmetry of Xw • Without these conditions 
the situation will change much. In the case of random walks there is a profound 
work by Bricmont and Kupiainen [2]. 
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Analytical and Numerical Aspects of Fluid Interfaces 
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Durham, NC 27708, USA 

1. Introduction 

Water waves are familiar in everyday experience and illustrate the rich variety 
of phenomena observed in wave motion. The exact equations are difficult to deal 
with directly because of the free boundary and the inherent nonlinearity. However, 
approximate treatments, especially linear theory and shallow water theory, as well 
as numerical computations, have led to the understanding of many important 
aspects. We concentrate here on qualitative properties of the equations of motion, 
linearized about an arbitrary solution, and the design of convergent numerical 
methods of a special type, called boundary integral methods. 

The boundary integral formulation of the equations of water waves leads to a 
natural approach for computing time-dependent motions. The moving interface is 
tracked directly, and only quantities on the interface need be computed. However, 
numerical instabilities are difficult to avoid, because of the unusual form of the 
equations, the nonlinearity, and the lack of dissipation. We summarize here the 
results of a study of the motion of two-dimensional water waves in this formulation. 
This work is done in conjunction with Hou and Lowengrub; details are given in 
[5], [6]. We analyze the behavior of the equations linearized about an arbitrary, 
time-dependent solution, which may be far from equilibrium. A structure for these 
linearized equations emerges that is analogous to the familiar case at equilibrium. 
The well-posedness of the linearized equations is evident from this structure, in 
contrast to other cases of fluid interfaces that are ill-posed. W^hen the equations 
are discretized, the issue of numerical stability is closely related to the linear 
well-posedness in the continuous case. By maintaining a similar structure for the 
discretized equations, we find that computational methods can be designed that 
are numerically stable, even for fully nonlinear motion, and converge to the exact 
solution. The methods treated here are closely related to those of Baker, Meiron, 
and Orszag [2], [3]. Calculations of breaking waves in [3], [6], and in earlier works 
illustrate the capability of these methods. 

The approach used here is a familiar one for analyzing approximations to 
nonlinear partial differential equations. In general, for an evolution equation of 
the form ut = F(u), an infinitesimal variation u(t) from an exact solution u(t) will 
satisfy iit = dF(u)û, where dF(u) is the Fréchet derivative of the mapping F on 
appropriate spaces. To decide whether this linearized equation is well-posed in the 
sense of Hadamard, we only need to keep account of the most important terms in 
dF(u)ii; other terms, which might affect the stability of the underlying solution 

Proceedings of the International Congress 
of Mathematicians, Zürich, Switzerland 1994 
© Birkhäuser Verlag, Basel, Switzerland 1995 



1056 J. Thomas Beale 

u, can be treated generically. Now suppose that we introduce a spatial discretiza
tion in the unknown u and the mapping F, replacing the original evolution by 
uh __ pW^yh^ w n e r e fr indicates the spatial scale. Then the error uerr = uh - u 
between the discrete solution uh and the exact solution u will satisfy an equa
tion of the form ufT = dF^(u)ucrr + r , where r includes the consistency error 
of u in the discrete scheme and nonlinear terms in uerT. To control the error we 
need growth estimates for ueTT much like the well-posedness estimates for ù in 
the continuous case. However, the discrete operator dF^ could easily introduce 
numerical instabilities, i.e., rapid growth in high wave numbers, even if the contin
uous problem is well-posed. Thus analysis has a role in selecting numerical schemes 
that do not encounter numerical instabilities. 

2. Water Waves 

In the simplest model of water waves, the fluid is taken to be incompressible and 
inviscid, with constant density, which we set to 1. Thus the fluid flow is governed by 
the usual Euler equations with the force of gravity. The fluid is bounded above by 
a free surface or interface that moves with the fluid. The pressure at the interface 
matches the pressure above, provided surface tension is neglected; we ignore the 
motion of the air above, so that the pressure on the surface is zero. (The effect 
of surface tension will be described below.) We customarily assume that the fluid 
motion is irrotational. The fluid velocity should then be of the form V0, the 
gradient of a scalar potential 0. For irrotational flow the momentum equation can 
be integrated to give Bernoulli's equation 

0t + è | V 0 | 2 + p + <72/ = 0 (1) 

in the fluid domain, assuming the motion is at rest at infinity. Moreover, the 
velocity has divergence zero, so that 

A0 = O. (2) 

An important consequence is that the potential 0 in the fluid domain, and thus 
the velocity field, are determined by the value of 0 on the interface. (For simplicity 
we assume the fluid is of infinite depth; the L2 norm of V0 should be finite.) It is 
natural to describe the state of the system by giving the location of the interface 
and the value of 0 restricted to the interface. The evolution of these two variables 
is determined by the velocity field and by (1), with the pressure set to zero; (2) 
acts as a side condition, needed to find V0 on the surface. 

From the description above we can quickly obtain the familiar linear model 
of water waves near equilibrium; it will serve as a guide for the more general case. 
We consider motions slightly perturbed from fluid at rest in the lower half-plane 
{y < 0}. If the interface is y = rj(x; t), we match its vertical velocity to that of the 
fluid and use (1) to obtain the linearized equations of motion 

Vt = <J>y , <Pt = -9V • (3) 

Here 0 = (j)(x, y; t), and the equations above are evaluated at y = 0. It is a simple 
matter to determine <\>y on y = 0 from 0(-,O), using (2) in {y < 0} and a Fourier 
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transform in x. 
^,(fc,O) = |fc |0(M). (4) 

It follows that the general solution for 77 is a superposition of special solutions 

r)(x, t) = eikx e±iujt, u) = Jgk. (5) 

This is the familiar dispersion relation for linear waves in deep water without 
surface tension. We note, for later reference, that nt in (3) is given by the nonlocal 
operator (4) applied to 0(-,O). We can think of this operator as HD, where D = 
d/dx and H is the Hilbert transform; it also appears in the general case below. 
Many important phenomena of water waves have been explained using this model. 
For instance, Kelvin was led to the method of stationary phase by his study of 
water waves; he used it to derive the pattern of a wake behind a ship in the linear 
model of deep water. 

If the direction of gravity is reversed above, we have exponential growth 
like exp(y/gkt) in (5). The evolution equations are then ill-posed, because of this 
unbounded growth in high wave numbers. Such effects, often due to a heavy fluid 
over a vacuum or light fluid, are called Rayleigh-Taylor instabilities (e.g., see [13]). 
A different kind of ill-posedness, called Kelvin-Helmholtz instabilities, occurs in a 
vortex sheet, i.e., an interface between two layers of the same fluid with different 
tangential velocities. In that case the growth is like cxp(kt). A survey of numerical 
methods for the ill-posed problem of vortex sheet motion is given in [10]. 

3. The Boundary Integral Formulation 

We now describe the boundary integral formulation of the exact equations of water 
waves. For details, see [2], [3], [6], [7]. Quantities on the moving interface will be 
treated as functions of a Lagrangian variable a; i.e., a is a material coordinate. 
For two-dimensional flow, it is convenient to use complex notation. We write the 
interface as z(a; t), with either z — a —> 0 as |a| —> oo, or z — a periodic with period 
27r; dz/dt will be given by the fluid velocity. The state of the system is specified 
by the curve z(a; t) and the velocity potential 0(a; t) on the interface. According 
to (2), the extension of 0 to the fluid domain is harmonic, and it follows that the 
velocity, in the complex form w = u — iv, is analytic in z. We write the velocity w 
at a point z below the surface as a Cauchy integral 

w 2m J z-z(a') /v } 

with 7 to be found in terms of 0. (This is equivalent to writing 0 as a double layer 
potential.) The limiting velocity at the free surface is 

, , 1 7(0) 1 f l(<*') 
(6) 

We can determine 7 from the condition Da<f> = 0xxQ + (j)yya = Re(wza). Using 
(6) we obtain 
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an integral equation of the second kind, which can be solved for 7 in either of the 
two cases of interest. The kernel is an adjoint double layer potential. Finally, given 
z,(j) at time t, solving (7) for 7, and finding w from (6), we have the evolution 
equations 

as functions of (a; t). Here z = x + iy and w* is the complex conjugate of w. This 
form of Bernoulli's equation differs from (1) because of the change to Lagrangian 
variables. 

Computational methods have been based on this or related formulations for 
some time. Longuet-Higgins and Cokelet [11] used a method of this type to calcu
late plunging breakers. An approach like the above for an interface between two 
different fluids was suggested long ago by Birkhoff. Such a method was developed 
successfully by Baker, Meiron, and Orszag [3]. Further work has been extensive; 
more references are given in [6]. However, numerical instabilities have been ob
served even in careful studies. Linear analysis has led to an understanding of their 
sources [4], [8], [12]. 

4. The Linearized Equations 

We will not attempt to deal with the full evolution equations (6)-(8) directly; 
instead we treat the equations linearized about an arbitrary solution. We will 
obtain linear equations for a variation z, 0 from an exact solution 2,0 of (6)-(8), 
with coefficients depending on z, 0. In doing so, we will keep explicitly only the 
terms that affect well-posedness, treating the rest more crudely. Thus, e.g., in the 
equation for dz/dt, terms proportional to Daz must be kept explicitly, but not 
terms like i itself, even though they might cause exponential growth. 

We begin by varying the integral term WQ in (6). We have 

*>(*) = ± [ , 7(Q/), „ da' - -L / Ì (Q)-Ì(Q/)
27(aO da'. (9) 0K } 2m J z(a)-z(af) 2m J (z(a) - z(a'))2 K J K ' 

We can expect that the highest order dependence in WQ on 7,2 comes from a' near 
a. Thus, with z(a) — z(a') « za(a)(a — a'), the important part of the first term 
should be (2iza)~

1HA/, where H is the Hilbert transform, defined by 

(Hf)(a) = I T J^Lda'. (10) 
TT J_oc a-a' 

Similarly, we expect to approximate the second term by a simpler quantity, which 
can be identified as 'y(2iz2)~1HDctz. More precisely, we can show that 

2iza
 7 2izl 

m = ^—H>y - ^HDaz + i4-oo(7) + A0(z). (11) 

Here and below, we use the notation A—r for a linear operator bounded from W 
to W+r, W being the Sobolev space of functions with j derivatives in L2, for j as 
allowed by the smoothness of the underlying solution. Similarly, A-x denotes an 



Analytical and Numerical Aspects of Fluid Interfaces 1059 

operator with arbitrary smoothing. It is a useful fact that the commutator of H 
with a multiplication operator is a smoothing operator. Taking into account the 
first term in w, and using this fact, we have 

w = - ^ - (7 - Œ) (7 - ^za) + A^ij) + A0(z). (12) 
zza \ Za J 

By varying (7) we can relate 7 in (12) to 0,i. After solving for 7 and some 
further manipulation we can re-express (12) as 

w = z~l(I - iH)DaF + A . ^ ) + A0(z), (13) 

where 
F = 0 — Re(u?i) = (j) — ux — vy. (14) 

This expression for w gives us evolution equations for z. Let zN, zT be the normal 
and tangential components of z, with respect to the underlying curve z(a), N 
being the outward normal, and let 6 = zT + HzN. Using zt = w*, we find that 

i f = aHDaF + i4_oo(0) + A0(z) (15) 

fit = ^_oo(0) + i4o(i) (16) 

with a = \za\~1. In this form it appears that only the normal component of i 
is important. Also, the form of (13) suggests that we use the modified varied 
potential F, rather than 0, in our linearized evolution equations. Accordingly, we 
differentiate F in t and vary Bernoulli's equation to find 0 t to obtain, after some 
cancellation, Ft = —gy — utx — vty. Comparison with the Euler equations in 
Lagrangian form shows that the vector (ut, Vt + g) is in fact — Vp, a normal vector 
at the surface, because p = 0 there. Thus, we can rewrite the above as 

Ft = -czN, c = c(a, t) = (ut,vt+g).N. (17) 

Equations (15)-(17) are the evolution equations for the variation, with zN,6, F in 
place of the original variables z, 0. 

Several qualitative conclusions are evident from the linearized evolution equa
tions (15)-(17). The Fourier symbol of H is — i sgn k, so that the operator A = HD 
in (15) has symbol |fc|, and is positive and symmetric. The same operator appeared 
in the equations linearized at equilibrium (3), (4), except that now it occurs with 
respect to the a-variable. In fact, in the special case at equilibrium, with z = a 
and w = 0, we have a = 1, c = g, and equations (15), (17) reduce to the earlier 
system (3). In general, we see from (14), (15) that dzN/dt contains a term like 
AzN, a term that would produce Kelvin-Helmholtz instabilities, were it not for a 
compensating term in the F equation. Indeed, if we multiply (15) by (c/a)zN and 
(17) by AF, the two principal terms are the same except for opposite signs. As a 
consequence, we can show that the energy form 

f ((zN)2 + 62 + F ( A + 1 ) F ) da 

grows at most exponentially, provided c(a, t) has a positive lower bound. Similar 
estimates hold for higher Sobolev norms. The positivity of c means that, in the 

file:///za/~1
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underlying flow, the fluid is not accelerating downward, normal to itself, as fast as 
the normal component of the acceleration of gravity. This condition can be viewed 
as a natural generalization of the criterion of Taylor for horizontal interfaces. If 
it is violated, we should expect the interface to develop Rayleigh-Taylor instabil
ities, and the linearized equations to be ill-posed, as in the equilibrium case. The 
following theorem is proved in [5]. Related results are given in [1]. 

THEOREM 4.1 Assume that a smooth solution of the exact water wave equations 
(6) -(8) exists for some time interval, and assume that 

(ut,vt-rg)-N>cQ>0 (18) 

for some Co. Then the linearized equations (15)-(17) are well-posed. 

5. The Numerical Method 

The equations of motion of water waves, written in the boundary integral for
mulation (6)-(8), are naturally suited for computation, but discretizations must 
be chosen for the singular integrals and the derivatives. These choices affect criti
cally the accuracy and stability of the numerical method. We consider the simplest 
case in which the interface is periodic, i.e., z(a;t) — a is periodic with period 2m 
Similarly, 7 is periodic, and also 0, provided the velocity at infinity is zero. In 
the integrals of (6), (7) we now integrate over one period and replace the Cauchy 
kernel by the sum over periodic images, so that our equations become 

7(oQ 
2za(a) 

*«(<*) = ^ + R e 

<l>t = \\w\2 -gy. (21) 

In discretizing these equations, we can expect the error between the computed 
and exact solutions to satisfy, approximately, a discretized form of the linearized 
equations (15)-(17). However, the discretization could easily destroy the balance 
of terms observed before and lead to rapid growth in the high wave numbers. 
To produce a numerical scheme, we replace the a-interval with N equally spaced 
points, aj = jh, where h = 2TT/N. We compute Zj(t),Çj(t),^j(t), where Zj(t) ap
proximates z(af, t) etc. Our first issue is the discretization of the singular integral. 
We use a choice that has been found to be practical as well as simple, a sum over 
alternating points, omitting the point with the singularity: 

£ COt (^M)^«')da' * E «* ( ^ ) 7* • 2Ä • 

This "alternate quadrature" is high order accurate and has the advantage of avoid
ing a special contribution at the singular point; see [6] for references. 

It would be reasonable to expect that, with this quadrature rule and a dif
ference operator for the a-derivative, we would obtain a usable numerical scheme 
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from (19)-(21). However, as can be seen from the analysis below, the resulting 
scheme would be numerically unstable at equilibrium; see [7]. To discuss this fur
ther, we use the discrete Fourier transform. For a discrete function {fj} on the 
periodic interval, the discrete transform and its inverse are 

jei kei 

Here J is the set of integers {—N/2 + 1 < k < N/2}, assuming N even. We will 
write a discrete derivative operator in the form 

Dh]fj = Y,p(kh)ikf«e ikcti 

for some p with p(0) = 1, p(ir) = 0. The standard difference operators have this 
form; the order of accuracy is the order to which p(£) —• 1 as £ —> 0. Of course, 
if the derivative is spectral, i.e., applied in the Fourier transform, p can be chosen 
with infinite order. Once a derivative operator, or equivalently a function p, is 
chosen, we also use a regularization based on p\ for arbitrary periodic fj we define 
fj by multiplying fk by p(kh). Thus, e.g., D^ fj = D^ ' / / • Similarly, we define 

Zj by applying p to the transform of Zj — aj. 
The numerical scheme we use for (19)-(21) is obtained by using the alternate 

quadrature for the integrals, replacing the a-derivative with an operator D^ , and 
replacing Zj inside the integrals with the regularized form Zj. The scheme so 
obtained is 

- r - = — A - + -r-. ? cot -2——— )fk-2h = wi 22) 

D[% - l + Refë1 E c o t f ^ ^ W ^ (23) k—j odd 

d0 J- = h\*>j\2-9Vi- (24) 

For this version we are able to show full numerical stability and convergence. 
The reason for the regularization of Zj in the singular integrals will become evident 
in the discussion of stability below. We now state the convergence result; see [6]. 

THEOREM 5.1 Suppose an exact solution of the water wave equations (19)-(21) is 
smooth and satisfies the acceleration condition (18) for some time interval. Suppose 
the numerical scheme (22)-(24) is initialized with this solution, and solved with a 
choice of D^ that is rth order accurate, r > 4. Then the computed interface {ZJ} 
is close to the exact interface z to order hr in discrete L2 norm at each time, 

\zj(t) - z(aj;t)\p < Chr . 

Similarly, <j>j is accurate to order hr and 7j to order hr~1 in discrete L2 norm. 
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To outline the proof, we write equations for the errors Zj(t) = Zj(t) — z(aj-, t), 
etc., and attempt to estimate their growth as before in the continuous case. The 
estimates are not as straightforward in the discrete case, but several observations 
will illustrate the essential points. If we compare the sum in (22) for Wj with the 
corresponding sum for the exact w, the terms linear in i j ,7 j are 

J_ ^ 7. 2h i v 7(qfc)(ij
p)-4p)) 2h 

2ni
 k-joàd

 ZW] - *<°*>W 2™ k-7tM (*(aj)W - z(ak)«»)2 

in analogy with (9). (We have expanded the periodic sum, with k now unbounded.) 
The most important contribution to the first term is (2iza)~

1Hhji where H h is 
the discrete Hilbert transform with alternate quadrature. It is helpful that this 
discrete Hilbert transform has the same Fourier symbol as before, i.e., (HhfYk = 
—i sgn k fk, 0 < k < N/2. In a similar way we can find the symbol of the 
important part of the second term and identify that part as 

nhVh z- - nhuh Zj. 
2izl n h 3 2izl 

Thus, the regularization of Zj in the singular integral leads to a term involving 
DfrZj, and our two terms are analogous to those in (11). Without Zj , we have a 
mismatch leading to the instability referred to above. Moreover, when we add the 
first term in w to these, we can combine all the terms as we did before in (12), 
obtaining 

* « £ e - < * > ( + - £ " ? • * ) • 

It might appear that we could simply choose p = 1 and maintain the structure 
just observed. However, there would be trouble from the terms we have omitted 
from our discussion. Just as in spectral methods, "aliasing" errors can arise from 
products, and it seems necessary to have some cut-off in the derivative operator in 
the high modes. In addition, there are aliasing errors in discrete integral operators 
with smooth kernels. Surprisingly, with the alternate quadrature, such an operator 
may not gain derivatives at all. However, we can show that if K is a smooth 
function of (a, a ') , then at least 

J2 K(aj,ak)fi
p)2h = A_l(fj). 

k—j odd 

This fact is needed in handling sums that occur above with a smooth kernel multi
plying 7. When we assess the error in (23) and solve for 7, the /o-smoothing enters 
through the derivative of 0 as well as the smoothing of z in the sum, and using 
the above fact, we find, in analogy with (13), that 

w = z-\l - iHh)D[p)F + A0(z) + Ao(0) + 0(hr). 

The remainder of the convergence proof is then parallel to the earlier treatment of 
the continuous linearized equations. Several improvements and generalizations are 
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discussed in [6]. We have treated only the "semi-discrete" case, leaving the time 
discretization as a separate issue; cf. [8]. The related work [4] uses Fourier analysis 
in a similar way to identify numerical instabilities near equilibrium. 

To test this numerical scheme, we have calculated in detail a wave that turns 
over and starts to break [6]. The time discretization was the Adams-Bashforth 
method. No instabilities were observed until well after the wave became verti
cal. Once it overturns, condition (18) is violated, and we expect Rayleigh-Taylor 
instabilities. In that regime we filter the high modes to prevent rapid growth of 
numerical errors, as in other calculations of ill-posed interfaces [10]. Once the wave 
begins breaking, physical effects neglected in this model should become important. 
Earlier calculations of breaking waves include [11], [2], [8]. 

6. The Effect of Surface Tension 

Surface tension is a cohesive force that tends to stabilize the high wave numbers. 
With surface tension included in the physical model, the pressure at the interface 
has a discontinuity proportional to the (mean) curvature. Thus, the earlier form 
of Bernoulli's equation in (8), (21) is replaced by 

0t = \\w\2-gy + TK, (25) 

where K is the curvature and r the coefficient of surface tension. In contrast to the 
earlier case, the linearized equations are well-posed without qualification [5]: 

THEOREM 6.1 For any smooth solution of the water wave equations with surface 
tension, the linearized equations are well-posed. 

To see the reason, we return to the earlier linearization procedure. We again 
have (15), (16) for zN,6. However, surface tension is now the dominant term in 
Bernoulli's equation, and neglecting terms that were essential before, we find 

Ft = rk + A0(z) = ra (az£)a + A0(z). (26) 

Again we obtain an energy estimate, but with a different balance between the two 
important terms in the zN- and F-equations. The direction of gravity does not 
enter, because it affects only a lower order term, so the motion is well-posed even 
if water is above the surface. 

The numerical scheme already described can be adapted to include surface 
tension, but further care is needed with the high wave numbers. Assume the cut
off function p is chosen so that p'(n) = 0 as well as p(7r) = 0. Our choice of 
expression for the curvature is related to a product rule for discrete derivatives. 
For / a smooth function of a and any u G £2, we have 

DhP) [/(«>;] = f{*i)Dh\ + /»(«>? + hA0(Uj), 

where {uqyk = q(kh)ûk and q = d(Ç,p(£))/d£. We discretize the curvature as 

Dhx)Dlyj-Dhy]DlXj 
Kj {{Dhx])^ + {Dhy]yf/2 vn 
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where Dh is D^f • This choice is made so that the variation kj is a discrete form of 
(26); see [6], [7]. The numerical scheme is the same as in (22)-(24) except that TKJ 
is added to the discrete Bernoulli's equation (24). Convergence is proved in [6]: 

THEOREM 6.2 For a smooth solution of the water wave equations with surface 
tension, (19), (20), (25), the modified numerical scheme, with Kj given by (27) 
and p as above, converges in the same sense as before. 

For the more general case of two different fluids separated by an interface 
with surface tension, a similar but more complicated numerical scheme, as in [3], 
can be shown to converge; these results will be reported elsewhere. 

For many realistic situations, the coefficient of surface tension is small, and 
difficulties arise with time discretization due to stiffness. An explicit method would 
require a very small time step once large curvature develops. Hou, Lowengrub, and 
Shelley [9] have found a way to overcome this problem. They identify the highest 
order contribution to the surface tension term and treat it implicitly, thereby 
allowing a larger time step. We expect that this approach can be used with the 
spatial discretization discussed above. 

References 

[1] V. K. Andreev, Stability of Unsteady Motions of a Fluid with a Free Boundary, VO 
"Nauka", Novosibirsk, 1992 (in Russian). 

[2] G. Baker, Generalized vortex methods for free-surface flows, Waves on Fluid Inter
faces, R. Meyer, ed., Univ. of Wisconsin Press, Madison, WI 1983, 53-81. 

[3] G. Baker, D. Meiron, and S. Orszag, Generalized vortex methods for free-surface 
flow problems, J. Fluid Mech., 123 (1982), 477-501. 

[4] G. Baker and A. Nachbin, Stable methods for vortex sheet motion with surface ten
sion, preprint, 1992. 

[5] J. T. Beale, T. Y. Hou, and J. S. Lowengrub, Growth rates for the linearized motion 
of fluid interfaces away from equilibrium, Comm. Pure Appi. Math., 46 (1993), 1269-
1301. 

[6] J. T. Beale, T. Y. Hou, and J. S. Lowengrub, Convergence of a boundary integral 
method for water waves, to appear in SIAM J. Numer. Anal. 

[7] J. T. Beale, T. Y. Hou, J. S. Lowengrub, and M. J. Shelley, Spatial and temporal 
stability issues for interfacial flows with surface tension, Math. Comput. Modelling, 
20 (1994), 1-27. 

[8] J. W. Dold, An efficient surface-integral algorithm applied to unsteady gravity waves, 
J. Comput. Phys., 103 (1992), 90-115. 

[9] T. Y. Hou, J. Lowengrub, and M. Shelley, Removing the stiffness from interfacial 
flows with surface tension, J. Comput. Phys., 114 (1994), 312-338. 

[10] R. Krasny, Computing vortex sheet motion, Proc. Internat. Congress Math. Kyoto 
1990, (1990), 1573-83. 

[11] M. S. Longuet-Higgins and E. D. Cokelet, The deformation of steep surface waves 
on water, L A numerical method of computation, Proc. Roy. Soc. London Ser. A, 
350 (1976), 1-26. 

[12] A. J. Roberts, A stable and accurate numerical method to calculate the motion of a 
sharp interface between fluids, IMA J. Appi. Math., 31 (1983), 13-35. 

[13] D. L. Sharp, An overview of Rayleigh-Taylor instability, Phys. D, 12 (1984), 3-18. 



Morse Theory in Differential Equations 
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1 Introduction 

In the study of closed geodesies, Marston Morse developed his theory on the calcu
lus of variations in the large. The Morse inequalities, which link on one hand, the 
numbers of critical points in various types of a function, and on the other hand, the 
topological invariants of the underlying manifold, play an important role in Morse 
theory. Naturally, they provide an estimate for the number of critical points of a 
function by using the topology of the manifold. Hopefully, this topological method 
would deal with the existence and the multiplicity of solutions of certain nonlinear 
differential equations. However, in this theory, the manifold is compact, and the 
functions are assumed to be C2 and to have only nondegenerate critical points; 
all of these restrict the applications seriously. In contrast, Leray-Schauder degree 
theory has become a very useful topological method. In 1946, at the bicentennial 
conferences of Princeton University, there was much discussion of their contrast. 
M. Shiffman hoped that the two methods could be brought closer together "so 
that they may alter and improve each other, and also so that each may fill out the 
gaps in the scope of the other" [Pr]. Since then, great efforts have been made to 
extend the Morse theory. We only mention a few names of the pioneers as follows: 
R. Bott, E. Rothe, R. S. Palais, S. Smale, D. Gromoll, W. Meyer, A. Marino, and 
G. Prodi. 

The minimax principle, another important topological method in dealing 
with the existence of critical points, is a twin of Morse theory. As was mentioned 
in his book [Mo], Morse confessed that the second Morse inequality "is essentially 
Birkhoff's minimax principle, although not stated by Birkhoff in precisely this 
form", and that " whose minimax principle was the original stimulus of the present 
investigation". In this direction, G. Birkhoff, L. Ljusternik, L. Schnirelmann, M. 
A. Krasnoselski, R. S. Palais, A. Ambrosetti, and P. H. Rabinowitz have made 
great contributions. 

Melting together the classical Morse theory, the minimax principle, and the 
L-S degree theory for potential operators into a unified framework, the extended 
Morse theory becomes a powerful tool in nonlinear analysis. 
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2 Basic Results 

Let M be a C2 complete Banach-Finsler manifold, and / G C1 (M,^ 1 ) . The 
critical set of / is denoted by K, and V e G R \ Kc = K n f~l(c). The level set 
fc = {x G M| / (#) < c}. According to Brézis and Nirenberg, / is said to satisfy the 
(PS)C condition if any sequence Xj G M, along which f(xj) —• c and / ' (#j) —> 0, 
is subconvergent. 

Morse theory consists of two parts: the local and global theories. 

2.1 Local theory 

For an isolated critical point, one attaches a series of topological invariants, which 
are called the critical groups, in describing the local behavior of / near p: 

C*(f, p) = H* (fc n U, (fc \{p}) n U: G), (2.1) 

where * = 0 ,1 ,2 , . . . , c = f(p), U is an isolated neighborhood of p, G is an Abelian 
coefficient group, and f/*(-,-;G) stands for the singular relative homology groups 
with coefficients in G. 

Comparing with the Leray-Schauder index of / ' at p, where / ' is assumed to 
be a compact perturbation of identity, and M is a Hilbert space, we have 

oc 

indLS(/',p) = Y. (-1)9 r a n k C* (/•*)• (2-2) 
q=0 

Thus, the critical groups provide more information than the L-S index. They can 
be computed or estimated by the Morse index and the nullity of p; e.g., for isolated 
p, it is a local minimizer, if and only if rank Cq (f,p) = 6qo. Furthermore, they 
enjoy the homotopy invariance as the L-S index does (see [Ch4]). 

2.2 Global theory 

Let a,b be regular values of / , and let / satisfy (PS)C V e E [a,b\. The following 
two principles provide the existence of critical points: 

I. If the pair (/&, fa) is nontrivial, i.e., fa is not a deformation retract of /&, 
then K fl f~1(a,b) ^ 0 (Noncritical Interval Theorem). 

In particular, if H+ (/&, fa; G) is nontrivial, say 0 ̂  [r] G Hq (ft,, fa',G), then 

c= inf sup f(x) (2.3) 

is a critical value, where \T\ is the support of r . 
This principle includes the Mountain Pass Lemma as well as its high di

mensional counterparts (homological link, either finite of infinite dimensional) as 
special cases [Ch7, 6]. For instance, if c is a Mountain Pass value, then / c +o is path 
connected, but /c_o is not. 

II. For two nontrivial classes [Tî], [T2] G if* (/*,, fa\ G), [T\] is called subordi
nate to [r2], denoted by [ri] < [r2], if 3 w G H* (fo, G) with dim w > 0 such that 
[n] = b"2] n w. 
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Assume that [n] < [r2] < • • • < [n] are subordinate classes in H* (fb, fa',G). 
Let 

Ci = inf sup f(x) , i = 1,2,. . . , I. 
T€[Tì] Xç\T\ 

If c = c\ = c2 = • • • = ci, then Cat (Kc) > I. 
This principle provides multiplicity results (see [Ch6, 8], [CL1], and [Li]), and is 
based on a deformation theorem. 

Morse inequalities, which link up these two theories, read as follows 

M(/,a,b;t)=P(M,a,6;t) + (1 + t) Q (t), (2.4) 

OO oo 

where M(f,a, b; t) = ^ Mq (a, b)tq,P (M,a, b;t) = ^ rank tfg (/6, / a ) tg, Q(t) 
q=0 9=0 

is a formal series with nonnegative coefficients, and 

i 

Mq (a, b) = Y rank Ci (MO- (2-5) 
i= i 

In the above we have assumed that / G C1 (M, M1) satisfies (PS)C V c G [a, 6], and 
that X H f~l(a, b) = {Pl,... ,Pl} [Ch4]. 

A direct consequence of Morse inequalities is that, if the critical value c is 
obtained in (2.3), then 3 p G Kc satisfying Cq (f,p) ^ 0. Morse inequalities are 
also used in proving the existence and the multiplicity of critical points. 

G-invariant Morse theory is also extended to this generality; i.e., instead of 
the isolated critical points, we investigate isolated critical orbits, see [Hi], [Wal], 
[Ch7, 6], [CP], [BCP]. 

If we are dealing with a functional whose critical points may not be isolated, 
the critical groups can also be extended to define on isolated critical sets. Indeed, 
this is a special case of the Conley's homotopy index, which is defined on iso
lated invariant sets for a semi-flow. For pseudo-gradient flow, the Conley index 
becomes extremely simple [Ch4], [Da], and the corresponding Morse inequalities 
were extended by Conley and Zehnder [CZ], see also [Be]. 

Can we reduce the differentiability of the functional? The first step towards 
this extension was to consider a nondifferentiable, but locally Lipschitzian func
tional for which the generalized gradient df (p), in the sense of Clarke, is set 
valued. One extended the notions of critical point p, by assuming 9 G df(p), and 
of the (PS)C condition, by using | |9/(p) | | = Min{||w|||w E 9 / (p)} as a replace
ment of \f'(p)\ in the definition. Indeed, the deformation theorems hold [Chi]. 
The extensions to C1-perturbations of convex l.s.c. functions [Szl] as well as to 
l.s.c. functions with <£>-monotone subdifferential of order 2 [GMT] were explored 
afterwards. Recently, by introducing a notion, called the weak slope | |d/(p)| | of a 
contionuous function / defined on a metric space, which replaces | |9/(p) | | for lo
cally Lipschitzian functions, De Giovanni and his colleagues successfully extended 
deformation theorems to continuous functions [CDM]. Remarkably, this unifies all 
the above-mentioned diverse extensions. 
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3 Applications and extensions 

Principle I is frequently used; it is exactly the topological foundation in many 
PDE literatures, although it might not be formulated apparently in this form. We 
mention just a few results of recent years. 

It is known that the Yang Mills functional does not satisfy the (PS) condition. 
However, under a suitable symmetric assumption, when we restrict the functional 
on the symmetric subspace, it does; then the minimizer exists in each component. 
This gives a new proof of the result of Sadun and Segert on the existence of 
nonminimal YM fields on S4 , see [Pa]. 

The existence of infinitely many closed geodesies on compact, connected, 
simply connected Riemannian manifolds is based on the fact that the integral 
homology of the loop space does not vanish for infinitely many dimensions. The 
same idea was used to study those on certain noncompact Riemannian manifolds 
[BG], geodesies in static space-time [BFG], and the periodic orbits of a Hamiltonian 
system of AT-body type (strong force) [FH]. 

As a replacement of the Ljusternik-Schnirelmann multiplicity theorem, Prin
ciple II provides estimates of critical groups. Applications can be found in [Chi]. 
[CJ]. 

In Principle I, the (PS) condition is only used in proving the "Noncritical In
terval Theorem". There are cases in which the deformation theorem holds but not 
the (PS) condition; e.g., the harmonic maps. Eells and Sampson first noticed that 
the heat flows for harmonic maps can be used as deformations. In particular, for 
2-dimensional harmonic maps, with or without boundary conditions, not only the 
"Noncritical Interval Theorem" and the Morse inequalities, but also the "Morse 
handlebody theorem" hold below the energy level of the first bubbling. Some mul
tiple solution results obtained previously by Brézis-Coron-Jost and Benci-Coron 
are considered as consequences [Ch5]. 

In some cases, the (PS) condition fails, but the (PS)C sequence is subcon
vergent if along which the Morse indices are under control. Combining with a 
perturbation argument, the Morse theory is applied, see [Gh]. 

The above-mentioned Morse theory has been applied to study multiple solu
tions for second order elliptic boundary value problems of the following type: 

{ - A w = è(x,u) in fi, 
(3 1) 

ue Hi (ft), V ' ; 

where ft is a bounded domain in Rn , n > 3, with smooth boundary, and (j) G 
C1 (ft x R1, R1 ) satisfying the growth condition 

K ( X , T ) | < C ( 1 + | T | * 9 ) . (3.2) 

There are many examples showing how the Morse theory has been applied, 
see [Ch6, 8], [Wa2]. * 

Because the maximum principle holds for second order elliptic equations, 
an ordered Banach space degree theory has been developed, which enriches the 
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study of multiple solutions for this kind of problem. In particular, it admits the 
sub-and super-solution method and the cutoff technique. In contrast, in applying 
the Morse theory to these problems, we would rather take CQ than HQ as the 
coordinate working space. 

Two problems arise: (1) One may assume that the corresponding functional 

/(«) = ( \ \Vu\2-®(x,u) (3.3) 

(where $ is the primitive of (j) with resp. to u) satisfies (PS)C on HQ, but it can 
not be transferred to CQ. (2) How to compute the critical groups in CQ? For (1), 
it was proved that CQ is invariant under the gradient flow, see [Ch3]. Although 
(PS)C does not hold on CQ, the deformation property is still valid. As for (2), we 
have 

C . ( / , « ) = C . ( / | c â , « ) , (3.4) 

see [Ch9]. Under a weaker assumption, Brézis and Nirenberg proved this conclusion 
for minimizers [BN]. 

So far, all our discussions are only concerned with manifold M without bound
ary. However, in the early 1930s, Morse and van Schaack studied functions with 
boundary conditions defined on bounded smooth domains in Rn . This result has 
been applied to PDE in [Ch2]. Infinite-dimensional Morse theory under general 
boundary conditions has been investigated. Namely, let M be a C2 Hilbert Rie
mannian manifold with a C2 boundary, which is a codimension 1 submanifold. Let 
n(x) be the unit outward normal vector field defined on E = dM. For a function 
/ G C1 (MM1) without critical point on E, let E_ = {x G E | ( / ' (x),n(x)) < 0} 
and / = / | E _ . The following theorem holds ([CL2], [Ro]): 

THEOREM. If f and f have only isolated critical points, and both satisfy (PS)C 

\/cE [a,b], in which a, b are regular values for f and f, then 

M (f, a, b: t) + M (/, a, b:t) = P (M, a, Ò; t) + (l + t)Q (t), (3.5) 

where M, P, and Q have the same meaning as in (2.4). 

The proof depends on a modified deformation theorem for manifolds with 
boundaries. Because the negative gradient flow directs inward on E \E_ , only / 
on E_ has contribution. A similar consideration has been used by Majer [Ma] 
and has been applied to study the AT-body type problem (strong force), in which 
a boundary defined by a level set of another related functional is introduced to 
avoid the lack of (PS) condition [MT]. 

Using the above considerations, the modified Morse inequalities (3.5) can be 
extended to manifolds with corners. 

When M is replaced by a locally convex subset S of itself (the local convexity 
depends on the special atlas), we call p the critical point of / on S, if it satisfies 
the variational inequatity < / ' (p),v >> 0 V v G Tp (S), the tangent cone of S 
at p. Again, if one uses the notation \\x*\\p = sup{< x*,v > \v G Tp(S), \\v\\ < 
1}, for x* G TP(MY, and replaces f'(xn) - • 0 by || - / ;(a?n)| |Xn - • 0 in the 
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(PS)C condition; then the Morse theory is extendible. Applications to the Plateau 
problem for minimal surfaces were studied by [St], [CE], [JS]. 

In dealing with strongly indefinite functionals; i.e., the Morse indices for 
critical points being infinite, for example, the variational problems arising from the 
periodic solutions of Hamiltonian systems or the nonlinear wave equations, etc., 
all the critical groups are trivial. One has to redefine the critical groups in keeping 
the information obtained from the neighborhood of a critical point. Analogous 
to the above Gromoll-Meyer theory, an infinite-dimensional cohomology theory is 
introduced to modify the definition. Obviously, a Galerkin approximation scheme 
is needed, and the modified critical groups are defined to be the direct limits of 
sequences of critical groups on the approximate subspaces, see [Sz2]. However, to a 
periodic orbit B(t) of Hamiltonian systems, the Maslov index i(B) plays the same 
role as the Morse index of a nondegenerate critical point does in finite-dimensional 
Morse theory. A systematic study of the Maslov index has been made by Zehnder, 
Amann, Conley, Long, Salamon, etc. Following the same idea, for a degenerate 
periodic orbit B(t), a pair (i(B),n(B)) is defined to be the Maslov index, see [Lo]. 
Again the Morse theory is applied. We have the following result for asymptotically 
linear Hamiltonian systems: 

THEOREM. ([CLL], [Fe]) Let H G C2([0,1] x R2 n ,R) be 1-periodic in t. We 
assume that there exist 2n x 2n symmetric matrix functions BQ (t) and B^t) 
that are continuous and 1-periodic, satisfying 

Hx(t,x)-B0(t)x 0(\x\) as | x | - » 0 , (3.6) 

h (t, x)=H (t, x) - ± (Bx (t) x, x) - 0 , (3.7) 

and 
\hx(t,x)\^0, (3.8) 

as |a: | —> oo uniformly in t G [0,1]. 
If further, 

\Hxx(t,x)\<C(l + \x\s) (3.9) 

for some C > 0, s > 1, and for all (t,x) G [0,1] x R2n, then the Hamiltonian 
system 

-J^=Hx(t,x) (3.10) 

possesses a nontrivial solution when one of the following three cases occurs: 
(i) £ H(t,e)dt = o, 
(2) /o1 H (t, 0)dt>Oandi {Bx) <£ [i (B0), i (B0) + n (B0)}, 

(3) / J H(t,0)dt<Oandi(Boo)+n{Boc) $. [i{B0),i(B0)+ n(B0)]. 

As a consequence, (3.10) possesses a nontrivial solution if 

[i{B0),i(B0)+n(B0)} n [i(Bx),i(Boo) + n{Bx)} = 0 . 
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For degenerate B^t), it is called strong resonance if (3.6) and (3.7) hold. In the 
case where ß ^ (t) is nondegenerate, one may replace them by the following: 

\HX (t,x) — Boc (t)x\ = 0(\x\) as \x\ —• oo uniformly int . (3.11) 

This theorem covers all previously known results [AZ], [CZ], [LZ], [LL], [Sz2], 
[Ch7] as special cases. 

4 Critical points at infinity 

The (PS) condition, or, more generally, the compactness condition, which implies 
the deformation theorem, is a basic point in Morse theory. However, in many 
interesting PDE problems arising in geometry and physics, the lack of compactness 
occurs and then the Morse theory is not directly applicable. It is a great challenge 
to extend Morse theory to these problems. 

4.1 Compactifying the underlying manifold 
In some problems, we may compactify the manifold M by adding infinity points, 
and extend the functional onto the new space such that the deformation lemma 
and then Morse theory hold for the enlarged space. The critical groups are used 
to distinguish the genuine critical points from the critical points at infinity. We 
present here an example: the Nirenberg's problem showing how the method works. 

Given a function K on S2, one asks if there exists a metric g that is pointwise 
conformai to the canonical metric go on S*2 such that K is the Gaussian curvature 
of (S2,g). This is equivalent to solving the following PDE: 

-Agou-rl = K e2u on S2 , (4.1) 

which is the Euler-Lagrange equation of functional 

J (u) = S(\Vu\2 + 2u) - log I K e2u (4.2) 

defined on the manifold 

M = {ue H1 (S2)\ i e2u = 1} , (4.3) 

where f denotes the average over S2. And when -f K e2u < 0, we set J (u) = 
+oo. It is easily seen that the (PS) condition fails. However, noticing that M is 

o 

conformai invariant, one splits the manifold into a product: AI = Mo x B3, where 

M0 = {u G M\ ixi e2u= 0,z = 1,2,3} , (4.4) 
o 

and B3 = S2 x [l ,oo)/S2 x {1} is the moduli space of the conformai group; i.e., 
V a = (Q,t) G S2 x [l,oo),3 a 1 — 1 correspondence to the conformai transform 
(pa on S2. For each u, let a be the unique solution of the system: 

/ • 
Xie

2u*"=0 , i= 1,2,3, (4.5) 

where u^,a = u o 4>a + ì log det (<j>'a). 
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Then u i—• (u^ ,a) is a diffeomorphism. 
The "compactified" manifold M is defined to be M0 x B3, and the extended 

functional reads as 

o 

J(v) = i " v ^ i î u = (W: s ^ ® € M ° X ß 3 (4.6) 
|(V w\2 + 2w) - log K (Q) if u = (tu, Q) e M0 x S 2 , 

where s is a diffeomorphism: [1, oo) —• [0,1), with 1 — t~2 Ini as asymptotics. 
Now, M is a Banach manifold with boundary, on which the (PS) condition 

for J is gained. Although J may fail to be C 1 at dM, one can deform J into a 
C1-functional preserving the same critical set, and then the Morse theory under 
the general boundary condition is applied. Assume 

K € C2 ,Max K > 0,and A K(x) £ 0 if V K(x) = 0 and K(x) > 0 (4.7) 

(4.8) 
Let a, b be regular values of both K and e J such that only 

finite critical points of both K and e~J have values in (a, b) 

and let 

Vt = {x G S2\K(x)>0,AK(x)<0}, 

CVo (a, b) = {x G fi| K (x) G (a, ò),and a: is a loc. max.}, 

Cr\ (a, b) = {x G Q\ K (x) G (a, b), and x is a saddle point}. 

THEOREM. Under the assumptions (4.7) and (4.8), we have 

£ ( M , + / i , - / ? , ) t « = (l + t ) Q ( t ) , (4.9) 

where Mq is the qth Morse type number of J, 

ßq = Hq (J- iog a, J_ iog fc), (4.10) 

and 

^ = {#Crq(a,b) g = 0,1. ( 4 " U ) 

This theorem improves previously known results, see [CD], [CY1, 2], and 
covers some new ones. In this connection, the critical groups are used to distin
guish critical points from infinity. By perturbation, one may avoid the finiteness 
of critical points in the assumption. As a consequence: (4.1) is solvable if (4.7) and 
deg (Q,VK,0) / l . 

The same method has been applied to study Nirenberg's problem on the 
hemisphere S 2 , preserving 9S 2 as a geodesic (see [LiL]) and the prescribing geo
desic curvature problem. Given a function k on the unit circle S1 = dD, one asks: 
Is there a flat metric g that is pointwise conformai to the Euclidean metric such 
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that k is the geodesic curvature with resp. to o? The later, in turn, is reduced to 
the following nonlinear boundary value problem: find u G C00 (D), satisfying 

Aw = 0 in D 

9u , , u c l (4.12) 
—- + 1 = k eu on 5 . 
on 

Similar conclusions drawn from Morse inequalities have been obtained by [CL4]. 
The method has also been applied to study the strong resonance problem 

[CL1], in particular, the Theorem ([CLL], [Fe]) in Section 3. 

4.2 Bahri's theory 
We cannot finish our talk without referring to the profound contribution due to 
Bahri, who has also been invited to be a speaker at the Congress. My abilities fall 
short of my desires to introduce his far-reaching work. I shall satisfy myself with 
giving a list of his main results in this direction, see [Bal]. 

o Critical Sobolev exponent nonlinear elliptic equation [BB] 
Let (Mn,g) be a compact, n-dimensional, Riemannian manifold without boundary. 
Let q G L°°(M), and let Ag be the Laplace-Beltrami operator. Assume that 
—A g -f q is coercive. Then the equation 

f (-A9 + q)u = u ^ onAf, 

| u > 0 on M, 

has a solution, if one of the following conditions is satisfied: 
(1) 3 < n < 5, 
(2) n = 6,7, and H3 (M, Z2) ^ 0, 
(3) n is arbitrary, and H\ (M,Z2) or H2 (M\,1A2) is nonzero. 

For the Dirichlet problem on bounded domains, see [BC2]. 

o Prescribing scalar curvature problem on Sn 

This is an analogous problem to Nirenberg's problem. One solves the following 
equation: 

n + 2 
I Lgo u = K(x)un-2 onSn, 

\ u > 0 on Sn, 

where Lgo is the conformai Laplacian with respect to the standard metric go. As
sume that K G C2 is positive and has only nondegenerate critical points p\,..., p\ 
such that A K (pj) ^ 0, j = 1 , . . . , /. Let kj = ind (pj) Vj. 

For n = 3, (4.14) is solvable if 

AK(P j)<0 

Under additional conditions, this holds for n = 4, see [BC1] and [Zh]. 
For n > 7, a recent result was announced in [Ba3]. 
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For arbitrary n, under different assumptions, by using a priori estimates, see 
Yanyan Li [LY]. 
o N-body type problem, [BR], [Ri]. 
o Another proof of the Yamabe problem, [Ba2]. 

All these results are based on the combined use of the Morse theory, of a 
kind of compactification of critical points at infinity, and of a penetrating analysis 
of the interactions of bubbles. 
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Analyse microlocale et mécanique des fluides 
en dimension deux 

JEAN-YVES CHEMIN 

Laboratoire d'Analyse Numérique, Université Paris 6 
BP 187, 2 place Jussieu, F-75230 Paris Cedex 05, France 

Introduction 

Dans ce texte, nous avons cherché à donner un aperçu sur quelques résultats récents 
démontrés sur l'équation d'Euler incompressible en dimension deux. Nous avons 
voulu mettre l'accent sur l'importance que peuvent prendre l'aspect géométrique et 
les idées venues de l'analyse microlocale dans la description précise de la régularité 
des solutions du système d'Euler. 

1. Présentation du système d'Euler 

Nous allons commencer par rappeler quelques propriétés de base sur le système 
d'Euler relatif à un fluide parfait incompressible. 

{ dtv + div v®v = — Vp 
divv = 0 
v\t=o = vo, 

Le tourbillon (ou vorticity en anglais), est, par définition, le rotationnel du champ 
de vecteurs v. C'est la quantité clef pour comprendre le système d'Euler. 

CONVENTION. Lorsque la dimension est 2, on identifie les matrices antisymé
triques avec les réels. Ainsi, on note u(v) = d\v2 — &2Vl le tourbillon de v. En 
dimension supérieure, on note Q(v) = (^)(v))i<i,j<d avec ffi(f) = djV1 —divK 
On omet de noter explicitement (v) en Vabsence de toute ambiguïté. 

L'importance du tourbillon dans l'étude des solutions du système d'Euler 
incompressible (E) vient du fait qu'il détermine le champ des vitesses. C'est la loi 
de Biot et Savart qui affirme que 

*'(*)= c*Ç^j^^(2/)% . (1) 

La pression est une inconnue du système. En supposant le champ des vitesses 
suffisamment régulier, il vient, en dérivant l'équation sur le champ de vecteurs v, 

d 

-Ap=^2 djdk(v^vk). (2) 
j,k=i 
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Lorsque r est un nombre réel, nous désignerons par Cr l'espace de Holder d'indice 
r. On a alors le théorème d'existence locale en temps suivant. 

T H é O R è M E 1.1 Soient r et a deux réels strictement supérieurs à 1 et vo un champ 
de vecteurs de divergence nulle appartenant à Vespace Cr. Supposons que VVQ ap
partient à La. Il existe alors un unique temps T* maximal et une unique solu
tion (v,p) de (E) tels que v G L^c([0,T*[;C r) et (Vu, Vp) appartienne à l'espace 
L£c([0,T*[;La). De plus, on a 

T* < -hoc => / ||ft(t)||L*>dt = +00. 
Jo 

A propos de ce théorème, il faut citer les travaux de L. Lichtenstein (voir [14]). La 
nécessité d'étudier l'évolution du tourbillon apparaît clairement. En différentiant 
le système (E), il vient 

d 

dtn + v-Vn + n-S7v = Q avec (Q • Vv)j = ] £ Slfav* - nkdkv
j. (3) 

k=i 

Lorsque la dimension d vaut 2, il résulte de (3) que 

dtuj + v • Va; = 0 et donc \\U\\L« = | |^O||LQ- (4) 

On déduit alors du théorème 1.1 le corollaire suivant. 

COROLLAIRE 1.1 On suppose que d = 2. Soient r et a deux réels strictement 
supérieurs à 1 et VQ un champ de vecteurs de divergence nulle de classe Cr. Sup
posons que V^o appartient à La. Il existe alors une unique solution (v,p) de (E) 
telle que v e L£ c(R+;C r) et (Vv, Vp) G L£ c (R+;L a ) . 

2. Le théorème de Yudovich 

Le bon cadre lorsque les solutions sont peu régulières est celui des perturbations 
d'énergie cinétique finie de solutions stationnaires particulières. 

DÉFINITION 2.1 On appelle champ de vecteurs stationnaire et on note a, tout 
champ de vecteurs de la forme 

2 pT 1 pT 
CT=(-^2 / P9(p)dp,^ pg(p)dp) où fleCgc(R\{0}). 

v r Jo r Jo ' 
On vérifie facilement que le champ de vecteurs a est une solution stationnaire de 
l'équation d'Euler. Nous pouvons maintenant présenter la définition suivante. 

DÉFINITION 2.2 Soit m un réel, on désigne par Em l'ensemble des champs de 
vecteurs de divergence nulle v du plan tels qu'il existe un champ de vecteurs sta
tionnaire o vérifiant 

k u(a) = m et v — a £ L . 
R2 
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On démontre facilement que, si (1 + |a:|)rfo;(x) est une mesure bornée et si LJ appar
tient à l'espace de Sobolev H~1(R2), alors le champ de vecteurs associé appartient 
à E r (Lj. Enonçons le théorème de Yudovich, démontré en 1964 dans [20]. 

T H é O R è M E 2.1 Soient m un réel et VQ un élément de Em. Supposons en outre 
que UJO appartienne à L°° fl La avec 1 < a < +oc. Il existe alors une unique 
solution (v,p) de (E) appartenant à l'espace C(Rm,Em) x L?°C(R;L2) et telle que 
le tourbillon LJ du champ de vecteurs v appartienne à L°°(R ) n L°°(R; La(R )). 

De plus, ce champ de vecteurs v possède un flot. Plus précisément, il existe 
une unique application iß continue de R x R dans R telle que 

ip(t, x)=x-\- I v(s,iß(s,x))ds. 
Jo 

En outre, il existe une constante C telle que ip(t) - Id G Ce^-ct^0^°°nLaK 

L'existence et l'unicité des solutions vont résulter du lemme ci-après. 

LEMME 2.1 Soient (v\,p\) et (v2,p2) deux solutions du système d'Euler incom
pressible (E). Il existe une constante C ne dépendant que de \\vi(0) — C||L2 e* de 
m(0)||LoonL« telle que 

\\vM-v2(mh<e-a{e^Ct)-l) 

=> IM*) -v2(t)\\h < IMO) - ^ W H ^ - ^ e ^ 1 - ^ - ^ ) ) . 

Il s'agit d'estimer la fonction I(t) = \\(v\ — t^X*)!^- Par intégration par parties, 

on obtient que If(t) < 2||vi(t) - v2(t)\\l00I(t)
l-^\\Vv2(t)\\Lb. D'après la conserva

tion de la norme L°° du tourbillon et de la norme L1, le champ de vecteurs v est 
borné sur R3. Il en résulte que 

I'(t)<2MI(t)1-ì\\Vv2(t)\\Lb. (5) 

Il est bien connu que les multiplicateurs de Fourier envoient La dans lui-même. 
Nous utiliserons le résultat précis suivant, démontré par exemple dans [18]. 

Iiv^ii^^c^n^)!!^. (6) 

Il en résulte que ||VI>2(*)||L* < Ca\\uj2(0)\\LoonLa. Posons Jv(t) = 77 + I(t). Toutes 
les inégalités écrites dans la suite ne seront valables que sous l'hypothèse que 
V + I(t) < 1- H résulte de l'inégalité (5) que J'v(t) < CJ7 ?( t)1"i . En prenant 
b = a — log Je,r)(t), on obtient J'^t) < ea(t)(a - log J^fyJ^t). Après intégration, 

il vient, en passant par deux fois à l'exponentielle, Jv(t) < ea^~e~ ) J7 ?(0) e x p _ c ' i . 
En faisant tendre 77 vers 0 et en passant à la limite, on conclut la démonstration 
du lemme. 

La preuve du résultat sur le flot ip se fait par des calculs très analogues à 
ceux qui nous ont servi à démontrer ce lemme. 
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Soit vo la fonction sur le plan R2 nulle en dehors de [—1,1] x [—1,1], impaire 
en les deux variables x\ et x2 et valant 2n sur [0,1] x [0,1]. On considère le 
champ de vecteurs v0 dont o;0 est le tourbillon. Dans [3], H. Bahouri et l'auteur 
démontrent que le flot de la solution de Yudovich associée n'appartient pas, à 
l'instant t, à C e x p _ t ; le théorème de Yudovich est donc optimal. 

3. Structures géométriques stables 

Le but de ce paragraphe est d'exposer des résultats de persistance de structures 
géométriques dans les fluides parfaits incompressibles. La motivation initiale de ces 
questions est le problème des poches de tourbillon. Supposons que le tourbillon 
soit, à l'instant initial, la fonction caractéristique d'un ouvert borné D0 dont le 
bord est de classe de Holder C 1 + c . D'après le théorème 2.1 et la relation (4), il 
existe un unique champ de vecteurs solution des équations d'Euler sur R x R2, 
dont le tourbillon est, à l'instant t, la fonction caractéristique d'un ouvert borné 
Dt dont la topologie reste inchangée. Deux questions très naturelles se posent 
alors : le bord de l'ouvert reste-t-il régulier à temps petit? si oui, que se passe-t-il 
pour les temps grands? 

Considérons 70 un plongement du cercle S1 de classe C 1 + e dont l'image est 
le bord de l'ouvert D0. Le champ de vecteurs solution est alors complètement 
déterminé par le bord de l'ouvert. Cherchons alors si la fonction 7 définie par 
dtj(t,s) = v(t,j(t, s)) est le paramétrage d'une courbe lisse. D'après la loi de 
Biot-Savart, la Formule de Green entraîne que 

1 r2ir 

dtl(t, S)=2^J l oS M*, s) - 7( t , a)\ dal(t, a)da. (7) 

On a le théorème suivant. 

T H é O R è M E 3.1 Soient e appartenant à l'intervalle ]0,1[ et 70 une fonction de 
l'espace C1 + e(S1 ;R2) injective et dont la différentielle ne s'annule pas. Il existe 
alors une unique solution j(t,s) de l'équation (7) appartenant à l'espace Lf£c(~R; 
C1 + e(S1 ;R2)) et qui est, pour tout temps, un plongement du cercle. 

Nous allons démontrer un théorème général de persistance des structures géomé
triques non singulières pour le système d'Euler incompressible qui contiendra bien 
sûr le théorème ci-dessus. Le concept important sera celui de régularité tangent ielle 
par rapport à une famille substantielle X de champs de vecteurs de classe Ce. Ce 
concept, introduit par J.-M. Bony dans l'étude de la propagation des singularités 
microlocales des équations semi-linéaires (voir [5]), fût ensuite introduit dans le 
cadre des équations aux dérivées partielles quasi-linéaires par S. Alinhac (voir [1]) 
et par l'auteur (voir [7]). 

Il nous faut trouver une condition suffisante pour que, si une fonction u est 
bornée, les fonctions didjA~1u le soient aussi. Ceci nous amène à introduire les 
définitions suivantes. Dans toute la suite, on désignera par e un réel de ]0,1[. 
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DéFINITION 3.1 Soit X = (X\)\£A une famille de champs de vecteurs de classe 
Ce ainsi que leur divergence. Une telle famille est dite substantielle si et seulement 
si l'on a I(X) = inf^E supA6A |XA(x)| > 0. 

Définissons maintenant la notion de régularité tangentielle par rapport à une 
famille substantielle de champs de vecteurs. 

N.(X) = i^pTOU + lldw^iu. 

NI,* = ive(x)||u|u» + sup^%|M-. 

DÉFINITION 3.2 Soit X une famille substantielle de champs de vecteurs de classe 
Ce ainsi que leur divergence (on suppose E = 0,). On désigne par Ce(T,,X) 
l'ensemble des distributions u appartenant à L°° telles que, pour tout X, on ait 

Xx(x,D)u d= div(uXx) - udiwXx G C6"1 . 

Introduit tout d'abord dans [8] pour étudier le système d'Euler, ce type de régula
rité a permis de démontrer dans [9] et [10] le théorème de persistance ci-dessous. 

T H é O R è M E 3.2 Soient e un réel de l'intervalle ]0,1[, a un réel supérieur à 1 
et Xo = (Xo,\)\eA wne famille substantielle de classe Ce sur le plan. On con
sidère un champ de vecteurs VQ sur R2 appartenant à Cl et dont le gradient est 
dans La. Si LJO appartient à Ce(Xo), alors, il existe une unique solution v de 
(E) telle que v G Lf£c(R.; Lip) et Vv G La. De plus, si ip désigne le flot de 
v, alors, pour tout X, Xot\(x,D)ip G L^C(R;CC). Enfin, si Xti\ = ip(t)*Xof\, 
alors, la famille Xt = (Xtx)\eA est substantielle et l'on a Ne(Xt) G L^C(R) et 

IMOlk*. e £&(*)• 

Postérieurement, A. Bertozzi et P. Constantin ont redémontré dans [4] le cas par
ticulier du théorème 3.1. De plus, P. Serfati a donné dans [17] une nouvelle dé
monstration du théorème 3.2. Une version en dimension trois et à temps petit de 
ce théorème a été démontré par P. Gamblin et X. Saint-Raymond dans [13]. Enfin, 
P. Serfati démontre dans [16] que l'équation (7) est, pour les petites perturbations 
du cercle, une équation différentielle ordinaire. 

Vérifier que ce théorème entraîne bien le théorème 3.1 est un exercice que nous 
laissons au lecteur. Régularisons la donnée initiale. Le corollaire 1.1 d'existence 
globale de solutions régulières affirme l'existence d'une solution globale vn du 
système (E). Le point important de la présente preuve consiste à démontrer une 
estimation a priori sur la norme Lipschitz d'une solution régulière du système (E), 
puis de passer à la limite. Pour cela, on utilise l'estimation stationnaire suivante. 

T H é O R è M E 3.3 II existe une constante C telle que, pour tout e de l'intervalle 
]0,1[, et pour tout a supérieur ou égal à 1, on ait la propriété suivante : 
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Soient X une quelconque famille substantielle de champs de vecteurs de classe 
Ce etuj une fonction appartenant à Ce(X)CiLanLoc. Si v est un champ de vecteurs 
de gradient La + C et de tourbillon UJ, alors le gradient de v est borné et l'on a 

HVVIIL» < Ca\\uj\\La + - M U « log fe+ f ^ V 

Il est un cas particulier où la démonstration dc ce théorème est particuli
èrement simple. Supposons que la famille substantielle X soit réduite au seul 
champ de vecteurs d\ et accessoirement, que le support de la transformée de Fourier 
de UJ ne rencontre pas l'origine. Il est évident que ||X||C = I(X) = 1. Classiquement, 
on a 

ll/IU-^fll/llologfc+pjj^)- (8) 

Ainsi, pour j valant 1 ou 2, il vient 

Comme les multiplicateurs de Fourier opèrent dans les espaces de Holder et comme 
dl=A-d\, on a 

H^A-^HL-O < |M|L« + -ll^llologfe+^fll6-1 )• 
e \ IMIo J 

D'où le théorème dans ce cas très particulier. Pour le cas général, qui utilise le 
calcul paradifférentiel de Bony (voir [6]), nous renvoyons le lecteur à [9] et [10]. 

Il s'agit de contrôler la norme Lipschitz du champ de vecteurs solution. Pour 
cela, nous allons démontrer que, pour tout temps t, on a 

| |Vi;(t)| |L- < AT(Xo,6,a;o)exp Ct^L°° avec 

N(Xo,e,u;o) = Ca||ù*||L. + - | M > | | L « log t ^ f 2 ^ " (9) 

On transporte les données géométriques, c'est-à-dire la famille substantielle par le 
flot du champ de vecteurs v et l'on applique l'inégalité du théorème 3.3 à chaque 
instant. Définissons donc la famille Xt = (Xt,\)\ G A par 

Xt,x(x) = ^ W X 0 , A ( X ) = (Xo,x(x,D)^(t))(^l(t,x)). (10) 

Le point décisif de la démonstration est la majoration de ||o;(£)||e,Xf En utilisant 
le calcul paradifférentiel et les relations qui suivent, 

f dtXo.x(x,D)il>(t,x) = Vv(t,^(t,x))X0,x(x,D)^(t,x) 
\ X0,x(x,D)^(0,x) = X0,x(x), 

dtXtiX + v • VXtix = XtiX(x, D)v, 

dt divXtiX + v • VdivXtiX = XtiX(x, D) div v, 
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on démontre que 

IM*)IU«> IM)||L«> \ e Jo J 

Le théorème 3.3 permet d'en déduire que 

||Vt;(t)||L«o < Ca\\uJo\\L« + - | M , | | L ~ log M ^ + § | | ù * | | L - O / * ||Vt;(r)||Loodr. 

Le lemme de Gronwall assure alors l'estimation (9). 

4. Le problème des nappes de tourbillon 

Il s'agit de trouver une solution à l'équation d'Euler lorsque le tourbillon est la 
mesure de longueur d'une courbe de classe C1 . Il est très facile de vérifier que ces 
données intiales rentrent dans le cadre du théorème ci-dessous. 

T H é O R è M E 4.1 Soient m un réel et vo un élément de Em. Supposons que UJQ, son 
tourbillon à l'instant initial, soit une mesure bornée de partie singulière positive. Il 
existe alors un couple (v.p) solution du système d'Euler (E) tel que (v.p) G Lf%c(R: 
Em)xL%c(R;F-HL* + L°°)). 

De plus, à chaque instant t, le tourbillon uJt est une mesure bornée de partie 
singulière positive et de masse totale inférieure ou égale à celle de UJQ . 

Ce théorème a été démontré par J.-M. Delort en 1990 dans [11]. Signalons que, 
dans [15], A. Majda redémontre ce théorème dans le cas où UJO est positif. Le 
premier ingrédient de la démonstration est le théorème suivant, qui se démontre 
en étudiant attentivement la pression. 

T H é O R è M E 4.2 Soient m un réel et v un champ de vecteurs de divergence nulle 
appartenant à l'espace Lf£c(R.:Em). Les deux conditions suivantes sont équiva
lentes. 
(i) Il existe p e L£C(R;S'(R2)) telle que Txp e L%C(R; L2 + L°°) et telle que (v,p) 
soit solution du système (E). 
(ii) Le champ de vecteurs satisfait 

a ,+^)(<»'>;r/>>o du 

oàA{,D) est défini par A(t.) = i( j | ! | | ^ 2 | [ | l | j j f P ) ' 

Cette formulation faible, spécifique à la dimension deux, a été clairement dégagée 
par J.-M. Delort dans [11] et est implicitement contenue dans [12] et dans [2]. 

Après régularisation de la donnée initiale par convolution avec une approxi
mation de l'identité positive, le théorème 1.1 assure l'existence de solutions glo
bales associées aux données régularisées. Notons (vn)ne]$ la suite des solutions 
associées. D'après l'équation (11), il suffit de passer à la limite sur les termes vxv2 

et (v1)2 — (v2)2. Remarquons qu'un changement d'axe permet de se ramener à un 
seul cas, par exemple celui du terme v1v2. Le tourbillon ujn appartient à L°° PI L1. 
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D'après la loi de Biot-Savart, on a, pour toute fonction g indéfiniment differentiable 
à support compact sur R x R2, 

A(0,v„) = / G(t,x,y)dpLn(t,x,y) avec 
JR5 

<*,*,»> = -^j;::v^i:x
x^t,Z)äZ * (i2) 

dfin(t,x,y) = ujn(t,x)ujn(t,y)dtdxdy. 

D'après la conservation du tourbillon (4), la suite (ßn)neN
 e s t u n e s m t e D O r n é e de 

mesures bornées. On peut supposer que la suite (ßn)neff
 c o n v e r g e faiblement vers 

une mesure bornée /i. (Nous omettons systématiquement de noter les extractions.) 
Il est très facile de démontrer que la fonction G est continue en dehors de 

la diagonale et nulle à l'infini. La forme particulière de la non-linéarité entraîne 
que la fonction G est bornée. Nous avons besoin des deux lemmes d'intégration 
suivants: 

LEMME 4.1 Soit X un espace métrique localement compact a-compact. On con
sidère une suite bornée de mesures bornées (^n)nGN convergeant faiblement vers 
/i. Si la suite (|/^n|)nGN conver9e faiblement vers v, alors, pour toute fonction 
borélienne bornée, nulle à l'infini et continue en dehors d'un fermé N, v-négli
geable, on a 

lim / fdp,n = / fdß. 
n^scj J 

LEMME 4.2 Soit /.i une mesure bornée surR2 appartenant à H~l(R2). La mesure 
fi est alors diffuse. 

D'après (4), on a ujn(t,x) = f+(t,x) - f~(t,x) -\-uj^(t,x) 
avec ft(t,x) = (pn*fo±)(f-l(t,x)) (13) 

et ujs
n(t,x) = (pn^kuj'l)(^n

l(t,x)). 

On peut supposer que les suite (^n)neN e t (fn)neN convergent faiblement vers 
des mesure notées UJS et p,±. Les familles (ft)neN s o n t uniformément intégrables, 
donc faiblement compactes dans L1. En utilisant la relation (12), il vient 

< 
vnvl^9>= / G(t,x,y)d/j,n(t,x,y). 

JR5 

Le lemme 4.2 assure que les hypothèses du lemme 4.1 sont satisfaites, d'où le 
théorème 4.1. 
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ABSTRACT. In this paper I will describe results concerning incompressible 
fluids at high Reynolds numbers — everyday fluid turbulence. I will address 
two broad subjects: integrals of quantities associated with the flow, and 
formation of large gradients. 

1. Bulk Dissipation 

Torque in Taylor-Couette flow, drag in flow past an obstacle, and heat transfer in 
Rayleigh-Bénard convection are examples of bulk dissipation quantities. They are 
measured in physical experiments [2], [18] and represent perhaps the simplest, most 
important and most reliable ways to measure turbulent flows in physical systems 
driven at the boundary. These quantities depend on the key parameters (Reynolds 
number, Rayleigh number) in a reproducible manner: they obey empirical laws. I 
will describe a method [12], [6], [4] to estimate rigorously such quantities directly 
from the equations of motion. 

I will use a simplified Taylor-Couette setting to illustrate this method. Let 
us consider the incompressible Navier-Stokes equations 

dtu -r u • Vu + Vp = Au (1) 

V -u = 0 

in a 2-D strip, with boundary conditions 

u(x -\- £, y, t) = u(x, y, t) 

u(x, 0, t) = 0 ; u(x, 1, t) = Re x 

The Reynolds number Re is a large positive number, x is the direction of the x 
axis, and £ > 0 represents the aspect ratio. Consider 

< N | 2 > = lim sup ì / \\u(t)\\2dt, 
T->oc J- Jo 

where \\u\\2 = D(u) is the bulk dissipation: 

M 2 = / / \Vu\2dxdy. 
Jo Jo 
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The problem is to estimate < ||u||2 > on solutions as a function of Re as 
Re —> oo. 

The inhomogeneous boundary conditions together with the finiteness of the kinetic 
energy and of the dissipation determine an affine set U in function space. We 
consider any time independent function b G li ("the background") and associate 
to it a corresponding linear operator £&. In the Taylor-Couette case this operator 
is computed as follows: 

Cb = A + 2Sh , 

where 

S ,_,((2fi+2W,), 
P is the Leray projector on divergence-free vectors in L2, and A is the Stokes 
operator P(—A). Let X(b) denote the bottom of the spectrum of Cb in L2. 

THEOREM 1 Assume that beU satisfies P(6 • Vò) = 0 and X(b) > 0. Then every 
solution u(t) of (1) in U satisfies 

< | | u ( i ) | | 2 > < ||ò||2. 

The interpretation of this result is the following. Take any steady solution of 
the inviscid (Euler) equation P (6 • Vò) = 0 with the correct boundary conditions 
(b Eli) and compute its quadratic form stability as if it were a steady solution of 
the Navier-Stokes equation with half the given viscosity (\ in our nondimensional 
setting). If the solution is stable (A(ò) > 0) then its bulk dissipation is an upper 
bound for the long time average bulk dissipation of any solution of the viscous 
problem. 

Examples of such functions are obtained by choosing flat shear flow back
grounds with sharp boundary layers. Choosing the size of the boundary layer of 
the order of R e - 1 ensures that À(ò) > 0. Using Theorem 1 one can prove that 

<H*)||2><CRe3. 

Moreover, C can be estimated explicitly and the results agree with the phys
ical experiment [18], [12], [6], [4]. In order to improve the estimate of the prefactor 
C one is naturally lead to variational problems with spectral side conditions. The 
set of shear backgrounds 

x=[beu:,b= ( ^ ) , *(0) =0,*(1) = l } 

poses already nontrivial problems. Note that for òEAf, P(ò-V6) = 0. In X consider 
the subset 

Cx = {b e X; X(b) > 0} . 

This is a convex set. The minimization problem is to compute 
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This problem leads to new, nonlinear Orr-Sommerfeld-like equations [6]; their 
study is in progress. A simpler problem is obtained by strengthening the con
straints. Instead of the set Cx, which consists of 6 G X such that (CbV,v)L2 > 0 
for all divergence-free v ^ 0, we consider a smaller set Cx where we require the 
shear background to be stable under a larger class of perturbations, dropping the 
condition that they be divergence-free vectors. Of course, this leaves fewer back
grounds and hence yields a larger infimum. If b E X then this more stringent 
stability condition is equivalent to: 

[I[(v'(y)f-Reip'(y)(v(y))2]dy>0 
Jo 

for all v G HQ ((0,1)), v ^ 0. Thus, the problem of finding 

inf H&ll2 

becx 

has the same structure as the problem we started with: we seek 

inf D(u) 
ueCu 

where 

D(u)= I \u'(y)\2dy, 
Jo 

the affine set U is 

U = {ue H\(0,1)); u(0) = 0,u(l) = Re}, 

the operator associated to a background u is 

uv = — y —uv, 

and the spectral condition is 

Cu = {uE U; (£uv,v)L2 > Ofor allv G V,v ^ 0}. 

(V = HQ(0, 1)). The equations associated to the infimum are 

£ug = Q, (9,g)L2 = 1 

and 

(S ( u ) ) w = mfê ( u )) 
which in this simple case is 

-u" = m(g2y. 

Using the boundary conditions u Eli and substituting in the equation for the 
ground state g we obtain the steady cubic Schrödinger equation: 

-9" + {rn(g2 - 1) - Re) g = 0 
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with the homogeneous boundary conditions and normalization 

g(0)=g(l) = 0, [ g2(y)dy = l. 
Jo 

This problem has an explicit solution at each Reynolds number in terms of Jacobi 
elliptic functions sn(u\p) [6]. The asymptotic behavior of this expression is 

lim R e - 3 ( inf D(u) ) = —. 
te^oc Vécu V V 12 Re-

This yields a better agreement with the experiment, as expected. 

2. Scaling Exponents 

The mathematical framework for the statistical study of turbulence is the theory 
of invariant measures for the Navier-Stokes equations [14], [13], [19]. An important 
theory proposing the existence of a universal behavior was set forth by Kolmogorov 
[16]. Based on dimensional analysis, this theory's predictions have been verified in 
numerous experiments to a surprisingly large degree. The main assertions of this 
theory are: "the dissipation rate of a turbulent flow 

e = u< \Vu(x,t)\2 > 

is constant and independent of Reynolds number" and "there exists a range of 
lengths where the energy transfer is local and universal and depends only on e." 
The Reynolds number is 

Re=U-±, 
V 

where U is a typical velocity difference across a typical distance L and v is the 
kinematic viscosity. 

From dimensional analysis it follows that the length below in which viscous 
dissipation effects are dominant is given by 

«-(T)' 
The interval [£K, L] is called the inertial range. The variation < \u(x-ry) — u(x)\ > 
of velocity across a distance r == \y\ can also be determined from dimensional 
analysis if r belongs to the inertial range: the only velocity one can form with r 
and e is 

< \u(x-r y) - u(x)\ >= (e\y\)i. 

This is the Kolmogorov-Obukhov law. It is one of the most important predictions 
of this theory. The relation 

u3 

follows. Note that e > 0 is bounded independently of viscosity. The experimental 
and theoretical evidence seems to indicate the possibility of small corrections to the 
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Kolmogorov-Obukhov law [17]. More precisely, the equal time generalized structure 
functions 

< \u(x + y,t) - u(z,£)|m >™ 

scale with distance like powers 

<\u(x-ry,t)-u(x,t)\m>™~uOjP) m , 

where the value of the exponents Cm is close to | but depends on m. The £m must 
be nonincreasing in ra because of the Holder inequality. 

In this section I will describe some results [8], [5] regarding the scaling of 
velocity structure functions for the Navier-Stokes equations. I start with the as
sumptions. We consider ensembles of solutions of the Navier-Stokes equations in 
the whole 3-D space. We assume that there exist uniform bounds for the velocities 
in the ensembles 

sup|u(x,t) | <U (*). 
x,t 

This assumption implies regularity of the solutions. We will consider driving 
body forces B that are bounded uniformly, 

sup\B(x,t)\ <B (**). 
x,t 

The forces are deterministic. These are the standing assumptions. We define the 
averaging procedure Mp by 

Mp(f(x,t))=AV sup lim sup - - - — ~ r / / f(x,t)dxdt. 
xoGfl3 T ^ ~ i ( 4 7 r P ) .A) JBp(x0) 

AV means ensemble average and supXo is a supremum over all Euclidean balls Bp 

with center xo and radius p. 
We set 

e{p)=vMP_(\Vu(x,t)\2), 

and x 

atfiv) = [Mp(\u(x + yA)-u(x,t)\)mi™ • 

We denote 
Up 

Re= —. 
v 

We have an additional mild assumption: 

s[p)(y)^<cU (***) . i si 
y\<P 'M3 

There are no assumptions of homogeneity or isotropy. If 

, Cm / L , l \ C" 
*(M) S ^ M S C I ^ M ) ' 
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holds on an interval 

Re-^fer < — < 1, 
P 

then we say that we have ra-scaling. (This definition implies that the local Reynolds 

number * ™ ranges between c and CRe in the scaling region.) Here are the 
main results. 

THEOREM 2 Assume (*), (**), (***). Then 

r3 fU3 U2\ 

Note that the dissipation is bounded uniformly as v —• 0. We show that 
structure functions for the pressure are bounded in terms of structure functions 
for the velocity. Once the pressure is controlled, then the result follows via local 
energy inequalities. We relate the second structure function to the first. 

THEOREM 3 Assume (*), (**), (***). Then 

sip)(y)<cU^Rel>. 

In particular, if 1 and 2-scaling occur, then 

Corrections to the Kolmogorov-Obukhov exponent of Ç = | are referred to 
by the name of intermittency. They are believed to be connected to the existence of 
statistically significant large variations in the velocity gradients, over small regions 
in physical space. We have some mathematical evidence for this connection. 

THEOREM 4 Assume (*), (**), (* * *), and 4-scaling. If 

vMtL (\Vu(x + y,t) - Vu(x,t)\2) > ce(£) > 0 

for y satisfying 

^<C(Re)-0, 
P 

then 

It is widely believed that (3 = ^. The evidence is both numerical and the
oretical. The traditional theoretical arguments are based on the assumption of 
homogeneity and isotropy [1]. A conjecture of Onsager corresponds to the state
ment that Ç3 > I implies e = 0; a mathematical formulation and a proof of this 
conjecture [11] offer additional arguments in support of £3 = ^. It follows that if 
(4 makes sense, then it must be equal or less then ^. If ß = | , then it follows that 
Ç4 = | . If /3 > | , however, then the preceding result gives sufficient and testable 
conditions for intermittency corrections. 
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3. Stretching of Vortex Lines 

The problem of formation of singularities or near singularities in solutions of the 3-
D Euler equations is of great importance for the understanding of fluid turbulence. 
One is interested in the qualitative nature of the singular or near singular flows, 
the effect viscosity has on them, and the relevance these singular events have on 
the large scale energetic features of the flow. 

It is well known [15] that, for the 3-D incompressible Euler equations, the time 
integral of the maximum of the vorticity magnitude must diverge if finite time blow 
up occurs. The vorticity is the antisymmetric part of the spatial gradient of the 
velocity. It is also easy to prove that the singularities cannot occur without small 
scales developing [5] in the vorticity. By that I mean that large spatial gradients 
in the vorticity magnitude must develop, at a fast enough rate. 

In this section I want to emphasize the role played by the direction field asso
ciated to the vorticity. In 2-D this is a field of parallel lines; the 2-D equations have 
no finite time singularities. I want to present evidence suggesting that singularities 
in the direction field of vorticity are perhaps necessary for 3-D finite time blow up. 
I also would like to address the effect of viscosity. 

The evidence I would like to present is two-fold: analytical and numerical. 
The 3-D incompressible Euler equations are 

DtLJ =UJ-VU, (2) 

where u = u(x, t) is the velocity field assumed to be divergence free, V • u = 0, 

Dt = dt + u(x,t)-V 

denotes the material derivative (derivative along fluid particles), and u is the 
vorticity: 

u) = V x u. 

We refer to the right-hand side in (2) as the stretching term. It vanishes in 
the corresponding 2-D equation. 

The 3-D incompressible Euler equations (2) are equivalent to the requirement 
that the vector field 

Q = uj(x,t) V 

commute with the material derivative: 

[Dt,n] = o. 

The integral lines of Q are material, i.e., they are carried by the flow. Their 
length element is |o;|. They stretch according to 

A M = a\uj\. (3) 

The stretching rate alpha is given by 

Q(X) = (Vu(x)K(x) • £(x) (4) 
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and the direction field £ by 

£(*) = T-TZTT- (5) 
\u>(x)\ 

The region {x : \v(x)\ > 0} is material. Both a and £ are defined in it. The 
stretching rate a has a remarkable integral representation 

a (x )=P .V . JD(y,^ + yU(x))Hx + y)\-^. (6) 

Here n is the dimension of space (3 for Euler equations) and the geometric 
factor D vanishes not only in the spherical average, but also if the vectors £(x + y) 
and £(x) are parallel or antiparallel. More precisely, if cos <j> = £(x) • £(x + y), then 
\D\ < | sin0| . 

Based on this property we conjecture that if the direction field £ is smooth 
in regions of high vorticity then blow up does not occur. 

In order to test this conjecture we consider active scalars — 2-D models of 
the 3-D Euler equations [4], [5], [9], [10] — and investigate them analytically and 
numerically. These equations obey the same commutation relation 

[A,n] = o 

that determines the 3-D Euler equation; the difference is in the constitutive laws 
which relate the coefficients LJ of Q to the velocity u. Specifically, the active scalars 
are functions 9(x,t) that obey 

(dt-ru-V)0 = O (7) 

with 

u(x, t)= a(x - y)uj(y, t) dy , (8) 

where the function a is given and is smooth away from the origin and 

u; = V±0. (9) 

In (9) V1- denotes the gradient rotated counterclockwise by 90 degrees. The 2-D 
Euler equation corresponds to a(x) = ^ log(|a:|). The natural analogue of the 3-D 
Euler equation constitutive law is a(x) = A . This defines the quasi-geostrophic 
active scalar equation (QGASE). The QGASE is physically significant in its own 
right: it is a model for atmospheric temperature in a geostrophic approximation. 
Its theoretical resemblance to 3-D Euler equations is remarkable: all the state
ments about Euler equations made above are valid for the QGASE. The vortex 
lines correspond to iso-theta lines. The stretching equation, the Kato-Beale-Majda 
criterion, the integral representation of the stretching rate a, its depletion if the 
direction field £ is smooth, all apply equally w êll to the QGASE as to the 3-D 
Euler equation. 

The conjecture relating smoothness of £ to absence of blow up can be proved 
[10]. The numerical evidence of [10] supports strongly two statements. First sharp 
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fronts do form in finite time (sharp means large gradients of 6, i.e., large M; 
based on the present computations, blow up cannot be predicted). Second there 
is a marked difference in the rate of development of these sharp fronts caused 
by the nature of £. There exist initial data for which £ develops only antiparallel 
(sin 0 = 0) singularities. The formation of fronts is then depleted. For other initial 
data, a saddle point in 0 provides a Lipschitz singularity in the £ direction field. 
This is the source of much more intense gradient growth. 

Now I will address briefly the role of viscosity. In the 3-D incompressible 
Navier-Stokes equations there exist suitable weak solutions that satisfy 

<|u(x,f)||V£(x,t)|2>< £ , 

where v > 0 is the viscosity, F is given in terms of the initial data and < • • • > 
is an appropriate space and time average [3], [7]. Consequently, typical regions of 
high vorticity have Lipschitz £. 

Moreover, if one assumes 
Assumption (A) 
There exist constants Q > 0 and p > 0 such that 

inW^ + ̂ ))l^7 
holds if both \u(x,t)\ > ft and \u(x + y,t)\ > Q, and 0 < t < T, (P^x)C(x + y) is 
the projection of £(# + y) orthogonal to £(#)), then [7]: 

THEOREM 5 Under Assumption (A) the solution of the initial value problem for 
the Navier-Stokes equation is smooth (C°°) on the time interval [0, T]. 

The interpretation of this result is that Lipschitz (and antiparallel Lipschitz) 
singularities are smoothed out by the viscosity. 
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0. Introduction 

Conservation laws are first order systems of quasilinear partial differential equa
tions in divergence form; they express the balance laws of continuum physics for 
media with "elastic" response, in which internal dissipation is neglected. The ab
sence of internal dissipation is manifested in the emergence of solutions with jump 
discontinuities across manifolds of codimension one, representing, in the applica
tions, phase boundaries or propagating shock waves. The presence of discontinu
ities makes the analysis hard; the redeeming feature is that solutions are endowed 
with rich geometric structure. Indeed, the most interesting results in the area have 
a combined analytic-geometric flavor. 

The paper will survey certain aspects of the theory of hyperbolic systems of 
conservation laws. Any attempt to be comprehensive would fail because of space 
limitations. Major developments in the future will likely come from the explo
ration of systems in several space dimensions, which presently is terra incognita. 
Accordingly, the author has opted to emphasize the multidimensional setting, at 
the expense of the one-space dimensional case, where past and present achieve
ments mostly lie. Many important recent results in one-space dimension will only 
be briefly mentioned, whereas others will not be referenced at all. Similarly, the 
bibliography is far from exhaustive. Finally, the exciting research program that 
addresses the connection between systems of conservation laws and the kinetic 
equations will not be discussed here as it will be surveyed in this volume by 
Perthame [P]. 

1. Conservation Laws and Continuum Physics 

A system of n conservation laws has the general form 

divG = 0, (1.1) 

where G is defined on an open subset B of Rm and takes values in the space of 
(nxm) matrices. The motivation for the terminology is that, under mild regularity 
conditions on G, (1.1) is equivalent to 

I GNdS = 0 (1.2) 
Jan 
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for all Ü C B of finite perimeter, with boundary dû; N denotes the unit normal 
on dQ,. 

The conservation property is robust: assume X = X(X) is any bilipschitz 
homeomorphism of B to B C Rm , such that the Jacobian matrix J = dX/dX 
satisfies det J > a > 0, a.e. on B. Then an L°° field G satisfies on B the conservation 
law (1.1), in the sense of distributions, if and only if the L°° field 

G(X) := [detJ(X(X))}~1J(X(X))G(X(X)) (1.3) 

satisfies on B the conservation law 

divG = 0. (1.4) 

The development of the theory of conservation laws over the past two cen
turies has been motivated to a great extent by problems arising in continuum 
physics. Continuum theories are demarcated by a prescribed set of conservation 
laws. Thus, continuum mechanics is identified by conservation of mass and mo
mentum; continuum thermomechanics by conservation of mass, momentum, and 
energy; etc. [TN]. In the context of statics, Rm is physical space, of dimension 
one, two, or three, whereas in the context of dynamics Rm is space-time, of dimen
sion two, three, or four. The conservation laws of continuum physics may be cast 
in referential (Lagrangian) or spatial (Eulerian) form. Passing from Lagrangian to 
Eulerian formulation involves a change of variable of the form (1.3) and is therefore 
allowable even when the fields are merely in L°° [Da5]. 

In continuum physics, the set of conservation laws is complemented with con
stitutive relations that specify the nature of the medium. Here we focus attention 
on media with "elastic" response in which G is determined by a state vector U in 
Rn through a smooth function 

G = F{U). (1.5) 

Thus, (1.1) and (1.5) yield a first order quasilinear system of n equations from 
which the n-vector field U is to be determined. 

The umbilical cord that joins the theory of systems of conservation laws with 
continuum physics is still vital for the proper development of the subject and 
should not be severed. 

2. Jump Discontinuities and Oscillations 

The issues to be discussed here are pertinent to statics as well as to dynamics. 
The crucial factor is whether the system (1.1), (1.5) may admit solutions U on 
Rm with jump discontinuities of the following form: for some unit vector N in Rm 

and two distinct vectors U-, U+ in E n , U = U- on the half-space XTN < 0 and 
U = U+ on the half-space XTN > 0. Such a function satisfies (1.1), (1.5) in the 
sense of distributions if and only if the Rankine-Hugoniot jump conditions hold: 

[F(U+)-F{U-)]N = 0. (2.1) 

It is clear that (2.1) cannot hold if for every U in Rn and unit vector N in 
Rm the (n x n) matrix DF(U)N is nonsingular. This condition, characterizing 
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"elliptic" systems, typically prevails in stable static problems. Ellipticity fails in 
statics, and there are discontinuous solutions of the form described above, when 
the model allows for phase transitions, so that the plane XTN = 0 is realized 
as a phase boundary. In dynamics, solutions with jump discontinuities, considered 
above, are common and have been studied extensively over the past 150 years, 
beginning with the pioneering papers of Stokes [St] and Riemann [Ri]. In that 
context the plane XTN = 0 is realized as a propagating shock wave. 

When (2.1) holds, one may construct solutions U of (1.1), (1.5) by partition
ing Rm into slabs by means of any finite family of parallel, codimension-one planes 
normal to N and then assigning, in alternating order, the values U- and £/+ on the 
slabs contained between adjacent planes. This construction may yield highly oscil
latory solutions, a manifestation of instability. Indeed, by judiciously selecting the 
family of parallel planes of jump discontinuity, it is easy to construct a sequence 
{Uj} of solutions converging, as j —• oo, in L°° weak*, to an L°° function U that 
does not satisfy (1.1), (1-5). 

In situations involving phase transitions, highly oscillatory configurations 
that may model material microstructure [BJ] are resisted by capillarity, which 
induces penalization each time a phase boundary forms [CGS] (this active area 
of research lies beyond the scope of the present exposition). On the other hand, 
in elastodynamics rapid oscillations are quenched by the effects of internal dissi
pation (such as Newtonian viscosity), which has been neglected when postulating 
the constitutive relation (1.5) but whose legacy survives in so-called entropy in
equalities 

d i v / i < 0 (2.2) 

with 
h = q(U), (2.3) 

assumed to be satisfied by admissible solutions of (1.1), (1-5). The motivation for 
the name "entropy" is that, in the applications to continuum physics, (2.2) is 
related, directly or indirectly, to the Clausius-Duhem inequality, which expresses 
the second law of thermodynamics [TN]. 

In the tradition of continuum physics, it is required that every classical (i.e., 
Lipschitz continuous) solution of (1.1), (1.5) be admissible; i.e., satisfy automati
cally (2.2), (2.3). This will be the case if and only if there is a smooth function P 
from Rn to Rn such that 

P(U)TDF(U) = Dq(U). (2.4) 

Thus, P must satisfy the integrability condition 

DP(U)TDF(U) = DF(U)TDP(U). (2.5) 

Of course, we are only interested in the nontrivial case P ^ constant. Note that 
(2.5) holds, with P(U) = U, when the system (1.1), (1.5) is symmetric; i.e., 
DF(U)T = DF(U). Conversely, when (2.5) holds and P is a diffeomorphism of 
Rn to Rn , the change V = P(U) in the state vector renders the resulting system 
of conservation laws symmetric [FL]. 
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Once the constitutive relation (1.5) has been laid down, the functions q(U) 
that may be candidates for (2.3) are to be determined through (2.4), after integrat
ing (2.5). Now (2.5) imposes \n(n — l )m conditions on the n components of P and 
so it constitutes an overdetermined system, unless either n = 1 and m arbitrary 
or n = 2 and m = 1. Even so, the conservation laws of continuum physics are 
always equipped with a natural choice of q(U), simply because when constitutive 
relations are laid down, F(U) and q(U) are simultaneously determined in such a 
fashion that (2.4) holds. 

A solution involving twro constant states U- and t/+, experiencing a jump 
discontinuity across a plane XTN = 0, as discussed earlier in this section, will 
satisfy the entropy admissibility criterion (2.2), (2.3) if and only if 

[q(U+)-q(U-)]N<0. (2.6) 

Note that when (2.6) holds as a strict inequality the oscillatory solutions with the 
laminated structure, described above, are ruled inadmissible. The central question 
is whether entropy inequalities (2.2), (2.3) induce stability, in general. An affirma
tive answer would hinge on whether the following assertion is true. Suppose {Uj}, 
bounded in L°°, is any sequence of approximate admissible solutions of (1.1), (1.5); 
i.e., as j —> oo, {div F (Uj)} converges to zero and {div q(Uj)} converges to a non-
positive distribution. Then the L°° wreak* limit U of {Uj} is a solution of (1.1), 
(1.5). The veracity of this statement, which was conjectured by Tartar [T] and 
elaborated by DiPerna [Di6], has been established, thus far, only for very special 
systems, as we shall see in Section 4. 

Another important issue pertains to the geometric structure of the set of 
points of discontinuity of weak solutions of (1.1), (1.5). Suppose U is an L°° so
lution of (1.1), (1.5) on B, which is of class BV\ i.e., the distributional partial 
derivatives of U are Radon measures on B [EG]. Then B is decomposed into the 
union of three, pairwTise disjoint subsets C,J\T with the following properties: X 
has (ra — l)-dimensional Hausdorff measure zero; J U T is the countable union of 
Lipschitz manifolds of codimension one; U is Lebesgue approximately continuous 
on C; with every point X of J there is associated a unit vector N in Rm such that 
U attains distinct Lebesgue approximate limits [/_ and [/+ at X relative to the 
half-spaces (X - X)TN < 0 and (X - X)TN > 0, respectively; furthermore, [/_, 
L/+, and N are interrelated by the Rankine-Hugoniot condition (2.1). 

3. Hyperbolicity 

Henceforth, we focus attention on dynamics so Rm is space-time with typical point 
X = (x,t), where t, the time, takes values in R and x, the position in space, takes 
values in Rk(k = m — 1). For simplicity, we assume that in (1.5) the last column 
of the (n x ra) matrix F(U) is just U, in which case (1.1), (1.5) become 

k 

dtU-r^2daFa(U)=0, (3.1) 
OL = l 

with dt = d/dt and da = d/dxa , a = 1 , . . . , k. The Fa(U) take values in Rn . 
Similarly, upon labeling the last column of q(U) in (2.3) as r}(U), we rewrite (2.2), 
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(2.3) as 
k 

dtri(U) + Ytdaqa(U)<Q. (3.2) 
Q = l 

Following Lax [L2], it has become standard to call rj(U) entropy, even though 
it never coincides with the physical entropy (in certain cases —rj is the physical 
entropy). qa(U), a = 1 , . . . , k, is the associated entropy flux. From (2.4) we deduce 
P(U)T = Dn(U) so (2.5) now reduces to 

D2n(U)DFa(U) = DFa(U)TD2rj(U) , a = l,...,k. (3.3) 

The system (3.1) enjoys maximal freedom to propagate waves when it is 
hyperbolic: For each U in Rn and any unit vector v in Rfc, the (n x n) matrix 

k 

A(tf;i/) = 5>aZ?FQ(l0 (3.4) 
a = l 

has real eigenvalues \\(U',v) < ••• < Xn(U;u) and n linearly independent eigen
vectors R\(U; v),..., Rn(U: u). 

Henceforth we shall be assuming that our system (3.1) is hyperbolic and seek 
a solution U(x,t) on the half-space {(x,t) : x G Rfc,t G R + } , with prescribed 
initial conditions: 

U(x,0) = U0(x), xeRk. (3.5) 

The problem (3.1), (3.5) has been solved for the single equation n = 1 [K]: 
When UQ G L ^ R ^ ) n L1(R/c), there is a unique admissible solution that satisfies 
(3.2) for any convex entropy function r](U) and is stable in L1: 

||£/(-,t) -tT(-,t)|Ux(Rfc) < ||l7o(-) -C^o(-)llx.i(R*) , 0 < t < o o . (3.6) 

In particular, if UQ is in BV so is U. New, unexpected regularity properties of 
these solutions have recently been uncovered [LPT], so even this, supposedly well-
plowed, corner of the field continues to yield interesting results. 

The remaining sections focus on systems, n > 2, for which the theory is still 
in the stage of development. 

4. Systems in One-Space Dimension 

Hyperbolic systems of conservation laws in one space variable: 

dtU + dxF(U) = 0 (4.1) 

have been studied intensively. The direction of research over the past 40 years was 
set by the pioneering paper of Lax [Ll]. An enormous amount of information has 
been amassed; see the monograph [Sm]. Here I paint a highly impressionist picture, 
the goal being to contrast the single-space from the multispace dimensional case. 

With the exception of certain systems with very special structure, analytical 
results have been derived only on solutions taking values in a small neighborhood 
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of a constant state. Over the years, the system of one-dimensional (isentropic or 
nonisentropic) gas dynamics has served as the prototypical example and this has 
steered the research effort towards strictly hyperbolic systems, where the eigenval
ues of DF(U) are strictly separated: X\(U) < • • • < An(f7). 

Shocks have to satisfy admissibility conditions that are motivated by (and 
are compatible with) entropy inequalities (2.6). The issue of admissibility of shocks 
of moderate strength in strictly hyperbolic systems is now well understood [Li]. 
By contrast, the case where strict hyperbolicity fails even at a single state involves 
phenomena that are presently poorly understood. Research in that direction [SS] 
lies beyond the scope of this exposition. 

An important property of systems (4.1) is that they admit solutions in the 
form of wave fans: U(x,t) = V(x/t). An i-wave fan, i = l , . . . , ra , in a small 
neighborhood of a constant state U, is a solution of this type with V(£) taking all its 
variation in a small interval about & = \i(U). The simplest examples of an z'-wave 
fan are the admissible i-shock, in which V is a step function with a single jump near 
£i, and the i-rarefaction wave, in which V is Lipschitz continuous. In particular, 
when the system is genuinely nonlinear [Ll], any admissible i-wave fan is either 
an admissible i-shock or an z-rarefaction wave. For general, strictly hyperbolic 
systems, however, an z-wrave fan may contain both z-shocks and z-rarefaction waves, 
with the property that any z-shock adjacent to an i-raref action wave is a contact 
discontinuity on the side of the interface [Li]. 

In the Riemann problem for (4.1), a jump discontinuity between two nearby 
constant states L7_ and U+ is resolved into a wave fan, which is a superposition 
of n z-wave fans, one from each characteristic family [Ll], [Li]. The solution of the 
Riemann problem describes the local structure of any BV solution of (4.1) [Dil] 
and also provides the testing ground for admissibility criteria for solutions [Da3]. 

The solution of the Riemann problem has been used as a building block for 
constructing solutions of (4.1) under initial data with small total variation. The 
most effective construction is due to Glimm [G] : the initial data are approximated 
by a step function and a local approximate solution is then constructed by resolving 
the jump discontinuities into wave fans, as in the solution of the Riemann problem. 
Before waves originating at different jump points begin to interact, the clock is 
stopped, the approximate solution is again approximated by a step function, and 
the process is repeated for another time step, and so on. In order to secure the 
consistency of the resulting algorithm, the approximating by step functions has 
to be done in a special way, namely the random choice method of Glimm or the 
equidistribution choice method of Liu [Li]. The study of wave interactions yields a 
priori estimates on the family of approximate solutions that induce compactness 
and allow us to pass a.e. to the limit. The resulting solution U inherits bounds 

J — c 

TVxU(-,t)<cTVxU0(-) , 0 < t < o o , (4.2) 

\U(x,t)-U(x,r)\dx<c\t-r\TVxU0(-) , 0 < r < t < oo, (4.3) 

which guarantee, in particular, that it is a function of class BV. Stronger conclu
sions obtain [GL] for systems of two conservation laws, n = 2, because in that case 
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the state may be represented in Riemann invariant coordinates, in terms of which 
the two characteristic families decouple to higher order. The recent study of wave 
interactions by Young [Y] reveals that some of the properties formerly believed 
to be peculiar to systems of just two conservation laws have analogs in larger 
systems as well; but also hints that new, potentially destabilizing wave resonance 
phenomena may occur in solutions of such systems. 

An alternative method of constructing solutions by solving Riemann problems 
is front tracking [Br], [Dal], [Di2], [Ris]: In the solution of the Riemann problem, 
rarefaction waves are approximated by fans of (inadmissible) rarefaction shocks of 
very small amplitude. Thus, all wave interactions become shock interactions that 
may be resolved by solving new Riemann problems. The difficulty is, of course, 
that, as the number of shocks proliferates, the time between successive shock in
teractions may become very short and the construction may grind to a stop. To 
prevent this from happening, the algorithms involve some procedure for eliminat
ing shocks of negligible amplitude. Bressan and Colombo have demonstrated [BC] 
that if U(x,t) and U(x,t) are any two solutions of systems of two conservation 
laws (4.1) with initial data U$(x) and Uo(x), respectively, constructed by either 
the random choice method or the front tracking algorithm, then 

\\U(;t)-Ü(;t)\\LnR)<c\\U0(-)-Ü0(-)\\LHR), 0 < t < o c . (4.4) 

There are strong indications that (4.4) should hold for any pair of admissible solu
tions, irrespective of the method of construction, at least when n = 2, and possibly 
even when n > 2. Such a result would settle in a definitive manner the issue of 
uniqueness of solutions. Interesting uniqueness theorems are currently known [Di3], 
[LX] but apply only for solutions endowed with regularity not necessarily present 
in arbitrary BV solutions. Properties of general solutions, regardless of how they 
were constructed, may be derived by the method of generalized characteristics 
[Da4]. 

Over the past decade, considerable effort has been exerted to construct solu
tions of (4.1) in Lx by the method of compensated compactness [T]. The idea of 
this approach has already been explained in Section 2: a sequence {Uj} of approxi
mate solutions, compatible with entropy inequalities, is constructed. The expecta
tion is that the entropy inequalities will quench rapid oscillations and hence {Uj} 
will converge a.e. to a solution of (4.1). A great number of entropy inequalities has 
to be employed in the process, and this has limited so far the applicability of the 
method to systems endowed with a rich family of entropies, and most notably sys
tems of two conservation laws, n = 2. The first result in this direction [Di4] dealt 
with strictly hyperbolic, genuinely nonlinear systems of twro conservation laws: 
By employing the family of Lax entropies [L2], it is shown that oscillations are 
quenched by the effect of genuine nonlinearity. The system of (one-dimensional) 
isentropic gas dynamics with equation of state p oc p1, in which strict hyperbolicity 
only fails at the vacuum state p = 0, has similarly been treated [CI], [Di5], [LPS] 
for the full range 7 > 1 of the adiabatic exponent. The method has also been suc
cessfully employed [CK] for genuinely nonlinear systems of two conservation laws 
in which strict hyperbolicity fails at a single state (umbilic point with hyperbolic 
degeneracy). On the other hand, the case of strictly hyperbolic systems that are 
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not genuinely nonlinear is still imperfectly explored. In the extreme situation of 
linearly degenerate characteristic fields, rapid oscillations may propagate [C2], [S]. 

5. Stability 

We now return to several space dimensions and consider solutions U(x,t) of (3.1), 
(3.5) in L°°(Rfe x R+). It is easy to see that (3.1) induces some (very weak) 
continuity in the time direction [Da7]: 

t\—>U(-,t) continuous in L°° weak*. (5.1) 

Assume (3.1) is endowed with a uniformly convex entropy function r)(U). 
As noted in Section 2, (3.1) is then symmetrizable. When Uo lies in a Sobolev 
space of sufficiently high order, the initial-value problem (3.1), (3.5) admits a 
classical solution on some time interval. The stability of shock fronts has also 
been investigated. See the monograph [M]. When (3.2) is interpreted, in the usual 
fashion, as 

k 

[ [ [fi(U)dt<p+ J2qa(U)da<p]dxdt+ f f](Uo(x))<p(x,0)dx>0 (5.2) 
Jo Jmk

 ~L JRk 

for all nonnegative test functions ip with compact support in Rfc x R+, then any 
L°° solution compatible with it and normalized by (5.1) satisfies 

/ r](U(x,t))dx< T](UQ(x))dx , 0 < t < o o . (5.3) 
JRk JRk 

It follows from (5.3) that the map t »—> U(-,t) is actually strongly continuous 
at t = 0. Because the value t = 0 has no special status, it is conceivable that 
the interpretation of the entropy inequality (3.2) should be strengthened to yield 
JRk 7](U(x,t)) dx nonincreasing on R + and thus render t \-> U(-,t) strongly contin
uous for every value of t. 

Always assuming r)(U) is uniformly convex, (5.3) implies 

l|tf(-,*)llL*(R*) < c2\\U0(-)\\L2{Rk) , 0<t<oc. (5.4) 

In fact, a more general result has been established [Da2], [Di3]: if U(x,t) is any 
Lipschitz solution of (3.1) with initial data UQ(X) and U(x,t) is any L°° solution 
of (3.1), (3.5) satisfying (5.2), then 

\\U(.,t) -Ü(;t)\\L2(Rk) < eeat\\U0(-) -Ü0(-)\\L2W , 0 < t < oo. (5.5) 

In particular, whenever they exist, Lipschitz solutions are unique within the broad
er class of L°° solutions that satisfy an entropy inequality with a uniformly convex 
entropy function. The reader should be aware, however, that just one entropy in
equality is generally insufficient to single out a unique solution with discontinuities, 
and thus more discriminating admissibility criteria are needed for that purpose. 
The question of uniqueness of L°° solutions is open. 
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Estimates (5.4), (5.5) may leave the impression that for systems of conser
vation laws in several space dimensions L2-stability prevails. On the other hand, 
(3.6) and (4.4) seem to indicate that L1 -stability is the natural one. The question 
then arises of whether estimates 

HtfM)llLP(R*) < Cp||tf0(-)llLP(R*) , 0 < t < OO, (5.6) 

are valid for any p / 2 . When (3.1) is linear, it is known [B] that (5.6) holds for 
any 1 < p < oc if and only if the Jacobian matrices of the FQ (U) commute: 

DFaDFß = DFßDFa , a, ß = 1 , . . . , fc. (5.7) 

Rauch [R] notes that if (5.6) holds for solutions of a quasilinear system (3.1) then it 
must also hold for solutions of the system resulting by linearization of (3.1) about 
any constant state. Thus, (5.7) is a necessary condition for (5.6) in the quasilinear 
case as well. For systems of two conservation laws, n = 2, and solutions taking 
values in a small neighborhood of the state U = 0, it has been shown [Da6] that 
(5.7) is also sufficient for (5.6) to hold with p G [1,2] and, in certain cases, even 
for p = oc. The proof is based on the observation that when (5.7) is satisfied the 
matrix A(U; v) in (3.4) has n linearly independent eigenvectors R\(U),..., Rn(U), 
independent of v. In that case (3.3) reduces to 

Ri(U)TD2ri(U)Rj(U)=0 , z, j = 1 , . . . ,n; i ^ j . (5.8) 

In particular, if n = 2 (5.8) yields one linear, second order hyperbolic equation for 
determining the entropy function rj(U). By solving appropriate Goursat problems, 
one may construct, on some neighborhood of the origin, solutions rj(U) of (5.8) 
that are convex functions with growth n(U) ~ \U\P at U = 0. Then (5.6) follows 
from (5.3). 

In view of the above, systems with the property (5.7) may serve as a training 
ground for exploring conservation laws in several space dimensions. This class, 
however, is very special and does not include the systems arising in continuum 
physics. The failure of (5.6), with p = 1, is disturbing, because it implies [R] that 
estimates like (4.2), (4.3) will fail as well and hence solutions will not generally lie in 
the space BV. Recall from Section 2 that in BV solutions, discontinuities organize 
as propagating shock waves, a very desirable feature. It would be of considerable 
interest to know whether such structure is present even in L°° solutions, without 
the BV property. The investigation should begin with fc = n = 1, because the 
answer is unknown even in that very simple case. The geometric structure of 
solutions at codimension higher than one is extremely intricate [CH]. 

A different line of investigation would aim towards understanding why (5.6) 
fails when p ^ 2. A familiar phenomenon that contributes to this effect is focussing 
and defocussing of waves. If that is the principal cause for the failure of (5.6), some 
kind of renormalization of solutions may conceivably restore the BV property. This 
is mere speculation, however, as the author is unaware of any concrete supporting 
evidence. 

In the above considerations, it was important that n(U) be convex. In contin
uum physics, convexity of the entropy function is a natural assumption for certain 
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models (e.g., elastic fluids) while in other cases (e.g., elastic solids) it would be in 
violation of the laws of physics [TN]. We must weaken the assumption of convex
ity so that compatibility with physics is preserved while retaining implications on 
stability, like (5.4) and (5.5). As a minimum requirement we should ask: 

t*-^n(U(-,t)) lower semicontinuous in L°° weak*. (5.9) 

Indeed, (5.9) together with (5.1) yield the desirable (5.3) for any L°° solution 
satisfying (5.2). 

What assumptions on n(U) (short of convexity) would guarantee (5.9)? In 
continuum physics (elastodynamics, electrodynamics, etc.) the fluxes in the con
servation laws (3.1) often satisfy a condition 

AaFß(U) + AßFa(U) = 0, a,ß = l,...,k, (5.10) 

for some family of (£ x n) matrices AQ , a = 1 , . . . , fc. This in turn implies that 
any solution U of (3.1) satisfies the so-called involution [Bo], [Da2] 

k 

^2AadaU = 0 (5.11) 
a=l 

given that the initial data UQ do so. In that case (5.9) will hold provided rj(U) is 
A-quasiconvex in the sense of Dacorogna [D], namely 

f nfJJ) dx< j T)(U) dx (5.12) 

for every hypercube C in Rfc, each fixed U in Rn , and any field U in L°° that 
satisfies (5.11) and whose mean value over C is U. 

With an involution (5.11) is associated a wave cone: 

k 

JC = ( J k e r ^ i / Q ^ a , (5.13) 

where the union extends over all unit vectors v in IRk. It is easy to see that any 
nondegenerate characteristic direction of (3.1) as well as the amplitude of any 
nondegenerate shock must lie on JC. Furthermore, if rf(U) is A-quasiconvex, then 
it must be convex in the direction of /C [D]. All these conditions are physically 
motivated in the applications to continuum physics. 

In [Da7] it is shown that when rj(U) is A-quasiconvex the analog 

H^(-,t)-t7(.,t)| |L2 (Rfc)<C(*)||üb(-)-^o(-)llL>(R*) , 0 < t < o o (5.14) 

of the stability estimate (5.5) holds for any Lipschitz solution U(x, t) and any L°° 
solution U(x,t) of (3.1), taking values in a small neighborhood of the origin and 
satisfying (5.2), provided that the corresponding initial data UQ(X) and UQ(X) have 
compact support and satisfy the involution (5.11). 
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Eigenfunctions and Harmonic Functions in 
Convex and Concave Domains 
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Let fl be a bounded, convex, open subset of R^. This paper concerns the behavior 
of positive harmonic functions that vanish on dft. We will consider both the case 
in which the function is defined in ft and the case in which the function is defined 
in the complement of ft. We will also discuss eigenfunctions defined in ft. The 
theme is to study how the shape of ft influences the size of solutions to these basic 
elliptic equations. 

The simplest measure of the shape of ft is its eccentricity, which we define as 

diameter ft 
inradius ft 

Our estimates will fall into two categories, global and local estimates. The global 
estimates are those estimates on the size of solutions that arc uniform as the 
eccentricity tends to infinity. The local estimates (Section 5) are those estimates 
that are valid when the eccentricity is bounded above. Local estimates are valuable 
only because they are valid uniformly up to the boundary. One main focus will be 
on the normal derivative of the solution at the boundary and its interaction with 
the Gauss curvature of the boundary. 

1 The first nodal line 

It is well known that the Dirichlet problem for ft has eigenvalues 0 < Ai < À2 < 
A3 < . . . Define u as the second eigenfunction 

Au = —X2U in ft and w = 0on dft 

The set on which u vanishes is known as the first nodal set: 

A = {z G ft : u(z) = 0} 

A divides ft into two components fl+ = {z G ft : u(z) > 0} and ft- = {z G ft : 
u(z) < 0}. 
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There are several results showing that the first nodal set meets the bound
ary. (See [P], [L], [32], [J4], and especially [M].) These results motivate the more 
quantitative estimates of the first two eigenfunctions that follow. 

THEOREM 1.1 [J5]. There is an absolute constant C such that if ft is a convex 
domain in R2, then 

diameter A < Cinradius ft 

This theorem has no content unless the eccentricity is large. The first and 
most basic idea in the proof is that the shape of the eigenfunction is governed not 
by the eccentricity, but by a quantity that we call the "length scale" L associated 
to ft. The number L is, by definition, the length of the rectangle R contained in 
ft with, lowest Dirichlet eigenvalue X\(R). This rectangle can have a very different 
diameter from fi. If lì is a rectangle, then R is the same rectangle. But if ft is a right 
triangle with legs of length 1 and N, with Ar > 1, then L is comparable to iV1/3. In 
general, iV1/3 < L < N: the example of a trapezoid shows that any intermediate 
value is possible. It is not hard to prove, using differential inequalities of Carleman 
type, that the first and second eigenfunctions of ft have a large percentage of 
their mass supported in R, with an exponential decay outside R. The methods of 
Theorem 1.1 give a precise location for the nodal line. In particular, the nodal line 
is near the middle of R, not ft. 

The second idea in the proof is a competition for energy between the two 
halves ft± of ft. Rotate so that the projection of ft onto the y-axis is the shortest 
of all projections, and define I(x) = {(x.y) : (x,y) G Sì}. The goal is to show that 
I(x) is close to A for some x, so we consider the two domains obtained by cutting ft 
in half at I(x). When x is near the middle of the rectangle R, a shift of I(x) to the 
left or the right by a unit distance increases/decreases the eigenvalues of the two 
halves by the same amount as in the rectangle R. Thus, ft resembles the rectangle 
R in the perturbation of its eigenvalues. We wall return to this idea in Section 4. 

In addition to eigenvalue estimates, the proof of Theorem 1 uses several 
barrier arguments and the generalized maximum principle. Moreover, the proof 
provides a detailed approximation to the first and second eigenfunctions in terms 
of the solution to an ordinary differential equation that is naturally associated 
with the domain. 

There is a unique segment J = I(x°) that divides ft into two regions with the 
same first Dirichlet eigenvalue. With inradius ft = 1, Theorem 1 is equivalent to 

THEOREM 1.1'. There is an absolute constant C such that dist (A, I) < C 

Theorem 1.1' has recently been sharpened to: 

THEOREM 1.2 [GJ]. dist (A, I) - • 0 as N - • oc. 

It seems plausible that the methods of Theorem 1.2 will ultimately lead to 
the estimate (with inradius ft = 1) 

dist (A, I) <C(s + e~cL) 

where s is the largest difference between slopes of the boundary curve at the 
top and bottom of ft within a distance log L of A. This rate is best possible for 
triangles, rectangles, and their perturbations. 



1110 David Jerison 

2 Green's function and harmonic measure 

Green's function for ft with pole at the origin is the function G satisfying 

AG = 6 in ft G = 0 on dft 

Harmonic measure (with pole at 0) is the measure du; on dft such that 

-L u(Q) = fduj 
Jdfi 

whenever u is continuous in ft and satisfies Au = 0 in ft and u = f on dft. Green's 
formula implies that 

du = (dG/dn)da 

where da is the surface measure on dft. 
The Schwarz-Christoffel formula [A] for the conformai mapping of the upper 

half-plane to a polygon is 
771 

*'(*) = Aeie Y[(z- xk)-
0k *(<) = 0 (2.1) 

k=\ 

where Im z > 0, A > 0, and 0, ßk, and Xk are real numbers. One of the difficulties 
with this formula is that it need not represent a mapping that is globally one-
to-one. However, in the convex case, we assume that /?*. > 0 and Ylßk = 2 and 
(for convenience) Xk is an increasing sequence. Then $ maps each segment /& = 
[xk-i,Xk] onto a side $(Ik) of a convex polygon with exterior angle -irßk at the 
vertex $(xk), and the mapping is globally one-to-one from the half-plane to the 
polygon. (We use the convention that I\ = [xm, oo]U(—oo, zi].) The factors A and 
ei0 co r rCspond to dilation and rotation. The choice of $(i) = 0 corresponds to a 
translation. 

A much more serious shortcoming of this formula as a tool in conformai 
mapping is that the given data are not the locations of the vertices of the polygon. 
Rather, they are the angles of the polygon and the numbers £&, which are points 
on the real axis. As we shall see, this formula solves a kind of inverse problem 
for harmonic measure. Notice that the sequence of values x^ contains the same 
information as the sequence of values 

dx 

* L i + x2 - *(*(/*)) 

The left-hand side is the Poisson integral or harmonic measure of Ik in the up
per half-plane, with pole at i. But because the conformai mapping $ preserves 
harmonic measure, this equals the harmonic measure uj($(Ik))- Now the problem 
solved can be rephrased as: Given the normals to the sides of a polygon and the 
harmonic measure of each side, find the polygon. 

To generalize this inverse problem consider the Gauss mapping g : dft —> Sn, 
n = N — 1, which takes a point x G dft to the outer unit normal at x. (This 
mapping is defined almost everywhere with respect to the surface measure da. 
Hence, it is defined almost everywhere with respect to harmonic measure.) We 
define the measure dfi = g* (du) on the sphere by 

ß(E) = uj(g~l(E)) for any Borei subset E C Sn (2.2) 
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THEOREM 2.3 [J3], [J l] . Ifdfi is a positive measure on Sn of total mass 1, then 
there exists a convex domain ft containing the origin such that g* (dui) = d\i. 

Note that there is no requirement that ft be bounded. For example, if dfi is a 
delta mass at e G Sn, then ft is a half-space perpendicular to e. There is a direct 
relationship between the size of (dG/dn) and the rate at which G vanishes, that 
is, its size at the boundary. Thus this inverse problem is saying something about 
what rates are permissible. However, as we will see in Section 5, this theorem says 
much less about dG/dn by itself than about the relationship between dG/dn and 
Gauss curvature. 

3 The Minkowski problem and variants 

The inverse problem for harmonic measure resembles the classical Minkowski prob
lem, which asks when one can construct a convex polyhedron given the normals 
to the faces and their areas. The generalized problem is to solve 

g*(da)=dv (3.1) 

In particular, if dv = (1/K)d£, where d£ is the uniform measure on the sphere, 
then K is the Gauss curvature of dft. 

However, (3.1) has very different global compatibility conditions than those 
of (2.2). The projection body function of ft is the function defined for e G Sn by 

P{e)=P^\e)= f ( e - 0 + ^ ( 0 (3-2) 
Jsn 

This is the n-volume of the projection of ft onto the hyperplane perpendicular to 
e. It is easy to see that P(e) = P(—e), and this can be written 

/ (e-t)di/(0 = Q f o r a l l e G 5 n (3.3) 
Jsn 

In other words, we have N linear necessary conditions for the existence of ft. We 
will assume that ft is bounded, so that the total surface area is finite. It follows 
that 

min P > 0 and max P < oo (3.4) 

To explain how to find Si solving (3.1), we consider the Minkowski support function 

M 0 = supx-Ç (3.5) 

The Minkowski sum is 

A + B = {a + b:aeA b G B} 

With v defined by (3.1), we have 

vom = -i y _ MO'MO, (3.6) 

jUol (fi + tA)\t=Q = J M O dv{x) (3.7) 

These formulas underlie the following theorem of Minkowski. 
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THEOREM 3.8. If u is a positive measure on Sn satisfying (3.3) and (3.4), then 
the minimizers of 

inf{ / hn dv :volft> 1} 
Jsn 

satisfy g* (da) = cdv where c is a suitable constant. 

The constant c is a Lagrange multiplier. The minimizing domains are unique 
up to translation and have volume 1. One can dilate to solve (3.1). 

The necessary conditions (3.3) and (3.4) are quite different from the total 
mass 1 constraint for harmonic measure. Moreover, there is no variational formula 
for the harmonic measure problem. However, there are two analogous variational 
problems involving canonical functions on the interior and exterior of ft. 

Let u\ denote the first Dirichlet eigenfunction of ft, normalized to have L2(ft) 
norm 1. For N > 3, define the equilibrium potential U for ft as the function 
satisfying 

AU = 0 in RN\ft, U = 1 on dft. and U(x) - • 0 as x -> oo 

It is well known that 

U(x) = >yAN\x\2-N + OOzl1"*) as x -> oo 

where AN is chosen so that A^\x\2~N is the fundamental solution and 7 is the 
capacity of ft, cap ft. In particular, U — 1 is a multiple of Green's function for the 
complement of ft with pole at infinity. 

Let v\ and v2 be positive measures satisfying the same constraints as v. If 
in Theorem 3.8, vol fi is replaced by Ai(fi), and v by v\, there exists a minimizer 
solving 

g*((dux/dn)2da) = cdvx (3.9) 

If in Theorem 3.8 vol fi is replaced by cap (ft) and v by ^2, the minimizer solves 

g*((dU/dn)2da) = cdv2 (3.10) 

The formulas analogous to (3.6) and (3.7) are classical variational formulas 
due to Poincaré and Hadamard [Po], [GS], [PS]: 

Ai (fi) = \ [ M O <M(0 where dvx = g*((dUl/dn)2da) (3.11) 
^ Jsn 

cap ft = —^— / M O dv2(x) where dv2 = g*((dU/dn)2da) (3.12) 
N — 2 JSn 

|A!(n + ti4)|t=0 = - j ^ M O «MO (3-13) 

^cap(fi + M)| t=0 = y M O du2(0 (3.14) 
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4 Bounds on eccentricity 

The fundamental a priori bound in the Minkowski problem is 

ecc fi < CN max P^oì/ min P£°l (4.1) 

This is the starting point of the regularity theory of [CY], Similarly, consider 

PÉS(e)= ! ( e - 0 + ^ i ( 0 (4-2) 
Jsn 

P£?P(e) = / (e • 0 + < M 0 (4-3) 
Jsn 

A key estimate for the analogous theory of the first eigenvalue is that the ratio 
maxPQ l g/minP^ l g controls ecc fi; this is also true for the capacitary projection 
body function [J6]. 

To motivate some conjectures, we present an easy proof of (4.1) based on an 
important lemma of John. 

LEMMA 4.4. There is a dimensional constant CN such that for every open, bound
ed, convex domain fi there is an ellipsoid £ such that 

£ C fi C CN£ 

where multiplication by CN represents a dilation from the center of mass of £. 

A proof of Lemma 4.4 due to Cordoba and Gallegos can be found in [dG, 
p. 133]. 

Suppose that the ellipsoid has semiaxes e\,..., e^ of lengths a\ < a2 < • • • < 
UN- Then Lemma 4.4 implies 

P(ek) « 0,10,2'" âk'-CLN 

(Here « means comparable up to a dimensional constant factor.) Therefore, 

max P a2 — -aN CLN ~ 
—:—— « = — « ecc £2 
mmP a i — a / v - i Q>i 

Lemma 4.4 implies 

Mi ~ MS 

This suggests the conjecture 
pcap w ^ a p ( 4 5 ) 

The order of magnitude of Pv o 1 gives exactly enough information to recover the 
order of magnitude of the quadratic form defining £. It might be worthwhile to 
compare P c a p to the virtual mass and polarization associated to fi [SS]. 
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CONJECTURE 4.6. 
peig ^ peig 

where R is the parallelepiped of lowest first eigenvalue contained in fi. 

This conjecture is true in R2. But little is known in higher dimensions [J4]. 
There is a direct relationship between Conjecture 4.6 and Section 1. Let S 

denote the unit segment with endpoints 0 and e. Then 

pei8(e) = -^ A l ( f i + f5)l'=o 

Thus, the projection body function measures the rate of change of the eigenvalue 
with respect to a lengthening of fi in the direction of e. For an (L x l)-rectangle 
R, 

P f ( e i ) « l , P ^ ( e 2 ) * l / L 3 (4.7) 

If R is the optimal rectangle of fi, then (4.7) also holds with fi in place of R. 
This implies Conjecture 4.6 for R2. The second assertion in (4.7), and the only 
nontrivial one, is an infinitesimal variant of the property mentioned in Section 1 
on the effect of moving I(x) by a unit distance. 

5 Regularity and the Monge-Ampère equation 

Let (j) be the convex function for which the graph (x, (j>(x)) corresponds locally to 
dft. The equation 

g*(da) = dv = (l/K)d£ (5.1) 

can be written locally as a Monge-Ampère equation 

det V2(/>(z) = F(V(j)(x)) (5.1;) 

for a suitable function F depending on K. Similarly, the equations 

g*((dG/dn)da) = d/x = pd£ (5.2) 
g^dux/dnfda) = dvx = pd£ (5.3) 

g*((dU/dn)2da) = dv2 = pd£ (5.4) 

can be written in the form 

det V2<j)(x) = F(V(j)(x))(dG/dn)(x, cß(x)) (5.2') 

det V2(j)(x) = F(V4>(x))(dul/dn)2(x, 0(z)) (5.3') 

det S/2(p(x) = F(V<t>(x))(dU/dn)2(x, (j>(x)) (5.4') 

The regularity theorem for Gauss curvature is due to Nirenberg, Pogorelov, Calabi, 
Cheng, and Yau. 

THEOREM 5.5 [CY]. IfK > 0, K e Cx(Sn), then every ft that solves (5.1) is C°°. 

THEOREM 5.6 [J6], [J3], [Jl] . If p > 0, p e C°°(5n), then every fi that solves 
(5.2), (5.3), or (5.4) is C°°. 
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The extra factors present serious new difficulties over equation (5.1). In equa
tions (5.2) and (5.3) the normal derivative can vanish. In the case of (5.4), the 
normal derivative can be infinite. But recently Caffarelli [CI], [C2], [C3], [C4] has 
simplified and sharpened the regularity theory of the Monge-Ampère equation by 
developing a notion of scaling that takes care of problems like the ones above. The 
scaling comes from consideration of the convex sets 

F = {xeRn : (j)(x) <a-x + b = £(x)} (5.7) 

The connection with the Monge-Ampère equation is as follows. First, the function 
<fi(x) — £(x) has the same Hessian as (j). Second, this new function has the boundary 
value 0 on dF. Third, a linear transformation of the x variable just changes the 
right-hand side of the Monge-Ampère equation by a constant multiplicative factor. 
The point is that even though the set F in Rn can have completely uncontrolled 
eccentricity, the John lemma in Rn implies that one can always make a linear 
change of variable to transform F into a renormalized set F' with diameter and 
inradius both comparable to 1. Finally, the shape of these level sets F is closely 
related to the size of the first and second derivatives of (j). 

Caffarelli's theory says that to obtain an a priori estimate, one must discover 
scale-invariant estimates on the right-hand side. The set (5.7) corresponds to a set 
on dft of the form 

E = dft H H where H is any half-space (5.8) 

We will call these sets slices. The key estimate for (5.2) is that if the ecc fi is 
bounded above, then for all slices E, 

max(dG/dn) < C-}— f (dG/dn) da (5.9) 
E a(E) JiE 

where (1/2)E is defined as the graph over (1/2)F, and the dilation of F uses 
as its origin the center of mass of F. In particular, this implies a scale-invariant 
doubling condition on slices, v(E) < Cu)(\E). The doubling condition is familiar in 
the context of Lipschitz domains [HW], [JK] for balls. The novelty here is that the 
slices do not have uniformly bounded eccentricity. (Here we equate the eccentricity 
of E with the eccentricity in Rn of F.) The uniformity is that C depends only on 
the eccentricity of fi in R^, not E. In a general convex domain, the eccentricity 
of a slice is not under control. For example, consider the case of a slice parallel to 
an edge of a polyhedron. 

The eigenfuncion u\ vanishes at the same rate as G at the boundary, so 
(5.9) also implies a doubling property for the measure (du\/dn)2da. (The second 
power is no problem because we even have control of the maximum.) The exterior 
problem is different. The doubling condition is false. But a weaker condition holds, 
namely, there exists e > 0 and C such that for all slices E, 

f ô^^dU/dn)2 da<C [ (dU/dn)2 da (5.10) 
JE J(I/2)E 
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where 6 is a scale-invariant distance to the boundary of E. (More precisely, 6 is the 
distance to the boundary in the renormalized set F'.) This is the weakest estimate 
of its kind that still yields to the scale-invariant Caffarelli technique. 

Estimates (5.9) and (5.10) are optimal local estimates for the rate of vanishing 
of G, u\, and 1 — 17 at the boundary, and they reflect the relationship with Gauss 
curvature. For a relationship between G and mean curvature and scalar curvature, 
see the optimal estimates on third derivatives of G in [FJ]. 

6 Uniqueness 

The solution to the harmonic measure problem (Theorem 2.3) is almost certainly 
unique up to dilation. This can be proved using (2.1) in dimension 2, and in the 
case of smooth data there is a proof in [J3]. McMullen and Thurston [MT] have 
given a maximum principle argument for uniqueness up to dilation that applies at 
least to polyhedra and most smooth domains. 

Consider convex combinations of two convex bodies 

fit = (1 - t)fi0 + tili 0<t<l 

The Brunn-Minkowski inequality says that 

vol(fi,)1/iV 

is a concave function of t. It is linear if and only if fio and fii are a translate and 
dilate of each other. This uniqueness implies uniqueness up to translation in the 
Minkowski problem (3.1). The analogous property that 

captfi,)1^-2) 

is a concave function of t was proved by Borell [B]. The fact that this function 
is linear if and only if fio is a translate and dilate of fii is proved in [CJL]. This 
implies uniqueness up to translation in the capacity problem (5.4) when N > 4. 
Note, however that equation (5.4) has homogeneity of degree N — 3. When N = 3, 
(5.4) is dilation invariant; there is only one multiple of dv2 for which there is a 
solution, and that solution is unique up to translation and dilation. 

Finally, the analogue of the Brunn-Minkowski inequality for eigenvalues fol
lows from [BL], [BL1]. However, the case of equality has not yet been analyzed. 
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ABSTRACT. We present several recent results concerning the global existence of solu
tions to kinetic equations, which are, generally, semi-linear or quasi-linear hyperbolic 
partial differential equations of transport type. The most famous of them are cer
tainly the Boltzmann or Vlasov-Poisson equations. We describe more precisely some 
general tools that can be used for their analysis: compactness results and disper
sive effects. Then we give a new point of view on their fluid limits. This allows 
us to recover some nonlinear hyperbolic systems of conservation laws by a singular 
perturbation according to the "mean free path". 

I Introduction 

Kinetic equations are, usually nonlinear, partial differential equations based on 
a first order transport operator. The most famous models are neutrons trans
port, Boltzmann equation for gases with binary collisions, and Vlasov-Poisson and 
Vlasov-Maxwell equations for self-interacting plasmas. But many other equations 
are of interest for physical kinetics, statistical and fluid mechanics, biology, metal
lurgy, or semi-conductors modelling. The common main structure to these kinetic 
models is that of a simple transport operator describing the evolution of a micro
scopic density f(t,x,£) of particles 

j ^ / ( t , *, 0 + É • V x / ( t ? x, 0 = Q(t, x, 0 - (Ll) 

Here t > 0 represents time, and x G Wl represents the position of particles with 
velocity £ G Mn. The notation Q will denote a given function or several possible 
operators acting on / and depending upon the physics of the model. We will give 
other examples below, but let us present first the Vlasov-Poisson model. It consists 
in taking, in (Ll) 

Q = -E(t,x).Vzf(t,x,£), (1.2) 

E(t, x) = ±VxU(t, x), £0AU = p(t, x) - po, (1.3) 
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where £0 > 0 is the given dielectric constant, po is a given nonnegative constant 
(an electric charge in the applications), and 

,*)= / f(t,x,Odi (1.4) p(t 

is the macroscopic charge induced by the density / itself. The sign ± in equa
tion (1.3) depends on the model, charged plasma as here, or gravity forces (in 
astrophysics for instance). 

Recently, many progresses have been made in the mathematical understand
ing of these models. We describe some of them in Section II, as well as several 
general mathematical tools that can be used to analyze the transport equations. 
Our first example is the averaging compactness, which shows that averages in £ 
of the solution to equation (Ll) win some regularity in t and x. We also present 
some dispersive estimates that provide decay in the variables £ and t. 

Other classical problems concerning kinetic equations range in singular limits. 
Rescaling the equations according to a "mean free path", it is possible to recover 
the so-called fluid or macroscopic limits. This is the case for example of the systems 
of Euler or Navier-Stokes equations for incompressible or compressible flows that 
can be derived from the Boltzmann equation. In the last section of this paper, 
we will describe recent results in that direction. We will show that the relation 
with nonlinear hyperbolic systems of conservation laws is broader than expected; 
several systems can actually be written exactly as kinetic equations. 

There are many other mathematical problems related to kinetic equations 
that we cannot present here. Let us mention some examples, restricting ourselves 
to recent results using partial differential equations methods: the derivation of 
kinetic models from quantum mechanics (Schrödinger equations) see Lions and 
Paul [18], Lions and Perthame [20]; or from statistical physics using PDE methods: 
Pulvirenti et al. [30], Perthame and Pulvirenti [27], numerical methods, inverse and 
scattering problems, models for specific applications (Markowitch et al. [24] or [26] 
for instance), and qualitative properties such as large time asymptotics for which 
many progresses have been realized recently. 

II Analysis of kinetic equations 

The analysis of nonlinear kinetic equations relies on several tools: derivation of a 
priori estimates, functional analysis, and specific manipulations for each model. 
Here, we will restrict our presentation to some very general estimates and com
pactness results. But first, we would like to begin with some recent examples of 
global existence results for large initial data. This means that we completely skip 
the questions of the existence of global small solutions with uniqueness. A review 
for this can be found in [13]. 

Concerning global existence of weak solutions to kinetic equations, let us first 
mention the result of Di Perna and Lions proving the existence of renormalized 
solutions to the Cauchy problem for the Boltzmann equation for general initial 
datum. The Boltzmann model corresponds, in the general equation (Ll), to an 



1120 Benoît Perthame 

operator 

Q = f [/(£')/(£) - f(0m*)ÌB(\t; - U Itt - W • H) <%+ dw. (ii.i) 
jRnxSn-1 

In (ILI) we have skipped, for the ease of notation, the dependency of / upon t 
and x. The function B(-,-) is a given positive kernel. Finally, the post-collisional 
velocities (£',£1) are obtained from the pre-collisional velocities (£,£•) by the re
lations 

£' = £ - ( £ - £ * , ™ K £ = & + (£-É*,uOt0, (H.2) 

which are merely a parametrization, by the unit vector w, of the manifold of 
velocities satisfying the conservation of momentum and energy: 

z+z* = £-c\tf + \t*\2 = \a2-\a2-
The difficulty in solving this model is that the only known bounds for solu

tions of (LI), (II.2) are 

/ f(t,x,0(\x\2 -r |£2| + | l n / | ) dxd£ < C(T) for all t < T, (II.3) 

whenever the initial data f(t = 0,x,£) satisfies them. 
Because / is a priori nonnegative this estimate is merely an L1 estimate, 

which is not enough to give a meaning to the quadratic operator Q in (ILI). The 
idea of renormalization is simply to transform (Ll) into 

y^-+t-Vxß(f)=P{f)Q. (II-4) 

Of course this equation is equivalent to (ILI) for smooth solutions and Q, but for 
the Boltzmann equation it is not. The advantage of the renormalized equation is 
that it is now meaningful in L1(M^c

Nc) whenever the function 3'(f) decays at least 
as j at infinity. Then, Di Perna and Lions, in [11], show that, indeed, ß'(f)Q is well 
defined in L1, and they overcome the difficulty to build a solution (this requires 
deep functional analysis, a simpler and more general version being presented in 
Lions [17]). 

Among the other models for which global existence of weak solutions has 
been obtained recently, let us mention the Vlasov-Maxwell equations by Di Perna 
and Lions [12], and the Bhatnagar-Gross and Kruck (BGK) model by the author 
[25]. Strong solutions, with uniqueness and regularity, could also be achieved in a 
number of cases: three-dimensional Vlasov-Poisson equations by Pfaffelmoser [29], 
Batt and Rein [4], Lions and Perthame [19], the Vlasov-Poisson-Fokker-Planck 
equation by Bouchut [5], and the BGK model by Pulvirenti and the author [27]. 
All these results are based on precise estimates related to the special structure of 
the model. We do not wish to give details on these results but on some general 
lemmas that are often used in the above papers; they explain that, despite the 
solutions to the transport equation (Ll) can be handled explicitly by the method 
of characteristics, they satisfy some very strong properties that cannot be seen 
through this method. 
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LEMMA 1. The solutions to the transport equation (1.1) satisfy, for any test func
tion ip e v(M.n), 

(i) || J / (t ,X,ÇMO dÇ||jïi/a(B»+i) < C7(r», «U|»p V)ll/llÌa^R»+i)IIQIIi^R>«+>)» 

(ii) if Q = (I- \)m,2g, g e Lp(R2n x H), and f e Lp(R2n x R), then 

f / (* ,x ,Ov(0^€B| ' p (R n xR) 

JRn 

WÜh S = ( m + l ) l ( p y ) ^ « = m a X ^ ' 2)-
Lemma 1 is known as an "averaging lemma". It explains how the hyperbolic 

equation (Ll), which propagates singularities in the phase space (x,£), can also 
regularize the data (Q here, but it also regularizes the initial data). The first result 
in that direction was given by Golse et al. [15] and extended in [14] to the case 
(i). The case (ii) was successively proved in Di Perna, Lions, and Meyer in [11] 
and [12]. It is a keystone in proving the existence of weak solutions in [11], [10] or 
the asymptotic limit of the radiative transfer equations (a nonlinear version of the 
neutrons transport equations) in Bardos et al. [3]. 

The second general result we wish to mention is due to the author [25], and 
a more direct proof is given in [20]. 
LEMMA 2. Let f satisfy (Ll) and denote f(t = 0,x,£) = f°(x,Ç). Then 

[ °° [ i a- ll'ii+a l/(*.*»€)l dx <* dt g C ^ Q ) / \r{x,t)\**dt. (II.5) 
./-oc JB?n 1 + R JR2n 

Although Lemma 1 shows that extra-integrability in the Fourier variable is 
won, Lemma 2 yields extra-integrability in the velocity variable £ (the price to pay 
is a localization in the variable x). It is also possible to prove a strong decay in 
the time variable. 

LEMMA 3. With the notations of Lemma 1 and 

p(t,x)= f f(t,x,0d£ (II.6) 
JRn 

we have 

\p(t,x)\ <— sup |/0(a:,01 dx 
1 JRn £eRn çeRn 

This result was widely used in the context of the Vlasov-Poisson equation (and 
also for related models) by Bardos and Degond [1]. 
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III Fluid equations 

The kinetic equations can be parametrized, thus raising singular perturbation 
problems. The most classical one (still unresolved) is the compressible gas dynam
ics limits of the Boltzmann equation, which can be formally obtained through a 
Hilbert or Chapman-Enskog expansion (see Cercignani's book [7] for instance). 

Several singular limits of kinetic equations could be justified recently. Let 
us mention for instance, still limiting our examples to global results, the porous 
medium limit of radiative transfer equations by Bardos et al. [3] and the differ
ent incompressible limits of the Boltzmann equations by De Masi, Esposito, and 
Lebowitz [9], and Bardos, Golse, and Levermore [2], which can be obtained through 
a very interesting scaling of both the initial data and the equation. Concerning 
the compressible limit of the Boltzmann equation, we would like to mention also 
the recent extension of the Chapman-Enskog and Grad hierarchies developed in 
Levermore [16]. The Vlasov-Poisson equation can also be scaled. A first example 
is through the dielectric constant in the Poisson equation, so as to generate singu
lar limits, as in Brenier and Grenier [6] who relate their results to incompressible 
gas dynamics. A second example is the "variational inequality" obtained by De-
gond and Raviart [8] (see also the paper by Degond in [26]) to describe special 
monokinetic boundary conditions for the Vlasov-Poisson equation. 

In this section, we could like to concentrate on a new point of view on the 
relations between hyperbolic systems of nonlinear conservation laws and kinetic 
equations. It explains that the two formalisms are closer than expected and some 
conservation laws can be formulated exactly as kinetic equations. Here we give two 
examples of kinetic formulations: the scalar case and the system of isentropic gas 
dynamics. 

The first example of kinetic formulation is given by Lions, Perthame, and 
Tadmor [22] and concerns scalar conservation laws, 

n 

dt u + J2d*i AiW = o, t > 0,x e Mn. (ULI) 
i = l 

Here the given functions, called fluxes Ai(.) are smooth. The main difficulty with 
nonlinear hyperbolic equations such as (IIL1) is that, even for smooth initial data, 
the solution cannot remain smooth and discontinuities, called shocks, appear in 
finite time. Associated to these discontinuities, uniqueness is lost and it is well 
known, from the theories of Lax and Kruzkov for instance, that entropy inequalities 
have to be added in order to describe the right physical discontinuities of (ULI). 
These entropy inequalities are 

n 

dtS(u) + ^2 dXiHi(u) < 0 in £>'(M+ x Rn) , (III.2) 
2 = 1 

for any convex "entropy" S(.), and denoting 

a i( .) = 4 ( . ) , H'i(.) = S'{.)ai(.). (IIL3) 
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Of course, (III.2) stands as an equality for smooth solutions of the scalar conser
vation law (III.l). In [22], it is proved that u(t,x) satisfies the equations (III.l), 
(III.2) if and only if 

ftx(«, 0 + o ( 0 • dxX{u, 0 = flfem, (III.4) 

for some nonpositive, bounded measure m(t, x, £) and 

f + 1 , i f < ^ < u , 
X(«,0 = < " L i f " < e < 0 , (III.5) 

10, otherwise. 

Notice that the measure m describes the entropy dissipation in shocks and thus 
vanishes in smoothness regions of u(t,x). 

This formulation appears as a singular limit, as e tends to 0, of the following 
Boltzmann type of model 

dtf{t,x,Ç) +a(0 • dxf(t,x,0 = X ( " ( * , s ) , 0 - / ( * , s , f l | ( n L 6 ) 

where the nonlinearity enters through the definition of the macroscopic density 

i(t,x)= f f(t,x,Ç)dÇ. 
JR 

U{ 

This approach allows us to give a new existence proof for entropy solutions to 
(III.l), and is also related to numerical schemes for scalar conservation laws. It 
also gives a "statistical physics" approach as presented in Perthame and Pulvirenti 
[28]. Let us finally give another example of application of this formulation. Under 
some nondegeneracy assumptions on the fluxes a(.), regularizing effects in Sobolev 
spaces have been obtained in [22], (and in [23] for the isentropic gas dynamics 
presented below for 7 = 3). The proof relies on the averaging compactness that 
we have presented in Lemma 1. 

The second example of kinetic formulation that we wish to present here is 
the isentropic gas dynamics developed by the same authors in [23]. This system is 

dt p + dx pu = Q, t>0,x eR, 

dt pu -i- dx(pu2 + Kp1) = 0. 2 . . ^ , ( I I L 7 ) 

Here 7 > 1 is a given parameter. We choose for simplicity K = O2/^, 0 = (7—1)/2. 
The entropy inequalities are now 

dtr] + dxH < 0 in £>'(M+ x R), (III.8) 

for any convex "entropy" r](p,pu), satisfying 

VPP -r 7«/>7"~ V * = 0, (IIL9) 
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which is a necessary and sufficient condition for the existence of an entropy flux 
H(p,pu) such tha t (III.8) holds as an equality for smooth solutions of (III.7). 

In [23], it is proved tha t (p, pu) is a solution to the system (III.7). (III.8) is 
exactly equivalent to writing 

dtX(p,t -u) + dM + (1 - 0)u] x (p ,£ - tx) = % m , (III.10) 

for some nonnegative, bounded measure m(t,x,£) and now 

„ 7 - l _ , f l 2 x A x 3 _ 7 X(p,w) = (p^-w')\, A = 
2 ( 7 - 1 ) ' 

Again, the measure ra vanishes in smoothness regions of the solution (p, u). 
The formulation (III. 10) of the conservation laws (III.l) is also close to clas

sical kinetic equations because the new, kinetic parameter £ has been added. The 
main difference with the kinetic formulation (III.l) is tha t the advection velocity 
0£ + (1 — 0)u is obtained combining the kinetic velocity £ and the macroscopic 
velocity u(t,x). This difference makes it difficult to apply the general tools of ki
netic theory as described in Section II, and in particular the averaging lemma. 
Nevertheless, some purely "kinetic" applications of the formulation (III. 10) can 
be given. New estimates for (III. 7) can be obtained using the moments lemma 
(Lemma 2 above). Also, a weak stability result in Lx, and the global existence of 
weak entropy solutions, can be achieved for all 7 > 1 (see Lions, Per thame, and 
Souganidis [21]) thus generalizing the known results in tha t direction. 
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Introduction 

In this article we shall be reporting on recent progress in the study of harmonic 
maps from Minkowski space (M, rj) into a Riemannian manifold (N, g). These maps 
(also called wave maps or sigma models) are solutions to the wave equation with 
partial derivatives replaced by covariant derivatives. These equations are naturally 
nonlinear because the image lives on a manifold instead of a vector space, as is the 
case for the linear wave equation. A useful way to describe the problem would be 
when the target manifold AT is a hypersurface in Mfc+1. In this case if u G N C Rk+l 

and n(u) is the unit normal to N at u, then the equations are given by: 

Tff^D^dßU = d2u — Au + (8QU • d^n(u) — diu • din(u) ) n(u) = 0 . 

For a general manifold N the equations can be written in local coordinates: 

d»dßU
a + NTlc(U)dflU

bdIÂUc = 0, (1) 

where 77 = diag (—1,1 , . . . , 1 ) , and we sum over repeated indices. These equations 
are relevant to various theories in physics (see Misner [12]), and moreover they 
serve as a good model for studying various properties of solutions to nonlinear 
wave equations such as existence, uniqueness, global regularity, and development 
of singularities. We are also interested in how the geometry or the topology of N 
influences solutions of the Cauchy problem for the map U : M —> N: 

d»dßU
a -r NTlc(U)dßU

bd^Uc = 0 
U(0,x) = U0 (2) 
dtU(Q,x) = U1. 

The basic identity for solutions of the above equation is conservation of energy: 

E(U) = \ J 9ab(dQUad0U
b + diUadiUb) dx, 
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which is a dimensionless quantity in two space dimensions (this can be seen by 
scaling U\(x,t) = U(Xx,Xt), which keeps the equation invariant). Therefore, with 
respect to the energy norm, these equations are characterized as subcriticai in one 
space dimension, critical in two space dimensions, and supercritical in three or 
more space dimensions. These characterizations indicate that it may be possible 
to prove regularity in one or two space dimensions using finite energy. For higher 
dimensions new estimates would be needed to prove regularity. Most of our discus
sion here is concerned with solutions that have co-rotational symmetry, and these 
solutions exist when the target manifold N is a rotationally symmetric product 
manifold defined by: 

i V = [ O , 0 * ) x G S Ä - 1 , 

where <£* G R+ U {+oc} and G : R -> R is smooth and odd, G(0) = 0, G'(0) = 1. 
On N we have the "polar" coordinates ((j), \) € [0? <£*) x §K _ 1- In these coordinates 
the metric of N takes the form: 

d<j>2 + G2(4>)dX
2, 

where d\2 is the standard metric of SK _ 1 <—• RK. Using spatial polar coordinates 
on M (t,r,Lj) G M x M+ x S n _ 1 co-rotational maps are defined by: 

U\t,x) = (j>{t,r)-xÌ^), 

where (U1,..., Uk) are normal coordinates on N, xbfa) is a harmonic polynomial 
map of degree £ > 0, and 0 is a solution to: 

• ji \ fc 
<t>tt - <f>rr <j>r + ~ôf(<l>) = 0, 

0(O,r)=0o, {6) 

y ^ t ( 0 , r ) = ^ i , 

with f((j>) = G(0)G'(0), and k = 1(1 + n - 2). 

1. Local Existence and Uniqueness 

Equation (2) is a Cauchy problem for a system of semilinear wave equations, 
and thus the local in time existence of classical solutions is standard provided 
the initial data is regular enough. If we view (2) as a general nonlinear system 
UUa = Fa(U,DU), then scaling shows that the Cauchy problem lacks estimates 
for initial data 17(0, •) G Hs(Rn,N) and Ut(0,-) G H8'1^71,N), and s < f, 
where Hs is the familiar Sobolev space of functions / : E n —> N <-+ RK whose s 
derivative is in L2. Using energy estimates alone, local existence and uniqueness 
requires s > § + 1 (e.g. see Choquct-Bruhat [2]) . This differentiability requirement 
was lowered to s > 1±^- by Ponce and Sideris [14] using Strichartz type estimates. 

However the above equations are not arbitrary but have a special structure. 
Using this fact Klainerman and Machedon [10] showed that the differentiability 
requirement can be reduced to s = ^^ (see also Beals and Bezard [1] and Struwe 
[21]). Recently Klainerman and Machedon proved the following theorem, which 
is based on null forms estimates for the wave equation in three space dimensions: 
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THEOREM 1 In three dimensions the Cauchy problem is well posed for s > | . 

In the co-rotational problem the differentiability requirement for the initial 
data can be reduced to s = §, and this is optimal in the sense that we have 
nonuniqueness for s < | (as will be shown later). The following theorem is due 
to Tahvildar-Zadeh and the author [18]: 

THEOREM 2 There exists a T* > 0 such that for n > 2 the Cauchy problem (2) 
with co-rotational initial data (UQ,U\), 

U0 G H^(Rn,N), tA G H^2)/2(Rn,N), 

has a unique solution U such that for every ZQ G [0, T*) x Rn, 

U G L ~ ( [ 0 , t o ) , f f ^ 

dtU G L^tolH^pFtN)). 

where a = ^ andq= ^ ^ . 

Here BS,P(Q) denotes the homogeneous Besov space on a domain fi (see [16]). 
Sketch of the proof: the proof is based on Strichartz estimates that were used by 
Struwe and the author [16] to show regularity of critical semilinear wave equations. 
Suppose that 0 is a solution of (3) with £ = 1. Define a function v : M —* R by 
setting (ß = rv, then v satisfies: 

( m — 1 o _ , x 

Vtt - Vrr Vr = V°Z(rv), 
v(0,r) =VQ = 0o /r , ( ' 

k vt(0,r) =vi = 0 i / r , 

with m = ra-f 2. If we ignore Z, we are left with a wave equation in m space dimen
sion and cubic nonlinearity. Using Strichartz estimates and energy inequalities we 
can easily obtain that the Cauchy problem (2) has unique local solutions in the 
stated space. 

2. Regularity 

For small initial data there are several global existence results that are due to 
Choquet-Bruhat [2], Klainerman [9], Kovalyov [11], and Sideris [19]. However in 
this article we are mainly interested in initial data without size restrictions. All 
results stated herein are for initial data of arbitrary size. 

In one space dimension global regularity results for these maps were obtained 
by Gu [7] and later by Ginibre and Velo [4], where they used the special structure 
of the equations. In higher dimensions the problem is more difficult and indeed 
solutions may not stay regular; this will be illustrated later in the case of three or 
more spatial dimensions. In two space dimensions the regularity results are possible 
because the problem is critical with respect to the energy norm. The first results 
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on semilinear wave equations with critical exponents were obtained by Struwe [20]; 
later this was generalized by Grillakis [5]. 

Let us consider the co-rotational problem in two space dimensions. As ob
served before, such a map satisfies the Ansatz: 

<j) = (j)(t,r), X = X M , 

where x = &*>? w ^ h £ G N. The equation for <f> is: 

-&t + 0rr + - t f r - 4 / M = 0' f = G&. (5) 

In an unpublished work Christodoulou and the author (1988) proved regularity of 
solutions to equation (3) for the case when N is the hyperbolic plane and £ = 1. 
Tahvildar-Zadeh and the author [17] proved regularity of solutions provided N 
is geodesically convex (G' > 0). This condition was weakened by Grillakis [6] to 
obtain the following theorem: 

THEOREM 3 Let the function G in the metric of N satisfy the condition: 

G(s) + sG'(s)>0 fors>0. (6) 

Then the Cauchy problem with smooth data for an equivariant wave map from M 
into N has smooth solutions defined for all time. 

A different proof for the above theorem was given by Tahvildar-Zadeh and the 
author [18], based on their proof for the geodesically convex case, and, a modified 
version of the Morawetz identity [13]. The proof is carried out in two main steps. 
The first step uses a gravitational collapse argument due to Christodoulou. The 
premise of this argument is to evolve the equation in r instead of t. This allows 
us to obtain estimates everywhere except on a small cone, whose vertex is at the 
origin. The estimates on this small cone are obtained using the slightly modified 
Morawetz identity. The second step of the proof uses a modification of Struwe 
and the author's [16] application of the localized Strichartz estimates to these 
problems. Details of the proof can be found in [18]. 

Another class of solutions that have global regularity is that of spherically 
symmetric maps. In this case the nonlinear terms in equation (2) remain as prod
ucts of derivatives of U. For this reason the equations are more difficult to ana
lyze. In two space dimensions this problem was considered by Christodoulou and 
Tahvildar-Zadeh [3] under the assumptions that the target manifold N is geodesi
cally convex and is well behaved at infinity. They proved the following theorem: 

THEOREM 4 In two space dimensions the Cauchy problem (2) with smooth spher
ically symmetric inital data has a smooth solution defined for all time. 

3. Development of Singularities 

Because equations (2) are invariant under scaling U\(x,t) = U(\x, Xt) then singu
larities can develop by simply forcing the solution to concentrate at a point. This 
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suggests looking for solutions that are self-similar: 

U(x,t) = 6(x/t). (7) 

These solutions are constant on rays emanating from the origin, thus possibly lead
ing to a derivative singularity at the origin. Substituting this Ansatz into equation 
(2) we obtain the hamonic map equation from the hyperbolic space Mn into the 
target manifold N. This is to be expected because if we put the coordinates: 

< x = N / ^ T ^ , p=i±l, (8) 

on the Minkowski space M = Mn+1 , then HP is the hypersurface given by a = 1. 
Therefore solutions of (1) that are independent of a are harmonic maps from H n 

into N. If such maps exist and are regular (including regularity at infinity), we 
can solve the Cauchy problem (2) using these maps as initial data at t = —1. 
In this situation the solution inside the light cone will be given by the function 
U(x,t) = 6(x/ — t), which is singular at the origin. 

In the co-rotational case this construction can be carried out by substituting 
(j)(r,t) = 0(r/t) in equation (3). The equation for 9 will be: 

p 1 — pz p z(l — pz) 

First we consider the case n = 3. In this case a necessary condition for the so
lution 9 to be smooth is f(6(l)) = 0, or equivalently G'(0(1)) = 0 (i.e. N is not 
geodesically convex). This condition also turns out to be sufficient under a non
degeneracy assumption as indicated in the following theorem of Tahvildar-Zadeh 
and the author [18]: 

THEOREM 5 Let M be the 3 + 1-dimensional Minkowski space, and N a rota-
tionally symmetric 3-manifold with Riemannian metric ds2 = d(f)2 + G2((j))dx2, 
X G S2, and G(0) = 0, G'(0) = 1. Let 9* be the smallest positive zero of G', and 
assume that G"(0*) ^ 0. Then there is a class of smooth initial data such that 
the corresponding Cauchy problem for a co-rotational map from M into N has a 
solution that blows up in finite time. 

Sketch of the proof: as stated earlier, the idea is to construct a smooth solution to 
equation (9). This can be done by setting a variational problem to minimize the 
functional: m=\ I! ̂  G2W-G2(fl«) 2 

+ k 271 ~T\ P dP 

over the space X = {u e / f 1 (ß i ) , u(l) = 6*}. Note that on X, E is bounded from 
below. By standard arguments we can show that E achieves its minimum at some 
bounded function 9 that is monotone. Using equation (9), the boundary condition, 
and the fact that functions in X are Holder continuous away from the origin, we 
obtain that 9 is a smooth function away from the origin. To show that 9 is regular 
everywhere, observe that 9 maps any compact set fi CC H3 into a strictly convex 
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neighborhood of N. By the regularity results for the elliptic harmonic map (e.g. 
[8]), 9 is also regular in the interior. 

For n > 3 the condition for the solution 9 of (9) to be regular becomes weaker. 
For example, in five space dimensions Cazenave, Tahvildar-Zadeh, and the author 
(1993) proved that if N has positive curvature then 9 is regular, and therefore 
solutions to the Cauchy problem (3) develop singularities in finite time. In higher 
dimensions the conditions on N become analytical with no obvious geometric 
interpretation. In two space dimensions there are no nontrivial self-similar solutions 
[21]. 

4. Weak Solutions 

The weakest solutions that we can define for equation (1) are finite energy solu
tions. However the existence of such solutions is not known for the general problem 
because the nonlinear term is not weakly compact for solutions in H1. For a spe
cial class of target manifolds, namely symmetric spaces, we can show existence 
of finite energy solutions because in these cases equation (1) is equivalent to a 
fc-dimensional system of conserved currents generated by the isometries of N [15]. 
We can also show existence of finite energy solutions for the co-rotational case [18]. 
However these solutions are not unique in three or more space dimensions. This 
will be illustrated for the case where the target manifold is S3. In this case the 
self-similar solution can be found explicitly [22]: 

0 = 2 t a n _ V (10) 

Direct calculations show that 0(r, t) = 9(j) is a weak solution for all time. More
over we can construct another weak solution in the following way: 

«r,<)S'{f> r
rf t. 

Note that for t < 0, £ = 9 is a smooth function. Therefore we have a smooth 
solution for t < 0 that develops a singularity at t = 0, which can be continued as 
a weak solution for t > 0 in at least two different ways. In general when the target 
manifold is not geodesically convex we can only show that there are two different 
solutions for the same finite energy initial data (see [18]). Finally, these nonunique 
solutions are in Hs for s < §, thus proving that Theorem 2 is optimal. 
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0 Introduction 

The problems discussed in this paper have the following common theme. An, in 
time t, evolving, in time t, order parameter that, depending on the specific context, 
describes the different phases of a material or the total (averaged) magnetization 
of a stochastic system or the temperature of a reacting-diffusing system, etc., ap
proaches, typically as t —> oo, the equilibrium states of certain systems. Depending 
on the values of a threshold parameter, such systems either have a unique or more 
than one equilibrium state. The existence of multiple equilibrium states can be 
associated to phase transitions. 

When more than one equilibrium state exists, the evolving order parameter 
develops, for t ^> 1, interfaces, which are the boundaries of the regions where it 
converges to the different equilibria. The problem is then to justify the appearance 
of these interfaces and to understand in a qualitative way their dynamics, geometry, 
regularity, etc.. 

In addition to the general situation described above, interfaces (fronts, sur
faces) in RN evolving with normal velocity 

V = v(Dn,n,x,t), (0.1) 

where n and Dn are the exterior normal vector to the surface and its gradient, 
respectively, arise also in geometry, in image processing, in the theory of turbulent 
flame propagation and combustion, etc.. 

Typical examples of interface dynamics appearing in the aforementioned ar
eas are, among others, the general anisotropic motion 

V = -tr[0(n, x, t)Dn] + c(n, x, t), (0.2) 

a special case of which is the motion by mean curvature 

V = - t r Dn, (0.3) 

the motion by Gaussian curvature 

V = « I - - - « J V _ I , 

where « i , . . . , «w-i are the principal curvatures of Tt, etc. 
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The main mathematical characteristic of such evolutions is the development 
of singularities in finite time, independently of the smoothness of the initial surface. 
A great deal of work has been done during the last few years to interpret the 
evolution past the singularities and to study and validate the different models 
mentioned earlier. 

The outcome of this work has been the development of a weak notion of 
evolving fronts called generalized front propagation. The generalized evolution 
{r*}t>o with normal velocity (0.1) starting with a given surface r 0 C RN is defined 
for all t > 0, although it may become extinct in finite time. Moreover, it agrees with 
the classical differential-geometric flow, as long as the latter exists. The generalized 
motion may, on the other hand, develop singularities, change topological type, and 
exhibit various other pathologies. 

In spite of these peculiarities, the generalized motion {r£}£>o has been proven 
to be the right way to extend the classical motion past singularities. Some of the 
most definitive results in this direction are about the fact that the generalized 
evolution (0.2) governs the asymptotic behavior of solutions of semilinear reaction-
diffusion equations and systems. Such equations are also often used in continuum 
mechanics to describe the time evolution of an order parameter determining the 
phases of a material (phase field theory). 

Another recent striking application of the generalized front propagation is the 
fact that it governs the macroscopic behavior, for large times and in the context 
of grain coarsening, of a number of stochastic interacting particle systems like the 
stochastic Ising model with long-range interactions and general spin flip dynam
ics. Such systems are standard Gibbsian models used in statistical mechanics to 
describe phase transitions. It turns out that the generalized front propagation not 
only describes the limiting behavior of such systems but also provides a theoreti
cal justification, from the microscopic point of view, of several phenomenological 
sharp interface models in phase transitions. 

The paper is organized as follows. Section 1 is devoted to the description of 
the generalized front propagation. Section 2 describes a simple model from the 
phase field theory and explains its relationship with the evolving fronts. Section 
3 discusses the asymptotics of the stochastic models. Finally, Section 4 discusses 
a mathematical result that provides general criteria for asymptotic problems in 
order for them to yield in the limit generalized front propagation. 

Due to the limitations on length, it will not be possible to discuss in this 
paper the way moving fronts relate to image processing and to turbulent flame 
propagation. Instead, I refer to Alvarez, Guichard, Lions, and Morel [AGLM] for 
the former and to Majda and Souganidis [MS] for the latter. Because of the same 
constraint, the theorems presented here will be stated without most of the hy
potheses, which, although natural, take some space to state. Instead I will refer 
to specific references for the exact statements. Finally, the length limitation will 
definitely inhibit the number of given references. 

1 The generalized front propagation 

One of the most successful approaches for understanding the generalized evolution 
past the singularities, which is known as the level set approach, consists of iden-
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tifying the moving front as the level set (for definiteness the zero level set) of the 
solution of a fully nonlinear partial differential equation of the form 

ut = F(D2u, Du, x, t) in RN x (0, oo) (1.1) 

with F related to v in (0.1). 
The level set approach was initially suggested for numerical computations by 

Osher and Sethian [OS] — see also Barles [Ba] for a first-order model for flame 
propagation. Later this approach was developed by Evans and Spruck [ES] for 
motion by mean curvature and, independently, by Chen, Giga, and Goto [CGG], 
who considered more general geometric motions. The results of [ES] and [CGG] 
were extended by, among others, Goto [G], Gurtin, Soner and Souganidis [GSS], 
Ishii and Souganidis [IS], etc.. In all these works the analysis is based on the theory 
of viscosity solutions to fully nonlinear first- and second-order parabolic equations, 
which were introduced by Crandall and Lions [CL] and Lions [L]. 

A more intrinsic alternative characterization of the weak evolution is known 
as the distance function approach. This approach, which was introduced by Soner 
[Sol] and later extended in more general situations by Barles, Soner, and Sougani
dis [BSS], is based upon checking whether the signed distance function to the 
propagating front satisfies in some sense (1.1) (see [Sol], [BSS] for the exact defi
nition). For the special case of the mean curvature, the distance function criterion 
reduces to requiring that the signed distance d to the front satisfies, in the viscosity 
sense, the inequalities 

{ > 0 in {d > 0}, 
(1.2) 

< 0 in {d < 0}. 

Notice that (1.2) is sharp because it has to hold even in the case of the classical 
motion. The point here, however, is that in general d is only Lipschitz continuous 
in x and semicontinuous in t. 

Either approach allows for the existence and uniqueness, under some condi
tions, of moving fronts {Tt}t>o- There are, of course, a number of very interesting 
and rather important questions related to such evolutions, like the equivalence of 
the several different approaches, the creation of interior and the regularity of the 
evolving sets. Such issues will not be discussed here. Instead I refer to [ES], [BSS], 
and to Ilmanen [I]. 

Concluding this section, I describe a new formulation of the generalized evo
lution of fronts, which is developed in Barles and Souganidis [BS]. This new formu
lation, which turns out to be equivalent to the aforementioned ones, is related to 
the notion of "barriers" introduced by DeGiorgi [D] and provides a more intuitive 
and definitely a more geometric way to understand the weak propagation. 

Although this description will appear to be cumbersome, it is, on the contrary, 
rather natural, because it uses, in some sense, smooth fronts as "test sets" in the 
definition of the motion, in the same way that smooth functions are used to test the 
definition of solutions of (1.1). It also provides a powerful tool to study asymptotic 
problems of the type referred to in the introduction with very strong anisotropics, 
because it reduces everything to the study of smooth evolutions. 
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In order to describe this new formulation, it is more convenient to think of 
the front Tt as the boundary of an open set fit C R^ and to define the evolution 
of Qt as follows: 

A family (Qt)te[o,T] of open subsets of RN is said to propagate with normal 
velocity V if and only if, for any (x, t) G RN x (0, T) and for any open subsets öt 

and Ot of RN with smooth boundary such that, for some r > 0, 

Ot CC fit H Br(x) and Ot CC (RN\ïît) n Br(x), 

there exists /io > 0 depending only on r and the G3-norm of döt and dOt such that, 
for any h G (0,/i0) and a > 0 small enough if {Ot+h}he[o,/i0]

 a n d {Ôt+h}he[Q,h0] 
are the smooth evolutions of Ot and Öt with normal velocity V + a and V — a 
respectively, then, for all h G (0, ho), 

Ot+h C nt+h and Öt+fc C RN\Ut+h. 

It should be noted that all the above have their own limitations, because they 
only apply to front motions, for which one can prove a comparison or (avoidance) 
principle. It remains an open problem to find an appropriate way to describe other 
evolutions, like, for example, the Hele-Shaw motion, past their singularities, as well 
as evolutions related to multiphases (e.g., triple junctions). 

2 Phase field theory — Asymptotics of reaction-diffusion equations 

Reaction-diffusion equations are used in the theory of phase transitions to describe 
the evolution of an order parameter that identifies different phases of a material. 
For example, the equation 

ut-Au + W'(u)=0, (2.1) 

where W is a double-well potential was proposed by Allen and Cahn [AC] in 
this context to describe phase transitions in poly crystalline materials. Such equa
tions are also related to the stochastic Ginzburg-Landau model, an equation for 
first-order phase transitions. Reaction-diffusion equations arise as the mean field 
equations for a class of stochastic Ising models with local interactions and fast 
stirring. Finally such equations with multiple scales and perhaps random coeffi
cients also appear as models in the theory of turbulent flame propagation and 
combustion. 

Typically, as t —> oo, solutions of (2.1) develop interfaces, which can be 
thought of as the boundaries of the regions where they converge, in the limit 
t —> oo, to the different equilibria of W(u). It is, of course, of interest to understand 
the propagation of these interfaces, as this provides a considerable insight for the 
dynamics of the phase transitions modeled by (2.1). 

A rather natural way to understand the interfacial dynamics, as t —• oo, is 
to appropriately scale space and time so as to reproduce in finite time the long 
time behavior and to keep the interface in bounded space regions. The first natural 
scaling is (x,t) —> (X~1x,X~1t). It leads to asymptotic problems of the type 

u* - XAux + A"1 W'(ux) = 0. (2.2) 
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Another possible scaling is (x,t) —• (\~xx,\~2t), which yields 

u} - Aux + \~2W'(ux) = 0. (2,3) 

In the rest of this section, to give a flavor of the type of results one can obtain 
here, I will concentrate on the case of a potential W with only two wells at ± 1 
of equal depth, i.e. W(—1) = W(l) and a local maximum at 0. In this case, the 
appropriate asymptotic problem to analyze is (2.3). This problem had been the ob
ject of considerable study ranging from formal analysis to local in time results; see, 
for example, Rubinstein, Sternberg, and Keller [RSK], DeMottoni and Schatzman 
[DS], Chen [C], etc.. The first global in time result based on the motion of the gen
eralized front evolution was obtained by Evans, Soner, and Souganidis [ESS], who 
proved the following result. For the exact assumptions as well as generalizations 
and references predating [ESS], I refer to [ESS] and [BSS]. 

THEOREM [ESS]. Let ux be the solution of (2.3) starting att = 0 atu0. If (flt)t>o 
is the generalized mean curvature evolution starting at fio = {wo > 0}, then, as 
A -> 0, ux -+ 1 in fit and ux -> - 1 in RN\Ùt. 

Below and in order to give an idea of the type of arguments involved in 
proving such a result, I sketch a "possible" proof, without paying much attention 
to all the technical details, referring instead to [ESS] and [BSS]. To this end, let 
q : R —> R be the unique standing wave solving 

q = W'(q) in R, q > 0 and q(±oo) = ±1 and q(0) = 0. 

For the purpose of this exposition it is enough to assume that 

ux = q (^) on RN x {0}, 

do being the signed distance function from T0 = dfio, i.e. do(x) > 0 if x G fio and 
d0(x) < 0 if x G R i V \n 0 . Writing 

* - « ( ? ) • 

one easily finds that Zx satisfies 

Zx - AZX - \-1Q(\-1Zx)(\DZx\2 - 1) = 0 in RN x (0,oo), 

Zx = d0 on RAr x {0}, 

withQ(t)=qq-l(0-
Since \DZX\ < 1 in RN x {0}, a simple maximum principle type argument 

yields that \DZX\ ^ 1 in RN x (0,oc). But then the fact that 

f and q > 0 
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give 

Zx - AZX 
^ 0 in {Zx > 0}, 

^ 0 in {Zx < 0}. 

Assuming for the moment that Zx —> Z locally uniformly as A —* 0, it is easy to 
see that 

r ^ O i n { Z > 0 } , 
Zt-AZl 

[ ^ 0 i n { Z < 0 } . 

Finally, going back to the equation satisfied by Zx, it appears to be possible to 
prove that \DZ\ = 1 in RN x (0, oo) and hence that 

Z(x,t)=d(x,{y:Z(y,t)=0}). 

In view of (1.2), the last two facts together with q(±oc) = ±1 yield the result, 
provided all the above can be made precise. This can be done, but it requires using 
the machinery associated with viscosity solutions, which allows for passage to the 
limit under very weak hypotheses. 

The "proof" sketched above appears in [BSS], which studies asymptotic prob
lems like (2.2) and (2.3) in more general situations. The same paper is also a very 
good source of references regarding the history of the problem. It should be noted 
that the special case of the Allen-Cahn equation (2.3) can also be studied using 
the Brakke notion of mean curvature, which characterizes the front as a varifold. 
This was done by Ilmanen [I] and later refined by Soner [So2]. 

3 Macroscopic limits of partical systems — Stochastic Ising models 

Stochastic Ising models are the canonical Gibbsian models used in statistical me
chanics to describe phase transitions. Describing in detail such models is beyond 
the scope of this paper. Instead below, abusing if needed the mathematical rigor 
at some points, I present a brief summary of these models and refer to DeMasi 
and Presutti [DP] and Spohn [Sp] for the complete theory. 

To this end one considers the lattice ZN, the spin o~(x) = ±1 at x G ZN, the 
configuration (sample) space E = {—1,1}Z' and the Gibbs (equilibrium) measures 
pP on E which depend on the inverse temperature ß > 0 and the Hamiltonian 
(energy) function H, which is given by 

H(°) = - E JfavMxMv) - 1*^2<r(x); 
x^y x 

here J ^ 0 is the interaction potential and h is the external magnetization field. 
The assumption that J ^ 0 means that one deals with ferromagnetic Ising systems. 

It turns out (see [DP], [Sp]) that for any ß > 0, as long as h ^ 0, there 
exists a unique Gibbs measure. On the other hand, if h = 0 there exists ßc such 
that for ß < ßc still there exists a unique Gibbs measure, but for ß > ßc there 
exist at least two probability measures ß± on E such that any linear combination 
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a/i_ + (1 — a)//_|_ (a G [0,1]) is also a Gibbs measure. In this case one says that 
there is a phase transition. 

Studying the phase transitions from the dynamic point of view for ß > ßc 

amounts to introducing some dynamics, i.e. a Markov process on E which has the 
Gibbs measure as invariant measures and to analyzing the way this process evolves 
any initial distribution (measure) to the equilibria Gibbs measures. Convenient 
quantities (order parameters) to analyze in this context are the moments of the 
evolving measures, the first one (moment) being the total magnetization ra, which 
will, of course, develop an interface for large times. The shape and evolution of 
this interface is of great interest theoretically and in the applications. 

A very general example of a dynamics that has the Gibbs measures as in
variant measures is the spin-flip dynamics, which, loosely speaking, is a sequence 
of flips ax, where 

( a(y) ify^x, 

—o~(x) if y = x, 
with rate 

c(x,v) = *(AxH), 
for an appropriate \£, where AXH is the energy difference due to a spin flip at 
x. The only restriction on \P, which is related to the requirement that the Gibbs 
measures are invariant for the dynamics, is that it satisfies the balance law 

$r(r) = ty(-r)e~r. 

In view of the previous discussion, one is interested in the behavior of the 
system as t —> oo. Another classical limit, known as the Lebowitz-Penrose limit, 
is to study the behavior also as the interaction range tends to infinity. In this 
limit, known in the physics literature as grain coarsening, there is a law of large 
numbers effect that dampens the oscillations and causes the whole collection to 
evolve deterministically. An important question is whether these limits commute 
and, if not, whether there is a particular scaling or scalings for which one can study 
both. 

These issues are addressed by Katsoulakis and Souganidis [KS3] for the gen
eral dynamics described above, with long range interactions, with rate 

c7(x,a) = 9(AXH1), 

where 7 - 1 is the interaction range, 

H^(x) = -^2 J~t(x,y)<j(x)a(y) 
y^x 

and 
J7(x,y) =lN J(l(x-y))\ 

the nonnegative interaction potential J is assumed to satisfy some integrability 
conditions and to be symmetric, i.e., J(z) = J(—z) but not isotropic. 



1140 Panagiotis E. Souganidis 

The associated mean field equation for the averaged magnetization, i.e., the 
equation obtained as 7 —> 0 but with t kept fixed (mesoscopic limit), was shown 
by DeMasi, Orlandi, Presutti, and Triolo [DOPT] and Katsoulakis and Souganidis 
[KS3] to be 

rat + $(/3( J * ra))[ra - tanh,#J * ra] = 0 in R^ x (0,00), 

where 4> is given by 
$(r) = tf(-2r)(l + e - 2 r ) - 1 . 

After the appropriate scaling, namely (x,t) —> (X~1x,X~2t), the mean field equa
tion becomes the asymptotic problem 

raA + X-2$(ß(Jx * raA))[raA - tanh/3JA * raA] = 0 in RN x (0,00), 

where Jx(x) = X~NJ(X~lx). The asymptotic behavior of raA was shown in [KS3] 
to be governed by a generalized front Tt moving with the anisotropic normal 
velocity 

V = -tr(0(n)Dn). (3.1) 

The matrix 0(n), which appears because of a nonlinear averaging effect taking 
place at the limit A —• 0, is not described by any microscopic considerations but 
rather is given by the following explicit Green-Kubo-type formula 

e{n) = 2 [J *(ßSJ(y)q(t + y.n,n)dy)(l-q2(ii,n)) * ) * 

[ / / J{y)q(& n)[g(£ + u • TI, n)(y <g> y) + Dnq(£ + y-n,n)®y+ 

y ® Dnq(i + y-n, n)]dyd^ . 

Here q(-,n) is the standing wave associated with the mean field equation at the 
direction n, and q and Dnq denote derivatives with respect to Ç and n respectively. 
Notice that because J is not assumed to be isotropic, these standing waves depend 
in a nontrivial way on their direction. 

The two terms in the product defining 0 have a clear geometric meaning, 
since the one inside the brackets is related to the surface tension of the interface 
and the other is the mobility (see [Sp]). 

The macroscopic behavior of the particle system is described by the following 
theorem. 

THEOREM [KS3]. There exists p* > 0 such that under some assumptions on the 
initial distribution, for any ß > ßc there exists mp > 0 such that for any scaling 
A(7) decaying to 0 slower than 7P*, 

n 

lim sup \EßYlcTtx-2{l)(xi)-m% J | (—1)1 = 0, 

where A/7 = {x G ZNs.t. jX(^)x G R ^ f i t } , (fi*)te[o,T] moving with normal ve
locity (3.1) and Mn = {x G (ZN)n : xx ^ • • • / xn}. 
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This theorem, which is global in time, can be thought of as providing, from 
the microscopic point of view, a theoretical justification for the sharp interface 
models used in continuum mechanics, as well as for the numerical simulations 
performed in the physics community to study moving interfaces. The matrix 0(n) 
also settles the issue about the exact form and relation between the mobility and 
the surface tension of the interface. 

The long time behavior of stochastic Ising models with isotropic potentials 
and Glauber dynamics as well as for nearest neighbor interaction and fast stirring 
was studied by Katsoulakis and Souganidis in [KS1] and [KS2] — the short time 
analysis in this context was carried out, respectively, by [DOPT] and Bonaventura 
[Bo]. Finally, Jerrard [J] studied the asymptotics of a local version of the mean 
field equation with isotropic potential. 

4 A general theory 

Here I present a rather general theory that allows to prove rigorously the appear
ance of interfaces and to identify their dynamics for a large class of asymptotic 
problems, which satisfy some general principles. The main point is that if one can 
prove the appearance of moving interfaces, as long as they remain smooth, then the 
appearance of moving interfaces is valid also for the generalized evolution with the 
same dynamics, provided that these dynamics satisfy a "comparison principle". 

To this end let (ux)x>o be a uniformly bounded family of functions in, say, 
RiV x (0,T). The desired result is that, as A - • 0, 

u\(x,t) 

a if (x,t)eO= ( J fit x {t}, 
tG(0,T) 

6 if (x,t) G RN\Ö = ( J (RN\Tit) x {t}, 
te(o,T) 

for some a, b G R with a < b, with the family (FLt)te[o,T] propagating with some 
normal velocity V. 

The key assumptions, in a simplified form, on the family (ux)x>o are: 

(HI) Causality: For any A > 0 and any t > 0 and h > 0, there exists a family of 
maps Sx

t+h : LX(RN) -* L°°(RAr) such that 

u\(',t + h) = S£t+hux(;t) inRA r . 

(H2) Monotonicity: For any u, v G L°°(RAr), A > 0, t > 0 and h > 0, 

if u < v in RN, then Sft+hu < S£t+hv in RN. 

(H3) Existence of equilibria: For all A > 0, there exists ax*bx G R such ax < bx 
and Sx

t+hax = ûA, Sx
t+hbx = bx for alH > 0 and h > 0. Moreover, 

ax <ux(;0) <bx inRAr 
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and there exists a, b G R such that a < b and, as A —> 0, 

ax —> a and ÒA —• 6. 

(H4) Consistency: For any (x, t) G RA x (0,T) and for any open subset O of RN 

with smooth boundary such that Ö C Br(x) for some r > 0, there exists 
8 > 0 and A0 > 0, depending only on r and the C3-norm of dö such that, as 
A->0, 

St,t+h[(bX - * ) % + aAlR*Xö] ~^ Ò Ì n °*+fr' 

(0i+/i)/ie(o,/io) been the smooth evolution of öt = Ö by the law V + a for all 
small a > 0. 
A similar statement should hold for Sx

t+h(bx^o + (^A + ò)1RNKQ) outside a 
family of smooth sets evolving with normal velocity V — a. 
The result obtained in [BS], again stated in a somehow simplified form, is: 

THEOREM [BS]. Assume that (H1)-(H4) hold and set, for t>0, 

* 
Umsupux(xA) = lim sup ux(y,s): lim inf ux(x,t) = lim inf ux(y,s). 

(y.B)^(x.t) ' * ( y . * ) - ( * . f ) 

o 

If fij = R iV\fi0 and if the evolution of the family (fit)tE[o,T] with normal velocity 
V does not create interior, then fi* = fit and Q2 = RA r \ f i t ; i.e. ux —*• b in fit and 
ux->a inRN\Ttt. 

In most of the examples (HI) and (H3) are given by the problem and (H2) 
follows from some maximum principle-type argument. The only difficulty lies in 
checking (H4) which amounts to proving a result similar to the one to be proved 
but only for smooth data, for compact smooth fronts and for small time, as small as 
needed. In other words checking (H4) amounts to showing that the formal asymp-
totics, that one usually derives in such problems, can be justified under all the 
needed regularity assumptions. This is not an easy task, but nevertheless consid
erably easier than working for the general problem with no regularity available. 

Finally, to make the statement of the theorem a bit shorter, I omitted an 
assumption, which amounts to having that fi I and fi^ are non-empty for small 
t > 0. In the examples this can be shown by some short-time analysis, which, 
although messy to write, is considerably easier than checking (H4). 

I conclude remarking that this theorem is the basis for proving the result 
of the previous section as well as to study the asymptotics of reaction-diffusion 
equations with anisotropics and oscillatory coefficients. 
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Fully Nonlinear Elliptic Equations and 
Applications to Geometry 
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In this paper we will describe some recent advances in the theory of fully nonlin
ear elliptic equations that are motivated by some basic geometric problems. For 
example, one can ask, when does a smooth Jordan curve in R3 bound a surface 
of positive constant Gauss curvature? The theme of this talk is roughly that such 
geometric problems often suggest the proper formulation of purely analytic partial 
differential equation (PDE) results. As an example, in 1984 [2] it was shown that 
the classical Monge-Ampère boundary value problem 

J det Uij — ij)(x) in fi , , 
\ u = ' (j) on dft, W 

where (j), i\), fi smooth, ifto = infQ ty > 0, and fi strictly convex, always has a 
(unique) strictly convex solution u G Coc(fi). 

It was also shown that the Dirichlet problem for surfaces of constant positive 
Gauss curvature Ko 

(**) 

where (j), fi smooth and fi strictly convex, has a (unique) strictly convex solution 
u G C°°(fi) for Ko sufficiently small depending on the boundary data. 

From the analytic point of view, these results are essentially best possible. 
However, from the point of view of geometry, one wants to solve (*) or (**) in 
domains fi of arbitrary geometry, as we will explain later. Of course, this is not 
always possible but it is important to understand the obstructions to solvability. 
For example, Guan and I [11] proved that for general fi, if there is a strictly convex 
strict subsolution of (*) or (**) for given boundary data <j), then (*) or (**) has a 
(unique) smooth solution. 

We now proceed to describe how fully nonlinear elliptic equations arise from 
a surface described by a relation among its principal curvatures. 

We call a hypersurface S C Rn+1, whose principal curvatures K = ( « i , . . . , 
Kn) satisfy a relation of the form 

f(n) = ijj(x) > 0 , 
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detuij = KQ(1 + | V u | 2 ) ^ 
u = <f> 

in 
on 

ÇÏ 

dn, 
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where iß is a given smooth function of position and / is smooth and symmetric, 
a Weingarten surface. The most familiar examples arise by choosing iß = 1 and 
/(AC) = Gr(tx), 1 < r < n, where ar(n) denotes the rth elementary symmetric func
tion. Thus, up to a constant, o\ is the mean curvature, 02 is the scalar curvature, 
and an is the Gauss-Kronecker curvature. 

What does it mean that S is elliptic? One way to answer this question is to 
locally represent 5 as a graph £n+i = u(x) with x E fi C Rn. Then the first and 
second fundamental forms of S are given by g^ = 6ij — ̂ f , fyj = ^f, where 
W2 = 1 + \Du\2. The Ki are determined by the relation 

det (o*, - Xgij) =0 , 

or equivalently, the Ki satisfy 

det (a-ij — X6ij) = 0, 

where a -̂ = (g1!)*(bij)(g^)^, (#u) is the inverse matrix to (g%j), and (g^)* is its 
positive square root (see [4, Lemma 1.1]). 

We do not write down a^ here but note only that a^ is linear in D2u. 
Therefore, the function u satisfies a fully nonlinear equation of the form 

/ («) = F(aió) = G(D2u,Du) = iß , 

and we say S is elliptic if G is elliptic, i.e. ( -^- J is positive definite. If we choose 

coordinates so that 

\aij) = \Ki-> • • • •> ^n)d iag ' 

then (see [4]) 

and L is elliptic if fKi > 0 Mi. 
Another equivalent but more geometric way to see that S is elliptic is to com

pute the Jacobi operator C associated to a normal variation gN. Such a variation 
gives rise to a one-parameter family St with So = S, where by definition 

Cg = | / ( « 0 
t=0 

In curvature coordinates, one can compute 

i i 

so again C is elliptic if fK. > 0 Vi. When iß(x) = ißo, a positive constant, one also 
can derive the following important identities: 

Cu = 0 , X = ^2 nif*i v ' 
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where v is the unit normal and X is the position vector. These formulas give an 
elegant generalization of the well-known case of mean curvature ( / = Yli Kì) a n d 
are important for the analytic study of these Weingarten surfaces. 

The function /(A) is naturally defined in an open convex cone with vertex at 
0 (the ellipticity cone), containing the positive cone 

r + = {A G Rn : Ai > 0 Vz} . 

We call S admissible if at every point P G S, K(P) G T. For example, when 
x 

/(A) = Gr (A), 1 < r < n, Tr is the component of {A G Rn : /(A) > 0} containing 
( 1 , . . . ,1). Then (see [3]) fXi > 0 Vz in Tr, Ti = [A : [A* > 0}, Tn = T+, and 
Tfe Ç Tfe-i. Moreover, / is concave in Tr. This concavity is particularly important 
because it is equivalent to the concavity of F(aij) = / («) . In particular, our fully 
nonlinear equation G(D2u, Du) = iß is concave on D2u and this is precisely the 
class of fully nonlinear elliptic equations for which we have a good regularity theory. 

We now concentrate on the Gauss curvature and formulate some basic ge
ometric problems. Let T = (T\,... ,Tm) C Rn+l be a smooth disjoint collection 
of closed codimension 2 embedded submanifolds (for example, curves in R3). The 
basic question is the existence of a hypersurface of positive constant Gauss curva
ture K (we will call such a surface a if-hypersurface) spanning T. Of course, the 
range of allowing K depends on T. An elementary necessary condition (n = 2) is 
that each T{ does not contain inflection points. However, even for a single T there 
are topological obstructions for T to bound an immersed S with K(S) > 0, see 
[14], [7]. We make the 

CONJECTURE. Suppose T bounds a strictly locally convex hypersurface S with 
K(S) > Ko > 0. Then T bounds a K0-hypersurface. 

This problem is difficult and open in this generality. Let's look at some ap
pealing special cases. 

EXAMPLE 1. Let T = {Ci,C2} with C\,Ö2 strictly convex in parallel planes. It is 
evident that T bounds a strictly convex annulus and for K > 0 sufficiently small 
we expect at least one solution. 

EXAMPLE 2 (extreme T). Let S be a strictly convex compact (without boundary) 
hypersurface and let T = dD for D a finitely connected subdomain of S with 
smooth boundary. Set K0 = infpEs i f (P) . For 0 < K < Ko, we expect a K-
hypersurface solution. 

Both examples were recently settled by Guan and myself [11] by finding 
the solution as a radial graph X = p(x)x, x G fi C Sn, where p > 0 satisfies 
a Monge-Ampère type equation with appropriate boundary values, and fi is a 
smooth domain in 5 n _ 1 of arbitrary geometry obtained by projecting appropri
ately the given T. Thus, we arrive at the following formulation of our boundary 
value problem on Sn: 

Let fi be a smooth domain on Sn C Rn+1. We seek a smooth strictly locally 
convex hypersurface, which can be represented as 

X(x) = p(x)x, p > 0, a: G fi, (1) 



1148 Joel Spruck 

with Gauss curvature 

and boundary values 

K[x(x)] = iß(x), xen, (2) 

X(x) = (ß(x)x on dfi, (3) 

where iß G C°°(fi), 0 G Coc(dQ), iß,(ß>0. 
We assume that 

fi does not contain any hemisphere, (4) 

and that there exists a smooth strictly locally convex radial graph X(x) = p(x)x 
over fi satisfying 

K[X(x)] > iß(x) + 6o in Q, 
p = (ß on 9fi, ^ ' 

for some bo > 0. 
The main result of [11] may be stated as follows. 

THEOREM 1 Under conditions (4) and (5), there exists a smooth strictly locally 
convex radial graph X(x) = p(x)x with p < p that satisfies (2) and (3). Moreover 
any such solution satisfies the a priori estimate 

IMIC2.0(?2) < C> P>co > 0 , Ki > 60, i = l,...,n, (6) 

where the Ki are the principal curvatures of X and C, co,eo are uniform constants. 

In general, solutions to (2) and (3) are not unique and we find the unique 
solution that is closest to the subsolution. 

COROLLARY. Let M be a strictly convex hypersurface in R71*1, and let F = 
(Ti,..., Tm) be strictly extreme; that is, F = dD for a smooth subdomain D C M. 
Then for 0 < K < K(M), F bounds an embedded K-hypersurface that is contained 
inside M. 

Proof. In order to apply Theorem 1 we need only observe that if we choose our 
origin of coordinates strictly inside the convex hull of M — D, then D radially 
projects onto a domain fi satisfying (4) and (5). D 

In the same way we can also prove 

COROLLARY. Let M be a globally strictly convex hypersurface with boundary in 
Rn+1. Then for 0 < K < K(M), dM bounds an embedded K-hypersurface that 
is contained "inside" M. 

It is also of interest to consider a polyhedral version of Example 1. 
EXAMPLE 3. Let E be the boundary of a convex polyhedron in Ä n + 1 and let 
T = (Ti , . . . , r m ) C S be a collection of smooth strictly convex codimension 2 
surfaces such that each face of E contains at most one Fi strictly in its interior. 
For K > 0 sufficiently small find a if-hypersurface spanning F. 
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COROLLARY. For K sufficiently small, there is an embedded K-hypersurface that 
solves Example 3. In particular, any two strictly convex curves in parallel planes 
bound some K-surface. 

Proof. We observe that there is no topological obstruction to the construction 
of a strictly convex hypersurface spanning F (without loss of generality we may 
suppose m > 2). For example, it is easy to construct a piecewise smooth strictly 
convex (in a generalized sense) hypersurface S spanning F that is smooth in a 
neighborhood of I \ The interior of S can then be smoothed to obtain a strictly 
globally convex smooth hypersurface M spanning F. Again choosing the origin in 
the convex hull of F allows us to apply Theorem 1 for 0 < K < K(M). D 

One of the surprising and important features of Theorem 1 with respect to 
the theory of Monge-Ampère equations is that there are no geometric assumptions 
on 9fi. That is, all of the analytic and geometric obstructions to proving existence 
are now embodied in the assumption of the existence of a strict subsolution of 
(2) and (3). This has led us to a careful reexamination of the local regularity 
estimates of [2], [12]. In particular, it is worthwhile to state a global result from 
[11] that contains an optimal smooth existence result for graphs over domains in 
Rn of prescribed Gauss curvature. This result is also important for the geometric 
problems in Hn+l I will discuss next. 

The classical boundary value problem of Monge-Ampère type in Rn may 
be formulated as follows. Find a strictly convex u G C°°(Ù) admissible solution 
satisfying 

J det Uij = iß(x,u,Du) on fi , . 
(̂  u = (ß on dil, ^ ' 

where fi is smooth, <ß,iß smooth, ißo = in fo^ > 0. The case iß(x,u,p) = K(x,u) 
(1 + p2)~*~, K(x, u) > KQ > 0 corresponds to prescribed Gauss curvature, but it 
is useful for applications to allow general iß. 

For fi, <ß arbitrary, (7) may not be solvable but the point of view here is to 
find a suitable condition that removes the obstruction for given boundary values 
cß. 

THEOREM 2 Assume 
(i) There is a smooth strictly convex u satisfying 

det u_ij > iß(x, u, Du) + So 
U = (ß 

in fi 
on 9fi 

(ii) ißn(-,-,p) is convex in p. 

Then there is a smooth admissible solution u of (7); u > u. (Ifißu < 0; the solution 
is unique.) Moreover, \\u\\C2+a^ < C for controlled a G (0,1),C > 0. 

The condition (ii) is technical, but is satisfied for prescribed Gauss curvature 
iß = K(x, u)(l+p2)~2~. The theorem essentially says that if we have a subsolution 
for the problem we can deform it to a solution. This is a very powerful tool for 
geometric problems because a subsolution is often evident (as in Examples 1, 2, 
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3 above). We give another illustration of this by next considering a fundamental 
problem for Gauss curvature in hyperbolic space (joint work with Rosenberg [15]). 

The basic problem we consider is to find a complete (embedded) strictly 
convex Zf-hypersurface S in Hn+1 with given asymptotic boundary F G d^H11^1. 
Recall that the Gauss curvature K = Kexi — 1, where ifext is the extrinsic, i.e. 
the determinant of the second fundamental form. Thus, S is convex for K > — 1. 

Our approach is to construct S as the limit of "K-graphs" over a fixed com
pact domain fi in a horosphere. For this it is convenient to use the half-space 
model 

Hn+l = {(x,xn+l) G Rn+l : x G Rn , xn+1 > 0} 

with metric 

ds2 =-1—Ydx2 . 

We introduce the oriented distance from (x, xn+\) to the horosphere P\ = {a;n+i = 
1}, given by y = In x n+i, and look for S as a graph y = f(x)x G fi C Pi with 
respect to the vertical geodesies. On fi we use the Euclidean metric. 

LEMMA. The equation for K is 

g I 1 =
 d e t ^ + 2fifi + e~2f6ij) 

e - 2 n / ( 1 + e 2 / | V / | 2 ) ^ 

DEFINITION (admissible solution). We say / is "hyperbolic strictly locally convex" 
if {fij + 2fifj -r e-2f6ij} > 0 in fi. 

The basic boundary value problem for / then is 

f det(fij-r2fifj-re-2f6ij) = iß(x,f,Vf) in fi , . 
\ f = <ß on 2fi W 

with /,iß,fi smooth, iß0 = infn iß > 0. The case iß = (K + l )e" 2 r i / ( l + e 2 / |V / | 2 ) , 
K + 1 = K(x, f) + l>Eo>0 corresponds to prescribed Gauss curvature K = 
K(x,f). 

Then we have exactly the same theorem as for the classical case [15]. 

THEOREM 3 Assume 
(i) There is a strict admissible subsolution u of (**) for the given boundary 

values (ß. 
(ii) iß"(-,-,p) is convex. 

Then there is a smooth admissible solution f G C°°(fi) to (8). Moreover, 
Il/llc2+«(n) < C for controlled a G (0,1), C > 0. 

COROLLARY. Let K G (—1,0), fi C Pc = {#n+i = c} smooth. Then there ex
ists a smooth K-hypersurface S with dS = 9fi that can be chosen as a graph in 
horosphere coordinates. 
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Proof. We consider fi as sitting in Pi and apply the theorem with / = In c, 
u = In c, that is the horosphere P c satisfies K = 0 so Q C P c is a strict admissible 
subsolution. • 

It is important for the following discussion to note that there is a remarkable 
simplification of (**) by the change of variable u = e2^, <p = e2^, u = e £. Then / 
admissible is equivalent to {UìJ + 2b^} > 0 and 

f det(w{j + 2èió) = 2nuniß(x, | In u, \^) = iß(x,u, Vu) in fi 
(̂  u = if on 9fi . 

For the case of prescribed Gauss curvature, iß = (K + 1)(1 + 4^ )~^~-
Given a prescribed T = 9fi C P^ = {xn+\ = 0} we vertically translate fi to 

fic C P c and take Fc = dflc. Applying the Corollary, we find for K G (—1,0) a 
family of smooth admissible solutions u(x, c) to 

i det(uij + 26ij) = 2n(K + l)(l + ^ ) I ¥ on fi ( g ) 

1 u = c2 on dil. 

Our goal is to pass to the limit as c —» 0. Of course, as we are "going to 
infinity" in i l n + 1 there is a degeneracy on the right-hand side of (9). Using the 
rich geometry of hyperbolic space, we are able to construct appropriate comparison 
functions and prove the basic 

PROPOSITION. ||u(:r;c)||c2(n) < C with C independent of c as c —• 0. 

By elliptic regularity [1] this implies 

COROLLARY. \\U(X, C)\\C2+<*(W) < C(Q') independent of c for fi' CC fi. 

Now we can pass to the limit as c —> 0 and obtain 

THEOREM 4 Let F = dfi e d^H71*1 be smooth. Then for K G (-1,0) , F = d^S 
for S an embedded K-hypersurface of Hn+l. Moreover, S can be represented as a 
graph X n + i = y/u(x) overiï with u G C00(fi)nC1 ,1(fi),w > 0 on fi. u = 0 on 9fi. 

REMARK. For T Jordan the theorem holds with u G Coc(fi) n C 0 ' 1 ^ ) . 

Finally, it is a remarkable property of H3 that all of the Ä'-surfaces we con
struct are canonically unique for a single Jordan curve boundary. 

DEFINITION. A Jordan curve F on P ^ is the asymptotic homological boundary of 
a surface S in H3 if for c > 0 small, S D P c contains a connected component r c 

such that r c —> T as c —> 0, and Fc is homologous to zero on S. We write F = d^S. 

THEOREM 5 Let fi be a bounded simply connected domain on Pc, respectively P^, 
with Jordan boundary F. Then there are exactly embedded K-surfaces S in H3 

with dS = F, respectively d^S = F. Each surface is a graph over one of the 
two components of P ^ — F. Moreover, any immersed K-surface with dS = F, 
respectively, d^S = F, is embedded and thus one of the two graph solutions. 

The main fact used in the proof is that the Jacobi operator is of the form 
C = L + HK, with H > 0, K < 0, so that C has no kernel. By our compactness 
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results, we can then deform in P c or Px and foliate space by if-graphs. This allows 
us to use the maximum principle via "sweeping arguments." 

In conclusion we just remark tha t the ideas presented here are not very special 
to the equation of Gauss curvature. For example, Guan [8], [10], [9] has shown tha t 
they hold for large classes of (nongeometric) fully nonlinear elliptic equations with 
suitable invariance properties. However, it remains a formidable task to solve the 
general geometric problems we have described for Gauss curvature and to extend 
even the partial results to other functions of curvature. 
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Lower-Semicontinuity of Variational Integrals and 
Compensated Compactness 

VLADIMIR SVERäK 

Department of Mathematics, University of Minnesota 
Minneapolis, MN 55455, USA 

I Lower-Semicontinuity and Quasiconvexity 

We consider variational integrals 

I(u)= f f(Du(x))dx 
JQ 

defined for (sufficiently regular) functions u : fi —> Rm . Here fi is a bounded open 
subset of Rn , Du(x) denotes the gradient matrix of u at x, and / : MmXn —> R 
is given, MTnXn denoting the space of real (m x rc)-matrices. We are interested in 
the case m, n > 2. 

Natural questions regarding I are those of existence, and then other prop
erties (such as regularity) of minimizers of J in appropriate classes of functions. 
Questions regarding the existence of minimizers have been studied in Morrey's 
1952 paper [Mol], where the following notion was introduced: we say that / is 
quasiconvex if for any matrix A G MmXn and any smooth function <p : fi —> R m 

compactly supported in ft the inequality Jn f(A+Dip) dx > Jn f(A) dx holds. The 
class of quasiconvex functions is independent of fi. (See [Mol], [Mo2].) 

The basic result obtained in [Mol] is that, under certain technical assump
tions, quasiconvexity of / is necessary and sufficient for the weak sequential lower-
semicontinuity of J on appropriate Sobolev spaces. Optimal results in this direc
tion can be found in [AFI]. (Once we know that J is weakly sequentially lower-
semicontinuous, we can use the direct method of the calculus of variations to obtain 
existence results. Of course, some technical assumptions are needed.) 

In 1984 Evans proved that quasiconvexity of / gives also, when slightly 
strengthened, partial regularity of minimizers of J, see [Ev] and also [AF2]. 

In the next section we will see that quasiconvex functions also appear nat
urally in PDE problems that are not directly related to minimizers of variational 
integrals. 

It is not difficult to verify that for n = 1 or m = 1 quasiconvexity reduces to 
convexity. On the other hand, for n > 2 and m > 2 there always exist nonconvex 
quasiconvex functions. (A typical example in the case m = n is f(X) = det X.) 
In fact, it turns out that it may be very difficult to decide whether or not a 
given function is quasiconvex. For specific examples see [AD], [DM], [Svi]. In this 
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connection, the following simpler notions have been introduced, see [Bai], [Da], 
[Mo2]: 

• / is rank-one convex if for each matrix A G M m X n and each rank-one matrix 
B G Afmxn the function t —> f(A + tB) is convex. (For C2-functions rank-
one convexity is the same as the so-called Legendre-Hadamard condition, see 
[Bal], [Mo2].) 

• / is poly convex if f(X) = convex function of subdeterminants of the matrix 
X. (For example, / : Af2x2 —> R is polyconvex if there exists a convex 
function G : M2x2 x R ^ R such that f(X) = G(X,detX) for each X G 
Af2x2.) The important role of the subdeterminants stems from the fact that 
they are (the only) null Lagrangians, see [Bal], [Mo2]. 

It is well known that rank-one convexity (RC) is a necessary condition for qua
siconvexity (QC) and that polyconvexity (PC) is a sufficient condition for quasi
convexity. In other words, PC=>QC=>RC. We remark that in principle it should 
be relatively easy to decide whether or not a given function is rank-one convex or 
polyconvex (although actual computations can be lengthy and tedious). It is there
fore of great interest to know whether or not there are further relations between 
the three notions of convexity introduced above. A classical result in this direction 
is that a quadratic function / is quasiconvex if and only if it is rank-one convex. 
This can be proved by using the Fourier transformation (and, in fact, using the 
Fourier transformation seems to be the only way to prove it). 

It turns out that there are quasiconvex functions that are not polyconvex, 
see [Te], [Se], [Ba3], [AD], [Sv2]. 

For a long time it was an open problem whether or not RC=>QC. It turns 
out that for n > 2, m > 3 this fails; see [Sv4] where an example is given that 
shows that for n > 2, m > 3 there exists a quartic polynomial that is rank-one 
convex but not quasiconvex. The case n > 2, m = 2 remains open. We remark 
that even in the case n = m = 2 the implication RC=>QC would have far-reaching 
consequences. 

II Quasiconvexity and Compensated Compactness 

Let K C MmXn be a closed set. The purpose of this section is to show how qua
siconvexity is related to compactness properties of sets of (approximate) solutions 
of the system 

(1) Du G K. 

Our approach to this question is based on ideas from the theory of compensated 
compactness initiated by Tartar and Murat [Tal], [Ta2], [Mul], [Mu2], and also 
on ideas from [BJ1], [DP], and [KP]. 

We denote by M. the set of all boundedly supported probability measures on 
Afmxn. For v G M we denote by 9 its center of mass, i.e. v = /AfmXn X dv(X). 
We use the usual notation (v, f) = fMmxn f(X)dv(X). We define 

M.qc(K) = \y G M., suppz/ C K and (v, f) > f(ü) for each quasiconvex / } . 
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We also define Mrc(K) and Mpc(K) in a similar way, replacing the class of 
quasiconvex functions in the definition of Mqc(K) by the class of rank-one convex 
functions and polyconvex functions respectively. It is easy to see that 
Mpc(K) = \y G M, suppz/ C K and (v, f) = f(v) for each subdeterminant / } . 

Because PC=>QC=>RC, we have Mrc(K) C Mqc(K) C Mpc(K). 
We say that a set of measures is trivial if it contains only Dirac masses. 
One of the reasons the sets introduced above are of interest is the following 

result, which follows directly from ideas developed in [Tal], [Ta2], [BJ1], and [KP]. 
(The result is well known to experts, and the author does not claim any originality 
here.) 

PROPOSITION. The following conditions are equivalent: 
(i) For each sequence of functions Uj : fi —> R m satisfying \DUJ\ < c (for some 
c > 0) and Jn dist(Duj,K) —> 0, the sequence DUJ is compact in La(fi). 
(ii) Mqc(K) is trivial (i.e. the only measures in M.qc(K) are Dirac masses). 

The proof of (ii)=>(i) is based on considering the Young measures of (subse
quences of) the sequence DUJ, an idea due to Tartar [Tal], [Ta2]. See also [BJ1], 
[BJ2], [KP]. The proof of (i)=»(ii) follows from results in [KP]. (Heuristically one 
can understand the implication (i)=>(ii) in the following way. We note that if (1) 
has a nontrivial Lipschitz solution u such that u(x) = Ax at the boundary of fi 
for some A G AfmXn, then we can easily construct nontrivial periodic solutions of 
(1) in Rn and obtain noncompact sequences of solutions by using the invariance of 
(1) under the scaling u(x) —• eu(^). The main point now is that every measure v 
in M.qc(K) can be viewed as an "almost solution" of (1) with the affine boundary 
condition A = v. ) 

REMARK. It is known that if AArc(K) is sufficiently nontrivial, then (1) can be 
expected to admit surprisingly wild exact solutions, which can be constructed by 
using an adaptation of Gromov's "convex integration", see [Gr, p. 218] and [MS]. 
It is not clear whether under some reasonable assumptions on K one could replace 
Mrc(K) by Mqc(K) in these results. 

EXAMPLES. 

1. An obvious necessary condition for M.rc(K) to be trivial (and hence also for 
Mqc(K) to be trivial) is that rank(X - Y) > 2 for each X,Y eK,X^Y. 

2. A sufficient condition for Mqc(K) to be trivial is that there exists a rank-
one convex quadratic function / such that f(X — Y) < 0 for each X, Y G K, 
X ^ Y. (To prove this we recall that each rank-one convex quadratic function is 
quasiconvex, see Section I. We can use this to infer that for each v G Mqc(K) we 
have 

0 > / f(X-Y) dv(X) dv(Y) = [ (f(X) - Df(X)Y + f(Y)) dv(X) du(Y) 
JKxK JKXK 

>f(v)-Df(u)D + f(i?)=0. 

Hence v x v is supported on the diagonal of K x K and therefore v must be a 
Dirac mass. 
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3. Let m = n = 2 and let K cM2x2. Then Mpc(K) is trivial if and only if either 
det(X-Y) > 0 for each X,Y G K, X ^ Y, or d e t ( X - y ) < 0 for each X,Y G K , 
X ^ Y. Hence if K C M2x2 is connected, then a necessary and sufficient condition 
for any of the sets Mrc(K), Mqc(K), Mpc(K) to be trivial is that det(X - Y) ^ 0 
for each X,Y eK. See [Sv7] for details. 

4. Let K = {A1,A2,A3} C A/m X n . Then Mqc(K) is trivial if and only if r a n k ( X -
Y) > 2 for each X, Y G K, X ^ Y. See [Sv3], [Sv5]. Note that in this case we can 
have a situation where Mqc(K) is trivial and Mpc(K) is nontrivial. 

5. Letra = n = 2. Let A= ( 2 ° ) , B= f"1 ° ) , and K = {A,B, -A, -B}. (This 
set K, which was first considered by Tartar, plays an important role in many 
examples.) Then rank(X - Y) > 2 for each X,Y G K, X ^Y, but Mrc(K) is 
non-trivial. Using quasiconvex functions from [Sv5], one can prove that for this 
set K we have Mqc(K) = Mrc(K). On the other hand Mpc(K) ^ Mrc(K). 
(The computation of Mrc(K) and Mpc(K) in this case is an easy but instructive 
exercise.) 

6. Let F be a quasiconvex (or polyconvex) function on A/ / x 2 and let us consider 
the functional I(u) = JQ F (Du) and its Euler-Lagrange equation 

(2) divDF(Du)=0. 

This can be rewritten as DF(Du) = —DvJ, where J = [1~Q ) and u, v are 

unknown functions from fi C R2 to R*. Letting 

we see that (2) can be rewritten as DU G K, where U = ( " ) is a function from Q 
to R2*. One can now ask under which conditions on F the set Mqc(K) is trivial. 
This seems to be open. (Not much is known about Mrc(K) and M?C(K) either. 
It is easy to see that if F is strictly rank-one convex, then rank (A — B) > 2 for 
each A,B e K, A ^ B. The opposite implication has been studied in [Ba2].) Of 
course, if F = FQ + L for some strictly convex Po and a null Lagrangian L, then 
Mqc(K) (and, in fact, Mpc(K)) is trivial. 

The triviality of Mqc(K) for K constructed from (2) should be equivalent, 
modulo technicalities, to compactness of interesting classes of approximate weak 
solutions of (2). It should also be related to partial regularity of weak solutions of 
(2). On the other hand, if AArc(K) is sufficiently nontrivial, then one can hope to 
construct very wild exact solutions of (2) by using an adaptation of the method of 
convex integration from [Gr]; see the remark following the previous Proposition. 
It can happen that in the situation considered in this example the set M.qc(K) is 
nontrivial even under the assumption that F is strictly polyconvex. In fact, there 
is an example [Sv8] of a strictly polyconvex quartic polynomial F on A/6 x 2 such 
that (2) admits a smooth, nontrivial periodic solution u : R2 —• R6. 
7. Let us consider an (I x 2)-hyperbolic system 

(3) tit + / (u)* = 0 
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together with the entropy condition 

*/(u)t + q(u)x < 0, 

where u : (0, T) x (a, b) —> R* is the unknown function, / : Rl —• R' is a given 
function satisfying suitable (hyperbolicity) assumptions, and (77, q) is a suitable 
entropy pair (see [Tal], [Ta2], [DP] for details). In connection with questions re
garding compactness properties of weak solutions of this system, one can consider 
the set 

K=l(fM> - ^ V t z G R ' l c M ^ 2 . 

It is not difficult to see tha t the question of whether or not Mqc(K) is trivial is 
equivalent, modulo technicalities, to questions regarding compactness of certain 
classes of approximate entropie solutions of (3). It is not known under which 
conditions the set Mqc(K) (resp. MTC(K), Mpc(K)) is trivial. (Of course, we 
have the obvious necessary condition tha t rank(A — B) > 2 for each A, B G K, 
A ^ B. This assumption is equivalent to the condition tha t the system under 
consideration does not admit shock waves tha t preserve the entropy 77.) 

It is clear tha t a number of problems in P D E can be formulated as ques
tions about Mqc(K) for suitable sets K. One of the main motivations for studying 
Mqc(K) for "nonstandard" sets K has been the paper [BJ1], where a model for 
certain phase transformations is proposed in which the sets Mqc(K) play an im
portant role. See also [BJ2], [Ko], [Sv6]. 
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The Riemann-Hilbert Problem and Fuchsian Differential 
Equations on the Riemann Sphere 

A.A. BOLIBRUCH 

Steklov Mathematical Institute 
Vavilov str. 42 
Moscow 117966 
Russia 

1. Introduction 

(1) The Riemann-Hilbert problem concerns a certain class of linear ordinary 
differential equations (ODEs) in the complex domain. Let the system 

% = B(*)y (!) 

with unknown vector function y = (y1,... ,yp)1 (t means transposition) have sin
gularities o i , . . . , an; that is, B(x) is luLmorphic in S := C \ { a i , . . . , an} (where 
C is the Riemann sphere). The system is called Fuchsian at ai (and ô  is a Fuch
sian singularity of the system) if B(x) has a pole there of order at most one. The 
system is Fuchsian if it is Fuchsian at all a .̂ Let all ai ^ oo. Then 

*(*) = £ : r h r ^ X > = °- (2) 
Consider a loop g, starting at a point XQ G S and lying in S. Under analytic 

continuation along this loop the germ Y(x) at XQ of a fundamental matrix Y(x) 
to (1) is transformed to Yl(x) = Y(x)G~l, G G GL(p,C). The correspondence 
g H-> G generates a linear representation 

X:7T1(S,x0)^GL(p,C), (3) 

which is called a monodromy representation of system (1) or simply a monodromy. 
The monodromy for the pth order linear ODE 

y(p) -r qi{x)y<*-V + - • • + qp(x)y = 0 (4) 

is just the same as for the pth order system, describing the behavior of the vectors 
f y, ^ , . . . , ^xV-\ j , where y satisfies the equation. Equation (4) is called Fuch
sian at a point a if its coefficients q\(x),..., qp(x) are holomorphic in some punc
tured neighborhood of this point and qi(x) = ri(x)/(x — a)z, i = 1 , . . . ,p, where 
r\(x),... ,rp(x) are functions holomorphic at a. 
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(2) At the end of the 1850s, Riemann was the first to mention the problem of 
the reconstruction of a Fuchsian equation from its monodromy representation in 
a note. In 1990 Hilbert included it on his list of "Mathematical Problems" under 
the 21st number. It was formulated as follows [Hi]: 

Prove that there always exists a linear differential equation of Fuchsian type 
with given singular points and a given monodromy group. 

A tradition has been established in mathematical literature that the problem 
for Fuchsian systems is usually called the Riemann-Hilbert problem. (Note here 
that it was known at that time that the problem for a Fuchsian scalar ODE had a 
negative solution. This follows from the fact that a Fuchsian equation of pth order 
with singularities a i , . . . , an contains fewer parameters than the set of classes of 
conjugate representations (3). This goes back to Poincaré [Poi], who calculated the 
difference between these two numbers of parameters. So in general it is impossible 
to construct a Fuchsian equation without an appearance of additional singularities. 
The number of such additional singularities is presented in Section 3.) 

For a number of years people thought that the Riemann-Hilbert problem 
was completely solved by Plemelj [PI] in 1908. Only recently was it realized that 
there was a gap in his proof (for the first time this was observed by Kohn [Koh] 
and Arnold, and Il'yashenko [AI]). It turned out that Plemelj obtained a positive 
answer to a problem similar to the Riemann-Hilbert problem, but concerning so-
called regular systems instead of Fuchsian ones. Here is the definition of them. 

Let (1) be a system with singularities a\,...,an. It is called regular at a^ 
(and ai is a regular singularity for this system) if any of its solutions has at most 
polynomial (in l/\x — o.j|) growth at Oj as x tends to Oj, remaining inside some 
sector with the vertex at a* (without going around this point). 

The system is called regular if it is regular at all a\. Any Fuchsian system is 
regular (see [Ha]), but a regular system need not be Fuchsian (Plemelj was able 
to find systems in a broader class than that required by Hilbert). Note here that 
for a scalar ODE the notions of Fuchsianity and regularity coincide. 

Plemelj used the theory of singular integral equations to construct a regular 
system with prescribed singular points and the monodromy. Then he transformed 
the constructed system to the system with the same singularities and monodromy, 
which was Fuchsian at all points except one. Let g\,..., gn be loops at xo such that 
gi "goes around" a* without "going around" any aj ^ a*. Denote the homotopic 
classes of the loops by the same letters. It follows from Plcmelj's paper, [PI] that 

If at least one of the matrices x(9i)i • • • ? x(9n) is semisimple (diagonalizable), 
then the answer to the Riemann-Hilbert problem is positive. 

In the 1920s Lappo-Danilevskii [LD] proved that 
/ / all x(9i) are sufficiently close to the identity matrix I, then the answer is 

positive too. 
In 1979 Dekkers [Dek] showed that 
In the case p = 2 the answer is positive (independently ofn).1 

1 Lappo-Danilevskii and Dekkers did not pretend to solve the Riemann-Hilbert problem (at 
that time there was the opinion that this problem was solved by Plemelj), but the results formu
lated above follow immediately from their results. 
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In 1957 Röhrl [R] published another approach to the same problem using 
some arguments from the theory of Riemann surfaces and the algebraic geometry. 
The developments of this approach will be discussed in Section 3. 

In 1989 a negative solution to the Riemann-Hilbert problem was found in 
[Bol], [Bo2], It turned out that there exist representations (3) that cannot be 
representations of any Fuchsian systems. This result is explained in Section 2. 
Here we also discuss some sufficient conditions for representation (3) still to be 
realized as the monodromy representation of some Fuchsian system. 

The methods, developed in the process of solution of the Riemann-Hilbert 
problem, can also be applied to problems of somewhat different types; e.g., to the 
problem of Birkhoff standard form, which is discussed in Section 4. 

2. The Riemann-Hilbert problem 

The first counterexample to the Riemann-Hilbert problem concerns the case p = 
3, n = 4. Consider the system (1) with 

B(x) = - i ( 0 x 0 | + a(^\ 1N | 0 - 1 1 | (5) 

0 0 2 \ - / 0 - 3 - 3 
,x i 0 - 1 - 1 + - 7 rr 0 - 1 1 

2(*-l)l o ! x I 3(*-i) \ 0 _ l ! 
It is singular at ao = 0, oi = — 1, 02 = 1, and 03 = \ and the point oc is its point 
of holomorphy. The points 01,02,03 arc Fuchsian singularities, however ao is not 
Fuchsian, but a pole of order 2. Thus, the system is not Fuchsian, but it is possible 
to showr that it is regular [Bo2]. 

Our system has some monodromy. Denote the monodromy matrices X(Qì) °f 
the system by Gi, i = 0,1,2,3. 

THEOREM 1 There exists no a Fuchsian system with the same singularities and 
monodromy. 

The idea of the proof is as follows. Because B(x) = ( R / , v J , where 

system (1), (5) has Fuchsian quotient system (1), (6) with the monodromy matrices 

G\ and Gi = f n ^ / ) • From the form (5) of the matrix B(x) it follows that 

each matrix Gi can be transformed to Jordan normal form consisting of one block 
with the eigenvalue 1. (It is easy to check for Gi,G2,Gs, but it is more subtle 
work for GQ.) 
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It can be deduced from the form of Gi mentioned above that the existence of 
a Fuchsian system with the monodromy matrices Go , . . . , G3 implies the existence 
of a Fuchsian system with the monodromy matrices G'0,... ,G'3 with some hard 
restrictions on the asymptotics of its solutions at the singular points. More pre
cisely, such a system would have equal (up to logarithms) orders of asymptotics 
for all its solutions at all singular points. But it is possible to show that such a 
system does not exist (see [Bo2], [AB], [B06]). Thus, the monodromy representa
tion of system (1), (5) cannot be realized as the monodromy representation of any 
Fuchsian system. This means that 

The Riemann-Hilbert problem has in general a negative solution. 
Exponents of asymptotics of Fuchsian system (1), (2) coincide with eigenval

ues of its coefficient matrices Bi. This follows from the fact that a fundamental 
matrix Y(x) of a Fuchsian system in a neighborhood of a singular point Oj can be 
presented as follows (see [G], [Le]): 

Y(x) = Ui(x)(x - ai)
Al (x - ai)E<Sh (7) 

where Ui is holomorphically invertible at a*, Aj = diag(A|, . . . , Xp), X? £ Z, Xj > 
••• > Xp, Ei = 2̂ q log x(9i) 1S upper-triangular with eigenvalues p[, such that 
0 < R e p ] < 1 , 5iCGL(p,C) . 

The numbers Aj are called valuations of the system and the numbers ßj = 

X? + pi are called exponents. It follows from (7) that yj = Uj(x)(x — a»)^ [1 + 
o(\ logp(x — Oj)|)] for the j-column of the matrix YS^1. 

The exponents of system (1), (6) are as follows: /3Q = l,/?o = —1? ßi = 0, i = 
1,2,3, j = 1,2. (One can see that the orders of asymptotics of the solutions to 
this system at zero do not coincide.) 

For a Fuchsian system (1), (2) of two equations consider the number ~/(B) = 
Y^=i(^ì ~ ^?)• The number 7(x) = min^ j(B), where the minimum is taken over 
all Fuchsian systems with the given monodromy, is called the Fuchsian weight of 
the representation x-

It is clear that ~/(x) = 0 if and only if there exists a Fuchsian system with 
the monodromy \ whose valuations are equal at each singular point. (For system 
(1), (6) the condition j(x') = 0 is equivalent to the existence of a Fuchsian system 
with the same monodromy and such that all orders of asymptotics of solutions to 
the system at all singular points are equal.) 

The following theorem describes all representations (3) of dimension three 
that cannot be realized by any Fuchsian system [Bo2]. 

THEOREM 2 Representation x of dimension p = 3 cannot be realized as the mon
odromy representation of any Fuchsian system, if and only if the following three 
conditions hold: 

(i) the representation x is reducible; 
(ii) each matrix x(9i) can oe reduced to a Jordan normal form, consisting of 

only one block; 
(iii) the corresponding two-dimensional subrepresentation or quotient repre

sentation x' has nonzero Fuchsian weight. 
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(The calculation of the Fuchsian weight of the monodromy of system (1), (6) is 
the most subtle part of the proof of Theorem 1.) 

It turns out that all counterexamples to the Riemann-Hilbert problem in di
mension p = 3 arc unstable in the following sense. If one slightly perturbs the singu
lar points a i , . . . , an without changing the monodromy matrices xQ?i)? • • • i x(9n)i 
then the answer to the Riemann-Hilbert problem can become positive (see [Bo2], 
[AB]). The first stable counterexample appears in the case p = 4, n = 3 ([Bo4]). 

All counterexamples concern reducible representation. The following state
ment explains the cause. 

THEOREM 3 For any irreducible representation (3) the Riemann-Hilbert problem 
has a positive solution. 

Proof. Consider a regular system with the given monodromy, Fuchsian at points 
02, . . . , o n (such a system always exists, see [PI]). Present a fundamental matrix 
Y(x) of the system at ai as follows: 

Y(x) = V(x)(x - ax)
A(x - o i ) S l , (8) 

where V(x) is meromorphic at ai , E\ is the same as in (7), A = diag(òi, . . . , bn), 

bi - ò i+i > d, i = 1 , . . . ,p - 1, d > 0. (9) 

Due to Sauvage's lemma (see [Ha]) there exists a matrix Ti meromorphic on all 
the Riemann sphere, holomorphically invertible outside of oi and such that 

Yx(x)V(x) = (x - ax)
cU'(x), (10) 

where C = diag(ci,. . . ,cp), Ci G Z, ci > • • • > cp, and Uf(x) is holomorphically 
invertible at ai . 

It is proved in [Bo3], [Bo4] that if (3) is irreducible, then the numbers Ci from 
(10) satisfy the following inequalities: 

ci - cp < 2 J c i - Ci) < . (11) 
1 = 1 z 

Due to some technical lemma (sec [Bo4] or [S], where this lemma is called Kimura's 
lemma) there exists a matrix T2 meromorphic on all the Riemann sphere, holo
morphically invertible outside of oi, and such that 

T2(x)(x - a1)
cUf(x) = U(x)(x - ax)

D, (12) 

where D is a diagonal matrix, obtained by some permutation of the diagonal 
elements of the matrix C, and U(x) is holomorphically invertible at ai . 

Take d > (p(p — 2)n(n — l )) /2 in (9) and consider the system with the 
fundamental matrix Yf(x) = T2^iY(x). Because of holomorphy of the matrices Tj 
and r^-1 outside of oi the new system is still Fuchsian at 02 , . . . , an. At the point 
ai we have from (10), (12): 

Y'(x) = U(x)(x - ax)
D+A(x - o i ) ß l . (13) 
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It follows from (9), (11), and the choice of d that D + A is the diagonal matrix 
whose diagonal elements form a nonincreasing sequence. Because E\ is upper-
triangular, we obtain that the matrix (x — a{)D+A E\(x — a\)~D~ A is holomorphic. 
Straightforward calculation shows that the coefficient matrix B'(x) = (dY*/dx) • 
(Y'(x))~l of the constructed system has a pole of order one at oi, therefore the 
system is Fuchsian throughout all the Riemann sphere. The theorem is proved. 
(The independent proof of the theorem in presented in [Ko].) ß 

Denote by Xi the local representation, determined by the monodromy matrix 
x(9i)- The following statement gives the sufficient conditions for representation (3) 
to be realized by some Fuchsian system (see [Bo5], [Bo6], [AB]). 

THEOREM 4 Let representation (3) be reducible and x1 , X2 oe its subrepresenta-
tion and quotient representation. Suppose x1 is irreducible and x2 can be realized 
by some Fuchsian system. If for some i the local representation Xi is a direct sum 
of x,? Xi ? where Xj is a subrepresentation of xl, then the representation (3) also 
can be realized as the monodromy representation of some Fuchsian system. 

A negative solution of the Riemann-Hilbert problem means that, as distinct 
from a local situation, the class of Fuchsian systems and the class of systems with 
regular singular points are not meromorphically equivalent globally throughout the 
Riemann sphere. The following statements concern regular systems that cannot 
be transformed to Fuchsian ones (see [AB], [Bo6]). 

THEOREM 5 Any system (1) with regular singular points is a subsystem (quotient 
system) of some system with the same singular points meromorphically equivalent 
to the Fuchsian system (1), (2). 

PROPOSITION 1 For arbitrary representation (3) there exists a regular system (1) 
Fuchsian off the point a\ such that the order of pole of the system at a\ does not 
exceed the number (n — 2)p(p — 2)/2+pn+l. 

THEOREM 6 For sufficiently large p and n the codimension of non-Fuchsian rep
resentations in the moduli space of all representations is equal to (p — l)(2n — 1). 

(Questions concerning a stratification of representations and their codimension in 
(GL(p,C))n _ 1 are also considered in [Ko].) 

It is well known that in a neighborhood of a singular point each Fuchsian 
scalar equation with the help of some meromorphic transformation can be trans
formed to a Fuchsian system (see [Ha]). The following statement shows it is true 
to fact globally too [Bo3]. 

THEOREM 7 For any Fuchsian equation (4) on the Riemann sphere there always 
exists a Fuchsian system with the same singular points and the same monodromy. 
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3. Vector bundles associated with monodromy 

Representation (3) determines a vector bundle F on C \ { a i , . . . , an} with a holo
morphic connection V. 

Consider all extensions of F on the whole C that provide for V at most loga
rithmic singularities at a i , . . . ,an. Locally any such extension at Oj is determined 
by matrices Aj, Sj from (7). Denote by Fx the extension of F on the whole C with 
the help of the matrices Aj, Si from (7) (see [Bo2], [Bo4]). If all Aj = 0, then the 
corresponding extension F° is called the canonical extension (cf. [Del]). 

/ / for some X the bundle Fx is holomorphically trivial, then the connection 
V determines some Fuchsian system on C with the given singularities and mon
odromy (and conversely). 

Consider the decomposition of Fx into the direct sum of line bundles 

Fx 9* 0(-cx) e • • • 0 0(-cx), (14) 

where cx > ... > cx. The set cx,..., cx is called the splitting type of Fx. It 
completely determines the holomorphic type of the bundle. 

Now we introduce the following concepts. The number 

7(A) =]T(c*-c*) 
i=l 

is called the weight of Fx, and the number 7m(x) = S UPA 7 M *s called the maximal 
Fuchsian weight of x-

The important property of the family {Fx}, constructed by irreducible rep
resentation (3), is its property of finiteness: 7m(x) < ((P ~~ 2)n(n — l))/2, which is 
another, geometric form of inequality (11) (see [Bo4]). Exactly this property plays 
the crucial role in proving Theorem 3. Note here that statement (12) establishes 
the connection between the splitting types of vector bundles Fx and asymptotics 
of solutions to corresponding Fuchsian systems. 

THEOREM 8 The weight of the canonical extension F° for a two-dimensional rep
resentation x coincides with its Fuchsian weight: 7(0) = 7(x)-

Now Theorem 2 can be formulated for arbitrary p as follows (see [Bo4], [AB]). 

THEOREM 9 Let (3) be a reducible representation with subrepresentation x ' ; and 
let each monodromy matrix x(9i)-J = 1, • •• ,ra, can be reduced to a Jordan normal 
form, consisting of only one block. Then the representation \ can oe realized by a 
Fuchsian system if and only if 7X(0) = 0, or equivalently 7y(0) = 7X/X'(0) = 0, 
where Jx(0) is the weight of the canonical extension of the vector bundle, con
structed by the representation x-

In terms of Fuchsian weight it is possible to express the number of additional 
so-called "apparent" singularities, arising under an attempt to construct a Fuchsian 
scalar differential equation with prescribed singularities and monodromy. 
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THEOREM 10 The minimal possible number TUQ of additional apparent singulari
ties of a Fuchsian equation with a given irreducible monodromy (3) is equal to the 
following one: 

».°="-2)f-1>-7,.to. 
(Here mo is taken with multiplicities, which coincide with orders of additional 
zeroes of a Wronskian of the corresponding "minimal" Fuchsian equation.) 

4. Birkhoff standard form 

Consider a linear system of differential equations 

x^.=C(x)y, C(x)=xr^Cnx-n, C0 ^ 0, r>0, (15) 
n=0 

where C(x) is a matrix of size (p.p) and the power scries converges in some neigh
borhood of oc. 

Under a transformation z = T(x)y system (15) is transformed to the system 

x^- = B(x)z. B(x) = x^T-1 + TC(x)T-1. (16) 
ax ax 

If r(x) is holomorphically invertible in some neighborhood of oc, then such a 
transformation is called analytic. 

If the matrix B(x) in (16) is a polynomial in x of degree r, then (16) is called 
a Birkhoff standard form for (15). 

Birkhoff [Bi] claimed that each system (15) can be analytically transformed 
to a Birkhoff standard form, but Gantmacher [G] presented a counterexample to 
this statement. It turned out that Birkhoff's proof was valid only for the case when 
a monodromy matrix of system (15) was diagonalizable. 

Let us call system (15) reducible (or generic) if there exists a holomorphically 
invertible in some neighborhood of oc matrix T(x) such that under the transfor
mation with help of this matrix, system (15) is transformed to system (16) with a 

/ B' 0 \ 
lower diagonal block matrix B(x) = I „„ j . 

For p = 2 Jurkat, Lutz, and Peyerimhoff [JLP], and for p = 3 Baiser [Ba] 
proved that each irreducible system (15) can be analytically transformed to a 
Birkhoff standard form. In [Bo7] the analogous result is proved for arbitrary p. 

THEOREM 11 Each irreducible system (15) can be analytically transformed to a 
Birkhoff standard form. 

The idea of the proof is as follows. Consider a fundamental matrix Y(x) to the 
system (15) with the following factorization Y(x) = M(x)xE, where M(x) is 
a single-valued matrix function with nonvanishing det M(x) in some punctured 
neighborhood O of oo, and E is the same as in (7). The matrix M(x) defines some 
vector bundle on C with coordinate neighborhoods O, C. Denote this bundle by F 
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and consider all its admissible extensions FA. Each such extension is determined 
by the transition function M(x)x~A, where A is the same as in (9). 

Because of (14) there exist a holomorphically invertible in some neighborhood 
of oo matr ix T(x) and holomorphically invertible in the complex plane matr ix 
U'(x) such tha t 

T(x)M (x)x~A = xcU'(x), (17) 

where C is the splitting type of FA. 
It turns out tha t for an irreducible system (15) the family {FA} has the 

finiteness property; i.e., Ci — Cj+i < r, i = 1,... ,p — 1. Take d = pr in (9) and 
consider for the matr ix xcUf(x) the matr ix T2 from (12). Under analytic at oo 
transformation Y'(x) = T2T(x)Y(x) our original system (15) is transformed to 
system (16), whose fundamental matr ix in complex plane has the form 

Y'(x) = U(x)xD+AxE. 

In a way similar to tha t in Theorem 3 we obtain tha t diagonal elements of the 
matr ix D + A are in nonincreasing order and the matr ix L = xD+AEx~D~A is the 
entire matr ix function. Therefore, B(x) = x^-(Y')~l = x^U~l + U(D + A + 
L)U~l is an entire matr ix function too. Because B(x) has pole of order r at oc, 
this completes the proof. 
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Invariant Sets of Hamiltonian Systems and 
Variational Methods 

SERGEY V. BOLOTIN* 

Department of Mathematics and Mechanics 
Moscow State University 
Vorobyevy gory 
Moscow 119899, Russia 

1 Introduction 

We study the problem on the existence of homoclinic trajectories to Mather min
imizing invariant sets (multidimensional generalization of Aubry-Mather sets) of 
positive definite time-periodic Hamiltonian systems [19]. These sets are supports 
of invariant probability measures in the phase space minimizing the average action 
J Ldfi for a suitable calibration of the Lagrangian L. For natural systems with 
L = ||v||2/2 — V(x), the minimizing set is F = {V = h}, h = maxV, and for 
time-periodic systems with reversible L the minimizing sets consist of brake orbits 
of minimal action. For natural Hamiltonian systems, the existence of homoclinics 
to T was proved in [3] using the Maupertuis-Jacobi functional J yfh — V(x) \\dx\\, 
and for reversible time-periodic systems in [4] using Hamilton's functional (see also 
[5], [16]). For nonreversible systems (for example, natural systems with gyroscopic 
forces), in general there are no Mather sets of simple structure. We extend the 
above existence results to arbitrary minimizing sets replacing homoclinic trajecto
ries by semihomoclinic ones in Birkhoff's sense [2]. A similar problem was studied 
in [20]. 

A main source of examples of minimizing sets is in perturbations theory. 
Let the Poincaré map of a time-periodic Hamiltonian system have a Lagrangian 
manifold Mm fibrated to n-dimensional invariant tori. If the frequency UJ E R n is 
Diophantine and some positive definiteness conditions are satisfied, then at least 
one torus F C M survives a C^-small perturbation of the Hamiltonian and be
comes minimizing and whiskered [1]. If a; is nearly resonant, or the perturbation 
is only C2-small, then the torus is replaced by minimizing sets near F. Integrable 
Hamiltonian systems have families of resonant Lagrangian tori Mi, I E Rn , fi
brated to n-dimensional invariant tori. Homoclinics to whiskered tori Tj of the 
perturbed system form a basis for Arnold's diffusion: exponentially slow drift of 
the integral J [1], [9]. Gaps in R n { /} corresponding to non-Diophantine u)(I) are 
represented by Mather sets T/ having semihomoclinic trajectories. 

*) Work supported by the Russian Foundation of Basic Research and ISF. 
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Recently many authors have studied homoclinics to equilibria of Hamiltonian 
systems by different variational methods. See, for example, [10]-[12], [15], [22] and 
the papers cited there. Homoclinics to invariant tori were studied in [6], and to 
invariant sets in [7]. This paper is partly based on [7], [8]. 

2 Minimizing invariant sets 

We consider a time-periodic Hamiltonian system with compact configuration man
ifold Mm and Hamiltonian H G C2(P) on the phase space P = T*M x T, 
T = R/Z. Following Mather [19], we assume that the Hessian of the Hamiltonian 
H(x,y,t) in momentum y E T*M is positive definite, H is superlinear in momen
tum: H(x,y, t)/\\y\\ —> oo as ||i/|| —» oc, and the phase flow gtm. P —> P of the 
Hamiltonian vector field £ is complete. 

These assumptions hold for classical Hamiltonian systems. Main results can 
be generalized to systems with H(x,y,t) = F(x,y,(j)t(- )) where cj)t is a flow on a 
compact metric space (for example, almost periodic systems). 

We identify P and TM x T by using the Legendre transform z = (x, y, t) G 
P -> (x, v, t) G TM xT,v = Hy£ TXM. Let L G C2(TM x T) be the Lagrangian 
L(x,v,t) = (y,v) — H(x,y,t) and 9Jt the set of ^-invariant Borei probability 
measures \x with compact support in P. The average action [19] of a measure 
/x G TI is A(fi) = J L dp,. The rotation vector p(p) G H\ (M, R) is defined by the 
equation (c,p(p)) = J(uj(x),v)df.i for any cohomology class c = [UJ] G H1 (M, R) 
represented by a closed 1-form UJ on M. Mather [19] proved that for any p G 
H\(M,K) the functional A has a minimum on dJlp = {p, G 9Jt : p(p) = p), and for 
any minimum point p G 9Jlp there exists c G Hx (M, R) such that \x is a mimimum 
point of the functional Ac(p) = A(p) — (c,p(p)) on Wl. 

DEFINITION 2.1. Minimum points of Ac are called c-minimal measures, and the 
closure of union of their supports the c-minimizing set Fc. 

Ergodic properties of minimal measures are studied in [17], [18]. The set Fc is a 
Lipschitz graph [19], i.e. a graph of a Lipschitz section y = p(x,t) G T*M on 
a compact set Ec = 7r(rc) C M x T, where n : P —» M x T is the projection. 
For a Lipschitz graph F C P, the projection of the Poincaré-Cartan 1-form À = 
(y, dx) - H dt is a Lipschitz 1-form on E = 7r(r) C M x T: 

A(x,t) = (p(x,t),dx) -H(x,p(x,t),t)dt, (x,t) G E. 

DEFINITION 2.2. The set F is strongly isotropic if A = f i | s , where Q is a locally 
exact Lipschitz 1-form on M x T. 

Thus, there is W G C1+Lìp(M x T), a closed 1-form UJ on M, and a G R such that 

p(x, t) = Wx -r UJ(X), f(x,t) = -Wt - H(x,p(x,t),t)=a (2.1) 

for (x, t) G E. If an invariant set F is strongly isotropic and E is the set of minimum 
points for / , then F is a c-minimizing set with c = [UJ]. We call such sets strictly 
minimizing. If /x is a c-minimal measure and F = supp(/i), then Q can be taken 
from the cohomology class (c.a) G H1 (M x T,R), a = min.4c. In particular, 
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L\r = (A,Ç) = — (UJ(X),V) — a - W is a full derivative. Mane [18] proved that 
for ergodic p there is W G Lip(E) satisfying the last condition. For isotropic F, 
performing the canonical transformation 

(x,y,t,H)^(x,y-uj(x)-Wx,t,H-rWt-ra), (2.2) 

we may assume that L\r = 0 and min A = 0. Probably support of any minimal 
invariant measure is strongly isotropic, but this is proven only for regular measures. 

DEFINITION 2.3. A minimal measure p is regular if E = 7r(r) is a C 1 submanifold 
in M x T, and the measure v = 7r*(/w) on E is nonsingular. 

THEOREM 2.1. If pi is regular, then F is strongly isotropic. 

COROLLARY 2.1. If p is regular, the action variable J = [À|r] G HX(F,R) is 
correctly defined by (J, [7]) = § A for any closed curve 7 C F, and J = 7r*(c, a), 
where the map n* : Hl(M x T , R ) - > i ï ^ I ^ R ) is induced by the projection. 

If T is an invariant torus with invariant Lebesgue measure, then F is isotropic and 
J the usual action variable. If the torus is ergodic, minimality is not needed [14]. 

DEFINITION 2.4. The set F is weakly isotropic if A belongs to the closure of the 
set {ft|s : dft = 0, [ft] = (c,a)} of closed Lipschitz forms on E in the weak 
L2(i/)-topology. 

THEOREM 2.2. If p, is a minimal measure, then F = supp(^) is weakly isotropic. 

It is easy to see that if p is regular and F weakly isotropic, F is strongly isotropic. 
Thus, Theorem 2.2 implies Theorem 2.1. Performing the transformation (2.2) with 
W = 0, or a calibration Lc = L — (UJ, v) — a of the Lagrangian, we may assume 
that (c,a) = 0 and thus A(p) = min A = 0. Then Definition 2.4 is equivalent to 
J{r],A)di/ = 0 for all vector fields 77 on M x T such that f{r),df)di/ = 0 for all 
/ G Coc(M x T). Theorem 2.2 follows from 

PROPOSITION 2.1. Let p, be a minimal measure. Then J(X,r})dp = 0 for every 
p-prescrving Lipschitz vector Geld n on P. 

Proof. For a vector field Ç on P and z = (x,y,t) G P let (Cx,Ct) C TXM x R be 
the projection of C(^) to M x T. Birkhoff's ergodic theorem implies that for any 
//-preserving Lipschitz vector field ( o n P such that Q > 0, 

j L(x,Cx/Cut)Ctdfi(z) >0, z = (x,y,t), (2.3) 

and for the Hamiltonian vector field Ç the equality holds. We set Ç = Ç H- en and 
differentiate (2.3) by e at e = 0. Because & = 1 and £x = v, we obtain: 

- 1 =oJr v ! + £Vt ' 

({y,Vx}- H{z)rit) dß= I (A, rf) dp. 

D 
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3 Almost asymptotic and almost homoclinic trajectories 

Let p be a minimal measure, F = supp(p), and E = 7r(r). 

THEOREM 3.1. Let f: F —• M be a continuous map. For any e, 8 > 0 there exists 
T < Ci/(e26) such that for z e F with ^-probability l —e there exists a trajectory 
o~(t) = (q(t),p(t),t) G P such that: 

(1) q(t(z)) = f(z), q(t(z)+T) = x(t(z)+T) and \\p(t(z)+T)-y(t{z)+T)\\ < 8: 

(2) Hamilton's action / J ^ + V ) = $*]+TL(a(t))dt < C2/e. 

Here t(z) mod Z is the T-component of z, and (x(t),y(t),t) = z(t) = g^^^z) is 
the trajectory of z G F. The constants C\j2 > 0 are independent of e and 8. 

COROLLARY 3.1. For p-almost all points z G F (for all if p is ergodic) and any 
8 > 0 there is a 8-asymptotic trajectory to z(t) satisfying (1) of Theorem 3.1. 

In particular, every trajectory in F is unstable. If L\r is a full derivative (for 
example, p is ergodic), then Corollary 3.1 holds for all points of F. 

DEFINITION 3.1. A trajectory a(t) = (q(t),p(t),t) G P, a < t < 6, is 8-homoclinic 
to a trajectory (x(t),y(t),t) G P if q(a) = x(a), q(b) = x(b) and \\p(a) — y(a)\\ < 8, 
\\p(b) — 2/(6)|| < 8. The homotopy class [<r] of a ^-homoclinic trajectory is the class 
of the curve q\[n,b] ° (^[a^]) m the s e t n of free homotopy classes of loops in M. 

THEOREM 3.2. For any f eli there exist C\$ > 0 such that for any e, 8 > 0 and 
z G T with p-probability 1 — e the trajectory z(t) has a 8-homoclinic trajectory 
a: [t(z),t(z) +T]^P such that [a] =f,T< C1/(8

2e), and I*(
(*}+T\<r) < C2/e. 

COROLLARY 3.2. For p-almost all trajectories in F (all if p is ergodic) and any 
8 > 0 there exists a 8-homoclinic from a given homotopy class. 

Proof of Theorem 3.2. We can assume A(p) = min A = 0. Let M be the universal 
covering of M. Nontrivial / G II is represented by a translation f: M —> M. 
We lift H and L to translation invariant functions on P = T*AI x R. For given 
z G T denote by z(t) = (x(t),y(t),t) G P any trajectory covering z(t) G F. Take 
T > 0 and let j z : [t(z),t(z) + T] —> M be a minimizer of Hamilton's action 
4(z) + T (7) o n t n e s e t °̂  c u r v e s 7 : [t(z)it(z) + T] —> M joining the points x(t(z)) 
and f(x(t(z)-rT)). 

The function S(z,T) = I^A\~T (iz) does not depend on the choice of the 

covering trajectory z(t) G P. For any h > 0, set F(T) = J S(z,T)dp(z) and 
F}L(T) = F(T) + hT. Then F is a continuous nonincrcasing function on R+ and, 
because inf dist(x, f(x)) > 0 and L is superlinear in velocity, F(T) —> oo as T —> 0. 
Because min A — 0, F is bounded from below as T —> oo. We take for T a minimum 
point of Fh and denote by o(t) = (q(t).p(t),t) G P, t(z) < t < t(z) + T, the 
trajectory such that jz(t) G A/ covers q(t) G A/. 

Let Q 2 , £ : [t(^) -f £,t(2) + T] - • ÌÌ7 and /J2,e: [t(z),t(z) + T + e] ^ M bc 
smooth variations of 72 joining the points x(t(z) + £), f(x(t(z) + T)) and £(£(2)), 
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f(x(t(z) + T + e)), respectively. Differentiating j g } + T + £ ( a ^ ) and /*(
(*}+f (j8a,e) 

by e at e = 0 and taking into account that p is <7T-invariant, L is /-invariant, and 
J Ldp = 0, we obtain 

J({p(t(z))Mz)) - H(*(t(z))) - L(z))dn(z) 

= j((p(t(z) + T)M9T(z))) - H{o{t{z) + T)) - L(gT(z))) dß(z) = h. 

For small h > 0, Young's and Chebyshev's inequalities yield Theorem 3.2. D 

For a given homotopy class / G n , the almost homoclinic trajectory a(t) may 
coincide with z(t). To avoid this, we need to factorize n by 7Ti(r), but, because F 
may be fractal, this group is not well defined. Thus, we pass to homology groups. 
Let T be connected and G = H\ (M x T, E, Z) be the Cech homology group. 

DEFINITION 3.2. The homology class h(a) G G of a ^-homoclinic trajectory a c P 
is the homology class of the curve 7 = ir(a) C M x T with cty C E. 

COROLLARY 3.3. For any geG there is C > 0 such that for any e, 8 > 0: 

(1) for z G T with probability 1 — £ (for all z if p, is ergodic) the trajectory 
z(t) G T has a 8-homoclinic a: [t(z), t(z) + T] —> P such that h(a) = g: 

(2) Hamilton's action of a is bounded by CJ£\ 
(3) if U is a neighborhood of E in M x T such that g has nonzero image in 

HX(M x T, U, Z), then n(a(t)) <£ U for some t G (t(z), t(z) + T). 

DEFINITION 3.3 (Birkhoff [2]). An orbit z(t) G P is semiasymptotic to an in
variant set T as t —• 00 if it is stable in Lagrange's sense, z(t) £ F, and every 
recurrent trajectory in the o;-limit set of z(t) is contained in F. The definitions 
of an orbit semiasymptotic to T as £ —• —oc is similar. We denote the unions of 
semiasymptotic and asymptotic orbits by W±(F) D WS,U(F), respectively. 

There are minimal measures with no semiasymptotic trajectories to their supports. 
For a natural system, every point in the minimizing set F = {V = h} supports a 
minimal measure, but asymptotic orbits may exist only for points in dF. 

THEOREM 3.3 [7]. Let F C P be a c-minimizing invariant set. Then 7r(I^±(r)) = 
M xT.IfF is strictly minimizing, then rr(Ws'u(F)) = M x T. 

If 7r(r) / M x T, this implies instability of F, but not of individual trajectories 
in T. For natural systems, Theorem 3.3 was established in [16]. 

THEOREM 3.4. Let F be a c-minimizing set and A a connected component of F 
such that G = HX(M x T,TT(A),Z) ^ 0. Then: 

(1) there exists an orbit semiasymptotic to A as t —> —oc and to F as t —> 00; 
(2) if F is strictly minimizing, the number of action minimizing homoclinics to 

F is at least 2(rank£i(M,7r(r), Z) + rank5 0 ( r ,Z) ) . 
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Theorems 3.3 and 3.4 follow from Theorem 3.1 and Corollary 3.3 in the limit 
8^0. 

For the existence of heteroclinic orbits connecting different minimizing sets 
Tc and rc_|_Aci additional assumptions are needed (for integrable systems, there are 
no such orbits). In [20], Mather suggested a generalization of Peierls's barrier in 
the Aubry-Mather theory to the multidimensional case. Let hc(x,y) = inf7 Jc(7), 
where 7: [0, a] —> M, a G Z, connects x and y, and Ic is a modified action for the 
calibrated Lagrangian Lc. The barrier function on M is Bc(x) = inf{hc(y,x) + 
hc(x, z) — hc(y, z), y, z G E°}. E° = Ec n {t = 0}. Then connection is possible for 
directions Ac G (ùfTifEg.R))-1- C HX(M.R). 

This barrier does not provide a possible direction for the case of Arnold's 
diffusion. However, if G ^ 0, one can construct a modified barrier closely related 
to the Poincaré-Melnikov-Arnold integral [1]. 

4 Hyperbolic minimizing sets 

If the minimizing set F is connected and M simply connected, some regularity 
assumptions arc needed for proving the existence of semihomoclinic orbits. The 
reason is that homoclinics cannot be obtained by minimizing the action functional 
and so we need a manifold structure on the function space. The following definition 
is inspired by the notion of a whiskered (or hyperbolic) torus [1, 13]. 

DEFINITION 4.1. An invariant manifold T C P is called whiskered if: 

(1) W*mU(F) C P are (ra + l)-dimensional submanifolds in P; 
(2) for any point z G T the tangent spaces to Wsu are direct sums TZW8*U = 

TZF © E*,u. where the vector bundles Es-U are ^'-invariant; 
(3) there exist a > ß > 0 such that 

\\dg±t(z)a<Ce^t\\Ç\\ forall CeE*z-\ t>0, 

| |d0*(z)Ç||<Ce*||Ç|| for all Ç G TZF, teR. 

THEOREM 4.1. Suppose that a minimizing set F = Fc is a whiskered manifold 
and it is isotropic (for example, carries a regular minimal measure). Then: 

(1) T has a semihomoclinic orbit. Moreover, the sets Wu fl W+ \ F and W~ PI 
W* \ F arc nonempty. Thus, Ws n W* \ F ± 0 and Wu n W* \ F ^ 0: 

(2) if F is strictly minimizing, then Wu C\ Ws \ F ^ 0. 

The actions of homoclinics in (2) are bounded by an a priori constant. If their num
ber is finite, there is an infinite number of multibump homoclinics. For transversal 
homoclinics, this was discovered by Poincaré and Birkhoff. See [10]-[12], [22], and 
the papers cited there for variational treatment of homoclinics to equilibria. A 
similar method applies in the present case. 

COROLLARY 4.1 [7]. If F is a minimizing whiskered invariant torus, then assertions 
of Theorem 4.1 hold. 

For T a contractible periodic orbit, this was proven in [5] (see also [16]). Homo
clinics to invariant tori can be studied by the same method [6]-[8]. 
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COROLLARY 4.2 [4]. Let the system be reversible. If the minimum of the function 
V on M, V(x) = I0' (gt(x,0,0)), is strict and nondegenerate, then the corre
sponding brake orbit has a homoclinic trajectory. If the minimum is only strict 
but 7Ti(M) ^ 0, there exists a set of generators of 7r\(M) containing homoclinic 
orbits. 

Locally a whiskered isotropic minimizing manifold F is strictly minimizing: it is 
given by (2.1), and E = 7r(r) is a nondegenerate critical manifold of zero index for 
/ . We perform the canonical transformation (2.2). In the new variables, F (Z {y = 
0} is a nondegenerate critical manifold of zero index for L and L\r = 0 . 

PROPOSITION 4 .1. There exist C > 0 and a neighborhood UofT, such that: 

(1) for any 8 > 0, F has a 8-homoclinic o: [a, 6] —> P with l\(v) < C; 
(2) 7r(a(t)) i U for some t G (a, 6); 
(3) let a = inf{t > a : n(a(t)) G dU}, ß = sup{t < 6 : 7r(a(t)) G dU}. 

Then dist(a(a), WU(F)) -» 0, dist(a(ß),Ws(F)) -> 0, and a - a -> oo, 
6 — ß —> oc, as 8 —> 0. 

This implies (1) of Theorem 4.1. Indeed, a(a) G P is uniformly bounded as 6 —» 0. 
Take a sequence £ —» 0 such that a(a) —• z G WU(F). By (3), the trajectory z(t) 
is asymptotic to F as t —> — oo, and it is semiasymptotic as t —> oc. 

PROPOSITION 4.2. There exists C > 0 such that for any h > 0 there is a trajectory 
a(t) = (q(t),p(t),t), a <t <b, such that: 

(1) q(a) G E a , q(b) G Eb, p(a)±Tq{a)Ea, p(b)±Tq{b)Zb; 
(2) H(a(a)) - {p(a),v(q(a),0,a)) = H(a(b)) - (p(b),v(q(b),0,b)) = h: 
(3) Ib

a(a)-rh(b-a)<C. 

Here E t = {x : (x,t) G E} C M. Proposition 4.1 can be deduced from Proposi
tion 4.2 by estimating the behavior of the solution a(t) of the Hamiltonian equa
tions near a whiskered manifold F [8]. 

Proof of Proposition 4-2. Define the function space ft as a submanifold in the 
Hilbert manifold Wx>2([0,1], M ) x T x R+: 

ft = {a; = ( 7 , a ,T) : 7(0) G E a , 7(1) G E a + T } . 

To each point o; G ft there corresponds a curve q: [a,b] —> M, q(t) = 7((t — a)/T), 
where a mod Z and 6 = a + T. If L G C2(TM x T) is quadratic in v for large \\v\\ 
(the general case is reduced to this one), the action functional 

Jo 
S(w) = Ib

a(q) = T / L(j(s), -y'(s)/T, a + sT) ds 
Jo 

is locally C 1 + L i p on ft. For any h > 0, set Sh = S -h hT. A point u; G ftc = {Sh < 
C} is a critical point of Sh iff the corresponding trajectory a(t) = (q(t),p(t),t), 
a < t < 6, satisfies Proposition 4.1. Thus, it is sufficient to prove that Sh has a 
critical point. Projections of trajectories in F form a manifold 

A = {u = (jx,a,T) G ft : -yx(s) = 7rM(gsT(x,0,a)), x G E a} 
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of trivial critical points of S, and S\\ = 0. It is easy to see that S has no other 
critical points. On the other hand, S h has no critical points in A. 

There exists a compact set K C ft noncontractible into A. Let C > max/*- S. 
Then K C ftc for small h > 0. The problem in proving that Sh has a critical 
point in ftc is loss of the Palais-Smale condition as T —> 0 and T —> co. For 
h > 0, the second problem is eliminated by the assumption min A = 0. Hence, Sh 
satisfies the Palais-Smale condition for T > d > 0. Because indp L = 0, for small 
d > 0 it is possible to construct a pseudogradient flow retracting ftcn{T < d} onto 
An{T < d}. The proof is completed by combining the gradient and pseudogradient 
flows [8]. D 

If there is a family {r c} of whiskered strictly minimizing manifolds, and the number 
of homoclinics in ftc is finite, one can use the methods of [10]-[12], [22] to construct 
connecting orbits. 

5 Perturbations of invariant Lagrangian manifolds 

Under certain twist conditions, exact symplectic maps are Poincaré maps of pos
itive definite Hamiltonian systems [21]. Let JV2m be a symplectic manifold and 
g: N —> N a symplectic map having a compact invariant Lagrangian manifold 
Mm C N. Let g\M be quasiperiodic with frequency vector UJ G T n , n < ra. Thus, 
9ÌM = fui where / : T n x M —> M is a free group action of T n on M. We may 
assume that UJ is nonresonant: (UJ, k) £ Z for all k G Zn \ {0}. If this is not so, then 
Q\M is quasiperiodic with frequency vector in T n _ r , where r is multiplicity of the 
resonance. 

Because M is Lagrangian, its neighborhood U in N can be identified with a 
neighborhood of M in T*M{x,y}. For any x G M, the Hessian of the generating 
function S on U (defined by dS = g*(y,dx) — (y,dx)) gives a quadratic function 
K on T*M. Let K be the average over the Tn-action on T*M: 

K= f KofjdO. 

The quadratic form K on T*M is invariantly defined. The twist condition is that 
M is positively definite: K(x,y) is positive definite in y for all x G M. Let || • || 
be the corresponding Riemannian metric on M. 

EXAMPLE 5.1. INTEGRABLE MAP. Let N = T m x Rm{x,y} with standard sym
plectic structure and g(x,y) = (x + Q{y),y). Let M = T m x {y} be a resonant 
invariant torus: A = {k G Zn : (ft(î/), k) G Z} is an Abelian group of rank ra — n. 
Then g\M is quasiperiodic with frequency UJ G T n and M is positively definite 
iff the symmetric matrix Qy is positive definite. Invariant tori Mj with resonance 
group A are parametrized by the action variable J G D C Rn (momentum of the 
Tn-action on T m producing the foliation (x, k) = const, k G A). 

Consider a C1-small exact symplectic perturbation gs eC2(N x [0,£o],iV) of the 
map g. Let SE be the generating function. We set V = —dSs/d£\£=o and define 
the Poincaré function V as the average of V\M over the Tn-action. Suppose that 
maximum h of V on M/Tn is strict and set r 0 = {x G Ä/ : V(x) = h}. Let 
i: r 0 -> M be the inclusion and E = r i / ^ A L R ) C Rn = Hl(F0,R). 
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THEOREM 5.1 [7]. For any C > 0 and all sufficiently small e > 0 there exists 
8 —• +0 as e —> 0 such that: 

(1) for any I e E such that \I\ < Ce, the map g£ has a compact invariant set 

r = r 7 C {(x,y) :xeB, \\y\\2 < 2emax(h - V) + o(e82)}, 

where B = {x G M : dist(x, F0) < 8}; 
(2) for any x G M there exists y G T*M such that the orbit g£(x,y) is semi

asymptotic to F in W£ = {(x,y) : \\y\\2 < 2£maxM(h - V) + o(e)}: 
(3) if G = Hi (M, To, Z) ^ 0, then F has not less than 2 rank G semihomoclinic 

orbits in W. 

If F j is an invariant torus close to r 0 , then J is its action variable. The sets Fj are 
c-minimizing with I = i*c for an appropriate Hamiltonian system. If E = Rn , for 
any C and small e there exist at least n -f-1 points 4 G Rn , | 4 | < Cs, such that 
the sets Fik support invariant minimal measures with strictly extremal rotation 
vectors 0(\/Ë)-ciose to i*uj, and so they are strictly ergodic [17]. Theorem 5.1 can 
be reduced to Theorem 3.4 by using Delaunay's method [8]. Mather [19] proved 
the existence of F (I) for m = n and Diophantine UJ. 

COROLLARY 5.1. For an exact perturbation of a completely integrable positive 
definite symplectic map and given resonance group of rank m — n, to any I G D C 
Rn there corresponds an invariant set Fj in an o(yfe)-neighborhood of Mi and at 
least 2(ra — n) semihomoclinic orbits. 

Now let g£ G Coc(N x [0,£Q],N), UJ G T n Diophantine, and maximum of V on 
Af/Tn nondegenerate. Then one of the sets Fj is a whiskered torus. 

THEOREM 5.2 [7]. For sufficiently small e > 0: 

(1) g£ has an n-dimensional whiskered torus F£ with rotation vector UJ: 
(2) Fe smoothly depends on e and WS,U(F£) on y/e; 
(3) ifi* is surjective, then -K(WS,U) = M, where TT is the projection, and; 
(4) r £ has a homoclinic orbit in the 0(y/e)-neighborhood W£ of M: 
(5) if G =£ 0, then F£ has at least 2 rank G minimizing homoclinics. 

Statements (1) and (2) are a KAM-typc result proved under slightly different 
assumptions in [13], [23]. The rest can be deduced from Theorem 4.1 [8]. If ho
moclinics in (4) and (5) are isolated, there are an infinite number of multibump 
homoclinics. For a perturbation of an integrable map, 2(m—n) homoclinics in (5), if 
isolated, form a basis for Arnold's diffusion of the action I e D [1], [9]. In Arnold's 
example, all sets Fj are whiskered tori. Recently Bessi treated this example by 
variational methods. In general, there are gaps in D corresponding to minimizing 
sets Tj. Establishing Arnold's diffusion requires computation of the barrier func
tion for Fi. When the Poincaré-Melnikov-Arnold integral method works [1], the 
barrier can be estimated. However, in Arnold's diffusion case we are stuck with 
a problem of exponentially small intersection angles, which presents great diffi
culties even for a standard map. For a simpler analogous problem, diffusion was 
established in [9]. 
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ABSTRACT. We consider the concepts of rotation number and rotation vector for 
area preserving diffeomorphisms of surfaces and their applications. In the case that 
the surface is an annulus A the rotation number for a point x £ A represents an 
average rate at which the iterates of x rotate around the annulus. More generally 
the rotation vector takes values in the one-dimensional homology of the surface and 
represents the average "homological motion" of an orbit. 

There arc two main results. The first is that if 0 is in the interior of the 
convex hull of the recurrent rotation vectors for an area preserving diffeomorphism 
/ isotopie to the identity, then / has a fixed point of positive index. The second 
result asserts that if / has a vanishing mean rotation vector, then / has a fixed 
point of positive index. 

Applications include the result that an area preserving diffeomorphism of A 
that has at least one periodic point must in fact have infinitely many interior periodic 
points. This is a key step in the proof of the theorem that every smooth Riemannian 
metric on S2 has infinitely many distinct closed geodesies. Another application is 
a new proof of the Arnold conjecture for area preserving diffeomorphisms of closed 
oriented surfaces. 

In this article we consider area preserving diffeomorphisms of compact surfaces. 
We are concerned with "rotation vectors" defined in terms of homology that can 
be associated to the points of the surface. Two main results are announced. The 
first is that if / is an area preserving diffeomorphism of a compact surface that is 
homotopic to the identity and 0 is in the interior of the convex hull of the rotation 
vectors of / , then / has a fixed point of positive index. The second result concerns 
the mean rotation vector of / . It asserts that if this vector vanishes then / has 
a fixed point of positive index. An expanded version of these results including 
detailed proofs will appear in [4]. 

A special case of this second result — when the surface in question is a surface 
of genus zero — was proved in [3]. This result provided a key ingredient in the 
proof that any Riemannian metric on S2 has infinitely many closed geodesies. 

There arc several applications of these results including a new proof of the 
Arnold conjecture for area preserving diffeomorphisms of compact surfaces. 
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1 Homological Rotation Vectors 

The idea of rotation number for homeomorphisms of the circle or annulus goes back 
at least to Poincaré. The idea of an analogous concept with values in homology 
can be traced back at least to Schwartzman [6]. 

Homological rotation vectors have subsequently been considered by many 
authors. In particular for surfaces of genus zero results similar to those below were 
given in [3]. We also consider the "mean rotation vector" for an invariant measure 
/i that can be expressed as the integral of the rotation vectors of points with respect 
to /i (see (1.3) below). 

We are interested in investigating the existence of periodic orbits for area 
preserving diffeomorphisms on a surface. We will consider a compact surface M 
and focus on the case where the diffeomorphism f : M —> M is isotopie to the 
identity, and M has negative Euler characteristic. We begin by formulating a 
definition of "homological rotation vector" for such a diffeomorphism / : M —> M. 

We fix a metric on M of constant negative curvature. We assume that each 
boundary component is a geodesic. Even more, we assume that one can form M by 
taking a convex geodesic polygon in hyperbolic space and making identifications 
of some of the edges. 

Pick a base point òo in the interior of the polygon whose sides are identified 
to form M. We want to define a function 7 that assigns to each x G M a geodesic 
segment j x in M from òo to x, in such a way that the correspondence x —• 7X 

is measurable. We do this using the fact that M is a convex geodesic polygon in 
hyperbolic space with some edges identified, and with 60 in its interior. We then 
let 7X be the unique geodesic segment from ÒQ to x if x is in the interior of this 
polygon. For each pair of edges that are identified we pick one and choose j x be 
the unique geodesic segment from òo to x that, when lifted back to the polygon, 
ends on the chosen edge. 

Let ft(x) be a homotopy from fo = id: M —> M to /1 = / . Because the 
Euler characteristic of M is negative ft is unique up to homotopy. This means 
that if gt is another homotopy with go = id and g\ = / , then there is a homotopy 
from ft to gt, i.e. a map H : M x [0,1] x [0,1] -> M such that H(x,t,0) = ft(x) 
and H(x,t, 1) = gt(x). 

For any point x e M we want to construct a path in M from x to fn(x) 
and then form a loop with the segments 7X and 7/n(x). To do this we observe 
that if 7T : M —> M is the universal covering space of M, there is a canonical lift 
of / to a diffeomorphism F : M —• M; namely, F is that lift obtained by lifting 
the homotopy ft from the identity to / to form a homotopy on M starting at 
the identity on M. The other end of this homotopy is then defined to be F. The 
uniqueness of ft up to homotopy implies that F does not depend on the choice of 
homotopy from the identity to / . F is the unique lift whose extension to the ideal 
points at infinity of M has all those points as fixed points. 

Consider the path a(n,x) from x to fn(x) in M that is given by 

o ( n . x ) ( t ) = / ? ( i ) . 
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Again the homotopy class of this path relative to its endpoints is independent of 
the choice of the homotopy ft because of the uniqueness (up to homotopy) of this 
homotopy. 

For each x G M let hn(x,f) be the closed loop based at òo formed by the 
concatenation of ^x, the path a(n,x) in M from x to fn(x) and 7/n(x) traversed 
backwards. If the diffeomorphism / is clear from the context, we will abbreviate 
hn(x,f) to hn(x). 

Note that if * denotes concatenation of based loops then hn(x) *hrn(f
n(x)) is 

homotopic to hn+m(x). We will denote by [ftn(a;)] the homology class in Hi(M,R) 
of the loop hn(x). Note that [hn+.m(x)] = [hn(x)] + [hm(fn(x))\. We can now 
formulate the definition of homology rotation vector. 

(1.1) DEFINITION. Let M be a compact surface that has negative Euler character
istic and may have nonempty boundary. Suppose f : M —> M is a diffeomorphism 
that is isotopie to the identity map. The homological rotation vector of x G M is 
an element of Hi(M,R) denoted lZ(x,f), and is defined as 

nxJ)= iimlM£ll 
n—>oc n 

if this limit exists. 

Let fi be a smooth /-invariant measure on M. The homology classes [h\ (x)] G 
Hi(M,M) depend measurably on x. In fact there is a closed set of measure zero in 
M (consisting of the "edges" of the polygon and their inverse images under / ) on 
the complement of which the function [fti(^)] is locally constant. 

(1.2) LEMMA. If f : M —> M is as in (1.1) and f preserves the smooth measure 
fi then the function [hi(x)] defìned on M with values in Hi(M,R) is bounded and 
fi measurable, hence integrable. 

The Birkhoff ergodic theorem asserts that lZ(x, f) is a //-measurable function 
of x and that 

fn(x,f)dfi=f[h1(x,f)]dfi. 

(1.3) DEFINITION. Let M bea compact surface with negative Euler characteristic. 
Suppose f : M —» M is a diffeomorphism of the surface M that is isotopie to the 
identity map and preserves a measure fi. The mean rotation vector of f is an 
element of Hi(M,R) denoted TZß(f), and is defined as 

nß(f) = Jn( x, f) dfi. 

A key property of the mean rotation vector is that it is a homomorphism from 
the group of//-invariant diffeomorphisms isotopie to the identity to Hi(M,R). The 
proof of this fact is really just the change of variables formula for integration. 
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(1.4) PROPOSITION. Suppose f and g arc diffeomorphisms of the compact surface 
M that are isotopie to the identity and preserve a smooth measure fi. Then 

The Poincaré recurrence theorem implies that the set of recurrent points in 
M has full measure. Thus, the set of points for which lZ(x,f) exists and that is 
recurrent under / has full measure. Moreover, any rotation vector is essentially a 
convex combination of rotation vectors of a set of recurrent points as the following 
proposition shows. 

(1.5) PROPOSITION. Let x be a point for which the limit U(x,f) G Hi(M,R) 
exists and let e > 0 be arbitrary. Then there are points yi, 0 < i < n, in the set of 
f recurrent points with the property that 7£(y7;,/) exists and there are rationals 
Ci such that 

n(x,f)-^2cin(yi,f) 
2=0 

< e. 

2 Handel's Fixed Point Theorem 

Ultimately our aim is to prove the existence of fixed points. The tool we use for 
this purpose is a beautiful result of Handel on fixed points of homeomorphisms 
of the disk. In our application the disk in question will be the compactification of 
the universal covering space of a surface. We proceed with a statement of Handel's 
result. 

Suppose that h : D —* D is an orientation preserving homeomorphism of the 
disk D = B2 . We are interested in the orbits of points whose alpha and omega 
limit sets each consist of single (but distinct) points in dD. Given two such points 
x,y G D we will say that their orbits orb(x) and orb(y) are linked provided the 
points a(y) and w(y) separate the points a(x),uj(x) in dD, or equivalently if the 
straight line segments from a(x) to LJ(X) and from a(y) to uj(y) intersect in a single 
interior point of D. 

We say that orbits orb(xi), 1 < i < n, form an oriented cycle of links if there 
is an oriented polygon in the interior of D whose iih side is a segment of the line 
segment from a(xi) to UJ(Xì) and the orientation of this side is consistent with the 
orientation of this line segment from a(xi) to LJ(Xì). 

(2.1) THEOREM [5]. Suppose h is a homeomorphism of B 2 . If there arc points 
Xi G B2 whose orbits form an oriented cycle of links, then h has a fixed point in 
the interior of B2 . 

It seems likely that a slightly stronger conclusion to this theorem is valid, 
namely that there exists an interior fixed point of positive index. This stronger 
conclusion is important for most of our applications. Although this conclusion is 
not known to hold in general, it does hold in the special setting where we wish to 
apply it. This result is also due to Handel. 
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Suppose / : M —> M is a diffeomorphism of a compact surface with negative 
Euler characteristic and / is isotopie to the identity. It is possible and convenient 
to provide M with a metric of constant negative curvature with each boundary 
component being a geodesic. Let M denote the universal covering space of M and 
let C(M) denote the circle or Cantor set of "points at infinity" of M, which can be 
added to M to compactify it. We think of M as a convex subset of the hyperbolic 
disk and C(M) as a Cantor set in the boundary circle of the hyperbolic disk or 
the entire boundary if M has no boundary components. 

If F : M —• M is the lift of / obtained from lifting the homotopy of / to the 
identity, then F extends to C(M) by setting F(z) = z for all z G C(M). If x G M 
is not a periodic point of F, but -K(X) G M is periodic, then it is not difficult to 
see that a(x, F) and u)(x, F) are each a single point in C(M) and these points are 
distinct. 

Indeed, one can find these points as follows: if n(x) has period n, let 7 be the 
loop from -K(X) to itself traced by 7r(x) under the homotopy of fn to the identity 
that is the nth iterate of the homotopy from / to the identity. The curve 7 cannot 
be null homotopic because that would imply that x is periodic under F. Let 70 be 
the closed geodesic in M freely homotopic to 7 and given the same orientation as 
7. If T is the lift of 7 that starts at x, then there is a lift To of 70 that is a uniformly 
bounded distance from T. The curve TQ is then a geodesic in the hyperbolic plane 
that has its ends at a(x,F) and u)(x, F) in C(M). 

The setting in which we will apply Handel's fixed point theorem is this: the 
disk D we consider is AIUC(M), and the points X{ whose orbits form the oriented 
cycle of links will all have the property that Tt(xi) is a periodic point of / . 

(2.2) PROPOSITION (HANDEL) . Suppose f : M -+ M is a diffeomorphism ho
motopic to the identity where M is a surface of finite type with negative Euler 
characteristic. Let F be the canonical lift of f to the universal covering space M. 
Suppose that there are points X\,X2*. • • .#/c G M whose orbits form an oriented 
cycle of links for F and such that each n(xi) is a periodic point of f in the interior 
ofM. Then F has a fixed point in the interior ofM. If the fixed points of F project 
to a finite set in M, then F has a fixed point of positive index. 

3 The Convex Hull of the Rotation Set 

We can now state the first of our two main results. 

(3.1) THEOREM. Let M be a compact orientable surface with negative Euler 
characteristic. Suppose f : M —• M is a diffeomorphism of the surface M that is 
isotopie to the identity map and preserves a smooth probability measure fi and 
has at most finitely many interior fixed points. If 0 is in the interior of the convex 
hull of the rotation set 71(f) = UlZ(x,f), then f has an interior fixed point of 
positive index. In fact, the canonical lift of f to its universal cover F : M —> M 
has an interior fixed point that is of positive index. 

The idea of the proof is to use the hypothesis about 0 being in the interior 
of the convex hull of the rotation set to construct a finite collection of "periodic 
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^-chains" for / with special properties. An element of this collection is a sequence 
x\,x2,... ,xn = x\ with the property that for a small C° perturbation of / it 
will actually be a periodic orbit. In fact, the perturbation can be constructed 
simultaneously for all the ^-chains in the collection. Moreover, this can be done 
with a perturbation sufficiently small that the perturbed diffeomorphism g has 
precisely the same fixed points as / and agrees with / on a neighborhood of this 
fixed point set. 

There is one additional property of this construction. For each of the g peri
odic orbits made from periodic ^-chains for / we can form a loop from x\ to itself 
traced by x\ under the homotopy of gn to the identity that is the nth iterate of 
the homotopy from g to the identity (n is the period of the point x\). In this way 
we form a closed loop jj for g periodic orbit. The final property required of this 
construction is that there are positive integers a7 such that 

$^ f l j [ 7 j ]=0 , 

where [~fj] G Hi(M) is the integral homology class determined by jj. 
To complete the proof one shows that this last condition implies that if G : 

M —> M is the canonical lift of g to the universal covering space of M, then there 
are lifts of the g periodic orbits on M to orbits of G that satisfy the hypothesis of 
Handel's result (2.2). It follows that G (and hence g) has a fixed point of positive 
index and as / and g agree on a neighborhood of their common fixed point set, 
the same is true of / . 

The proof of the following result is similar to that of (3.1). The hypothesis 
that the mean rotation vector is zero is adequate to show that 0 is in the interior 
of the convex hull of rotation vectors of diffeomorphisms in an arbitrarily small 
C° neighborhood of / , and this is adequate to carry out the proof much as before. 

(3.2) THEOREM. Suppose M is an oriented compact surface with negative Euler 
characteristic and f : M —> M is a diffeomorphism isotopie to the identity that 
preserves the smooth measure fi and has 7£;i(/) = 0. Then there is an interior 
fixed point of f that has positive index and that lifts to a fixed point of F the 
canonical lift of f to the universal covering space M. 

4 Applications 

A heuristic guiding the study of area preserving diffeomorphisms, especially exact 
symplectic diffeomorphisms, is that they should have properties like the time one 
map of the flow associated with an autonomous Hamiltonian vector field. In par
ticular we might hope to find estimates on the number and nature of fixed points 
based on the analogous results for critical points of smooth functions (the Hamil
tonian function). The following result, sometimes called the Arnold conjecture, 
was proved by Floer [2] and Sikorav [7]. 

(4.1) THEOREM. Suppose M is a compact oriented surface with nonpositive Euler 
characteristic and without boundary and suppose f : M —> M is a diffeomorphism 
isotopie to the identity that preserves the smooth measure fi and has IZti(f) = 0. 
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Then f has at least three distinct fixed points. If f has finitely many fixed points, 
then at least two of them have positive index. 

Sketch of Proof. Clearly we need only consider the case when / has finitely many 
fixed points. We sketch the case when the Euler characteristic of M is negative. 
By Theorem (3.1) above there is a fixed point z of positive index. The fact that 
z comes from the fixed point of the canonical lift of / to the universal cover M 
implies that / is isotopie to the identity relative to z. 

Let Àr denote M with the fixed point z blown up. Then there is a natural 
identification of Hi (N, R) with Hi (M, R) induced by the obvious map from N to 
M. Clearly, if /o : N —> N is the blown up version of / , then for any x G int(N) 
for which 1Z(x,f) is defined wre have lZ(x,f) = lZ(x,fo). Thus, 7iM(/o) = 0 and 
/o satisfies the hypothesis of (3.1). It follows that /o has an interior fixed point 
of positive index and hence / has two fixed points of positive index. Because the 
Euler characteristic of M is less than or equal to zero, there must also be a fixed 
point of / of negative index, making at least three fixed points. D 

Another way in which the heuristic mentioned above guides us is by suggest
ing that if a diffeomorphism of a surface has some number of fixed points that are 
like minima for a Hamiltonian function, then there must another fixed point that 
is like a maximum. In some circumstances this is the case. Suppose we are given an 
area preserving diffeomorphism / : M —> M and a finite set of fixed points P such 
that / is homotopic to the identity on M \ P. If the Euler characteristic of M \ P 
is negative and we "blow up" the points of P, replacing each p with a boundary 
component Cp, then the homological rotation number is defined for each point in 
the boundary of the resulting surface. 

In particular if this rotation vector is not zero, we have a well-defined notion of 
"which way" each boundary component is rotating compared with the orientation 
that boundary component inherits from M. We will say that a fixed point p G P 
is of minimum type (respectively maximum type ) provided lZ(z, f) is a positive 
(respectively negative) multiple of [Cp] for z G Cp, where the orientation of Cp is 
that induced from an orientation of M. 

(4.2) THEOREM. Suppose f : S2 —• S2 is an area preserving diffeomorphism that 
has a finite fixed point set consisting of at least three points. If P = {pi,P2, ••, 
Pm}, rn > 1, is a set of fixed points each of which is of minimum type, then f has 
two additional fixed points not in P, whose indices have opposite sign. If all the 
fixed points of f are generic, there is one of maximum type. 

As a final application of the results in Section 3 we cite the following result 
from [3]. 

(4.3) THEOREM. Suppose f : A —• A is an area preserving diffeomorphism of 
the closed annulus that is isotopie to the identity. If f has at least one periodic 
point (which may be on the boundary), then f must have infinitely many interior 
periodic points. 
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We note that the result published in [3] claims this theorem for homeomor
phisms (as opposed to diffeomorphisms) and for the open annulus. However, the 
proof given there is not valid in this generality. 

The idea of the proof of this result as a consequence of (3.2) is not difficult. 
This theorem is true for / if and only if it is true for some iterate of / . Thus in 
a proof by contradiction we may replace / by an iterate and assume that / has 
finitely many interior periodic points, all fixed. 

Blowing up all these fixed points we obtain a diffeomorphism /o : Mo —> 
MQ of a compact surface MQ of genus zero and negative Euler characteristic. An 
argument using Thurston's classification theorem for surface homeomorphisms and 
the Poincaré-Birkhoff theorem shows that if /o is not isotopie to the identity, then it 
must have infinitely many periodic points contradicting our assumption. Assuming 
that /o is isotopie to the identity we consider the mean rotation vector IZfl(fo). 
If this is nonzero, then an argument appealing again to the Poincaré-Birkhoff 
theorem shows that /o has infinitely many periodic points. On the other hand 
if TZß(fo) = 0, then Theorem (3.2) above implies the existence of an additional 
interior fixed point. So in either case we contradict the assumption that the finitely 
many periodic points of M have all been blown up. 

This theorem supplies one important ingredient in the proof of the following 
result (see [1]). 

(4.4) THEOREM. Suppose S2 is equipped with an arbitrary smooth Riemannian 
metric. Then there are infinitely many closed geodesies for this metric that arc 
distinct as point sets. 
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In this paper I would like to explain certain nonlinear hyperbolic systems of equa
tions and the questions that are raised when one tries to understand the behavior 
of their solutions. In each case I will consider the simplest possible problem in 
order to demonstrate the main ideas. 

Consider a map 

z(x) : R x R2 i—^ D c C , (1) 

where D is a subset of the complex plane with a conformai metric on it given by 
g(z, z)dzdz, where g is the conformai factor. One can also think of D as a Riemann 
surface. The underlying space is R x R2 and is equipped with a Minkowski metric 
rfu = d i a g ( - l , l , l ) . I will use the notation c^ = rfiUdv with fi,v = 0,1,2 to 
raise indices and summation over repeated indices is implied. Later I will identify 
x° = t with the time variable and write x = (xl,x2) for the space variables when 
the situation calls for it. Now consider the Lagrangian 

£{z,z) = \ [ {g(z,z)dßzd^z}dx. (2) 

A formal calculation of the derivative £ = 0 gives a system of equations 

Dz - (— log(g(z,z)))d^^z = 0, (3) 

where D = —dßd
ß = d2 — Ax is the D'Alembertian with respect to the metric 

rfy. Because the Lagrangian in (2) is translation invariant equations (3) preserve 
an integral called energy, i.e. 

E(t)= [ \g(z,z)[\Vz\2 + \zt\
2]dx (4) 

is independent of time, E(t) = E(0), for all t. This is a fundamental property 
of equations (3). 

*) Research supported by a PYI and a Sloan Fellowship. 
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Performing an analytic change of variables z = f(w) changes the conformai 
factor 

g(z,z)^g(f(w)J(w))\f'(w)\2 (5) 

but does not change the nature of the equations. The relevant quantity is the 
curvature of the target surface given by 

| | l o g ( 9 ) = -i»C9 (6, 

where /C =1 , 0, -1 is the curvature and gives respectively a sphere, a flat plane, 
and a hyperbolic plane. The nature of the nonlinear terms in equations (3) should 
depend only on the curvature; in particular /C = 0 gives the linear wave equation. 
It is natural to try to understand how the curvature affects the nonlinear terms. 
For this purpose let me rewrite the metric in local coordinates as follows: 

ds2 = dp2-rf2(p)d02, (7) 

where dp is the radial infinitesimal distance and dO is the angular infinitesimal 
increase; f(p) = sinp, p, sinh/o; correspond to the sphere, the flat plane, and the 
hyperbolic plane respectively. The Lagrangian in these coordinates is 

£(P, Ö) = \ I [drpPp + f{p)d»0d»0] dx. (8) 

The rigid motions of the target manifold generate three divergence-free vector 
fields, namely 

^ = /2(p)oM0, 
UJ2 = cos Odpp - f(p)f'(p) sin 0dßO, (9) 

u* = sin Odpp + f(p)f(p) cos ea^O, 

so that 

Now call 

then 

where 

(9a) 

w„ = dßz + igdzDzu^, (10) 

fyw0-" = 

z = pe», 

0, a = 1,2,3. 

w« = "l + *"$ 

Mf'(p)-p 
PP(P) 

From (10) we get the system of equations for z 

9ip) = JKH,!ÀZ~- <1 0 a> 

Dz - idll(g{\z\)zuju>1) = 0, (11a) 

d^u1'" = 0. ( l ib) 
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The energy is now given by the conserved integral 

\ I {\Vz\2 + \zt\
2 + (f2(p)-p2)(02 + \v8\2)}dx. 

Notice that f2(p) - p2 > 0 if f(p) = sinh^, i.e. JC = - 1 , whereas f2(p) - p2 < 0 
if f(p) = snip, i.e. /C = 1. If we set z = u1 + iu2, equations (11) have the general 
form 

Dua + A%7(u)l(uß,u^) = 0, a, ß, 7 = 1,2, (12) 

where Aß(u) are given functions of z = u1 + iu2 and 

l(uß,u*) = diAußffAulf. (12a) 

Equations (11) are of critical type; this means that the nonlinear terms in the equa
tion are as strong as the linear estimates available. This poses certain interesting 
questions about the possible linear estimates that we will discuss later. 

There are certain reasonable conjectures that can made about the equations 
(3) or (11). 

CONJECTURE 1 If /C = 1, i.e. the surface is the sphere, then solutions blow up if 
the initial energy £(0) is sufficiently large. 

CONJECTURE 2 If /C = — 1, i.e. the target surface is the hyperbolic plane, then 
solutions are regular provided that the initial data are smooth. 

CONJECTURE 3 If /C = ± 1 , i.e. there is no restriction on the target surface, then 
solutions are regular provided that the initial energy is sufficiently small and the 
initial data smooth. 

There are certain special cases that have already been answered. Write z = 
pe%e. Assuming radial symmetry, i.e. z(t,r) with r = \x\, then Conjecture 2 is 
true. This is a remarkable result due to Christodoulou and Tahvildar-Zadeh [3]. 
Assuming corotational symmetry, i.e. p(t, r) and 9 = k(p with (t, x) = (t, r, </?) and 
fceZ. then Conjecture 2 is true, see [7], [17], [16]. Conjecture 1 is open even in 
the simple corotational case. 

Despite some success there is still no general method of attack for equations 
(12), however there is a related critical equation namely 

Du-ru5 = 0, (t,x) G M x M 2 (I) 

for which regularity was proved recently, see [22], [5], [6], [16], [11] that can help 
to motivate a method of attack. The proof of (I) is based on two ingredients. First 
one shows, using energy estimates, that the nonlinear part of the energy, namely 

/ 
u dx, 

does not concentrate in an appropriate sense, then this information is used in 
certain space-time estimates due to Strichartz and Littman with further improve
ments and generalizations, see [4], [13], [9], [21], [10], to prove that u G L8(R4). 
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This is the crucial step, further regularity can be shown by a simple bootstrap 
argument. 

The space-time estimate in 2+1 dimensions can be stated as follows. Consider 
the equation 

f Du = f. (t.x) G R x M 2 , 
s (13) 
\ u(0,x) = iiQn ut(0,x)=ui, x G R, 

then 

\\DiuWmw) < J\\f(t-)\\L2 dt+ \\Vu0\\L2 + ||tii||L2. (13a) 

There is a tradeoff in the above estimate where only half a derivative is estimated 
in L6 over the space-time. This should be compared with the standard energy 
estimate, which is 

sup | | Z ? U ( V ) | | L ' ( R ' ) < / ||/(«,-)l|L>A+l|Vtio||L> + l|wi||L>- (14) 
0<t<T JO 

To complement the above, Harmse [9] proved that the estimate 

\\Du\\LP < C||Dtx||Lp 

cannot be true if p ^ 2. However the energy estimate can be improved in some 
sense. Part of what follows has been determined in collaboration with Fang. Con
sider the equation 

f (D + m2)u = 0, (t, x) G R x R2, 

1 u(0, x)=0, ut (0, x) = / , xeR, 

and the quantity 

e(t)= (j \Vu2\2dx\ , (15) 

then 
| | e | | 6 m o <C | | / | | l 2 , (16) 

where bmo is an appropriate local version of BAIO. The appearance of the mass 
term in the equation is only for technical reasons. The problem with estimates like 
(13a) is that they cannot handle equations (12). Consider the caricature equation 

Uu=l(u,u). (17) 

The right-hand side of inequality (13a) is of the form 

/ 
||Z(u,'u)||L2(R2)dt, 

file:////DiuWmw
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which cannot be balanced with the left-hand side of the inequality. However in
equality (13a) is not optimal; in particular the right-hand side of (13a) can be 
improved. Take the Fourier transform in space-time variables for the equation 

Uu = f, 

which gives 

m2-r2)û=f. 
This calculation is only formal but it motivates the correct idea. First notice that 

\tf-T2 = m + \T\m\-\r\). 

A more careful calculation shows that at the expense of making the estimates local 
in time we can replace 

l€l-M~IKI-M| + i. 

Next, let me call 

D = |f| + M, A = | | Ç | - | r | | + 1, Q = DA, (18) 

then formally we have the estimate 

\\DÌQÌu\\L2 < | | - / r | |L2. 
As 

Unfortunately the above estimate is only formal. A direct but lengthy calculation 
shows that (13) can be estimated by 

i A D%f 
\\D*Q w||L2(R3) < H ç ï Z X I I L ^ ) + | |uo| |Hi-j + Kl l t f f , (19) 

where 
x 1 + 6 

A = —-— and e > 0. 

Estimate (19) has the disadvantage that À > ^ but the right-hand side is 
better because 

D* _ Dì 

The idea now is to try to estimate the solutions in the norm 

Ne(u) = ||£>iAAû|U2(R3) ; A = ^ y £ (20) 

and this will be possible if we manage to balance the right-hand side with Ne(u). 
For simplicity consider only the caricature equation (17). We would like to show 
that 

II^^Z^uJH^^JV;2^). (20a) 
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The crucial observation here, due to Bourgain [1], is that 

l(u,u) =Du2 -2-uDu, 

hence, if I denote by D = |£|2 — r2 , 

l(u, u) = Ùû *û — 2û* Dû. (21) 

Observe that 

hence the first term in (21) will give the estimate 

\\D^QX(Û * Û)||L2 < \\DïQXU\\2
L2. (22) 

Estimate (22) is not optimal, if we call 

M^(u) = \\Dx^X^Lû\\L2 ; 6<e, 

then a better estimate holds, namely 

\\DÏQxtû*û)\\L2 < Ne(u)MEì6(u). (22a) 

There is a good reason why estimate (22) is correct, one can show easily that 

IMIc« < Ne(u), 

hence u is bounded, which seems to be the crucial information. In other words, if 
u G Ce then u2 G Cf. On the other hand, the NQ(U) norm only implies that u is 
in every IP space and at best can be in BAIO, but then a2 is not necessarily in 
BAIO. To handle the second term in (21) consider an arbitrary function h(t,x) 
and use a duality argument 

I~ DÌ ~ \ I 1 x D Ds - \ 

(h, ^ ( û * Dû) J = (DiCfû, ^ ( û * ö^h)j . 
Because 

D _ Ql~x 

DÏQX ~ D? ' 

it is enough to show that 

\\^(à*-^h)\\L, < Ne(u)\\h\\L>. (23) 

This inequality is subtler than (22) but still not optimal, it also has the advantage 
that it can be used to handle equations of the form 

Dix = g(u)l(u,u). 
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In any case, combining the estimates in (22) and (23) gives an estimate of the form 

iV£(u)<Ar£
2(tx) + |KIIH l- f+ll«i l |Hf , 

hence if the term HuoH -̂n-f + llwi||#§ ^s small then Ne(u) < 1. This is the cru
cial step; further regularity can be obtained by differentiating equation (17) and 
applying the same estimates. Call v = du any derivative, then 

Uv = l(v,u) 

and estimate (19) gives 

Ne(v)<\\^ì(u,v)\\L2+C. (24) 

In a similar manner we want the estimate 

Di -
-l(u,u)\\L2<Ne(u)Ne(v), I 'Ql-A 

which however is the same estimate as (20a). Now inequality (24) becomes 

Ne{v)<N£(u)Ne(v) + C, 

which will give Ne(v) bounded because Ne(u) < 1. Notice that the estimates are 
not optimal and there is room for some improvement; however it seems impossible 
to have the estimates that we want if e = 0, i.e. A = | . So far we have ignored 
the special structure of the equations (11). It is possible that the estimates are 
correct if we know a priori that u is continuous which seems to be the critical 
barrier to overcome. Estimates similar to (22), (23) have been recently obtained 
by Klainerman and Machedon in 3 + 1 dimensions [12]. 
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ABSTRACT. Consider closed Riemannian manifolds with negative sectional curva
ture. There are three natural dynamics associated with the Riemannian structure: 
the geodesic flow on the unit tangent bundle, the dynamics of the invariant foliations 
of the geodesic flow, and the Brownian motion on the universal cover of the manifold. 
These dynamics define global asymptotic objects such as growth rates or measures 
at infinity. For locally symmetric negatively curved spaces, these objects are easy 
to compute and to describe. In this paper, we survey some of their properties and 
relations in the general case. 

1 Measures at infinity 

Let (AI, g) be a closed Riemannian manifold with negative sectional curvature and 
let 7T : (M,g) —> (M,g) be the universal cover of M, endowed with the canonically 
lifted metric g. The space (M, g) is a simply connected Riemannian manifold with 
negative curvature; in particular, the space (AI,g) is a Hadamard manifold and 
the geometric boundary dM is defined as the space of ends of geodesies (see e.g. 
[BGS]). The geometric boundary dM is homeomorphic to a sphere. For any x in 
M write rx for the homeomorphism between the unit sphere SxAI_ja the tangent 
space at x and dM defined by associating to a unit vector v in SXAI the end rx(v) 
of the geodesic av starting at v. In this section are defined natural families of finite 
positive measures on the boundary indexed by x, x G M. 

(a) Lebesgue visibility measures. Let Â  denote the image measure under rx of 
the Lebesgue measure on the unit sphere SXAI. It follows from [A], [ASi] that for 
x and y in M, the measures Xx and Xy have the same negligible sets and that the 
density -^ admits a (Holder) continuous version on dM (the metric on dM will 
be recalled below). Write A for the common measure class of the \x,x G M. 

(b) Harmonic measures. Let A be the Laplace-Beltrami operator on C2-functions 
on AI, A = div grad. A function u on M is called harmonic if Au = 0. The 
Dirichlet problem is solvable on MUdAI ([An], [S]): let / be a continuous function 
on dAI; there is a unique harmonic function Uf on M such that for all £ in dM, 
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lim Uf(z) = /(£)• For any x in AI, the mapping / —> uj(x) defines a probability 

measure u)x on dM. The measure UJX is called the harmonie measure of the point 
x. For x and y in AI, the measures c^ and u)y have the same negligible sets and the 
density -^f- admits a Holder continuous version on dM called the Poisson kernel 
and denoted k(x,y, •) ([ASn], [Aa]). Write UJ for the common measure class of the 
ux,x G AI. 

(c) Margulis-Patterson measures. For two points (£, r]) in dAI, and x in A/, define 
the Gromov product (Ç, 77)x by: 

(£, 77)* = lim - (d(x, y) + d(z, z) - d(y, z)) 

z^ri 

(see e.g. [GH]). Set dx(Ç,rj) = exp— (£,rj)x and define balls, spherical Hausdorff 
measures, and spherical Hausdorff dimension as if dx was a distance on dAI (in 
fact, there is a> 0 so that d£ is a distance on dAI). Let H be the spherical 
Hausdorff dimension of dAI. The spherical i/-Hausdorff measure vx is positive 
and finite and the measure vx is called the Margulis-Patterson measure of the 
point x. For x, y in M, the measures vx and vy have the same negligible sets. 

Recall that for x in AI, £ in dAI, the Busemann function bx^ is a function 
on AI defined by 

bxAv) = } i m d(y:av(t)) - t , 

where av is the geodesic in AI starting at v = r~1^. Then the density -^- is given 
by 

^L(t)=exp-HbX£(y). 

Write v for the common measure class of the vx,x Ç. AI. The construction of this 
measure is essentially given in [M2]. The presentation and the properties given 
here are derived from [HI], [Ka3], and [L3]. 

(d) General properties. Let 7 be an isometry of AI. Then the action of 7 extends 
to dAI and to measures on dAI. By naturality for fi = A, UJ, or v. 

ß-yx = Ifßx • 

For ji = \,LJ, or v, define a positive Radon measure fi on SAI by setting 

/ 
dffi= I I / ^f(rx^)dfix(0 dvol (x) 

dM J 

for any continuous function / on SAI with compact support. The measure fi is 
invariant under the action of 7, and therefore defines a finite positive measure fi 
on the quotient space SAI. 
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In the case when M is a symmetric space of negative curvature, there is a 
compact group Kx of isometries of M that fixes x and acts transitively on dAI. Let 
rnx be the unique i^-invariant probability measure on dAI. It follows from the 
above invariance relation that if (Al.g) is locally symmetric there are constants 
a, b such that for all x in M 

a\x =u)x = bvx = mx . 

Conversely, assume that there is a constant a, b, or c such that one of the 
following equalities of measures holds for all x in M: 

aXx = UJX, bux = u)x or cXx = vx . 

Then the space (M,g) is locally symmetric. In order to prove this result, set 
for x in AI and £ in dAI : 

B(x,Ç) = Ay bXÂ (y)\y=x , 

and observe that cither hypothesis implies that B is constant ([L3], [Y]). A key 
result is that the function B is constant if and only if the space (M, g) is locally 
symmetric. This is immediate in dimension 2 and can be checked directly in di
mension 3 (see e.g. [Kn]). In higher dimensions, the proof combines results from 
[FL], [BFL], and [BCG]. This result is used in the other characterizations of locally 
symmetric spaces that are given below. 

2 Geodesic flow 

The geodesic flow (0t)teR 1S a one-parameter group of diffeomorphisms of the unit 
tangent bundle SAI, defined as follows: for v in SAI, write {av(t),t G R} for the 
unit-speed geodesic starting at v. Then for any real t, 9tv is the speed vector of 
the geodesic a at av(t). A flot (Ot)teR *s called Anosov if there exist a metric || || 
on TSAI, numbers C > 0 and \ < 1? a n d a Whitney decomposition of TSM as 
gss 0 ßuu 0 jix, where X is the vector field generating the flow and for v in 
Ess,t > 0, \\D0tv\\ < Cx'IMI, for v in Euu,t > 0, ||Dfl-ft;|| < C**||v||. 

Because of negative curvature, the geodesic flow is Anosov ([A]). 

(a) Topological entropy. The number H is the topological entropy of the geodesic 
flow ([B]). There is a function c on M such that, uniformly on AI, 

lim exp(-HR) vol B(x,R) = c(nx), 

where B(x,R) is the ball of radius R about x in (Al.g) and vol B(x,R) its Rie
mannian volume ([Ml]). Because c(itx) is proportional to vx(dAI), the function c 
is C°°. The function c is in general not constant ([Kn]). 
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(b) Metric entropy. The measure Ä is the Liouville measure; it is finite and 
invariant under the geodesic flow. Write h\ for the Kolmogorov-Sinai entropy of 
the system 

{SM-jàiis'):hi=iM (sœ[ASil)' 
From [LY] it follows that h\ is the Hausdorff dimension of the A measure class on 
dM, i.e. 

hx = inf {Hausdorff dimension (A) : A C dAI, X(A) > 0} . 

From the variational principle ([BR]) it follows that h\ < H with equality if 
and only if the measure classes A and v coincide. In dimension 2, h\ = H if and 
only if the curvature is constant ([KI]). In higher dimensions, the entropy rigidity 
problem is whether h\ = H if and only if the space (AI, g) is locally symmetric. 

(c) Regularity of the stable direction. In general, the distribution Es = Ess © 
KX is only Holder continuous. If the distribution is C2 , then h\ = H ([H5]). If 
the distribution is Cx, then the space (AI,g) is locally symmetric (this follows 
again from [BFL] and [BCG]). The properties are more precise in the case of 
surfaces: the distribution Es in C1 ([Ho]), even C1+A* ([HK]). If the distribution 
is C1+°(s ' l logsl), then it is Cx ([HK]) and the curvature is constant ([Gh]). This 
discussion is a particular case of the analogous discussion for general Anosov flows 
(see [Gh], [BFL], [H4], and [¥)). 

3 Brownian motion on M 

Recall that A is the Laplace-Beltrami operator on AI and write p(t,x,y) for 
the fundamental solution of the equation ^ = Au. The properties below reflect 
asymptotic properties of the Brownian motion on AI. 

(a) Growth rates. There is a positive number £ such that, for all x in AI, 

£ = lim - / d(x,y)p(t,x,y)d\o\ (y) 
t-*00 * JM 

(see [Gu]) and £ is given by £ = j,g?v/x ([Kal]). There is another positive number 

h such that for all x in AI. 

h = lim - - / p(t, .x, y) log p(t, x, y) dvol (y) 
f^x * JM 

([Kal]). Finally denote 6 the spectral gap of A: 

S = inf - J 7 A / r f v o l 
fecUÂi) ÏPdvol 
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(b) Relations. The following inequalities hold: 

(1) h < £H with equality if and only if the measure classes u and v coincide 
([L2]), 

(2) £2 < h with equality if and only if the space (AI, g) is locally symmetric 
([Kal]), and 

(3) 4(5 < h with equality if and onlv if the space (AI. g) is locally symmetric 
(M). 

Observe that other sharp inequalities can be directly derived from the above three: 

£ < H, h< H2, or 46 < H2 . 

Let m be the only 0-invariant probability measure on SM such that, if m 
denotes the isometry^invariant extension of m to SAI, the projection of rn by 
r = {TX, x G M} on dM belongs to the o;-class ([L2], see also [H2], [Ka3]). Then h/£ 
is the Kolmogorov-Sinai entropy of the system (SAI, rn: 6\) and also the Hausdorff 
dimension of the measure class UJ. The first relation follows from the variational 
principle for the geodesic flow. The proof of the other two relations is based on an 
integral formula satisfied by the measure Q. 

(c) Measure rigidity. The question again arises as to whether measure classes at 
infinity can coincide with UJ only when the space (AI,g) is locally symmetric. In 
dimension 2, the curvature is constant if and only if the measure classes UJ and A 
coincide ([K2], [Ll]) or if and only if the measure classes UJ and v coincide ([L3], 
[H3]). Observe that this problem makes sense for other objects such as graphs. 
There are examples of finite graphs that are neither homogeneous nor bipartite, 
but such that some pair of natural measures at infinity has the same negligible 
sets [Ls]. 

4 Invariant foliations 

Recall that the distribution Ess is continuous in TSAI and that it admits integral 
manifolds WHS defined by 

Wss(v) = {w: firn d(0tv,6tw)=0} 

(see [A]). 
The Wss form a continuous foliation with smooth leaves and there is a natural 

metric on the leaves, lifted from the metric g on M through the canonical projec
tion. Let A s s be the Laplace-Beltrami operator along the leaves Wss. Then, for any 
continuous function / on SAI, which is C2 along the Wss leaves, J Ass f dv = 0. 

The measure v is — up to multiplication by a constant factor — the unique 
measure with that property (the proof of this uses results from [Ka2] and [BM]). 
The measure vjv(SM) can also be seen as the limit of averages on large spheres 

in SM ([Kn]). In particular H = LSK^ • 
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(a) Stable foliation. The manifolds Ws given by Ws(v) = \J 9tW
ss(v) form a 

continuous foliation, with smooth leaves and with TW8 = Es. Consider again the 
metric on the leaves lifted from the metric g on AI, and let A s be the corresponding 
Laplace-Beltrami operator. The measure UJ is — up to multiplication by a constant 
factor — the unique measure on SAI satisfying J Asf dû = 0 for any continuous 
/ , which is C2 along the Ws leaves ([G]). 
_ For^a continuous function / on SAI write / for the continuous function on 
M x dAI given by 

f(x,t)=f-7T(x,T-1t). 

Then for t > 0, there is a function Qtf on SM such that: 

OTf (*,0 = Jp{t,x,y) f(y,0 dvol (y) . 

The operator Qt is the leafwise heat operator Qt = exp t As. 
There is a Holder norm | | on functions on SAI with the following property: 

there are C > 0 and \ < 1 s u c h that for a l l t > 0 any function / on SAI: 

Qtf-ïm 
w J vol M 

< c x* l/l 

([L5]). 
From this follow asymptotic properties of the Brownian motion on AI and a 

decomposition theorem for closed regular leafwise 1-forms ([L6]). As a consequence 
define for s G R the function ip(s) by 

ip(s) = lim - log max / p(t.x,y) ks(x,y.£) dvol (y) . 
t^oc t (x,0 J 

The function ip is convex and analytic in a neighborhood of 0. The space 
(M,g) is locally symmetric if and only if p(s) = as(s — 1) for some constant a (in 
fact a is then the common value of £2, H2, h, or 4Ä) or if and only if we have 

2ip'(0) + tp"(0)=0. 
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1 Introduction 

1.1. Overview. We will describe recent developments in several intimately related 
problems of complex and real one-dimensional dynamics: rigidity of polynomials 
and local connectivity of the Mandelbrot set, measure of Julia sets, and attractors 
of quasi-quadratic maps. A combinatorial basis for this study is provided by the 
Yoccoz puzzle. The main problem is to understand the geometry of the puzzle. 
Our main geometric result is that in the quadratic case its principal moduli grow 
linearly. Renormalization ideas are strongly involved in the discussion. The inter
play between real and complex dynamics enlightens both. In the end we will briefly 
discuss a new geometric object which can be associated to a rational function, a 
hyperbolic orbifold 3-lamination. 

1.2. Polynomial dynamics: Definitions and notation. For the reader's convenience 
and to fix the notations we will give here the definitions of some basic objects in 
holomporphic dynamics. 

Let P(z) = zd + a\zd~x + . . . + a^ be a monic polynomial of degree d > 2, 
and Pn its n-fold iterate. The basin of oc is the set of points escaping to oo: 
D(oo) = {z : Pnz —> oc}. The filled Julia set is its complement: K(P) = C\D(oc). 
The Julia set J(P) is the common boundary of D(oo) and K(P). 

The Julia set (and the filled Julia set) is connected if and only if none of 
the critical points escapes to oo. In this case there is a unique conformai map 
R : D(oo) —• {z : \z\ > 1}, normalized by R(z) ~ z as z —> oo. Note that 
Ro P o R~l : z i—• zd. The external rays and equipotentials of P are defined 
as the Ä-preimages of the straight rays {ret0 : 1 < r < oo} and round circles 
{reie : 0 < 0 < 2n}. 

A polynomial P is called hyperbolic if the orbits of all critical points converge 
to attracting cycles in C or oc. It is called postcritically finite if the orbits of all 
critical points are finite. 

Two polynomials P\ and P2 are called topologically (conformally, quasi-con-
formally) conjugate if there is a homeomorphism (conformai isomorphism, quasi
conformal map correspondingly) h : C —• C such that Pi = h~l o P2 o h. 

2 Rigidity Conjecture 

2.1. Our main object will be the quadratic family Pc : z H-> z2 + c, c G C. A 
key problem in the modern holomorphic dynamics is to classify quadratics up to 
topological conjugacy. Here is the main conjecture. 
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QUADRATIC RIGIDITY CONJECTURE. Any nonhyperbolic quadratic polynomial P& 
is not conjugate to any other quadratic polynomial Pc. 

Let us look closer at the meaning of this conjecture from the point of view of 
the bifurcation diagram in the parameter plane. The Mandelbrot set AI is defined 
as the set of c for wThich the Julia set J(PC) is connected. A component H of 
int Ä/ is called hyperbolic if it is filled with hyperbolic quadratics. The hyperbolic 
component contains one special point c#, its center, where the critical point is 
periodic. The Rigidity Conjecture would assert that the Mandelbrot set splits into 
the following topological classes: hyperbolic components of int AI punctured at 
their centers, and single points. 

A possible nonhyperbolic component Q of int AI is called "queer". It is still 
true that all polynomials within Q are topologically conjugate (see [LO], [MSS]). 
So the Rigidity Conjecture would imply absence of queer components, and hence 
density of hyperbolic maps in the quadratic family. This conjecture is a special 
case of the so-called Fatou Conjecture (see [F], p. 73, and discussion in [McM3]). 

QUADRATIC FATOU CONJECTURE. Hyperbolic polynomials are dense in the 
quadratic family. 

There is another famous conjecture due to Douady and Hubbard: 

MLC CONJECTURE. The Alandelbrot set is locally connected. 

It turns out to be true, though not at all obvious, that this conjecture is stronger 
than both of the above (compare [DH1]). So we have the following implications: 

MLC Conjecture => Rigidity Conjecture => Fatou Conjecture. 
Though the Rigidity Conjecture is formally weaker than MLC, so far progress 

has been made simultanuously in both by means of the same ideas and methods (at 
least, outside the boundaries of the hyperbolic components). On the other hand, 
there is an ergodic approach to the Fatou Conjecture that may settle it before the 
other two (see [MSS], [McM2]). 

2.2. Copies of the Mandelbrot set and Douady-Hubbard renormalization. The 
Mandelbrot set contains many "little copies of itself canonically homeomorphic 
to the whole set AI but different from M (see [DH1], [D], [Ml]). Each copy arises 
from a hyperbolic component H of AI. A map Pc (and the corresponding parameter 
value) is called Douady-Hubbard (DH) renormalizable if c belongs to a little copy 
of the Mandelbrot set (we will sometimes say just "renormalizable" if it cannot be 
confused with a generalized notion from 3.6). If there are two nested Mandelbrot 
copies containing c, then c is twice renormalizable, etc. In particular, we can classify 
the quadratics as finitely or infinitely DH renormalizable. 

A copy AI' is called maximal if it is not contained in any other copy. Let M 
denote the set of all maximal copies of M, and let a : U A / ' ^ X A/' —* &I be the map 
whose restriction onto any copy AI' E M is the canonical homeomorpism onto 
AI. To any infinitely renormalizable c G AI we can associate its DH combinatorial 
type. This is a sequence r(c) = [A/1.Ä/2....] of maximal copies AIn G M, defined 
by an(c) E AIn. Moreover, any such sequence is realized for some parameter value. 

In 3.4 we will make clear the dynamical meaning of DH renormalization. 
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2.3. Rigidity theorems. Let us start with a rigidity result that marked the beginning 
of a new stage in the field (and resolved a problem of monotonicity of topological 
entropy in the quadratic family, see [MT, Section 13], [DH3]). We will specify it 
for the quadratic family. 

THEOREM 2.1 (THURSTON). Any postcritically finite quadratic is rigid. 

The next breakthrough was made in the work of Branner and Hubbard on cubic 
maps with one escaping critical point [BH], and Yoccoz's work on quadratics (see 
the discussion in [H], [L3] and [M2]). Again we will state only the quadratic result. 

THEOREM 2.2 (Yoccoz) . Any quadratic polynomial Pc that is at most finitely 
renormalizable and has no attracting periodic points in the finite plane is rigid. 
Moreover, MLC holds at c. 

(Note that quadratics with attracting periodic point are hyperbolic.) The following 
result of the author settles many infinitely renormalizable cases: 

THEOREM 2.3 [L4]. There is a family S C M of maximal Mandelbrot copies such 
that if r(c) = [Mi, M2,...] with Mn G S then Pc is rigid. Moreover, MLC holds 
at c. 

This family S is specified by a property of sufficiently high combinatorial height 
(see Section 3 for the definition). This condition becomes especially efficient on the 
real line, since it can be complemented by the following rigidity result of Sullivan 
(see [S] and [MvS]). 

THEOREM 2.4 (SULLIVAN). Let e E R be an infinitely renormalizable parameter 
value, T(C) = [Mo, Mi , . . . ] with all AIn selected from a finite family of maximal 
copies of AI. Then Pc is rigid on the real line. 

Combining the methods of Theorem 2.3 and Theorem 2.4 we obtain the following. 

COROLLARY 2.5. Any nonhyperbolic real quadratic polynomial is rigid on the real 
line. 

It follows that hyperbolic maps are dense on the real line. This result had been 
earlier announced by Swiatek [Sw], who approached it from the real point of view. 
A related rigidity result was also proven by McMullen (see [McM2]). The latter 
one asserts that any real non-hyperbolic quadratic polynomial is quasi-conformally 
rigid (that is, the quasi-conformai class of such a map consists of this map only). 

Let us note that the main content of Theorem 2.3 is the so-called complex a 
priori bounds, which yield much more than rigidity. We will discuss these issues 
later on. 

3 Combinatorial framework 

3.1. DH polynomial-like maps. Let U' and U be two topological disks with cl Uf C 
U, and / : U' —> U be a holomorphic branched covering map. Such a map is called 
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DH polynomial-like map. It is called DH quadratic-like if deg / = 2. In this case 
we always put the critical point of / at the origin 0. 

One can naturally define the filled Julia set of a polynomial-like map as the 
set of nonescaping points: K(f) = {z : fnz E U' : n = 0 ,1 , . . . } . The Julia set is 
defined as J(f) = dK(f). These sets are connected if and only if all critical points 
are nonescaping, that is, belong to K(f). 

Actually one should view a polynomial-like map as a germ near its filled 
Julia set, so that the choice of the U' and U is not canonical. Given a polynomial
like map / : U' —• U, we can consider a fundamental annulus A = Uf\U. Let 
mod(/) = sup mod A, where A runs over all fundamental annuii of / . The control 
of moduli of appropriate polynomial-like maps is a key issue of the renormalization 
theory (see [S], [McM2]). 

If there is a quasi-conformal conjugacy h between two polynomial-like maps 
/ and g (near the filled Julia sets), with dh = 0 almost everywhere on the filled 
Julia set K(f), then / and g are called hybrid equivalent. A hybrid class H(f) is 
the space of maps hybrid equivalent to / modulo conformai equivalence. According 
to Sullivan, H(f) should be viewed as an infinitely dimensional Teichmüller space. 
In contrast with the classical Teichmüller theory this space has a preferred point: 
Any hybrid class of polynomial-like maps with connected Julia set contains a unique 
polynomial of the same degree (Straightening Theorem [DH2]). In particular, the 
hybrid classes of quadratic-like maps z i—> z2 + c arc labeled by the points c = 
c(f) E M of the Mandelbrot set. 

Given a DH polynomial-like map with connected Julia set, we can define 
external rays and equipotentials near the filled Julia set by choosing some hybrid 
conjugacy to a polynomial (of course these curves are not uniquely defined). 

3.2. Limbs. Let Pc be a quadratic polynomial with both fixed points being repelling, 
and let ac be the dividing fixed point, so that J(PC)\{&C} is disconnected. There 
are finitely many external rays Ri(ac) landing at ac, which arc cyclically permuted 
by Pc with combinatorial rotation number p(ac) = qc/pc ( s c e [H]). 

This rotation number can be easily read off from the position of c at the 
Mandelbrot set. Let b be the parabolic bifurcation point on the main cardioid of 
M where Pl(cib) = e2niq/p. The connected component of M\{ò}, which does not 
contain the origin, is called the primary limb Lb of AI with root at b. It turns 
out that if e E Lb then p(otc) = q/p. Similarly, given a hyperbolic component H 
attached to the main cardioid, we can consider secondary limbs Lb attached to H 
at bifurcation points b E dH. 

We refer to a truncated limb if we remove from it a neighborhood of its root. 

3.3. Yoccoz puzzle. Let J(PC) be connected with both fixed points being repelling. 
Let E be an equipotential of Pc. The rays Rf(a) landing at a cut the domain 
bounded by E into p closed topological disks Y^ , i = 0 , . . . ,p — 1, called puzzle 
pieces of zero depth. 

Let us define puzzle pieces Y^' of depth n as the connected components of 
/~ny f c . They form a finite tiling of the neighborhood of K(f) bounded by f~nE. 
For every depth there is one puzzle piece containing the critical point. It is called 
critical and is labeled as Y^ = Y0 . 
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The Yoccoz puzzle provides us with the Markov family of puzzle pieces to 
play with. There are several different ways to do this: by means of the Branner-
Hubbard tableaux [BH], or by means of the Yoccoz r-function (unpublished), or 
by means of the principal nest and generalized renormalization ([LM], [L1]-[L4]), 
as will be described below. 

3.4. Principal nest. Let us say that a map / = Pc is immediately DH renormalizable 
if the orbit of 0 does not escape Y^ under iterates of fp. In this case c belongs 
to a copy of M attached to the main cardioid. 

• \ V 

7° Vv°/ "\ 

Figure 1. Puzzle. 

If Pc is not immediately renormalizable, then there is a t such that ftp0 E Z, 
where Z is a noncritical puzzle piece of depth 1 attached to a' = — a (see Figure 
1). Then let us construct the (short) principal nest V1 DV2 D ... of puzzle pieces 
in the following way. 

Let t be the first moment when ftp0 E Z. Then let V° 3 0 be the pull-back of 
Z along the orbit {fn0}tQ)

i that is, the critical puzzle piece such that ftpV° = Z. 
Further, let us define Vn as the pull back of Vn~l corresponding to the first return 
of the critical point 0 back to int Vn. Then we have a double branched covering 
gn = fl(n) : Vn —• V n _ 1 , where l(n) is the corresponding return time. 

Let us call a return to level n — 1 centrai if gn0 E Vn. If we have several 
consequtive central returns, we refer to a central cascade of puzzle pieces. Let 
x ( / ) denote the number of noncentral levels in the principle nest. We call it the 
height of / . In other words, x(f) l8 the- number of different quadratic-like maps in 
the sequence gn (recall that we think of quadratic-like maps as germs, see Section 
3.1). The height is finite if and only if / is renormalizable. 
r Renormalizable maps can be easily recognized in terms of the principal nest. 
Namely, a map / is DH renormalizable if and only if it is either immediately 
renormalizable, or there is a level N such that the critical point 0 does not escape 
VN under iterates of ##• 

In the immediately renormalizable case a little enlargement U' D Y^ pro
vides us with a quadratic-like map fp : U' —• U with non-escaping critical point 
(compare [DH1], [M2]). When / is renormalizable, but not immediately, then 
gN ' VN —> V ^ - 1 is a quadratic-like map with non-escaping critical point. In 
both cases the corresponding quadratic-like map up to conformai equivalence is 
called the DH renormalization Rf of / . Note that the hybrid class of RPC is labeled 
by a(c) E M, where a is the map from Section 2.2. 
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Now we can study Rf by the same means as / : cut the Julia set by ex
ternal rays, consider the Yoccoz puzzle and the principle nest, etc. If Rf is also 
renormalizable, we will repeat the procedure, and so on. 

In such a way we obtain a sequence of renormalizations R^f and the corre
sponding principal nests of puzzle pieces: 

-v y ( m , l ) -^ y m , 0 -^ y m , l -^ -^ jrm,t(m) -^ u m , £ ( m ) + l -^ 

We truncate this nest at a DH renormalizable level. In the immediately renormal
izable case this nest is reduced to one piece ye™'1). In the finitely renormalizable 
case the nest corresponding to the last renormalization is infinite. 

Let A7™1 = vrrun-1\Vm>n denote the principal nest of annuii. 

3.5. Generalized polynomial-like maps. Let {Ui} be a finite or countable family of 
topological discs with disjoint interiors compactly contained in a topological disk 
U. We call a map g : UUi —> U a (generalized ) polynomial-like map if g : Ut —> U 
is a branched covering of finite degree which is univalent on all but finitely many 
Ui. The DH polynomial-like maps correspond to the case of a single disk UQ. All 
concepts introduced before for DH polynomial-like maps can be readily extended 
to the generalized situation: The filled Julia set K(g) is the set of all non-escaping 
points, the Julia set J(g) is its boundary, etc. Let us say that a polynomial-like 
map g is of finite type if its domain consists of finitely many disks Ui. 

GENERALIZED STRAIGHTENING THEOREM. Any polynomial-like map of finite 
type is hybrid equivalent to a polynomial with the same number of nonescaping 
critical points. 

Let us call a (generalized) polynomial-like map a (generalized) quadratic-like 
map if it has a single (and nondegenerate) critical point. In such a case we will 
always assume that 0 is the critical point, and label the discs Ui in such a way 
that UQ 3 0. 

3.6. Generalized renormalization. Philosophically the dynamical renormalization 
is the first return map to an appropriate piece of the space considered up to 
conjugacy. Let us make this precise in our quadratic-like setting. 

Let / : UUi —> U be a generalized quadratic-like map, and V 3 0 be a 
topological disk satisfying the following property: fn(dV) H V = 0, n = 1,2,... 
Then the first return map g : UVi —> V has the following structure: it is defined on 
a union of disjoint topological disks Vi compactly contained in V, and univalently 
maps all of them except the critical one onto V. The critical disk Vo (if it exists) is 
two-to-one mapped onto V. Moreover, if the orbit of 0 under iterates of / infinitely 
many times visits V then it is nonescaping under iterates of g. 

Let us restrict g on the union of domains Vi visited by the critical orbit. 
We call this map considered up to affine rescaling the generalized renormalization 
Tyf of / on the domain V. 

Let us define the n-fold generalized renormalization of a DH quadratic-like 
map / , Tnf = gn : UV^n —• Vn~l, as the generalized renormalization of / on the 
piece Vn~l of the principal nest. This sequence of renormalizations is our key to 
understanding geometry of the map. 
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3.7. Special families of Mandelbrot copies. Note that the height function x(Pc) 
is constant over any copy M' of the Mandelbrot set. So we can use the notation 
x(M') . Let S C M be a family of maximal copies of the Mandelbrot set. Let us 
call it special if it satisfies the following property: for any truncated secondary limb 
L there is a height \L such that S contains all copies M ' C L of the Mandelbrot 
set with x(M') > XL-

Let / be an infinitely DH renormalizable quadratic-like map with r(f) = 
[Mi,M 2 , . . . ] . Let us say that it is of «S-type if Mn E S, n = 0 , 1 , . . . 

4 Geometry of the puzzle 

The main geometric problem is to gain control of sizes and shapes of puzzle pieces. 
To this end we need to bound the moduli of the annuii An = V rn_1\V rn in the prin
cipal nest (we skip the first index m when we work within a fixed renormalization 
level). The following lemma allows us to begin. 

LEMMA 4.1 (INITIAL MODULUS). Let Pc be a quadratic polynomial with c ranging 
over a truncated secondary limb Ltr. Then mod(Al) > v > 0 with v depending 
only on Ltr. 

The rough reason is that configuration of external rays of Pc has bounded geometry 
when c ranges over a truncated limb. The next theorem is our main geometric result 
[L4]: 

THEOREM 4.2 (MODULI GROWTH). Let n(k) count the noncentral levels in the 
short principle nest. Then mod An(fc)+i > Ck, where C depends only on mod A\. 

The proof is based upon combinatorial and geometric analysis of the cascade of 
generalized renormalizations. The above two results yield the complex a priori 
bounds for maps of special type: 

THEOREM 4.3 (A PRIORI BOUNDS). There is a special family S of Mandelbrot 
copies with the following property. If P is an infinitely renormalizable quadratic 
polynomial of S-type, then mod(RnP) > /JL(S) > 0. 

Proof. Let us fix a big Q > 0. Let / be a quadratic-like map with r(f) = 
[Mo,Mi,. . .] , where the Mandelbrot copy Mn belongs to a truncated limb Ln. 
Assume m o d / > Q. By Lemma 4.1 the modulus of the first annulus in the long 
principal nest is definite: mod A0 '1 > C(Q)V(LQ) > 0. If the height of Mn is suf
ficiently big (depending on Ln), then by Theorem 4.2 the modulus of the last 
annulus yl0»*(0)+i of the short nest wall be at least Q. Hence mod(i?/) > Q, and 
we can repeat the argument. 

5 Rigidity and pullback argument 

Let us call two infinitely renormalizable polynomials combinatorially equivalent 
if they have the same type. The topological classes are clearly contained in the 
combinatorial ones. So the Rigidity Conjecture would follow if we knew that the 
combinatorial classes are single points (which is actually equivalent to MLC for 
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infinitely renormalizable quadratics). A well-known approach to this problem is 
based upon the following remark: if all polynomials within the combinatorial class 
Cb of Pb are quasi-conformally conjugate, then this class is reduced to a single point 
{b}. Indeed, combinatorial classes are clearly closed. On the other hand, quasi
conformal classes are open unless they are single points (by varying of Beltrami 
differentials). Hence Cb must be a single point. 

Let us have a finite family £ of truncated secondary limbs Lj. Denote by 
S(C, x) C M all Mandelbrot copies contained in ULi whose height is at least x-
The following result implies the Rigidity Theorem 2.3. 

THEOREM 5.1. There is a x depending on C such that any two quadratic-like maps 
f and f of the same S(C,x)~tyPe are quasi-conformally conjugate. 

The method we use for the proof is called "the pullback argument". The idea 
is to start with a qc map respecting some dynamical data, and then pull it back 
so that it will respect some new data on each step. In the end it becomes (with 
some luck) a qc conjugacy. This method originated in the works of Thurston (see 
[DH3]), McMullen (see [McMl], Prop. 8.1) and Sullivan (see [MvS]) (perhaps, it 
can actually be tracked further down, in the setting of Kleinian groups). Then 
it was developed in several other works, for more complicated combinatorics (see 
Kahn [K] and Swiatek [Sw]). In particular, using this method, Jeremy Kahn gave 
a new proof of the Yoccoz Rigidity Theorem 2.2. 

Our way is to pull back through the cascade of generalized renormalizations. 
The geometric bounds of the previous section are the crucial ingredients of the 
argument. The linear growth of moduli (Theorem 4.2) keeps the dilatation of 
pullbacks bounded until the next DH renormalization level, while complex a priori 
bounds (Theorem 4.3) allow us to penetrate through the next level. 

Another method to prove Theorem 2.3 is to transfer the geometric results of 
Section 4 into the parameter plane (in preparation). 

6 Real dynamics 

6.1. Scaling factors. A C3-map / : [—1,1] —> [—1.1] is called quasi-quadratic if 
it has a negative Schwarzian derivative and a single nondegenerate critical point. 
Assume that this map has a fixed point a with negative multiplier (otherwise it is 
dynamically trivial), and let a ' be the dynamically symmetric point: fa = fa'. Let 
IQ = [a, a'}. Assume also that the critical point is recurrent. Then we can consider 
the first return of the critical point to 1°, and pull 1° along the corresponding orbit. 
This gives us an interval I1 C 1°. Now we can consider the first return to J1 and the 
corresponding pullback. and so on. In such a way we construct the real counterpart 
of the principal nest: 1° D I1 D Moreover, all combinatorial notions such as 
central returns, DH renormalization, generalized renormalization, etc. are readily 
transferred to the real case (in the case of a real quadratic polynomial Pc, e E R 
they arc just the "real traces" of the corresponding complex notions). 

Let \J\ denote the length of an interval J. Let us define the scaling factors 
Xn as the ratios | I n | / | J ' l - 1 | . The real counterpart of Theorem 4.2 is the following 
result: 
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THEOREM 6.1 (GEOMETRY DECAYS). Let n(k) count noncentral returns in the 
principal nest. Then \n(k)+i < Cqh, where C > 0 and q < 1 depend only on the 
initial geometry of f. 

In the quadratic-like case this result follows from Theorem 4.2. In the DH 
nonrenormalizable case it was proven in [L2] by passing to limits of generalized 
renormalizations and proving that they are generalized quadratic-like maps. In 
general we prove Theorem 6.1 by extending / to the complex plane so that it is 
asymptotically conformai near the real line, and using the "quadratic-like" tech
nique with exponentially small errors [L5]. 

The first application of this geometric result was to the problem of attractors 
(see the next section). Other applications are to come. 

6.2. Fibonacci maps. These are important examples satisfying some extremal com
binatorial properties. Though they are nonrenormalizable in the usual sense, they 
can be treated as infinitely renormalizable in the generalized sense described above. 
The domains of these renormalizations Tnf = gn : VQ U V™ —> VQ~1 consist of 
two puzzle pieces on all levels. 

The geometric properties of quasi-quadratic Fibonacci maps from the renor
malization point of view were studied in [LM], where the following asymptotic 
formula for the scaling factors was proven: 

Au~<4)"/3, (6.1) 

and hence the geometry of the postcritical Cantor set LJ(0) is exponentially decay
ing. 

Let Td denote the class of 5-unimodal Fibonacci maps with critical point 0 
of type xd. In contrast with (6.1), the postcritical set of an / E T& has bounded 
geometry for d > 2: the scaling factors stay away from 1 and 0. In this case 
the renormalization approach and complex bounds of [LM], [L2] combined with 
Sullivan's [S] or McMullen's [McM4] arguments lead to the following result: 

THEOREM 6.3. Let d be an even integer. Then there is only one real Fibonacci 
polynomial x »—> xd + c of degree d (rigidity). If d > 2 then the generalized renor
malizations Tnf of any Fibonacci map f E J-a converge to a cycle of period two 
independent of the initial map f. 

Keller and Nowicki [KN] have studied the real geometry of the higher degree 
Fibonacci maps, and obtained the following bounds: 

C1/d<\n(f)<C2/d, (6.2) 

where the constants are universal in degree. So \ft is bounded from both sides 
uniformly on d. This indicates a possibility of a new universality phenomenon 
near the critical value: 

PROBLEM. Study the asymptotical shape of the puzzle pieces fVn as d —> oc. 
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Note that in the quadratic case the Fibonacci renormalization theory implies that 
the shape of high level puzzle pieces near the critical point imitates the filled Julia 
set of z »-• z2 — 1 [L5] (see Figure 2). 

Figure 2. A puzzle piece for the degree 2 Fibonacci map. 

7 Attractors and measure of the Julia set 

7.1. Quasi-quadratic case. Our first application of geometric Theorem 6.1 was the 
following result, which resolved Milnor's problem on attractors [M3] for quasi-
quadratic maps: 

THEOREM 7.1 [L2]. Let f : [—1,1] —> [—1,1] be a DE nonrenormalizable quasi-
quadratic map without attracting fixed points. Then UJ(X) = [/0, /20] for Lebesgue 
almost all x E [—1,1]. 

A theoretical alternative would be a "wild" Cantor attractor A = u;(0) attracting 
almost all x E [—1,1] (see [L3] for a survey on this problem, and Section 7.2 below). 

The complex counterpart of Theorem 7.1 is the following theorem by the 
author [Ll] and M. Shishikura (unpublished). The cubic case with one escaping 
critical point had been earlier treated by McMullen (see [BH]). 

THEOREM 7.2. If Pc is at most a finitely renormalizable quadratic polynomial 
without irrational neutral periodic points then mes J(PC) = 0. 

7.2. Higher degree Fibonacci maps. When the work [LM] on quasi-quadratic Fi
bonacci maps was done, the author suggested an approach to the problem of at
tractors and the measure problem for higher degree Fibonacci maps. It was based 
upon consideration of a random walk on the principal nest of annuii with transi
tion maps corresponding to the generalized renormalization. Drift to the left for 
this random walk corresponds to existence of a "wild" measure-theoretic attractor 
in the real setting, and positive measure of the Julia set in the complex setting. 

Together with F. Tangerman, the author carried out a computer experiment 
based on this random walk approach to figure out if there are fciwild attractors" 
in higher degrees. The experiment gave the positive answer already for degree 6. 
Recently this method has been carried out rigorously: 

THEOREM 7.3 [BKNS]. If d is sufficiently big, then any Fibonacci map f E Td 
has a Cantor attractor: UJ(X) = UJ(0) for Lebesgue almost all x (even though this 
map is topologically transitive on [/0, f20\). 
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A similar experiment in the complex plane carried out jointly with S. Sutherland 
has recently shown positive measure of the Julia set for the degree 32 Fibonacci 
map. Nowicki and van Strien have proven this as a rigorous result: 

THEOREM 7.4 [SN]. The Fibonacci polynomial z \-> zd + c of sufficiently high 
degree has a Julia set of positive measure. 

The experiment and the proof are based upon the same random walk idea and 
the Fibonacci renormalization theory (Theorem 6.3). The amazing new geometric 
ingredient of [SN] is a rigorous analysis of the sizes and shapes of the puzzle pieces 
of the principal nest (compare Figure 3). 

Figure 3. Pricipal nest for the degree 6 Fibonacci map. 

PROBLEM. Prove that there is a critical exponent 6 such that Fibonacci maps 
of power higher than 8 have a Cantor attractor, whereas those of smaller degree 
do not. Prove the same result for the measure of the Julia set (with a different 
exponent). 

There is a remarkable connection between the problem of measure of the 
Julia set and the rigidity problem. Namely: If the Julia set J(f) has zero measure 
then f is quasi-conformally rigid [MSS]. Theorems 6.3 and 7.4 show, however, that 
these problems are not equivalent. 

8 Rigidity and hyperbolic orbifold 3-laminations 

A great insight in the theory of Kleinian groups comes from the third dimension 
(see [Th]), which allowrs one to relate hyperbolic geometry to the action at infin
ity. This gives powerful tools for the rigidity problems and the Ahlfors measure 
problem. So far nothing like this has appeared in holomorphic dynamics (though 
3D analogy plays an important role in the work of McMullen, see [McM4]). Yair 
Minsky and the author have recently made an attempt to fill in this gap [LMin]. 
It was inspired by Sullivan's work on Riemann surface laminations which play the 
role of Riemann surfaces associated to Kleinian groups (see [MvS], [S]). 

Let me briefly outline our construction. Let / be a rational function. Consider 
the natural extension / : A// —• A/}, where A// is the space of backward orbits of 
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/ . This space contains a regular part 71 f tha t is decomposed into a union of 
ieaves with a natural conformai structure. All these leaves are either hyperbolic or 
parabolic planes. 

T Y P E P R O B L E M . Are there hyperbolic leaves except Siegel disks and Herman 
rings? 

Parabolic leaves are conformally equivalent to C, and hence bear an intrinsic 
affine structure preserved by dynamics. Unfortunately, this structure is not nec
essarily continuous in the transversal direction. To make it continuous one should 
strengthen the topology of IZf. To get a reasonable object one then should com
plete Hf. This procedure adds some singular leaves, with orbifold affine structure. 
An object tha t we build in such a way can be called an affine orbifold lamination. 

The next step is to at tach hyperbolic orbifold 3-leaves to these affine 2-
leaves. This gives us a hyperbolic orbifold 3-lamination Hf. The map / can be 
extended to this space as hyperbolic isometries on the leaves, and it acts properly 
discontinuously on Hf. The final step is to take the quotient Hf/f. This hyperbolic 
orbifold 3-lamination is our candidate for a role similar to tha t which hyperbolic 
3-manifolds play in the theory of Kleinian groups. 

Having such an object in hand, we can define its convex core. A map / is 
called convex cocompact if this convex hull is compact. 

T H E O R E M 8 .1 . Let f be a postcritically finite rational function. Then the hyper
bolic orbifold 3-lamination Hf/f is convex cocompact. 

This leads to a three-dimensional proof of the Thurston Rigidity Theorem 2.1, 
which follows the same lines as the proof of the Mostow rigidity theorem, with the 
substitution of "lamination" for "manifold". 

Acknowledgement. I thank John Milnor and Curt McMullen for many useful com
ments on the manuscript. I also thank Scott Sutherland and Brian Yarrington for 
making the computer pictures. 
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Introduction 

Our subject will be minimizing measures of Lagrangian dynamical systems. This 
is a class of invariant probabilities ß of the flow generated by the Euler-Lagrange 
equation associated to a periodic Lagrangian on a closed manifold, selected by the 
property of minimizing the /x-average of the Lagrangian among all the invariant 
probabilities with a given asymptotic cycle (in the sense of Schwartzmann [S]). 
This concept was introduced by Mather [Ma 2] in a successful attempt to produce 
an analog of the Aubry-Mather theory for systems with more than one degree of 
freedom. His results on minimizing measures, when applied to periodic Lagrangians 
on the circle, recover the main results of the Aubry-Mather theory of twist maps. 
The main concepts and results of Mather's work will be recalled below. 

Our objective is to show, through properties proved in [M 2], that the theory 
of minimizing measures becomes substantially sharper when restricted to generic 
Lagrangians; where genericity will be understood in a natural way to be defined in 
the next section. On the other hand, while producing new and stronger results, the 
generic viewpoint raises many interesting questions that seem beyond the range 
of the techniques employed in [M 2]. Some of them will be posed below; chosen to 
exhibit the most visible aspects of the incompleteness of our knowledge on which 
the ultimate sharpening possibilities of the generic approach really are. 

I Minimizing Measures 

Let M be a closed Riemannian manifold. By a Lagrangian on M we shall mean 
a Cx function L: TM x R —> R, periodic (say of period 1) in the time variable, 
such that the second derivative of its restriction to the fibers TXM is uniformly 
positive definite. In fact the weaker hypothesis required in [Ma 2] would suffice. 
Such a Lagrangian generates a flow ipt:TAI x S 1 ^ - 1 (where S1 = R/Z) defined by: 

9t(E 0 ) V0, t0) = (x(t + t0), x(t + t0), (t + t0)mod Z) 

where x: R —• AI is the solution of the Euler-Lagrange equation associated to L, 
with x(t0) = x0, x(t0) = v0. 
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Let M*(L) be the set of (^-invariant probabilities with compact support. To 
each ß € M*(L) we associate its action SL( / ì ) defined by: 

SL(ii)= j Ldß 

and its homology (or asymptotic cycle; [S], [Ma 2]) p(p) defined by satisfying: 

<M5P(^)) = j wdp 

for every closed 1-form u) on AI. It always exists, is unique, and p:M*(L) —» 
i/i(Af,R) is surjective [Ma 2]. 

DEFINITION A minimizing measure of L is a /i G M*(L) such that: 

SL(fi) = mm{SL(v)/v G M*(L),p(v) = p(p)}. 

For every 7 E #i(Af,R), the set .M7(L) of /i G «M*(Zr) with p(/n) = 7 is 
nonempty [Ma 2]. 

The action function of L, /?£,: H\(AI, R) —> R, is defined by: 

/3L(7) = mm{SL(v)/v G M*{L),p(v) = 7}. 

This is a convex and superlinear function [Ma 2], and there exist interesting con
nections between the convex theoretical properties of PL at a point 7 and the dy
namical properties of measures in M1(L). For instance, if 7 is an extremal point 
of 3L (i.e. (7, ÄL(7)) is an extremal point of the epigraph of 3L) then M-y(L) 
contains ergodic elements, and if 7 is a strictly extremal point of 3L (i-e. if there 
exists a hyperplane in Hi(AI,R) x R touching the graph of 0L at (7, ,3L(I))) then 
M-y(L) contains measures supported in minimal sets [M 2], [Ma 2]. For properties 
concerning the vertex and smoothness of 3L , see [Ma 1] and [D]. 

Now we can introduce and exemplify the generic viewpoint. Let C°°(AI x S 1 ) 
be the space of Cx functions on M x S1 endowed with the C°° topology. We 
say that a property holds for generic Lagrangians (or generically) if given any 
Lagrangian L there exists a residual subset A C Coc(M x S1) such that the 
property holds for every Lagrangian of the form L0-\-^, with ip G A. 

THEOREM 1.1. [M 2]. Generically, the set Ext(L) of extremal points of ß^ contains 
a residual subset A C Ext(L) such that if 7 G A, Af7(L) consists of a single 
measure that moreover is uniquely ergodic and its support is the limit in the 
Hausdorff metric of a sequence of periodic orbits. 

Observe that Ext(L) is always a Baire set, i.e. its residual subsets are dense. 

PROBLEM I For a generic L, does the property of Ll hold for every extremal 
point? 

PROBLEM II For a generic L, does Ext(L) contain a dense subset A0 C Ext(L) 
such that 7 G A0 implies that M^(L) contains a measure supported in a periodic 
orbit? 
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THEOREM 1.2. IfL is a generic Lagrangian, for every ergodic minimizing measure 
p. there exists a sequence {pn} of uniquely ergodic minimizing measures such that 
pn —> p weakly and supp(/L*n) —> supp(/i) in the Hausdorff metric. 

PROBLEM III For generic Lagrangians, is every ergodic minimizing measure 
uniquely ergodic? 

II The Cohomological Approach and the Coboundary Property 

The dual approach to minimizing measures is based on the fact that if a; is a 
closed 1-form on AI then the Lagrangians L and L — u) generate the same flow. 
Then M*(L) =M*(L- UJ) and: 

SL-U,(V>) = SL(p) - (w,p(/i)) 

for all p G M*(L). This also shows that SL-W(P>) depends only on [J\ G H1 (AI, R). 
Define MU(L) as the set of p G M*(L) such that: 

SL-U») = min{SL_w(i/)/i/ G M*(L)}. 

Then M^(L) depends only on [UJ]. TO relate the sets MU(L) with the sets M1(L) 
we define c(u) as the maximum of the c G R such that 0L(X) > ( M ^ ) + c f° r all 
xeHi(M,R),8ndK(u)by 

K(UJ) = {xe JTi(Af,R)//3L(ar) = (UJ,X) + C(UJ)}. 

Then it can be checked that: 

M"(L) = {J{M1(L)/-,€K(u;)h 

\JM"(L) = \JM1(L). 
UJ 7 

Therefore all the minimizing measures are found through the sets M^(L). Denote 
by A"(L) C TAI x S1 the closure of the union of the supports of the measures in 
^^(L). Among the main results of Mather in [Ma 2] are the compacity of A^(L) 
and the graph property, i.e. that if 7r: TAI x S1 —• AI denotes the canonical pro
jection then 7r/Aü;(L) is injective and its inverse is Lipschitz. The Aubry-Mather 
theory follows from this remarkable property and a theorem of Moser [Mo] de
scribing twist maps as time one maps of flows of periodic Lagrangians on the 
circle. 

The "converse" of the definition of A^(L) is true: 

THEOREM II. 1. If the support of p G M*(L) is contained in A^^L), then p G 
MU(L). 

From this it follows easilv that: 
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COROLLARY II.2. Every M"(L) contains a measure supported in a minimal set. 
If A4U(L) contains a single measure p, then p is uniquely ergodic. 

The theorems stated in Section I rely on the following property, which has 
its own intrinsic interest. 

THEOREM II.3. (Coboundary Property [M 2]). If p G M"(L) is ergodic, then 
(L — UJ — c(o;))/supp(/i) is a Lipschitz coboundary, i.e. there exists a Lipschitz 
function V: supp(p) —> R such that: 

dV 
(L-uj- c(uj))/supp(p) = — 

dip 

where 
%iO):=^\{V^{6))-V{0)). 

The following result shows that for generic Lagrangians, the set A/1W(L) con
sists, for most [J\ G HX(AI,R), of a single measure, which, by Corollary II.2, has 
to be uniquely ergodic. 

THEOREM II.4. [M 2]. (a) Given a closed 1-form UJ on M, the set M^(L) consists, 
for a generic L, of a single measure. 

(b) For a generic Lagrangian L, there exists a residual subset A C H1 (AI, R) 
such that [UJ] G A implies that M^(L) consists of a single measure. 

PROBLEM IV Is it true that for a generic Lagrangian L there exists a dense set 
A C Hl(M, R) such that [UJ] G A implies that M,UJ(L) consists of a single measure 
supported in a hyperbolic periodic orbit? 

It follows from the results in [D] that the set of classes [UJ] with this property 
is open for generic Lagrangians. 

When M = S1 the answer is positive. This follows from Mather's result on 
the differentiability of the action function, when AI = S1, at irrational values of 
Hi(AI,Sx), plus the generic properties of the vertex of ßi (where also another 
proof of the differentiability is given). Observe that when M = S1 , the answer to 
Problems I, II, and III is affirmative for every Lagrangian. 

The proof of Theorem II.3 uses a reformulation of the space on which the 
variational principle is applied. We introduce a space M of probabilities on TM x 
S1 , so large that M D M*(L) for every L, and such that for every L and UJ there 
exists p G M. satisfying: 

(*) f(L - UJ)dp = min{ f (L -uj)dv/ve M}. 

Moreover, it is proved that this property implies the L-invariance of p. Then 
p G AA^^L). The existence of p's satisfying (*) follows from the fact that M. is 
naturally embedded as a convex subset of a locally convex space and sets of the 
form 

{u/ f(L-uj)dv<C} 
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are compact for all L, UJ, and C. This translates the analysis of . M ^ L ) into ques
tions on strictly extremal points (also called exposed points) of compact convex 
sets in locally convex spaces. Some care has to be taken with the fact tha t compact 
convex subsets of locally convex spaces (even Fréchet spaces) may have no strictly 
extremal points (as opposed to the case of Banach spaces). 
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Homoclinic Bifurcations and Persistence of 
Nonuniformly Hyperbolic Attractors 

M A R C E L O V I A N A * 

Marcelo Viana, IMPA, Est. D. Castorina 110, Jardim Botanico, 
22460 Rio de Janeiro, Brazil 

1. Introduction 

Let ip: M —• M be a general smooth transformation on a riemannian manifold. 
A main object of study in dynamics is the asymptotic behavior of the orbits 
ipn(z) = ipo • • • o ip(z), z G M, as time n goes to infinity. Typical forms of behavior 
— occurring for "many" z G M — are, of course, of particular relevance and 
this leads us to the notion of attractor. By an attractor we mean a (compact) 
(^-invariant set A C M that is dynamically indivisible and whose basin — the set 
of points z G AI for which ipn(z) —> A as n —> +oo — is a large set. Dynamical 
indivisibility can be expressed by the existence of a dense orbit in A (if A supports a 
"natural" (^-invariant measure, one may also require that ip be ergodic with respect 
to such a measure). As for the basin, it must have positive Lebesgue volume or, 
even, nonempty interior; in all the cases we will consider here the basin actually 
contains a full neighborhood of the attractor. 

In addition, we want to focus on forms of asymptotic behavior that are typical 
also from the point of view of the dynamical system: we call an attractor persistent 
if it occurs for a large set of maps near ip. "Large" is to be understood in this 
context in a measure-theoretical sense: positive Lebesgue measure set of parameter 
values in every generic family of transformations containing ip. On the other hand, 
stronger forms of persistence — e.g. with "large set" meaning a full neighborhood 
of if — hold in some important situations to be described below. 

In the simplest case, A reduces to a single periodic orbit of ip. Although the 
presence of a large or, even more so, an infinite number of these periodic attrac
tors — possibly with high periods and strongly intertwined basins — may render 
the behavior of individual orbits rather unpredictable, rich asymptotic dynamics 
comes more often associated with the presence of nonperiodic attractors (having, 
in many cases, an intricate geometric structure). Indeed, there is a large amount 
of numerical evidence for the occurrence of such nontrivial attractors in a wide 
range of situations in dynamics, from mathematical models of complex natural 
phenomena to even the simplest abstract nonlinear systems. A striking feature of 
many of these systems is the phenomenon of exponential sensitivity with respect 
to initial conditions: typical (pairs of) orbits of nearby points move away from 
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each other exponentially fast as they approach the attractor. Note the profound 
consequences: measurement imprécisions and round-off errors tend to be amplified 
under iteration and so, in practice, the long-term behavior of trajectories in the 
basin of the attractor is unpredictable (or "chaotic"). 

A conceptual framework for the understanding of such chaotic dynamics is 
currently under active development. Two main general problems in this context 
are to describe the (dynamical, geometric, ergodic) structure of chaotic attractors, 
and, to identify the mechanisms responsible for their formation and persistence. A 
fairly complete solution to these problems is known in the special case of uniformly 
hyperbolic (or Axiom A) attractors, see e.g. [Sh2], [Bo], and this is a basic ingre
dient here. On the other hand, uniform hyperbolicity per se is seldom observed in 
dynamical systems arising from actual phenomena in the experimental sciences, 
where sensitivity with respect to initial conditions is quite more often related to 
nonuniformly hyperbolic behavior. This last notion can be defined as follows. We 
say that ip has Lyapunov exponents X\,..., À/ at z G M if the tangent space may 
be split TZAI = Ei ® • • • © Ei in such a way that 

lim - log \\Dipn(z)v\\ = A7 for every v G E AW} and 1 < j < I. 
n—»+3c n 

By Oseledec's theorem such a splitting exists at almost every point, relative to any 
finite (^-invariant measure. Then we call the system nonuniformly hyperbolic [Pe], 
if Aj ^ 0 for all j and for almost all points (with respect to the relevant measure 
under consideration); see [Pe]. Note that occurrence of some positive Lyapunov 
exponent corresponds precisely to (infinitesimal) exponential sensitivity around 
the trajectory of z. Also, in the situations to be considered here, existence of 
positive Lyapunov exponents is the key ingredient for nonuniform hyperbolicity; 
the fact that all the remaining exponents are strictly negative then follows from 
elementary considerations. 

The dynamics of nonuniformly hyperbolic attractors is, in general, rather un
stable under perturbations of the system and this means that more subtle mecha
nisms of dynamical persistence occur in this general context than in the Axiom A 
case (where persistence comes along with structural stability and is, ultimately, an 
instance of transversality theory). The comprehension of such mechanisms is then 
directly related to the general study of bifurcations of dynamical systems. This is, 
in fact, the departing point of the program towards a theory of sensitive dynamics 
recently proposed by Palis and underlying Section 2. below. The basic strategy is 
to focus on a convenient set of well-defined bifurcation processes — this set should 
be dense among all (non-Axiom A) systems exhibiting interesting dynamical be
havior — and to determine which arc the persistent forms of dynamics in generic 
parametrized families unfolding such bifurcations (once more, persistence is meant 
in the sense of positive Lebesgue measure of parameter values). See e.g. [PT] for 
precise formulations and an extended discussion. 

A central role is played here by the processes of homoclinic bifurcation — 
that is, creation and/or destruction of transverse intersections between the stable 
and the unstable manifolds of a same hyperbolic saddle, see Figure 1 — which, by 
themselves, encompass all presently known forms of interesting behavior in this 
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setting of discrete dynamical systems. The study of homoclinic bifurcations and 
of their interplay with other main processes of dynamical modification provides a 
most promising scenario for the understanding of complicated asymptotic behav
ior, especially in low dimensions, and in Section 2. we discuss some of the results 
already substantiating this scenario. 

Figure 1: A homoclinic tangency 

On the other hand, several of these results actually extend to manifolds of 
arbitrary dimension and this is an area of considerable ongoing progress. A very 
interesting topic is the construction and analysis of the properties of multidimen
sional nonuniformly hyperbolic attractors. By multidimensionality we mean exis
tence of several directions of stretching, i.e. several positive Lyapunov exponents 
(this also implies that the attractor has topological dimension larger than 1). A 
discussion of recent developments and open problems on this topic occupies most 
of Section 3. 

2. Bifurcations and attractors 

Jakobson's theorem [Ja] provided the first rigorous situations of persistence of 
chaotic dynamics in a strictly nonuniformly hyperbolic setting: for a positive mea
sure set of values of a G (1,2) the quadratic real map qa(x) = 1 — a#2 admits an 
invariant probability measure pa which is absolutely continuous with respect to the 
Lebesgue measure. Moreover, pa is ergodic and has positive Lyapunov exponent: 

lim — log I.Dg"I = / log \Dqa\ dpa > 0, ua — almost everywhere. 
n—>+oc n J 

On the other hand, Benedicks-Carleson [BC] proved that complicated behavior is 
also abundant in another important nonlinear model, the Hénon family of diffeo
morphisms of the plane Ha^(x,y) = (1 — ax2 + by,x): for a positive measure set 
of parameter values Ha^ exhibits a compact invariant set Aflj& C IR2 (the closure 
of the unstable manifold of a fixed saddle-point) satisfying 

(i) The basin Ws(Aa}b) = {z G R 2 : J ï£ 6 (z) -> Aaj6 as n —• +00} contains a 
neighborhood of Aa^: 

(ii) There exists z G Aa?& whose orbit {H™b(z):n > 0} is dense in A0i&. 
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Moreover, this dense orbit may be taken exhibiting a positive Lyapunov exponent: 

(iii) DHa
l
b(z)u > con for some c> 0, a > 1, and u G IR2 and all n > 0; 

(iv) DHr
a\b(z)v —• 0 as \n\ —• oc for some v G M2, v ^ 0 (and so Aa,b is not 

uniformly hyperbolic). 

A stronger formulation of the sensitivity property (iii) is contained in the 
construction by [BY] of an SBR-measure pa^ supported on the "strange" attrac
tor Aay. Hau has a positive Lyapunov exponent /ia.fo-almost everywhere (and at 
every point in a positive Lebesgue volume subset of the basin). An alternative 
construction of these SBR-measures also giving new information on the geometry 
of the attractor is being provided in [JN]. 

Let us outline the mechanism yielding positive Lyapunov exponents in these 
two situations. A common feature of these and other important models is the 
combination of fairly hyperbolic behavior, in most of the dynamical space, with 
the presence of critical regions where hyperbolicity breaks down. In the case of qa 

the critical region is just the vicinity of the critical point x = 0, where the map 
is strongly contracting. For Hénon maps, criticality corresponds to the "folding" 
occurring near x = 0, which obstructs the existence of invariant cone fields. Then 
the proofs of the previous results require a delicate control on the recurrence 
of the critical region, in order to prevent nonhyperbolic effects from accumulating 
too strongly. In the 1-dimensional case, for instance, one must impose a convenient 
lower bound on Itf™ (0)| for each n > 0. This translates into a sequence of conditions 
on the parameter, which are part of the definition of the positive measure set in 
the statement. The argument is rather more complex in the Hénon case but it still 
follows the same basic strategy of control of the recurrence through exclusion of 
parameter values. The dynamical persistence displayed by the maps one gets after 
these exclusions is all the more remarkable in view of their instability: although an 
arbitrarily small perturbation of the parameter may destroy the chaotic attractor 
(e.g. creating periodic attractors, see [Ur]), it is a likely event (positive probability) 
that the attractor will actually remain after the perturbation. 

Starting from these models, we now discuss a number of results and open 
problems leading to a quantitative and qualitative description of the occurrence 
of attractors in the general setting of homoclinic bifurcations. Let us begin by 
defining this setting in a more precise way than we did before. We consider generic 
smooth families of diffeomorphisms <pß\M —• AI, p G IR, such that ipo exhibits 
some nontransverse intersection between the stable and the unstable manifolds of a 
hyperbolic saddle-point p; recall Figure 1. In this section we take AI to be a surface. 
Genericity means that this homoclinic tangency is nondegenerate — quadratic — 
and unfolds generically with the parameter: the two invariant manifolds move 
with respect to each other with nonzero relative speed, near the tangency. We also 
suppose \detDipo(p)\ ^ 1 and in what follows we consider |detDifo(p)\ < 1 (in 
the opposite case just replace ipß by if^1). Then, see e.g. [TY], return-maps to a 
neighborhood of the tangency contain small perturbations of the family of singular 
maps (x, y) »—• (1 — ax2,0). Combining this fact with an extension of the methods 
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in [BC] one can prove that Hénon-like attractors — i.e. satisfying (i)-(iv) above 
— occur in a persistent way whenever a homoclinic tangency is unfolded: 

THEOREM 1 [MV] There exists a positive Lebesgue measure set of values of p, 
accumulating at p = 0, for which ipß has Hénon-like attractors close to (in a 
const \p\-neighborhood of) the orbit of tangency. 

This should also be compared with the well-known theorem of Newhouse on 
abundance of periodic attractors: 

THEOREM 2 [Ne] There exist intervals I e IR accumulating at p = 0 and residual 
(Baire second category) subsets B C I such that for every p G B the diffeomor
phism ipß has infinitely many periodic attractors close to the orbit of tangency. 

These two contrasting forms of asymptotic behavior are, actually, strongly 
interspersed: the values of p one gets in both the proofs of these results are accu
mulated by other parameters corresponding to new homoclinic tangencies [Ur]. 

PROBLEM 1: (Palis) Can any diffeomorphism exhibiting a Hénon-like attractor, 
resp. infinitely many periodic attractors, be approximated by another one having 
a homoclinic tangency? 

PROBLEM 2: Can Newhouse's phenomenon occur for a set S of parameter values 
with positive Lebesgue measure? 

The answer to Problem 2 is usually conjectured to be negative but it is as 
yet unknown. Note that the sets B constructed in the proof of Theorem 2 have 
zero measure [TY]. An interesting related question is formulated replacing above 
"positive Lebesgue measure" by "positive Lebesgue density at p = 0", that is 

,. m(S n [-€<£]) n T , 
hm '•— > 0, m = Lebesgue measure. 

Ongoing progress seems to indicate that the answer to this last question is negative, 
even if one replaces S by the set of parameter values corresponding to existence 
of some periodic attractor near the tangency. A similar problem can be posed for 
nonuniformly hyperbolic attractors as in Theorem 1: 

PROBLEM 3: Can Hénon-like attractors occur for a set of parameter values having 
positive density at p = 0? 

Although this last problem remains open in the context of homoclinic tan
gencies, it admits a complete, positive answer in a closely related setting of bi
furcations: the unfolding of critical saddle-node cycles. By a saddle-node k-cycle, 
k > 1, of a diffeomorphism ip we mean a finite set of periodic points p\,P2, • • • ,Pk 
such that 

• pi is a saddle-node (eigenvalues 1 and A, with |A| < 1) and pi is a hyperbolic 
saddle for each 2 < i < k; 

• Wu(pi-\) and Ws(pi) have points of transverse intersection, for all 2 < i < k, 
and Wu(pk) intersects the interior of Ws(p\). 

file:///p/-neighborhood
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Following [NPT], we call the saddle-node cycle critical if Wu(pk) has a non-
transverse intersection with some leaf F of the strong stable foliation of Ws(pi). 
Figure 2 describes such a cycle in the case k = 1 (in this case we actually require 
Wu(p\) to be contained in the interior of Ws(p\)). 

Figure 2: A critical saddle-node cycle 

Now we consider the unfolding of such cycles by generic families of diffeomor-
phims ip^: M —> AI, p G IR. More precisely, we suppose that ipo has some critical 
saddle-node cycle satisfying a few mild assumptions: the saddle-node is nonde
generate and unfolds generically with the parameter p, and the criticality — i.e. 
the nontransverse intersection between Wu(pk) and F — is quadratic. A theorem 
of [NPT] asserts that such families always go through homoclinic tangencies, at 
parameter values arbitrarily close to zero. A converse is also true (Mora): critical 
saddle-node cycles are formed whenever a homoclinic tangency is unfolded. On 
the other hand, the present setting is special in that Hénon-like attractors always 
occur for a positive fraction of the parameter values near the one corresponding to 
the cycle. This is the only bifurcation mechanism known to exhibit such a strong 
accumulation by chaotic attractors. 

THEOREM 3 [DRV] Let (ip^.)^ be a generic family of diffeomorphisms unfolding 
a critical saddle-node cycle as above. Then the set of parameter values for which 
ipß exhibits Hénon-like attractors has positive Lebesgue density at p = 0. 

The proof of Theorem 3 is based on a combination of Theorem 1 with a 
careful analysis of the distribution of homoclinic tangencies in parameter space, cf. 
previous remarks. This construction yields Hénon-like attractors that are related 
to orbits of homoclinic tangency and so have a semi-local nature. Although this is 
unavoidable in the generality of the statement above, attractors of a much more 
global type can be found in some relevant cases, by using a more direct approach. 
We mention the case of 1-cycles, recall Figure 2. If <̂ 0 has a critical 1-cycle then 
it is not difficult to find a compact domain R containing Wu(p\) and such that 
ipo(R) C interior(R). Then, for a sizable portion of the parameter values near zero 
the asymptotic behavior of all the points in the domain R (which depends only 
on the bifurcating diffeomorphism ifo) is driven by a unique, global, nonuniformly 
hyperbolic attractor: 
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THEOREM 4 [DRV] For an open class of families (ip^)^ unfolding a critical saddle-
node 1-cycle, there is a set of values of p with positive Lebesgue density at p. = 0 
for which A;i = fin>o ^/K-^) ^s a Hénon-like attractor. 

3. Multidimensional expansion 

The unfolding of homoclinic tangencies or saddle-node cycles in higher dimensions 
leads, more often, to the formation of periodic points with positive unstable index 
(some expanding eigenvalue) and/or of "strange saddles", see [Ro]. In order to 
have attractors one makes an assumption of (local) sectional dissipativeness: the 
product of any two of the eigenvalues associated to the saddle p exhibiting the 
tangency, resp. to the saddle-node p\ involved in the cycle, has norm less than 1. On 
the other hand, under this assumption Theorems 1-4 do generalize to manifolds of 
arbitrary dimension, see [PV], [VI]. In particular, persistent Hénon-like attractors 
may occur in any ambient manifold. 

Now, the attractors one finds in such a sectionally dissipative setting are spe
cial in that they exhibit at most one direction of stretching (one single positive 
Lyapunov exponent). This is also related to the fact that the Hénon-like attractors 
in the previous paragraph always have topological dimension 1. Our goal in this 
section is to present a construction of persistent nonuniformly hyperbolic attrac
tors with multidimensional character: typical orbits in their basin exhibit several 
stretching directions. In more precise terms, at Lebesgue almost every point z in 
the basin there is a splitting TZAI = E+ ® E~ such that 

liminf - log ||Dy>n(2)t;+|| > 0 > limsup - log ||D<pn(*)v-|| for v± G £ ^ { 0 } 
n " " n " " 

and d\mE+ > 1. Previously known examples have been restricted to rather struc
tured situations, such as Axiom A diffeomorphisms or the persistently transitive 
examples in [Shi] or [Ma]. In these last examples, obstruction to uniform hyper
bolicity comes from the presence of saddles with different stable indices but the 
dynamics is actually fairly uniform (in particular, they admit everywhere-defined 
continuous invariant cone fields). 

These examples of multidimensional attractors we now describe are the first 
ones in the presence of critical behavior (in the sense of Section 2.) In fact, the 
basic idea here is to couple nonuniform models such as Hénon maps, with conve
nient uniformly hyperbolic systems. On the other hand, the attractors we obtain in 
this way are considerably more robust than the low-dimensional Hénon-like ones: 
they persist in a whole open set of diffeomorphisms. Let us sketch this construc
tion in a simple situation, details being provided in [V2]. We start by considering 
diffeomorphisms of the form 

^ : T 3 x IR2 _ > T 3 x jf^ v(®,x,y) = (g(B),f(Q,x,y)) 

where g is a solenoid map on the solid torus T3 = S1 x B2 , see e.g. [Sh2], and 
f(Q,x,y) = (a(S) — x2 + by, —bx). Here b is a small positive number, a is some 
nondegenerate function (e.g. a Morse function) with 1 < a(S) < 2, and we take 
the solenoid to be sufficiently expanding along the S1 -direction. Then, for an ap-
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propriate choice of these objects, ip is contained in an open set of diffeomorphisms 
exhibiting a multidimensional nonuniformly hyperbolic attractor: 

THEOREM 5 [V2] There is a compact domain K C IR2 such that for every dif
feomorphism ^ ' :T3 x IR2 —• T3 x IR2 sufficiently close to ip (in the C3-sense), 
I/J(TS x K) C interior(T3 x K), and ijj has two stretching directions at Lebesgue 
almost every point 0/T3 x K. 

A crucial fact distinguishing these examples from the quadratic models in 
Section 2. is that their critical regions are too large for the same kind of re
currence control as we described there to be possible. In order to motivate this 
remark we observe that in the (singular) limit b = 0 the critical set of ip coincides 
with {detD^j = 0}, a codimension-1 submanifold, and, therefore, is bound to 
have robust intersections with (some of) its iterates. In other words, close returns 
of the critical region back to itself cannot be avoided by any sort of parameter 
exclusions, which means that we are forced to deal with the accumulation of con
tract ing/nonhyperbolic effects associated to such returns. This is done through a 
statistical type of argument, which we can (very roughly) sketch as follows. Given 
z G T3 x IR2, the nonhyperbolic effect introduced at each time v > 1 for which 
ipy(z) is close to the critical region is estimated in terms of an appropriate inte
grable function Au(z). The definition of Au(z) in the actual situation of Theorem 
5 — with b > 0 — is fairly complicated and we just mention that in the (much 
simpler) limit case b = 0 one may take Au(z) = — log ic i , where xv is the x-
coordinate of ipv(z). Then we derive two crucial stochastic properties of these A„: 
(1) The expected (i.e. average) value of Au is small for each v > 1; 
(2) the probability distributions of AM and Au are (fairly) independent from each 

other if l/i — 1/1 is large enough. 
This allows us to use probabilistic arguments (of large deviations type) to 

conclude that, for most trajectories, the overall nonhyperbolic effect corresponding 
to iterates near the critical region is smaller than (i.e. dominated by) the hyperbolic 
contribution coming from the iterates taking place away from that region. 

The proof of (2) above is based on the fast decay of correlations exhibited by 
uniformly hyperbolic systems such as solenoids and, in fact, this seems to be the 
key property of the map g for what concerns our construction (in its present form 
the proof makes use of a few other properties of solenoid maps, in an apparently 
less important way). This suggests that a similar type of argument should apply if 
the solenoid is replaced in the construction above by more general (not necessarily 
uniformly hyperbolic) maps having such fast mixing character. As a first step in 
this direction we pose 

PROBLEM 4: Prove that ip(x,y) = (g(x),a(x) — y2) has two positive Lyapunov 
exponents for a large set of choices of a(x), where g is some convenient — possibly 
multimodal — smooth transformation of the real line exhibiting chaotic behaviur 
in the sense of Jakobson's theorem. 

Finally, in the view of the discussion in the Introduction, one should try to 
relate the present topic with the general study of bifurcations of higher-dimensional 
smooth systems, in the spirit of Section 2. Again, a first step may be 
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P R O B L E M 5: Describe generic bifurcation mechanisms leading to the formation of 
multidimensional nonuniformly hyperbolic at t ractors . 

Acknowledgement: The author is grateful to the hospitality of the CIMAT-Guana-
juato , UCLA, and Princeton University during the preparation of this work. 

References 

[BC] M. Benedicks and L. Carleson, The dynamics of the Hénon map, Ann. of Math. 
133 (1991), 73-169. 

[BY] M. Benedicks and L.-S. Young, SBR-measures for certain Hénon maps, Invent. 
Math. 112-3 (1993), 541-576. 

[Bo] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, 
Lect. Notes in Math. 470 (1975), Springer-Verlag, Berlin and New York. 

[DRV] L. J. Diaz, J. Rocha, and M. Viana, Strange attractors in saddle-node cycles: 
prevalence and globality, preprint IMPA and to appear. 

[Ja] M. Jakobson, Absolutely continuous invariant measures for one-parameter fam
ilies of one-dimensional maps, Comm. Math. Phys. 81 (1981), 39-88. 

[JN] M. Jakobson and S. Newhouse, Strange attractors in strongly dissipative surface 
diffeomorphisms, in preparation. 

[Ma] R. Mane, Contribution to the stability conjecture, Topology 17 (1978), 383-396. 
[MV] L. Mora and M. Viana, Abundance of strange attractors, Acta Math. 171 (1993), 

1-71. 
[Ne] S. Newhouse, The abundance of wild hyperbolic sets and nonsmooth stable sets 

for diffeomorphisms, Pubi. Math. IHES 50 (1979), 101-151. 
[NPT] S. Newhouse, J. Palis, and F. Takens, Bifurcations and stability of families of 

diffeomorphisms, Pubi. Math. IHES 57 (1983), 7-71. 
[PT] J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics, Cambridge 

University Press, London and New York, 1993. 
[PV] J. Palis and M. Viana, High dimension diffeomorphisms displaying infinitely 

many periodic attractors, Ann. of Math. 140 (1994), 205-250. 
[Pe] Ya. Pesin, Characteristic Lyapounov exponents and smooth ergodic theory, Rus

sian Math. Surveys 32 (4) (1977), 55-114. 
[Ro] N. Romero, Persistence of homoclinic tangencies in higher dimensions, thesis 

IMPA 1992 and to appear, Ergodic Theory Dynamical Systems. 
[Shi] M. Shub, Topologically transitive diffeomorphisms on T4 , Lecture Notes in 

Math. 206 (1971), 39, Springer-Verlag, Berlin and New York. 
[Sh2] M. Shub, Global Stability of Dynamical Systems, Springer-Ver lag, Berlin and 

New York, 1987. 
[TY] L. Tedeschini-Lalli and J. A. Yorke, How often do simple dynamical processes 

have infinitely many coexisting sinks?, Comm. Math. Phys. 106 (1986), 635-657. 
[Ur] R. Ures, On the approximation of Hénon-like strange attractors by homoclinic 

tangencies, thesis IMPA 1993 and to appear, Ergodic Theory Dynamical Sys
tems. 

[VI] M. Viana, Strange attractors in higher dimensions, Bull. Braz. Math. Soc. 24 
(1993), 13-62. 

[V2] M. Viana, Multidimensional nonhyperbolic attractors, preprint IMPA and to 
appear. 



Ergodic Theory of Attractors 
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We begin with an overview of this article. Consider a dynamical system generated 
by a diffeomorphism / with an attractor A. We assume / |A is sufficiently complex 
that it is impossible to have exact knowledge of every orbit. The ergodic theory 
approach, which we will take, attempts to describe the system in terms of the 
average or statistical properties of its "typical" orbits. 

If A is an Axiom A attractor, then it follows from the work of Sinai, Ruelle, 
and Bowen ([S],[R1],[BR]) in the 1970s that orbits starting from almost all initial 
conditions have a common asymptotic distribution. "Almost all" here refers to a 
full Lebesgue measure set in the basin of attraction of A. We will call this invariant 
measure the SRB measure of (/, A). 

In the late 1970s and early 1980s the idea of a nonuniformly hyperbolic 
system was developed and the notion of an SRB measure was extended to this 
more general context. In Section 1 of this article I will define SRB measures and 
describe some of their ergodic and geometric properties, including their entropy 
and dimension. 

Although one could formally define SRB measures and study them abstractly, 
the question of how prevalent they are outside of the Axiom A category is not well 
understood. The first nonuniform (dissipative) examples for which SRB measures 
were constructed are the Hénon attractors. In Section 2, I will discuss briefly the 
analysis by Benedicks and Carleson [BC1], [BC2] of certain parameter values of 
the Hénon maps, and the subsequent work of Benedicks and myself [BY1] on the 
construction of SRB measures for these parameters. 

In Section 3, I would like to present a recent work, also joint with Benedicks 
[BY2], in which we study stochastic processes of the form {ip o /2}i=o,i,2,... where 
/ is a "good" Hénon map, the underlying measure is SRB, and ip is a Holder 
continuous observable. We prove for these random variables the exponential decay 
of correlations and a central limit theorem. 

Although the results in Sections 2 and 3 are stated only for the Hénon family, 
our methods of proof are not particularly model-specific. I will conclude with some 
remarks on the types of situations to which these methods may apply. 

*) This research was partially supported by The National Science Foundation. 
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1 Some ergodic and geometric properties of SRB measures 

Let / be a C2 diffeomorphism of a finite-dimensional manifold M and let A C M 
be a compact /-invariant set. We call A an attractor if there is a set U C M with 
positive Riemannian measure such that for all x £U, fnx —» A as n —> oc. 

Given an /-invariant Borei probability measure p, let Ài > A2 > • • • > Àr 

denote the distinct Lyapunov exponents of (/, p) and let Ei be the corresponding 
subspaces in the tangent space of each point. Stable and unstable manifolds are 
defined a.e. on sets with negative and positive Lyapunov exponents. They are 
denoted by Ws and Wu respectively. 

Let (/,//) be such that Ài > 0 a.e., and let r] be a measurable partition on 
AI. Let Wu(x) and r](x) denote respectively the unstable manifold and element of 
rj containing x. We say that 77 is subordinate to Wu if for a.e. x, r\(x) C Wu(x) and 
contains an open neighborhood of x in Wu(x). For a given r), let {p^} denote a 
canonical family of conditional probabilities of p with respect to 77. We will use m^ 
to denote the Riemannian measure induced on r?(x) as a subset of the immersed 
submanifold Wu(x). 

DEFINITION 1. Let (/, p) he as above. We say that p has absolutely continuous 
conditional measures on Wu if for every measurable partition 77 subordinate to 
Wu, p2 is absolutely continuous with respect to mTj. for a.e. x. 

This definition has its origins in [S] and [Rl]; in its present form it first 
appeared in [LS]. 

For Axiom A attractors the invariant measure we called SRB in the intro
duction has several equivalent definitions, one of which is that it has absolutely 
continuous conditional measures on Wu. My feelings are that as a working defini
tion, this property is the most useful and the most straightforward to generalize. 
I therefore take the liberty to introduce the following definition: 

DEFINITION 2. Let f and A be as in the beginning of this section. An f -invariant 
Borei probability measure p on A is called an SRB measure if Ài > 0 a.e. and p 
has absolutely continuous conditional measures on Wu. 

The physical significance of this property is that the set of points whose 
future trajectories are generic with respect to an SRB measure forms a positive 
Lebesgue measure set. This is because we can "integrate out" from the attractor 
along W8 using the absolute continuity of the stable foliation. More precisely: 

THEOREM 1 [P] [PS]. Let p be an ergodic SRB measure of f and assume that 
Xi ^ 0 Vi. Then there is a set U C M with positive Lebesgue measure such that if 
if is a continuous function defined on a neighborhood of A then 

1 n~1 f 
— 7 ^ ip(flx) —* I if dp for every x G Ü. 
n to J 

In general, entropy and Lyapunov exponents are different invariants, although 
both measure the complexity of a dynamical system. With respect to its SRB 
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measure, however, the entropy of a map is equal to the sum of its positive Lyapunov 
exponents. Indeed, SRB measures are precisely the extreme points in the following 
variational principle: 

THEOREM 2 [P], [R2], [LS], [Ll], [LY1]. Let p be an f-invariant Borei proba
bility measure. Then 

K(f)< f ^2 xi • dim Ei dp : 
J A;>0 

and equality holds if and only if p is SRB. 

For arbitrary invariant measures, the difference between entropy and the sum 
of positive Lyapunov exponents can be understood in terms of the dimension of 
the measure. It is shown in [LY2] that if p is ergodic, then corresponding to each 
Xi ^0 there is a number 6j with 

0 < 6i < dim Ei such that hß (/) = \*\ ^i ' h = — Y^ ^i ' fa • 
A,>0 \i<0 

The number 6i has the geometric interpretation of being the dimension of p "in 
the direction of £*"; it is equal to ht/Xi where hj is the entropy "in the direction 
of Ei'\ (See [LY2] for precise definitions.) 

These ideas have led to the following result on the dimension of SRB mea
sures. For a finite measure p, we write dim(p) = a if for p— a.e. x, 

log pB(x,r) 
hm — = a 
r-»o log r 

where B(x,r) is the ball of radius r about x. 

THEOREM 3 [L2], [LY2]. Let p be an SRB measure. We assume that (/, p) is 
ergodic, and that À2 ^ 0 Vi. Then 

dim(p) = 2^ h 
all i 

where the 6i 7s arc as above. In particular, 6i = dim Ei for all i with Àj > 0. 

It is not known at this time whether this notion of dimension is well defined 
for arbitrary invariant measures. For a special case, see e.g. [Yl], 

2 SRB measures for Hénon maps 

As we mentioned in the introduction, it follows from the work of Sinai, Ruelle, 
and Bowen that everv Axiom A attractor admits an SRB measure. It is natural 
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to wonder to what extent this is true without the hypothesis of Axiom A. Mathe
matically very little has been proven, although the existence of SRB measures in 
general situations is often taken for granted in numerical experiments and by the 
physical scientist. 

To the best of my knowledge, the first dissipative, genuinely nonuniformly 
hyperbolic attractor for which SRB measures were constructed were the Hénon 
attractors. (By "dissipative" I mean not volume preserving: if a volume preserving 
diffeomorphism has a positive Lyapunov exponent a.e. then its volume measure 
satisfies the condition in Definition 2.) The Hénon maps are a 2-parameter family 
of maps Ta,6 : R2 -* M2 defined by 

: ) - ( ' 
^ : C ) - r - ^ 2 + y 

It is not hard to see that there is an open region in parameter space for which Taj 
has an attractor; and that for (a, b) in the region, there is a continuous family of 
invariant cones on {\x\ > 6} (6 depending on parameters) but that the attractor 
is not Axiom A. 

In [BC2] Benedicks and Carleson proved that for b sufficiently small there is 
a positive measure set of a's for which T = Ta^ has a positive Lyapunov exponent 
on a dense subset of A. In addition to proving this result they devised a machinery 
for analyzing DTn, the derivatives of the iterates of T, for certain orbits with 
controlled behavior. Without getting into the specifics of their machinery, let me 
try to explain the essence of these ideas. 

Some of the ideas go back to 1 dimension, so let me first explain how expand
ing properties are proved for the quadratic family fa : x —> 1 — ax2, x G [—1,1], 
a E [0,2]. Jacobson [J] proved in 1981 that for a positive measure set of parameters 
a, fa admits an invariant measure absolutely continuous with respect to Lebesgue 
and has a positive Lyapunov exponent a.e. Roughly speaking, the "good" param
eters are those for which the derivatives along the critical orbit have exponential 
growth. Away from the critical point 0, we could think of the map as essentially 
expanding, and for x near 0, the orbit of x stays near that of 0 for some period of 
time, giving (fn)'x ~ 2ax • ( / n _ 1 ) ' ( /0 ) ~ 2ax • An _ 1 for some À > 1. These ideas 
have been used by various authors studying 1-dimcnsional maps (see e.g. [CE] and 
[BC1] as well as [J]). 

An obstacle to proving hyperbolicity in dimensions greater than 1 is the 
switching of expanding and contracting directions. For a (2 x 2) matrix A that is 
not an isometry, let s(A) denote the direction that will be contracted the most by 
A. Suppose that for ra, n > 0 we have proved hyperbolicity for the stretches from 
T~rnx to x and from x to Tnx. In order to extend this hyperbolic behavior all the 
way from T~nix to Tnx we must control Z(s (DT" m ) , s(OTx

n)), the angle between 
s(DT~m) and s(DT£). 

In some sense then, the set of points x where Z.(s(DT~rn),s(DT^)) —> 0 
as ra, n —» oo plays the role of the critical point in 1 dimension. An essential 
difference, however, is that the exact location of this "critical set" cannot be known 
ahead of time. To identify points with the property above, one must prove the 
hyperbolicity of DT~m and DT™ for arbitrarily large ra and ra, but the behavior 
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of these derivatives in turn depends on how the orbit of x interacts with the critical 
set. This almost seems like circular reasoning, but can in fact be achieved through 
inductive arguments. In dimensions greater than 1, the inductive character of the 
analysis is both more prominent and more essential than in 1 dimension. 

What Benedicks and Carleson did in [BC2] was to identify and control — 
for a positive measure set of parameters — a critical set C as described above. We 
stress that their inductive procedure goes through only on a positive measure set 
of parameters. Furthermore they showed that for certain orbits approaching this 
set, the loss of hyperbolicity is ~ dist(/"£, C), and that subsequent recovery is 
guaranteed. 

Building on this machinery, Benedicks and I constructed SRB measures for 
Hénon maps corresponding to these "good" parameters. 

THEOREM 4 [BC2, [BY1]. Let {Ta.b} be the Hcnon family. Then for each suffi
ciently small b, there is a positive measure set A& such that for each a E A&, T = 
Tafi admits an SRB measure p. This SRB measure is unique; its support is all of 
A; and (T, p) is isomorphic to a Bernoulli shift. 

As a corollary to this theorem and to Theorem 1, we have a positive Lebesgue 
measure set in M2 consisting of points the statistics of whose future trajectories arc 
governed by p. If for instance one is to pick a point in this set and to plot its first 
N iterates for some sufficiently large N, then the resulting picture is essentially 
that of p. It follows from our proof of Theorem 4 that this set of generic points 
fills up a large part of the basin of A; we believe (but have not yet proved) that it 
in fact fills up the entire basin up to a set of measure zero. 

In [BC2] the analysis is focused mostly on the "bad set" C. Part of the proof of 
Theorem 4 consists of adapting and globalizing these ideas to unstable manifolds. 
We then prove the existence of p by pushing forward Lebesgue measure ra on a 
piece of unstable leaf 7. A key observation is that it is only necessary to consider a 
positive percentage of these pushed-forward measures. Roughly speaking we show 
that for a positive density set of integers ra, there are subsets j n of 7 with m(~/tl) 
bounded away from 0 such that for each ra, 

(i) \DTn\ln I > cXn for some À > 1; 
(ii) Tn(jn) is the union of (many) roughly parallel curves of a fixed length. 

An SRB measure is then extracted from the Cesàro averages of T"(ra|7„). 
Although the result above is stated only for the Hénon family, it holds for 

families with similar qualitative properties, such as those that appear in certain 
homoclinic bifurcations [MV]. 

We close this discussion by remarking that one cannot expect all attractors 
— or even all attractors with the general appearance of the Hénon attractors — to 
admit SRB measures. Periodic sinks are easily created near homoclinic tangencies 
[N], and the presence of sinks substantially complicates the dynamical picture. 
Nonhyperbolic periodic points are also not conducive to the existence of invari
ant measures with smooth conditional measures on unstable manifolds [HY]. The 
question of existence of SRB measures in general is not one that is likely to be 
resolved in the near future. 



Ergodic Theory of Attractors 1235 

It seems, though, that the time has come to attempt the following type of 
questions: Given a "typical" or "generic" 1-paramcter family of dynamical systems 
that are hyperbolic on large parts of their phase spaces without being uniformly 
hyperbolic everywhere, is it reasonable to expect that a positive measure set of 
them will admit SRB measures? (This is the "attractor" or "dissipative" version; 
one could also formulate similar questions for the positivity of Lyapunov exponents 
for conservative systems.) I will come back with some brief remarks on this in 
Section 4. 

3 Decay of correlations for Hénon maps 

Independent identically distributed random variables arc "chaotic" in the sense 
that it is impossible to predict the future from knowledge of the past, yet their 
distributions obey very simple limit laws. One might wonder if the same is true 
for processes coming from chaotic dynamical systems. For example, if / has an 
attractor A and p is its SRB measure, what can be said about the random variables • 
{& ° P}i=o,i,2,... where if is a reasonable function on A? 

I would like to report on some recent results in this direction. 

THEOREM 5 [BY2]. Let {Ta,b} be the Hénon family, and let T = Ta^b be any one 
of the maps in Theorem 4 shown to admit an SRB measure p. Let Hß denote the 
set of Holder continuous functions on A with exponent 0. Then there exists r < 1 
such that for all ip,ip G Hß, there is a constant C = C(ip,ip) such that 

\fv(tioTn)dp- fipdp- fipdpl <Crn Vn > 1. 

The main ideas of our proofs are as follows. Given that "horseshoes" are build
ing blocks of uniformly hyperbolic systems, the following seems to be a natural 
generalization to the nonuniform setting: let AQ be a rectangular lattice obtained 
by intersecting local stable and unstable manifolds. Suppose that Ao intersects un
stable manifolds in positive Lebesgue measure sets, and that it is the disjoint union 
of a countable number of "s-subrectangles" Ao,i, each one of which is mapped un
der some power of T, say under TRi, hyperbolically onto a "w-subrectangle" of Ao-
(A subset X C AQ is called an "s-subrectangle" of AQ if for every local stable leaf 
7 used to define A0, either xC\j = (l> or xC\ry = A0.) Let R(x) = Ri for x G Ao,;. 
Then we may regard the dynamics of T as something like the discrete time version 
of a special flow built under the return time function R over a uniformly hyperbolic 
"horseshoe" with infinitely many branches. 

For the "good" Hénon maps in Theorem 4, we show that sets with the proper
ties of Ao above are easily constructed. Furthermore, because of the rapid recovery 
after each visit to the critical set C, the return time function R has the property 
that p{R > ra} < C0n for some 0 < 1. This enables us to show7 that there is a 
gap in the spectrum of the Perron-Frobcnius operator, proving exponential decay 
of correlations. (A similar tower construction is used in [Y2].) 

Using this spectral property of the Perron-Frobenius operator we obtain also 
the central limit theorem for {ip o Tl}i=o,is2,... "• 
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THEOREM 6 [BY2]. Let (T, p) be as in Theorem 5, and let ip G Hß be a function 
with Jipdp = 0 and if ^ ip oT — ib. Then 

1 n—1 

-Ly^poT d i s t^ t ion^(0,a) 
v" es 

where Af(0, a) is the normal distribution and a > 0 is given by 

- n - l - |V2 

_ J i=0 

lim 
ra—»oc 

4 Final remarks 

The proofs of Theorems 4, 5, and 6 involve technical estimates specific to the 
Hénon maps, but I would like to point out that the ideas behind them are not 
model-specific and may be quite general. 

Very roughly speaking, the existence and mixing properties of SRB mea
sures seem to be related to the rates at which arbitrarily small pieces of unstable 
manifolds grow to a fixed size (which is more than just the existence of a positive 
Lyapunov exponent pointwise). To formulate something more precisely, one could 
look for a set with the properties of Ao in the last section, and study the return 
time function R. If R is integrable with respect to Lebesgue measure on WMeaves, 
then an SRB measure exists; and if, in addition to that, R has an exponentially 
decaying tail estimate as in Section 3, then the system has the exponential mixing 
property provided all powers of the map are ergodic. 

In general, I doubt that it is possible to determine the nature of R from the 
overall appearance of a dynamical system. If, however, there is a recognizable "bad 
set" — in the sense that away from this set the map is uniformly hyperbolic (with 
no discontinuities), and when an orbit gets near it there is a quantifiable loss in 
hyperbolicity followed by a "recovery period" — then, as observed in [BY2], there 
are often natural candidates for Ao, and the character of the return time function 
R is directly related to the rate of recovery after each encounter with the "bad set". 
In particular, if the recovery is "exponential" (meaning it takes ~ log | iterates to 
recover fully from a loss ~ 6) then R has an exponentially decaying tail estimate. 

Obvious examples that fit into this "bad set-recovery" scenario are large 
classes of piecewise uniformly hyperbolic maps, including certain billiards, where 
the "bad set" is the set of singularity curves (see also the recent preprint [Li]), and 
quadratic maps of the interval whose critical orbits carry positive Lyapunov expo
nents (see Section 3). It is less obvious a priori that the Hénon maps fit into this 
category; indeed the various notions there have to be interpreted with a bit more 
care. The rate of recover}' is exponential in these examples, but not in e.g. [HY]. 

It is certainly not the case that all nonuniformly hyperbolic systems have 
recognizable "bad sets", nor am I suggesting a generic theorem that can be applied 
to all "bad set-recovery" type scenarios. I wish only to point out that many of the 
known nonuniform examples belong in this category, and I hope that the methods 
discussed here will shed some light on the ergodic properties of systems with these 
characteristics. 
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ABSTRACT. A mathematical framework based on noncommutative geom
etry is proposed to describe the Integer Quantum Hall Effect (IQHE). It 
takes localization effects into account. It permits us to prove rigorously that 
the Hall conductivity is quantized and that plateaus occur when the Fermi 
energy varies in a region of localized states. 

1. Introduction 

In 1880, Hall [14] undertook the classical experiment that led to the so-called Hall 
effect. A century later, von Klitzing and his co-workers [17] showed that the Hall 
conductivity was quantized at very low temperatures as an integer multiple of the 
universal constant e2/h. Here e is the electron charge and h is Planck's constant. 
This is the Integer Quantum Hall Effect (IQHE). This discovery led to a new 
accurate measurement of the fine structure constant and a new definition of the 
standard of resistance [21]. 

On the other hand, during the 1970s, A. Connes [8],[10] extended most of 
the tools of differential geometry to noncommutative C*-algcbras, thus creating a 
new branch of mathematics called noncommutative geometry. The main new result 
obtained in this field was the definition of cyclic cohomology and the proof of an 
index theorem for elliptic operators on a foliated manifold. He recently extended 
this theory to what is now called quantum calculus [11]. 

After the works by Laughlin [19] and especially by Kohmoto, den Nijs, 
Nightingale, and Thouless [23] (called TKN2 below), it became clear that the 
quantization of the Hall conductance at low temperature had a geometric origin. 
The universality of this effect had then an explanation. Moreover, as proposed by 
Prange [20], [16], Thouless [22] and Halperin [15], the Hall conductance plateaus, 
appearing while changing the magnetic field or the charge-carrier density, are due 
to localization. Neither the original Laughlin paper nor the TKN2 one, however, 
could give a description of both properties in the same model. Developing a mathe
matical framework able to reconcile topological and localization properties at once 
was a challenging problem. Attempts were made by Avron et al. [1] who exhibited 
quantization but were not able to prove that these quantum numbers were insen
sitive to disorder. In 1986, Kunz [18] went further and managed to prove this for 
disorder small enough to avoid filling the gaps between Landau levels. 
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Figure 1: The classical Hall effect: The sample is a thin metallic plate of width 6. 
The magnetic field is uniform and perpendicular to the plate. The current density 
j parallel to the x axis is stationary. The magnetic field pushes the charges as 
indicated creating the electric field E along the y direction. The Hall voltage is 
measured between opposite sides along the y axis. 

But in [3], [5], [4], we proposed to use noncommutative geometry to extend 
the TKN2 argument to the case of arbitrary magnetic field and disordered crystal. 
It turned out tha t the condition under which plateaus occur was precisely the 
finiteness of the localization length near the Fermi level. This work was rephrased 
later on by Avron et al. [2] in terms of charge t ransport and relative index, filling 
the remaining gap between experimental observations, theoretical intuition, and 
mathematical frame. 

It is our aim in this talk to describe the main steps of this construction. The 
reader interested by details of the physical phenomena or of the mathematical 
proofs is kindly invited to look into the recent work [7]. 

2. IQHE: experiments and theories 

Let us consider a very flat conductor, considered as two-dimensional, placed in a 
constant uniform magnetic field B in the z direction perpendicular to the plane 
Oxy of the plate (see Figure 1). If we force a constant current j in the x direc
tion, the electron fluid will be submitted to the Lorentz force perpendicular to the 
current and the magnetic field creating an electric field E along the y axis. In a 
stationary state, writing that the total force acting on the charge vanishes leads 
to the relation j — aE with a (2 x 2) antidiagonal antisymmetric matrix with 
matrix element ±O~H given by 

°» = V T > 
nh 

e~B 

where n is the two-dimensional density of charge carriers, h is Planck's constant, 
e is the electron charge, and v is called the filling factor. We remark tha t the sign 
of O~H depends upon the sign of the carrier charge. In particular, the orientation of 
the Hall field will change when passing from electrons to holes. This observation is 
commonly used nowadays to determine which kind of particles carry the current. 
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Figure 2: Schematic representation of the experimental observations in the IQHE. 
The Hall conductivity a H is drawn in units of e2/h versus filling factor v. The 
dashed line shows the Hall conductivity of the Landau Hamiltonian without dis
order. The direct conductivity o// is shown in arbitrary units. 

The quantity RH = h/e2 is called the Hall resistance. It is a universal constant 
with value RH = 25812.80£1 RH can be measured directly with an accuracy 
better than 10 - 8 in QHE experiments. Since January 1990, this has been the new 
standard of resistance at the National Bureau of Standards [21]. 

Lowering the temperature below IK leads to the observation of plateaus for 
integer values of the Hall conductance (see Figure 2). The accuracy of the Hall 
conductance on the plateaus is better than 10~~8. For values of the filling factor 
corresponding to the plateaus, the direct conductivity a//, namely the conduc
tivity along the current density axis, vanishes: the sample becomes insulating. To 
summarize: 

(i) At very low temperatures, in the limit of large sample size, and provided the 
system can be considered as two-dimensional, Hall plateaus appear at integer 
values of the Hall conductance in units of the inverse Hall resistance. 

(ii) On plateaus the sample is an insulator. This is due to disorder in the sample, 
which produces the localization of charge carriers wave functions. 

(iii) For the Hall plateaus with large index (namely indices > 2) one can ignore 
the Coulomb interaction between charge carriers without too much error. 

3. The Kubo-Chern formula 

Because we can ignore Coulomb interactions between particles, the fermion fluid 
made of the charge carriers is entirely described by the one-particle theory. The 
quantum motion can be derived from the data of a self-adjoint operator called 
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the Hamiltonian of the system. A typical example of a one-particle Hamiltonian 
involved in the QHE for spinless particles is given by 

(P + eA)2 , Jrt^ 
H"= 2m* + V M h ( 1 ) 

where P is the 2D momentum operator and m* is the effective mass of the par
ticle, A = (A\,A2) is the vector potential given by the magnetic field, and VUJ(X) 

describes the potential created by disorder in the plate. Here u, which denotes the 
configuration of disorder, can be seen as a point in a compact metrizable Haus
dorff space Q on which the translation group R2 acts by homeomorphisms. Then 
the covariance condition V^ (x — a) = VTäu (x) expresses the fact that moving the 
sample and changing the reference axis backward are equivalent. 

Such a model is typical but may be replaced by others, such as lattice approx-
imants, or the particle with spin model. In any case, the one-particle Hamiltonian 
describing the fermion fluid satisfies the following general properties: 

(i) The translation group G acting on the sample is R2 or Z2. It acts by homeo
morphisms Ta,a G G, on the space Q of the disorder configurations. It also 
acts by unitary projective representation T(a),a E ö, on the one-particle 
Hilbert space H. 

(ii) The one-particle Hamiltonian is a norm resolvent strongly continuous family 
(Hu)ujen °f self-adjoint operators on H, bounded from below7 and satisfying 
the covariance condition T(a)HUJT(a)~1 = ^ w . 

Such a Hamiltonian actually generalizes the case of a periodic operator, namely 
the case for which there is a sufficiently large discrete subgroup of G leaving the 
Hamiltonian invariant. In this latter case, the Bloch theorem permits us to de
scribe the quantum motion in term of quasi-momenta k belonging to the so-called 
Brillouin zone, which is a manifold diffeomorphic to a torus. Both magnetic field 
and disorder break this translation symmetry in a non-trivial way, so that the 
notion of Brillouin zone becomes meaningless in the classical sense. Actually it 
is still possible to describe such a manifold in terms of noncommutative geome
try by replacing the algebra of continuous functions over the Brillouin zone by a 
noncommutative C*-algebra. In our case this C*-algebra is nothing but the one 
generated by the bounded functions of the H^s, UJ G £1. It turns out that it is 
a closed subalgebra of the twist crossed product A = C*(fl,G,B) = C(tl) xB G 
[6] where the product is twisted by a module defined by the magnetic field. A 
differential and integral calculus exists on such an algebra, making it a noncom
mutative differential manifold that we have proposed to call the noncommutative 
Brillouin zone. More precisely in our two-dimensional situation, we can define two 
derivations di (i = 1,2) by using the position operators Xim i = 1,2, as 

(diA)lM,=%[XuAù,] , AeA. 

Thus, C1 elements of A are well defined. 
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The integral depends upon the choice of a (/-invariant ergodic probability P 
on £1. It is then given by the trace per unit area TP, namely 

TP(A) = lim j—TrA(AUJ) , A G A , for P-almost all u% (2) 

where A denotes a sequence of squares in G centered at the origin and covering G 
and TTA is the restriction to A of the usual trace. 

Because of the Fermi statistics obeyed by the charge carriers (electrons or 
holes), two different particles of the fluid must occupy different quantum eigen-
states of the Hamiltonian H^. In the limit of zero temperature they occupy the 
levels of lowest energy, namely all eigenstates with energy lower than some max
imal one Ep called the Fermi level. We will denote by Pp^ the corresponding 
eigenprojection of the Hamiltonian. 

Standard results in transport theory permit us to compute the conductivity in 
terms of the linear response of the fermion fluid under the influence of an external 
field. This is the famous Green-Kubo formula. In the QHE-limit, namely in the limit 
of (i) zero temperature, (ii) infinite sample size, (iii) negligible collision processes, 
and (iv) vanishingly small electric fields, the direct conductivity either vanishes or 
is infinite, whereas the transverse conductivity, when defined, is given by 

2 2 

GH = ^ C h ( P F ) = ^2m TP(PF[ö 1PF ,a 2PF]) • (3) 

It turns out that Ch is nothing but the noncommutative analog of a Chern charac
ter. Thus, Kubo's formula gives rise to a Chern character in the QHE limit. This 
is why we propose to call eq. (3) the Kubo-Chern formula, associating Japan with 
China. 
The main properties of the noncommutative Chern character arc the following. 

(i) Homotopy invariance: Given two equivalent C1 projections P and Q in A, such 
that there is U G Cl (A) with P = U*U and Q = UU*, then Ch(P) = Ch(Q). 
This is actually what happens if P and Q are homotopic in Cl(A). 

(ii) Additivity: Given two C1 orthogonal projections P and Q in A, such that 
PQ = QP = o, then Ch(P © Q) = Ch(P) + Ch(Q). 

In particular, the homotopy invariance shows that Ch(Pp) is a topological quan
tum number, if Pp G CX(A). One of the main results of noncommutative geometry 
is that this Chern character is an integer. Thus, thanks to eq. (3) we get the Hall 
conductance quantization. Unfortunately, Pp £ Cl(A) in general, unless the Fermi 
level belongs to a spectral gap. We will see, however, in Section 5. below, that this 
Chern character is still well defined and quantized precisely whenever the Fermi 
level lies in a region of localized states. Moreover, changing the value of the filling 
factor produces the moving of the Fermi level, which does not change the Chern 
character as long as the localization length stays bounded. 
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4. The four traces way 

In this section we use four different traces that arc technically needed to express 
the complete results of this theory. The first one is the usual trace on matrices or on 
trace-class operators. The second one, introduced in Section 3. above, is the trace 
per unit volume. The third one is the graded trace or supertrace introduced in this 
section below. This is the first technical tool proposed by Connes [8] to define the 
cyclic cohomology and constitutes the first important step in proving quantization 
of the Hall conductance [4]. The last one is the Dixmier trace defined by Dixmier 
in 1964 [12] and of which the importance for quantum differential calculus was 
emphasized by Connes [9], [10], [11]. It will be used in connection with Anderson's 
localization. 

Let H be the physical one-particle Hilbert space of Section 3.. We then build 
the new Hilbert space H = H+ © H- with 7i± = H. The grading operator G and 
the "Hilbert transform" F are defined as follows: 

" • ( V - O - ' - ( i t ) - w 

where X = X\ + iX2 (here the dimension is D = 2). It is clear that F is self-adjoint 
and satisfies F2 = 1. An operator T on H is said to be of degree 0 if it commutes 
with G and of degree 1 if it anticommutes with G. The graded commutator (or 
supercommutator) of two operators and the graded differential dT are defined by 

[T,T']s = TT1 - (-)d*s(T)deg(T') r/ r ? dT = ^ T ] 5 _ 

Then, d2T = 0. The graded trace 1rs (or supertrace) is defined by 

Trs(T) = Ì T ^ ( G F [ F , r ] s ) = Trn(T++ - «T__«*) , (5) 

where u = X/\X\ and T++ and T are the diagonal components of T with respect 
to the decomposition of H. It is a linear map on the algebra of operators such that 
Tr s (TT') = Tr s (T'T). However, this trace is not positive. Observables in A will 
become operators of degree 0, namely A G A will be represented by Àu — A^QA^. 

Given a Hilbert space H, the n t h characteristic value fin of a compact op
erator T is the distance in norm of T to the set of operators of rank at most 
n. Equivalently, it is the n t h eigenvalue of \T\ = (TT*)1/2 labeled in decreasing 
order. The Macaev ideals CP+(H) are the set of compact operators on H with 
characteristic values satisfying 

'v x n=l 

Let Lim be a positive linear functional on the space of bounded sequences /+ (N) 
of positive real numbers that is translation and scale invariant. For T G Cl+(H) 
its Dixmier trace is defined by 

1 N 

TrDix(T) = L i m ( ^ ^ n ) . 
7 1 = 1 
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Note that T G £ 1 + if and only if TrDix(|T|) < oo. Moreover, if the sequence 
(hHv 5Zn=i/xn) converges, then all functionals Lim of the sequence are equal to 
the limit and the Dixmier trace is given by this limit. From this definition, one 
can show that TrDix is a trace [12], [11]. 

The first important result is provided by a formula that was suggested by a 
result of Connes [9]. Namely, if A G Cl(A) and if V = (dx,d2) we have [7]: 

TP(|VA|2) = -TrDix(|dA,;|2) , for P-almost all UJ . (6) 
7T 

Let now S denote the closure of Cl(Ä) under the noncommutative Sobolev norm 
P H I = TP(A*A) + TP(fA*VA). Eq. (6) shows that for any element A G S, dA^ 
belongs to C2+(H) P-almost surely. 

The following formula, valid for A0,Ai,A2 G Cl(A), is the next important 
result proved in [8], [4], [2], [7]: 

/ dP(Lj)Trs(Â0^dÂhujdÂ2,UJ) = 2i7rTP(A0d1A1d2A2 - A^A^A^ . (7) 
Jn 

Thanks to eq. (6) this formula extends to Ai G S. 

Applying these formulae to the Fermi projection, the Chern character Ch(PF) is 
well defined provided Pp G S and 

Ch(PF) = / dP{Lj)Trs(PF^dPF^dPF%u) . (8) 

The last step is a consequence of the Fedosov formula [13]; namely, the operator 
P^F-1 IP^H- is Fredholm and its index is an integer given by: 

n(uj) = lnd(PaJF^-\P^n.) = Trs[PFMdPFMdPF^) . (9) 

It remains to show that this index is P-almost surely constant. By the covariance 
condition PTau>F+~\pTayJH- anc^ PujT(a)~lF+~T(a)\Pu;n- a r e unitarily equiva
lent, so that they have the same Fredholm index. Moreover, PUJT(a)~1 F+~T(a) 
{p^H- — Pu)F+~\PuH- is easily seen to be compact so that PTau)P+~\pTuiA3n- have 
the same index as Pu}F

+~\pujn-- In other words, n(uj) is a S-invariant function 
of UJ. The probability P being (/-invariant and ergodic, n(uj) is P-almost surely 
constant. Consequently, as FH = u, if P F G S : 

Ch(PF) = lnd(PF,UJu\pF^u) ^ Z , P-almost surely . 

5. Localization 

It remains to show how the condition P F G S is related to the Anderson lo
calization. The easiest way to define the localization length consists of measur
ing the averaged square displacement of a wave packet on the long run. Let A 
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be an interval. We denote by P A the eigenprojection of the Hamiltonian cor
responding to energies in A. Then, if X is the position operator in G, we set 
X^mU}(t) = eTiH^tPAujXPAtUJe~iHuit. Then we define the A-localization length as: 

Z2(A) = limsup f % f dP(uj) < 0\(XAiUJ(t) - XA^(0)) 2 |0 > . 

In [7] we have shown that equivalently 

l2(A) = limsup C ^TP(\V(e-tHtPA)\2) = sup £ TP( |VPA , |2) , (10) 
T ^ o o JQ J- V A,£V 

where V runs in the set of finite partitions of A by Borei subsets. Moreover, we 
have also shown [7] that /2(A) < oo implies that the spectrum of H^ is pure point 
in A, P-almost surely. 

The density of states is the positive measure Af on R defined, for / a contin
uous function with compact support, by f_™dj\f(E)f(E) = TP(f(H)). It turns 
out [7] that if Z2(A) < oc one can find a positive Af-square integrable function I 
on A such that 

l2(A') = / djV(E) 1(E)2 , (11) 
JA' 

for any subinterval A' of A. We propose to call 1(E) the localization length at 
energy E. 

We can now conclude. Thanks to eq. (10) the finiteness of the localization 
length in the interval A implies that [7] 

(i) Pp G S whenever the Fermi level Ep lies in A, 

(ii) Ep G A h-> Pp G S is continuous (for the Sobolev norm) at every regularity 
point of AT, 

(iii) Ch(PF) is constant on A, leading to the existence of plateaus for the trans
verse conductivity, 

(iv) If the Hamiltonian is changed continuously (in the norm resolvent topology), 
Ch(PF) stays constant as long as the localization length remains finite at 
the Fermi level. 

As a Corollary, we notice that between two Hall plateaus with different indices, 
the localization length must diverge [15], [18]. The reader will find in [7] how to 
compute practically the Hall index using homotopy (property (iv)) and explicit 
calculation for simple models. 
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1. Introduction 

It has become clear over the years that quantum groups (i.e., quasitriangular Hopf 
algebras, see [D]) and their semiclassical counterpart, Poisson Lie groups, are an 
essential algebraic structure underlying three related subjects: integrable models 
of statistical mechanics, conformai field theory, and integrable models of quantum 
field theory in 1+1 dimensions. Still, some points remain obscure from the point 
of view of Hopf algebras. In particular, integrable models associated with elliptic 
curves are still poorly understood. We propose here an elliptic version of quantum 
groups, based on the relation to conformai field theory, which hopefully will be 
helpful to complete the picture. 

But before going to the elliptic case, let us review the relations between the 
three subjects in the simpler rational and trigonometric cases. 

In integrable models of statistical mechanics (sec [B],[F]), the basic object 
is an R-matrix, i.e., a meromorphic function of a spectral parameter 2 E C with 
values in End(V 0 V) for some vector space V, obeying the Yang-Baxter equation 

RW(Z)RW(Z -r w)RW(w) = R(23\W)RW(Z + w)R^l2\z), 

in End(V ®V <g>V). The notation is customary in this subject: X^ G End(F <g> 
• • • <g> V), for X e End(V), means Id <8 • • • <g> Id <g> X <8> Id <8> • • • <8> Id, with X at the 
jth place, and if R = Y>XU ® Yv, RM = HXJpY^K 

The Yang-Baxter equation implies the commutativity of infinitely many 
transfer matrices constructed out of R. Rational and trigonometric solutions of 
the Yang-Baxter equation appear naturally in the theory of quasitriangular Hopf 
algebras. 

If R depends on a parameter h so that R = Id 4- Hr + 0(h2), as h —> 0, then 
the "classical r-matrix" r obeys the classical Yang-Baxter equation 

[ r < 1 2 ) ( 2 ) , r ^ ( 1 ) 

This equation appears in the theory of Poisson-Lie groups, but has the following re
lation with conformai field theory. In the skew-symmetric case r(z) = —r^2l\—z), 
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it is the compatibility condition for the system of equations 

dZiu= J2 r(iJi(zi-Zj)u (2) 

for a function u(z\,..., zn) on C n — \Jì<J{Z\Zì = Zj}, with values in V 0 • • • 0 V. In 
the rational case, very simple skew-symmetric solutions are known: r(z) = C/z, 
where C G 0 0 a is a symmetric invariant tensor of a finite-dimensional Lie algebra 
g acting on a representation space V. The corresponding system of differential 
equations is the Knizhnik-Zamolodchikov (KZ) equation for conformai blocks of 
the Wess-Zumino-Wit ten model of conformai field theory on the sphere. Solutions 
of (1) in g 0 g, for simple Lie algebras g, were partially classified by Belavin and 
Drinfeld [BD], who in particular proved that, under a nondegeneracy assumption, 
solutions can be divided into three classes, according, say, to the lattice of poles: 
rational, trigonometric, and elliptic. Elliptic solutions are completely classified and 
exist only for six. 

Recently, Frenkel and Reshetikhin [FR] considered the "quantization" of the 
Knizhnik-Zamolodchikov equations based on the representation theory of Yan-
gians (rational case) and affine quantum enveloping algebras (trigonometric case). 
These equations form a compatible system of difference equations that as h —• 0, 
reduce to the differential equations (2). In an important special case, these dif
ference equations had been introduced earlier by Smirnov [S] who derived them 
as equations for "form factors" in integrable quantum field theory, and gave rel
evant solutions. In the quantum field theory setting R has the interpretation of 
a two-particle scattering matrix, and is required to obey the "unitarity" relation 
R(Z)R(21)(—Z) = Id, as well as a "crossing symmetry" condition. 

In the elliptic case, one knows solutions of the Yang-Baxter equation whose 
semiclassical limits are the sljy solutions discussed above [Bel]. The relevant alge
braic structure is here the Sklyanin algebra [Sk], [Ch], which however does not fall 
into the general quantum group theory. Although elliptic solutions related to other 
Lie algebras have not been found (and they could not have a semiclassical limit by 
the Belavin-Drinfeld theorem), many elliptic solutions of the Star-Triangle rela
tion, a close cousin of the Yang-Baxter equation, are known (see [JMO], [JKMO], 
[DJKMO]). This is somewhat mysterious, as, in the trigonometric case, solutions 
of both equations are in one-to-one correspondence. Another apparent puzzle we 
want to point out is that conformai field theory can be defined on arbitrary Rie
mann surfaces [TUY] whereas r-matrices exist only up to genus one, and in genus 
one only for sl^. 

We will start from the solution to this last puzzle to arrive, via quantiza
tion and difference equations, to a notion of elliptic quantum group, which is the 
algebraic structure underlying the elliptic solutions of the Star-Triangle relation. 

Let us mention some other recent progress in similar directions. In [FR] so
lutions of the Star-Triangle relation are obtained as connection matrices for the 
trigonometric quantum KZ equations. Very recently, Foda et al. [FIJKMY] have 
proposed an elliptic quantum algebra of nonzero level, by another modification of 
the Yang-Baxter equation. 
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2. Conformai field theory, KZB equations 

Our starting point is the set of genus one Knizhnik-Zamolodchikov-Bernard (KZB) 
equations, obtained by Bernard [Bl], [B2] as a generalization of the KZ equations. 
These equations have been studied recently in [FG], [EK], and [FW]. 

Let g be a simple complex Lie algebra with invariant bilinear form normalized 
in such a way that long roots have square length 2. Fix a Cartan subalgebra I). 
The KZB equations are equations for a function u(zi,... ,zn,r, A) with values 
in the weight zero subspace (the subspace killed by f)) of a tensor product of 
irreducible finite-dimensional representations of g. The arguments z\,... zn,r are 
complex numbers with r in the upper half plane, and the Zi are distinct modulo 
the lattice Z -f rZ, and A E f). Let us introduce coordinates A = EA^/i^ in terms 
of an orthonormal basis (hu) of f). In the formulation of [FW], the KZB equations 
take the form 

"uz,* = - ^ ^ ) o A , ü + ^ ^ ' / ) ( ^ - ^ 5 r , A ) u , (3) 

AniKdrU = J2d*»u + YlRU,l)(zJ ~zh^x)u- (4) 

Here n is an integer parameter that is large enough depending on the representa
tions in the tensor product and fi, H E g 0 g are tensors preserving the weight zero 
subspace that we now describe. Let g = f) + X]aGA 8<* be the root decomposition 
of g, and C E S2 g be the symmetric invariant tensor dual to the invariant bilinear 
form on g. Write C = J2aeAu{o} c<*, where CQ = £ ^ hu 0 hu and C^e^^g_Q. 
Let 0i (t, r) be Jacobi's theta function 

oo 

j = - o o 

and introduce functions p, G\ 

p(t) = ftlog0i(t|r), 

e1(w-t\r)dtel(0\r) 

The tensor fi is given by 

n(z,T, A) - p(z)Co + V J a(a(X),z)Ca. 
Q G A 

The tensor H has a similar form. We need the following special functions of t E C, 
expressed in terms of a(w, t), p(t) and Weierstrass' elliptic function p with periods 
l , r . 

Ht) = l-(p(t)2-p(t)), 

Jw(t) = dta(w,t) + (p(t) + p(w))a(w,t). 
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These functions are regular at t = 0. The tensor H is then given by the formula 

H(t,r, A) = I(t)C0 + VJ JaW(t)Ca. 

As shown in [FW], the functions u from conformai field theory have a special 
dependence on the parameter A. For fixed z, r, the function u, as a function of 
A, belongs to a finite-dimensional space of antiinvariant theta function of level n. 
Therefore, the right way of looking at these equations is to consider u as a function 
of z\,..., zn, r taking values in a finite-dimensional space of functions of A. 

The tensors have the skew-symmetry property Q(z) + Q^21\—z) = 0, and 
rl(z) - HS21\-Z) = 0 and commute with X*1) + X<2) for all X E rj- The compati
bility condition of (3) is then the modified classical Yang-Baxter equation [FW] 

V V V 

-[^•2\n^}-[n^2\n^)-[n^3\n^} = o (5) 

in g 0 g 0 g. In this equation, f i^) is taken at (zi — z3,r. A). Moreover, there are 
relations involving H, which we do not consider here, as we will consider only the 
first equation (3). The quantization of (4) is an important open problem related, 
for n = 1, to the theory of elliptic Macdonald polynomials [EK]. 

3. The quantization 

Let rj be the complexification of a Euclidean space rjr and extend the scalar prod
uct to a bilinear form on Ï). View f) as an abelian Lie algebra. We consider finite-
dimensional diagonalizable fy-modulcs V. This means that we have a weight decom
position V = ®ß£[)V[p] such that A E f) acts as (//, A) on V[p\. Let P^ E End(V) 
be the projection onto V[p\. 

It is convenient to introduce the following notation. Suppose V\,..., Vn are 
finite-dimensional diagonalizable rj-modules. If /(A) is a meromorphic function on 
f) with values in 0 ^ = V\ 0 • • • 0 Vn or End(0jV*), and r/j are complex numbers, 
we define a function on Ï) 

n 

/(A+5>/I<'->)= J2 IW( A + E r ^)< 
/ l i , . . . , / i - n 2 = 1 

taking values in the same space as / . 
Given \) and V as above, the quantization of (5) is an equation for a mero

morphic function R of the spectral parameter z E C and an additional variable 
A E f), taking values in End(F 0 V): 

Ä<i2)(Zl2?A + f7/i(3>^^ 

= Ä < 2 3 W A - TihM)RM{zl3,\ + rihW)RW(zl2,\- rih^). (6) 

The parameter 77 is proportional to h, and Zij stands for Zi — Zj. This equation 
forms the basis for the subsequent analysis. Let us call it the modified Yang-Baxter 
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equation (MYBE). Note that a similar equation, without spectral parameter, has 
appeared for the monodromy matrices in Liouville theory, see [GN], [B], [AF]. We 
supplement it by the "unitarity" condition 

R^(zl2,X)R^(z21,X) = I c W , (7) 

and the "weight zero" condition 

[X ( 1 )+X ( 2 ) ,Ä(*,A)] = 0 , VX Er). (8) 

We say that R E End(V 0 V) is a generalized quantum R-matrix if it obeys (6), 
(7), and (8). 

If we have a family of solutions parametrized by r\ in some neighborhood of the 
origin, and R(z, A) = Idy^y — 2rfil(z, A) + 0(rf) has a "semiclassical asymptotic 
expansion", then (6) reduces to the modified classical Yang-Baxter equation (5). 

Here are examples of solutions. Take r) to be the abelian Lie algebra of diago
nal Àr by N complex matrices, with bilinear form Trace(AB), acting o n F = CN. 
Denote by Eij the N by N matrix with a one in the ith row and j t h column and 
zeros everywhere else. Then we have 

PROPOSITION 3.1 The function 

^^E^Ejj^^^l 

is a "unitary" weight zero solution of the modified Yang-Baxter equation, i.e., it 
is a generalized quantum R-matrix, with r) = j/2. 

The proof is based on comparing poles and behavior under translation of spectral 
parameters by Z + r Z on both sides of the equation. It uses unitarity, the Z 
periodicity of R, and the transformation property 

R(z-rT,X) = e"4™'exp(27Tz(r/C0 + \{1)))R(z,X)exp(27ri(riC0 - A(1>)), (9) 

Co = 5^£«®£«. (10) 

Two limiting cases of this solution are of interest. First, if r —* zoc and Aj — A/ —• 
ioo, if j < /, we recover the well-known trigonometric R matrix connected with 
the quantum enveloping algebra of A^^ (sec [J]). 

The semiclassical limit is more subtle. To obtain precisely Q of the KZB 
equations, replace a(j,Xij) by a(j, A?;j)exp(/o(A?:j)7), and multiply the resulting 
R-matrix by exp(jp(z)(l — N)/N). It turns out that these changes are compati
ble with the MYBE (but violate the assumption of meromorphy). Then R has a 
semiclassical asymptotic expansion with ft (for sljy) as coefficient of —7. 

Following the Leningrad school (see [F]), one associates a bialgebra with qua
dratic relations to each solution of the Yang-Baxter equation. In our case we have 
to slightly modify the construction. Let us consider an "algebra" A(R) associated 
to a generalized quantum .R-matrix R, generated by meromorphic functions on \) 
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and the matrix elements (in some basis of V) of a matrix L(z, A) E End(V) with 
noncommutative entries, subject to the relations 

R{l2)(zl2, A + rih)LM{zu\ - rjhW)LW(z2, A + rih^) 

^ L ^ ^ ^ - n ^ ^ ^ ^ ^ ^ A + r / ^ 2 ) ) ^ 1 2 ) ^ ^ - ^ ) . 

Instead of giving a more precise definition of this algebra, let us define the more 
important notion (for our purposes) of representation of A(R). 

Definition: Let R E End(V 0 V) be a meromorphic unitary weight zero solution 
of the MYBE (a generalized quantum i?-matrix). A representation of A(R) is a 
diagonalizable r)-module W together with a meromorphic function L(z, A) (called 
the L-operator) on C x rj with values in End(V 0 W) such that the identity 

R{l2)(zl2, A + rjh^L^^zu A - rih^)L^(z2, A + Vh^) 

= L<23>(22, A - r,hW)LM(zu\ + rihW)RW(z12, A - rih™) 

holds in End(V 0 V 0 W), and so that L is of weight zero: 

[XM+XW,L(Z,\)\ =0, VXEf). 

We have natural notions of homomorphisms of representations. 

THEOREM 3.2 (Existence and coassociativity of the coproduct) Let (W.L) and 
(Wl', U) be representations of A(R). Then W<8>W with ty-module structure X ( w 0 
w') = Xw 0 w' + w 0 Xw' and L-operator 

LM{z,\ + vhw)LW(z,\-rihW) 

is a representation of A(R). Moreover, if we have three representations W, W, 
W", then the representations (yV®W)®Wn and W®(W®W") are isomorphic 
(with the obvious isomorphism). 

Note also that if L(z, A) is an L-operator then also L(z — w,X) for any complex 
number w. Because the MYBE and the weight zero condition mean that (V,R) 
is a representation, we may construct representations on V®n = V 0 • • • 0 V by 
iterating the construction of Theorem 3.2. The corresponding L operator is the 
"monodromy matrix" with parameters Z\,..., zn: 

n+l 
H RM\Z - Zj, A - v^Ki<jh{i) + i jE^n+ i f cW) 

(the factors are ordered from left to right). Although the construction is very 
reminiscent of the quantum inverse scattering method [F], we cannot at this point 
construct commuting transfer matrices by taking the trace of the monodromy 
matrices. As will be explained below, one has to pass to IRF models. 
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4. Difference equations 

We now give the quantum version of the KZB equation (3). As in the trigonometric 
case [S], [FR] it is a system of difference equations. The system is symmetric, i.e., 
there is an action of the symmetric group mapping solutions to solutions. In the 
trigonometric and rational case, symmetric meromorphic solutions with proper 
pole structure are "form factors" of integrable models of quantum field theory in 
two dimensions [S]. 

It is convenient to formulate the construction in terms of representation the
ory of the affine symmetric group. Let Sn be the symmetric group acting on Cn 

by permutations of coordinates, and Sj, j = 1 , . . . ,n• — 1, be the transpositions 
(j.j -f 1). These transpositions generate Sn with relations SjSi = siSj, if \j —1\ > 2, 
SjSj+iSj = Sj+iSjSj+i, and s2 = 1. Let also P E End(V 0 V) be the "flip" opera
tor Pu 0 v = v 0 u and if R is a generalized quantum i?-matrix, set R = RP. The 
defining properties of a generalized quantum i?-matrix imply: 

PROPOSITION 4.1 Suppose that R is a generalized quantum R-matrix. The for
mula 

Sjf(z, A) = ^ + 1 ) ( z j W , A - V^i<jh(i) + Tpi>j+1hW)f(8jz, A) (11) 

defines a representation of Sn on meromorphic functions on C x fj with values in 

The (extended) affine symmetric group S% is the semidirect product of Sn by Z n . 
It is generated by Sj and commuting generators ej5 j = 1 , . . . ,n, with relations 
Sjd = eiSj, if I ^ j,j + 1 and Sjej = Cj+iSj. Let us introduce a parameter a E C 
and let ej act on z E C n as ej(z\,..., zn) = (z\,... ,Zj — a , . . . , zn). Note that 
S£ is actually generated by si , . . . , sn_i and en, as the other ej are constructed 
recursively as ej = Sjej+\Sj. 

THEOREM 4.2 Suppose that Ris a generalized quantum R-matrix. Let Tjf(z, A) = 
f(z, A — 2r}h(iï), Tjf(z,\) = f(e~1z,X), and RÜ'n) denote the operator of multi
plication by R(3i7l\zjin,\ — rfL^jh^ + riTlj<i<nhS^). Then (11) and 

enf = Rt"-1*) •.. R^R^TnTnf 

define a representation of S% on meromorphic functions on C x fj with values in 
y®n 

It is easy to calculate the action of the other generators ej. One gets expressions 
similar to the ones in [FR], [S]. 

The compatible system of difference equations (quantum KZB equations) is 
then 

e j / = /, j = l,...n. 
The symmetric group maps solutions to solutions. 

Moreover, it turns out that, for special values of a, the representation of 5." 
for the solution of Proposition 3.1 preserves a space of theta functions, as in the 
classical case. 
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5. IRF models 

In our setting, the relation between the generalized quantum Ä-matrix and the 
Boltzmann weights W of the corresponding interaction-round-a-face (IRF) model 
[B] is very simple. Let R E End(V 0 V) be a generalized quantum ^-matrix, and 
let V[/i] be the component of weight p E ï)* of V, with projection E[p] : V —> V[p\. 
Then for a, b.c.d El)*, such that b — a, c — b, d — a, and c — d occur in the weight 
decomposition of V, define a linear map 

W(a, b, c, d, z, A) : V[d - a] 0 V[c - d] -> V[c - b] 0 V[b - a], 

by the formula 

W(a, 6, c, d, 2, A) = £[c - b] 0 £[& - a]Ä(z, A - 770. - ryc)|y[rf_ft]sl,[rj_d]. (12) 

Note that W(a + x,b + x,c + x, d + x, z, A + 2nx) is independent of x* E I) ~ f)*. 
Set W(a, b, c, d, z) = W(a, ò, c, d, z, 0). 

THEOREM 5.1 If R is a solution of the MYBE, then W(a, &, c, d, 2) obeys the Star-
Triangle relation 

Zg W(b, c, d,0, z12)(
12HV(a, b,g, f, z13)^W(f,g, d. e, z23)W 

= E9 W(a, Ò, c,p, z23)WW(g, c. d, e, ̂ 3 ) ( 1 3 ) ^ ( a , g. e, f, zl2)W, 

on V[f - a] 0 F[e - / ] 0 V[d - e\. 

The familiar form of the Star-Triangle relation [B],[JMO] is recovered when the 
spaces V[fi] are 1-dimensional. Upon choice of a basis, the Boltzmann weights 
W(a, b, c, d, z) are then numbers. 

For example, if R is the solution of Proposition 3.1, we obtain the well-known 
A^-\ solution (see [JMO], [JKMO], and references therein). 

It is known that solutions of the Star-Triangle relations can be used to con
struct solvable models of statistical mechanics. Several elliptic solutions are known. 
It is to be expected that the representation theory of the algebra A(R) above will 
give a more systematic theory of solutions. Also, the fact that these Boltzmann 
weights arise as connection matrices of the quantum KZ equation [FR] and the 
similarity of our Yang-Baxter equation with the triangle equation of [GN] suggest 
that our algebra is the quantum conformai field theory analogue of Uq(%), the 
algebra governing the monodromy of conformai field theory. 

Acknowledgment. I wish to thank V. Kac, who asked a question that triggered the 
quantum part of this research. 

References 

[AF] A. Alekseev and L. Faddeev, (T*G)t: A toy model for conformai field theory, 
Comm. Math. Phys. 159 (1994), 549-579. 

[Ba] O. Babelon, Universal exchange algebra for Bloch waves and Liouville theory, 
Comm. Math. Phys. 139 (1991), 619-643. 



Elliptic CFT and Integrable Systems 1255 

[B] R. J. Baxter, Exactly Solved Models of Statistical Mechanics, Academic 
Press, London 1982. 

[Bl] D. Bernard, On the Wess-Zumino- Witten model on the torus, Nuclear Phys. 
B, 303 (1988), 77-93. 

[B2] D. Bernard, On the Wess-Zumino-Witten model on Riemann surfaces, Nu
clear Phys. B, 309 (1988),145-174. 

[Bel] A. Belavin, Dynamical symmetry of integrable systems, Nuclear Phys. B, 108 
[FS2] (1981), 189-200. 

[BD] A. Belavin and V. Drinfeld, Solutions of the classical Yang-Baxter equation 
for simple Lie algebras, Functional Anal. Appi. 16 (1982), 159. 

[Ch] I. Cherednik, Some finite dimensional representations of generalized Sklya-
nin algebras, Functional Anal. Appi. 19 (1985), 77-79. 

[D] V. G. Drinfeld, Quantum groups, Proc. Internat. Congress Math. Berkeley 
1986, Academic Press, San Diego, CA, and New York (1986), 798-820. 

[DJKMO] E. Date, M. Jimbo, T. Miwa, and M. Okado, Exactly solvable SOS models II: 
Proof of the star-triangle relation and combinatorial identities. Adv. Stud. 
Pure Math. 16 (1988), 17-22. 

[EK] P. Etingof and A. Kirillov, Jr., On the affine analogue of Jack's and Mac-
donald's polynomials, Yale preprint (1994). 

[F] L. Faddeev, Integrable models in (1 + 1)-dimensional quantum field theory, 
Proceedings of the Les Houches Summer School 1982, Elsevier 1984. 

[FG] F. Falceto and K. Gawedzki, Chem-Simons states at genus one, Comm. 
Math. Phys. 159 (1994), 549-579. 

[FW] G. Felder and C. Wieczerkowski, Knizhnik-Zamolodchikov-Bernard equa
tions and invariant theta functions, preprint (1994). 

[FIJKMY] O. Foda, K. Iohara, M. Jimbo, R. Kedem, T. Miwa, and H. Yan, An elliptic 
quantum algebra for sl2, preprint hep-th/9403094 (1994). 

[FR] I. Frenkel and N. Reshetikhin, Quantum affine algebras and holonomic dif
ference equations, Comm. Math. Phys. 146 (1992), 1-60. 

[GN] J. L. Gervais and A. Neveu, Novel triangle relation and absence of tachyons 
in Liouville theory, Nuclear Phys. B, 238 (1984), 125. 

[J] M. Jimbo, Quantum R matrix for generalized Toda systems, Comm. Math. 
Phys. 102 (1986), 537-547. 

[JKMO] M. Jimbo, A. Kuniba, T. Miwa, and M. Okado, The A^ face models, Comm. 
Math. Phys. 119 (1988), 543-565. 

[JMO] M. Jimbo, T. Miwa, and M. Okado, Solvable lattice models related to the 
vector representation of classical simple Lie algebras, Comm. Math. Phys. 
116 (1988), 507-525. 

[KZ] V. Knizhnik and A. Zamolodchikov, Current algebra and the Wess-Zumino 
model in two dimensions, Nuclear Phys. B, 247 (1984), 83-103. 

[S] F. Smirnov, Form Factors in Completely Integrable Systems of Quantum 
Field Theory, World Scientific, Singapore, 1992. 

[Sk] E. Sklyanin, Some algebraic structures connected with the Yang-Baxter equa
tion, Functional Anal. Appi. 16 (1982), 27-34; Functional Anal. Appi. 17 
(1983), 273-234. 

[TUY] A. Tsuchiya, K. Ueno, and Y. Yamada, Conformai field theory on a universal 
family of stable curves with gauge symmetries, Adv. Stud. Pure Math. 19 
(1989), 459-566. 



Free Field Realizations in Representation Theory 
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Free field realization is a relatively new formalism that intertwines representation 
theory, conformai field theory, and the theory of nonlinear integrable equations. 
From the physics point of view, it provides realizations of two-dimensional con-
formal field theories via free bosonic theories. This allows one to find integrals 
of motion and compute explicitly correlation functions. Mathematically, free field 
realizations bring new insights into representation theory of conformai algebras, 
e.g., a new series of representations of affine Kac-Moody algebras, which can be 
considered as an analogue of the principal series of semi-simple groups over lo
cal fields. This connects representation theory of affine algebras with Langlands 
philosophy. 

In this report, which is based mainly on my joint works with Feigin, we will 
focus on free field realizations of affine Kac-Moody algebras and W-algcbras. We 
will give two constructions of free field realizations: geometric and Hamiltonian, 
and discuss their applications. 

1. Geometric approach to free field realizations 

In this section we will give a construction of a family of free field representations 
of affine algebras, which we call Wakimoto modules. These modules were defined 
by Wakimoto [W] for the simplest affine algebra si2 and by Feigin and the author 
[FF1] for an arbitrary affine algebra. 

1.1. Finite-dimensional case. Let us first consider the finite-dimensional analogue 
— the Borei-Weil-Bott construction of representations of semi-simple Lie algebras. 

Let g be a simple Lie algebra with the Cartan decomposition g = n+0f)©n_, 
and X be its flag manifold G/B-. where G is the Lie group of g, and B- is its 
Borei subgroup — the Lie algebra of n_ © Ï). The big cell U = AT+ • 1 is an open 
subset of X that is isomorphic to the Lie group AT+ and hence to the Lie algebra 
n+ via the exponential map. 

The infinitesimal action of g on X gives us an embedding of g into the Lie 
algebra of vector fields on U and hence to the algebra V of differential operators 
on IA\ here T> is a Heisenberg, or Weyl, algebra. In fact, such an embedding is 
not unique: one can associate an embedding g —» T> to an arbitrary À G ()*. By 
restricting the D-modulc of regular functions on U to the image of this embedding 
we obtain a g-module. This module is contragradient to the Verma module M\ 
over g. 
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1.2. Affine algebras. Our geometric construction of Wakimoto modules [FF1], 
[FF4] essentially exploits the same idea: we should find an appropriate homo
geneous space of the Lie group of an affine algebra g and try to embed g into the 
algebra of differential operators on its big cell. We should then choose a module 
over this algebra in such a way that its restriction to g lies in an appropriate 
category of g-modules. 

Recall that the affine Lie algebra associated to g is the extension g of the 
loop algebra Lg = g 0 C[t, t~r] by a one-dimensional center CK [K]. 

The Lie algebra g has a Cartan decomposition: g = n+ © f) © îï_, where 
n± = (n± 0 CI) © (g 0 t^C^1]), and Ì) = (f> 0 CI) © CK. 

Using this decomposition we can define the category Ö, which consists of g-
modules, on which (1) the upper nilpotent subalgebra n + acts locally nilpotently, 
and (2) the Cartan subalgebra rj acts semi-simply [BGG], [RW], [DGK]. The Lie 
group of f) © n+ is an analogue of the Iwahori subgroup of the group G over a 
local nonarchimedian field. Note also that elements of n + annihilate the vacuum 
state of the corresponding quantum field theory. This motivates the definition of 
category Ö. 

The fundamental objects of the category Ö are Verma modules. Such a mod
ule is the induced representation M\ = U(Q) 0 ^ eS) ^ A ' where Cx is the one-
dimensional n © rj-module, on which the first summand acts by 0, and the second 
summand acts according to its character A E rj*; A is called highest weight. We will 
write A = (Ä, k), where Â G f)* is the restriction of A to rj C f), and k = X(K): k 
is called level. All irreducible objects in Ö can be obtained as quotients of Verma 
modules. 

The construction of the previous section carries over to the case of the stan
dard flag manifold of g. This manifold is the quotient of the Lie group of g by its 
standard Borei subgroup — the Lie group of n_ © f). This gives a realization of 
the modules contragradient to the Verma modules over g in the space of functions 
on the big cell of this flag manifold. 

1.3. Semi-infinite flag manifold. In the affine case there are also other possibilities 
that have no analogues in the finite-dimensional picture. The reason is that in the 
affine algebra there are many different "Borei subalgebras" that are not conjugated 
to each other. One of them is (n+ 0 C\t,t~x\) © (ï) 0 tC[i\), a Lie subalgebra 
of loops to the Borei subalgebra of g. To this subalgebra there corresponds the 
semi-infinite flag manifold X, which is the quotient of the loop group LG by 
the connected component of the loop group of the Borei subgroup f?_ of G. One 
can also describe X as the universal covering space of the loop space of the flag 
manifold X of G, cf. [FF4,^Section 4]. 

Consider the big cell U = LAT+ • 1 on X, where LN+ is the loop group of N+. 
This orbit is isomorphic to LN+, and hence to its Lie algebra n+ := n+ 0C[£, t _ 1 ] , 
because Ar+ ~ n + via the exponential map. Hence we obtain coordinates xa(n) = 
xa 0 tn, a € A_|_, n G Z, where A + is the set of positive roots of g, on U. 

We can now identify the algebra of differential operators on li with the Heisen
berg algebra H, which has generators xa(n),d/dxa(n),a G A+,n G Z, with the 
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standard commutation relations [d/dxa(n),xp(m)] = 6Q,#£n.m. In physics litera
ture H is called a /37-system. 

The loop algebra LQ infinitesimally acts on U by vector fields. These vector 
fields are actually infinite, and therefore lie in a completion of the Lie algebra of 
vector fields onW. If we could lift those vector fields to a completion of H, we 
would obtain a Lg-module structure on a module over H, on which the action of 
the completion is well defined. 

We could take as such a module, the space of functions on U, i.e. the module 
generated by a vector v, such that d/dxa (n) • v — 0, n G Z. But then the resulting 
Lg-module would not lie in the category Ö, cf. [JK]. In order to obtain a module 
from the category Ö, we should instead take the space M of 6-functions on U with 
support on its subspace n+0C[£] C n+0C[£,£ -1] = U of "semi-infinite dimension". 
This module is therefore generated by a vector v, such that d/dxa(n)-v = 0, n > 0, 
and xa(n) • v = 0, n < 0. This is the Fock representation of H. 

The module M carries a vertex operator algebra (VOA) structure. Recall 
that a VOA structure is essentially a linear operation on a Z-graded linear space 
V that associates to any homogeneous vector A G V a formal power series, called 
a current, Y (A, z) = Ximez^m^N w n e r e An ' V —• V is a linear operator of 
degree deg^4 + ra. These series satisfy certain axioms, cf. [B], [FLM]. 

Using the VOA structure on M we can define a local completion H\oc of H 
[FF5], which consists of all Fourier coefficients of currents defined by M. These 
currents have the form 

:&?>aaAz]-...-e?*aak[z].^a'ßl[z]-...-d2'a*(il[z) :, m^nj > 0, 

where columns stand for normal ordering and 

n€Z aV ' nez 

Clearly, the action of H\QC on M is well defined and hence this is a suitable 
completion of H into which to embed LQ. 

1.4. Wakimoto modules. There is a filtration of H\oc by powers of the generators 
d/dxQ(n): 0 C W!\oc C H\oc C We have the exact sequence: 

0 - W?oc - « L - Vect Uioc - 0, (1) 

and an embedding e : LQ —• Vect U\oc, where Vect^ioc is a completion of Vect U. 
In order to make M into a module over LQ, we have to lift the map e to a 

map e' : LQ —* l~L\oc. However, this cannot be done, because in contrast to the 
finite-dimensional case, the exact sequence (1) does not split. It defines a class in 
the cohomology group H2(VcctU\oc,7iioc) that is one dimensional [FF4, Section 
5.1]. 

A miraculous fact is however that the extension of LQ by H^oc defined by (1) 
is cohomologically equivalent to its extension by C C H\oc- It is possible therefore 
to lift e to a map from g to H\oc. 
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THEOREM 1 [W], [FF1]. (a) There exists a Lie algebra homomorphism g —• H\oc, 
which maps K to — / i v , where hw is the dual Coxeter number of Q. 

(b) The space of homomorphisms g —• Ti\oc is a principal homogeneous space 
over I)* ®C((z))dz. 

The Fock representation M now provides a family of Wakimoto modules over 
g of level — hy, which is called the critical level. Such a module Wx(2) is attached 
to an arbitrary operator of the form dz + x(z), where \(z) G f)* 0 C((z))dz. It can 
be considered as a connection on a principal iïL-bundle on the punctured formal 
disc, where HL is the dual group of the Cartan subgroup H of G. One can write 
explicit formulas for the action of g on the Wakimoto modules, cf. [W] in the case 
of si2 and [FF1] in the case of s[n. 

We see that the category Ö at the critical level is much larger than at other 
levels. In fact, one can show that all irreducible objects of this category can be 
constructed as quotients of Verma modules of critical level by characters of the 
center of a completion of U(Q). The space of central characters is isomorphic to 
a space of GL -connections on the formal disc satisfying a special transversality 
condition, cf. [FF5] and Section 3.5 below. Here GL is the Langlands dual group 
of G, and these connections can be considered as "local Langlands parameters" 
of g-modules of critical level. This fact can also be used for constructing a global 
geometric Langlands correspondence for complex algebraic curves in the context 
of affine algebras (Drinfeld). 

It is not difficult to generalize the construction of Wakimoto modules above 
to an arbitrary level. 

The Lie subalgebra ï) = f) 0C[£, t~x]QCK of g is a Heisenberg Lie algebra. It 
has generators hi(n) = hi 0 tn, i = 1 , . . . ,l;n G Z, and K, and the commutation 
relations 

[hi(n),hj(m)] = n(hi,hj)K, [K,hi(n)] = 0, 

where (•, •) is the restriction of the Killing form of g. 
Let A be an element of fj* and v be a nonzero complex number. We define 

the Fock space representation TTX of fy as a module freely generated by hi(n),i = 
1, . . . , l\n < 0, from a vector v\, such that hi(n)v\ = 0,n > 0; hi(0)v\ = X(hi)v\; 
and Kv\ = vv\. 

THEOREM 2 [W], [FF1]. There is a structure ofQ-module of level k from the cat
egory O on WXik = M 0 7r£+h . 

For generic values of A the modules Af\, Mx and W\ are irreducible and 
isomorphic to each other. When they are not irreducible, they may have different 
composition series, cf., e.g., [FF2] and [BeF] in the case of sl2. A surprising fact 
[Fr2] is that if k is real and less than — hv, then Wx^ — M* k for positive \-

The integrable representation L\ of g with dominant integral weight A is 
a subquotient of the Wakimoto module W\. One can construct an analogue Rx 

of the Bernstein-Gelfand-Gelfand (BGG) resolution [BGG], [RW]. It consists of 
Wakimoto modules and its cohomology is concentrated in one dimension, where 
it is isomorphic to L\. In contrast to the usual resolution, Rx is two-sided. In 
the case of sl2 these resolutions were constructed explicitly in [FF4, Section 7.3] 
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and in [BeF] (they are closely connected with similar resolutions over the Virasoro 
algebra constructed in [Fel]). In [BMP1], [BMP2] a remarkable connection between 
Rx and resolutions over the quantum group Uq(Q) with q = exp ni/(k + hv) was 
found. 

By construction, the modules Wx(z) and WXik are free over the Lie algebra 
n+ n n_ and cofree over the Lie algebra n + f i n + . Therefore they are flat over n+ 

in the sense of semi-infinite cohomology [F]: if30/2"4"1^, WXik) = nx
+h if i = 0, 

and 0 if i ^ 0 (note that iF(n+, Mj[) = CA if i = 0, and 0 if i ^ 0, where W 
stands for the usual Lie algebra cohomology functor). Using this result and the 
two-sided resolution Rx, we computed #°°/2+*(n+,LA) [FF4, Theorem 4]. 

1.5. Remarks. (1) The construction of Wakimoto modules is a semi-infinite version 
of the construction of induced and coinduced modules. We can define a g-bimodule 
£/fc(g) on which g acts on the left with level k and on the right with level — 2hv — k, 

so that WXik ^ Torx ?2~ (Uk(Q), nx
+h ), where Toroc/2+* is the semi-infinite Tor 

functor (note that Mx = Tor5@,î+(C/(g),CA)). 
(2) The semi-infinite flag manifold is stratified by orbits of the Lie group 

of n+, which are called Schubert cells. Wakimoto modules are related to these 
Schubert cells in the same way as Verma modules are related to the Schubert cells 
of the standard flag manifold, cf. [FF4]. In particular, the Floer cohomology of the 
semi-infinite flag manifold is the double of the semi-infinite cohomology of the Lie 
algebra n+ (compare with the finite-dimensional case [Kos]). 

(3) In [FF4] a more general construction is given that associates to an arbi
trary parabolic subalgebra p of g, a "Borei subalgebra" of g. These Borei subalge
bras are not conjugated to each other and therefore lead to different flag manifolds. 
Generalized Wakimoto modules, which are flat with respect to the corresponding 
Borei subalgebras, can be defined as delta-functions supported on Schubert cells 
of these manifolds. In particular, M*k corresponds to p = g and WXik corresponds 
to p = fj ©n+. 

(4) One can show that Wx^ is irreducible for generic \(z) [FF2]. This implies 
the Kac-Kazhdan conjecture [KK] on characters of irreducible modules at the 
critical level. 

(5) It is possible to construct explicitly intertwining (or screening) operators 
acting between Wakimoto modules [FF2], [FF3], [BeF], [BMP1], [BMP2]. 

2. Solutions of the Knizhnik-Zamolodchikov equation 

In this section we will outline the application of the Wakimoto realization to the 
computation of correlation functions (or conformai blocks) in the Wess-Zumino-
Novikov-Witten (WZNW) model. It is known that in genus zero they satisfy a 
system of partial differential equations (PDEs) with regular singularities, called 
Knizhnik-Zamolodchikov (KZ) equations. Wakimoto realization allows one to ex
press these correlation functions as integrals of much simpler correlation functions 
of free bosonic fields. This gives the Schechtman-Varchenko solutions of the KZ 
equations. 
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2.1. Genus zero conformai blocks. Let us recall the definition of the space of con-
formal blocks in the WZNW model. Consider the projective line CP1 with a global 
coordinate t and N distinct finite points z\,... ,z^ G CP1. In the neighborhood of 
each point z\ we have the local coordinate t — zf, denote Q(Zì) = g 0 C ( ( £ — Zi)). Let 
QN be the diagonal extension of the Lie algebra (BìLIÌÌ(Zì) by one-dimensional cen
ter CK. The Lie algebra QN naturally acts on N-fold tensor products of g-modules 
®^=1Mi of a given level k ^ — hv. 

Let gz be the Lie algebra of g-valued regular functions on CP 1 \ {^ i , . . . , z^}, 
which vanish at oo. By expanding elements of gz in Laurent power series in the 
local coordinates t — Zi at each point Zi, we obtain an embedding gz —> g^. Denote 
by H (Mi,... ,Mjv) the space of gz-invariant linear functionals on 0 ^ x M j . This 
space is called the space of conformai blocks. 

There is a canonical flat connection on the trivial bundle over the space 
CjV\{diagonals} with the fiber H(MU... , MN). 

Now let us choose as the modules Mi, the modules Mx. k (recall that Mx k ~ 
W\^k for generic A and k). Then H(M\,... , MN) = 0^=1Af\i is the tensor product 
of Verma modules over g. In that case the flat connection is defined by the system 
of KZ equations [KZ] : 

v^(z) 
(k + hv)^^=Hi-iP(z), » = 1, . . . ,N, (2) 

where H{ = Yìj& Ia la /(zi — Zj), and Ia denotes an element of an orthonormal 
basis {Ia} of g acting on the ith factor of ®£L1Af,x., cf., e.g., [FFR]. 

2.2. Solutions. In the same way as in Section 2.1 we can define spaces of conformai 
blocks with respect to the Heisenberg algebra f) © H [FFR]. Denote by Jp(x) the 
space associated to the tensor product of Wakimoto modules ^=\WXi}k, where 
x = (x\,... , xp) [FFR, Section 6]. This space is one dimensional, and the equation 
defining the flat connection takes the form: 

( + fe = Z ^ T . _ T . ^ « = 1, • • - ,P- (3) 
3& J 

These are "baby KZ" equations for the Heisenberg algebra. They are much simpler: 
the unique up to a constant factor solution is <pp = Yl%<j(xi ~ Xj)^Xi,x^^k+hV\ 
This is the correlation function of the scalar bosonic field. 

Now set p = N + ra, xi = zi} \i = A^,i = 1 , . . . , N, and XN+J = WJ,\N+J = 

-&ijj = 1, - - - , m. Then (pN,m = 

Yl(Zi - Zj)(>«>>»)/W) H(Zi - tt,i)-(^.«*i)/(*+fcv) Yi{Ws _ Wj)(*i..°iJmk+h>')m 

Using Wakimoto modules, we can obtain solutions of the KZ equations (2) 
by integrating solutions of the "baby KZ" equations (3). We refer the reader to 
[ATY] and [FFR] for this computation and only give the final result. 
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Introduce the vector \w\\... ,1*)*™) G 0 - ^ A / A , by the formula 

N fU)fU) fU) 

p = ( / 1 7 A ) J = 1 *1 2 2 / V *2 2 3 7 V l"j J/ (4) 

where the summation is taken over all ordered partitions I1 U I2 U . . . UIN of the 
set { i i , . . . ,im}, I J = {i{,iJ

2.... ,ia.}, fi denotes the generator fi G g acting on 
the j t h component of 0^ 1 i l / A i , and |0) is the highest weight vector. 

Denote by Cm?z the space C m with coordinates w\,... , wm without all diag
onals Wj = Wi and all hyperplanes of the form Wj = Zi. The multi-valued function 
ipNsn defines a one-dimensional local system £ on the space Cm<z. 

THEOREM 3. Let A be an m-dimensional cycle on Cm.z with coefficients in C*. 
The (S>iLiM\i -valued function 

/ VN.m IK1, • • • , w\z ) dwi... dw 
JA 

m 

is a solution of the KZ equation. 

Thus, we obtained solutions of the KZ equations in terms of generalized hy-
pergeometric functions using Wakimoto modules. These solutions were first derived 
by Schechtman and Varchenko by other methods [SVI] (cf. also [L], [DJMM]). 

2.3. Remarks. (1) The results of this section mean that a complicated V-module on 
the space CN\{diagonals} defined by the KZ equations (2) can be embedded into 
the direct image of a much simpler î>-module on a larger space CN+m\{diagonals} 
defined by the equations (3). Wakimoto realization provides a natural explanation 
of this remarkable fact. 

(2) Using Wakimoto modules at the critical level in a similar fashion, it was 
shown in [FFR] that the vector (4) is an eigenvector of the Gaudin Hamiltonians 
Hi, if Wj's satisfy a system of Bethe ansatz equations. 

3. Free field realizations from the theory of nonlinear equations 

Local integrals of motion of nonlinear integrable equations form Poisson algebras, 
which in many cases can be naturally embedded into larger Heisenberg-Poisson 
algebras. By quantizing this embedding we can obtain an embedding of the algebra 
of quantum integrals of motion into a Heisenberg algebra. This provides another 
source for free field realizations. We will describe this construction in the case of 
Toda equations following [FF6], [FF7]. 

3.1. Classical Toda field theory. Let g be a simple Lie algebra and a\,... , a* G fj* 
be the set of simple roots of g. The Toda equation associated to g reads 

/ 
dTdt(/)i(t,T) =^(ai,aj)exp[(l)j(t,T)}, i = l,... ,1, (5) 

where each (j)i(t,r) is a family of functions on the circle with a coordinate t, 
depending on the time variable r . 
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Let 7T0 = C[<4 ]i<à<Lm>o be the algebra of differential polynomials in u\,... , 
ui, where Ui = uf\ It is Z graded according to deg?4 = n + 1, and there is a 
derivation d on 7r0, such that 9ti?- ' = w[n+ . Let us formally introduce variables 
(j>i,i = 1 , . . . ,/, such that d<pi = Ui. Then we have an action of d on the space 
TT«» = 7T0 0 e*''. 

There is a derivative on the space 7T\ (g>C[M_1], where A = 0 or o^, given by 
d 0 1 + 1 0 dt. Denote by T\ the quotient of TT\ 0 C[t, t~x] by the subspace of total 
derivatives (and constants, if A = 0) and let J be the projection 7r,\0C[£, £_1] —> T\. 
The space ^o can be viewed as the space of local functionals in Ui(t),.... , U[(t) G 
fj 0 C[t, t~x] of the form / P(ui(t),dtiii(t),... ;t)dt, where P is a polynomial. 

There is a unique partial Poisson bracket {-, •} : T§ x T\ —> F\, such that: 

{juif1, fUjt
m} = n(a,,aJ)(5n,_m, {fuiin,fe^r1} = (auaj) j ' e*Hn+™, 

cf. [GD], [KW]. The restriction of this bracket to T^ makes it into a Lie algebra. 
The equation (5) can be presented in the Hamiltonian form as dTUi(t,r) = 

{ui(t, T), H}, i = l 5 . . . ,1, where H = Yli=i J e^1 • This motivates the definition of 
the space I(Q) of local integrals of motion of the Toda theory associated to g as 
the intersection of kernels of the operators Qi = {•, J e^ } : TQ —• T^, i = 1 , . . . A. 
The bracket {•, •} satisfies the Jacobi identity; therefore, 7(g) is a Lie algebra. 

3.2. Hidden nilpotent action. Introduce linear operators 

Qi= Yl («i>ajW**]-Aiï> i = l,.-.,l, 
i<i<J;n>o "uj 

acting from -KQ to 7ra.. They commute with d, and the corresponding operators 
FQ —• T^ coincide with Qi. We proved in [FF6, (2.2.8)], that the operators Qi 
generate the nilpotent Lie subalgebra n + of g. 

By definition, I(Q) is the 0th cohomology of the complex TQ —> O^i-Tv*»-
Using the fact that Q^'s generate n+ and the BGG resolution of g [BGG] we can 
extend this complex further to the right and relate I(Q) to the cohomology of 
n+ with coefficients in 7To (the action of n+ on ITQ is generated by the operators 
e-^Qi), cf. [FF6, Sections 2.3-2.4]. 

In [FF6] we proved that üT(n+,7r0) = 0,z" ^ 0, and that there exist elements 
Wi G 7To of degrees di + 1, i = 1 , . . . , Z, where di is the zth exponent of g, such that 
i7°(n+,7To) is isomorphic to the algebra W(Q) = C[W^]i=iimmm fi;n>o of differential 
polynomials in W\,... , W\. This implies that the space I(Q) is isomorphic to the 
quotient of W(g) 0 C[i,t_ 1] by total derivatives and constants, i.e. the space of 
local functionals in Wi(t),... , Wi(t). 

For example, W(sl2) = C[W<m>]m>0, where W = \u2-du. Thus, for g = sl2 

integrals of motion are local functionals in W(t) = \u(t)2 — dtu(t). They generate 
a classical limit of the Virasoro algebra [FF6, Section 2.1]. 
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REMARK. The Lie algebra I(Q) is called the classical W-algebra associated to g. 
It can be identified with the Poisson algebra of local functionals on an infinite-
dimensional Hamiltonian space obtained from the dual space to g by the Drinfeld-
Sokolov reduction [DS]. This Hamiltonian space consists of connections on a G-
bundle over the circle, which satisfy a certain transversality condition. For g = sln, 
I(Q) was first defined by Adler and by Gelfand and Dickey. 

3.3. Quantum integrals of motion. In the previous section we realized the space 
of integrals of motion of a Toda theory as a Lie subalgebra of T§, which lies in the 
kernel of the operators Qi. Now we want to quantize this embedding. In order to 
do that, we have to quantize the Lie algebra T§ and the operators Qi. 

Let 7TX be the Fock representation of fj defined in Section 3.1, and Fx be the 
quotient of nx ® C[z, z~l] by total derivatives (and constants, if A = 0). The VOA 
structure on 7TQ provides a Lie algebra structure on T% [FF5]. This Lie algebra is 
a quantum deformation of the Lie algebra T§, cf. [FF6, Section 4.2]. 

Introduce bosonic vertex operators 

W = E Vl(»)*"" = T-r exP ( - E 
neZ \ n<0 

where 7 G fj* ~ f) and T» : TT£ -> n» is such that T7 • v0 = v7 and [T^,bi(n)] = 
0,ra < 0. Thus, V"(n),n G Z, are well-defined linear operators 7TQ —> n". 

The operator Q\ = V^.(l) : 7TQ —• 7r£. is a quantum deformation of the 
operator Qi : 7r0 —> 7rQ. in the sense that Q\ = v • Qi 4- v2(... ) , [FF6, (4.2.4)]. 
Further, Q\ commutes with d, and hence provides an operator Q\ : T§ —> T^., 
which is a quantum deformation of Qi. 

We can now define the space IV(Q) of quantum integrals of motion of the Toda 
theory associated to g as 

/„(flHflKgrÖ?. 
1=1 

One can check that IU(Q) is a Lie subalgebra of T%, [FF6, (4.2.8)]. Thus, we define 
it through its embedding into T%, i.e. through its free field realization. 

1 

We also define the space WU(Q) as W^g) = Q KerQ". 
i=l 

One can check that Wl/(g) is a VOA [FF6, (4.2.8)]. 

3.4. W-algebras. Our computation of Iv (Q) and W„ (Q) is based on the fact that the 
operators Q\ generate the quantized enveloping algebra Uq(n+) with q = exp^iv) 
[BMP1] (cf. also [FF6, Section 4.5]. This fact follows from a remarkable connection 
between local systems on configuration spaces and quantum groups [SV2]. 

Using this and a quantum deformation of the BGG resolution [FF6, Section 
4.4], we can construct a deformation F*(Q) of the extended complex used in the 
classical case (v = 0). We have: F^(Q) = ©i(s)=j7rs(p)_p? where s runs over the 
Weyl group of g. From vanishing of higher cohomologies in the classical case we 
obtain the following result. 
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THEOREM 4 [FF6]. (a) For generic v higher cohomologies of the complex F* (g) 
vanish. The Oth cohomology WV(g) is a VOA, in which there exist elements W" of 
degrees d* + 1, i = 1 , . . . , I, where di is the ith exponent of Q, such that W„(g) has 
a linear basis of lexicographically ordered monomials in the Fourier components 
Wy(rii), l<i<l,m< -ài, of the currents Y(WV,z) = £ n e Z ^ " ( n ) * - " - * - 1 . 

(b) The Lie algebra Iv (g) of quantum integrals of motion of the Toda theory 
associated to g consists of all Fourier components of currents of the VOA WV(g). 

The Lie algebra IU(Q) is called the W-algebra associated to g. Such W-algebras 
are, along with the affine algebras, the main examples of algebras of symmetries 
of conformai field theories [BS]. 

Note that Wu($[2) is the VOA of the Virasoro algebra. Its embedding into 
7TQ has been known for a long time [FCT]. In was used by Feigin and Fuchs [FeFu] 
to study representations of the Virasoro algebra, and by Dotsenko and Fateev 
[DF] to obtain correlation functions of the minimal models, in the same way as in 
Section 2. 

The VOA VV^sk) was first constructed by Zamolodchikov [Zl], and the 
VOA Wu(s[n), n > 3, was first constructed by Fateev and Lukyanov [FL] (cf. also 
[BG]). The existence of W^(g) as a VOA "freely" generated by currents of degrees 
di + l,i = 1 , . . . ,1 (cf. part (a) of Theorem 4) for an arbitrary g was an open 
question until [Fri], [FF6]. 

To summarize, we defined the VOA of a W-algebra as a vertex operator 
subalgebra of a VOA of free fields, subject to a set of constraints. These constraints 
satisfy certain algebraic relations, which make it possible to describe the structure 
of the W-algebra: the operators Q\ generate the nilpotent part of Uq(o), so that 
Uq(Q) and WU(Q) form a "dual pair". The classical origin of these constraints is a 
nonlinear integrable equation — the Toda equation — and therefore the classical 
limit of a W-algebra consists of local integrals of motion of that equation. In [FF8] 
the Wakimoto realization is derived in a similar fashion in connection with the 
non-linear Schrödinger equation. 

3.5. Quantum Drinfeld-Sokolov reduction. W-algebras can also be defined 
through the quantum Drinfeld-Sokolov reduction [FF5], [Fri]. Let C be the Clif
ford algebra with generators ìpa(n),ìl;^(n),a G A + , n G Z, and anti-commutation 
relations 

[ipa(n),ißß(m)]+ = [</£(n),^(ra)]+ = 0, [^ a (n) ,^ (m)]+ = 6atß6n-m. 

Denote by / \ its Fock representation, generated by vector v, such that ip(x(n)v = 
0,n > 0, yj^(n)v = 0, n > 0. This is the super-VOA of C. Introduce a Z-grading on 
C and / \ by putting degi/?*(n) = — degipa(n) = l ,degv = 0. 

Now consider the complex (V*. (gi/\,d), where Vk is the VOA of g of level 
k, and d = dst -f X- Here dst is the standard differential of semi-infinite cohomol
ogy of n+ with coefficients in Vk [F], and x = E L i ^ U ) corresponds to the 
Drinfeld-Sokolov character of n + [DS]. The cohomology Hk(Q) = ©nGZiJ£(g) of 
this complex is a VOA [FF5]. This cohomology can be computed using the spectral 
sequence, in which the 0th differential is dst and the first differential is x-
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THEOREM 5 [FF5], [Fri]. For generic k ^ — hy the spectral sequence degenerates 
into the complex F*/(fc+hv)(g). Thus, H%(Q) ~ Wi/(/c+/lv)(g) and #j.(g) = 0,i ^ 0. 

The second part of Theorem 5 was proved for an arbitrary fc in [dBT] using 
the opposite spectral sequence. 

For any module M from the category Ö of g, the cohomology of the complex 
(M 0 /\,d) is a module over the W-algebra /i/(k+/iv)(a)- This defines a functor, 
which was studied in detail in [FKW]. 

The limit of the W-algebra ii/(fc+hv)(ö) when fc = — ftv is isomorphic to the 
center Z-hv(o) of the local completion of f/_/jv(g). On the other hand it can be 
identified with I(QL), where gL is the Langlands dual Lie algebra to g. This proves 
Drinfeld's conjecture that Z - ^ g ) ~ I(QL) [FF5]. [Fri], which can be used in the 
study of geometric Langlands correspondence. 

3.6. Affine Toda field theories. Our approach can be extended to affine Toda 
field theories. First consider the classical case [FF6], [FFT]. The Toda equation 
associated to an affine algebra g is given by formula (5), in which the summation 
is over i = 0 , . . . , /, and (po(t) = —(l/a0) Y2i=i a«0i(*)' where a^'s are the labels of 
the Dynkin diagram of g [K]; (ßo(t) corresponds to the extra root Qo of?- Following 
the scheme of Section 3.1, we define the space I(Q) of local integrals of motion as 
the intersection of kernels of the operators Qi : To —> Fa* • 

The operators Qi : 7TQ —> 7rQ.,z = 0 , . . . .1, generate the nilpotent subalgebra 
n+ of Q. Using the BGG resolution of g, we can identify I(Q) with Jî1(n+,7ro) 
[FF6], [FF7]. 

THEOREM 6 [FF6], [FF7]. ir0 ~C[JV+/A+], where A+ is the principal abelian sub
group of the Lie group N+ o/n+, and i/*(n+,7r0) ^ A*(a+).' 'where a+ is the Lie 
algebra of A+. Thus I(Q) is naturally isomorphic to aÜj_. 

Theorem 6 implies that local integrals of motion of the Toda theory associ
ated to g have degrees equal to the exponents of g modulo the Coxeter number. 
The corresponding Hamiltonian equations form the modified KdV hierarchy [DS], 
[KW]. In [FF7] we showed that the corresponding flows on N+/A+ coincide with 
those given by the right action of the opposite abelian subalgebra a_ of g. 

We can also define the space Iv (g) of quantum integrals of motion as 

^(5) = fi I^ r<5r 
•0 ^° 

Using the BGG resolution over UQ(Q) we proved in [FF6] that all classical integrals 
of motion can be quantized, so that I„(Q) ^ /(g). For g = sl2 this was conjectured 
in [G] and [Z2]. 

The quantum integrals of motion form an abelian subalgebra of the W-algebra 
IU(Q). They can be viewed as conservation laws of massive perturbations of confor
mai field theories associated to Wi/(g) [Z2], [EY], [HM]. This is just one of many 
indications that the ideas of free field realizations are applicable beyond conformai 
field theory. 
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Introduction 

The paper is devoted to the homogenization theory for partial differential equa
tions, which describe various physical processes in strongly inhomogeneous media, 
i.e. media whose local physical characteristics rapidly oscillate in space. There
fore such differential equations either have rapidly oscillating coefficients or are 
considered in highly perforated domains with complicated microstructures. 

Direct solution of corresponding boundary value (or initial boundary value) 
problems is practically impossible either by analytical or by numerical methods. 
However, if the medium microstructure characteristic scale is much smaller than 
the size of the domain in which the process is studied, then there exists a possibility 
of homogenized (macroscopic) description of the behavior of the system. In these 
cases the medium often (but not always) has steady characteristics (such as heat 
conductivity, magnetic permeability, etc.) that, in general, essentially differ from 
the local characteristics. To determine them the homogenization of differential 
equations must be used. That is why they are called homogenized (or effective) 
characteristics. 

Homogenization problems for partial differential equations have been studied 
by physicists since Maxwell's and Rayleiglrs works, but for a long time they were 
out of the interest of mathematicians. Starting from the early 1960s the homoge
nization theory has been intensively developed by mathematicians. Such interest 
in the problem may be explained on one hand by numerous applications (first of 
all, in the theory of composite materials) and on other hand by the appearance of 
new deep ideas, significant for mathematics itself. At the present time there exist 
a great number of papers and books devoted to the problem. We shall note here 
only monographs ([1], [3], [9], [17], [18], [19]) containing extensive bibliographies. 

Mathematical description of physical processes in strongly inhomogeneous 
media implies that their local characteristics depend on a small parameter £, which 
is the characteristic scale of the microstructure. Therefore, for the construction of 
homogenized models of these processes an asymptotic analysis is carried out for 
e —> 0. Namely, the asymptotic behavior of the solutions of the corresponding 
problems is studied, and the possible limits of the solutions are described by some 
modified equations having relatively smoothly varying coefficients and considered 

Proceedings of the International Congress 
of Mathematicians, Zürich, Switzerland 1994 
© Birkhäuser Verlag, Basel, Switzerland 1995 



Homogenized Models of Strongly Inhomogeneous Media 1271 

in simple domains. These equations are called homogenized equations or homoge
nized (macroscopic) models. 

The early papers considered strongly inhomogeneous media with local char
acteristics described by the functions of the form a (f ), where x £ Rn and a(x) 
is a periodic or almost periodic function or realization of a homogeneous random 
field (see [6], [9], [14], [15], [16]). In these cases the medium has the effective char
acteristics, which do not depend on x, and the homogenized model has the same 
form as the microscopic one. 

However, there exist media with more complicated microstructure for which 
it is impossible to prescribe effective characteristics, completely determining the 
macroscopic model. In these cases the homogenized models essentially differ from 
microscopic ones: they may be nonlocal, multicomponent models or models with 
memory (see [7], [8], [10], [11], [12], [13]). 

It is the purpose of this paper to characterize in general the strongly in-
homogeneous media whose macroscopic description is provided by such unusual 
homogenized models. 

1. Formulation of the problem. Main homogenized models 

To be specific, we shall consider the equation describing the diffusion process in 
strongly inhomogeneous medium as the input model. 

Let Q be a bounded domain in the Euclidean space Rn (n > 2) and QT = 
Q x (0,T), ST = 9fl x (0,T). Consider in QT the initial boundary value problem 

= 0; u(s> (z, 0) = U(x), x e fi; (1.2) 

dt 
*J=1 

duW 

dv, 
ST 

where U(x) G Hl(Çi) and d/dvs is the conormal derivative to dQ, corresponding to 
the coefficients a\j (x). We shall assume that the functions a\j (x) depend on the 
parameter s G N, which characterizes their space oscillations, and for any s and 
x the conditions of ellipticity and boundedness are valid. Namely for any vector 
£ G R n 

n 

as(x)\Ç\2 < VJ 4?(x)tej < As(x)\Ç\2, (0 < as(x) < As{x) < oo). 
* , j = i 

Then, as is known, there exists a unique generalized solution u^(x, t) of the prob
lem (1.1), (1.2), depending on the parameter s. We study its asymptotic behavior 
as s —> oo. 

Consider at first the case when the conditions of ellipticity and boundedness 
are fulfilled uniformly with respect to s, i.e. 0 < a < as(x) < As(x) < A < oo. 
As is known, in this case the sequence of the solutions {u^(x,t)} is compact (for 
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example, in the space L2(QT) ), and all its possible limits with respect to different 
subsequences are described by the initial boundary value problems of the form: 

S-e^(M*)j^)=0, (x,t)eQr; (1.3) 
» _ -i —-1 \ J / *5j = l 

du 
dû 

= 0; u(x,0) = U(x), xeü: (1.4) 
ST 

where aij(x) are measurable bounded functions in Q that satisfy the ellipticity 
condition and 3/du is the corresponding conormal derivative to dQ. Equation 
(1.3) is the simplest homogenized model of the diffusion process. It is a local, one-
component model without memory. The tensor {aij(x):i,j = 1,2, ...,n} is the 
effective conductivity tensor completely determining such a model. 

However, if the condition of uniform ellipticity or boundedness is not fulfilled 
then the homogenized model is not determined solely by the effective conductivity 
tensor. Its form in the general case differs from the form of the input model and 
depends on the structure of the sets ffos C H, where this condition is violated. 

Let us assume at first that the uniform ellipticity condition is fulfilled, but the 
uniform boundedness condition is not, i.e. there exist such domains QQS C ft, that 
mî{As(x),x G tïos} —• oc, as s —> oo. In this case, the sequence of the solutions 
of the problem (1.1). (1.2) is also compact and the conditions can be indicated 
at which this sequence converges to the solution u(x,t) of the following initial 
boundary value problem: 

du 

~dt 

Tt r\ / r\ \ #• 

5Z Qx~. [aij(Xidx^J +c(x)u- J R(xiy)u(y,t)dy = 0; (1.5) 

du 
dû 

= 0, u(x,0)=U(x),xeQ: (1.6) 
ST 

where c(x) and R(x, y) are nonnegative functions. 
Note that if the set QQS is fine-grained, i.e. consists of small grains located 

not very close to each other, then the functions c(x), R(x,y) are equal to zero. In 
the general case, the presence of the integral term in equation (1.5) means that 
the homogenized equation is a nonlocal model of the diffusion process, though the 
input model was local. 

Now we shall assume that the uniform boundedness condition is fulfilled, 
but the uniform ellipticity condition is not, i.e. there exist the domains QQS such 
that sup{as(x),x G ̂ os} —> 0, as s —> oc. In this case the sequence of the so
lutions {u^(x,t)} is not, generally speaking, compact in L2(QT)- However, one 
can indicate the conditions, when the solutions u^s\x,t) converge in some sense 
to the vector-function u(x,t) = {u\(x,t),..., um(xj.)}. The system of functions 
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{u\ (x, £ ) , . . . , Um(x, t)} is the solution of the following initial boundary value prob
lem: 

£ - sàï i £ (°«wfe)+1 Jp^' - *>-<••*> dr 

U(x) Y, Brq(x, t); (r = l,..., m) (1.7) 
q=l 

dur 

dvT 
= 0; ur(x,0) = U(x),xeft: (1.8) 

where a^(x) (r = 1 , . . . , m) and mr(x) are measurable bounded functions mr(x) > 
0, {a\'Ax); i,j = 1 , . . . ,n} are positive definite tensor and djdvT is the conormal 
derivative, corresponding to a\^(x). 

The system (1.7) is an m-component model of a diffusion process in strongly 
inhomogeneous medium, moreover the presence of the time-integral term means 
that this is a model with memory. 

To characterize the structure of the sets ft§s we shall introduce the notions 
of strong and weak connectedness of domains. 

2. Strongly and weakly connected sequences of domains 

Consider in the domain ft the sequence of subdomains {fts,s G N}. Let ms = 
mes fts be the Lebesgue measure of fts. We assume that for any sphere B£ C ft 
with radius e > 0 for sufficiently large s(s > s(e)) the inequality holds: C\Enms < 
m.e^\p.sÇ\B£] < C2Snms. In this case we say that the sequence of the domains 
{fts} satisfies the density condition. 

Let a function vs(x) G L2(fts) be determined in each domain Qs. 

DEFINITION 1 We say that the sequence of functions {vs(x) G L2(fts)} L2(fls)-
converges to the function v(x) G L2(ft) if there exists the sequence of functions 
{ € ' M ( X ) , M G N} belonging to the Lipschitz class Lip(Af, ft) such that 

lim lim {\\v-t\M\\L2W+mJ1\\vs-vM\\L2{n)} =0 
M—»OO S—KX> v v ' v , J 

The sequence of functions {vs(x) G L2(fts)} is called L2(fìs)-compact if from each 
of its subsequences one can separate a subsequence that L2(fìA)-converges to a 
function v(x) G L2(ft). 

When dealing with homogenization problems the first question arising is: 
Under what conditions on the subdomains fts C ft is the sequence of functions 
{vs G iür1(Q5)}, which satisfies the inequality 

K(*)llffi(n,) < Cma, (2.1) 

L2 (fts )-compact? 
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DEFINITION 2 We say that the sequence of subdomains {fts c ft} satisfies the 
condition of strong connectedness and denote {ftH} G SC if for any sequence of 
functions {vs G C1(Qii)} that satisfies inequality (2.1) and for arbitrary AI G N 
there exist subsets flHM C fl» and ftAI = fls\ftsM such that vs(x) G Lip (A/", fi*ji/), 
and for s > s(M) 

mcs(n*AI) + A/-2 | | t» a | | i a ( n î | ) < <p(AI)ma, 

where >p(M) is a monotone function satisfying the conditions: limjv/—^ M2ip(M) = 
0 and limA/_>ocA/2+'>^(Jl/) > 0 for some 7 > 0. 

The answer to the above question is given by the following theorem. 

THEOREM 2.1 If {fls} G SC, then any sequence of the functions {vs G if1(Q,s)} 
that satisfies the inequality (2.1) is L2(fts)-compact. 

Introduce the main qualitative characteristic of strongly connected domains. 
Let Kfh C ft be a cube with the center at the point x and with the sides of 
length K directed along the coordinate axes. Set m(x*s,h) = h~nmes(K% f]ft,s). 
g(h) = ip-l/2(h-1),and 

11 

aa{x,p) = ] T aff{x)pipj (x G ft,p G R'1). 

Consider the functional 

<^=^^ J f«^'^^ (2"2) 
*Z n o 

where / = (li,...Jn) is an arbitrary vector in Rn , (•,•) is the scalar product in 
R' \ and the infimum is taken over the class of functions v^ G ^(Kf^ft»). 

This functional is quadratic and can be represented as 
n 

where aij(y,s,h) are measurable and bounded functions with respect to y, form
ing the positive definite tensor in R'1. We shall call this tensor the homogenized 
conductivity tensor of the domains n,s. 

Introduce now the notion of weakly connected domains. Let ftrs (r = 1 , . . . , 
m) be subdomains in fts. satisfying the density condition in ft. Denote by 
mr(x, s, h) = h~n mcs(lf£ p| flrs), and by \rs a n d Xos the characteristic functions 
of domains flrs (r = 1 , . . . , ra) and ft \ U r l i ^r»? respectively. 

Consider the functional 

K«f)n I 

TU j 

+9(h) E K - er\
2m-1(y,s,h)xrs ? dx, 

r=l I 

(2.3) 
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where e = (e i , . . . ,em) is an arbitrary vector in Rm ; A is an arbitrary positive 
number; and the infimum is taken over the class of functions va G Hl(K^ f] fl). 

This functional is quadratic and can be represented as 

771 

Bg>Xe\ = ^2 brq(y,\s,h)ereq, 
r,q=l 

where brq(y,X,s,h) are measurable and bounded functions with respect to y. We 
shall call the matrix-function {brq(y, X,s,h): r,q = 1 , . . . , ra} the connection ma
trix. 

DEFINITION 3 The sequences of the subdomains {ftrs c fls} (r = 1 , . . . , ra) are 
called mutually as-weakly connected if 

lim lim sup < V^ bqq{y, 0, s, /*), yEfl>< oo. 

THEOREM 2.2 Let in (2.3) ft = fta and as(x,p) — m~1Xs(%)\p\2, where Xs(%) 
is the characteristic function of the domain fts. If {fl8} G SC then in the do
main fts there do not exist the subdomains ftrs C fts (r = l , . . . , r a ) such that 
mr(x,s,h) > Cm(x,s,h) and the sequences {ftrs] (r = l , . . . , r a ) are mutually 
as-weakly connected. 

3. Statements of main theorems 

Let the coefficients a^ (x) satisfy the condition of uniform ellipticity (i.e. as (x) > 
a > 0 everywhere), and let the condition of uniform boundedness be violated only 
on the sets ftos, i.e. sup{A,s(#), x Eft\ flos} < A. 

First wrc assume that for each s, flos consists of nonintersected components 
Gqs such that the distance rqs from Gqs to [jr^q Grs (J dft satisfies the inequality 
rqs > cdiam(Gqs), for a constant c > 0 independent of s. Then the homogenized 
conductivity tensor {aij(x,s,h), i,j = 1,... ,n) of the domain fl (sec (2.2) for 
fls =fl) is positive definite and uniformly bounded with respect to s and h. 

THEOREM 3.1 The solution of the problem (1.1), (1.2) for any U(x) converges 
in L2(QT) to the solution of the problem (1.3), (1.4) if and only if the functions 
aij(x,s,h) converge to aij(x) in Lx(ft) as s —> oc and h —> 0, i.e. 

lim lim / \üij(x,s,h) — aij(x)\dx = 0, (i,j = l,...,n). (3.1) 
h—>Q s—»oc J 

n 

Consider now the sets flQa of another topological structure. Namely, assume 
that for any s, fl = floa \J Q 1 ä \JFS and for s —• oc the conditions are fulfilled: 
(i) inf{as(x), x G fl0s} > OOTTìQ} —> oo, sup{As(x), x G fl0s \JF*} < Aomös » a n d 

sup{As(x), x G flis} < A; 
(ii) mos = mesSios —> 0 and mesF s = o(rao.s); 
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(iii) the sequences {ftos} and {ft\s} satisfy the conditions of density and strong 
connectedness; 
and (iv) the subdomains {ftos} and {His} are aoa-weakly connected in fl. 

Denote by {a^(x,s,h), i,j = 1 , . . . ,n}(r = 0,1) the homogenized conduc
tivity tensors of the subdomains flrs (see (2.2) for fls = flrs) and by brq(x<0,s,h) 
the elements of the connection matrix for A = 0 (see (2.3)). 

THEOREM 3.2 Let the functions {alj(x,s,h), i,j = l , . . . , n } ( r = 0,1) and 
bu(x,0,s,h) converge in Lx(fl) to the functions a\-{x) and C(x) as s —• oo and 
h —•> 0, respectively (see (3.1)J. 

Then the solution u^(x.t) of the problem (1.1), (1.2) converges in L2(fl) 
uniformly with respect tot e [0,T] to the solution of the problem (1.5), (1.6), where 
R(x, y) = C(x)G(x, y)C(y) and G(x, y) is the Green function of the problem 

- E ^ ~ < ( x ) | r + C^G = 6(x-»)' x-ye ^ 
i,j=l l J 

QQ 
T — = 0, x G dft. 
duQ 

Now we shall consider the case where the coefficients a\8^ (x) satisfy the con
dition of uniform boundedness (i.e. As(x) < A < oc everywhere) but the condition 
of uniform ellipticity is violated. Namely, we shall assume that for any s, 

n = n0s\Jns\jFs: ns= l\JnrA\j(\jGqA, 

and for s —> co the conditions are fulfilled: (i) sup{As(x),x G ftos} —> 0 and 
mï{as(x),x G fts} > a > 0; (ii) mesF s —• 0, maxq{diamGqÄ} —> 0; (iii) for each 
r = l , . . . , r a the sequence {flrs} satisfies the conditions of density and strong 
connectedness; (iv) the subdomains {flrs} (r = 1 , . . . , ra) are mutually aÄ-weakly 
connected; and (v) there exist the nonintersecting subdomains Gqs (q = 1 , . . . , Ns) 
such that Gqs C Gqs Cfl\ U r l i ^rs- maxq{diam Gqa) —> 0 as s —> oo, and 

Er /
n 

2_] a>a(x, V-0qÄ) dx < C < oc, 

where the infimum is taken over the class of the functions ipqs G i f 1 (n) , which arc 
equal to 1 on Gqs and 0 outside Gqs, and the constant C does not depend on s. 

THEOREM 3.3 Let the functions ar
i;j(x,s,h), rnr(x,s,h), and brq(x,X,s,h) con

verge in Ll(ft) to the functions a\Ax), mr(x),brq(x,X), as s —> oc and h —> 0. 
Let mr(x) > C > 0, and brq(x,X) allows analytical continuation with respect to X 
into the complex plane with the cut along the ray arg A = 7r, and let for \X\ —• oo 
and | arg A — 7r| > QQ > 0 the estimates \brq(x,X)\ = 0(|A|Ò), be valid where 6 < 1. 
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Then the solution u^(x,t) of the problem (1.1), (1.2) L2(ftrs)-converges 
uniformly with respect to t G [0,T] to the functions ur(x,t)(r = l , . . . , r a ) and 
the system of functions {u\(x,t),... ,um(x,t)} is the solution of initial boundary 
value problem (1.5), (1.6), where the matrix-function {Brq(x,t); r,q = 1 , . . . ,ra} is 
the inverse Laplace transform of the matrix-function {brq(x,X)X~1m~1(x)', r,q = 
1 , . . . , ra} with respect to t. 

Simple examples of fulfillment of the conditions of Theorems 3.2 and 3.3 are 
considered in [13]. 

4. Homogenization in highly perforated domains and on 
Riemann manifolds 

The analogues of Theorem 3.3 can also be proved for perforated domains fls, which 
satisfy the condition of density in fl. Moreover the domains with vanishing measure 
are permissible. Consider, for example, initial boundary value problem (1.1), (1.2) 
in the domains fls with a\sMx) = ôij (x G fts) and Neumann boundary condition 
on dfts. Set in (2.2) and (2.3), as(x,p) = rn~lXs(x)\p\2 and replace everywhere fl 
by fls and Xos(x) by m^xosfa)- I*1 this case the statement of Theorem 3.3 holds 
as well. 

As is seen from the examples considered in [13], in this case the weak con
nection between the domains flrs (r = 1 , . . . ,ra) is effected by narrow bridges or 
microcontacts, unlike the case of Section 3, where this connection was realized by 
the intermediate set flos with very weak conductivity. Note that both situations 
occur in the physics of high temperature superconductors, where a medium with 
volume distribution of weak connections is called the Josephson medium [2]. 

The notion of weak connection also arises in the problems of homogenization 
on Riemann manifolds Ms that depend on the parameter s. Consider, for example, 
the diffusion equation on the Riemann manifolds Ms of special form that consist of 
ra copies ftrs (r = 1 , . . . , ra) of the Euclidean space Rn (n > 2) with a large number 
of small "holes" Fis (i = 1 , . . . ,NS; Ns —» oc as s —> oo). The edges of the holes 
are attached either to each other or to the edges of the n-dimensional manifolds 
GlJqs (i,j = 1 , . . . , Ns; r, q = 1 , . . . , ra), which are homotopic to finite length pipes 
or spherical caps. Thus, we have the manifold Ms = (\Jflrs)[j([jGiJqs) whose 
topological type, generally speaking, increases as s —> oo (for n = 2 this is an ra-
sheeted surface with a large number of "handle", "bubbles" and "worm holes"). For 
the corresponding choice of the diameters of holes Fi8 and the distances between 
them, the subdomains ftrs (r = l , . . . , r a ) and \JGyqs are "weakly connected", 
and as is shown in [4] the asymptotic behavior of the solutions of the diffusion 
equation on Ms is described by a system of equations that is an ra-component 
nonlocal model with memory. 
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Fluxes and Dimers in the Hubbard Model 

ELLIOTT H. LIEB 
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The Hubbard model is the simplest conceivable example of interacting quantum-
mechanical particles — yet it seems to have real world applications. Like the Ising 
model, it is "merely" a discrete lattice model, but despite four decades of research 
it is far from being understood rigorously, or even heuristically in many respects. 
The most amenable and symmetric situation is the "half-filled band", in which the 
number of particles equals the number of vertices in the lattice. Two conjectures 
about the model at half-filling have very recently been proved and are discussed 
here. The first can be found in [LN] and the second in [LE]. 

(A) The first is the old conjecture of Peierls, Fröhlich, and others that the 
one-dimensional version on a ring with an even number of vertices can exhibit 
symmetry breaking (called dimerization) from period one to period two, but no 
further, when the number of vertices is 2(mod4). More specifically, when the hop
ping amplitudes between adjacent vertices arc allowed to vary freely, but where an 
energy penalty has to be paid to make these amplitudes large, then the optimal 
choice of the amplitudes will be either that they are all identical (period one) or 
else that they will be alternately large-small-large-small (period two), but nothing 
more chaotic than this. 

To illustrate this first problem in more detail, consider a simple (Àr x N) 
Jacobi matrix T whose only nonzero entries are tj+\j = £j,j+i > 0 (with N+1 = 1 
and N even). The eigenvalues of T come in opposite pairs p, — p and we define 
A(T) to be the sum of the negative ones, i.e., A(T) = — |Tr |T | . Next, we take V 
to be a nice convex function on R+ with sufficiently fast increase at infinity, and 
define the energy 

N 

E(T)=X(T) + J2V^-J^- W 
i= i 

The potential V thus acts as a penalty function for large i j j+i 's . The problem is 
to minimize E(T) subject only to £/+ij = £j,j+i > 0 for all j . The problem has 
the symmetry of the ring. The conjecture was that for a minimizer 

tjJ+l=a+(-iyb, (2) 

i.e., if the symmetry is broken it is broken only from period one to period two. 
This was shown to be the case by Kennedy and the author [KL] for quadratic V, 
i.e., when V(t) = d(t - c)2. 
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The new result [LN] (obtained jointly with Nachtergaele) is that conclusion 
(2) is always correct for general V when N = 2(mod4). When N = 0(mod4) 
counterexamples can be found! 

The model above describes free electrons on a ring, where the electron number 
equals the number of vertices in the ring, namely N. More important than the 
generalization to arbitrary V is the fact that the results in [LN] also include the 
case in which the electrons interact with each other by an attractive or repulsive 
Hubbard type "on-site" interaction. The conclusion does not change. Indeed the 
presence of the Hubbard interaction only seems to make it more difficult to find 
counterexamples. 

(B) The second is the more recent "flux-phase" conjecture concerning a pla
nar, square lattice. Here, the hopping elements are fixed in modulus (usually taken 
to be the elements of the adjacency matrix), but their arguments arc not fixed. 
That is, if txy = txy = \txy\cxp[i(j)(x,y)] denotes the hopping matrix element from 
vertex x to vertex y in the lattice then \txy\ is fixed, but (j)(x, y) is the variable quan
tity with respect to which an energy is to be minimized. The sum of the arguments 
of the txy's around a circuit is called the flux, and the conjecture is that the value 
of the fluxes that minimizes the total energy is TT in each square face of the lat
tice when the electron number equals the number of vertices. Even in the absence 
of a Hubbard interaction the conjecture is not obvious and previously unproved, 
and possibly has a differential-geometric significance. Partial results were obtained 
earlier by Loss and the author [LL] for special quasi-one-dimensional geometries 
without a Hubbard interaction. The new result [LE] goes beyond the original con
jecture in several ways: (1) It does not assume, a priori, that all squares in the 
lattice must have the same flux; (2) a Hubbard type interaction can be included; 
(3) the conclusion holds for positive temperature as well as the ground state; (4) 
the results hold in D > 2 dimensions (e.g., the cubic lattice has the lowest energy 
if there is flux TT in each square face). 
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Von Neumann algebras were originally designed as a framework for various sub
jects, a major motivation coming from quantum theory. Although von Neumann 
algebras have since turned out to have unexpected connections with many differ
ent fields, the contact with quantum physics has remained constant and fruitful. I 
will try to give an account of a recent interplay between quantum field theory and 
inclusions of von Neumann algebras. The latter may arise for example as inclusions 
of local observable algebras, a structure analyzed earlier [10], [13], [39]-[42] and 
still productive. Here however I will deal with inclusions associated with superse-
lcction sectors [11], a setting related to index theory [36] along a line of research I 
have been following during about the last six years. 

I will recall some of the general context. Let W be a Hilbert space that 
we always assume to be separable to simplify the exposition. With B(7i) the 
algebra of all bounded linear operators on H a von Neumann algebra A4 is a *-
subalgebra of B(H) containing the identity operator such that A4 = A4~ (weak 
closure) or equivalently A4 = A4" (double commutant): already at the foundation 
von Neumann density theorem manifests a typical double aspect, analytical and 
algebraic. 

1 Tornita-Takesaki theory [54] 

Let A4 be a von Neumann algebra and u a normal faithful state on A4. The 
modular theory assigns to a; a canonical "evolution", i.e. a one-parameter group 
of modular automorphisms a" of A4, a* is a manifestation of the algebraic *-
operation, but is characterized by the analytical Kubo-Martin-Schwinger (KMS) 
condition: 

uj(yx) = anal.cont. uj(a^(x)y), x,y G A4, 
t-+i 

where the analytic continuation is realized by a bounded continuous function in 
the strip 0 < Im(z) < 1 and analytic in its interior. Parallel to the modular 
theory the KMS condition was proposed by Haag, Hugenholtz, and Winnink [26] 
to characterize thermal equilibrium states in quantum statistical mechanics. The 
physical meaning of the modular theory remained however unclear in quantum 
field theory; see Section 7 (compare also with [6]). 
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By the GNS construction, we may assume that LU = ( • fl, fl) with fi a cyclic 
and separating vector (namely .M acts standardly), o-f is implemented by A** 
with A the (positive, nonsingular) modular operator, the anti-unitary involution 
modular conjugation J implements an anti-isomorphism of A4 with A4' 

JA4J = A4'. 

2 Jones theory [36] 

Let Af C A4 be an inclusion of factors (von Neumann algebras with trivial center). 
Assume A4 to be finite, namely there exists a tracial state UJ on A4, i.e. &" is trivial. 
As above we may assume that A4 acts standardly on H. With e the projection 
onto the closure of Affi, the von Neumann algebra generated by A4 and e 

A4i = (A4,e) = JMAr'JM 

is a semifinite factor; if it is finite Af C A4 has finite index X = w(e)~l with LJ also 
denoting the trace of A4\. Jones' theorem shows the possible values for the index: 

A G J4cos2-,rc > 3} U [4,oo]. (2.1) 

A probabilistic definition of the index was given by Pimsner and Popa through 
the inequality 

e(x) > -rx, x e A4+, 
A 

where e : A4 —> Af is the trace preserving conditional expectation [48]. 
A definition for the index Ind£(Af, Al) of an arbitrary inclusion of factors Af C 

A4 with a normal conditional expectation e : A4 —* Af was given by Kosaki [31] 
using Haagerup's dual weights. It depends on the choice of e. The good properties 
are shared by the minimal index [29], [43] 

Ind(A/\ A4) = inf{Inde(A/\ A4)} = IndE()(Af, A4) 

where EQ is the unique minimal conditional expectation. I shall return to this from 
a different point of view in the next section. 

3 Joint modular structure. Sectors 

Let Af C A4 be an inclusion of infinite factors (no nonzero trace). We may assume 
that Af' and A4' are infinite so A4 and Af act standardly. With Jjv and JM 

modular conjugations of Af and A4, the unitary T = JJ^JM implements a canonical 
endomorphism of A4 into Af 

7(x)=TxT*, xeA4. 

7 depends on the choice of J,v and JM only up to perturbations by an inner 
automorphism of A4 associated with a unitary in Af; 7 is canonical as a sector of 
A4 as we define now. 
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Given the infinite factor A4, the sectors of A4 are given by 

Sect(M) = End(A4)/Inn(A<), 

namely Sect (A4) is the quotient of the semigroup of the endomorphisms of A4 
modulo the equivalence relation: p, p' G End (Ai), p ~ pf iff there is a unitary 
u e A4 such that p'(x) = up(x)u* for all x G A4. 

Sect (.M) is a *-semiring (there is an addition, a product and an involution) 
equivalent to the Connes correspondences (bimodules) on A4 up to unitary equiv
alence. We shall use the same symbol for an element of End (A4) and for its class 
in Sect (A4). The operations are: 

Addition (direct sum): Let p\,p2 £ End(A4); then 

x G A4 
Pi(x) 0 

0 p2(x) 

is an isomorphism of A4 into Mat2(A4). Because A4 is infinite, Mat2(A4) is (nat
urally up to inners) identified with A4 and we obtain a well-defined sector p\ © p2 

of A4. 
Composition (monoidal product). The usual composition of maps 

pi o p2(x) = pi(p2(x)), xeA4, 

defined on End (A4) passes to the quotient Sect(A4). 
Conjugation. With p G End (A4), choose a canonical endomorphism 7^ : 

A4 -> p(A4). Then 
p = p-lolp (3.1) 

well-defines a conjugation in Sect (A4). By definition we thus have 

lp = pop. (3.2) 

Moreover End (A4) is a strict tensor C*-category with conjugates [47], in particular 
the intertwiner linear space (p, p') between two objects p,pf G End(A4) is defined: 
T G (p,pf) means T G A4 and pf(x)T = Tp(x) for all x G A4 (compare with [14]). 
The concepts of representation theory apply. 

If p is irreducible (i.e. p(A4)' Pi A4 = C) and has finite index, then p is the 
unique irreducible sector such that pop contains the identity sector. More generally 
the objects p,p G End(A4) are conjugate according to the analytic definition 
(3.1) and have finite index if and only if there exist isometries v G (t, p o p) and 
v G (i,pop) such that 

v*p(v) = 1 , v*p(v) = 1, (3.3) 

for some d > 0 (algebraic definition). 
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Formula (3.2) shows that given 7 G End(A4) the problem of deciding whether 
it is a canonical endomorphism with respect to some subfactor is essentially the 
problem of finding a "square root" p. If 7 has finite index one finds that 7 is 
canonical iff there exist isometries Te (^,7), Se (7,72) satisfying the algebraic 
relations 

7(5)5 = S 2 , (3.4) 

S*-y(T) e C\{0} , T*S G C\{0}. (3.5) 

The minimal value of d in the formulas (3.3) is the dimension d(p) of p; it is related 
to the minimal index by 

lnd(p) = d{pf (3.6) 

(with Ind(p) = lnd(p(A4), A4)) and satisfies the character properties [33], [45] 

d(pi@p2) = d(pi) + d(p2) 

d(p\ op2) =d(pi)d(p2) 

d(p) = d(p). 

This structure has found applications to subfactor theory by Kosaki, Izumi, Popa, 
and others, see e.g. [9], [32], [34], [35], [49]. A related example is contained in [38]. 

The construction extends to the case of an abstract strict tensor C*-category 
with conjugates T [47]. For each finite-dimensional object p there is an associated 
von Neumann algebra A4P and a functor 

F : Tp -> End(A4p) (3.7) 

of the tensor C*-category Tp of tensor powers of p into End(A4p). The functor F 
is full if p is amenable following Popa's work [49]. 

Examples of tensor C*-categories with conjugates are provided by quantum 
groups or by (conformai) quantum field theory. 

As an application one finds a duality for subfactors and for finite-dimensional 
complex semisimple Hopf algebras [46], [47]. An irreducible finite index inclusion 
of factors gives rise by (3.4), (3.5) to an irreducible Q-system i.e. a triple (T, A, S), 
where T is a strict tensor C*-category with conjugates, A an object that generates 
T with the relations: 

(a) (L, X) is one dimensional; namely there exists a unique element T G (L, A), up 
to a phase; T is proportional to an isometry. 

(ò) there exists an arrow Se (A, A ® A) proportional to an isometry such that 

(6i) 1A ® S o 5 = S ® 1A o S, (b2) j ^ ° 
1 A ® T = 1 A 

» I A o 5 = I A • 

Conversely a Q-system gives rise to a finite-index inclusion of von Neumann 
algebras. One sets up a bijection in the amenable case. 
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A finite-dimensional Hopf algebra is characterized by a Q-system with the 
additional distinguished property of the regular representation: A & A is equivalent 
to a finite multiple of A. 

4 Doplicher-Haag-Roberts theory [11], [12] 

Haag and Kastler [27] have proposed long ago a framework to analyze a quantum 
field theory starting from first principles. With a region Ö of the space-time R4 

(say Ö eK, the family of double cones) one considers the von Neumann algebra 
A(ö) generated by the observables localized in Ö. The net Ö —> A(0) satisfies 
the usual properties: isotony: ö\ C ö2 => A(ö\) C -4(02); additivity: Ö C Ö i U 
Ö2--Uön =• A(ö) c (UìA(Oì))"', locality: Ox c ö'2 => A(0^ c A(02)', 
with Ö' denoting the space-like complement; this is strengthened to Haag duality: 
A(ö')f = A(0), Ö e /C; Poincaré covariance: there exists a unitary representation 
U of the (connected) Poincaré group V+ on the underlying Hilbert space H with 
positive energy-momentum and a unique [/-invariant vector fl (vacuum) cyclic for 
the quasi-local C* — algebra A = ^oeK.A(ö)~ (norm closure), with a covariant 
action U(g)A(0)U(g)-1 = A(gO),g eV\,Oe K. 

A superselection sector in the sense of Wick, Wightman, and Wigner [58], 
i.e. a label for quantum "charges", is viewed in [25] as an equivalence class of 
representations of A. To select physical representations Borchers has proposed 
to consider positive-energy covariant unitary representations p, namely there is 
a positive-energy representation Up of the universal covering group T>\ of the 
Poincaré group with 

Up(g)p(X)Up(g)-1 = p(U(g)XU(gr1), X € A, g e PI (4.1) 

(where U is viewed as a representation of V+) [2]. 
An effective selection criterion was considered in [11]: for every double cone Ö 

the equivalence class of the representation contains an endomorphism p of A that 
acts identically on A(ö\) for all ö\ G /C, ö\ C Ö1 (localized endomorphism). This 
criterion, suitable for short range interactions, was extended in [8] by relaxing O 
to be a space-like cone showing this class to exhaust all massive representations. 

Let p be an endomorphism of A localized in Ö G /C and p\ = up(-)u* in 
the same class of p and localized in ö\ C Of. The statistics operator e = u*p(u) 
interchanges p o px and p\ o p. The ê  = p%~1 (e), i G N, form a presentation of the 
permutation group P x by transpositions 

e2 = 1, €iej = CjCi if \i - j \ > 2, e ^ i e * = e ^ e ^ i (4.2) 

and one obtains a unitary representation of P ^ , the statistics of p. There is a 
left inverse of p, a completely positive map $ : A —> A with <3> o p = id. If p is 
irreducible the statistics parameter Xp = 4>(e) takes one of the values 

Ap = 0 , ± l , ± - , ± - , . . 
2' 3' 

and classifies the statistics. 
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5 Index-statistics theorem 

Let p be an endomorphism localized in the double cone Ö. By duality p restricts 
to an endomorphism of A(ö). A natural connection between the Jones and DHR 
theories is realized by the formula [43], [44] 

Ind(p) = dDHR(p)2. (5.1) 

Here Ind(p) is Ind(p|^(o)), the minimal index independently of the double cone Ö 
provided p is localized therein (however, in order that A(0) be a factor, one better 
replaces Ö by a wedge region W, i.e. a Poincaré transformed of the region Wo = 
{x : x\ > xo}; a straightforward comment on Driessler's theorem shows indeed 
that ,4(W) is a Illi-factor in Connes classification, see [39]) and dDHR.(p) = l^pl -1 

is the DHR statistical dimension of p, in other words d(p\^o)) = dv)HR(p)- By 
formula (3.6) we will omit the suffix DHR. Because by duality p(A(ö)) c A(ö) 
coincides with p(A(0)) C p(A(Of))' one may rewrite the index formula (5.1) 
directly in terms of the representation p. 

The map p —• P\A{O) is a faithful functor of tensor C*-categories with conju
gates from the endomorphisms localized in Ö into End(A4) with A4 = A(0) for 
any choice of O G JC. Passing to quotient one obtains a natural embedding 

Superselection sectors —• Sect (A4). (5.2) 

The functor is full if Ö is a wedge. 

6 Low-dimensional quantum field theory 

The DHR theory is valid if the space-time dimension is 4, but not in low di
mension. Low-dimensional statistics was considered in [20]. A first analysis was 
independently made in [17] and in [43]. On a two-dimensional space-time the for
mula e2 = 1 is no longer true in general, but the other equations in (4.2) remain 
and provide a presentation of the Artin braid group Mx. 

The index-statistics theorem still applies, thus Jones' theorem (3.1) gives 
restrictions for the possible values of the statistical dimension 

d(p) e {2cos-,n > 3} U [2, oc]. 
n 

If d(p) is small and not 1 then either p2 has two irreducible components (2-channel) 
or three irreducible components, one of which is an automorphism (3-channel es
sentially self-conjugate). The statistics is then classified in these cases. It is a 
braid group representation of Jones [37], [19] or Birman-Wenzl-Murakami [57] and 
is therefore described by the knot and link polynomial invariants of Jones and 
Kaufman. 

Wenzl analysis [56], [57] is applicable. This shows in particular that, although 
there is a continuum of subfactor index values after 4, there arc many gaps for 
the values of the square of the statistical dimension; in particular 4 is isolated 
on the right showing that subfactors arising from quantum field theory are of a 
particular kind, they are in fact "braided subfactors" [45]. Rehren [51] has refined 
this calculation to an optimal form in the interval (4,6) showing that only four 
index values are admissible in this range 

4 < d(p)2 < 6 =• d(p)2 = 5, 5.049..., 5.236... , 5.828... 
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7 Relativistic invariance and the particle-antiparticle symmetry 

By the Reeh-Schlieder theorem the vacuum vector ft is cyclic and separating for 
any A(ö), O e JC, as a consequence of the positivity of the energy. The Tomita-
Takesaki theory faces naturally in this setting. Our analysis is based on the fol
lowing 

Modular covariance principle. With W any wedge region, the modular group of 
^4(W) with respect to fl acts covariantly as the rescaled pure Lorentz transforma
tions Aw preserving W: 

A^A(0)A^1 = A(Aw(27Tt)ö), O G JC, teR. 

The main justification for this property comes from the Bisognano-Wichmann 
theorem [1] showing that indeed in a Wightman frame A ^ = U(Aw(27rt)). 

On the physical side modular covariance enters in connection with an ex
planation of the Unruh effect [55] and the HawTking black hole thermal radiation 
[28], as noticed by Sewell [52] as follows. Modular covariance is equivalent to the 
KMS condition for the boosts as automorphisms of ,4(W) showing the vacuum 
to be a thermal equilibrium state for the system; on the other hand the boosts 
are the trajectory of a uniformly accelerated motion for which the "Rindler uni
verse" W is a natural horizon; the equivalence principle in relativity theory then 
allows an interpretation of the thermal outcome manifested by the KMS property 
as a gravitational effect. On this basis Haag has proposed long ago to derive the 
Bisognano-Wichmann theorem. 

Note that the formulation of the modular covariance property does not re
quire a priori the Poincaré covariance of the vacuum sector, nor addivity, but 
the Reeh-Schlieder property for the vacuum vector, which we assume to hold for 
space-like cones; then the modular covariance implies the Poincaré covariance with 
positive energy of the vacuum sector and provides an intrinsic characterization of 
the vacuum state capable of extensions beyond the Minkoski space [4], [5]. 

In conformai quantum field theory the modular covariance principle is auto
matic [30], [5] and [21] (S1 case), using a theorem of Borchers [3]. 

Let p be a localized endomorphism. Assuming the modular covariance prop
erty we have [22]: 

p Poincaré covariant <=> 3 conjugate sector p 

(the implication <= needs a regularity condition for the net). Here the sector p may 
have infinite statistics and the definition of the conjugate sector p is provided by 
a consistent choice of a conjugate endomorphism (3.1) for p|^4(w) a s VV varies in 
the wedge regions. In [22] only wedges that arc Euclidean transformed of Wo were 
considered and one obtained Euclidean covariance. 

If p has finite statistical dimension a conjugate sector exists [11]. On the other 
hand in a massive theory a sector is localizable in a space-like cone and has finite 
statistical dimension [8], [16]; we thus have by the Buchholz-Fredenhagen theorem 
that, assuming the spectrum of C/|R4 has an isolated mass shell 

p translation covariant = > p Poincaré covariant. 
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The point is that the algebraic definition of the conjugate sector (3.1) makes the 
embedding (5.2) independent of O. An interpretation of this fact according to 
the analytical definition of the conjugate sector and the geometric interpretation 
provided by the modular covariance property gives the results. 

8 Algebraic spin-statistics theorem 

The DHR theory shows the statistics, in particular the statistics parameter, to be 
intrinsically associated with a superselection sector p. The index-statistics theorem 
provides a new understanding of the absolute value of Ap, but also 

KP = phase (Ap) 

is intrinsic. On the other hand we have seen in Section 7 that, if Ind(p) < oo, 
the Poincaré covariance property is also intrinsically associated with p and it is 
not an extra-structure. In particular the univalence UP(2'K) of the representation 
Up is also an intrinsic quantity that we are naturally led to relate to it. Now 
the spin-statistics theorem, familiar in the Wightman framework (see [51]), has 
an extension to the algebraic setting based on assumptions of finite multiplicity 
and strictly positive mass [12], [7]. The modular covariance principle provides the 
ground to obtain a general spin-statistics relation [23], [24] 

KP = UP(27T). 

Moreover we have 

modular covariance ==> PCT invariance. 

Instead of discussing the above form of the spin-statistics theorem, I will exemplify 
the result in the case of a conformai theory on S1 , where the modular covariance 
property is automatic (Section 7). We start then with a pre-cosheaf A of von 
Neumann algebras A(I) associated with (proper) intervals of S 1 (A is an inclusion 
preserving family, not a net), with locality A(S1\I) C A(I)', covariance with 
respect to the Möbius group SL(2,R)/{1, — 1} with positive (conformai) energy 
and uniqueness of the vacuum vector. Denote by Ji the upper half-circle and I2 

the right half-circle and let the covariant (irreducible) superselection sector p be 
localized in I\ fi I2. For simplicity we also assume that p is abelian (Ind(p) = 1). 
Then P\A(Iì) is a n automorphism and we consider the Araki-Connes-Haagerup 
unitary standard implementation Vi of P\A(Iì) with respect to the vacuum vector. 

It turns out that V\ and V2 commute up to a phase 

V1V2 = pV2V1. 

By construction the invariant p has not only an algebraic and an analytic character, 
but also reflects a geometric aspect. Looking at it from these different points of 
view, one can show separately that 

p = Kp and p = C/p(27r), 

where Up is the unitary representation of the universal covering group of SL(2,M) 
in the sector p. This is a starting point for more general analysis on curved space-
time. 
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Two-dimensional Yang-Mills Theory and 
Topological Field Theory 

GREGORY MOORE 
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New Haven, CT 06511, USA 

1 Introduction 

Two-dimensional Yang-Mills theory (YM2) is often dismissed as a trivial system. 
In fact it is very rich mathematically and might be the source of some important 
lessons physically. 

Mathematically, YM2 has served as a tool for the study of the topology of the 
moduli spaces of flat connections on surfaces [2], [25], [38], [39]. Moreover, recent 
work has shown that it contains much information about the topology of Hurwitz 
spaces — moduli spaces of coverings of surfaces by surfaces. 

Physically, YM2 is important because it is the first example of a nonabclian 
gauge theory that can be reformulated as a string theory. Such a reformulation 
offers one of the few ways in which analytic results could be obtained for strongly 
coupled gauge theories. Motivations for a string reformulation include experimental 
"approximate duality" of strong interaction amplitudes, weak coupling expansions 
[34], strong coupling expansions [37], and loop equations [29]. The evidence is 
suggestive but far from conclusive. In [18] Gross proposed the search for a string 
formulation of Yang-Mills theory using the exact results of YM2. This program 
has enjoyed some success. A successful outcome for YAI4 would have profound 
consequences, both mathematical and physical. 

In order to describe the string interpretation of YM2 properly, we will be led 
to a subject of broader significance: the construction of cohomological field theory 
(CohFT). This is reviewed in Section 6. 

2 Exact Solution of YM2 

Let YìT be a closed 2-surface equipped with a Euclidean metric. Let G be a compact 
Lie group with Lie algebra g, P —> T,T a principal G-bundle, G(P) = Aut(P), 
A(P) = the space of connections on P. The action for YM2 is the £(P)-invariant 
function on A(P) defined by: IYM = 4̂ 2 J*ET Tr(F A *F); F = dA + A2, * = 
Hodge dual, e2 = gauge coupling. JYM is equivalent to a theory with action: 
I((j), A) = - \ J^T zTr(0F) + |e2A*Tr02; 0 e fl°(M:g), p = *1, and Tr is normalized 

as in [38]: g ^ T r F 2 represents the fundamental class of HA(BG\ Z), where G is the 
universal cover of G. Various definitions of the quantum theory will differ by a 
renormalization ambiguity AI = a i J £^ + a2e

2 J p. Equivalence to the theory 
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I((j>, A) shows that YM2 is SDiff(ET) invariant (no gluons!) and that amplitudes 
are functions only of the topology of E T and e2a, where a = J p. 

The Hilbert space HG is the space of class functions L2(G)Ad^ and has 
a natural basis given by unitary irrcps: HG = © R C • \R). The Hamiltonian is 
essentially the quadratic Casimir: C2 + Q2- The amplitudes are nicely summarized 
using standard ideas from topological field theory. Let S be the tensor category of 
oriented surfaces with area: Obj(S)= disjoint oriented circles, Mor(S)= oriented 
cobordisms, then: 

THEOREM 2.1. YA#2 amplitudes provide a representation of the geometric cate
gory S. The state associated to the cap of area a is: 

e a i ^ d i m Ä e - e 2 a ( C 2 ^ ) + a 2 ) | R) 
R 

The morphism associated to the tube is 

^ e - e 2 a ( C 7 2 ( R ) + a 2 ) \R)(R\ ? 

R 

and the trinion with two ingoing circles and one outgoing circle is: 

e'ai ^ (d imÄ)-V c 2 a < C a < Ä > + Q a > | R)(R \ ®(R | 
R 

Proof: The heat kernel defines a renormalization-group invariant plaquette action. 
D 

COROLLARY: On a closed oriented surface E T of area a and genus p the partition 
function is 

Z(e2a,p,G) = c«i<2-2ri ]T(dimR)2~2*»e"*l*(c2(R)+a2) ( 2 1} 

R 

These considerations go back to [28]. A clear exposition is given in [38]. 

3 YM2 and the Moduli Space of Flat Bundles 

At e2a = 0 the action 7(0, A) defines a topological field theory "of Schwarz type" 
[8]. In [38], [39] Witten applied YM2 to the study of the topology of the space of flat 
G-conncctions on E T : A4 = M(F = 0; E T ï P) = {A G A(P) : F (A) = 0}/g(P).x 

Witten's first result is that, for appropriate choice of ct\, Z computes the 
symplectic volume of A4 [38]: 

We take a topologically trivial P for simplicity. A4 then has singularities, but the results 
extend to the case of twisted P , where A4 can be smooth [2]. 
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where Z(G) is the center, and LJ is the symplectic form on A4 inherited from the 
2-form on A: u)(8A\,8A2) = -^ JETr(6Ai A 6A2). The argument uses a careful 
application of Faddeev-Popov gauge fixing and the triviality of analytic torsion on 
oriented 2-surfaces. The result extends to the unorientable case, and the constant 
a i can be evaluated by a direct computation of the Reidemeister torsion. 

According to [38], (3.1) is the large k limit of the Verlinde formula [35]. Let 
SRR'(k) be the modular transformation matrix for the characters of integrable 
highest weight modules R G P+ of the affine Lie algebra g[. ' under r —* — 1/r 
[23]. At e2a = 0 we have: 

Z= lime-^) T (#^YP~2 

where 0 denotes the basic representation. On the other hand, we may choose a 
complex structure J on E^ inducing a holomorphic line bundle C —» A4 with 
c\(£) = UJ, and apply the Verlinde formula to get: lim*..-,^ ft~n$^PA (s^~)2p~2 = 

iimk^ k~n dimH0(ET\C®k) = limfc^oc k-n(ekc^c^TdM, A4) = volA4, where 
n = \ dim A4. Using [23] one recovers (3.1) with 

e°' = (27r)dimG/(vTmTvolG) = ( H 2n(a,p))/y/\TJT\ , 
Q>0 

P is the weight lattice, L the long root lattice, and p the Weyl vector. The fact 
that the trinion is diagonal in the sum over representations is the large k limit of 
Verlinde's diagonalization of fusion rules.2 

Witten's second result [39] gives the asymptotics of (.2.1) for e2a —> 0 (set 
a = 1): 

Z(e2,p,G) e2~° ^ ^ J^ e ^ + 0(e'^2). (3.2) 

e2 = 27T2e, a2 = (p,p), and c is a constant. 0 G H4(M;Q) is — roughly — the 
characteristic class obtained from C2(Q) where Q —• E^ x A4irr is the universal 
flat G-bundle.3 0 is best thought of in terms of the £(P)-equivariant cohomology 
of {A G A(P) : F (A) = 0}. In the Cartan model it is represented by g^Tr^2 . The 
"physical argument" for (3.2) proceeds by writing the path integral as: 

Z(e2,p,G) = -^Jd<t>dA d^expl {j^ JTT&F - ^ A</>) 

[«j£"sH} 
where i\) axe the odd generators of the functions on the superspace UTA and dA dip 
is the Berezin measure. This path integral is the t —• 0 limit of the partition func
tion of a cohomological field theory whose Q-exact action is AI = tQ J pTri/jaDaf; 

(3.3) 

+ e 

2) This was first proved, using conformai field theoretic techniques, in [31]. 

3) Precise definitions are given in [2]. 
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f = *F, Q is the Cartan model differential for 5-equivariant cohomology of A. 
The partition function is ^-independent and localizes on the classical solutions of 
Yang-Mills. A clever argument maps the theory at t —> oo to "D = 2 Donaldson 
theory" and establishes the result. From a mathematical perspective the first term 
in the action of (3.3) is the (/-equivariant extension of the moment map on A, the 
integral over A, iß defines an equivariant differential form in fig (A), and the inte
gral over (j) defines equivariant integration of such forms. When the argument is 
applied to finite-dimensional integrals it leads to a rigorous result, namely the non-
abelian localization theorem for equivariant integration of equivariant differential 
forms [39], [22]. 

4 Large N Limit: The Hilbert Space 

The large N limit of YM2 amplitudes is defined by taking N —• oo asymptotics for 
gauge group G = SU(N), holding e2aAT = ^A fixed. It is instructive to consider 
first the Hilbert space of the theory. In the large N limit the state space can be 
described by the conformai field theory (CFT) of free fermions [30], [13], [14]. 
Bosonization then provides the key to a geometrical reformulation in terms of 
coverings [19]. 

Nonrelativistic free fermions on S1 enter the theory because class functions on 
SU(N) can be mapped to totally antisymmetric functions on the maximal torus. 
The Slater determinants of Ar-body wavefunctions give the numerators of the Weyl 
character formula. The Fermi sea corresponds to the trivial representation with 
one-body states yj(0) = etnß occupied for | n |< ^(N — 1). In the representation 
basis the Hilbert space is: Hsu{N) — ®n>o ®yeyW ^" I R(Y))\ yn = the set of 
Young diagrams with n boxes, y^ is the subset of diagrams with < N rows, R(Y) 
is the SU(N) representation corresponding to y G 3̂ n • The naive N —> oo limit 
of Hsu(N) is W+ = ®n>o®Yeyn ^" I ^ ) - The s P a c e ^ + *s related to the state space 
of a c = 1 CFT. Excitations of energy <C N around the Fermi level rip = \(N — 1) 
are described using the zero-charge sector Hjf~ of a "À = 1/2 be CFT" [16], 
where Q = $sl be. The point of this reformulation is that one can apply the 
well-known bosonization theorem, which relates the "representation basis" to the 
"conjugacy class basis." Focusing on one Fermi level we define fermionic oscillators 
{&n,cm} = 5„+m,o, a Heisenberg algebra [a n , a m ] = rc<$n+m?0 related by an = 
5^òn_mcm , and compare, at level LQ = n, the fermionic basis: | Y (hi,..., hs)) = 
c _ f c l + 1 _ i - - - c _ h a + a _ i 6 _ V l + 1 _ i - . - 6 _ l ; a + f l _ i | 0) where Y(hx,...,hs) G yn is a 

Young diagram with row lengths hi, with the bosonic basis | k) = u j l i (a-j)kJ I 0) 
where k = (k\,k2,...) is a tuple of nonnegative integers, almost all 0. k specifies 
a partition of n = ^jkj and a conjugacy class C(k) C Sn. The fermi/bosc 
overlap is given by the characters of the symmetric group representation r(Y): 
{k\Y) = àxHY){C(k)). 

When applying the above well-known technology to YJVfy, one finds a crucial 
subtlety [19]: H+ is not the appropriate limit for YM2. At N < oo there are 
two Fermi levels np = ±^(N — 1); excitations around these different levels are 
related to tensor products of N, N representations, respectively. In the large N 
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limit one must consider representations occurring in the decomposition of tensor 
products R® S where R,S are associated with Young diagrams with n «C N 
boxes, and S is the conjugate representation. That is, the correct limit for YM2 

is Hsu(N) —* W+ <8> H~. The two be systems are naturally interpreted as left- and 
right-moving sectors of a c = 1 CFT. 

Gross and Taylor provided an elegant interpretation of the N —> oo YM2 

Hilbert space in terms of covering maps [19]. The one-body string Hilbert space is 
identified with the group algebra C[TTI(S1)]. The state | k) G W+ is identified with 
a state in the Fock space of strings defined by kj j-fold oriented coverings S1 —> S1. 
The structure of the state space H+ ®H~ has a natural geometrical interpretation 
in terms of string states | k) ® | /): k, I describe orientation preserving/reversing 
coverings. 

5 1/N Expansion of Amplitudes 

The 1/N expansion of YM2 has a very interesting interpretation in terms of the 
mathematics of covering spaces of E^. Heuristically, the worldsheet swept out by 
a j-fold cover S1 —> Sl defines a jf-fold cover of a cylinder by a cylinder. Moreover, 
the Hamiltonian H = C2 is not diagonal in the string basis. One finds a cubic 
interaction term describing the branched cover of a cylinder by a trinion [30], [13], 
[14]. 

To state a more precise relation we define the chiral partition function to 

be: Z+(A,p) = En>oEYeyMmR(Y))2~2Pe~XC2{R{Y))/(2N)- Z+ e x i s t s a s a n 

asymptotic expansion in 1/N. The 1/N expansion is related to topological invari
ants of Hurwitz spaces. To define these let H(n, B,p, L) stand for the equivalence 
classes of connected branched coverings of E T of degree n, branching number B, 
and L branch points. If C L ( E ^ ) = {(21,. . . ,ZL) G Ej-I^ G E T , 2 J ^ ZJ}/SL, then 
H(n,B,p,L) —• C L ( E T ) is an unbranched cover with discrete fiber above S G CL 

given by the equivalence classes of homomorphisms 7TI(ET — S,yo) —> Sn, yo $. S 
[17]. Let H(h,p) = H^ B>0 Hf=0 H(n,B,p,L) where the union on n,B is taken 
consistent with the Riemann-Hurwitz relation: 2h — 2 = n(2p — 2) + B. We define 
the orbifold Euler characters of Hurwitz spaces by the formula 

Xorh{H(h,p)} = E ' E X(CL(£T)) E lAut/r1. 
n,£>0 L=0 irQ(H(n,B,p,L)) 

THEOREM 5.1. ([19] and [10]). Forp> 1: 

Z+(0,p) "~°° exp f:(h2h-2Xorh{H(h,p)} 
N 

lh=0 
Proof. In [19] Gross and Taylor used Schur-Weyl reciprocity to write SU(N) 
representation-theoretic objects in terms of symmetric groups. A key step was the 
introduction of an element of the group algebra fln = Ylves i~k) ' v ^ C[Sn] 
where Kv is the number of cycles in v. fln is invertible forN>n and satisfies: 

(di-OT.^y)) mXr(Y)(^) 
dim r(Y) 
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for all integers m. Gross and Taylor showed that: 

7+(\ n\ V* r~nA/2, ,xi Wi+t+h ( 1 V»(2p-2)+2fe+i+2tn/t(n2 - n) ' 

n,i,t,h=0 

E E [̂ (pi-ft̂ -̂ n-i'i'i-v)!-
(5.1) 

T2.n C S n is the conjugacy class of transpositions, and Ô acts on an element 
of the group algebra by evaluation at 1. 6 is nonvanishing when its argument 
defines a homomorphism ip : 7TI(ET — S,yo) —> Sn for some subset S C E T - One 
nowr uses Riemann's theorem identifying equivalence classes of degree n branched 
covers branched at S G CL ( E T ) with equivalence classes of homomorphisms ip : 
7TI(ET — S,yo) —> Sn to interpret (5.1) as a sum over branched covers. Expanding 
the ft"1 points to obtain the coefficients of the 1/N expansion gives the orbifold 
Euler characters of Hurwitz spaces. D 

The significance of this theorem is that it relates YM2 to CohFT. To see this 
note that branched covers are related to holomorphic maps. Indeed, let A4(EUM Ex) 
= C ° ° ( E U , , E T ) x Met(Eu,); Met(E1i;) is the space of smooth Riemannian met
rics on a 2-surface Ew of genus h. The moduli space of holomorphic maps is 
H o K E ^ E r ) = {(/,<?) G M(ZW,XT) : dfe(g) = Jdf}/(DiS+

 K Wqrl(E«,)); e(g) 
is the complex structure on E^ inherited from o, Wey^E^) is the group of local 
conformai rescalings acting on Met(Ew). The definition of orbifold Euler character 
above is thus natural because the action by Diff+(E-Lt;) on M. has fixed points at 
maps with automorphism: xQV\>(H(h,p)) = Xorb(Hol(Eu,,ET))- As we explain in 
the next section, CohFT partition functions are Euler characters of vector bundles 
over moduli spaces. 

Theorem 5.1 has been extended in many directions to cover other corre
lation functions of YAf2[19], [10]. The results are not yet complete but are all 
in harmony with the identification of YM2 as a CohFT. Wilson loop ampli
tudes are accounted for by Hurwitz spaces for coverings E^ —• E T by mani
folds with boundary.4 A formula analogous to (5.1) for the full, nonchiral the
ory has been given in [19]. The proof is not as rigorous as one might wish, but 
we do not doubt the result. The analog of Theorem 5.1 involves "coupled cov
ers" [10]. A coupled cover f : T,w —> E T of Riemann surfaces is a map such 
that on the normalization of N(EW) = N+(HW) H N~ÇEW) along the double 
points {Qi , . . . ,Q r f } of Eu„ N(f) = / + H / " where / + : N+(EW) -* E r is 
holomorphic and / ~ : N~(T,W) —» E T is antiholomorphic and Vi, ramification 
indices match: Ram( / + ,Q+) = Ram(/~,Q^"). One may define a "coupled Hur
witz space" C T ^ E ^ . E T ) along the lines of the purely holomorphic theory. The 
1/N expansion of the partition function again generates the Euler characters of 
C W ( E ^ , E T ) , if coupled covers with ramified double points receive a weighting 

4) The SDiff ( E T ) invariance of Y Mi implies that Wilson loop averages define infinitely many 
invariants of immersions S1 —» S T • 
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factor n c } R a m ( / + : Q + ) m t n e calculation of the Euler characteristic [10]. Put 
differently, the proper definition of "coupled Hurwitz space" involves a covering 
of the naive moduli space of coupled covers. This point has not been properly 
understood from the string viewpoint. 

Finally, the results need to be extended to the case of nonzero area. When 
A ^ 0 the expansion (5.1) and its nonchiral analog have the form: 

z+ix,p) = E a / A o 2 ' 1 - 2 ^ ) = E(1/iv)2h-2Ee-»v2Zn+/ip(A). 
h>0 h>0 n 

For p > 1, Z+hp(\) is polynomial in A, of degree at most (2h — 2)— n(2p — 2) = B. 
The string interpretation described below shows that these polynomials are related 
to intersection numbers in H(h,p). For p = 1, Z^x(\) are infinite sums that can be 
calculated using the relation to CFT described above [14]. These functions may be 
expressed in terms of Eisenstein series and hence satisfy modular properties in r = 
iA/(47r). For example: Z^x = ex/48rj(i\/(A7r)) (rj is the Dedekind function) [18]. 
The modularity in the coupling constant might be an example of the phenomenon 
of "S-duality" which is currently under intensive investigation in other theories. 
For the case of a sphere: Zo,o(A) has finite radius of convergence. At A = 7r2 there 
is a third order phase transition (=discontinuity in the third derivative of the 
free energy) [15]. The existence of such large N phase transitions might present a 
serious obstacle to a higher-dimensional Yang-Mills string formulation. 

The A-dependence of (5.1) has been interpreted geometrically in [19]. Contri
butions with h, t > 0 are related to degenerate EUJ. In the framework of topological 
string theory the h > 0 contributions are probably related to the phenomenon of 
bubbling [5]. 

6 Cohomological Field Theory 

CohFT is the study of intersection theory on moduli spaces using quantum field 
theory. Reviews include [40], [8], [9], [11]. The following discussion is a summary 
of the point of view explained at length in [11]. In physics the moduli spaces are 
presented as M = {/ G C : Df = 0}/G where C is a space of fields, D is a 
differential operator, and G is a group of local transformations. The action is an 
exact form in a model for the S-equivariant cohomology of a vector bundle over C. 
The path integral localizes to the fixed points of the differential Q of equivariant 
cohomology. 

More precisely, the following construction of CohFT actions can be extracted 
from the literature [40], [44], [45], [7], [6], [3], [32], [24]. We begin with the basic 
data: 

(1) 8 —• C, a vector bundle over a field space that is a sum of three factors: 
E = US\oc © £proj © n£g.f. (the n means the fiber is considered odd). 

(2) ^-invariant metrics on C and £. 
(3) a ö-cquivariant section s : C —• £\oc, a S-equivariant connection Vs = 

ds + Os G ftl(C;E\oc), and a Q-nonequivariant section T : C —> £g.f. whose zeros 
determine local cross-sections for C —• C/Q. 
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The observables and action are best formulated using the "BRST model" of 
^-equivariant cohomology [32], [24], [33]. To any Lie algebra g there is an associated 
differential graded Lie algebra (DGLA) g[0] = g <g> A*0; ~62 = 0, deg(9 = - 1 , 
degg = 0, 80 = 1. Moreover, if M is a superspace with a g-action then ft*(M) 
is a differential graded g[0] module, with X G g —• Cx, X (g 0 —• tx • In our 
case g —» Lie(<?) and M is the total space of S. The BRST complex is £ = 
A*E(Lie(o)[0])* 0 fì*(£) where E is the suspension, increasing grading by 1. The 
differential on the complex is Q = (ds + &) + dc.E. where & is dual to d and dc.E. 
is the Chevalley-Eilenberg differential for the DGLA Lie(S)[0] acting on fl*(£). 
Physical observables öi are Q-cohomology classes of the "basic" (Lie(Ç)-relative) 
subcomplex and correspond to basic forms Oi G fl*(C) that descend and restrict 
to cohomology classes U{ G H*(M). 

The Lagrangian is J = Qty, the gauge fermion is a sum of three terms: 
\J> = ^loc + ^proj + ^g.f. for localization, projection, and gauge-fixing, respectively. 
Denoting antighosts (= generators of the functions on the fibers of £) by p + 
Ö7T, A + On, c + On, of degrees — 1 , - 2 , - 1 , respectively, and taking, for definiteness, 
£g.f. | / = fproj | / = Lie(ff) we have: 

^ l o c = - * < p , * > - ( p , 0 • p ) ^ + ( p , T T ) ^ c 

* p r o j = * ( A , C t ) L i c W ) (6.1) 

*g.f. =(c ,J r [ i l ]>-(c ,7f)L i 0 ( ( ; ) 

where C* = (dRj)^ G îi1(C;Lie(o)), is obtained, using the metrics, from the right 
G action through / , Ä/ : 5 —* C. 

The main result of the theory is a path-integral representation for intersection 
numbers on M as correlation functions in the cohomological field theory: 

[ fie~IÔ1 -•Ôk=[ x [cok(O)/0] A ^ A - A ^ (6.2) 
Je JM=Z(S)/G 

where fi is the Bcrezin measure on £ and © = Vs 0 C^ G fll(C\ V 0 Lic(G)) is 
Frcdholm with TM = kerO/S- The argument for (6.2) may be sketched as follows. 
The equations Df = 0 define the vanishing locus of a cross-section s(f) = Df G 
r[£ioc —>" CC]. Using the data of a metric and connection V on a vector bundle 
E, one constructs the Mathai-Quillen representative Q(E, V) of the Thorn class of 
E [27]. This construction can be applied — formally — in infinite dimensions to 
write the Thorn class for £\oc/G- When pulled back by a section s : C/G —> £\oc/G>, 
s*(^(£\oc/G,S/)) is Poincaré dual to the zero locus Z(s) = Z(s)/G- The natural 
connection on £\oc/G is nonlocal in spacetime. In order to find a useful field-
theoretic representation of the integral over C/G one uses the "projection gauge 
fermion" ^proj to rewrite the expression as an integral over C. Finally, one must 
divide by the volume of the gauge group vol G, necessitating the introduction 
of ^g.f.. The "extra" factor of x(cok(©)/Ç?) follows from a general topological 
argument [41] or from a careful evaluation of the measure near the Q-fixed points. 

D 
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Two remarks are in order. First, the factor x(cok(0)/o) is crucial in studies 
of mirror symmetry [1], [42] and is also crucial to the formulation of the YM2 

string. Second, the formula (6.2) ignores the (important) singularities in M. We 
conclude with four examples. 

1. Donaldson Theory [44], [7], [3]: P —> M is a principal G-bundlc over a 4-fold 
M. C = A(P), G = Aut(P), s(A) = F+ G fioc = Ax fl2>+(M;g). cok(D = {0} 
(at irreducible connections). Observables are J $*(£); 7 € H*(M),Ç G H*(BG), 
$ : ( P x A(P))/(G x G(P)) -> BG is the classifying map of the G-bundle Q - • 
A/G x M of Atiyah-Singer [4]. (6.2) becomes Witten's path integral representation 
of the Donaldson polynomials. 

2. Topological a Model, Ta(X) [45], [6]: X = a compact, almost Kahler manifold 
with almost complex structure J. C = Map(Eu,,AT). Eu, has complex structure e 
and s(f) = df + Jdfe G £ioc,f = T(T*E 0 f*TX). Choosing a natural connection 
on £ioc one finds cok((D) ^ / ^ ( E , / * ^ ^ ) ) . Observables are the Gromov-Witten 
classes: / $*(£); 7 € #*(EU,),£ G H*(X), $ : E^ x C - • X is the universal map. 

3. Topological String Theory, TS(X) [43], [36], [12]: X = compact, Kahler, F = 
(f,h) G C = M(T,W,X) = Map(Ew,X) x Met(EU)), G = Diff+(EU,), s(F) = 
(R(h)+1, df-hJdfe(h)), the first equation eliminating the Weyl mode of the metric. 
Observables are products of Gromov-Witten classes and Mumford-Morita-Miller 
classes on the moduli space of curves. 

4. Euler a Model, £a(X) [10], [11]: X = compact, Kahler. If, in TS(X), cokO = 
{0}, £a(X) computes the Euler character of Hol(Eu,,X). The fieldspace C —> 
M(T,W,X) is a vector bundle with fiber £{oc 0 Lie(£). The section is: s(F,F) = 
(s tF) ,©^) , and, by construction, the partition function is: Z = Xorb(Hol(Ew;,X)), 
so £O-(ET) is the string theory of (chiral) YM2. The area dependence is obtained 
by perturbing the action by AI = \ J /*k where k is the Kahler class of E T (this is 
only partially proven). A similar construction reproduces the nonchiral amplitudes 
but introduces an action that is fourth order in derivatives and requires further 
investigation. An alternative proposal for a string interpretation of YM2 was made 
in [21]. This approach certainly deserves further study. 

7 Application and a Guess 

The original motivation for the program of Gross was to find a string interpretation 
of YM4. Have we made any progress towards this end? The answer is not clear at 
present. We offer one suggestion here in the form of a guess. 

Combining (3.2) with the 1/AT asymptotics of the YM2 partition function we 
expect5 an intriguing relation between intersection theory on M(F = 0, E T ) for 

5) To make this statement rigorous one must (a.) take care of the singularities in M. and (b.) 
ensure that the corrections ~ ö(e~2Nc/x) from (3.2) are not overwhelmed by the "entropy 
of unstable solutions" [00]. The absence of phase transitions as a function of A for G > 1 
suggests that , for G > 1, these terms are indeed ~ ö(e~Nc ) for some constant c'. 
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G = SU(N) and the moduli spaces of holomorphic maps E^ —> E T : 

exp UJ A 6 
^47r 2 i \ n 

JV->oo 

2/1-2 ^(0 V) e-^PaWxarbiCHÇZ», S T , d)). 
h>0 x "' ' d>0 

(7.1) 
CN = Are<*i(2-2p)-Aa2/(2iV)5 CH(T,w,T,T,d) is the coupled Hurwitz space for maps 
of total degree d, and Pd is a polynomial with Pd(0) = 1. 

Now, the string theory of YM2 does have a natural extension to four-dimen
sional target spaces: / = I(£a(X)) for X a compact Kahler 4-fold. Let e a be a 
basis of H2(X,Z) with Poincaré dual basis k a . The action may be perturbed by 
AI = ta f f*ka. Defining degrees dQ by: / (E) = £ d a e a G H2(X, Z), the partition 
function of the theory should have the form 

Z(£a(X)) ~ y > 2 " - 2 VJ e-tQd°Pda(t
a)x(CW(SunX;rfQ)), 

h>0 dQ>0 

more or less by construction, where K is a string coupling constant and Pda(t
a) is 

a polynomial whose value at zero is one. Our guess is that a formula analogous to 
(7.1) holds in four dimensions, and that the asymptotic expansion of Z(£a(X)) 
in K is closely related to the large N asymptotics of intersection numbers of the 
classes ö\ ( O = / c2(Q) on the moduli space of anti-self-dual instantons on 
X: 

/ e r « ö < 2 ) ( e a ) \ 
\ / M + {X;SU{N)) 

where n ~ 1/N and ra are analytic functions of the ta. 
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Mirror symmetry is the remarkable discovery in string theory that certain "mirror 
pairs" of Calabi-Yau manifolds apparently produce isomorphic physical theories 
— related by an isomorphism that reverses the sign of a certain quantum number 
— when used as backgrounds for string propagation [13], [19], [10], [16]. The sign 
reversal in the isomorphism has profound effects on the geometric interpretation 
of the pair of physical theories. This leads to startling predictions that certain 
geometric invariants of one Calabi-Yau manifold (essentially the numbers of holo
morphic 2-sphercs of various degrees) should be related to a completely different 
set of geometric invariants of the mirror partner ( "period" integrals of holomorphic 
forms). 

We will discuss the applications of this mirror symmetry principle to the study 
of the moduli spaces of two-dimensional conformai field theories with N=(2,2) su-
persymmetry. Such theories depend on finitely many parameters, and for a large 
class of these theories the parameters admit a clear geometric interpretation. To 
circumvent the difficulties of trying to treat path integrals in a mathematically rig
orous manner, we shall simply define the moduli spaces in terms of these geometric 
parameters. Other interesting physical quantities — the "topological"' correlation 
functions — can then also be defined as asymptotic series whose coefficients have 
geometric meaning. The precise forms of the definitions are motivated by path 
integral arguments. 

Mirror symmetry predicts some unexpected identifications between these 
moduli spaces, and serves as a powerful tool for understanding their structure. 
Perhaps the most striking consequence is the prediction that the moduli spaces 
can be analytically continued beyond the original domain of definition, into new 
regions, some of which parameterize conformai field theories that are related not 
to the original Calabi-Yau manifold, but rather to close cousins of it, which differ 
by simple topological transformations. 

In preparing this report, I have drawn on a considerable body of earlier 
work [l]-[5], [21]-[24], much of which was collaborative. I would like to thank 
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my colleagues and collaborators Paul Aspinwall, Robert Bryant, Brian Greene, 
Sheldon Katz, Ronen Plcsscr, and Edward Witten for their contributions. 

1 The physics of nonlinear a-models 

We begin by describing nonlinear a-modcls from the point of view of physics (see 
[15] and the references therein), and giving a geometric interpretation to the pa
rameters that appear in the theory. The starting data for constructing a nonlinear 
cr-model consists of a compact manifold X, a Riemannian metric gij on X, and a 
class B e H2(X,R/Z) (which wc represent as a closed, R/Z-valued 2-form: i.e., a 
collection of closed, R-valued 2-forms on the sets of an open cover of X that differ 
by Z-valued forms on overlaps). The bosonic version of the nonlinear a-model is 
then specified, in the Lagrangian formulation, by the C/Z-valucd (Euclidean) ac
tion which assigns to each sufficiently smooth map à from an oriented Riemannian 
2-manifold E to X the quantity1 

S\<j>]:=i f \\d(p\\2dfi+ / V ( B ) , (1) 
JT JT 

where the norm ||d0|| of dep E Hom(Ts,0*(Tx)) is determined from the Riemann
ian metrics on X and on E. 

There is a variant of this theory in which additional fermionic terms are added 
to (1) to produce an action that is invariant under at least one supcrsymmetry 
transformation. (We will not write the fermionic terms in the action explicitly, as 
they do not enter into our analysis of the parameters.) The supcrsymmetric form 
of the action is also invariant under additional supcrsymmetry transformations 
when the geometry is restricted in certain ways — if the metric is Kahler then 
the theory has what is called AT=(2,2) supersymmetry, whereas if the metric is 
hyper-Kähler then the supersymmetry algebra is extended to N=(4,4). 

A nonlinear cr-model describes a consistent background for string propaga
tion only if it is conformally invariant. The possible failure of conformai invari
ance is measured by the so-called "/3-function" of the theory, and a pcrturbative 
calculation yields the result that the one-loop contribution to this 3-function is 
proportional to the Ricci tensor of the metric. This makes Ricci-fìat metrics — 
those with vanishing Ricci tensor — good candidates for producing conformally 
invariant (j-modcls. In fact, supcrsymmetric <r-modcls whose Ricci-flat metric is 
in addition hyper-Kähler arc believed to be conformally invariant, as arc bosonic 
cr-modcls whose metric is flat. 

When the supersymmetry algebra of the theory cannot be extended as far as 
N=(A,4), the Ricci-fìat theories fail to be conformally invariant. However, wThen the 
Ricci-fìat metrics are Kahler (i.e., when the theory has N=(2,2) supcrsymmetry), 
wc can deduce some of the properties of the conformally invariant theory by a 
careful study of the Ricci-flat theories. This works as follows: renormalization 
produces a flow on the space of metrics, and along a trajectory that begins at a 

1 We suppress the string coupling constant, and use a normalization in which the action 
appears as exp(2niS) in the path integrals for correlation functions. 
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Ricci-fiat Kahler metric, the metric is expected to remain Kahler with respect to 
a fixed complex structure on X, and the Kahler class of the metric is not expected 
to change. Thus, if there is a conformally invariant theory in the same universality 
class as this trajectory, i.e., if there is a fixed point of the flow that lies in the 
trajectory's closure, then any property of the conformai theory that depends only 
on the complex structure, the Kahler class, and the 2-form B can be calculated 
anywhere along the trajectory, including the initial, Ricci-fìat theory. Furthermore, 
every Ricci-fìat Kahler metric whose Kahler class is sufficiently deep within the 
Kahler cone is expected to determine a unique conformally invariant theory (which 
lies in the same universality class). 

We can thus define a first approximation to the parameter space for N=(2,2) 
superconformai field theories as follows (cf. [22]). Fix a compact manifold X, and 
define the one-loop semiclassical nonlinear a-model moduli space of X to be 

Ma:={(gij,B)}/ViB(X), (2) 

where gij runs over the set of Ricci-fìat metrics which are Kahler for some complex 
structure on X, B is an clement of H2(X,R/Z), and Diff(X) denotes the diffeo
morphism group of X. Manifolds for which Ma is nonempty (that is, those that 
admit a Ricci-flat Kahler metric) are called Calabi-Yau manifolds. The 2-form B 
should be regarded as some sort of "extra structure" (cf. [21]) that supplements 
the choice of metric. 

It is important to keep in mind that the space Ma is only an approximation 
to the moduli space of conformai field theories, for several reasons: 

• As already mentioned, not every pair (gij,B) is expected to determine a con-
formal field theory, only those whose Kahler class is sufficiently deep within 
the Kahler cone. 

• There may be analytic continuations of the space of conformai field theories 
beyond the domain where the theories have a cr-model interpretation. (We 
will see this in more detail in Section 6.) 

• There may be points of Ma that define isomorphic conformai field theories, 
even though they do not define isomorphic cr-models. This phenomenon was 
first observed in the case in which X is a torus of real dimension 2d, and 
gij is a flat metric [25], [26]: in this case, Ma = TQ\D, where V is a certain 
symmetric space and To = A2Z2rf x GL(2d, Z), while the actual moduli space 
of conformai field theories takes the form T\T> for some T containing the 
integral orthogonal group 0(Z2 d , 2 d) (in which To is a parabolic subgroup). 

In spite of these limitations, MG provides a good arena for formulating a mathe
matical version of the theory, based on definitions using asymptotic expansions. 

2 The correlation functions 

The correlation functions of these quantum field theories will depend on the pa
rameters in the action functional. If we construct a vector bundle over the moduli 
space whose fiber over a particular point is the Hilbert space of operators in the 
theory labeled by that point, then the correlation functions can be regarded as 
multilinear maps from this bundle to the complex numbers. These maps and their 
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dependence on parameters can be studied by means of a semiclassical analysis, 
at least in a certain "topological" sector of the theory. (In this sector, the depen
dence of the correlation functions on the metric wTill always be a dependence on 
the Kahler class alone.) 

The semiclassical properties of the N=(2,2) theory are calculated in terms 
of the set of stationary values for the action (1). To find these, wc pick a complex 
structure on E that makes its Riemannian metric Kahler, and that is compatible 
with its orientation. Then the first term in the action (1) can be rewritten using 
the formula: 

/ ii#n2dM= f \m2d(x+ f * » , (3) 
J T J T J T 

where 3(j) G Hom(T^ ' \0*(T^' )) is determined by the complex structures, and 
where u is the Kahler form of the metric gij on X. From this formula it is clear 
that the stationary values are the holomorphic maps; i.e., those with d<j) = 0. 
Furthermore, the action (1) evaluated on such a stationary value is the quantity 

z / V ( w ) + / V ( B ) 6 C / Z , (4) 
JT JT 

which depends only on the homology class 77 of the map 0. 
The path integral describing this quantum field theory has bosonic part 

/ 
V(f>e2*iS&\ (5) 

and the correlation functions are calculated by inserting operators into this ex
pression (see for example Witten's address at the Berkeley ICM [31]). Such path 
integrals are of course problematic for mathematicians, but it is possible to use the 
outcome of the path integral manipulations as a basis for mathematical definitions. 

To analyze these correlation functions, we break the path integral into a sum 
over homology classes. This produces an asymptotic expansion that is expected 
to converge for metrics whose Kahler class is sufficiently deep within the Kahler 
cone. The terms in the asymptotic expansion are themselves path integrals whose 
bosonic parts are the integrals of exp(27rz/E ||90||2d/x) over all maps of class 77 
(with operators inserted), weighted by the exponential of 2-iri times the classical 
action (4). For certain of the correlation functions, these "coefficient" path integrals 
can in turn be evaluated by the methods of topological field theory (cf. [32], [34]): 
upon modifying the fermionic terms in the action and introducing a parameter t, 
the path integral with bosonic part 

/ D0c2irit/El|S*lla<fc (6) 
J[<j>]=v 

and "topological" operator insertions becomes independent of t. This integral can 
then be evaluated by the method of stationary phase, which reduces it to a finite-
dimensional integral over the set of stationary maps in class 77. Rigorous math
ematical definitions for such "topological" correlation functions can be based on 
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these finite-dimensional integrals, following ideas of Gromov [17] and Witten [32], 
[33]. See [20], [27], or Kontsevich's address at this congress for an account of these 
definitions and their properties. 

In short, the physical quantities that can be calculated (by physicists) or 
defined (by mathematicians) using topological field theory will take the general 
form 

J2 c , e 2 " ( f l + ^ . (7) 
rieH2(X,Z) 

Notice that the only dependence on the metric is through the complex structure 
and the Kahler class UJ. The coefficient cTj will depend on the set of all holomor
phic maps in class 77, and may well depend on the complex structure of X. (It also 
depends on the behavior of the fermionic terms in the action that we have sup
pressed.) The key property of interest here is the holomorphic dependence of these 
functions on parameters: the coefficients c^ depend holomorphically on the com
plex structure, and the dependence of (7) on B + iuj is also holomorphic (provided 
that the series converges and that H2,0(Xj) = {0}). 

3 Mirror symmetry 

The analysis of the previous sections ultimately derives from the specific form of 
our physical theory, which is based on the geometry of Ricci-flat metrics on X. We 
now adopt a somewhat more abstract point of view, and consider the structure of 
N=(2,2) superconformai field theories per se. 

The algebraic approach to conformai field theories — which treats them as 
unitary representations of the Virasoro algebra — has been extensively studied 
in the mathematics literature (cf. [14], for example). When the theories are su-
persymmetric, the algebra that acts on the representation can be enlarged. The 
enlargement relevant here is the N=2 superconformai algebra (for which a conve
nient reference is [19]). This is a super extension of the Virasoro algebra whose even 
part contains a u(l)-subalgebra in addition to the Virasoro algebra itself. From 
this algebraic point of view, an N=(2,2) superconformai field theory is simply a 
unitary representation of two commuting copies of this algebra; there is thus an 
induced representation of the subalgebra u(l) x u(l). 

The deformations of these representations have been analyzed in the physics 
literature [12], [13]. The infinitesimal deformations can be identified with the finite-
dimensional kernel V of a certain operator, and it is argued in [12], [13] that there 
should be no obstructions to deforming in the directions corresponding to V? 

The u(l) x u(l) manifests itself on V in the following way: there are two 
commuting complex structures J and J' on V, each of which determines a natural 
representation of u(l) on V ® C (with respect to which half of the charges3 arc +1 
and half are —1). The two complex structures together determine a representation 

2The arguments in [12] and [13] involve more of the physical structure than is present in 
the purely algebraic formulation we are discussing here. It would be desirable to have a purely 
algebraic proof of this statement. 

3For a representation p of u(l) = Œ, the eigenvalues of p(i) are called the charges of the 
representation. 
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of u(l) x u(l) on V® C, and we can decompose V<g>C into four complex subspaces 
y±i,±i according to the u(l) x u(l) charges. 

If we use J to put a complex structure on V and call the resulting space 
Vj, then we can write Vj = V1,1 © V 1 ' - 1 . From this point of view, because 
J' has eigenvalues ±i, respectively, on the two summands whereas J is simply 
multiplication by i, we can identify the summands as V1 ,1 = \nQr(JJ' — Id) C Vj 
and V 1 - 1 = k e r ( J J ' + Id) C Vj. 

A mirror isomorphism between two N=(2,2) superconformai field theories is 
an isomorphism that reverses the sign of one of the u(l) charges. If it is the second 
u(l) charge that is reversed, then the isomorphism will map V±x,±1 to V±1,Tl, 
and will interchange the factors in the decomposition Vj = 7 1 , 1 0 V r l , _ 1 . 

A mirror isomorphism must preserve all correlation functions, not just the 
topological ones. It particular, it preserves the bilinear form on V that corresponds 
to the so-called Zamolodchikov metric on M.a. Thanks to the preservation of this 
metric, a mirror isomorphism at a single point can always be extended to a local 
isometry between the moduli spaces. There will also be a compatible isomorphism 
of the bundles of Hilbert spaces that maps the topological correlation functions 
from one theory to those of the other, but because of the sign change in the u(l) 
charge, the geometric interpretations of these correlation functions may be rather 
different. For example, Candelas, de la Ossa, Green, and Parkes [11] used a mirror 
isomorphism to assert that a correlation function that they could compute exactly 
(using period integrals) as 

a 2V 3V 4 V 
5 + 2875 —^— + 609250 — ~ H + 317206375 —-^-=- + 242467530000 — ^ - r + • • • 

1 — q 1 — q2 1 — q6 1-<T 

should coincide with a generating function of the form (7) in which the coefficients 
represent the numbers of holomorphic 2-spheres of various degrees on a quintic 
hypersurface in CP4. (See [21] or the GiventaFs address at this congress for some 
of the mathematical aspects of this generating function.) 

4 Local analysis of the cr-model moduli space 

The abstract description of the deformations of N=(2,2) theories can be made 
very concrete for cr-models, where it reveals the local structure of the space M.a. 
The set of first-order variations 6g of a fixed Riemannian metric g^ on X can be 
identified with the space of symmetric contravariant 2-tensors T(Sym2 T£). If X is 
compact and g^ is Ricci-fìat, then according to a theorem of Berger and Ebin [6] 
the space of first-order variations4 8g (modulo Diff (X)) that preserve the Ricci-fìat 
condition can be identified with the kernel of the Lichnórowicz Laplacian A L acting 
on r(Sym2 X£). On the other hand, the set of first-order variations SB of the 2-form 
B can be identified with the space of harmonic 2-forms ker A C T(A2T£). Because 
the Lichnérowicz Laplacian on 2-forrns coincides with the ordinary Laplacian, the 
combined contravariant 2-tensor 6g + SB £ T ( ® 2 T £ ) satisfies AL(Sç + SB) = 0. 
We can thus identify the tangent space to Ma at (gij,B) with ker A L C T ( 0 2 T£). 

4 I t follows from the theorem of Bogomolov [8], Tian [28], and Todorov [29] that first-order 
variations can always be extended to deformations of the metric. 
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Let us assume that the holonomy of g^ takes its "generic" value for Ricci-
flat Kahler metrics, namely SU(rc), n > 3 (where n := dinicX). In this case, the 
two complex structures that we are expecting from our abstract analysis can be 
described as follows. First, if we fix a complex structure5 J on X with respect 
to which gij is Kahler, there is an induced operator J on r ( ® 2 T £ ) defined by 
Jh(x,y) := h(x,Jy). This new operator J commutes with A L , and so induces 
an operator on the tangent space ker A L of ]\Aa whose square is — Id, that is, a 
complex structure on ker AL-

The second complex structure J' on ker A L is much less obvious. It can be 
characterized by the property that the product J J' acts as — Id on the space of 
symmetric, skcw-Hcrmitian tensors, and as + Id on the space of tensors that arc 
cither Hermitian or skew-symmetric. Explicitly, J1 can be defined by the formula 

J'h(x, y) := l- (-h(x. Jy) + h(y, Jx) + h(Jx, y) + h(Jy, x)). (8) 

Using J to put a complex structure on ker A L , we can identify Vx~x with 
the space of symmetric, skew-Hermitian tensors in ker A L - This space corresponds 
to that part of the moduli space of metrics that is obtained by varying the complex 
structure (cf. [7, Chapter 12]). The operator J preserves that space, and induces 
the usual complex structure on it. In fact, under our assumptions about the holo
nomy, the complex structure can be varied freely and wc have V 1 , _ 1 = Hl(Tx

 ? ' ) , 
the latter being the space of first-order variations of complex structure. 

Wc can similarly identify V1,1 as the space consisting of tensors that are cither 
Hermitian or skew-symmetric; on this space, the operator J mixes symmetric and 
skew-symmetric forms, so it does not have a classical interpretation in terms of 
metrics alone. The parameters associated to this part of the deformation space 
are of the form B + üJ, and V1 '1 ^ H1A(Xj) = H2(X, C) (under our assumption 
that the holonomy is SU(n), n > 3). 

A mirror isomorphism between Calabi-Yau manifolds X and Y thus identifies 
the space of complex deformations of X with the space of complexified Kahler 
deformations of Y, and vice versa (at least when the holonomy is ''generic"). 

5 Global analysis of the a-model moduli space 

The moduli space of Ricci-flat metrics (and hence the nonlinear a-model moduli 
space) can be analyzed globally as well as locally. To carry this out, wc introduce 
a related space, which includes a choice of complex structure. Define 

MN=2 := {(9ij,B, J )} /Dif f (X) , (9) 

where J ranges over the complex structures on X with respect to which g^ is 
Kahler. The holonomy group of the metric g^ is necessarily contained in the 
SU(n) specified by J. The fibers of the natural map MN=2 —> Ma depend on 

5 When the holonomy is SU(n), n > 3, there are precisely two such complex structures: J 
and — J. 
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this holonomy group, and can be described as the set of U(n)'s that lie between 
the holonomy group and 0(2n). Some examples: 

1. If the holonomy is SU(n), ra>3, then the fiber consists of two points. (This is 
the "generic" case.) 

2. If the holonomy is Sp(ra/2), then the fiber is CP1. (This is the case of an 
indecomposable hyper-Kähler manifold, such as a K3 surface.)6 

The real dimension of the fiber is always dim^ H20(Xj). 
The structure of the space A4N=2 can be determined from the natural map 

MN=2 -* A ĉompiex := {J}/ Diff(X). By the theorems of Calabi [9] and Yau [36], 
the fibers of this map take the form ICc(Xj)/ Aut(Xj), wrhere lCc(Xj) is the 
complexified Kahler cone7 

ICc(Xj) := {B + iuj G H2(X,C/Z) \ UJ G ICj}, (10) 

JCj being the set of Kahler classes on Xj, and Aut(Xj) being the group of holo
morphic automorphisms. It is this fact that gives us access to global information 
about the conformai field theory moduli space, as the moduli space of complex 
structures can be studied by the methods of algebraic geometry. For example, by 
a theorem of Viehweg [30] the subspace A/f£omplcx C A/fcomplex consisting of all 
complex structures polarized with respect to a fixed class £ is a quasi-projective 
variety, i.e., the complement of a finite number of compact subvarieties in a com
pact complex manifold. (And the spaces A4fomplex arc open subsets of Alcomplex 
when H2-°(Xj) = {0}.) In contrast, although /Cc has a canonical complex struc
ture when H2>°(Xj) = {0}, it is typically a rather small domain. 

Note that the expected condition for a given pair (gij.B) to determine a 
conformai field theory was stated in terms of the Kahler class only and was valid 
for every choice of complex structure. Thus, the global description of the complex 
structures should be valid for the conformai field theory moduli space itself. On 
the other hand, the complexified Kahler directions arc subject to modification. 

6 Beyond the Kahler cone 

Wc now apply the mirror symmetry principle to study the moduli space in the 
case in which the holonomy of the Ricci-flat metrics on X is SU(n), n > 3. 

Suppose that a mirror partner Y is known for X. The mirror map between 
the moduli spaces j\4a(X) and A4CT(F) will certainly be well defined at points 
corresponding to metrics whose Kahler class is sufficiently deep within the Kahler 
cone, but in general we can only expect a partially defined, local isomorphism 
between these spaces. However, because of the global nature of the complex struc
ture space A/lcompiex(^); wc can deduce the structure of the Kahler moduli space 
JCc(X) from even a local knowledge of the mirror map. In principle, the mirror map 
should be determined essentially uniquely from the structure of the Zamolodchikov 

6 K3 surfaces arc "self-mirror," and the mirror map induces an automorphism of fAa- Thus, 
as in the case of a torus, the moduli space of conformai field theories of this type is a nontrivial 
quotient of j\Aa (cf. [5], where this quotient is determined precisely). 

7This definition differs slightly from ones wc have given elsewhere [22], [23]. 



1312 David R. Morrison 

metric, once the derivative of the map is known at a single point. In practice, it 
is easier to approach the construction of the mirror map in other ways (based on 
the topological correlation functions), which determine it up to a finite number of 
unknown parameters. Even those parameters can often be determined. (See [24] 
for a recent review of this problem.) 

This comparison of structure between Kahler and complex moduli spaces has 
been carried out in [1], [2] for cases in which a mirror partner is known (to physi
cists), thanks to some explicit constructions using the discrete series representation 
of the N=(2,2) superconformai algebra [16]. The results are quite illuminating: 
on the one hand, the locally defined map 

ICc(X) —> A<complex(F) (11) 

does not in general extend throughout JCc(X), but instead there are points where 
the theories become singular, and the map encounters difficulties beyond those 
points.8 On the other hand, the image of (11) is not all of A4 complexe) — as we 
have already suggested, Kc(X) is much smaller than A/lCOmpiex(^)- This means 
that there must be a way to analytically continue the conformai field theories 
on X beyond the theories specified by JCc(X) (because such theories occur in 
A^compiex(^))- This second conclusion was independently reached by Witten [35] 
on somewhat different grounds. 

What, then, lies beyond the Kahler cone for such theories? In some cases, 
the conformai field theories are cr-models on other Calabi-Yau manifolds that are 
obtained by a simple topological surgery from X (see [1], [2], and [35], or for a 
more mathematical account, [23]). In these cases, as the Kahler class is varied and 
allowed to approach a wall of the Kahler cone, a finite number of holomorphic 2-
spheres have their areas approach 0. When the Kahler class is pushed beyond that 
wall, the areas of those 2-spheres would apparently become negative. However, the 
analytically continued tr-model should instead be formulated as a cr-model on a 
modified manifold X', which is obtained from X by a surgery along the 2-spheres 
in such a way that the sign of their (common) homology class has been reversed 
(cf. [18]). 

The collection of complexified Kahler cones of the various topological models 
produces a rich combinatorial structure of regions in the moduli space correspond
ing to the different models. But even these do not fill up the entire conformai field 
theory moduli space — there are additional regions whose associated conformai 
field theories must be described by constructions other than ^--models [35], [2]. 
These theories are currently under active study. 

8 This phenomenon is already visible in the example considered in [11]. 



Mirror Symmetry and Moduli Spaces 1313 

References 

[1] P. S. Aspinwall, B. R. Greene, and D. R. Morrison, Calabi-Yau moduli space, mirror 
manifolds and spacetime topology change in string theory, Nuclear Phys. B 416 
(1994), 414-480. 

[2] , Measuring small distances in N=2 sigma models, Nuclear Phys. B 420 
(1994), 184-242. 

[3] P. S. Aspinwall and D. R. Morrison, Topological field theory and rational curves, 
Comm. Math. Phys. 151 (1993), 245-262. 

[4] , Chiral rings do not suffice: N=(2,2) theories with nonzero fundamental 
group, Phys. Lett. B 334 (1994), 79-86. 

[5] , String theory on K3 surfaces, Essays on Mirror Manifolds II (B. R. Greene 
and S.-T. Yau, eds.), International Press, Hong Kong, to appear. 

[6] M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors on 
a Riemannian manifold, J. Differential Geom. 3 (1969), 379-392. 

[7] A. L. Besse, Einstein Manifolds, Springer-Ver lag, Berlin, Heidelberg, and New York, 
1987. 

[8] F. A. Bogomolov, Hamiltonian Kahler manifolds, Dokl. Akad. Nauk SSSR 243, no. 
5 (1978), 1101-1104. 

[9] E. Calabi, On Kahler manifolds with vanishing canonical class, Algebraic Geometry 
and Topology, A Symposium in Honor of S. Lefschetz (R. H. Fox et al., eds.), 
Princeton University Press, Princeton, NJ, 1957, pp. 78-89. 

10] P. Candelas, M. Lynker. and R. Schimmrigk, Calabi-Yau manifolds in weighted ¥4, 
Nuclear Phys. B 341 (1990), 383-402. 

11] P. Candelas, X. C. de la Ossa, P. S. Green, and L. Parkes, A pair of Calabi-Yau 
manifolds as an exactly soluble superconformai theory, Nuclear Phys. B 359 (1991), 
21-74. 

12] M. Dine and N. Seiberg, Microscopic knowledge from macroscopic physics in string 
theory, Nuclear Phys. B 301 (1988), 357-380. 

13] L. J. Dixon, Some world-sheet properties of superstring compactifications, on orb-
ifolds and otherwise, Superstrings, Unified Theories, and Cosmology 1987 (G. Fur-
lan et al., eds.), World Scientific, Singapore and Teaneck, NJ, 1988, pp. 67-126. 

14] I. Frenkel, J. Lepowsky, and A. Meurman, Vertex Operator Algebras and the Mon
ster, Academic Press, New York and San Diego, 1988. 

15] M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, 2 vols., Cambridge 
University Press. London and New York, 1987. 

16] B. R. Greene and M. R. Plesser, Duality in Calabi-Yau moduli space, Nuclear Phys. 
B 338 (1990), 15-37. 

17] M. Gromov, Soft and hard symplectic geometry, Proc. Internat. Congress Math. 
Berkeley 1986, vol. 1, Amer. Math. Soc, Providence, RI, 1987, pp. 81-98. 

18] V. Guillemin and S. Sternberg, Birational equivalence in the symplectic category, 
Invent. Math. 97 (1989), 485-522. 

19] W. Lerche, C. Vafa, and N. P. Warner, Chiral rings in N = 2 superconformai 
theories, Nuclear Phys. B 324 (1989), 427-474. 

20] D. McDuff and D. Salamon, J-holomorphic Curves and Quantum Cohomology, 
University Lecture Series, vol. 6, Amer. Math. Soc, Providence, RI, 1994. 

21] D. R. Morrison, Mirror symmetry and rational curves on quintic threefolds: A guide 
for mathematicians, J. Amer. Math. Soc. 6 (1993), 223-247. 



1314 David R. Morrison 

[22] , Compactifications of moduli spaces inspired by mirror symmetry, Journées 
de Géométrie Algébrique d'Orsay (Juillet 1992), Astérisque, vol. 218, Société Math
ématique de France, 1993, pp. 243-271. 

[23] , Beyond the Kahler cone, Proc. Hirzebruch's 65th Birthday Workshop in 
Algebraic Geometry, to appear. 

[24] , Making enumerative predictions by means of mirror symmetry, Essays on 
Mirror Manifolds II (B. R. Greene and S.-T. Yau, eds.), International Press, Hong 
Kong, to appear. 

[25] K. S. Narain, New heterotic string theories in uncompactified dimensions < 10, 
Phys. Lett. B 169 (1986), 41-46. 

[26] K. S. Narain, M. H. Sarmadi, and E. Witten, A note on toroidal compactification 
of heterotic string theory, Nuclear Phys. B 279 (1987), 369-379. 

[27] Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, Math. Res. 
Lett. 1 (1994), 269-278. 

[28] G. Tian, Smoothness of the universal deformation space of compact Calabi-Yau 
manifolds and its Petersson- Weil metric, Mathematical Aspects of String Theory 
(S.-T. Yau, ed.), World Scientific, Singapore, 1987, pp. 629-646. 

[29] A. N. Todorov, The Weil-Petersson geometry of the moduli space of SU(n>3) 
(Calabi-Yau) manifolds, I, Comm. Math. Phys. 126 (1989), 325-346. 

[30] E. Viehweg, Weak positivity and the stability of certain Hilbert points, III, Invent. 
Math. 101 (1990), 521-543. 

[31] E. Witten, Geometry and physics, Proc. Internat. Congress Math. Berkeley 1986, 
vol. 1, Amer. Math. Soc, Providence, RI, 1987, pp. 267-303. 

[32] , Topological sigma models, Comm. Math. Phys. 118 (1988), 411-449. 
[33] , On the structure of the topological phase of two-dimensional gravity, Nu

clear Phys. B 340 (1990), 281-332. 
[34] , Mirror manifolds and topological field theory, Essays on Mirror Manifolds 

(S.-T. Yau, ed.), International Press, Hong Kong, 1992, pp. 120-159. 
[35] , Phases of N=2 theories in two dimensions, Nuclear Phys. B 403 (1993), 

159-222. 
[36] S.-T. Yau, The role of partial differential equations in differential geometry, Proc. 

Internat. Congress Math. Helsinki 1978, vol. 1, Academia Scientiarum Fennica, 
1980, pp. 237-250. 



The Critical Behavior of Random Systems 

GORDON SLADE* 

Department of Mathematics and Statistics, McMaster University, 
Hamilton, ON, Canada L8S 4K1 

1. Introduction 

Self-avoiding walks, lattice trees and lattice animals, and percolation are among 
the simplest models exhibiting the general features of critical phenomena. A basic 
problem is to prove the existence of critical exponents governing their behavior 
near the critical point. This problem gains importance from interrelations between 
these models and models of ferromagnetism such as the Ising model, and from their 
role in the theory of polymer molecules. 

In low spatial dimensions, the principal mathematical questions about critical 
exponents for these models remain unsolved. This is true in spite of significant 
progress on such questions in the physics, chemistry, and numerical literature. 
Proofs of existence of critical exponents are currently restricted to high spatial 
dimensions, above the so-called upper critical dimensions. These proofs are based 
on joint work with Hara, and for percolation, also on results of [4], [6]. The proofs 
make use of an expansion method first introduced by Brydges and Spencer [9] and 
known as the lace expansion. The results are summarized below. More extensive 
summaries, with further references, can be found in [22], [26]. 

The results described below form a natural sequel to those for ferromagnetic 
spin systems [1], [13] presented in Aizenman's ICM 1983 lecture [2], and provide 
a resolution of an issue raised there for percolation. 

2. Self-avoiding walks 

An n-step self-avoiding walk on the hypercubic (integer) lattice is a mapping 
UJ : {0 ,1 , . . . ,n} —» Zd , with \uj(i + 1) — uj(i)\ = 1 for all i (Euclidean distance) and 
uj(i) ^ uj(j) when i ^ j . Let cn(x,y) denote the number of n-step self-avoiding 
walks with UJ(0) = x and uj(n) = y, and set c0(x,y) = 6x,y. Let cn = Yly

cn(^^y) 
be the number of n-step self-avoiding walks that begin at the origin and end any
where. Forty years ago, it was observed [15] that the elementary submultiplica-
tivity inequality c n + m < cncm implies the existence of the connective constant 
p = limn_,oc cn

/n, with Cn > pn for all n. Accurate bounds on the value of p have 
been obtained [5], [11], [23]. 
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The sequence cn is a primary object of study. It is believed that asymptoti
cally 

Cn ~ ApfW1 as n -> oo, (2.1) 

where the amplitude A and the critical exponent 7 are dimension-dependent pos
itive numbers. The numerical values of 7 are believed to be |§ for d = 2, about 
1.162 for d = 3, and 1 for d > 4, with (2.1) replaced by cn ~ A/i^logn]1/4 in four 
dimensions. Attention is focused on the critical exponent 7 because it is believed to 
be universal. Universality means that 7 should depend only on the spatial dimen
sion and be independent of such details as whether self-avoiding walks are defined 
on the square lattice or the hexagonal lattice in two dimensions, or whether we 
consider self-avoiding walks taking only nearest-neighbor steps or more general 
symmetric steps. The same will not be true of A or n; for example, p can be 
thought of roughly as the average number of possible next steps available to a 
long self-avoiding walk and hence depends on the specific lattice and the nature 
of the allowed steps. 

A proof of universality for 7 has not been found, and the very existence of 7 
has not yet been established in low dimensions. The current best bounds are 

{ pn cxp[Cn^2} d = 2 

pn exp[Cn2/5 log n] d = 3 (2.2) 
^ e x p j C n ^ l o g n ] d = 4, 

with the lower bound due to submultiplicativity, and the upper bounds, which are 
based on submultiplicativity, due to [16], [25]. The bounds (2.2) are a long way 
from (2.1), but the situation is better in high dimensions. 

THEOREM 2.1 For any d > 5, there is a positive constant A such that as n —> 00 

cn = Ap,l[l + 0(n~e)] for any e < \. 

Ford = b,l<A< 1.493. 
This theorem, due to [21], [19], implies that 7 = 1 for d > 5. This is the same value 
as for simple random walks having no self-avoidance constraint, as n-step simple 
random walks are (2d)'1 in number. 

A second quantity of interest is the mean-square displacement 

<k(n)|2> = -^5>(n)|2 , (2.3) 
Cn 

where the sum is over all n-step self-avoiding walks beginning at the origin. For 
simple random walks, the analogue of the mean-square displacement is equal to n. 
It is believed that asymptotically 

(\uj(n)\2) ~ Dn2u, (2.4) 

with positive D and v. The critical exponent v is believed to be equal to \ for 
d = 2, about 0.588 for d = 3, and \ for d > 4, with a logarithmic correction 
(\uj(n)\2) ~ Dnflogn]1/4 when d = 4. This has been proved for d > 5 [21], [19]. 
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THEOREM 2.2 For any d > 5, there is a positive constant D such that as n —» oo 

(|u;(n)|2) = Dn[l + 0(n~e)} for any e < \. (2.5) 

For d = 5, 1.098 < D < 1.803. 

For dimensions d = 2,3,4, it has not yet been proved either that (|u;(n)|2) > 0(n) 
nor (|o;(n)|2) < 0(n2~a) with a > 0, even though it appears implausible that self-
avoiding walks typically remain closer to the origin than simple random walks, or 
move ballistically (v = 1) when d > 1. 

The above two theorems show that in some aspects, self-avoiding walks be
have like simple random walks above four dimensions. This is true in the following 
general sense. Given an n-step self-avoiding walk UJ, define a continuous path Xn 

in Rd by setting Xn(j/n) = (Dn)_1/2u;(j) for j = 0 , 1 , . . . ,n and taking Xn(t) to 
be the linear interpolation of this. This is a random path, via the uniform measure 
on n-step self-avoiding walks. For d > 5, a theorem of [21], [19] states that Xn 

converges in distribution to Brownian motion. 
The fact that self-avoiding walks behave like simple random walks above four 

dimensions, but do not below four dimensions, is summarized by the statement that 
the upper critical dimension is equal to four. This can be partially understood from 
the fact that intersection properties of simple random walks change dramatically at 
d = 4. For example, the probability that two independent n-step simple random 
wralks do not intersect remains bounded away from zero for d > 4, but not for 
d < 4. Also, two independent Brownian motion paths in M.d intersect each other 
with probability 1 if d < 4, but have empty intersection with probability 1 if 
d > 4. This is consistent with the fact that Brownian motion paths have Hausdorff 
dimension 2, as two 2-dimcnsional sets generically do not intersect above d = 4. 

The proofs of the above theorems use generating functions. To define these 
generating functions, we let z denote a. complex parameter and first define the 
two-point function by 

oc 

Gz(x,y) = Y,cn(x,y)zn. (2.6) 
n = 0 

We define the susceptibility \(z) by 

^ ) = ^ G 2 ( 0 , i ) = ^ V " (2.7) 
xEZ(i n=0 

and the correlation length of order two &(z) by 

&(*) 
-in tn „M1/2 

£ * 6 Z - M 2 G , ( O , * ) 

E*ez 'G 3 (0 ,x ) 
(2.8) 

These all have a radius of convergence equal to the critical point zc = /z_1 , and 
the manner of divergence of the susceptibility and correlation length of order two 
at zc reflects the large-n asymptotics of c„ and the mean-square displacement. 
Theorems 2.1 and 2.2 are obtained using the following theorem together with 
contour integration methods. 
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THEOREM 2.3 For any d > 5, and uniformly in complex z satisfying \z\ < zc, 

Az 
X(z) = T ^ + 0(\zc-z\-1+f) for any e <\ (2.9) 

/ Dz \ 1 / 2 

6 ( 2 ) = \~z~h) +°(l^-^r1 / 2) for any e <\ (2.10) 

with the same constants A and D as in Theorems 2.1 and 2.2. 

An important ingredient in the proof of the above theorems, as it was for 
the ferromagnetic models discussed in [1], [2], [13], is an infrared bound. This 
bound reflects the long-distance behavior of the critical two-point function indi
rectly through the behavior of its Fourier transform near the origin. In general, 
the Fourier transform of a summable function / on Zrf is defined by 

/(*) = E f^ykx- k = (*i.• • • M e [-*.*]*, (2-11) 
xezd 

where k • x = JZj = 1 kjXj. The conjectured behavior of the critical two-point func
tion is 

GZ(:(k) ~ const,-23-, as AT - • 0. (2.12) 

Scaling theory predicts that the critical exponent n is given in terms of 7 and 
v by Fisher's scaling relation 7 = (2 — r\)v [12]. According to the conjectured 
values of 7 and v, rj is nonnegative in all dimensions. This is a statement of the 
infrared bound, which can also be stated in the form GZt:(k) < 0(k~2). The 
infrared bound is believed to be true in all dimensions, but remains unproven for 
dimensions 2, 3, and 4. This k~2 behavior is the same as that for simple random 
walks, for which the analogue of GZc(k) is the massless lattice Green function 
[1 — d~l Yl7=i c o s hj]~X ~ (2d)k~2. The following theorem gives an infrared bound 
for self-avoiding walks when d > 5. 

THEOREM 2.4 For d > 5, GZ(.(k)-1 = (2d)-lk2[DA~l + 0(k€)} for any e < \. 

Proofs of these theorems, with further results along these lines, can be found 
in [21], [19]. The proofs all rely on the lace expansion, which is an expansion for 
the two-point function which treats self-avoiding walks as a perturbation of simple 
random walks. This perturbation is expected only to be small for d > 4, as self-
avoiding walks and simple random walks do not have similar behavior in lower 
dimensions. Thus, d > 4 appears as a necessary condition for convergence of the 
lace expansion. But it is not the only condition, and a small parameter is needed 
to ensure convergence. 

The small parameter turns out to be B(zc) — 1. where the "critical bubble 
diagram'' B(zr.) is defined by 

B(*)= VJ G ;(0..r)2. (2.13) 
xeZ'1 

file:///~z~h
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For simple random walks, the analogue of the critical bubble diagram is the ex
pected number of intersections of two independent simple random walks beginning 
at the origin. This is infinite for d < 4, but is finite for d > 4. For self-avoiding 
walks, by the Parseval relation, 

B(zc)= f GZc(k)2-^. (2.14) 

The infrared bound implies that this is finite for d > 4, whereas the conjectured 
values of the critical exponent n give an infinite value in lower dimensions. 

The first attempts at theorems like the above worked in asymptotic regimes 
where the small parameter could be made as small as desired. Brydges and Spencer 
[9] analyzed the weakly self-avoiding walk, which is a measure on simple random 
walk paths where self-intersections are not prohibited, but rather give rise to a 
small penalty A in the measure of a path. The weakly self-avoiding walk is be
lieved on the basis of renormalization group considerations to be in the same 
universality class as the strictly self-avoiding walk, and hence to have the same 
critical exponents. For the weakly self-avoiding walk, B(zc) — 1 enjoys a multiplica
tive factor A2, and for d > 4, can be made as small as desired by taking A small. 
This simplifies convergence issues for the lace expansion, and has led to results for 
the weakly self-avoiding walk for dimensions d > 4. 

A second attempt arose in a series of papers initiated in [29], where the 
strictly self-avoiding walk was studied in very high dimensions. As d —> oo, the 
bubble diagram satisfies B(zc) — 1 = 0(d~l), so by taking d sufficiently large, 
convergence of the lace expansion can be ensured. This allows for the treatment of 
the strictly self-avoiding walk, but the critical nature of d = 4 becomes obscured. 
Alternately, one can consider spread-out models. An example of a spread-out model 
is to consider self-avoiding walks in which the condition that a walk take nearest-
neighbor steps is relaxed to allow any steps that change all coordinates by at 
most an amount L. For such walks, when d > 4 , B(zc) — 1 —> 0 as L —> oo and 
yields a small parameter. For L sufficiently large, the analogue of the theorems 
stated above can then be proved for all d > 4 [26]. This provides an example of 
universality, with the value of critical exponents independent of the value of (large) 
L, or indeed of the precise nature of the definition of the spread-out model. 

Remarkably, even for the usual strictly self-avoiding walk in d > 5, B(zc) — 
1 turns out to be small enough to allow for a proof of convergence of the lace 
expansion. Our bound for d = 5 is B(zc) — 1 < 0.493. This value is large enough 
that very detailed estimates were required to prove convergence, and computer 
assistance was necessary [19]. This is unsatisfactory, because the precise numerical 
value of the bubble should not be crucial. What should matter is that it is finite. 
The fact that the proof works for d = 5 is fortuitous; presumably the bubble 
diagram diverges when d = 4, so its value at d = 5 might well have been larger 
than 0.493. However, a proof whose driving force is the finiteness of the bubble, 
rather than its smallncss, has not been found. 

Finally, it should be mentioned that for d = 4 there has been recent progress 
towards computing the logarithmic corrections mentioned above, in work on re
lated models involving a small parameter [8], [24]. 
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3. Lattice trees and lattice animals 

We will define both nearest-neighbor and spread-out versions of lattice trees and 
lattice animals. In the nearest-neighbor model, a bond is defined to be a pair {x, y} 
of sites in Zd separated by Euclidean distance 1. In the spread-out model, a bond 
is a pair {x, y} with \xi — yi\ < L (i' = 1 , . . . , d). A lattice tree is defined to be a 
finite connected set of bonds without cycles (closed loops). Although a tree T is 
defined as a set of bonds, we will write x E T if x is an element of a bond in T. The 
number of bonds in T will be denoted \T\. A lattice animal is a finite connected 
set of bonds that may contain closed loops. Trees and animals are believed to be 
in the same universality class. 

Let tn denote the number of n-bond trees modulo translation, and let an 

denote the number of n-bond animals modulo translation. By a supermultiplica-
tivity argument, tn

 l and an both converge to finite positive limits A and Aa as 
n —> oc, with tn < An and an < A™. The asymptotic behavior of both tn and an 

as n —• oc is believed to be governed by the same universal critical exponent 7: 

tn ~ const. Xnnf'3, an ~ const. A > 7 - 3 . (3.1) 

The typical size of a lattice tree or animal is characterized by the average 
radius of gyration. Let XT = (\T\ + 1) _ 1 YlxeTx denote the center of mass of T, 
and let R? = (\T\ + 1) _ 1 Ylxer \x ~ XT\2 be the squared radius of gyration of T. 
The average radius of gyration is then given by 

R(n) 

-1I/2 

n T:\T\=n 

(3.2) 

where the summation is over one tree from each equivalence class modulo trans
lation. It is believed that asymptotically 

R(n) ~ const. nu (3.3) 

for a universal critical exponent 1/, which is the same for both trees and animals. 
The following theorem [20] gives results for these critical exponents for trees in 
high dimensions. Related results have been obtained for lattice animals, at the 
level of generating functions [18]. 

THEOREM 3.1 For nearest-neighbor trees with d sufficiently large, or for spread-
out trees with d > 8 and L sufficiently large, there are positive constants such that 
for every e < min{ | , ^ j ^ } ? 

tn = const. A nn- 5 / 2 [ l + 0(n~e)} 

R(n) = const. n1 / 4[ l + 0(rr% 

Some hint can be gleaned from this theorem as to why the upper critical 
dimension should be 8. The fact that n « R(n)4 is a sign that in some sense trees 
in high dimensions are 4-dimensional objects, and hence two trees will typically 



Critical Behavior of Random Systems 1321 

not intersect above 8 dimensions. This suggests that for d > 8 lattice trees will 
have similar behavior to the "mean-field" model of abstract trees embedded in the 
lattice with no constraint that the embedding be a tree, whereas for d < 8 their 
behavior will be different. The upper critical dimension for both trees and animals 
is believed to be 8. 

As was the case for self-avoiding walks, the proof proceeds first by studying 
generating functions near their closest singularity to the origin, and then uses 
contour integration to extract the large-n asymptotics of tn and the radius of 
gyration. Let zc = A - 1 , and for \z\ < zc define the two-point function 

G,(x,y)= Yl zlTl- (3-4) 
T:T3x,y 

It is believed that GZr (k) is asymptotic to a multiple of k71~2 as k —> 0, with n 
determined by Fisher's relation 7 = (2—rf)v. The lace expansion is used to compare 
the two-point function with that for a simple random walk. An infrared bound for 
Gz(k) is obtained under the hypotheses of Theorem 3.1. Here, the square diagram 
S(zc) = (27r)_d fr ,d GZc(k)4ddk (minus 1) plays a role as a small parameter 
analogous to the bubble diagram for self-avoiding walks. In contrast to self-avoiding 
walks, it has been conjectured [7] that the infrared bound fails for lattice trees and 
animals below 8 dimensions. 

4. Percolation 

Percolation is a simple probabilistic model that exhibits a phase transition. Wc 
consider bond percolation on Zd, cither nearest-neighbor or spread-out, assigning 
to each bond {x, y} an independent Bernoulli random variable n ^ y } that takes 
the value 1 with probability p and the value 0 with probability 1 — p, where p is a 
parameter in [0,1]. If U{x%y} = 1 then we say that the bond {x, y} is occupied, and 
otherwise we say that it is vacant. Given a realization of the bond variables, and 
any two sites x and y, we say that x and y are connected if there is a self-avoiding 
walk from x to y whose steps arc occupied bonds, or if x = y. We denote by C(x) 
the random set of sites connected to x, and denote its cardinality by |C(a;)|. For 
d > 2, it is known that there is a phase transition, in the sense that there is a 
critical value pc e (0,1) such that the probability 6(p) that |C(0)| = oc is zero for 
p < Pc and strictly positive for p > pc. A general reference is [14]. 

We denote the joint distribution of the Bernoulli random variables n^xyy 
by Pp and expectation with respect to this distribution by ( • ) p . The two-point 
function Tp(x, y) is defined to be the probability that x and y are connected, and is 
analogous to the functions Gz(x,y) defined previously for self-avoiding walks and 
for lattice trees and animals. The susceptibility, or expected cluster size, is defined 
by 

X(P)=52TP(0.,X) = (\C(0)\)P. (4.1) 
xEZd 
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The susceptibility is known to be finite for p < pc and to diverge as p j pc. The 
magnetization, defined by 

oo 

M(p, h) = l-Y, e-hnPP[\C(0)\ = n], (4.2) 
n=l 

generalizes the percolation probability 0(p), as M(p, 0) = 6(p). 
The following power laws are believed to hold: 

X(p) ~ Ai(pc - p)'1 as p] pc, 
0(p) ~ A2(p - pc)

ß as pi pc, 
M(pc,h) ~ A3/i1/ó as h | 0 , 

for some amplitudes Ai and universal critical exponents 7,3,6. Such behavior is 
not difficult to establish for percolation on a tree, with the "mean-field values" 
j = 1, ß = 1, 6 = 2. With more work, it can be shown that these values provide 
the following lower bounds for percolation on Zd for all d > 2: x(p) > ci(Pc — 
p ) " \ 0(p) > c2(p-pc), M(pc,h) > c3/i1/2 [3], [4], [10]. The next theorem gives 
complementary upper bounds, above the upper critical dimension 6. 

THEOREM 4.1 For the nearest-neighbor model with d sufficiently large (d > 19 is 
large enough), or for the spread-out model with d > 6 and L sufficiently large, 
there are constants üi such that 

ai(Pc - p)~l < x(p) < o,2{pc - p)~l as p] pc, 
^(p - Pc)1 < 0(p) < a4(p - Pc)1 as p j pc, 

a^h1!2 < M(pc,h) < a^h>l2 as h 10. 

The proof of the upper bounds of Theorem 4.1 is a combination of several 
results that center on the triangle condition. The triangle condition is the state
ment that the triangle diagram is finite at p = pc, with the triangle diagram given 
by 

T(P)= E Tp(0,x)Tp(x,y)Tp(y,0)= f ^ ( f c ) 3 ^ . (4.3) 

Aizcnman and Newman [4] introduced the triangle condition and showed that it 
implies 7 = 1, arguing that the upper critical dimension is 6. Barsky and Aizcnman 
[6] used differential inequalities to prove that the triangle condition implies ß = 1, 
6 = 2. Then in [17], the lace expansion was used to show that the triangle condition 
holds under the hypotheses of the theorem. In fact, T(pc) — 1 serves as a small 
parameter for convergence of the lace expansion, and the limitation to d > 19 for 
the nearest-neighbor model arises to ensure it is small enough. 

The proof that the triangle condition holds above 6 dimensions involves prov
ing the infrared bound fp(k) < const./c-2, with a constant that is uniform m p < pc. 
The conjectured behavior in general dimensions is again fPr(k) ~ const.kr,~2. How
ever, for percolation it has been conjectured that the infrared bound is violated 
(7/ < 0) for some dimensions below 6. The triangle condition is expected not to 
hold for anv d < 6. 
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It follows from the behavior of 6(p) given in Theorem 4.1 tha t the percolation 
probability is zero at the critical point: 0(pc) = 0. Although this is strongly believed 
to be t rue in all dimensions, it has otherwise been proven only for the nearest-
neighbor model in two dimensions and remains a major open problem in general 
dimensions. 

Related results for oriented bond percolation models can be found in the 
work of Nguyen and Yang [27], [28]. 
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of Superconducting Systems 
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The work I'll discuss today is part of a larger program carried out in collaboration 
with Feldman, Knörrer, Lehmann, Magnen, Rivasseau, Salmhofer and Sinclair. 
The parenthesized term, "Renormalization Group" in the title refers to a technique 
for analyzing phenomena that are characterized by an intrinsic, infinite hierarchy 
of different energy or length scales. Superconductivity is a phenomenon of this 
kind. 

The electrical resistivity of aluminum is strictly positive at temperatures 
above 1.2 Kelvins. It drops to zero at all smaller temperatures. One says that there 
is a transition between the "normal" and "superconducting" states of aluminum at 
the "critical temperature" Tc = 1.2K. Such a transition has never been observed 
in silver. Here arc 

Four Metallic Elements and their Critical Temperatures 

Aluminum (Al) Tc= 1.19 K 
Silver (Ag) Tc= ? 
Mercury (Hg) TC=4.15K 
Lead (Pb) Tr= 7.19K 

For comparison, helium liquifies at 4.2 K. Al, Hg, and Pb are called "conventional" 
superconductors. 

The superconducting phase transition was discovered by H. Kamerlingh 
Onnes in 1911 when he cooled mercury below its critical temperature of 4.15 
K. Between 1911 and 1972 materials were found with higher transition tempera
tures and the highest attainable transition temperature was gradually increased by 
about 19 Kelvins from 4.15K for Hg to 23K for the compound ND3GC. The high
est transition temperature remained at 23 K for another 14 years until 1986 when 
Bednorz and Müller at IBM in Riischlikon reported superconductivity in mixtures 
of La and Ba copper oxides at 30 K. There has been astonishing progress since 
then. Here arc two compounds with spectacularly high transition temperatures. 

Two Compounds and their Critical Temperatures 

YBa 2 Cu 3 0 6 .9 TC=92.5K 
H g B a 2 C a 3 0 8 Tc= 134 K 
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They are "unconventional" superconductors. 
134 K is presently (August, 1994) the world's record transition temperature ob
tained by Ott at ETH-Zürich. For comparison, nitrogen liquifies at 77 K. 

There is a very good physical theory (see, for example [deG]) of "conven
tional" superconductivity in, for example, metallic elements. Here, as we shall 
explain in more detail, the underlying mechanism is an indirect electron-electron 
interaction that is generated by the vibrations of the ions. It works especially well 
for aluminum. However, at this time, there are many conflicting explanations (see, 
for example [H]), by many physicists, of "unconventional high temperature super
conductivity". We shall state a rigorous mathematical theorem about "conven
tional" superconductivity in the standard model of a weakly coupled electron-ion 
system. 

Superconductivity is a macroscopic quantum phenomenon that reflects the 
collective behavior of many, many microscopic electrons and ions. It is a problem 
of quantum statistical mechanics and therefore a problem of nonrelativistic quan
tum field theory. Unfortunately, it is not possible to explain in a few words how 
to express an electron-ion system in terms of quantum fields unless one takes for 
granted, among other things, the formalism of Green's functions and fermionic 
functional integration. Similarly, the methods that wc have developed to rigor
ously construct and control the relevant quantum fields are complicated and as a 
result hard to explain in a short time. Nevertheless, I will try to give an heuristic 
introduction to the physics and mathematics of superconductivity that leads to 
the statement of a rigorous theorem. Let's start with one free electron. 

Let d = 2/3 and fix L > 0. The state space for a free electron with position 
x = (J:I Xd) and spin a G {1M} moving in the periodic box R(I/LZ(I = 
[-L/2,L/2)d is the Hilbert space L'2 (W*/LZ(I x {].[}) . The Hamiltonian for a 
free electron is the kinetic energy operator 

d 

2in x — 2raZ^ Oxj 

You should think of the two-dimensional torus as a thin metallic film of area L2 . 
The three-dimensional torus is a model for the usual bulk sample of volume L*. 
The torus imposes periodic boundary conditions on the single particle states. Any 
other physical boundary conditions will do. 

There is a special basis of single electron states — the plane waves. Let 
k G ÇZ f i and r G {|. | } . The plane wave 

0k.r(x.a) = -jjpr^T.o 

is a single electron state with energy |k|2 . momentum k. and spin r because it 
is an eigenvector of the energy and momentum operators. That is. 

- A x 0 k . r = |k|2Ók.r 
-A7x0k . r = k0k.T 
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The momentum of an electron in a plane wave state is k with probability one. Its 
position probability density, given by the modulus squared of the plane wave, is 
consistent with the Heisenberg uncertainty principle, completely smeared out. 

To pass from one to many free electrons we must implement the Pauli ex
clusion principle. The state space Tn{L) for n free electrons moving on the torus 
Rd/LZd is the Hilbert space of all antisymmetric functions i/>(xi, cri,. . . ,x n , o~n) 

in L2( (Rd/LZd x {Î, [})n j . If the position, spin pair x^cr^ is interchanged with 
the pair Xj, Oj , then, by antisymmetry, the wave function ip changes sign. In par
ticular, the configuration of two electrons at the same place with the same spin is 
excluded because the wave function has to vanish. The Hamiltonian is 

n 

HQ(n.L) = ^2 ~AXi 
2 = 1 

There is also a special basis of n-electron states; the wedge products. The 
wedge product 

0k1)Tl A • • • A ^VLn.rn = £\ det [fa^Tiixj^j)) 

of plane waves is an n-electron state with energy E = |ki|2+-•+|k„.|2 , meaning 

HQ(n,L)0kl,Tl A • • • A 0k„,T„ = E ç)kl!Tl A • • • A <£k„,Tn. 

By construction, a wedge product vanishes when any two of the plane waves have 
the same momentum and spin. The matrix of the Hamiltonian Ho(n, L) is diagonal 
in this basis. For this reason, it is easy to construct the ground state for n free 
electrons, that is, the normalized wave function with the smallest energy. 

Suppose, for simplicity, that n is even. To minimize the energy, let s i , . . . , S ä 
be the ^ shortest vectors in the dual lattice ^Zd ; that is, the lattice dual to the 
torus of side L. Then the wedge product 

Fermi sea = \/n7c/)Slif A 0S l ) | A • • • A éS7l ^ A &Sn ,| 

is the ground state wave function of Ho(n,L). It is somewhat poetically called 
the Fermi sea because s i , . . . ,SZL are the points of the dual lattice that lie inside 
the Fermi sphere of radius 

p* = (£) <i 

where p is the number of electrons per unit volume, that is, the density. I have 
ignored in the expression for the radius of the Fermi sphere overall constants and 
error terms that tend to zero as L tends to infinity. 

It is useful to introduce operators that "create" and "annihilate" electrons 
with momentum k and spin r . They are a first hint of the underlying quantum 
fields. The "creation operator" a\, T is defined for all yj G J^(L) by 

ak,T^' = ^ >A+ï 0k,r A ^' G JF^+1(L). 
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We have 
2" 

Fermi sea = L'i" T\a\.^a\. 11 
i=l 

where 1 is the constant function "one"' on the torus. The adjoint ak<r of a£ 
"annihilates" an electron with momentum k and spin r. For example, 

Ok,r 0kr A ók l . r i A • • • A Ç)k/.r, = -jt= 0kl5Tl A • • • A 0k / . r / . 

The next step is to introduce interactions. The state space for n electrons, 
moving on the torus Rd/LZd , that interact with each other and with ions vibrating 
around their equilibrium positions in the "crystal lattice Zd " is the Hilbert space of 
all functions ip(x\,ai,..., xn , an\ ion positions) that are antisymmetric in the electron 
variables. The electron-ion Hamiltonian is 

n 

H = 2_\ ~Ax, + ^ 2_] V(xi-xj) + ionic kinetic energy + ion/ion interaction 

+ electron/ion interaction. 

The direct interaction through the potential V between an electron at x,: and 
an electron at x;- is repulsive. There is also an indirect clectron/ion/ion/clcctron 
interaction generated by the last three terms of the Hamiltonian. To visualize 
the indirect interaction, imagine that an electron at x,; interacts through the 
last term of the Hamiltonian with an ion that interacts through the second and 
third terms with another ion that finallv interacts with an electron at x , . It is a 

J 

basic observation in the theory of conventional superconductivity that the indirect 
electron/ion/ion/electron interaction is attractive. 

To make a rough but ready analogy, imagine that the first of a couple gets 
into bed. He or she makes a dent. The dent represents the screening of a single 
negatively charged electron by the lattice of positively charged ions. When the 
second person gets in bed he or she also makes a dent. As some of you may have 
noticed, two dents in a soft mattress tend to attract each other into the center. 
For this reason the indirect attraction between electrons is sometimes called the 
mattress effect. 

We show rigorously, under physically reasonable hypotheses, that the indi
rect interaction is indeed attractive and moreover dominates the repulsive direct 
interaction so that the total force between two electrons is attractive for a small 
but crucial range of momenta. We also show rigorously, using this attraction, that 
the electron-ion Hamiltonian exhibits superconductivity. 

The total attractive force loosely binds special pairs of electrons. They are 
the Cooper pairs. The notion of Cooper pair is basic for superconductivity. I'll 
now describe a remarkable experiment that "'displays" Cooper pairs. 

Construct a silver film-lead film interface. If the temperature of the interface 
is above 7.2K, the critical temperature for lead, we have a normal metal-normal 
metal junction. Inject an electron with momentum k and spin ] into the silver 
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film. It may be elastically scattered off the silver film or it may tunnel into the 
lead. Not very exciting! Just what you would expect. 

To sec something more interesting, cool the interface to any temperature 
below 7.2 K. We have a normal-superconducting junction, because the silver is still 
in a normal state. Now, at temperature T « 0 inject an electron with momentum 
k and spin | and energy 

0 < e(k) = |k|2 - plg < Apb 

into the silver film. Here, p\g is the electron density of silver and 

AP b « 27.3 x 10"4eV. 

In other words, the momentum k lies in a thin shell outside the Fermi sphere of 
silver. Then, with probability one a positively charged "particle" with momentum 

kR = -\J2pl - |k|2 — « - k 
|k| 

and spin j is reflected. The momentum of the reflected particle lies inside the 
Fermi sphere of silver. Note that kR = —k when k lies on the Fermi sphere. 

If, on the other hand, the momentum of the injected electron lies outside the 
-thin shell, that is, ApD < e(k) = |k|2 — pll , then the probability that a positively 

charged particle is reflected goes to zero as |(f^o )2 • 
We first conclude from the experiment described above that there are no sin

gle particle states with energy |e(k)| < ApD in superconducting lead, because, with 
probability one, any incident electron with energy e(k) is "Andreev reflected". In 
other words, there is a gap of size ApD in the single particle spectrum of super
conducting lead. 

What really happened? Let's make the naive, but quite reasonable, approxi-
i 

mation that the ground state of silver is a Fermi sea with radius pf . Then, the 
ground state for the normal-superconducting interface is the tensor product 

Fermi sea (Ag) <g> SC(Pb) 

where SC(Pb) is the superconducting ground state of lead, whatever that is. In 
Andreev scattering, we see the transition from the tensor product state 

(4TFermi sea(Ag)) ® SC(Pb) 

to the tensor product state 

(a_kj|Fermi sea(Ag)) <g> a£Ta^k^SC(Pb) 

in which the incident electron in the plane wave state <fa pairs with the plane wave 
$kRl in the Fermi sea and despite having arbitrarily small energy enters the lead. 
A "hole" a_kjj Fermi sea (Ag) in the Fermi sea of the silver film is created and the 

file://-/J2pl
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"Cooper pair operator" a k ^ a L k , adds a Cooper pair to SC(Pb) . In particular, 
there is no gap in the two particle excitation spectrum of superconducting lead. 

It is now easy to explain the experiment. The hole is the "reflected" posi
tively charged "particle". It is positively charged because one negatively charged 
electron has been removed from the electrically neutral silver. We also conclude 
tha t the superconducting ground state is a "soup" of Cooper pairs. Observe tha t 
the presence of Cooper pairs can be detected by the expected value of the Cooper 
pair operator. For example, 

( Fermi sea, ak • a_k , Fermi sea y = 0 

as it should be, as there are no Cooper pairs in the Fermi sea. 
Wha t does the Cooper pair soup look like? Bardeen, Cooper, and Schrieffer 

had a seminal idea. They minimized the energy 

mm(${6k},HBCS$m) 

of a "toy" Hamiltonian HQCS over the class of "pairing states" 

*{*} = u (cosök + sinök4TaLki)l. 
|e(k)|<£ 

Miraculously, the minimum exhibits, to a good approximation, the correct phe
nomenology. It is a crucial observation tha t the Fermi sea is homogeneous — a 
single wedge product — whereas a pairing state is inhomogeneous. It is a sum of 
wedge products of different degrees. Notice that the expected value 

(*{^}' a l î a -qa*{w) = 2 s i n 2 ^ 

of finding a Cooper pair whose component electrons have momenta ± q in the 
BCS pairing state ${0k} is not zero unless 20q is a multiple of IT . 

Bardeen, Cooper, and Schrieffer used their physical intuition to whittle the 
exact electron-ion Hamiltonian into a toy Hamiltonian and the exact Hilbert space 
down to a small select set of pairing states. We now state a theorem, a fragment 
of a more complete theorem, tha t demonstrates superconductivity for the exact 
electron-ion Hamiltonian H. 

T H E O R E M ( F E L D M A N , M A G N E N , R I V A S S E A U , T R U B O W I T Z ) Let ft be the ground 

state of the electron-ion Hamiltonian H. Suppose the total coupling X between the 
electrons is sufficiently small and that the direct electron-electron interaction is 
short range. Fix p = -j^. Then, under physically reasonable assumptions on the 
ion-ion and electron-ion interactions, there is a 

A ~ „—const '-i4-r 

« const e lAl 

and a constant c > 1 and such that 
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(1) IfL<\\, 

(n,ai)TaLkaQ)=0 

where Ld is the volume of the torus. In other words, the expected value of 
the Cooper pair operator ak +aJ_k . in the ground state ft for a box of volume 

less than (~^) is zero. There are "no Cooper pairs". 

(2) IfL>c±, 

(n.4,A.in) = 5 ^ 2 + A 2 

where 
e(k) = | k | 2 - p * . 

That is, Cooper pairs appear when the volume of the box is greater than 

(3) If L ^ ^ , Cooper pairs interact through a long range interaction that is 
mediated by a "massless particle", the Goldstone boson. 

In the statement of the theorem, for simplicity, we have ignored, among other 
things, boundary conditions tha t force A to be real. 

First, observe tha t "the gap" A is nonperturbatively small. One cannot see 
it by expanding to any finite order in the coupling constant A. The second point 
is tha t there are three distinct physical regimes determined by the size L of the 
torus. A different mathematical technique is required for each of the three regimes. 
There is also the problem of continuing the analysis through the transition region 
from the first to the second regime in which a fraction of the electrons condense 
into a soup of Cooper pairs. 

Unfortunately, the proof is too complicated to describe here. However, for a 
pedagogical introduction see [FT1] and [FMRT1], [FMRT2]. 
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Eigenvalues of Graphs 
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1. Introduction 

The study of eigenvalues of graphs has a long history. Since the early days, rep
resentation theory and number theory have been very useful for examining the 
spectra of strongly regular graphs with symmetries. In contrast, recent develop
ments in spectral graph theory concern the effectiveness of eigenvalues in studying 
general (unstructured) graphs. The concepts and techniques, in large part, use es
sentially geometric methods. (Still, extremal and explicit constructions are mostly 
algebraic [20].) There has been a significant increase in the interaction between 
spectral graph theory and many areas of mathematics as well as other disciplines, 
such as physics, chemistry, communication theory, and computer science. 

In this paper, we will briefly describe some recent advances in the following 
three directions. 

1. The connections of eigenvalues to graph invariants such as diameter, dis
tances, flows, routing, expansion, isoperimetric properties, discrepancy, con
tainment, and, in particular, the role eigenvalues play in the equivalence 
classes of so-called quasi-random properties; 

2. The techniques of bounding eigenvalues and eigenfunctions, with special em
phasis on the Sobolev and Harnack inequalities for graphs; 

3. Eigenvalue bounds for special families of graphs, such as the convex subgraphs 
of homogeneous graphs, with applications to random walks and efficient ap
proximation algorithms. 

This paper is organized as follows. Section 2 includes some basic definitions. 
In Section 3 we discuss the relationship of eigenvalues to graph invariants. In 
Section 4 we describe the consequences and limitations of the Sobolev and Harnack 
inequalities. In Section 5 we use the heat kernel to derive eigenvalue lower bounds 
that are especially useful for the case of convex subgraphs. In Section 6 some 
examples and applications are illustrated. All proofs will not be included here and 
the statements can sometimes be very brief; thus, the reader is referred to [7] for 
more discussion and details. 

Proceedings of the International Congress 
of Mathematicians, Zürich, Switzerland 1994 
© Birkhäuser Verlag, Basel, Switzerland 1995 
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2. Preliminaries 

In a graph G with vertex set V = V(G) and edge set E = E(G), we define the 
Laplacian £ as a matrix with rows and columns indexed by V as follows: 

r 1 if U = V 

C(u,v) = < — . if u and v are adjacent (uu ~ vv) 
\dudv 

, 0 otherwise 
where dv denotes the degree of v. Here we consider simple, loopless graphs (because 
all results can be easily extended to general weighted graphs with loops [7]). For 
fc-regular graphs, it is easy to see that 

C = I-\A 
k 

where A is the adjacency matrix. For a general graph, we have 
C = I-T-*AT-2 

where T is the diagonal matrix with value dv at the (v, v)-entry. The eigenvalues 
of £ are denoted by 

0 = A0 < A! < • • • < An_i 

and 

AG :=Ai = inf ^ — 
v- ' Yf(vfdv 
V/(i)d„=0 Z-C' V I l 

V 

. . (h,Ch) 
= inf . 

^ ,l (K h) 

In a way, the eigenvalues Â  can be viewed as the discrete analogues of the Laplace-
Beltrami operator for Riemannian manifolds 

/ Iiv/H2 

J M XM=inî^L 

J M 
where / ranges over functions satisfying JM f = 0. For a connected graph G, we 
have AG > 0 and in general 0 < AG < 1, with the exception of G = Kn, the 
complete graph (in which case AG = n/(n — 1)). Also 1 < An_i < 2, with equality 
holding for bipartite graphs. 

3. Eigenvalues and graph properties 

In a graph G on n vertices, the distance between two vertices u and v, denoted by 
d(u, v), is the length of a shortest path joining u and v. The diameter of G, denoted 
by D(G), is the maximum distance over all pairs of vertices: a lower bound for Ai 
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implies an upper bound for D(G). Namely, in [6], it was shown that for regular 
graphs, we have 

D(G)< 
log n — 1 

(i) 

with the exception of the complete graph Kn. (We assume in this section that 
G ^ Kn and G is connected.) The proof is based on the simple observation that 
D(G) < t if, for some polynomial Pt of degree t and some (n x n)-matrix M with 
M(u, v) = 0 for u </> v, we have all entries of Pt(M) nonzero. The above inequality 
can be further extended for distances between any two subsets X, Y of vertices in 
G. Here we denote the distance d(X,Y) to be the minimum distance between a 
vertex in X and a vertex in Y: 

d(X,Y) < 
log vol V 

vol Xvol Y (2) 

where the volume of a subset X is defined to be vol X = Y^ dv, and A' is 
vex 

equal to Ai if 1 — Ai > An_i — 1, or else A' = 2Ai/(Ai + An_i). The above 
inequalities have several generalizations. For example, the distances among k + 1 
subsets X\... .jXk+i of V are related to the kth eigenvalue A& for k > 2: 

vol v 

mind(Xi.Xj) < max 
log vol Xi vol X j 

l 0 ^ 
(3) 

if 1 — A/c > An_i — 1; otherwise replace A& by A ffi— in (3). 
This can be further generalized to eigenvalue bounds for a Laplace operator 

on a smooth, connected, compact Riemannian manifold M [11]: 

x <r 4 (y 2 vol M \* 
At < -=• max log —, (4) 

- t2 it, \ * yjwoì XiVOÌXj) V ; 

if there are k + 1 disjoint subsets X\,... ,Xk+i such that the geodesic distance 
between any pair of them is at least t. 

The above inequalities can be used to derive isoperimetric inequalities in the 
following way. For a subset X of vertices, we define the t-boundary 6t(X) = {u 0 
X : d(u, v) < t for some v G X}. By substituting Y = V - ôt (X) - X in (2) we 
deduce 

ü^Pid-a-jo-xi * 
vol (X) vol V )• (5) 

We remark that the special case of (5) for regular graphs was proved by Alon [1] 
and Tanner [24]. 

Another type of boundary for a subset X is 

d(X) = {{x,x'} eE:xe X,x' 0 X} 
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The Cheeger constant HQ is defined to be 

hG = rain v ' ' 
i voi xi<jvoi v v o 1 A 

and Cheeger's inequality states 

2hG > Ax > ^f. 

The discrete version of Cheeger's inequality was considered in [18], [3] with proof 
techniques quite similar to those used for the continuous case by Cheeger [5], and 
can be traced back to the early work of Polya and Szego [22]. 

The implications of the above isoperimetric inequalities can be summarized 
as follows: when Ai is bounded away from 0, i.e., Ai > c > 0 for some absolute 
constant c, the diameter is "small" and the boundary of a subset X is "large" 
(proportional to the volume of the subset). As an immediate consequence of the 
isoperimetric inequalities, there are many paths with "small" overlap simultane
ously joining all pairs of vertices. In fact, the following dynamic version of routing 
can be achieved efficiently (in logarithmic time in n). Namely, in a regular graph 
G suppose pebbles pi are placed on vertices Vi with destination vn^) for some 
permutation IT G Sn. At each step, every pebble is allowed to move along some 
edge to a neighboring vertex provided that no two pebbles can be placed at the 
same vertex simultaneously. Then there is a routing scheme to move all pebbles 
to their destinations in 0 ( p - log2n) time (see [2] and [7]). 

When both Ai and An_i are close to 1, the graph G satisfies additional 
properties. For example, for two subsets of vertices, say X and Y, the number 
e(X, Y) of pairs (x,y),x G X,y G F and {x, y} G E is close to the expected value. 
Here by "expected" value, we mean the expected value for a random graph with 
the same edge density. To be precise, we have the following inequality: 

\e(X,Y) - v o 1 Xy°j Y\ < m a x | ! _ AilvVol Xvol Y. 
1 v ' vol y ' ~~ i^o ' 

When X = Y, the left-hand side of the above inequality is called the discrepancy 
oiX. 

For sparse graphs, say fc-regular graphs for some fixed k, 1 — \\ cannot be 
too small. In fact, 1 — Ai > 4=. However for dense graphs, 1 — Ai can be very 
close to zero. For example, almost all graphs have 1 — Ai at most - ^ . For graphs 

with constant edge density, say p = \, the condition of 1 — Ai = o(l) implies 
many strong graph properties. Here we will use descriptions of graph properties 
containing the o(l) notation so that P(o(l)) —• P'(o(l)) means that for any e > 0, 
there exists 6 such that P(6) —> P'(e). Two properties P and P' are equivalent if 
P —• P' and P' —> P. The following class of properties for an almost regular graph 
G, with edge density | , have all been shown to be equivalent [10] (also see [7]) and 
this class of graph properties is termed "quasi-random" because a random graph 
shares these properties. 

Pi:: maxix) |1 - A»| = o(l) 
P2" For any subset X of vertices, the discrepancy of X = o(l) • vol X. 
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For a fixed s > 4, 

P3(s):: For any graph H on s vertices, the number of occurrences of H as an 
induced subgraph of G is (1 + o(l)) times the expected number. 

P4 :: For almost all pairs x,y of vertices, the number of vertices w satisfies 
(w ~ x and w ~ y) or (w <fi x and w ^ y) is (1 + o(l)) times the expected 
number. 

We remark that the o(l) terms in the above properties represent the estimates 
of deviations from the expectation. The problems of determining the order and 
the behavior of these deviations and the relations between various estimates touch 
many aspects of extremal graph theory and random graph theory. Needless to say, 
many intriguing questions remain open. We remark that quasi-random classes for 
hypergraphs have also been established and examined in [9]. 

4. Sobolev and Harnack inequalities 

In this section, we will describe the Sobolev inequalities and Harnack inequalities 
for eigenfunctions of graphs that then lead to eigenvalue bounds. The ideas and 
proof techniques are quite similar to various classical methods in treating the eigen
values of connected smooth compact Riemannian manifolds. In general, there are 
often various obstructions to applying continuous methods in the discrete domain. 
For example, many differential techniques can be quite hard to utilize because the 
eigenfunctions for graphs are defined on a finite number of vertices and the task 
of taking derivatives can therefore be difficult (if not impossible). Furthermore, 
general graphs usually represent all possible configurations of edges, and, as a 
consequence, many theorems concerning smooth surfaces are simply not true for 
graphs. Nevertheless, there are many common concepts that provide connections 
and interactions between spectral graph theory and Riemannian geometry. As a 
successful example, the Sobolev inequalities for graphs can be proved almost en
tirely by classical techniques that can be traced back to Nash [26]. The situation 
for the Harnack inequalities for graphs is somewhat different because discrete ver
sions of the statement for the continuous cases do not hold in general. However, we 
will describe a Harnack inequality that works for eigenfunctions of homogeneous 
graphs and some special subgraphs that we call "strongly convex." 

We first consider Sobolev inequalities that hold for all general graphs. To start 
with, we define a graph invariant, the so-called isoperimetric dimension, which is 
involved in the Sobolev inequality. 

We say that a graph G has isoperimetric dimension 6 with an isoperimetric 
constant cs if for all subsets X of V(G), the number of edges between X and the 
complement X of X, denoted by e(X,X), satisfies 

e(X,X)>c6(vo\ X)^ 

where vol X < vol X and cs is a constant depending only on 8. Let / denote an 
arbitrary function / : V(G) —> R. The following Sobolev inequalities hold: 

(i) For 6 > 1, 

E l/(«) - / M l ^ C * ^ m i n ( £ \f(v) - m\^dv)^ 
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(ii) For 6 > 2, 

( E i/(«) - /(^)i2)è > v^6-^ m Ì n (E K/M - m)a^) " 

where Q = -^. 

The above two inequalities can be used to derive the following eigenvalue inequal
ities for a graph G (sec [13]): 

E _v . i „ vol F . , 

e A, t < c—— (6) 

for suitable contants c and c' that depend only on 6. 
In a way, a graph can be viewed as a discretization of a Riemannian manifold 

in Rn where n is roughly equal to 6. The eigenvalue bounds in (7) are analogues 
of the Polya conjecture for Dirichlet eigenvalues of a regular domain M, 

k - wn\o\ M} 

where wn is the volume of the unit disc in Rn . 
From now on, we assume that / is an eigenfunction of the Laplacian of G. The 

usual Harnack inequality concerns establishing an upper bound for the quantity 
max(f(x) — f(y))2 by a multiple of A and maxx f2(x). Such an inequality does not 

hold for general graphs (for example, for the graph formed by joining two complete 
graphs Kn by an edge). We will show that we can have a Harnack inequality for 
certain homogeneous graphs and some of their subgraphs. 

A homogeneous graph is a graph V together with a group H acting on the 
vertices satisfying: 

1. For any g G H, u ~ v if and only if gu ~ gv. 
2. For any u, v G V(r) there exists g E H such that gu = v. 

In other words, T is vertex transitive under the action of H and the vertices of T 
can be labelled by cosets H/I where J = {g\gv = v} for a fixed v. Also, there is 
an edge generating set K c H such that for all vertices v G V(r) and g G K, we 
have {v,gv} G E(T). 

A homogeneous graph is said to be invariant if K is invariant as a set under 
conjugation by elements of K, i.e., for all a G K, aKa~l = K. 

Let / denote an eigenfunction in an invariant homogeneous graph with edge 
generating set K consisting of k generators. Then it can be shown [14] 

\Y.U(x)-î(ax))2<%XsMVf2(y). 
k a€K 

An induced subgraph 5 of a graph T is said to be strongly convex if for all pairs 
of vertices u and v in 5, all shortest paths joining u and v in T are contained in 
S. The main theorem in [14] asserts that the following Harnack inequality holds. 
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Suppose S is a strongly convex subgraph in an abelian homogeneous graph with 
edge generating set K consisting of k generators. Let f denote an eigenfunction of 
S associated with the Neumann eigenvalue A. Then for all x G S, x ~ y, 

\f(x)-f(y)\2<8k\Supf2(z). 
zes 

The Neumann eigenvalues for subgraphs will be defined in the next section. A 
direct consequence of the Harnack inequalities is the following lower bound for the 
Neumann eigenvalue A of S: 

A ~8fcD2 
where k is the maximum degree and D is the diameter of S. Such eigenvalue 
bounds are particularly useful for deriving polynomial approximation algorithms 
when enumeration problems of combinatorial structures can often be represented 
as random walk problems on "convex" subgraphs of appropriate homogeneous 
graphs. However, the condition of a strongly convex subgraph poses quite severe 
constraints, which will be relaxed in the next section. 

5. Eigenvalue inequalities for subgraphs and convex subgraphs 

Let S denote a subset of vertices in G. An induced subgraph on S consists of all 
edges with both end points in S. Whereas a graph corresponds to a manifold with 
no boundary, an induced subgraph on S can be associated with a submanifold with 
a boundary. Next, we define the Neumann eigenvalue for an induced subgraph on 
S. Let S denote the extension of S formed by all edges with at least one end point 
in S. The Neumann eigenvalue As for S is defined to be 

E (/(*)-/(y))2 

A s = i n f i i ^ _ = inf<f# 
/ yj/2(x)dx 9 {g,g) 

xes 

where / ranges over all functions / : S U 6S —> R satisfying E f(x)dx = 0, 
xes 

g(x) = f(x)\/dx, and C denotes the Laplacian of 5. 
Let (f>i denote the eigenfunction for the Laplacian corresponding to eigenvalue 

Aj. Then <j>i satisfies 

PA. f™\ ) 'xtvi\x) it X G ò 

ernel of S 

Ht = YJ eXitPi = e~tc = I-t£+ ^f-C + 

We now define the heat kernel of S as an (n x n)-matrix 

2 
where C = J^ ^P» is the decomposition of the Laplacian C into projections on its 
eigenspaces. In particular, we have 

• H0 = I 
. F(x,t) = £ Ht(x,y)f(y) = (Htf)(x) 

yesuös 
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• F(x,0)=f{x) 
• F satisfies the heat equation Q£- = — CF 
.Ht(x,y)>0. 

By using the heat kernel, the following eigenvalue inequality can be derived, for 
all t > 0: 

inf Ht(x,y)—-p^z 

A s - 2t • 
One way to use the above theorem is to bound the heat kernel of a graph 

by the (continuous) heat kernel of the Riemannian manifolds, for certain graphs 
that we call convex subgraphs. Wc say T is a lattice graph if T is embedded into a 
d-dimensional Riemannian manifold M with a metric p such that e = p(x, gx) = 
p(y,g'y) for all g,g' G K. An induced subgraph of a homogeneous graph T is said 
to be convex if the following conditions are satisfied: 

1. There is a submanifold M C M. with a convex boundary such that 

V(P)(T)nM-dM = S. 

2. For any x G 5, the ball centered at x of S of radius e/2 is contained in M. 

p(x, S) > cM(x, gx) for some g G K 

where S denotes some convex submanifold of M containing all vertices in S. 

We need one more condition to apply our theorem on convex subgraphs. 
Basically, e has to be "small" enough so that the count of vertices in S can be 
used to approximate the volume of the manifold M. Namely, let us define 

- - S-
where U denotes the volume of Vononoi region which consists of all points in M 
closest to a lattice point. Then the main result in [16] states that the Neumann 
eigenvalue of S satisfies the following inequality: 

Ax> Cr£2 

dD2(M) 

for some absolute constant c which depends only on T; and D(M) denotes the 
diameter of the manifold M. We note that r in (8) can be lower bounded by a 
constant if the diameter of M measured in L\ norm is at least as large as ed. 

6. Applications to random walks and rapidly mixing Markov chains 

As an application of the eigenvalue inequalities in the previous sections, wc con
sider the classical problem of sampling and enumerating the family S of (ra x ra)-
matrices with nonnegative integral entries with given row and column sums. Al
though the problem is presumed to be computationally intractable (in the so-called 
#P-complete class), the eigenvalue bounds in the previous section can be used to 
obtain a polynomial approximation algorithm. To see this, we consider the homo
geneous graph T with the vertex set consisting of all (ra x ra)-matrices with integral 
entries (possibly negative) with given row and column sums. Two vertices u and 
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v are adjacent if u and v differ at just the four entries of a (2 x 2)-submatrix with 
entries uik = vik + l,ujk = vjk - l , « * m = Vim ~ l,Ujm = vjm + 1. The family S 
of matrices with all nonnegative entries is then a convex subgraph of T. 

On the vertices of S, we consider the following random walk. The probability 
7r(u, V) of moving from a vertex u in 5 to a neighboring vertex v is £ if v is in S 
where k is the degree of T. If a neighbor v of u (in V) is not in 5 , then we move 
from u to each neighbor z of v, z in 5 , with the (additional) probability ^- where 
d'v = \{z G S : 2 ~ v in T } | for i? ^ S. In other words, for u, v G S, 

7r{u.V) = + ^ «,,„ 
u z&S uVuz 

where wuv denotes the weight of the edge {u.v} (wuv = 1 or 0 for simple graphs) 

and du = }^duv. 
u~v 

The stationary distribution for this walk is uniform. Let A^ denote the second 
largest eigenvalue of n. It can be shown [15] tha t 

1 - A, > Xs . 

In particular, if the total row sum (minus the maximum row sum) is > c' ra2, 

we have 1 — A^ > ^ 2 . This implies tha t a random walk converges to the uni

form distribution in 0(j^-) = 0(kD2) steps (measured in L 2 norm) and in 

0(fcD2(logra)) steps for relative pointwise convergence. 
It is reasonable to expect tha t the above techniques can be useful for de

veloping approximation algorithms for many other difficult enumeration problems 
by considering random walk problems in appropriate convex subgraphs. Further 
applications using the eigenvalue bounds in previous sections can be found in [11]. 
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ABSTRACT. Here we overview some of the methods and results of extremal 
graph and hypergraph theory. A few geometric applications are also given. 

1. Introduction and notation 

Most combinatorial problems can be formulated as (extremal) hypergraph prob
lems. Extremal hypergraph theory applies a broad array of tools and results from 
other fields like number theory, linear and commutative algebra, probability the
ory, geometry, and information theory. On the other hand, it has a number of 
interesting applications in all par ts of combinatorics, and in geometry, integer pro
gramming, and computer science. Some recent successes include: the best upper 
bound for the number of unit distances in a convex polygon [40] ; the first nontrivial 
upper bound for the number of halving hypcrplancs [3]; and the counterexample 
to the longstanding Borsuk's conjecture by Kahn and Kalai [48]. 

Wc overview sonic of the methods used in extremal graph and hypergraph 
theory and illustrate them by Turan-type problems. Some geometric applications 
are also given; more can be found in the recent monograph [60]. 

A hypergraph H is a pair H = (V.£), where V is a finite set, the set of 
vertices, and E is a family of subsets of V. the set of edges. If all the edges have 
•r elements, then H is called an r-graph. or /"-uniform hypergraph. The complete 
r -par t i tc hypergraph ICt1%t2 tr has a partit ion of its vertex set V = V\ U . . . U Vr, 
such tha t \V.}\ = t}. and £ = {E : \E DVi | = 1} for all 1 < i < r. The set 
{ 1 , 2 , . . . . n} is abbreviated as [ra]. 

2. The Turân problem 

Given a graph F, what is cx(ra. F ) , the maximum number of edges of a graph 
with ra vertices not containing F as a subgraph? This problem was proposed 
for F = C 4 by Erdôs [19] in 1938 and in general by Turân [72]. For example, 
ex(ra,A'3) = Lra2/4J (Mantel [57], Turân [72]). The Erdôs-Stone-Simonovits [29], 
[26] theorem says tha t the order of magnitude of cx(ra, F) depends only on the 
chromatic number, l i m , , ^ ^ cx(ra, F ) / ^ ' ) = 1 — (\;(F) — 1 ) _ 1 . This gives a sharp 
estimate, except for biparti te graphs. 
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Very little is known even about simple cases when F is a fixed even cycle 
C2/C or a fixed complete bipartite graph JCk,k. For a survey of extremal graph 
problems, see Bollobâs' book [5], or Simonovits [67], [66]. For Turân problems for 
hypergraphs see [41]. 

3. Minimum graphs of given girth 

Erdös proved in 1959 that for any \ > 2 and g > 3 there exists a graph of chro
matic number x and girth g. (The girth is the length of the shortest cycle.) Known 
elementary constructions yield graphs with an enormous number of vertices. Re
cently, deep results in number theory combined with the eigenvalue methods in 
graph theory have been invoked with success to explicitly construct relatively small 
graphs, called Ramanujan graphs, with large chromatic number and girth (Mar
gulis [58], Imrich [47], and Lubotzky, Phillips, and Sarnak [56]). These graphs give 
the lower bound in the following inequality: 

n ( n l+(3/(4*+21)) ) < e x ( n ; ç2k) < 90fcn(*+l) A\ (1) 

The first nontrivial lower bound, fì(ra1+(1/2fc)), was given by Erdös (see in [28]) 
using probabilistic methods. The upper bound is due to Bondy and Simonovits [6] 
and is believed to give the correct order of magnitude. 

Constructions giving Q(nl+(l/ki) are known only for k = 2,3, and 5 (Benson 
[4]). Wenger [74] simplified these cases. Recently Lazcbnik. Ustimcnko, and Woldar 
gave new algebraic constructions [53] for all k. 

4. Bipartite graphs 

For every bipartite graph F that is not a forest there is a positive constant c 
(not depending on ra) such that fJ(ra1+r) < cx(ra,F) < 0(n2~c). The lower bound 
follows from (1). The upper bound is provided by the following result of Kovâri, 
Sós, and Turân [50] concerning the complete bipartite graph. 

cx(ra,/CM) < i(f - i)iAn2-(V<) + (t _ i ) n / 2 = 0(n2-Wf)). (2) 

This bound gives the right order of magnitude of cx(ra. K,t,t) for £ = 2 and t = 3 
and probably for all t. For t > 3 the best lower bound. ex(ra./CM) > fi(n2~"2/(f+1)). 
is due to Erdös and Spencer [28]. Until now the only asymptotic for a bipartite 
graph that is not a forest, cx(ra.C4) = ^(1 + o(l))ra3/2. was due to Erdös. Rcnyi. 
and T. Sós [25] and to Brown [8]. This has recently been generalized [43]: 

THEOREM 1 For any fixed t > 1 cx(n,/C2jt+i) = \\ftn*t2 + 0(ra4/3). 

.4 large graph with no £2.1+1- The following algebraic construction is closely 
related to the examples for Gj-free graphs and is inspired by an example of Hyltcn-
Cavallius [46] and Mors [59] given for Zarankiewicz's problem [76]. Let ç be a prime 
power such that (q — l)/t is an integer. We construct a /C2,t-f-i-free graph G on 
(q2 — l)/t vertices such that every vertex has degree q or q — 1. Let F be the 
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q-element field, h G F an element of order t, H = {1, h, h2,..., h1-1}. The vertices 
of G are the t-element orbits of (F x F) \ (0,0) under the action of multiplication by 
powers of h. Two classes (a, b) and {x, y) are joined by an edge in G if ax + by G H. 

Note that the sets N(a,b) = {(x, y) : ax + by G H} form a ç-uniform, 
symmetric, solvable, group divisible ^-design. 
Brown [8] gave an algebraic construction to show ex(ra,/C3,3) > (1/2 — o(l))ra5/3. 
Very recently, it was shown to be asymptotically optimal [44]. 

THEOREM 2 ex(ra,/CM) < ^(1 + o(l))ra2 _ ( 1 / t ) . 

5. The number of unit distances 

What is the maximum number of times, f^(n), that the same distance can oc
cur among pairs of ra points in the d-dimensional space Rd? The complete bi
partite graph /C2.3 cannot be realized on the plane, so f^2\n) < ex(ra,/C2,3) = 
0(ra3/2). Erdös [20] conjectured in 1945 that the grid gave the best value, f^(n) = 
O(ni+C7iogiogn) Spencer, Szemerédi, and Trotter [69] proved f{2)(n) < 0(ra4/3). 
A new proof appeared in Clarkson et al. [13]. Erdös observed that for the 3-space 
ra4/3loglogra < f^(n) < ex(ra,/C3s3) = 0(ra5/3). The best upper bound is due 
to Clarkson et al. [13], f^3\n) < 0(n3/2ß(n)), where ß(n) is an extremely slowly 
growing function related to the inverse of Ackermann's function. 

It is proved in [40], using the Turân theory of matrices resembling the Daven-
port-Schinzel problem solved by Sharir [64], that the maximum number of unit 
distances in a convex n-gon, g^(n), is at most 7ralogra. Erdös and Moser [24] con
jecture that #(2)(ra) is linear. Edelsbrunner and Hajnal [17] showed that g^(n) > 
2ra -4 . 

6. The number of halving planes 

In most problems an estimate on the number of sub (hyper) graphs isomorphic to a 
given structure F is more applicable than the information about the Turân number 
ex(ra, F). Rademacher proved in 1941 that a graph with |_™2/4J + 1 edges has at 
least [n/2\ triangles (see Lovâsz and Simonovits [55]). The best, in most cases 
almost optimal, lower bound for the number of triangles in a graph of ra vertices 
and e edges was given by Fisher [31]. The following theorem was proved in [21] in 
an implicit form. For more explicit formulations see Erdös and Simonovits [27] or 
Frankl and Rodi [37]. 

THEOREM 3 (Erdös [21]) For any positive integers r and t\ < • • • < tr there 
exist positive constants c' and c" such that the following holds. If an r-graph has 
n vertices and e > drir~°L edges, where a = l/(t\t2 ••• tr-\), then it contains at 
least 

c" (e / ra r )* l t 2 - f r n t l + - + ^ 

copies of the complete r-hypergraph /C^,...,*,.. 
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Let S C R3 be an ra-set in general position. A plane containing three of the 
points is called a halving plane if it dissects S into two parts of (almost) equal 
cardinality. In [3] it was proved that the number of halving planes is at most 
0 ( r a 2 " 8 ) . As a main tool, for every set Y of ra points in the plane, a set N of 
size 0(ra4) is constructed such that the points of N are distributed almost evenly 
in the triangles determined by Y. The proof is a combined application of Turân 
theory (Theorem 3), the random method, and fractional hypergraph coverings. 

A generalization of Tverberg's theorem [73], conjectured in [3], was proved 
by Zivaljevic and Vrecica [77] by Lovâsz' topological method [54]. The exponent 
2.998 was improved most recently by Dey and Edelsbrunner [14] to 8/3. The best 
lower bound is fî(n2logra). The best 2-dimcnsional upper bound is due to Pach, 
Szemerédi, and Steiger [61]. 

7. Intersecting hypergraphs 

Here we consider the more general hypergraph problems, where the forbidden 
configurations are fc-uniform hypergraphs. For example, if the excluded hypergraph 
consists of two disjoint edges; i.e., the family H of fc-sets is intersecting, then 
\H\ < (]JZi) f° r n > 2fc, where ra stands for the number of vertices. If £ is a 
family of fc-scts of [ra] such that any two members intersect in at least t elements, 
then \Q\ < (JJZ|)< provided ra is sufficiently large, ra > rio(k.t). Equality holds if 
and only if Ç consists of all fc-clemcnt subsets of [ra] containing a fixed ^-element 
subset (Erdös, Ko, and Rado [23]). The exact value of ra0(Â;, t) = (k — t + l)(t + 1) 
was determined by Frankl [32] (for t > 15), and by Wilson [75] (for all t. using 
association schemes). Define 

Ar = {Ge Mi : \G H [t + 2r}\ > t + r}. 

\Ar\ is the largest among the A"* if (k-t+1)(2 + £±) < n < (k-t+1)(2+ t-^k). 

CONJECTURE 1 (Erdös, Ko, and Rado [23]; Frankl [32]) If G is a t-intersecting 
family of maximum cardinality, then Ç is isomorphic to A' for some r. 

This conjecture was proved [35] for r < c\ft\ogt, where c > 0.02 is an absolute 
constant. The proof is a triumph of the transformation method (left shifting). 

THEOREM 4 [34] Suppose that a k-uniform hypergraph on ra veriices has more 
than (£ZÎZÎ) edges, k > 2t + 2, n > 7ii(k). Then it contains two edges F,F' such 
that | F n F ' | =t. 

8. Prescribed intersections 

Let 0 < £i < £2 < •• - < i* < k < n be integers. The family G S (X
k) is an 

(n,k,{h,...Js})-systcm if \G D G'\ G {h 4 } holds for every G.G G Q. 
G ^ G'. Denote \JL\ ,^.s} by L and let us denote by m(n.k\L) the maximum 
cardinality of an (ra. k, L)-systcm. The determination of m(n, k, L) is the simplest 
looking Turan-type problem; the family of forbidden configurations consists only 
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of hypergraphs of size two. The most well-known result of this type is the Erdös-
Ko-Rado theorem dealing with the case L = {t, t + 1 , . . . , k — 1} (see above). 

The problem of determining m(n, k, L) for general L was proposed by Lar-
man [51], and first studied by Deza, Erdös, and Frankl [15]. A few years earlier yet, 
Ray-Chaudhuri and Wilson [10] proved a very general upper bound, namely that 
m(n.k,L) < (™) holds for all ra > k and \L\ = s. The proof uses linear algebraic 
independence of some higher order incidence matrices over the reals. This was 
generalized for finite fields by Frankl and Wilson [39]. Very recently Frankl, Ota, 
and Tokushige have determined almost all the 8192 exponents of the m(n, k, L)'s 
up to A: < 12. The complexity of these questions can be seen in the following 
result of Frankl [33]. For every rational r > 1 there exist k and L such that 
m(n,k,L) = 0(rar). The proof of this combines the A-system method, and alge
braic and geometric constructions. A similar conjecture of Erdös and Simonovits 
[27] for graphs is still open: for every rational 1 < p/q < 2 there exists a bipar
tite graph G with ex(ra,G) = Q(np/q), and every bipartite graph has a rational 
exponent r with cx(ra, G) = B(rar). 

Improving a result of Babai and Frankl [1] a necessary and sufficient condition 
for ra (ra, k, L) = B(ra) has been found. We say that the numbers £\,..., ts and k 
satisfy property (*) if there exists a family T C 2 ^ , closed under intersection, such 
that UJ = [fe] and \I\ G L for all / e l 

THEOREM 5 [41] / / (*) is satisfied, then m(n,k,L) > (l/%k)nk^k~l\ On the 

other hand, if (*) does not hold, then ra(ra, k, L) < (2k )n. 

9. The chromatic number of the space 

The following problem was proposed by Hadwiger [45]. What is the minimum 
number c(n) such that Rn can be divided into c(n) subsets Rn = C\ U . . . U 
Cc(n) such that no pair of points within the same C* is at unit distance? In other 
words, what is the chromatic number of the unit distance graph? This problem 
is wide open even in the plane, we have only 4 < c(2) < 7. The regular simplex 
shows c(ra) > ra + 1; the first nonlinear lower bound Q(n2) was given by Larman 
and Rogers [52]. They also gave an exponential upper bound of 3 n . The above-
mentioned forbidden intersection theorems of Frankl and Wilson [39] easily lead 
to a lower bound of 1.2n. 

Sixty years ago Borsuk [7] raised the following question. Is it true that every 
set of diameter one in Rrf can be partitioned into d -f 1 sets of diameter smaller 
than one? The following theorem of Frankl and Rodi [38] led to the counterexample 
given by Kahn and Kalai [48]. Let ra be an integer divisible by four, and let T be 
a family of subsets of an ra-clcmcnt underlying set such that no two sets in the 
family have intersection of size ra/4. Then \T\ < 1.99". 

10. Szemeredi's regularity lemma 

This is a powerful graph-approximation method. Wc need some notation. Let G 
be an arbitrary, fixed graph. For two disjoint subsets Vi, V2 C V(G), let E(Vi,V2) 
denote the set of edges of G with one endpoint in Vi and the other in V2. The 
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edge-density between these sets is 

| jg(vi,ya) | 

The pair (Vi,V2) is called e-regular, if \ô(V{,V2
f) - ô(Vi,V2)\ < e holds for all 

V{ C Vi and V2' C V2 whenever |V/| > e|Vi| and |V2'| > s\V2\. 

THEOREM 6 (Szemerédi's regularity lemma [70]) For every 0 < e < 1 and for 
every integer r there exists an M(e, r) such that the following is true for every 
graph G. The vertex set of G can he partitioned into £ classes V i , . . . , VE for some 
r < £ < M(e,r) so that these classes are almost equal (i.e., \\Vi\ — \V(G)\/£\ < 1), 
and all hut at most e£2 pairs (Vt.Vj) are e-regular. 

The main feature of Theorem 6 is that it allows us to handle any given graph 
as if it were a random one. Even the most chaotic graph can be decomposed 
into a relatively small number of almost regular systems. Rodi [62] and Elekes 
[18] showed that one cannot require all pairs (Vi,Vj) to be ^-regular. Sós and 
Simonovits [68] (joining to works of Thomason [71] and Chung, Graham, and 
Wilson [12]) used Theorem 6 to describe the so-called quasi-random sequences of 
graphs. This connection is illuminated in the next section. 

11. Graphs with a small number of triangles 

This is an application of Szemerédi's regularity lemma. Let F be a fixed graph on 
the fc-element vertex set {u\,..., uk}, and suppose that the graph G on ra vertices 
contains only o(nk) copies of F. We will prove that one can delete o(n2) edges 
from G to eliminate all copies of F. Reformulating this statement without o's for 
the special case F = K% we get 

THEOREM 7 For every e > 0, there exists a 6 = 6(e) > 0 such that the following 
holds: For every graph G on ra vertices with at most On3 triangles, one can find a 
set E' with at most en2 edges, such that G\E' is triangle-free. 

The theorem says that it is impossible to distribute evenly a small number of 
triangles in a graph with a large number of edges. 

Let V\,....Vk be disjoint ra-clement sets and let 0 < ó < 1. A random 
graph on the vertex set V\ U . . . U Vk is defined by choosing every pair of vertices 
u G Vi, v G Vj with probability 6. The expected edge-density between Vj and Vj 
is 6. Moreover, the expected number of copies of F such that V{ G Vi, and ViVj is 
connected for muj G E(F) is 6^E^F^rnk. The next lemma is used (sometimes in 
implicit form) in most applications of the Regularity Lemma. 

LEMMA 1 Let a i , . . . ,ak be natural numbers, Ylai = P> ^ E be a graph on the 
p-element vertex set {UìJ : 1 < i < k, 1 < j < a*}, and let 0 < e < p~p, el/p < 6 < 
1/2. Suppose that the graph G has k pairwise disjoint subsets V i , . . . , Vk C V(G), 
\Vi\ > rm for all l<i< k, and <5(V/, VJ) > 6 hold for all VJ C Vi7 VJ C Vj if for 
some 1 < i < j < k there is an edge UiaUjb G E (F) and \VJ\ > e\Vi\, \Vj\ > e\Vj\. 
Then the subgraph ofG induced by V\U.. .UV/. contains at least S^E^F^2~P n ( m * ) a ' 
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copies (embeddings) of F with vertex sets {via} such that via G Vi, Vjb G Vj, and 
viaVjb G E (G) for uiaujb G E(F). 

Proof. The case a\ = • • • = ak = 1 implies the general case. Indeed, choose â  
disjoint (mi/ai)-element sets from Vi, and apply the lemma for this new partition 
(s* = e/(maxai), 6* = 6). Then do this for all possible partitions. Finally, the 
case p = k follows by induction on k, as was done for F = Kk in [60]. D 
Proof of Theorem 7. Let eo = (^/3)fe. Suppose that eo < k~k/3, and define 
r = [3/eol- We claim that 6 = (2Af(r,£0))~fe(£o) |£(F)l/fc will suffice. Let G be an 
arbitrary graph with at most 6nk copies of F. Apply Szemerédi's lemma with the 
above r and eo- We get a partition Vi , . . . , V£. Delete all edges covered by any Vi, 
then delete all edges connecting Vi and Vj if the pair (V*, Vj) is not £0-regular, or 
if its density is less than ej . We have deleted at most ra2/£-\-eQn2-\-e^ 'ra2 edges. 
Then the rest of the graph is F-free; otherwise, the lemma would provide us at 
least el

Q
E(F)l/k(n/2£)k copies. D 

12. The maximum number of edges in a minimal graph of diameter 2 

A graph G of diameter 2 is minimal if the deletion of any edge increases its diame
ter. Murty and Simon (see in [9]) conjecture that such a G cannot have more than 
ra2/4 edges. This was proved for ra > ra0 in [42] in the following slightly stronger 
form: the only extremum is the complete bipartite graph. The value of rao is ex
plicitly computable, but the proof gives a vastly huge number, a tower of 2's of 
height about 1014. 

This theorem is the first application of Szemerédi's regularity lemma yield
ing an exact answer (at least for ra > rao). Bounds were given by Caccetta and 
Häggkvist [9] and Fan [30]. It is easy to see that the theorem gives a direct gen
eralization of Turan's triangle theorem. (If every edge in G that is contained in a 
triangle is also contained in some minimal path of length 2, then |£(G)| < ra2/4.) 

The proof utilizes the following Turân type result of Ruzsa and Szemercdi 
[63]: if J7 is a triangle-free, 3-uniform hypergraph on ra vertices (that means that 
no 6 vertices carry more than 2 triples), then \F\ = o(n2). In almost all other 
applications of Theorem 6 one only needs the Ruzsa-Szcmcrédi theorem. Note 
that it is an easy corollary of Theorem 7. (Replacing each triple by the 3 pairs 
contained in it one gets a graph with 3|.F| edges and only \Jr\ < (!*) = o(ra3) 
triangles.) Other short proofs and generalizations for r-uniform hypergraphs (also 
based on Theorem 6) were given by Erdös, Frankl, and Rodi [22] and by Duke and 
Rodi [16]. 
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Coloring Problems 
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1. Introduction 

A hypergraph H is simply a collection of subsets of a finite set, which we will 
always denote by V. Elements of V are called vertices and elements of H edges. A 
hypergraph is k-uniform (k-bounded) if each of its edges has size k (at most k). 

The degree in H of a vertex x is the number of edges containing x, and is 
denoted by d(x). Similarly, d(x,y) denotes the number of edges containing both 
of the vertices x, y. A hypergraph is d-regular if each of its vertices has degree d 
and simple if d(x,y) < 1 for all x, y. We use D(H) and 6(H) for the maximum 
and minimum degrees of H. A simple 2-uniform hypergraph is a graph, usually 
denoted G, whereas a general 2-uniform hypergraph is a multigraph. 

Principal objects associated with a hypergraph are matchings, covers, and 
colorings. A matching is a collection of pairwise disjoint edges. We write M. = 
M(H) for the set of matchings of H and v(H) for the matching number, the 
maximum size of a matching in H. A cover is a collection of edges whose union is 
V, and an (edge-)coloring is a : W —• S (S a set) with A D B ^ 0 => a(A) ^ a(B) 
(so a partition of H into matchings). For these the parameters analogous to v are 
p(H), the minimum size of a cover, and x'(^)> the minimum number of matchings 
in a coloring. For further background see e.g. [16]. 

Much of this talk deals with hypergraphs in which edge sizes are fixed or 
bounded and degrees arc large. In contrast to the familiar intractability of hyper
graph problems, a central message here is that under the restrictions just stated 
one does often have, or at least seems to have, good asymptotic behavior. This 
is tied to notions of approximate independence (Sections 3., 4.) and relations be
tween integer and linear programs (Section 5.). For a somewhat less compressed 
account of most of what is covered here, see [29] ; as discussed there (and apparent 
here), much of this material had its beginnings in problems of Paul Erdös. 

2. Some coloring problems 

We begin with a few problems intended both to give some flavor of the subject 
and to form a basis for later discussion. For many more coloring problems see [43]. 
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Vizing, Pippenger, Pippenger-Spencer 
The classic result on edge-colorings of graphs is Vizing's theorem [44]: for any 
multigraph G, x'(G) < D(G) + max{d(x, y) : x.y G V,x ^ y}. In particular, for 
simple, d-regular G we have 

X'(G) < d + 1 and consequently u(G) > (1 - l / (d + l))v(G)/2. (1) 

Here the bound on v is not hard, but that on \' is far from obvious. The next two 
results, due respectively to Pippenger (unpublished; sec [16]) and Pippenger and 
Spencer [38], give analogues of the bounds in (1) for hypergraphs of fixed edge 
size, and elegantly illustrate the "central message" mentioned in Section 1.. (Wc 
omit corresponding statements for covers.) 

THEOREM 2.1 Let k be fixed and H a k-uniform, d-regular hypergraph on n ver
tices satisfying 

d(x, y) < o(d) for all distinct vertices x, y. (2) 

Then v(H) ~ n/k (d -> oo). 

THEOREM 2.2 Under the hypotheses of Theorem 2.1, *'(W) ~ d (d —• oo). 

Note that convergence in these statements is uniform in H. A similar "uniformity 
convention" is assumed to be in force whenever appropriate in what follows. 

Of course Theorem 2.2 contains Theorem 2.1. (Its proof does require Theo
rem 2.1, but this is not true of the stronger Theorem 3.1 below.) 

Part of the appeal of hypergraph problems is that they usually are not vul
nerable to traditional graph-theoretic methods (e.g. recoloring as for Vizing's the
orem); thus, they require the development of new (and perhaps more interesting) 
approaches. Thus, for k > 3, even Theorem 2.1 is quite a deep result (the theorems 
do not become easier if one substitutes simplicity for (2)). Its proof is achieved 
by a "semirandom" method that constructs the desired matching in small random 
increments. The proof of Theorem 2.2 is in the same vein, but requires a second 
level of ideas: the "increments" are now small sets of matchings chosen at random, 
and the choice of an appropriate probability distribution on A4 is a subtle matter. 

A related semirandom approach was pioneered by Ajtai, Komlós, and Sze
merédi [1]. Something closer to what is needed for Theorem 2.1 appears in a 
breakthrough paper of Rodi [40], proving the "Erdös-Hanani conjecture" [11]. The
orem 2.1 strengthens a result of Frankl and Rodi [14], which was itself a broad 
generalization of Rödl's original work. We will later give a result (Theorem 3.1) 
even more general than Theorem 2.2, together with just a hint at the workings of 
the semirandom method. For more serious discussions see [16], [25]. 

The Erdös-Faber-Lovasz conjecture 
This celebrated conjecture from 1972 may be stated as follows: 

CONJECTURE 2.3 Any simple n-vertex hypergraph has chromatic index at most n. 

(To avoid trivialities, hypergraphs here arc assumed to have no singleton edges.) 
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Erdös (e.g. [9]) has for many years listed Conjecture 2.3 as one of his "three 
favorite problems." It is sharp when H is a projective plane or complete graph Kn 

with n odd, and also in a few related cases, but there ought to be some slack in the 
bound away from these extremes. A natural strengthening, suggested by Meyniel 
(unpublished), Berge [3], and Füredi [15] would include Vizing's theorem: 

CONJECTURE 2.4 For H simple on vertex set V, x'(W) < maxxGv" I UreAew M-

Notice that for H fc-uniform (k > 3 fixed) and n large, Theorem 2.2 implies 
a much better bound than that of Conjecture 2.3, namely x'CM) ~ n/(k — 1). 
From a relatively modest extension of Theorem 2.2 — or, more naturally, from 
Theorem 3.1 below — one may derive an asymptotic version of Conjecture 2.4 
([24]; the proof given there for x' < TI + o(n) applies here as well): 

THEOREM 2.5 For H simple on V, x'(W) < (1 + o(l)) max x €v I VxeAen A\-

It seems clear that the random methods used here will not by themselves suffice 
to settle the above conjectures, though it does not seem impossible that some 
combination of random and constructive techniques might prove effective. (The 
reader could try proving Conjecture 2.3 when edge sizes are at most 3, a case that 
already seems to capture much of the difficulty of the problem.) 

List-colorings 
The list-chromatic index, x|(W), of H is the least t such that if S (A) is a set ("list") 
of size t for each A E H, then there exists a coloring a of H with o~(A) G S(A) 
for each A G H. One natural reason for considering such a notion is that an 
ordinary coloring problem in which some colors have already been assigned is a 
list-coloring problem. See [2] for an (already somewhat out of date) survey of recent 
developments in this area. 

Of course one always has \[ ^ x'- The intuition that coloring should be 
most difficult when all lists are equal is specious in general (see [13], [45]), but 
seems correct for edge-colorings of graphs. The following "list-chromatic" or "list-
coloring" conjecture was proposed several times, probably first by Vizing in 1975 
(see e.g. [20] for more on this story): 

CONJECTURE 2.6 For every multigraph G, x[(G) = X*(G). 

The case G = Knmn — the Dinitz conjecture — was proposed by Dinitz in about 
1978 (see [8]) in the context of Latin squares. This version is particularly appealing, 
and seems to have provided much of the initial stimulus for western interest in such 
questions. 

Conjecture 2.6, and the Dinitz conjecture in particular, received considerable 
attention, especially in the last five years (see e.g. [2], [20], [17] for discussion and 
references). The Dinitz conjecture was finally given a beautiful and wholly elemen
tary proof by Galvin [17], who in fact proved Conjecture 2.6 for all bipartite multi-
graphs. The nonbipartite case is still open. For G with d(x,y) < o(D(G)) Vx.y 
the bound x' < (1 + o(l))D(G) is contained in Theorem 3.1. 
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Borsuk's conjecture 
A classic problem of elementary geometry that is also a coloring problem (though 
not an edge-coloring problem) is "Borsuk's conjecture" stating that every bounded 
set in Rd is the union of d+1 sets of smaller diameter ([5]; see [19], [4], [6] for further 
discussion). A conjecture of Larman [36] extracts something of the combinatorial 
essence of Borsuk's conjecture and puts it a little closer to some of our other 
problems (note the formal similarity to Conjecture 2.3): 

CONJECTURE 2.7 If H is a t-intersecting hypergraph on n vertices, then there are 
(t + 1)-intersecting H = Hi,...,Hn with H = UHi. 

(A hypergraph is t-intersecting if any two of its edges share at least t vertices. 
Note that for uniform H Larman's conjecture is included in Borsuk's.) 

Conjecture 2.7 and Borsuk's conjecture were recently disproved in [30]. This 
does not have much to do with the rest of our discussion, though at least "thinking 
big" was again a key: for moderately large d, even (1 .2 )^ (vs. d + 1) sets are not 
enough, and the smallest counterexamples known are in the vicinity of d = 1000. 

The case t = 1 of Conjecture 2.7 remains open (and interesting). Here Füredi 
and Seymour (sec [10], [34]) proposed the stronger conjecture that one may use 
Hi's of the form {A G H : A D {x, y}}. This too turns out to be false [31], though 
a simple disproof would still be welcome. See Section 5. for a little more on this. 

3. List-colorings and the semirandom method again 

A rough rationale for the good asymptotics of the types of hypergraphs appearing 
in Theorems 2.1 and 2.2 is that we are in a probability space — namely M(H) 
with an appropriate measure — endowed with considerable approximate (though 
usually no exact) independence. 

Different manifestations of this idea appear in the workings of the semiran
dom method and in the material of the next section. Here we give just a hint at 
the former in the context of the list-coloring version of Theorem 2.2 [27]: 

THEOREM 3.1 Under the hypotheses of Theorem 2.1, x[0^) ~ à (d —> oc). 

The basic idea of the proof is quite natural, though a little strange in that it initially 
seems doomed to failure. We present a thumbnail sketch in the "standard" case 
that all the S (A) 's are the same. (The general case is not essentially different. 
Lest we create false impressions, it should be stressed that implementation of the 
following is reasonably delicate.) 

We color the hypergraph in stages. At each stage we tentatively assign each 
as yet uncolored edge A a random color from its current list of legal colors. In 
some (most) cases, the color tentatively assigned to A will also be assigned to 
one or more edges meeting A. Such edges A are simply returned to the pool of 
uncolored edges. The remaining edges are permanently colored with their tentative 
colors and removed from the hypergraph. We then modify the lists of legal colors 
(mainly meaning that we delete from S(A) all colors already assigned to edges 
that meet A) and repeat the process. 
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Martingale concentration results together with the Lovâsz local lemma [12] 
arc used to show that this procedure can be repeated many times, leaving after 
each stage a hypergraph and lists of legal colors that are reasonably well behaved. 
(Finding the correct definition of "well behaved" is crucial.) Eventually our control 
here does deteriorate, but by the time this happens the degrees in the remaining 
hypergraph are small relative to the number of colors still admissible at an edge, 
and the remaining edges can be colored greedily. The strange feature alluded to 
above (this is not shared by proofs of earlier results) is that the lists of legal colors 
initially shrink much faster than the degrees. (Roughly, when the degrees have 
shrunk to 0D, with 3 not too small, the lists will have size about ßkD.) This at 
first seems unpromising, because wc are accustomed to thinking of the degree as 
a trivial lower bound on chromatic index. The situation is saved by approximate 
independence (though we can only hint at how this goes): the lists Sl(A) (of legal 
colors for A at the end of stage i) tend to evolve fairly independently, except where 
obviously dependent. So, for example, for a color 7 that through stage i has not 
been permanently assigned to any edge meeting An B (that is, we condition on 
this being so), the probability that 7 belongs to Sl(B) is not much affected by its 
membership or nonmembership in Sl(A). 

4. Random matchings 

We now consider a matching Af drawn uniformly at random from M.(G) or M.(H). 
(It is also sometimes worthwhile to consider more general "normal" distributions 
on M: sec e.g. [22], [35], [39], [32]. The last of these was the link between Pip-
penger's theorem and the material of this section; see [29].) 

Suppose first that M is uniform from M = M(G). Set f = £(G) = |Af|, 
Pk(G) = Pr(^ = k), and let p = p(G) and a = v(G) denote the mean and 
standard deviation of £. For a vertex x write p(x) for the probability that x is not 
contained in any edge of M. 

For a sequence {Gn} of graphs, we abbreviate £(Gn), p(Gn),... to £n, pn, 
To avoid trivialities we assume |V(Gn) | —> 00 (ra —» 00). The sequence 
{Pk(Gn)}k>o is asymptotically normal if for each x G R 

P r ( ^ ^ < x) - -±= T c " t V 2 A (n -> 00). 
O'n V27T i-oc 

The following results and conjectures are again motivated by — and their 
proofs (if any) depend on — the idea of approximate independence mentioned 
at the beginning of the preceding section. (But the proofs are not related to the 
"semirandom" method. ) 

THEOREM 4.1 [28] The distribution {pk(Gn)}k>o *s asymptotically normal if and 
only if 

v?i - ßn —• c» (ra —> oc). (3) 

THEOREM 4.2 [33] For d-regular graphs G, 
(a) p(x) ~ d - 1 / 2 Vx G V, and in particular p(G) ~ \V(G)\/2, 
(b) a2(G) ~ |F(G)|/(4v /d). 
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Again, limits in Theorem 4.2 are taken as d —> oc; of course, what is surprising 
is that the values of the parameters are hardly affected by G, x. 

It follows from results of [22], [35], and an observation of Harper [21] that 
Theorem 4.1 is true if we replace (3) by "crn —> oo." The advantages of Theorem 4.1 
over this may not be apparent, but for example it fairly easily gives 

COROLLARY 4.3 Each of the following implies asymptotic normality: 

(a) vn/Dn -> oo, 

( b ) Ä n < ( l - o ( l ) ) D n , 

( c ) i / n > ( l - o ( l ) ) | V ( G n ) | / 2 . 

In particular, Theorem 4.1 gives the first proof of asymptotic normality for se
quences of regular graphs. (Theorem 4.2 (b) gives a second.) That (a) implies 
asymptotic normality was shown in [41], improving a result of [18]. 

For hypergraphs we have only conjectures. (We extend the above notation in 
the obvious ways.) 

CONJECTURE 4.4 Fix k. IfHn is a sequence of simple, k-bounded hypergraphs with 
6n —> oo, then the following are equivalent: 

(a) {Pk^rin)} is asymptotically normal, 

(b) an -> oo, 

(c) i/n - pn -> oo. 

In contrast to the situation for graphs, this is not true if 8n /» oo. 

CONJECTURE 4.5 For fixed k and simple, k-uniform, d-regular H, 

p(x) ~ d~l/h Vx G V(H). 

These conjectures may be nonsense, but they are certainly very interesting if true. 
Note that Conjecture 4.5 is far stronger than Theorem 2.1 for simple H (we omit 
speculation on what happens under (2)). For a little more in this direction and 
possible extensions of Theorem 4.1 to multigraphs, see [28]. 

It would be very interesting to have analogues of Theorem 4.1 in other com
binatorial situations; for example, is Conjecture 4.4 true if we replace £n by the 
size of a uniformly chosen forest from a graph Gn? (And vn by the size of a largest 
forest in Gn. Compare here the well-known unimodal and log concavity conjectures 
for independent sets in matroids [46], [37].) 
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5. Fractional vs. integer 

Finally, we want to say a little about connections with linear programming. Match
ing, covering, and coloring problems are integer programming problems, so it is 
often edifying to compare them with their "fractional" versions (linear relaxations). 
For example, the fractional version of v is the fractional matching number 

v* = max{ 2_\ f(A) : f a fractional matching}, 
Aen 

where a fractional matching is / : H —> R + satisfying ^2A3v f(A) < 1 for every 
v G V; and the fractional version of chromatic index is 

X'*{H) = min{ VJ f(M) :f:M^R+, VJ f(M) > 1 VA e H}. 
M£M AeMEM 

We usually consider linear programs tractable, integer programs intractable, 
and expect the behavior of an IP to be quite different from that of its associated 
LP. Nonetheless, as will be evident in several of our examples, fractional behavior 
is often a good guide in combinatorial situations. In particular, one concretization 
of "nice behavior" is asymptotic agreement of fractional and integer versions of 
our various parameters. (The problems discussed here are probably special cases of 
such agreement in more general IP/LP situations, but this has yet to be explored.) 

On the other hand, again as illustrated below, disagreement of fractional and 
integer is often a hallmark of difficult combinatorial problems. 

There are interesting connections between "normal" distributions on M.(G) 
and Edmonds' matching polytope theorem [7], but space does not permit; see [39], 
[32]. 

Borsuk again 
Borsuk's conjecture is false fractionally (though we omit definitions): [30] gives 
a finite X Ç Rd such that any subset of smaller diameter has size less than 
(1.2)_V^|X|. On the other hand, as shown by Füredi and Seymour (see [34]), 
the conjecture disproved in [31] (see discussion following Conjecture 2.7) is true 
fractionally, which may make the difficulty of a counterexample less surprising. 

Incidentally, Borsuk's theorem (a ball in R cannot be covered by d sets of 
smaller diameter [5]) is, though not in this language, a classic example where 
fractional and integer disagree. 

Pippenger again 
It is easy to see that any fc-uniform, regular H satisfies v*(H) = \V(H)\/k. Thus, 
the conclusion of Theorem 2.1 is v(H) ~ v*(H). That this is the proper interpre
tation of Pippengcr's theorem is the contention of [23], where a similar conclusion 
is proved assuming only that H is fc-bounded and satisfies something like (2). (The 
statement of this requires a little care and necessarily refers to a given fractional 
matching of H.) A more subtle extension of Theorem 2.1, again involving the 
interplay of IPs and LPs, is given in [32]. 

A problem of Erdös and Lovâsz 
Another of Erdös' favorite problems (again see [9]) may be stated as follows (see 
[26] for some motivation). 
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QUESTION 5.1 [12] Fix c. Suppose H is an r-regular hypergraph with n = \V\ < cr 
and d(x,y) > 1 for all x,y G V. Is it true that for large enough r, p(H) <r? 

Of course p(H) < r because the edges containing any given vertex form a cover. On 
the other hand, the fractional cover number is considerably smaller. The function 
t : H —> R + given by t(A) = \A\/(n + r - 1) is a fractional cover (we omit the 
obvious definition) with 

y ^ t(A) = nr/(n + r — 1) « nr/(n + r) < cr/(c + 1). 
Aen 

But surprisingly (that is, despite what seems to have been a general expectation 
to the contrary),the answer to Question 5.1 is no [26]. 

So here we have disagreement of fractional and integer (but support for the 
idea that such disagreement signals combinatorial difficulties). It was the under
standing provided by [23] of situations where one cannot have such disagreement 
that gave the first clue to [26]; see [26], [29]. 

Erdös-Faber-Lovasz again 
The fractional version of Conjecture 2.3 was conjectured in [42] and proved in [34]: 

THEOREM 5.2 If H is simple on n vertices, then x'* < TI. 

Due to its greater gcnerality,this (eventually) turned out to have a proof consid
erably easier than that of the implied v(H) > \H\/n, which is the main result of 
[42]. The fractional version of Conjecture 2.4 is still unresolved. 

"Nice" again 
We close with our favorite realization of the idea that hypergraphs of bounded 
edge size and large degree are asymptotically well ehaved [25], [29] : 

CONJECTURE 5.3 For fixed k and k-bounded H, x|(W) ~ x'(W) ~ x'*(W). 

Here even x' ~ x'* f° r niultigraphs is open, though more precise results have been 
conjectured for more than twenty years (see [43, Problem 63]). 

Conjecture 5.3 goes far beyond Theorem 3.1, and may be regarded as provid
ing a complete understanding of the asymptotics of chromatic and list-chromatic 
indices of /c-bounded hypergraphs, even in the absence of anything like (2). (That 
it implies Theorems 2.2, and 3.1 is not obvious, but follows from the version of 
Theorem 2.2 given in [38].) 
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Connections between Euclidean convex geometry and combinatorics go back to Eu
ler, Cauchy, Minkowski, and Steinitz. The theory was advanced greatly since the 
1950's and was influenced by the discovery of the simplex algorithm, the connec
tions with extremal combinatorics, the introduction of methods from commutative 
algebra, and the relations with complexity theory. 

The first part of this paper deals with convexity in general, and the second 
part deals with the combinatorics of convex polytopes. There are many excellent 
surveys [21], [10] and collections of open problems [14], [30]. I try to discuss several 
specific topics and to zoom in on issues with which I am more familiar. 

1. Convex sets in general 

1.1 Covering, packing, and tiling 
Borsuk conjectured (1933) that every bounded set in Rd can be covered by d + 1 
sets of smaller diameter. Kahn and Kalai [23] showed that Borsuk's conjecture is 
very false in high dimensions. 

Here is the disproof of Borsuk's conjecture. Let f(d) be the smallest integer 
such that every bounded set in Rd can be covered by f(d) sets of smaller diameter. 
For a bounded metric space X, let b(X) be the minimum number of sets of smaller 
diameter needed to cover X. Consider P d - 1 the space of lines through the origin 
in Rd where the metric is given by the angle between two lines. The diameter of 
P d _ 1 is 7r/2 and the distance between two lines is TT/2 iff they are orthogonal. Let 
d = 4p, p a prime. Frankl and Wilson [18], see also [40], [17], proved that there 
are at most 1.8d vectors in {—1, + l } d such that no two are orthogonal. This yields 
b(Fd~l) > l . l d , because if p d _ 1 is covered by t sets of smaller diameter, each 
such set contains at most 1.8d of the lines spanned by the vectors in {—l,+l}d . 
But there are 2 d _ 1 such lines and therefore t > (2/1.8)d. Now, embed P d _ 1 into 
E d by the map x —> x <8) x, where £ is a vector of norm 1 in Rd. Note1 that 
< x <g> x.y <&y >=< x,y > 2 . Therefore, the order relation between distances is 
preserved, and the image of P d _ 1 is the required counterexample. This example 
gives f(d) > 1.2^, for sufficiently large d. 

* e-mail: kalai@math.huji.ac.il 
xIf x = (x\,X2,...,Xd) and y = (yi,2/2» • • •,yk), you can regard i 0 y a s the (d x fc)-matrix 

whose (i, j )-entry is Xi • yj. 
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Betke, Henk, and Wills [7] proved for sufficiently high dimensions Fcjes Toth's 
sausage conjecture. They showed that the minimum volume of the convex hull of 
n nonovcrlapping congruent balls in Rd is attained when the centers are on a line. 

Keller conjectured (1930) that in every tiling of Rd by cubes there arc two 
cubes that share a complete facet. Lagarias and Shor [31] showed this to be false 
for d > 10. They used a reduction to a purely combinatorial problem, which was 
found by Corradi and Szabó. 

Some problems 
There arc many problems on packing, covering, and tiling, and the most famous 
are perhaps the sphere packing problem in R3 and the (asymptotic) sphere packing 
problem in Rd. There are several open problems around Borsuk's problem. What 
is the asymptotic behavior of /(d)? What is the situation in low dimensions? 
What is the behavior of ò(Pn)? Witsenhausen conjectured (sec [17]) that if A is 
a subset of the unit sphere without two orthogonal vectors, then vo\(A) < 2iv/4, 
where 1 /̂4 is the volume of a spherical cap of radius 7r/4. This would imply that 
ò(Pn) < (\/2 + o(l))n . Perhaps the algebraic methods used for the Frankl-Wilson 
theorem can be of help. 

Schramm [42] proved an upper bound f(d)<s(d)=(y/3/2+o(l))d. He showed 
that every set of constant width can be covered by s(d) smaller homothets. Bour
gain and Lindenstrauss [13] proved the same bound by covering every bounded set 
by s(d) balls of the same diameter. (Danzcr already showed that an exponential 
number of balls is sometimes necessary.) In his proof Schramm related the value 
of f(d) to another classical problem in convexity, that of finding or estimating the 
minimal volume of Euclidean (and more generally spherical) sets of constant width. 

It is not known if there are sets of constant width 1 in Rd whose volume is 
exponentially smaller than the volume of a ball of radius 1/2. Perhaps the following 
series of examples (suggested by Schramm) Kd C Rd will do, but wc do not know 
to compute or estimate their volumes. A'o = 0 and Kd+\ is obtained as follows. 
Consider Kd as sitting in the hyperplane given by Xd+\ = 0 in Rd + 1 . Now, take 
Kd+i = Ad+i U Bd+\ where Ad+\ is the set of all points z with Xd+\ > 0 such 
that the ball of radius 1 around z contains Kd and Bd+i is the set of all points z 
with Xd+i < 0 that belong to every ball of radius 1 that contains Kd. Schramm 
also conjectured that the minimal volume of a spherical set of constant width 7r/4 
is obtained for an orthant. 

Finally, what is the minimal diameter dn such that the unit n-ball can be 
covered by n + 1 sets of diameter dtl? It is known that 2 — 0(log n/n) < dn < 2 — 
0(l/n), see [32]. Hadwiger conjectured that the upper bound (which corresponds 
to the standard symmetric decomposition of the ball to n + 1 regions) is the truth. 
Perhaps also here the natural conjecture is false? 

1.2 Helly-type theorems 
Tverberg's theorem 
Sarkaria [41] found a striking simple proof of the following theorem of Tverberg 
[50]: 

Every (d+ l)(r — 1) + 1 points in Rd can be partitioned into r parts such that 
the convex hulls of these parts have nonempty intersection. 
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He used the following result of Bârâny [2]. Let Ai, A2,..., Ad+\ be sets in Rd 

such that x G conv(Ai) for every i. Then it is possible to choose ai G A{ such that 
x G conv(ai, a 2 , . . . . ûd+i). (To prove this consider the minimal distance t between 
x and such conv(ai,a2,. . . , a<i+i) and show that if t > 0 one of the a^'s can be 
replaced to decrease t.) 

Now consider m = (d + l)(r — 1) + 1 points a\, a2,. • . , a.m in Rd and regard 
them as points in V = R d + 1 whose sum of coordinates is 1. Sarkaria's idea was to 
consider the tensor product F<8)^ where W is a (r — l)-dimensional space spanned 
by r vectors w\, ii?2,..., wr whose sum is zero. Next define m (= dim V 0 W — 1) 
sets i n ^ 0 ^ a s follows: 

A{ = {üi 0 vj\, ai 0 W2. • • •, di 0 wr}. 

Note that 0 is in the convex hull of each Ai and by Bârâny's theorem 0 G 
convjai 0 Wix,a2 0 Wi2,... , a m 0 u'im}, for some choices of i i , Ì2 , . . . *im. The 
required partition of the points is given by Qj = {a& : ik = j}, j = 1,2,.. . , r. To 
see this wrrite 0 = ^.Xk^k 0 wik, where the coefficients A& are nonnegative and 
sum to 1. Deduce that the vectors Vj = Ylken.- ^fcafc' 1 — 3— r ' a r e a ^ e c i u a ^ a s 

are the scalars aj = Ylken f̂c-
There are many beautiful problems and results concerning Tverberg's theo

rem, see [16]. Topological versions were found for the case where r is a prime [3] 
and were extended to derive colored versions of Tverberg's theorem [53]. Sierksma 
conjectured, see [51], that the number of Tverberg partitions is at least (r — l)!d . 
For a finite set A in Rd let f(A, r) = maxjdim r ç = 1 conv(^)} , where the maximum 
is taken over all partitions (îii, Î Î2 , . . . , î î r) of A. 

CONJECTURE: ^ J ^ f(A,r) > 0. (Note: dim0 = -1.) 

This extension of Tverberg's theorem was proved by Kadari for planar sets. 

Hadwiger-Debrunner's piercing conjecture 
Alon and Kleitman [1] proved the Hadwiger-Debrunner piercing conjecture. 

For every d and every p > d + 1 there is a c = c(p, d) < oc such that the 
following holds. For every family H of compact, convex sets in Rd in which any set 
ofp members of the family contains a subset of cardinality d+ 1 with a nonempty 
intersection there is a set of c points in Rd that intersects each member of H. 

Helly's theorem asserts that c(d+l , d+1) = 1 and it is not difficult to see that 
c(p, 1) = p — 1. We describe the proof for the first (typical) case d = 2,p = 4. We 
are given a family of n planar convex sets and out of every four sets in the family we 
can nail three with a point. We want to nail the entire family with a fixed number 
of points. The first step is to showT that there is a way to nail a constant fraction 
(independent from n ) of the sets with one point. This follows from a "fractional 
Helly theorem" of Katcalski and Liu. A more sophisticated use of the Katcalski-
Liu theorem shows that for every assignment of nonnegative weights to the sets in 
the family we can nail with one point sets representing a constant proportion of 
the entire weight. Using linear programming duality Alon and Kleitman proceeded 
to show that there is a collection Y of points (their number may depend on n) 
such that every set in the family is nailed by a constant fraction of the points in 
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Y. The final step, replacing Y with a set of bounded cardinality that meets all the 
sets in the family, is done using the theorems of Bârâny and Tverberg mentioned 
above. 

2. Convex polytopes 

2.1 Polytopes, spheres, and the Steinitz Theorem 
Convex polytopes are among the most ancient mathematical objects of study. 
The combinatorial theory of polytopes is the study of their face structure and in 
particular their face numbers. There is also a developed metric theory of polytopes 
(problems concerning volume, width, sections, projections, etc.) and arithmetic 
theory (lattice points in polytopes). These three aspects of convex polytopes are 
related and some of the algebraic tools mentioned below are relevant to all of them. 

A convex d-dimensional polytope (briefly, a d-polytope) is the convex hull of 
a finite set of points that affmely span Rd. A (nontrivial) face of a d-polytope P is 
the intersection of P with a supporting hyperplane. The empty set and P itself are 
regarded as trivial faces. 0-faces are called vertices, 1-faces are called edges, and 
(d— l)-faces are called facets. The set of faces of a polytope is a graded lattice. Two 
polytopes P and Q are combinatorially isomorphic if there is an order preserving 
bijection between their face lattices. P and Q are dual if there is an order reversing 
bijection between their face lattices. 

Simplicial polytopes are polytopes all of whose proper faces are simplices. 
Duals of simplicial polytopes are called simple polytopes. A d-polytope P is simple 
iff every vertex of P belongs to d edges. Denote by fi(P) the number of i-faces of 
P. The vector (fo(P), fi(P), • • •, fd(P)) is called the /-vector of P. Eulcr's famous 
formula V — E + F = 2 is the beginning of a rich theory on face numbers of convex 
polytopes and related combinatorial structures. 

The wild behavior for d > 4 

The boundary of every simplicial d-polytope is a triangulation of a (d— l)-sphere, 
but there are triangulations of (d— l)-spheres that cannot be realized as boundary 
complexes of simplicial polytopes (for d > 4). Goodman and Pollack [20] proved 
that the number of combinatorial types of polytopes is surprisingly small. The 
number of d-polytopes with 1,000,000 vertices (in any dimension) is bounded above 
by 22 whereas the number of triangulations of spheres with 1,000,000 vertices is 
between 22 °. (This is achieved for d ~ 552,786.) There are combinatorial 
types of convex polytopes that cannot be realized by points with rational coordi
nates [22], [52] and there are polytopes that have a combinatorial automorphism 
that cannot be realized geometrically and whose realization space is not connected. 
Mnev [39] showed that for every simplicial complex C, there is a polytope whose 
realization space is homotopy equivalent to C. Recently, Richter announced that 
all these phenomena occur already in dimension 4, that all algebraic numbers are 
needed to coordinatize all 4-polytopes, and that there is a nonrational 4-polytope 
with 34 vertices. 
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The tame behavior for d = 3 
All these "pathologies" do not occur for 3-polytopes by a deep theorem of Steinitz 
asserting that every 3-connected planar graph is the graph of a polytope and re
lated theorems. Relatives of the Koebe-Andreev-Thurston circle packing theorem 
provide a new approach to the Steinitz Theorem, see [43]. Andreev and Thurston 
proved that there is a realization of every 3-polytope P such that all its edges 
are tangent to the unit ball, and this realization is unique up to projective trans
formations preserving the unit sphere. Schramm observed that by choosing the 
realization so that the hyperbolic center of the tangency points of edges with the 
unit sphere is at the origin, you get the following result (this answers a question 
of Grünbaum, and extends a result of Mani): 

Let P be a 3-polytope, and let T be the group of combinatorial isomorphisms 
of the pair (P,P*), where P* is the dual of P. (In other words, each element ofT 
is either a combinatorial automorphism of P or an isomorphism from P to P*.) 
Then there is a realization of the polyhedron so that every element of T is induced 
by a congruence. 

An open problem of Perles is whether every combinatorial automorphism <j> 
of a centrally symmetric d-polytope (P is centrally symmetric if x G P implies 
—x G P) satisfies (j>(—v) = —<f>(v). 

2.1 Face numbers and /i-numbers of simplicial polytopes 
The upper bound theorem and the lower bound theorem 
Motzkin conjectured in 1957 and McMullen proved in 1970 [38] the upper bound 
theorem: Among all d-polytopes with n vertices the cyclic polytope has the maxi
mal number of fc-faces for every k. The cyclic d-polytope with n vertices is the con
vex hull of n points on the moment curve x(t) = (t, t2,..., td). Cyclic d-polytopes 
have the remarkable property that every set of k vertices determines a (k — l)-face 
for 1 < k < [d/2]. 

Klee proved in 1964 the assertion of the upper bound theorem when n is large 
w.r.t. d for arbitrary Eulerian complexes, namely (d — l)-dimensional simplicial 
complexes such that the link of every r-face has the same Euler characteristics 
as a (d — r — l)-sphere. The assertion of the upper bound theorem for arbitrary 
Eulerian complexes (even manifolds) is still open. 

Brückner conjectured in 1909 and Barnctte [4] proved in 1970 the lower bound 
theorem: The minimal number of fc-faces for simplicial d-polytopes with n vertices 
is attained for stacked polytopes. Stacked polytopes are those polytopes built by 
gluing simplices along facets. 

The ^-theorem 
Let d > 0 be a fixed integer. Given a sequence / = (/o, f\,..., fd-i) of nonnegative 
integers, set /_ i = 1 and define h[f] = (hQ, hi,..., hd) by the relation 

E t o ^ d " f e = EtoA-i(* - I)"-*-
If / = f(K) is the /-vector of a (d—l)-dimensional simplicial complex K then 

h[f] = h(K) is called the h-vector of K. The h-vectors are of great importance in 
the combinatorial theory of simplicial polytopes. The upper bound theorem and 
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the lower bound theorem have simple forms in terms of the /i-numbers. The upper 
bound theorem follows from the inequality hk < {nd^k1)- The lower bound 
theorem amounts to the relation hi < h,2. The Dehn-Sommerville relations for the 
face numbers of simplicial polytopes assert that hk = hd-k-

In 1970 McMullen proposed a complete characterization of /-vectors of 
boundary complexes of simplicial d-polytopes. McMullen's conjecture was settled 
in 1980. Billera and Lee [8] proved the sufficiency part of the conjecture and Stanley 
[45] proved the necessity part. Recently, McMullen [36], [37] found an elementary 
proof of the necessity part of the ^-theorem. 

The McMullen conjecture, now called the g-theorem, asserts that (ho, hi,..., 
hd) is the h-vector of a simplicial d-polytope if and only if the following conditions 
hold: (a) hi = hd-i, (b) there is a graded standard algebra M = CB^QMì

 suc^ 
that dim Mi = hi — fti_i, for 0 < i < [d/2]. (A graded algebra is standard if it is 
generated as an algebra by elements of degree 1.) 

The second condition was originally given in purely combinatorial terms, 
which is equivalent to the formulation given here by an old theorem of Macaulay. 
In the rest of this section we will describe methods used to attack the upper and 
lower bound theorems and the ^-conjecture. 

It is conjectured that the assertion of the p-theorem applies to arbitrary 
simplicial spheres. 

Shellability and the /i-vector 
A shelling of a simplicial sphere is a way to introduce the facets (maximal faces) 
one by one so that at each stage you have a topological ball until the last facet is 
introduced and you get the entire sphere. Let P be a simplicial polytope and let 
Q be its polar (which is a simple polytope). A shelling order for the facets of P is 
obtained simply by ordering the vertices of Q according to some linear objective 
function (j) . The number hk(P) has a simple interpretation as the number of 
vertices v of Q of degree k where the degree of a vertex is the number of its 
neighboring vertices with lower value of the objective function. Switching from 
(j) to —<\> we get the Dehn-Sommerville relations hk = hd-k (including the Euler 
relation for k = 0). Put h*k(Q) = hk(P)-

We are ready to describe McMullen's proof of the upper bound theorem (in a 
dual form). Let Q be a simple d-polytope with n facets. Consider a linear objective 
function (j) that gives higher values to vertices in a facet F than to all other vertices 
to obtain that (*) h*k_x{F) < h*k(Q). Next, 

(**) E h*k(F) = (k + l)hJ+1(Q) + (d - k)h*k(Q), 

where the sum is over all facets F of Q. To see this note that every vertex of degree 
k in Q has degree k — 1 in k facets containing v and degree k in the remaining 
d-k facets. (*) and (**) give the upper bound relations h*d_k(Q) < (n~dfcfe_1) by 
induction on k. 

Cohen-Macaulay rings 
Stanley, see [46], proved the upper bound theorem for arbitrary simplicial spheres 
using the theory of Cohen-Macaulay rings. Let K be a (d — l)-dimensional sim
plicial complex on n vertices xi,..., xn. The face ring R(K) of K is the quotient 
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R[a?i, X2 ... xn]/I where I is the ideal generated by non faces of K (i.e., J is gener
ated by monomials of the form xix -Xi2--- Xim where [x^, Xi2,..., Xim] is not a face 
of K). R(K) is a Cohen-Macaulay ring if it decomposes into a direct sum of (trans
lation of) polynomial rings as follows: there are elements of R(K), 0i ,02 , . • • ^d 
and 771, r/2, • • •, Vt such that 

R(K) = eUiriM0i,e2,..^ed]. 

It turns out that the 0's can be chosen as linear combinations of the variables 
and then the number of 77's of degree i is precisely hi. Reisner found topolog
ical conditions for the Cohen-Macaulayness of R(K) that imply that R(K) is 
Cohen-Macaulay when K is a simplicial sphere. All this implies the upper bound 
inequalities for the h numbers because after moding out by d linear forms the 
dimension of the space of homogeneous polynomials of degree k (from which the 
r)fs are taken) is (n"d^ f e"1) . 

Toric varieties 
For every rational d-polytope P one associates an algebraic variety T(P) of di
mension 2d. If P has n vertices vi, 2̂» • • • -, vn then consider n complex variables 
zi,...,zn and replace each affine relation with integer coefficients Y^nivi = 0, 
where YLni — 0> by the polynomial relation Yl2?* = 1- When P is simplicial 
Danilov proved that the 2ith Betti number of T(P) is hi. This enabled Stanley 
[45] to prove the necessity part of the ^-conjecture via the Hard-Lefschetz theorem 
for T(P). 

Rigidity 
Let P be a simplicial d-polytope, d > 3. then P is rigid. Namely, every small 
perturbation of the vertices of P that does not change the length of the edges of 
P is induced by an affine rigid motion of Rd. The rigidity of simplicial 3-polytopes 
follows from Cauchy's rigidity theorem, which asserts that if two combinatorially 
isomorphic convex polytopes have pairwise congruent 2-faces then they are con
gruent. (It follows also from Dehn's infinitesimal rigidity theorem for simplicial 
3-polytopes.) There is a simple inductive argument on the dimension to prove 
rigidity of simplicial d-polytopes starting with the case d = 3. If P is a simplicial 
d-polytope with n vertices, there are dn degrees of freedom to move the vertices 
and the dimension of the group of rigid motions of Rd is (c^1) • Therefore the rigid
ity of P implies the lower bound inequality fi(P) > dn — (^J1)- This observation 
also gives various extensions of the lower bound theorem, see Kalai [25]. Lee [34] 
extended this idea to higher /i-numbers and found relations to the face ring. 

The algebra of weights 
A remarkable recent development is McMullen's elementary proof of the necessity 
part of the ^-theorem [36], [37]. McMullen proved, in fact, the assertion of the 
Hard-Lefschetz theorem and his proof applies to non-rational simplicial polytopes. 
(There, the toric varieties do not exist but the assertion of the Hard-Lefschetz 
theorem in terms of the face ring still makes sense.) McMullen defines r-weights 
of simple d-polytopes to be an assignment of weights w(F) to each r-face F such 
that in each (r + l)-face G, Y^^(F)UF,G = 0, where the sum is taken over all 
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r-faces F of G and up.G is the outer normal of F in G. Let Qr(P) denote the 
space of r-weights of the polytope P. A well-known theorem of Minkowski asserts 
that assigning to an r-face its r-dimensional volume is an r-weight. These special 
weights have a central role in the proof. 

McMullen's proof proceeds in the following steps: (1) He defines an alge
bra structure on weights and shows that this algebra is generated by 1-weights. 
(2) He proves that dim£l r(P) = hr(P). (3) He considers the special 1-weight UJ, 
which assigns to each edge its length, and proves that ujd~2r : Qr —• Qd-r is an 
isomorphism. To show this McMullen computes the signature of the quadratic 
form ujd~2rx2 on Qr(P). This is achieved via new geometric inequalities of Brunn-
Minkowski type. 

Algebraic shifting 
Algebraic shifting, introduced by Kalai in [24], is a way to assign to every simplicial 
complex K an auxiliary simplicial complex A(K) of a special type. The vertices 
of A(K) are vi,V2,vs,... and the r-faces of A(K) respect a certain partial order. 
Namely, if 5 = (vi0, v^,..., vir) form an r-face of A(K) then if one of the vertices 
Vj of S is replaced with a vertex Vi with i < j this results also with a face of A (if). 
(For example, if (^3,^7) is a 1-face of A(K) then so is (^3,^5).) The definition of 
A(K) is given by a certain generic change of basis for the cochain groups of K, 
see [11]. 

Algebraic shifting complements the classical notion of shifting in extremal 
combinatorics which was introduced by Erdös, Ko and Rado. It is also closely 
related to the notion of "generic initial ideals" in commutative algebra. 

Various combinatorial and topological properties of simplicial complexes are 
preserved by the operation K —> A(K). A(K) has the same /-vector as K. A(K) 
also have the same Betti numbers as K but other homotopical information is 
eliminated as A(K) has the homotopy type of a wedge of spheres. K has the 
Cohen-Macaulay property (its face ring is Cohen-Macaulay) iff A(K) has. 

What is still missing is the relation of algebraic shifting with embeddability in 
Rn . It is a well-known fact that if5, the complete graph with five vertices, cannot 
be embedded in the plane. More generally, van Kampen and Flores proved that 
cr2r+2, the r-skeleton of the (2r + 2)-simplex, cannot be embedded in R2r . Kalai 
and Sarkaria propose 

CONJECTURE: a2r+2 is not contained in A(K) whenever K is embeddable in R2r . 

This conjecture would imply the assertion of the g-theorem for arbitrary simplicial 
spheres. 

2.3 Other topics 
Flag numbers and and other invariants of general polytopes 
Flag numbers of polytopes count chains of faces of prescribed dimensions. There 
are 2d flag numbers but Bayer and Billera [5] showed that the affine space of flag 
numbers of d-polytopes has dimension Cd — 1 where Cd is the dth Fibonacci number. 
A significant basis of the space of flag numbers is Fine's CD-index, see [6], [49]. 
Toric varieties supply interesting invariants for general polytopes P. The dimen
sions of the (middle perversity) intersection homology groups of T(P) are linear 
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combinations of flag numbers, see [47], [26]. There are mysterious connections be
tween these invariants of a polytope P and its dual P* (see [25, Section 12], [6], 
[48]). 

The following very simple problem is open: Show that a centrally symmetric 
polytope P in Rd must have at least 3d nonempty faces. 

Reconstruction theorems 
Whitney proved that the graph of a 3-polytope determines its face structure. The 
2-faces of the polytope are given by the induced cycles, which do not separate the 
graph. This can be extended to show that the (d — 2)-skcleton of a d-polytope 
determines the face structure and for general polytopes this cannot be improved. 
(See [22, Chapter 12].) Perles proved that the [d/2]-skeleton of a simplicial d-
polytope determines the face structure, and Dancis [15] extended this result to 
arbitrary simplicial spheres. Perles conjectured and Blind and Mani [12] proved 
that the face structure of every simple d-polytope is determined by the graph (1-
skeleton) of the polytope. For a simple proof see Kalai [27]. Consider a simplicial 
(d — l)-dimensional sphere and a puzzle in which the pieces are the facets and 
for each piece there is a list of the d neighboring pieces. The Blind-Mani theorem 
asserts that for boundary complexes of simplicial polytopes (and for a certain class 
of shellable spheres) the puzzle has only one solution. Conjecture: For an arbitrary 
simplicial sphere the puzzle has a unique solution. Perhaps the machinery of Cohen-
Macaulay rings can be of help. 

Polytopes of triangulations 
Lee [33] and Haiman proved that the set of triangulations of the regular n-gon 
with noncrossing diagonals corresponds to the vertices of an (n — 3)-dimensional 
polytope. The r-faces of this polytope correspond to all triangulations containing 
a given set of n — 3 — r diagonals. Independently (as part of a theory of generalized 
hypergeometric functions), Gelfand, Kapranov, and Zelevinskii [19] defined much 
more general objects called "secondary polytopes", which correspond to certain 
triangulations of arbitrary polytopes. Further extensions were given by several au
thors, including the Billera and Sturmfels "fiber polytopes" [9]. It appears now 
that these constructions are quite fundamental in convex polytope theory and 
the reader is referred to Zeigler's book [52]. In another independent development, 
Slater, Tarjan, and Thurston [44] proved a sharp lower bound on the (combinato
rial) diameter of the associahedron using volume estimates of hyperbolic polytopes. 

2.4 The simplex algorithm and the diameter of graphs of polytopes 
The simplex algorithm solves linear programming problems by moving from vertex 
to vertex of a polytope (the set of feasible solutions) along its edges. Let A(d,n) 
be the maximum diameter of the graphs of d-polytopes P with n facets. It is not 
known if A(d,n) is bounded above by a linear function of d and n, or even by a 
polynomial function of d and n. In 1970 Larman proved that A(d,n) < 2d _ 3n. 
Recently, quasi-polynomial bounds were found, see Kalai and Kleitman [29] for a 
simple proof for A(d, n) < n l o g d + 1 . All the known upper bounds use only the facts 
that the intersection of faces of a polytope is a face and that the graph of every 
face is connected. 
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Consider a linear programming problem with d variables and n constraints. 
Given the fact tha t the diameter of the feasible polytope is relatively small, the 
next step would be to find a pivot rule for linear programming tha t requires for 
every linear programming problem a subexponential number of pivot steps. Here, 
we assume tha t each individual pivot step should be performed by a polynomial 
number of arithmetic operations in d and n. However, no such pivot rule is known. 
Recently, Kalai [28] and independently Matouwsek, Sharir, and Welzl [35] found a 
randomized pivot rule such tha t the expected number of pivot steps needed is at 
most exp(cy/d log n). 

Added in proof: Amenta [Discr. Comp. Geometry, to appear] proved an old con
jecture of Grünbaum and Motzkin tha t the Helly order of families whose members 
are disjoint unions of t convex sets is t(d + 1); tha t is, she proved tha t given 
a finite family JC so tha t every intersection of members of /C is the union of t 
pairwise-disjoint convex sets, and every intersection of at most t(d + 1) members 
is non-empty then the intersection of all members is non-empty as well. Sarkaria 
proved Sierksma's conjecture on the number of Tverberg's partitions using certain 
computations of Chern classes. Sheftel verified the assertion of the upper bound 
theorem (for /-vectors) for arbitrary odd dimensional manifolds. She relies on a 
result of Schenzel on h-vectors of Buchsbaum complexes. 
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In 1947 Paul Erdös [8] began what is now called the probabilistic method. He 
showed that if (fc)21- '2 ' < i then there exists a graph G on n vertices with 
clique number u)(G) < k and independence number ct(G) < k. (In terms of the 
Ramsey function, R(k,k) > n.) In modern language he considered the random 
graph G(n, .5) as described below. For each fc-set S let Bs denote the "bad" event 
that S is either a clique or an independent set. Then Pr [i?s] = 21 " W so that 
^Pr [£ , s ] < 1, hence AB s ^ 0 and a graph satisfying AB s must exist. 

In 1961 Erdös with Alfred Rényi [11] began the systematic study of random 
graphs. Formally G(n,p) is a probability space whose points are graphs on a fixed 
labelled set of n vertices and where every pair of vertices is adjacent with inde
pendent probability p. A graph theoretic property A becomes an event. Whereas 
in the probabilistic method one generally requires only Pr[A] > 0 from which one 
deduces the existence of the desired object, in random graphs the estimate of Pr[A] 
is the object itself. Let A denote connectedness. In their most celebrated result 
Erdös and Rényi showed that if p = p(n) = ^ + ^ then Pr[A] -> exp(-e~ c) . We 
give [2], [6] as general references for these topics. 

Although pure probability underlies these fields, most of the basic results 
use fairly straightforward methods. The past ten years (our emphasis here) have 
seen the use of a number of more sophisticated probability results. The Chernoff 
bounds have been enhanced by inequalities of Janson and Talagrand and new 
appreciation of an inequality of Azuma. Entropy is used in new ways. In its early 
days the probabilistic method had a magical quality — where is the graph that 
Erdös in 1947 proved existed? With the rise of theoretical computer science these 
questions take on an algorithmic tone — having proven the existence of a graph 
or other structure, can it be constructed in polynomial time? A recent success 
of Beck allows the Lovâsz local lemma to be derandomized. Sometimes. We close 
with two forays into a land dubbed Asymptopia by David Aldous. There the 
asymptotic behavior of random objects is given by an infinite object, allowing 
powerful noncombinatorial tools to be used. 

1. Chernoff, Azuma, Janson, Talagrand 

Let X = Xi -\ h Xm with the Xi mutually independent and normalized so that 
E[X] = E[Xi] = 0. The so-called Chernoff bounds (Bernstein or antiquity might 
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be more accurate attributions) bound the "large deviation' 

Pr[X > a] < e~XaE[exx] = e~Xa Y[E[e XX; 

(See, e.g., the appendix of [2].) The power in the inequality is that it holds for all 
À > 0 and one chooses A = A (a) for optimal results. Suppose, for example, that 
\Xi\ < 1. One can show E[eXXi] < cosh(A) < exp(A2/2), the extreme case when 
Xi = ±1 uniformly. Then Pr[X > a] < cxp(-Aa + A2m/2) = exp(-a2 /2ra) by 
the optimal choice A = a/m. Intuition is guided by comparison to the Gaussian, 
in the above example Var(Xj) < 1 so Var(X) < ra and the probability of being 
more than a = Gyfm of the mean should, and here does, drop like the chance of 
being a standard deviations off the mean, like exp(—o~2/2). 

The new inequalities are used when the Xi exhibit slight dependencies. To 
illustrate them, let G ~ G(n, .5). Let f(x) = (")2 " W be the expected number 
of ^-cliques and let ko = ko(n) satisfy /(fco) > 1 > /(fco + !)• Calculation gives 
ko ~ 21og2 n and it has long been known that UJ(G) is almost surely very close to 
ko- Now set k = ko — 4 so that /(fc) > n3*^1) is large. We show thrice that 

Pr[u;(G)<fc] < 2 - n 2 l n " C n 

2 

(As G may be empty the probability is at least 2~cn .) The proof via Azuma's 
Inequality, given below, was given by Béla Bollobâs [7] and was essential to his 
discovery that the chromatic number x(G) ~ n/(21og2n) almost surely. 
Azuma's Inequality: Let p = Xo.Xi,... ,Xm = X be a martingale in which 
|Xi+i - Xi\ < 1. Then Pr[X > p. + a] < exp(-a 2 /2m). 

In application we use an isoperimetric version. Let Q = H™ i ^* ^ c a P r o c mct 
probability space and X a random variable on it. Call X Lipschitz if whenever 
u , w ' G f ì differ on only one coordinate |X(LJ) — X(UJ')\ < 1. Set p = E[X]. 
Azuma's Perimetric Inequality: Pr[X > p + a] < e~a / 2 m . 

The connection is via the Doob martingale, Xì(LJ) being the conditional ex
pectation of X given the first i coordinates of u. The same inequality holds for 
Pr[X < p — a]. The random graph G(n, .5) can be viewed as the product of its 
m = (2) coin flips. Bollobâs set X equal to the maximal number of edge disjoint 
fc-cliques. From probabilistic methods he showed E[X] > cn2k~4. (One may con
jecture that the true value is 9(n2fc~2).) Then v(G) < k if and only if X = 0 
and 

Pr[X = 0}= Pr[X <p-p}< e-»2l2ilx = e'®^ìn~*n> 
For Janson's inequalities let H be a fixed set and Y Ç. ÇI a, random subset 

(so, formally, 2n is the probability space) where the events y G Y arc mutually 
independent over y G H. G(n,p) fits this perfectly with Q = [n]2 the set of potential 
edges and Pr[*/ E G(n,p)\ = p for every y G il. Let A i , . . . , Am Ç Ci. Let B{ be the 
event Y ^ Ai, li its characteristic function, X = ^Ii, and p = E[X]. Write i ~ j 
if i ^ j and Ai n Aj / 0. Roughly ~ represents dependence of the corresponding 
Bi. Let e be an upper bound for all Pr[i?j]. Set 

M = Yl Pr[5z] and A = ] T P r [ ^ A Bj] 
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Janson's Inequality: 
M <Pr[ABi] < M e ^ ^ 

Generalized Janson Inequality: If A > p(l — e) then 

Pr[ABi] < c-/*a(i-0/A 

In many cases e —• 0, A —> 0, and M ~ e~ß so that Janson's inequality gives 
Pr[X = 0] ~ e_M. In this sense Janson's Inequality acts as a Poisson approximation 
for X, though with particular emphasis at X = 0. For example, when p = c/n 
and Aijk = {{i, j}, {i, fc}, {j, fc}} range over all triangles these conditions hold and 
G(n,p) is triangle free with probability ~ exp(—c3/6), as known to Erdös and 
Rényi. Sweeping generalizations of this are given in [13] where the first proof of 
Janson's inequality may be found. Other proofs and generalizations arc given in 

[12], [2]-
Applying Janson to Pr[uj(G(n, .5)) < fc] we let As = [S]2, S ranging over 

the fc-sets of vertices. Then e —> 0, p = /(fc). A is the expected number of edge 
overlapping fc-cliques, calculation gives domination by cliques overlapping in a 
single edge, and A ~ //2(2fc4n-2). The Poisson approximation does not apply but 
the extended Janson inequality gives 

Pr[<j(G(n,.5)) < fc] < e " ^ 2 / A = e - ^ 2 ^ _ 4 « 

The newest result, Talagrand's inequality, has a similar framework to that 
of Azuma. Let ft = YlT &i be a product probability space. For A Ç ft, x = 
(xi,...,xt) G ft define a "distance" p(A,x) as the least t so that for any real 
Q i , . . . , Qm with J2 aì = 1 t n e r e exists y = (yi,...,yt) E A with ^2Xj^y. OLì < t. 
Note critically that y may depend on e*i,... , a m . Set At equal to the set of all 
x G ft with p(A, x) < t. 
Talagrand's Inequality [20]: 

Pr[A]Pr(3t] <e~t2/A 

Call X : ft -* R /-certifiable ( / : Ar -> Ar) if whenever X(x) > s, x = 
(xi,... ,xni), there is a set of at most f(s) indices J that certify X > s in that if 
y = (yi,... ,yrn) has jji = xjt for i e I then X(y) > s. 

COROLLARY 1 If X is Lipschitz and f-certifiable then for all t > 0, b 

Pr[X < b - ty/f(j>j] Pr[X > b] < e~f2/4 

Proof. Set A = {x : h(x) <b- ty/f(b)}. Now suppose h(y) > b. We claim y 0 At. 
Let / b e a set of indices of size at most f(b) that certifies h(y) >b as given above. 
Define o^ = 0 when i £ I, OLì = |/ |~ ly /2 when i G / . If y G At there exists a 
z G A that differs from y in at most ty/f(b) coordinates of J though at arbitrary 
coordinates outside of / . Let yf agree with y on I and agree with z outside of J. 
By the certification h(y') > b. Now y',z differ in at most ty/f(b) coordinates and 
so, by Lipschitz, 

h(z) > h(y') - ivTW > b - ty/ffî 
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but then z & A, a contradiction. So Pr[X > 6] < 1 - Pr[At], thus 

Pr[X < b - ty/f(bj} Pr[X > b] < e"*2/4 

As the right-hand side is continuous in t we may replace < by < giving the Corol
lary. D 

Letting b (or b — tyj f(b)) be the median of X the Corollary gives a sharp 
concentration result. For example, let ft = [0, l ] n with uniform distribution and 
let X(xi,..., xn) be the length of the longest monotone subsequence of xi,..., xn. 
X is Lipschitz and /-certifiable with f(s) = s as a monotone subsequence certifies 
itself. It is known that X ~ 2y/n. almost surely. Therefore X almost surely lies 
within nl/Auj(n) (uj(n) —> oc) of its median. 

In G(n, .5) let X be, as before, the maximal number of edge disjoint fc-cliques. 
X is Lipschitz and /-certifiable with f(s) = (%)s as the s fc-cliques certify them
selves. Although medians are notoriously difficult to calculate, tight concentra
tion yields that the median b ~ p > cn2k~4 as previously discussed. Setting 
t = bf{b)~1'2 

Pr[u;(G) < fc] = Pr[X = 0] = Pr[X < b - ty/f(bj} < 2e't2/A < ce'0'112 ln~6 n 

2. Entropy 

Let T be a family of subsets of ft. A two-coloring is a map \ : ft —> {—1,-1-1}. 
For A Ç ft define x(A) = YlaeAX(a) s o that lx(^)l *s small if the coloring is 
"nearly balanced" on A. An object of discrepancy theory is to find \ s o a ^ lx(^)|5 

A G T, are small. It is convenient to also define partial colorations as maps \ '• 
ft —> {—1,0,1}, a is called colored when \(a) ¥" 0? x(A) is as before. 

Under random coloring of an n-set A, x(A) has distribution Sn, roughly 
Gaussian with zero mean and standard deviation rc1/2. Chernoff bounds give 
Pr[|x(A)| > An_1//2] < 2e~A I2. When T consists of ra sets, each of size rc, one 
sets A = (21n(2ra))1/2 so these "failure events" each have probability less than ^ 
and thus there exists \ with all |x(^)l < Xy/n. With entropy wc can sometimes 
do better. 

Define the roundoff function Rb(x) as that integer i with 26/ closest to x. 
Note that Rb(Sn) = 0 when \Sn\ < b. Define ENT(rc,6) to be the entropy of the 
random variable Rb(Sn). 

THEOREM 1 Let T = {Si,....Sv} with |ft| =n and \S{\ = n{. Suppose bt,e, and 
7 < \ are such that 

Y, ENT(rci; bi) < erc and Y , \ ) < ^ ' ^ 

Then there is a partial coloring x °f ^ with 

\x(Si)\ <bi for alii 

and more than 2*yn points x G ft colored. 
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Proof. Let x'• ^l ^> {—1,+1} and define 

L(x) = (RMSi)),...,Rb„(x(Sv)) 

Entropy, critically, is subadditive so L has entropy at most erc. Therefore some 
value of L obtained with probability at least 2~en , and some 2^1-c^n colorings x 
have the same L-value. Colorings x c a n be considered points on the Hamming cube 
{—l,+l}n . A classic result of Kleitman [14] gives that some two Xi^X2 of these 
must differ in at least 2yn coordinates. Then X = (Xi ~ X2)/2 gives the desired 
partial coloring. D 

It is best to consider ENT(rc, b) under the parametrization b = Arc1/2. Then 
Rb(Sn) is roughly R\(N), with N standard Gaussian. For A large ENT(rc,ò) < 
e~cX , the terms R = 0, ±1 dominating. In particular, for A a large constant 
ENT < e. For A small ENT(rc,ò) < cln(A_1), the dominating factor being that R 
is roughly uniform for |i| = 0 (A - 1 ) . 

Suppose T consists of n sets on an n-set ft, so all sets have size at most rc. For 
A a large constant (six will suffice) the Theorem gives a coloring with only a small 
(but fixed) fraction of the points uncolored and all \x(&)\ < Arc1/2. Appropriately 
iterating, this author [19] showed that for suitable constant A one can find x as 
above with no points uncolored. 

Let ft = [rc] and T be the arithmetic progressions on [rc]. The discrepancy 
disc(T) is the least g(n) for which there is a x : ^ -> { — 1 , +1} with |x(^4)| < 9(n) 
for all A e J7. In 1964 Roth [18] used analytic methods to show disc(J7) > erc1/4. 
The upper bound has been lowered from n'5+°^ to n 1 / 3 - ^ 1 ) to rc1/4 lncrc [3] over 
the decades and just recently to c'rc1/4 by Matousek and this author [16]. Beck [3] 
provided a key decomposition. For each d < rc, 0 < i < d, and j > 0 with 2J < rc, 
split {x G [rc] : x = i mod d} into consecutive intervals of length 2J, leaving out the 
excess. Let G be the family of sets obtained. Any AÇLT can be written A = B — C 
with C C B and both B, C the disjoint union of S G G of distinct cardinalities. 
Thus, a coloring x for which all S G G with \S\ = 2-? have \x(S)\ < f(2j) would 
have the property that |x(^)l < ^^2j / (2 J ) f° r a u A. G T. Calculation gives that 
G has roughly n2s~2 sets of size s = 2J. To get a substantial partial coloring with 
|x(^)l < / ( | ^ 4 | ) f o r A G ö the entropy requirement becomes 

Yjn
2s~2E^T(s,f(s)) < en 

When s ~ rc1/2 we may take f(s) = kn1/4. For larger s the savings in s - 2 allow for 
a smaller f(s) and for smaller s the savings in s1/2 also allow for a smaller f(s). 
With care we can ensure the entropy requirement and that 2 ^ / ( s ) = 0(rc1/4). 
This gives a substantial partial coloring of [rc] with |x(^) | — 0(rc1/4) for all A G T. 
The iteration of this method to get a full coloring x (without losing a logarithmic 
factor!) uses interesting but noncombinatorial ideas. 

Matousek [15] applied entropy to discrepancy of halfplanes. Let P be a set 
of rc points in the plane and T the family of H D P, H a halfplane. Here the 
decomposition is more difficult, the end result again being a family G so that all 
A G T are expressible in terms of B G G of distinct cardinalities 2 J . Again G has 
~ n2s~2 sets of size s and the entropy argument gives a partial coloring x — 
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which again can be extended to a full coloring x — with |x(^) | = ^(rc1/4) for 
all A e J7. This result is best possible up to constants and the method works for 
halfspaces in Rd for any constant d. Indeed the discrepancy of halfplanes came 
first and motivated the reinvestigation of Roth's result. 

Let ut = (an,..., ain) G Rn, l<i< rc. For x : [n] -> {-1, +1} set 

n 

S = ^x(i)vi = (Li,...,Ln) 

with Lj = Y^i x(i)aij' Entropy methods give that if \v{\x < 1 there exists x with 
\S\oc < cn1/2. (When a^ G {0,1} this reduces to rc sets on rc points and the same 
proof applies.) Linear algebra methods [5] give that if \vi\\ < 1 there exists x with 
|5|oc < 2. Assume now |^ | 2 < 1. Set a] = £ . a ? . so J > ? = £ £ 4 < rc. Let 
X be random, Li acts like o~iN. For fc large ENT(aiV, fc) < e when a ~ 1. Further 
ENT(o-iV,fc) < ea2 for all a. One calculates £ENT(L i ;fc) < erc so there exists 
X : [n] -» {-1,0,-hi} with many x(ï) ¥= 0 a n d l^loc < # • Here iteration fails! 
More precisely, one may [19] iterate the process O(lnrc) times to give x with all 
x(i) = ±1 and \S\X = O(lnrc). Still open is a challenging conjecture of Komlós 
that such x exists with \S\X < K. 

3. Algorithmic Sieve 

Let Bi,i G / be events, / finite. Let ~ be a symmetric relation on / so that Bi is 
mutually independent of all Bj with i ^ j . This includes the Janson scenario of 
Section 1 but is far more general. 
Lovâsz Local Lemma [10] (symmetric case): If all Pr[i?i] < p and, for each i G J, 
i ~ j for at most d j G J and if p < dd(d + l)"(d+1) then AieIBi ^ 0. 

The strength of the LLL is that / may be of arbitrary size. With Bi as bad 
events it sieves out a good outcome. We will concentrate on one example. Let 
S i , . . . . S n Ç [rc] with all \Si\ = k and all j in precisely fc + 1 sets Si. We want a 
coloring x : [n] —* {Red, Blue} so that no Si is monochromatic. Let x be random 
and let Bi be the event that Si is monochromatic. We naturally define i ~ i' when 
Si D Si» ^ 0. Then p = 21~k and d = fc2. For fc large (fc = 10 suffices) the LLL 
conditions hold and x exists. 

The probabilistic method has always had a magical quality — just where 
is the coloring, graph, tournament or whatever that we have proved exists? Here 
we can ask a precise question. Fix fc = 10. Given S i , . . . , S n Ç [rc] as above, 
can the desired x he found with a polynomial (in rc) time algorithm? Even al
lowing randomized algorithms the answer is not clear. Though LLL guarantees 
Pr[AiG/5i] / 0 it will be exponentially small in rc so checking random x would 
take expected exponential time. As stated, the problem remains open. But a recent 
breakthrough by Beck [4] gives an algorithm when fc is somewhat larger. 

We outline Beck's idea as a randomized algorithm though it can be, and 
originally was, expressed in deterministic fashion. Fix fc = 100 for definiteness. 
First [rc] is colored randomly. Any Si with more than 80 (say) points in one color 
is considered dangerous. All points in dangerous sets are uncolored. If Si still has 

file:///S/oc
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red and blue colors, fine. Otherwise, we say Si survives and let S* be the set of 
uncolored points. Then \S*\ > 20 for otherwise it had had more than 80 points 
all one color, so it was dangerous and all points were uncolored. Let J7* be the 
family of S*. We want a 2-coloring x of J7* with no S* monochromatic. Having 
picked 100,80,20 appropriately LLL applies and x exists. But isn't this begging 
the question? Surprisingly, no. The family J7* has, almost surely, a quite simple 
structure. Make a graph G with vertices the indices 1 < i < rc and adjacency 
i ~ j if Si PI Sj 7̂  0. Each i has at most 104 neighbors. For Si to survive one 
of its neighbors must be dangerous, and this occurs with probability at most a 
very small constant e. Let G* be the restriction of G to the surviving i. Imagine 
that each i survived with independent probability e. When i survived it would 
have in G* on average 7 = 104e surviving neighbors who would have on average 
72 further neighbors, etc. With 7 < 1 the neighborhood of i looks locally like a 
birth process that will almost surely die. An even better analogy is to components 
of the random graph G(n, J ) with 7 < 1. There, as discussed in Section 4.1, all 
components are of size O(lnrc). Of course, the i do not survive independently, 
when i ~ j the dependence can be quite strong. Nonetheless Beck showed that G* 
almost surely has all components of size O(lnrc). The coloring of J7* then breaks 
into coloring the at most rc components separately. Each component has O(lnrc) 
sets hence O(lnrc) vertices. On each component a coloring x exists. Beck finds it 
by using exhaustive search! This takes exponential time but the problem has only 
logarithmic size so the time is polynomial in rc. Alon [1] has given an alternate, 
parallelizable version of this algorithm and many applications. Still, the general, if 
ill-formed, question of whether LLL always admits an algorithmic implementation 
remains open. More likely the opposite is true. A class of problems may well be 
found where the existence of solutions is guaranteed by LLL but a polynomial time 
algorithm to find them would violate usual assumptions in complexity theory. 

4. Adventures in Asymptopia 

4.1. Inside the Double Jump. In their original [11] Erdös and Rényi discovered 
what they called the "double jump" in the evolution of the random graph G(n,p) 
around p = rc-1. When p = jn~1, 7 < 1, all components of G are small, the 
largest of size O(lnrc), but when 7 > 1 a giant component of size 0(rc) has been 
created. We now know that the proper magnification with which to slow down the 
double jump is 

_ 1 _±_ 
P~ n + rc4/3 

This narrower range of p is called the phase transition. When A = A(rc) —> — 00 the 
largest components are all of size o(rc2/3); they are all almost the same size and they 
are all trees. The phase transition has not started. By the time A = A(rc) —> +00 
there is a dominant component whose size is ^> rc2/3 while all other components 
have size o(rc2/3). Moreover the complexity (defined as edges minus vertices) of the 
dominant component goes to infinity. In Asymptopia the situation at A constant 
is given by an infinite sequence ci > C2 > . . . , representing components of sizes 
circ2/3,c2rc2/3,... in G(n,p). We think of this as an infinite asteroid belt with 
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asteroids of these sizes. The distribution of these sequences is complex. But the 
dynamic situation, moving from time A to time A + dA is easy to describe. Given 
components of sizes Cj7i2/3,Cjrc2/3 there arc c^Cjrc4/3 potential edges between them 
and rc2/3dA/2 random edges are being selected so they are joined with probability 
~ ciC2dX. In Asymptopia wc have a peculiar physics in which with probability 
Cic^dX asteroids of sizes ci,C2 merge to form a new asteroid of size ci + c^. Each 
asteroid further has a complexity Xi, the complexity of the component. For A large 
negative most of the components will be trees, so xi = —1. When asteroids of 
complexities Xi.Xj merge, the merged asteroid has complexity Xj+Xj — 1. With A 
large negative the asteroids are all tiny, but as A increases moderate size asteroids 
are created. This physics favors the rich; a larger asteroid is more likely to merge 
with others and so become still larger. Computer experiments reveal the process 
quite strikingly, when A = — 4 the sizes are small, whereas by A = +4 in over 90% 
of the cases a clear dominant component has emerged. 

4.2. Asymptotic Packing. For 2 < / < fc < rc let m(rc, fc, /) denote the maximal 
size of a family F of fc-element subsets of { 1 , . . . , rc} so that no /-set E is contained 
in more than one A G F. We set Q = (k) for notational convenience. Elementary 
counting gives m(n, fc, /) < (7/)/Q? with equality holding if and only if there is an 
appropriate tactical configuration. (For / = 2, k = 3, these are the Steiner Triple 
Systems.) In 1963 Erdös and Hanani [9] conjectured that for all 2 < / < fc 

0-lim m(rc,fc,n<2/ , = 1 
n->oc \l J 

This was first proven by Rodi [17]. Here we outline a new proof. Indeed, we show 
that a random greedy algorithm gives F of desired size. 

We describe a greedy algorithm with a handy parametrization. Assign to each 
fc-set A a random real XA £ [0, (£!/)]• This orders the fc-sets. Consider them in 
order accepting A if no B with \AC\B\>1 has already been accepted. Let Fc be 
the family of A accepted with XA < c. An /-set E is said to survive at "time" c if 
no A G Fc contains E. 

To determine if E survives at time c we create a tree with root E. If A D E 
and XA < c we consider the Q — 1 /-sets E' C A, E' ^ E, as a brood of children 
of E, born at time x. If all these E' survive at time x then either A is placed in F 
at time x or some A' D E had already been placed in F. Either way E does not 
survive at time c. 

In Asymptopia this becomes a continuous time birth process. E, now Eve, 
has birthdate c. Time goes backwards. Eve gives birth to broods of size Q — 1 by a 
Poisson process with unit density. Children with birthdate x in turn have broods 
in [0, x) by the same process. With probability one a finite tree T is produced. 
Survival is defined inductively. Childless E' survive and E' does not survive if 
and only if she has a brood all of whom survive. Let f(c) be the probability Eve 
survives. Some technical work gives limn_>oG fn(c) = f(c). 

In Asymptopia we estimate f(c) — / (c + Ac). The difference for Eve is if she 
has no surviving broods born in [0, c), a brood born in [c, c + Ac), and that brood 
all survive. For Ac small f(c) - f(c + Ac) ~ / (c)(Ac)/(c)Q _ 1 . 
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Here we bring out the most powerful tool of all, calculus! In the limit the derivative 
f(c) = -f(c)Q. Eve born at c = 0 is always childless so / ( 0 ) = 1. We solve the 
differential equation 

/(c) = [l + (Q- l ) C ] - 1 / ^ - 1 ) 

For any e > 0 we find c and then rc so tha t on average fewer than e(™) E survive at 

time c. Thus, there exists an outcome for which fewer than e(™) E survive. Then 

the A e Fc must cover (1 — e)(") sets E and 

IFI > \FC > ( l - € ) ( ^ W f ) as desired. 

References 

[i] 

[2] 

N. Alon, A parallel algorithmic version of the local lemma, Random Stuctures &; 
Algorithms 2:367-378, 1991. 
N. Alon and J. Spencer, The Probabilistic Method, J. Wiley & Sons, New York, 
1992. 

[3] J. Beck, Roth's estimate on the discrepancy of integer sequences is nearly sharp, 
Combinatorica l(4):319-325, 1981. 

[4] J. Beck, An algorithmic approach to the Lovâsz Local Lemma I, Random Stuctures 
k, Algorithms 2:343-365, 1991. 

[5] J. Beck and T. Fiala, Integer-making theorems, Discrete Appi. Math. 3:1-8, 1981. 
[6] B. Bollobâs. Random Graphs, Academic Press, New York and San Diego, 1985. 
[7] B. Bollobâs, The chromatic number of random graphs, Combinatorica 8:49-55, 1988. 
[8] P. Erdös, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53:292-294, 

1947. 
[9] P. Erdös and H. Hanani, On a limit theorem in combinatorial analysis, Pubi. Math. 

Debrecen 10:10-13, 1963. 
[10] P. Erdös and L. Lovâsz, Problems and results on ^-chromatic hypergraphs and some 

related questions, in Infinite and Finite Sets, A. Hajnal et al., eds., North-Holland, 
Amsterdam, 1975, 609-628. 

[11] P. Erdös and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad. Mat. 
Kut. Int. Közl 5:17-61, 1960 

[12] S. Janson, Poisson approximation for large deviations, Random Structures & Algo
rithms 1:221-230, 1990. 

[13] S. Janson, T. Luczak, and A. Rucinski, An exponential bound for the probability of 
nonexistence of specified subgraphs of a random graph, in Proceedings of Random 
Graphs '87, M. Karonski et al., eds, J. Wiley, New York, 1990, 73-87. 

[14] D. J. Kleitman, On a combinatorial problem of Erdös, J. Combin. Theory 1:209-214, 
1966. 

[15] J. Matousek, Tight upper bounds for the discrepancy of half spaces, KAM Series 
(Tech. Report), Charles University, Prague 1994. 

[16] J. Matousek and J. Spencer, Discrepancy in arithmetic Progressions, to appear. 
[17] V. Rodi, On a packing and covering problem, European J. Combin., 5 (1985), 69-78. 
[18] K. F. Roth, Remark concerning integer sequences, Acta Arith. 9:257-260, 1964. 
[19] J. Spencer, Six standard deviations suffice, Trans. Amer. Math. Soc. 289:679-706, 

1985. 
[20] M. Talagrand, A new isoperimetric inequality for product measure and the tails of 

sums of independent random variables, Geom. Functional Anal. 1:211-223, 1991. 



Asymptotic Combinatorics and Algebraic Analysis 

ANATOLY M. VERSHIK* 

Steklov Mathematical Institute 
St. Petersburg Branch 
Fontanka 27, St. Petersburg 191011, Russia 

1 Asymptotic problems in combinatorics and their algebraic equivalents 

A large number of asymptotic questions in mathematics can be stated as combi
natorial problems. I can give examples from algebra, analysis, ergodic theory, and 
so on. Therefore the study of asymptotic problems in combinatorics is stimulated 
enormously by taking into account the various approaches from different branches 
of mathematics. Recently we found many new aspects of this development of com
binatorics. The main question in this context is: What kind of limit behavior can 
have a combinatorial object when it "grows" ? 

One of the recent examples we can find in a very old area, namely the theory 
of symmetric and other classical groups and their representations. Let me quote the 
remarkable words of Weyl from his book Philosophy of mathematics and natural 
science (1949): Perhaps the simplest combinatorial entity is the group of permu
tations of rc objects. This group has a different constitution for each individual 
number rc. The question is whether there are nevertheless some asymptotic unifor
mities prevailing for large rc or for some distinctive class of large rc. He continued: 
Mathematics has still little to tell about such a problem. 

In the meantime, a lot of progress has been made in this direction. We should 
mention the names of some persons who have made important contributions to 
this area, namely P. Erdös, V. Goncharov, P. Turan, A. Khinchin. W. Feller, and 
others. In the more general context of what is called nowadays the asymptotic 
theory of representations, I want to mention the names of H. Weyl and J. von 
Neumann. 

2 Typical objects in asymptotic combinatorial theory 

Besides the symmetric groups there arc other classical objects in mathematics and 
in combinatorics, namely partitions of natural numbers. They provide another 
source of extremely important asymptotic problems that are also closely related 
to analysis, algebra, number theory, measure theory, and statistical physics. 

The third class of objects, which plays the role of a link between combinatorics 
on one side and algebra and analysis on the other side, is a special kind of graphs, 
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the so-called Bratteli diagrams, i.e. Z+-graded locally finite graphs. These are the 
combinatorial analogues of locally semisimple algebras. This important class of 
algebras arises in asymptotic theory of finite and locally finite groups, and can be 
considered as an algebraic equivalent of asymptotic theory in analysis. 

We now have described some of the objects that used to be basic in the theory 
of asymptotic combinatorial problems. 

3 Problems 

Next we will formulate the typical problems for these objects. We will start with the 
problems related to symmetric groups. It is important to emphasize that the same 
problems can also be stated for any other series of classical groups like Coxeter 
groups, GL(rc,Fp), and so on. 

In all the considerations we use some probability measure. For example it is 
natural to provide the symmetric group S7l (rc G N) with the uniform distribution 
(Haar measure). 

PROBLEM. Describe the asymptotic behavior (on n) of conjugacy classes; more 
precisely, find the common limit distribution of the numerical invariants of the 
classes. 

Now let us consider linear representations of those groups or their dual objects 
Sn provided with the Plancherel measure. (Then the measure of a representation 
is the normalized square of its dimension; this is the right analogue of the Haar 
measure for the dual space. The deep connection between these two measures is 
given by the RSK-Robinson-Shensted-Knuth-correspondence.) 

PROBLEM. Describe the asymptotic behavior, i.e. find the common limit distribu
tion of a complete system of invariants of the representations. 

For the symmetric groups there are natural parameters both for conjugacy 
classes, namely the lengths of cycles, and for representations, namely Young di
agrams. So we have to study asymptotic combinatorial problems about random 
partitions or random Young diagrams. Both of these problems were posed by the 
author in the early 1970s and were solved in the 1970s in joint papers of the au
thor with Kerov (see [KV1]) and Schmidt (see [SV]), and also partially in papers 
of Shepp and Logan (see [LS]). 

Now let us consider partitions of natural numbers V(n). As we mentioned be
fore, the previous problems can be reduced to problems about partitions. Roughly 
speaking, all the questions concern the following problem: suppose we have some 
statistics on the space of partitions V(n) for all rc, say pn; how do we scale the 
space V(n) in order to obtain the true nontrivial limit distribution of the measures 
pn? The same question can be asked for Young diagrams, graphs, configurations, 
and higher-dimensional objects of such a type. 

A possible kind of answer can be a limit-shape theorem, which asserts that the 
limit distribution is a ó-measure concentrated at one configuration, called the limit 
shape of the random partition diagram, configuration, etc. In the problems that we 
discuss below, examples are Plancherel statistics, uniform statistics, and convex 
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problems. Other examples for the same situation are the so-called Richardson-
Eden model in the probability theory of a many-particles system, one-dimensional 
hydrodynamics, Maxwell (Bell) statistics on partitions, etc. We obtain rich infor
mation about asymptotics from the properties of the limit shape. 

In the opposite (nonergodic) case the limit distribution is a nondegenerate 
distribution. Examples for this case are conjugacy classes in symmetric groups 
(see above) and other series of classical groups, and harmonic measures on Young 
diagrams. 

In all these examples we have a completely different scaling in comparison 
with the first case. The dichotomy of the two cases can be compared with the 
dichotomy of trivial and nontrivial Poisson boundary in probability theory — 
there is a deep analogy. A systematic theory as well as general criteria for the two 
cases are still unknown. 

4 Results 

Here we will list the main results that have been obtained in this direction. Let us 
first define some of the important statistics on partitions, some of which we have 
mentioned shortly above. We use the bijection between Young diagrams with rc 
cells and the set of partitions V(n) of rc (see Figure 1). 

x(t) = ^2 *ii Ki = #{i: xj = *}; 
i>t 

\{t) = — V " Ki; ipniljn = rc. 
Vn i>tlpn 

Figure 1 

(a) Haar statistics (for conjugacy classes in symmetric groups): Let A G V(n) and 
let ki,..., kn be the multiplicities of the summands 1,2,... , rc respectively. Then 

"KW = ft o ^ : • 
m = l 



Asymptotic Combinatorics and Algebraic Analysis 

(b) Uniform statistics: 

/£(*) = 

1387 

p(n) 

where p(n) is the Euler-Hardy-Ramanujan function. 

(c) Maxwell or Bell statistics: 

rfw-nensnK 

This is the image on V(n) of the uniform distribution on partitions of n distinct 
objects. 

\ 2 

\ 1'5 

\ v 1 

\ 0.5 

i . . . . i . . . . \ 

/ 

y 

/ . . . . i . . . . i 

îî(s x _ f - (s arcsin s + \ / l — s2) 
; IN 

Figure 2 

kl >i-

(d) Plancherel statistics on Young diagrams: 

tfW=n\/([lhaf 

where Q is a cell of the Young diagram, ha is the hooklength of the cell a, and the 
product here is taken over all cells of the diagram. This is the probability of the 
diagram (or partition) as a representation of the symmetric group: the probability 
is proportional to the square of the dimension of the representation. 

(e) Uniform statistics on Young diagrams which sit inside a given rectangle. 
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(f) Fermi statistics on Young diagrams (no rows with equal length). 

(g) Uniform statistics on convex diagrams: This is one of the first two-dimensional 
problems. We consider the set of all diagrams inside a given square of a lattice 
whose border is convex (or concave). This set can be considered as the set of vector 
partitions of the vector (rc, rc). The correspondence with the previous description 
is established by considering the slopes of the edges (see Figure 3), etc. 

y/1 - \x\ + y/1 - \y\ = 1 

Figure 3 

All the measures are defined for all natural numbers rc. In order to be able to 
speak about convergence we have to normalize or rescale the axes of the diagrams 
(partitions), dividing by appropriate sequences of numbers <j>n and xßn which de
pend on the cases; the choice of those numbers is unique (and they exist). Suppose 
the rescaling is done and wc can consider the measures pn for all rc in the same 
limit topological space of normalized diagrams. Let us say that we have the er
godic case if the weak limit of the measures pn is a ^-measure at some point of the 
space — this is usually some curve — "continuous" diagram. If the limit of the 
measures pn does exist but is a nondegenerate measure we will say that the case 
is nonergodic. 

THEOREM 1. The case (a) is nonergodic, the cases (b)-(e) are ergodic. The nor
malizations of the axes are the following: 

(a) For A G V(n), X = (Ai , . . . , An): A* —> A?:/rc fori = l , . . . , rc , there is no 
normalization along the second axis. 

(b), (d), (e), (f), (g) The normalization along both axes is 1/y/n. 
(c) For X G V(n), the normalization of the values of X — s is 1/lnrc and the 

normalization of the indices is rc/lnrc. 

Now we will give the precise answer to the questions about limit measures or 
limit shapes. 



Asymptotic Combinatorics and Algebraic Analysis 1389 

e v ^ + e VG2' = 1 

Figure 4 

THEOREM 2. The following curves are the limit shapes: 
Case (b) exp[— (n/\/6)x] +exp[-(7r/\/6)y] = 1 (see Figure 4), 
Case (c) y(x) = 1. 
Case (d) Let w = (x +1/)/2, s = (x — y)/2, then 

n(s) /(2/7T )(sarcsins + i / ( l — s2)) for |a;| < 1 
\s\ for bl > 1 

(Kerov and Vershik [KVÎ], Logan and Shepp [LS]), see Figure 2. 
Case (e) (1 — exp[-cA]) exp[—cy] + (1 — exp[—cp]) exp[—cx] = 1 — exp[-c(A + p)]. 

X,p are the size of the rectangle, c = c(X,p). (See Figure 5 for the case 
X = p = 2). 

Case (f) exp[-ir/y/l2y] - cxpt-Tr/y7!^] = 1. 
Case(g) y / l ^ \ + y/ï^]y~\ = 1 

(Barany [B], Sinai [S], Vershik [V4]), see Figure 3. 

This means that in each of those cases the following is true: for any e > 0 
there exists an N such that if rc > N then the measure pn on V(n) has the property 
pn{X : the normalized A G V^T)} > 1 — e, where T is the limit shape curve, Ve is 
the e-neighborhood of the curve T in the uniform topology, and the normalization 
of the diagram for the cases is as above. 

A completely different situation occurs in case (a), i.e. the limit distributions 
of normalized lengths of cycles. The complete answer for this case was given in 
a joint paper with Schmidt [SV]. In this case the limit measure is concentrated 
in the space of positive series with sum 1. This remarkable measure also appears 
in the context of number theory (the distribution of logarithms of prime divisors 
of natural numbers) as was recently described by the author [VI] (see also P. 
Billingsley, D. Knuth, and Trab-Pardo). 
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e-cx + e-cy = 1 + e-cX. 

X = p = 2 => c « 0.853138 

Figure 5 

Let me give some examples of the applications of Theorem 2. 
For A G V(n) let dim A = nl/J\hQ (hook formula). 

PROBLEM. Find maxjdimA : A G V). 

This functional is rather complicated and, as H. Weyl suspected, the optimal 
diagram has a different feature for each rc, hardly depending on the arithmetic 
of rc. But it happens that asymptotically there is a prevailing form of diagram: this 
is again the limit shape Q that I mentioned above. We obtain: 

THEOREM 3 (Kerov and Vershik [KV3]). There are constants ci and c^ such that 

1 _ , dim A. 
0 < ci < •= lnfmax —•==-) < C2 < oc . 

v ^ Vn! 
It is an important observation that the average diagram with respect to the 

Plancherel measure asymptotically coincides with the diagram of maximal dimen
sion. Another important fact is that the limit shape Q arises in many different 
contexts such as the asymptotic of the spectrum of random matrices, zeros of the 
orthogonal polynomials, etc. 

For the case of Maxwell-Bell statistics the limit shape is not interesting — 
then the generic block of the partition has size r where r is a solution of the 
equation x exp x = rc. But it is possible to refine this answer in the spirit of CLT: 
Let ip(i) = (b(i) — r)/y/r, where b(i) is the length of the block containing i. 

THEOREM 4. 

Ump'b
liXeV(n) 

for all a G M and all e > 0. 

41 {; - # { « : <p(i) <a}- Erf( a) <4 = 
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This theorem together with case (c) of Theorem 2, proven by my students 
Yu. Yakubovich and D. Alexandrovsky, describes the limit structure of generic 
finite partitions (see [Ya]). 

5 Techniques 

Now we will discuss some technical aspects that are important by themselves. We 
emphasize four tools: 

(i) generating functions and the Hardy method, the saddle-point method; 
(ii) the variational principle in combinatorics; 

(iii) functional equations and the ergodic approach; 
(iv) methods from statistical physics: big canonical set and the local limit theorem 

of probability theory. 
The classical method for studying enumeration problems uses generating 

functions. For our goals we also can use them, but with some modification: we 
need to consider the generating function for the number of combinatorial objects 
with some special properties. For example, instead of the Euler function for par
titions F(z) = {IlfcliCl ~~ 2 f c )} - 1 we have to use the generating function for the 
number of partitions with a given number of blocks whose lengths are less than 
a constant. In a different context such a method has been applied by Turan and 
Szalay. 

For the higher-dimensional case (g) of convex diagrams or convex lattice 
polygons we introduce a new kind of generating function of two variables: 

F(t,s)= n (i-tv-)-1. 
(fc,r) coprirne 

LEMMA. Let p(n,m) = Coeff(tnsm:F); then this is the number of convex lattice 
polygons in the rectangle (0, rc) x (0,ra) which meet the points (0,0) and (rc, rrc). 
The formula 

ln(p(n,n))/n2/3 = 3^C(3)/<(2)(1 + o(l)) 

holds. This formula also gives us the number of vector partitions without collinear 
summands. 

The two-dimensional saddle point method applied to this function is the main 
ingredient to obtain the limit-shape theorem for this case. But in addition we need 
considerations on generating functions (see Barany [B] and Vershik [V4]). We can 
combine this approach with an approach from statistical physics. For case (g) this 
was done by Sinai [S]. In the early 1950s A. Khinchin [Kh] used this method in 
statistical physics.* Here wc present a general context that covers all these papers. 

The main idea is the following. Instead of studying the asymptotics of the 
coefficients of the generating function with the help of methods from the theory of 

*) We want to emphasize that the difference between the saddle point method (Darwin and 
Fauler's method) and the local limit theorem (Khinchin's approach) is not so big: techni
cally to find a saddle point is the same as to find the value of a parameter which realizes 
a needed mathematical expectation. (See [V5]). 
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complex variables we can introduce one-parametric families of measures for which 
the natural coordinates, say the number of rows of given length, are independent. 
After this we can easily find the distribution of the functionals and then (the 
hardest part) prove that the distributions are the same as in the initial problem. 
This is completely analogous to the method of equivalence of great and small 
canonical sets. 

The general definition: let F(t) = Y\fi(t) = 1 + bxz + b2z
2 + • • • and let 

fi(t) = 1 + ant + a^t2 H be series converging in a circle and with nonnegative 
coefficients a^, i = 1,2, Now we introduce two sets of measures on the set 
of partitions: the first set consists of the measures pn on the sets V(n), defined 
by p(X) = CnHaijft, where a partition A = (j(l),..., j(n)) G V(n) has j(s) 
summands equal to s, and cn is a constant; the second set is a one-parametric set 
of measures vt (t G (0,1)) on the big canonical set \jV(n), rc G N, and defined as 
follows: 

vt(X) = (F(t))-lbni
n, where A G V(n). 

The simple observation is that the number of summands of a given size is inde
pendent of vt and consequently we can use powerful methods of probability theory 
such as large deviations and so on. The main fact is contained in the following 
theorem. 

THEOREM 5. There exists a sequence tn such that the main terms of the asymp
totics of the expected smooth functionals on V(n) with respect to the measures pn 

and i/tn coincide. 

But we cannot claim that the expected distributions of the functionals also 
coincide. For this we need some additional assumptions. In particular, it is true in 
the cases (b)-(e) above. This assertion is essentially the above-mentioned equiva
lence between two sets. The technique is slightly simpler but parallel to the saddle 
point method. 

Variational principles in these problems are very useful — we will give some 
examples. From the combinatorial point of view the variational principle defines a 
functional on the configuration (or diagram, partitions) which gives the main term 
in the asymptotics (like energy or entropy). 

Suppose the continuous diagram T is fixed (see Figure 3) and T is the graph 
of a differentiable function 7(-). We want to find the asymptotic of the number of 
convex diagrams Tn that are close to V in the uniform metric. 

THEOREM 6. [V4] 

rc"? inTr 
•°=3{M(L*"°d'+°w) 

where K is a curvature ofT. 

This means that in case (g) the integral takes its maximal value on the class 
of all monotone differentiable curves in the limit shape curve. 
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6 Combinatorics of infinite objects 

Our approach can be extended by considering certain limit objects preserving the 
combinatorial structure. That gives us an interpretation of some limit distributions 
that previously appeared as pure limit objects. 

The best example of such an extension is the notion of virtual permutations. 
This theory is developed in a recent paper by Kerov, Ol'shansky, and myself [KOV]. 
The main definition is the following. 

LEMMA. There is a unique projection pn: Sn —• S n - i that commutes with the 
two-sided action of Sn-i. 

The inverse limit X = \im(Sn,pn) is called the space of virtual permutations. 

On this space X a two-sided action of the infinite symmetric group is well defined. 
The space of virtual permutations does not form a group, but it is possible to 
define the notion of cycles, and their normalized length, Haar measure, and other 
group-like notions. We will not give the precise definitions for those notions here 
(see [KOV]). 

THEOREM 7. The common distribution of normalized lengths of virtual permuta
tions coincides with the above-defined limit distribution for normalized lengths of 
cycles of ordinary permutations. 

The main application of the space of virtual permutations consists in the 
construction of some new types of representations of the infinite symmetric group 
like the regular representation based on the analogue of the Haar measure and its 
one-parametric deformation. 

One of the main problems in this area is the problem of limit shapes for mul
tidimensional configurations, Young diagrams etc. Perhaps variational principles 
with ideas coming from statistical physics will help to solve them (see [V5]). 
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Department of Applied Mathematics and Computer Science 
Weizmann Institute of Science, Rehovot, Israel 

ABSTRACT. Various types of probabilistic proof systems have played a cen
tral role in the development of computer science in the last decade. In this 
exposition, we concentrate on three such proof systems — interactive proofs, 
zero-knowledge proofs, and probabilistic checkable proofs — stressing the es
sential role of randomness in each of them. 

1. Introduction 

The glory given to the creativity required to find proofs makes us forget that it 
is the less glorified procedure of verification that gives proofs their value. Philo
sophically speaking, proofs are secondary to the verification procedure; whereas 
technically speaking, proof systems are defined in terms of their verification pro
cedures. 

The notion of a verification procedure assumes the notion of computation 
and furthermore the notion of efficient computation. This implicit assumption is 
made explicit in the definition oìMV, in which efficient computation is associated 
with (deterministic) polynomial-time algorithms. 

DEFINITION 1 (NP-proof systems): Let S ç {0,1}* and v : {0,1}* x {0,1}* H+ 
{0,1} be a function so that x G S if and only if there exists awe {0,1}* such 
that v(x,w) = 1. If v is computable in time bounded by a polynomial in the length 
of its first argument then we say that S is an NP-set and v defines an NP-proof 
system. 

Traditionally, MV is defined as the class of NP-sets (cf. [14]). Yet, each such 
NP-set can be viewed as a proof system. For example, consider the set of satisfiable 
Boolean formulae. Clearly, a satisfying assignment 7r for a formula (j) constitutes 
an NP-proof for the assertion u<fi is satisfiable" (the verification procedure consists 
of substituting the variables of <j> by the values assigned by -K and computing the 
value of the resulting Boolean expression). 

The formulation of NP-proofs restricts the "effective" length of proofs to be 
polynomial in length of the corresponding assertions (as the running time of the 
verification procedure is restricted to be polynomial in the length of the assertion). 
However, longer proofs may be allowed by padding the assertion with sufficiently 
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dation (BSF). Jerusalem, Israel. 
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many blank symbols. So it seems that NP gives a satisfactory formulation of proof 
systems (with efficient verification procedures). This is indeed the case if one as
sociates efficient procedures with deterministic polynomial-time algorithms. How
ever, we can gain a lot if we are willing to take a somewhat nontraditional step 
and allow probabilistic verification procedures. In particular, 

• Randomized and interactive verification procedures, giving rise to interactive 
proof systems, seem much more powerful than their deterministic counter
parts. 

• Such randomized procedures allow the introduction of zero-knowledge proofs, 
which are of great theoretical and practical interest. 

• NP-proofs can be efficiently transformed into a (redundant) form that offers 
a trade-off between the number of locations examined in the NP-proof and 
the confidence in its validity (see probabilistically checkable proofs). 

In all above-mentioned types of probabilistic proof systems, explicit bounds 
are imposed on the computational complexity of the verification procedure, which 
in turn is personified by the notion of a verifier. Furthermore, in all these proof 
systems, the verifier is allowed to toss coins and rule by statistical evidence. Thus, 
all these proof systems carry a probability of error; yet, this probability is explicitly 
bounded and, furthermore, can be reduced by successive application of the proof 
system. 

1.1. Basic background from computational complexity. 
The following are standard complexity classes. 

• V denotes the class of sets in which membership can be decided in (determin
istic) polynomial time. Namely, for every S eV there exists a (deterministic) 
polynomial-time algorithm A so that x G S iff A(x) = l, for all x G {0,1}*. 

• 1ZV (resp., BVV) denotes the class of sets in which membership can be 
decided in probabilistic polynomial time with one-sided (resp., two-sided) 
error probability. Specifically, for every S G TZV (resp., S G BVV) there 
exists a probabilistic polynomial-time algorithm A so that x G S implies 
Prob(A(x) = 1) > \ (resp., Pmh(A(x) = 1) > | ) whereas x 0 S implies 
Prob(A(x) = 1) = 0 (resp., Pvob(A(x) = 1) < ±). The class colZV={S : S G 
UV} has one-sided error in the "other direction". 

• AfV denotes the class of NP-sets and coAfV denotes the class of their com
plements (i.e., 5 G coAfV iff 5 G MV). 

• A set 5 is polynomial-time reducible to a set T if there exists a polynomial-
time computable function / so that x G S iff f(x) G S (for every x). A 
set is NP-hard if every NP-set is polynomial-time reducible to it. A set is 
NP-complete if it is both NP-hard and in AfV. 
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• VSVACS denotes the class of sets in which membership can be decided in 
polynomial space (i.e., the work space taken by the decider is polynomial in 
length of the input). 

Obviously, P QllV Ç BVV Ç VSVACS. It is not hard to see that 1ZV Q 
HV and that MV Ç VSVACS. It is widely believed that V ± AfV and MV ^ 
VSVACS. Furthermore, it is also believed that MV / eoMV. NP-hard sets (or 
tasks) are assumed to be infeasible, because if an NP-hard set is in V then AfV = V. 

1.2. Conventions. When presenting a proof system, we state all complexity-
bounds in terms of the length of the assertion to be proven (which is viewed as 
an input to the verifier). Namely, polynomial time means time polynomial in the 
length of this assertion. Note that this convention is consistent with our definition 
of NP-proofs. 

Denote by poly the set of all polynomials and by log the set of all integer 
functions bounded by O(logn). 

1.3. Basic background from combinatorics. Two graphs, Gi = (Vi, Ei ) and G2 = 
(V2,i?2)> are called isomorphic if there exists a 1-1 and onto mapping (j> from the 
vertex set V\ to the vertex set V2 so that (u, v) G E\ if and only if (<j)(v), (ß(u)) G E2. 
The mapping </>, if existing, is called an isomorphism between the graphs. 

A graph G= (V. E) is said to be 3-colorable if there exists a function n: V\—• 
{1,2,3} so that n(v) ^ 7r(u) for every (u,v) G E. Such a function TT is called a 
3-coloring of the graph. 

2. Interactive Proof Systems 

In light of the growing acceptability of randomized and distributed computations, 
it is only natural to associate the notion of efficient computation with probabilistic 
and interactive polynomial-time computations. This leads naturally to the notion 
of interactive proof systems in which the verification procedure is interactive and 
randomized, rather than being noninteractive and deterministic. Thus, a "proof" 
in this context is not a fixed and static object but rather a randomized (dynamic) 
process in which the verifier interacts with the prover. Intuitively, one may think of 
this interaction as consisting of "tricky" questions asked by the verifier to which the 
prover has to reply "convincingly". The above discussion, as well as the following 
definition, makes explicit reference to a prover, whereas a prover is only implicit 
in the traditional definitions of proof systems (e.g., NP-proofs). 

2.1. Definition. Loosely speaking, an interactive proof is a game between a com
putationally bounded verifier and a computationally unbounded prover whose goal 
is to convince the verifier of the validity of some assertion. Specifically, the verifier 
is probabilistic polynomial time. It is required that if the assertion holds then the 
verifier always accepts (i.e., when interacting with an appropriate prover strat
egy)- O n the other hand, if the assertion is false then the verifier must reject 
with probability at least \, no matter what strategy is being employed by the 
prover. A sketch of the formal definition is given in Item (1) below. Items (2) and 
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(3) introduce additional complexity measures, which can be ignored in the first 
reading. 

DEFINITION 2 (Interactive Proofs - IP) [19]: 

(1) An interactive proof system for a set S is a two-party game between a verifier, 
executing a probabilistic polynomial-time strategy (denoted V), and a prover, 
which executes a computationally unbounded strategy (denoted P), satisfying 

• Completeness; For every x G S the verifier V always accepts after in
teracting with the prover P on common input x. 

• Soundness: For every x £ S and every potential strategy P*, the ver
ifier V rejects with probability at least ^, after interacting with P* on 
common input x. 

(2) Let m be an integer function. The complexity class TV(m(-)) consists of sets 
having an interactive proof system in which, on common input x, the total 
number of messages exchanged between the parties is bounded by m(\x\). 

(3) Let M be a set of integer functions. Then, 1V(M) denotes Um£MlV(m(-)). 

Finally, IV d= TP(poly). 

In Item (1), we have followed the standard definition, which specifies strategies 
for both the verifier and the prover. An alternative presentation only specifies the 
verifier's strategy while rephrasing the completeness condition as follows: 

There exists a prover strategy P so that, for every x G S, the verifier 
V always accepts after interacting with P on common input x. 

Arthur-Merlin games1 introduced in [4] are a special case of interactive proofs; 
yet, as shown in [20], this restricted case has essentially2 the same power as the 
general case previously introduced in [19]. Also, in some sources interactive proofs 
are defined so that two-sided error probability is allowed; yet, essentially this does 
not increase their power [13]. 

2.2. The role of randomness. Randomness is essential to the formulation of 
interactive proofs; if randomness is not allowed (or if it is allowed but zero error 
is required in the soundness condition) then interactive proof systems collapse to 
NP-proof systems. The reason for this is that the prover can predict the verifier's 
part of the interaction and thus it suffices to let the prover send the full transcript 
of the interaction and let the verifier check that the interaction is indeed valid. (In 
case the verifier is not deterministic, the transcript sent by the prover may not 
match the outcome of the verifier coin tosses.) The moral is that there is no point 
to interact with predictable parties which arc also computationally weaker.3 

1 In Arthur-Merlin games, the verifier must send the outcome of any coin it tosses (and thus 
need not send any other information). 

2Here and in the next sentence, not only XV remains invariant under the various definitions, 
but also XP(m(-)), for every integer function satisfying m(n) > 2 for every ra. 

3This moral represents the prover's point of view. Certainly, from the verifier's point of view 
it is beneficial to interact with the prover, as it is computationally stronger. 
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2.3. The power of interactive proofs. A simple example demonstrating the pow
er of interactive proofs follows. Specifically, we present an interactive proof for 
proving that two graphs are not isomorphic. It is not known whether such a state
ment can be proven via an NP-proof system. 

CONSTRUCTION 1 (Interactive proof system for graph nonisomorphism) [15]: 

• Common input: A pair of two graphs, Gi = (Vi,Ei) and G2 = (V2,E2). 
Suppose, without loss of generality, that Vi = {1,2,..., |Vi|}, and similarly 
forV2. 

• Verifier's first step (VI): The verifier selects at random one of the two input 
graphs, and sends to the prover a random isomorphic copy of this graph. 
Namely, the verifier selects uniformly a G {1,2}, and a random permutation 
7T from the set of permutations over the vertex setVa. The verifier constructs 

a graph with vertex set Va and edge set F = {(7r(u),7r(v)) : (u,v)eEa} and 
sends (V^F) to the prover. 

• Motivating remark: If the input graphs are nonisomorphic, as the prover 
claims, then the prover should be able to distinguish (not necessarily by an 
efficient algorithm) isomorphic copies of one graph from isomorphic copies 
of the other graph. However, if the input graphs are isomorphic then a ran
dom isomorphic copy of one graph is distributed identically to a random 
isomorphic copy of the other graph. 

• Prover's step: Upon receiving a graph, Gf = (Vf,Ef), from the verifier, the 
prover finds a r G {1,2} so that the graph G is isomorphic to the input 
graph GT. (If both r = l ,2 satisfy the condition then r is selected arbitrarily. 
In case no r G {1,2} satisfies the condition, r is set to 0). The prover sends 
r to the verifier. 

• Verifier's second step (V2): If the message r received from the prover equals 
a (chosen in Step VI) then the verifier outputs 1 (i.e., accepts the common 
input). Otherwise the verifier outputs 0 (i.e., rejects the common input). 

The verifier strategy presented above is easily implemented in probabilistic 
polynomial time. We do not know of a probabilistic polynomial-time implemen
tation of the prover's strategy, but this is not required. The motivating remark 
justifies the claim that Construction 1 constitutes an interactive proof system for 
the set of pairs of nonisomorphic graphs, which is a coNP-set (not known to be in 
NV). 

Interactive proofs are powerful enough to prove any coNP assertion (e.g., that a 
graph is not 3-colorable) [23]. Furthermore, the class of sets having interactive proof 
systems coincides with the class of sets that can be decided using a polynomial 
amount of work space [28]. 

THEOREM 1 [28]: TV = VSVACS. 
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Recall that it is widely believed that MV C VSVACS. Thus, under this conjecture, 
interactive proofs are more powerful than NP-proofs. 

Concerning the finer structure of the IP hierarchy it is known that this hierar
chy has a "linear speed-up" property [7]. Namely, for every integer function / so 
that f(n) > 2 for all n, the class lV(0(f(-))) collapses to the class !V(f(-)). 
In particular, 1V(0(1)) collapses to 1V(2). It is conjectured that coAfV is not 
contained in IV(2), and consequently that interactive proofs with an unbounded 
number of message exchanges are more powerful than interactive proofs in which 
only a bounded (i.e., constant) number of messages is exchanged. Yet, the class 
1V(2) contains sets not known to be in AfV: e.g., graph nonisomorphism (as shown 
above). 

3. Zero-Knowledge Proof Systems 

Zero-knowledge proofs, introduced in [19], arc central to cryptography. Further
more, zero-knowledge proofs are very intriguing from a conceptual point of view, 
because they exhibit an extreme contrast between being convinced of the validity 
of a statement and learning anything in addition while receiving such a convinc
ing proof. Namely, zero-knowledge proofs have the remarkable property of being 
convincing while also yielding nothing to the verifier, beyond the fact that the 
statement is valid. Formally, the fact that "nothing is gained by the interaction" is 
captured by stating that whatever the verifier can efficiently compute after inter
acting with a zero-knowledge prover can be efficiently computed from the assertion 
itself without interacting with anyone. 

3.1. Sketch of definition. Zero-knowledge is a property of some interactive proof 
systems, or, more accurately, of some specified prover strategics. The formulation of 
the zero-knowledge condition considers two ensembles of probability distributions; 
each ensemble associates to each valid assertion a probability distribution. The 
first ensemble represents the output distribution of the verifier after interacting 
with the prover strategy P. where the verifier is not necessarily employing the 
specified strategy (i.e., V) — but rather any efficient strategy. The second ensemble 
represents the output distribution of some probabilistic polynomial-time algorithm 
(which docs not interact with anyone). The basic paradigm of zero-knowledge 
asserts that for every ensemble of the first type there exists a "similar" ensemble 
of the second type. 

The specific variants differ by the interpretation given to ''similarity". The 
most strict interpretation, leading to perfect zero-knowledge, is that similarity 
means equality. A somewhat relaxed interpretation, leading to almost-perfect zero-
knowledge, is that similarity means statistical closeness (i.e., negligible difference 
between the ensembles). The most liberal interpretation, leading to the standard 
usage of the term zero-knowledge (and sometimes referred to as computational 
zero-knowledge), is that similarity means computational indistinguishability (i.e., 
failure of any efficient procedure to tell the two ensembles apart — cf. [18] and 
[29]). 
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3.2. The power of zero-knowledge. A simple example, demonstrating the power 
of zero-knowledge proofs, follows. Specifically, wc will present a simple zero-
knowledge proof for proving that a graph is 3-colorable. The interactive proof 
will be described using "boxes" in which information can be hidden and later 
revealed. Such "boxes" can be implemented using one-way functions (see below). 

CONSTRUCTION 2 (Zero-knowledge proof of 3-colorability) [15]: 

• Common input: A simple graph G=(V,E). 

• Prover's first step: Let ^ be a 3-coloring of G. The prover selects a random 
permutation it over {1,2,3} ; and sets Q(V) = 7r(ip(v)), for each v G V. 
Hence, the prover forms a random relabelling of the 3-coloring ip. The prover 
sends the verifier a sequence of \V\ locked and nontransparent boxes so that 
the vth box contains the value (p(v). 

• Verifier's first step: The verifier uniformly selects an edge (;u,v) G E, and 
sends it to the prover. 

• Motivating remark: The verifier asks to inspect the colors of vertices u and v. 

• Prover's second step: The prover sends to the verifier the keys to boxes 
u and v; 

• Verifier's second step: The verifier opens boxes u and v, and accepts if and 
only if they contain two different elements in {1,2,3}. 

The verifier strategy presented above is easily implemented in probabilistic 
polynomial time. The same holds with respect to the prover's strategy, provided 
it is given a 3-coloring of G as auxiliary input. Clearly, if the input graph is 3-
colorable then the prover can cause the verifier to accept always. On the other 
hand, if the input graph is not 3-colorable then any contents put in the boxes 
must be invalid on at least one edge, and consequently the verifier will reject with 
probability at least rjL. Hence, the above game exhibits a nonnegligible gap in 
the accepting probabilities between the case of 3-colorable graphs and the case of 
non-3-colorable graphs. To increase the gap, the game may be repeated sufficiently 
many times (of course, using independent coin tosses in each repetition). The zero-
knowledge property follows easily, in this abstract setting, as one can simulate the 
real interaction by placing a random pair of different colors in the boxes indicated 
by the verifier. This indeed demonstrates that the verifier learns nothing from 
the interaction (because it expects to see a random pair of different colors and 
indeed this is what it sees). Wc stress that this simple argument is not possible in 
the digital implementation because the boxes are not totally unaffected by their 
contents (they are affected, yet in an indistinguishable manner). 

As stated above, the "boxes" need to be implemented digitally, and this is 
done using an adequately defined "commitment scheme". Loosely speaking, such a 
scheme is a two-phase game between a sender and a receiver so that after the first 
phase the sender is "committed" to a value and yet, at this stage, it is infeasible for 
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the receiver to find out the committed value. The committed value will be revealed 
to the receiver in the second phase and it is guaranteed that the sender cannot 
reveal a value other than the one committed. Such commitment schemes can be 
implemented assuming the existence of one-way functions (i.e., loosely speaking, 
functions that are easy to compute but hard to invert, such as multiplication of 
two large primes) — cf. [25] and [21]. 

Using the fact that 3-colorability is NP-complete, one gets zero-knowledge proofs 
for any NP-set. 

THEOREM 2 [15]: Assuming the existence of one-way functions, any NP-proof can 
be efficiently transformed into a (computational) zero-knowledge interactive proof. 

Theorem 2 has a dramatic effect on the development of cryptographic protocols (cf. 
[15] and [16]). For the sake of elegance, we mention that, using further ideas and 
under the same assumption, any interactive proof can be efficiently transformed 
into a zero-knowledge one (cf. [22] and [8]. 

The above results may be contrasted with the results regarding the complex
ity of almost-perfect zero-knowledge proof systems; namely, that almost-perfect 
zero-knowledge proof systems exist only for sets in 1V(2) D coXP(2) [11], [1], 
and thus are unlikely to exist for all NP-sets. Also, a very recent result indicates 
that one-way functions are essential for the existence of zero-knowledge proofs for 
"hard" sets (i.e., sets that cannot be decided in average polynomial time)[26]. 

3.3. The role of randomness. Again, randomness is essential to all of the above-
mentioned (positive) results. Namely, if either verifier or prover is required to be 
deterministic then only BPP-sets can be proven in a zero-knowledge manner [17]. 
However, BPP-sets have trivial zero-knowledge proofs in which the prover sends 
nothing and the verifier just tests the validity of the assertion by itself.4 Thus, 
randomness is essential to the usefulness of zero-knowledge proofs. 

4. Probabilistically Checkable Proof Systems 

When viewed in terms of an interactive proof system, the probabilistically check
able proof setting consists of a prover which is memory less. Namely, one can think 
of the prover as being an oracle and of the messages sent to it as being queries. 
A more appealing interpretation is to view the probabilistically checkable proof 
setting as an alternative way of generalizing AfV. Instead of receiving the en
tire proof and conducting a deterministic polynomial-time computation (as in the 
case of NV), the verifier may toss coins and query the proof only at locations of 
its choice. Potentially, this allows the verifier to utilize very long proofs (i.e., of 
super-polynomial length) or alternatively examine very few bits of an NP-proof. 

4Actually, this is slightly inaccurate because the resulting "interactive proof" may have a 
two-sided error, whereas we have required interactive proofs to have only a one-sided error. Yet, 
because the error can be made negligible by successive repetitions, this issue is insignificant. 
Alternatively, one can use ideas in [13] to eliminate the error by letting the prover send some 
random-looking help. 
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4.1. Definition. Loosely speaking, a probabilistically checkable proof system 
consists of a probabilistic polynomial-time verifier having access to an oracle that 
represents a proof in redundant form. Typically, the verifier accesses only a few 
of the oracle bits, and these bit positions are determined by the outcome of the 
verifier's coin tosses. Again, it is required that if the assertion holds then the veri
fier always accepts (i.e., when given access to an adequate oracle); whereas, if the 
assertion is false then the verifier must reject with probability at least | , no matter 
which oracle is used. The basic definition of the PCP setting is given in Item (1) 
below. Yet, the complexity measures introduced in Items (2) and (3) are of key 
importance for the subsequent discussions, and should not be ignored. 

DEFINITION 3 (Probabilistic Checkable Proofs - PCP): 

(1) A probabilistic checkable proof (PCP) system for a set S is a probabilistic 
polynomial-time oracle machine (called verifier), denoted V, satisfying 

• Completeness: For every x G S there exists an oracle set nx so that V, 
on input x and access to oracle nx, always accepts x. 

• Soundness; For every x & S and every oracle set TT, machine V, on 
input x and access to oracle TT, rejects x with probability at least \. 

(2) Let r and q be integer functions. The complexity class VCV(r(-),q(-)) consists 
of sets having a probabilistic checkable proof system in which the verifier, on 
any input of length n, makes at most r(n) coin tosses and at most q(n) oracle 
queries. 

(3) Let R and Q be sets of functions. Then VCV(R.Q) denotes 
VreR.QeQ'PCV(r(-),q(.)). 

The above model was suggested in [12] and shown to be related to a multi-prover 
model introduced previously in [9]. The fine complexity measures were introduced 
and motivated in [10], and the notation is due to [3]. A related model was presented 
in [5], stressing the applicability to program checking. 

We stress that the oracle nx in a PCP system constitutes a proof in the 
standard mathematical sense.5 Yet, this oracle has the extra property of enabling 
a lazy verifier, to toss coins, take its chances, and "assess" the validity of the proof 
without reading all of it (but rather by reading a tiny portion of it). 

4.2. The power of probabilistically checkable proofs. Clearly, VCV{poly,0) e-
quals BVV, whereas VCV(0,poly) equals MV. It is easy to prove an upper bound 
on the nondeterministic time complexity of sets in the PCP hierarchy. In particular, 

PROPOSITION 3 PCP(log,poly) is contained in MV. 

5 Jumping ahead, the oracles in P C P systems characterizing MV have the property of being 
NP-proofs themselves. 
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These upper bounds turn out to be tight, but proving this is much more difficult 
(to say the least). The following result is a culmination of a sequence of works [6], 
[5], [10], [3], [2].6 

THEOREM 4 [2]: MV is contained in VCV(log,0(l)). 

Thus, probabilistically checkable proofs in which the verifier tosses only loga
rithmically many coins and makes only a constant number of queries exist for every 
set in the complexity class MV. It follows that NP-proofs can be transformed into 
NP-proofs that offer a trade-off between the portion of the proof being read and the 
confidence it offers. Specifically, if the verifier is willing to tolerate an error prob
ability of e then it suffices to let it examine 0(log(l/e)) bits of the (transformed) 
NP-proof. These bit locations need to be selected at random. 

The characterization of MV in terms of probabilistically checkable proofs 
plays a central role in recent developments concerning the difficulty of approx
imation problems (cf., [10], [2], and [24]). To demonstrate this relationship, we 
first note that Theorem 4 can be rephrased without mentioning the class VCV 
altogether. Instead, a new type of polynomial-time reductions, which we call am
plifying, emerges. 

THEOREM 5 (Theorem 4 — Rephrased): There exists a constant e > 0, and a 
polynomial-time computable function f, mapping the set of 3CNF formulae7 to 
itself so that 

• As usual, f maps satisfiable 3CNF formulae to satisfiable 3CNF formulae; 
and 

• / maps nonsatisfiable 3CNF formulae to (nonsatisfiable) 3CNF formulae for 
which every truth assignment satisfies at most al —e fraction of the clauses. 

The function f is called an amplifying reduction. 

Proof sketch (Theorem 4 => Theorem 5): Start by considering the PCP for a sat
isfiable 3CNF formula (guaranteed by Theorem 4). Use the fact that the PCP 
system used in the proof of Theorem 4 is nonadaptive8 (i.e., the queries are deter
mined as a function of the input and the random-tape — and do not depend on 
answers to previous queries). Next, associate the bits of the oracle with Boolean 
variables and introduce a (constant size) Boolean formula for each possible out
come of the sequence of 0(log •) coin tosses, describing whether the verifier would 
have accepted given this outcome. Finally, using auxiliary variables, convert each 

6The sequence has started with the characterization of VCVÇpoly, p o l y ) as equal nondeter-
ministic exponential-time [6], and continued with its scaled-down version in [5] and [10], which 
led to the AfV Ç VCV(ipolylog, p o l y l o g ) result of [10]. The first PCP-characterization of 
MV, by which MV = VCV(log, l o g ) , has appeared in [3] and the cited result was obtained in 
[2]-

7 A 3CNF formula is a Boolean formula consisting of a conjunction of clauses, where each 
clause is a disjunction of up to 3 literals. (A literal is a variable or its negation.) 

8 Actually, this is not essential as one can convert an adaptive system into a nonadaptive one, 
while incurring an exponential blowup in the query complexity (which in our case is a constant). 
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of these formulae into a 3CNF formula and obtain (as the output of the reduction) 
the conjunction of all these polynomially many clauses. • 

As an immediate corollary one gets results concerning the intractability of approx
imation. For example, 

C O R O L L A R Y 6 There exists a constant e > 0, so that the following approximation 
problem (known as Max3Sat) is uNP-hardv (i.e., cannot be solved in polynomial-
time unless V = MV): 

Given a satisfiable 3CNF formula, find a truth assignment that satisfies 
at least al — e fraction of its clauses. 

4.3. The role of randomness. No trade-off between the number of bits exam
ined and the confidence is possible if one requires the verifier to be deterministic. 
In particular, VCV(0,q(-)) contains only sets tha t are decidable by a determin
istic algorithm of running t ime 2q^ • poly(n). It follows tha t VCV(0, l og ) = V. 
Furthermore, as it is unlikely tha t all NP-sets can be decided by (deterministic) 
algorithms of running t ime, say, 2 ^ • poly(n), it follows tha t VCV(0, y/n) cannot 
contain MV. 

Acknowledgment: I am grateful to Shafi Goldwasser for suggesting the essential 
role of randomness as the unifying theme for this exposition. 
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ABSTRACT. The complexity theory of counting contrasts intriguingly with 
that of existence or optimization. 

1. Counting versus existence 

The branch of theoretical computer science known as computational complexity is 
concerned with quantifying the computational resources required to achieve spec
ified computational goals. Classically, the goal is often to decide the existence of 
a certain combinatorial structure, for example, whether a given graph G contains 
a Hamilton cycle. Alternatively, the goal might be to find an occurrence of the 
structure that is optimal with respect to a certain measure; in the context of the 
structure "Hamilton cycle," the notorious Travelling Salesman Problem may be 
cited as an example. Less well studied, and somewhat less well understood, are 
counting problems, such as determining how many Hamilton cycles a graph G con
tains. In some areas, such as statistical physics, counting problems arise directly; 
in many others they appear in the guise of discrete approximations to continuous 
problems involving multivariate integration. This article aims to sketch the com
plexity theory of counting, highlighting the ways in which it diverges from that of 
existence or optimization. 

Let E be an alphabet, possibly the binary alphabet, in which the objects 
of interest (e.g., graphs and Hamilton cycles) may be encoded. A witness-testing 
predicate for some combinatorial structure S is a predicate ip : ZJ* x XJ* —> {0,1}, 
where the truth of ij)(x, y) is to be interpreted as "?/ is an occurrence of structure S 
within instance x." Specializing to the structure "Hamilton cycle," %b(x,y) would 
be true precisely if the words x and y encode (respectively) a graph G and a 
subgraph H of G, and H is a Hamilton cycle in G. The existence predicate Q(x) 
for the structure S may be expressed as 

4>(x) **3yeZ* [\y\ = p(\x\) A</>(*,y)], (1) 
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where p is a polynomial that depends on the exact encodings used. In our running 
example, (j) is the "Hamiltonicity predicate," so that (j)(x) expresses the situation 
that x encodes a Hamiltonian graph. For convenience, wc abbreviate the relation
ship (1) between 0 and ip to (f)(x) «=> 3pyip(x,y). 

In general, the witness-testing predicate ip(x,y) belongs to the class P of 
polynomial-time predicates, i.e., those that are computable in time polynomial in 
the lengths of their arguments. (Observe, for example, that it is easy to determine 
whether a given subgraph H of a graph G is a Hamilton cycle of G, and that 
the same is true of most other combinatorial structures we might consider.) The 
class NP (which might more suggestively be denoted 3P) contains precisely those 
predicates <j> that may be derived from polynomial-time two-place predicates yj 
via (1). It is clear that if 0 E NP then 0(x) may be decided in time exponential 
in |a:| by an exhaustive search over all words y e E* of length polynomial in \x\. The 
key issue from a complexity-theoretic viewpoint is whether <j)(x) may be decided 
in much less than exponential time, in particular, whether 0 G P. 

It is important to note that the complexity classes P and NP (and indeed 
all the others we shall encounter in this article) are invariant under "reasonable" 
variation in the computational model and in the choice of encodings. Thus, it is 
of no great significance whether computation is modelled by a Turing machine 
or something more akin to existing computers, nor whether graphs are encoded 
as adjacency matrices or as incidence lists. A polynomial-time computation will 
remain polynomial-time, even though the degree of the polynomial may change. 

It is clear that P Ç NP, but strictness of the inclusion remains a major open 
question. Under the assumption P C NP — which is widely conjectured to be the 
case — it is possible to exhibit "natural" predicates in NP — P using the notion of 
polynomial-time reducibility. A predicate (j)' is said to be polynomial-time (many-
one or Cook-Karp) reducible to <\> if there exists a polynomial-time-computable 
function g : E* —> E* satisfying (j)'(x) 4=» (j)(g(x)). Many natural predicates <\> G 
NP, including Hamiltonicity, have the property that every predicate in NP is 
polynomial-time reducible to (j), and such predicates are said to be NP-complete. 
It is an easy consequence of the definitions that no NP-complete predicate can be 
in P, unless P = NP. Thus, NP-completeness of a predicate such as Hamiltonicity 
can be regarded as evidence of computational intractability. 

The framework just described extends smoothly to counting problems. The 
counting function / : E* —> N associated with witness-testing predicate I/J is 

/ ( s ) = \{y G S* : \y\ = p{\x\) A # r , y ) } | ; (2) 

for convenience, we abbreviate this relationship to f(x) = #pyip(x,y). The class 
# P , the counting analogue of NP, contains precisely those functions / that can 
be derived from polynomial-time two-place predicates if> via (2). As with NP, 
the class # P contains complete problems, which are computationally the hardest 
problems in # P relative to polynomial-time reducibility. However, to obtain a 
rich class of #P-complete problems it is necessary to employ a somewhat more 
liberal notion of reducibility known as Turing reducibility. A function / ' is Turing 
reducible to f if there is a polynomial-time algorithm that computes / ' given an 
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oracle for f.1 A function / G # P is # P -complete if every function in # P is Turing 
reducible to / . 

It is clear that a procedure for counting witnesses must in particular decide 
between no witnesses and some, and hence counting is computationally at least as 
hard as deciding existence. The first evidence that counting can be harder than de
ciding existence for significant natural problems was provided by Valiant [18], who 
exhibited a natural witness-checking predicate for which the associated counting 
function is #P-complete, even though the associated existence predicate is in P. 
A perfect matching in a graph G is a subset M of the edge set of G such that 
every vertex of G is the endpoint of precisely one edge in M. Valiant showed 
that counting the number of perfect matchings in a bipartite graph (equivalently, 
evaluating the permanent of a 0,1-matrix) is #P-complete and hence likely to be 
computationally intractable, whereas deciding whether a bipartite graph contains 
a perfect matching (equivalently, deciding whether the permanent of a 0,1-matrix 
is nonzero) is in P, by virtue of the classical "augmenting path" algorithm. 

Prom Valiant's initial collection [19], the catalogue of #P-complete count
ing problems has grown steadily. A significant recent contribution is Brightwell 
and Winkler's proof [2] that counting linear extensions of a partial order is # P -
complete, settling a decade-old question. Perhaps the most extensive investigation 
in this direction was initiated by Jaeger, Vertigan, and Welsh [6], who consid
ered the computational complexity of evaluating the two-variable Tutte polyno
mial T(M: x, y) of a matroid M, at all points and along significant curves in the 
x,2/-plane. An astonishing variety of counting problems connected with matroids 
in general, and graphs in particular, may by viewed as evaluations of the Tutte 
polynomial at certain points and along certain curves. Many complexity-theoretic 
results may be read off from the classification developed in [6] and succeeding 
articles. 

Empirically it appears to be the case that counting occurrences of a combi
natorial structure is #P-complete whenever deciding existence of the structure is 
NP-complete. This apparent entailment may be formalized, leading to the follow
ing precise open question. Let xj) be any polynomial-time witness-testing predicate; 
is it the case that the function f(x) = #pyip(x,y) is #P-complete whenever the 
predicate <j)(x) = 3pyij)(x,y) is NP-complete? There seems to be no good reason 
why the answer should be yes in general, even though it is for all "natural" witness-
checking predicates \j) that have been considered. Note that Valiant's result [18] 
assures us that the converse cannot hold unless P = NP. 

2. Structural considerations 

From the point of view of "structural complexity" it is natural to consider where 
the counting class # P lies in relation to other complexity classes. Certain rela
tionships, for example that # P is contained in the class F P S P A C E of functions 
computable in polynomial space, follow immediately from the definitions. A far 
from obvious and more enlightening containment was discovered about five years 

a An oracle for a function / is a black box that takes as input a word x e E* and in one 
time-step produces as output f[x). 
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ago. Let us first extend the notation of Section 1. in a natural way. For C a class of 
predicates, let 3C denote the derived class obtained by the following construction. 
A fc-place predicate (j) is contained in 3C if there is a (k + l)-place predicate tj) G C 
and a polynomial p such that 

(j)(xi,...,xk)&3yeE* [\y\ = p(\xx\,..., \xk\) A %)(xl,..., xk,y)}. 

The derived class VC is defined analogously with V replacing 3. The polynomial 
hierarchy PH of Meyer and Stockmeyer is the class 

PH = P U 3P U V3P U 3V3P U • • • (3) 

of predicates obtained from the base class P by finite quantification. (Note the 
analogy with Kleene's arithmetic hierarchy from classical recursion theory.) At the 
base of the hierarchy we find the classes P and NP = 3P that were encountered in 
the previous section. Toda [17] has shown the following. 

THEOREM 1 Every predicate in PH is polynomial-time Turing reducible to a func
tion in # P . 

In other words, the class # P essentially contains the entire polynomial hierar
chy. The power of the counting operator # to simulate arbitrary finite alternations 
of the operators 3 and V is, I think, surprising. 

To give the flavor of the proof of Theorem 1, which relies on a subtle "quan
tifier swapping" argument, it is necessary to define two further operators of inde
pendent interest, © and B. A /c-place predicate à is contained in ©C if there is a 
(k + l)-place predicate y) EC and a polynomial p such that the number of words 
y G E* of length p ( | x i | , . . . , \xk\) satisfying il>(xi*..., xk, y) is odd. A fc-place pred
icate (j) is contained in BC if there is a (fc-hl)-place predicate vj G C, a polynomial p, 
and a number a > 0, such that Pr (0(x*i,... ,xk) <=> ij)(x\,... .xk,y)) > \ + cx, 
where y G E* is selected uniformly at random (u.a.r.) from words of length 
p( |xi | , . . . , |x f c | ) . 

Toda showed that for predicate classes C satisfying a certain technical condi
tion, which is satisfied by the classes forming the polynomial hierarchy (3), 

(i) 3C Ç B©C, (ii) ©B©P Ç B©P, and (iii) BB©P Ç B©P. 

Inclusions (i) and (ii) are nontrivial, decidedly so in the case of (i), which rests on 
a universal hashing technique of Valiant and Vazirani [20]. If C Ç B©P satisfies 
the technical condition, then 

3C ç B©C ç B©B©P ç BB©P ç B©P, 

using containments (i)-(iii). Thus, by induction on quantifier depth, PH Ç B©P. 
The proof is completed by demonstrating that every predicate in the class B©P is 
polynomial-time Turing reducible to a function in # P . 
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3. Random instances 

Under the assumption P ^ NP, there can be no polynomial-time algorithm for 
deciding Hamiltonicity or any other NP-complete predicate. This is a "worst-
case" result: for any NP-complete predicate (j), and algorithm A for deciding 0, 
there exist instances x G E* that cause A to run for superpolynomially many 
steps. However, these difficult instances may be sparse, so there is no reason to 
suppose that A cannot decide <j)(x) quickly on most inputs. The same remarks 
hold good for #P-complete functions. 

Empirically, most NP-complete predicates (j>(x) seem easy to decide when 
the instance x is chosen at random, provided the probability distribution on in
stances is fairly natural. For example, deciding Hamiltonicity of a random graph 
seems in practice to be easy, whichever of the established random graph models is 
used; indeed, good results may be obtained using fairly simple heuristics.2 In con
trast, again from an empirical standpoint, counting seems to be hard for random 
instances. Suppose, for example, we are presented with an n-vertex graph G and 
asked to compute the number of Hamilton cycles in G. Whether the graph G is pro
vided by an adversary or is selected u.a.r. seems to make no difference to the com
putational difficulty of the task. We can gain an understanding of why this is so by 
considering a phenomenon that has become known as "random sclf-reducibility." 
Following Lipton.[13], we find it convenient to investigate this phenomenon in the 
context of the permanent function. 

Let A = (aij : 0 < i,j < n — 1) be an (n x n)-matrix with entries in some 
ring. The permanent of A is defined as 

n - l 

perA = ^2Y[aiMi), 
7T i = 0 

where the sum is over all permutations 7r of {0 , . . . , n — 1}. As noted in Section 1, 
the permanent is a #P-complcte function, even when restricted to 0,1-matrices. 
Our aim is to show that evaluating the permanent of a random matrix R is as hard 
as evaluating the permanent of an arbitrary matrix. The first notion of "random 
matrix" that comes to mind is that of a random 0,1-matrix, because per R then 
has a natural combinatorial interpretation, namely, the number of perfect match
ings in the bipartite graph with adjacency matrix R. However, the argument we 
present requires that the matrix elements take on a wider range of values, and we 
accordingly work with matrices over the finite field GF(p), where p is a prime not 
less than n + 2. 

Let A be an arbitrary (n x rc)-matrix over GF(p), which we may imagine 
to be chosen by some adversary. Our aim is to reduce the computation of per A 
to the computation of the permanents of a number of random matrices. Choose 
a random (n x n)-matrix R, i.e, one with each entry selected independently, and 
u.a.r. from GF(p). The function f(z) = pcr(A + Rz) is a polynomial of degree n 

2This rather sweeping statement deserves more substantial qualification than space here al
lows. Suffice it to say that the task of exhibiting algorithms that are provably efficient for almost 
every instance presents a considerable challenge. 
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in the indeterminate z. If we knew the n + 1 values f(l). f(2) , f(n + 1) then 
we could interpolate to find /(0) = per A. which is precisely the quantity wc wish 
to compute. But f(i) = pcr(A + iR), and A + iR is a random matrix, provided 
i ^ 0 (mod /;). It follows that the existence of a polynomial-time algorithm that 
correctly computes per A for all but a fraction 1/3(7? + 1) of (n x n)-matriccs A 
over GF(p) would imply the existence of a randomized polynomial-time algorithm 
that computes the permanent correctly, with high probability, on all inputs. 

Using the theory of error correcting codes, it is possible to interpolate poly
nomials reliably from "noisy" data, This fact — which is implicit in a decoding 
procedure due to Bcrlekamp and Welch — allows the fraction l/3(n + 1) men
tioned above to be increased to ^ — S for anv 6 > 0. which is clcarlv as much 
as can be achieved using a simple-minded application of random self-reducibility. 
Using more sophisticated techniques, Feige and Lund [5] show that the existence 
of a polynomial-time algorithm that correctly computes the permanent of even 
a tiny proportion of all matrices would have a surprising consequence: that the 
polynomial hierarchy collapses to the second level. In the notation introduced 
in Section 2.: 

THEOREM 2 / / there exists a polynomial-time algorithm that correctly computes 
the permanent on a fraction 100n3/y/p of all (n x n) matrices over GF(p), then 
3VP = PH. 

Note, however, that to obtain a dramatic effect it is necessary to work over 
rather large finite fields. Their proof exploits ideas from the theory of "interactive 
proofs." 

Existing results concerning hardness of counting problems on random in
stances rely on polynomial interpolation, which can only work over a sufficiently 
large field. Intuitively, evaluating the permanent of a random 0,1-matrix ought to 
be as hard as evaluating the permanent of an arbitrary 0,1-matrix, and the same 
ought to be true of counting Hamilton cycles in a random graph, or of counting 
many other combinatorial structures in random graphs. (Note that these problems 
arc "essentially combinatorial," in contrast to that of permanent evaluation over 
a finite field, which has an algebraic flavor.) There is no complexity-theoretic ev
idence that the cited problems are hard with respect to the uniform probability 
distribution on instances, and remedying this deficiency would be a significant 
advance. 

4. Approximation algorithms 

The familiar dichotomy within the class NP. namely P versus NP-complete, has a 
counterpart in the complexity class # P : almost all the "natural" functions in # P 
that have been considered have been shown either to be polynomial-time com
putable or to be #P-complete. Unfortunately, very few counting problems fall 
into the former category, notable examples being (a) spanning trees in a graph, 
which can be counted via Kirchhoff's matrix-tree theorem, (b) perfect matchings 
in a planar graph (including dimer coverings of a two-dimensional lattice as a spe
cial case), the solution of which is a classical result of Kasteleyn [12], and (c) a 
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few other structures — such as Eulerian circuits in a directed graph or Ising con
figurations in a planar lattice — that can be handled by fairly direct reduction to 
either (a) or (b). Valiant has made the intriguing observation that all the cited al
gorithms ultimately rely on linear algebra, in particular, the well-known fact that 
the determinant of a matrix may be computed in polynomial time by Gaussian 
elimination. 

Given the paucity of positive results, it is tempting to weaken the require
ments somewhat, and consider wrhether approximate counting is feasible; for ex
ample, whether it is possible, in polynomial time, to evaluate the permanent of 
a 0,1-matrix with relative error at most 1%. The reader who has followed the 
recent dramatic advances in the field of approximation algorithms for combina
torial optimization will be aware of the emerging classification of optimization 
problems according to degrees of approximability: problems, such as chromatic 
number of an ra-vertex graph, that cannot be approximated within ratio na for 
some a > 0 unless P = NP; problems, such as "MAXSAT," that can be approxi
mated within ratio a but not within ratio ß, for some 0 < a < ß < 1, and so on. 
In contrast, Sinclair and the author [16] have demonstrated that no correspond
ingly rich classification can be expected in the domain of approximate counting. 
A witness-checking predicate ip is (downward) self-reducible if, roughly, the set 
{y : ij)(x,y)} has a simple recursive expresssion in terms of some collection of sets 
{y : ip(xi,y)},...,{y : iß(xk,y)} with \x{\ < \x\ for all 1 < i < k. Almost all 
naturally occurring predicates are self-reducible in this sense. 

THEOREM 3 Suppose ij) is a self-reducible predicate, and let A be the set of a EM. 
for which there exist Ö > 0 and a polynomial-time randomized algorithm that 
approximates the function f (x) = #pyip(x,y) within ratio l + \x\a, with probability 
\+à. Then A is either empty or the whole of R. 

In the absence of differing degrees of approximability, a single notion of ef
ficient approximation algorithm has assumed considerable importance. Suppose 
/ : E* —> N is a function mapping problem instances to natural numbers. A ran
domized approximation scheme for / is a randomized algorithm that takes as input 
a word (instance) x G E* and e > 0, and produces as output a number Y (a ran
dom variable) such that Pr ((1 - e)f(x) < Y < (1 + e)f(x)) > \ + 6, for some 
ö > 0.3 A randomized approximation scheme is said to be fully polynomial if it runs 
in time polynomial in |x| and c _ 1 . The rather unwieldy phrase "fully polynomial 
randomized approximation scheme" is often abbreviated to fpras. 

The above definition is due to Karp and Luby, who presented a simple but 
elegant fpras for counting satisfying assignments to a Boolean formula in DNF, a 
#P-complete problem. Unfortunately, the classical Monte Carlo approach adopted 
by Karp and Luby appears to have only limited application in this area. An alter
native approach that has proved very fruitful exploits the close relationship that 
exists between approximate counting and (almost) uniform sampling. Subject to 
sclf-reducibility, the existence of an efficient (i.e., polynomial-time) almost uniform 

3Any success probability strictly greater than | may be boosted to a value arbitrarily close 
to 1 by making a small number of trials and taking the median of the results [10]. 
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sampling procedure for a certain combinatorial structure entails the existence of an 
efficient approximate counting procedure (i.e., fpras) for that structure, and vice 
versa. This connection was investigated by Valiant, Vazirani, and the author [10], 
and further elucidated in [16]. 

For the sake of definiteness, let us suppose that the goal is to estimate the 
permanent of a 0,1-matrix. We have noted that this task is equivalent to estimating 
the number of perfect matchings in a bipartite graph G, and hence to sampling per
fect matchings in G almost uniformly. Broder [3] suggested the following approach 
to sampling matchings. Let M denote the set of all perfect matchings in G and 
M~ the set of "near-perfect" matchings that leave exactly two vertices uncovered. 
Construct a Markov chain (Xt) whose state space fi = M U M~ consists of all 
perfect and near-perfect matchings. A transition from state Xt G fi to Xt+i G fi 
is possible if Xt © Xt+i — the symmetric difference of Xt and Xt+\ — contains 
at most two edges; all allowed transitions occur with equal probability. 

It can be shown that the Markov chain (Xt) is ergodic and has uniform sta
tionary distribution. This observation suggests the following sampling procedure 
for perfect matchings: simulate the Markov chain from a fixed initial state XQ 
for T steps; return as result the final state XT if XT G Ä/, otherwise repeat the 
simulation. If T is chosen large enough, the result of this procedure is a perfect 
matching chosen almost u.a.r. For this "Markov chain Monte Carlo" sampling pro
cedure to be efficient, two conditions must be satisfied: (a) the ratio |M|/ | i? | must 
be nonnegligible, and (b) the Markov chain (Xt) must be "rapidly mixing," that 
is to say, must be close to stationarity after a number of steps polynomial in n, 
the size of G. It is in verifying condition (b) that the work lies. 

The classical approach to establishing that a Markov chain is rapidly mixing 
is via a "coupling argument." Broder attempted to use a coupling argument to 
prove that his perfect matching Markov chain is rapidly mixing; however, the 
technique appears ill suited to the irregular Markov chains that typically arise in 
this context. A modest exception to this general rule is an algorithm of the author's 
for estimating the number of colorings of a low-degree graph [7], the correctness 
of which rests on a surprisingly simple coupling argument. 

The failure of coupling to produce results has spurred the development of 
two new approaches to analyzing rates of convergence of ergodic Markov chains. 
The first of these is the "canonical paths" argument, which was introduced by 
Sinclair and the author, and used by them to analyze Broders perfect matching 
chain [8]. The canonical paths argument provides a lower bound on a quantity 
known as the conductance of the Markov chain, which is a weighted version of the 
familiar notion of expansion of a graph. Sinclair and the author [16] showed that 
conductance and mixing time (roughly, number of steps until the distribution on 
states is close to stationarity) are related, so that large conductance entails a short 
mixing time; similar results were obtained independently by Alon and Aldous, and 
can be regarded as discrete analogues of Cheeger's inequality. 

The idea is to specify, for every pair of states I, F G fi, a canonical path, 
starting at J and ending at F, and composed of valid transitions in the Markov 
chain. If the canonical paths can be chosen so that the total number of paths using 
any single transition is relatively small, then the conductance of the Markov chain 
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must be relatively large, and the mixing time correspondingly short. This line of 
argument has been used to demonstrate the existence of an fpras for the permanent 
of a wide class of 0,1-matrices, including all matrices that are sufficiently dense [8], 
and for the partition function of a ferromagnetic Ising system [9]. 

The second approach is geometric in nature. The idea is to assign a geomet
ric interpretation to the state space fi, from which a lower bound on conductance 
can be read off using (enhancements of) classical isoperimetric inequalities. This 
was the approach used by Dyer, Frieze, and Kannan [4] in their seminal work 
on estimating the volume of a convex body in high-dimensional Euclidean space, 
which has been variously refined by the original authors and by Lovâsz and Si
monovits [14], and extended to the integration of log-concave functions over convex 
regions by Applegate and Kannan [1]. The approach was also used by Karzanov 
and Khachiyan [11] to validate an fpras for the number of linear extensions of a 
partial order. 

It would be interesting to know which #P-complete functions can be approx
imated in the fpras sense, and which cannot. As we have seen, definite progress 
has been made in the last few years, at least on the positive side of the classifica
tion. However, many natural #P-complete functions have so far resisted analysis. 
There seem to be difficulties on both sides. On the one hand, several problems 
seem amenable to the Markov chain Monte Carlo method, but the Markov chains 
that have been proposed for their solution are not provably rapidly mixing. Further 
progress may be predicated on the development of new techniques for bounding 
the mixing time of irregular Markov chains. 

On the other hand, negative results are hard to come by, even though there are 
no doubt many natural #P-complete problems for which no fpras exists. Current 
techniques for establishing negative results are primitive. It is easy to show that 
if deciding existence of some combinatorial structure is NP-complete, then there 
can be no fpras for the number of occurrences of that structure unless RP = 
NP.4 Furthermore, a simple argument [15, Theorem 1.17] suffices to rule out the 
existence of an fpras for certain problems — including counting independent sets 
of all sizes in graph — again unless RP = NP. However, the current techniques 
seem to fall well short of resolving whether (for example) there is an fpras for the 
permanent of an arbitrary 0,1-matrix. 

Acknowledgments. I thank Sigal Ar, Alistair Sinclair, and Leslie Valiant for com
ments on a preliminary draft of this article. 
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Abstract 

The problem of getting the right data to the right place within a reasonable amount 
of time is one of the most challenging and important tasks facing the designer (and, 
in some cases, the user) of a large-scale general-purpose parallel machine. This is 
because the processors comprising a parallel machine need to communicate with 
each other (or with a common shared memory) in a tightly constrained fashion 
in order to solve most problems of interest in a timely fashion. Supporting this 
communication is often an expensive task, in terms of both hardware and time. 
In fact, most parallel machines devote a significant portion of their resources to 
handling communication between the processors and the memory. 

In the talk, we surveyed several of the ideas and approaches that have been 
proposed for solving communication problems in parallel machines. Particular em
phasis was placed on recent work involving randomly wired networks (known as 
multibutterflies). Results were presented that indicate that randomly wired net
works significantly outperform traditional networks such as the butterfly in terms 
of both speed and fault tolerance. 
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Exponentiation makes the difference between the bit size of this line and the num
ber (<̂C 2300) of particles in the known universe. The expulsion of exponential time 
algorithms from computer theory in the 1960s created a deep gap between deter
ministic computation and — formerly its unremarkable tools — randomness and 
nondeterminism. These two "freedoms" of computation preserved their reputation 
as some of the most mysterious phenomena in science and seem to play an ever 
more noticeable role in computer theory. We have learned little in the past decades 
about the power of either, but a vague pattern is emerging in their relationships. 

A nondctcrministic task is to invert an easy computable function. It is widely 
believed to require, in general, exponential computing time. Great efforts, however, 
have failed to prove the existence of such one-way (easy to compute, infeasiblc to 
invert) functions (owf). Randomness too preserves its mysterious reputation: it 
seems now, it can be generated deterministically. A simple program can transform 
a short random k4sced" into an unlimited array of random bits. As long as the seed 
is not disclosed, no computational power that may fit in the whole universe can 
distinguish this array from truly random ones. This conjecture is proven equivalent 
to the existence of owf. I will survey a number of papers that have resulted in this 
theorem. 

Although fundamental in many areas of science, randomness is really ''native" 
to computer science. Its computational nature was clarified by Kolmogorov. He 
and his followers (see survey [Kolmogorov Uspenskii 1987]) built in the 1960s-
1970s the first successful theory of random objects, defined roughly as those that 
cannot be computed from short descriptions. Kolmogorov also suggested in the 
1960s that randomness may have an important relationship with nondeterminism; 
namely, that the task of finding a unonrandomness,, witness (i.e. short fast program 
generating a given string) may be a good candidate to prove that exhaustive search 
cannot be avoided (in today's terms, P<NP). 

The next step came from cryptography of the 1980s. Many applications re
quire only few properties of random strings. So, they do not care about the fun
damental issues of randomness, as long as some laws (e.g., of big numbers) hold. 
Cryptographers, in contrast, need to deprive the adversary from taking advan
tage of any regularities in their random strings, no matter how peculiar, making 
''perfect" randomness an important practical concern. [Blum Micali], [Yao]1 used 
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the idea of a hard core or hidden bit. Suppose from a length-preserving one-way 
function f(x) it is hard to compute not only x but even its one bit b(x) (easily 
computable from x). Assume tha t even guessing b(x) with any noticeable corre
lation is infeasible. If / is bijective, f(x) and b(x) are bo th random and appear 
to be independent to any feasible test, thus increasing the initial amount |a?| of 
randomness by one bit. Then, a short random seed x can be transformed into an 
arbitrary long string b(f^(x)), i'• = 1 ,2 , . . . , which passes any feasible randomness 
test. [Blum Micali] established such a hard-core b assuming a particular function 
(discrete log) to be one way. But if its inversion turns out to be feasible, all is lost. 
[Yao] uses a more general one-way candidate. It is less likely to be technically in 
P, but is, nevertheless, easy to invert for reasonable \x\ (it breaks input into small 
pieces and applies an owf to each of them). 

In [Goldreich Levin] and [Levin] it is proven tha t a boolean inner product 
provides every owf / with a hidden bit b of the same security. Actually, the (very 
efficient) construction used in [Levin] is quite simple and can be understood by non
experts. It yields "perfect" pseudo-random generators from any one-way bijection. 
The bijection requirement was lifted in [Hastad Impagliazzo Levin Luby]. It showed 
tha t the possibility of deterministic generation of pseudo-randomness is exactly 
equivalent to the existence of owf. Thus, Kolmogorov's intuition tha t nondetermin-
istic phenomena are intimately related with randomness proved to be accurate. 
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1 Introduction 

Shells and their assemblages are found in a wide variety of elastic structures: 
cooling towers, aircrafts, car bodies, sails, hulls of vessels, etc. These shells are, 
and therefore should be in principle studied as, three-dimensional bodies. The 
"small" thickness of a shell makes it however natural to "replace" the genuine 
three-dimensional model by a simpler two-dimensional model, i.e,, one that is 
posed over the middle surface of the shell. 

Not only is this replacement intuitively "natural", but it becomes a neces
sity when numerical methods must be devised for computing approximate dis
placements and stresses. Any reasonably accurate three-dimensional discretization 
necessarily involves an outstandingly large number of unknowns, which renders it 
prohibitively expensive, and at any rate its implementation requires extreme care. 
By contrast, the situation is on much safer ground as regards the application of 
approximate methods to two-dimensional shell models [2], although there remain 
challenging problems, such as that of efficiently coping with the onset of locking [5]. 

As two-dimensional shell models are for these reasons by and large preferred, 
two major, and closely related, questions naturally arise: 

How does one derive two-dimensional shell models in a rational manner from 
three-dimensional elasticity? This first question is one in asymptotic analysis; it 
consists of analyzing the behavior of the three-dimensional solution as the thickness 
(the "small" parameter) approaches zero. 

How does one choose among the various available two-dimensional shell mod
els in a given physical situation, so that the chosen one is indeed a "good" approx
imation of the three-dimensional model it "replaces"? This second question is of 
paramount practical importance, for it makes no sense to devise methods for ac
curately approximating the solution of a "wrong" model! 

Our purpose is to describe recent progress on these questions. Our discussion 
will focus in particular on three well-known two-dimensional shell models: the 
bending and membrane models, and Koiter's model. 
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2 The three-dimensional problem of a linearly elastic shell 

Greek indices and exponents (except e) belong to {1,2}; Latin indices and ex
ponents belong to {1,2,3}; the summation convention is used. The Euclidean 
norm and inner product, and the vector product of u,v G R3 are denoted by 
|ti|,U • V, U X V. 

Let a; be a bounded, open, connected subset of R2, with a Lipschitz-conti-
nuous boundary 7, the set u) being locally on one side of 7. We let y = (ya) denote 
a generic point in tJ, da = d/dya,daß = dadß, and du denote the outer normal 
derivative along 7. Let <p : w —> R3 be an injective mapping of class C3 such that 
the two vectors aa = daip span the tangent plane to the surface S = <P(LJ) at all 
points in G;. We also define the vectors af3 of the tangent plane by a& •• aa =6%, the 
normal vector a3 = (a\ x 0,2)/\a\ x 02!, the Christoffel symbols T*0 = aa • 9Qa#, 
the metric tensor by its covariant and contravariant components aQß = aaa$ and 
aaP = aa • a&, the area element y/a dy with a = dct(aaß), the curvature tensor 
by its covariant and mixed components baß = a3 • daa,ß and b& = a?abaOL. Finally, 
we let caß = b%Lb(jß. . 

For each e > 0, define the sets tl£ = ux] — e,e[ and TQ = 70x] — e, e[, where 
70 C 7 and length 70 > 0, let xe = (x£) denote a generic point in Sì (hence 
x^ = ya), and let df = d/dx£. For each e > 0, we consider an elastic shell with 
middle surface S and thickness 2e, whose reference configuration is thus the set 
# ( f f ) c R3, where &(x£) = <p(y) + x\a3(y) for all x£ = (y,x£

3) e ff. For e > 0 
small enough, the vectors g\ = d\& are linearly independent at all points in SX . 
We also define the vectors gi,£ by g^ £ g£ = #•, the metric tensor by its covariant 
and contravariant components gfj = g£g£ and gli,£ = gl£g^£, the volume element 
y/gë dx£ with g£ = d e t ( ^ ) , and the Christoffel symbols T^s = gp,£ • d£ g£. 

The unknown is the vector field u£ = (u\) : Q —* R3, where the functions 
u\ = VL —• R are the covariant components of the displacement field of the shell; 
this means that, for each x£ G £T, the vector u£(x£)gl>£(x£) is the displacement 
of the point &{x£). In linearized elasticity, the unknown solves the variational 
problem: 

u£ € V(Q£) := {v£ = (vi) e Hl(Sl£);v£ = 0 on T%}, (1) 

(2) j A ^ ^ e | p ( ^ ) e f | ( j ( v £ ) y / F d x £ = J f^Vf dx£ 

for all v£ E V(ne), where 

Aijki,E ; = Xgij,egk£,e + ^gik,egje.e + gi^gjk^ ( 3 ) 

e f | | j ( ^ ) : = ^ ( ^ + ^ < ) - r ^ ; ; (4) 

where A > 0 and p > 0 denote the Lamé constants, assumed to be independent 
of e, of the material constituting the shell, and /* ,e G L2(Q£) are the covariant 
components of the applied body force density. Problem (l)-(2) has one and only 
one solution; this either follows from the classical Korn inequality [15], or from 
Korn's inequality in curvilinear coordinates [7]. 
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In the ensuing asymptotic analysis, the following "two-dimensional" ana
logues of the "three-dimensional" functions (3)-(4) will naturally arise: 

a«ßvr = J ^ _ aaßaar + 2p(aQaaßT + aaTaß°), (5) 
\ + 2p 

locß(ri) = ^(dQr]0 + dß7ia) - T^ßria - baßr]3, (6) 

paß(v) = daßth - r^öCT7/3 + 6g(ôafjff - I^ifr.) + b^dß^ - TT
ß<7riT) 

+ (dßbl + Y°ßTbl - r ^ ô Ç ) ^ - p ^ i » . 

They respectively denote the contravariant components of the elasticity tensor of 
the surface S, and the covariant components of the linearized strain tensor and 
linearized change of curvature tensor associated with an arbitrary displacement 
field r)ia% of the surface S. In what follows, || • ||O.A and || • \\,A denote the L2(A)-
and H1 (A)-norms of real or vector-valued functions. 

3 Asymptotic analysis of bending-dominated shells 

Let Q = ux] — 1,1[ and r 0 = 7o x [—1,1]. With a point x£ = (x£) G fl , we 
associate the point x = (xi) G fl, defined by x£

a = xa, x3 = ex$ as in (8), (9), 
(12), (16), (24), (25), and we let di = d/dxi. We assume that there exist functions 
p G L2(Q) independent of e such that the components of the applied body force 
density satisfy 

f-(x£) = £2f(x) for all x£ G QE (8) 

(a definition of the otherwise loose statement that "the body force is 0 ( E 2 ) " ) . 

Then the scaled unknown Uf(e) : Q —•> R3 defined by 

u£(x£) = uf(s)(x) for all x£ G ff, (9) 

satisfies (compare with (l)-(4)): 

uf(e) G V(îî) := {v = (vi) G H 1 (fi); v = 0 on T0}, (10) 

/ A^(e)e f c , | , (^ ix/ (^))e i | | j (^ ; i ; ) A /^) dx = s2 f fviVgJT) dx (11) 
Jn Jn 

for ail v G V(fl), where 

Aijke(e)(x) = Aijke>E(x£), g(e)(x) = gs(xE) for ail xE G Q£, (12) 

ea\\ß(£\ v) = -(davp + di3va) - Tlß(s)vp, (13) 

Calisi? W) = \{daV3 + ^03Va) - T ^ K , (14) 

e3||3(^;w) = - ^ 3 , (15) 
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I*(e)(:r) = r?f(af) for all x£ G ÎT. (16) 

Our objective is to study the behavior of the unique solution Uf (e) of problem 
(10)-(11) as e -> 0. Note that eq. (11) is not defined for e = 0 (cf. (14)-(15)); it 
constitutes an instance of a singular perturbation problem in the sense of [19]. 

THEOREM 1 [10]. Assume that the "space of inextensional displacements" (cf. 

(6)): 

Vf(u) = {r? =(Vi) G Hl(u) x H\u) x H2(u); 

Vi = d»V3 = 0 on 7o, 7aß(v) = ° in u} 

does not reduce to {0}. Then the scaled unknown defined in (9) satisfies 

uf(e) -+ uj in if1 (fi) as e - • 0, (18) 

where the limit Uf G V(fì) is independent of the "transverse" variable x$. Further-
1 f1 

more, the function^/ "•= ~ I Ufdx% belongs to the space Vf(u) and satisfies the 

two-dimensional equations of a "bending-dominated shell" (cf. (5) and (7)) 

j j aa^PtTT(Cf)pali(v)V^ dy = j {£ f^dx^r,^ dy (19) 

for all r] G Vf(u). 

The space Vf(u) was introduced by Sanchez-Palencia [23], who also noted 
[24] that Vf(u) ^ {0} when S is a portion of a cylinder and ^(70) is contained in 
a generatrix of S. The proof of the convergence (18) hinges on a priori estimates 
on the family (u(e))E>o, which themselves crucially rely on a "first" generalized 
Korn inequality (20) valid for an arbitrary surface S = ^p(u) with ip G C3(ü), 
irrespective of whether the space Vf(u) reduces to {0} or not: 

THEOREM 2 [10]. There exist ei > 0 and d > 0 such that (cf. (13)-(15)) 

Hi^^T{^ l | e* ( 5 ; v ) l l^}è (20) 
*d 

for all 0 < e < £1 and all v G V(îl) (cf. (10)). 

4 Asymptotic analysis of membrane-dominated shells 

It is remarkable that, in some cases (examples are given in Theorem 4), the "con
stant" C\je appearing in (20) can be replaced by a constant independent of e, at 
the expense however of "replacing ||t'3||i;ß by ||v3||o,n" on the left-hand side. 

THEOREM 3 [9]. Define the space 

Vm(u) = {rj = (ifc);Tfe G H^(u),V3 G L2(u)} = H^(u) x H^(u) x L2(u), (21) 
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and assume that there exists a constant c > 0 such that (cf. (6)) 

{Eii^iiï.«- + ii%iiL,}1/2 ^ c{ Enw*?)i iL} 1 / 2 f° r allri£ vm(uj). (22) 
a a.ß 

Then there exist £2 > 0 and C2 > 0 swc/i £/ia£ 

{ E Hv°Hî.n + IMIo.n} 1 / 2 < C2{£ llei|y(£;«)llS,n}1/2 (23) 

/or a// 0 < e < e2 and all v G V(Q) where V(fl) is the space of (10) with T0 = 

7 x [ - l , l ] . 
THEOREM 4 [8], [13]. Assume either that 7 is of class C3 and if is analytic in 
an open set containing a;, or that 7 is of class C4 and <p G C5(ü); in addition, 
assume that the surface S = ip(ü) is "uniformly elliptic", in the sense that the two 
principal radii of curvature are either both > 0, or both < 0, at all points of S. 
Then relation (22) holds. 

We assume now that there exist functions f1 G L2(Q) independent of e such 
that (compare with (8)): 

f<E(xE) = f(x) for all xE G QE. (24) 

Then the scaled unknown um(£) : Q —> R3, defined by 

uE(xE) = unh(e)(x) for all x£ G ff, (25) 

satisfies another singular perturbation problem (compare with (10)-(11)): 

um(s) G V(Q), (26) 

/ A ^ ^ e f c i i ^ e s ^ ^ J e i i y ^ ^ v ^ ) dx = / fviy/rte) dx (27) 
Jn Jn 

for all v G V(fì), where V(Q) is the space of (10) with r 0 = 7 * [-1* 1]-

THEOREM 5 [9]. Assume that 70 = 7 and that relation (22) holds. Then the scaled 
unknown defined in (25) satisfies 

urn(e) -> um in H\Q) x H1^) x L2(Q) ase^O, (28) 

where the limit um is independent of the "transverse" variable x$. Furthermore. 
1 f1 

the function Çm := - / um dx% belongs to the space Vm(u) of (21) and satisfies 
l 

the two-dimensional equations of a "membrane-dominated shell" (cf. (5)-(6)): 

e J a°*"-7«rr(C,.ba0(i|)>/S dy = J {f fUs d*§}ift>/5 dy (29) 

for all rie Vm(uj). 
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The proof of the convergence (28) hinges again on a priori estimates, which 
now crucially rely on the "second" generalized Korn inequality (23). That the 
constant in (23) is independent of e now allows the body force to be 0(1), as 
compared to 0(e2) in Section 3. 

5 Koiter's shell model 

For each e > 0, consider the same linearly elastic shell as discussed in Section 
2. Following a fundamental work of Fritz John, Koiter [16] has proposed a two-
dimensional shell model, whose unknown is the vector field £ = (Q) : ü —> R3 

where the functions Q : ü —> R are the covariant components of the displace
ment field of the middle surface of the shell; this means that, for each y Go;, the 
vector Q(y)aL(y) is the displacement of the point (p(y). The unknown solves the 
variational problem (cf. (5)-(7)): 

C e VK(u) := {77 = fa) G Hx(u) x Hl(u) x H2(u);m = d„m = 0 on 70}, (30) 

£ f a^^lar(C
£haß(v)V^ dy + ^ / aaß^P(TT(C)Paß(ri)y/^ dy 

J Ui " J Ui /OI \ 

= [{[ fi£ dx^THy/idy for all 77 G VK(u). 

For each e > 0, problem (30)-(31) has one and only one solution ÇE [3], 
[4]. Assume first that Vf (u) ^ {0}, as in Theorem 1. Then Sanchez-Palencia [23, 
Theorem 2.1] has shown that, as e —> 0, ^ weakly converges (in fact, strongly; cf. 
[11]) in the space VK(U) to the solution £/ G Vf(u) of (19). Combining this result 
with the convergence (18) and the scaling (9), we obtain: 

THEOREM 6 [11]. Assume that Vf(u) / {0} and that assumption (8) holds. Then 

^- j uE dx\ = Cf + o(l) in Hx(u), (32) 

C=Çf + o(l)inHl(u;), (33) 

as e —> 0, where u£ denotes the solution of the three-dimensional problem (l)-(2) 
and Ç? denotes the solution of Koiter7s model. 

Assume next that 70 = 7 and that relation (22) holds, as in Theorem 5. Then 
Sanchez-Palencia has shown [24, Theorem 4.1] that, as e —> 0, £ converges in the 
space Vni(u) of (21) to the solution £m G Vm(u) of (29). Combining this result 
with the convergence (28) and the scaling (25), we obtain: 

THEOREM 7 [11]. Assume that^Q = 7, that relation (22) holds, and that assump
tion (24) holds. Then 

± £ uE dxl = Cm + o(l) in H1 (u) x H1 (u) x L2(u), (34) 

f = Cm + o(l) in Hl(u) x Hl(u) x L2(u), (35) 

as £ —•+ 0, where u£ denotes the solution of the three-dimensional problem (l)-(2) 
and £ denotes the solution of Koiter 7s model. 
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6 Conclusions and comments 

6.1. The convergences (18) and (28) constitute, under the respective assumptions 
of Theorems 1 and 5, a mathematical justification of the two-dimensional equations 
of a "bending-dominated shell" (19) and of a "membrane-dominated shell" (29). 
They justify the formal asymptotic analysis of Sanchez-Palencia [25] (sec also [22]). 

6.2. Under the same respective assumptions, relations (32) and (33) on the one 
hand, and relations (34) and (35) on the other, likewise constitute a mathematical 
justification of Koiter s shell model, because they show that, in each case, its solu
tion (^ and the average — u£ dx\ obtained from three-dimensional elasticity 

both have the same principal part with respect to powers of £. 
One can therefore use Koiter7s model without knowing "in advance" whether 

the shell is "bending-dominated" (in the sense that Vf(u) / {0}) or "membrane-
dominated" (in the sense that 70 = 7 and relation (22) holds). This remarkable 
feature certainly explains why Koiter's model is blithely, and successfully, used in 
computational mechanics. 

6.3. For a linearly elastic plate, or for a linearly elastic shallow shell, the asymp
totic analysis yields a two-dimensional limit model where both the "bending" and 
"membrane" terms simultaneously appear (cf. [6, Theorem 3.3-1] and [12]). For a 
linearly elastic shell, by contrast, the asymptotic analysis yields a two-dimensional 
limit model that is either of the bending-dominated type, or of the membrane-
dominated type. 

6.4. The present analysis covers two cases: either Vf(u) ^ {0}, or 70 = 7 and 
relation (22) holds. It therefore remains to study intermediary cases (which corre
spond to surfaces that are "not well inhibited for the admissible displacements", 
in the terminology of Sanchez-Palencia [24]). For instance, the space 

R(u) := {77 = (77*) G H1^) x Hl(u) x L2(u);ria = 0 on 7o,7a.tf(r7) = ° i n " } 

may reduce to {0}, but the equivalence of norm (22) does not hold; or the space 
Vf(u) may reduce to {0}, but R(ó;) ^ {0}, etc. 

6.5. An earlier convergence result was obtained by Destuynder for membrane-
dominated shells. He showed in particular [14, Theorem 7.9, p. 305] that, under 
the assumption of uniform ellipticity of the middle surface S, (um(£))a —> (um)a in 

(n) L2(fi), - / (um(£))a dx3 -> - / (um)a dx3 in Hl(u),£(um(£))3 -> 0 in I? 

(the notation is as in Theorem 5). However, his analysis was still "partially formal" 
in that it assumed the existence of a formal series expansion of (um(£))3 as powers 
of £. 

Using Y-convergence techniques. Acerbi, Buttazzo, and Percivale [1] have also 
obtained earlier convergence theorems for shells viewed as "thin inclusions" in a 
larger, surrounding elastic body; as a consequence, they do not seem to relate the 
distinction between the bending-dominated and membrane-dominated cases to the 
"geometry" of the middle surface and the boundary conditions. 
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6.6. For nonlinearly elastic shells, two-dimensional "membrane-dominated" or 
"bending-dominated" models can be likewise identified through a formal asymp
totic expansion of the scaled three-dimensional solution [20], [21]. As for nonlinearly 
elastic plates [17], T- convergence techniques can also be successfully applied tha t 
yield a convergence theorem to the solution of a "large deformation" membrane 
shell model [18]. 
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1. Introduction 

The success of numerical simulation hinges to a great extent on the ability to 
handle larger and larger (ultimately) linear systems of equations that typically 
arise from discretizing integral or differential equations. 

There are different possible responses to the challange posed by such large 
scale problems. One is mainly data oriented, relying on increased computing power 
and employment of parallel techniques. However, it seems to be generally agreed 
upon that this by itself may ultimately not suffice. The goal must be to develop 
asymptotically optimal (a.o.) schemes, which yield a solution within a given toler
ance of accuracy, at the expense of storage and floating point operations, which 
remain proportional to the number of unknowns. Instead of isolating the linear 
algebra problem from its origin, it seems to be necessary to exploit as much in
formation about the underlying analytical problem as possible. Such information 
cannot be extracted from a single scale of discretization, no matter how fine this 
scale might be. One key principle is to extract asymptotic information from the 
interaction of several levels of resolution. 

The perhaps most prominent representative of such multiscale techniques is 
the multigrid method for solving elliptic boundary value problems, which under 
certain circumstances is known to be a.o. [17]. In addition during the past few 
years so-called multilevel preconditioning techniques have gained considerable im
portance. Only recently have they also been shown to give rise to a.o. schemes 
even under minimal regularity assumptions [2], [10], [24], [25]. Both methods can 
be interpreted as correction schemes [32], where successive corrections are realized 
through adding finer details on higher levels of discretization. 

Adding details from successively finer scales is also the essence of the concept 
of (discrete) wavelet transforms, which, during the past decade, has become a 
completely independent, rapidly expanding and extremely active area of research 
[15], [16], [22], [23]. Although primary applications were mainly concerned with 
signal analysis, image processing, and data compression, there have been recent 
attempts to also apply wavelet-type concepts to integral or differential equations 
(cf. e.g. [1], [10], [14], [19, 20]). On the other hand, there is an important difference 
in the point of views of both methodologies. In contrast to multigrid and multilevel 
methods developed in the finite element community, wavelet-type concepts are 
strictly basis oriented. Such schemes rely on the explicit availability of bases with 
certain nice properties. The construction of such bases, however, is expected to 
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depend, in particular, on the underlying domain. So the interest stirred up by 
striking examples of such bases (cf. [15]) may actually have nourished hopes that 
ultimately are hard to realize. Also one could argue that for every presently known 
wavelet-based method there already exists a method (tuned to that particular 
problem at hand) that performs at least as well. Nevertheless, I think it is fair to 
say that the wavelet point of view has already been of significant help in providing 
a more unified analytic platform upon which one can draw from other areas such 
as approximation theory and theory of function spaces, to develop a.o. numerical 
linear algebra schemes. 

In this paper we will illustrate this by focusing mainly on two issues: 

• Preconditioning 
• Matrix Compression 

Our objective is to bring out some key principles and their consequences that are 
relevant in this context. They center upon the interplay between certain notions 
of stability and norm equivalences for Sobolev spaces. This should help to isolate 
those conditions that have to be satisfied in any particular realization. It also sheds 
some light on corresponding difficulties and limitations. 

2. Multiscale Decompositions 

In this section we will outline a few basic concepts and ideas that are relevant 
to subsequent applications. We will choose a setting that is sufficiently general to 
also cover multiresolution of functions defined on bounded domains in Wl or on 
more general objects such as closed manifolds. We will not confine the discussion 
to orthogonal decompositions because they may often be too hard to realize and 
may sometimes not even be the best choice. 

2.1. Multiscale Transformations, Stability. To approximate a function / in some 
Banach function space T one usually considers a dense sequence S of closed sub-
spaces Sj C T; i.e., the closure of the union of the Sj is all of T. Approximants 
that possibly convey much information about the limit can often be derived from 
representations of the elements of T. Suppose that S actually consists of nested 
spaces Sj C Sj+i and assume that Q is an associated uniformly bounded sequence 
of linear projectors Qj from T. Then the telescoping expansion 

/ = £ « ; - Q ; - i ) / > (2.1) 

where Q-\ = 0, converges strongly in T. (Qj — Qj-\)f represents the detail 
added on each scale. The detail should have no overlap with preceding scales, 
which means that the spaces Wj-\ := (Qj — Qj-\)Sj = (Qj — Qj-\)T should be 
direct summands; i.e., Sj = Sj-\ 0 Wj-\. Thus, the above telescoping expansion 
corresponds to such direct sum decompositions if the mappings Qj —Qj-\ are also 
projectors, which is equivalent to the commutator condition 

QjQn = Qj for j < n. (2.2) 

Orthogonal projectors or Lagrange interpolation projectors satisfy (2.2). 
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One way of making practical use of the expansion (2.1) is to determine explicit 
representations 

( Q J + i - Q i ) / = y jd i i f c ( / )^ - i f c (2-3) 
keJj 

of the details relative to stable complement bases W = {i!)j,k : k € Jj} of Wj-i = 
(Qj — Qj-i)F. To explain this, let T = L2(ti), where in the following Q is some 
measure space and could stand for domains in Mn or even for more general (possibly 
closed) manifolds. For convenience we will use the notation a <bto express that a 
can be bounded by some constant multiple of b, where the constant is independent 
of the parameters a and b may depend on. In particular, a ~ b means that a < b 
and b < a. Then \I>J is called stable if 

lldll*2(./,) ~ Il Y2 d^j:kh2(n)-
keJj 

However, in practical applications the elements of Sj are usually defined 
through a single scale basis &j = {̂ >j,fc : k G Ij} that is stable in the above sense 
and consists of compactly supported functions such that di&m (supp tpj^) ~ p~i 
for some p > 1. Examples are B-spline or box-spline bases, finite element bases, 
or translates of scaling functions for p = 2. 

The core of any basis oriented multiscale scheme is then the transformation 
T n that takes the multiscale coefficients d of some fn = 2 j = o ^2ke.J dj,kißjtk £ Sn 

into the coefficients c of the single scale representation fn = Ylkei cfe^n,fei where 
ij+1~ijUJj, ijnJj = Q. 

The structure of T n is analogous to the wavelet transform (see e.g. [16]) 
except that the filters may depend on the scale. 

To describe this for the present generality, it is convenient to viewT $j as 
a column vector. Note that the nestedness of Sj and stability of 4>j imply the 
existence of a matrix Mjfo, defining a bounded linear map from fa(Ij) into ^(^j+i)? 
such that ®j = $ J + 1Mj ) 0 - Here ^ is the transpose of $j. The complement bases 
must then have the form >P • = $ J + 1M J ) i for some matrix M^j such that Mj := 
(Mj^o^Mj^) establishes a change of bases between $j+i and $j U \PJ. Thus, there 
must exist matrices Qj := (G j^G^ i ) such that 

M ; G , - = G , M ; . = / . (2.4) 

The following observation is easily verified [4]. 

REMARK 2.1 The complement bases \PJ' are uniformly stable for each scale if and 
only if the Mj and Gj are uniformly bounded mappings on the spaces ^(Jj+i)-

One easily checks that Tn has the form 

T n = Mn_i . . .Mo, 

where 

M,- - ( f Ï) 
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Thus, T n can still be represented by a pyramid-type scheme. The inverse operation 
has a similar structure but involves only the matrices Gj. 

There are two essential requirements to be satisfied by T n . 

(1) The number of operations needed to carry out T n should be at most of the 
order of dimS n . 

(2) The transformations T n should be uniformly stable; i.e., 

||T„||, HT"1!! = 0 ( 1 ) , n - o o . (2.5) 

Typically #J j behaves like a fixed fraction of #Ij+\. Then (1) holds for T n 

and T" 1 if the matrices Mj, Gj are all uniformly sparse. This is obviously a very 
stringent constraint, which explains the difficulty one usually encounters when 
constructing suitable multiscale bases. 

We will concentrate in the following on (2.5). It will be seen that the uniform 
boundedness of the condition numbers of the transformations T n is not only impor
tant for avoiding loss of numerical accuracy when applying T n but entails further 
important properties that turn out to be crucial for subsequent applications. 

2.2. Riesz Bases. It is not hard to see that stability in the sense of (2.5) is 
equivalent to the fact that \£ := UjL-i *J'» ^ _ 1 : = ^o forms a Riesz basis. This 
means that every / G L2(iì) has a unique expansion 

such that 

ll/IU2(n) E £ l ^ ( / ) | 2 ] ==l|d(/)||ia(<7). (2.6) 
U=- i keJj 

By the Riesz representation theorem each dj^(f) may be represented by (/, ipj,k) 
for some -̂.fc G L2(ü) and it is not hard to show that the ijjj^ form another Riesz 
basis ^ that is biorthogonal to \I/. In terms of the projectors Qj one has 

n—1 n—1 

j=-ikejj j=-ikeJj 

where Qj is the adjoint of Qj. This means that Q and Q* are both uniformly 
bounded and satisfy (2.2), or, equivalently, that their ranges S and S are both 
dense and nested. 

Note that the task of establishing stability in the sense of (2.6) can be split 
into two steps. First one has to ensure (uniform) stability of each complement basis 
\I/J in the sense of Remark 2.1, which is usually the easier part. Then it remains 
to establish stability across scales, which, except when dealing with orthogonal 
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complements, is usually the more delicate problem. It can be expressed solely in 
terms of the Qj without specifying the bases \PJ explicitly by 

ll/IU2(n)~ ( £ l l ( Q ; - Q ; - i ) / l l L ( n ) J • (2-8) 

In the context of biorthogonal wavelets on all of Rn for the shift invariant setting a 
complete characterization of the Riesz basis property based on Fourier techniques 
is known [6], [5]. 

However, one can show that, even in a much more general Hilbert space 
context, the condition (2.2) together with the validity of certain direct and inverse 
estimates for the spaces Sj and for the range Sj of the adjoint Qj suffice to ensure 
the validity of a corresponding analog to (2.8) [8]. 

The construction of appropriate projectors Qj can be based on finding suffi
ciently regular dual bases Òj to 3>j. A general strategy for constructing the $j is to 
search for such left inverses Gj?o for which the products Gj_j_m,o • • • Gj,o converge in 
an appropriate sense (cf. [7]). This is expected to be generally rather difficult. Cur
rent work indicates that for important special cases like piecewise linear functions 
on triangulations or polyhedral manifolds stable multiscale bases are available. 

2.3. Sobolev Norms. Once an equivalence of the form (2.8) has been estab
lished, introducing suitable weights in the expression on the right-hand side of 
(2.8) generates Sobolev- and Besov-norms for certain ranges of positive and neg
ative exponents depending on certain approximation and regularity properties, 
expressed in terms of Jackson and Bernstein inequalities, of both the ranges S and 
S of the Qj and Qlj, respectively: 

inf | | / - / „ H ^ n , < c p-nt\\f\\wm, f e H*(fi), (2.9) 

and 
l l /n | | t f*(fi)<cpn1/„| |L 2 (n), fneSn. (2.10) 

Suppose that analogous relations hold for <S and t* > 0. Then the equivalence 

ll/ll*-<n> ~ ( E P2sJ\\(Qj-Qj-i)f\\Un)) (2.11) 
\j6No / 

holds for — t* < s < t. In other words, the operator A s / := Y^TLo P*s{Qj ~ Qj-i)f 
shifts between Sobolev scales (see e.g. [8], [21]); i.e., 

. | |Aa/| |Hr(n) - ||/||H-+-(n), - t* < s + r < t. (2.12) 

Moreover, one easily deduces from (2.9), (2.10), and (2.11) that 

H/llH.(n) ~ ( E II Wi - <fe-i)/Hff.<n) ) , -t*<s<t. (2.13) 

file:///j6No
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3. Numerical Solution of Operator Equations 

In this section we indicate the relevance of the above results for the numerical 
treatment of various types of linear operator equations. In the following Hs will 
stand for a Sobolev space defined on some domain Q as above. To explain the 
principles it will not be essential to specify here precisely the nature of Q nor the 
type of boundary conditions incorporated in Hs. Moreover, suppose that for some 
r G l , A: Hs —> Hs~r is a boundedly invertible linear operator; i.e., 

\\Au\\Hs-r~\\u\\H», ueH\ (3.1) 

Given an ascending sequence of trial spaces Sj C Hs C\L2(Q), a standard approach 

Au = f (3.2) 

in H8 approximately is to determine Uj G Sj such that 

(AUJ,V) = (f,v), veSj. (3.3) 

For a given sequence of L2-uniformly bounded projectors Qj : L2(Q) —> Sj this 
can be reformulated as a projection method 

Q*Auj = Q*f. (3.4) 

In the following, let d,d* denote the largest integers for which (2.9) holds 
relative to the spaces Sj and Sj. Moreover, we will always assume that t, t* > \r/2\, 
and, for simplicity, that p = 2, which corresponds to halving the meshsize when 
progressing to the next level of discretization. 

3.1. Stability and Convergence. Under the above assumptions, one can show 
for a wide range of cases that the Galerkin scheme (3.3) is (s, s — r)-stable for 
r — d< s < r/2; i.e., 

\\Q*Avj\\H«-r > \\VJ\\H,: Vj G Sj. (3.5) 

Moreover, one has for the solutions u,Uj of (3.2), (3.3), respectively, 

\\u-Uj\\HT<2^-^\\u\\H., (3.6) 

îorr-d<r<t,T<v,r/2<v<d [14]. 

3.2. Preconditioning. (3.3) amounts to finding a matrix representation Aj of 
the operator Q*-AQj. A standard approach is to take Aj = A^ as the stiffness 
matrix of A relative to the stable basis 4>j of Sj and solve the linear system of 
equations 

Afc = ff, (3.7) 

where (ff)k = (fiVj.k), k G Ij. Let us pause briefly to consider the important 
special case when r /2 G N and A is a partial differential operator of order r 
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such that (via Green's theorem) (Au,v) := J Au(x)v(x) dx leads to the symmetric 

Hs-elliptic bilinear form a(-, •), i.e., 

IU/II2 

II "I \H r /2 
a(u,u), ueHr/2. (3.8) 

It is clear that then (3.1) holds for s = r/2. In this case $ j is usually arranged to 
consist of compactly supported functions so that the symmetric positive definite 
matrix A^ is possibly very large but sparse. Therefore the only candidates for a.o. 
schemes are iterative methods. However, because the spectral condition numbers 
n2(A.f) usually grow like 27-7 as j tends to infinity, significant preconditioning 
is of vital importance. In fact, a scheme can only be a.o. if the preconditioned 
matrix has uniformly bounded condition numbers. In principle, this is accomplished 
by multigrid methods [17]. Moreover, certain multilevel preconditioned conjugate 
gradient schemes have recently turned out to also be a.o. (see e.g. [2], [10], [20], 
[24], [25]). The latter fact is closely related to the considerations of the previous 
section. To explain this, let Qj be the L2-orthogonal projector onto Sj (so that 
Q* = Qj, Sj = Sj) and suppose that (2.9) and (2.10) hold for some t = t* > r/2. 
In view of the min-max characterization of the smallest and largest eigenvalue 
of a symmetric positive definite matrix and Hr/2-ellipticity the norm equivalence 
(2.11) means that the operator Cj defined by 

Cj1 :=J2r'(Qi -Qi-i) (3-9) 

is an optimal preconditioner; i.e., n2(Cj AjCj ' ) = 0(1), j —> oo. Of course, 
when dealing with classical finite elements, the evaluation of (Qi — Qi-\)v would 
be by far too expensive. Fortunately, this can be avoided [29]. In fact, because 
Cj = 5Zf=o 2~rl(Qi — Qi-i) and r is positive, Cj is readily seen to be spectrally 
equivalent toYjl=o^~r lQh which in turn is spectrally equivalent to the operator 

j 

CjV := ^2 2~' r ] T (v, <pt,k)<pltk (3.10) 
i=o keii 

if and only if the $i are stable. Cj now does give rise to an a.o. scheme. Thus, in 
the above situation one gets away without explicit knowledge of the complement 
bases \£J corresponding to Qj+\ — Qj. 

Of course, many cases of significant importance are not covered by the above 
reasoning. A could be unsymmetric or could be an operator of negative order r < 0. 
This occurs, for example, in connection with boundary integral equations when an 
elliptic exterior domain boundary value problem is transformed into an integral 
equation. The following summarizes what can still be said [14]. 

THEOREM 3.1 Let Qj be uniformly L2-bounded linear projectors onto Sj satis
fying (2.2) and let \I/J be stable complement bases corresponding to Qj+i — Qj 
(see (2.3)). Assume that the spaces Sj and Sj \= range Qj satisfy (2.9), (2.10) 
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with t,t* > \r/2\. Let Dj be the diagonal matrix with entries (Dj)(i.ie).(i'.k') — 
2 ô(i.k),{i',k')- Finally, let Aj denote the stiffness matrix relative to the multiscale 
basis U_i</<j^ / . Then 

K2(D7'- /2A*D7r/2) = 0 ( l ) , j - e x . 

Proof: Let Wj = Ar/2Vj. By (2.12), (3.1), and (3.5), one obtains 

lkilUa(n) ~ \\vj\ÌHr/2 ~ \\QjAvj\\H-r/2 ~ \\ ̂ -r/2Qj AQ j A-r/2Wj || L 2 ( n ) . 

The matrix representation of k^r/2Q]AQjK_r/2 is Bj := DJr/2AJDJr/2. The 

stability of the multiscale basis yields then ||Bj|| HB"1!! = 0(1), j —> oc, which 
proves the assertion. D 

Because A J = TJAJTJ, the preconditioning is realized up to a diagonal scal
ing by a change of bases (see also [30]). In particular, Cj := (Dj~ r /2Tj)(D~ r /2Tj)' 
is an optimal preconditioner. Note that only Tj and not T" 1 is needed. When the 
<pj,kiiPj,k are all compactly supported and the matrices Mj are uniformly sparse, 
the application of Cj requires only O(dimSj) operations. When dealing with dif
ferential operators one therefore does not have to store A^ but only the sparse 
matrix Aj \ 

3.3. Matrix Compression. When r < 0 the matrix representations of QjAQj arc 
generally not sparse. Therefore various strategies have been developed to facilitate 
fast (approximate) matrix-vector multiplication as the main ingredient of iterative 
solvers. The best known are perhaps multipole expansion [27], panel clustering 
[18], or the scheme in [3], which in turn is closely related to the method proposed 
in [1]. There it is shown that the stiffness matrix of certain (zero order) periodic 
integral operators relative to wavelet bases can be well approximated by sparse 
matrices. It is this point of view that seems to exploit the previous considerations 
best even under more general circumstances. 

We will assume throughout the following that the hypotheses of Theorem 3.1 
are satisfied. The strategy pursued in [14] may be sketched as follows. The first 
step is to estimate the entries of the stiffness matrix A*. Wc will comment on this 
point later in more detail. Based on these estimates a truncation rule is chosen by 
which certain entries are replaced by zero. A Schur lemma argument (see e.g. [23]) 
is then employed to estimate the spectral norm of the difference between Aj and 
the compressed version. To be able to work with the spectral norm also involves 
preconditioning techniques as used in the proof of Theorem 3.1. Writh a judicious 
choice of truncation rules one can then prove optimal consistency arguments. A 
perturbation argument then ensures stability of the compressed operators. Finally, 
this leads (in certain cases) to asymptotically optimal convergence estimates for the 
solutions of the perturbed systems. One can show that the number of nonvanishing 
entries in the compressed matrices is of the order O ( (log #ij) f l"#Jj), where a is 
some nonnegative real number (which in some cases can be shown to be zero). A 
detailed study of periodic problems can be found in [12], [13] including a stability 
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and convergence analysis for generalized Pctrov-Galerkin schemes. In particular, it 
is shown in [13], [14] that the solutions of the compressed systems approximate the 
solution of (3.2) at the same asymptotic rate as the solutions of the uncompressed 
systems (3.4) (see also [26]). 

The above line of arguments uses the stability properties and norm equiva
lences described in Section 2 combined with the estimates for the entries of A*. 
In [1], [13], [9], [14], [26] these estimates are based on moment conditions to be 
satisfied by the ipjik combined with the following assumptions on the Schwartz 
kernel K(-, •) of A that 

\d«d%K(x,y)\ < d i s t ( x , i / ) - ( n + r + l a l + | â | ) , n + r + | a | + | / ? |>0 , x^y, (3.11) 

wThere n is the spatial dimension of fJ, and that K is smooth off the diagonal. 

The decay of the entries of Aj' is a consequence of the approximation prop
erties of the adjoint operators Q*. To see this, let Rj := Qj+i — Qj and note that 
Rjipj^k = ipj k. Therefore one has 

|<A^,fe,#,fc')| = | / (Rtf0RtK)(x,y)^if.kf(x)il;Lk(y)dxdy\ 

< \\RÎ.®RÏK\\L2inilk,xÇlLk), (3.12) 

where the first (second) factor in Rp <g> Rf is meant to act on the first (second) 
group of variables in K(-,-) and Qiik := s u p p i g . Next note that ||i2jW||L2(n) ?S 
i m%es_i Wu ~ v\ÌL2{n)- If the diameters of the supports of <£j,fc,̂ j;fc,̂ j,fc,î/>j,fc be
have like 2~-?, Qj and Qj are local projectors so that one expects to have the 
following local version of (2.9) 

HQ;« - u\\L.2(D) < 2-d*i\u\Hd.0), u€Hd", (3.13) 

where D is a domain containing D whose diameter exceeds that of D at most by 
a fixed multiple of 2~K If Cì[jk PI fti\k' = 0 the kernel K is by assumption smooth 
on ftLk x Üvik>. Thus, applying (3.13) to (3.12) yields, on account of (3.11) [26], 

l(^,*,# l fc')l < 2-<'+l'>*-2*-dist(n/ifclnrifc0-(n+p+2ir)-

Note that the larger d* the better the effect of compression. Choosing d* > d 
appears to be essential for obtaining optimal convergence rates in high norms 
for the solutions of the compressed schemes [14]. This flexibility seems to be an 
advantage of the biorthogonal setting over orthogonal decompositions. 

Aside from the above-mentioned important advantages of stable multiscale 
bases, one expects that corresponding multiscale expansions will provide informa
tion about local regularity properties and lead, in view of (3.8), naturally to local 
error estimators. Even when dealing with bounded domains one can often still ex
ploit constructions for the shift-invariant case [21]. This can be used to adapt the 
multiresolution setting for instance to saddle-point problems [28]. It also admits 
the efficient computation of inner products of wavelets and scaling functions [11]. 



1438 Wolfgang Damnen 

References 

[1] G. Beylkin, R. Coifman, and V. Rokhlin, The fast wavelet transform and numerical 
algorithms, Comm. Pure Appi. Math., 44(1991), 141-183. 

[2] J. H. Bramble, J. E. Pasciak, and J. Xu, Parallel multilevel preconditioned, Math. 
Comp., 55(1990), 1-22. 

[3] A. Brandt and A, A. Lubrecht, Multilevel matrix multiplication and fast solution of 
integral equations, J. Comput. Phys., 90(1991), 348-370. 

[4] J. M. Carnicer, W. Dahmen, and J. M. Pena, Local decompositions of nested spaces, 
preprint, 1994. 

[5] A. Cohen, I. Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly sup
ported wavelets, Comm. Pure Appi. Math., 45(1992), 485-560. 

[6] A. Cohen and I. Daubechies, Non-Separable Bidimensional Wavelet Bases, Rev. 
Mat. Iberoamericana, 9(1993), 51-137. 

[7] W. Dahmen, Some remarks on multiscale transformations, stability and biorthogo-
nality, in Curves and Surfaces II, P. J. Laurent, A. Le Méhauté, and L. L. Schumaker 
(eds.), AKPeters, Boston, (1994), 157-188. 

[8] W. Dahmen, Stability of multiscale transformations, Preprint, 1994. 
[9] W. Dahmen, B. Kleemann, S. Prössdorf, and R. Schneider, A multiscale method for 

the double layer potential equation on a polyhedron, in Advances in Computational 
Mathematics, H. P. Dikshit and C. A. Micchelli (eds.), World Scientific, Singapore 
and Raneck, NJ, (1994).15-57. 

[10] W. Dahmen and A. Kunoth, Multilevel preconditioning, Numer. Math.,. 63(1992), 
315-344. 

[11] W. Dahmen and C.A. Micchelli, Using the refinement equation for evaluating inte
grals of wavelets, SIAM J. Numer. Anal., 30(1993), 507-537. 

[12] W. Dahmen, S. Prössdorf, and R. Schneider, Wavelet approximation methods for 
pseudodifferential equations I: Stability and convergence, Math. Z., 215(1994), 583-
620. 

[13] W. Dahmen, S. Prössdorf, and R. Schneider, Wavelet approximation methods for 
pseudodifferential equations II: Matrix compression and fast solution, Adv. Comput. 
Math., 1(1993), 259-335. 

[14] W. Dahmen, S. Prössdorf, and R. Schneider, Multiscale methods for pseudo-
differential equations on smooth manifolds, in Wavelets: Theory, Algorithms, and 
Applications, C. K. Chui, L. Montefusco, and L. Puccio (eds.), Academic Press, 
1994, 385-424. 

[15] I. Daubechies, Orthonormal bases of wavelets with compact support, Comm. Pure 
Appi. Math., 41(1987), 909-996. 

[16] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appi. 
Math., 61, SIAM, Philadelphia, PA, 1992. 

[17] W. Hackbusch, Multi-Grid Methods and Applications, Springer; Berlin and New 
York, 1985. 

[18] W. Hackbusch and Z. P. Nowak, On the fast matrix multiplication in the boundary 
element method by panel clustering, Numer. Math., 54(1989), 463-491. 

[19] A. Harten, Discrete multi-resolution analysis and generalized wavelets, Appi. Numer. 
Math., 12 (1993), 153-192. 

[20] S. Jaffard, Wavelet methods for fast resolution of elliptic problems, SIAM J. Numer. 
Anal., 29(1992), 965-986. 

[21] A. Kunoth, Multilevel preconditioning, Dissertation, Fachbereich Mathematik und 
Informatik, Freie Universität Berlin, January 1994. 



Multiscale Techniques — Some Concepts and Perspectives 1439 

[22] Y. Meyer, Ondelettes et opérateurs 1: Ondelettes, Hermann, Paris, 1990. 
[23] Y. Meyer, Ondelettes et opérateurs 2: Opérateur de Calder on- Zygmund, Hermann, 

Paris, 1990. 
[24] P. Oswald, On function, spaces related to finite element approximation theory, Z. 

Anal. Anwendungen, 9(1990), 43-64. 
[25] P. Oswald, On discrete norm estimates related to multilevel preconditioned in the 

finite element method, in Constructive Theory of Functions, Proc. Int. Conf. Varna 
1991, K. G. Ivanov, P. Petrushev, and B. Sendov (eds.), Bulg. Acad. Sci., Sofia 
(1992), 203-214. 

[26] T. von Petersdorf and C. Schwab, Wavelet approximation for first kind boundary 
integral equations on polygons, Techn. Note BN-1157, Institute for Physical Science 
and Technology, University of Maryland at College Park, February 1994. 

[27] V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Com
put. Phys., 60(1985), 187-207. 

[28] K. Urban, On divergence-free wavelets, in Adv. Comput. Math., 4 (1995), 51-81. 
[29] J. Xu, Theory of multilevel methods, Report AM 48, Department of Mathematics, 

Pennsylvania State University, 1989. 
[30] H. Yserentant, On the multilevel splitting of finite element spaces, Numer. Math., 

49(1986), 379-412. 
[31] H. Yserentant, Two preconditioners based on the multilevel splitting of finite element 

spaces, Numer. Math., 58 (1990), 163-184. 
[32] H. Yserentant, Old and new convergence proofs for multigrid methods, Acta Numer

ica, 2, A. Iserles (ed.), Cambridge, 1993. 



Matrix Computation and the Theory of Moments 

GENE H. GOLUB 

Computer Science Department, Stanford University, 
Stanford, CA 94305 USA 

ABSTRACT. We study methods to obtain bounds or approximations to 
uT f(A)v where A is a symmetric, positive definite matrix and / is a smooth 
function. These methods are based on the use of quadrature rules and the 
Lanczos algorithm. We give some theoretical results on the behavior of these 
methods based on results for orthogonal polynomials as well as analytical 
bounds and numerical experiments on a set of matrices for several functions 
/ . We discuss the effect of rounding error in the quadrature calculation. 

1. Introduction 

The classical theory of moments plays a vital role in numerical linear algebra. It 
has long been recognized that there is a strong connection between the theory 
of moments, Gauss quadrature, orthogonal polynomials, and the conjugate gra
dient method and the Lanczos process. In this paper, we will be exploring these 
connections in order to obtain bounds for various matrix functions that arise in 
applications. 

Let A be a real symmetric positive definite matrix of order n. We want to 
find upper and lower bounds (or approximations, if bounds are not available) for 
the entries of a function of a matrix. We shall examine analytical expressions as 
well as numerical iterative methods that produce good approximations in a few 
steps. This problem leads us to consider 

uTf(A)v, (1.1) 

where u and v are given vectors and / is some smooth (possibly C°°) function 
on a given interval of the real line. As an example, if f(x) = ^ and uT = ej = 
(0 , . . . , 0 ,1 ,0 , . . . , 0 ) , the nonzero element being in the zth position and v = ej, we 
will obtain bounds on the elements of the inverse A"1. 

Some of the techniques presented in this paper have been used (without any 
mathematical justification) to solve problems in solid state physics, particularly 
to compute elements of the resolvent of a Hamiltonian modeling the interaction of 
atoms in a solid, see [9], [11], [12]. In these studies the function / is the inverse of 
its argument. 

The outline of the paper is as follows: Section 2 considers the problem of 
characterizing the elements of a function of a matrix. The theory is developed in 
Section 3, and Section 4 deals with the construction of the orthogonal polynomials 
that are needed to obtain a numerical method for computing bounds. The Lanczos 
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method used for the computation of the polynomials is presented there. Applica
tions are described in Section 5 where very simple iterative algorithms are given 
to compute bounds. In Section 6 we discuss some extensions and recent work. 

2. Elements of a function of a matrix 

Because A = AT, we write A as 

A = QAQT, 

where Q is the orthonormal matrix whose columns are the normalized eigenvectors 
of A and A is a diagonal matrix whose diagonal elements are the eigenvalues Xi 
which we order as 

Ai < A 2 < . . . < A n . 

By definition, we have 
f(A) = Qf(A)QT. 

Therefore, 

uTf(A)v = uTQf(A)QTv 

= aTf(A)ß, 
n 

2 = 1 

This last sum can be considered as a Riemann-Stieltjes integral 

I[f]=uTf(A)v= fbf(\)da(\), (2.1) 
Ja 

where the measure a is piecewise constant and defined by 

{ 0 if A < a = Ai 

T,)=i ajßj i f Ai < A < Ai+i 

S i = i ajßj i f b = Xn < A. 
In this paper, we are looking for methods to obtain upper and lower bounds L and 
U for / [ / ] , 

L < I[f] < U. 
In the next section, we review and describe some basic results from Gauss quadra
ture theory as this plays a fundamental role in estimating the integrals and com
puting bounds. 
3. Bounds on matrix functions as integrals 
One way to obtain the bounds on the integral / [ / ] is to match the moments 
associated with the distribution a (A). Thus, we seek to compute quadrature rules 
so that 

/

b N M 

\rda(\)=J2™jt
r
j +

 y£v*z* 
3=1 fc=l 

forr = 0,l , . . . ,27V + M - l . 
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The quantity J [Ar] is the rth moment associated with the distribution a(X). Note 
that this can be easily calculated because 

pr = I [Ar] = uTArv (r = 0 , 1 , . . . , 2N + M - 1). 

The general form of the Gauss, Gauss-Radau, and Gauss-Lobatto quadrature for
mulas is given by 

nb N M 

/ / (A)da(A)=j;^/(*i) + Et;fc/(zjb) + Ä[/], (3.1) 
Ja j=\ k=i 

where the weights [WJL = 1 , [^fc]fc=1 and the nodes [£jL=1 are unknowns and the 

nodes [^fc]fc=1 are prescribed, see [1], [2], [3], [8]. 
When u = v, the measure is a positive increasing function and it is known 

(see for instance [13]) that 

a < rj < b. 

' N 

II(A-*i) 
2 

da(A) (3.2) 

If M = 0, this leads to the Gauss rule with no prescribed nodes. If M = 1 and 
z\ = a, or z\ = b we have the Gauss-Radau formula. If M = 2 and z\ = a, z2 = b, 
this is the Gauss-Lobatto formula. 

Let us recall briefly how the nodes and weights are obtained in the Gauss, 
Gauss-Radau, and Gauss-Lobatto rules. For the measure a, it is possible to define 
a sequence of polynomials po(A),pi(A),... that are orthonormal with respect to a: 

rb r 1 . - . . 
r r i ,r l = J J Pi(\)pj(\)da(\) = { I ^ 

otherwise 

andpfc is of exact degree fc. Moreover, the roots of pk are distinct, real, and lie in the 
interval [a.b]. We will see how to compute these polynomials in the next section. 
This set of orthonormal polynomials satisfies a three-term recurrence relationship 
(see [15]): 

ljPj(X) = (A - ü^Pi- i fA) - 7 j - iP j - 2 (A) , j = 1,2,..., AT (3.3) 

Pi(A)=0, po(A) = l,if Jda = l. 

In matrix form, this can be written as 

Xp(X) = JNPW -r lNPN(X)eN, 

where 
PWT = MA)pi(A) • • • pjv-i (A)], el = (0.0. . . . 0,1), 
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7 i UJ2 

JN = 

\ 
72 

(3-4) 

7Ar-2 ^JV-1 IfN-l 
\ 7,v_i U)N ) 

The eigenvalues of JN (which are the zeros of PN) are the nodes of the Gauss 
quadrature rule (i.e., M = 0). The weights are the squares of the first elements of 
the normalized eigenvectors of JN, cf. [8]. We note that all the eigenvalues of JN 
are real and simple. 

For the Gauss quadrature rule (renaming the weights and nodes wf and tf), 
we have 

f(\)da(\) =Y,™ff {tf) + Rclfl 
J = I 

with 

Ja 

' RG[f} = (2N)\ f 
Ja 

N 

n (*-<?) da(A), 

and the next theorem follows. 

THEOREM 1 Suppose u = v in (2.Î) and f is such that f^2n\0 > 0; Vn, V£, 
a < £ < b, and let 

N 

Then j VAT, 3n G [a, b] such that 

LG[f]<I[f], I[f]-LG[f} = f{2N)(v) 
(2N)\ ' 

A proof of this is given in [13]. To obtain the Gauss-Radau rule (M = 1 
in (3.1)-(3.2)), wc extend the matrix JN in (3.4) in such a way that it has one 
prescribed eigenvalue, see [4]. 

For Gauss-Radau, the remainder RGR is 

RGR[f] = 
f(2N+1Hv) rb 

{2N + 1) 
2) f" 
)! Ja 

(A - zx) II(A-tj) do(A). 

Therefore, if we know the sign of the derivatives of / , wc can bound the remainder. 
This is stated in the following theorem. 

THEOREM 2 Suppose u = v and f is such that / ( 2 n + 1 ) (£) < 0,Vn.V£,a < Ç < b. 
Let UQR be defined as 

[W/]=è</(i?)+</(a), 
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Wj, v\,taj being the weights and nodes computed with z\= a and let LGR be defined 

as 
N 

3 = 1 

Wj,Vi,tj being the weights and nodes computed with z\ = b. Then VN we have 

and 

W - UGR[Ï] 

I[f]-LGR[f) 

LGR[f] < / [ / ] < UaR[f\, 

(2N + 1)! 
/ (A-o) 

Ja 
IK*-'?) 

/< a A f + i ) ( i ? ) rb 

(2N+1)\ 
f (\-b) 

Ja 

i = l 

' N 

da(X), 

1 2 

da(A). 

We remark that we need not always compute the eigenvalues and eigenvectors 
of the tridiagonal matrix. Let YN be the matrix of the eigenvectors of JN (or JN) 
whose columns we denote by yi and TN be the diagonal matrix of the eigenvalues 
U that give the nodes of the Gauss quadrature rule. It is well known that the 
weights Wi are given by (cf. [16]) 

N-\ 

5-EA«-
1=0 

It can be easily shown that 

— (40 • 
where y\ is the first component of y{. But, as po(A) = 1, wc have 

wi = (î/i ) = (ejyi) . 

THEOREM 3 

Proof: 

N 

^2,wtf(ti) = e{f(JN)e\. 
i=i 

N N 

^2vjif(U) = ^ejyifitfiyfei 
i=i i=i 

= ellYtylf(ti)yTje1 

= elYNf(TN)Y^el 

= eJf(JN)ei. 
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The same statement is true for the Gauss-Radau and Gauss-Lobatto rules. 
Therefore, in some cases where /(*/JV) (or the equivalent) is easily computable (for 
instance, if /(A) = 1/A, see Section 5.), we do not need to compute the eigenvalues 
and eigenvectors of JN-

4. Construction of the orthogonal polynomials 

In this section we consider the problem of computing the orthonormal polynomials 
or equivalently the tridiagonal matrices that we need. A very natural and elegant 
way to do this is to use Lanczos algorithms. When u = v, we use the classical 
Lanczos algorithm. 

Let X-i = 0 and XQ be given such that ||xo|| = 1. The Lanczos algorithm is 
defined by the following relations: 

ljXj = rj = (A- ujjl) Xj-i - 7 j_ix j_2, j = 1 , . . . 

U3 = Xj-lAXj-l, 

7j = Itoli-

The sequence {XJ} = 0 is an orthonormal basis of the Krylov space 

span{a;o, AXQ, . . . , Alxo}. 

PROPOSITION 1 The vector Xj is given by 

Xj =pj(A)x0, 

where pj is a polynomial of degree j defined by the three-term recurrence (identical 
to (3.3)) 

ljPj(X) = (A - Wj)Pj-ij(A) - 7J_ip j_2(A), p-i(A) = 0, po(A) = 1. 

THEOREM 4 / / XQ = u, we have 

\xi = j pk(X)pi(X)da(X). 
Ja 

Proof: As the Xj ?s are orthonormal, we have 

xlxi = x^P^AfP^xo 

= xlQPk(K)QTQPl(K)QTxQ 

= xlQPk(A)Pl(A)QTx0 

n 

= *52Pk(*j)pi(Xj)x?, 
3 = 1 

where x = QTXQ . Therefore, the pj 's are the orthonormal polynomials related to a 
that we have referred to in (3.3). 
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5. Applications 

The applications are explained at length in [5], [6], and [7]. 

5.1. Error bounds for linear systems. Suppose we solve a system of equations 
Ax = b and obtain an approximation £ to the solution. Wre desire to estimate 
the vector e where x = £ + e. Note that r = b — AC = A(x — f) = Ac. Hence, 
||e||2 = rTA~2r. Thus, u = r. and /(A) = A"2. 

5.2. Minimizing a quadratic form with a quadratic constraint. Consider the 
problem of determining x such that xTAx — 2bTx = min and ||x||2 = a2. Consider 
the Lagrangian: ip(x:p) = xTAx — 2bTx + p (xTx — a2). Then grad (f(x;p) = 0 
when (A + pl)x = b. This implies bT (A + pl)~2 b = a2. We can approximate 
the quadratic form bT(A + pl)~2b by using the Lanczos algorithm with the initial 
vector 6/||6||2- This procedure has been extensively studied in [7]. 

5.3. Inverse elements of a matrix. The elements of the inverse of a matrix are 
given by ejA~xej where ej is the j th unit vector. Hence, /(A) = A - 1 . Thus, using 
the Lanczos process with the initial vector ej will produce upper and lower bounds 
on ajj, providing a lower bound is known for the smallest eigenvalue and an upper 
bound for the largest eigenvalue of A. It is desirable to compute the diagonal of 
the inverse for the Vicsek Fractal Hamiltonian matrix. The matrices are defined 
as follows. 

Hx 1 = 

Hn-
Vi 

v2 
v3 
v4 

- 4 1 
1 - 2 
1 0 
1 0 
1 0 

i v?" 
Hn-\ 

0 
0 
0 

1 
0 

- 2 
0 
0 

VI 
0 

Hn-1 
0 
0 

1 1 
0 0 
0 0 

- 2 0 
0 - 2 

, 

vi vi 1 
0 0 
0 0 

Hn-l 0 
0 1 ̂ n - l 

Hn = 

where Hn E RNn*"n a n d Nn+1 = òNn. 

The following tables show the "exact" values of an for some chosen i, and 
estimated bounds of an by using Gauss quadrature rule and Gauss-Radau rule. 
The "exact" values are computed using the Cholesky decomposition and then 
triangular inversion. It is a dense matrix method, with storage 0(N2) and flops 
0(N3). The Gauss and the Gauss-Radau rule are sparse matrix methods, and 
both storage and flop only O(N) because of the structure of the matrix Hn. From 
these two tables, we see that the error between the "exact" and estimated value is 
at O(10~5), which is generally satisfactory and also is the stopping criterion used 
in the inner loop of the Gauss rule and the Gauss-Radau rule. 
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Table 1 Ar = 125 

i 

1 

10 

20 

"exact'' 

9.480088e - 01 

6.669905e - 01 

1.156877e + 00 

Gauss 

iter 

15 

13 

14 

lower bound 

9.480088e - 01 

6.669846e - 01 

1.156848e + 00 

Gauss-Radau 

iter 

12 

13 

14 

lower bound 

9.479939e - 01 

6.669864e - 01 

1.156868e + 00 

upper bound 

9 .480112e-01 

6.669969e - 01 

1.156879e + 00 

Table 2 N = 625 

i 

1 

100 

301 

625 

''exact" 

9.480142e - 0 

1.100525e + 0 

9.243102e - 0 

6.440025e - 0 

Gauss 

iter 

15 

14 

14 

12 

lower bound 

9.480123e - 01 

1.100512e + 00 

9.243074e - 01 

6.439994e - 01 

Gauss-Radau 

iter 

13 

15 

12 

13 

lower bound 

9.480026e - 01 

1.100520e + 00 

9.242992e - 01 

6.440017e - 01 

upper bound 

9.480197e - 01 

1.100527e + 00 

9.243184e - 01 

6.440054e - 01 

6. Extensions 

These methods, though simple, can be used in many situations involving large 
scale computations. We have extended these results to bilinear forms and to the 
situation where one wishes to estimate WTf(A)W where W is an (N x p)-matrix 
([5])-

It is well known that the numerical Lanczos process will produce sequences 
different than that defined by the mathematical sequence. Nevertheless, it has been 
shown in [6] that robust estimates of the quadratic form are obtained even in the 
presence of roundoff. 
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1. Introduction 

In this paper we shall describe numerical methods that were devised for the purpose 
of computing small scale behavior without either fully resolving the whole solution 
or explicitly tracking certain singular parts of it. Techniques developed for this 
purpose include shock capturing, front capturing, and multiscale analysis. Areas 
in which these methods have recently proven useful include image processing, 
computer vision, and differential geometry, as well as more traditional fields of 
physics and engineering. 

Shock capturing methods were devised for the numerical solution of nonlinear 
conservation laws. At the 1990 meeting of the ICM, Harten [16] gave an overview 
of recent developments in that area, culminating in the construction of essentially 
nonoscillatory (ENO) schemes [17], [18]. We shall describe some of the ideas and 
results relating to this subject in Section 3. 

Rudin, in his Ph.D. thesis [36] noted that the ideas and techniques from the 
theory of hyperbolic conservation laws and their numerical solution are relevant 
to the field of image processing. Images have features such as edges, lines, and 
textures and shock capturing is therefore an appropriate tool. Later developments 
[38], [39], [26], [27], [35] indicate that subscalc capturing contains a great number 
of relevant tools for both image and video processing, as well as computer vision. 
Wc shall discuss this in Section 4. 

In 1987, together with J.A. Sethian [31] we devised a new numerical procedure 
for capturing fronts and applied it to curves and surfaces whose speeds depend on 
local curvature. The method uses a fixed (Eulerian) grid and finds the front as a 
particular level set (moving with time) of a scalar function. The method applies 
to a very general class of problems. 

The technique handles topological merging and breaking, works in any num
ber of space dimensions, does not require that the moving surface be written as 
a function, captures sharp gradients and cusps in the front, and is relatively easy 
to program. Theoretical justification, involving the concept of viscosity solutions, 
has been given in [13], [7]. 

Many applications and extensions have recently been found. We shall describe 
the method and some applications in Section 2. We also note that the motion of 
multiple junctions using related ideas has been studied in [28]. A particularly novel 
application and extension (done with Harabetian) is to the numerical study of 
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unstable fronts — e.g. vortex sheets, in [15]. This will also be described in Section 
2. The level set formulation allows for the capturing of the front with minimal 
regularization because the zero level set of a continuous function can become quite 
complicated, even though the function itself is easy to compute. 

Our last example of subscale capturing involves wavelet based algorithms for 
linear initial value problems. Using ideas of Beylkin, Coifman, and Rokhlin [2], 
we have with Engquist, Zhong, and Jiang [11], [19] devised very fast algorithms 
for evaluating the solution of linear initial value problems with time independent 
coefficients. This will be described in Section 5. 

2. The Level Set Method for Capturing Moving Fronts 

In a variety of physical phenomena, one wishes to follow the motion of a front whose 
speed is a function of the local geometry and an underlying flow field. Generally the 
location of the interface or front affects the flow field. Typically there have been 
two types of numerical algorithms employed in the solution of such problems. 
The first parameterizes the moving front by some variable and discretizes this 
parameterization into a set of marker points. The positions of these marker points 
are updated according to approximations of the equations of motion. For large 
complex motion, several problems occur. First, marker particles come together in 
regions where the curvature builds, causing numerical instability unless regridding 
is used. The regridding mechanism often dominates the real effects. Moreover the 
numerical methods tend to become quite stiff in these regions — see e.g. [41]. 
Second, such methods suffer from topological problems; e.g., when two regions 
merge or a single region splits, ad hoc technologies are required. 

Other algorithms commonly employed fall under the category of "volume of 
fluid" techniques, which track the motion of the interior region; e.g., [29], [3]. These 
are somewhat more adaptable to topological changes than the tracking methods 
but still lack the ability to easily compute geometrical quantities such as curvature 
of the front. 

Both methods are difficult to implement in three space dimensional problems. 
Our idea, as first developed with Sethian in [31] is as follows. Given a region Q 
in R2 or R3 (which could be multiply connected), and whose boundary is moving 
with time, we construct an auxiliary function <p(x,t) that is Lipschitz continuous 
and has the property 
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where u = (x(t),y(t)), the motion of the front and the set ip = 0 characterizes 9Q 
at time t. 
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Generally, if the normal velocity ü • n is a given function / of the geometry, 
the level set motion is governed by 

Vt + I Vy>|/ = 0. (2.5) 

Typically (in two dimensions) / is a function of the curvature of the front, 

/ = f(K) = f (V- ( i ^ i ) ) - I n t m s c a s e w e c a n replace (2.4) by an equation 

involving (p only 

^ + lw(v-(iWi))=°- (2-6) 
Our algorithm is merely to extend (2.6) to be valid throughout space and just 

pick out the zero level set as the front at all later times. Equations of this type for 
/ '(0) < 0 have been analyzed in [13], [7] using the theory of viscosity solutions. 
In addition to well-posedness, it was shown that modulo a few exceptions, the 
level set method works. This means that the zero level set agrees with the classical 
motion for smooth, npninteracting curves. Moreover, the asymptotic behavior of 
certain fronts arising in reaction diffusion equations leads to this motion as the 
small parameter goes to zero [12]. 

In many applications involving multiphase flow in fluid dynamics the interface 
between any twro regions can be represented by judiciously using delta functions as 
source terms in the equations of motion. This is true in particular for computing 
rising air bubbles in water, falling water drops in air, and in numerous other 
applications — sec e.g. [46],[5]. In fact surface tension often plays a role and this 
quantity is just proportional to curvature, here easy to compute. Thus, an Eulerian 
framework is easily set up, using the level set approach, allowing phenomena such 
as merging of water drops, resulting in surface tension driven oscillations, and 
drops hitting the base and deforming [46]. 

A key requirement here and elsewhere is that the level set function <p stay well 
behaved; i.e., 0 < c < |VV>| < C for fixed constants (except for isolated points). In 
fact it would be desirable to set 

|V<p| = 1 (2.7) 

with the additional criteria (2.1), (2.2), (2.3). In other words, we wish to replace 
(at least near dii) if by d, the signed distance to the boundary. 

We can do this as described in [46], through reinitialization after every dis
crete update of the system, in a verv fast way by obtaining the viscosity solution 
of 

dT + (|Vd| - l)H{<p) = 0 (2.8) 

for r > 0, in fact as r | oc, with d(x,0) = <p(x,t). Here H(ip) is any smooth 
monotone function of ip with H(0) = 0. 

ENO schemes for Hamilton-Jacobi equations, as defined in [31],[32] may be 
used to solve this. By the method of characteristics it is clear that, near dQ, which 
is the zero level set of tp, the steady state is achieved very quickly. We thus have 
a fast method of computing signed distance to an arbitrary set of closed curves in 
R2 or surfaces in R3. 
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Another example of the use of this method in fluid dynamics involves area 
(or volume) preserving motion by mean curvature. This represents the simplified 
motion of foam and can be modelled simply by finding the zero level set of 

where k is the average curvature of the interface. This last can be easily computed 

__/Jn(v-(i%))%0|vv| 
ffaK<P)\V<P\ 

(2.10) 

The distance reinitialization is used and the method easily yields merging and 
topological breaking, see [20]. More realistic models involving volume preserving 
acceleration by mean curvature are being developed and analyzed with the same 
group of people. 

Another interesting example concerns Stefan problems. Earlier work was done 
using the level set formulation [42]. Our formulation seems to be quite simple and 
flexible. We solve for the temperature (in two or three dimensions) 

Tt = V-k(x)VT (2.11) 

k(x) = fci i f i e î l (2.12) 

k(x) = k2 iîxeQc (2.13) 

T = 0 f o r i s f f i (2.14) 

and the boundary of Q moves with normal velocity 

\8T 
v • n dn 

CI + C2K (2.15) 

where n = curvature of the front. 

We solve this using ip, the level set function, with reinitialization, by using 

ipt-rU-\/ip = 0 (2.16) 

for u defined semi-numerically as 

u = ci [AxAx+Ax_T, AyA^AlT] (2.17) 
Vip + c2 Viv^lj \Vip\ 

for A+, A_ the usual undivided difference operators. The first term on the right 
is 0(Ax, Ay) except at the front. 

We solve (2.11) by using the piecewise constant values k\ or k2 except when 
the discrete operators above cross the level set ip = 0. At such points we merely 
interpolate using the distance function to find the x and/or y value at which T = 0. 
We thus can get a one-sided arbitrary high order approximation to AxTxx and/or 
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AyTyy there. This is also used in (2.17). The results appear to be state of the art 
for this simple method. This is the result of joint work with Chen, Merriman, and 
Smereka [6]. 

Next, with Harabetian [15] we consider an extension of the level set method 
where the normal velocity need not be intrinsic (solely geometry or position 
based) and for which the problem written in Lagrangian (moving) coordinates 
is Hadamard ill posed. The main observation is that our approach provides an 
automatic regularization. There appear to be at least two reasons for this. The 
first is topological: a level set of a function cannot change its winding number 
— certain topological shapes based on the curve crossing itself are impossible. 
The second is analytical: the linearized problem is well posed in the direction of 
propagation normal to the level set in this formulation; however it is ill posed 
overall. The method was developed in [15] in R2. The three-dimensional extension 
is relatively straightforward. Our two paradigms were: (1) the initial value prob
lem for the Cauchy-Riemann equations and (2) the motion of a vortex sheet in 
two-dimensional, incompressible, inviscid fluid flow. 

For the latter, we obtained roll-up past time of singularities even though we 
did not do any explicit filtering in the Fourier frequencies, nor did we use blobs to 
smooth out the flow as in [23]. 

Finally we mention that complicated motion of multiple junctions can be 
rather simply implemented by using as many level set functions as there are re
gions, see [28]. Also, in the special case of mean curvature motion, the simple heat 
equation together with a projection may be used [28]. 

3. Shock Capturing Methods 

There is a vast amount of literature on this subject, also see [16] for a recent review 
article at the 1990 ICM. The fundamental problem is that the solution to the initial 
value problem for a system of hyperbolic conservation laws generally develops 
discontinuities (shocks) in finite time, no matter how smooth the initial data is. 
Weak solutions must be computed. The goal is to develop numerical methods that 
"capture" shocks automatically. Reasonable design principles are: 

(1) Conservation form (defines shock capturing, see [14], [25]). 

(2) No spurious overshoots, wiggles near discontinuities, yet sharp discrete shock 
profiles. 

(3) High accuracy in smooth regions of the flow. 

(4) Correct physical solution; i.e., satisfaction of the entropy conditions in the 
convergent limit [24]. 

Conventional methods had trouble with combining (1) and (3). It should be 
noted that wiggles can pollute the solution causing e.g. negative densities and 
pressures and other instabilities. 

We have developed with Harten, Engquist, and Chakravarthy [18], [17] and 
later simplified with Shu [44], [45] a class of shock capturing algorithms designed 
to satisfy principles (l)-(4). 
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These methods are called essentially nonoscillatory (ENO) schemes. They 
resemble their predecessors — total variation diminishing (TVD) schemes — in 
that the stencil is adaptive; however, the total variation of the solution of the 
approximation to a one space dimensional scalar model might increase, but only 
at a rate 0((grid size)p), for p the order of the method, up to discontinuities, 
and the order of accuracy can be made arbitrary in regions of smoothness. TVD 
schemes traditionally degenerate to first order at isolated extrema (sec [40] for 
extensions up to second order). 

The basic idea is to extend Godunov's [14] ingenious idea past first order 
accuracy. This was first done up to second order accuracy by van Leer [47]. A 
key step, and the only one we have time to describe here, is the construction of 
a piecewise polynomial of degree ra, which interpolates discrete data w given at 
grid Xj. In each cell dj = {(X)XJ < x < Xj+i) we construct a polynomial of degree 
ra that interpolates w(x) at ra + 1 successive points {XJ} including Xj and Xj+i-

The idea is to avoid creating oscillations by choosing the points using the 
"smoothest" values of w. (This is a highly nonlinear choice, as it must be.) One 
way of doing this is to use the Newton interpolating polynomials and the associated 
coefficients. We start with a linear interpolant in each cell 

Qi.j+i = w[xj] + (x- Xj)w[xj,xj+l} (3.1) 

using the Newton coefficients 

w[x{] = W(Xì) (3.2) 

w[xi,.. .,Xi+k] = (xi+k - Xi)~l(w[xi+i,.. .,xk] - W[Xì, ... ,a-fc_i]). (3.3) 

We get two candidates for q2j+i, which interpolate w at Xj,Xj+\ and cither 
Xj-i, or Xj+2 

q2J+i = q1J+i + (x-Xj)(x-Xj+1)[w[xj-UXj,Xj+1] or wfo, ^+1 ,^+2] ] . (3.4) 

Because wc are trying to minimize oscillations by taking information from regions 
of smoothness, we pick the coefficient that is smaller in magnitude. We store this 
choice and proceed inductively up to degree ra. The result is a method that is exact 
for piecewise polynomials of degree < ra and that is nonoscillatory (i.e. essentially 
monotone) across jumps. Sec [17] for further discussions. 

Other choices are possible, in fact it seems advantageous to minimize trun
cation error by biasing the choice of stencil towards the center, see [43], [33]. 

4. Image Processing 

In his 1987 Ph.D. thesis, Rudin [36] made the connection between various tasks 
in image processing and the numerical solution of nonlinear partial differential 
equations whose solutions develop steep gradients. Images are characterized by 
edges and other singularities, thus the techniques used in shock capturing are 
relevant here. There are now many examples of this connection. We shall discuss 
onlv a few here. 
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We extend the notion of "shock filter" described first in [36] to enhance images 
that were first blurred by a mild smoothing process. Consider the (apparently ill-
posed) initial value problem 

m = -\Vu\F[(D2u-Vu, Vu)] (4.1) 

u(x,y,0) = u0(x,y) (4.2) 

where F(A) is an increasing function with F(0) = 0. 
Here, uo(x,y) is the blurry image to be processed. Intuitively if, for example, 

F(A) is the sign function, then the process involves propagating data towards 
blurred out edges, (zeros of the edge detector ((D2u)Vu, Vu))). The apparent ill-
posedness is taken care of by the choice of finite difference approximation, which 
has the effect of turning off the motion at isolated cxtrema. See [30] for a further 
discussion of this. We note here that the resulting motion satisfies a local maximum 
principle and, in one space dimension, preserves the total variation of the original 
image. 

An important extension of these ideas comes in the development of a total 
variation based restoration algorithm [38],[39]. We are given a blurry noisy image 

u0(x, y) = (Au)(x, y) + n(x, y) (4.3) 

where A is a linear integral operator and n is additive noise. Also UQ is the observed 
intensity function and u is the image to be restored. The method is quite general 
— A needs only to be a compact operator. 

We minimize the total variation 

minimize / Ju2 + u2 dx dy (4.4) 

subject to constraints on u involving the mean and variance of the noise 

/ udxdy= I uodxdy (4.5) 

Jn Jn 
(Au - w0)2 dx dy = a2. (4.6) / < 

We use the gradient projection method of Rosen [34], which in this case 
becomes the interesting "constrained" time dependent partial differential equation 

u' = v - ( ^ [ ) " A A * ( j 4 w _ U o ) (4-7) 

for t > 0, (x, y) e ft with boundary conditions 

— = 0 on dft (4.8) 
on 

and u(x,y,0) given so that (4.5), (4.6) are satisfied. 
The Lagrange multiplier is chosen so as to preserve (4.6), (the constraint 

(4.5) is automatic). 
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The method generalizes to multiplicative and other types of noise, and to 
localized constraints (suggested and implemented by Rudin). Theoretical justifi
cation and results on multiplicative noise are presented in [26]. The important 
observation is that noisy edges can be recovered to be crisp (reminiscent of shock 
capturing) without smearing or oscillations. See [38],[39],[26] for successful restora
tion of images using this approach and [9] for applications to different inverse prob
lems. From a geometric point of view, (4.7) represents the motion of each level set 
of u normal to itself with normal velocity equal to its curvature divided by the 
magnitude of the gradient of u. The constraint term just acts to project the motion 
back so that (4.6) is satisfied. We note here that Alvarez-Guichard-Lions-Morel in 
a very important paper [1] demonstrate that the axioms of multiscale analysis 
lead inexorably to motion by mean curvature and variants, as in [31]. This sort of 
motion is also important in computer vision and shape recognition, see e.g. [4],[21]. 

The notions of subscale resolution also appear in segmentation [22], declut-
tering [37], reconstruction of shapes-from-shading [35], [27], etc. 

5. Fast Wavelet Based Algorithms for Linear Initial Value Problems 

This is joint work with Engquist and Zhong [11] based on results in [2]. We are 
interested in the fast numerical solution of a system of evolution equations 

ut + L(x,dx)u = f(x), xencRd, t>0 (5.1) 
u(x,0) = UQ(X) 

+ boundary conditions. 
Here L(x,^) is a linear differential operator. 
We shall take an explicit discretization 

Uj = u(xj,tn), tn = nAt (5.2) 

Xj = ( j iAx i , . . . , j d Ax d ) 

u n + 1 = Aun + F (5.3) 

U° = UQ 

u0,F e RN\ At = const (Ax)r. 

The un vector contains all u™ at time level tn. 
The matrix A is (Nd x Nd) with the number of nonzero elements in each row 

or column bounded by a constant. 
Each time step requires 0(Nd) arithmetic operations. The overall complexity 

for t = 0(1) is 0(Nd+r) = (number of unknowns). 
We proposed a general approach to speed up this calculation that works 

extraordinarily well for parabolic equations and is quite promising for hyperbolic 
equations. 

We solve the discretization: 

n - l 

un = Anu0 -r J2 A"R (5'4) 
i /=0 
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We compute the solution for F = 0 in log2n steps (n = 2m , m = integer). 
Repeatedly square A 

A*,A\...,A2m. 

(This is why the equation needs to have time independent coefficients.) 
Unfortunately, the later squarings involve almost dense matrices so the overall 

complexity is 0(N3d log N), which is worse than the straightforward approach. 
Observation based on [2]: for the representation of A in a wavelet basis, all 

of the powers of Ar may be approximated by uniformly sparse matrices, and the 
algorithm using repeated squaring is advantageous. 

Algorithm: 

B = SAS"1 

C = I 

C = TRUNC(C + BC,e) 

B = TRUNC(BB,e) 

un = S-^BSuO + CSF) 

S = fast wavelet transform 

TmiNC(A,e){^Z^^I;:_ (5-5) 
If e = 0 we get the usual operator (up to similarity). 

For a fixed accuracy predetermined, the computational complexity to com
pute a one-dimensional hyperbolic equation can be reduced from 0(N2) to 
0(N(logN)3) with small constant. 

For parabolic d-dimensional an explicit calculation with standard complexity 
0(Nd+2) can be reduced to 0(ATd(log JV)3). 

Extensions to periodic in time sources f(x,t) are easy. 
Together with Jiang [19] we have shown the following: if we wish to evaluate 

the solution only in the neighborhood of one point x = x* at t = tn, the complexity 
decreases tremendously; e.g., for a one-dimensional parabolic equation it becomes 
0(log4 N) as opposed to 0(AT(log3 AT)). 

For a general multidimensional parabolic equation, the complexity is again 
onlyO(log4iV). 

For a d-dimensional hyperbolic system the complexity is 0(N^2d~2^ log3 N). 
This is advantageous for dimension d = 1,2. We expect to do better using more 
localized basis functions of Coifman and Meyer see ([8]), and using a nonlinear 
partial differential equation based replacement for ray tracing see ([10]). 
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1. Introduction 

One of the principal problems addressed by applied mathematics is the applica
tion of various linear operators (or rather, their discretizations) to more or less 
arbitrary vectors. As is well known, applying directly a dense (N x AT)-matrix to 
a vector requires roughly N2 operations, and this simple fact is a cause of serious 
difficulties encountered in large-scale computations. For example, the main reason 
for the limited use of integral equations as a numerical tool in large-scale compu
tations is that they normally lead to dense systems of linear algebraic equations, 
and the latter have to be solved, either directly or iteratively. Most iterative meth
ods for the solution of systems of linear equations involve the application of the 
matrix of the system to a sequence of recursively generated vectors, which tends 
to be prohibitively expensive for large-scale problems. The situation is even worse 
if a direct solver for the linear system is used, as such solvers normally require 
0(N3) operations. As a result, in most areas of computational mathematics dense 
matrices arc simply avoided whenever possible. For example, finite difference and 
finite element methods can be viewed as devices for reducing a partial differential 
equation to a sparse linear system. In this case, the cost of sparsity is the inherently 
high condition number of the resulting matrices. 

For translation invariant operators, the problem of excessive cost of applying 
(or inverting) the dense matrices has been met by the Fast Fourier Transform 
(FFT) and related algorithms (fast convolution schemes, etc.). These methods use 
algebraic properties of a matrix to apply it to a vector in order N\og(N) oper
ations. Such schemes are exact in exact arithmetic, and are fragile in the sense 
that they depend on the exact algebraic properties of the operator for their appli
cability. During the last several years, a group of algorithms has been introduced 
for the rapid application to arbitrary vectors of matrices resulting from the dis
cretization of integral equations from several areas of applied mathematics. The 
schemes include the Fast Multipolo Method (FMM) for the Laplace equation in 
two and three dimensions (sec, for example, [11]), the fast Gauss transform (sec 
[12]), the fast Laplace transform (see [16], [20]), and several other schemes. In 
all cases, the resulting algorithms have asymptotic CPU time estimates of either 
0(n) or 0(n • log(rc)), and are a dramatic improvement over the classical ones for 
large-scale problems. 
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Each of such schemes is based on one of two approaches. 
(1) The first approach utilizes the fact that the kernel of the integral operator 
to be applied is smooth (away from the diagonal or some other small part of 
the matrix), and decomposes it into some appropriately chosen set of functions 
(Chebyshev polynomials in [16] and [3], wavelets in [4], wavelet-like objects in [2], 
etc.). This approach is extremely general and easy to use, as a single scheme is 
applicable to a wide class of operators. 
(2) The second approach is restricted to the cases when the integral operator has 
some special analytical structure, and uses the corresponding special functions 
(multipole expansions for the Laplace equation in [11], Hermite polynomials in 
[12], Laguerre polynomials in [20], etc. 

In this approach, a special-purpose algorithm has to be constructed for each 
narrow class of kernels, and in each case their appropriate special functions and 
translation operators (historically known as addition theorems) have to be avail
able. However, once constructed, such algorithms tend to be extremely efficient. 
In addition, there are several important situations where the first approach fails, 
but the second can be used (a typical example is the n-body gravitational problem 
with a highly nonuniform distribution of particles, as in [7]). 

All of the above algorithms arc in fact based on the simple observation that 
many matrices of applied mathematics are smooth functions of their indices away 
from the main diagonal, or from some other small part of the matrix. Thus, their 
large submatrices can be approximated to any prescribed accuracy with matrices 
of low rank (sometimes the rank of such matrices depends only on the accuracy 
of the approximation; in other cases, it is proportional to the logarithm of the 
dimensionality of the submatrix). As a result, algorithms of this type are concep
tually quite straightforward, and tend to require only a very limited mathematical 
apparatus. Both of the above approaches fail when the kernel is highly oscillatory, 
and simple counter-examples show that it is impossible to construct a scheme 
that would work in the general oscillatory case (the Nyquist theorem being the 
basic obstacle). However, several oscillatory problems are of sufficient importance 
that it is worthwhile to construct special-purpose methods for them. A typical 
example is kernels satisfying the Helmholtz equation in two and three dimensions, 
since this is the equation controlling the propagation of acoustic and electromag
netic waves, and many quantum-mechanical phenomena. Unlike the nonoscillatory 
case, the oscillatory one requires a fairly subtle mathematical apparatus, and for 
the Helmholtz equation such an apparatus is constructed in [17] in two dimensions 
and in [18] in the three-dimensional case. 

The purpose of this article is to give a brief and complete, but not rigorous, 
exposition of the Fast Multipole Method (FMM) for the Helmholtz equation. For 
purposes of demonstration, we consider the scalar wave equation with Dirichlet 
boundary conditions on the surface of a scatterer. The FMM provides an efficient 
mechanism for the numerical convolution of the Green function for the Helmholtz 
equation with a source distribution and can be used to radically accelerate the 
iterative solution of boundary integral equations. In the simple single-stage form 
presented here, it reduces the computational complexity of the convolution from 
order N2 to order iV3/2. where N is the number of nodes in the discretization of 
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the problem. By implementing a multistage FMM (see [17], [18]), the complexity 
can be further reduced to order NlogN. However, even for problems that have 
an order of magnitude more variables than those currently tractable using dense 
matrix techniques (N « 105), we estimate that the performance of a carefully 
implemented single-stage algorithm should be near optimal. 

The structure of this article is as follows. In Section 2, we define notation 
and introduce the analytical apparatus of the FMM. A detailed prescription for 
FMM implementation, except for the choice of some important parameters of the 
algorithm, is given in Section 3. After the structure of the method is exhibited, 
these parameters (the number of terms used in the multipole expansion, and the 
directions at which far-field quantities are tabulated) are analyzed in Section 4. 

2. Analytical Apparatus 

2.1. Notation. Vectors in three-dimensional space are represented by boldface 
(x). The magnitude of a vector x is written as x = |x|, unit vectors as x = x/x, 
and integrals over the unit sphere as / d2x. The imaginary unit is denoted by i. 

2.2. Time Independent Scattering and the Nyström Algorithm. We will be con
sidering a scattering problem defined by the scalar wave equation 

(V2 + k2)yj = 0, (1) 

a Dirichlet boundary condition 
VJ(X) = 0 (2) 

on the surface S of a bounded scatterer, and the radiation condition at infinity. The 
Nyström method provides a discretization of the first kind integral equation asso
ciated with this problem, giving a set of linear equations with a dense coefficient 
(impedance) matrix: 

eifc|Xn-X„/| 
Zun' = VJi • — : :, (3) 

47r |x n-xw / | 
with the nodes {xn}, n = 1,2 ,N, distributed more or less uniformly on the 
boundary of the scatterer, and the coefficients {wn}, n = 1,2,... ,N chosen to 
be the weights of an appropriate quadrature formula (see, for example, [13]). The 
FMM provides a prescription for the rapid computation of the matrix-vector prod
uct 

.v 
Bn = J2 Znn,In, (4) 

n'=l 
for an arbitrary vector J. This rapid computation can then be used in an iterative 
(e.g. conjugate gradient) solution of the discretized integral equation Z I = V, 
where, for an incident wave with wave vector k, 

Vn(k) = e i k x . (5) 

REMARK 2.1. Although in this article we use a first kind integral equation to 
solve the Dirichlet problem (1), (2), we do so because of the simplicity of the 
formulation, not because we prefer it as a numerical tool. Similarly, we solve the 
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Dirichlet problem simply as an illustration of the technique, not because of any 
deep preference. In fact, many kinds of boundary value problems for the Helmholtz 
equation are encountered (see, for example, [10]), and our preferred technique is 
the second kind integral equations, whenever such formulations are available. 

2.3. Identities. The FMM, as presented here, rests on two elementary identities. 
These are found in many texts and handbooks on special functions, such as [1]. 
The first identity is an expansion of the kernel in the formula (3) for the impedance 
matrix elements, and is a form of Gegenbauer's addition theorem, 

eifc|X+d| ~ , 
— — - | = ikTé(-l)

l(2l -r l)jl(kd)hl(kX)Pl(d-X), (6) 

where jl is a spherical Bessel function of the first kind, h\ is a spherical Hankel 
function of the first kind, P\ is a Legendre polynomial, and d < X. When using 
this expansion to compute the field at x from a source at x', X will be chosen to 
be close to x — x' so that d will be small. 

The second identity is an expansion of the product jiPi in propagating plane 
waves: 

47Tilji(kd)Pi(d-X)= fd2keikdPt(k • X). (7) 

Substituting (7) into (6), we get 

pik\X-\-d\ jk C ~ i J * * 

^r^- = £jd2keikdYti
l(^ + ̂ hi(kX)Pl(k.X), (8) 

where we have performed the illegitimate but expedient interchange of summation 
and integration. The key point is that we intend to precompute the function 

L 

TL(K,COS0) = J2il(2l + l)hi(K)Pi(cos6) (9) 
i=o 

for various values of K. This is not a function in the limit L —> oo but that need 
not concern us, as we obviously intend to truncate the sum in numerical practice. 
The number of kept terms L + 1 will depend on the maximum allowed value of 
kd, as well as the desired accuracy. The choice of L is discussed in Section 4. It 
suffices for the present to note that, in order to obtain accuracy from (6), it must 
be slightly greater than kD, where D is the maximum value of d for which the 
expansion will be used. 

Ignoring this question for now (except for noting that the required number 
of terms becomes small as D —> 0), we have 

^ïfc|X+d| JL. p 
-VTà\~tjd2ke ±ATL{kx,k.x). (10) 

Using this, the impedance matrix element (3) is given by the formula 

Znn, « ^ 2 Jd2ke^<x-^-XHL{kX,k • X). (11) 
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In infinite precision arithmetic and in the limit of large L, this result would be 
independent of the choice of X (for X > |x — x' — X|). In practice, one chooses x to 
make x — x' — X relatively small, so that excellent accuracy can be obtained with a 
modest value of L. Notice that (11) gives the impedance matrix element (for well-
separated interactions) in terms of the Fourier transforms with wave number k of 
the basis functions; i.e., the basis functions' far fields. The acceleration provided 
by the FMM comes from the fact that these far fields can be grouped together 
before the integral over k is performed. 

REMARK 2.2: Physically, (10) can be interpreted as a decomposition of the Green's 
function for the Helmholtz equation into a collection of plane waves. From this 
point of view, it is immediately clear that 7L can not have a limit as L —> oo, 
as then etk^+^/\X + d| would be a singular function whose Fourier transform 
has compact support. However, with proper choice of L, the algorithm produces 
arbitrarily high precision. 

3. Algorithmic Prescription 

3.1. Setup. 

1. Divide the N nodes into M localized groups, labeled by an index ra, each 
supporting about N/M nodes. (For now, M is a free parameter. Later it 
will be seen that the best choice will be M ~ \fN.) Thus, establish a cor
respondence between the node's index n and a pair of indices (m,a), where 
a labels the particular node within the mth group. Denote the center of the 
smallest sphere enclosing each group as xm . 

It is assumed for purposes of illustration only that each patch supports only 
one node. 

2. For group pairs (m,mf) that contain "nearby" nodes (defined for now as 
those separated by a distance comparable to or smaller than a wavelength 
(2ir/k), so that (11) is valid) construct the sparse matrix Z', with elements 

Zmam'a' = Ai(m,a)n'(m'.a') l ^ / 

by direct numerical evaluation of the matrix elements (3). For all other pairs, 
7' = 0 

This part of the matrix computation is identical to what is conventionally 
done. All matrix elements whose computations require subtraction of singu
larities belong to Z'. If the large N limit is taken with a fixed discretization 
interval and nearness criterion, this step would require O(N) computations. 
In Section 4, we define nearby regions precisely, and it turns out that their 
volume increases as y/N, so that this step requires 0(N3/2) computations. 

3. For K directions k, compute the "excitation vectors" 

VTOQ(fc) = e i k - ( x - x -" \ (13) 

where k is considered to be a parameter of the problem, not a variable. 
Because K needs to be chosen to give accurate numerical quadrature for all 
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harmonics to some order oc L ~ kD, K oc L2 ~ (kD)2, and because (from 
geometrical considerations) kD oc y/N/M, this step requires order N2/M 
computations. 

4. For each pair (m,mf) for which Z ^ a m , a , = 0 (regions that are not nearby), 
compute the matrix elements 

k L 

Tmm>(k) =• TTT2 E ^ ( 2 / + l )*l(**mm'W(* " ^mm') i (14) 

for the same K directions k as in the previous step, where L oc \[K. If done 
in a naive manner, this computation requires order KLM2 ~ Ml/2N^f2 

operations, but can be accomplished more rapidly in a number of ways, the 
most straightforward being the fast Legendre transform (see [3]). 

3.2. Fast Matrix-Vector Multiplication. Rapid computation of the vector ele
ments 

&ma == / ^ ^marri'a'-*mya' \1&) 
m'ct' 

is accomplished by the following steps: 

1. Compute the KM quantities 

Sm(k) = ^2vrna*(k)Ima, (16) 
a 

which represent the far fields of each group of N/n nodes. This step requires 
order KN ~ N2/M operations. 

2. Compute the KM quantities 

9m(k) = Y,T^m'(k)srnl(k). (17) 

These represent the Fourier components of the field in the neighborhood of 
group ra generated by the sources in the groups that are not nearby. This 
step requires order KM2 ~ MN operations. 

3. Finally, compute 

Bma = J Z Z'rn«m>a>Irn<a> + f d2kVma(k)9Tn(k) . (18) 
m'a' J 

The first term is the standard evaluation of near interactions, and the second 
term gives the far interactions in terms of the far fields generated by each 
group. Obviously, this step requires order KN ~ N2/M operations. 

Straightforward substitution of Eqs. (13), (14), (16), and (17) into (18) and 
(9), (11) into (15) shows that the two expressions for the vector B, Eqs. (18) and 
(15), give equal results. Thus, computation of the vector B requires aNM-\-bN2/M 
operations, where a and b are machine and implementation dependent. The total 
operation count is minimized by choosing M = y/bN/œ, the result is an order 
iV3/2 algorithm. 
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4. Required Number of Multipoles and Directions 

In this ̂ section, we show how to choose the summation limit in the transfer function 
Tmm'(k) (see (14)) to achieve the desired accuracy (in the process giving a precise 
definition of nearby regions). We also discuss how to choose the K directions k for 
the tabulation of angular functions. 

One must choose L sufficiently large so that the multipole expansion (6) 
of the Green function converges to the desired accuracy. As a function of I, the 
Bessel functions ji(z) and hi(z) are of roughly constant magnitude for I < z. For 
I > z, ji(z) decays rapidly and hi(z) grows rapidly. Although one must choose 
L > kd = k\x — x' — x m m / | (so that the partial wave expansion has converged), 
L cannot be taken to be much larger than kXmm', because the transfer function 
(9) will grow rapidly while oscillating wildly. This will first cause inaccuracies in 
the numerical angular integrations in (10), (18), and then result in catastrophic 
round-off errors. This condition is a consequence of the interchange of summation 
and integration in (8). An excellent semi-empirical fit to the number of multipoles 
required for single precision (32-bit reals) is 

Ls(kD) = kD + 5\n(kD + TT) , (19) 

where D > 1/k is the maximum d that will be required (the diameter of the node 
groups). For double precision (64-bit reals), a good estimate is 

Ld(kD) = *;£> + 10\n(kD + TT) . (20) 

If the L dictated by the appropriate formula exceeds &Xmm/, then the groups are 
too close to use the FMM, and their interaction must be included in the sparse 
matrix Z'. 

The K directions k at which the angular functions are tabulated must be 
sufficient to give a quadrature rule that is exact for all spherical harmonics of 
order I < 2L. A simple method (see [18]) for accomplishing this is to pick polar 
angles 0 such that they are zeros of PL (COS 9) and azimuthal angles 0 to be 2L 
equally spaced points. Thus, for this choice of k = (sino cos 0, sino sin (j), coso), 
K = 2L2. If more efficient quadrature rules for the sphere of the type described 
by McLaren (see [14]) are used, then K « (4/3)L2. 

5. Conclusions 

During the last several years, analysis-based "fast" algorithms have been added to 
the classical algebraic "fast" techniques. Although the currently popular analytical 
techniques are inherently incapable of handling highly oscillatory matrices, for 
many important types of operators it is possible to construct extremely effective 
special-purpose algorithms. In this article, we outline one such scheme for the 
Helmholtz equation in three dimensions; the reader is referred to [17], [18] for a 
detailed exposition of this technique, and to [8], [5], [6], for related approaches to 
the rapid evaluation of integral operators with oscillatory kernels. 

Acknowledgments. The author would like to thank Professor R. Coifman and Dr. 
S. Wandzura for their help in writing this article. 
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1. Introduction 

This is a short summary of my oral presentation at the Zurich International 
Congress of Mathematicians. The presentation was aimed at providing an easy 
introduction to the field of symplectic numerical integrators for Hamiltonian prob
lems. Some sacrifices in rigor and precision were deliberately made. 

We are concerned with initial value problems for systems of ordinary differ
ential equations 

§ = / ( ! / ) • 0<t<T, y(0) = a€llD, (1) 

where / is a smooth function. The basic theory of numerical methods for (1) 
has been known for more than thirty years, see e.g. [8]. This theory, in tandem 
with practical experimentation, has led to the development of general software 
packages for the efficient solution of (1). It is perhaps remarkable that both the 
theory and the packages do not take into account any structure the problem may 
have and work under virtually no assumption on the (smooth) vector field / . This 
contributes to the elegance of the theory and to the versatility of the software. 

However, it is clear that a method that can solve "all" problems is bound to 
be inefficient in some problems. Stiff problems [9], frequent in many applications, 
provide an example of problems of the format (1) where general packages are very 
inefficient. Accordingly, a special theory and special software have been created to 
cope with stiff problems. 

Are there other classes of problems of the form (1) that deserve a sepa
rate study? In recent years much work has been done on special methods for 
Hamiltonian problems. Of course, Hamiltonian problems [11] play a crucial role as 
mathematical models of situations where dissipative effects are absent or may be 
ignored. Most special methods for Hamiltonian problems are symplectic methods; 
other possibilities, not discussed here, include reversible and energy-conserving 
methods [16]. Early references on symplectic integration are Channell [4], Feng 
[5], and Ruth [12]. In the last ten years the growth of the "symplectic" literature 
has been impressive, both in mathematics and in the various application fields. 
The monograph [16] contains over a hundred references from the mathematical 
literature. The second edition of the excellent treatise by Hairer, N0rsett, and 
Wanner [8] includes a section on symplectic integration. 
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In the talk I presented several examples, taken from mathematics [16], as
tronomy [20], and molecular dynamics [6] that illustrated the practical advantages 
of symplectic integrators when compared with general software. 

2. Symplecticness 

For our purposes here, a Hamiltonian problem is a problem of the form (1) where 
the dimension D is even, D = 2d, and the components fi of / are given by 

fi = -^L-^ fd+i = +^-, i = l , . . . , d , (2) 
oyd+i oyi 

for a suitable real-valued function H = H (y) (the Hamiltonian). It is standard 
notation to set p{ = yi: q{ = y<i+i, i = 1 , . . . ,d, and then the Hamiltonian system 
with Hamiltonian function H reads 

dpi dH dqi dH 
dt oqi dt dpi 

Whether a system of the form (1) with D = 2d is Hamiltonian or otherwise 
can be decided [1] by the symplecticness of its flow. Recall that, for each real t, 
the t-flow (ßt of the differential system in (1) is the mapping in 7lD that maps each 
a G TZD into the value y(t) at time t of the solution y of the initial value problem 
(1). A symplectic transformation $ in lZ2d is a transformation that preserves the 
differential form 

UJ = dpi A dq\ -\ + dpd A dqa. 

When d = 1 preservation of u) is simply preservation of oriented area: a smooth $ 
is symplectic if and only if for each oriented domain D in 1Z2, ®(D) possesses the 
same area and orientation as D. For d > 1, preservation of UJ means preservation 
of the sum of the two-dimensional oriented areas of the projections onto the planes 
(pi, qi), i = 1 , . . . , d, of oriented two-dimensional surfaces D in TZ2d. 

For each t, the flow <j)t of (3) is a symplectic transformation. Conversely if (1) 
(with D = 2d) is such that, for each t, (j>t is symplectic then (1) is a Hamiltonian 
problem, in the sense that a scalar function H may be found such that (2) holds. 
The conclusion is that the symplecticness of the flow characterizes Hamiltonian 
problems. In fact, all qualitative properties of the solutions of Hamiltonian systems 
derive from the symplecticness of the flow. 

When solving (1) with a one-step numerical method, the true flow (f>At is 
replaced by a computable approximation yj&t • For instance, for the standard Euler 
rule vJAt(y) = y + &tf(y). For an order r method yj^t is an 0 ( A t r + 1 ) perturbation 
of 0At as At —* 0. The numerical approximation yn at time tn = nAt, n= 1,2,..., 
is computed by iterating the map ip&t, i.e. yn+l = vj&t(y

n), n = 0,1, Then 
yn — y(nAt) is 0(Atr) as At —> 0, uniformly in bounded intervals of the variable 
t = nAt. 

If (1) is a Hamiltonian problem, there is no guarantee that a given numerical 
method yields a mapping yj^t that is symplectic. Therefore, in general, numeri
cal methods do not share the property of symplecticness that is the hallmark of 
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Hamiltonian problems. A numerical method is said to be symplectic, if, whenever 
it is applied to a Hamiltonian problem (3), it produces a mapping yj^t that is 
symplectic for each At. 

3. Available symplectic methods 

The available symplectic methods can be grouped broadly into three classes. 
The earliest symplectic methods were based on the fact that symplectic 

transformations in IZ2d can be expressed in terms of the partial derivatives of 
a real-valued generating function. For the true flow (f>At, the generating function 
is a solution of the Hamilton-Jacobi equation, and by approximately solving the 
Hamilton-Jacobi equation one constructed the generating function of the numeri
cal method yj^t. The methods obtained in this way require the knowledge of higher 
derivatives of H and tend to be cumbersome. 

Lasagni [10], Suris [19], and I [13] discovered independently that standard 
classes of methods, like Runge-Kutta methods, include schemes that just 'happen' 
to be symplectic. 

The third class of symplectic methods is built around the idea of splitting. 
It is required that the Hamiltonian H of interest may be decomposed as a sum 
H = Hi H \-Hs such that the Hamiltonian systems with Hamiltonians Hi may 
be integrated in closed form, so that the corresponding flows 0At,//j7 i = 1,... ,s, 
are explicitly available. These "fractional" flows are then combined to produce an 
approximation yjAtM to (j)At,H- When s = 2, the simplest possibility is to set 

VJAt,H = (t>At,Hl(t>At,H2-

This provides a first-order method that is symplectic: yjAt,H is a composition of two 
Hamiltonian flows, and hence of two symplectic mappings. Higher-order splittings 
exist; for instance the second-order recipe 

V^At,H = (t)At/2,H1àAt,H2(l)At/2,H1 

goes back to Strang [18], and Yoshida [21] has developed a way of constructing 
splittings of arbitrarily high orders. 

4. Discussion 

In which way are symplectic methods better than their conventional counterparts? 
The standard criterion for determining the merit of numerical methods for (1) is 
as follows. One measures the error \yn — y(nAt)\ (numerical minus exact) at some 
prescribed time t = nAt; method A is then an improvement on method B if A 
attains a prescribed error size with less work than B. There is some evidence 
suggesting that symplectic methods may be advantageous when this standard 
comparison criterion is used. For instance, it is possible to show [3] that, in the 
integration of the classical two-body problem, symplectic integrators have errors 
whose leading terms in the asymptotic expansion grow linearly with t; the error 
in conventional methods grows like t2. 
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However the standard criterion described above may not be a sensible choice 
in many instances. Sometimes numerical integrators are used to get an indica
tion of the long-time behavior of a differential system [14]. When t is large all 
numerical methods are likely to produce approximations yn that differ signifi
cantly from y (nAt); therefore all methods would be regarded as bad with the 
standard criterion. This is particularly clear in cases, including chaotic regimes, 
where neighboring solutions of the system diverge exponentially as t increases 
and hence numerical errors also increase exponentially. It is then useful to derive 
new alternative criteria to judge the goodness of numerical methods in long-time 
integrations, see e.g. [17]. 

An idea that has recently attracted much attention [16], [2], [15], [7] is that 
of backward error analysis. In numerical analysis, given a problem V with true 
solution S and given an approximate solution S, forward error analysis consists of 
estimating the distance between S and S. Traditionally, error analyses in numerical 
differential equations are forward error analyses. Backward error analysis consists 
of showing that S is the exact solution of a problem V that is close to V. Let 
yjtj be a numerical method of order r > 1 for the integration of (1). Given any 
large integer N, there is an autonomous vector field / , that depends on N and At, 
such that tyAtj — <l>At f = 0(AtN+x) as At —> 0. This means that the numerical 
solution, that is an approximation of order r to the solution of the problem (1) we 
are trying to solve, is an approximation of order N » r to the perturbed problem 

jjf = / (») . 0 < t < T , y(0)=aeHD. (4) 

Ignoring 0(AtN) terms, the numerical solution is really solving the modified prob
lem (4). Here / . = / + 0 (At r ) , so that the higher the order of the method, the 
closer the modified problem is to the true problem (1). In any case, if the discrep
ancy between / and / is of the same size as the uncertainty in / that results from 
modelling errors, experimental errors in measuring the constants that may feature 
in / , etc., then we are sure that there is nothing seriously wrong in solving (1) 
numerically. 

In this connection, it turns out that if the numerical method is symplectic 
and (1) is Hamiltonian, then (4) is also a Hamiltonian problem. In this sense, a 
symplectic integrator changes the problem being solved by slightly altering the 
Hamiltonian function H; a general integrator changes the problem being solved 
by introducing a non-Hamiltonian perturbation. 

Acknowledgments. I have been supported by grant DGICYT PB92-254. 
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Moscow 117966, Russia 

1 Introduction 

Let M be a C^-manifold and TM the total space of the tangent bundle. A control 
system is a subset V C TM. Fix an initial point qQ G M and a segment [0, t] C 
R. Admissible trajectories are Lipschitzian curves q(r), 0 < r < t, #(0) = qo, 
satisfying a differential equation of the form 

q = Vr(q), (1) 

where vT(q) E V PI TqM, \/q E M, vT(q) is smooth in q, bounded and measurable 
in r . The mapping q('-) \-> q(t), which maps admissible trajectories in their end 
points, is called an end-point mapping. 

Control theory is in a sense a theory of end-point mappings. This point of view 
is rather restrictive but sufficient for our purposes. For instance, attainable sets are 
just images of end-point mappings. Geometric control theory tends to characterize 
properties of these mappings in terms of iterated Lie brackets of smooth vector 
fields on M with values in V. A number of researchers have shown a remarkable 
ingenuity in this regard leading to encouraging results. See, for instance, books [5], 
[7], [10] to get an idea of various periods in the development of this domain and for 
other references. A complete list of references would probably run to thousands of 
items. 

A great part of the theory is devoted to the case of nonsmooth V such that Vfl 
TqM are polytopes or worse. There is a widespread view that such a nonsmoothness 
is the essence of control theory. This is not my opinion, and I am making the 
following radical assumption. 

Let us assume that V forms a smooth locally trivial bundle over M with 
fibers Vq — smooth closed convex submanifolds in TqM of positive dimension, 
symmetric with respect to the origin. So we consider a very special class of control 
systems. 

EXAMPLES. 1) Vq is an ellipsoid centered at the origin. This is the case of Rie
mannian geometry. 

*) Partially supported by Russian fund for fundamental research grant 93-011-1728 and ISF 
grant MSD000. 
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2) Vq is a proper linear subspace of TqM. This case includes nonholonomic 
geometry. 

3) Vq is the intersection of an ellipsoid and a subspace. This is sub-Riemannian 
geometry. 

This paper essentially deals with cases 2) and 3). 

2 Extremals 

Denote by figo(t) the space of all admissible trajectories on [0,t] equipped with 
W^oc-topology, i.e. the topology of uniform convergence for curves and their veloc
ities. Under our assumptions for V, the space figo (t) possesses the natural structure 
of a smooth Banach manifold, and the end-point mapping 

ff.nqo(t)-*M, ft(q(-))=q(t) 

is a smooth mapping. We will denote by Dqft : TqQqo (t) —> Tft^M the differential 
of ft at q(-). 

A trajectory q(-) is a critical point for ft iff 3A G Tï / .M, A ^ 0, such that 
XDqft = 0, i.e. À is orthogonal to the image of the linear mapping Dqft. It is a 
natural thing that critical points of ft are the main object of our investigation. We 
study critical levels of ft and restrictions of ft to the sets of their critical points. 

The cotangent bundle T*M possesses the canonical symplectic structure. 
We will denote by (j) the Hamiltonian vector field on T*M associated to the 
Hamiltonian 0 G CX(T*M). Let v be a smooth vector field on M, then v* : A i—> 
(X,v(q)), X G T*M, q G M is a Hamiltonian on T*M, which is linear on fibers, 

and v* is a lift of the vector field v on T*M. 
Set Qqo = Qqo(l), f = f\. Let q(-) G Qqo be a critical point of / . Then q\[o,t] 

is obviously a critical point of ft, Vt e (0,1]. Moreover, let q(-) satisfy the equation 
(1). If Xt, 0 < t < 1, is a solution of the nonstationary Hamiltonian system 

X = v~*(X) and XxDqf = 0, Xl ^ 0, (2) 

then XtDqi[ot]ft = 0, Xt ^ 0, Vt G [0,1]. 
The curves in T* M that satisfy (2) for some vt are called extremals associated 

with q(-). Let q G M, A G T*AJ, A ^ 0. Set h(X) = max(A,v) if the maximum 
vevq 

exists. The function h is defined on a subset of T*M. It is convex and positively 
homogeneous on fibers. We call h the Hamiltonian of the control system. 

Let a be the canonical symplectic structure on T*M. The following proposi
tion is a corollary of the Pontryagin Maximum Principle. 
PROPOSITION 1. (a) h(Xt) = const, 0 < t < 1, for arbitrary extremal Xt. 

(b) Let a level set h~l(c) be a smooth submanifold ofT*M. Then any ex
tremal Xt G /i_1(c), 0 < t < 1, is a characteristic of the differential form <J|^-I(C) 

(i.e. Ajo-|fc-i(c) = 0), and any properly parametrized characteristic of this form 
started at T*QM is the extremal. 

Note that level sets of h arc smooth in the above Examples l)-3). 
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3 Distributions 

Distributions are just smooth vector subbundles of the tangent bundle. Let A be 
the space of smooth sections of a distribution, and Aq C TqM be the fiber at 
q G M of the corresponding subbundle. 

Set A1 = A, A n = [A, A71"1], n = 2 , 3 , . . . , where the Lie bracket of spaces 
of vector fields is, by definition, the linear hull of the pairwise brackets of their 
elements. The distribution is called bracket generating if a number nq exists for 
Vq G M such that AqQ = TqM. We will consider only bracket generating dis
tributions in this paper. The distribution defines a control system V = |J Aq. 

The well-known Rashevskij-Chow theorem asserts that the end-point mapping 
/ : Qqo —» M is a surjective one. It is not a submersion, however, if Aq / TqM. 
Critical points of / are called singular or abnormal geodesies for A. 

Let A^- C T* M be the set of all nonzero covectors that are orthogonal to 
Ag, A1- = (J A^-. The manifold A x is the domain of the Hamiltonian of the 

q£M 

control system V. This Hamiltonian is identical to zero in its domain. Singular 
geodesies are exactly projections on M of the characteristics of the form <J|A-L, 

started at A^. 

4 Rigidity 

Let ßg o ,g i = f~1(Qi) be the set of admissible trajectories that connect qo with q\. 
An admissible trajectory q(-) is called rigid if there exists a neighborhood of q(-) 
in Çlqo.q(i) that contains only reparametrizations of q(-). It is called locally rigid if 
its small enough pieces are rigid, cf. [6]. 

THEOREM 2. (see [3]) Let q(-) eQqo, q = v(q), v G A. 
(a) Ifq(-) is a locally rigid trajectory, then there exists an extremal Xt asso

ciated with q(-) such that 

Xt JL A2
q(t), (Xt, [[v,w],w](q(t))) > 0, \fw G A, 0 < t < 1. (3) 

(b) Let there exist an extremal Xt that satisfies (3) and 

(Xt, [[v,w],w](q(t))) > 0, Vtu G A, w(q(t)) Jf q(t), 0 < t < 1. (4) 

Then q(-) is indeed a locally rigid trajectory. 

We call q(-) the singular geodesic of the first order if there exists a unique up 
to a positive multiplier8 extremal Xt associated with q(-) that satisfies (3), (4). 

5 Jacobi curves 

Let At be an extremal that satisfies (3), and QT : M —> M be the flow generated 
by v. Set Tt = {w*Ut

 : w £ A} — an isotopie subspace of the symplectic space 
T\ t(T*M). Let 0 = to < ti < • • • < t^+i = 1 be a subdivision of the segment 
[0,1], I = {t1,...,tfc}. Let us identify TX(T*M) = T*M for A G T*M and set 

A0(7) = T ; O M , A t(J) = Q t * _ t ( A t i ( / ) r * * ) f a r t < < t < t i + i , i = 0,...,k, 

where A r denotes the intersection of A + r with the skew-orthogonal complement to 
T. Then At(I) C T\t (T*M) is a piecewise smooth family of Lagrangian subspaces. 
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PROPOSITION 3. Let q(-) be a locally rigid trajectory, q = v(q), v e A. Then 
there exists an extremal Xt that satisfies (3) and such that 

3 Z-lim A t(J) = At, Vt G [0,1], where 1 = {I C (0,1) : # 1 < oo}. 

We call At the Jacobi curve associated with At. The Jacobi curve is smooth in 
t G (0,1] and satisfies a simple Hamiltonian equation if q(-) is a singular geodesic 
of the first order. See details in [1], [2], [3]. 

THEOREM 4. Let q(-) be a singular geodesic of the first order, and At be the Jacobi 
curve associated with the corresponding extremal Xt. Suppose that Ai D T ^ M = 
RAi. Then there exists an integer d > 0 and a neighborhood Oq of q in ^go,g(i) 
such that Oq\{q} is homotopy equivalent to the sphere Sd~1. If At fl T*,t*M = 
RAt, Vte (0,1], thend = 0. 

We write d = indg(-). This index has an explicit expression in terms of the 
Maslov cocycle on T*M, cf. [2]. 

6 Low dimensions 

Let A be a rank 2 distribution and dimAf = 3. Then N = {q G M : Aq = 
A2 / Aq} is a smooth 2-dimensional submanifold in M (maybe empty), and 
Aq iti N Vq G N. Integral curves of the rank 1 distribution Aq fl TqN on N are 
singular geodesies of the first order and all of them are rigid. 

One may say more about generic distributions using local normal forms, see 
[13], [14]. The closure N is a smooth submanifold in M for generic A, and N\N 
consists of isolated points. These points are singularities of the foliation on N 
generated by rank 1 distribution Ag fl TqN. They may be saddles or focuses. We 
obtain a nonsmooth rigid trajectory pasting together two neighboring separatrixes 
of the saddle, and a smooth but not a rigid singular geodesic if we paste together 
separatrixes lying opposite each other. One more interesting phenomenon: any 
neighborhood of the focus contains rigid trajectories of arbitrary length! This 
happens because the foliation is never generated by a linearizable vector field in a 
neighborhood of our focus. 

Let rank A = 2, dimAf = 4, and Aq ^ A2 ^ A^, Vq G Af. Such a dis
tribution is called the Engel distribution. A characteristic rank 1 subdistribution 
K C A is defined by the relation [K, A2] C A2. Singular geodesies for A are 
exactly parametrizations of integral curves of K. These integral curves are singu
lar geodesies of the first order. Let q(-) G tlqo be a piece of one of them without 
self-intersections, and /C be the foliation generated by K. Replace Af by a neigh
borhood Afo of {q(t) : 0 < t < 1} such that a factor-manifold MQ/JC is well defined. 
Let K : Afo —• Mo/JC be the canonical projection. Then «*A2,tx is a 2-dimensional 
subspace in Tg(Afo//C) that does not depend on t. Let «* denote the composition 
of the K* and the projectivization of Tq(Mo/JC). Hence ft+A2,^ is a projective line. 

PROPOSITION 5. The singular geodesic q(-) satisfies conditions of Theorem 4 iff 
6*Ag(i) / K*Aqo, and 

'mdq(-) = #{ t G (0,1) : ït*Aq{t) = R*Aqo}. 

See also [3], [6]. 
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Let rankA = 2, dim Af is arbitrary. If A^o ^ A2
o, then Qqo contains a smooth 

rigid trajectory. If dim(Ago/A2
o) = 2, then there exists a smooth rigid trajectory 

q(-) G flqo such that q(0) = £, for V£ G Ag o \{0}, see [3], [6]. Note that 2 is the 
maximum possible dimension for Ago/A2

Q. 

REMARK. Recall that the spaces tlq0iqi have the Wri,oo-topology. Homotopy types 
may change dramatically and become independent on the distribution if we replace 
this topology by a weaker I^g-topology (i.e. the Ls-topology for velocities), 1 < 
s < oo. The embedding of ßq0,gi in the space of all Lipschitzian curves in M 
connecting go with q\ is a homotopy equivalence in the Wi>s-topology, 1 < s < oo, 
see [9]. 

7 Sub-Riemannian geodesies 

Let Vq be the intersection of Ag with an ellipsoid in TqM centered at the origin 
and smoothly depending on q G Af. Set V* = lVq

l, V1 = [j Vl
q, I > 0. The family 

qEM 

of control systems V1 is called the sub-Riemannian structure on M coordinated 
with A. We will denote by Q,lqo the space of admissible trajectories for V1 on [0,1] 
equipped with the W^i-topology. Note that all Wi,s-topologies, 1 < s < oo, are 
equivalent in the sub-Riemannian case as Vq

l are compact. The number I is, by 
definition, the length of any curve in Ql

qQ. Set ftl
qo qi = {q(-) G Ql

qo : q(l) = q\} — 
a subspace in Çll

qo. 

We call q(-) G Sll
qo the strong length minimizer if it is a Wi,i-isolated point 

in (J Ql
qo q,xy We call q(-) the global length minimizer if ^g0?9(1) = 0, VV < I. 

PROPOSITION 6. Let q(-) be an isolated point in ft1 ^y Then q(-) is a strong 
length minimizer and its small enough pieces (reparametrized in the obvious way) 
are global length minimizers. 

Critical points of the end-point mappings for control systems V1 are called 
sub-Riemannian geodesies. Let hl be the Hamiltonian of V1. The function hl = lh\ 
is smooth outside its zero level set, which is equal to A-1. 

Let At be an extremal associated with a sub-Riemannian geodesic. The ex
tremal is called normal if hl(Xt) ^ 0, otherwise it is called abnormal. Normal 

extremals are exactly trajectories of the Hamiltonian system X = hl (A), h(X) ^ 0, 
started at î^0Af. Abnormal extremals are just extremals associated with properly 
parametrized singular geodesies for A. 

A sub-Riemannian geodesic q(-) is called regular if there exists a unique up 
to a positive multiplier normal extremal associated with q(-), otherwise it is called 
singular or abnormal. It is easy to show that an abnormal extremal is associated 
with any singular geodesic q(-). If all extremals associated with q(-) are abnormal, 
then q(-) is called strictly abnormal. 

Let At be a normal sub-Riemannian extremal and H[ : T*M —> T*M be the 

Hamiltonian flow generated by the vector field hl. Set 

K = TXO{T:0M), A[ = ^.(A^), o < t < i. 
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Then A[ G T\t (T* Af ) is a smooth family of Lagrangian subspaces. We call A[ the 
Jacobi curve associated with At-

THEOREM A1. Let q(-) be a regular sub-Riemannian geodesic. The statement of 
Theorem 4 remains true if symbols A and Q are replaced by A1 and Ql everywhere 
in its formulation. 

THEOREM 7. Let rankA = 2 and q(-) G Ql
qo be a singular geodesic meeting 

conditions of Theorem 4. 
(a) Ifq(-) is rigid, then it is a strong length minimizer. 
(b) Ifq(-) is strictly abnormal, then Ol

q\{q} is homotopy equivalent to Oq\{q} 
for some neighborhood Oq C figo.q(i), Ol

q C ty^y 

In particular, smooth rigid trajectories described in the previous section arc 
strong length minimizers for an arbitrary sub-Riemannian structure coordinated 
with A. It turns out however that nonsmooth rigid curves constructed there for 
typical rank 2 distributions on the 3-dimensional manifold are never strong length 
minimizers. Recall that a strong minimum is a local minimum in the W\,\-topology 
(see the remark at the end of Section 6.) See also [4], [8], [11]. 

8 The Lie group case 

In this section we consider examples of sub-Riemannian geodesies that are neither 
regular nor strictly abnormal. Although most likely nongeneric, these geodesies 
are common in symmetric situations. 

Let Af = G be a compact semisimple Lie group with the Lie algebra g of 
left-invariant vector fields and a bi-invariant Riemannian structure (v\ |v2), v\,V2 G 
TqG, q G G. Any left-invariant corank 1 distribution on G has a form A(a), where 
a G g, (a\a) = 1, Aq(a) = {v G TqG : (v\a(q)) = 0}. Consider a sub-Riemannian 
structure 

Vl = {ve Aq(a) : (v\v) =l2, qe G}. 

Sub-Riemannian geodesies for V1 that are not strictly abnormal are exactly the 
curves 

q(t) = qoe^e-^^, b G g, (b\b) - (b\a)2 = I2. (5) 

Let a be a regular element of g. The geodesic (5) is regular iff [b, a] ^ 0, otherwise 
it is neither regular nor strictly abnormal. Let A = {v G g : [v, a] = 0} be a Cartan 
subalgebra in g. Fix c G A, (c\a) = 0, (c|c) = 1. Let ±pi G A*, i = 1 , . . . , ra, be all 
roots of g (relative to A), (pi,c) > 0. 

Let ql(t) = q0e
tlc. Set H n = Hn (^ 0 , g i , ^q 0 5 g i \{^}) ; these homology groups 

are determined by the disposition of the affine line Zc+Ra with respect to the Stifel 
diagram, i.e. the maximal triangulation of the complex {v G A : 3i s.t.(pi, v) G Z}. 

PROPOSITION 8. Suppose that le + Ra is transversal to the Stifel diagram and c 
belongs to the interior of a Weyl chamber. Let E be the intersection of this Weyl 
chamber with le + Ra, 

m 

Ek = {eeE:2Y^[{pi,e}}<k}, fc = 0, l ,2 , . . . , 
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where [•] is the integral part of the number in brackets. Then 

H n = J ïo (E n , £ n _i ) e J ï i ( £ n + i , E n ) , n > 0. 

EXAMPLE. Let G = SU(3), then dim A = 2, ra = 3. Let 0 < (pi,c) < (/o2,c) < 
(ps, c). A possible disposition of le + Ra is shown in Figure 1. 

\ 1 4 

• A l 2 A 

\ 8 
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12 

6 
4 

10 

2 
0 

/4 

14 14 / 
12 A 12 / 

Y 10 Y 
A s / 

6 \ / " - ^ ^ 
4 / / c + JKa -

V 

7i-th Betti number 
equals 1 for ra = 6,10,11 
and equals 0 for 
the other n 

Figure 1 

There is a rather involved explicit expression for the Betti numbers of the 
pair (Ç}l

qQ,Çll
qo\{q1}) via (pi,lc), but some asymptotic relations for I —> oc are 

transparent. Let d(lc) = min{ra : Hn ^ 0}, D(lc) = max{n : Hn ^ 0}. Then 

lim d ^ = fci+ft»*c) 
l^oo D(lc) (P2+P3,c)' 

This limit is a rough homological invariant of the sub-Riemannian structure and 
it is a rational function of a ! 

9 Contact structures 

Our next topic is exponential mappings, i.e. the restrictions of the end-point map
pings to the sets of sub-Riemannian geodesies. Following the philosophy of this 
paper, we deal with the most "smooth" case. 

Let A be a contact structure, i.e. a corank 1 distribution such that [v, A]q = 
TqM, Vv G A, v(q) / 0, q G M. Hence the dimension of M is odd, dimAf = 
2ra + 1. We will consider a sub-Riemannian structure V1, I > 0, coordinated with 
A. All geodesies for such a structure are regular except the constant trajectory 
q(t) = qo. While all nontrivial geodesies are regular, they form a smooth manifold 
Q = U Ql naturally diffeomorphic to an open subset of T*Q M\Aq

L
o. We obtain a 

l>0 
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desired diffeomorphism just by identifying a geodesie for V1 with the initial point 
of the extremal At associated with this geodesic and normalized by the relation 
hl(Xt) = 1- Then Ql is identified with (frqo)_1(l) for all I small enough and with 
an open subset in (/i/

9o)~1(l) for the arbitrary I > 0, where hl
qo = hl\r* M-

A dilation 6T : Q —• Q, 0 < r < 1, is defined by the relation (6Tq)(t) = 
q(rt), q(-) e Q, t e [0,1]. Then 6T(Ql) = QT1 for / > 0 small enough. In other 
words, Q1 consists of reparametrized pieces of curves from Ql if /' < I. 

Consider "the exponential mapping" ex : q(-) *-* g(l), q(-) G Q. Let us 
denote by C the set of critical points of ex. 

PROPOSITION 9. (a) # { r G (0,1) : 6Tq e C} < oo, Vqe Q. 

(b) Let q G Q\C, then 
q is a strong length minimizer <=> 6Tq £C, VT G (0,1). 
(c) For any K m Q there exists rK > 0 such that 8T(K) C\C = 0 W <rK. 
(d) Q1 H C ^ 0 for any small enough I > 0. 

Properties (a)-(c) of the exponential mapping are similar to the case of Rie
mannian geometry but (d) is the exact opposite of the Riemannian case. It fol
lows from (a), (b), (d) that there exist arbitrarily short geodesies started at go 
that are not strong length minimizers. A formal reason is the noncompactness of 
Ql « (^g0)-1(l)7 as opposed to the Riemannian geometry. Actually, this phenom
enon is easily predictable because arbitrarily short geodesies cover a neighborhood 
of qo, although all of them are tangent to the hyperplane Aqo. 

The set 

C = {g(l) : q(-) G C, 6aq £C,Vae (0,1)} C M 

is called the sub-Riemannian caustic. It is an "envelope" of the family of geodesies. 
Initial point qo belongs to the closure of C. We need more notation to say more. 

The sub-Riemannian structure V1, I > 0, induces a Euclidean structure on 
Aq, g G M, such that the Euclidean length of Vv G Vq is equal to /. Let UJ be 
a differential one-form that is orthogonal to A and normalized by the following 
condition: 2ra-form (dquj)m\Aq is the volume form for the Euclidean structure 
induced by V1. The form UJ is defined up to a sign in a neighborhood of qo, it 
is defined globally iff contact structure A is coorientable. Our considerations are 
local and we fix a sign of UJ. 

Set h = \(h1)2 = -^(h1)2 a Hamiltonian that is quadratic on the fibers 
of T*M. Relations e\u) = 1, ejda; = 0 define a vector field e and a Hamilton
ian e* : A i—> (A, e(g)), A G TqM, which is linear on fibers. Let us consider the 
Poisson bracket {e*,h}. It is one more Hamiltonian that is quadratic on fibers. 
It is possible to show that Aq is contained in the kernel of the quadratic form 
{e*,h}q = {e*,h}\T*M- Hence we may consider {e*,h}q as a quadratic form on 
A* = TqM/Aq. Moreover, the Euclidean structure on Aq permits us to identify 
A* with Aq and to consider {e*,h}q as a quadratic form on Ag or, in other words, 
as a symmetric operator on the Euclidean space Aq. In particular, the trace and 
the determinant of {e*,h}q are well defined. It turns out that tr{e*,h}q = 0 but 
the determinant doesn't vanish, generally speaking. 
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If M is the total space of a principle bundle with one-dimensional fibers 
transversal to A, and V is invariant under the action of structure group (so that 
A is just a connection on the principle bundle), then e is a "vertical" vector field 
and {e*, h} = 0. Conversely, if {e*,h} = 0 for a contact sub-Riemannian structure, 
then the structure is invariant under the one-parametric group generated by e. 

We have T*o M = Rujqo + A*o. Let v G R and n G A*o, n ^ 0. We will denote 
by Q('\ v,?]) the geodesic that is the projection on M of the extremal, starting at 
(vujqQ + rj) G T*QM. It turns out that the mapping v v-> g(^;i/, ra) possesses an 
asymptotic expansion for v —> ocin the power series in £ with coefficients that are 
elementary functions of ra. It was the study of this expansion that made it possible 
to obtain fundamental invariants of the contact sub-Riemannian structures for 
ra = 1 and to understand the form of the caustic near go in the generic situation. 

Dimension 3. Let dimAf = 3. Interesting calculations were made by'various au
thors in this minimal possible dimension for a symmetric (Lie group) case where 
geodesies have a simple explicit expression (see especially [12]). We'll see, however, 
that principal invariants vanish in that symmetric case. 

Figure 2 shows the form of the caustic C near go if {e*, h}qo ^ 0. "Horizontal" 
sections have 4 maps. 

Figure 2 

We don't use below a special notation for the standard identification of 
Ago and A*o, and just put elements of A9o instead of A*o in formulas. Thus, 
g(-; v, v), v G Aq0 is a geodesic whose velocity equals v at the starting point. The 
form dqQuj induces an orientation of Aqo and of Vqo that is the unit circle in the 
Euclidean plane Ago. We will denote by dOç, Ç G Vqo, the angle differential form 
on the oriented circle. 
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Let v GR, v G Vq\\ set 

lc(v, v) = min{Z > 0 : g(-; v, Iv) G C}, gc(i/, v) = q(lc(v, v): v, v). 

Then lc(v, v) is the suprcmum of the length of strong length minimizing pieces of 
the geodesic g(-; v, v), and qc(v, v) is the point of the caustic C where this geodesic 
ceases to be a strong length minimizer. 

THEOREM 10. The following asymptotic expansions hold for v —> ±oc, v G Vq\: 

qc(v,v) = ±u-27re(q0) - v~* - J {e\h}qo(0^d6^ + 0(v~A) 

lc(v,v) = II/I-^TT - |^r37rp(g0) + 0(v~4), 

where p(qo) is a constant. 

The curve v i—• | Jv
 v{e*,h}qo ^d0^, v G Vqo, is a symmetric astroid in Ago; 

its radius equals (—det{e*,h}qo)î, and its cuspidal points belong to the isotropic 
lines of the form {e*, h}qo. 

The invariant p(q), q G M, is, in fact, a nonholonomic analog of the Gaussian 
curvature of a surface. Let ^i(g), v2(q) be an orthonormal frame in Aq with a right 
orientation. Then [^1,̂ 2] = c*i^i + 0:2^2 — e, [e.Vj] G A, j = 1,2, where Qj are 
smooth functions, and 

p = ?;ia2-V2ai -a\-al + -((\e,v2Yvi) - ([e,vi],t;2». 

A simple count of parameters shows that sub-Riemannian structures on a 3-
dimensional manifold should have two "functional invariants". We already have 
two: det{e*,/i} and p. 

THEOREM 11. Let dp = 0, det{e*,h}q = 0 Vg G Af, where M is a parallelizablc 
manifold, and i f ^ A ^ R ) = 0. 

Then there exists an orthonormal frame v\, v2 in A such that 

[v2,vi] = e, [v1,e] = pv2, [v2,e] = -pvx. 

So a contact sub-Riemannian structure on a 3-dimensional manifold, with the 
identically vanishing {e*,h} and p, is locally equivalent to the Heisenberg group 
with the standard "symmetric" sub-Riemmanian structure — the most popular 
example in nonholonomic geometry. We obtain a model of the sub-Riemannian 
manifold with the identically vanishing {e*,/i} and constant positive (negative) 
p if we consider the group SU(2) (5L(2;R)) with the sub-Riemannian structure 
that is defined by the restriction on a left-invariant distribution of the bi-invariant 
(pseudo-)Riemannian structure on SU(2) (*SX(2;R)). 
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Whiskered Tori and Chaotic Behavior in Nonlinear Waves 
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1. Introduction and Overview 

Chaotic behavior in deterministic dynamical systems is an important phenomenon 
with many physical ramifications. In finite-dimensional settings this behavior is 
well understood, because of several fundamental mathematical results and many 
numerical studies that unveil phenomena beyond the reach of current analytical 
methods. 

However, most real physical applications are modeled by partial differential 
equations; therefore, to be really applicable, chaotic behavior in deterministic sys
tems must be extended to the infinite-dimensional setting of pde's. In this lecture 
I will describe one initial step in this direction by summarizing some results for an 
admittedly idealized class of pde's — those nonlinear waves that are described by 
equations that are perturbations of completely integrable soliton equations. 

The damped, driven pendulum, 

utt + sin u = e[—aut + Tcosujt], (1.1) 

is a prototypic example of a three-dimensional deterministic system that admits 
chaotic behavior. When the perturbation is absent (e = 0), the pendulum has an 
unstable fixed point (u,ut) = (7r,0) representing its inverted position, and orbits 
homoclinic to this inverted position that separate the two-dimensional pendulum 
phase space into oscillating and rotating components. In the presence of a pertur
bation, one can use these integrable homoclinic orbits to construct a "horseshoe" 
with which one can establish the existence of an invariant set on which the per
turbed dynamics is topologically equivalent to a Bernoulli shift on two symbols; 
moreover, these two symbols admit a natural physical interpretation as the pen
dulum falling from its inverted position by swinging to the right or to the left. 

Knowing this behavior for the damped-driven pendulum, we began our study 
of chaotic behavior in pde's with a damped-driven perturbation of the "sine-
Gordon" equation, 

Utt — uxx + sinu = e[—aut + T cosujt], (1-2) 
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which can be interpreted as the continuum limit of a chain of coupled pendula. 
Under periodic, even boundary conditions, 

u(x + L,t) = u(x,t), u(—x,t) = u(x,t), 

the unperturbed (e = 0) problem is a completely integrable Hamiltonian system, 
as can be established with the "spectral transform" of soliton mathematics. In 
contrast to the trivial two-dimensional "phase plane" portrait of the unperturbed 
pendulum, the infinite-dimensional "phase portraits" for the sine-Gordon pde seem 
very complicated. However, through the spectral transform, one can obtain very 
detailed information about these portraits for this integrable wave equation. 

First, however, we performed numerical experiments on the perturbed sine-
Gordon equation. In these experiments we fixed the parameters (ea,uj,L), as well 
as the initial data, at judiciously chosen values, and we varied the amplitude (eT) 
of the sinusoidal driver. Although the detailed results varied depending upon the 
particular choices of parameter values, a typical sequence was as follows: as the 
"bifurcation parameter" (eT) was increased, the long time behavior of the observed 
solution changed as follows: 

(1) temporally periodic (with period of the driver), with no spatial structure 
(independent of x); 

(2) temporally periodic (with period of the driver), with one spatially localized 
excitation — a solitary wave; 

(3) temporally quasi-periodic (with the frequency of the driver, together with a 
second shorter frequency), with one spatially localized excitation, together 
with a significant long wavelength background; 

(4) irregularly temporal, together with interesting interactions between the spa
tial structures. 

Detailed descriptions of these numerical experiments, together with descriptions 
of the numerical algorithms, validation procedures, and the specific "chaotic diag
nostics" that were employed may be found in [3],[4], [20]. My point here is that 
the pde "route to chaos" is very different from the route for the single pendulum. 
Spatial structure develops and stabilizes at values of the driving parameter that 
are very small, certainly smaller than those required for the single pendulum to 
evolve chaotically. Chaotic behavior does indeed develop in the sine-Gordon exper
iments, but interactions between spatial structures play a major role in the chaos. 
Moreover, the amplitudes of the waves are small and far from the inverted unsta
ble position of the pendula. Some other instability must be behind this chaotic 
behavior for the near integrable pde. 

At this point in our study we have a choice — (i) to continue the analysis of 
the perturbed sine-Gordon equation [6], [20], or (ii) to turn to a similar study for 
a perturbed nonlinear Schrödinger (NLS) equation, which, because of the small 
amplitude nature of the chaotic state, should behave very similarly. With either 
option, the methods and results will be similar: however, as the NLS framework 
is simpler, I will restrict the rest of this lecture to the NLS case, 
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NLS describes the envelope of a small 0(e) amplitude, nearly monochromatic 
sine-Gordon wave, an approximation that is valid over long time scales of 0(e~2). 
Unfortunately, these time scales are not long enough to capture, reliably, the long 
time chaotic behavior of the sine-Gordon equation. Thus, we first repeated the 
numerical experiments for the NLS case [20] and showed that the "routes to chaos" 
for the NLS equation were very similar to those of the sine-Gordon equation. 

Our numerical experiments immediately lead to the following analytical ques
tions: 

(1) Which instabilities in the integrable pde replace the inverted position of the 
pendulum? 

(2) Which homoclinic structures in the integrable pde replace the pendulum's 
separatrix? In the integrable cases, how can such hyperbolic structures be 
constructed? In the perturbed cases, how can these hyperbolic structures be 
identified and monitored? 

(3) In the pde cases, what replaces the "left-right" symbol dynamics that is so 
natural for the pendulum? 

(4) Which parts of these integrable hyperbolic structures persist after pertur
bation? Can homoclinic orbits, horseshoes, and a symbol dynamics be con
structed for the pde? 

In the remainder of this lecture, I will describe the status of our efforts to answer 
these questions. 

2. Hyperbolic Structure — Integrable Case 

We consider a normalized form of the NLS equation: 

- iqt + qxx + 2 \q\2q = 0, (2.1) 

in H1, under periodic, even boundary conditions. NLS is a completely integrable 
Hamiltonian system, as can be established through the "inverse spectral trans
form" , that begins from the Zakharov-Shabat linear system [25] 

• * * £ - ( dx \ -q 0 I/J = Xijj 

. d - ( 0 -2Xq + iqx \ 

(2.2) 

$ = 2X2ip, 

where 03 =diag[—1,1]. Compatibility of this overdetermined system ensures that 
the coefficient q satisfies the NLS equation. 
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2.1. Floquet Spectral Theory. The integration of the NLS equation is accom
plished through the Floquet spectral theory of the differential operator L = L(q), 

. d f 0 q\ 
-la*dx--{-q O) 

The difficulty with this spectral theory is that the operator L is not self-adjoint. 
Nevertheless, it can be controlled with the aid of certain "counting lemmas" [23], 
[15], and, as described in [20], the spectrum has a fascinating structure in the 
complex plane. 

Certain properties of this spectrum follow as in the standard Floquet theory 
of Hill's operator [18]. The spectrum occurs on curves, not necessarily real, that 
terminate at periodic or antiperiodic eigenvalues. Multiple points are defined as 
points where these eigenvalues coalesce. All but a finite number of these multiple 
points must be real. The complex multiple points are especially important for 
temporal instabilities. 

2.2. Temporal Instabilities. Fix a solution q(x, t) of the NLS equation that is 
periodic in x and quasiperiodic in t; more precisely, fix a g on one of the finite 
dimensional invariant tori. Linearizing NLS about q yields a variable coefficient 
(in x and t) linear equation that governs the linear stability of q(x,t). Quadratic 
products of solutions of the Zakharov-Shabat linear system (2.2) generate a basis 
of solutions of this linearization [5], [1]. With this basis one can assess the linear 
stability properties of the solution q. 

First (in the absence of higher order multiple points), the basis splits into 
two parts, one labeled by simple eigenvalues and one labeled by double points. 
There is no exponential growth associated with that part of the basis associated 
to the simple eigenvalues, nor to that part associated to real double points. The 
only possible exponential instabilities are labeled by complex double points. These 
are at most finite in number. Typically, for each complex double point there is 
one exponentially growing and one exponentially decaying linearized solution — 
although examples do exist of situations [8], with complex double points, for which 
there is no instability. 

In summary, all instabilities are associated with complex multiple points, of 
which any solution has at most a finite number. For the integrable setting, this 
analysis, based upon the spectral transform, generalizes the classical analysis of 
the "modulational instability", which is fundamental in the theory of nonlinear 
waves. 

2.3. Monitoring with the Spectrum of L. This spectral theory of L is also useful 
for flows that are perturbations of the NLS equation. For example, one can use the 
spectrum of L to monitor a chaotic time series for the perturbed flow. Consider a 
chaotic trajectory q(x,t) for the perturbed NLS equation, represented numerically. 
At each time t, one can construct numerically the spectrum of L[q(t)]. By moni
toring this spectrum as a function of t, one can measure the number and degree of 
excitations of the "nonlinear normal modes" of the wave, as well as the appearance 
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of complex multiple points in the spectrum. This procedure is described in detail 
in [20]. 

The result of this numerical monitoring of the spectrum establishes, as much 
as any numerical experiment can establish, that chaotic behavior for the pde can 
occur in a region of function space of quite low dimension, but one that contains 
q's with one or more complex double points. Thus, the type of instability behind 
the chaotic behavior is identified through these spectral measurements. 

These measurements have been performed for both damped-driven and con
servative perturbations. Different phenomena and behavior occur in the two cases. 
For detailed descriptions, see [20], [22], [9]. 

3. Global Representations of Whiskered Tori 

Returning to the integrable setting, one can use Bäcklund transformations to expo
nentiate the linearized instabilities to obtain global solutions of the NLS equation. 
Fix a periodic solution q(x,t) of NLS that is quasiperiodic in t, for which the linear 
operator L has a complex double point v of geometric multiplicity 2 that is associ
ated with an NLS instability. We denote two linearly independent solutions of the 
Zakharov-Shabat linear system at A = v by (0 + , 0~) . Thus, a general solution of 
the linear system at (q, v) is given by 

0(x,£;z/;c+,c_) = c+0+ + c_0~. (3.1) 

We use 0 to define a transformation matrix [24] G by 

G = G(X;VJ) = N(X-» X°__)N r-1 

where 

N : 

Then we define Q and 4> by 

01 -02 
02 01 

(3.2) 

(3.3) 

Q(x, t) = q(x, t) + 2(1/ - v) / 1 0 2 (3.4) 
0101 + 0202 

and $(x, t\ X) = G(X: v\ 0) ip(x, t; X), (3.5) 

where ijj solves the linear system (3.1) at (q, v). Formulas (3.4) and (3.5) are 
Bäcklund transformations for the potential and eigenfunctions, respectively. We 
have the following: 

THEOREM 3.1 Let q(x,t) denote a periodic solution of NLS that is linearly un
stable with an exponential instability associated to a complex double point v in 
a (L(q)). Let the complex double point v have geometric multiplicity 2, with eigen-
basis (0 + ,0~) for linear system (3.1), and define Q(x,t) and E(x,t;X) by (3.4) 
and (3.5). Then 
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(i) Q(x,t) is a solution of NLS, with spatial period 1; 

(ii) a(L{Q)) = <r(L(q}); 

(Hi) Q(x,t) is homoclinic to q(x,t) in the sense that Q(x,t) —> qe±(x,t) expo
nentially as exp(—o~y\t\) as t —> ±oc. Here q$± is a {itorus translate" of 
q, av is the nonvanishing growth rate associated to the complex double point 
v, and explicit formulas can be developed for this growth rate and for the 
translation parameters 6±. 

(iv) ty(x,t;X) solves the linear system (3.1) at (Q.X). 

This theorem is quite general, constructing homoclinic solutions from a wide 
class of starting solutions q(x,t). Its proof is one of direct verification, following 
the sine-Gordon model [6]. In references [19] and [20], several qualitative features 
of these homoclinic orbits are emphasized: (i) Q(x,t) is homoclinic to a torus 
that itself possesses rather complicated spatial and temporal structure, and is not 
just a fixed point, (ii) Nevertheless, the homoclinic orbit typically has still more 
complicated spatial structure than its "target torus", (iii) When there are sev
eral complex double points, each with nonvanishing growth rate, one can iterate 
the Bäcklund transformations to generate more complicated homoclinic manifolds. 
(iv) The number of complex double points with nonvanishing growth rates counts 
the dimension of the unstable manifold of the critical torus in that two unstable 
directions are coordinatized by the complex ratio c+/c-. Under even symmetry 
only one real dimension satisfies the constraint of evenness, as will be clearly illus
trated in the following example, (v) These Bäcklund formulas provide coordinates 
for the stable and unstable manifolds of the critical tori; thus, they provide explicit 
representations of the critical level sets that consist of "whiskered tori". (vi) These 
"whiskered tori" may be constructed for any of the soliton equations that possess 
instabilities. Thus, they provide a large collection of explicit homoclinic structures 
in the setting of integrable nonlinear waves. 

3.1. An Example: The Spatially Uniform Plane Wave. As a concrete example, 
consider the spatially uniform plane wave: 

q = cexp [-i(2c2t + 7)]. 

For this rc-independent q, the homoclinic orbits can be explicitly computed. A 
single Bäcklund transformation at one purely imaginary double point yields Q = 
QH(X, t; c, 7; k = TT, c+/c-.): 

QH 
cos 2p — sinp sechr cos(2fc:r + 0) — i sin 2ptanh r 

1-hsinp sechr cos(2kx + 4>) 

+ e ^ c e - i ( 2 c 2 ^ ) as p -> TOO , 

ce-H2c*t+1) ( 3 6 ) 

where c+/c- = exp(p + iß) and p is defined by k + v = cexp(zp), r = ut — p. and 
0 = p - ( / ? + 7r/2). 



1490 David W. McLaughlin 

In this example the target is always the plane wave; hence, it is always a circle 
of dimension one, and in this example wc are really constructing only whiskered 
circles. On the other hand, in this example the dimension of the whiskers need not 
be one, but is determined by the number of purely imaginary double points, which 
in turn is controlled by the amplitude c of the plane wave target and by the spatial 
period. (The dimension of the whiskers increases linearly with the spatial period.) 
When there are several complex double points, Bäcklund transformations must 
be iterated to produce complete representations. Although these iterated formu
las are quite complicated, their parameterizations admit rather direct qualitative 
interpretations [22]. 

Returning to the example with one double point, it will be important to 
impose the constraint of even about x = 0. To do so, one fixes the phase of the 
complex transformation parameter c+/c- to be one of two values 

0 = 0,7T (evenness). 

Each choice fixes one whisker. Although the target q is independent of x, each of 
these whiskers has x dependence through the cos(2fcx). One whisker has exactly 
this dependence and can be interpreted as a spatial excitation located near x = 
0, whereas the second whisker has the dependence cos(2k(x — n/2k)), which we 
interpret as spatial structure located near x = 1/2 (since here k = 7r). 

3.2. Natural Symbols The simple example just described is actually quite im
portant for our numerical experiments on chaotic behavior. First, our numerical 
experiments were performed under even periodic boundary conditions. Second, 
the spectral transform measurements of the chaotic signal have shown that the 
observed chaotic behavior takes place near the plane wave in function space. More
over, that complex double point, which we used to construct the orbit Q#, fre
quently appears in the measurements of the chaotic signal. Thus, based on the 
spatial structures of the two whiskers under even symmetry, one anticipates that 
"center-edge" behavior may be characteristic of the chaotic signal, and this was 
indeed observed in the numerical experiments. The spatial profiles of the chaotic 
signal consisted of one localized spatial structure (solitary wave), which jumped 
between "center" and "edge" following what appears to be an irregular pattern of 
jumps. In this simple case, the "center-edge" locations of the spatially localized 
excitations provide natural candidates for a symbol dynamics. 

4. Persistence Results 

Given the above type of information, we were ready to begin a dynamical systems 
style of analysis on the perturbed pde. That study is currently in progress and 
is rather technical. Here, limitations on space only permit a very short intuitive 
description. Detailed mathematical results may be found in the references. 
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We begin with the perturbed NLS equation, 

-2iqi + qxx + (qq*-l)q = ie aq - 3q + r ] , (4.1) 

in H1, under even periodic boundary conditions. (The operator ß is bounded and 
dissipative, and we work in the region of function space with one complex double 
point.) 

The plane of constants (in x) is an invariant plane (n) for both the unper
turbed and perturbed dynamics. On this plane the perturbed problem has three 
fixed points, two of which emerge from the unit circle S of fixed points for the 
unperturbed problem. One of these fixed points, pe, is a sink on the plane; the 
other, qe, is a saddle on the plane. Both live in a "resonance band" on the plane, 
in which the motion is very slow. Both inherit from the unperturbed integrable 
pde its one-dimensional, rapid, unstable behavior off the plane n . Thus, typical 
motion has at least two time scales that impose a singular perturbation aspect 
upon the analysis. 

Next, one [17] establishes the existence of two codimension 1 manifolds, W™ 
and W^u, both of which are invariant under the perturbed dynamics. These two 
manifolds are persistent deformations of the center-stable WCS(S) and center-
unstable WCU(S) manifolds of the circle S of fixed points in the unperturbed, 
integrable case. Their intersection W = W^s Ç\ W£u is a codimension 2 invari
ant manifold that is normally hyperbolic, and which is the persistent image of an 
unperturbed center manifold WC(S) of the circle S. 

In addition to the existence of these invariant manifolds, one needs a represen
tation of them that is useful for two time scale singular perturbation calculations. 
For this, we extend some finite-dimensional representations of Fenichel [7] into the 
infinite-dimensional pde framework. Specifically, we [17] represent We

ca and Wc
cu 

as fiber bundles, with one-dimensional fibers over the base W. Intuitively, motion 
on the base W is slow, and the fibers factor out fast one-dimensional expansion 
and contraction by identifying each point on a given fiber with its base point on 
the slow manifold. These fibers are at least twice differentiable with respect to the 
perturbation parameter e, which makes the representations useful for perturbation 
calculations. 

To this point the constructions are local, in a neighborhood of an invariant 
circle on the plane n . These local constructions are possible because we have a 
complete understanding of motion on the plane n , and control near n . Next comes 
the global part of the argument, for which control is obtained through the global 
representations of the homoclinic orbits for the unperturbed, integrable pde. 

First, one uses a "Melnikov argument" to establish that the unstable manifold 
of the fixed point qe intersects the manifold W™, W?(qe) f| W " ^ W?(q€) H TT. 
Additional arguments are then used to describe the fate in forward time of orbits 
in this intersection. 

In order to carry out this program, we first developed the arguments for 
some carefully chosen finite-dimensional models [2], [20], [12], [13], [21], [16],[11]. 
Detailed results for the pde may be found in [17] and [10], with some preliminary, 
but key, ideas in the thesis [14]. 
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In this manner, homoclinic and heteroclinic orbits may be constructed tha t 
are singular perturbations of the integrable orbits. Some of these orbits have com
plex "center-edge" pat terns [11], [10], which establish the presence of "long, chaotic 
transients". At this time, we have not established a symbol dynamics in the pde 
case. However, this work certainly provides a rich example illustrating tha t meth
ods from dynamical systems theory can provide a guide for global analysis of 
certain nonlinear wave pde's. 
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Formulas for Finding Coefficients from Nodes/Nodal Lines 
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1. Introduction 

We ask the question: What can be determined about a vibrating system from the 
positions of nodal lines? The question is answered for a rectangular membrane. 
We give a formula for finding a potential from the nodal line positions. A unique
ness result is presented. Analogous one-dimensional results are presented; three-
dimensional results are announced. A case study showing the effect of structural 
damping on measurements is described. 

Two experiments can be performed both to motivate the choice of nodal 
position data for the inverse problem and to motivate the mathematical difficulties 
in the two-dimensional case. One experiment is a vibrating beam, the other a 
vibrating plate. The vibrating beam is driven at one end and free at the other. 
This experiment is performed twice, once for a homogeneous beam and once for a 
beam with mass added in a small subregion of the beam. The changes in natural 
frequencies, which are lowered, and changes in the nodal positions, which move 
toward the added mass, can be measured. For the second experiment, a plate driven 
at the center and free on the edges is excited at several different natural frequencies. 
Sand is distributed on the plate. At each frequency the sand accumulates along the 
corresponding nodal lines. This experiment is similar to the Chladni experiments, 
see [17]. One observes that the connected domains defined by the nodal lines are 
frequently long, curved strips with occasional smaller enclosed domains. 

These experiments, especially the plate experiment, are demonstration ex
periments. One can ask then: Can the nodal lines or nodal points be measured 
accurately? One method to do this is to direct a laser at the vibrating surface. 
The Doppler shift in the backscatter is measured. The lines, or points, where the 
Doppler shift is minimized are the nodal lines. 

The mathematical results in higher dimensions build on previous one-dimen
sional results. These results, obtained by McLaughlin and Hald [11], [6], [7], [8], 
present formulas, uniqueness results, and numerical calculations. In the second 
section we briefly present a few of these results. The model we choose is the 
longitudinal motion of a beam in the case where both the elasticity coefficient p 
and the density p may have discontinuities. Two formulas are given. One gives 
a piecewise constant approximation to the elasticity coefficient when the density 
is constant. This formula converges to the elasticity coefficient at every point of 
continuity. The other formula gives a piecewise constant approximation to the 
density when the elasticity coefficient is constant. This formula converges to the 
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density at every point of continuity. To establish our results a bound on the square 
of the eigenvalues is established for the case where both p and p are of bounded 
variation. This work is presented in the first section. 

For the two-dimensional problem, see [9] and [12], we consider a rectangular 
membrane. There is a force on the membrane that depends linearly on the dis
placement. The amplitude of the force is unknown. We solve the inverse problem: 
find the amplitude q from nodal line positions. We show that at a dense set of 
points q can be approximated by the difference of two eigenvalues. To establish 
this result there are two difficulties. One is that in order to establish perturba
tion results for the eigenvalues and eigenfunctions, we must solve a small divisor 
problem. This problem is solved by establishing criteria for eigenvalues to be well 
separated, thus making it possible to bound terms that contain the small divisors. 
Almost all eigenvalues satisfy the criteria and perturbation results are established 
for only those eigenvalues. The second difficulty is that even though the nodal 
domains can be long, thin, curved domains, we must cut these domains to define 
small approximate nodal domains. The methods for solving each of these prob
lems, as well as the presentation of the formula for q, are given in the third section. 
The three-dimensional results are discussed briefly in the third Section as well. 

We discuss briefly the effect of structural damping on nodal point measure
ment in the last section. 

1.1. The One-Dimensional Bounded Variation Problem. We consider the math
ematical model for the longitudinal vibrations of a beam with fixed ends. The 
elasticity coefficient p > 0 and density p > 0 are of bounded variation. 

(pux)x-rXpu = 0, 0 < x < L, p,peBV[0,L], (1) 

u(0) = u(L) = 0. 

This problem has a set of eigenvalues satisfying 0 < (UJ\)2 < (u^)2 < The 
nth eigenfunction has exactly n — 1 nodes, which we label in increasing order, x7-, 
j = l,...,n- 1. 

To establish our piecewise constant approximations to p and p we require an 
estimate for ujn(p, p). Letting V(f) represent the total variation of a function / of 
bounded variation, we have shown, see [8], 

THEOREM 1 Let p > 0, p > 0 satisfy p, p e BV[0,L]. Then the eigenvalues for 

(l),{[uJn(P,P)]2}n=l> obeV the bound 

Un(p,p) Jdx - WK < \v(ln pp). 

Our goal is to find piecewise constant approximations to either p or p from 
measurements of the eigenvalues and nodal positions. To do this, let XQ = 0 and 
x™ = L and define 

Pn = Unfâ-xVj 
when x7j_1 <x< x™, j = 1 , . . . , n 
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together with pn(L) = pn(x^_x). Define 

2 

Pn 
ujn(x] -x]_x) 

7T 
when x?j-i < x < x j ? j = 1,.. -, n 

together with pn(L) = p n (x"_i) . Then we have shown in [8], 

THEOREM 2 Let p = 1, p > 0, and p e BV[0,L] in (1). Then pn converges 
pointwise to p at every point of continuity. 

THEOREM 3 Let p = 1. p > 0, and p e BV[0,L] in (1). Then pn converges 
pointwise to p at every point of continuity. 

Results of numerical experiments are presented in [8]. 

2. The Two-Dimensional Smooth Potential Problem 

Here we consider the mathematical model for a rectangular vibrating membrane 
fixed on the boundary; the rectangle R = [0,7r/a] x [0,7r] with a2 chosen to be 
irrational. Letting q G CQC(R), the mathematical model for the eigenvalue problem 
is then 

-Au + qu = Au, x E R, (2) 

u = 0, x e dR. 

The object is to find q from the nodal line positions of the eigenfunctions for this 
problem. 

Before stating our main results, we establish notation for the q = 0 problem. 
Letting a = (an, m) we define the lattice L to be 

L = {a = (an, m)\ n, ra = 1,2,3,. . .}. 

Then the eigenvalue and normalized eigenfunction pairs for the q = 0 problem can 
be naturally indexed by a E L as 

9 fn 
AQO = |o|2 = o?n2 + m2, u t t0 = sin anx sin my. 

7T 

Our theory requires that almost all of the eigenvalues {Aao}aeL be well 
separated. To be well separated the eigenvalues must satisfy five conditions. We 
describe three of these conditions in words here. The first condition is that there 
is a small interval about AQo = |ct|2 that contains no other eigenvalues of the 
q = 0 problem. The length of the interval decreases slowly as |Q| —• oo. The 
second condition is that for lattice points ß near a the corresponding eigenvalues 
A ô = \ß\2 are a large distance from AQo- This distance A ô — AQo increases rapidly 
as |Q| —•oc. The third condition is that the number of oscillations of U(XQ in the 
x and y directions are comparable. All five conditions are stated explicitly in the 
Appendix at the end of this paper. 
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We do not show our main results for all irrational a2 but only for those values 
that are poorly approximated by rational numbers. Our condition is almost the 
same as that given by Moser [13]. That is, fixing AQ > 1 and 0 < 6 < \, we 
require a E V where 

V = <a | 1 < a < Ao and there exists K > 0 so that for all 

„ . 2 P . K \ 
integers p,q > 0, \a - - | > - ^ >. 

We note that meas V = AQ — 1. Further we can identify specific a E V. By a 
theorem of Roth [14], if a2 is irrational and algebraic then a E V. 

We can now state our main theorems. We do not give our sharpest possible 
results here but give a presentation that makes our ideas more accessible to the 
reader. Letting -f q = ^ ^ fR q be the integral average of q we can show, see [9], 
the uniqueness theorem, 

THEOREM 4 Let a E V and q E CQ°(R). The translated potential q — j - q in 
(2) is uniquely determined by a subset of nodal lines of the eigenfunctions. 

The uniqueness theorem above is a corollary of the following theorem, which gives 
a formula for approximating q. 

THEOREM 5 Let a E V. Letq E ^(R). There exists an infinite set L(a)\M(a) 
and a dense set of x' E R with corresponding subsets Q'a C R defined by the 
nodal lines, and indexed by a E L(a)\M(a), so that the potential in (2) satisfies 

q(x' ' ) - / < / - IA-o - Aii0(n^)] < l\«\-7/4-

Here XitQ(ii'a) *5 ^ e smallest eigenvalue for 

-Au = Xu , x E Œ'a, u = 0 , x E dQ!a. 

REMARK: We show that the set L(a)\M(a) has density one in L(a). This means 

l i m # { o e £(a)\M(q) | \a\ < r} = ^ 
r—>oc {Q E L(a) | \a\ < r} 

Further, for a to be in L(a)\M(a) it is necessary, though not sufficient, for the 
three conditions described above to be satisfied. Finally, for any N > 0 we can 
choose our dense set {x'} so that the formula for approximating q satisfies the 
above bound for some \a\ > N. 

To establish Theorem 5, and hence Theorem 4, we proved the following per
turbation result whose demonstration requires the solution of a "small divisor" 
problem, see [9]. 
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THEOREM 6 Let a e V. Let q E ^(R). Then there exists a set L(a)\M(a) of 
density one such that fora E L(a)\M(a) there is a unique eigenvalue, normalized 
eigenfunction pair X0 of (2) satisfying 

\Kq - T q - XaQ I < \a\ -15/8 

^aq UaO 
(qua0,UßQ) 

ß^a 
XaQ — XßQ 

< \/ä |Q| -15/8 

REMARK: Our proof of this result was influenced by the perturbation results in 
[1], [2], [3]. There L2 bounds for the eigenfunctions were obtained. We require L°° 
bounds for the eigenfunctions for two reasons. One is so that we can get good 
estimates for the positions of the nodal lines for uaq. The second reason is to 
obtain a sharp estimate for uaq near the points of intersection of the nodal lines 
of ua0. 

Having established the perturbation result we encounter one more difficulty: 
the nodal domains for uaq are, in general, not small, see [15],[16]. The following 
figure gives a typical case. 
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nodal domains for nodal domains for 

To illustrate our result we consider the shaded region, which we call Qa. We cut 
the nodal domain Qa with the straight diagonal lines, D\, D2, illustrated below. 

r^Äf >na 
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The upper cut domain of Qa is called Q'Q ; see the figure on the right above. We 
establish a bound for uaq near fia D Di, i = 1,2, and hence show that there exists 
an x1 E iï'a satisfying 

\q(x')-j-q - [AQ0 - A1;0(^)] I < 2|a|7/4" 

The choice of the particular cut domain Ç}'a was rather arbitrary. Each nodal do
main of uaq, for a E L(a)\ M (a) can be cut in similar ways to obtain approximate 
nodal domains where a similar approximation to q — j - q can be obtained. Because 
of the conditions satisfied by L(a)\M(a) we can establish Theorem 6 by selecting 
all the approximate domains for uaq for any infinite sequence of a E L(a)\ M (a). 

The above results are for the two-dimensional inverse nodal problem. The 
three-dimensional inverse nodal problem has also been considered. In that case the 
nodal sets are surfaces instead of lines. There are substantially more eigenvalues on 
the real line. Nonetheless, results analogous to those of the two-dimensional case 
have been obtained in [10]. That is, conditions have been established so that the 
eigenvalues are well separated; perturbation results have been established for a set 
of density one eigenvalues and eigenfunctions; a formula for an approximation to 
the potential has been obtained. Bounds for the difference between the potential 
and its approximation have been established. A uniqueness theorem has been 
proved. 

3. A Related Result 

We briefly discuss one other result. This is a specific case study to examine the 
effect of structural damping on nodal position measurements. It is important to 
show that structural damping has a small effect on nodal position measurement. 
The reason for this is that the mathematical models used to develop the the 
formulas for material parameters do not contain terms that model damping. Our 
study was not for elastic systems for which second order mathematical models are 
used but rather for stiff vibrating systems where structural damping may have a 
larger effect. Hence we chose the Euler-Bernoulli beam, which models transverse 
vibration; we also chose Kelvin-Voigt damping. 

For this specific case, the beam is free at each end and driven with an oscil
lating force at the center. The natural frequencies are defined as those frequencies 
where the response of the beam is maximized. When the beam is driven at a nat
ural frequency, the nodal positions of the damped, driven beam are defined as the 
positions where the amplitude of the displacement is minimized. We compare those 
positions with the nodal positions of the mode shapes of the undamped beam and 
establish a bound on the difference. The bound shows that the difference is small 
when the beam is driven at low frequencies. This result is contained in [4], [5]. 

Acknowledgments. Partial support for this research came from ONR, Grant no. 
N00014-91J-1166 and from NSF, grant no. VPW-8902967. 
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Appendix 

In order to establish the perturbation results, we require that a E L(a) satisfy five 
conditions. We give three of these conditions first. The description is somewhat 
technical. We require that a is in each of the following three sets: 

L(a)\M10(a) = \a E L\ Vfl E L with 3 / a, | |a|2 - \ß\2\ > S À : 
I |a|*J 

let Ci,C2 > 1 and label 

L(a)\Mu(a) = 

la E L I V/3 E L with 0 ^ a, |Q - /3| < C i | a | * , | |a|2 - |/3|2 | > C2\a\$ \ ; 

let C = 552"^ and label 

L(a)\M12(a) = la E L \ m > (ÇCi)2(an)* and an > (CCi)2raH . 

In words, L(a)\ Afio(a) contains those a E L(a) for which the corresponding eigen
value \a\2 has no other eigenvalue \ß\2 in a small interval about \a\2. Note that the 
size of this interval decreases as \a\2 increases. For the a E L(a)\Mii(a) the dis
tance between \a\2 and \ß\2 is large when the corresponding uao, upo have nearly 
the same oscillations in both the x and y directions. Note that, in this case, the 
distance between \a\2 and |/3|2 increases as \a\2 increases. Finally, the elements in 
L(a)\Mi2 (a) arc such that an and ra are always comparable. 

The three subsets, A/10 (a), M u (a), A/12 (a) are combined with two others. 
We define 

Mi (a) = A/10 U A/n U A/12 U {a E L | \a\ < 20} U 

We show that L(a)\M\(a) has density zero in L(a). The full set of den
sity one, L(a)\M(a), for which we establish perturbation results, is contained in 
L(a)\Mi(a). The elements of A/(a)\A/i(a) are determined without specific de
scription of their lattice properties. 
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Introduction 

A new type of stochastic differential equation, called the backward stochastic dif-
ferentil equation (BSDE), where the value of the solution is prescribed at the final 
(rather than the initial) point of the time interval, but the solution is nevertheless 
required to be at each time a function of the past of the underlying Brownian mo
tion, has been introduced recently, independently by Peng and the author in [16], 
and by Dufne and Epstein in [7]. This class of equations is a natural nonlinear ex
tension of linear equations that appear both as the equation for the adjoint process 
in the maximum principle for optimal stochastic control (see [2]), and as a basic 
model for asset pricing in financial mathematics. It was soon after discovered (see 
[22], [17]) that those BSDEs provide probabilistic formulas for solutions of certain 
semilinear partial differential equations (PDEs), which generalize the well-known 
Feynmann-Kac formula for second order linear PDEs. This provides a new addi
tional tool for analyzing solutions of certain PDEs, for instance reaction-diffusion 
equations. 

1 Backward stochastic differential equations 

Let {Bt; 0 < t < T} denote a d-dimensional Brownian motion defined on a 
probability space (Q,^, P). For 0 < t < T, we denote by Tt the a-algebra 
o{Bs\ 0 < s < t}, augmented with the P-null sets of T. We are given two objects: 

a final condition £ G L2(Q, TT, P: Rk); 
a coefficient f, which is a mapping from Q x [0, T] x Rk x Rkxd into Rk, and 
is such that there exists K > 0 with: 

f(-,y,z) is progressively measurable,1 My G Rk,z G Rkxd: (i) 

1) That is for each t, the restriction to [0, t] x f2 of the mapping (S,CJ) —• f(s,uj,y,,z) is 
13(0, t) 0 Tt measurable. 
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< j l/(*,0,0)| 
Jo 

2 dt < oo ; (ii) 

\f(t,y,z) - f(t,y',z')\ < K(\y - y'\ + \z- z'\), Vt,y,y',z,z'. (iii) 

A solution of the BSDE(£, / ) is a pair {(Yt,Zt), 0 < t < T} of progressively 
measurable processes with values in Rk x Rkxd such that 

E f | Z t |
2 d * < o o (j) 

Yt = t + J f(s,Ys,Zs)ds- J ZsdBs,0<t<T. (jj) 

We have the following. 

THEOREM 1.1. [16] Under the above conditions, in particular (i), (ii), and (iii), 
the BSDEfë, f) has a unique solution (Yt,Zt), 0 <t <T. 

REMARK 1.2. The constraint that the solution be progressively measurable (i.e. 
adapted to the past of B at each time t) is in a sense rather unnatural for the 
solution of a backward equation. This is the reason why we need to have the freedom 
of choosing Z independently ofY. 

REMARK 1.3. What makes the solution random is the randomness of Ç and f. 
The stochastic integral is there to make Y progressively measurable, which in fact 
means "reducing the randomness of Y ". In particular, if for some stopping time 
r < T, Ç and f are TT measurable, then on the interval [r, T], Z = 0 and Y is 
given by the solution of the ODE 

dYt/dt = -f(t,Yt,0), YT = £. 

REMARK 1.4. Using Ito calculus, it follows from the square integrability of'£, (ii), 
(iii), (j), and (jj) that if(Y,Z) solves the BSDE(£,f), E ^ s u p ^ ^ \Yt\

2] < oo. It is 
easy to check that a solution of the BSDE(£,0) is given as follows. Yt = E[£f!Ft\, 
and Z is given by Itô's representation theorem of functionals of Brownian motion, 
which says that £ = E[Ç] +JQ Zt dBt, for a certain progressively measurable process 

Z satisfying (j). Note that if we require only JQ \Zt\
2 dt < oo, then the uniqueness 

of Z is not guaranteed. 

2 Applications 

Before giving some indication for the proof of Theorem 1.1, let us motivate that 
notion by presenting several applications. Later we shall present our main appli
cation, which is to semilinear PDEs. 

2.1 Application in financial mathematics. Consider a typical model for continuous 
time asset pricing. Let Vt denote the total wealth of an agent at time t, which he 
can invest in n + 1 different assets, one nonrisky asset, whose price per unit Pt° is 
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governed by the linear ordinary differential equation (ODE) dP®/dt = P^rt, and 
n risky assets, where the price process for one share of the zth stock is governed by 
the linear stochastic differential equation (SDE) dP\ = P\\p\ dt + Y?j=i G%t dB{\. 
The asset pricing problem is as follows. Given a contingent claim £, which is an 
^-measurable random variable that we suppose to be square integrable, find an 
initial wealth Vo and a portfolio (U.\, 0 < t < T, 1 < i < n) such that the wealth at 
time T is exactly £. Hence, we need to solve the following linear BSDE (1 denotes 
the d-dimensional vector whose coordinates are all equal to 1): 

Vt=Ç- j rs\Vs-lTsl}ds- j ni[psds + osdBs}. 

This linear BSDE is a very classical model in financial mathematics. It is 
in particular the starting point of the celebrated Black-Scholes formula for option 
pricing. No general theory is necessary to study such a linear equation. However, 
there is at least one unreasonable assumption in our model: Vt — U^l represents 
an amount of money that is deposited in the bank whenever it is positive, but it 
represents an amount of money that is borrowed from the bank if it is negative. 
As the interest rate for borrowing is in fact bigger than the bond rate, we should 
rather write the above equation as a nonlinear BSDE, with some interest rate 
process Rt > rt 

Vt=i- j rs[Vs-Il*sl}+ds+ [ Rs[Vs-U;i]-ds- [ U;[psds + osdBs}. 
Jt Jt Jo 

Note that this last BSDE is of the type considered in Section 1, in the par
ticular case k = 1. There are several other reasons for using nonlinear BSDEs as 
models in financial mathematics, including taking into account technology con
straints, as well as the notion of recursive utility (see [7], [8], [9], [10], [11] and the 
bibliographies therein). 

2.2 Application in stochastic control (see [11], [22]). Suppose now that k = 1, and 
the coefficient / of our BSDE is concave in the variables y and z. We define the 
following upolar" process: 

F(t, 3,7) := sup [f(t, y, z) - ßy - 7 - 3 ] . 

It follows from a measurable selection theorem that to each progressively measur
able process (Yt,Zt), one can associate a progressively measurable pair (/?*,7t*) 
such that 

F(L ßlril) = f(t, Yt, Zt) - ß\Yt -il-Zt,0<t< T. 

Let A denote the set of progressively measurable "control" processes (ßt,Jt) that 
satisfy E JQ F(t, ßt,lt)2 dt < 00. Consider for each t > 0 the scalar forward linear 
SDE 

rf;; = 1 + / T^[ßrdr + 7rdBr\, s>t. 

We then have the following. 
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THEOREM 2.1. [11] Let (Yt,Zt) be the unique solution of the BSDE(£,f). Then 
for each 0 <t <T, Yt is the value function of a stochastic control problem, in the 
sense that 

rT 
Yt = sup E 

(Pn)eA 
J T^F(s,ßsns)ds + T^ 

2.3 Application in stochastic geometry (see [6]). One can show that the construc
tion of a gamma-martingale (which is a notion of martingale adapted to processes 
with values in a manifold equipped with a connection T) with prescribed final 
value £ can be achieved by solving a backward SDE where the coefficient / takes 
the form 

j,k,q 

One can assume that T is bounded and Lipschitz, however / here is not Lipschitz 
in z, hence Theorem 1.1 does not apply directly. However, combining BSDE and 
gamma-martingale techniques, one can show existence and uniqueness of a solution 
in this case. 

3 Proof of Theorem 1.1 

We now indicate a proof of our basic Theorem 1.1. The notation is as in Section 
1. Let B2 denote the set of pairs {(Yt, Zt), 0 < t < T} of progressively measurable 
processes with values in Rk x Rkxd satisfying (j) and E JQ \Yt\

2 dt < co. 
We define a mapping $ from B2 into itself as follows. Given (U, V) G B2, let 

(Y, Z) = $(U, V) be defined by: Yt = E[Ç + j f f(s, US.VS) ds\Ft], where Z is the 
process given by Itô's martingale representation theorem applied to the martingale 
Mt = E[Ç + J0

T f(s, US.VS) ds\Ft}. We then have that 

Yt=t-r f f(s,Us,Vs)ds- f ZsdBs,0<t<T. 

Define the following norm on B2, for r > 0: 

\\(Y,Z)\\r=(EJ\rt[\Yt\'
2 + \Zt\ 

One can show by Ito calculus that, if r is large enough, the mapping $ is a strict 
contraction on B2 equipped with the norm || • | | r, hence it has a unique fixed point, 
which means that the BSDE(£, / ) has a unique solution. 

REMARK 3.1. Note that one has a similar result to Theorem 1.1, if one assumes 
£ G Lp(Q,J7,P;Rk) for some p > 1, instead of p = 2. There is apparently no 
general theory for BSDEs with locally Lipschitz coefficient f. However, in addition 
to the result of [6], one can find some results in that direction in [19]. 
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One important tool for analyzing BSDEs is the following comparison theorem. 

THEOREM 3.2. Suppose k = 1, and let (£, / ) and (£', / ' ) be two pairs of data that 
satisfy the assumptions of Section 1. Suppose in addition that 

£ < £' a.s. and f(t, y, z) < f'(t, y, z) V(t, y, z) G [0, T] x R x Rd and a.s., 

then Yt <Yj,0<t< T, a.s. 

4 BSDEs and viscosity solutions of second order semilinear PDEs 

We now describe the relation between BSDEs and systems of second order semilin-
ear PDEs. It turns out that solutions of BSDEs are naturally related with viscosity 
solutions of PDEs. This approach allows us to minimize the regularity requirements 
on the coefficients, while we will have to restrict ourselves to the case where the 
ith component of / depends on the ith line of the matrix Z only. 

Before introducing the system of PDEs, we need to put the BSDE in a Marko
vian framework, i.e. to let £ and / be functions of the Brownian motion B through 
a Markov-diffusion process, solution of a forward SDE driven by B. 

Let b : Rd -> Rd and o : Rd -> Rdxd be Lipschitz functions, and for any 
(t,x) G [0,T] x Rd, let {Xl'x: t<s<T} denote the solution of the forward SDE 

Xl-X =x-r f b(X^x)dr + f o(Xt
r
x)dBr, (4.1) 

and consider the backward SDE 

rt.X g(Xlix) + f /(r, x£x, Yr
tx, Z*x) dr - f Z^x dBr, t<s<T, (4.2) 

where g and f map respectively Md and [0,T] xRd x Kfc x Rfexd into Rk, g and 
f(t,-,y,z) are jointly continuous and there exist constants K,p such that for all 
t e [0,T], x € Rd, y,y' e Mfc, z,z' e Rkxd : 

\g(x)\ < K{1 + \x\"), \f(tx,y,z)\ < K{1 + \x\' + \y\ + \z\), 

\f(t,x,y,z) - f{Lx,y',z')\ < K(\y -y'\ + \z - z'\). 

We now associate to (4.1) and (4.2) the following system of parabolic second 
order semilinear PDEs: 

J -^(t.x) +Lu(t,x) -r f(tx.u(Ux),Vua(t,x)) =0. (tx) G [0,T] xRd. oX 

< ot (4.3) 
u(T,x) =g(x), xeRd, 

where 
' Lu\ ' 

Lu= \ : J , L = -((T**)^ ^ ^ -r k 
1 d2

 b_d_ 
2 l,J dxidxj % dxi 

K Luk I 

(with the convention of summation over repeated indices). 
Let us first recall the notion of viscosity solutions of the system of PDEs (4.3) 

(see [5], [14]). 
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DEFINITION 4.1. u G C([0, T] x Rd; Rk) is called a viscosity sub-solution of (4.3) 
whenever ui(T,x) < gi(x), 1 < i < k, x G Rd, and for each 1 < i < k, (t,x) G 
(0,T) x Rd, ip G Cli2((0,T) x Rd) such that (tx) is a local maximum of Ui - ip, 

--^-(t. x) - L(p(t.x) - fi(Ux,u(t.x), V<po(tx)) < 0. 
ot 

u G C([0,T] x Rrf;3Rfc) is called a viscosity super-solution of (4.3) whenever 
Ui(T,x) > Qi(x), 1 < i < k, x G Rd, and for each 1 < i < k, (tx) G [0,T] x Rd, 
ip G C1,2((0,T) x Rd) such that (t,x) is a local minimum of U{ — tp, 

--^(tx) -Lip(t,x) - fi(t<x<u(t,x)^ip<j(t,x)) > 0 . 
ot 

u G C([0,T] x Ed;]Rfe) is called a viscosity solution of (4.3) if it is both a 
viscosity sub- and super-solution of (4.3). 

We can now state the main result of this section. (Cp([0,T] x Md;Rfc) denotes 
the set of continuous functions from [0,T] x Rd into Rk, which grow at most 
polynomialy at infinity). 

THEOREM 4.2. u(t,x) := Y^x belongs to Cp([0,T] x Rd;Rfc) and is the unique 
viscosity solution of (4.3). 

Proof. Uniqueness is proved by methods from viscosity solutions, see [5]. In order 
to prove that {Y*'x} is a sub-solution we assume that 1 < i < k, (t, x) G [0, T] x Rd, 
if G C1,2((0, T) x Rd) are such that Ui(t,x) = y(t,x) and Ui(s,y) < y(s,y), 
(s,y) G [0,T] x Rd. We first note that from uniqueness of the solution of the 
BSDE, Y^h = u(t + h,Xl,x

h). Hence, deleting the superscripts t, x for notational 
simplicity, 

/

t+h çt+h 

fi(Xs,Ys,Zl)ds- I Z\dBs. 
Let (Ys, Zs, t < s < t + h) be the solution of the BSDE 

/

t+h _ _ ft+h 

fi(Xr,(Yr,YÏ),Zr)dr- / ZrdBr, 
Js 

where (Yr,Y*) denotes the vector whose ith component equals Yr, and the oth
ers equal the corresponding components of the vector Yr. Prom the compar
ison theorem, ui(t,x) < Yt. Applying Itô's formula to tp(s,Xs) and defining 
Ys =YS — ip(s,Xs), Zs = Zs — Vipo(s,Xs), we have that 

0<Yt=EJ [(^ + L<p)(s,Xs) 

+ h{Xs,(Ys + <p(s,Xs),Y
l
s),Zs + Vcp<r(s,Xs))] ds. 

It remains essentially to divide by h and let h —> 0. 
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REMARK 4.3. Suppose that fc = 1 and f(t,x,y,z) = c(t,x)y. Then by the varia
tion of constants formula, 

y/-x =g{XY) cxp[j c(s, Xi1) ds] - j cxp[J" c(r, X**) &]&<*, dB„) 

=EYt
Ux 

=E L(XÏx)Cxp[j\(S,Xl-xds}\ , 

which is the well-known Feynman-Kac formula. 

Let us now indicate some results on reaction-diffusion equations that have 
been obtained recently, with the help of the above stochastic representation, fol
lowing [23]. Consider a reaction-diffusion equation of the type 

du d u 

where for instance / is of the "KPP type", f(r) = r(l — r). Suppose the initial 
condition is of the form u0(x) = lx_(:r). The function us(t,x) = u(t/e,x/e) be
haves for small e as v(x~c

at), where v decreases from 1 to 0 on R. Moreover a, 
the speed of the front, can be computed in terms of the derivative of / at 0+. 
For proving this type of result, Freidlin [13] uses the Feynman-Kac formula (which 
is implicit here, because of the nonlinearity of / ) and results from the theory of 
large deviations. Using BSDEs, one can write an explicit probabilistic formula for 
the solution of the PDE, even when the nonlinear term / depends on the first 
derivative of u, and obtain asymptotic results on u£ in that more general set-up. 

5 Extensions 

We now indicate several results that have been obtained recently and generalize 
the results presented above. 

5.1 BSDEs with respect to Brownian motion and Poisson random measure. It is 
possible to solve BSDEs with the Brownian motion replaced by a general martin
gale, see [3]. One can also consider a diffusion process with jumps X. solution of a 
forward SDE driven by both a Brownian motion and a Poisson random measure, 
and consider a backward SDE whose final condition and coefficient are functions 
of X. This provides a stochastic formula for a semilinear integro-partial differential 
equation [1], [4]. One can also use these results for giving a probabilistic formula 
for the solution of a system of parabolic PDEs, where the second order PDE op
erator is different from one line to the other, i.e. with the notation of the previous 
section, hu = (L\Ui,... .L^uu)', see [20]. 

5.2 Coupled forward-backward SDEs [15]. In the last section, the diffusion process 
X was perturbing the coefficients of the BSDE for (Y,Z). Suppose now that we 
can solve a pair of forward-backward SDEs, where (Y, Z) appear in the coefficients 
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of the forward SDE for X, and X appears in the coefficients of the backward 
SDE for (Y,Z). Then u(t,x) := Y*,x would solve a general type of quasilinear 
PDE. However, it seems so far that in this case the pair of SDEs can be solved 
directly only in very restricted cases, and that results on the corresponding PDE 
are necessary to solve the pair of SDEs under rather general assumptions. 

5.3 Equations with boundary conditions. So far we have considered only PDEs 
in the whole space Rd. It is possible to consider PDEs with Dirichlet or Neumann 
boundary conditions at the boundary of a domain D cRd, provided one replaces 
the diffusion X by a diffusion cither stopped at the boundary of D, or reflected at 
the same boundary. 

5.4 Infinite-time horizon BSDEs, and elliptic PDEs. If one replaces the final time 
T by -hoc, or by a stopping time T, it is possible to give probabilistic formulas for 
quasilinear elliptic PDEs. Of course, more restrictive assumptions on the coefficient 
/ are then required. For a result on infinite-time horizon BSDEs, see [10]. 

5.5 Reflected BSDEs. The following reflected BSDE has been studied in [12]. 

Yt=t+ I f(t,Xt,YuZt)dt + KT-Kt- j ZsdBs,0<t<T 

Yt>St,0<t<T] [ (Yt - St)dKt = 0, 
Jo 

where £ and / are as in Section 1, and {St, 0 < t < T} is a continuous process 
satisfying E(supt |St|2) < oc and ST < £ a.s. The solution is a triple (Y,Z,K) of 
progressively measurable processes, where K is continuous and increasing. Note 
that, unlike the case of reflected forward SDEs, whenever S is a semimartingale, 
the increasing process K is absolutely continuous. 

In the case where the data (£, / , S) is a given function of a diffusion X, we 
get the probabilistic interpretation of an obstacle problem for a quasilinear PDE. 

5.6 Backward doubly stochastic differential equations and stochastic PDEs [18]. 
If we introduce another independent Brownian motion {Wt}, the equation 

Yt=£-r [ f(s,Ys,Zs)ds-r i g(s,Ys,Zs)dWs- f ZsdBs 
Jt Jt Jt 

has a unique solution {(Yt, Zt); 0 < t < T} which is adapted at each time t to the 
sup of the past of B and the future increments of W, provided both / and g are 
Lipschitz. When put in a Markovian framework, we obtain a formula for a system 
of quasilinear SPDEs driven by {W*}. 
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Max-Plus Algebra and Applications to System Theory 
and Optimal Control 

M A X - P L U S W O R K I N G G R O U P * P R E S E N T E D B Y J E A N - P I E R R E Q U A D R A T 

INRIA-Rocquencourt, B.P. 105 
F-78153 Le Chesnay Cedex, France. 

In the modeling of human activities, in contrast to natural phenomena, quite 
frequently only the operations max (or min) and -h are needed. A typical example 
is the performance evaluation of synchronized processes such as those encountered 
in manufacturing (dynamic systems made up of storage and queuing networks). 
Another typical example is the computation of a pa th of maximum weight in a 
graph and more generally of the optimal control of dynamical systems. We give 
examples of such situations. The max-plus algebra is a mathematical framework 
well suited to handle such situations. We present results on (i) linear algebra, (ii) 
system theory, and (iii) duality between probability and optimization based on 
this algebra. 

1. Max-Plus Linear Algebra 

D E F I N I T I O N 1 1. An abelian monoid /C is a set endowed with one operation 0 , 
which is associative, commutative, and has a zero element e. 

2. A semiring is an abelian monoid endowed with a second operation ®, which is 
associative and distributive with respect to ©, which has an identity element 
denoted e, with e absorbing (that is e ® a = a 0 e = e). 

S. A dioid is a semiring that is idempotent (that is a 0 a = a, Va G IC). 

4. A semifield is a semiring having its second operation invertible on /C* = 
K\{e}. 

5. A semifield that is also a dioid is called an idempotent semifield. 

6. We will say that these structures are commutative when the product is also 
commutative. 

7. We callRm8Lx (resp. Rm[n) the setR\J{—00} (resp. MU{-|-oo}>) endowed with 
the two operations 0 = max (resp © = minj and 0 = + . 

* Currently consisting ofM. Akian, G. Cohen, S. Gaubert, J.-P. Quadrat, and M. Viot. 
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8. We call M™££ and analogously R^hT the set of (n x n) matrices with entries 
belonging to Rmax endowed with 0 denoting the max entry by entry and <g) 
defined by 

[AB]i™[A ® B]i™max[Aik + Bkj] = ®kAik ® Bkj . 

9. We call <Smax (resp. TmaiX) the set of functions (resp. increasing functions), 
from R into Rmax endowed with 0 denoting the pointwise maximum and ® 
the sup-convolution defined by 

[/ ® 9}(x) = [f o g}(x)^sup[f(x -t) + g(t)} . 
t 

Analogously we define Sm-m (resp. Tmm)- The set X^in is the restriction of 
2min to piecewise constant increasing functions with jumps at positive integer 
abscissas. 

10. We call Cx (resp. Cv) the set of lower (resp. upper) semicontinuous and 
proper (never equal to — oo (resp. oc)) convex (concave) functions endowed 
with the 0 operator denoting the pointwise maximum (minimum) and the ® 
operator denoting the pointwise sum. 

11. We call Co the set of lower semicontinuous and proper strictly convex func
tions having 0 as infimum endowed with the ® operator denoting the inf-
convolution of two functions. 

Clearly the algebraic structures Rmax and Rmin are idempotent commutative semi-
fields, R2££, R^n

n , 5 m a x , 5 m i n , 2"max, Xmin, 2^ i n , Cx, and Cv are dioids, and C0 is a 
commutative monoid. We will call all these vectorial structures based on Rmax or 
Rmin max-plus algebras. Working with these structures shows that idempotency is 
as useful as the existence of a symmetric element in the simplification of formulas 
and therefore that these structures are very effective to make algebraic computa
tions. 

APPLICATION 2 1. These mathematical structures introduce a linear algebra 
point of view to dynamic programming problems. 

Given C in R^uT we ca^ precedence graph G(C) the graph having (i) n 
nodes, and (ii) oriented arcs (i,j) of weight Cji if Cji ^ e in the matrix C. 

The min-plus linear dynamical system 

X m+i =c®Xm, X? = e, for j = i, X] = E elsewhere, (1) 

is a dynamic programming equation. The number XJ1 is equal to the least 
weight of all paths from i to j (the weight of a path is the sum of the weights 
of its arcs) of length m (composed of m arcs). 

The minimal average weight by arc of paths having their lengths going to 
infinity is obtained by computing the X solution of the spectral problem 

\®X = C®X. 
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The computation of the minimal weight of paths from i to a region described 
by d G Rmin (dj = e if 3 belongs to the region, dj = e elsewhere) is equal to 
the Xi solution of 

X = C®X®d. 

2. The evaluation of some systems where synchronization between tasks appears 
(as in event graphs a subset of Petri nets) can be modeled linearly in Rm a x 

or dually in Rmin by 

X m + 1 = F ® X m 0 G ® C / m , y m + 1 = # < g > x m + 1 . (2) 

In Rmax; the number X™ has the interpretation of the earliest date that the 
mth occurrence of the event i (for example the starting time of a task on a 
machine in manufacturing) has happened. The max operator models the fact 
that tasks can be performed as soon as all the preconditions are fulfilled. The 
vector U models the timing of the input preconditions. The vector Y denotes 
the timing of the outputs of the system. 

In Rmin the number X™ has the interpretation of the maximum number of 
events of kind i that can occur before the date m. We can pass from (F, G, H) 
over Rmax to the one over Rmin by interchanging the role of the delays and 
the coefficients (see [5] for more details). 

3. Clearly infinite dimensional and/or continuous time versions of equation ex
ist (1). For c,tp G Co the problem 

v' = mm 
•jv-i 
^2c(ui)-r^p(xN) \xm = x , xl+l =xi-ui 

may be called dynamic programming with independent instantaneous costs (c 
depends only on u and not on x). Clearly v satisfies the linear recurrence in 
Co 

vm = C D / + 1 , vN =lj) . 

To solve some of these applications we have to solve max-plus linear equations 
in Rm*£ or Rm?n

n. The general one can be written A<g>X0ò = C ® X 0 d . In 
this section we use three points of view (contraction, residuation, combinatorial) 
to study this kind of equations. 

1.1. Spectral Equations, Contraction and Residuation. As in conventional al
gebra all the linear iterations are not contractions. We can characterize the con
tractions using the max-plus spectral theory. To simplify the discussion we give a 
simplified result under restrictive hypotheses on the connectivity of the associated 
incidence graph. The general result will be found for example in [5]. 

THEOREM 3 1. If the graph G(C) associated with the matrix C has only a 
strongly connected component there exists a unique X solution of X ® X = 
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C ® X. It has the graph interpretation 

. ICI» 
A = max -r-r- , 

c lei/ 
where \(\w denotes the weight of the circuit Ç and |£|/ its length. 

2. We denote Cx the matrix defined by CA
d= A"1 ® C, C * d = £ 0 C 0 C2 0 • • • 0 

C n _ 1 w/iere £" denotes the identity matrix and C+ =C'C*. A column i of 
[CA]+ such that [CA] J = e is an eigenvector. In C^ there exists at least one 
such column. 

3. There exists c such that for m large enough we have 

If G(C) has more than one strongly connected component, C may have more than 
one eigenvalue. The largest one is called the spectral radius of the matrix C and is 
denoted by p(C). 

THEOREM 4 The equation pX = CX 0 d has a least solution X = [Cß]*dß when 
p(C) < p. The solution is unique when p(C) < p. 

The equation Ax = d does not always have a solution but its greatest subsolution 
can be computed explicitly 

x = A\d= max{x | Ax < d} = min(dj — aj) . 
3 

This computation, well known in residuation theory, defines a new binary operator 
\ which can be seen as the dual operator of ®. The \ is distributive with respect 
to A (defined as the min operator in the RJJ,^ context). With these two operators 
dual linear equations may be written. 

COROLLARY 5 The equation p\X = (C\X)Ad has a solution as soon as p> p(C). 
The largest X solution of this equation is 

X = [CM]* \pd = pdA (Cß \ pd) A (CM \ CM \ pd) A - • - . 

APPLICATION 6 In the event graphs framework described previously this kind of 
equation appears when we compute the the latest date at which an event must occur 
if we want respect due times coded in d (see [5] for more details). 

1.2. Symmetrization of the Max-Plus Algebra. Because every idempotent group 
is reduced to the zero element it is not possible to symmetrize the max operation. 
Nevertheless we can adapt the idea of the construction of Z from N to build 
an extension of Rmax such that the general linear scalar equation has always a 
solution. 



Max-Plus Algebra and Applications 1515 

Let us consider the set of pairs Rmax endowed with the natural idempotent 
semiring structure 

(x',x")(B(y',y") = (x'®y',x"®y"), 

(x',x") ® (y',y") = {x'y'®x"y",x'y"®x"y') , 

with (s,£•) as the zero element and {e.e) as the identity element and G(x',x") = 
(x",x'). 

DEFINITION 7 Let x = (xf ,x") and y = (yf ,yn). We say that x balances y (which 
is denoted x V y) if x' © y" = x" 0 y'. 

It is fundamental to notice that V is not transitive and thus is not a congruence. 
However, we can introduce the congruence 1Z on Rmax closely related to the balance 
relation: 

(x1 x"Ml(vf i/'i ~ [ X' 0 y" = X" 0 yf if X' * *"'y! * y" ' [x , x ) K(y , y ) <* | (x,5 x,f) = ^ ^ yff) o t h e r w i s e 

We denote S = f R m a x / ^ . 
We distinguish three kinds of equivalence classes: 

{(t, x") | x" < i], called positive elements, represented by t; 
{(xf,t) | x1 < t}, called negative elements, represented by Qt; 
{(t, t)}, called balanced elements, represented by P. 

The set of positive (resp. negative, resp. balanced) elements is denoted S e (resp. 
§ e , resp. S*). This yields the decomposition 

§ = s eus eu§* . 

We also denote §v= f§® U S e and S)f = S v \ {e}. 
If x V y and x,y G Sv , we have x = y. We call this result the reduction of 

balances. 
We now consider a solution X, in Rmax' °f t n e equation AX © b = CX 0 d; 

then the definition of the balance relation implies that (A © C)X 0 (b © d) V e. 
Conversely, assuming that X is a positive solution of AX 0 6 V CX 0 d, with 
AX © ò and CX 0 d G S®, using the reduction of balances we obtain that X is a 
solution of AX 0 ò = CX 0 d. 

THEOREM 8 ((CRAMER'S RULE)) Let A e Snxn, b e Sn, \A\ be the determinant 
of the matrix A (defined by replacing -j- by ©, — by Q, and x by <g> in the con
ventional definition) and A{ be the matrix obtained from A by replacing the ith 
column by b. Then if \A\ G S^ and \Ai\ G S v , Vz = 1, • • • ,n, then there exists a 
unique solution of AX V b, belonging to (S v ) n

; that satisfies 

Xi = \Ai\/\A\ . 
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2. Min-Plus Linear System Theory 

System theory is concerned with the input (w)-output (y) relation of a dynamical 
system (S) denoted y = S(u) and by the improvement of this input-output relation 
(based on some engineering criterion) by altering the system through a feedback 
control law u = F(y, v). Then the new input (v)-output (y) relation is defined im
plicitly by y = S(F(y,v)). Not surprisingly, system theory is well developed in the 
particular case of linear shift-invariant systems. Analogously, a min-plus version 
of this theory can also be developed. The typical application is the performance 
evaluation of systems that can be described in terms of event graphs. 

2.1. Inf-convolution and Shift-Invariant Max-Plus Linear Systems. 

DEFINITION 9 1. A signal u is a mapping from R into Rmin . The signals set, 
denoted y, is endowed with two operations, namely the pointwise minimum 
of signals denoted 0 , and the addition of a constant to a signal denoted ®, 
which plays the role of the external product of a signal by a scalar. 

2. A system is an operator S : y —• y,u »-> y. We call u (respectively y) the 
input (respectively output) of the system. We say that the system is min-plus 
linear when the corresponding operator is linear. 

3. The set of linear systems is endowed with two internal and one external 
operations, namely 

(i) parallel composition S = S10S2 defined by pointwise minimum of output 
signals corresponding to the same input; 

(ii) series composition S = Si (g> S2, or more briefly, S1S2 defined by the 
composition of operators; 

(iii) amplification T = a (g> S, a e Rmin defined by T(k) = a <g> S(k). 

4. The improved input (v)-output (y) relation of a system S by a linear feedback 
u = F(y) 0 G(v) is obtained by solving the equation y = S(F(y)) 0 S(G(v)) 
in y. 

5. A linear system is called shift invariant when it commutes with the shift 
operators on signals (u(.) H-> U(. + k)). 

THEOREM 10 1. For a shift-invariant continuous1 min-plus linear system S 
there exists h : R \—> Rmin called the impulse response such that 

y = h®u = hD u . 

2. The set of impulse responses endowed with the pointwise minimum and the 
inf-convolution is the dioid Sm-m. 

1 Linear also for infinite linear combinations. 
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3. If f (resp. g) denotes the impulse response of the system SF (resp. SG), 
the impulse response h of a system S altered by the linear feedback u = 
F(y) © G(v) is a solution of 

h = f®h®g . 

2.2. Fenchel Transform. The Fourier and Laplace transforms are important 
tools in automatic control and signal processing because the exponentials diagonal-
ize all the convolution operators simultaneously and consequently the convolutions 
are converted into multiplications by the Fourier transform. Analogous tools exist 
in the framework of the min-plus algebra. 

DEFINITION 11 Let c G Cx- Its Fenchel transform is the function in Cx defined by 

c(e) = [F(cW)d^Supx[dx-c(x)}. 

For example, setting la(x) = ax we have [F(la)](0) = Xa(#) with 

Xa(0) = | 0 for 0 = a. 

THEOREM 12 For f,g eCx we have (i) F(f) G Cx, (H) T is an involution that is 
HHS)) = / , (m) HS n 9) = HS) + Hg), and (iv) T(f + g)= HS) n F{g). 

THEOREM 13 The response to a conventional affine input (min-plus exponential) 
is a conventional affine output with the same slope. If y = h u u and u = la we 
have 

y = lJ[F{h)]{a). 

Unfortunately, the class of min-plus linear combinations of affine functions is only 
the set of concave functions, which is not sufficient to describe all the interesting 
inputs of min-plus linear systems. 

2.3. Rational Systems. A general impulse response is too complicated to be 
used in practice as it involves an infinite number of operations to be defined. 

DEFINITION 14 1. An impulse response h G Jm i n is rational if it can be com
puted with a finite number of ©, <g>, and *2 operations, from the functions 
a (Si e (a E Rm[n) cmd \i ® e where 

* > * { : js vr t < 0, 
vr t > 0. 

2. It is called realizable if there exists (F,G,H) such that hm = FG^H. Then 
there exists X such that 

Xm+1 =F®Xm®G®Um, Yrn = H®Xni. 

The vector X is called the state of the realization. 

2 For an impulse response h we define the operator * by h* = e 0 h © h2 • 
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3. The system is called ultimately periodic if hm+c = c x X + hm, for m large 
enough. 

4. The number X is called the ultimate slope of h. 

THEOREM 15 For SISO systems having an impulse response in Xmin the three 
notions of rationality, ultimate periodicity, and realizability are equivalent. 

This theorem is a min-plus version of the Kleene-Schutzenbergcr theorem. The 
realization of an impulse response with a vectorial state X of minimal dimension 
is an open problem in the discrete time case. 

2.4. Feedback Stabilization. Feedback can be used to stabilize a system without 
slowing down its throughput (the ultimate slope of its impulse response). 

DEFINITION 16 1. A realization of a rational system is internally stable if all 
the ultimate slopes of the impulse responses from any input to any state are 
the same. 

2. A realization is structurally controllable if every state can be reached by a 
path from at least one input. 

3. A realization is structurally observable if from every state there exists a path 
to at least one output. 

THEOREM 17 Any structurally controllable and observable realization can be made 
internally stable by a dynamic output feedback without changing the ultimate slope 
of the impulse response of the system. 

3. Bellman Processes 

The functions stable by inf-convolution are known. They are the dynamic pro
gramming counterparts of the stable distributions of probability calculus. They 
are the following functions: 

Mp
mi(T(x) = -(\x - m\/o)p, with A C o ( z ) = XmW, V > 1, rn G R, o G R+ . 

We have M^ n M^ = MP
m+fh[(TP,^p>]l/p, with 1/p + 1/p' = 1 . 

3.1. Cramer Transform. The Cramer transform (C = T o log o£, where C de
notes the Laplace transform) maps probability measures to convex functions and 
transforms convolutions into inf-convolutions: 

C(f*g)=C(f)uC(g). 

Therefore it converts the problem of adding independent random variables into a 
dynamic programming problem with independent costs. In Table 1 we give some 
properties of the Cramer transform. For a systematic study of the Cramer trans
form see Azencott [4]. 
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Table 1: Properties of the Cramer transform. 

M 
M 

P>0 

mo = J dp = 1 

mo = 1, m= f xdp 

mo = 1, 77i2 = f x2dp 
m0 = 1 

c=\aO\*/i/ + o(\0\r') 
1 e - ì ( x - m ) V ^ 

stable distrib. 
Feller [10] 

\og(C(M))=HC(M)) 

c(0)= log feäxdp(x) 
c convex l.s.c. 

c(0) = 0 

c'(0) = m 

c"(0)=v2={m2-m
2 

c(p')(0+)=r(p')o~P' 

m0+\(<T0)2 

m0+±\o6\v' 

C(M) 
c(x) = S\XQQ(0X — c(9)) 

c convex l.s.c. 

inf x c(x) = 0 

c(m) = 0 

c"(m) = 1/a2 

c(p)(0+)=r(p)/(jP 

M2 

Mp 

w i t h p > 1, 1/p-hl /p ' = 1 

3.2. Decision Space, Decision Variables. These remarks suggest the existence of 
a formalism anologous to probability calculus adapted to optimization. We start 
by defining cost measures, which can be viewed as the normalized idempotent 
measures of Maslov [13]. 

DEFINITION 18 1. We call a decision space the triplet (U,U,K) where U is a 
topological space, U is the set of the open subsets ofU, andK is a map from U 
into R + 3 such that (i) K(U) = 0, (ii) K(0) = +oo ; and (iii) K fljn An) = 
infn K(An) for any AneU. 

2. The map K is called a cost measure. 

3. A map c : u G U •-> c(u) G R such that K(A) = infuGAc(w), VA G U, is 
called a cost density of the cost measure K. 

4- The conditional cost excess to take the best decision in A knowing that it 
must be taken in B is 

K(A\B)d=K(A HB)- K(B) . 

THEOREM 19 Given a l.s.c. positive real valued function c such that infu c(u) = 0, 
the expression K(A) = infueA c(u) for allA^U defines a cost measure. Conversely 
any cost measure defined on the open subsets of a Polish space admits a unique 
minimal extension K* to V(U) (the set of the parts ofU) having a density c4 that 
is a l.s.c. function on U satisfying infw c(u) = 0. 

This precise result is proved in Akian [1]. 

3R+H fR+U{+oo}. 
4We extend the previous definition to a general subset of U. 
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By analogy with random variables we define decision variables and related 
notions. 

DEFINITION 20 1. A decision variable X on (U.U. K) is a mapping from U into 
E a topological space. It induces Kx a cost measure on (E, B) (B denotes 
the set of open sets of E) defined by KX(A) = K^(X'1(A)), VA G B. The 
cost measure Kx has a l.s.c. density denoted cx-

2. When E = R (resp. Rn, resp. RmiiJ with the topology induced by the absolute 
value (resp. the euclidian distance, resp. d(x,y) = \e~x — e~y\) then X is 
called a real (resp. vectorial, resp. cost) decision variable. 

3. Two decision variables X and Y are said to be independent when 

cx,Y(x,y) = cx(x) + cY(y). 

4- The optimum of a real decision variable is defined by O(X) = arg min^ cx (x) 
when the minimum exists. When a decision variable X satisfies O(X) = 0, 
we say that it is centered. 

5. When the optimum of a real decision variable X is unique and when near 
the optimum, we have 

*-°WP
 + 0(|*-<W), cx(x) = -

p 

we define the sensitivity of order p of K by op(X)=o. When a decision 
variable satisfies op(X) = 1, we say that it is of order p and normalized. 

6. The numbers 

\X\p=
{mî la I cx(x) >-\(x- ®(X))/o\A and | |X| |p

d=|X|p + |0(X) | 

define respectively a seminorm and a norm on the set of decision variables 
having a unique optimum such that \\X\\P is finite. The corresponding set of 
decision variables is called Dp . The space B p is a conventional vector space 
and O is a linear operator on Dp. 

7. The characteristic function of a real decision variable is ¥(X)=Jr(cx) 
(clearly ¥ characterizes only decision variables with cost in Cx)-

The role of the Laplace or Fourier transform in probability calculus is played by 
the Fenchel transform in decision calculus. 

THEOREM 21 If the cost density of a decision variable is convex, admits a unique 
minimum, and is of order p, we have:0 

¥(X)f(0) = O(X), [¥(X - O(X))]W(0) = T(p')[op(X)Y', with 1/p + 1/p' = 1 . 
5 r denotes the classical gamma function. 
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THEOREM 22 For two independent decision variables X and Y of order p and 
k G R we have 

cx+Y = cxncY, F(X + F) = F(X) + F(Y), [¥(kX)](e) = [¥(X)}(k6) , 

0{X + Y) = O(X) + O(Y), <0(kX) = kO{X), ap{kX) = \k\ap{X) , 

[o*(X + Y)Y = [o*{X)]*' + [^(Y)f, (\X + Y\p/ < (\X\pf + (\Y\pr' . 

3.3. Limit Theorems for Decision Variables. Wc now study the behavior of nor
malized sums of real decision variables. They correspond to asymptotic theorems 
(when the number of steps goes to infinity) for dynamic programming. We have 
first to define convergence of sequences of decision variables. We have defined coun
terparts of each of the four classical kinds of convergences used in probability in 
previous papers (see [3]). Let us recall the definition of the two most important 
ones. 

DEFINITION 23 For the decision variable sequence {Xm,m G N} we say that 

1. Xmweakly converges towards X, denoted Xm -^ X, if for all f in Cb(E) 
(where Cb(E) denotes the set of uniformly continuous and lower bounded 

functions on E into Rmin), l immM[/(Xm ) ] = M[f(X)], with M(f(X))d= 
inìx(f(x)-rcx(x)). 

1TDP 

2. X711 G W converges in p-sensitivity towards X G W, denoted X™ -^U X, if 
l i m m | | X m - X | | p = 0 . 

THEOREM 24 Convergence in sensitivity implies convergence and the converse is 
false. 

The proof is given in Akian [2]. 
We have the analogue of the law of large numbers and the central limit 

theorem. 

THEOREM 25 ((LARGE NUMBERS AND CENTRAL LIMIT)) Given a sequence {Xm, 

77i G N} of independent identically costed (i.i.c.) real decision variables belonging 
to W. p > 1, we have 

N-l 

lim - V r = o(i°), 

where the limit is taken in the sense of p-sensitivity convergence. 
Moreover if {X™, m G M} is centered and of order p we have 

N-l 
6weak* hm ^ ^ £ Xm = X, with 1/p + 1/p' = 1 , 

m = 0 

where X is a decision variable with cost equal to Mp
 aV(Xn\-

6 The weak* convergence corresponds to the restriction of test functions to the conventional 
linear ones in the definition of the weak convergence. 
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The analogues of Markov chains, continuous t ime Markov processes, and 
Brownian and diffusion processes have also been given in [3]. 
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1 Introduction 

An important progress made in the study of fluid turbulence in the last decades is 
a clearer understanding of the differences between the two- and three-dimensional 
cases. The most striking feature of 2D turbulence is the emergence of a large-scale 
organization of the flow (leading to structures usually called coherent structures), 
while the energy is conserved. By contrast, in the 3D case energy dissipation 
actually occurs, and the main experimental observations are the power-law energy 
spectrum and intermittency effects (the dissipation of energy does not seem to 
occur homogeneously in space). 

Because, like a gas of molecules, slightly viscous turbulent flows have a large 
number of degrees of freedom, we expect to explain these properties by statistical 
mechanics arguments. The introduction of statistical mechanics ideas and methods 
in hydrodynamics has a long story, beginning with Onsager's 1949 pioneering 
paper. But great difficulties occurred on the way, and they seemed to have raised 
(for a time) some doubts as to the applicability of statistical mechanics to this 
field. 

These difficulties are of a very different nature in two or three dimensions. 
In 2D, we have known for a long time of the existence of solutions (for all time) 
for Euler equations for an inviscid incompressible fluid flow. Indeed, nice estimates 
come from the existence of an infinite family of constants of the motion, associated 
to the law of vorticity conservation along the trajectories of the fluid particles. Until 
recently, this family of invariants was thought to be a serious technical obstacle 
to a relevant statistical mechanics approach. By contrast, this family of invariants 
disappears in the 3D case where, in spite of considerable efforts (see for example 
Majda [14]), our understanding of the dynamics remains poor (What about the 
existence of weak solutions for all time?, What about the dissipation of energy?). 
This is obviously a considerable obstacle to the application of statistical mechanics 
(What is the phase space?). 

The importance of the subject was recalled by Chorin's lectures [6], which 
renewed the interest in Onsager's ideas, and some works were devoted to the 
statistical mechanics of point- vortices systems (see [16] for references). 

In recent works [16], [20], [22], we showed that the main difficulties raised 
by the 2D case can be overcome by using two devices. The first is to work in 
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a relevant extended phase space (the space of Young measures) on which the 
constants of the motion of the system set natural constraints, and the second is 
to use modern large deviation theory (such as Baldi's large deviation theorem) 
to perform a thermodynamic limit in this framework. This approach works for a 
large class of dynamical systems (which can be described as the convection of a 
scalar density by an incompressible velocity field). 

2 Statistical equilibrium states for a class of infinite-
dimensional dynamical systems 

2.1 A class of dynamical systems 
A large class of evolution equations, coming from the modelling of various phys
ical phenomena displaying complex turbulent behavior, can be described as the 
convection of a scalar density by an incompressible velocity field. More precisely, 
they are of the form: 

U + div(mi)=0, 1 
U 1 u = L(g) ,div(u)=0, J 

where q(t,x) is some scalar density function defined on R x Q (Q is a bounded 
connected smooth domain of Rd), u(£,x) is an incompressible velocity field taking 
its values in Rd, which can be recovered from q by solving a P.D.E. system. Thus 
L denotes a (not necessarily linear) integro-differential operator. Let us give some 
well-known examples of such systems. 

(1) The simplest example of (I) is the linear transport equation, where u(x) is a 
given incompressible velocity field on Q. 

(2) 2D incompressible Euler equations in the usual velocity-vorticity formulation 
are clearly of the form (I). Take for q the vorticity q = curlu, then u is given 
by: 

' curl u = q, 

div u = 0, 

u • n = 0 on dQ. 

This is a particular case of the quasi-geostrophic model used in geophysical 
fluid dynamics [17]. 

(3) Collisionless kinetic equations such as the Boltzmann-Poisson equation of 
stellar dynamics and Vlasov-Maxwell equations of plasmas can also be written 
in the form (I). 

The first step in our program is to define a flow associated to (I) on the 
phase space L00^) (for reasons which will appear later, this is a good phase space 
because it contains small-scale oscillating step functions). Unfortunately, to our 
knowledge, there is no general existence-uniqueness result for the Cauchy problem 
for systems like (I). Examples (1) and (2) are well known, but for kinetic equations, 
although some existence results are available [1], [10] it seems that the uniqueness 
problem is not yet solved. 

To proceed further, we shall assume that the system (I) defines a flow $t '• 
L°°(ii) —• LX(Q), which satisfies some (rather technical, see [16] for details) 
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continuity property. This means that for any given initial datum #o(x), the solution 
of the Cauchy problem for (I) is q(t,x) = ($tqo)(x). This hypothesis on the system 
is satisfied in Example (1) if u is a C 1 velocity field on Q that is tangent to the 
boundary. It is also satisfied in Example (2): this is the classical Youdovitch's 
theorem for a perfect fluid [31]. 

Constants of the motion. For systems of the form (I), there is a family of constants 
of the motion that will play a crucial role. These are the functionals: 

Cf(q) = J f(q(x))dx, 

for any given continuous function / on R. Let us define the distribution measure 
of q, 7Tq by (-Kq, f) = Cf(q). Then 7rq is conserved by the flow. 

According to each particular case, we will also have to take into account 
the classical constants of the motion of the system, such as energy and angu
lar momentum. For example, in the case of Euler equations, the energy E(q) = 
\ Jn u2 dx is also conserved. Integrating by parts, it will be convenient to write 
E(q) = 5 fn^qdx, where \& is the stream function of u : — A\£ = q, ^ = 0 on dft. 

2.2 Long-time dynamics and Young measures 
Let us consider a system of the form (I), and an initial datum qo. It is well known 
that, in general, as time evolves, ®tQo becomes a very intricate oscillating function. 
Let us denote r =\\ go ||L°°(n)- Because the measure 7rg is conserved, $tqo will 
remain, for all time, in the ball L£° = {q :|| q ||oo< r}. Extracting a subsequence 
(if necessary), we may suppose that, as time goes to infinity, &tQo converges weakly 
(for the weak-star topology <T(L°° ,L 1 ) ) towards some function q*: 

Qtqo^q*. 

We can easily see that Cf($tqo) does not converge towards Cf(q*) if / is nonlinear, 
whereas some other invariants can converge, as is the case for the energy in Euler 
equations. So, much information (given by the constants of the motion) is lost in 
this limit process. Thus the weak space Loc(fl) is not a good one to describe the 
long-time limits of our system. Fortunately, the relevant space to do this is well 
known. The need to describe in some macroscopic way the small-scale oscillations 
of functions was understood long ago by Young [32]. To solve problems from the 
calculus of variations, Young introduced a natural generalization of the notion of 
function: at each point x in fl, we no longer associate a well-determined real value, 
but only some probability distribution on R (such a mapping is called a Young 
measure on fl x R). More precisely, a Young measure v on fl x R is a measurable 
mapping x —• vx from ft to the set M\ (R) of the Borei probability measures on R, 
endowed with the narrow topology (weak topology associated to the continuous 
bounded functions). 

Clearly, v defines a positive Borei measure on fl x R (which we will also 
denote by v) by: 

<«/,/>=yvx,/(x,.)>dx, 
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for every real function f(x, z), continuous and compactly supported on fl x R. 
To any measurable real function g on fl, we associate the Young measure 

6g : x —> 6p(x), Dirac mass at g(x). We shall denote by M the convex set of Young 
measures on ft x R, and we recall some useful properties. 

- M is closed in the space of all bounded Borei measures on fl x R (with the 
narrow topology). In the sequel, M will be endowed with the narrow topology. 
If we replace R by the compact interval [—r, r], the space M.r of Young measures 
on ft x [—r, r] is compact. 

- {Sg\g : fl —• [—r,r] measurable} is a dense subset of Mr-

We can now identify the long-time limits of the system as Young measures. Indeed, 
Mr is a suitable compactification of L^ because the narrow convergence (when t 
goes to infinity) of ô$tq towards some Young measure v preserves the information 
given by the constants of the motion; that is, for all functions f(z): 

J f(<S>tq(x))dx^ j(vx,f)dx, 

but the left-hand side is constant and equal to (nq,f), so that: 

dx = 7T„. Iv* 
The same kinds of arguments apply to the other invariants. For example, in the case 
of Euler equations, because $tq converges weakly towards v(x) = J zdux(z), we 
have, for the energy, E($tq) —> E(v), which is the energy of the Young measure v. 

Thus we see that the constants of the motion of (I) set constraints on the 
possible long-time limits. 

2.3 Approximate Liouville measures, thermodynamic limit, 
and large deviation theory 

A natural way to define equilibrium states is to construct invariant Gibbs measures 
on the phase space. But we do not know how to construct such measures on the 
natural phase space Loc(fl) for systems like (I). In the case of Euler equations 
some work has been devoted to the study of Gibbs measures with formal densities 
given by the enstrophy (J q2dx) and the energy [3], and also to Gibbs measures 
associated to the law of vorticity conservation along the trajectories of the fluid 
particles [4]. Unfortunately all these measures are supported by "large" functional 
spaces so that not only the mean energy and enstrophy of these states are infinite 
but the phase space Loc(fl) is of null measure. So, it is only at a formal level 
that this makes sense. Moreover this approach fails to give any prediction on the 
long-time dynamics corresponding to a given initial vorticity function. 

The most common approach to overcome these difficulties is to use a con
venient finite dimensional approximation of the system, possessing an invariant 
Liouville measure. Then one can consider the canonical measures associated to 
the constants of the motion and try to perform a thermodynamic limit in the 
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space of generalized functions when the number of degrees of freedom goes to 
infinity. For example, for Euler equations one can consider the N Fourier-mode 
approximation or the point-vortex approximation. Two difficulties arise in this ap
proach. The first is to choose a relevant scaling to perform the limit; an interesting 
comment on this point can be found in [18], see also [4]. The second is even more 
fundamental: generally, the approximate system will have fewer constants of the 
motion than the continuous one (I), so that the long-time dynamics of that system 
may be very different from that of the continuous one. For more comments and 
references on these attempts see for example [16], [17], [18], [20], [22]. 

Our program. We first define a family Ho of approximate Liouville measures for $>t 5 

and then we take the thermodynamic limit of these measures with the conditioning 
given by all the constants of the motion of (I). 

The measures n ^ . We shall say that a partition Ö = {fll\i = 1 , . . . , n(0)} of fl 
is an equipartition if the subsets fl1 are measurable and |ft*| = \iV\ for all i, j 
(\fll\ denotes the Lebesgue measure of ft1). d(ö) = sup^ supxx/Gfl i |x — x'| is the 
diameter of Ö. 

Given any equipartition Ö, we denote EQ the subset of the functions of L£° 
that are constant on the sets ft1 of Ö. On EQ we define the probability distribution 

n 

H0 = <g> 7T0 (where 7TQ is any probability distribution on [—r, r], in what follows we 
shall take TTQ = T^\^qo)- Of course, Ho cannot be exactly conserved by $t (FQ is 
not!), but it is conserved in some approximate sense [16]: 

For all t, and any Borei subset B of LJ?°, we have Wo($t(B)) ~ Ho(B), when 
d(0) ^ 0. 
REMARK. A closely related issue is the construction of an approximation (on Eo) 
of the flow $t for which Ho is exactly conserved. Although not entirely solved, 
this question is investigated in [16]. 

The thermodynamic limit. As noticed above, it is convenient to work in the space 
Mr. The mapping / —> of from (Eo,Ho) into M.r defines a random variable 
(which we denote So) on M.r. 

Now we have to take the thermodynamic limit (when d(O) —• 0) of the 
random Young measures So conditioned by the "microcanonical" constraints: 

/ 
vxdx 

and other constraints such as E(v) = E(qQ), in the case of Euler equations. 
The key ingredient to perform the limit is to prove that the random Young 

measure 6Q has a large deviation property with constants n((9)/ |n| and rate func
tion I^(u). 

This means (roughly speaking, see [16] for precise statements) that for any 
Borei subset B of Mr, we have: 

Prob(60 e B) ~ exp ( - ^ p - inf IK(v)\ (when d(0) - • 0), 
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where 7r = dx ® 7TQ, and I^(v) is the classical Kullback information functional 
defined on M by: 

^TT(^) = / log -7—dz/, if v is absolutely continuous with respect to TT, 
J dn 

Qx[-r,r] 

In(i/) = +00 otherwise. 

Modern large deviation theory (see for example [30]) is a powerful tool in 
proving such estimates. In [16] we apply Baldi's theorem [2], which is an elegant 
result giving general conditions under which a family of probability measures on 
a locally convex topological vector space has the large deviation property. 

A straightforward consequence of this large deviation property is that the 
random Young measure bo, conditioned by the constraints JQuxdx = 7rgo, and 
(eventually) E(v) = E(q0), is exponentially concentrated about the set £ * of the 
solutions of the variational problem 

(V.P.) /„(**) = inf{/»(i/)|«/ e S}, 

where £ is the closed set of the Young measures satisfying 

(*) / Z/xdx = 7Tgo, 

(**) other constraints (energy... ). 

2.4 The Gibbs states (or mean field) equation 
Because Mr is compact and 1^ is a lower semi-continuous functional, the set £* 
of the solutions of (V.P.) is always nonempty. Using Lagrange multipliers, we get 
the equation satisfied by the critical point of (V.P.): the Gibbs states equation. 

To fix the ideas, let us use the computations in the particular case of Euler 
equations. Let us suppose that v* is a critical point of (V.P.), then we show [20] 
that z/* can be written: 

* */ x • 1 */ x exp(-a(z) — ßz^*(x)) 
v* = fl*(x,z)7T, with p*(x.z) = — ^ — , V ; , . . K—^, where : 

H v ; H K • ' Z(**(x)) 
- ß is the Lagrange multiplier of the energy, 
- a(z) is a continuous function associated with the (infinite-dimensional) con

straint (*), 
- vp* is the stream function associated with the mean vorticity f zp*(x, z) d-K^(z), 
- Z(¥) = / e x p ( - a ( z ) - ßzV)dir0{z). 
Thus vp* must satisfy the following Gibbs states' equation: 

{ I d , ~ 
-At f = - - — l o g Z . 

ßd9 
vp = 0 on dft. •) 

This nonlinear elliptic equation always has solutions. The solution is unique when 
ß is greater than some negative value ßc, but when —ß is sufficiently large, bifur
cations to multiple solutions generally occur [26]. 
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3 Miscellaneous comments 

In our opinion, the key in understanding the main features of 2D turbulence is 
the existence of statistical equilibria. Indeed, once we know the entropy functional 
associated with turbulent motion, we can study the relaxation process towards the 
equilibrium, and this yields naturally new evolution equations modelling the effect 
of small scales on the large ones in turbulent flows [21], [23]. 

The relevance of this equilibrium theory was tested, in the case of Euler equa
tions, by experiments [9] and numerical simulations using Navier-Stokes equations 
at large Reynolds number [21], [26]. From these works the tentative conclusion 
emerges that the entropy functional given by the theory is accurate, even if the 
complex dynamics of the system can limit the complete relaxation towards the 
global equilibrium. 

In [17], [27], [28] we show that this equilibrium theory provides a natural 
explanation of the spectacular organization of the atmospheric flow on the Jovian 
planets (Jupiter, Saturn, Uranus, and Neptune). Indeed, they are gaseous fast-
rotating planets and their atmospheric dynamics satisfy an equation of the form 
(I). A detailed study of the equilibrium states displays the main common features 
of these flows such as latitudinal banding and the existence of large permanent 
vortices (among which the most famous is the great red spot of Jupiter). 

The idea of such equilibrium states was previously investigated by Lynden-
Bell [13] in the context of stellar dynamics. The same equation of Gibbs states was 
derived independently by Miller [18], from a more physical point of view. See also 
the closely related work by Shnirelman [24]. 

In contrast with the 2D case, the energy dissipation is not negligible in 3D 
turbulence, and a clear understanding of the mechanisms producing the main ob
served statistical properties of turbulence (such as power law energy spectrum and 
intermittency effects) is still missing. The existence of weak solutions of 3D Euler 
equations, which dissipate the energy, is certainly a key issue (as was suggested by 
Onsager, see Eyink [11] and Constantin [8]). This naturally leads to the study of 
the formation and statistics of shocks. The statistics of shocks was studied in the 
simpler (but enlightening) one-dimensional case of inviscid Burgers equation by 
Sinai [25], and recent progress was made with the elegant and decisive contribution 
by Carraro and Duchon [5]. 

Last but not least, we will evoke the pioneering and intuitive work of Chorin 
on the statistical mechanics of 3D turbulence. Chorin [7] exploits an analogy be
tween vortex tubes and self-avoiding walks and applies methods from the statistical 
mechanics of polymers. It appears that power law energy spectrum and intermit
tency effects can be recovered by this method. 
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Spaces of Observables in Nonlinear Control 

E D U A R D O D . S O N T A G 

Department of Mathematics, Rutgers University 
New Brunswick, NJ 08903, USA 

Engineering design and optimization techniques for control typically rely upon the 
theory of irreducible finite-dimensional representations of linear shift-invariant in
tegral operators. A representation of T : [£oc.ioc(0, oo)]m —• [Co(0, oo)]p is specified 
by a triple of linear maps A : Rn -> Rn, B : Rm -> Rn, and C : Rtl -> Rp so that, 
for each "input" UJ, Jr(uj)(t) = CÇt(t), where the state £ is the solution of the initial 
value problem £'(t) - A$t(t) = Bu(t), £(0) = 0. 

For such state-space realizations to exist, it is an elementary and well-
known fact that the following equivalent properties must hold, if T(u))(t) = 
JQ K(t-^r)u(r) dr and the entries of the (pxra)-matrix kernel K(t) are analytic and 
of exponential order |A"^(t)| < aect: rationality of the Laplace transform matrix 
IC(s) = fQ K(t)e~stdt: existence of some nontrivial algebraic-differential equation 
£(uj(t), uj'(t), ... uj^(t); 7](t), r)'(t), . . . , rfr\t)) = 0 relating inputs and outputs 
rj = !F((JJ); and finiteness of the rank of the block Hankel matrix H = (Hij)™.=Q 

that is defined, in terms of the Taylor expansion of K, by the (p x ra)-submatrix 
entries (d^K/dti+J) (0). 

Irreducible representations are exactly those of minimal dimension, which 
equals the rank g of H, and they have desirable control-theoretic properties. 
Most significant are the facts that the elementary observables x »—> CetAx + 
C fQe(t~T)ABu;(s)ds separate points, and that states can be asymptotically 
steered to the equilibrium x0 = 0 by means of linear feedback laws u(t) = Fx(t) 
that render Re A < 0 for all eigenvalues A of A + BF. 

The study of representability and the analysis of qualitative properties of 
minimal realizations have their roots in the nineteenth century, in particular in 
the work of Lord Kelvin regarding the use of integrators for solving differential 
equations, Kronecker's contributions to linear algebra (to a great extent moti
vated by essentially these questions), and Hurwitz' and Routh's stability criteria. 
The theory, which is at the core of modern multivariablc linear control, achieved 
full development mainly during the 1960s. Standard textbooks (e.g. [21]) cover 
this material, which forms the basis of widely used computer-aided design pack
ages. Much effort has been directed since the early 1970s towards extensions to 
nonlinear operators, including the characterization of representability by means 
of explicit numerical invariants generalizing g, the equivalence to high-order dif
ferential constraints, and the synthesis of steering control laws. A still-developing 
but fairly detailed body of knowledge is by now available, covering both global 
algebraic and local analytic aspects. 

Proceedings of the International Congress 
of Mathematicians. Zürich, Switzerland 1994 
© Birkhäuser Verlag, Basel, Switzerland 1995 
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This paper will focus on a narrow but fundamental and unifying subtopic, 
namely the role played by observables, which are the functions on states induced 
by experiments. I will start with a brief introduction to control systems and the 
questions to be studied, followed by an outline of results. 

1. Introduction 

To control something means to influence its behavior so as to achieve a desired 
goal. Sophisticated regulation mechanisms are ubiquitous in nature as well as in 
modern technology, where they appear in a wide range of industrial and consumer 
applications, such as anti-lock brakes, fly-by-wire high-performance aircraft, au
tomation robots, or precision controllers for CD players. Control theory postulates 
mathematical models of control systems and deals with the basic principles un
derlying their analysis and design. 

The basic paradigm is that of a (controlled) system E, specified by a right 
action 

X x fl —• X : (x, UJ) I—• x • u 

of a monoid fl, whose elements are called inputs or controls, on a set X, the state 
space, together with a map, the output function, 

h : x^y 

into a set y, of output or measurement values. (Partial actions are also of interest, 
particularly in the context of the differential systems discussed below, but at this 
abstract level they can be subsumed merely by adjoining to X an "undefined" 
element, invariant under all UJ, as well as an extra element to y.) Typically the 
elements of ft are functions of a discrete or continuous time variable, and one 
interprets the action x • u) as defining a forced dynamical system with phase space 
X. The function h expresses constraints on the information readily available about 
states. Often the control objective is to find appropriate functions u) that force the 
new state x-v to have some particular desired characteristic, such as being close 
to a certain target set or optimizing a cost criterion, using only information about 
the initial state x inferred from outputs. 

Different algebraic, topological, and/or analytic structures are then superim
posed on this basic setup in order to model specific applications and to develop 
nontrivial results. For instance, as with classical (noncontrolled) dynamical sys
tems, one manner in which actions often arise is through the integration of ordinary 
differential equations. Let Af be a (second countable) differentiable manifold, with 
tangent bundle projection n : TX —> X, and let U be a separable locally compact 
metric space (of input values). A continuous-time differential system is specified 
by a continuous mapping / : X x li ^ TX such that n(f(x,u)) = x for each 
(x, u) e X x U, of class C1 on X and with fx continuous on X x U, together with 
a continuous h : X-+y into another metric space. For each T > 0, let £^[0,T] = 
measurable and essentially compact maps from [0, T] into U. For each u) G £ ^ [0, T] 
and x G X, there is a well-posed initial value problem on [0, T] 

?(*) = nmMt)), m=x- (i) 
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Solutions exist at least for small t > 0: let X-UJ be the value £(T), if defined, of 
this solution. The concatenation of a; G £ ^ [0. T] and v G £ ^ [0, S] is the element 
u)%v G £ ^ [ 0 , T + 5] , which is almost everywhere equal to uj(t) on [0,T] and to 
i/(t - T) on [T,T + S\. Let f>w be the disjoint union of the sets £^ . [0 ,T] , over 
all T > 0, including for T = 0 the zero-length input o; this is a monoid under 
jt, with identity o. A controlled system as above results. Often y is a Euclidean 
space and the components of h(x) designate coordinates of the state x tha t can 
be instantaneously measured. As a concrete example, the dynamic and kinematic 
equations of a rigid body subject to torques and translational forces give rise to a 
differential system evolving on X = tangent bundle of the Euclidean group. The 
input values are in U = Rm if there are m independent external torques and forces 
acting on the system. An appropriate measurement function h : TE(3) —+ R3 is 
included in the system specification if one can only directly measure the body's 
angular momentum, but not its SO(3) orientation component or its translational 
coordinates. 

In order to a t ta in a desired control objective, it is usually necessary to deter
mine the current state x of the system. This motivates the state estimation, or in 
its stochastic formulation, the Kaiman filtering problem: find x on the basis of ex
periments consisting of applying a test input and measuring the ensuing response. 
Tha t is to say, one needs to reconstruct x from the values hiAi(x) of the observables 

h^ : X^y : x^h(x-uj). 

A necessary condition for state estimation is tha t {h^.uj G ft} separate points; 
algorithmic and well-posedness requirements lead in turn to several refinements of 
this condition. 

In many practical situations it is impossible to derive flow models like differ
ential equations from physical principles. Sometimes the system to be controlled 
is only known implicitly, through its external behavior, but no dynamical model 
(action, output map) is available. The only da ta is the response of the system to 
the various possible inputs UJ, when start ing from some initial or "relaxed" state 
x0. Mathematically, one is given a mapping F : fl —> y rather than a system E 
in the form defined above. Thus, a preliminary step in control design requires the 
solution of the realization problem: passing from an external or input-output ( I /O) 
description to a well-formulated internal or state-space dynamical model. This is 
the inverse problem of representing the given F in the form 

F(UJ) = hu;(x0) = h(xQ-uj) 

for some system E and initial s tate x0. Typically, moreover, one wants to find a E 
tha t satisfies additional constraints — the state space has a topological structure, 
its dynamics arise as the flow of a differential equation, etc. — so as to permit the 
eventual application of numerical optimization techniques in order to solve control 
problems. 

For state estimation and realization questions, the observables h*, together 
with their infinitesimal versions for differential systems, obviously play a central 
role. It is perhaps surprising that their study is also extremely useful when dealing 
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with many other control issues, due in part to the dualities between "input to 
state" and "state to output" maps, and between X and functions on X. Studying 
the duality between observables and states is particularly fruitful in control theory, 
perhaps more so than in physics. 

Since the mid-1970s, various algebraic structures associated to observables 
have been introduced* and shown to be fundamental ingredients in providing new 
insights into realization, observation, and other control-theory problems. 

In this paper, I give a brief and selective account of basic concepts and recent 
developments in the program of study that deals with the systematic use of spaces 
of observables. Considered are questions such as: Given an I/O mapping, how does 
one classify its possible state-space representations? With what algebraic, topolog
ical, and/or analytic structures are state spaces naturally endowed? How does one 
characterize those operators which admit representations in terms of finite sys
tems of first order ordinary differential equations? How do algebraic-differential 
constraints on input/output data relate to such representability? What are impli
cations of finite dimensionality, finite generation, and finite transcendence degree 
of linear spaces, algebras, and fields of observables, respectively, upon the classi
fication of internal models? and Which input functions are rich enough to permit 
all information about systems and states to be deduced from their associated ob
servables? Several answers are outlined, along with applications to the numerical 
solution of path planning problems for nonholonomic mechanical systems. 

The results reported here represent the contributions of many researchers; as 
far as my own work in this area is concerned, it has benefited greatly from dis
cussions with and the insight of many colleagues, including especially Jean-Michel 
Coron, Michel Fliess, Bronek Jakubczyk, Hector Sussmann, and Yuan Wang. 

In the interest of preserving clarity of exposition, the formulations in this 
talk are not the most general possible. For instance, inputs and outputs are often 
taken to lie in Euclidean spaces; although this covers the most interesting cases 
for applications, many aspects can be developed in far more generality, and this is 
indeed what is done in many of the references. Undefined concepts and terminology 
from control theory are as in [21]. 

2. Global Algebraic Aspects 

The most fundamental level on which to formulate the construction of observables 
is as follows. Let X be a set endowed with an action by a monoid (semigroup with 
identity) ft, and let H Ç R* be a collection of real-valued functions on X. For each 
veti and £eR*. let w-< := f*\ where t?(x) := £(X-UJ). This induces a left action 
of fl on R*, and seeing the latter as an algebra with pointwise operations, each 
map £\-^£u} is a homomorphism. The observation space ö(X,7i) and observation 
algebra A(X,7i) are the smallest Q-invariant M-linear subspace and subalgebra 
of Rx, respectively, that contain H. Their generating elements £", <GW, are the 
elementary (global) observables. 

*As with so many other notions central to control, observation spaces and algebras were 
first systematically studied by Rudolf Kaiman, now at the E.T.H., so this topic is particularly 
appropriate for a Zürich ICM. 
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An algebraic controlled system is given by an action X x fl —> X and output 
map h : X —> y for which each of the sets X and y is endowed with the structure of 
a real affine scheme, fl acts by morphisms, and h is a morphism. The state space X 
comes equipped with both the Zariski topology and the strong topology obtained 
by requiring that all elements of the algebra of real-valued regular functions A(X) 
be continuous. Such systems can be viewed as "generalized polynomial systems," 
because in the particular case when the algebras of functions A(X) and A(y) are 
finitely generated, the schemes X and y are algebraic sets and h as well as each 
of the maps x \-^> x -UJ are expressed by vector polynomial functions. (All affine 
schemes X are here assumed to be reduced over R, meaning reduced and real 
points arc dense. Identifying X with the set of its real points, X can be seen as 
the set SpecR (A) of all homomorphisms A —> R, for some R-algebra A = A(X) 
that is reduced over R.) Several basic results for algebraic controlled systems, 
some of which are summarized next, were developed in [19]. (This reference dealt 
specifically with discrete time systems, but the results hold in more generality.) 

For such a system E = (X, h), let H be the set of coordinates {poh, ip G 
A(3^)} of h. The system E is said to be algebraically observable (ao) if AE := 
A(X.H) = A(X). This condition is stronger than merely stipulating that observ
ables must separate points; it corresponds to the requirement that states must 
be recoverable from input/output experiments by means of purely algebraic op
erations. In the case of finitely generated algebras, it means precisely that each 
coordinate of the state must be expressible as a polynomial combination of the 
results of a finite number of experiments. With respect to a fixed initial state 
XQ G X, the action is algebraically reachable (ar) if XQ • fl is Zariski-dense in X. 
This property is in general weaker than complete reachability — i.e. transitivity 
of the action, XQ • fl = X — and corresponds to the nonexistence of nontrivial 
algebraic invariants of the orbit XQ • fl. An initialized system E = (X,h,xo) is 
algebraically irreducible or canonical if it is both ao and ar. 

An (I/O) response is any map F : fl —> y. A representation or realization of 
F is a E = (X, h, xo) so that F(UJ) = h(xo • UJ) for all UJ. Initialized algebraic systems 
form a category under the natural notion of morphism T : E1 —* E2, namely a 
scheme morphism T: X1 -^X2. with T(xl)=x2, such that h1(x) = h2(T(x)) and 
T(x • UJ) = T(x) • UJ for all x and UJ. Isomorphisms can be interpreted as "changes 
of coordinates" in the state space. Two isomorphic systems always give rise to the 
same response. 

THEOREM [23], [19]. For any response F there exists a canonical realization given 
by an initialized algebraic controlled system. Any two canonical realizations of the 
same response are necessarily isomorphic. 

A proof of the existence part of this result is quite simple and provides a starting 
point for the study of algebraic realizations, so it is worth sketching. Considering ft 
acting on itself on the right, A(ft. {poF, pe A(y)}) is the observation algebra AF 

of F. As fl acts by homomorphisms on AF, duality provides an algebraic action of 
fl on XF := SpecR (AF). On the other hand, the map F induces a homomorphism 
A(y) —>AF via ip \—> poF. which in turn by duality provides an output morphism 
h : Xp —> y. The construction is completed defining x0 G XF by XQ(%!>) := ^'(o) 
(evaluation at the identity). An important feature of this constructive proof is that 
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finiteness conditions on spaces of observables, which can be in principle verified 
directly from input/output data, are immediately reflected upon corresponding 
finiteness properties of canonical realizations. 

2.1. Finiteness Conditions. For simplicity, assume from now on that the out
put value space is Euclidean, y = Rp for some integer p (the number of "output 
channels"). 

For fl acting on itself and Fi the zth coordinate of F, 0(fl, {F\,... ,FP}) 
is the observation space ÖF Ç AF. Finite dimensionality of OF as a real vector 
space translates into realizability by state-affine systems, for which X is Euclidean 
and transitions x >—> x • UJ and output h are given by affine maps [14], [19], [6]. 
This is analogous to Hochschild-Mostow "representative" functions on Lie groups 
[11], those whose translates span a finite-dimensional space, but here translates 
are being taken with respect to a semigroup action. 

Finite generation of AF as an algebra over R corresponds to canonical re
alizability by systems evolving on algebraic varieties, and tools from algebraic 
geometry lead to stronger results. As one illustration of such results, take two 
realizations of the same response whose state spaces are nonsingular varieties. As
sume further that both systems are reachable and observable in the sense that the 
algebra A(X) separates complex points (this is considerably weaker than algebraic 
observability). An argument based on Zariski's main theorem shows that the two 
systems must then be isomorphic ([19], Section 26). 

When AF is an integral domain, one may introduce its field of fractions KF, 
the observation field of F. Natural finiteness conditions are then finite generation of 
KF or finite transcendence degree as a field extension of R. For classes of discrete-
time responses, these twro turn out to be equivalent. They characterize realizability 
in terms of systems with dynamics definable by rational difference equations, or 
alternatively by piecewise regular functions on a stratification into quasi-afnne 
varieties of dimension at most tr.deg/CF ([19], Section 27). This dimension can be 
explicitly computed from F, and finiteness is equivalent to existence of algebraic 
difference equations relating inputs and outputs. 

Most often encountered in engineering are linear responses. These are well 
understood (e.g. [21]), but it is worth recalling the basic facts in order to appre
ciate the context of the above and later results. In continuous time, fix a positive 
integer m, the "number of input channels," and let U = Wn and fl = flu. A linear 
response is one defined by a convolution operator F(UJ) = JT K(T — S)UJ(S) ds, for 
each C J G £ ^ [ 0 , T ] , where K is analytic (or more generally Ke (£i,ioc[0,oc))pxm). 
The natural finite-dimensional realizations in this case are linear differential sys
tems, which have Euclidean state spaces X = Rn, linear f(x,u) = Ax + Bu in 
their differential equation descriptions (1), initial state 0, and linear output map 
h(x) = Cx. Linear isomorphisms, basis changes in the state space, lead to an action 
(A, B, C) *-+ (T~XAT, T~XB, CT) of GL(n) on these representations. 

THEOREM. Let F be a linear response. The following are equivalent: (1) the vec
tor space ÖF is finite dimensional; (2) the algebra AF is finitely generated; (3) 
tr.degJC < oc; and (4) there exists a linear realization. Moreover, there is al
ways in that case a canonical linear realization, whose dimension gF = dim OF = 
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tr.degìCF is minimal among all possible linear realizations, and any two such re
alizations are in the same GL(n)-orbit. 

One then studies the family of all responses with fixed gF = n, or equivalently 
the quotient space of the open subset of canonical triples jVfn,m,p ^ flj™(**+m+p) 
under GL(n), seen as a smooth action of a Lie group on a manifold. This action 
is free, and the quotient has a structure of differentiable manifold for which the 
map Mn,m,p-+Mnìmìp/GL(n) is a smooth submersion and in fact defines a prin
cipal fibre bundle ([21], Section 5.6). Moreover, Mn,m,P/GL(n) is a nonsingular 
algebraic variety, and the moduli problem, fundamental for the understanding of 
parameterization problems for identification applications, is solved [27]. The op
erator A in a minimal linear realization is the infinitesimal generator of a shift 
operator in the observation space. However, it may also be viewed as a derivation 
on a space of jets of observables. This alternative characterization, which holds 
in the linear case, motivates the study of infinitesimal observation vector spaces 
and algebras. These objects can be defined for "analytic" classes of nonlinear re
sponses, which arise when viewing JQ K(T — S)UJ(S) as the first term in a higher 
order functional Taylor (nonlinear Volterra) expansion. In continuous time, such 
spaces are computationally far more useful than their global versions, as they do 
not involve integration of differential equations. A convenient way to introduce 
this approach is by means of generating series. 

3. Local Analytic Responses 

I continue to assume that U = Rm and y = Rp for some positive integers m 
and p. Analytic responses are defined in terms of power series in finitely many 
noncommuting variables, so these need to be reviewed first. 

3.1. Generating Series. Let 6 = {0Q,. .. ,6.m} be a set of symbols, L(B) the 
free real Lie algebra on the set 9 , R(6) its enveloping algebra, and R((6)) the 
completion of R(0) with respect to the maximal ideal (O). Thus, R((6)) is the set 
of formal power series 

c = 2_] (c\a)Q • 
aee* 

In these terms, the associative noncommutative R-algebra structure in R((0)) is 
that whose product extends concatenation in 0*, R(B) is the polynomial sub-
algebra consisting of series with finitely many nonvanishing coefficients, the free 
associative R-algebra on 8 , and L(9) is the Lie subalgebra generated by 6 . Finally, 
the Lie algebra of Lie series L((0)) consists of those cGR((0)) whose homogeneous 
components are in L(Q), and the set of exponential Lie series G((0))=cxp(L((Q))) 
forms a multiplicative subgroup of R((0» (Campbell-Hausdorff formula). There is 
a linear duality between R((B)) and R(6): 

(c\X) = YJ (c\a)(X\a). (2) 

There is also a commutative associative product on R((0)), the shuffle product, 
with the empty word as unit and with ßOiUJaOj = ((ß0i)ma)6j + (ßiu(a0j))0i for 
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all /3,aG0*. For each dGR((0)) and A G R ( 0 ) , A^dGRß©» is the adjoint defined 
by (X~1d\a) := (d\Xa) (dA -1 is defined analogously). The action di—> A_1d makes 
R((0)) into a right module over R(0) . Restricting A to £ (0 ) defines an action 
by derivations of L(Q) on R((©)) seen as a shuffle product algebra (Friedrichs' 
criterion amounts to the converse: d»—> A_1d being a derivation implies A G L ( 0 ) ; 

see the excellent exposition [16]). The series c G R((0)) is convergent if there is 
a positive (radius of convergence) p and a K so that \(c\a)\ < Kg^.pß- for each 
a€Q*, a = length of a. The set of convergent series is invariant under d »-> A_1d. 

3.2. Chen-Fliess Embedding of Inputs. For each UJ G £^[0,T] = (£oo[0,T])m 

and 50 GR((0)), consider the initial value problem 

S'(t) = (oo -r f>(*)0* J S(t), S(0) = S0 (3) 

seen as a differential equation over R((0)) (derivative taken coefficientwise). There 
is a unique solution Sums0 defined on [0,T], with absolutely continuous coefficients, 
that can be characterized as a fixed point of the corresponding integral equation; 
successive approximations give rise to the Peano-Baker formula, which exhibits 
the solution in terms of iterated integrals. In particular, 5Wji (T) defines the Chen-
Fliess series CF[UJ] of a; [2], [5], [26]. By uniqueness of solutions of (3), the mapping 
UJ y-> CF[UJ] is an (anti-) homomorphism from ft = flu into the multiplicative 
structure of R((0)), and as moments of UJ are among the coefficients of CF[Q;], the 
map is 1-1. It can be proved that the elements in the image lie in G((0)), so one has 
a natural group embedding of ft into G((&)). Furthermore, if the components of 
a;G/:^[0,T] have magnitude less than 1 then |(CF[o;]|a)| < T^/a\ for each a G 0*. 
The pairing (2) extends to such a series A = CF[O;], provided that c is convergent 
with radius satisfying Tp(m + 1) < 1; the scries defining (C|CF[O;]) then converges 
absolutely, uniformly on the restrictions UJ\t of UJ to initial subintervals [0, t],t< T. 

3.3. Germs of Responses and Systems. Let QQ Q ft contain for some T > 0 a 
neighborhood of 0 G £^[0,T] and be closed under restrictions to initial subinter
vals. A map F : fio —> y defined on some such Do, with coordinates Fì(UJ) := 
(Cì\CF[UJ]) for some vector c = (c\,... ,cp) of convergent generating series c, is a 
local analytic response. (Various more global definitions of analytic response can 
be given; see e.g. [12].) From now on, I will indentify any two F's that coincide on 
the intersection of their domains and "response" will thus mean a germ of local 
analytic response. With this convention, responses are in 1-1 correspondence with 
p-vectors of convergent generating series. Furthermore, to make the presentation 
simpler, and because most interesting cases for applications arc encompassed by 
this subclass, system will mean a differential system E analytic and affine in con
trols: X is an analytic manifold, h and / are analytic, and f(x, u) is affine in u. That 
is, in (1) one has £ = gQ(Ç) + X)jli ^jgjfë), for some m+1 analytic vector fields 
gj. Fixing an initial state xQ G X, the complete I/O behavior FE 'X° (UJ) = h(x0 • UJ) 
is by analytic continuation uniquely determined by its restriction to small times 
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and controls, the response characterized by the Fliess generating series 

(ci\6jl ... Qjk) := (gjk ... ghhi)(x0), 

where hi is the ith coordinate of h (cf. [5], which generalized Gröbner's "Lie sc
ries" [8] for autonomous systems). A realization of a response will mean a local 
realization in this sense: specifying a manifold, initial state, h, and vector fields 
that represent the germ. 

3.4. Infinitesimal Observables of the First Kind, Realizability. For any given 
system E, the infinitesimal observables of the first kind, which summarize infor
mation contained in jets of global observables [14], [10], [6, 21], are the functions 

9h"-9jkhu (Ju---Jk)e{0,...,m}k, k>0, i = l,...,p. 

The observation space (resp., algebra) of the first kind Ö E (resp., AE) is defined 
as the linear span (resp., algebra under pointwise products) of all these functions. 
The field of fractions /CE is well-defined if the manifold is connected. Starting 
instead with a response F, with series c= (ci,...,cp) G (R((0)))p, there is an 
infinitesimal observable of the first kind, a~lci, for each ciEQ* and i = 1 , . . . ,p. 
(These elements correspond to certain derivatives of F that can be defined when 
using piecewise constant controls UJ.) Taking the smallest R-linear subspace of 
R((0)), shuffle subalgebra, and quotient field, containing all elements a~lCi, there 
result the observation linear space GF, algebra AF, and field of observables /CF of 
the first kind associated to F (or c). When (E,.r0) realizes F, E is accessible (see 
below), and X is connected, Ö F ~ Ö E , AF^AT', /CF~/CE . 

The system E is accessible at x0 if the reachable set from x0 has nonempty in
terior; equivalently (Chow's theorem) the accessibility rank condition (ARC) holds: 
£E(o.,o) = TXQX, where £ E is the (accessibility) Lie algebra of vector fields gener
ated by {gi, z = 0 , . . . , ra}. It is locally observable at x0 if observables corresponding 
to small-time controls separate points near x0; equivalently, the observability rank 
condition (ORG) holds: dOE(xQ) =T*oX. The system E is analytically canonical at 
x0 (from now on, just "canonical") if it is both accessible and locally observable at 
x0. Canonical realizations of any response are unique up to local diffeomorphisms, 
and a global result also holds (cf. Sussmann [24], as well as Fliess [5], which related 
to Singer and Sternberg's work on local equivalence of pseudogroups induced by 
isomorphic Lie algebras [17]). 

In complete analogy to the global algebraic case discussed earlier, algebraic 
finiteness conditions on infinitesimal observables associated to F reflect differen
tial realizability properties [1], [31]. Finite generation of AF relates to canonical 
realizations describable by polynomial differential equations, and tr.deg /C < oc to 
rational realizability. 

Of far wider applicability is an elegant general condition for realizability due 
to Fliess, which can also be expressed in terms of AF. Assume that (E,£0) is 
any realization of F. The set {£ i-> X£(x0),X G £ E } of linear maps A^ - • R 
identifies with the subquotient T E = £ E (x 0 ) /£ E (x 0 ) f)(dö*(xQ))° of TXQX. The 
crucial insight is that an intrinsic definition of TE

o, independent of the particular 
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realization, is possible. The elements of L(@) act as derivations on the (shuffle) 
ring of observables AF and hence can be thought of as formal vector fields. Vectors 
should be obtained by evaluations of these vector fields at a point playing the role 
of x0. As AF is an algebra of functions on Chen-Fliess series, a candidate for 
such an evaluation is (-|1). (In fact, one could also think of the group extension of 
Chen-Fliess series as the state space for a formal, accessible, but not observable, 
realization.) Thus, it is natural to define TF as the vector space of linear operators 
d H-> (A_1d|l) on AF. The dimension of T F , which is isomorphic to span{cA_1, A G 
L(&)} Ç (R((0)))p, is the Lie rank gF; it can be computed algebraically from the 
coefficients of the series c and generalizes the Hankel rank from the linear case. It 
is easy to see that TF ^T^Q for all possible realizations E; moreover, T^Q =TXQX if 
and only if E is canonical. Thus gF <dim X, with equality in the canonical case. 

A result ensuring existence of E provided gF < oo was stated by Fliess, 
motivated by formal groups work of Guillemin, Sternberg, and Singer [17], [9] in 
connection with Cartan's fundamental theorems, and various alternative proofs 
have been given: 

THEOREM [5], [15], [12]. F is realizable if and only if gF < oc; gF is then the 
dimension of the canonical realization, and is the minimal possible dimension of 
any realization. 

3.5. Infinitesimal Observables of the Second Kind, I/O Equations. For each 
smooth control u and each k > 0, let 6(UJ, k) := S^\(0) G R(0). This is the fcth 
derivative, evaluated at t = 0, of the solution defining the Chen-Fliess series of UJ. 
Given an F, with generating series c, and any i = 1 , . . . ,p and k and UJ, there is 
an infinitesimal observable of the second kind ô(uj,k)~1Ci. These elements span a 
linear space, a shuffle algebra, and a field ÖF, AF, and /CF. They characterize jets 
of outputs, because (Cì\O(UJ, k)) is the ith coordinate of (dk /dtk)(F(uj\t))\t=o- The 
following fundamental equalities, valid for any F, are central to further results, and 
can be proved by establishing that the elements S(UJ, k) form a set of generators 
for the algebra R(0). 

THEOREM [28]. 0F = 0F, AF = AF, andKF = KF. 

Often in applications, one is given a differential equation directly linking inputs 
and outputs. Let £ : Uk x Rk+l —>R be analytic, nontrivial on the last variable. A 
response F with y = R satisfies the input/output equation 

£(uj(t),J(t),... uj^-'Ht); n(t), nf(t),..., rfk\t)) = 0 

of order k if this equality holds for all pairs of functions (uj,rj(t) = F(uj\t)) with 
UJ smooth of sufficiently small magnitude and all small t. (For y = RP, p> 1, an 
equation would be imposed on each output coordinate, but for simplicity I only 
consider the special case p = 1.) The differential rank gF of F is the smallest k 
(possibly -hoc) so that F satisfies an i/o equation of order k. 

For linear responses, it is well-known — an immediate consequence of the 
theory of linear recurrences — that realizability is equivalent to the existence of 
"autoregressive moving average" representations, that is, I/O equations with £ 
linear (or in harmonic analysis terms, rationality of transfer functions). In general, 
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an I/O equation establishes constraints on jets. For instance, if £ is a polynomial 
function, the above equation says that rfk) is algebraic over a field generated by 
lower derivatives of inputs and outputs (the precise formulation is in terms of 
differential algebra). Appropriate finiteness conditions on OF, AF, and /CF are 
equivalent to the existence of equations with £ linear or polynomial on y, and to 
corresponding special forms of realizations [31]. For the general analytic case one 
has: 

LEMMA [30]. / / F satisfies an I/O equation (gF < +ooj then it is realizable (g < 
+ooJ. 
Observation fields play a central role in the proof. Sketch: gF < +oo implies that 
JCF is a meromorphically finitely generated extension of R, and by the previous 
fundamental equalities the same holds for /CF. Using coordinates for the latter, 
one obtains a formal realization. However, this realization may have singularities 
at its initial state xQ, so it may not define a true analytic system. On the other 
hand, in this realization, the responses corresponding to nonsingular states near 
xQ give rise to generating series with finite, in fact uniformly bounded, g. Using 
lower semicontinuity of Lie rank gives that gF <-\-oc. 

3.6. Universal Inputs, Orders of Equations. For each fixed smooth control LJ 
and response F, one may consider the linear span ÖF of the elements 6(LJ, k)~lCi, 
i = 1 , . . . ,p, k > 0. In general this is a proper subspace of ÖF (the sum of ÖF 

over all UJ). However, for appropriate UJ, the projections on the constant term, 
being either 0 or R, may produce a pointwise equality. For any O Ç R((0)), let 
(0\1) = {(l\l), l G O}. A smooth control LJ is universal for the family of responses 
T if (OF\1) = (OF\1) for each F e J7. Given a system E, consider the family of 
responses TY that is obtained by including, for each fixed state x{), the response 
F E : r o , and for each x0 and each vector veTXoX also the response dF^,x°iV defined 
by the series with (ci\6jl ... 9jk) := (dgjk... gj1hi)(xl))v. 

THEOREM. For each E, there exist analytic controls universal for FY- Moreover, 
the set of smooth controls universal for TY is generic. 

Here, a set fl^ of smooth controls is generic if the set {(LJ(0),LJ'(0),.. .),o;Gr2o} of 
jets contains a countable intersection of open dense subsets of n ^ o ^ m ( P r o c m c t 

topology). This transversality result can be traced to a sequence of papers includ
ing [7], [18], [25], [29], [4], [32] by Grasselli and Isidori, Sussmann, Wang, Coron, 
and the author. (A somewhat more general result ensures existence of controls 
universal uniformly on all TY • Also, an alternative theorem can be stated in terms 
of genericity in a Whitney topology, for controls of fixed length.) 

It is an immediate consequence of the theorem that, for each observable 
system E, there exists some analytic control with the property that the output 
function when using this particular control uniquely determines the internal state 
("universal inputs for observability"). Also, given any two initialized systems, there 
is an analytic control that distinguishes them. Another application is as follows. 
Here p=l. 

THEOREM [29], [32]. For each F, g<gF. If there is a canonical realization of F 
in terms of rational vector fields, equality holds. 
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This generalizes the classical linear case, where g = gF. By the Lemma, of <+oo 
implies g< -hoc. The critical step in the proof is to show that if E is a canonical 
realization of dimension n, but there is an equation of order d<n, then for each LJ 
there would exist x and v so that ( ö^ | l ) is a proper subspace of ( ö ^ | l ) , for G = 
dFE j X o , v . The additional property in the rational case follows by straightforward 
elimination theory. 

Yet another application is, by duality, to controllability problems. Assume 
that ax : LJ »—> X-LJ is defined on a £ ^ [0, Tj-neighborhood of LJ0. The control LJO is 
nonsingular for x ììax is a submersion at UJQ. (Fréchet derivative a^^o] is onto, or 
equivalently the variational equation along the ensuing trajectory is controllable 
as a time-varying linear system.) The control LJ is nonsingular for the system E if 
for each state x there is a restriction of LJ to some initial subinterval [0, t] that is 
nonsingular for x. (It follows that, if x • LJ is defined, LJ itself must be nonsingular 
for x.) Numerical techniques based on linearizations rely upon such controls, so it 
is of interest to study their existence. 

The system E is strongly accessible from a state x if there is some T > 0 so 
that the reachable set from x in time exactly T has nonempty interior; equivalently, 
E satisfies the strong accessibility rank condition (SARC) at x: CQ(X) = TXX, 
where £ E is the smallest Lie ideal of £ E containing {gi, i = 1 , . . . , ra}. For each x 
there is some LJ that is nonsingular for x if and only if the SARC holds at all x. 
One implication is immediate from the implicit function theorem, and the converse 
follows by a standard argument involving Brouwers fixed point theorem, which 
allows restricting to countable families of controls, hence permitting application 
of Sard's lemma [20]. A stronger result holds: 

COROLLARY. If the SARC holds from each state then there is an analytic con
trol nonsingular for E. Moreover, the set of smooth controls nonsingular for E is 
generic. 

This result can be found, in this form, in [22]; a weaker form in which controls 
are multiplied by a scalar function of x was given in [3], for general smooth, not 
necessarily analytic, systems with go = 0, and stronger results are now available as 
well [4]. The basic observation needed in the proof is that nonsingularity can be 
expressed as the nonvanishing of the output of an extended system Ee obtained 
from E by adjoining a variational equation and a matrix equation that computes 
the controllability Gramian. The problem is reduced to finding inputs universal 
for TY. • 

I end with an illustration, closely connected with the results in [3], of how 
this corollary can be used to numerically approach certain control problems. 

4. An Application: Steering Nonholonomic Systems 

It is often of interest to explicitly compute motions for mechanical systems, es
pecially those subject to constraints such as the nonslippage of rolling wheels. 
Specified are a (for the present purposes, analytic) manifold X, the configuration 
space, and a constant-rank codistribution D on X, which describes the kinematic 
constraints. The objective is to find, for each pair of states x0 and Xf, a curve 
tangential to the kernel of D, whose initial point is xQ and final point equals, or is 
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sufficiently near, the target X{. Assuming tha t k e r D can be globally spanned by 
independent (analytic) vector fields g\,..., gm, one may introduce a system as in 
Section 3 (go=0), and for this system the problem becomes one of finding a control 
LJ so tha t X0-LJ is equal to or close to Xf. In this case complete controllability, tha t 
is, solvability of the exact problem for all pairs (x0,Xf), is equivalent to the SARC 
(or the ARC, as go = 0) holding globally. Many sophisticated synthesis procedures 
have been proposed, most based on a nontrivial analysis of the structure of £ E , 
and a rich literature exists (e.g. [13] and references there). When the structure £ E 

is too complicated for a detailed analysis, a numerical technique as follows could 
in principle be used. 

For simplicity of exposition, I'll assume tha t X = Rn is Euclidean and X{ = 0. 
Multiplying the vector fields gi by a suitable scalar function, one may assume tha t 
the system is complete. Thus, controls defined on a fixed interval, say, [0,1/2], 
provide well-defined trajectories, and by the results previously stated, smooth ones 
are generically nonsingular. 

For any one such control LJ, one may consider the antisymmetric extension UJ 
of u; to [0,1] having UJ(1—t) = —uj(t) for t G [0,1). This defines a measurable control 
tha t is again nonsingular for the system, but now in addition X-LJ = X for each state. 
Thus, x • (UJ-\-V) = x + a4p;](u) + o(v). By nonsingularity, there is some v so tha t 
o4[£5](i>) = —x. One choice for v is the pseudo-inverse v = N(x) = — ( a ' r p ] ) (x). 
Thus, x-(ûj-\-hv) = (l—h)x+o(h) for such v and small h. Wi th the alternative choice 
of the adjoint v = N(x) = — (ax[uj]y (x), there results x-(uj-\-hv) = (I—hQ)x+o(h), 
where Q is positive definite and self-adjoint. In either case a contraction results for 
small h. Moreover, the following result holds for both of these choices of operator 
N (which correspond respectively to Newton and steepest descent algorithms, and 
can be explicitly computed in terms of variational equations), as well as for a 
larger class defined in abstract terms; it concerns the convergence of the iteration 
Fh(x) :=x-(uJ-rhN(x)). 

T H E O R E M [22]. Let B\ Ç B2 be any two balls in Rn centered at 0. Then, for 
generic LJ, and for each h > 0 small enough, there is some integer N so that 
F»(B2)QBi. 
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1. What is the Impetus for Change? 

The past decade has seen significant changes in the teaching of mathematics in 
the United States. There are new curriculum guidelines for primary and secondary 
school mathematics written by the National Council of Teachers of Mathematics. 
There is a flurry of activity around the teaching of calculus, both at the university 
and at the secondary school level. There has been a tremendous upsurge in the 
number of presentations on educational issues at professional meetings. 

These changes have come about for reasons that are frequently as relevant 
outside the United States as inside. One is the concern over access. Do enough 
students take mathematics? Do enough students pass mathematics? Do the right 
students pass? Do wc orient the courses to future mathematicians at the expense 
of future engineers? Do we educate men at the expense of women? Students from 
one race or culture at the expense of others? To mathematicians accustomed to 
teaching the best course possible and then seeing who rises to the top, these 
questions might seem unusual or out of place. But in a world in which mathematics 
can be a ticket to economic success, mathematics education can have a political 
component. 

The second impetus for change in the United States is dissatisfaction with 
students' performance. In many countries, the sentiment that "students aren't 
what they used to be" has led to a cascade of complaints blaming students' prepa
ration on the level below. University professors blame high school teachers; high 
school teachers blame elementary school teachers, who in turn blame the home 
environment. 

The past ten years have seen a gradual acknowledgment of the fact that 
progress will involve working with students as they are, rather than as we might 
wish they were. This has led to new approaches to involving students. An out
standing example is Calculus&Mathematica [1] at the University of Illinois, which 
is written in a medium in which students are very much at home (computer gen
erated visual images) and uses language that is obviously theirs and not their 
professors'. The fact that formal definitions are postponed until students have de
veloped an intuitive understanding of concepts from graphs has enabled a wider 
range of students to understand calculus. 
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A third force for change, and the one responsible for getting many math
ematicians involved, is the advance in technology. The fact that calculators and 
computers can now easily compute definite integrals, sketch graphs, solve equa
tions, and find high powers of of matrices is having an impact on what we teach. 
Within a year, inexpensive calculators will be able to do all the algebraic manipu
lations that have been the backbone of high school mathematics for decades. What 
does that mean for our courses? Should we stop teaching students to do these pro
cedures? Should we not allow students to use technology in the classroom? How 
much should technology drive the curriculum? 

These are extraordinarily difficult questions. It is my hope that the research 
community will heed the recent call to "work, not fight" and will cooperate actively 
with the education community to find answers that are mathematically sound 
as well as pedagogically robust. We must have answers that accurately reflect 
mathematics and that make sense to real students and real teachers. 

2. The Central Problem 

Before embarking on any change, one should first establish goals. Discussions in 
the Consortium based at Harvard have convinced us that our primary concern 
should be to affect students' views of mathematics. 

Consider, for example, the calculus student who objected to being asked to 
suggest formulas for functions whose graphs were given. His reaction was that he 
did his graphs "in the other order." He meant that if he were given the formulas, 
he could draw the graphs, but not the other way round. 

Another student objected to the following problem on the grounds that it 
was "too vague:" 

A particle starts at the origin and moves along the graph of y = x2/2 
at a speed of 10 units/second. 

(a) Write down the integral that shows how far the particle has trav
elled when it reaches the point where x = a. 

(b) Estimate the ^-coordinate of the point the particle has reached 
after it has been travelling 2 seconds. 

Further investigation made it clear that the student thought the problem was 
vague because it didn't contain the words "arc length" and therefore he didn't 
know what to do. 

Such examples are unfortunately not unique. All over the world students 
come to mathematics asking, as one of mine did recently, "When do we get to 
the part where we just have to do it?" For these students, mathematics is a set 
of procedures to be followed, rather than ideas to be understood. Such procedures 
are indeed important, but learning algorithms alone is not learning mathemat
ics. Unfortunately, many students currently do well in their mathematics courses 
without learning to think at all. 

Consequently, the central problem facing teachers of mathematics is, as it 
always has been, getting students to think mathematically: to understand and use 
concepts, and to be ready to do problems for which no template has been given. 



1548 Deborah Hughes-Hallett 

Technology may be useful in addressing this problem, but technology is not the 
main issue. 

3. Multiple Representations: The Role of Technology 

To focus a course on the central ideas of mathematics, observe that most concepts 
are better communicated in pictures or words, or sometimes numbers, rather than 
in symbols. For example, the idea of a derivative can be thought of as a rate of 
change (words), or the slope of a curve at a point (pictures), or as the limit of 
the difference quotients (numbers). Thus, focusing on concepts requires verbal, 
graphical, and numerical presentations in addition to a symbolic one. 

It is this renewed emphasis on graphical and numerical representations that 
makes technology important. Using technology, graphs and numerical work, pre
viously hard for students, become easy to include in any course. Thus, although 
the technology does not drive change, it does make the change possible. 

As an example, consider two problems that use graphing technology to fo
cus on concepts. These problems are from the materials written by the Calculus 
Consortium based at Harvard [2]. 

Example 1: Determine the windows (domains and ranges) that make 
the graphs of y = 3X and y = xA look like those in Figure 1. 

Figure 1 

You might think that such a problem is easy to do by trial and error and 
that therefore the only skill being tested is calculator button pushing. Watching 
students work on this problem, however, shows that it requires them to consider 
the qualitative behavior of power and exponential functions: which function is 
greater where, and so on. Thus it is, in fact, a problem about the effects of scale 
on power and exponential functions. 

Example 2: The number of hours, H, of daylight in Madrid is approx
imated by a sine function of t, the number of days since the start of 
the year. Figure 2 shows a one-month portion of the graph of H. 

(a) Comment on the shape of the graph. Why does it look like a straight 
line? 
(b) What month does the graph show? How do you know? 
(c) What is the approximate slope of the line? What does this slope 
mean in practical terms? 
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H (daylight in hours) 

( days since \ 
\ start of month / 

Figure 2 

With a calculator that can "zoom in," the idea of local linearity that lies 
behind this problem becomes vivid to students in a way hand-drawn pictures and 
words can never achieve. 

Two aspects of this problem that strike students as unusual are that they need 
information from outside mathematics to solve it (that Madrid is in the northern 
hemisphere, for example) and that they are expected to explain what the slope 
means in words. It is this insistence on explaining graphical ideas in words that 
helps students learn to think mathematically. 

4. The Relationship Between Intuition and Rigor 

There is a remarkable difference between the way in which professional mathe
maticians work and the way in which they teach. In research, experimentation 
and examples come first, followed by conjecture, more examples, and finally proof. 
In teaching, theorem and proof often come first and examples afterward. We should 
consider the fact that students may learn mathematics better if they are taught 
in a way modelled on the way in which mathematics is actually done. 

A question of great importance for mathematics is how to teach students to 
think rigorously. Past experience shows that teaching computational algorithms is 
not enough. We have many students who learn how to do computations without 
knowing what they mean. (For example, the student described previously knew 
how to compute arc length, but did not recognize it as giving the distance travelled 
by a particle moving along the curve.) Precise arguments are impossible without 
a clear picture of the meaning of the symbols and computations involved. Thus, 
a necessary prerequisite for writing a sound mathematical argument is a clear 
intuitive understanding of concepts. We need to change many of our undergraduate 
courses to foster such understanding. 

For many students, however, it is not practical to go from the introduction of 
an idea to a precise formulation in one course. Some time is needed for the intuitive 
ideas to gel before the formal definitions can be used with fluency. Unfortunately, 
in the past we have often skipped over the development of geometric and intuitive 
understanding and attempted to get students to argue formally from the start. 
This is a shortcut that seldom works. 

Students will progress further mathematically if they first obtain a clear visual 
understanding of the concepts. The next stage is to learn to explain the concepts in 
everyday language. The third stage, becoming adept at using formal definitions and 
precise language, depends upon the ideas being already well understood graphically 
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and verbally. To enable students to be successful at the third stage, it is crucial 
tha t enough time be spent at the first two stages. 
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The popularization of mathematics is a new topic for these congresses. Although it 
has always been one of the main congress functions, popularization here is set at a 
high level and for a very special audience, one for which mathematics is already a 
congenial friend. But mathematics is not congenial to most people, even though it 
may be important to them. This leads us to think of popularizing mathematics to 
general audiences, young and old, learned or not, indeed any group we can reach. 
The very etymology of the word "popular" impels us to adopt the widest possible 
scope in our efforts. 

My aim here is to popularize the popularization of mathematics. I will iden
tify, discuss briefly, and illustrate some issues concerning its practice. Most of my 
illustrations will come from Square One TV, & television series about mathematics 
for children. 

Background 

The popularization of mathematics has a longer history than one might realize. 
In Reid's biography we read that David Hilbert gave popular lectures in 1921 
for students returning to the university after the war and continued the series 
through the 1920s. [8, p. 154]. Lucas' "Towers of Hanoi" game is an example with 
a much broader impact [cf. 4]. One of my favorite examples is The Ladies ' Diary, 
published from 1704-1841 by the Company of Stationers (London). It advertised 
itself as "Containing new improvements in arts and sciences and many entertain
ing particulars " The "particulars" included mathematics problems and letters 
about them [cf. 2, pp. 155 and 455]. 

Even though popularization has a long tradition, practitioners have only 
begun to think about it systematically in the last few years. The stimulus for this 
was an invitation by the International Commission on Mathematics Instruction 
(ICMI) to participate in a study seminar at the University of Leeds (UK) in 1989. 
In announcing the seminar, Howson, Kahane, and Pollak [5] described the need, a 
framework, some principles, and methods of popularization. 

Some ask, "Why do it at all?" For a long time, the mathematical commu
nity has maintained itself as a sort of priesthood. We've been rather passive with 
regard to recruits, erected a difficult series of trials for anyone who would join 
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us, and even militated against participation by members of some groups. How
ever, the world has changed so that more people need comfort and facility with 
mathematics to get on with their lives. Local, regional, and global political and 
economic realities generate increasingly complex demands, many involving some 
mathematics. We might expect mathematicians, if only through self-interest, to 
take some responsibility for the ways in which the general public sees and uses 
mathematics. A society comfortable with mathematics is more likely to tolerate 
and support those who want to work with it. 

By its duration and intensity, school experience dominates all other influences 
on people's attitudes toward mathematics. As most people have a bad experience 
with mathematics in school, we need to improve the school situation in order to 
hope for significant change in the popular view of mathematics. All mathematicians 
should take note of the vigorous reform movement for mathematics education that 
is at work in many places. Meanwhile, many people are beyond the reach of school. 
For them and for the support of today's students, we must create opportunities to 
learn about and to practice mathematics outside school. Programs to popularize 
mathematics among a broad audience serve this purpose. Before proposing several 
issues for our consideration, I will describe some exemplary programs. 

Principles and Examples 

In reviewing and comparing existing programs of popularization, several princi
ples emerge that seem to guide them. We go to people where they are — watching 
television, reading a newspaper or shopping for clothing — rather than expect
ing them to come to us. A program must be attractive to draw participants, as 
participation is voluntary. The primary attraction may not be mathematics, but 
rather something else such as music, humor, or physical activity. Without willing 
participants, without an audience, there is no possibility of success, no matter 
how worthwhile the mathematics. What we hope is that the satisfaction in the 
experience will include pleasure in the mathematics and encourage a favorable 
attitude and a readiness to consider more. The effects of any one experience are 
often slight and diffuse, but popular activities are repeatable. One can revisit a 
museum, watch a film again, follow a television series. The effects accumulate and 
interact. A discussion of these principles appears in [5]. 

All of this is very much in the spirit of the Leeds conference. The conference 
proceedings [6] are worth reviewing because they describe a variety of projects in 
several formats and venues: lectures, competitions, games, exhibitions, magazines 
and newspapers, and broadcast media — radio and television. Another source 
of examples is the ICMI report in the proceedings of the Seventh International 
Congress on Mathematics Education [7]. Following are a few examples from the 
Leeds' papers by way of illustration. 

Shannon describes his experience in talking to a Rotary Club unit in Sydney 
(Australia). He alerts us to an important audience, available to each of us, namely 
the local business and professional groups in our home communities. It's worth 
noting that they often represent the local political and economic power. This is a 
project that can be taken up by any mathematician. 
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Competitions can be great fun and rewarding for those who enjoy them. 
Burjan and Vrba describe an extensive national system of competitions. We usually 
think of the International Mathematics Olympiads and the national competitions 
that produce the teams, but for our goal of affecting a broad audience, general 
competitions are more important. The programs of Gilles Cohen (La Federation 
Française des Jeux Mathématiques et Logiques) [cf. 7] in France and of George 
Lenchner (Mathematics Olympiads for Elementary Schools) in the USA both show 
that there is a large general audience for competitions even at the elementary level. 

Games give many people their earliest experiences with probability, strategy, 
and patterns. They are an especially effective format for popularization in that 
they readily involve parents and children. DeGuzman discusses games in terms of 
popularization. 

Exhibitions are increasingly successful means for attracting attention and 
interest. Brown and Porter describe the problems that arise in constructing an 
effective exhibition and their experience in creating "Mathematics and Knots". 
This interesting exhibit was also included in the PopMaths Roadshow at the Leeds 
conference [cf. 6, Foreword]. 

Mathematics and newspapers and other varieties of print are natural vehicles 
for popularization. Many popular science magazines feature problems or a column 
on a mathematical topic. Barbeau, Emmer, and Larsen all discuss writing about 
mathematics. Of course, each of them is a mathematician writing about mathe
matics. Steen addresses the difficulties in promoting articles on mathematics in 
the newspapers, where writers and editors will usually not be friendly to mathe
matics. It is worth noting that the Zürich newspapers ran at least five articles [3] 
on mathematics during the congress. Of course, one would rather not have to go 
to the trouble of convening an international conference to read about mathematics 
in the newspapers. 

The broadcast media, both radio and television, are powerful tools for deliv
ering information and for shaping public opinion. They are prominent elements of 
popular culture. Power and prominence make them attractive to us, too. Four of 
the Leeds papers deal with these media. Barbeau writes about discussing mathe
matics on a radio interview program; Emmer about making films relating art and 
mathematics; and Hoyles about Fun and Games, a televised mathematical game 
show. Fun and Games is an important project because of its success as a pro
gram for an adult audience broadcast in a prime viewing time. Esty and Schneider 
describe Square One TV, a television series for children, broadcast in the USA. 

Square One TV is a daily series broadcast in the USA from 1987-1994 late 
in the afternoon. The primary audience is 8-to- 12-year-old children viewing at 
home, not in school. Each of the 230 half-hour shows comprises 6-12 independent 
segments drawn from a pool of 1100. The segments are humorous parodies of 
television broadcasting conventions: dramas, musicals, game shows, commercials, 
and so on. In keeping with the principles of popularization mentioned above, we 
tried to produce a series that would compete for viewers among the great variety of 
entertaining alternatives available at the same time on commercial television. The 
primary audience varies greatly in age, taste, and social as well as mathematical 
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sophistication. In response, we also varied the shows in style and format and in 
level and type of mathematics. Our Leeds paper describes the project in detail. 

Issues 

In the course of producing Square One TV, we learned a lot about dealing with 
mathematics in a popular medium, as have all of the other practitioners. In re
viewing a large number of programs, one notices, in addition to guiding principles, 
at least nine issues that should concern us: 

1. What is the relation to school mathematics? 
2. What is the influence of the setting or venue? 
3. What is the nature of cooperation with partners? 
4. What is the interplay with the wider culture? 
5. What is the relation to the problem of women's participation in mathematics 

at all levels? 
6. What is the relation to the problem of cultural minorities' participation in 

mathematics at all levels? 
7. What is the relationship with popularization of science? 
8. How do we define and assess the impact of projects? 
9. How do we promote a healthy flow of information and encourage collaboration 

among practitioners? 

I propose that we begin to look at these issues to improve our practice and 
to increase our effectiveness. I will draw on my experience with Square One to 
illustrate some of them. 

School. Surely any effort to popularize mathematics should support school reform. 
Successful programs might and, often, do migrate into the schools in some form. 
Popular lectures may be repeated to new audiences, especially by using film or 
video recording. Schools are a natural place to prepare for competitions, which in 
turn have the potential to influence curricula. Many teachers use games in their 
teaching. School trips to visit exhibitions are common. Magazines and newspapers 
are a standard feature of many classrooms. We can also have a migration from the 
medium of open-circuit broadcast television, such as in the case of Square One TV. 

Even though we were producing Square One TV for an audience at home, 
we were alert to the possibility that the shows might be useful in school. In fact, 
some teachers used the shows at the very beginning. With this encouragement, we 
are producing a version of the series specifically designed for classroom use. The 
derivative series, Square One TV Math Talk, comprises twenty new 15 minute 
shows. Each of the new shows will deal with a single topic (e.g., bilateral sym
metry). We will provide a book that describes ways for teachers to use the shows 
in classrooms. An instructional television network will broadcast the shows for 
teachers to videotape, and we will also offer them on video cassette for purchase. 

Each Math Talk show features two animated cartoon characters as hosts, 
Maria Lopez and her partner, Buster, who is a parrot. They respond to telephone 
calls from people asking questions about mathematics and they illustrate their 
responses with video from the Square One TV library. For example, in the show 
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dealing with bilateral symmetry, Maria and Buster illustrate the concept with a 
segment of "Mathman" (a parody of the once-popular video game "Pacman"). In 
this segment, the character must identify geometric shapes with a line of symme
try. Maria and Buster continue with a segment of "General Mathpital" (a parody 
of "General Hospital", a popular soap opera). In it, surgeons must operate on an 
asymmetric shape so as to reassemble the pieces into one that is bilaterally sym
metric. In doing so, the surgeons discuss the concept and explore several solutions 
to the problem. The show concludes with a portion of one of the nine Square One 
TV game shows. Of course, it features a task for the contestants that involves 
symmetry. 

Context. In producing Square One TV, we placed our material deeply in the con
text of our medium. Soap operas and game shows are perennial favorites among 
radio and television audiences. Video games are more recent innovations, but just 
as popular. The conventions and constraints of the medium governed many of our 
decisions and certainly impinged on the mathematics. For example, in producing 
Square One TV, we had a persistent conflict between our wanting to give a viewer 
time to think about a problem and the producers' sense that the best show is a 
fast-paced show. 

Partners. In using a popular medium, we have not been able to act alone or to act 
solely from the standpoint of mathematics. Television production involves a large 
number of people — producers, directors, writers, carpenters, and many more. 
The goal for each of these talented people was to produce an attractive piece of 
television that would be a good addition to the Square One TV library — lively 
and repeatable. They were not also expected to attend to the additional goal that 
it convey some worthwhile information about mathematics. That is, mathematics 
was not the concern for most of the group. In fact, they typified our audience in 
terms of attitudes toward mathematics. This was a useful check on those of us 
who were responsible for the mathematics. 

Because the primary goal was to attract an audience, our partners controlled 
the overall content, style, and tone of the product as well as the packaging. This 
is a valid model, whether the medium is a magazine or a newspaper, radio or 
television. Of course, we expect that all sides engage in friendly and respectful 
negotiation. Related questions for us include how to find and encourage partners, 
how to turn their attention in our direction, and how to create opportunities for 
them and for us. It is important to realize that they are entrepreneurs. They have 
a business to run, even if they run it in the public interest. They naturally want 
to continue their work and to do so they must not only generate and satisfy an 
audience, but also justify their decisions to the sources of their money. A decision 
to carry out a project on mathematics, instead of some other worthwhile subject, 
may have more to do with the availability of money than with their interest in one 
subject or another. 

Culture. Although the culture in which we work is always important, music videos 
raise the issue most directly. The music video is a very popular television format. 
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We produced more than fifty of them and often had the cooperation of well-
known popular singers. Associating celebrities with a product is a long-standing 
commercial practice and is useful even if the product is mathematics. We produced 
music in several genres: blues, heavy metal, rock and roll, country and western, 
rap, and others. No one style appeals to everyone. We broadcast in the USA, which 
has a complex web of subcultures. What does a black, urban rap lyric mean to 
viewers in rural Iowa or suburban Phoenix? Square One TV was also licensed for 
broadcast in more than twenty other countries. What does Square One TV mean 
to a viewer in Bermuda, Indonesia, or Zimbabwe? It is obvious that culture plays 
a role in any of the means of popularization that we have discussed. This is a 
complex issue and worthy of careful thought. Bishop's book [1] is a good starting 
point in addition to the growing literature of the field of cthnomathematics [cf. 7]. 

A new project based on Square One TV speaks to this issue. Risky Numbers 
is the working title of a half-hour game show based on the mathematical game 
shows that are a part of Square One TV. We are negotiating with producers in 
several countries for them to produce their versions of this show. Although the new 
format stems from Square One TV, these new productions will be rooted in their 
local cultures. The prospect is that we will have several variants of Risky Numbers 
for comparison and contrast within a few years. Szalone Liczby, the Polish version 
of Risky Numbers, premiered in January 1995. An Indonesian version will appear 
in January 1996. 

Other Issues. The related issues of women and mathematics and of cultural mi
norities and mathematics are very much part of the politics of the mathematics 
community. Should programs to popularize mathematics promote the interests of 
special groups? Can they do so? In the case of Square One TV, wc deliberately 
cast our actors with these issues in mind. Popularization of science is better es
tablished than popularization of mathematics in popular culture. Science centers 
and science museums exist in many places, but mathematics centers and museums 
are rare. How can popularization of mathematics cooperate with popularization 
of science? How do we avoid losing the mathematics in the science? In the case of 
Square One TV, our nonrealistic, comedy-variety format allowed us to effectively 
highlight the mathematics and we made no particular attempt to expose aspects 
of science. We need to develop techniques to assess programs for their impact. 
We need to understand what we mean by impact or value. The Square One TV 
project had a large research and evaluation component, which generated a mass 
of reports [cf. our Leeds paper in 6]. The ninth issue transcends the others. We 
need to develop convenient means for effective communication among practition
ers. Given the increasing availability of electronic tools, we do not need to wait 
for international conferences and publication of their proceedings to learn from 
others' experiences. I call on the community to invest some of their energies in 
this direction. 

Conclusion 

The popularization of mathematics has a long tradition, but relatively recent im
petus for systematic scrutiny. There are several issues to consider as we develop 
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and improve our practice. Although it is often incorrectly identified with "informal 
mathematics education", popularization also has a valid function for professional 
mathematicians and for formal mathematics education. Even so, we need to con
centrate on developing effective programs to help a broad, general population to 
develop a fruitful appreciation and facility for mathematics. 

Note on Video 

The audience for this lecture from which this paper stems viewed three selec
tions from Square One TV. First was a portion of the Square One TV Math Talk 
show on symmetry, described above. Second was "Rule of Thumb" , a music video 
featuring Kid 'N Play. It deals with measurement by estimation. Third was a 
mock commercial for geometry with the tag line: "Geometry — another division 
of mathematics . I t 's more than just arithmetic." 
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1. Introduction 

In recent years there has been much discussion of the role of calculus in mathemat
ics education. Calculus is the de facto qualification for entry to higher mathematics 
at most institutions, but is it still the best? Compare its role with that of Euclidian 
geometry, which was the entry qualification until last century. By the end of the 
nineteenth century it was clear that Euclid was no longer a sufficiently broad basis 
for geometry, let alone the rest of mathematics. Analysis took over because it was 
then the supreme mathematical discipline, and calculus was its entry point. 

Since that time, however, analysis has burst its nineteenth-century bounds, 
by taking on large amounts of algebra and topology. Calculus gives no inkling of 
these developments. Moreover the traditional drill in differentiation and integration 
is becoming an embarrassment now that computer packages can do most of the 
questions on a typical calculus exam. It could even be argued that calculus is 
today inferior to Euclid as a qualification for higher mathematics (particularly 
when Euclid's theory of integers and real numbers is included). 

What is to be done? My suggestion is that mathematics, from kindergarten 
onwards, should be built around a core that is 

• Interesting at all levels 

• Capable of unlimited development 

• Strongly connected to all parts of mathematics. 

My paper attempts to show that number theory meets these requirements, and 
that it is natural to build modern mathematics around such a core. 

Before doing so I would like to relate an experience that shows the need 
for a core reaching down to elementary levels. First year calculus students at 
Monash this year found themselves unable to do a question from a previous year's 
exam: integrate 2-line

m Wfry? This year, for the first time, we stopped teaching 
the substitution sino = j^?. The reason given was that students can now use 
a computer package to do such integrals, so they no longer need to know tricky 
substitutions. Fair enough, but the tragedy is that now they may never know 
that sino = 3^2, because the formula has already been dropped from school 
trigonometry. If they don't know that, what can they know? In my opinion, they 
cannot know basic algebra and geometry, so an understanding of calculus is out 
of the question. 
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However, it is not good enough to restore traditional algebra and geometry to 
high schools, even if that were possible. As already indicated, we need more than 
a foundation for traditional calculus. We need to rebuild from a more fundamental 
level, to support all the higher disciplines in a unified and efficient manner. What 
follows is a sketch of such a development. It is taken far enough, I hope, to show 
that number theory is a natural starting point for all the disciplines, even calculus. 

2. Why number theory? 

Most people would agree that mathematics begins with numbers. We all began 
with counting and arithmetic, and in fact this is the only mathematics remembered 
by most adults. By the end of primary school, most children have learned some 
important concepts of number theory: division with remainder, gcd, and 1cm. They 
may also have heard of prime numbers. It would be easy, in years 7, 8, and 9, to 
build on this knowledge by introducing the Euclidean algorithm for gcd and using it 
to prove unique prime factorization in Z. By the end of secondary school, students 
could be fluent in basic number theory and its applications, say as far as Fermât's 
little theorem and public key cryptography. 

Unfortunately, around year 7, this train of thought is broken with the arrival 
of algebra and other branches of mathematics seen as more "grown up" than 
arithmetic. If the student ever takes up number theory again it will be after a 
hiatus of 5 or 6 years, and even simple things like division with remainder will 
have to be relearned. What a waste! The continuation of number theory through 
secondary school need not be in competition with algebra, geometry, trigonometry, 
etc., but could support and unify them. 

What follows are some suggestions for making fruitful links between these dis
ciplines (and also with calculus), using number theory as a source. They are by no 
means confined to school mathematics. Indeed, until the dream of school number 
theory is achieved, they will probably be more relevant to university mathematics. 

Experience at Monash has shown that first year students can pick up basic 
number theory, from the Euclidean algorithm to Fermât's little theorem, in a 
minicourse of about eight lectures. The main steps are as follows: 

• For any nonzero a.b G Z, there are q,r E Z ("quotient" and "remainder") 
such that 

a = qb + r with 0 < \r\ < \b\ 

• The Euclidean algorithm on a, b (repeatedly dividing the larger number by 
the smaller and keeping the remainder) gives gcd(a, b). 

• It follows from the Euclidean Algorithm that there arc ra, n e Z such that 
gcd (a, b) = ma + nb 

• As gcd(p, a) = 1 = rap + na for a prime p with p /a, it follows that 

p\ab => p\a or p\b 

• Unique prime factorization 
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• a has a multiplicative inverse mod k <=>> gcd (a, k) = 1 

• Fermat's little theorem: for p prime, gcd(a,p) = 1, 

a p _ 1 = 1 (mod p). 

3. Algebra 

With the support of the above number theory, high school algebra could be much 
more than solution of equations. All of the following are easy consequences of 
division with remainder. 

• Divisibility theory of polynomials (patterned on Z, with degree in place of 
absolute value and irreducibles in place of primes) 

• The finite fields Z/pZ and the analogous algebraic number fields Q[x]/p(x) 

QM 
• nth degree polynomial has < n roots over a field 

• Some properties of abelian groups, e.g. 
gcd(order(a), order(ò)) = 1 => order(a + b) = lcm(order(a), order(ò)). 

Incidentally, this is not surprising, because most basic commutative algebra 
is derived from Gauss's Disquisitiones Arithmeticae via Dirichlet and Dedekind. 
Algebra was intended to serve number theory by simplifying the proofs of classic 
theorems, such as the following. 

• Existence of primitive roots mod p 
Proof. (Z/pZ)x not cyclic 
=> an element x of maximal order n < p — 1 
=> all p — 1 elements of (Z/pZ)x satisfy the nth degree equation xn = 1. 

• —1 is a square mod p <=» p = An + 1 
Proof. Use the fact the squares are the even powers of a primitive root. 

• p = An + 1 is a sum of two squares 
Proof. — 1 = ra2 (mod p) 
=> kp = ra2 + 1 = (ra + i)(m — i) 
=> p|(ra + i)(m — i) but p J(m ± i 
=> p is not a Gaussian prime (see next section) 
=> p = (a + ib)(a - ib) = a2 + b2. 

Another wonderful constellation of results comes from forming the product 
of elements in an abelian group in two ways: 

• Fermat's little theorem ap~l = 1 (mod p) 
Proof. Form the product of {1,2, . . . ,p - 1}, which equals the set 
{a, 2a,... (p — l)a} mod p. 

• Wilson's theorem (p — 1)! = — 1 (mod p) 
Proof, (p - 1)! = 1 x 2 x • • • x (p - 2) x (p - 1) 

= - 2 x • • • x (p - 2) as p - 1 = - 1 (mod p) 
= — 1, pairing inverses mod p. 
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• Euler's criterion q^ = ( - ) mod p 

Proof. ( | J = - 1 => a ^ ra2 (mod p) 

=> a x inverse of ra ^ ra (mod p) 

=• f jQ = - 1 = 1 x 2 x • • • x (p - 1) = a**1 (mod p) 

pairing each ra with ax (inverse of ra). 

1 => a = ra2 (mod p) for some ra 

a ^ = m p - i = 1 = U\ (mod p). 

• Quadratic reciprocity f £ ) f R j = ( — l J ^ V -

Proo/. Form the product of the members of (Z/pgZ)x /{l, —1}, then rewrite 
it using the Chinese remainder theorem: (Z/pqZ)x = (Z/pZ)x x (Z/qZ)x. 

4. Geometry 

In some ways geometry is remote from number theory, being intuitive, visual, and 
noncomputational. One would expect geometry to be at best a complement to 
number theory, if not a competitor. However, the two fields interact at such a 
fundamental level that it is unwise to separate them. Geometry can throw light on 
numerical facts that seem at first to be none of its business. The classic example 
is the parametrization of Pythagorean triples, the positive integer triples (a, b, c) 
such that 

a2 + b2=c2. 

The number theoretic approach to the solution of this equation begins with the 
removal of any common divisor from a,b,c and an analysis of even and odd squares 
to reduce to the case of a even, b odd, c odd. Then the equation is rewritten 

©! c + b 

and the theory of divisibility (unique prime factorization or an equivalent) is used 
to conclude that the integer factors ^ , ^ of the integer square ( | ) are them
selves squares u2, v2, whence 

a = 2uv 

b = u2-v2 

1 2 
C = U +V . 

Thus, one gets a parametrization of primitive Pythagorean triples (those with no 
common divisor) in terms of two integer variables u, v. 

This is algebraically equivalent to a parametrization of the ratios y = ", 
x = | by a single rational variable t = ^, namely 

_ a _ 2t _ b _ 1 - t2 

y~~c~YVt2' x~c~TTt2' 
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The surprising thing is that t has a geometric meaning. It is the slope of the line 
y = t(x -h 1) through the trivial rational point (—1,0) on the circle x2 + y2 = 1 
and the general rational point y = j^i, x = ^ fy , as one finds by solving the 
simultaneous equations y = t(x + 1) and x2 + y2 = 1. 

Indeed, it follows from the Pythagorean theorem that primitive Pythagorean 
triples (a,b,c) correspond to points on the unit circle with nonzero rational co
efficients ( f ,^) - These points in turn correspond to lines through (—1,0) with 
rational slope. Hence the (geometrically motivated) process of solving the equa
tions y = t(x + 1) and x2 + y2 = 1 is fully equivalent to the arithmetic method 
of finding the primitive Pythagorean triples. I find this remarkable, because the 
geometric process avoids the theory of divisibility of integers. 

The process seems to have been discovered by Diophantus, though he did not 
mention its geometric interpretation. In Book II, Problem 8, of his Arithmetica he 
found two nonzero rationals x, y whose squares add to 16, essentially by intersect
ing the circle x2 + y2 = 16 with the line y = 2x — 4 through the "obvious" rational 
point x = 0, y = —A on the circle. 

The intimate relation between geometry and divisibility shows up again in 
the theory of the Gaussian integers Z[i] = {a + ib : a,b G Z}. In Z[z], geometry is 
actually the basis for the divisibility theory - for any nonzero Gaussian integers a, 
ß it gives a remainder p smaller than ß in absolute value when a is divided by ß. 
This can be seen as follows. First notice that the Gaussian integer multiples pß of 
ß form a lattice of squares in the complex plane: the typical square is the one with 
corners 0, ß, iß, (1 + i)ß. Now, as the distance \a — pß\ from any point a to the 
nearest lattice point pß is less than the side length \ß\ of a square, we have: for 
any nonzero a,ß E Z[i] there are p, p G Z[i] ("quotient" and "remainder") with 

a = pß-\-p and 0 < \p\ < \ß\. 

This fact is the key to the divisibility theory of Z[i], giving a Euclidean algorithm 
and unique prime factorization as in Z. 

These two examples show, I think, how number theory and geometry are 
intimately related at the foundational level. Of course, we are well aware how 
strong the relationship is at higher levels — the mere mention of "elliptic curves" 
should suffice. I do not wish even to define elliptic curves here, but I cannot avoid 
mentioning an elementary problem that is actually connected with them. This is 
the question: Are there positive integers x, y, z such that x4 + y4 = z2l Fermât 
showed that there are not, by an ingenious argument using little more than the 
parametrization of Pythagorean triples. Here is the gist of it. 

Suppose that there are positive integers x, y, z such that x4 + y4 = z2, or in 
other words, (x2)2 + (y2)2 = z2 . This says that x2, y2, z is a Pythagorean triple, 
which we can take to be primitive, hence there are integers u, v such that 

x2 = 2uv, y2 = u2 - v2, z = u2 + v2 . 

The middle equation says that v, y, u is also a Pythagorean triple, and it is also 
primitive, hence there are integers s, t such that 

v = 2st, y = s2-t2, u = s2 + t2. 
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This gives 
x2 = 2uv = Ast(s2 -\-t2), 

so the integers s, t and s2 + 1 2 have product equal to the square (x/2)2. They arc 
also relatively prime, so each is itself a square, say 

and hence 

s = x\, t = y\, s2 + t2 = z2, 

x4 + y4=z2. 

Thus, we have found another sum of two fourth powers equal to a square, and by 
retracing the argument we find that the new square z\ is smaller than the old, 
z2, but still nonzero. By repeating the process we can therefore obtain an infinite 
descending sequence of positive integers, which is a contradiction. 

Fermat's argument shows a fortiori that there are no positive integers a, b, c 
such that a4 + b4 = c4 — the first instance of "Fermat's last theorem". It is worth 
mentioning that Fermât found both these theorems as spinoffs of a theorem about 
right-angled triangles: the area of a right-angled triangle whose sides are rational 
numbers cannot be a rational square. (Just which numbers do occur as areas of 
rational right-angled triangles turns out to be a deep question about elliptic curves. 
For further information see Weil [1984] and Koblitz [1985].) 

5. Trigonometry 

While on the subject of right-angled triangles, let us consider the multiplication 
of complex numbers from the geometric viewpoint. If 

z1 = a\ + ib\ 5 z2 = a2-\- ib2 

are complex numbers, we know that 

z\z2 = (aia2 - bib2) + i(aib2 + a2bi). 

This formula is equivalent to a pair of geometric facts, namely 

\ziz2\ = \zi\\z2l 

and 
arg(ziz2) = arg(zi) + arg(z2), 

where \a + ib\ = \Ja2 + b2 is the distance of a + ib from O, and arg(a + ib) = 
tan_ 1(ò/a) is the angle it subtends at O. Both of these facts were known from 
number theory long before the invention of complex numbers. 

The multiplicative property of | | was known to Diophantus in the form of 
the identity 

(a1a2 - bxb2)
2 + (aib2 + a2bx)

2 = (ax
2 + bx

2)(a2
2 + b2

2), 

as can be seen, at least implicitly, from his Arithmetica, Book III, Problem 19. 
Here Diophantus remarks 

65 is naturally divided into two squares in two ways, namely into 72 +42 and 
82 + l2, which is due to the fact that 65 is the product of 13 and 5, each of 
which is the sum of two squares. 
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This undoubtedly means that he was aware of the even more general identity 

(axa2 T bib2)
2 + (axb2 ± a2bt)

2 = (ax
2 + h2)(a2

2 + b2
2). 

The additive property of argument was discovered by Viète in his Genesis 
triangulorum of around 1590. Given two right-angled triangles, with sides a\, b\ 
and a2, b2 (and hence hypotenuses yja\ + b2, >/a2 + b\ respectively), he forms the 
triangle with sides (a\a2 — bib2), (a\b2 + a2b{). The hypotenuse of the third tri
angle is therefore the product of the hypotenuses of the first two, by Diophantus' 
identity, but Viète also observes that its angle (between the side a\a2 — b\b2 and 
the hypotenuse) is the sum of the corresponding angles of the first two. In effect, 
his construction completely encodes the multiplication of a\ + ib\ and a2 + ib2, 
and reveals its geometric properties. As we know, the additive property of argu
ment under multiplication of complex numbers gives an easy proof of the addition 
theorems for sine and cosine (de Moivrc's theorem). Viète already observed that 
these theorems follow from his construction. 

The trigonometric formulae sino = y ^ - and coso = - j ^ - , where t = tan | , 
also relate to number theory. They follow immediately from the fact used to 
parametrize Pythagorean triples in Section 4 — that the line of slope t through 
(—1,0) meets the unit circle at the point (jijify, ï + F ) -

Once again, wre find a mathematical topic where number theory is relevant 
from the lowest levels. As elsewhere, its relevance only gets stronger at higher levels. 
Thanks to Gauss, for example, we know that number theory has much to gain from 
the theory of cyclotomic fields. The name "cyclotomic" ("circle-dividing") says it 
all. It concerns the number Çn = cos ^ + i sin ^ whose powers divide the unit 
circle into n equal arcs. The algebraic properties of Çn are the key to deciding 
whether the regular n-gon is constructible by straightedge and compass, but they 
are also magically effective in pure number theory. In particular, Gauss's favorite 
theorem — quadratic reciprocity — can be proved via properties of Çn. 

6. Calculus 

Calculus, as it is usually taught, is mostly algebra. It is true that calculus has 
an extra ingredient, the limit concept, but serious discussion of limits is usually 
postponed until an analysis course. It is also true that the motivating problems of 
calculus — tangents, areas, speed — come from geometry and physics, but they 
are quickly boiled down to algebraic manipulation. In fact, we choose problems for 
their algebraic tractability, almost unconsciously, without thinking how tractability 
is decided, or how it might be explained to students. 

A typical problem is to "rationalize" \ / l — x2 by substituting a suitable func
tion for x. One such substitution is x = sino, but knowing that sino = j ^ -
we can achieve the same result by the rational substitution x = y r ^ , obtaining 
\ / l — x2 = jijïf?. This rationalization enables us to integrate any function that 
is rational except for occurrences of \ / l — x2. It is similar for functions rational 
except for y/a + bx-rcx2. The main problem is to rationalize the square root, and 
the necessary manipulation can be done by the methods of Diophantus. Thus, 
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the tractability of such problems can be traced back to the parametrization of 
Pythagorean triples. 

After these few successes, integration becomes frustrating. Square roots of 
higher degree polynomials cannot in general be rationalized, and calculus cannot 
tell us why. Generations of students have hit the wall of elliptic integrals and have 
received no explanation of the nature of the obstacle. We simply tell them that 
such integrals can't be done. 

There is no need to give up so easily! With a little number theory, it is quite 
easy to explain why \/l — x4, for example, cannot be rationalized. Suppose, on the 
contrary, that for some rational function x = x(t), 1 — x(t)A is the square y(t)2 of 
a rational function. Then we have an equation 

l-x(tf=y(tf, 

where x(t), y(t) are quotients of polynomials. Multiplying through by a common 
denominator gives an equation between polynomials X(t), Y(t), Z(t): 

Z(t)4-X(t)4 = Y(tf. 

This looks like the equation proved impossible by Fermât, and indeed this 
one can be proved impossible by a similar argument — if X, Y, Z are integers. 
Of course, they aren't, but they are polynomials, and we know that polynomials 
behave a lot like integers. Fermat's argument can be carried over if we assume that 
X(t), Y(t), Z(t) are polynomials not all of zero degree, in which a contradiction 
is gained by showing that any solution implies a solution of lower total degree. 

Thus, number theory can throw light on calculus, but is it reasonable to 
expect calculus students to have the necessary background knowledge? To answer 
this question I would like to go back to the work of Leibniz and the Bernoulli 
brothers Jacob and Johann. These three created most of calculus as we know it 
today, in particular the techniques for expressing basic integrals in "closed form". 
(Newton, who of course is also a giant of calculus, was not very interested in 
such solutions, and was content to express integrals as infinite scries.) They are 
known for their contributions to calculus and its applications, but certainly not 
for contributions to number theory. Nevertheless, Leibniz [1702] wrote: 

I . . . remember having suggested (what could seem strange to some) that the 
progress of our integral calculus depended in good part upon the development 
of that type of arithmetic which, so far as we know, Diophantus has been 
the first to treat systematically. 

Even more surprising, Jacob Bernoulli [1704] tried to explain why \ / l — x4 

cannot be rationalized, appealing to Fermat's theorem essentially as I have done 
above (though he confined his argument to integers and did not extend it to 
polynomials). On another occasion [1696], when he had to rationalize \/2x — x2, 
he directly credited Diophantus with the substitution that does it. Incidentally, 
he used the latter substitution to transform the integral expressing arc length of a 
circle into the form J yq^j, thus obtaining the canonical derivation of the infinite 
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series for 7r: 

To my mind, this shows that number theory was historically decisive in the devel
opment of calculus. The fact that number theory is no longer considered relevant 
to calculus only shows how much we have forgotten, and how out of touch with 
the rest of mathematics calculus has become. 

7. Conclusions 

In this paper I have tried to show that number theory is the best basis for a 
mathematical education because it supports, or at least throws light on, all other 
mathematical disciplines. In particular, calculus rests on algebra and ultimately on 
number theory, and all understanding of calculus is lost when this support is with
drawn. It is no doubt impractical to suggest that number theory should immedi
ately replace calculus as the entry qualification for higher mathematics. Such a rev
olutionary act would not be tolerated by most mathematics departments, let alone 
the science and engineering schools that rely on us for service teaching. However, I 
believe that number theory should be given a larger role in secondary schools and 
universities, with an emphasis on its connections with other parts of mathematics. 

I have stressed the connections of number theory with traditional disciplines 
— algebra, geometry, trigonometry, calculus — because these connections seem 
to be the most neglected and forgotten. If anything, it is easier to make a case 
for number theory as a support for newer disciplines such as computer science, 
where the importance of primes, factorization, and number fields are well known. 
However, it should not be necessary to appeal to current fashion. Numbers have 
always been important in mathematics, they always will be, and our teaching of 
mathematics should always reflect that fact. Hilbert used to say that we do not 
really understand a piece of mathematics until wc can explain it to the first person 
we meet in the street. In most cases, that means understanding mathematics in 
terms of numbers. 
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1. Introduction 

From the seventh to the eleventh century, a large part of present-day Spain and 
Portugal belonged to the Islamic world. I will use the term "Islamic Spain" to 
indicate the part of the Iberian peninsula that was under Muslim rule. The term 
Islamic Spain is not strictly correct, because Spain did not exist in the early Middle 
Ages, but the important medieval scientific centers (Cordoba, Zaragoza, Toledo) 
are all in present-day Spain. Until recently the general view has been that Islamic 
Spain was important in the history of mathematics only because of its role in the 
transmission of mathematics from Arabic to Latin. In the last 15 years this view 
has changed as a result of the investigation of unpublished manuscript sources. 
We now know that there were creative mathematicians in Islamic Spain in the 
eleventh century. In this paper I will try to give you an impression of their work. 
No previous acquaintance with the history of mathematics will be assumed, and I 
will begin with some general remarks on the historical context. 

2. The historical context 

Before 300 b.c. the ancient Greeks developed geometry as a deductive system. 
Greek mathematics flourished until the third century a.d. and then declined. The 
Romans were not interested in theoretical mathematics, and the tradition remained 
dormant until it was revived by the Muslims. Around a.d. 800, the caliphs made 
Baghdad into the scientific capital of the world. They had Arabic translations 
made of many Greek texts on mathematics and astronomy (including Euclid's 
Elements, the works of Archimedes, Apollonius, etc.), and also of Sanskrit works 
from India. This is the beginning of Arabic science, i.e. science written in Arabic. 
When we use a term such as "Arabic mathematics", we should bear in mind that 
large contributions were made by non-Arabs, notably the Iranians. 

Islamic Spain is far away from Baghdad, and it took a while for science to 
reach the area. In the tenth century there was much interest in learning in Is
lamic Spain, and there was a library with more than 400,000 books in the capital, 
Cordoba. At that time mathematics and astronomy were studied on a rudimen
tary level, necessary for practical applications, such as astrology and timekeeping. 
Around the year 1000 the interest in theoretical mathematics and astronomy deep
ened. The eleventh century is the golden age of Islamic Spanish science. After the 
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eleventh century, the size of Islamic Spain was reduced and there was a decline in 
the scientific activity. 

The Christians reconquered a large part of present-day Spain in the eleventh 
and twelfth centuries: Toledo was captured in 1085, Zaragoza in 1118. The end of 
Islamic domination of these areas did not mean the complete end of the scientific 
tradition, and in the twelfth century, many Arabic manuscripts from Spain were 
translated into Latin. Not many people realize how important this event was for 
the history of mathematics. In the early Middle Ages mathematics was practically 
nonexistent in western Europe; a few facts from elementary mathematics were 
mentioned in Latin texts and encyclopedias, but hardly anybody knew howT to 
prove a theorem. By means of the twelfth century Latin translations, the Christians 
came in contact with mathematics as a deductive science. The creative period of 
Islamic Spanish mathematics occurred just before the takeover by the Christians 
of most of Spain and the translation movement. 

3. Sources and the state of research 

Some texts by eleventh-century mathematicians and astronomers have come down 
to us in the original Arabic. These are not the manuscripts written by the authors 
themselves, but are always later copies, made in the Islamic world or in medieval 
Christian Spain, in places where Arabic astronomy was studied (such as the court 
of Alfonso the Wise in the thirteenth century). A few texts survive only in a 
medieval Latin or Hebrew translation. One can also find traces of eleventh-century 
mathematics in texts by later authors (from Islamic or Christian Spain or North 
Africa). Even so, the evidence we have is very incomplete, and the history of 
mathematics in the eleventh century has to be patched together from various bits 
and pieces of information. Not all relevant sources have been studied, and many 
manuscripts still await edition and translation. There are various researchers all 
over the world who are working on these materials. The most important center 
for the study of Islamic Spanish science is the Department of Arabic Philology 
in the University of Barcelona under the direction of Julio Samsó. The center 
publishes a series of editions of sources, and Samsó has recently published the first 
reliable survey of science in Islamic Spain, including the results of research up until 
1992 [5]. 

4. General remarks 

In the history of mathematics in Islamic Spain, a distinction can be made between 
arithmetic and algebra on the one hand, and geometry and trigonometry on the 
other hand. In arithmetic and algebra, Islamic Spain seems to have lagged behind 
the East. The mathematicians of the eleventh century worked with Eastern texts 
that had become obsolete in the East, such as the arithmetic and the algebra of 
al-Khwârizmï (ca. 830). Recent advances in the East were unknown in Islamic 
Spain. For geometry and trigonometry the situation was different. The Islamic 
Spanish mathematicians were working on the same level as their Eastern Islamic 
colleagues, and they were aware of many recent developments in the East. 



1570 Jan P. Hogendijk 

A 

I will not be giving you a list of all mathematicians with their known works 
and contributions to geometry and trigonometry, because I believe such lists are 
boring for the nonspecialist.1 Instead, I will discuss two concrete examples in some 
detail. 

5. Al-Mu'taman and his "Book of Perfection" 

My first example is al-Mu'taman ibn Hüd, the king of the kingdom of Zaragoza 
(in northeastern Spain), who died in 1085. The kingdom of Zaragoza was one of 
the so-called petty kingdoms into which Islamic Spain had disintegrated in the 
eleventh century. Al-Mu'taman was also a mathematician, who wrote a very long 
mathematical work, entitled The Book of Perfection (in Arabic: Istikmäl) [1]. For a 
long time this work was believed to be lost, but numerous fragments have recently 
turned up in four anonymous Arabic manuscripts [2]. The work is in a very poor 
state of preservation because the most important manuscript (in Copenhagen) 
was damaged and many leaves are missing. As a result, there are 11 gaps in the 
text we have. 2 In the Book of Perfection al-Mu'taman presents the essentials of 
mathematics, philosophically arranged, with all the proofs. The work resembles, 
to some extent, the Eléments de Mathématique of N. Bourbaki. Al-Mu'taman 
adapted most of the material in his Book of Perfection from existing works by 
Euclid, Archimedes, Apollonius, and other mathematicians from antiquity or the 
eastern Islamic world. However, some theorems are "new", in the sense that they 
are not found anywhere else in the ancient and medieval literature we know. The 
following two examples still play a role in modern geometry: 

1Thus, I will not be talking about al-Zarqällu's new variant of the astrolabe, which has received 
a great deal of attention in the literature. Like the standard astrolabe, this variant is based on 
stereographic projection, but the pole of projection is shifted from the north pole to the vernal 
point. 

2 See note added in proof. 
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(1) (Figure 1) In "proposition 16 of section 3 of species 1 of species 3" al-
Mu'taman considers a triangle ABG with points D and E on its base, and a 
transversal TMNC that intersects AG at T, AE at M, AD at N, and AB at C.3 

He proves (TC : CN) • (NM : MT) = (GB : BD) • (DE : EG). In modern 
terms this is the oldest extant statement of the perspective invariance of cross-
ratios in a rather general situation. (There is an ancient Greek proof, in the Math
ematical Collection of Pappus of Alexandria, for the special case where B and C 
coincide.) 

(2) The so-called theorem of Ceva (Figure 2) is stated and proved in the 
margin of the Book of Perfection, as "proposition 18 of section 3 of species 1 of 
species 3" .4 Consider a triangle ABG with points D on side BG, H on side AG, 
and Z on side AB. Then lines AD, BH, and GZ intersect at one point if and 
only if (BZ : ZA) • (AH : HG) = (BD : DG). (This is proved by two applications 
of the theorem of Menelaus.) The theorem has been named after Giovanni Ceva, 
who stated it in 1678, but it should now perhaps be renamed the "theorem of 
al-Mu'taman." 

In the extant parts of the Book of Perfection, al-Mu'taman never distinguishes 
between his own contributions and theorems that he adapted from other sources. 
Cross-ratios occur very rarely in Arabic mathematics, but we know that they 
were used extensively in Euclid's lost work on Porisms, which was transmitted 
to Arabic in some form. I therefore believe that al-Mu'taman took his cross-ratio 
theorem from an Arabic translation of a lost Greek work (if this is true, we get 
new information on Greek mathematics from an eleventh-century Islamic Spanish 
source). I do not know whether the so-called theorem of Ceva was a contribution 
by al-Mu'taman or not. 

3In ancient Greek and medieval mathematics, there was no real number concept. The line 
segment is a basic concept; a line segment does not have a length, but it is a (positive) length. 
Line segments can be compared, and there existed a theory of ratios between line segments. Ratios 
could be ordered, and a ratio between two line segments could be compared to a ratio between 
two integers. All straight lines were bounded; a straight line could be produced indefinitely, but 
an infinite straight line did not exist. 

4Because the theorem has a proposition number, it belonged to the original text, and was 
first left out by an oversight. 
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There are only a few rather complicated propositions that we can attribute to 
al-Mu'taman with some certainty. I will now discuss one example, namely his sim
plification of a construction by Ibn al-Haytham (a geometer who worked in Egypt 
in the earl}'' eleventh century), which is based on an ancient Greek construction. 
The following explanation will take some time but it will be worthwhile because 
it gives an idea of al-Mu'taman's ability as a mathematician. I will try to give the 
general ideas and avoid the details of the proofs, which involve proportions and 
similar triangles. My notations are those of Ibn al-Haytham [4, pp. 315-318]. 

The ancient Greek construction is as follows (Figure 3). We are given a rect
angle TQN M and a straight segment / . We want to construct a straight segment 
TJF that intersects MN at J and QN extended at F in such a way that F J = 
I. Solution: Draw a hyperbola through M with asymptotes TQ and QN. (In an
tiquity and the Middle Ages, a, hyperbola was always a single-branch hyperbola.) 
Draw a circle with center M and radius / . Let them intersect at C. Draw TF j j 
MC. This is the desired line. 

The proof is easy: Extend MC to meet QT at O and QN at L. By parallel
ograms, TJ = OM and TF = ML. so F J = ML - OM. By a property of the 
hyperbola: OM=CL. Hence F J = MC = 1.1 note that the problem cannot be 
solved by ruler and compass. 

This construction was used in rather a confusing way by the Egyptian geome
ter Ibn al-Haytham around 1040 in his work on Optics, in a series of a preliminaries 
for the study of reflection in circular mirrors. 

Ibn al-Haytham considers a circle with a given diameter BG and on this 
circle a given point A (Figure 4). A straight segment EK is also given. He wants 
to construct a straight line through A that intersects the circle at H and the 
diameter at D in such a way that DH = EK. Point D is assumed to be outside 
the circle. 

The basic idea is as follows. First suppose that DH is arbitrary. Ibn al-
Haytham draws line GZ parallel to BA, meeting DH at Z. He proves AZ : DG = 
BG : DH (I omit the details). 

Therefore DH=EK if and only if AZ : DG = BG : EK. Unfortunately, we 
do not know the length of DG, but we know the angles at G: LDGZ = LGBA, 
and LZGA = LG AB = 90°. 
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Ibn al-Haytham now uses one of his favorite techniques, which consists of 
constructing an auxiliary figure similar to the original one. Choose a segment 
NT of arbitrary known length, and make rectangle TMNQ such that LTNM = 
LDGZ. 

Choose J such that / : NT = BG : EK, and find (by the Greek construction) 
TJF such that F J = I. Then construct D such that LG AD = LNFT. Then 
GAZD is similar to NFJT. Thus AZ : DG = F J : NT = I : NT = BG : EK. 
Because AZ : DG = BG : DH, we have DH = EK as required. Note that the 
known segment NT in the auxiliary figure corresponds to the unknown segment 
GD in the original figure. 

Al-Mu'taman simplified and generalized the construction of Ibn al-Haytham, 
on the basis of the following three ideas: 

(1) Because in Figure 4 NT is an arbitrary segment, we can identify it with 
a known segment in the original figure, such as BG. If this is done, the auxiliary 
figure and the original figure coincide in a nice way, and the construction is as 
follows (Figure 5). Complete rectangle GABQ, draw the hyperbola with center 
A and asymptotes GQ and QB. Choose J such that J : BG = BG : EK and 
find C as a point of intersection of the hyperbola and the circle with center A 
and radius J. Extend CA to intersect circle ABG again at H and line BG at D. 
Only a small number of proportions and similar triangles5 are needed to prove 
AC:BG = BG: DH. Because AC=I and I : BG = BG : EK we have DH=EK 
as required. 

(2) Thus far we have been discussing the case where point D is outside the 
circle. Al-Mu'taman saw that one can solve the similar problem for D inside the 
circle, by finding the points at which the other branch of the hyperbola intersects 
the circle with center A and radius J, and by exactly the same reasoning (broken 
line in Figure 5). Al-Mu'taman gives a general proof for the two different cases. 
Ibn al-Haytham has a new and essentially different solution for D inside the circle. 

(3) Al-Mu'taman observed that GABQ can be an arbitrary parallelogram 
instead of a rectangle. Thus, it is not necessary to assume that BG is a diameter; 

5Details: as A, B, G, H are on the same circle, DADH = DBDG, so DH : DG = DB : DA = 
(by similar triangles) BG : AZ. Hence BG : DH = AZ : DG = (by similar triangles) J F : BG. 
J F = AC is proved just as J F = MC in Figure 3. The text will appear in [6]. 
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A, B, and G can be three arbitrary different points on a circle. In general, point 
Q is not on the circle. 

Summarizing: al-Mu'taman solved a more general problem than Ibn al-Hay
tham in a much shorter way. Ibn al-Haytham's solution of the two cases is ten times 
as long as al-Mu'taman's general solution. This shows that al-Mu'taman was able 
to improve on Ibn al-Haytham, who was one of the most important geometers of 
the Islamic tradition. 

Al-Mu'taman must be the author of the general solution (Figure 5) for the 
following reasons. The solution occurs in a series of geometrical constructions that 
are clearly adapted from the Optics. Ibn al-Haytham wrote this work around the 
year 1030 in Egypt at an advanced age, less than 50 years before al-Mu'taman 
wrote his Book of Perfection. In the Eastern part of the Islamic world, nobody 
seems to have seriously studied Ibn al-Haytham's Optics in the eleventh century. 
We have a description of Islamic Spanish science made around 1065 by the biog
rapher Säcid al-Andalusi, in which wc can read that there are only three people 
interested in "natural philosophy", namely Al-Mu'taman and two others (whose 
names are mentioned). The two other people are not known to have written any 
mathematical works, and their mathematical reputations among their contempo
raries are nowhere near that of al-Mu'taman. This leaves al-Mu'taman as the only 
plausible author. 

His authorship is confirmed by the fact that there are many more solutions 
of a similar nature in the Book of Perfection. An example is the famous problem 
of Apollonius (to construct by ruler and compass a circle tangent to three given 
circles). Al-Mu'taman presents a solution that was also inspired by the same Ibn 
al-Haytham, but that is also much shorter and much clearer than Ibn al-Haytham's 
confused original. Another example is al-Mu'taman's simplification of a quadrature 
of the parabola by Ibrâhïm ibn Sinân, a geometer from tenth century Baghdad. Al-
Mu'taman was not the only eleventh-century Islamic Spanish geometer working on 
complicated subjects. Between 1087 and 1096, the geometer Ibn Sayyid of Valencia 
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developed a theory of higher-order curves, and he used these to divide an angle into 
an arbitrary number of parts and to construct an arbitrary number of geometric 
means between two given lines.6 His work is lost; all we have is rather a vague 
description of it by the philosopher Ibn Bäjja. [1]. 

These examples show that geometry was studied on a much higher level in 
Islamic Spain than had been thought 15 years ago. 

6. Ibn Mucädh and the astrological "aspects" 

One cannot get an adequate view of mathematics in Islamic Spain without looking 
at the applications in astronomy and astrology. To give you some of the flavor, I 
have chosen a nontrivial problem from astrology, which was solved by the eleventh-
century mathematician Ibn Mucädh. Astrology is nowadays considered to be a 
pseudo-science, but it was very important in the history of mathematics in the 
Middle Ages, because it was one of the main fields where mathematics was applied 
in a nontrivial way. I first recall a few astronomical preliminaries. 

In ancient and medieval planetary theory, the positions of the planets were 
represented on the celestial sphere, in coordinates called "celestial longitude" and 
"celestial latitude". The basic circle of reference is the ecliptic; that is, the apparent 
orbit of the sun around the earth against the background of the fixed stars. The 
zero point on the ecliptic is the vernal point, that is the position of the sun at the 
beginning of spring, and the celestial longitude of a planet is the arc between the 
vernal point and the perpendicular projection of the planet on the ecliptic. This 
arc is measured in the direction of the motion of the sun. I will ignore the celestial 
latitude, that is the arc measuring the deviation of the planet from the ecliptic. In 
the Islamic Middle Ages, there was a satisfactory theory for the prediction of the 
celestial longitudes of the sun, moon, and planets on the ecliptic at any place and 
at any moment of time, and there were many handbooks explaining the necessary 
computations and containing the necessary tables. The fact that astronomy was 
geocentric, not heliocentric, did not affect the exactness of these predictions. 

I will now explain the astrological concept of "aspect". The basic assumption 
of medieval astrology is that the sun, moon, and planets have an influence on 
events on earth, and that the positions of these celestial bodies can be used to 
predict the future with some probability. Such predictions were very complicated, 
and one of the many things that the astrologer had to take into account was 
certain special configurations between two planets, the so-called aspects. The idea 
is as follows. The astrologers believed that from its position on the ecliptic each 
planet emitted seven "visual rays" to other points of the ecliptic. (According to 
the ancient theory of vision, a human being sees by emitting visual rays from the 
eye, and not because light enters his eye.) If a second planet is sufficiently close to 
the endpoint of such a visual ray, it is "seen" by the first planet ( "looked at", in 
Latin: adspectus), and then the planets are said to have an aspect. 

There were two theories for the computation of these aspects. According to 
the simplest theory, the seven rays are emitted to points in the ecliptic at angular 

6n geometric means between two given line segments a and b are n straight segments x\ . . . xn 

such that a : xi = xi : X2 = • • • = xn : b. 
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distances of 60°, 90°, 120°, and 180° in both directions (Figure 6). Thus, two 
planets have an aspect if the difference in their celestial longitude is 60°, etc. This 
does not lead to interesting mathematical problems. 

For reasons unknown to me, several medieval Islamic astrologers believed in 
a more complicated theory, which I will call the "equatorial" theory of aspects. 
The idea is as follows. We first project the planet P, which is on the ecliptic, on 
the intersection P' of the celestial equator7 with the great semicircle through P 
and the north point N and the south point S of the horizon. From P' we measure 
the angles of 60°, 90°, 120°, and 180° on the celestial equator in both directions 
(in Figure 7 we have P'<2'=60o). For each of the seven points Q' that we find this 
way, we apply the inverse projection: we draw the great semicircle NQ'S and we 
call Q its intersection with the ecliptic. Then according to the "equatorial" theory 
the planet at P emits its seven visual rays to the seven points Q. 

If P'Q' = 60°, 90°, or 120°, arc PQ has a variable magnitude, which depends 
not only on the celestial longitude of P. but also, oddly enough, on the geographical 
latitude of the astrologer and on the (local) time of day. (This leads to the rather 
surprising conclusion that the planet emits its visual rays differently for different 
observers on earth. This does not seem to have worried the astrologers.) 

The "equatorial" theory of aspects was quite popular, in spite of (or maybe 
because of) its difficulty. In the ninth century, al-Khwârizmï computed tables for 
the computation of the aspects according to the equatorial theory for Baghdad, us
ing a rather crude approximation. This al-Khwârizmï is the famous mathematician 
who wrote on algebra and whose name has been corrupted in the word algorithm. 

These tables were recomputed for Cordoba, around the year 1000, by the lead
ing Islamic Spanish mathematician of that time, Maslama ibn Ahmad al-Majrïtï. 
(Al-Majrïtï is Arabic for: of Madrid.) Maslama used a different geographical lati
tude and a more sophisticated (but still approximate) mathematical method. 

I will now discuss the exact computation of the aspects according to the 
"equatorial" theory by Ibn Mucâdh al-Jayyânï [3]. He was one of the best math-

7This is the intersection of the celestial sphere and the plane through the observer perpendic
ular to the world axis, i.e. the line through the celestial north and south pole. 
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ematicians of the eleventh century, and also a qadi, that is an Islamic judge. He 
lived in Jaén, in southern Spain. 

For simplicity of explanation, I will assume that the planet P is on the eastern 
horizon and that the vernal point is close to the meridian. The general case is not 
essentially more difficult. I will skip some computations that were standard in 
Ibn Mucädh's time, and I will use modern algebraical notation for the sake of 
clarity. My source is an unpublished Arabic text by Ibn Mucädh on the theory 
of "aspects", which survives in a unique Arabic manuscript, written in thirteenth 
century (Christian) Spain. 

Figure 8 displays the quadrant of the celestial sphere above the horizon and 
East of the meridian. All arcs in this figure are arcs of great circles, i.e. intersec
tions of the sphere with planes through its center. Points E, S, and N are the East, 
South, and North points of the horizon. Because point P is on the eastern hori
zon, its "projection" P' coincides with the East point E. Point C is the celestial 
north pole, NCWMS is the meridian, which intersects the ecliptic at M and the 
celestial equator WVE at W. Point V is the vernal point. Then LPVE = e, the 
obliquity of the ecliptic, a known angle for which the value 23°35' was often used 
in Arabic astronomy; LVES = 90°—0; here (j) is the geographical latitude, which 
is also assumed to be known (we assume that the astrologer is in the Northern 
Hemisphere, between the equator and the Arctic Circle). Note that arc CN = 0. 
We also assume that we know arc VP, that is the celestial longitude of P. 

To compute the so-called right sextile aspect of P, we mark off EQ'=60°on 
the celestial equator, and we draw semicircle SQ'N to intersect the ecliptic at Q. 
We want to compute arc VQ. 

Ibn Mucädh draws arc CQ' to meet the ecliptic at point R. Because C is the 
celestial north pole and Qf is on the equator, LCQ'V is a right angle. 

Arc VE, the so-called "rising time of point P" can be found by a standard 
computation, or can be looked up in a "table for rising times" for the particular 
geographical latitude. 

On the celestial equator, we know arc EQ'=60°, £W=90° , so from EV we 
find Q'V and VW. Using these arcs we can compute or look up the following arcs: 
VR, VM (from a right ascension table; these are the longitudes that belong to 
right ascensions VQ',VW) and Q'R, MW (from a declination table). We have 
arc WS = 90°-0 , hence we find arc MS = arc WS- arc WM. The following 
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quantities are now known: a = arc MS, A = arc RM, 6 = arc Q'R\ we also know 
arc CS = 180° - 0 . 

The next step in the argument is crucial. 
I set x = arc QR. Ibn Mucädh uses the spherical theorem of Menelaus, to 

the effect that 
sinAfQ _ sin MS sin CQ' 
sin QR ~ sin SC ' sinQ'fl" 

Menelaus was a Greek astronomer who lived in Rome around a.d. 70, and 
whose work on geometry of the sphere is lost in Greek but extant in Arabic. 
Menelaus used a different trigonometric function, the "chord", which the Arabs 
replaced by the sine, a function of Indian origin. The medieval sine is a constant 
factor times the modern sine. Because we are dealing with proportions between 
sines, the constant factor can be ignored. 

Thus, we get 
sin(A -h x) sin a sin 90° 

sin a: sin0 sin£ 

The right-hand side of this equation is a known quantity c. Thus, Ibn Mucädh has 
to solve x from 

sinCA + z) = c 

sin x 

for known A, c. 
In an earlier work [7], Ibn Mucädh had shown how equation (1) can be reduced 

to 
,A x c + 1 A ,n. tan(— + x) = • tan —. (2) K2 J c-1 2 w 

There Ibn Mucädh had also tabulated the tangent8 function for every degree up 
to 89°.9 By means of this table, x can easily be computed. We have arc QV = arc 
RV + x. 

Ibn Mucädh reduced (1) to (2) by means of the following geometrical reason
ing (Figure 9, [7, Fig. 4]). On a circle of reference we represent the known arc A 
as arc AG, bisected at B, and the unknown arc x as arc GL. Let D be the center, 
extend lines DL and AG to meet at point K, and drop perpendiculars GN, BZ, 
and AM onto DK. Let BD intersect AG at O. 

Now tan(f -\-x) = BZ : ZD. By similar triangles, BZ : ZD = KO : OD = 
(KO : OG) • (OG : OD). We have AK : KG = AM : GN = sin(A + x) : sinx = c. 
Thus, KO:OG = (KG + KA) : AG = (c+1) : ( c -1 ) . Finally, OG : OD = tan £. 

I have discussed the solution of the problem for a particular configuration. 
The procedure is general; in some cases one gets a minus sign instead of a plus 
sign in equation (1). Ibn Mucädh also discusses this situation in [7]. 

It is not certain whether Ibn Mucädh ever computed tables for the aspects, 
to replace the tables of his famous predecessors al-Khwârizmï and al-Majrïtï. We 
know, however, that Ibn Mucädh computed tables of the so-called astrological 

8Ibn Mu cädh did not have a special name for the tangent; he called it the quotient of the sine 
and the cosine. 

9Also for every quarter of a degree between 89°and 89°45'. 
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Figure 9 

houses on the basis of the same computation. The astrologers divided the celestial 
sphere into 12 "houses" somewhat like an orange into 12 parts, and according to 
Ibn Mucädh this should be done in the same "equatorial" way as in the theory 
of aspects. The arcs of the equator between the meridian and the horizon had to 
be divided into three equal parts of 30°, and through the division points Q' one 
had to draw semicircles NQ'S, etc., which were the boundaries of the houses. Ibn 
Mucädh computed tables for the celestial longitude of the arcs VQ as a function 
of the celestial longitude of point P on the Eastern horizon, so that the astrologers 
could use his system of houses. 

It is clear that astrology created nontrivial work for the mathematicians. Not 
all astrologers needed to understand the computations, but there was always a 
certain demand for people who understood the technicalities. The applications in 
astrology and similar ones in astronomy were much more advanced than the trivial 
applications of mathematics in land measurement, administration, and commerce. 

The purpose of my two examples (of al-Mu'taman and Ibn Mucädh) has 
been to convey some idea of the work of the eleventh-century Islamic Spanish 
mathematicians in geometry and trigonometry. There were no revolutions in the 
mathematics of this period, comparable to those in antiquity and the seventeenth 
century. However, the geometrical methods of antiquity and the Islamic East were 
handled independently and creatively. In these areas the Western European math
ematicians did not catch up with their Islamic Spanish predecessors until the 
Renaissance.10 Therefore Islamic Spain has a unique position in the history of 
mathematics in medieval Europe. 

Note added in proof: A complete manuscript of a 13-th century recension of the 
Istikmäl has turned up in 1995. 

1 0The Renaissance scholar Regiomontanus (1436-1476) was influenced by Ibn Mucâdh; they 
both used the same system of astrological "houses". 
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Within the international mathematical community, the last three decades have 
witnessed a striking number of centennial celebrations. To name just a few, the 
London Mathematical Society (LMS) entered a new century in 1965 with the 
Société mathématique de France (SMF) following in 1972, the American Journal 
of Mathematics and the Circolo matematico di Palermo (CMP) saw their cen
tenaries in 1978 and 1984, respectively, and the American Mathematical Society 
(AMS) passed its century mark in 1988 preceding the Deutsche Mathematiker-
Vereinigung (DMV) by two years.1 These milestones suggest, at the very least, 
that the mathematical endeavor developed in important ways in diverse national 
settings during the closing quarter of the nineteenth century. 

In recent years, numerous historians of mathematics have labored to docu
ment, explain, and interpret this development within distinct national settings.2 

Their work has detailed the seemingly idiosyncratic causes behind the emergence 
of mathematical communities in individual European countries as well as in the 
Americas. Depending on the national venue, those causes have included, for exam
ple, educational reforms brought on, at least to some extent, by political unification 
in the case of Italy, by the loss of the Franco-Prussian War in the case of France, 
and by the philanthropy of individuals made wealthy in an age of expansion and in
dustrialization in the United States. As this brief list indicates, however, although 
the underlying reasons for it may have differed rather dramatically from country to 
country, educational reform nevertheless represented a sort of international com
mon denominator in the formation of these national mathematical constituencies 
in the period, roughly speaking, from 1875 to 1900. A natural question would then 
seem to be: Are there other such common denominators? 

In this paper, I show that this question has a resoundingly affirmative answer 
by examining some of the recent historical literature on the national mathematical 

1For publications honoring the centennials of the LMS, AMS, and DMV, see [6], [8], and 
[11], respectively. Gispert detailed the history of the SMF from 1872 to 1914 in her book [12], 
and Brigaglia and Masotto chronicled the early history of the CMP in [5]. 

2Owing to space limitations, I am able to indicate only a small fraction of this work in 
the bibliography accompanying this paper. I have tried, however, to select references that also 
provide bibliographies useful for further research. In this regard, see especially [13]. 
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scenes during this quarter century in Germany, France, Italy, Spain, Russia, Great 
Britain, and the United States. I set the stage for the analysis by sketching some 
of the well-known, nineteenth-century contours of the situation in Germany. In 
the twenty-five-year period under discussion, it is undeniable that, as Bottazzini 
has so cogently put it, "Germany slowly achieved European hegemony in mathe
matics" [4, p. 283] ,3 and that hegemony extended to the Americas as well. Indeed, 
in each of the countries considered here, educators in general and mathematicians 
in particular reacted to, adopted, or adapted — whether directly or indirectly — 
specific aspects of what they viewed as the German model. I uncover a remark
able sameness amidst the apparent diversity of individual national mathematical 
histories by selectively tracing the naturalization in many soils of predominantly 
German institutional and mathematical values. In so doing, I seek to demonstrate 
the fruitfulness of an international — in addition to a more strictly national — 
approach in reaching a deeper understanding of a key era in the history of Western 
mathematics. Through the complex process of profcssionalization, the twenty-five 
years from 1875 to 1900 witnessed the formation not only of many of the institu
tions and values so characteristic of mathematics today but also of an international 
mathematical endeavor.4 In short, I hope to provide at least some indication of 
answers to broader questions such as: How did mathematics become international? 
and to suggest potentially fertile lines for future historical inquiry. With these goals 
in mind, let us now turn to the German scene. 

A Glimpse at the Contours of the German Context 

The opening decade of the nineteenth century was one of great political reorga
nization in the German states owing to the effects of the Napoleonic Wars. In 
Prussia, for example, the years from 1806 and the Prussian defeat at the bat
tle of Jena to 1810 and the founding of the University of Berlin witnessed a se
ries of fundamental political, socio-economic, and educational reforms. The latter, 
spearheaded by Wilhelm von Humboldt, came quickly to dominate not only the 
educational system in Prussia but those in the other predominantly Protestant 
German states as well.5 Von Humboldt's vision of higher education stressed the 
importance of pure research over the utilitarian concerns perceived as dominant 
within the post-Revolutionary educational system in France. This emphasis on 
research accompanied and complemented a strong insistence on academic freedom 
that developed into the ideals of Lehr- und Lernfreiheit, that is, the freedom to 
teach and to learn without political or religious interference. Such educational re
forms aimed not only to support the faculty's search for new knowledge but also 
to train independent-minded, creative, and original thinkers within an atmosphere 
of disinterested, scholarly pursuit. 

3All translations presented here of quotations originally in languages other than English 
are my own. 

4 Because the concept of professionalization in mathematics has been defined and discussed 
in many places, among them, [19], [12], and [16], I do not redefine it here. 

5This panoply of issues has also been thoroughly examined. See, for example, the references 
provided in [16, pp. 24-26] and [19]. The situation, however, was different in the predominantly 
Catholic, southern German states [20]. 
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These latter aims came to characterize the Prussian system as teaching and 
research increasingly defined the university professor's mission. In the specific case 
of mathematics, this new research ethic ultimately brought with it greater special
ization in the field, as mathematicians and mathematicians-to-be tended to focus 
their studies in an effort to make their own personal contributions. At the same 
time, the emphasis on disinterested — as opposed to more applications-oriented 
— research resulted in the evolution of a fundamentally purist approach to the 
discipline.6 Perhaps nowhere were these interrelated aspects of the development 
of mathematics in Germany more in evidence early on than at the University of 
Berlin under Dirichlet, Kummer, Weierstrass, and Kronecker [3] and later at the 
formerly Hanoverian university in Göttingen. 

At Göttingen following his assumption of a chair there in 1886, Felix Klein, 
in fact, set the standards for late nineteenth-century mathematical teaching and 
activism. As a professor, he brilliantly employed the seminar, an institution that 
had evolved in the German context as the principal vehicle for the active training 
of young researchers, to animate a thriving mathematical community in Göttingen 
[16, pp. 189-234, 239-254].7 Moreover, as a mathematical activist, he lobbied ener
getically and successfully for mathematics with Prussian ministerial officials, edited 
the Mathematische Annalen, supported and participated in the activities of the 
Deutsche Mathematiker-Vereinigung [18], and generally served as an advocate for 
the field in his efforts to stimulate further the German mathematical community 
as a whole. These institutions — the graduate seminar, the specialized journal, 
the specialized society — together with the twin values of research and teaching 
largely defined the profession and, in subtler ways, the discipline of mathematics 
as it had developed in Germany by the end of the nineteenth century. These same 
institutions and values informed the emergence of mathematical research commu
nities in a number of other countries as well and thereby served to build a common 
foundation for the subsequent internationalization of the field. 

The Reverberations in Mathematics of Educational Reform 

It was not accidental that this brief sketch of the context of German mathematical 
developments in the nineteenth century opened with a discussion of educational re
form. Changes in higher education and in its overall objectives naturally spurred 
changes at the level of the individual disciplines. Educational reform tended to 
affect mathematics even more directly, because one of the key features distin
guishing the mathematical endeavor of the nineteenth century from that of the 
preceding hundred-year period was its venue, namely, the university as opposed 
to an Academy of Sciences, a royal court, or elsewhere [19, p. 111]. Its effects were 
not always positive relative to the development of research-level mathematics in 

6 The processes underlying these developments as well as the interrelations between pure 
and applied mathematics are, however, much more complicated than these statements might 
suggest. See. for example, [19] and [20]. 

7Obviously, Berlin and Göttingen did not support the only active graduate programs in 
mathematics in late nineteenth-century Germany. Paul Gordan and Max Noether at Erlangen, 
Sophus Lie at Leipzig, and others throughout Germany contributed to the overall profile of higher 
education in mathematics. For more on the Leipzig seminar, in particular, consult [2]. 
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a given national setting, though, as a comparison of the situations in France and 
Spain underscores.8 

In a France awakened from complacency by its loss of the Franco-Prussian 
War in 1870-1871, Gaston Darboux had already had cause to remark that "we 
need to mend our [system of] higher education. The Germans get the better of 
us there as elsewhere. I think that if that continues, the Italians will surpass us 
before too long" [12, p. 19]. In fact, spurred largely by the military defeat and its 
implication that the so-called grandes écoles were perhaps not grand enough to 
prepare the French adequately for times of crisis, leaders of the newly formed Third 
Republic sought to strengthen their political position, at least in part, by fostering 
an intellectual elite associated not with the grandes écoles as had been the case with 
previous regimes but rather with the facultés in each of France's administrative 
regions. In order to fit the latter for this purpose, the French politicians and 
educational reformers consciously refashioned them along the lines of the German 
model [21, pp. 302-303]. 

In a series of major reforms that took place between 1876 and 1900, the 
French established new chairs (principally in the provinces) and a new type of 
position (the salaried post of maître de conférence), loosened the old disciplinary 
boundaries through the creation of chairs in various subdisciplincs (as exemplified 
by Camille Jordan's chair not in mathematics but in higher algebra per se), and 
adopted research productivity as a criterion for determining salary. All of these 
changes contributed to the rise of a more specialized, research-oriented mathemat
ical profession in France on a par by 1900 with that in place in Germany [12, pp. 
59-63].9 

Still, such reform did not necessarily have a positive impact relative to the 
development of mathematics at the research level. In 1857, Spain adopted a cen
tralized educational system modeled on the one put in place in France under 
Napoleon around the turn of the nineteenth century, yet under Madrid's firm con
trol, further change came only slowly. In mathematics, that control translated into 
the dominance in the advanced curriculum of the projective geometry that Karl 
von Staudt had developed around mid-century and that Madrid's Eduardo Tor-
roja y Caballó embraced beginning in the 1870s. Although Torroja did advocate 
doing mathematics in his courses at Madrid, he clung doggedly to an area that, 
over the closing decades of the nineteenth century, grew increasingly distant from, 
for instance, the more purist Riemannian frontiers of geometrical research [13, p. 
1508]. In so doing, Torroja and his adherents in Madrid obstructed the efforts of 
others in Spain, like Garcia de Galdeano [14, pp. 112-114], to encourage the sort of 
mathematics being done elsewhere in Europe and particularly in Germany, France, 
and Italy [1, pp. 162-163]. 

As the examples of France and Spain illustrate, widespread educational re
forms in the last quarter of the nineteenth century affected the development of 

8Space limitations do not allow for the inclusion of the cases of Italy and England, which 
were presented in the version of this paper delivered at ICM94. 

9Although the circumstances surrounding their "emergent periods" were certainly quite 
different, France and the United States were influenced by many of the same external factors in 
the years from 1875 to 1900. Compare [12] and [16]. 
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mathematics in countries throughout Europe (the United States could be cited 
here as an example as well). The creation of new academic chairs and institutions, 
the addition of new grades of instructors, the direct emulation of the German 
ideals linking teaching, research, and the production of future researchers — these 
aspects of reform complemented one another in those countries where mathemat
ics at the research level came to define the professional standard. The absence of 
one or more of them, however, tended to thwart that sort of development. 

The Production of Future Researchers 

In turn-of-thc-century France, Emile Picard summarized well the key role edu
cational reforms had played in the professionalization of high-level mathematics. 
"Beyond their mission of making the sciences known and understood," he wrote, 
"the institutions of higher education . . . have another [mission], just as noble as 
all the others, that of advancing science and of continually initiating new genera
tions of researchers to the methods of invention and of discovery" [12, p. 60]. As he 
clearly stressed, a sense of the importance of the training of future researchers rep
resented one crucial byproduct of these German-inspired reforms. Thus, educators 
and mathematicians in other countries who looked toward Germany and France 
for their inspiration and guidance in the final quarter of the nineteenth century 
tended to conceive of this "noble mission" as an integral part of their endeavor. 
The United States and Russia provide just two of the possible examples we could 
examine of this sort of influence. 

The years between 1875 and 1900 represented a period of growth and financial 
prosperity in the United States that had important repercussions in higher educa
tion. As great fortunes were made on the railroads, the telegraphs, and industrial 
expansion in general, individuals like Johns Hopkins and John D. Rockefeller en
dowed universities through their private philanthropy. The presidents of these new 
schools, well aware of the educational scenes abroad and especially in Germany, 
France, and Great Britain, crafted their new institutional philosophies informed 
by the examples of those foreign systems. In particular, many of them adopted 
the production of research and of future researchers as explicit missions for their 
faculties and schools [16, pp. 261-294]. 

At the University of Chicago, for example, a university financed by Rocke
feller and opened in 1892, the American, Eliakim Hastings Moore, and the two 
Germans, Oskar Bolza and Heinrich Maschke, implemented a training program in 
mathematics rivaling that of many of their German competitors [16, p. 367]. This 
comes as no surprise in light of the facts that Bolza and Maschke had learned their 
trade from Felix Klein and that Moore had spent a year abroad studying math
ematics in Göttingen and Berlin. In addition to the regular lecture courses they 
offered in the established areas of late nineteenth-century mathematics — invariant 
theory, the theory of substitutions, elliptic function theory, among others — the 
Chicago mathematicians also incorporated the seminar into their overall pedagog
ical approach. As especially Bolza and Maschke knew from firsthand experience, 
the seminar served as a fertile seedbed for the germination of new mathematical 
ideas along more specialized lines. The educational atmosphere fostered by this 
faculty produced in short order a number of first-rate mathematicians, notably 
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Leonard Dickson, Oswald Veblen, Robert L. Moore, and George D. Birkhoff [16, 
pp. 372-393]. To get a sense of the fruitfulness of the training process these mem
bers of the next generation of American mathematicians underwent, let us briefly 
consider the case of the algebraist, Dickson. 

An 1896 Chicago Ph.D. and student of E. H. Moore, Dickson quite naturally 
pursued a topic in his dissertation reflective of the research interests of his adviser. 
In an 1893 paper, Moore had examined a number of specific questions in the 
theory of finite simple groups. In particular, he had presented a codification of 
the known simple groups of order 600 or less, which had led him to the discovery 
and explicit proof of the simplicity of what he called a two-parameter family of 
groups of order p ( p

2 ~^ for p a prime and (p, n) ^ (2,1), (3,1). (Today, these 
groups are denoted P5L2(pn).) In so doing, he had also explored the nature of 
the finite fields of order pn upon which his new groups depended and had proven 
that every abstract finite field F(s) is, in fact, a Galois field GF\pn] where s = pn. 
(For Moore and his contemporaries, the Galois field GF\pn] was the set of pn 

equivalence classes of Zp[X]/(f(x)) for an indeterminate X and an irreducible 
monic polynomial f(X) G Z[X] of degree n over the prime field Zp = Z/pZ.) The 
realization that any arbitrary finite field actually had the structure of a Galois 
field allowed Moore to apply that well-known theory in his analysis of his finite 
simple groups [16, pp. 375-379]. 

Moore encouraged Dickson to pursue other algebraic questions involving finite 
fields F = GF\pn]. For a polynomial (p(X) of degree k < pn with coefficients 
in F, Dickson looked, in his dissertation's first part, at the associated mapping 
(j) : F —> F, £ i—> 0(£) and explicitly determined all of the bijective mappings <j> 
for k < 7, obtaining partial results for k = 7, 11. In the second and final part, he 
shifted to an analysis of the general linear group GLm (F), consciously extending 
Camille Jordan's earlier results for the special case of F = GF\p\. In studying 
the composition series of these groups, Dickson proved one of the main results 
in his thesis, namely, if Z is the center of SL.m(F), then SLm(F)/Z is simple 
provided (m,n,p) ^ (2,1,2), (2,1,3). Thus, he extended Moore's ideas of 1893 to 
three-parameter systems of simple groups [16, pp. 379-381]. 

Dickson continued his work on the theory of linear groups for over a decade 
before moving on to other lines of algebraic research, most notably in the theory of 
algebras. As a faculty member at Chicago from 1900 until his retirement in 1939, 
Dickson perpetuated, through his ongoing work, the style of algebraic research 
he had learned at the feet of his adviser and then colleague, Moore. His training 
of almost seventy graduate students, among them his own successor at Chicago, 
A. Adrian Albert, further solidified that research tradition throughout the United 
States.10 

10Della Dumbaugh Fenster has recently completed a dissertation, entitled "Leonard Eu
gene Dickson and His Work in the Theory of Algebras" (University of Virginia, 1994), that 
analyzes Dickson's work in the theory of algebras within the broader context of the consolidation 
and growth of this algebraic research at Chicago. Compare [16, pp. 427-431] for an analytical 
framework of the history of mathematics in America in terms of periodization. The years from 
roughly 1900 to 1930 are characterized there as a period of "consolidation and growth." 
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Although the broader cultural and political circumstances in Moscow could 
perhaps not have been more different than those in the Chicago of the late nine
teenth century, Moscow University, like the University of Chicago, supported a 
mathematics program under an activist attuned to contemporaneous mathemati
cal developments in both Germany and France. Nikolai Bugaev, who had studied 
in both Berlin and Paris for two-and-a-half years beginning in 1863, returned to 
Moscow to influence a corps of colleagues and students through his broader con
ception of mathematics. For Bugaev, mathematics involved communication which 
he fostered through his vigorous support of the Moscow Mathematical Society and 
of its journal Matematicheskii Sbornik, founded in 1864 and 1866, respectively. It 
also hinged on its university setting, which he worked to strengthen and enhance 
at Moscow through his efforts first as secretary and then as dean of its faculty of 
physics and mathematics. Most importantly, it depended on training students ca
pable of contributing to its further development. To the latter end, Bugaev taught 
a wide range of courses in, for example, number theory, the theory of elliptic func
tions, the calculus of variations, and the theory of analytic functions, which aimed 
to introduce his students to these subjects at the research level. He also fostered 
and contributed to a philosophical atmosphere in which mathematics was inter
preted essentially as a theory of functions and where the theory of discontinuous 
functions played a key role. This conception not only proved conducive to the 
acceptance of Georg Cantor's novel set-theoretic ideas but also served as the foun
dation of the Moscow school of function theory, spearheaded in the early decades 
of the twentieth century by Bugaev's student, D. F. Egorov [7], and perpetuated 
by Egorov's disciple, N. N. Luzin. This school, which also included such influential 
twentieth-century mathematicians as P. S. Aleksandrov, A. Ya. Khinchin, and D. 
E. Menshov, made seminal contributions to the advancement of measure theory 
and the general theory of functions of a real variable [17]. 

The cases of both Moscow University and the University of Chicago drive 
home the obvious point that the success of the mathematical endeavor in a given 
national context depends crucially on the process of training talented students 
in areas rich in interesting, open questions. At its core, mathematics undeniably 
involves proving theorems, and these students not only learned how to carry out 
that creative process successfully but also embraced the belief that they should 
pass on their insights to a subsequent generation. As they had been trained, so 
should they train — this philosophy came to characterize the mathematical mis
sion internationally in the latter quarter of the nineteenth century. Moreover, in 
concert with the other factors examined above, it encouraged the formation of self-
sustaining mathematical communities, that is, interacting groups of people linked 
by common interests. 

The Establishment of Lines of Communication 

The formation of a community, however, also turns upon the ability of its members 
to communicate effectively. Our time period, one in which telegraphy, railroad 
systems, steamships, and the printed word linked nations internally and with each 
other, witnessed the widespread creation of at least two sorts of communications 
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vehicles dependent on this new level of mobility: the mathematical society and the 
specialized mathematical journal. 

Although the Moscow Mathematical Society predated it, the London Math
ematical Society, which first met under that name in January of 1865, served as a 
model for mathematical organizers throughout Europe and in the United States. 
Not only did it bring together mathematicians in and around London and even
tually throughout England for the presentation and discussion of mathematical 
results, but it also published from the outset the Proceedings of the LMS for the 
further dissemination of original research [6, pp. 577-581]. 

The example of the English mathematicians informed, at least partly, initia
tives taken in Palermo for the promotion of research-level mathematics.11 Giovanni 
Battista Guccia, a student of both Brioschi and Cremona, established the Circolo 
matematico di Palermo in 1884 inspired by the examples of both the French As
sociation for the Advancement of Science and the LMS. His objectives for the new 
society, however, were in some sense more outward looking than those of either of 
the societies that served as his model. Guccia sought to create an organization that 
united mathematicians internationally at the same time that it spurred advanced 
work in Italy by drawing it into the wider international arena [5, pp. 51-75]. He 
worked to achieve these goals by actively soliciting foreign members as well as 
by publishing, beginning in 1885, the Circolo's Rendiconti. Guccia recognized the 
distinct advantages of an international as opposed to a strictly national posture 
for the overall vitality of mathematics at the research level. 

As this brief discussion of the establishment of national mathematical so
cieties highlights, mathematicians during the closing quarter of the nineteenth 
century recognized the importance of communication both in person and in print 
for the advancement of their discipline. Their organization of societies further re
flected their growing sense of mathematics as a profession, while their creation of 
new publication outlets reinforced the standards adopted for that profession.12 By 
the late nineteenth century, to be a mathematician meant the same thing inter
nationally, namely, to produce and to share the results of original research with 
like-minded members of an extended community of mathematical scholars both at 
home and abroad.13 

11 Michel Chasles also looked to the example of the LMS in calling for the establishment 
of an analogous society in France in a report of 1870. The institutional void that he sensed was 
ultimately filled in 1872 following the formation of the Société mathématique de France [12, pp. 
14-17]. The LMS directly influenced the founders of the American Mathematical Society as well 
[16, pp. 267-268]. 

12Here, we could clearly also cite many examples of journals founded during this time 
period that were independent of the mathematical societies formed: the Mathematische An-
nalen founded by Alfred Clebsch in Germany in 1868, Gaston Darboux's Bulletin des sciences 
mathématiques started in 1870, and the American Journal of Mathematics begun by James 
Joseph Sylvester in the United States in 1878, to name just three of the earlier periodicals. 

1 3 For a quantitative sense of the depth of the American mathematical research community, 
see, for example, [9] and [10]. [12] provides an analysis of the broader French mathematical 
constituency, and [15] gives some indication of the situation in Spain. 
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An International Overview: Some Common Denominators 

From this comparative inquiry the following composite of the parameters of the 
mathematical endeavor during the last quarter of the nineteenth century now 
emerges. First and foremost, the establishment internationally of a mathematical 
profession during this time period largely — although not exclusively — hinged 
on changes in higher education in the various national settings. Although these 
changes came about often through very different sequences of events — politi
cal, financial, philosophical, pedagogical — and so for very different reasons in 
different national contexts, they nevertheless tended to provide more and more 
conducive settings within higher education for the study and pursuit of research-
level mathematics. In particular, the adoption of nationally tailored versions of the 
twin German principles of Lehr- und Lernfreiheit in various countries brought with 
it a redefinition of the role of the professor of mathematics that increasingly en
compassed the dual activities of teaching and the production of original research. 
Education at a graduate level thus developed in order to train students capable of 
realizing these two goals. 

As the discovery of new mathematical results came to set the standard of 
entry into the evolving profession, the discipline defined itself in more specialized 
terms. Universities split their chairs of mathematics and physics or of mathemat
ics and astronomy and even created chairs in specific mathematical subdisciplines. 
This specialization resulted both in the sharpening definition of mathematical 
areas and in an increase in the number of positions available in the field. This 
latter aspect of the evolution of a profession was also influenced by the estab
lishment of new grades of instructors under the professor (Dozenten, maîtres de 
conférences, assistant and associate professors, etc.). As individuals sought out this 
graduate training, as they assumed these new positions, as they adopted these val
ues of teaching and research, they banded together in national or broadly based 
mathematical societies and shared their new research through specialized journals 
targeted at an appreciative and understanding audience. The individual nation
alization of mathematics was thus well underway by the end of the nineteenth 
century, and because the model emulated was largely the same in the various na
tional contexts, this implies that the internationalization of the field was likewise 
in process. Perhaps no one piece of evidence supports this latter conclusion better 
than the fact that Zürich hosted the first International Congress of Mathematicians 
in 1897. 

By taking an international perspective on the development of mathematics 
over the period from roughly 1875 to 1900, this analysis has thus uncovered a 
number of factors common to particular national settings, which strictly nation
ally oriented studies tend perhaps to obscure. In so doing, it has hopefully also 
shed some light on the complexity of the process of the internationalization of 
mathematics and has suggested at least implicitly some fruitful lines for further 
historical research. 
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Hermann Weyl's "Purely Infinitesimal Geometry" 
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Weyl's view of the continuum 

The years 1916 and 1921/22 delimit a phase of Weyl's work during which he made 
his most radical contributions to the foundations of mathematics as well as of 
highly innovative contributions to differential geometry and classical field theory. 
All of this work had a strongly speculative background. Although Weyl lived and 
worked in Zürich from 1913 onward, he continued to be a German citizen and had 
been drafted into the German army in May 1915. He was discharged from the 
service after an intervention by the Swiss government in August 1916. * The deep 
crisis of European culture in the years surrounding World War I was deeply felt 
in a very personal way by W7eyl, although his reaction had much in common with 
the way this crisis was felt by other German academic intellectuals, particularly 
in the cultural sciences.2 

Weyl's conception of the continuum during that time shifted from the semi-
constructivist position in [W3] to a clear adherence to Brouwcr's intuitionism and 
became more cautious with some openness to Hubert's position from the middle 
of the 1920s. A common feature during the shifts was that he wanted to link the 
mathematical concept of continuum to a "directly experienced continuity" [W5, p. 
527] so that the latter could never be identified with an extensionally closed realm 
or even object of thought. Weyl prized Brouwer's theory as it offered a means of 
representing the continuum as a "medium of free becoming", an expression carry
ing rather clear Fichtean connotations.3 And, in fact, he chose deliberately to link 
the continuum with a concept structure elaborated in the dialectical philosophy of 
the early nineteenth century, a notion whose logical features may appear surprising 
for a twentieth-century mathematician. 

A general concept, the whole (here the continuum), has to be presupposed 
in order to give meaning to an individual determination, the particular, or the 
part (here the point).4 On the other hand, the whole, the general concept (the 
continuum) is constituted in a process of common generation by the particulars, 
(the parts). 

l[S, 61ff.]; [FS, 20ff.] 
2 A broad cultural picture of the self-understanding of cultural scientists in Germany has been 

given by Ringer [R]. 
3Weyl had already admitted the Fichtean inspiration of his thoughts in the foundations of 

mathematics in his book Das Kontinuum [W3, p. 2]. 
4So far this conceptual figure was also shared by Riemann in his inaugural lecture of 1854. 
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This conceptual figure came close to those procedures that had been called 
"impredicative" by Russell and Poincaré and that had been blamed as being re
sponsible for contradictions of the type of Russell's antinomy. One example in 
real analysis, debated by W êyl himself, was the definition of a real number a as 
a := sup (A) for a bounded set A G R, as in this definition reference to the total
ity of the reals is made. So, for Weyl, it was clear that an attempt to translate 
too directly what he regarded to be the "essence of the continuum" into mathe
matical form might easily lead to logical difficulties.5 Weyl saw and discussed two 
conceptual strategies to avoid the dilemma: 

Strategy I: Design of an "atomistic" theory of the continuum (either contruc-
tive or axiomatic). 

This approach might be logically consistent but would, in Weyl's view, never 
lead to sufficiently rich expressions of the intuitive idea of the continuum, as Weyl 
immediately remarked in a discussion of his own "atomistic" theory in [W3, p. 
83]; [W5, p. 527]. A set-theoretic approach with a topological characterization 
of continuity appeared even less convincing to him. Even in 1925, when his most 
radical phase in the foundational debate had already ended, Wreyl made quite clear 
that such an approach was not convincing to him because a set-theoretic approach: 

. . . contradicts the essence of the continuum, which by its very nature 
cannot be battered into a set of separated elements. Not the relation
ship of an element to a set, but that of a part to the whole should serve 
as the basis for an analysis of the continuum. [W6, p. 5] 

But what, then, might be understood as the "relationship of a part to the 
whole" in the case of the continuum, independent from set theory? W êyl never gave 
a final answer to that obviously very difficult and perhaps unanswerable question, 
but he did outline how he wanted to approach it. 

Strategy II: Development of mathematical theories that symbolically explore 
the "relationship between the part and the whole" for the case of the continuum. 

Fundamental for this strategy was an idea expressed by Wreyl in his 1925 
article for the Lobachevsky prize as follows: 

. . . a manifold is continuous if the points are joined together in such a 
way that it is impossible to single out a point just for itself, but always 
only together with a vaguely delimited surrounding halo (Hof), with a 
neighbourhood. [W6, p. 2] 

As examples, Weyl referred to the characterization of a function element in com
plex analysis and the characterization of neighborhood systems of a point as a 
limit structure in topology. His "infinitesimal geometry" of 1918 was designed as 
another, and he hoped for a time, far-reaching, contribution to this strategy. This 
work should therefore be read with this context in mind. 

5Actually Weyl discussed this type of conceptual problem inherent in the classical approach 
to analysis from his point of view as the necessity to distinguish between "extensionally definite" 
and (intensionally) well-determined properties in his letter to Holder, published as [W4]. 
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The design of a "purely infinitesimal geometry" 

From the perspective of Weyl's view of the continuum around 1918, differential 
geometry may be considered as one line of access to the question of how to link 
the infinitesimal "halos" of the point to the structure of the whole, the manifold. 
From this point of view, the differential geometric structures should be defined such 
that only relations in each infinitesimal neighborhood are immediately meaningful. 
Relations between quantities in different neighborhoods (of finite distance) ought 
to be considered meaningful only by mediation of the whole, more technically 
expressed by an integration process over paths joining the two points at the centers 
of the neighborhoods. From the point of view of building the continuum from 
its smallest parts, so Weyl claimed over and over again in the years following 
1918, Riemann's differential geometry did not appear completely convincing. In 
Riemannian geometry the relationship between lengths of vectors £ and rj is well 
defined, independent of the points p and q of the manifold to which they are 
attached (£ E TpM,rj e TqM,p ^ q). From Weyl's continuum-based view of 
differential geometry such a comparison appeared unmotivated, and he stipulated 
instead that a 

. . . truly infinitesimal geometry (wahrhafte Nahegeometrie) . . . should 
know a transfer principle for length measurements between infinitely 
close points only. [W2, p. 30] 

In this formulation Wfeyl alluded to Levi-Civita's transfer principle of di
rection in a Riemannian manifold embedded in a sufficiently high-dimensional 
Euclidean space, locally given by 

«*=e - Fjk?dxk 

with the dx1 to be interpreted as the coordinate representation of a displacement 
vector between two infinitesimally close points so that the direction vector £* has 
been transferred to £'\ 

Weyl immediately recognized that Levi-Civita's concept of parallel displace
ment wonderfully suited his nascent ideas about how to build differential geometry 
strictly on the basis of infinitesimal neighborhoods. He discussed it in this light 
during his lecture on general relativity in the summer of 1917 at Zürich, not yet 
knowing how to proceed similarly for the measurement and comparison of lengths.6 

This was the motivation behind Weyl's effort to separate logically the concept 
of parallel displacement from metrics and to introduce what he called an affine 
connection T on a (differentiable) manifold as, speaking in later terminology, a 
linear torsion-free connection. Guided by the example of affine connections Weyl 
also proceeded to build up the metric in a manifold from a "purely infinitesimal 
view". The result was his introduction of a generalized Riemannian metric, a 
Weylian metric on a differentiable manifold M, which is given by: 

6Weyl described in retrospect (1946) a discussion he had during his 1917 lecture course with 
one of his students, Willy Scherrer, that triggered these doubts. This story and its importance 
for Weyl's infinitesimal geometry has been described convincingly by Sigurdsson [S, p. 154]. 
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1. a conformai structure on M, i.e. a class of (semi-) Riemannian metrics [g] in 
local coordinates given by g%j(x) or gij(x) = X(x)gij(x), with multiplication 
by X(x) > 0 (real valued) representing what Wfeyl considered to be a gauge 
transformation of the representative of [g], and 

2. a length connection on M, i.e. a class of differential 1-forms if in local coordi
nates represented by ipidxi, (pidxi = (fidxi — dlogA (representing the gauge 
transformation of the representative of ip). 

In modern terms, Weyl introduced a connection UJ in the line bundle TT : L —> M 
associated to the GL(n, R) principal bundle of frames in the tangent bundle TM or 
— assuming orientability — in the principal bundle of positive 1-frames in L with 
group G = (R+, •). Here UJ assumes values in the Lie algebra Q = R with trivial 
multiplication ([x,y] = 0) and can, after local trivialization, be identified with a 
1-form UJ. Change of trivialization is here given by a pointwise multiplication by 
X(x) with values in R+. That leads to a gauge transformation 

Co = A_1dA + A-1o;A = A_1dA + LJ = dlogA + w, 

which coincides up to sign with Weyl's formula. Wreyl, of course, derived the gauge 
transformation as a compatibility condition for length transfer expressed in differ
ent representatives of the conformai metric. 

The length transfer by a connection form ip on M was introduced by Weyl in 
close analogy to the direction transfer in M by an affine connection. Specification 
of length calibration in some point p £ M may be represented as the determination 
of a positive real value l(p). Without further specifications this calibration is mean
ingful only as a measuring device at the point pin M. In order to compare lengths 
of vectors attached to different points such a measure has to be transported from 
one point to another. For two infinitesimally close points p,pl with displacement 
vector a (for a modern reader to be understood as a e TPM) transport of length 
measure was introduced by W êyl as fulfilling the condition 

l(p') = l{p) - <p{a)l(p) = l(p)(l - <p(a)) ; 

i.e. length has to recalibrated in an infinitesimal transfer along the displacement 
vector a by the factor (1 — ip(a)). For two finitely distant points p, q G M, recali-
bration is given by a factor of the form 

1 •J<p(c(t))dt 

integrated along a path parameterized by J. So length comparison between finitely 
distant points becomes in general path dependent, just like comparison of direction 
for affine connections. 

In consequence, Weyl introduced length curvature as giving the length dif
ference I — V for transfer along the periphery of an infinitely small parallelogram 
with sides a,ß. This turned out to be a 2-form7 

I - V = f(a, ß) = -f(ß, a) with / = dip. 
7For modern gauge theorists this is no surprise, as with hindsight one notes that Weyl worked 

with an abelian gauge group, therefore curvature should be R = dw + | [u, u] = duj. 
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Weyl explored his new geometry and derived, among others, the following 
basic properties. 

THEOREM 1 A Weylian metric is (semi-)Riemannian8 if and only if f = 0. 

THEOREM 2 In a Weylian manifold there exists exactly one compatible affine con
nection r . 9 

So there exists a curvature tensor Fljki of T that is moreover, as Weyl re
marked, gauge invariant. This appeared quite remarkable for Weyl as he considered 
gauge invariance an important criterion for physical relevance of quantities in his 
new geometrical structure, in addition to general covariance. 

The derivation of the length curvature from the length connection is struc
turally identical with the relationship between the relativistic electromagnetic field 
fij and its 4-potential ifi. Thus, obviously, the first set of Maxwell equations hold 

df = dd<p = 0, f f + ^ + §%=0. 
OX1 OX3 OXK 

Guided by Mie's relativistic formulation of Maxwell's theory Weyl considered the 
vector densities / u := y/— d e t ( ^ j ) / u and the the source equation for them as an 
expression of the second set of Maxwell's equations in his theoretical framework 

dx3 H 

For readers of Weyl's papers of about 1918 such an approach may have ap
peared as a nice but still rather formal analogy. But for Weyl it appeared to be 
much more; in fact he appeared to be carried away by this analogy and took it 
as an indicator of a more or less obvious and forceful semantical bridge between 
mathematics and physics. So, for example, in his first paper on the subject in 
Mathematische Zeitschrift, addressed to a mathematical audience, Weyl barely 
made any distinction between mathematical concepts and physical interpretation 
[WI]. He seemed to be completely sure that his analysis had led him to a 

. . . world metric from which not only gravitation but also the electro
magnetic effects result, which therefore gives account of all physical 
processes, as one may assume with good reason. [WI, p. 2] 

For the reader the "good reasons" for such a realistic semantical turn in the 
argument could not be at all so clear as they seemed to be for Weyl. Taken at face 
value they were not much more than analogies between the curvature equations 
and Mie's theory of the electromagnetic field. That was, of course, sufficient reason 
to investigate whether it was possible to extend this connection to a more elaborate 
theoretical link. For Wreyl, however, there appeared to be not so much a question 

8 A Weylian metric reduces to the semi-Riemannian case, if tp = 0 after proper choice of gauge, 
so that the calibration can be integrated independently of the path. 

9 Compatibility of an affine connection T with a Weylian metric means conservation of angles 
by parallel transport according to T and length transported as would be done by <p. 
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but rather already an answer. Surprising as such a semantical jump may appear 
for later readers, we want to take a glance at Weyl's "good reasons" for accepting 
the connection between his new geometry and physics on the spot. For that wc 
have to take Weyl's philosophical background, in particular his Fichtean studies, 
into account. 

Weyl's Fichtean background 

In the period between 1916 and 1922 W7eyl was strongly fascinated by Fichte's work 
because in it he found "metaphysical idealism in its most unreserved and forceful 
expression". With that position W êyl took up a motif that was shared by a group 
of intellectuals in Germany at the beginning of the twentieth century who felt the 
rise of positivism as an indicator of a cultural crisis and looked for strong idealist 
counterforces in classical German philosophy. For Wreyl, Husserl's phenomenology, 
wThich he had started to study even earlier, shifted into the background during 
these years. It continued to be represented in his personal universe of discourse, 
however, by his wife Helene, who had been a student of Husserl's and wras now 
an expert in phenomenology. Her views thus served Wreyl as a sort of critical 
counterbalance to Fichte's highly speculative version of idealism. In our context 
Fichte's derivation of the concepts of space, time, and matter, in addition to those 
features of his philosophy that made Fichte "a constructivist of the purest water", 
as Weyl later said [W8, p. 637], are of particular concern. 

The constructivist aspect in Fichte's philosophy of knowledge is most clearly 
expressed in the latter's essay on "transcendental logic" [F2]. Here Fichte discussed 
the relationship between classical logic and transcendental logic, which Fichte used 
synonymously with the terms philosophical or dialectical logic. Reading Fichte to
day and from the point of view of the history of mathematics, we find striking 
similarities between Fichte's opposition between classical and transcendental logic 
and the differences between Hilbert and Weyl with respect to formalist versus in
tuitionist mathematics.10 Fichte criticized classical logic because it took concepts 
as something given and analyzed their relationships by formal means only. Philo
sophical (transcendental) logic would, on the contrary, generate the concepts in 
a sort of reconstruction ( "Nachconstruction" ) always trying to go back to some 
presupposed final origin ("das Ursprüngliche") [F2, p. 122]. In this context Fichte 
gave a very general explication of what he thought construction should achieve: 

Construction is the instruction to invent the concept by the power of 
imagination (Einbildungskraft) such that evidence is gained. [F2, p. 
188] 

So, for Fichte, construction is not reducible to technical means of concept genera
tion that are specified once and for all, although such technical means are obviously 
not excluded. Transcendental logic or dialectics should even give a "lawful method" 

10Even the rather well-known chess metaphor used by Weyl to describe the nature of Hubert 's 
formalist proof theory [W5, p. 535ff.] had been used in a completely analogous way by Fichte to 
characterize the procedures of classical logic from the viewpoint of transcendental logic [F2, p. 
387]. 
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for such a construction, i.e. characterize the conditions of reproducibility for a gen
eration process of the mind. For a reader like Weyl, the correlation with Brouwers' 
intuitive view of mathematical concepts could not be closer. Obviously it might 
be quite instructive to reread Weyl's "constructivist" approach to mathematics in 
light of this Fichtean background, but that is not the goal of this paper. 

Fichte exemplified his general views by considering the construction of the 
concepts of space, time, force, and matter; notions that appear over and over 
again in his Wissenschaftslehre. The basic figure of Fichte's generative dialectics 
of knowledge was the opposition of a so-called self (Ich) to a non-self (Nicht-Ich), 
which lies at the bottom of the Fichtean generative myth of all the concepts of 
the world. At the beginning and at the end of this generation process, the self is 
considered as "absolute", i.e. not opposed to any non-self, and was declared by 
Fichte as "absolutely free". During the transitional steps the self becomes limited 
and its freedom restricted by the opposition to the non-self. All the derivations 
in Fichte's Wissenschaftslehre deal with different steps toward an assimilation of 
certain features of the non-self, limiting the activities of the self. Part of these 
derivations is the generation of the concept of space, which Fichte described as 
follows: 
— Take separate "products of the non-self". They are posed by the imagination 
(by the "self") into separate points X, Yn and endowed with separate "spheres of 
action (Sphären der Wirksamkeit)" ZX,ZYI mutually excluding each other. 
— Yet, on the other hand, between the mutually excluding "spheres of activity" 
there is, according to Fichte, "necessarily continuity". In this sense a unity between 
any such "spheres of activity" is posed by the imagination. 
— The unity is produced in a medium of "continuous free activity" of the mind. 
This medium of free activity is space, symbolized as O by Fichte. [Fl, p. 194-196] 

Thus, in Fichte's derivation, Kant's transcendental space concept was taken 
up (space as unifying principle of the mind for determinations of localized activi
ties) and radicalized (medium of "continuous free activity"). Thus Fichte's notion 
of space was devoid of any specific a priori structure like, for example, Euclidean 
geometry. W7ith respect to mathematical structure his approach could be consid
ered as generalizing Kant's, and Fichte went on from here to the construction of 
the concept of matter, considering the "spheres of action" as intensities irreducible 
to, but united in extension O. He considered the "intensities" of the "spheres of 
action" as being "forces" that fill the space with their product [Fl. p. 201]. Matter, 
finally, was to him nothing but the external manifestation of the activities of forces. 

The last motif, matter as nothing but the manifestation of forces [F2, p. 
356f.], was rather widespread in German natural philosophy around the turn of 
the eighteenth to the nineteenth century. It had been expressed by Kant, radical
ized by Fichte, turned into a more subtle, qualitatively differentiated version of 
productivity by Schelling, and finally assimilated by Hegel into his system. For 
Fichte, as for the other post-Kantians, there was no empty space as an a priori 
form in which the senses could locate their empirical information. Space was the 
connecting activity between different "spheres of action" reconstructed by the self. 
The latter figured for Fichte as a sort of semantical meeting point for quite different 

1 1 Symbolism X, Y used by Fichte. 
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features. They constituted the "infinitely small parts of space" and the building 
forces of matter. They represented the "interior forces of the non-self acting in 
absolute freedom"12 but had to be reconstructed by the self as "spheres of action" 
of the productive imagination [Fl, p. 201f.].13 

When Weyl tried, beginning around 1918, to conceive the mathematical con
tinuum as the uniting medium of the individual determinations that cannot be 
"battered" into its single elements without loss of meaning, he was taking up an 
old topic in the philosophy of mathematics, which can be traced back to Aristotle. 
But in Weyl's rhetoric (the continuum as "medium of free becoming" ) the ties to 
Fichte's conception of continuity as the medium of free activity of the self were 
apparent to those who had read the latter. Fichte's "spheres of activity" bound 
inseparably to the points stood in close affinity to Weyl's goal of constituting the 
concept of mathematical continuum by some structural link binding the points 
inseparably to the general concept. But of course such a reference was not enough 
in itself to become mathematically productive. That the conceptual figures elabo
rated in nuce in an adaptation of Fichtean topics could take hold for several years 
so strongly on Weyl's mind and actually bear mathematical fruit depended on 
another development that had taken place in mathematical physics and that fit 
nicely into his philosophical scheme. 

Mie - Hilbert - Weyl 

In 1912 the Greifswald physicist Gustav Mie had formulated a research strategy to 
explain the basic phenomena of matter on a purely electromagnetic basis, in partic
ular the existence, mass, and stability of the electron [Ml]. This program continued 
pre-relativistic attempts by Lorentz, Kaufmann, and others to develop a purely 
electromagnetic theory of the electron and its mass. Mie started in 1912 from the 
established concept of special relativity and in particular its energy-mass equiv
alence. He considered Lorentz-invariant scalar density functions L on Minkowski 
space-time depending on the values of a 4-potential ip and its first derivatives Dip 
(Mie, of course, expressed these in coordinates ifi, J^-, i,k = 1,...4). This led 
him to a variational criterion for potentials 

- / 
8 J L(ip, Dip) dx = 0 

with respect to infinitesimal variations of ip. Starting from the observation that 
the Maxwell vacuum equations result from the particular case 

L(<P,D<p)=1-FikF*k, Fik = ^ 

1 2 "Absolute" freedom of the non-self to be understood as unlimited by the activities of the 
self. 

1 3 The concept of space was thus generated by Fichte in a figure very close to the one used by 
him (and the other dialectical philosophers of the early nineteenth century) to characterize the 
relationship between the individual and society (the state, in Fichte's language). Such a social 
metaphor for the general figure of generation of the space concept was taken up by Weyl in his 
[W7, p. 46f.]. 
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he proposed to look for modifications of L leading to nonlinear terms in the 
field equation and solutions with space-like local energy concentrations ("energy 
knots"), which, as Mie hoped, might turn out to be stable, i.e. nondispersive in 
time. 

Mie thus tried to bring the old dream of a dynamistic matter explanation, 
which had been philosophically expressed by Kant, to physico-mathematical matu
rity, although the technical framework in which Mie located his approach reduced 
the general concept of force to the electromagnetic setting.14 This reduction of 
the dynamistic matter explanation to purely electromagnetic actions had also en
joyed a long tradition among natural scientists going back deep into the nineteenth 
century. As a conjectural approach it had already been expressed by Weber, Rie-
mann's teacher in physics. It was actively pursued by Zöllner, and to a certain 
degree by Riemann. Around the turn of the century, Kaufmann, Wiechert. and 
again to a certain degree Lorentz, had taken this approach up, placing it in the 
setting of Maxwell's theory of electrodynamics.15 

The daring mathematical design of Mie's program, combining special rel
ativity with variational viewpoints, and with the Kant-Wreber-Riemann connec
tion looming in the natural philosophical background, may have contributed to 
its enthusiastic reception by Hilbert. As is well known, Hubert's research for a 
generally covariant formulation of relativity in 1915 was built on and modified 
Mie's program [EG], [V, p. 54ff.]. Hilbert extended Mie's variational principle to 
a Lagrangian L(g, Dg, D2g.ip, Dip) depending on a varying Lorentz metric g (ex
pressed, of course, in coordinates as gij(x)), as well as its derivatives up to the 
second order, and a 1-form ip with its first derivatives, where the Lagrangian had 
to fulfill the condition of invariance under general coordinate change. So Hubert's 
Lagrangian L lived on a Lorentz manifold, and for Hilbert the underlying in
variance postulate had a rather direct semantical justification. Combining Rie-
mann's and Minkowski's views, physically meaningful functions are defined on 
space-time events and thus on a physical manifold, which ought to be infinitesi-
mally Minkowskian rather than Euclidean. Read today, that may seem a rather 
apparent step. That it was not so at the time, however, is shown by the long jour
ney Einstein had to take between 1912 to 1915 before he finally convinced himself 
that (semi-)Riemannian geometry was more than a formal game and could be en
dowed with strong physical meaning.16 Hubert's goal, moreover, in that respect 
also differed from Einstein's, as it was not primarily directed towards gravitation 
theory.17 Hilbert was much more ambitious; following Mie he wanted to outline 
the basis for a universal theory of matter. He was quite frank in expressing this 
ambitious goal, and, even more, he actually believed for some time that he had 
come close to it. He thus stated his conviction that by means of his generalized 
version of Mie's field theory of matter 

14Mie was apparently completely aware of the neo-Kantian connotations of his research pro
gram. An explicit formulation is to be found in [M2]; and there is no reason to doubt that he 
was already aware of this connection in 1912. 

15See [McC] for more details. 
1 6Compare [Sta] and [Rea]. 
17Nevertheless, Hilbert derived a version of field equations that could be considered as equiv

alent to Einstein's if read from the point of view of theory of gravitation [HI]. 
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. . . the most intimate hidden processes in the interior of the atom can 
(...) be clarified. 

Taking such strong hopes into account, expressed by Hilbert, it may appear 
less surprising that the much more "emphatic" thinker18 W êyl was nearly over
whelmed by the prospect of a close link between his Fichtean-inspired researches 
on the conceptual structures of the continuum and the Mie-Hilbert theory of mat
ter. Surely he must have felt strong and surprising semantical resonances between 
the two different worlds of discourse in which he lived in 1918, the mathemati
cal/physical one centered at Göttingen and the philosophical/cultural circles he 
moved in at that time in his local Zürich environment.19 These resonances must 
have appeared even more seductive for Weyl, as with regard to foundational ques
tions proper the two realms of discourse brought him into strong opposition with 
his former teacher Hilbert, stronger than he would have liked personally. W êyl 
could now hope for a basic agreement between him and Hilbert, at least in ques
tions of mathematical philosophy of nature as well as a place for himself in a 
renewed Göttingen universe of mathematics. 

Instead, however, he had to live through disillusionment in several respects 
before he could continue to explore his basic ideas in a direction that found accep
tance at Göttingen. Writh respect to the theory of matter the reaction of physicists 
was split. For a short time he found some strong support from Sommerfeld, Pauli 
and Eddington, whereas Einstein was more than skeptical from the outset. But 
even the early supporters turned away from Weyl's theory after the first possi
bilities of directly tapping its explicative power for physical phenomena had to 
be weakened.20 Even more disillusioning for W êyl may have been Hubert's rather 
strong rejection of Weyl's theory in the first years after its publication. Thus, 
in a lecture course given in the winter semester 1919/1920 at Göttingen, Hilbert 
criticized it as a kind 

. . . of Hegelian physics trying to predetermine the whole world process 
which would not transcend the limited content of a finite thought, if 
one takes that view seriously. [H3, p. 100] 

This flat rejection cannot be understood from a purely mathematical point 
of view,21 and in fact it was explicitly formulated by Hilbert as a difference in 
the mathematical philosophy of nature. Of course, it was easy for Hilbert to iden
tify a strong idealist reductionism in Weyl's approach,22 as W êyl quite frankly 
expressed his Fichte-inspired drive to give direct physical meaning to the con
cepts of "infinitesimal geometry". But, in effect and read more carefully, Hubert's 
strong rejection of Weyl's theory argued (perhaps unknowingly) against tempta
tions he, Hilbert, in fact shared with Weyl. Hilbert himself was a strong proponent 

1 8The characterization of Weyl's style of thought as "emphatic" goes back to E. Brieskorn in 
a comparison with the thought style of Hausdorff. 

19To give names: F. Medicus and Helene Weyl. 
2°[Str], [S], [V]. 
2 1 Compare Rowe's remark in [H3, p. xif]. 
22Although Hilbert slightly misrepresented Weyl's philosophical motivations ("Hegelian phy

sics" ) if examined more closely. 
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of mathematical reductionism in the study of nature (and probably a more rigid 
one than Weyl), and he was himself much more prone to shortcut solutions when 
it came to the dialectics of finiteness and infiniteness in mathematical theories, as 
was shown by his involvement in the debates and research on the foundations of 
mathematics. Hubert ' s brillant former student, Weyl, now (around 1918) deviated 
from central tenets governing the Göttingen mathematical discourse. He was thus 
ideally suited as an external target for a projection of basic problems inherent 
in these rules, problems which were only vaguely intuited by Hilbert and never 
accepted by him as inherent to his own approach. 

Only after Weyl had partially withdrawn his radical opposition to Hubert ' s 
views with regard to foundational questions and outlined how a compatibility be
tween both approaches could be established on a pragmatic level [W5] did Hilbert 
offer a positive réévaluation of Weyl's contributions to differential geometry and 
the Mie-Hilbert theory of mat ter [H2]. On the other hand, Weyl's own revision 
of his mat ter concept starting in 1922/23 and his later contribution to Dirac's 
electron theory at the end of the 1920s transformed his early gauge-theoretic ideas 
in a way that made them much more accessible and capable of a piecemeal as
similation by physicists. This complicated development of change, transfer, and 
transformation from Weyl's early gauge geometry to the gauge theories of the 
1960s is a different story, although it is linked to the young W^eyl's reformulation 
of Riemann's geometry following his dreams of a philosophically more acceptable 
concept of the continuum.2 3 
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