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Preface

The Proceedings of the International Congress of Mathematicians 2002
(ICM2002), held in Beijing from August 20 to August 28, are published in three
volumes.

Volume I contains information on the organization of the Congress including
a list of the participants, the speeches at the opening and closing ceremonies, and
the reports on the work of the Fields Medalists and the Nevanlinna Prize Winner as
the first part, and the Plenary Lectures together with some Invited Lectures which
have not been included in Volumes II and III as the second part. Volumes II and 111
which contain most of the Invited Lectures were published and distributed to the
participants at the beginning of the Congress. Since the first part of material must
be gathered during or after the Congress, Volume 1 is published several months
later.

The electronic version of Volumes I, IT and 111 will be freely available on the
web as a Math ArXiv overlay at the web page

http://front.math.ucdavis.edu/ICM2002

We take this opportunity to express our sincere thanks to all the speakers and
organizers for their contribution and cooperation.

We are also very grateful to Higher Education Press for the publication of the
Proceedings of ICM2002.

Shanghai, November 2002 LI Tatsien (LI Dagian)
Fudan University
Shanghai 200433, China
Email: dgli@fudan.edu.cn
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jli@math.stanford.edu
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Roger Howe
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howler@math.yale.edu
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kottwitz@math.uchicago.edu
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8. Real and Complexr Analysis

Michael Christ

Chair, mchrist@math.berkeley.edu

(appointed after the death of Thomas Wolff, initial Chair)

Duong H. Phong
Jean-Pierre Demailly
Seppo Rickman

Kari Astala

Jean-Michel Bony
Peter Jones
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9. Operator Algebras and Functional Analysis

Dan Voiculescu
Henri Moscovici
W.T. Gowers
Vaughan Jones
Gilles Pisier
Georges Skandalis

10. Probability and Statistics
Jean-Francois Le Gall
David Donoho
Mark Freidlin
Charles Newman
David Aldous
Friedrich Goetze
Ildar Ibragimov
Shinichi Kotani
Zhi-Ming Ma
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11. Partial Differential Equations

Neil Trudinger
Constantine M. Dafermos
Fang-Hua Lin

Ding Wei-yue

Richard Melrose

Mariano Giaquinta,

Olli Martio

Chair, neil.trudinger@anu.edu.au
dafermos@cfm.brown.edu
linf@math1.cims.nyu.edu
dingwy@public.bta.net.cn
rbm@math.mit.edu
glaquinta@sns.it
olli.martio@helsinki.fi

12. ODE and Dynamical Systems

Marcelo Viana

John Norman Mather
S. Kuksin

D. Anosov

Etienne Ghys
Michael Jakobson
Harry Furstenberg

Chair, viana@impa.br
jnm@math.princeton.edu
s.b.kuksin@ma.hw.ac.uk
anosov@mi.ras.ru
ghys@umpa.ens-lyon.fr
mvy@math.umd.edu
harry@math.huji.ac.il
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13. Mathematical Physics
Robbert Dijkgraaf
Isadore Singer
Fedor Smirnov
M. Aizenman
M. Jimbo
D. Ruelle
A. Zamolodchikov

14. Combinatorics
Paul D. Seymour
Bernd Sturmfels
G. Kalai
Zoltan Furedi
Colin McDiarmid

Chair, rhd@fwi.uva.nl
ims@math.mit.edu
smirnov@lpthe.jussieu.fr
aizenman@princeton.edu
jimbo@kusm.kyoto-u.ac.jp
ruelle@ihes.fr
sashaz@physics.rutgers.edu

Chair, pds@math.princeton.edu
bernd@math.berkeley.edu
kalai@math.huji.ac.il
z-furedi@math.uiuc.edu
cmed@stats.ox.ac.uk

15. Mathematical Asoects of Computer Science

A. Wigderson
A. Schrijwer
Mark Jerrum

Amir Pnueli
Oded Goldreich

Chair, avi@math.ias.edu
lex@cwi.nl

mri@dcs.ed.ac.uk
amir@wisdom.weizmann.ac.il
oded@wisdom.weizmann.ac.il

16. Numerical Analysis and Scientific Computing

Roland Glowinski
Gilbert Strang
W. Hackbusch
Lin Qun

A .Bjorck
R.Jeltsch

I.Sloan
N.Trefethen

Chair, roland@math.uh.edu
gs@math.mit.edu
wh@mis.mpg.de
glin@staff.iss.ac.cn
akbj@mai.lin.se
jeltsch@math.ethz.ch
sloan@maths.unsw.edu.au
Int@comlab.ox.ac.uk

17. Applications of Mathematics in the Sciences

Robert V. Kohn
Jerry E. Marsden
Etienne Pardoux
Bjorn Engquist
Keith Glover

Frank Hoppensteadt
Joe Keller
Pierre-Louis Lions
Stephane Mallat
Linda Petzold

kohn@cims.nyu.edu
marsden@cds.caltech.edu
pardoux@gyptis.univ-mrs.fr
engquist@math.ucla.edu
kg@eng.cam.ac.uk
fchoppen@asu.edu
keller@math.stanford.edu
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petzold@engineering.ucsb.edu
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18. Mathematics Education and Popularization of Mathematics

Hyman Bass
Bernard Hodgson
B. J. Jiang
Michele Artigue
Jeremy Kilpatrick
Mogens Niss
Miguel de Guzman
Lee Peng Yee

Igor Sharygin
Gilah Leder

19. History of Mathematics
Henk Bos
Jeremy Gray
Li Wenlin
S. Demidov
Kirsti Andersen
Michio Yano

Fields Medal Committee

Yakov Sinai

James Arthur
Spencer Bloch

Jean Bourgain
Helmut Hofer
Yasutaka Thara

H. Blaine Lawson
Sergei Novikov
George Papanicolaou
Efim Zelmanov

Nevanlinna Committee

Michael Rabin
Andrei Agrachev
Ingrid Daubechies
Wolfgang Hackbusch
Alexander Schrijver

Chair, hybass@umich.edu
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jlangbj@sxx0.math.pku.edu.cn
France

USA

Denmark

Spain

Singapore

Russia

Australia

Chair, bos@math.uu.nl
j.j.gray@open.ac.uk
wli@mathO8.math.ac.cn
serd@ssd.pvt.msu.su
ivhka@ifa.au.dk
yanom@cc.kyoto-su.ac.jap

Chair, Princeton University
University of Toronto
University of Chicago
Institute for Advanced Study
Courant Institute, New York
Kyoto University

SUNY Stony Brook
University of Maryland
Stanford University

Yale University

Chair, Harvard University
Steklov Institute
Princeton University
University of Kiel

CWI, Amsterdam
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President of ICM2002
Wu, Wen-Tsun

Honorary Committee of ICM2002 Steering Committee

Chen, Jiaer

Ding, Shisun Chen, Liangyu

Hu, Guoding Chen, Zhili
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Ke, Zhao Lu, Yongxiang
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Wang, Yuan Xu, Guanhua,

Wu, Wen-Tsun Xu, Kuangdi
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Shing-Shen Chern (left) and John F. Nash, Jr.
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Organizing Committee
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Ma, Zhiming
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Li, Wenlin

Lin, Qun

Lin, Fanghua
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Liu, Yingming
Lu, Shanzhen
Wang, Jianpan
Wong, Roderrick
Yang, Lo

Yuan, Ya-xiang
Zhang, Jiping
Zhang, Xiangsun
Zhou, Qing

Chair (before 2000), Peking Univ.
Chair (after 2000), AMSS, CAS

Zhejiang Univ. and Guizhou Univ.
AMSS, CAS and Peking Univ.
Tsinghua Univ.

AMSS, CAS

Nankai Univ.

Peking Univ.

Fudan Univ.
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Inst. of Math., Academia Sinica
Sichuan Univ.

Beijing Normal Univ.
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Local Scientific Committee
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Other Subcommittees Appointed by the Organizing Committee

Except the Local Scientific Committee, the Organizing Committee has also set
various other sub-committees. These sub-committees and their presidents are as
follows.

Liaison to IMU: Chang, Kung Ching Peking Univ.
Publication Sub-committee: Li, Dagian (Li, Tatsien) Fudan Univ.
Financial Sub-committee: Lin, Qun AMSS, CAS
Fund-raising Sub-committee: Hou, Zixin Nankai Univ.
Satellite Conference

Sub-committee: Li, Wenlin AMSS, CAS
Grant Sub-committee: Lu, Shanzhen Beijing Normal Univ.
Local Arrangement

Sub-committee: Zhang, Jiping Peking Univ.
Network and Website

Maintenance Sub-committee: Jin, Yafeng AMSS, CAS

Secretariat Office

Yuan, Ya-xiang AMSS, CAS, General Secretary

Feng, Qi AMSS, CAS, Associate General Secretary
Peng, Lizhong Peking Univ., Associate General Secretary
Guo, Wei Hebei Univ. of Technology

Li, Dong AMSS, CAS

Li, Juan Inst. of Chemistry, CAS

Liu, Feng BICC

Wu, Jinrong AMSS, CAS

Zhang, Jinyu AMSS, CAS

P. Griffths, J. Palis, D. Mumford
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Opening Ceremony

The opening ceremony of the Congress was held at the Great Hall of People
on Tuesday, August 20, 2002, staring at 3:00pm. Jiang Zemin, President of the
People’s Republic of China, was present and granted the Fields Medals to two
Fields Medalists. Here are the speeches at the opening ceremony.

Jacob Palis

President of the International Mathematical Union

Dear Colleagues, Ladies and Gentleman,

I am greatly honored and pleased to wel-
come you all to ICM2002, the 24th Interna-
tional Congress of Mathematicians.

This is in many ways a very special
Congress. Indeed, it is the first in the new
Millennium and, therefore, we are bringing the
dreams of Cantor and Felix Klein, dreamed in
the late 1900s, into the 21st Century. They
realized, then, that mathematics was becom-
ing too large and diversified a subject and that

was almost impossible for one person to em-
brace, like probably was the case of Monge, Laplace, Lagrange and Gauss, among

others, at the turn of the 19th Century. Thus, interaction among mathematicians
both at a national and international level was the clear road for its development.
Their dream was not only robust in time, but has grown in dimension; mathematics
has become more and more international, and solidarity across countries has been
increasing at a fast pace. This is occurring not only at a world basis, particularly
through the activities of IMU, among which the ICM is a major event, but also
in regional scenarios, as indicated by the rather recent creations of the European
Mathematical Society and the Latin American and Caribbean Mathematical Union,
following that of the African Mathematical Union and of the International Council
for Industrial and Applied Mathematics. The first two organizations are affiliated
to IMU, and we have solid relations with the last ones.

The 24th ICM is also unique because for the first time it is taking place in
a developing country, and in fact in the fastest growing country in the world at
present, with a population which is about a fourth of humanity. Per se this makes
the ICM more inclusive and being inclusive is a basic principle of our Union, as
also shown by our joint efforts with the Local Organizing Committee in providing
the opportunity to more than 400 colleagues, young and senior, from less affluent
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parts of the world, to participate in the Congress. By having the Congress here, we
are giving our trust to China for its commitment to mathematics and in particular
to its young talents. But China is also paying a precious tribute to the Union, by
the presence among us, for the first time in our history, of the highest authority of
the host country, President Jiang Zemin. About a year and a half ago, he accepted
our invitation to be in this Opening Ceremony and jointly with us award the Fields
Medals. In doing so, the President is showing his appreciation for our science and
its importance to the world of today. We are very confident that the Congress
here in China will mark a formidable change in the level and scope of activities of
mathematics in this country: a tree that was planted by S. S. Chern, L. K. Hua
and K. Feng, as well as by C. H. Gu, W. T. Wu and S. Liao, and more recently S.
T. Yau and G. Tian, among others.

This Congress is also a culmination of an intense period of activities in mathe-
matics throughout the world, as well as for achieving a certain maturity concerning
the perspective for its future development. In this respect, besides fundamental re-
search, the importance of the interaction of mathematics with other areas of science,
beyond the classical case of physics, is now largely accepted. Also, more emphasis
in applications is to be given. Moreover, there should be no division between pure
and applied mathematics in accordance with Pasteur’s beautiful sentence that there
is no applied science, but applications of science. In terms of activities, we had an
intense celebration of the Year 2000 as the World Mathematical Year: IMU pub-

The opening ceremony of the ICM2002
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lished a book “Mathematics: Frontiers and Perspectives”; co-sponsored major con-
ferences in Europe, Latin America, Africa and Asia, one of them through its Com-
mission on Mathematical Instruction, and promoted many mathematical exhibi-
tions and events directed to the general public. Such a celebration was part of a
Declaration made by Jacques-Louis Lions, in Rio de Janeiro, in 1992.

Unfortunately, I have to register that he, Jurgen Moser and Lion’s former
adviser, the Fields Medallist Laurent Schwartz passed away in the last years. Of
prime importance in this period, has been the activity of the Union’s Committee on
Electronic Information and Communication and the work of the IMU Commissions
on Development and Exchanges (CDE), Instruction (ICMI) and History (ICHM).

The present Congress is also special in other ways. For the first time, the
IMU General Assembly has elected a woman to its Executive Committee and also
a Chinese. Furthermore, at this occasion, the mathematical community can com-
memorate the creation of two new prizes. The first, called the Gauss Prize for
Applications of Mathematics is to be jointly awarded once every four years by IMU
and the German Mathematical Society. The second, in honor of Abel, shall be
awarded every year by the Norwegian Academy of Sciences: similar to the Nobel
Prize, it has the potential to change, in years to come, the landscape of mathematics
in the world scenario of sciences.

Finally, on behalf of all of us, I wish to express our sincere gratitude to the
Chinese Institutions that made the Congress possible and most especially to our
colleagues Zhiming Ma, K.C. Chang, Daqgian Li, Weiyue Ding and Ya-xiang Yuan
for their warm reception and excellent organization.

Thank you very much.

B BN T T . R

The scene of the opening ceremony of the ICM2002
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Li Lanqging
Vice Premier of the People’s Republic of China

Respected President Jiang Zemin, Respected IMU
President Mr. Palis, Distinguished Guests, Ladies
and Gentlemen:

Today, mathematicians from all over the world
are gathering here for the first International Congress
of Mathematicians in the new millennium. On be-
half of President Jiang Zemin and the Chinese gov-
ernment, 1 have the pleasure to extend to you our
warmest welcome.

No one could have imagined the extraordinary
evolution of science and technology over the past cen-
tury. Space exploration, nuclear energy, computers
and information technology, not to mention biologi-
cal engineering, are all milestones that mark a new

era of knowledge for humankind. Our social progress depends on scientific innova-
tion, and mathematics is fundamental to science. Mathematics expressed the the-
ory of relativity and the quantum mechanics in the early 20th century; since then
mathematicians has played a vital role in inventing computers, designing space and
energy programs, and investigating the structure of DNA molecules. Mathematics
is the language of the universe.

Mathematical methods are used extensively in economics, medicine, agricul-
ture, architecture, arts and all other fields of modern knowledge. As Roger Bacon
pointed out, mathematics is the key to all branches of science. Today mathematics
is the keystone of high technology, and, in a sense, the symbol of modern civilization.
In this light, the Chinese government is especially delighted to see this congress be-
ing held in Beijing. As President Jiang Zemin clearly expressed when he met with
Professor Chern Shing-shen, IMU President Palis and other mathematicians in Oc-
tober 2000, “the Chinese government fully supports hosting the 2002 International
Congress of Mathematicians in Beijing. China wishes to take this opportunity to
promote math research and education in the country, in an effort to bring them up
to the world advanced level in the early 21st century and lay a solid foundation for
the future progress of science and technology in China.”

As a developing country, China is marching on the road toward modernization.
It has been a century-long pursuit for the Chinese people to revitalize their country
through development of science and education. This historical process has been even
further accelerated in the last two decades by reform and opening up policies, as
both young talents and accomplished experts emerge in great numbers on the inter-
national scientific scene. The Chinese government has fully supported all endeavors
to pursue this development, including a series of programs launched nationwide to
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promote basic scientific research, especially in mathematics. For example, in the
past four years, the National Science Foundation of China has doubled its funding
for mathematics, and the government has allocated thousands of millions of yuan
to support the Pilot Knowledge Innovation Program in the Chinese Academy of
Sciences. We are aware that China still has a long way to go before reaching the
advanced world levels in science and technology. Science knows no boundaries. The
advancement of science requires peace, stability and cooperation. In this regard, I
believe that the International Congresses of Mathematicians, with over a hundred
years of tradition, sets the example. Hosting the 24th Congress in Beijing is a good
opportunity for Chinese scientists to learn from and to cooperate with their col-
leagues abroad. I hope that this congress will mark a new starting point for the
development of mathematics and science in China. As the first congress ever held
in a developing country, I also hope that this congress will inspire a new era of
international cooperation for global scientific community.

In about 10 minutes’ time, the new Fields medallists and the winner of the
Nevanlinna Prize will be announced and awarded. I would like to take this op-
portunity to offer them my sincere congratulations. Their achievements not only
represent their distinguished contributions to mathematics, but to world coopera-
tion and the well-being of all humankind.

In conclusion, I wish this congress a great success, and all our guests a mem-
orable stay in China.

Thank you!

2002 FF E P B % 3| X =
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Shing-shen Chern
Honorary President of the ICM2002

It is my great pleasure to welcome you to this
gathering. We are in an ancient country that is very
different from Western Europe where modern mathe-
matics started. In 2000, we had a mathematics year,
an effort to attract more people to math. We now
have a vast field and a large number of professional
mathematicians whose major work is mathematics.
Mathematics used to be individual work. But now
we have a public. In such a situation a prime duty
seems to be to make our progress available to the
people. There is clearly considerable room for pop-
ular expositions. I also wonder if it is possible for
research articles to be produced by a historical and
popular introduction. The net phenomenon could be
described as a globalization. It is more than geogra-

phical. In recent studies different fields were not only found to have contacts, but
were merging. We might even foresee a unification of mathematics, including both
pure and applied, and even the possibility of the emergence of a new Gauss.

China has a long way to go in modern mathematics. In recent contests of
the international mathematical Olympiad China has consistently done very well.
Thus China has begun from the roots and China has the advantage of “number”
(of people). Hopefully this Congress will be a critical point in the development
of modern math in China. The great Confucius guided China spiritually for over
2000 years. The main doctrine is “{=” (pronounced “ren”), meaning two people,
i.e., human relationship. Modern science has been highly competitive. I think an
injection of the human element will make our subject more healthy and enjoyable.
Let us wish that this Congress will open a new era in the future development of
math.
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Zhou Guangzhao

Vice Chairman, Standing Committee of NPC, China
President of the China Association for Science and Technology

Ladies and gentlemen,

Today, we are particularly overjoyed at the
grand opening of the 24th International Congress of
Mathematicians. On behalf of the China Association
for Science and Technology and the Chinese scientific
community, I would like to express our warmest wel-
come to participants from all over the world and our
sincere congratulations to the newly awarded Fields
medallists and the winner of Nevalinna Prize.

The reason of our being particularly overjoyed
lies primarily on the fact that the subject of this
Congress is mathematics, which has been respected
as “the queen of sciences” for its brilliant intellectual
accomplishments, as suggested by the examples of
the discovery of Goedel’s theorem and the proof of
the Fermat Last theorem in the last century. Mathematics is also “the servant of
sciences” as explained by the great German mathematician Gauss when he spoke
of “the queen of sciences”. In the past century the application of mathematics
witnessed rapid and more exciting development. The highly abstract languages,
structures, methods and ideas created by mathematicians have been repeatedly
proven to be universal instruments useful to other fields of science and technology
and to economic and social development. This truly reflects the marvelous and
close relations between mathematical theories and the objective world. Just by
mentioning Riemann geometry and the theory of Relativity, Turing machine and the
real computers, Radon integral and the CT scanners, we can see that mathematics
is exerting more and more important influence on the modern civilization and social
progress.

China had created glorious scientific and technological achievements in an-
clent times before a decline set in some three or four centuries ago. In 1915, the
first Chinese comprehensive scientific society — “the Chinese Society for Science”
was founded. Its founders were a group of students studying abroad, including
a mathematician who was the first Chinese Ph.D. in mathematics. Starting with
only 180 members at the beginning, the seeds it sowed are blossoming and bearing
fruits in China today. The reform and opening up policy that China has adopted
since 1978 has given tremendous impetus to the country’s science and education.
We have built up a well distributed system of research and a network of academic
societies. OQur scientists are working on many frontier projects in various fields. In
the past 20 years Chinese scientists succeeded in constructing the electron-positron
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collider, developing large computers and strong laser light sources, breeding hybrid
rice and determining genetic codes, developing sophisticated word processing sys-
tems for Chinese characters, and setting up terrestrial stations for satellite remote
sensing and nation-wide network for ecology observations. In mathematics, Chinese
scholars have achieved important results in fields such as number theory, theorem-
proving by computer, differential geometry, topology, complex analysis, probability
and mathematical statistics, PDE, functional analysis, numerical analysis and con-
trol theory and so on.

Today, we have entered a new age, in which the social development is more
dependent than ever before on the advancement of knowledge. This situation has
brought about both opportunities and challenges to the development of science and
technology in China. We have to work hard to keep pace with science and technology
development in the world and strive to make greater contributions to the progress
of human society. Science is an international endeavor, and no nation could be
successful in isolation. International exchanges and cooperation in mathematics
is of greater significance. As a universal language of science, mathematics plays
a unique role in merging diverse cultures on the Earth. A typical example is the
transmission of the oriental decimal numeration and the Greek geometry in history.
I hope sincerely that the first International Congress of Mathematicians in the 21st
century will open a new page in the history of world cultural exchanges. We will
continue our efforts to promote international cooperation in science and technology.

In conclusion, I wish the Congress a great success, and hope that you all enjoy
your stay in Beijing.

Thank you very much.

At recess — delegates are finding their own countries’
locations on a stone terrestrial globe
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Wu Wen-Tsun
President of the ICM2002

Ladies and Gentleman,

Sixteen years ago I attended as an ob-
server on behalf of the Chinese Mathematical
Society the 10th General Assembly of the In-
ternational Mathematical Union in Oakland,
at which CMS became a member of the IMU. 1
am very happy to see that the cooperation be-
tween Chinese mathematicians and the inter-
national mathematical community has been
developing rapidly and fruitfully since then,
and the inspiring progress is demonstrated to-
day by the opening of the 24th ICM in Beijing.
It is a high privilege and an honor for me to
extend to you my warmest welcome.

Our science-mathematics, is an age-old yet evergreen field of human knowledge.
The vitality of mathematics is, it seems to me, from its dealing with the numerical
relation and spatial form in the most general sense. Numbers and forms, in the
final analysis, reflect the most essential characters of things in the actual world.
It is therefore no strange that the abstract theories and methods investigated by
mathematicians would pervade almost all fields of science and technology. “Each
science” , as pointed out by Karl Marx, “could be considered to be perfect only if it
permits the successful application of mathematics”.

Mathematics gives, directly or indirectly, impetus to the development of pro-
ductive forces as well. I mention here only one example — the revolutions of the
communication industry, which would not have been possible without the mathe-
matical physics from Gauss to Maxwell, and more recently without Turing and von
Neumann’s ideas of computers. It is therefore not without reasons that Napoleon
has once said “the advancement and perfection of mathematics are intimately con-
nected with the prosperity of the State”. I prefer to quote again non-mathematician’s
viewpoint on the value of mathematics to avoid arousing suspicion of mathemati-
cians’ boast.

We are at the beginning of a new century. The unique situation of mathe-
matics, different from any previous century at the turn, appears to be caused by
the impact of the computers. Computers provide new tools, raise new problems,
and allow new applications of mathematics. All that, I believe by my own research
experience, will make a genuine new century of mathematics. It might be more
challenging and promising to Chinese mathematicians whose country is struggling
for transition from a developing society to the information and knowledge-based
society.
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Modern mathematics has historical roots of diverse civilizations. Mathematical
activities in ancient China can be traced back to early time. The major pursuit of
the ancient Chinese mathematicians was to solve problems expressed in equation.
Along this line they contributed the decimal place-value numeration, negative and
irrational numbers, various techniques for solving equations?etc. It is believable
that ancient Chinese mathematicians had active knowledge exchanges with middle
Asia and even Europe through the Silk Road. Today we have railways, airlines
and even information highway instead of the Silk Road, the spirit of Silk Road-
knowledge exchanges and cultural mergence ought to be greatly carried forward. 1
hope that the International Congress of Mathematicians 2002, held for the first time
in a developing country, will open a glorious new page in the universal cooperation
of mankind and bring with a prosperous future of our mathematical sciences.

I wish the Congress a success, wish you all a nice stay in Beijing.

Entertainment — Peking Opera performance
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Liu Qi
Mayor of Beijing

Dear Delegates, Dear Guests, Ladies and Gentlemen:

Good afternoon! Today, I feel very honored to
be present at International Congress of Mathemati-
clans 2002. Here, on behalf of Beijing Municipal
Government and the thirteen million people of the
city, I would like to extend my sincere congratula-
tions to the opening of this congress and express my
warm welcome to scientists and guests participating
in the conference.

ICM is committed to the research in one of
the most basic disciplines of human knowledge. The
intellectual fruits achieved in the field by mathemati-
cians exert far-reaching influences on the progress of
science and technology of human society and on the
development of social culture and people’s way of life. The fact that this confer-
ence i the first of its kind in the new century and the first session ever held in a
developing country has given special significance to this meeting. The Municipal
Government and myself are very pleased to be able to provide support and service
to the meeting and we wish to present our highest compliments to mathematician
and their exploration of reason.

The mathematic tradition in Beijing can be traced back to ancient times. Since
the end of the nineteenth century, Beijing has played an important role in promot-
ing the scientific and cultural exchanges between the east and the west. The city
has nurtured numerous brilliant mathematicians, from Zhu Shijie in the thirteenth
century to professor Chen Xingshen who is present here today. Now, Beijing contin-
ues to maintain its position as China’s major center of mathematic education and
research. Some two thousand mathematicians from the mathematic departments of
tens of universities and research institutions such as Chinese Academy of Sciences
are engaged in the education and high-level research of the field in an all-round way.
At the same time, they keep extensive and close contacts and cooperate with their
colleagues from countries and regions around the world.

Isn’t it a pleasure to have friends from afar! The ancient and modern city
continues its three thousand years history of civilization and composes its ode to
the 2008 Olympics. We sincerely welcome you to tour around the city during your
spare time. The city’s historical monuments and sites will demonstrate you the
charm of Chinese culture. The rapid development will bring your thoughts to the
future of an international metropolis. T hope that all the guests will have a pleasant
and efficient stay in Beijing and a beautiful memory in your heart.

May the conference a complete success! Thank you.
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Ma Zhiming

Chairman of the Organizing Committee of ICM2002
President of the Chinese Mathematical Society

Ladies and Gentlemen,

After four years of preparation, the 24th
International Congress of Mathematicians is
now opening. It is my great honor on behalf
of the Local Organizing Committee and the
Chinese Mathematical Society to welcome you
all to the ICM2002 in Beijing.

Four years is long for expecting, but
short for preparing. Since the 13th Gen-
eral Assembly of the International Mathemat-
ical Union in Dresden in 1998, at which Bei-
jing was chosen as the site of ICM2002, Chi-
nese mathematical community has been racing
against time to work for today’s ICM2002.
The first step was the setting up of the Local Organizing Committee in September
of mathematical 1998, right after the Berlin Congress. The Committee, consisting
of representatives from Taiwan, Hong Kong and overseas Chinese mathematicians,
has been cooperating closely with the Executive Committee of IMU to ensure a
smooth and effective preparation of this Congress. The preparation of the Congress
is a symphony of international cooperation. I would like to take this opportunity
to thank colleagues world-wide who have rendered all kinds of help and assistance.
I am indebted in particular to IMU President Jacob Palis, Past President David
Mumford, and Secretary Phillip Griffiths for their all-out support. Special thanks
goes also to my German predecessor Professor Martin Groetschel, whose experiences
of organizing the Berlin Congress are really helpful to us. The preparation of the
Congress has won wide social and governmental support in China. The support
from the government is evidenced by the presence of President Jiang Zemin and
other Chinese leaders at this opening ceremony. The financial support from the
Chinese government was even more than expected. The Organizing Committee
of ICM2002 is grateful to the Chinese ministries and agencies that were listed on
the slide shown left, the total of their funding is 10 million Chinese yuan, which
amounts to about 1.2 million US dollars.

The spirit for the ICM2002 has been high among the Chinese public. Many
Chinese scholars, teachers, industrialists, and even students were eager to contribute
not only to help to prepare a successful ICM, but also to make the Congress a new
start point for development of mathematics in China. Regarding the donations
only, the Organizing Committee has received contributions of 3 million Chinese
yuan from universities, industries and individuals. This amount is significant in




Opening Ceremony 25

view of that China is still a developing country. Please watch the slides at left,
which show the major donors, and I, in the name of the Organizing Committee of
ICM2002, would like to extend to them our sincere thanks.

While the financial support is important, the scientific program is always the
core of the Congress. Thanks to the Program Committee headed by Professor Y.
Manin and the 19 international panels, the selected 20 plenary lectures and 174 in-
vited lectures will, I believe, represent the latest advancement and frontier achieve-
ments in our science. The lectures given by the newly awarded Fields medallists
and winner of the Nevanlinna Prize will of course highlight the scientific program of
the Congress. On the other hand, more than 1200 short communications and poster
presentations arranged by the local scientific committee will reflect the widespread
active participation in the development of mathematics in recent years.

Up to now, the ICM2002 has 4,270 registered participants from 101 countries
and regions, among whom 1 percent are from Australia, 3 percent from Africa,
56 percent from Asia, 16 percent from America, 24 percent from Europe. As the
ICM held for the first time in a developing country, we see from above statistics
that the percentage of the participation of mathematicians from developing coun-
tries is above 52 percent. The success of the financial program enabled us to make
good our promise by various means to support financially about 400 scholars from
developing countries and Eastern Europe (here I should thank the IMU for cov-
ering international traveling expenses for approximate 200 participants who are
young mathematicians from developing countries and mathematicians from East-
ern Burope, Africa and Latin America). In addition, the Organizing Committee
has supported a number of mathematicians from western part of China as well.

Keeping in mind that it is the first ICM of the 21st century, the Organizing
Committee has paid due attention to the programs for the general public, and
considered it to be important for a new information era to attract the public to
modern mathematics. Public talks on a range of topics and special activities related
to the Congress were arranged for that purpose. Part of them are shown on the slide,
among which I would like to mention here two examples: the Juvenile Mathematics
Forum and the ICM2002 Mathematics Summer Campus, both were organized to
raise the enthusiasm of young generation to mathematics that may have impact on
the future of mathematics.

The 46 satellite conferences form a landscape of ICM2002. The slides show
the list of satellite conferences, which are distributed geographically over 26 cities in
different parts of China as well as 6 cities in Japan, Russia, Singapore, South Korea
and Viet Nam. Almost for each satellite conference there is a story of international
cooperation, the participation in of a number of Fields medallists, winners of Wolf
Prize and winners of Nobel Prize made the whole program even more inspiring.
Though it has been a tradition of ICMs to have a series of satellite conferences,
the ICM2002 makes the satellite conference program broader in scale and more
meaningful to a successful ICM. I would like therefore to express my thanks to all
the local organizers of satellite conferences for their contribution.

Last but not the least, a few words about the logo of the ICM2002. The
design was based on a diagram drawn by the 3rd century Chinese mathematician
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Zhao Shuang to demonstrate Pythagoras theorem that appeared in ancient China
first in Zhou Dynasty (11th century B.C—3rd century B.C). Some inspirations
were put in to transform it to our logo. Let me show quickly by the video how
does it make sense. First, by opening the edge of the outer square and enlarging
the square inside, it will symbolize that mind of mathematicians are open, and that
China is open. Next, varying colors make the diagram more like a rotating pinwheel
to symbolize the hospitality of Beijing people. (Pinwheel is a folk toy which you
may see children in Beijing’s hutong playing with and greeting you: “Welcome,
welcome!”) Welcome to ICM2002, welcome to Beijing. Let us join hands to lift the
veil of a new epoch of mathematics. I wish the congress a great success, and wish
you all pleasant stay in Beijing.

Reception



Presentation of the Fields Medals

President Jiang Zemin granted the 2002 Fields
Medals to Laurent Lafforgue and Vladimir Voevod-
sky (from left to right: Vladimir Voevodsky, Jiang
Zeming, Jacob Palis, Laurent Lafforgue)

Fields Medal
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Presentation of the Rolf Nevanlinna Prize

Congress of Matherma

?

Phillip A. Griffths granted the 2002 Rolf Nevanlinna
Prize to Madhu Sudan (right)

Nevanlinna Medal
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Closing Ceremony

The closing ceremony of the Congress was held at the Beijing International
Conference Center on Wednesday, August 28, 2002, staring at 4:30pm. Here are
the speeches at the closing ceremony.

Jacob Palis

President of the International Mathematical Union

Dear Colleagues, Ladies and Gentlemen,

At this moment, we are closing one more In-
ternational Congress of Mathematicians, the 24th of
a series that started in 1897 in Zurich in a span of
more than one hundred years.

Thus, it’s time to try to respond to the ques-
tions: Is it worthwhile to have such a comprehensive
Congress, covering an impressive array of areas of
mathematics, with 20 plenary talks, 174 invited lec-
tures and many short communications? Were the
lectures well presented in trying to reach a large
mathematical audience, avoiding technical details
and in offering an overview of the themes discussed
and the prospect for research in the future? Is the
Congress still attractive to a significant number of
mathematicians from all over the world? Has it been

organized in a way that led to the presence of a magical atmosphere combining
friendship and inspiration for creativity in mathematics?

We have posed so many difficult questions and yet we are absolutely certain
that the answers are all very positive. Indeed, the echoes from the participants are
overwhelming: The Congress was one of the best ever. The lectures provided, to a
large extent, a grand vision of today’s mathematics and its prospect for tomorrow.

About 4,300 colleagues from 101 countries were present, among whom 2,700
are foreigners. Jointly, IMU and the Local Organizing Committee have supported
the participation of about 450 foreign mathematicians from developing countries.
A substantial part of the IMU support came from its Special Development Fund, to
which the following institutions have contributed in the period 1998-2002: Ameri-
can Mathematical Society, Mathematical Society of Japan, London Mathematical
Society, Brazilian National Research Council, Société Mathématique de France and
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Wiskundig Genootschap Netherlands. To them we express our best thanks. There-
fore, it’s time to look to the future with optimism and determination in the pursuit
of our dreams, in search of beauty in mathematics and its use to well serve society.

It’s time also to warmly thank the Local Organizing Committee for their won-
derful job. T wish I could name all 300 volunteers engaged in the organization, but
I have to content myself in citing only five: Pei Zhuan, Luo Yang, Bao Ying, Li
Yingjie and Hong Weizhe. As a symbol of the fine administrative support, I want
to mention Ms Guo Wei. Our highest appreciation goes to President Jiang Ze-min
for honoring the Congress with his presence at the Opening Ceremony and for co-
awarding the Fields Medals. Hopefully, such a gesture by the highest dignitary of
the host country may become, from now on, a tradition in the ICMs. Also, to the
Chinese Institutions for their remarkable support in so many ways. To the Pro-
gram Committee, we offer our sincere gratitude for the superb work in their choice
of speakers.

Now, I want to finalize my words by presenting the main results of the 14th
General Assembly that took place in Shanghai and again remarkably well prepared.

The officers of the International Mathematical Union for 2003-2006 are as
follows:

Executive Committee

President: John M. Ball United Kingdom
Vice-Presidents: Jean-Michel Bismut France
Masaki Kashiwara Japan
Secretary: Phillip A. Griffiths USA
Members at Large: Andrey A. Bolibruch Russia
Martin Grotschel Germany
Zhiming Ma China
Ragni Piene Norway
Madabusi S. Raghunathan India
Ex-officio: Jacob Palis (Past President) Brazil

Commission on Development and Exchanges (CDE)

Chair: Paulo Domingos Cordaro Brazil
Secretary: C. Herbert Clemens USA
Members at Large: Hajer Bahouri Tunisia
Graciela L. Boente Boente  Argentina
Shrikrishna G. Dani India
Gérard Gonzalez-Sprinberg  France
Fazal M. Mahomed South Africa
Toshikazu Sunada Japan

Jiping Zhang China
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International Commission on Mathematical Instruction (ICMI)

President: Hyman Bass USA

Vice Presidents: Jill Adler South Africa
Michele Artigue France

Secretary: Bernard R. Hodgson Canada

Members at Large: Carmen Batanero Spain
Mary Elizabeth Falk de Losada  Colombia
Nikolai Dolbilin Russia
Peter Lawrence Galbraith Australia
Petar Stoyanov Kenderov Bulgaria
Frederick K.S. Leung Hong Kong

International Commission on the History of Mathematics (ICHM)

Members at Large: Jeremy John Gray  United Kingdom
Wenlin Li China

The Executive Committee also designated the following members for its Com-
mittee on Electronic Information and Communications: Pierre Berard (France),
Jonathan Borwein-Chair (Canada), John Ewing (United States), Martin Groetschel-
EC representative (Germany), Alejandro Joffre (Chile), Peter Michor (Austria),
David Morrison (United States), and Alf van der Poorten (Australia).

Various resolutions were voted at the General Assembly. Particularly, I would
like to mention four of them:

Resolution 1

The General Assembly resolves that the next meeting of the General Assembly
will be held at a time and place conveniently linked to the International Congress
of Mathematicians in Madrid, Spain, in 2006.

Resolution 2

The General Assembly expresses its gratitude to the Organizing Committee
of ICM2002, chaired by Ma, Zhiming.

The General Assembly also expresses its gratitude to Li Ta-tsien for his hospi-
tality reception and excellent arrangements at General Assembly meeting in Shang-
hai.

Resolution 4

The General Assembly gives especial thanks to Phillip Griffiths for his excellent
work as Secretary to the IMU over the last four years assisted by Arlen Hastings
and Linda Geraci. It also thanks the Institute for Advanced Study (IAS) for its
generous support of the IMU secretariat over this period.

Resolution 7

Notwithstanding these times of heightened tension and security concerns, we
urge a continuation of scientific exchange and publication. The IMU opposes ef-
forts either by governments, organizations, or individuals to restrict contacts and
interactions in the world mathematical community. Specifically, we oppose holding
individual mathematicians liable for the actions of their governments. The IMU en-
dorses the principles expressed in the Article 5 of the Statutes of the International
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Council for Science - ICSU, as adopted at the 1998 General Assembly, that reads
as follows: In pursing its objections in respect of the rights and responsibilities
of scientists, ICSU, as an international non-governmental body, shall observe and
actively uphold the principle of the universality of science. This principle entails
freedom of association and expression, access to data and information, and freedom
of communication and movement in connection with international scientific activi-
ties, without any discrimination on the basis of such factors as citizenship, religion,
creed, political stance, ethnic origin, race, colour, language, age or sex. ICSU shall
recognize and respect independence of the internal science policies of its National
Scientific Members. ICSU shall not permit any of its activities to be disturbed by
statements or actions of a political nature.

All the resolutions will be published in the IMU Bulletin.

Thank you very much.

Presidents of the IMU: J. Ball and J. Palis
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John Ball
President of the IMU for 2003-2006

Ladies and Gentlemen, Colleagues and Friends,

It is a great privilege to be elected as the next
President of IMU and thus to have the opportunity,
with the new Executive Committee, of helping to in-
fluence some of the important developments that will
affect the mathematical community over the next few
years.

It is a particular honour to succeed Jacob Palis,
who for the last 12 years has held high office in IMU,
for 8 years as Secretary and since 1999 as President.
All those who know him will testify to the great en-
ergy, dedication and love for the community that he
has brought to these posts.

This has been a memorable Congress, and we
all recognize the very large number of people whose work has contributed to its
outstanding success, those who served on the various international committees, the
speakers for the many inspiring lectures, and above all the local organizers from Ma
Zhiming through to the splendid student volunteers.

However, I would like to reserve some special words for the President of the
Congress Professor Chern Shiing Shen. Despite his great age he was instrumental in
ensuring the strong backing of the Chinese government for the Congress, and in his
speech at the Opening Ceremony, and at other occasions during the Congress, he
demonstrated the wisdom, warmth and dignity which are his hallmark. Professor
Chern had hoped to attend the Closing Ceremony, but could not do so. But I
am sure that his colleagues will convey to him our appreciation, not only for his
contributions to this Congress, but also for his remarkable influence on our subject.

In addition to its traditional tasks, the new Executive Committee has much
work to do. First there are important issues identified and developed through
the work of the previous Executive Committee and IMU Committees, such as the
project to retro-digitize the entire mathematics literature. Second, the General
Assembly in Shanghai gave strong encouragement to the new Executive Committee
to examine all the procedures and activities of the Union, and to report back to
National Committees. And if I can mention one area to which I am personally
committed, it is to see how IMU can better serve the needs of poorer and developing
countries.

I can promise you that we will work hard, and with the help of mathematicians
everywhere I hope that we will have some progress to report on when we meet again
in Spain in 2006.

Thank-you.
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Carles Casacuberta
Delegate of the Spanish IMU Committee

Dear Colleagues, Ladies and Gentlemen,

On behalf of the Spanish IMU Committee,
which represents the Spanish mathematical societies,
I am very pleased to invite you all to the next ICM,
to be held in Madrid in 2006. The General Assem-
bly of the IMU will be held just before, in Santiago
de Compostela. Madrid is the capital of Spain, and
Santiago, a UNESCO world heritage site, is in Gali-
cla, in the northwest corner of the country.

We are well aware of the amount of work that
the preparation of these events involves. We have
been deeply impressed by the commitment of the or-
ganizers of the ICM2002 in Beijing, and also by the
high level of the lectures and presentations. We hope to maintain these standards
and are lucky to have the backing of the Spanish mathematical community and
the help of many institutions. His Majesty the King of Spain has expressed his
support for the venture in a letter that we received last week. Government and local
authorities are also firmly behind us as we take on the responsibility for organizing
the next ICM.

In addition, we plan to seek the cooperation of mathematical societies in Latin
America. The event will provide an ideal opportunity to strengthen the links be-
tween countries and to create new channels for exchanges and joint work.

We are very grateful to the organizers of this ICM for allowing us to address
this closing ceremony. Let me say warmheartedly: (Hasta la vista).
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L. Faddeev

St. Petersburg Department of Steklov Mathematical Institute
Russian Academy of Sciences, Russia

Dear colleagues,

I think, that I can consider myself as a veteran
of the International Mathematical Congresses. In-
deed, the first one which I attended was the ICM1962
in Stockholm. At that time Soviet Academy decided
to include several young researchers in the delegation
and I was among them. Afterwards I was present on
almost all ICM-s with exception of Vacouver 1974
and Helsinki 1978. My main impression here is that
Beijin 2002 is one of the best Congresses both scien-
tifically and organisationally.

The main idea of the ICM is to confirm the

unity and universality of Mathematics. This Congress gave a lot of examples of
this. Take for instance the sections of logic, number theory and algebra. The
general underlining mathematical structures as well as language, used by speakers,
were essentially identical.

I am highly impressed by the support to mathematics and fundamental science
in geners] here in China. This is a great envy for many of us, coming from countries,
where science and its needs are neglected. It was nice to realise that Russian
mathematical school was highly represented here in Beijin. I would like to express
my deep gratitude to organisers for the generous help, which allowed the presence
at the Congress of many participants, living now in Russia and other countries of
the FSU.

Thank you.
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Abderrahman Boukricha

Faculte des Sciences de Tunis
Speech on behalf of the grantees of the Special Development Funds

The President of the International Mathematical
Union,

The Chairman of the Local Organizing Committee,
Dear Colleagues, Ladies and Gentleman,

On behalf of financial grantees to the ICM2002,
I would like to express our gratitude to the Interna-
tional Mathematical Union (IMU) for the travel sup-
port as well as The Local Organizing Committee for
local expenses support.

We have really enjoyed our stay in Beijing and

we are particularly grateful for all the exposure to the most recent development
in various area of the mathematical sciences which reinforce the right way to the
universal language and the universal knowledge.

We are also happy about the pleasant atmosphere as well as the friendliness
and hospitality of the Chinese people.

Being here has also afforded me the opportunity of informing members of
the ICM congress about the forthcoming Pan African Congress of Mathematicians
scheduled to take place in Tunisia in September 2004.

Thank you very much.

Outside Door Party
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Ma Zhiming

Chairman of the Organizing Committee of the ICM2002
President of the Chinese Mathematical Society

Ladies and Gentlemen, Dear colleagues:
You may remember the last words in my speech
at the Opening Ceremony:

“Let us join hands to lift the veil of a new
epoch of Mathematics. I wish the Congress a great
success, and wish you all pleasant stay in Beijing.”

At this moment I am very happy to say that
what we expected has been achieved. As pointed
out by the previous speakers at this Closing Cere-
mony, we have had a great success of the Interna-
tional Congress of Mathematicians 2002. I would
therefore like to take this opportunity to thank all
the institutions, organizations and individuals who
have made efforts and contribution to ensure the suc-
cess of the Congress.

First of all, T am grateful to all our participants coming from all over the
world, your enthusiastic participation offered a major guarantee of the success of
the Congress. Let me express once again, as I did at the Opening Ceremony, our
gratitude to the broad social organizations and governmental ministries and to IMU
for their valuable support, without such support there would have been no success of
the Congress. Special thanks go also to all our invited speakers for their remarkable
lectures which represented the latest advancement and frontier achievements in
our science and marked really a high academic level of our Congress. The three
public lectures attracted a broad social audience and were of great significance
to the popularization of mathematics and its applications. Also I would like to
mention that the short communications and poster presentations arranged by the
local scientific committee reflected the wide and active development of mathematics
in recent years.

I have a long list of Chinese organizations and colleagues whom we should
appreciate for their contribution towards the success of the Congress. Because of
the time limitation I could not mention all their names here, but we shall never
forget their excellent work.

Let me conclude my speech with sincere thanks to you all again and with best
wishes for a new golden age of our science of mathematics.

I declare the 24th International Congress of Mathematicians closed.
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The Work of Laurent Lafforgue

Gérard Laumon*®

Laurent Lafforgue has been awarded the Fields Medal for his proof of the
Langlands correspondence for the full linear groups GL, (r > 1) over function
fields.

What follows is a brief introduction to the Langlands correspondence and to
Lafforgue’s theorem.

1. The Langlands correspondence

A global field is either a number field, i.e. a finite extension of Y, or a function
field of characteristic p > 0 for some prime number p, i.e. a finite extension of F, (¢)
where I, is the finite field with p elements. The global fields constitute a primary
object of study in number theory and arithmetic algebraic geometry.

The conjectural Langlands correspondence, which was first formulated by
Robert Langlands in 1967 in a letter to André Weil, relates two fundamental objects
which are naturally attached to a global field F:

— its Galois group Gal(F/F), where F is an algebraic closure of F, or more
accurately its motivic Galois group of F which is by definition the tannakian
group of the tensor category of Grothendieck motives over F,

— the ring A of adeles of F, or more precisely the collection of Hilbert spaces
L*(G(F)\G(A)) for all reductive groups G over F.

Roughly speaking, for any (connected) reductive group G over F, Langlands
introduced a dual group “G = G x Gal(F/F), the connected component G of which
is the complex reductive group whose roots are the co-roots of G and vice versa.
And he predicted that a large part of the spectral decomposition of the Hilbert
space L?(G(F)\G(A)), equipped with the action by right translations of G(4), is
governed by representations of the motivic Galois group of F with values in “G.

Of special importance is the group G = GL,, the Langlands dual of which
is simply the direct product  GL, = GL,(C) x Gal(F/F). Indeed, any complex
reductive group G may be embedded into GL,(C) for some r.

*CNRS and Université Paris-Sud, UMR 8628, Mathématique, F-91405 Orsay Cedex, France,
gerard.laumon@math.u-psud.fr


mailto:gerard.laumon@math.u-psud.fr

92 Gérard Laumon

The particular case G = GL; of the Langlands correspondence is the abelian
class field theory of Teiji Takagi and Emil Artin which was developed in the 1920s
as a wide extension of the quadratic reciprocity law.

The Langlands correspondence embodies a large part of number theory, arith-
metic algebraic geometry and representation theory of Lie groups. Small progress
made towards this conjectural correspondence had already amazing consequences,
the most striking of them being the proof of Fermat’s last theorem by Andrew
Wiles. Famous conjectures, such as the Artin conjecture on L-functions and the
Ramanujan-Petersson conjecture, would follow from the Langlands correspondence.

2. Lafforgue’s main theorem

Over number fields, the Langlands correspondence in its full generality seems
still to be out of reach. Even its precise formulation is very involved. In the
function field case the situation is much better. Thanks to Lafforgue, the Langlands
correspondence for G = GL, is now completely understood.

From now on, F' is a function field of characteristic p > 0. We also fix some
auxiliary prime number € # p.

As Alexandre Grothendieck showed, any algebraic variety over F' gives rise to ¢-
adic representations of Gal(F/F) on its étale cohomology groups and the irreducible
¢-adic representations of Gal(F/F) are good substitutes for irreducible motives over
F. Therefore, the Langlands correspondence may be nicely formulated using £-adic
representations.

Let r be a positive integer. On the one hand, we have the set G,. of isomorphism
classes of rank r irreducible £-adic representations of Gal(F/F) the determinant of
which is of finite order. To each o € G,., Grothendieck attached an Eulerian product
L(o,s) =11, La.(o, s) over all the places « of F', which is in fact a rational function of
p~* and which satisfies a functional equation of the form L(e, s) = &(o, s)L(cV,1—3)
where ¢V is the contragredient representation of o and (o, s) is some monomial in
p~%. If ¢ is unramified at a place z, we have

7

L.(o,s) =] !

paley 1 — 2p* deg(z)

where z1,. .., 2, are the Frobenius eigenvalues of o at x and deg(x) is the degree of
the place x.

On the other hand, we have the set A4, of isomorphism classes of cuspidal
automorphic representations of GL,(A) the central character of which is of finite
order. Thanks to Langlands’ theory of Eisenstein series, they are the building blocks
of the spectral decomposition of L*(GL,(F)\ GL.(A)). To each 7 € A,, Roger
Godement and Hervé Jacquet attached an Eulerian product L(w,s) = [[, L. (7, s)
over all the places = of F, which is again a rational function of p™%, satisfying a
functional equation L(w,s) = e(m,s)L{x"Y,1 ~ s). If 7 is unramified at a place z,

we have
7

L.(ms) =] !

paley 1 — 2p* deg(z)
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where 21,..., 2, are called the Hecke eigenvalues of w at x.

Theorem (i) (The Langlands Conjecture) There is a unique bijective cor-
respondence w -+ o(w), preserving L-functions in the sense that L (o(x),s) =
L,(w,s) for every place x, between A, and G,.

(ii) (The Ramanujan-Petersson Conjecture) For any w € A, and for any place
x of F' where 7 is unramified, the Hecke eigenvalues z1,...,z, € C* of m at x are
all of absolute value 1.

(iii) (The Deligne Conjecture) Any ¢ € G, is pure of weight zero, i.e. for
any place x of F where o is unramified, and for any field embedding + : Q, — C,
the images 1(z1),...,1(2.) of the Frobenius eigenvalues of o at x are all of absolute
value 1.

As 1 said earlier, in rank r = 1, the theorem is a reformulation of the abelian
class field theory in the function field case. Indeed, the reciprocity law may be
viewed as an injective homomorphism with dense image

FX\A* — Gal(F/F)*

from the ideéle class group to the maximal abelian quotient of the Galois group.

In higher ranks r, the first breakthrough was made by Vladimir Drinfeld in the
1970s. Introducing the fundamental concept of shtuka, he proved the rank r = 2
case. It is a masterpiece for which, among others works, he was awarded the Fields
Medal in 1990.

3. The strategy

The strategy that Lafforgue is following, and most of the geometric objets that
he is using, are due to Drinfeld. However, the gap between the rank two case and
the general case was so big that it took more than twenty years to fill it.

Lafforgue considers the £-adic cohomology of the moduli stack of rank r Drin-
feld shtukas (see the next section) as a representation of GL,(A) x Gal(F/F) x
Gal(F/F). By comparing the Grothendieck-Lefschetz trace formula (for Hecke op-
erators twisted by powers of Frobenius endomorphisms) with the Arthur-Selberg
trace formula, he tries to isolate inside this representation a subquotient which
decomposes as

@ 7R ao(n)Y ®o(n).
€A,

Such a comparison of trace formulas was first made by Yasutaka Thara in 1967
for modular curves over Q. Since, it has been extensively used for Shimura varieties
and Drinfeld modular varieties by Langlands, Robert Kottwitz and many others.
There are two main difficulties to overcome to complete the comparison:

— to prove suitable cases of a combinatorial conjecture of Langlands and Diana
Shelstad, which is known as the Fundamental Lemma,

—to compare the contribution of the “fixed points at infinity” in the Grothendieck-
Lefschetz trace formula with the weighted orbital integrals of James Arthur
which occur in the geometric side of the Arthur-Selberg trace formula.
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For the moduli space of shtukas, the required cases of the Fundamental Lemma,
were proved by Drinfeld in the 1970s. So, only the second difficulty was remaining
after Drinfeld had completed his proof of the rank 2 case. This is precisely the
problem that Lafforgue has solved after seven years of very hard work. The proof
has been published in three papers totalling about 600 pages.

4. Drinfeld shtukas

Let X be “the” smooth, projective and connected curve over F, whose field of
rational functions is F'. It plays the role of the ring of integers of a number field.
Its closed points are the places of F'. For any such point  we have the completion
F, of F at x and its ring of integers O, C F,.

Let O =[], O, C A be the maximal compact subring of the ring of adeles.
Weil showed that the double coset space

GL, (F)\ GL,(4)/ GL,(0)

can be naturally identified with the set of isomorphism classes of rank r vector
bundles on X.

Starting from this observation, with the goal of realizing a congruence relation
between Hecke operators and Frobenius endomorphisms, Drinfeld defined a rank r
shtuka over an arbitrary field k of characteristic p as a diagram

Hecke

—N—
TE— & e £ £
¥

where £, £ and £’ are rank r vector bundles on the curve X; deduced from X
by extending the scalars to k, where £ «» £' is an elementary upper modification
of £ at some k-rational point of X which is called the pole of the shtuka, where
"« &' is an elementary lower modification of £ at some k-rational point of X
which is called the zero of the shtuka, and where 7€ is the pull-back of £ by the
endomorphism of X which is the identity on X and the Frobenius endomorphism
on k.

Drinfeld proved that the above shtukas are the k-rational points of an algebraic
stack over I, which is equipped with a projection onto X x X given by the pole
and the zero. More generally, he introduced level structures on rank r shtukas and
he constructed an algebraic stack Sht, parametrizing rank r shtukas equipped with
a compatible system of level structures. This last algebraic stack is endowed with
an algebraic action of GL,(A) through the Hecke operators.
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5. Iterated shtukas

The geometry at infinity of the moduli stack Sht, is amazingly complicated.
The algebraic stack Sht, is not of finite type and one needs to truncate it to ob-
tain manageable geometric objects. Bounding the Harder-Narasimhan polygon of
a shtuka, Lafforgue defines a family of open substacks (Sht=")p which are all of
finite type and whose union is the whole moduli stack. But in doing so, he loses
the action of the Hecke operators which do not stabilize those open substacks.

In order to recover the action of the Hecke operators, Lafforgue enlarges Sht,.
by allowing specific degenerations of shtukas that he has called iterated shtukas.

More precisely, Lafforgue lets the isomorphism ¢ : "€ — £'" appearing in
the definition of a shtuka, degenerate to a complete homomorphism "& = £, i.e.
a continuous family of complete homomorphisms between the stalks of the vector
bundles "€ and £".

Let me recall that a complete homomorphism V' = W between two vector
spaces of the same dimension r is a point of the partial compactification Hom(V, W)
of Isom(V, W) which is obtained by successively blowing up the quasi-affine variety
Hom(V, W) — {0} along its closed subsets

{f € Hom(V, W) — {0} | rank(f) < i}

fori=1,...,r —1. fV = W is the standard vector space of dimension r, the
quotient of Hom(V, W) by the action of the homotheties is the Procesi-De Concini
compactification of PGL,.

In particular, Lafforgue obtains a smooth compactification, with a normal
crossing divisor at infinity, of any truncated moduli stack of shtukas without level
structure.

6. One key of the proof

Lafforgue proves his main theorem by an elaborate induction on r. Compared
to Drinfeld’s proof of the rank 2 case, a very simple but crucial novelty in Lafforgue’s
proof is the distinction in the £-adic cohomology of Sht,. between the r-negligible part
(the part where all the irreducible constituents as Galois modules are of dimension
< r) and the r-essential part (the rest). Lafforgue shows that the difference between
the cohomology of Sht, and the cohomology of any truncated stack Sht=F is r-
negligible. He also shows that the cohomology of the boundary of Sht=* is r-
negligible. Therefore, the r-essential part, which is defined purely by considering
the Galois action and which is naturally endowed with an action of the Hecke
operators, occurs in the f-adic cochomology of any truncated moduli stack Sht;P
and also in their compactifications.

At this point, Lafforgue makes an extensive use of the proofs by Richard Pink
and Kazuhiro Fujiwara of a conjecture of Deligne on the Grothendieck-Lefschetz
trace formula.



96 Gérard Laumon

7. Compactification of thin Schubert cells

In proving the Langlands conjecture for functions fields, Lafforgue tried to
construct nice compactifications of the truncated moduli stacks of shtukas with
arbitrary level structures. A natural way to do that is to start with some nice
compactifications of the quotients of PGL"™ / PGL, for all integers n > 1, and to
apply a procedure similar to the one which leads to iterated shtukas.

Lafforgue constructed natural compactifications of PGL?* /PGL,. In fact,
he remarked that PGL?* /PGL, is the quotient of GL"™ /GL, by the obvious
free action of the torus G2 /Gy, and that GL™ / GL, may be viewed as a thin
Schubert cell in the Grassmannian variety of r-planes in a r(n + 1)-dimensional
vector space. And, more generally, he constructed natural compactifications of all
similar quotients of thin Schubert cells in the Grassmannian variety of r-planes in
a finite-dimensional vector space.

Let me recall that thin Schubert cells are by definition intersections of Schubert
varieties and that Israel Gelfand, Mark Goresky, Robert MacPherson and Vera
Serganova constructed natural bijections between thin Schubert cells, matroids and
certain convex polyhedra which are called polytope matroids.

For n = 1 and arbitrary r, Lafforgue’s compactification of PGL2 / PGL, coin-
cides with the Procesi-De Concini compactification of PGL,. It is smooth with a
normal crossing divisor at infinity.

For n = 2 and arbitrary r, Lafforgue proves that his compactification of
PGL? / PGL, is smooth over a toric stack, and thus can be desingularized.

For n > 3 and r > 3, the geometry of Lafforgue’s compactifications is rather
mysterious and not completely understood.

Gerd Faltings linked the search of good local models for Shimura varieties
in bad characteristics to the search of smooth compactifications of G"™1/G for a
reductive group . He gave another construction of Lafforgue’s compactifications
of PGL?* /PGL, and he succeeded in proving that Lafforgue’s compactification
of PGL!*™! / PGL, is smooth for r = 2 and arbitrary n.

8. Conclusion

I hope that I gave you some idea of the depth and the technical strength of
Lafforgue’s work on the Langlands correspondence for which we are now honoring
him with the Fields Medal.
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The Work of Vladimir Voevodsky

Christophe Soulé*

Vladimir Voevodsky was born in 1966. He studied at Moscow State University
and Harvard university. He is now Professor at the Institute for Advanced Study
in Princeton.

Among his main achievements are the following: he defined and developed
motivic cohomology and the Al-homotopy theory of algebraic varieties; he proved
the Milnor conjectures on the K-theory of fields.

Let us state the first Milnor conjecture. Let F' be a field and n a positive
integer. The Milnor K -group of F is the abelian group K (F) defined by the
following generators and relations. The generators are sequences {az,...,a,} of n
units a; € F*. The relations are

{a, ..., Qp—1,2Y, A1, - - -, On}
= a1, s Q1,2 A1y -5 O )+ {1, Q=1 Y Gt 1y - - - G )
for all a;,z,y € F*, 1 < k < n, and the Steinberg relation
{lag, ...,z ..., 1 —z,...,a,} =0

for all ¢; € F* and x € F — {0,1}.

On the other hand, let F' be an algebraic closure of F' and G = Gal(F/F) the
absolute Galois group of F, with its profinite topology. The Galois cohomology of
F with Z/2 coeflicients is, by definition,

H™(F,Z/2) = H" (G.Z/2).

continuous

Theorem 1. (Voevodsky 1996 [5]) Assume 1/2 € F and n > 1. The Galois
symbol

hy, : KM(F)/2KM(F) — H™(F,Z/2)

48 an isomorphism.

*CNRS and Institut des Hautes Etudes Scientifiques, 35, route de Chartres, 91440 Bures-sur-
Yvette, France.
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This was conjectured by Milnor in 1970 [1]. When n = 2, Theorem 1 was
proved by Merkurjev in 1983. The case n = 3 was then solved independently by
Merkurjev-Suslin and Rost.

There exists also a Galois symbol on KM(F)/p KM(F) for any prime p in-
vertible in . When n = 2 and F is a number field, Tate proved that it is an
isomorphism. In 1983 Merkurjev and Suslin proved that it is an isomorphism when
n = 2 and F' is any field. Both Voevodsky and Rost have made a lot of progress
towards proving that, for any F, any n > 0 and any p invertible in F, the Galois
symbol is an isomorphism.

The map h, in Theorem 1 is defined as follows. When n = 1, we have
KM(F)=F* and HY(F,Z/2) = Hom(G,Z/2). The map

hy : F*/(F*)? = Hom(G,Z/2)
maps a € F* to the quadratic character y, defined by

Xa(9) = 9(Va)/vVa = +1

for any g € G and any square root v/a of @ in F. That hy is bijective is a special
case of Kummer theory. When n > 2, we just need to define h,, on the generators
{ai,...,a,} of KM(F). 1t is given by a cup-product:

hn({as, ... an}) = Xay U+ U Xa, -

The fact that h,, is compatible with the Steinberg relation was first noticed by Bass
and Tate.

Theorem 1 says that H"(F,Z/2) has a very explicit description. In particular,
an immediate consequence of Theorem 1 and the definition of h,, is the following

Corollary 1. The graded Z/2-algebra @ H™(F,Z/2) is spanned by elements
n>0
of degree one.

This means that absolute Galois groups are very special groups. Indeed, it is
seldom seen that the cohomology of a group or a topological space is spanned in
degree one.

Corollary 2. (Bloch) Let X be o complex algebraic variety and
a € H'(X(C), Z) a class in its singular cohomology. Assume that 2 = 0. Then,
there exists o nonempty Zariski open subset U C X such that the restriction of a
to U vanishes.

If Theorem 1 was extended to KM (F)/p KM(F) for all n and p, Corollary 2
would say that any torsion class in the integral singular cohomology of X is sup-
ported on some hypersurface. (Hodge seems to have believed that such a torsion
class should be Poincaré dual to an analytic cycle, but this is not always true.)
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With Orlov and Vishik, Voevodsky proved a second conjecture of Milnor re-
lating the Witt group of quadratic forms over F' to its Milnor K-theory [3].

A very serious difficulty that Voevodsky had to overcome to prove Theorem 1
was that, when n = 2, Merkurjev made use of the algebraic K-theory of conics over
F. but, when n > 2, one needed to study special quadric hypersurfaces of dimension
271 — 1. And it is quite hard to compute the algebraic K-theory of varieties of
such a high dimension. Although Rost had obtained crucial information about the
K-theory of these quadrics, this was not enough to conclude the proof when n > 3.
Instead of algebraic K-theory, Voevodsky used motivic cohomology, which turned
out to be more computable.

Given an algebraic variety X over F' and two integers p,q € Z, Voevodsky
defined an abelian group H?9(X,Z), called motivic cohomology. These groups are
analogs of the singular cohomology of CW-complexes. They satisfy a long list of
properties, which had been anticipated by Beilinson and Lichtenbaum. For example,
when n is a positive integer and X is smooth, the group

H>"(X,Z) = CH"(X)

is the Chow group of codimension n algebraic cycles on X modulo linear equivalence.
And when X is a point we have

H™"(point) = KM(F).

It is also possible to compute Quillen’s algebraic K-theory from motivic cohomology.
Earlier constructions of motivic cohomology are due to Bloch (at the end of the
seventies) and, later, to Suslin. The way Suslin modified Bloch’s definition was
crucial to Voevodsky’s approach and, as a matter of fact, several important papers
on this topic were written jointly by Suslin and Voevodsky [4, 7]. There exist
also two very different definitions of HP%(X,Z), due to Levine and Hanamura;
according to the experts they lead to the same groups. But it seems fair to say that
Voevodsky’s approach to motivic cohomology is the most complete and satisfactory
one.

A larger context in which Voevodsky developed motivic cohomology is the
Al-homotopy of algebraic manifolds [6], which is a theory of “algebraic varieties
up to deformations”, developed jointly with Morel [2]. Starting with the category
of smooth manifolds (over a fixed field F'), they first embed this category into the
category of Nisnevich sheaves, by sending a given manifold to the sheaf it represents.
A Nisnevich sheaf is a sheaf of sets on the category of smooth manifolds for the
Nisnevich topology, a topology which is finer (resp. coarser) than the Zariski (resp.
étale) topology. Then Morel and Voevodsky define a homotopy theory of Nisnevich
sheaves in much the same way the homotopy theory of CW-complexes is defined.
The parameter space of deformations is the affine line A! instead of the real unit
interval [0, 1]. Note that, in this theory there are two circles (corresponding to the
two degrees p and ¢ for motivic cohomology)! The first circle is the sheaf represented
by the smooth manifold A! — {0} (indeed, C — {0} has the homotopy type of a
circle). The second circle is A1/{0,1} ( note that R/{0,1} is a loop). The latter
is not represented by a smooth manifold. But, if we identify 0 and 1 in the sheaf
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of sets represented by A! we get a presheaf of sets, and A'/{0,1} can be defined
as the sheaf attached to this presheaf. This example shows why it was useful to
embed the category of algebraic manifolds into a category of sheaves.

It is quite extraordinary that such a homotopy theory of algebraic manifolds ex-
ists at all. In the fifties and sixties, interesting invariants of differentiable manifolds
were introduced using algebraic topology. But very few mathematicians anticipated
that these “soft” methods would ever be successful for algebraic manifolds. It seems
now that any notion in algebraic topology will find a partner in algebraic geometry.
This has long been the case with Quillen’s algebraic K-theory, which is precisely
analogous to topological K-theory. We mentioned that motivic cohomology is an
algebraic analog of singular cohomology. Voevodsky also computed the algebraic
analog of the Steenrod algebra, i.e. cohomological operations on motivic cohomol-
ogy (this played a decisive role in the proof of Theorem 1). Morel and Voevodsky
developed the (stable) Al-homotopy theory of algebraic manifolds. Voevodsky de-
fined algebraic cobordism as homotopy classes of maps from the suspension of an
algebraic manifold to the classifying space MGL. There is also a direct geometric
definition of algebraic cobordism, due to Levine and Morel (see Levine’s talk in
these proceedings), which should compare well with Voevodsky’s definition. And
the list is growing: Morava K-theories, stable homotopy groups of spheres, etc. ..

Vladimir Voevodsky is an amazing mathematician. He has demonstrated an
exceptional talent for creating new abstract theories, about which he proved highly
nontrivial theorems. He was able to use these theories to solve several of the main
long standing problems in algebraic K-theory. The field is completely different after
his work. He opened large new avenues and, to use the same word as Laumon, he
is leading us closer to the world of motives that Grothendieck was dreaming about
in the sixties.
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On the Work of Madhu Sudan:
the 2002 Nevalinna Prize Winner

Shafi Goldwasser*

1. Introduction

Madhu Sudan’s work spans many areas of computer science theory including
computational complexity theory, the design of efficient algorithms, algorithmic
coding theory, and the theory of program checking and correcting.

Two results of Sudan stand out in the impact they have had on the math-
ematics of computation. The first work shows a probabilistic characterization of
the class NP — those sets for which short and easily checkable proofs of member-
ship exist, and demonstrates consequences of this characterization to classifying the
complexity of approximation problems. The second work shows a polynomial time
algorithm for list decoding the Reed Solomon error correcting codes.

This short note will be devoted to describing Sudan’s work on probabilistically
checkable proofs — the so called PCP theorem and its implications. We refer the
reader to [29, 30] for excellent expositions on Sudan’s breakthrough work on list
decoding, and its impact on the study of computational aspects of coding theory as
well as the use of coding theory within complexity theory.

Complexity theory is concerned with how many resources such as time and
space are required to perform various computational tasks. Computational tasks
arise in classical mathematics as well as in the world of computer science and en-
gineering. Examples of what we may call a computational task include finding a
proof for a mathematical theorem, automatic verification of the correctness of a
given mathematical proof, and designing algorithms for transmitting information
reliably through a noisy channel of communication. Defining what is a ‘success’
when solving some of these computational tasks is still a lively and important part
of research in this stage of development of complexity theory.

A large body of Sudan’s work, started while he was working on his PhD the-
sis, addresses the automatic verification of the correctness of mathematical proofs.
Many issues come up: how should we encode a mathematical proof so that a com-
puter can verify it, which mathematical statements have proofs which can be quickly
verified, and what is the relation between the size of the description of the theorem

*Weizmann Institute of Science, Israel and Massachusetts Institute of Technology, USA
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and the size of its shortest proof which can be quickly verified. The work of Sudan
sheds light on all of these questions.

2. Efficient proof checking

Let us start with the classic notion of efficiently checkable proofs, which goes
back to the early days of computer science in the early seventies when the NP class
was defined [8, 25].

Definition 1 The class NP consists of those sets L C {0, 1}* for which there exists
polynomial time verification algorithm Vi and polynomial p such that x € L if and
only if there exists a y, € {0, 137020 which makes Vi (x,y,) = TRUE. We call Vi,
the NP-verifier for the language L € NP, and y, the NP-witness for x in L.

One example of L € N P is the set of pairs (G, k) where k € Z and G is a graph
which contain a complete subgraph on k vertices — the so called CLIQUE problem.
The NP-witness for pair (G, k) € CLIQUE is the complete subgraph in G of size k.
Another example is the set of all logical formulas for which a truth assignment to
its Boolean variables exists which makes it true — the SATISFIABILITY problem.
The NP-witness for a logical formula ¢ is a particular setting of its variables which
make the formula satisfiable. Graphs, logical formulas, and truth assignments can
all be encoded as binary strings.

3. Probabilistic checking of proofs

In the eighties, extensions of the notion of an efficiently verifiable proof were
proposed to address issues arising in disciplines involving interactive computation
such as cryptography. The extensions incorporate the idea of using randomness
in the verification process and allow a negligible probability of error to be present
in the verification process. Variants of probabilistic proof systems include inter-
active proofs [16], public-coin interactive proofs [3], computational arguments[4],
CS-proofs [26], Holographic proofs [6], multi-prover interactive proofs [7], memo-
ryless oracles [14], and probabilistically checkable proofs [10, 2]. The latter three
definitions are equivalent to each other although each was introduced under a dif-
ferent name.

By the early nineties probabilistically checkable proofs proofs were generally
accepted as the right extension for complexity theoretic investigations. The class
PCP of sets for which membership can be checked by ”probabilistically checkable
proofs” is defined as follows.

Definition 2 Let L C {0,1}*. For L in PCP, there exists o probabilistic polynomial
time verification algorithm Vi
e ifx € L, then there exists a O, € {0,1}* such that Prob[V" (z) = TRUE] >
1
o ifx ¢ L, then for all O, € {0,1}*, Prob[V,’* (x) = TRUE] < 1.
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The probabilities above are taken over the probabilistic choices of the verification
algorithm V. The notation VLO“” means that Vi, does not receive O, as an input
but rather can read individual bits in O, by specifying their locations explicitly. We
call Vi, the PCP-verifier for L € PCP, and O, the PCP-witness for x in L.

A few comments are in order.

For each bit of O, read, we charge Vi, for the time it takes to write down the
address of the bit to be read. The requirement that Vi runs in polynomial time
implies then that the length of the PCP-witness for z is bounded by an exponential
in |z

A verifier may make an error and accept incorrectly, but the probability of this
event can be made exponentially (in jz]) small by running a polynomial number of
independent executions of V, and accepting only if all executions accept. In light
of the above, we argue that probabilistically checkable proofs capture what we want
from any efliciently checkable proof system: correct statements are always accepted,
incorrect statement are (almost) never accepted, and the verification procedure
terminates quickly.

Are probabilistically checkable proofs more powerful than the deterministic
NP style proofs? Developments made in a sequence of beautiful papers [32, 24, 5],
finally culminated in the result of Babai et. al. [5] showing that indeed PCP =
NEXPTIME." By the separation of the non-deterministic time hierarchy, it is
known that NP is strictly contained in NEXPTIME. Thus indeed, the proba-
bilistic checking of proofs is more powerful than the classical deterministic one (at
least when the verifier is restricted to polynomial time).

Soon after the power of PCP verifiers was characterized, a finer look was
taken at the resources PCP verifiers use. Two important resources in classifying
the complexity of language L were singled out [10]: the amount of randomness used
by the PCP verifier and the number of bits it reads from the PCP-witness (the
latter number is referred to as the query size of V7).

Definition 3 Let PCP(r(n),q(n)) denote class of sets L € PCP for which there
exists a PCP verifier for L which on input x € {0,1}" uses at most O(r(n)) random
bits and reads at most O(q(n)) bits of the witness oracle O,. *

Obviously, NP € PCP(0,U.n°) as an NP verifier is simply a special case of
the PCP verifier which does not use any randomness. Starting with scaling down
the result of [5] it was shown (or at least implied ) in a sequence of improvements
[6, 10, 2] that NP C PCP(logn,poly(logn)). These results successively lowered
the number of bits that the PCP- verifier needs to read from the PCP-witness, but
it seemed essential for the correctness of the verification procedure that this number
should be a function which grows with the size of the input.

In the eighties, extensions of the notion of an efficiently verifiable proof were
proposed to address issues arising in disciplines involving interactive computation

The class NEX PTTME is defined exactly in the same manner as NP except that the verifier
V1 has exponential time and the witness may be exponentially long.

20(g(n) = cf(n) s.t. there exists a constant c such that g(n) < cf(n) for all n sufficiently
large}
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such as cryptography. The extensions incorporate the idea of using randomness
in the verification process and allow a negligible probability of error to be present
in the verification process. Variants of probabilistic proof systems include inter-
active proofs [16], public-coin interactive proofs [3], computational arguments[4],
CS-proofs [26], Holographic proofs [6], multi-prover interactive proofs [7], memo-
ryless oracles [14], and probabilistically checkable proofs [10, 2]. The latter three
definitions are equivalent to each other although each was introduced under a dif-
ferent name.

By the early nineties probabilistically checkable proofs proofs) were generally
accepted as the right extension for complexity theoretic investigations. The class
PCP of sets for which membership can be checked by ”probabilistically checkable
proofs” is defined as follows.

Definition 4 Let L C {0,1}*. For L in PCP, there exists o probabilistic polynomial
time verification algorithm Vi

e ifx € L, then there exists a O, € {0,1}* such that Prob[V" (z) = TRUE] >
1
o ifx ¢ L, then for all O, € {0,1}*, Prob[V,’* (x) = TRUE] < 1.

The probabilities above are taken over the probabilistic choices of the verification
algorithm V. The notation VLO“” means that Vi, does not receive O, as an input
but rather can read individual bits in O, by specifying their locations explicitly. We
call Vi, the PCP-verifier for L € PCP, and O, the PCP-witness for x in L.

A few comments are in order.

For each bit of O, read, we charge Vi, for the time it takes to write down the
address of the bit to be read. The requirement that Vi runs in polynomial time
implies then that the length of the PCP-witness for z is bounded by an exponential
in |z

A verifier may make an error and accept incorrectly, but the probability of this
event can be made exponentially (in jz]) small by running a polynomial number of
independent executions of V, and accepting only if all executions accept. In light
of the above, we argue that probabilistically checkable proofs capture what we want
from any efliciently checkable proof system: correct statements are always accepted,
incorrect statement are (almost) never accepted, and the verification procedure
terminates quickly.

Are probabilistically checkable proofs more powerful than the deterministic
NP style proofs? Developments made in a sequence of beautiful papers [32, 24, 5],
finally culminated in the result of Babai et. al. [5] showing that indeed PCP =
NEXPTIME.? By the separation of the non-deterministic time hierarchy, it is
known that NP is strictly contained in NEXPTIME. Thus indeed, the proba-
bilistic checking of proofs is more powerful than the classical deterministic one (at
least when the verifier is restricted to polynomial time).

SThe class NEX PTTME is defined exactly in the same manner as NP except that the verifier
V1 has exponential time and the witness may be exponentially long.
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Soon after the power of PCP verifiers was characterized, a finer look was
taken at the resources PCP verifiers use. Two important resources in classifying
the complexity of language L were singled out [10]: the amount of randomness used
by the PCP verifier and the number of bits it reads from the PCP-witness (the
latter number is referred to as the query size of V).

Definition 5 Let PCP(r(n),q(n)) denote class of sets L € PCP for which there
exists a PCP verifier for L which on input x € {0,1}" uses at most O(r(n)) random
bits and reads at most O(q(n)) bits of the witness oracle O,. *

Obviously, NP ¢ PCP(0,U.n°) as an NP verifier is simply a special case of
the PCP verifier which does not use any randomness. Starting with scaling down
the result of [5] it was shown (or at least implied ) in a sequence of improvements
[6, 10, 2] that NP C PCP(logn,poly(logn)). These results successively lowered
the number of bits that the PCP verifier needs to read from the PCP-witness, but it
seemed essential for the correctness of the verification procedure that this number
should be a function which grows with the size of the input.

4. The PCP theorem

In a breakthrough, which has since become known as the PCP theorem, Sudan
and his co-authors characterized the class NP exactly in terms of PCP. They
showed that NP contains exactly those languages in which a PC P-verifier can
verify membership using only a constant query size and using logarithmic (in the
instance size) number of coins. More over, there exists a polynomial time procedure
to transform an N P-witness of z in L into a PCP-witness of z in L.

Theorem 6 [I] NP = PCP(logn,1)

On an intuitive level, the PCP theorem says that there exist a probabilistic
verifier for proofs of mathematical assertions which can look only at a constant
number of bit positions at the proof and yet with some positive probability catch
any mistake made in a fallacious argument.

The proof of the PCP theorem is deep, beautiful, and quite complex. It brings
together ideas from algebra, error correcting codes, probabilistic computation, and
program testing.

Although the PCP theorem establishes a complexity result, its proof is algo-
rithmic in nature, as it is a transformation of an NP-witness and a deterministic
NP-verifier for L € NP into a PCP-witness and an PCP-verifier for L. As such
it uses methods from the design of computer algorithms and the design of error
correcting codes. Several excellent expositions of the proof appeared [28].

In a very strong sense, the act of transforming an NP witness into a PCP
witness is similar to transforming a message into an error correcting code word.
The analogy being that a code word is an encoding of a message which enables

40(g(n) = cf(n) s.t. there exists a constant c such that g(n) < cf(n) for all n sufficiently
large}
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error detection in spite of noise injected by an adversary, and a PCP witness is an
encoding of a proof which enables detection with high probability of an error in
spite the best efforts to hide it made by a cheating pretend-to-be prover.

Yet, the act of classic decoding of a code word is very different than the act
of checking the correctness of a PCP witness . Whereas in error correcting codes
one attempts to recover the entire original message from the corrupted code word if
too much noise has not occurred; here we only want to verify that the PCP-witness
is a proper encoding of a valid NP-witness (of the same fact) which would have
convinced an NP-verifier to accept. It suffices to read only a constant number of bit
positions to achieve the latter task, whereas the decoding task depends on reading
the entire code word.

One of the subsequent contributions of Sudan, involves constructing a new
type of locally testable codes [11, 17]. Locally testable codes are error-correcting
codes for which error detection can be made with probability proportional to the
distance of the non-codeword from the code, based on reading only a constant
number of (random) symbols from the received word. A related concept is that of
locally decodable codes [23, 18] which are error correcting codes which may enable
recovery of part of the message (rather than the entire message) by reading only
part of the corrupted code word.

5. PCP and hardness of approximation

The intellectual appeal of the PCP theorem statement is obvious. What is
much less obvious and what has been the main impact of the PCP theorem is its
usefulness in proving NP hardness of many approximate versions of combinato-
rial optimization problems. A task which alluded the theoretical computer science
community for over twenty years.

Shortly after the class NP and the companion notion of an N P-complete and
NP-hard problems® were introduced, Karp illustrated its great relevance to combina-
torial optimization problems in his 1974 paper [22], He showed that a wide collection
of optimization problems ( including the minimum travelling salesman problem in a
graph, integer programming, minimum graph coloring and maximum graph clique
suitably reformulated as language membership problems) are NP-complete. Proving
that a problem is NP-complete is generally taken to mean that they are intrinsically
intractable as otherwise NP = P.

In practice this means there is no point in wasting time trying to devise efficient
algorithms for NP-complete problems, as none exists (again if NP # P). Still these
problems do come up in applications all the time, and need to be addressed. The
question is, how? Several methods for dealing with NP-completeness arose in the
last 20 years.

One technique is to devise algorithms which provably work efficiently for par-
ticular input distribution on the instances (“average” instances ) of the NP-complete

5A set is N'P-hard if any efficient algorithm for it, can be used to efficiently decide every other
set in N'P. An NP set which is NP-hard is called NP-complete. By definition, every N'P-complete
language is as hard to compute as any other.
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problems. It is not clear however how to determine whether your application pro-
duces such input distribution.

Another direction has been to devise approximation algorithms. We say that
an approximation algorithm c-approximates a maximization problem if, for every
instance, it provably guarantees a solution of value which is at least % of the value
of an optimal solution; an approximation algorithm is said to a-approximate a
minimization problem if it guarantees a solution of value at most « of the value of
an optimal solution.

Devising approximation algorithms has been an active research area for twenty
years, still for many NP-hard problems success has been illusive whereas for others
good approximation factors were achievable. There has been no theoretical expla-
nation of this state of affairs. Attempting to prove that approximating the solution
to NP-hard problems is in itself NP-hard were not successful.

The PCP theorems of Sudan and others, starting with the work of Feige et.
al. [10], has completely revolutionized this state of affairs. It is now possible using
the PCP characterization of NP to prove that approximating many optimization
problems each for different approximation factors is in itself NP-hard. The mys-
teries of why it is not only hard to solve optimization problems exactly but also
approximately, and why different NP-hard problems behave differently with respect
to approximation have been resolved.

The connection between bounding the randomness and query complexity of
PCP-verifiers for NP languages and proving the NP hardness of approximation was
established in [10, 2] for the Max-CLIQUE problem (defined below). It seemed at
first like an isolated example. The great impact of Sudan et. al.’s [1] theorem was
in showing this was not the case. They showed that proving characterization of
NP as PCP(logn, 1) implies the NP hardness of approximation for a collection of
NP-complete problems including Max-3-SAT, Max-VERTEX COVER, and others
(as well as improving the Max-CLIQUE hardness factor).

The basic idea is the following: A PCP type theorem provides a natural(?)
optimization problem which cannot be efficiently approximated by any factor better
than 2 as follows. Fix a PCP-verifier V;, for an NP language L and an z. Any
candidate PCP-witness O, for z defines an acceptance probability of VLO“” (x). The
gap of 1/2 in the maximum acceptance probability for € L versus x ¢ L (which
exists by the definition of PCP) implies that it is NP-hard to 2-approximate the
maximum acceptance probability of V. In other words, the existence of a polyno-
mial time algorithm to 2-approximate the acceptance probability of # by Vi, would
imply that NP = P.

For different optimization problems, showing hardness of approximation is
done by demonstrating reductions from variants of the above optimization problem.
These reductions are far more complex than reductions showing NP-hardness for
exact problems as one needs to address the difference in in-approximability factors
of problems being reduced to each other.

Moreover, these new NP-hardness results have brought on a surge of new
research in the algorithmic community as well. New approximation algorithms
have been designed which at times have risen to the task of meeting from above the
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approximation factors which were proved using PCP theorems to be best possible
(unless NP = P) . This has brought on a meeting of two communities of researchers:
the algorithm designers and complexity theorists. The former may take the failure
of the latter to prove NP hardness of approximating a problem within a particular
approximation factor as indication of what factor is feasible and vice versa.

This radical advance is best illustrated by way of a few examples. Finding
the exact optimal solution to all of the following problems is A'P-complete. Naive
approximation algorithms existed for a long time, which no one could improve. They
yield completely different approximation factors. For some of these problems we now
have essentially found optimal approximation problem. Any further advancement
will imply that N P problems are efficiently solvable.

Max~-CLIQUE: Given a finite graph on n vertices, find the size of the largest
complete subgraph. A single vertex solution is within factor n of optimal. More
elaborate algorithms give factor n-%?, This problem was the first one to be proved
hard to approximate using PCP type theorem [10]. It is now known that achieving
a factor of n'~¢ is N'P-hard for every € > 0 [19].

Max-3-SAT: Given a logical formula in conjunctive normal form with n variables
where there is at most 3 literals per clause, determine the maximal number of
clauses which can be satisfied simultaneously by a single truth assignment. A simple
probabilistic algorithm satisfies $ of the clauses. It is now known [20] that achieving
a factor 7/8 — € for € > 0 approximation factor is N P-hard even if the formula is
satisfiable. At the same time [21] has shown an algorithm which matches the 7/8
approximation factor when the formula is satisfiable.

Min-Set Cover: Given a collection of subsets of a given finite universe of size n,
determine the size of the smallest subcollection that covers every element in the
universe. A simply greedy algorithm, choosing the subsets which maximizes the
coverage of as many yet uncovered elements as possible, yields a factor Inn from
optimal. Tt is now known that approximation by a factor of (1 —¢) Inn is N'P-hard
for every € > 0 [9].

We point the reader to a collection of papers and expositions by Sudan himself
[31] on these works as well as exciting further developments.
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Discrete Mathematics:
Methods and Challenges

Noga Alon*

Abstract

Combinatorics is a fundamental mathematical discipline as well as an es-
sential component of many mathematical areas, and its study has experienced
an impressive growth in recent years. One of the main reasons for this growth
is the tight connection between Discrete Mathematics and Theoretical Com-
puter Science, and the rapid development of the latter. While in the past
many of the basic combinatorial results were obtained mainly by ingenuity
and detailed reasoning, the modern theory has grown out of this early stage,
and often relies on deep, well developed tools. This is a survey of two of the
main general techniques that played a crucial role in the development of mod-
ern combinatorics; algebraic methods and probabilistic methods. Both will
be illustrated by examples, focusing on the basic ideas and the connection to
other areas.
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1. Introduction

The originators of the basic concepts of Discrete Mathematics, the mathemat-
ics of finite structures, were the Hindus, who knew the formulas for the number of
permutations of a set of n elements, and for the number of subsets of cardinality %
in a set of n elements, already in the sixth century. The beginning of Combinatorics
as we know it today started with the work of Pascal and De Moivre in the 17th
century, and continued in the 18th century with the seminal ideas of Euler in Graph
Theory, with his work on partitions and their enumeration, and with his interest in
latin squares. These old results are among the roots of the study of formal methods
of enumeration, the development of configurations and designs, and the extensive
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work on Graph Theory in the last two centuries. The tight connection between Dis-
crete Mathematics and Theoretical Computer Science, and the rapid development
of the latter in recent years, led to an increased interest in combinatorial techniques
and to an impressive development of the subject. It also stimulated the study of
algorithmic combinatorics and combinatorial optimization.

While many of the basic combinatorial results were obtained mainly by ingenu-
ity and detailed reasoning, without relying on many deep, well developed tools, the
modern theory has already grown out of this early stage. There are already well de-
veloped enumeration methods, some of which are based on deep algebraic tools. The
probabilistic method initiated by Erdés (and to some extent, by Shannon) became
one of the most powerful tools in the modern theory, and its study has been fruit-
ful to Combinatorics, as well as to Probability Theory. Algebraic and topological
techniques play a crucial role in the modern theory, and Polyhedral Combinatorics,
Linear Programming and constructions of designs have been developed extensively.
Most of the new significant results obtained in the area are inevitably based on the
knowledge of these well developed concepts and techniques, and while there is, of
course, still a lot of room for pure ingenuity in Discrete Mathematics, much of the
progress is obtained by relying on the fast growing accumulated body of knowledge.

Concepts and questions of Discrete Mathematics appear naturally in many
branches of mathematics, and the area has found applications in other disciplines
as well. These include applications in Information Theory and Electrical Engineer-
ing, in Statistical Physics, in Chemistry and Molecular Biology, and, of course, in
Computer Science. Combinatorial topics such as Ramsey Theory, Combinatorial
Set Theory, Matroid Theory, Extremal Graph Theory, Combinatorial Geometry
and Discrepancy Theory are related to a large part of the mathematical and sci-
entific world, and these topics have already found numerous applications in other
fields. A detailed account of the topics, methods and applications of Combinatorics
can be found in [35].

This paper is mostly a survey of two of the main general techniques that played
a crucial role in the development of modern combinatorics; algebraic methods and
probabilistic methods. Both will be illustrated by examples, focusing on the basic
ideas and the connection to other areas. The choice of topics and examples described
here is inevitably biased, and is not meant to be comprehensive. Yet, it hopefully
provides some of the flavor of the techniques, problems and results in the area in
a way which may be appealing to researchers, even if their main interest is not
Discrete Mathematics.

2. Dimension, geometry and information theory

Various algebraic techniques have been used successfully in tackling problems
in Discrete Mathematics over the years. These include tools from Representation
Theory applied extensively in enumeration problems, spectral techniques used in
the study of highly regular structures, and applications of properties of polynomials
and tools from algebraic geometry in the theory of Error Correcting Codes and in
the study of problems in Combinatorial Geometry. These techniques have numer-
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ous interesting applications. Yet, the most fruitful algebraic technique applied in
combinatorics, which is possibly also the simplest one, is the so-called dimension
argument. In its simplest form, the method can be described as follows. In order
to bound the cardinality of a discrete structure A, one maps its elements to vectors
in a linear space, and shows that the set A is mapped to a linearly independent set.
It then follows that the cardinality of A is bounded by the dimension of the corre-
sponding linear space. This method is often particularly useful in the solution of
extremal problems in which the extremal configuration is not unique. The method
is effective in such cases because bases in a vector space can be very different from
each other and yet all of them have the same cardinality. Many applications of this
basic idea can be found in [13], [14], [37].

2.1. Combinatorial geometry

An early application of the dimension argument appears in [49]. A set of points
A C R™is a two-distance set if at most 2 distinct positive distances are determined
by the points of A. Let f(n,2) denote the maximum possible size of a two-distance
set in R™. The set of all 0/1 vectors in R"™! with exactly two 1’s shows that
f(n,2) > n(n+1)/2, and the authors of [49] proved that f(n,2) < (n+1)(n+4)/2.
The upper bound is proved by associating each point of a two-distance set A with
a polynomial in n variables, and by showing that these polynomials are linearly
independent and all lie in a space of dimension (n + 1)(n -+ 4)/2. This has been
improved by Blokhuis to (n + 1)(n + 2}/2, by showing that one can add n + 1
additional polynomials that lie in this space to those obtained from the two-distance
set, keeping the augmented set linearly independent. See [14] and its references for
more details. The precise value of f(n,2) is not known.

Borsuk [21] asked if any compact set of at least 2 points in R? can be par-
titioned into at most d + 1 subsets of smaller diameter. Let m(d) be the smallest
integer m so that any such set can be partitioned into a most m subsets of smaller
diameter. Borsuk’s question is whether m(d) = d+ 1 (the d + 1 points of a simplex
show that m/(d) is at least d+1.) Kahn and Kalai [42] gave an example showing that
this is not the case for all sufficiently large d, by applying a theorem of Frankl and
Wilson [33]. Improved versions of their construction have been obtained by Nilli in
1994, by Raigorodski in 1997, by Hinrichs in 2001 and by Hinrichs and Richter in
2002. The last two results are based on some properties of the Leech Lattice and
give a construction showing that already in dimension d = 298, more than d + 1
subsets may be needed. All the constructions and the proofs of their properties are
based on the dimension argument. Here is a brief sketch of one of them.

Let n = 4p, where p is an odd prime, and let F be the set of all vectors
x=(x1,...,2n) € {~1,1}", where x; = 1 and the number of negative coordinates
of x is even. One first proves the following.

If G C F contains no two orthogonal vectors then |G| < 3070 (7). (1)

This is done by associating each member of G with a multilinear polynomial
of degree at most p — 1 in n — 1 variables, so that all the obtained polynomials are
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linearly independent. Having established (1), define S = {x*x : x € F}, where
F is as above, and x * x is the tensor product of x with itself, i.e., the vector of
length n?, (z;; : 1 <i,j < n), where 2;; = z;2;. The norm of each vector in S is n
and the scalar product between any two members of S is non-negative. Moreover,
by (1) any set of more than Zf:—é (":1) members of S containg an orthogonal pair,
i.e., two points the distance between which is the diameter of S. It follows that S

cannot be partitioned into less than 2772/ Zf:—é ("7") subsets of smaller diameter.

This shows that m(d) > c}/a for some ¢; > 1. An upper bound of m(d) < ¢ where
¢ = +/3/2+0(1) is known, but determining the correct order of magnitude of m(d)
is an open question. The following conjecture seems plausible.

Conjecture 2.1 There is a constant ¢ > 1 such that m(d) > c¢? for all d > 1.

An equilateral set (or a simplex) in a metric space, is a set A, so that the
distance between any pair of distinct members of A is b, where b # 0 is a constant.
Trivially, the maximum cardinality of such a set in R with respect to the (usual) lo-
norm is n+ 1. Somewhat surprisingly, the situation is far more complicated for the
!y norms. The /;-distance between two points @ = (ai,...a,) and b= (by,...,b,) in
R"is ||@—bl|; = (>"h—y lai —b;]. Let e(l]) denote the maximum possible cardinality
of an equilateral set in 7. The set of standard basis vectors and their negatives
shows that e(I?) > 2n. Kusner [39] conjectured that this is tight, i.e., that e(I}) =
2n for all n. For n < 4 this is proved in [44]. For general n, the best known upper
bound is e(I7) < einlogn for some absolute positive constant ¢;. This is proved in
[9] by an appropriate dimension argument. Each vector in an equilateral set of m
vectors in R™ is mapped to a vector in /4 for an appropriate t = t(m,n), by applying
a probabilistic technique involving randomized rounding. It is then shown, using a
simple argument based on the eigenvalues of the Gram matrix of these new vectors,
that they span a space of dimension at least com, implying that com < ¢(m,n) and
supplying the desired result. The precise details require some work, and can be
found in [9].

2.2. Capacities and graph powers

Let G = (V, E) be a simple, undirected graph. The power G™ of G is the
graph whose set of vertices is V" in which two distinct vertices (uq,us, ..., u,) and
(v1,v2,...,v,) are adjacent iff for all ¢ between 1 and n either u; = v; or wv; € E.
The Shannon capacity ¢(G) of G is the limit lim, o (a(G™))'/", where a(G") is
the maximum size of an independent set of vertices in GG". This limit exists, by
super-multiplicativity, and it is always at least a(G).

The study of this parameter was introduced by Shannon in [61], motivated
by a question in Information Theory. Indeed, if V' is the set of all possible letters
a channel can transmit in one use, and two letters are adjacent if they may be
confused, then «(G™) is the maximum number of messages that can be transmitted
in n uses of the channel with no danger of confusion. Thus ¢(G) represents the
number of distinct messages per use the channel can communicate with no error
while used many times.
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Calculation of ¢(G) seems to be very hard. For example ¢(Cs) = v/5 was only
shown in 1979 by Lovész [50], and ¢(Cy) remains unknown. Certain polynomially
computable upper bounds on ¢(G) are known including Lovész’s theta function
8(@), and other upper bounds are due to Haemers and to Schrijver.

Another upper bound, based on the dimension argument and related to the
bound of Haemers [40], is described in [3], where it is applied to solve a problem of
Shannon on the capacity of the disjoint union of two graphs. The (disjoint) union of
two graphs G and H, denoted by G+ H, is the graph whose vertex set is the disjoint
union of the vertex sets of G and of H and whose edge set is the (disjoint) union of
the edge sets of G and H. If G and H are graphs of two channels, then their union
represents the sum of the channels corresponding to the situation where either one
of the two channels may be used, a new choice being made for each transmitted
letter. Shannon proved that for every G and H, ¢(G + H) > ¢(G) + ¢(H) and that
equality holds in many cases. He conjectured that in fact equality always holds. In
[3] it is shown that this is false in the following strong sense.

Theorem 2.2 For every k there is a graph G so that the Shannon capacity of the
graph and that of its complement G satisfy ¢(G) < k,c(G) < k, whereas ¢(G+G) >

log k
;o STeTer gnd the o(1)-term tends to zero as k tends to infinity.

Therefore, the capacity of the disjoint union of two graphs can be much bigger
than the capacity of each of the two graphs. Strangely enough, it is not even known
if the maximum possible capacity of a disjoint union of two graphs G and H, each
of capacity at most k, is bounded by any function of k. It seems very likely that
this is the case.

3. Polynomials, addition and graph coloring

The study of algebraic varieties, that is, sets of common roots of systems of
polynomials, is the main topic of algebraic geometry. The most elementary property
of a univariate nonzero polynomial over a field is the fact that it does not have
more roots than its degree. This elementary property is surprisingly effective in
Combinatorics: it plays a major role in the theory of error correcting codes, and
has many applications in the study of finite geometries — see, e.g., [14]. A similar
property holds for polynomials of several variables, and can also be used to supply
results in Discrete Mathematics. In this section we describe a general result of this
type, which is called in [4] Combinatorial Nullstellensatz, and briefly sketch some
of its applications in Additive Number Theory and in Graph Theory.

3.1. Combinatorial nullstellensatz

Hilbert’s Nullstellensatz (see, e.g., [65]) is the fundamental theorem that as-
serts that if ¥ is an algebraically closed field, and f, ¢1,..., gy are polynomials in
the ring of polynomials F[z1,...,x,], where f vanishes over all common zeros of
g1s---,9m, then there is an integer k and polynomials hy, ... Ay in Flzg,. .., z,]
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8o that
n
fr= Z higq.
=1

In the special case m = n, where each g; is a univariate polynomial of the form
[I,es, (i — s) for some S; C F, a stronger conclusion holds. It can be shown
that if F' is an arbitrary field, f,g;,S; are as above, and f vanishes over all the
common zeros of gi,...,g, (that is; f(s1,...,s,) = 0 for all s; € 5;), then there
are polynomials by, ..., hy € Flaq, ..., x,] satisfying deg(h;) < deg(f) — deg(g;) so
that

f= Z hig;.
i=1

As a consequence of the above one can prove the following.

Theorem 3.1 Let F be an arbitrary field, and let f = f(x1,...,z,) be o polynomial
in Flzi,...,2,]. Suppose the degree deg(f) of f is > i ,t;, where each t; is a
nonnegative integer, and suppose the coefficient of []}_, :rf in f is nonzero. If
Si,..., 5y are subsets of F' with |S;] > t;, then there are $1 € S1,82 € Sa,...,8, €
S, so that

f(s1,...,8,) #0.

The detailed proof, as well as many applications, can be found in [4]. A quick
application, first proved in [5], is the assertion that for any prime p, any loopless
graph G = (V, E) with average degree bigger than 2p — 2 and maximum degree at
most 2p — 1 contains a p-regular subgraph.

To prove it, let (aye)vev,ecr denote the incidence matrix of G defined by
aye = 1if v € e and a,, = 0 otherwise. Associate each edge e of G with a variable
z. and consider the polynomial

f= H [1- (Z Gy, )P TH] = H(l - z.),

veV ecE ecE

over GF(p). Applying Theorem 3.1 with ¢; = 1 and S; = {0, 1} for all ¢, we conclude
that there are values z. € {0,1} such that f(z. : e € E) # 0. It is now easy to
check that in the subgraph consisting of all edges e € E for which z, = 1 all degrees
are divisible by p, and since the maximum degree is smaller than 2p all positive
degrees are precisely p, as needed.

Pyber applied the above result to solve a problem of Erddés and Sauer and
prove that any simple graph on n vertices with at least 200nlogn edges contains
a 3-regular subgraph. Pyber, Rodl and Szemerédi proved that this is not very far
from being best possible, by showing, using probabilistic arguments, that there are
simple graphs on n vertices with at least en loglogn edges that contain no 3-regular
subgraphs. See [58] for some further related results.
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3.2. Additive number theory

The Cauchy-Davenport Theorem, which has numerous applications in Ad-
ditive Number Theory, is the statement that if p is a prime, and A, B are two
nonempty subsets of Z,, then

A+ Bl > min{p, |A| + |B] — 1}.

Cauchy proved this theorem in 1813, and applied it to give a new proof to a
lemma of Lagrange in his well known 1770 paper that shows that every positive
integer is a sum of four squares. Davenport formulated the theorem as a discrete
analogue of a conjecture of Khintchine about the Schnirelman density of the sum
of two sequences of integers. There are numerous extensions of this result, see, e.g.,
[56]. A simple algebraic proof of this result is given in [7], and its main advantage is
that it extends easily and gives several related results. This proof can be described
as a simple application of Theorem 3.1. If |A| + | B} > p, then the result is trivial,
as the sets A and g — B intersect, for each g € Z,. Otherwise, assuming the result
is false and {A + B} < |A] + |B] — 2, let C be a subset of Z, satisfying A+ B C C
and |C| = |A]| + |B| — 2. Define f = f(2,y) = [[.cc(* + y — ¢) and apply Theorem
3.1 with t; = |A] — 1,42 = |B] — 1, S1 = A, 52 = B to get a contradiction.

Using similar (though somewhat more complicated) arguments, the following
related result is proved in [7].

Proposition 3.2 Let p be a prime, and let Ag, A1, ..., Ax be nonempty subsets of
the cyclic group Z,. If |A;| # |A;| for all0 < i < j < k and Zf:o 1A < p+ (kgg) -1
then

2

=

ul k+2
Hao+ a1 +...+ag:a; € Aj,a; #ag for all i # j}| > iAii_( >+1.
0

The very special case of this proposition in which &k = 1, 4 = A and 4, =
A —{a} for an arbitrary element o € A implies that if A C Z, and 2{4] -1 <p+2
then the number of sums a; + as with a1,a2 € A and a1 # ag is at least 2[4} — 3.
This supplies a short proof of a result of Dias Da Silva and Hamidoune [23], which
settles a conjecture of Erdds and Heilbronn (cf., e.g., [27]).

Snevily [62] conjectured that for any two sets A and B of equal cardinality in
any abelian group of odd order, there is a renumbering a;, b; of the elements of A
and B so that all sums «a; + b; are pairwise distinct.

For the cyclic group Z, of prime order, this follows easily from Theorem 3.1
by considering the polynomial f = [[, ;(z: — ;) [[;-;(ai + i — a; — ;) with
Si=---=5=8B.

More generally, Dasgupta et al. [24] proved the conjecture for any cyclic
group of odd order, by applying the polynomial method for polynomials over Qw],
where w is an appropriate root of unity, and by considering G as a subgroup of the
multiplicative group of this field. Further related results appear in [63].

Additional applications of Theorem 3.1 in additive number theory can be found
in [4].
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3.3. Graph coloring

Theorem 3.1 has various applications in the study of Graph Coloring, which
is the most popular area in Graph Theory. We sketch below the basic approach,
following [12]. See also [52], [53] for a related method.

A wertex coloring of a graph G is an assignment of a color to each vertex of G.
The coloring is proper if adjacent vertices get distinct colors. The chromatic number
x(@) of G is the minimum number of colors used in a proper vertex coloring of G.
An edge coloring of G is, similarly, an assignment of a color to each edge of G. It is
proper if adjacent edges receive distinct colors. The minimum number of colors in
a proper edge coloring of G is the chromatic index x'(G) of G. This is equal to the
chromatic number of the line graph of G.

A graph G = (V, E) is k-choosable if for every assignment of sets of integers
S(v) C Z, each of size k, to the vertices v € V, there is a proper vertex coloring
¢:V = Z so that ¢(v) € S(v) for all v € V. The choice number of G, denoted by
ch(@), is the minimum integer k so that G is k-choosable. Obviously, this number
is at least the chromatic number x(G) of G. The choice number of the line graph
of G, denoted by ch'(G), is usually called the list chromatic index of G, and it is
clearly at least the chromatic index x'(G) of G.

The study of choice numbers was introduced, independently, by Vizing [67]
and by Erdds, Rubin and Taylor [29]. There are many graphs G for which the
choice number c¢h(@G) is strictly larger than the chromatic number x(G) (a complete
bipartite graph with 3 vertices in each color class is one such example). In view
of this, the following conjecture, suggested independently by various researchers
including Vizing, Albertson, Collins, Tucker and Gupta, which apparently appeared
first in print in [17], is somewhat surprising.

Conjecture 3.3 ( The list coloring conjecture) For every graph G, ch/(G) = X' (G).

This conjecture asserts that for line graphs there is no gap at all between the
choice number and the chromatic number. Many of the most interesting results in
the area are proofs of special cases of this conjecture, which is still wide open.

The graph polynomial fo = fo(x1,%2,...,2,) of a graph G = (V, E) on a set
V = {1,...,n} of n vertices is defined by fg(x1,22,...,2,) = H{(mi —&5) i <
j.ij € E} This polynomial has been studied by various researchers, starting
already with Petersen [57] in 1891.

Note that if 5i,...,5, are sets of integers, then there is a proper coloring
assigning to each vertex i a color from its list S;, if and only if there are s; € 5,
such that fg(s1,...,8n) # 0. This condition is precisely the one appearing in the
conclusion of Theorem 3.1, and it is therefore natural to expect that this theorem
can be useful in tackling coloring problems. By applying it to line graphs of planar
cubic graphs, and by interpreting the appropriate coefficient of the corresponding
polynomial combinatorially, it can be shown, using a known result of Vigneron [66]
and the Four Color Theorem, that the list chromatic index of every 2-connected
cubic planar graph is 3. This is a strengthening of the Four Color Theorem, which
is well known to be equivalent to the fact that the chromatic index of any such
graph is 3. An extension of this result appears in [25].
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Additional results on graph coloring and choice numbers using the above al-
gebraic approach are described in the survey [2]. These include the fact that the
choice number of every planar bipartite graph is at most 3, thus solving a conjec-
ture raised in [29], and the assertion, proved in [32], that if G is a graph on 3n
vertices, whose set of edges is the disjoint union of a Hamilton cycle and n pairwise
vertex-disjoint triangles, then the choice number and the chromatic number of G
are both 3.

4. The probabilistic method

The discovery that deterministic statements can be proved by probabilistic
reasoning, led already in the middle of the previous century to several striking
results in Analysis, Number Theory, Combinatorics and Information Theory. It
soon became clear that the method, which is now called the probabilistic method, is
a very powerful tool for proving results in Discrete Mathematics. The early results
combined combinatorial arguments with fairly elementary probabilistic techniques,
whereas the development of the method in recent years required the application
of more sophisticated tools from Probability Theory. In this section we illustrate
the method and describe several recent results. More material can be found in the
recent books [11], [16], [41] and [55].

4.1. Thresholds for random properties

The systematic study of Random Graphs was initiated by Erd6s and Rényi
whose first main paper on the subject is [28]. Formally, G(n,p) denotes the prob-
ability space whose points are graphs on a fixed set of n labelled vertices, where
each pair of vertices forms an edge, randomly and independently, with probability
p. The term “the random graph G(n,p)” means, in this context, a random point
chosen in this probability space. Each graph property A (that is, a family of graphs
closed under graph isomorphism) is an event in this probability space, and one may
study its probability Pr[A], that is, the probability that the random graph G(n, p)
lies in this family. In particular, we say that A holds almost surely if the probability
that G(n, p) satisfies A tends to 1 as n tends to infinity. There are numerous papers
dealing with random graphs, and the two recent books [16], [41] provide excellent
extensive accounts of the known results in the subject.

One of the important discoveries of Erdds and Rényi was the discovery of
threshold functions. A function r(n) is called a threshold function for a graph
property A, if when p(n)/r(n) tends to 0, then G(n,p(n)) does not satisfy A almost
surely, whereas when p(n)/r(n) tends to infinity, then G(n,p(n)) satisfies A almost
surely. Thus, for example, they identified the threshold function for the property of
being connected very precisely: if p(n) = an + +, then, as n tends to infinity, the
probability that G(n,p(n)) is connected tends to e™¢

A graph property is monotone if it is closed under the addition of edges. Note
that many interesting graph properties, like hamiltonicity, non-planarity, connec-
tivity or containing at least 10 vertex disjoint triangles are monotone.
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Bollobéds and Thomason [18] proved that eny monotone graph property has
a threshold function. Their proof applies to any monotone family of subsets of a
finite set, and holds even without the assumption that the property A is closed
under graph isomorphism.

Friedgut and Kalai [30] showed that the symmetry of graph properties can
be applied to obtain a sharper result. They proved that for any monotone graph
property A, if G(n,p) satisfies A with probability at least ¢, then G(n,q) satisfies
A with probability at least 1 — e, for ¢ = p+ O(log(1/2¢)/ logn).

The proof follows by combining two results. The first is a simple but fun-
damental lemma of Margulis [51] and Russo [60], which is useful in Percolation
Theory. This lemma can be used to express the derivative with respect to p of the
probability that G(n,p) satisfies A as a sum of contributions associated with the
single potential edges. The second result is a theorem of [19], which is proved using
Harmonic Analysis, that asserts that at least one such contribution is always large.
The symmetry implies that all contributions are the same and the result follows.
See also [64] for some related results. These results hold for every transitive group
of symmetries. In [20] it is shown that one can, in fact, prove that the threshold
for graph properties is even sharper, by taking into account the precise group of
symmetries induced on the edges of the complete graph by permuting the vertices.
It turns out that for every monotone graph property and for every fixed € > 0, the
width of the interval in which the probability the property holds increases from e
to 1 — e is at most cs/(logn)?~? for all § > 0. The power 2 here is tight, as shown
by the property of containing a clique of size, say, |2log, 1.

It is natural to call the threshold for a monotone graph property sharp if for
every fixed positive ¢, the width w of the interval in which the probability that the
property holds increases from € to 1 —¢ satisfies w = o(p), where p is any point inside
this interval. In [31] Friedgut obtained a beautiful characterization of all monotone
graph properties for which the threshold is sharp. Roughly speaking, a property
does not have a sharp threshold if and only if it can be approximated well in the
relevant range of the probability p by a property that is determined by constant size
witnesses. Thus, for example, the property of containing 5 vertex disjoint triangles
does not have a sharp threshold, whereas the property of having chromatic number
bigger than 10 does. A similar result holds for hypergraphs as well. The proofs
combine probabilistic and combinatorial arguments with techniques from Harmonic
analysis.

4.2. Ramsey numbers

Let Hy, Ho, ..., Hy be a sequence of k finite, undirected, simple graphs. The
(multicolored) Ramsey number v(Hy, Ha,..., Hy) is the minimum integer r such
that in every edge coloring of the complete graph on = vertices by % colors, there
is a monochromatic copy of H; in color ¢ for some 1 < ¢ < k. By a (special case
of} a well known theorem of Ramsey (c.f., e.g., [38]), this number is finite for every
sequence of graphs H;.

The determination or estimation of these numbers is usually a very difficult
problem. When all graphs H; are complete graphs with more than two vertices, the
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only values that are known precisely are those of r(Kj3, K,,,) for m < 9, r(K4, K4),
(K4, K5) and r(K3, K3, K3). Even the determination of the asymptotic behaviour
of Ramsey numbers up to a constant factor is a hard problem, and despite a lot
of efforts by various researchers (see, e.g., [38], [22] and their references), there are
only a few infinite families of graphs for which this behaviour is known.

In one of the first applications of the probabilistic method in Combinatorics,
Erdés [26] proved that if (2)21—(,5) < 1 then R(k,k) > n, that is, there exists a
2-coloring of the edges of the complete graph on n vertices containing no monochro-
matic clique of size k. The proof is extremely simple; the probability that a random
two-edge coloring of K,, contains a monochromatic K is at most (2)21—(,5) <1,
and hence there is a coloring with the required property.

A particularly interesting example of an infinite family for which the asymtotic
behaviour of the Ramsey number is known, is the following result of Kim [43]
together with that of Ajtai, Komlds and Szemerédi [1].

Theorem 4.1 ([43], [1]) There are two absolute positive constants c¢1,co such that
Clmg/logm S T(K33Km) S Cgmg/logm
for allm > 1.

The upper bound, proved in [1], is probabilistic, and applies a certain random
greedy algorithm. The lower bound is proved by a “semi-random” construction and
proceeds in stages. The detailed analysis is subtle, and is based on certain large
deviation inequalities.

Even less is known about the asymptotic behaviour of multicolored Ramsey
numbers, that is, Ramsey numbers with at least 3 colors. The asymptotic behaviour
of r(K3, K3, K,,), for example, has been very poorly understood until recently, and
Erdds and Sds conjectured in 1979 (c.f., e.g., [22]) that

i T K )
m—+ oo T(K3a Km)
This has been proved recently, in a strong sense, in [10], where it is shown that in
fact r(K3, K3, K,) is equal, up to logarithmic factors, to m®. A more complicated,
related result proved in [10], that supplies the asymptotic behaviour of infinitely
many families of Ramsey numbers up to a constant factor is the following,.

Theorem 4.2 For everyt > 1 and s > (t — 1)1 -+ 1 there are two positive constants
c1,¢2 such that for every m > 1

t mt
< T(Kt,sa Kt,saKt,saKm) S C2 3

log m log"m’

m

8]
where Ky 5 is the complete bipartite graph with t vertices in one color class and s
vertices in the other.

The proof combines spectral techniques, character sum estimates, and proba-
bilistic arguments.
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4.3. Turan type results

For a graph H and an integer n, the Turdn number exz(n, H) is the maximum
possible number of edges in a simple graph on n vertices that contains no copy of
H. The asymptotic behavior of these numbers for graphs of chromatic number at
least 3 is well known, see, e.g., [15]. For bipartite graphs H, however, much less
is known, and there are relatively few nontrivial bipartite graphs H for which the
order of magnitude of ex(n, H) is known.

A result of Fiiredi [34] implies that for every fixed bipartite graph H in which
the degrees of all vertices in one color class are at most 7, there is some ¢ = ¢(H) > 0
such that ex(n, H) < en®>~1/7. As observed in [6], this result can be derived from
a simple and yet surprisingly powerful probabilistic lemma, variants of which have
been proved and applied by various researchers starting with Rodl and including
Kostochka, Gowers and Sudakov (see [46], [36], [47]). The lemma asserts, roughly,
that every graph with sufficiently many edges contains a large subset A in which
every a vertices have many common neighbors. The proof uses a process that may
be called a dependent random choice for finding the set A; A is simply the set of
all common neighbors of an appropriately chosen random set R. Intuitively, it is
clear that if some a vertices have only a few common neighbors, it is unlikely all
the members of R will be chosen among these neighbors. Hence, we do not expect
A to contain any such subset of a vertices. This simple idea can be extended.
In particular, it can be used to bound the Turdan numbers of degenerate bipartite
graphs.

A graph is r-degenerate if every subgraph of it contains a vertex of degree at
most 7. An old conjecture of Erdds asserts that for every fixed r-degenerate bipartite
graph H, ex(n, H) < O(n?~'/"), and the above technique suffices to show that there
is an absolute constant ¢ > 0, such that for every such H, ex(n, H) < n2-e/r,

Further questions and results about Turdn numbers can be found in [6], [15]
and their references.

5. Algorithms and explicit constructions

The rapid development of Theoretical Computer Science and its tight con-
nection to Discrete Mathematics motivated the study of the algorithmic aspects of
algebraic and probabilistic techniques. Can a combinatorial structure, or a sub-
structure of a given one, whose existence is proved by algebraic or probabilistic
means, be constructed explicitly (that is, by an eflicient deterministic algorithm)?
Can the algorithmic problems corresponding to existence proofs be solved by ef-
ficient procedures? The study of these questions often requires tools from other
branches of mathematics.

As described in subsection 3.3, if G is a graph on 3n vertices, whose set of edges
is the disjoint union of a Hamilton cycle and n pairwise vertex-disjoint triangles,
then the chromatic number of G is 3. Can we solve the corresponding algorithmic
problem efficiently 7 That is, is there a polynomial time, deterministic or random-
ized algorithm, that given an input graph as above, colors it properly with 3 colors?
Similarly, as mentioned in subsection 3.3, the list chromatic index of any planar
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cubic 2-connected graph is 3. Can we color properly the edges of any given planar
cubic 2-connected graph using given lists of three colors per edge, in polynomial
time?

These problems, as well as the algorithmic versions of additional applications
of Theorem 3.1, are open. Of course, an algorithmic version of the theorem itself
would provide efficient procedures for solving all these questions. The input for
such an algorithm is a polynomial in n variables over a field described, say, by
a polynomial size arithmetic circuit. Suppose that this polynomial satisfies the
assumptions of Theorem 3.1, and that the fact it satisfies it can be checked efficiently.
The algorithm should then find, efficiently, a point (s1,se,...,s,) satisfying the
conclusion of Theorem 3.1.

Unfortunately, it seems unlikely that such a general result can exist, as it would
imply that there are no one-way permutations. Indeed, let F : {0,1}" +~ {0,1}"
be a 1 ~ 1 function, and suppose that for any x = (21,...,2,) € {0,1}", the value
of F(z) can be computed efficiently. Every Boolean function can be expressed as a
multilinear polynomial over GF(2), and hence, when we wish to find an x such that
F(z) =y = (y1,...,yn), we can write it as a system of multilinear polynomials
over GF(2): Fi(z) = y; for all 1 < i < n. Equivalently, this can be written as
[T, (Fi(x) + y; + 1) # 0. This last equation has a unique solution, implying that
its left hand side, written as a multilinear polynomial, is of full degree n (since
otherwise it is easy to check that it attains the value 1 an even number of times).
It follows that the assumptions of Theorem 3.1 with f = [}, (Fi(x) + y: + 1),
t; = 1 and §; = GF(2) hold. Thus, the existence of an efficient algorithm as
above would enable us to invert F efliciently, implying that there cannot be any
one-way permutations. As this seems unlikely, it may be more productive (and
yet challenging) to try and develop efficient procedures for solving the particular
algorithmic problems corresponding to the results obtained by the theorem.

Probabilistic proofs also suggest the study of the corresponding algorithmic
problems. This is related to the study of randomized algorithms, a topic which has
been developed tremendously during the last decade. See, e.g., [34] and its many
references. In particular, it is interesting to find explicit constructions of combinato-
rial structures whose existence is proved by probabilistic arguments. ” Explicit” here
means that there is a an efficient algorithm that constructs the desired structure in
time polynomial in its size. Constructions of this type, besides being interesting in
their own, have applications in other areas. Thus, for example, explicit construc-
tions of error correcting codes that are as good as the random ones are of interest
in information theory, and explicit constructions of certain Ramsey type colorings
may have applications in derandomization — the process of converting randomized
algorithms into deterministic ones.

It turns out, however, that the problem of finding a good explicit construction
is often very difficult. Even the simple proof of Erdds, described in subsection
4.2, that there are two-edge colorings of the complete graph on |27/2| vertices
containing no monochromatic clique of size m, leads to an open problem which
seems very difficult. Can we construct, explicitly, such a coloring of a complete
graph on n > (1 4+ €)™ vertices, in time which is polynomial in n, where ¢ > 0 is
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any positive absolute constant 7

This problem is still open, despite a lot of efforts. The best known explicit
construction is due to Frankl and Wilson [33], who gave an explicit two-edge coloring

__logm . . . .
of the complete graph on mI T ITeTem vertices with no monochromatic clique
on m vertices.

The construction of explicit two-edge colorings of large complete graphs K,
with no red K, and no blue K, for fixed s and large m also appears to be very

difficult. Using probabilistic arguments it can be shown that there are such colorings

)(S+1)/2

for n which is c( for some absolute constant ¢ > 0. The best known

log m

explicit construction, however, given in [8], works only for m®V108/1081085 fo1. some
absolute constant § > 0. The description of the construction is not complicated
but the proof of its properties relies on tools from various mathematical areas.
These include some ideas from algebraic geometry obtained in [45], the well known
bound of Weil on character sums, spectral techniques and their connection to the
pseudo-random properties of graphs, the known bounds of [48] for the problem of
Zarankiewicz and the well known Erdds-Rado bound for the existence of A-gystems.

The above example is typical, and illustrates the fact that tools from vari-
ous mathematical disciplines often appear in the design of explicit constructions
of combinatorial structures. Other examples that demonstrate this fact are the
construction of Algebraic Geometry codes, and the construction of sparse pseudo-
random graphs called expanders.

6. Some future challenges

Several specific open problems in Discrete Mathematics are mentioned through-
out this article. These, and many additional ones, provide interesting challenges for
future research in the area. We conclude with some brief comments on two more
general future challenges.

It seems safe to predict that in the future there will be additional incorpora-
tion of methods from other mathematical areas in Combinatorics. However, such
methods often provide non-constructive proof techniques, and the conversion of
these to algorithmic ones may well be one of the main future challenges of the area.
Another interesting recent development is the increased appearance of Computer
aided proofs in Combinatorics, starting with the proof of the Four Color Theorem,
and including automatic methods for the discovery and proof of hypergeometric
identities — see [59]. A successful incorporation of such proofs in the area, without
losing its special beauty and appeal, is another challenge. These challenges, the
fundamental nature of the area, its tight connection to other disciplines, and the
many fascinating specific open problems studied in it, ensure that Discrete Mathe-
matics will keep playing an essential role in the general development of science in
the future as well.
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Differential Complexes and
Numerical Stability

Douglas N. Arnold*

Abstract

Differential complexes such as the de Rham complex have recently come
to play an important role in the design and analysis of numerical methods for
partial differential equations. The design of stable discretizations of systems
of partial differential equations often hinges on capturing subtle aspects of
the structure of the system in the discretization. In many cases the differen-
tial geometric structure captured by a differential complex has proven to be a
key element, and a discrete differential complex which is appropriately related
to the original complex is essential. This new geometric viewpoint has pro-
vided a unifying understanding of a variety of innovative numerical methods
developed over recent decades and pointed the way to stable discretizations
of problems for which none were previously known, and it appears likely to
play an important role in attacking some currently intractable problems in
numerical PDE.

2000 Mathematics Subject Classification: 65N12.
Keywords and Phrases: Finite element, Numerical stability, Differential
complex.

1. Introduction

During the twentieth century chain complexes, their exactness properties, and
commutative diagrams involving them pervaded many branches of mathematics,
most notably algebraic topology and differential geometry. Recently such homolog-
ical techniques have come to play an important role in a branch of mathematics
often thought quite distant from these, numerical analysis. Their most significant
applications have been to the design and analysis of numerical methods for the
solution of partial differential equations.

Let us consider a general problem, such as a boundary value problem in partial
differential equations, as an operator equation: given data f in some space Y find
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the solution u in some space X to the problem Lu = f. A numerical method
discretizes this problem through the construction of an operator Ly : X — Y
and data fp € Yj and defines an approximate solution up € X, by the equation
Lyup, = f. Of course the numerical method is not likely to be of value unless it is
consistent which means that Ly and f;, should be close to L and f in an appropriate
sense.

Before we speak of solving the original problem, numerically or otherwise, we
should first confront the question of whether it is well-posed. That is, given f € Y,
does a unique v € X exist, and, if so, do small changes of f induce small changes
in Y7 The analogous questions for the numerical method, whether given f, € Y}
a unique up € Xy, is determined by the discrete equation Lpup = fr,, and whether
small changes in f;, induce small changes in wy, is the question of stability of the
numerical method. A common paradigm, which can be formalized in many contexts
of numerical analysis, is that a method which is consistent and stable is convergent.

Well-posedness is a central issue in the theory of partial differential equations.
Of course, we do not expect just any PDE problem to be well-posed. Well-posedness
hinges on structure of the problem which may be elusive or delicate. Superficially
small changes, for example to the sign of a coefficient or the type of boundary con-
ditions, can certainly destroy well-posedness. The same is true for the stability of
numerical methods: it often depends on subtle or elusive properties of the numerical
scheme. Usually stability reflects some portion of the structure of the original prob-
lem that is captured by the numerical scheme. However in many contexts it is not
enough that the numerical scheme be close to the original problem in a quantitative
sense for it to inherit stability. That is, it may well happen that a consistent method
for a well-posed problem is unstable. In this paper we shall see several examples
where the exactness properties of discrete differential complexes and their relation
to differential complexes associated with the PDE are crucial tools in establishing
the stability of numerical methods. In some cases the homological arguments have
served to elucidate or validate methods that had been developed over the preceding
decades. In others they have pointed the way to stable discretizations of problems
for which none were previously known. They will very likely play a similar role in
the eventual solution of some formidable open problems in numerical PDE, espe-
clally for problems with significant geometric content, such as in numerical general
relativity. As in other branches of mathematics, in numerical analysis differential
complexes serve both to encode key structure concisely and to unify considerations
from seemingly very different contexts.

In this paper we shall discuss only finite element methods since, of the major
classes of numerical methods for PDE, they are the most amenable to rigorous
analysis, and have seen the greatest use of differential complexes. But complexes
have recently arisen in the study of finite differences, finite volumes, and spectral
methods as well.

2. Finite element spaces

A finite element space on a domain {) is a function space defined piecewise
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by a certain assembly procedure which we now recall; cf. [7]. For simplicity, here
we shall restrict to spaces of piecewise polynomials with respect to a triangulation
of an n-dimensional domain by n-simplices with n = 2 or 3 (so implicitly we are
assuming that 2 C R? is polygonal or 2 C R® is polyhedral). On each simplex T
we require that there be given a function space of shape function Wp and a set of
degrees of freedom, i.e., a set of linear functionals on Wy which form a basis for
the dual space. Moreover, each degree of freedom is supposed to be associated with
some subsimplex of some dimension, i.e., in three dimensions with a vertex, an edge,
a face, or the tetrahedron itself. For a subsimplex which is shared by two simplices
in the triangulation, we assume that the corresponding functionals are in one-to-
one-correspondence. Then the finite element space W}, is defined as those functions
on {) whose restriction to each simplex 7" of the triangulation belongs to Wy and for
which the corresponding degrees of freedom agree whenever a subsimplex is shared
by two simplices.

The simplest example is obtained by choosing Wy to be the constant functions
and taking as the only degree of freedom on T' the Oth order moment ¢ — [, ¢(x) dx
(which we associate with T itself). The resulting finite element space is simply
the space of piecewise constant functions with respect to the given triangulation.
Similarly we could choose W = IP1(T') (by IP,(T") we denote the space of polynomial
functions on T of degree at most p), and take as degrees of freedom the moments
of degrees 0 and also those of degree 1, ¢ — [, ¢(x)x; dx. Again all the degrees of
freedom are associated to T itself. This time the finite element space consists of all
piecewise linear functions. Of course, the construction extends to higher degrees.

A more common piecewise linear finite element space occurs if we again choose
Wp = P1(T), but take as degrees of freedom the maps ¢ = ¢(v), one associated
to each vertex v. In this case the assembled finite element space consists of all
continuous pilecewise linear functions. More generally we can choose Wr = Pp(T)
for p > 1, and associate to each vertex the evaluation degrees of freedom just
mentioned, to each edge the moments on the edge of degree at most p — 2, to each
face the moments on the face of degree at most p — 3, and to each tetrahedron
the moments of degree at most p — 4. The resulting finite element space, called the
Lagrange finite element of degree p, consists of all continuous piecewise polynomials
of degree at most p. Figure 1 shows a mesh of a two dimensional domain and a
typical function in the space of Lagrange finite elements of degree 2 with respect to
this mesh.

Mnemonic diagrams as in Figure 2 are often associated to finite element spaces,
depicting a single element T and a marker for each degree of freedom.

Next we describe some finite element spaces that can be used to approximate
vector-valued functions. For brevity we limit the descriptions to the 3-dimensional
case, but supply diagrams in both 2 and 3 dimensions. Of course we may simply take
the Cartesian product of three copies of one of the previous spaces. For example,
the element diagrams shown on the left of Figure 3 refer to continuous piecewise
linear vector fields in two and three dimensions. More interesting spaces are the
face elements and edge elements essentially conceived by Raviart and Thomas [12]
in two dimensions and by Nedelec [10] in three dimensions. In the lowest order
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Figure 1: A mesh marked with the locations of the degrees of
freedom for Lagrange finite elements of degree 2 and a typical
such finite element function.

Figure 2: Element diagrams. First row: discontinuous elements
of degrees 0, 1, and 2 in two dimensions. Second row: Lagrange
elements of degrees 1, 2, and 3 in two dimensions. Third and
fourth rows: the corresponding elements in three dimensions.

case, the face elements take as shape functions polynomial vector fields of the form
p(x) = a+ bx where a € R®, b € R and 2 = (21, 22, 73), a 4-dimensional subspace
of the 12-dimensional space P1 (T, R?) of polynomial vector fields of degree at most
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1. The degrees of freedom are taken to be the Oth order moments of the normal
components on the faces of codimension 1, p — [, p(x) - ny de where f is a face
and ny the unit normal to the face. The element diagram is shown in the middle
column of Figure 3. In the lowest order case the edge elements shape functions are
polynomial vector fields of the form p(z) = a + b x x where a,b € R®, which form
a 6-dimensional subspace of P;(T,R?). The degrees of freedom are the Oth order
moments over the edges of the component tangent to the edge, p = fe plx) - te dx,
as indicated on the right of Figure 3.

VAYA VAN
A\ A A

Figure 3: Element diagrams for some finite element approxima-
tions to vector fields in two and three dimensions. Multiple dots
are used as markers to indicate the evaluation of all components
of a vector field. Arrows are used for normal moments on codi-
mension 1 subsimplices and for tangential components on edges.
Left: continuous piecewise linear fields. Middle: face elements of
lowest order. Right: edge elements of lowest order.

BEach of these spaces can be generalized to arbitrarily high order. For the next
higher order face space, the shape functions take the form p(xz) = a(z) + b(a)z
where a € P1(T,R?) and b € P1(T) a linear scalar-valued polynomial. This gives a
subspace of Po(T,R?) of dimension 15, and the degrees of freedom are the moments
of degree at most 1 of the normal components on the faces and the moments of
degree 0 of all components on the tetrahedron. This element is indicated on the left
of Figure 4. For the second lowest order edge space, the shape functions take the
form p(x) = a(z) + b(x) x x with a,b € P(T,R?), giving a 20-dimensional space.
The degrees of freedom are the tangential moments of degree at most 1 on the edges
(two per edge) and the tangential moments of degree 0 on the faces (two per face).
This element is indicated on the right of Figure 4.

The choice of the shape functions and the degrees of freedom determine the
smoothness of the functions belonging to the assembled finite element space. For ex-
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Figure 4: The face (left) and edge (right) elements of the second
lowest order in 2- and 3-dimensions.

ample, the Lagrange finite element spaces of any degree belong to the Sobolev space
H(Q) of L*(Q) functions whose distributial first partial derivatives also belong to
L?(Q2) (and even to Linfty(Q)). In fact, the distributional first partial derivative of
a continuous piecewise smooth function coincides with its derivative taken piecewise
and so belongs to L?. Thus the degrees of freedom we imposed in constructing the
Lagrange finite elements are suflicient to insure that the assembled finite element
space W, C H1(Q). In fact more is true: for the Lagrange finite element space with
shape function spaces Wr = P,(T"), we have

Wy, = {u € H'(Q)|u|r € Wy for all simplices T of the triangulation }.

This says that, in a sense, the degrees of freedom impose exactly the continuity
required to belong to H', no less and no more.

In contrast, the discontinuous piecewise polynomial spaces are subsets of L2())
but not of H'(£2), since their distributional first derivatives involve distributions
supported on the interelement boundaries, and so do not belong to L%().

For the vector-valued finite elements there are more possibilities. The face and
edge spaces contain discontinuous functions, and so are not contained in H'(Q,R?).
However, for vector fields belonging to one of the face spaces the normal component
of the vector field does not jump across interelement boundaries, and this implies,
via integration by parts, that the distributional divergence of the function coincides
with the divergence taken piecewise. Thus the face spaces belong to H(div,{2), the
space of L? vector fields on Q whose divergence belongs to L?. Indeed, for these
spaces the degrees of freedom impose exactly the continuity of H(div), no less or
more. For the edge spaces it can be shown that the tangential components of a
vector field do not jump across element boundaries, and this implies that the edge
functions belong to H (curl, ), the space of L? vector fields whose curl belongs to
L?. Again the degrees of freedom impose exactly the continuity needed for inclusion
in H(curl).

3. Discrete differential complexes

The de Rham complex

R A%Q) —%— AYQ) —2— o —2 5 A(Q) >0
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is defined for an arbitrary smooth n-manifold €. Here /\k(Q) denotes the space of
differential k-forms on {2, i.e., for w € /\k(Q) and z € Q, w(z) is an alternating k-
linear map on the tangent space T, €. The operators d : A*(Q2) = AT (Q) denote
exterior differentiation. This is is a complex in that the composition of two exterior
differentiations always vanishes. Moreover, and if the manifold is topologically
trivial, then it is exact.

If Q is a domain in R?, then we may identify its tangent space at any point
with R3. Using the Euclidean inner product, the space of linear maps on B® may
be identified by K? as usual, so A'(2) may be identified with the space C°°(2, R?)
of smooth vector fields on Q. Moreover, the space of alternating bilinear maps on
R® may be identified with R® by associating to a vector u the alternating bilinear
map (v, w) ~ det(ufvjw). Thus we have an identification of A”(€) with R? as
well. Finally the only alternating trilinear maps on R® are given by multiples of
the determinant map (u,v,w) ~ cdet(ufv|w), and so we may identify A”(©) with
C*=(Q). In terms of such prozy fields, the de Rham complex becomes

R 0%(Q) 224, 0o, ) —y 0o, B) —2y 0(Q,R) — 0.
(3.1)
Alternatively we may consider L?-based forms and the sequence becomes

R H'(Q) 2% Hiewl, Q) —y H(div, Q) —2 L2(Q,R) — 0.

The finite element spaces constructed above allow us to form discrete analogues
of the de Rham complex. Given some triangulation of Q C R?, let W}, denote
the space of continuous piecewise linear finite elements, () the lowest order edge
element space, Sy, the lowest order face element space, and V}, the space of piecewise
constants. Then grad W;, C @, (since @ contains all piecewise constant vector
fields belonging to H(curl) and the gradient of a continuous piecewise linear is
certainly such a function), curl @y, C S (since S} contains all piecewise constant
vector fields belonging to H(curl)), and div.Sy, C V4. Thus we have the discrete
differential complex

d

R W, 224 0, —, 5, WLy . (3.2)

This differential complex captures the topology of the domain to the same extent
as the de Rham complex. In particular, if the domain is topologically trivial, then
the sequence is exact.

It is convenient to abbreviate the above statement using the element diagrams
introduced earlier. Thus we will say that the following complex is exact:

R < i : grad A curl f E div i ; -0

By this we mean that if we assemble finite element spaces Wp,, @, Sp, and V3, using
the indicated finite elements and a triangulation of a topologically trivial domain,
then the corresponding discrete differential complex (3.2) is exact.
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There is another important relationship between the de Rham complex (3.1)
and the discrete complex (3.2). The defining degrees of freedom determine pro-
jections TV : C°(Q) — Wy, T : C®(Q,R?) — Qp, and so on. In fact TI}V is
just the usual interpolant, H}: is the L%-projection into the piecewise constants,
and the projections Hf and Hf onto the edge and face elements are determined by
the maintenance of the appropriate moments. It can be checked, based on Stokes
theorem, that the following diagram commutes.

R C%(Q,R) 24 0o(Q,R) —2y 0oo(Q,R) —y 00(Q, R)— 0
e e I I
R ey I/;Vh gl"ad Qh curl Sh div "’h _)(303)

The finite element spaces appearing in this diagram, with one degree of freedom
for each vertex for Wy, for each edge for @y, for each face for S}, and for each
simplex for Vj,, are highly geometrical. In fact, recalling the identifications between
fields and differential forms, we may view these spaces as spaces of piecewise smooth
differential forms. They were in fact first constructed in this context, without any
thought of finite elements or numerical methods, by Whitney [13]. The spaces were
reinvented, one-by-one, as finite element spaces in response to the needs of various
numerical problems, and the properties which are summarized in the commutative
diagram above were slowly rediscovered as needed to analyze the resulting numerical
methods. The connection between low order edge and face finite elements and
Whitney forms was first realized by Bossavit [5].

Analogous statements hold for higher order Lagrange, edge, face, and discon-
tinuous finite elements. For example, the following diagram commutes and has
exact rows:

R C®(Q,R) 224, 0o, B) L, 0@, B) —2y 0%, R)— 0

|

| | l
R%A%A%“——)A—)O

We shall see many other discrete differential complexes below.

XX

4. Stability of Galerkin methods

Consider first the solution of the Dirichlet problem for Poisson’s equation on
a domain in R™:
—~Au=fin ), w=0on 0.

The solution can be characterized as the minimizer of the energy functional

E(u) = ;/ lgradu(x d:v—/f
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over the Sobolev space H() (consisting of H 1(Q) functions vanishing on 9}, or
as the solution of the weak problem: find u € H*(£2) such that

/ gradu(z) - grad v(z) de = / f(@)v(z)dz for all v e HY().
0 0

We may define an approximate solution w; by minimizing the Dirichlet integral
over a finite dimensional subspace W} of H'(f2); this is the classical Ritz method.
Equivalently, we may use the Galerkin method, in which u; € W}, is determined by
the equations

/ graduy () - gradv(z) dx = / f@)v(z)de forall v e Wy.
0 0

After choice of a basis in W}, this leads to a system of linear algebraic equations,
and wuyp, is computable.

Let T}, denote the discrete solution operator f = uy. Then it is easy to check
that T}, is bounded as a linear operator from H~(Q) := H*(Q)* to H'(Q) by a
constant that depends only on the domain € (and, in particular, doesn’t increase
if the space W}, is enriched). This says that the Galerkin method is stable. A
consequence is the quasioptimaolity estimate

lu—unllm < e inf lu—olm, (4.4)

for some constant ¢ depending only on the domain ). Note that there is no restric-
tion on the subspace W} to obtain this estimate. Galerkin’s method for a coercive
elliptic problem is always stable and convergence depends only on the approxima-
tion properties of the subspace. A natural choice for W}, is the Lagrange finite
element space of some degree p with respect to some regular simplicial mesh of
maximal element size h, in which case Galerkin’s method is a standard finite ele-
ment method. In this case the right hand side of (4.4) is O(h?) provided that u is
sufficiently smooth.

Next consider the related eigenvalue problem, which arises in the determination
of the fundamental frequencies of a drum. That is, we seek standing wave solutions
w(z,t) to the wave equation on some bounded domain @ C R? which vanish on
0f). Assuming that the tension and density of the drum membrane are unity, these
solutions have the form w(zx, ) = acos(vVAt)u(x) + 3 sin(vVAt)u(x) where o and
are constants and u and A satisfy the eigenvalue problem

—Au=Auin 2, u=0on 0.

The eigenvalues A form a sequence of positive numbers tending to infinity. The
numbers v//(27) are the fundamental frequencies of the drum and the functions
u give the corresponding fundamental modes.

The eigenvalues and eigenfunctions are characterized variationally as the crit-
ical values and critical points of the Rayleigh quotient

o lgradu(z))? dx
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defined for nonzero u belonging to the Sobolev space H*(Q2). The classical Rayleigh-
Ritz method for the approximation of eigenvalue problems determines approximate
eigenvalues A;, and eigenfunctions uy, as the critical values and points of the restric-
tion of R to the nonzero elements of some finite dimensional subspace Wy, of H' ().
Equivalently, we can write the eigenvalue problem in weak form: find A € R and
nonzero u € H'(Q) such that

/ gradu(x) - gradv(z) de = )\/ w(z)v(z)de for all v € HY(R). (4.5)
0 0

The Galerkin approximation of the eigenvalue problem, which is equivalent to the
Rayleigh-Ritz method, seeks Ay, € R and nonzero uy, € W}, such that

/ gradup(z) - gradv(z) de = )\h/ up{x)v(z)de for all v € Wy, (4.6)
Q Q

We now discuss the convergence of this method. Let A denote the jth eigen-
value of the problem (4.5). In the interest of simplicity we assume that A is a simple
eigenvalue, so the corresponding eigenfunction v is uniquely determined up to sign
by the normalization |{|u}|g: = 1. Similarly let A, and u;, denote the jth eigenvalue
of (4.6). It can then be proved (see, e.g., [3] for much more general results) that
there exists a constant ¢ such that

lu=unllzr < inf fu=vlm. N=dal Sclu—ulfp.  (@7)

In short, the eigenfunction approximation is quasioptimal and the eigenvalue error
is bounded by the square. Again there is no restriction on the space Wj,.

Figure 5 reports on the computation of the eigenvalues of the Laplacian on an
elliptical domain of aspect ratio 3 using Lagrange finite elements of degree 1.

Now consider an analogous problem, the computation of the resonant frequen-
cies of an electromagnetic cavity occupying a region Q0 C R®. In this case we wish
to find standing wave solutions of Maxwell’s equations. If we take the electric per-
mittivity and the magnetic permeability to be unity and assume a lossless cavity
with perfectly conducting boundary, we are led to the following eigenvalue problem
for the electric field: find nonzero E : ) — R3, XA € R such that

curlecurl E = AE, divE=0inQ, FE xn =20 on 0. (4.8)

This is again an elliptic eigenvalue problem and the eigenvalues form a sequence of
positive numbers tending to infinity. The divergence constraint is nearly redundant
in this eigenvalue problem. Indeed if curlcurl E = AE for A > 0, then divE =
A~ldivecurl curl E = 0 since the divergence of a curl vanishes. Thus the eigenvalue
problem

curlcurl E=AE in ), E xn =0 on 909, (4.9)

has the same eigenvalues and eigenfunctions as (4.8) except that it also admits
A =0 as an eigenvalue, and the corresponding eigenspace is infinite-dimensional (it
contains the gradients of all smooth functions vanishing on the boundary of ). The
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Figure 5: The point plot shows the first 40 eigenvalues computed
with piecewise linear finite elements with respect to the triangu-
lation shown () versus the exact eigenvalues (+). The surface
plot shows the computed eigenfunction associated to the fourth
eigenvalue. The mesh has 737 vertices, of which 641 are interior,
and 1,376 triangles.

eigenvalues and eigenfunctions are now critical points and values of the Rayleigh
quotient
g lewl E(x)dx

RE) = B

over the space of nonzero fields E in H(curl, ), which is defined to be the space
of functions for which both the above integrals exist and are finite and which have
vanishing tangential component on the boundary (i.e., E x n =0 on 99).

In Figure 6 we show the result of approximating a two-dimensional version
of this eigenvalue problem using the Rayleigh-Ritz method or, equivalently, the
Galerkin method with continuous piecewise linear vector fields on €2 whose tangen-
tial components vanish on the boundary (the first element depicted in Figure 3).
For ) we take a square of side length 7, in which case the nonzero eigenvalues are
known to be all numbers of the form A = m? + n? with 0 < m,n € Z not both
zero, and the corresponding eigenfunctions are E = (sinmy, sin nx). For the mesh
pictured, the finite element space has dimension 290. We find that 73 of the 290
computed eigenvalues are between 0 and 10 and that they have no tendency to clus-
ter near the integers 1,1,2,4,4,5,5,8,9,9 which are the exact eigenvalues between
0 and 10. Thus this numerical method is useless: the computed eigenvalues bear
no relation to the true eigenvalues! The analogue of (4.7) is surely not true.

If instead we choose the lowest order edge elements as the finite element space
(Figure 3, top right), we get very different results. Using the same mesh, the edge
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Figure 6: The plot shows the first 73 eigenvalues computed with
piecewise linear finite elements for the resonant cavity problem on
the square using the mesh shown. They bear no relation to the
exact eigenvalues, 1, 1, 2, 4, 4, ..., indicated by the horizontal
lines.

finite element space has dimension 472. It turns out that 145 of the computed eigen-
values are zero (to within round-off), and the subsequent eigenvalues are 0.9998,
0.9999, 2.0023, 3.9968, 4.0013, .. ., i.e., excellent approximations of the exact eigen-
values. See Figure 7.
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Figure 7: The first plot shows the first 100 positive eigenvalues for
the resonant cavity problem on the square computed with lowest
order edge elements using the mesh of Figure 6. The error in
the first 54 eigenvalues is below 2%. The inset focuses on the
first 10 eigenvalues, for which the error is less than 0.25%. The
second plot shows the vector field associated to the third positive
eigenvalue.
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The striking difference between the behavior of the continuous piecewise linear
finite elements and the edge elements for the resonant cavity problem is a question
of stability. We shall return to this below, after examining stability in a simpler
context.

5. Stability of mixed formulations

Consider now the Dirichlet problem
—divCgradu = fin 0, u» =0 on 9,

where (1 is a domain in R® and the coefficient C is a symmetric positive definite
matrix at each point. We may again characterize u as a minimizer of the energy
functional

1
u&—)ingradu-gradudx-/fudx

and use the Ritz method. This procedure is always stable.
However, for some purposes it is preferable to work with the equivalent first
order system

o=Cgradu, ~dive=Ff. (5.10)

The pair (¢, u) is then characterized variationally as the unique critical point of the
functional

E(a,u):/Q(%C—la-a—}—udivo)dx—/qudx (5.11)

over H(div,Q) x L*(). Note that (o,u) is a saddle-point of £, not an extremum.
Numerical discretizations based on such saddle-point variational principles are called
mized methods.

It is worth interpreting the system (5.10) in the language of differential forms,
because this brings some insight. The function u is a O-form, and the operation
1~ grad v is just exterior differentiation. The vector field ¢ is a proxy for a 2-form
and the operation o ~ div o is again exterior differentiation. The loading function
f is the proxy for a 3-form. Since gradwu is the proxy for a I-form, it must be
that the operation on differential forms that corresponds to multiplication by C
takes 1-forms to 2-forms. In fact, if we untangle the identifications, we find that
multiplication by C is a Hodge star operation. A Hodge star operator defines an
isomorphism of A*(Q2) onto A*7*(9). To determine a particular such operator, we
must define an inner product on the tangent space R® at each point of Q. The pos-
itive definite matrix C' does exactly that. Many of the partial differential equations
of mathematical physics admit similar interpretations in terms of differential forms.
For a discussion of this in the context of discretization, see [9)].

A natural approach to discretization of the mixed variational principle is to
choose subspaces S, C H(div, ), V}, C L*(Q) and seek a critical point (o, uy) €
Sy, x Vp,. This is of course equivalent to a Galerkin method and leads to a system of
linear algebraic equations. However in this case, stability is not automatic. It can
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happen that the discrete system is singular, or more commonly, that the norm of
the discrete solution operator grows unboundedly as the mesh is refined.

In a fundamental paper, Brezzi [6] established two conditions that together
are sufficient (and essentially necessary) for stability. Brezzi’s theorem applied to
a wide class of saddle-point problems, but for simplicity we will state the stability
conditions for the saddle-point problem associated to the functional (5.11).

(S1) There exists v; > 0 such that

[Q Cr 7 de > il |,

for all 7 € Sy, such that [divrvde =0 for all v € V.
(52) There exists y2 > 0 such that for all v € V), there exists nonzero 7 € S,
satisfying

[Q vdivrdz > yalloll g2l ).

Theorem (Brezzi) If the stability conditions (S1) and (S2) are satisfied, then L
admits a unique critical point (op,up) over S, x Vi, the solution operator f +»
(on,up) is bounded L*(Q)) — H(div, Q) x L*(2), and the quasioptimal estimate

- i - 2 < inf - i - 2
llo = onllaaivy + lu = un|lge < C(T,u)lenshxvh(ng | (aivy + v = vlz2)

holds with ¢ depending on v, and .

The stability conditions of Brezzi strongly limit the choice of the mixed finite
element spaces S;, and V3. Condition (S1) is satisfied if the indicated functions
T € S}, those whose divergence is orthogonal to V4, are in fact divergence-free. (In
practice, this is nearly the only way it is satisfied.) This certainly holds if div Sy, C
Vi, and so such as inclusion is a common design principle of mixed finite element
spaces. On the other hand, condition (S2) is most easily satisfied if div Sy, D V4,
because in this case, given v € V3, we can choose 7 € 5 with divr = v, so
Jqvdivrde = |[v|7., and the second condition will be satisfied as long as we can
insure that ||7||g(aiv) < 75 'llvllr2. In short, we need to know that div maps Sy
onto V; and that div]g, admits a bounded one-sided inverse.

The face elements of Raviart-Thomas and Nedelec were designed to satisfy
both these conditions. Specifically, let S, again denote the space of face elements of
lowest degree (whose element diagram is shown in the middle of the second row of
Figure 3), and V}, the space of piecewise constants.! We know that S;, C H(div, )
80 these elements are admissable for the mixed variational principle. Moreover, we
have div S, C V3, so (S1) holds.

To verify (S2), we refer to the commutative diagram (3.3). Given v € V},, we
can solve the Poisson equation A¢ = v and take ¢ = grad ¢ to obtain a function

1t may seem odd to seek up in Vj, a space of discrete 3-forms, rather than in a space of
0-forms, since u is a O-form. The resolution is through a Hodge star operator, this time formed
with respect to the Fuclidean inner product on R®. In the mixed method uy is a discrete 3-form,
approximating the image of u under this star operator.
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with dive = v and ||o||g: < C||v||2. Now let 7 = II¥0 € Sj,. Then
divr = divIljo =T} dive =TI} v = v,

where we have used the commutativity and the fact that v € V. Moreover
17l er(aivy < ellolla < ¢'[Jv]| 12, where we used the boundedness of IT; on H' (2, R?).
This shows that div V}, = 5} and establishes a bound on the one-sided inverse, and
so verifies (S2). Of course, the same argument shows the stability of a mixed method
based on higher order face elements as well.

Thus we see that the stability of the mixed finite element method depends
on the properties of the spaces Vj and Sp, encoded in the rightmost square of the
commutative diagram (3.3).

Now let us return to the resonant cavity eigenvalue problem (4.9) for which
we explored the Galerkin method: find A\, € R, 0 # Ej, € (3, such that

/ curl Ey, - curl F dx = )\h/ E, -Fdx foral FeQp. (5.12)
Q Q

We saw that if Q;, C H(curl, ) is taken to be a space of edge elements this method
gives good results in that the positive eigenvalues of the discrete problem are good
approximations for the positive eigenvalues of the continuous problem. However,
the simple choice of Lagrange finite elements did not give good results. We now
explain the good performance of the edge elements based on the middle square
of the commutative diagram (3.3). Following Boffi et. al [4] we set P, = curl Qy,
and introduce the following mixed discrete eigenvalue problem: find Ay, € R, 0 #
(Epn,pn) € Qp x Py, such that

/Eh-Fd:E+/curlF-phd$:O for all F € Qp, (5.13)
Q Q

/ curl Ey, - gdx = —)\h/ pp-qdx for all g € Py, (5.14)
Q Q

It is then easy to verify that if A, Ep, is a solution to (5.12) with Ay, > 0, then
A, (Eh,)\,jl curl E,) is a solution to (5.13), and if As, (Ep,pn) is a solution to
(5.13) then Ay, > 0 and A, Ej, is a solution to (5.12). In short, the two problems
are equivalent except that the former admits a zero eigenspace which the mixed
formulation suppresses. As explained in [4], the accuracy of the mixed eigenvalue
problem (5.13) hinges on the stability of the corresponding mixed source problem.
This is a saddle-point problem of the sort studied by Brezzi, and so stability depends
on conditions analogous to (S1) and (S2). The proof of these conditions in case @y,
is the space of edge elements follows, as in the preceding stability verification, from
surjectivity and commutativity properties encoded in the diagram (3.3).

The diagram can also be used to explain the zero eigenspace computed with
edge elements. Recall that in the case of the mesh shown in Figure 6, this space had
dimension 145. In fact, this eigenspace is simply the null space of the curl operator
restricted to Q. Referring again to the commutative diagram (3.3), this is the
gradient of the space W}, of linear Lagrange elements vanishing on the boundary.
Its dimension is therefore exactly the number of interior nodes of the mesh.
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6. The elasticity complex

Let S denote the space of 3x 3 symmetric matrices. Given a volumetric loading
density f: £ — R?, the system of linearized elasticity determines the displacement
field v : @ — R® and the stress field o : 2 — S induced in the elastic domain by
the equations

oc=Ceu, =—dive=/F,

together with boundary conditions such as © = 0 on 9f2. Here eu is the symmetric
part of the matrix grad u, and the elasticity tensor C' : S - § is a symmetric positive
definite linear operator describing the particular elastic material, possibly varying
from point to point.

The solution (o, u) may be characterized variationally as a saddle-point of the
Hellinger-Reissner functional

E(a,u):/Q(%C—la:0+u-div0)d:r-/ﬂf-udx (6.15)

over H(div,Q,8) x L?*(Q,R?) (i.e., o is sought in the space of square-integrable
symmetric-matrix-valued functions whose divergence by rows is square-integrable,
and u is sought among all square-integrable vector fields).

For a mixed finite element method, we need to specify finite element subspaces
Sp € H(div,Q,8) and V, C L*(Q,R?) and restrict the domain of the variational
problem. Of course the spaces must be carefully designed if the mixed method
is to be stable: the analogues of the stability conditions (S1) and (S2) must be
satisfied. The functional (6.15) is quite similar in appearance to (5.11) and so
it might be expected that the mixed finite elements developed for the latter (the
face elements for ¢ and discontinuous elements for u) could be adapted to the
case of elasticity. In fact, the requirement of symmetry of the stress tensor and,
correspondingly, the replacement of the gradient by the symmetric gradient, changes
the structure significantly. Four decades of searching for mixed finite elements for
elasticity beginning in the 1960s did not yield any stable elements with polynomial
shape functions.

Using discrete differential complexes, R. Winther and the author recently de-
veloped the first such elements for elasticity problems in two dimensions [1]. (The
three-dimensional case remains open.) For elasticity, the displacement and stress
fields cannot be naturally interpreted as differential forms and the relevant differ-
ential complex is not the de Rham complex. In three dimensions it is instead the
elasticity complex:

T < C®(Q,R3) —s 0°(02,S) —L— C°(,S) —y (0, R )= 0.

Here the operator J is a second order differential operator which acts on a symmetric
matrix field by first replacing each row with its curl and then replacing each column
with its curl to obtain another symmetric matrix field. The resolved space T is the
six-dimensional space of infinitesimal rigid motions, i.e., the same space of linear
polynomials a -+ b x & which arose as the shape functions for the lowest order edge
elements. If the domain € is topologically trivial, this complex is exact. Although
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it involves a second order differential operator, and so looks quite different from the
de Rham complex, Eastwood [8] recently pointed out that it can be derived from
the de Rham complex via a general construction known as the Bernstein-Gelfand-
Gelfand resolution.

In two dimensions the elasticity complex takes the form

Py < C(Q) —L— 0°(Q,8) —y 0%, R2)— 0,

where now the second order differential operator is

82 82
J=
82 82
B 81’1 81’2 8—1';2

Figure 8: Element diagram for the new mixed finite elements for
elasticity, lowest order case.

In the lowest order case, the finite elements we introduced in [1], for which
the element diagrams can be seen in Figure 8, use discontinuous piecewise linear
vector fields for the displacement field and a piecewise polynomial space which we
shall now describe for the stress field. The shape functions on an arbitrary triangle
T are given by

St = {1 €Py(T,S)| divr € Py (T,R?)},

which is a 24-dimensional space consisting of all quadratic symmetric matrix fields
on T together with the divergence-free cubic fields. The degrees of freedom are

o the values of three components of 7(z) at each vertex x of T' (9 degrees of
freedom)

o the values of the moments of degree 0 and 1 of the two components of 7n on
each edge e of T' (12 degrees of freedom)

o the value of the three components of the moment of degree 0 of 7 on T (3
degrees of freedom)

Note that these degrees of freedom are enough to ensure continuity of 7n across
element faces, and so will furnish a finite element subspace of H(div,{),S). The
continuity is not however, the minimal needed for inclusion in H(div). The de-
grees of freedom also enforce continuity at the vertices, which is not required for
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membership in H(div). For various reasons, it would be useful to have a mixed
finite element for elasticity that does not use vertex degrees of freedom. But, as we
remark below, this is not possible if we restrict to polynomial shape functions.

In order to have a well-defined finite element, we must verify that the 24 degrees
of freedom form a basis for the dual space of S7. We include this verification since
it illustrates an aspect of the role of the elasticity complex. Since dim Sy = 24,
we need only show that if all the degrees of freedom vanish for some 7 € S7, then
7 =0. Now 7n varies cubically along each edge, vanishes at the endpoints, and has
vanishing moments of degree 0 and 1. Therefore tn = 0. Letting v = div 7, a linear
vector field on T', we get by integration by parts that

/vgdxz—/rzevdx%—/ Tn-vds =10
T T aT

since the integral of 7 vanishes as well as Tn. Thus 7 is divergence-free. In view of
the exactness of the elasticity complex, v = Jq for some smooth function ¢g. Since
all the second partial derivatives of ¢ belong to P3(T'), ¢ € P5(T). Adjusting by
an element of Py (7T") (the null space of J), we may take g to vanish at the vertices.
Now 9%¢/0s®> = mn -n = 0 on each edge, whence q is identically zero on T. This
implies that the gradient of ¢ vanishes at the vertices. Since 0%q/0s0n = —tn-t =0
on each edge (with ¢ a unit vector tangent to the edge), we conclude that dq/on
vanishes identically on 97T as well. Since ¢ has degree at most 5, it must vanish
identically.

Let Hf : O, 8) —» S}, denote the projection associated with the supplied
degrees of freedom, and I} : C°°(Q,R?) — V}, the L%-projection. For any triangle
T, 7€ C>®(€Q,S),and v € P1(Q, R?), we have

/diV(T—HfT)-?)dSEI—/(T—Hf’]‘):€?)d$+/ (r =7 T)n - v ds.
T T aT

The degrees of freedom entering the definition of II} ensure that the right hand side
vanishes, and from this we obtain the commutativity divIlyr = II} divr which
is essential for stability. (Actually a technical difficulty arises here, since Hf as
given is not bounded on H'(€,S). See [1] for the resolution.) Note that, by their
definitions, div Sy C V;, and, using the commutativity, we have div Sy = V4, i.e.,
Sy, v Vi, = 0 is exact. To complete this to a discrete analogue of the elasticity
complex, we define Y, to be the inverse image of S;, under J. Then Y}, is exactly
the space of C* piecewise quintic polynomials which are C? at the vertices of the
meshes. This is in fact a well-known finite element space, called the Hermite quintic
or Argyris space, developed for solving 4th order partial differential equations (for
which the inclusion in H?(Q) and therefore C* continuity is required). The shape
functions are P5(7T") and the 21 degrees of freedom are the values of the function
and all its first and second partial derivatives at the vertices and the integrals of
the normal derivatives along edges. We then have a discrete elasticity complex

J

Py« Yy » Sh d

2y V= 0,
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or, diagrammatically,

Pl%& —i—%ﬁ—%é—)&

Moreover this sequence is exact and is coupled to the two-dimensional elasticity
sequence via a commuting diagram:

Py < C(Q) —2— 0°(Q,8) — 2y 0%(Q,R3)— 0

[ [ [
Pr Y —2— S % 1 =0

The right half of this diagram encodes the information necessary to establish the
stability of our mixed finite element method.

The Hermite quintic finite elements arose naturally from our mixed finite ele-
ments to complete the commutative diagram. Had they not been long known, we
could have used this procedure to devise a finite element space contained in H?(Q).
In fact, on close scrutiny we can see that any stable mixed finite elements for elas-
ticity with polynomial shape functions will give rise to a finite element space with
polynomial shape functions contained in H?(Q)). However, it is known that such
spaces are difficult to construct and complicated. In fact, it can be proved that an
H? finite element space must utilize shape functions of degree at least 5 and the first
and second partial derivatives at the vertices must be among the degrees of freedom
[14]. This helps explain why mixed finite elements for elasticity have proven so hard
to devise. In particular, we can rigorously establish the stress elements must involve
polynomials of degree 3, and that vertex degrees of freedom are unavoidable.

In addition to the element just described, elements of all greater orders are
also introduced in [1]. The elements of next higher order can be seen as the final
two elements in this discrete elasticity complex.

Y A
A Ay 0
||

It is also possible to simplify the lowest order element slightly. To do this we reduce
the displacement space from piecewise linear vector fields to piecewise rigid motions,
and we replace the stress space with the inverse image under the divergence of the
reduced displacement space. This leads to a stable element shown in this exact

sequence:
J div
Fre & 7 ﬁ% - A—) 0

Because of the unavoidable complexity of H? finite elements, practitioners
solving 4th order equations often resort to nonconforming finite element approxi-
mations of H?. This means that the finite element space does not belong to H?>
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in that the function or the normal derivative may jump across element boundaries,
but the spaces are designed so that jumps are small enough in some sense (e.g., on
average). The error analysis is more complicated for nonconforming elements, since
in addition to stability and approximation properties of the finite element space, one
must analyze the consistency error arising from the jumps in the finite elements.
In [2] Winther and the author investigated the the possibility of nonconforming
mixed finite elements for elasticity, which, however are stable and convergent, and
developed two such elements. These are related to nonconforming H? elements via
nonconforming discrete elasticity complexes, two of which are pictured here:

e AN A
J div
A ATy

In both cases the shape function space for the stress is contained between Py (T, S)
and P(T,S). The nonconforming H? finite element depicted in these diagrams
was developed for certain 4th order problems in [11]. Note the nonconforming
mixed elasticity elements are significantly simpler than the conforming ones (and,
in particular, don’t require vertex degrees of freedom).
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Hyperbolic Systems of Conservation Laws
in One Space Dimension
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Abstract

Aim of this paper is to review some basic ideas and recent developments
in the theory of strictly hyperbolic systems of conservation laws in one space
dimension. The main focus will be on the uniqueness and stability of entropy
weak solutions and on the convergence of vanishing viscosity approximations.
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1. Introduction

By a system of conservation laws in m space dimensions we mean a first order
system of partial differential equations in divergence form:

0 0
— F,.U)=0 UelR", (t R x R™.
8tU+;8xa 2 (U) =0, €R", (t,x) € Rx

The components of the vector U = (Uy,...,U,) are the conserved quantities. Sys-

tems of this type express the balance equations of continuum physics, when small
dissipation effects are neglected. A basic example is provided by the equations of
non-viscous gases, accounting for the conservation of mass, momentum and energy.
The subject is thus very classical, having a long tradition which can be traced back
to Euler (1755) and includes contributions by Stokes, Riemann, Weyl and Von Neu-
mann, among several others. The continued attention of analysts and mathematical
physicists during the span of over two centuries, however, has not accounted for a
comprehensive mathematical theory. On the contrary, as remarked in [Lx2], [D2],
[S2], the field is still replenished with challenging open problems. In several space
dimensions, not even the global existence of solutions is presently known, in any
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significant degree of generality. Until now, most of the analysis has been concerned
with the one-dimensional case, and it is only here that basic questions could be
settled. In the remainder of this paper we shall thus consider systems in one space
dimension, referring to the books of Majda [M], Serre [S1] or Dafermos [D3] for a
discussion of the multidimensional case.

Toward a rigorous mathematical analysis of solutions, the main difficulty that
one encounters is the lack of regularity. Due to the strong nonlinearity of the
equations and the absence of diffusion terms with smoothing effect, solutions which
are initially smooth may become discontinuous within finite time. In the presence
of discontinuities, most of the classical tools of differential calculus do not apply.
Moreover, for general n x n systems, the powerful techniques of functional analysis
cannot be used. In particular, solutions cannot be represented as fixed points of
a nonlinear transformation, or in variational form as critical points of a suitable
functional. Dealing with vector valued functions, comparison arguments based on
upper and lower solutions do not apply either. Up to now, the theory of conservation
laws has progressed largely by ad hoc methods. A survey of these techniques is the
object of the present paper.

The Cauchy problem for a system of conservation laws in one space dimension
takes the form

ur + f(u)y =0, (L.1)
u(0,z) = a(x). (1.2)
Here v = (u1,...,uy) is the vector of conserved quantities, while the components

of f = (f1,...,fn) are the flures. We shall always assume that the flux function
f: R" — IR" is smooth and that the system is strictly hyperbolic, 1. e., at each
point u the Jacobian matrix A(u) = D f(u) has n real, distinct eigenvalues

Ar(u) <o < Ap(u). (1.3)

As already mentioned, a distinguished feature of nonlinear hyperbolic systems is
the possible loss of regularity. Even with smooth initial data, it is well known that
the solution can develop shocks in finite time. Therefore, solutions defined globally
in time can only be found within a space of discontinuous functions. The equation
(1.1) must then be interpreted in distributional sense. A vector valued function
u = u(t,z) is a weak solution of (1.1} if

f/[u by + f(u) ] dudt =0 (1.4)

for every test function ¢ € C!, continuously differentiable with compact support.
In particular, the piecewise constant function

L Ju if <A,
u(t,x)—{u+ if x> M\, (15)
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is a weak solution of (1.1) if and only if the left and right states «~,u" and the
speed A satisfy the famous Rankine-Hugoniot equations

Fb) = fu) =A@’ —u). (1.6)

When discontinuities are present, the weak solution of a Cauchy problem may
not be unique. To single out a unique “good” solution, additional entropy conditions
are usually imposed along shocks [Lx1], [L3]. These conditions often have a physical
motivation, characterizing those solutions which can be recovered from higher order
models, letting the diffusion or dispersion coefficients approach zero (see [D3]).

In one space dimension, the mathematical theory of hyperbolic systems of
conservation laws has developed along two main lines.

1. The BV setting, pioneered by Glimm (1965). Solutions are here constructed
within a space of functions with bounded variation, controlling the BV norm by a
wave interaction potential.

2. The L setting, introduced by DiPerna (1983), based on weak convergence and
a compensated compactness argument.

Both approaches yield results on the global existence of weak solutions. How-
ever, it is only in the BV setting that the well posedness of the Cauchy problem
could recently be proved, as well as the stability and convergence of vanishing vis-
cosity approximations. On the other hand, a counterexample in [BS] indicates that
similar results cannot be expected, in general, for solutions in L*. In the remainder
of this paper we thus concentrate on the theory of BV solutions, referring to [DP2]
or [S1] for the alternative approach based on compensated compactness.

We shall first review the main ideas involved in the construction of weak so-
lutions, based on the Riemann problem and the wave interaction functional. We
then present more recent results on stability, uniqueness and characterization of
entropy weak solutions. All this material can be found in the monograph [B3]. The
last section contains an outline of the latest work on stability and convergence of
vanishing viscosity approximations.

2. Existence of weak solutions

Toward the construction of more general solutions of (1.1), the basic building
block is the Riemann problem, i.e. the initial value problem where the data are
piecewise constant, with a single jump at the origin:

_Ju if =<0,
U(O,Z’)—{u+ if 2>0. 2.1)

Assuming that the amplitude |u™ — u™| of the jump is small, this problem was
solved in a classical paper of Lax [Lx1], under the additional hypothesis
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(H) For each ¢ = 1,...,n, the i-th field is either genuinely nonlinear, so that
DX;(u) - ri(u) > 0 for all u, or linearly degenerate, with DX;{(u) - r;(u) = 0 for
all w.

The solution is self-similar: u(¢,z) = U(x/t). It consists of n -+ 1 constant states
Wo = U7, Wi,...,wy = uT (see Fig. 1). Each couple of adiacent states w;_ 1, w;
is separated either by a shock (the thick lines in Fig. 1) satisfying the Rankine
Hugoniot equations, or else by a centered rarefaction. In this second case, the
solution u varies continuously between w;_; and w; in a sector of the t-z-plane (the
shaded region in Fig. 1) where the gradient u, coincides with an i-eigenvector of

the matrix A(u).
VIV VAR VAR

—

X Ax

Figure 1 Figure 2

Approximate solutions to a more general Cauchy problem can be constructed
by patching together several solutions of Riemann problems. In the Glimm scheme
(Fig. 2), one works with a fixed grid in the x-t plane, with mesh sizes Az, At. At
time ¢ = O the initial data is approximated by a piecewise constant function, with
jumps at grid points. Solving the corresponding Riemann problems, a solution is
constructed up to a time At sufficiently small so that waves generated by different
Riemann problems do not interact. By a random sampling procedure, the solution
u(At,-) is then approximated by a pilecewise constant function having jumps only
at grid points. Solving the new Riemann problems at every one of these points, one
can prolong the solution to the next time interval [Af, 2A¢], etc. ..

Figure 3

An alternative technique for contructing approximate solutions is by wave-
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front tracking (Fig. 3). This method was introduced by Dafermos [D1] in the scalar
case and later developed by various authors [DP1], [B1], [R], [BJ]. It now provides
an efficient tool in the study of general n x n systems of conservation laws, both for
theoretical and numerical purposes [B3], [HR].

The initial data is here approximated with a piecewise constant function, and
each Riemann problem is solved approximately, within the class of piecewise con-
stant functions. In particular, if the exact solution contains a centered rarefaction,
this must be approximated by a rarefaction fan, containing several small jumps. At
the first time #; where two fronts interact, the new Riemann problem is again ap-
proximately solved by a piecewise constant function. The solution is then prolonged
up to the second interaction time s, where the new Riemann problem is solved,
etc. .. The main difference is that in the Glimm scheme one specifies a priori the
nodal points where the the Riemann problems are to be solved. On the other hand,
in a solution constructed by wave-front tracking the locations of the jumps and of
the interaction points depend on the solution itself, and no restarting procedure is
needed.

In the end, both algorithms produce a sequence of approximate solutions,
whose convergence relies on a compactness argument based on uniform bounds on
the total variation. We sketch the main idea involved in these a priori BV bounds.
Consider a piecewise constant function u : IR ~ IR", say with jumps at points
T <xg < -+ < xpy. Call o, the amplitude of the jump at z,. The total strength
of wawves is then defined as

V() =Y |oal. (2.2)
[54
Clearly, this is an equivalent way to measure the total variation. Along a solution
u = u(t,z) constructed by front tracking, the quantity V(¢) = V' (u(t,+)) may well
increase at interaction times. To provide global a priori bounds, following [G] one
introduces a wave interaction potential, defined as

Q)= Y loaosl, (2.3)

(.)€ A

where the summation runs over the set A4 of all couples of approaching waves.
Roughly speaking, we say that two wave-fronts located at z, < x3 are approaching
if the one at z, has a faster speed than the one at zg (hence the two fronts are
expected to collide at a future time). Now consider a time 7 where two incoming
wave-fronts interact, say with strengths o, ¢' (for example, take 7 = #; in Fig. 3).
The difference between the outgoing waves emerging from the interaction and the
two incoming waves o,¢' is of magnitude O(1) - Joe’']. On the other hand, after
time 7 the two incoming waves are no longer approaching. This accounts for the
decrease of the functional @ in (2.3) by the amount |cao'|. Observing that the new
waves generated by the interaction could approach all other fronts, the change in
the functionals V, 0 across the interaction time 7 is estimated as

AV(r) =0() - |od'], AQ(1) = —lod'|+0Q1) - |od'| V(T—).
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If the initial data has small total variation, for a suitable constant Cy the quantity
T(t) =V (U(t, )) + CO Q(u(ta ))

is monotone decreasing in time. This argument provides the uniform BV bounds on
all approximate solutions. Using Helly’s compactness theorem, one obtains the con-
vergence of a subsequence of approximate solutions, and hence the global existence
of a weak solution.

Theorem 1. Let the system (1.1) be strictly hyperbolic and satisfy the assumptions
(H). Then, for a sufficiently small 6 > 0 the following holds. For every initial
condition @ with

afjLe < d, Tot. Varda} < ¢, (2.4)

the Cauchy problem has o weak solution, defined for all times ¢t > 0.

This result is based on careful analysis of solutions of the Riemann problem
and on the use of a quadratic interaction functional (2.3) to control the creation of
new waves. These techniques also provided the basis for subsequent investigations
of Glimm and Lax [GL] and Liu [L2] on the asymptotic behavior of weak solutions
as t — oc.

3. Stability

The previous existence result relied on a compactness argument which, by
itself, does not provide informations on the uniqueness of solutions. A first under-
standing of the dependence of weak solutions on the initial data was provided by
the analysis of front tracking approximations. The idea is to perturb the initial
data by shifting the position of one of the jumps, say from 2z to a nearby point '
(see Fig. 3). By carefully estimating the corresponding shifts in the positions of
all wave-fronts at a later time f, one obtains a bound on the L! distance between
the original and the perturbed approximate solution. After much technical work,
this approach yielded a proof of the Lipschitz continuous dependence of solutions
on the initial data, first in [BC1] for 2 x 2 systems, then in [BCP] for general n x n
systems.

Theorem 2. Let the system (1.1) be strictly hyperbolic and satisfy the assumptions
(H). Then, for every initial data @ satisfying (2.4) the weak solution obtained as
Limit of Glimm or front tracking approximations is unique and depends Lipschitz
continuously on the initial data, in the L' distance.

These weak solutions can thus be written in the form u(t,-) = Sa, as tra-
jecories of a semigroup S : D x [0, 0o[ = D on some domain D containing all func-
tions with sufficiently small total variation. For some Lipschitz constants L, L' one
has

S — S50 < Ll = ol[pa + L't — 5|, (3.1)
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for all ¢, s > 0 and initial data i,7 € D.

An alternative proof of Theorem 2 was later achieved by a technique introduced
by Liu and Yang in [LY] and presented in [BLY] in its final form. The heart of the
matter is to construct a nonlinear functional, equivalent to the L' distance, which
is decreasing in time along every pair of solutions. We thus seek & = ®(u,v) and a
constant C' such that

1
5'””_“”1,1 < ®(u,v) < C-Hv—uHLl, (3.2)
d
—®(u(®), v() <0. (3.3)
®;= V(%)
Q» qS - G(x
ﬁz I A
(,01 u
0)0'= u(x)
T r
Figure 4

In connection with piecewise constant functions u,v : IR ~ IR™ generated by
a front tracking algorithm, this functional can be defined as follows (Fig. 4). At
each point x, we connect the states u(x), v(x) by means of n shock curves. In
other words, we construct intermediate states wo = u(z),wr,...,w, = v(x) such
that each pair w;_1,w; is connected by an i-shock. These states can be uniquely
determined by the implicit function theorem. Call ¢4, ..., ¢, the strengths of these
shocks. We regard ¢;(x) as the i-th scalar component of the jump (u(z), v(z)). For
some constant C', one clearly has

1 n
o |lv(z) — u(z)] < Z |gi(z)] < C" |o(z) — u(x)]. (3.4)
i=1
The functional ® is now defined as
O(u,v) = Z / Wi(2) |qi(z)| dz, (3.5)
i=1 7 7

where the weights W; take the form
Wi(z) = 1+ £ - [total strength of waves in « and in v
which approach the i-wave g;(z)]

3.6
+ k2 - [wave interaction potentials of u and of v] (36)

=1+ k1 Vi(z) + k2 [Q(w) + Q(v)]
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for suitable constants ki, ke. Notice that, by construction, ¢;(z) represents the
strength of a fictitious shock wave located at z, travelling with a speed A;(x) de-
termined by the Rankine-Hugoniot equations. In (3.6), it is thus meaningful to

consider the quantity
Vi@) = Y ol

acA;(z)
where the summation extends to all wave-fronts ¢, in v and in v which are ap-
proaching the i-shock ¢;(z). From (3.4) and the boundedness of the weights W,
one easily derives (3.2). By careful estimates on the Riemann problem, one can
prove that also (3.3) is approximately satisfied. In the end, by taking a limit of
front tracking approximations, one obtains Theorem 2.

For general n x n systems, in (3.1) one finds a Lipschitz constant L > 1.
Indeed, it is only in the scalar case that the semigroup is contractive and the theory
of accretive operators and abstract evolution equations in Banach spaces can be
applied, see [K], [C]. We refer to the flow generated by a system of conservation
laws as a Riemann semigroup, because it is entirely determined by specifying how
Riemann problems are solved. As proved in [B2], if two semigroups S, S’ yield the
same solutions to all Riemann problems, then they coincide, up to the choice of
their domains.

From (3.1) one can deduce the error bound

T p—"
Jw(T) - ST@U(O)HL1 <L -/0 {I}Lrgio{if |w(t + h) hShw(t)H

L! } dt, (3.7

valid for every Lipschitz continuous map w : [0,7] = D taking values inside the
domain of the semigroup. We can think of ¢ ~ w(t) as an approximate solution of
(1.1), while t = S;w(0) is the exact solution having the same initial data. According
to (3.7), the distance at time 7' is bounded by the integral of an instantaneous error
rate, amplified by the Lipschitz constant L of the semigroup.

Using (3.7), one can estimate the distance between a front tracking approxima-
tion and the corresponding exact solution. For approximate solutions constructed
by the Glimm scheme, a direct application of this same formula is not possible
because of the additional errors introduced by the restarting procedures at times
tr = k At. However, relying on a careful analysis of Liu [L1], one can construct a
front tracking approximate solution having the same initial and terminal values as
the Glimm solution. By this technique, in [BM] the authors proved the estimate

) HUGlimm(T, ) _ uexaot(T’ ) HLl 3
lim =0.
Az—0 VAz - |In Az
In other words, letting the mesh sizes Az, At — 0 while keeping their ratio Ax/At

constant, the L' norm of the error in the Glimm approximate solution tends to zero
at a rate slightly slower than v Az.

(3.8)
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4. Uniqueness

The uniqueness and stability results stated in Theorem 2 refer to a special
class of weak solutions: those obtained as limits of Glimm or front tracking ap-
proximations. For several applications, it is desirable to have a uniqueness theorem
valid for general weak solutions, without reference to any particular constructive
procedure. Results in this direction were proved in [BLF], [BG], [BLe]. They are
all based on the error formula (3.7). In the proofs, one considers a weak solution
u = u(t,x) of the Cauchy problem (1.1)-(1.2). Assuming that v satisfies suitable
entropy and regularity conditions, one shows that

it Hu(t “+ h) - Shu(t)HL1 0

R0+ h (4.1)

at almost every time ¢. By (3.7), u thus coincides with the semigroup trajectory
t = Su(0) = Spa. Of course, this implies uniqueness. As an example, we state
below the result of [BLe]. Consider the following assumptions:

(A1) (Conservation Equations) The function v = u(t,z) is a weak solution of
the Cauchy problem (1.1)-(1.2), taking values within the domain D of the
semigroup S. More precisely, u : [0,7] = D is continuous w.r.t. the L
distance. The initial condition (1.2} holds, together with

//[u¢t+f(“)¢x] dedt =0

for every C' function ¢ with compact support contained inside the open strip
10, T[ < R.

(A2) (Lax Entropy Condition) Let u have an approximate jump discontinuity at
some point (7,£) €]0,T[x R. In other words, assume that there exists states
u”,uT € { and a speed A € IR such that, calling

L Jwu if <&+ AE-T),
Ult,z) = { u™ it x>E+AE-T), (4.2)
there holds
1 T+p  pEtp
lim — / ju(t, ) = Ut dwdt = 0. (4.3)
=0+ p% Sy Jep
Then, for some i € {1,...,n}, one has the entropy inequality:

(A3) (Bounded Variation Condition) The function # — u(7(x), ) has bounded
variation along every Lipschitz continuous space-like curve {t = T(:r)}, which
satisfies |dr/dx] < 6 a.e., for some constant § > 0 small enough.



168 A. Bressan

Theorem 3. Let u = u(t,x) be o weak solution of the Cauchy problem (1.1)-(1.2)
satisfying the assumptions (A1), (A2) and (A3). Then

u(t, ) = S (4.5)
for allt. In particular, the solution that satisfies the three above conditions is unique.

An additional characterization of these unique solutions, based on local integral
estimates, was given in [B2]. The underlying idea is as follows. In a forward
neighborhood of a point (7,£) where u has a jump, the weak solution u behaves
much in the same way as the solution of the corresponding Riemann problem. On
the other hand, on a region where its total variation is small, our solution u can be
accurately approximated by the solution of a linear hyperbolic system with constant
coefficients.

To state the result more precisely, we introduce some notations. Given a
function v = u(t,z) and a point (7,£), we denote by Uéiu;r,g) the solution of the
Riemann problem with initial data

u” = lim wu(r,z), ut = lim u(r,z). (4.6)
r—rE— &+
In addition, we define U, (bu;r,g) as the solution of the linear hyperbolic Cauchy prob-
lem with constant coefficients

wy + Aw, =0, w(0,x) = u(r,x). (4.7)
Here A = A (u(r,£)). Observe that (4.7) is obtained from the quasilinear system
g+ Aluju, =0 (A=Df) (4.8)

by “freezing” the coefficients of the matrix A(u) at the point (7,&) and choosing
u(7) as initial data. A new notion of “good solution” can now be introduced, by
locally comparing a function u with the self-similar solution of a Riemann problem
and with the solution of a linear hyperbolic system with constant coefficients. More
precisely, we say that a function u = u(t, z) is a viscosity solution of the system
(1.1) if ¢ = u(t,) is continuous as a map with values into L ., and moreover the
following integral estimates hold.

(i) At every point (7, &), for every 3' > 0 one has

1 pE+sh

: 8
lim — ‘u(r +h, )~ U(u;r,g)

(h, x-&)‘ dr = 0. (4.9)
(ii) There exist constants C,8 > 0 such that, for every 7 > 0 and a < £ < b, one
has

b—p3h 2
lim sup l/ ‘u(r +h, )~ U(bu,T o (h, :v)‘ de < C- (Tot.Var.{u(T); la, b })
h—o+ N Jayan o
(4.10)
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As proved in [B2], this concept of viscosity solution completely characterizes
semigroup trajectories.

Theorem 4. Let S : D x [0,00[xD be a semigroup generated by the system of
conservation laws (1.1). A function u : [0,T] = D is a viscosity solution of (1.1) if
and only if u(t) = Swu(0) for oll t € [0,T.

5. Vanishing viscosity approximations

A natural conjecture is that the entropic solutions of the hyperbolic system
(1.1) actually coincide with the limits of solutions to the parabolic system

uf + fuf), = e ul,, (5.1)

letting the viscosity coefficient £ — 0. In view of the previous uniqueness results,
one expects that the vanishing viscosity limit should single out the unique “good”
solution of the Cauchy problem, satisfying the appropriate entropy conditions. In
earlier literature, results in this direction were based on three main techniques:

1 - Comparison principles for parabolic equations. For a scalar conservation
law, the existence, uniqueness and global stability of vanishing viscosity solutions
was first established by Oleinik [O] in one space dimension. The famous paper by
Kruzhkov [K] covers the more general class of L solutions and is also valid in
several space dimensions.

2 - Singular perturbations. Let u be a piecewise smooth solution of the n x n
system (1.1), with finitely many non-interacting, entropy admissible shocks. In
this special case, using a singular perturbation technique, Goodman and Xin [GX]
constructed a family of solutions u® to (5.1), with u® - v as € - 0.

3 - Compensated compactness. If, instead of a BV bound, only a uniform
bound on the L* norm of solutions of (5.1) is available, one can still construct a
weakly convergent subsequence u® — u. In general, we cannot expect that this weak
limit satisfies the nonlinear equations (1.1). However, for a class of 2 x 2 systems,
in [DP2] DiPerna showed that this limit « is indeed a weak solution of (1.1). The
proof relies on a compensated compactness argument, based on the representation
of the weak limit in terms of Young measures, which must reduce to a Dirac mass
due to the presence of a large family of entropies.

Since the main existence and uniqueness results for hyperbolic systems of
conservation laws are valid within the space of BV functions, it is natural to seek
uniform BV bounds also for the viscous approximations »# in (5.1). This is indeed
the main goal accomplished in [BB]. As soon as these BV bounds are established, the
existence of a vanishing viscosity limit follows by a standard compactness argument.
The uniqueness of the limit can then be deduced from the uniqueness theorem in
[BG]. By further analysis, one can also prove the continuous dependence on the
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initial data for the viscous approximations 4°, in the L' norm. Remarkably, these
results are valid for general n x n strictly hyperbolic systems, not necessarily in
conservation form.

Theorem 5. Consider the Cauchy problem for o strictly hyperbolic system with
viscosity

&

uj + A(u’)ul, = eul,, u(0,2) = u(x). (5.2)

Then there exist constants C, L, L' and & > 0 such that the following holds. If
Tot. Var{a} < ¢, [|@(2)||e < 4, (5.3)
then for each £ > 0 the Cauchy problem (5.2) has o unique solution u®, defined for

all t > 0. Adopting a semigroup notation, this will be written as t — u®(t,-) = S;a.
In addition, one has:

BV bounds : Tot. Var.{S;u} < C Tot. Var.{i} . (5.4)
L' stability : |S5@ — S5o|| . < L@ — 0| s (5.5)
St = Szl < T (1t = sl + [Vt - VEs)). (5.6)

Convergence. As ¢ —» 0+, the solutions u® converge to the trajectories of a
semigroup S such that

[Se@t = 83|, < Lila—ollgs + L' [t — |- (5.7)

These vanishing viscosity limits can be regarded as the unique vanishing viscosity
solutions of the hyperbolic Couchy problems

up + A(ujug =0, u(0,z) = a(z). (5.8)

In the conservative case where A(u) = Df(u) for some flux function f, the
vanishing viscosity solution is o weak solution of

g + f(u)x =0, U(O, SL') = ﬂ(l’) s (59)

satisfying the Liu admissibility conditions [L3]. Moreover, the vanishing viscosity
solutions are precisely the same as the viscosity solutions defined at (4.9)-(4.10) in
terms of local integral estimates.

The key step in the proof is to establish a priori bounds on the total variation
of solutions of
up + Alw)uy = Uy, (5.10)

uniformly valid for all times ¢ € [0, c0[. We outline here the main ideas.
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(i) At each point (¢,z) we decompose the gradient along a suitable basis of unit
vectors 7;, say

Uy = Y Ui (5.11)

(ii) We then derive an equation describing the evolution of these gradient compo-
nents R
Vit -+ ()\ivi)w — Vi px = (z)zi . (512)

(iii) Finally, we show that all source terms ¢; = ¢;(t,x) are integrable. Hence, for
all 7 > 0,

wi(r, ) s < [Jwi0,9)||a + /OOO/IR |pi(t,z)| dadt < 00. (5.13)

In this connection, it seems natural to decompose the gradient u, along the
eigenvectors of the hyperbolic matrix A(u). This approach however does NOT work.
In the case where the solution u is a travelling viscous shock profile, we would obtain
source terms which are not identically zero. Hence they are certainly not integrable
over the domain {t >0,z € R}.

An alternative approach, proposed by S. Bianchini, is to decompose u, as a
sum of gradients of viscous travelling waves. By a viscous travelling i-wave we mean
a solution of (5.10) having the form

w(t,z) = Uz ~ ot), (5.14)

where the speed o is close to the i-th eigenvalue \; of the hyperbolic matrix A.
Clearly, the function U must provide a solution to the second order O.D.E.

U"=(A(U) -o)U". (5.15)
The underlying idea for the decomposition is as follows. At each point (¢,z), given
(U, Uy, Upy ), We seek travelling wave profiles Uy, ..., U, such that
Ui(x) = u(x), i=1,...,n, (5.16)
D Ui(@) = ug(a), D U () = tgu (). (5.17)
i i

In general, the system of algebraic equations (5.16)—(5.17) admits infinitely many
solutions. A unique solution is singled out by considering only those travelling
profiles U; that lie on a suitable center manifold M;. We now call 7; the unit vector
parallel to U}, so that U] = v,7; for some scalar v;. The decomposition (5.11} is
then obtained from the first equation in (5.17).

Toward the BV estimate, the second part of the proof consists in deriving the

equation (5.12) and estimating the integrals of the source terms ¢;. Here the main



172 A. Bressan

idea is that these source terms can be regarded as generated by wave interactions.
In analogy with the hyperbolic case considered by Glimm [G], the total amount of
these interactions can be controlled by suitable Lyapunov functionals. We describe
here the main ones.

1. Consider first two independent, scalar diffusion equations with strictly different
drifts:

T

4 [Mt,2)z] =200 =0,
2+ N ()], -2, =0,

assuming that

inf A" (¢,2) —sup A(t,x2) > ¢ > 0.

L t,x
We regard z as the density of waves with a slow speed A and 2* as the density of
waves with a fast speed X\*. A transversal interaction potentiol is defined as

1
Qz,2%) = E/ K (o — a1)|2(z1)]| |2"(22) | dardas (5.18)
R?
. femcy/? it  y>0
= ’ .1
K { 1 if  y<O0. (5-19)

One can show that this functional @ is monotonically decreasing along every couple
of solutions z, z*. The total amount of interaction between fast and slow waves can
now be estimated as

/OOO/R|z(t,$)|

N 1
<Q(0.70) < ¢ [ |0 [

2 (t,x)| dedt < _/000 [%Q(z(t), z*(t))} dt

z*(0,$)| dz .

By means of Lyapunov functionals of this type one can control all source terms in
(5.12) due to the interaction of waves of different families.

2. To control the interactions between waves of the same family, we seek functionals
which are decreasing along every solution of a scalar viscous conservation law

up+ g(w)e = gy - (5.20)

For this purpose, to a scalar function x = u(x) we associate the curve in the plane

. ] __ { conserved quantity
1= () = (T e (5.21)

In connection with a solution u = u(t, z) of (5.20), the curve v evolves according to

Ve + 9 (WY = Yau - (5.22)
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Notice that the vector g'(u)y, is parallel to v, hence the presence of this term in
(5.22) only amounts to a reparametrization of the curve, and does not affect its

shape. The curve thus evolves in the direction of curvature. An obvious Lyapunov
functional is the length of the curve. In terms of the variables

Yo = (Z) = (ii) (5.23)

L{y) = / vyl dr = /\/ v? 4+ wde. (5.24)

We can estimate the rate of decrease in the length as

this length is given by

2

d B ol [w/v)e]” 1 )
_%L( y(1) = /IR (1+(w/v)2)3/2 de > EYDEE /ol | [(w/v),] dz,

(5.25)
for any given constant 6 > 0. This yields a useful a priori estimate on the integral
on the right hand side of (5.25).

3. In connection with the same curve 7 in (5.21), we now introduce another func-
tional, defined in terms of a wedge product.

- %//KI e () Aye (2')| da da . (5.26)

For any curve that moves in the plane in the direction of curvature, one can show
that this functional is monotone decreasing and its decrease bounds the area swept
by the curve: |[dA] < —dQ.

Using (5.22)-(5.23) we now compute

~a _‘ %/\%;id:r—/hm/\vwidx:/ivww—vwﬂdx.

Integrating w.r.t. time, we thus obtain another useful a priori bound:

/Oofivg;w—vwwidxdt < /OO M

dt
Together, the functionals in (5.24) and (5.26) allow us to estimate all source terms
in (5.12) due to the interaction of waves of the same family.
This yields the L! estimates on the source terms ¢;, in (5.12), proving the
uniform bounds on the total variation of a solution w of (5.10). See [BB] for details.

dt < Q(~(0)).

Next, to prove the uniform stability of all solutions of the parabolic system
(5.10) having small total variation, we consider the linearized system describing the



174 A. Bressan

evolution of a first order variation. Inserting the formal expansion u = up-+ez+0(e?)
in (5.10), we obtain

2+ [DA(u) - 2]us + Alw)ze = 240 - (5.27)
Our basic goal is to prove the bound

[z < L|[2(0)||,.. » (5.28)

for some constant L and all ¢ > 0 and every solution z of (5.27). By a standard
homotopy argument, from (5.28) one easily deduces the Lipschitz continuity of the
solution of (5.8) on the initial data. Namely, for every couple of solutions u, % with
small total variation one has

|u(t) — a(t) || < L{ju(0) —a(0)]|. - (5.29)

To prove (5.28) we decompose the vector z as a sum of scalar components: z =
>, hafy, write an evolution equation for these components:

hi,t -+ (izhz)x - hi,ww = (Z)ia

and show that the source terms ¢; are integrable on the domain {t > 0,z € IR}.

For every initial data «(0, ) = @ with small total variation, the previous argu-
ments yield the existence of a unique global solution to the parabolic system (5.8),
depending Lipschitz continuously on the initial data, in the L' norm. Perform-
ing the rescaling t = t/e, x = x/e, we immediately obtain the same results for
the Cauchy problem (5.2). Adopting a semigroup notation, this solution can be
written as u®(t,-) = Sf4. Thanks to the uniform bounds on the total variation, a

compactness argument yields the existence of a strong limit in L

w= lim u*™ (5.30)
Em—+0
at least for some subsequence &, - 0. Since the u® depend continuously on the
initial data, with a uniform Lipschitz constant, the same is true of the limit solution
u(t,-) = Syu. In the conservative case where A(u) = Df(u), it is not difficult to
show that this limit u actually provides a weak solution to the Cauchy problem
(1.1)~(1.2).

The only remaining issue is to show that the limit in (5.30) is unique, i.e. it
does not depend on the subsequence {£,,}. In the standard conservative case, this
fact can already be deduced from the uniqueness result in [BG]. In the general case,
uniqueness is proved in two steps. First we show that, in the special case of a
Riemann problem, the solution obtained as vanishing viscosity limit is unique and
can be completely characterized. To conclude the proof, we then rely on the same



Hyperbolic Systems of Conservation Laws 175

general argument as in [B2]: if two Lipschitz semigroups 5,5’ provide the same
solutions to all Riemann problems, then they must coincide. See [BB] for details.

6. Concluding remarks

1. A classical tool in the analysis of first order hyperbolic systems is the method of
characteristics. To study the system

uy + Au)u, =0,

one decomposes the solution along the eigenspaces of the matrix A(u). The evo-
lution of these components is then described by a family of O.D.E’s along the
characteristic curves. In the {-z plane, these are the curves which satisfy dx/dt =
Ai(u(t,z)). The local decomposition (5.16)-(5.17) in terms of viscous travelling
waves makes it possible to implement this “hyperbolic” approach also in connection
with the parabolic system (5.10). In this case, the projections are taken along the
vectors 7;, while the characteristic curves are defined as dx/dt = o;, where o, is the
speed of the i-th travelling wave. Notice that in the hyperbolic case the projections
and the wave speeds depend only on the state u, through the eigenvectors r;(u) and
the eigenvalues A;(u) of the matrix A(u). On the other hand, in the parabolic case
the construction involves the derivatives u,, t,, as well.

2. In nearly all previous works on BV solutions for systems of conservation laws,
following [G] the basic estimates on the total variation were obtained by a careful
study of the Riemann problem and of elementary wave interactions. The Riemann
problem also takes the center stage in all earlier proofs of the stability of solutions
[BC1], [BCP], [BLY]. In this connection, the hypothesis (H) introduced by Lax [Lx1]
is widely adopted in the literature. It guarantees that solutions of the Riemann
problem have a simple structure, consisting of at most n elementary waves (shocks,
centered rarefactions or contact discontinuities). If the assumption (H) is dropped,
some results on global existence [L3], and continuous dependence [AM] are still
available, but their proofs become far more technical. On the other hand, the
approach introduced in [BB] marks the first time where uniform BV estimates are
obtained without any reference to Riemann problems. Global existence and stability
of weak solutions are obtained for the whole class of strictly hyperbolic systems,
regardless of the hypothesis (H).

3. For the viscous system of conservation laws
g -+ f(u)x = Ugzg ,

previous results in [L4], [SX], [SZ], [Yu] have established the stability of special types
of solutions, for example travelling viscous shocks or viscous rarefactions. Taking
e = 11in (5.2), from Theorem 5 we obtain the uniform Lipschitz stability (w..r.t. the
L! distance) of ALL viscous solutions with sufficiently small total variation. An
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interesting alternative technique for proving stability of viscous solutions, based on
spectral methods, was recently developed in [HZ].

4. In the present survey we only considered initial data with small total variation.
This is a convenient setting, adopted in much of the current literature, which guar-
antees the global existence of BV solutions of (1.1) and captures the main features
of the problem. A recent example constructed by Jenssen [J] shows that, for initial
data with large total variation, the L™ norm of the solution can blow up in finite
time. In this more general setting, one expects that the existence and uniqueness
of weak solutions, together with the convergence of vanishing viscosity approxima-
tions, should hold locally in time as long as the total variation remains bounded.
For the hyperbolic system (1.1), results on the local existence and stability of solu-
tions with large BV data can be found in [Sc] and [BC2], respectively. Because of
the counterexample in [BS], on the other hand, similar well posedness results are
not expected in the general L™ case.
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Non Linear Elliptic Theory and
the Monge-Ampere Equation

Luis A. Caflarelli*

Abstract

The Monge-Ampere equation, plays a central role in the theory of fully
non linear equations. In fact we will like to show how the Monge-Ampere
equation, links in some way the ideas comming from the calculus of variations
and those of the theory of fully non linear equations.

2000 Mathematics Subject Classification: 35J15, 35J20, 35J70.

When learning complex analysis, it was a remarkable fact that the real part u
of an analytic function, just because it satisfies the equation:

Ugg + Uyy = Au =0

(Laplace’s equation) is real analytic, and furthermore, the oscillation of » in any
given domain U, controls all the derivatives of u, of any order, in any subset U,
compactly contained in U.
One can give three, essentially different explanations of this phenomena.
a) Integral representations (Cauchy integral, for instance). This gives rise to
many of the modern aspects of real and harmonic analysis: fundamental solutions,
singular integrals, pseudo-differential operators, etc. For our discussion, an impor-
tant consequence of this theory are the Schauder and Calderon-Zygmund estimates.
Heuristically, they say that if we have a solution of an equation

Azﬁj (;n)Di,ju =0

and A;;(z) is, in a given functional space, a small perturbation of the Laplacian
then D;;u is actually in the same functional space as A;;. For instance, if [4;;] is
Hélder continuous (C®(U)) and positive definite, we can transform it to the identity
(the Laplacian) at any given point x¢ by an affine transformation, and will remain
close to it in a neighborhood. Thus Dyju will also be C*(U).

*Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA. E-mail:
caffarel@math.utexas.edu
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b) Energy considerations. Harmonic functions, u, are also local minimizers of
the Dirichlet integral

E(w) = /(V?))2 dx .
That is, if we change u to w, in U CC U
E(w)|g > E(u]y -

This gives rise to the theory of calculus of variations (minimal surface, harmonic
maps, elasticity, fluid dynamics).
One is mainly concerned, there, with equations (or systems) of the form

For instance, in the case in which u is a local minimizer of
E(u):/f(Vu,X)dx

(1) is simply the Euler-Lagrange equation associated to E:
F,=V,F.
If we attempt to write (1) in second derivatives form, we get
F; j(Vu,X)Dsju+---=0.

This strongly suggests that in order for the variational problem to be “elliptic”,
like the Laplacian, F;; should be positive definite, that is F should be strictly
convex.

It also leads to the natural strategy of showing that Vu, that in principle is
only in L? (finite energy), is in fact Holder continuous. Reaching this regularity
allows us to apply the (linear) Schauder theory.

That implies D;;u is C*(U), thus Vu is C1*(U), and so on (the bootstrapping
method).

The difficulty with this approach is that solutions, u, are invariant under R™+1-
dialations of their graphs.

This fact keeps the class of Lipschitz functions (bounded gradients) invariant.
There is no reason, thus, to expect that this equation will “improve” under diala-
tions. The fact that Vu is indeed Holder continuous is the celebrated De Giorgi’s
theorem, that solved the nineteenth Hilbert’s problem:

De Giorgi looked at the equation that first derivatives, u, satisfy

DZFU(VU)DJUC, =0.

He thought of F;;(Vu) as elliptic coefficients A;;(a) that had no regularity
whatsoever, and he proved that any solution w of

Dszzjj (:L’)DJ’LU =0
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was Holder continuous
lwllca@y < Cllwllz2wy -

De Giorgl’s theorem is in fact a linear one, but for a new invariant class of
equations. No matter how the solution (and the equation) is renormalized, it stays
far from the constant coefficient theory, and a radically new idea surfaces: if we have
a class of functions for which at every scale, in some average sense, the function
controls its derivatives (the energy inequality), further regularity follows.

Finally, the third approach is
¢) Comparison principle. Two solutions uy,u2 of Au = 0 cannot “touch without
crossing”. That is, if uy —us is positive it cannot become zero in some interior point,
X@, of U.

Again, heuristically, this is because the function

F(D*u) = Au = Trace[D?u]

is a monotone function of the Hessian matrix [D;;u] and, thus, in some sense, we
must have F(D?uy) “>” F(D%us) at Xy (or nearby).
The natural family of equations to consider in this context, is then

F(D*u) =0

for F' a strictly monotone function of D?wu.
Such type of equations appear in differential geometry. For instance, the co-
efficients of the characteristic polynomial of the Hessian

P(\) = det(D?u — \I)

are such equations if we restrict D%u to stay in the appropriate set of R™*7™. If ),
denote the eigenvalues of D?u

Cy=Au= Z Ai (Laplace)
Co= Nej...
]
C,= H X = det D%u (Monge-Ampere) .
In the case of C,, = det D*u = [] \; is a monotone function of the Hessian provided
that all \;’s are positive. That is, provided that the function, u, under consideration
is convex.

If F(D?u, X) is uniformly elliptic, that is, if F is strictly monotone as a func-
tion of the Hessian, or in differential form,

Fij(M) = Dy, F

is uniformly positive definite, then solutions of F(D?u) are C*(U). As in the
divergence case, this is because first derivatives u, satisfy an elliptic operator,

Fij(D*u)Dyjug = 0
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now in non divergence form. As long as we do not have further information on D?u,
we must think again of Fj; as bounded measurable coefficients.

The De Giorgi type theorem for a;; (2} D;;u, = 0is due to Krylov and Safanov,
and states again that solutions of such an equation are Holder continuous.

We point out that, again this result has “jumped” invariance classes. Rescaling
of a;; () does not improve them. Unfortunately, this is not enough to “bootstrap”,
as in the divergence case: The coefficients, 4;;(x) = Fi;(D?u), depend on second
derivatives. If we will manage to prove that D?u is Hélder continuous, then, from
equation (1), Dyu would be C%(U), i.e., u would be C%*(U) and we could improve
and improve.

To prove this, once more convexity reappears. If F'(D?u) is concave (or con-
vex) then all pure second derivatives are sub (or super) solutions of the linearized
operator. This, together with the fact that D?u lies in the surface F'(D?u), implies
the Holder continuity of D?u, and, by the bootstrapping argument v is as smooth
as F' allows.

The Monge-Ampere equation and optimal transportation
We would like now to turn our attention to the Monge-Ampere equation
det D*u = H A = fla,u, V) .

As pointed out before, the equation fits in the context of elliptic equations provided
that we consider convex solutions. That is, provided that f is positive. Further
logdet D?u = 3" log \; is concave as function of the \; and thus is a concave function
of D?u. Unfortunately det D?u is not uniformly strictly convex.

For instance if we prescribe

det D" =[N =1

ellipticity deteriorates as one of the X’s goes to infinity and some other is forced to
go to zero. This difficulty is compensated by two fundamental facts.

1) The rich family of invariances that the Monge-Ampere equation enjoys.
2) Its “hidden” divergence structure.

The divergence structure is due to the fact that det D*u can be thought of as
the Jacobian of the gradient map: X — Vu. Thus for any domain U

/_ det D*udx = Vol(Vu(D)).
2

But if U CC U, u being convex implies that
(Vullg < Cosculy.

This gives us a sort of “energy inequality” that controls a positive quantity of D%u
by the oscillation of wu:

/ det D*u < C(U,U)(oscu)™.
U
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Invariances

The Monge-Ampere equation is invariant of course, under the the standard
families of transformations:
a) Rigid motions, R:
det D*u(Rx) = f(Rx),
b) Translations:
det D*u(z +v) = f(z +v),
¢) Quadratic dialations:

det Dgtlgu(t:v) = f(tz).

But also
d) Monge-Ampere is invariant under any affine transformation A, of determinant
one:

det D*u(Ax) = f(Ax) .

If f is, for instance, in one of the following classes:

a) f constant,
b) f close to constant (Jf — 1] <€),
¢) f bounded away from zero and infinity (0 < 2 < f <o),

any of the transformations above gives a new w in the same class of solutions.
For instance, if u is a solution of

det D?u=1

then, u(ez, %y) is also a solution of the same equation. But this has dramatically
“deformed” the graph of w. It is then almost unavoidable that there are singular
solutions (Pogorelov).

In fact, for n > 3, one can construct convex solutions u that contain a line their
graph and are not differentiable in the direction transversal to that line, solutions
of

det D*u = f(x)

with f a smooth positive function.
Fortunately, this geometry can only be inherited from the boundary of the
domain.
Theorem 0.1. If in the domain U C R"
a) £ <detD’u <o,
b) u>0,
¢) The setT'= {u = 0} is not a point, then T" is generated as “conver combina-
tions” of its boundary points

' = convex envelope of TNOU .

A corollary of this theorem is that
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a) If we can “cut a slice” of the graph of w, with a hyperplane () so that the
support S of (u ~ )™ is compactly contained in U, then w is, inside S, both
CHe regular and also C1%- strictly convex, i.e., separates from any of its
supporting planes with polynomial growth.

This is the equivalent of De Giorgi’s and Krylov-Safanov result (remember that
the C* theorems were applied to the derivatives of the solutions of the non-linear
equations under consideration).

Note that by an affine transformation and a dilation we can always renormalize
the support of the “slice” § to be equivalent to the unit ball of R™: By C § C B,,.

After this normalization, it is possible to reproduce for w all the classical
estimates we had for the Laplacian:

a) (Calderon-Zygmund). If f is close to constant (|f — 1] < ¢), then D%u €
L?(By2) (p = p(e) goes to infinity when ¢ goes to zero).

b) If f € C*2 (has up to k derivatives Holder continuous) then u € C*+22 (all
second derivatives of u are %,

Note that f plays, for Monge-Ampere, simultaneously the role of “right hand
side” and “coefficients” due to the structure of its non-linearity.

The Monge-Ampere equation and optimal transportation (the
Monge problem)

The Monge-Ampere equation has many applications, not only in geometry, but
also in applied areas: optimal design of antenna arrays, vision, statistical mechanics,
front formation in meteorology, financial mathematics.

Many of these applications are related to optimal transportation and the
Wasserstein metric between probability distributions. In the discrete case, opti-
mal transportation consists of the following,.

We are given two sets of k points in R™: X4,..., X and Y1,..., Y%, and want
to map the X’s onto the Ys, i.e., we look at all one-to-one functions ¥ (X;). But
we want to do so, minimizing some transportation costs

c=3c(vx)-x;).

For our discussion C(X —Y) = 1| X —Y|2. It is easy to see that the minimizing
map must be the gradient (subdifferential) of a convex potential .

In the continuous case, instead of having k-points we have two probability
densities, f(X)dX and ¢g(Y)dY and we want to consider those (admissible} maps
Y(X) that “push forward” f to g.

Heuristically that means that in the change of variable formula, we can sub-
stitute

g(Y (X)) det DxY(X)“="f(X).
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A weak formulation, substitutes the map Y(X), by a joint probability density
v(X,Y) with marginals f(X)dX and g(Y)dY, ie.,

f@@zf@%%f%

wwzfmwxn)

(We don’t ask the “map” to be one-to-one any more, the image of Xy may now
spread among “many Y'’s”.
Among all such v, we want to maximize correlation

Kiﬂxm@my)

or minimize cost

czfgx-ﬂ%mxyx

VC defines a metric, the Wasserstein metric among probability densities.
Under mild hypothesis, we have the

Theorem 0.2. The unique optimal vy concentrates in a graph (is actually o one-
to-one map, Y(X)). Further Y(X) is the subdifferential of a convex potential p,
i.e., Y(X) = V. Heuristically, then, @ must satisfy the Monge-Ampere equation

9(Vy) det D*p = f(X).

For several reasons, the weak theory does not apply in general, but one can
still prove, for instance:

Theorem 0.3. If f and g never vanish or if the supports of f and g are convex
sets, the map Y(X) is “one derivative better” than f and g.

Some applications and current issues

a) It was pointed out by Otto, that the Wasserstein metric can be used to
describe the evolution of several of the classical “diffusion” equations: heat equation,
porous media, lubrication.

The idea is that a diffusion process for one equation with conservation of
mass, consists of the balance of two factors: trying to minimize distance between
consecutive distributions (u(x, t) and u(x, tg4+1)), plus trying to flatten or smooth
(diffuse), u(x,tg41).

This fact has allowed to prove rates of decay to equilibrium in many of the
classical equations, as well as a number of new phenomena. The fine relations be-
tween the discrete and continuous problems is an evolving issue (rate of convergence,
regularity of the discrete problems, etc.).

b) Another family of problems, coming both from geometry and optimal trans-
portation concerns the study of several issues on solutions of Monge-Ampere equa-
tions in periodic or random media.
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b1) Liouville type theorems: We start with a theorem of Calabi of Liouville
type: Given a global convex solution of Monge-Ampere equation, det D?u = 1, u
must be a quadratic polynomial. Suppose now that instead of RHS equal to one,
we have a general RHS, f(x). Given a global solution, to discover its behavior at
infinity we may try to “shrink it” through quadratic transformations:

T T
u. = e2u (E) , satisfies det D%*u. = <g) .

Suppose now that f averages out at infinity, for instance f is periodic. Then due
to the “divergence structure” of Monge-Ampere u. should converge to a quadratic
polynomial.

Theorem 0.4. Given a RHS f(x), periodic, with average-f f = a

i) Given any quadratic polynomial P with det D®2P = a, there exists a unique
periodic function w, such that

det D*(P + w) = f(x)

(w is a “corrector” in homogenization language).
it) Conversely (Liouville type theorem): Given a global solution u, it must be of
the form P+ w.

What are the implications for homogenization? What can we say if f(X,u, Vu)
is periodic in X and u? What can we say if f,(z) is random in X7

bs) Vorticity transport: (2 dimensions) Again in the periodic context we
seek a “vorticity density”, p(X,t) periodic in X. At each time ¢, p generates a
periodic “stream function”, ¥(X,t) by the equation

det(I +D?*)) =p .
In turn, ¢ generates a periodic velocity field v = —(¢y, 4, ) that transports p:
pe+div(vp) =0.

Given some initial data pg(x), what can we say about p?

If po is a vorticity patch, po(x) = 1+ xq, does it stay that way?

If we choose po, 1o so that pp = F(vp), that is det I + D%y = F(4)), we have
a stationary vorticity array, i.e., p(X,1) = po.

What can we say, in parallel to the classic theory of rotating fluids, or plasma,
where det is substituted by A7

¢) Another area of research relates to optimal transportation as a natural
“map” between probability densities. It has been shown that optimal transportation
explains naturally interpolation properties of densities (of Brunn Minkowski type),
monotonicity properties (like correlation inequalities that express in which way the
probability density, g, is shifted in some cone of directions with respect to f), and
concentration properties of g versus f (in which sense for instance, a log concave
perturbation of a Gaussian is more concentrated than a Gaussian).
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Of particular interest would be to understand optimal transportation as di-
mension goes to infinity. Since convex potentials are very stable objects, this would
provide, under some circumstances, an “infinite dimensional” change of variables
formula between probability densities.

d) Finally, one of my favorite problems is to understand the geometry of
optimal transportation in the case in which the cost function C(X —~ Y) is still
strictly convex, but not quadratic. In that case, the optimal map is still related to
a potential that satisfies

det(I + D(F; (V) = ---

where Fj is now the gradient of the convex conjugate to C.

At this point, we have come full circle and we are now in a higher hierarchy,
in a sort of Lagrangian version of the Euler-Lagrange equation from the calculus of
variations.

In fact if we put an epsilon in front of D and linearize,

det(I+eD(F;(V4)))) = 1+ Trace(D(Fj(Vi))))+0(e?) = 1+¢ div F; (V) +0(e?).

Bibliographical references can be found in the books of J. Gilbarg-N. Trudinger,
L.C. Evans and L.A. Caffarelli-X. Cabre for nonlinear PDE’s; T. Aubin, 1. Bakel-
man and C. Gutierrez for the Monge-Ampere equation, and the recent surveys by
L. Ambrosio and C. Villani for optimal transportation.
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Non-linear Partial Differential Equations
in Conformal Geometry*
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0. Introduction

In the study of conformal geometry, the method of elliptic partial differential
equations is playing an increasingly significant role. Since the solution of the Yam-
abe problem, a family of conformally covariant operators (for definition, see section
2) generalizing the conformal Laplacian, and their associated conformal invariants
have been introduced. The conformally covariant powers of the Laplacian form a
family Py with k£ € N and k < 3 if the dimension n is even. Each P has leading
order term (— A)* and is equal to (— A)* if the metric is flat.

The curvature equations associated with these Py operators are of interest in
themselves since they exhibit a large group of symmetries. The analysis of these
equations is of necessity more complicated, it typically requires the derivation of
an optimal Sobolev or Moser-Trudinger inequality that always occur at a critical
exponent. A common feature is the presence of blowup or bubbling associated to
the noncompactness of the conformal group. A number of techniques have been
introduced to study the nature of blowup, resulting in a well developed technique
to count the topological degree of such equations.

The curvature invariants (called the Q-curvature) associated to such operators
are also of higher order. However, some of the invariants are closely related with
the Gauss-Bonnet-Chern integrand in even dimensions, hence of intrinsic interest
to geometry. For example, in dimension four, the finiteness of the Q-curvature
integral can be used to conclude finiteness of topology. In addition, the symmetric
functions of the Ricci tensor appear in natural fashion as the lowest order terms of
these curvature invariants, these equations offer the possibility to analyze the Ricci
tensor itself. In particular, in dimension four the sign of the @-curvature integral
can be used to conclude the sign of the Ricci tensor. Therefore there is ample
motivation for the study of such equations.
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In the following sections we will survey some of the development in the area
that we have been involved. We gratefully acknowledge the collaborators that we
were fortunate to be associated with.

1. Prescribing Gaussian curvature on compact sur-
faces and the Yamabe problem

In this section we will describe some second order elliptic equations which have
played important roles in conformal geometry.

On a compact surface (M, g) with a Riemannian metric g, a natural curvature
invariant associated with the Laplace operator A = A, is the Gaussian curvature
K = K,. Under the conformal change of metric g,, = €**g, we have

~Aw + K = K,e®™ on M (LD

where K, denotes the Gaussian curvature of (M, g,,). The classical uniformization
theorem to classify compact closed surfaces can be viewed as finding solution of
equation (1.1) with K, = —1, 0, or 1 according to the sign of [ Kdv,. Recall that
the Gauss-Bonnet theorem states

/ Ky dv,, =27 (M) (1.2)
M

where y(M) is the Euler characteristic of M, a topological invariant. The variational
functional with (1.1) as Euler equation for K, = constant is thus given by

fM dug, .
fM duy

When the surface (M, g) is the standard 2-sphere S? with the standard canoni-
cal metric, the problem of prescribing Gaussian curvature on 8% is commonly known
as the Nirenberg problem. For general compact surface M, Kazdan and Warner
([57]) gave a necessary and sufficient condition for the function when x(M) =0 and
some necessary condition for the function when x(M) < 0. They also pointed out
that in the case when x(M) > 0, i.e. when (M, g) = (S?, g.), the standard 2-sphere
with the canonical metric g = g., there is an obstruction for the problem:

Jw] = /M [Vw|*dv, + Q/M Kwdvg — (/M Kdvg)log (1.3)

VK, Vz e®dv, =0 (1.4)
5’2

where z is any of the ambient coordinate function. Moser ([63]) realized that this
implicit integrability condition is satisfied if the conformal factor has antipodal
symmetry. He proved for an even function f, the only necessary condition for (1.1)
to be solvable with K, = f is that f be positive somewhere. An important tool
introduced by Moser is the following inequality ([62]) which is a sharp form of an
carlier result of Trudinger ([80]) for the limiting Sobolev embedding of W™ into
the Orlicz space eL’: Let w be a smooth function on the 2-sphere satisfying the
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normalizing conditions: [, [Vw|?dv, < 1 and @ = 0 where @ denotes the mean
value of w, then

/ Py, < C (1.5)
52

where § < 4w and C is a fixed constant and 4x is the best constant. If w has
antipodal symmetry then the inequality holds for g < &x.

Moser has also established a similar inequality for functions u with compact
support on bounded domains in the Euclidean space R” with the W™ energy norm
J IVu|™dz finite. Subsequently, Carleson and Chang ([14]) found that, contrary to
the situation for Sobolev embedding, there is an extremal function realizing the
maximum value of the inequality of Moser when the domain is the unit ball in
Fuclidean space. This fact remains true for simply connected domains in the plane
(Fliicher [43]), and for some domains in the n-sphere (Soong [77]).

Based on the inequality of Moser and subsequent work of Aubin ([3] and
Onofri ([64]), we devised a degree count ([26], [27], [16]) associated to the function
f and the Mobius group on the 2-sphere, that is motivated by the Kazdan-Warner
condition (1.4). This degree actually computes the Leray-Schauder degree of the
equation (1.1) as a nonlinear Fredholm equation. In the special case that f is a
Morse function satisfving the condition Af(z) # 0 at the critical points « of f, this
degree can be expressed as:

oo (-pym@ . (1.6)

YV f(g)=0,Af(q)<0

The latter degree count is also obtained later by Chang-Liu ([15]) and Han ([54]).
There is another interesting geometric interpretation of the functional J given
by Ray-Singer ([73]) and Polyakov ([71]}); (see also Okikiolu [67])

det A,

Jw

(L.7)
for metrics g, with the volume of g,, equals the volume of g; where the determinant
of the Laplacian det A, is defined by Ray-Singer via the “regularized” zeta function.
In [64], (see also Hong [55]), Onofri established the sharp inequality that on the
2-sphere J[w] > 0 and J[w] = 0 precisely for conformal factors w of the form
e?Wgy = T*ge where T is a Mobius transformation of the 2-sphere. Later Osgood-
Phillips-Sarnak ([65], [66]) arrived at the same sharp inequality in their study of
heights of the Laplacian. This inequality also plays an important role in their proof
of the O™ compactness of isospectral metrics on compact surfaces.

The formula of Polyakov-Ray-Singer has been generalized to manifolds of di-
mension greater than two in many different settings; one of which we will discuss
in section 2 below. There is also a general study of extremal metrics for det A,
or det L, for metrics g in the same conformal class with a fixed volume or for all
metrics with a fixed volume([5], [8], [7], [72], [68]). A special case of the remarkable
results of Okikiolu ([68]) is that among all metrics with the same volume as the
standard metric on the 3-sphere, the standard canonical metric is a local maximum
for the functional det A,.
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More recently, there is an extensive study of a generalization of the equation
(1.1) to compact Riemann surfaces. Since Moser’s argument is readily applicable
to a compact surface (M, g), a lower bound for similarly defined functional J on
(M, g) continues to hold in that situation. The Chern-Simons-Higgs equation in the
Abelian case is given by:

N
Aw = pe*V(e*” — 1) + 2%2(5,%. (1.8)
=1
A closely related equation is the mean field equation:
he*v
Aw + p(fhegw -1)=0, (1.9)

where p is a real parameter that is allowed to vary.

There is active development on these equations by several group of researchers
including ([13], [36], [79], [78], [31]).

On manifolds (M7, ¢) for n greater than two, the conformal Laplacian L, is
defined as L, = —¢, A + R, where ¢,, = 4:_—21), and R, denotes the scalar curvature
of the metric g. An analogue of equation (1.1) is the equation, commonly referred
to as the Yamabe equation, which relates the scalar curvature under conformal
change of metric to the background metric. In this case, it is convenient to denote
the conformal metric as § = wnez g for some positive function u, then the equation
becomes

™

Lyu = Ruw>. (1.10)

The famous Yamabe problem to solve (1.10) with R a constant has been settled by
Yamabe ([85]), Trudinger ([81]), Aubin ([2]) and Schoen ([74]). The correspond-
ing problem to prescribe scalar curvature has been intensively studied in the past
decades by different groups of mathematicians, we will not be able to survey all the
results here. We will just mention that the degree theory for existence of solutions
on the n-sphere has been achieved by Bahri-Coron ([4]), Chang-Gursky-Yang ([16])
and Schoen-Zhang ([75]) for n = 3 and under further constraints on the functions
for n > 4 by Y. Li ([539]) and by C-C. Chen and C.-S. Lin ([32]).

2. Conformally covariant differential operators and
the ()-curvatures

It is well known that in dimension two, under the conformal change of metrics
guw = €2¥g, the associated Laplacians are related by

A, =e WA, (2.1)
Similarly on (M™, g), the conformal Laplacian L = —%A + R transforms under
the conformal change of metric g = uwe g:

Ly =u""2Lg(u) (2.2)
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In general, we call a metrically defined operator A conformally covariant of
bidegree (a,b), if under the conformal change of metric g, = e*g, the pair of
corresponding operators A, and A are related by

Au(p) = e A(e™p) forall e CF(M™).

Note that in this notation, the conformal Laplacian opertor is conformally covariant
of bidegree (252, 2£2)

There are many operators besides the Laplacian A on compact surfaces and
the conformal Laplacian L on general compact manifold of dimension greater than
two which have the conformal covariance property. We begin with the fourth order

operator on 4-manifolds discovered by Paneitz ([70]) in 1983 (see also [37]):

2
Po=Ap+0 (gRg - 2Ric> dy

where § denotes the divergence, d the deRham differential and Ric the Ricci tensor of
the metric. The Paneitz operator P (which we will later denote by P, ) is conformally

covariant of bidegree (0,4) on 4-manifolds, i.e.
P, (p) = e P, (p) foral ¢eC®(M?).

More generally, T. Branson ([6]) has extended the definition of the fourth order
operator to general dimensions n # 2; which we call the conformal Paneitz operator:

-4

Pf:A2+6(anRg+bnRic)d+n2 Qr (2.3)

where )
n — e |Ric|? WR2 — —__A 24

QF = ¢y |Ric)” + dpR 3 =1) R, (2.4)
and
o = (n—2)%2+4 _ 4 o2 J _ n®—4n® +16n - 16
T 2n-1D(n-2)""  a-2""""" m-22""" 8n-1)%(n-2)2

The conformal Paneitz operator is conformally covariant of bidegree (252, 244). As

in the case of the second order conformally covariant operators, the fourth order
Paneitz operators have associated fourth order curvature invariants @): in dimension
n = 4 we write the conformal metric g, = €**g; Q = Q, = 1(Q1)4, then

Puw +2Q = 2Q,,¢e" (2.5)
and in dimensions n # 1,2,4 we write the conformal metric as g = uwea g:
Pru = Quna. (2.6)

In dimension n = 4 the Q-curvature equation is closely connected to the Gauss-
Bonnet-Chern formula:

dm? (M) = / Q+ ézwzg) dv 2.7)
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where W denotes the Weyl tensor, and the quantity |W|?dv is a pointwise conformal
invariant. Therefore the @-curvature integral [ Qdv is a conformal invariant. The
basic existence theory for the (J-curvature equation is outlined in [28]:

Theorem 2.1. If [ Qdv < 872 and the P operator is positive except for constants,
then equation (2.5) may be solved with Qg given by a constant.

It is remarkable that the conditions in this existence theorem are shown by
M. Gursky ([51]) to be a consequence of the assumptions that (M, g) has positive
Yamabe invariant!, and that [@Qdv > 0. In fact, he proves that under these con-
ditions P is a positive operator and [ Qdv < 87? and that equality can hold only
if (M, g) is conformally equivalent to the standard 4-sphere. This latter fact may
be viewed as the analogue of the positive mass theorem that is the source for the
basic compactness result for the Q-curvature equation as well as the associated fully
nonlinear second order equations that we discuss in section 4. Gursky’s argument
is based on a more general existence result in which we consider a family of 4-th
order equations
M|W)? + 1Q — AR =k - Vol ™* (2.8)

where k = [(71|W|?+12Q)dv. These equations typically arise as the Euler equation
of the functional determinants. For a conformally covariant operator A of bidegree
(a,b) with b — a = 2 Branson and Orsted ([9]) gave an explicit computation of the

normalized form of log dsgtfi;' which may be expressed as:

Flw] = yIw] + v IIw] + 3 I T w] (2.9)

where 71,72,y are constants depending only on A and

Iw] = /zm wdv — (/ zwz%) log #,

Iw] = (Pw,w) +4/dev- (/ de) log fji:dv’

Iw (/ R dv,, — /R dv>

In [28], we gave the general existence result:

Theorem 2.2. If the functional F satisfies vo > 0, 743 > 0, and k < 8y»7?, then

iaf2 , Flw] is attained by some function wy and the metric g4 = e*Vigy satisfies
weW?

the equation B
YW + 92 Qa — v3AqRy = k- Vol(ga) ™. (2.10)

Fuyrthermore, gq is smooth.

'The Yamabe invariant Y (M, g) is defined to be Y (M, g) = infy, m ; where n denotes
vol(gw) 7
the dimension of M. Y(M, g) is confomally invariant and the sign of Y(M, g) agrees with that of

the first eigenvalue of L.
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This existence result is based on extensions of Moser’s inequality by Adams
([1], on manifolds [40]) to operators of higher order. In the special case of (M*,g),
the inequality states that for functions in the Sobolev space W?22(M) with
S (Aw)?dvg < 1, and @ = 0, we have

/ 27 gy, < O, (2.11)
M

for some constant C. The regularity for minimizing solutions was first given in [17],
and later extended to all solutions by Uhlenbeck and Viaclovsky ([82]). There are
several applications of these existence result to the study of conformal structures in
dimension n = 4. In section 4 we will discuss the use of such fourth order equation
as regularization of the more natural fully nonlinear equation concerned with the
Weyl-Schouten tensor. Here we will mention some elegant application by M. Gursky
([50]) to characterize a number of extremal conformal structures.

Theorem 2.3. Suppose (M, g) is a compact oriented manifold of dimension four
with positive Yamabe invariant.

(i) If [ Qqdvg =0, and if M admits a non-zero harmonic 1-form, then (M,g) is
conformal equivalent to a quotient of the product space S® x R. In particular (M, g)
is locally conformally flot.

(i) If by > 0 (i.e. the intersection form has a positive element), then with respect to
the decompostion of the Weyl tensor into the self dual and anti-self dual components
W=Wwtew-,

2

4
g (2x + 37), (2.12)

[ s, >

where 7 is the signature of M. Moreover the equality holds if and only if g is
conformal to o (positive) Kahler-Einstein metric.

In dimensions higher than four, the analogue of the Yamabe equation for the
fourth order Paneitz equation is being investigated by a number of authors. In par-
ticular, Djadli-Hebey-Ledoux ([34]) studied the question of coercivity of the opera-
tors P as well as the positivity of the solution functions, Djadli-Malchiodi-Ahmedou
([35]) have studied the blowup analysis of the Paneitz equation. In dimension three,
the fourth order Paneitz equation involves a negative exponent, there is now an ex-
istence result ([84]) in case the Paneitz operator is positive.

In general dimensions there is an extensive theory of local conformal invariants
according to the theory of Fefferman and Graham ([41]). For manifolds of general
dimension n, when n is even, the existence of a n-th order operator P, conformally
covariant of bidegree (0,n) was verified in [45]. However it is only explicitly known
on the standard Euclidean space R” and hence on the standard sphere S”. For
all n, on (87, g), there also exists an n-th order (pseudo) differential operator P,
which is the pull back via sterographic projection of the operator (—A)™? from R™
with Euclidean metric to (57, g). P, is conformally covariant of bi-degree (0, n),
ie. (Pn)w = e ™P,. The explicit formulas for P,, on 5™ has been computed in
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Branson ([7]) and Beckner ([5]):

For n even P, :H,ﬁ(—A%Jc(n—k-l)),

2

142 1/2 n—3
For n odd P, :<—A+(" )) 120 (=A+k(n -k —1)).

2

(2.13)

Using the method of moving planes, it is shown in [29] that all solutions of the
(pseudo-) differential equation:

Pow + (n— D! = (n - Dle™ (2.14)

are given by actions of the conformal group of S”. As a consequence, we derive ([28])
the sharp version of a Moser-Trudinger inequality for spheres in general dimensions.
This inequality is equivalent to Beckner’s inequality ([5]).

log ﬁ /S U < ﬁ /S (nw + ﬁw}?n(w))dv, (2.15)

and equality holds if and only if ™ represents the Jacobian of a conformal trans-
formation of S™.

In a recent preprint, S. Brendle is able to derive a general existence result for
the prescribed (-curvature equation under natural conditions:

Theorem 2.4. ([10]) For a compact manifold (M>™,g) satisfying
(i) Psy, be positive except on constants,

(ii) fM Qgdvy < Cop, where Cayy represents the velue of the corresponding Q-
curvature integral on the standard sphere (S*™, g.), the equation Pypw + Q =
Q2™ has a solution with Q., given by a constant.

Brendle’s remarkable argument uses a 2m-th order heat flow method in which
again inequality of Adams ([1]) (the only available tool) is used.

In another recent development, the n-th order ()-curvature integral can be in-
terpreted as a renormalized volume of the conformally compact manifold (N"*1, )
of which (M™,g) is the conformal infinity. In particular, Graham-Zworski ([46])
and Fefferman-Graham ([42]) have given in the case n is an even integer, a spectral
theory interpretation to the n-th order @-curvature integral that is intrinsic to the
boundary conformal structure. In the case n is odd, such an interpretation is still
available, however it may depend on the conformal compactification.

3. Boundary operator, Cohn-Vossen inequality

To develop the analysis of the @-curvature equation, it is helpful to consider the
associated boundary value problems. In the case of compact surface with boundary
(N2, M, g) where the metric g is defined on N? U M'; the Gauss-Bonnet formula
becomes

2rx(N) = /NK dv + j{Mk do, (3.1
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where & is the geodesic curvature on M. Under conformal change of metric g,, on
N, the geodesic curvature changes according to the equation

0
Y +k = kye" on M. (3.2)
Ray-Singer-Polyakov log-determinant formula has been generalized to compact sur-
face with boundary and the extremal metric of the formula has been studied by
Osgood-Phillips-Sarnak ([66]). The role played by the Onofri inequality is the clas-
sical Milin-Lebedev inequality:

~df 1 dx Jw db
(w—ay 0 1 A Ow df
logﬁqe 2W_4(/Dw( Aw)7r +2£1w8n27r>’ (3.3)

where D is the unit disc on R? with the flat metric dz, and n is the unit outward
normal.

One can generalize above results to four manifold with boundary (N4, M3, g);
with the role played by (~A, %) replaced by (P, P3) and with (K, k) replaced by
(Q,T); where Py is the Paneitz opertor and ¢ the curvature discussed in section 2;
and where Pj is the boundary operator constructed by Chang-Qing ([22]). The key
property of P; is that it is conformally covariant of bidegree (0, 3), when operating
on functions defined on the boundary of compact 4-manifolds; and under conformal
change of metric § = g on N* we have at the boundary M?3

Pow+ T = T,e®™. (3.4)

We refer the reader to [22] for the precise definitions of P3 and T and will here only
mention that on (B, S%,dx), where B? is the unit ball in R?, we have

_ 2 — 12 ~2 A —
Py =(-A), 3= (2 8nA+A8n+A> and T = 2, (3.5)

where A is the intrinsic boundary Laplacian on M.
In this case the Gauss-Bonnet-Chern formula may be expressed as:

Ay (N) = /N(Q + ézwﬁ) v +7§M(T+£) do, (3.6)

where £ is a third order boundary curvature invariant that t ransforms by scaling
under conformal change of metric. The analogue of the sharp form of the Moser-
Trudinger inequality for the pair (B*, 83, dx) is given by the following analogue of
the Milin-Lebedev inequality:

Theorem 3.1. ([23]) Suppose w € C>°(B*). Then

1 _
1 . 3(w—w)
og { 52 j{;s e da}

3 o ow 0w
< B - i
162{/4@0& wd:r—}—jgs (2wP3w n—}— n2>da}, (3.7)
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under the boundary assumptions g—’:igs =e% —1 and fss Rydo,, = fss Rdo where
R is the scalar curvature of S°. Moreover the equality holds if and only if edx on
B* is isometric to the standard metric via a conformal transformation of the pair

(B, S3,dx).

The boundary version (3.6) of the Gauss-Bonnet-Chern formula can be used to
give an extension of the well known Cohn-Vossen-Huber formula. Let us recall ([33],
[56]) that a complete surface (N?,g) with Gauss curvature in L' has a conformal
compactification N = N U {qi, ..., q;} as a compact Riemann surface and

l
2y (N) = /N KA+ 3w, (3.8)
k=1

where at each end gz, take a conformal coordinate disk {|z]| < ro} with ¢ at its
center, then vy, represents the following limiting isoperimetric constant:

v, = lim Length({|z| = r})g
kS0 24rea({r < |z| <ro})’

(3.9)

This result can be generalized to dimension n = 4 for locally conformally flat
metrics. In general dimensions, Schoen-Yau ([76]) proved that locally conformally
flat metrics in the non-negative Yamabe class has injective development map into
the standard spheres as domains whose complement have small Hausdorf dimension
(at most ";2). It is possible to further constraint the topology as well as the end
structure of such manifolds by imposing the natural condition that the Q-curvature
be in L'.

Theorem 3.2. ([24], [25]) Suppose (M*, g) is a complete conformally flat manifold,
satisfying the conditions:

(i) The scalar curvature R, is bounded between two positive constants and VR is
also bounded;

(ii) The Ricci curvature is bounded below;

(iii) [y |Qqldvg < 00;

then

(a) if M is simply connected, it is conformally equivalent to S* —{q,...,q} and we
have

47? x(M) = /M Qy dvy, + 477l ; (3.10)

(b) if M is not simply connected, and we assume in addition that its fundamental
group is realized as a geometrically finite Kleinian group, then we conclude that M
has a conformal compactification M = M U{q,...,q} and equation (3.10) holds.

This result gives a geometric interpretation to the @-curvature integral as
measuring an isoperimetric constant. There are two elements in this argument.
The first is to view the Q-curvature integral over sub-level sets of the conformal
factors as the second derivative with respect to w of the corresponding volume
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integral. This comparison is made possible by making use of the formula (3.4). A
second element is an estimate for conformal metrics e?*|dz|? defined over domains
) C R* satisfying the conditions of Theorem 3.2 must have a uniform blowup rate

near the boundary:
1

v e — 3.11
d{x,00) (3.11)
This result has an appropriate generalization to higher even dimensional situation,
in which one has to impose additional curvature bounds to control the lower order
terms in the integral. One such an extension is obtained in the thesis of H. Fang
([39]).
It remains an interesting question how to extend this analysis to include the
case when the dimension is an odd integer.

4. Fully nonlinear equations in conformal geometry
in dimension four

In dimensions greater than two, the natural curvature invariants in conformal
geometry are the Weyl tensor W, and the Weyl-Schouten tensor A = Ric - ML—D g
that occur in the decomposition of the curvature tensor; where Ric denotes the
Ricci curvature tensor:

i, 1

Since the Weyl tensor W transforms by scaling under conformal change g,, = €*¥g,
only the Weyl-Schouten tensor depends on the derivatives of the conformal factor.
It is thus natural to consider o4 (Ay) the k-th symmetric function of the eigenvalues
of the Weyl-Schouten tensor A, as curvature invariants of the conformal metrics.
As a differential invariant of the conformal factor w, ox(A4,,) is a fully nonlinear
expression involving the Hessian and the gradient of the conformal factor w. We
have abbreviating 4,, for 4, :

v 2

Ay = (n—2){-V?w + dw @ dw — %}—f—Ag. (4.2)

The equation
op(Ay) =1 (4.3)
is a fully nonlinear version of the Yamabe equation. For example, when £k = 1,
o1(4,) = 2&——_21)1%9, where R, is the scalar curvature of (M, g) and equation (4.3) is
the Yamabe equation which we have discussed in section 1. When k = 2, 02(4,) =
(| Trace Ay — |A,4%) = s i - +|Ricl?. In the case when k = n, 0,(4,) =
determinant of Ay, an equation of Monge-Ampere type. To illustrate that (4.3) is

a fully non-linear elliptic equation, we have for example when n = 4,
02(4,)e™ = 0(A,) +2((Aw)® — [VZul?
+ (Vw, VIVw|?) + Aw|Vw|?) (4.4)

+lower order terms,
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where all derivative are taken with respect to the g metric.

For a symmetric n x n matrix M, we say M € '} in the sense of Garding
([44]) if 0, (M) > 0 and M may be joined to the identity matrix by a path consisting
entirely of matrices M, such that ox(M;) > 0. There is a rich literature conerning
the equation

or(VPu) = f, (4.5)

for a positive function f. In the case when M = (V?u) for convex functions u
defined on the Euclidean domains, regularity theory for equations of o (M) has been
well established for M € F;if for Dirichlet boundary value problems by Caffarelli-
Nirenberg-Spruck ([12]); for a more general class of fully non-linear elliptic equations
not necessarily of divergence form by Krylov ([58]), Evans ([38]) and for Monge-
Ampere equations by Pogorelov ([69]) and by Caffarelli ([11]). The Monge-Ampere
equation for prescribing the Gauss-Kronecker curvature for convex hypersurfaces
has been studied by Guan-Spruck ([47]). Some of the techniques in these work can
be modified to study equation (4.3) on manifolds. However there are features of the
equation (4.3) that are distinct from the equation (4.5). For example, the conformal
invariance of the equation (4.3) introduces a non-compactness due to the action of
the conformal group that is absent for the equation (4.5).

When k # % and the manifold (M, g) is locally conformally flat, Viaclovsky
([83]) showed that the equation (4.3} is the Euler equation of the variational func-
tional [ o4 (Ag, )dvg, . In the exceptional case k = n/2, the integral [ox(Ay)dv, is
a conformal invariant. We say g € F;if if the corresponding Weyl-Schouten tensor
Ay(z) € T for every point # € M. For k = 1 the Yamabe equation (1.10) for
prescribing scalar curvature is a semilinear one; hence the condition for g € T'T is
the same as requiring the operator L, = -%Ag + R, be a positive operator.
The existence of a metric with g € I} implies a sign for the curvature functions
(152, 18], [48).

Proposition 4.1. On (M", g),

(i) When n =3 and 02(Ay) > 0, then either R, > 0 and the sectional curvature of
g is positive or Ry < 0 and the sectional curvature of g is negative on M.

(ii) When n = 4 and 02(Ay) > 0, then either Ry > 0 and Ricg > 0 on M or Ry <0
and Ricy <0 on M.

(iii) For general n and A, € T} for some k > 2, then Ric, > 0.

In dimension 3, one can capture all metrics with constant sectional curvature
(i.e. space forms) through the study of o2.

Theorem 4.2. ([52]) On a compact 3-manifold, for any Riemannien metric g,
denote Fslg] = [, 02(Ag)dv,. Then o metric g with Fslg] > 0 is critical for the
functional Fo restricted to class of metrics with volume one if and only if g has
constant sectional curvature.

The criteria for existence of a conformal metric g € F}if is not as easy for
k > 1 since the equation is a fully nonlinear one. However when n = 4,k = 2 the
invariance of the integral [ o2(Ay)dv, is a reflection of the Chern-Gauss-Bonnet
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formula 1
82y (M) = / (72(Ag) + 7IW, ). (4.6)
M
In this case it is possible to find a criteria:

Theorem 4.3. ([18))For a closed 4-manifold (M,g) satisfying the following con-
formally invariant conditions:

(i) Y(M,g) > 0, and

(ii) [ o2(Ay)dv, > 0;

then there erists a conformal metric g, € Ty .

Remark. In dimension four, the condition g € T'J implies that R > 0 and Ricci
is positive everywhere. Thus such manifolds have finite fundamental group. In
addition, the Chern-Gauss-Bonnet formula and the signature formula shows that
this class of 4-manifolds satisfy the same conditions as that of an Einstein manifold
with positive scalar curvatures. Thus it is the natural class of 4-manifolds in which
to seek an Einstein metric.

The existence result depends on the solution of a family of fourth order equa-
tions involving the Paneitz operator ([70]), which we have discussed in section 2. In
the following we briefly outline this connection. Recall that in dimension four, the
Paneitz operator P a fourth order curvature called the Q-curvature:

Pyw +2Q, = 2Q,,e*. (4.7
The relation between @ and o9(A) in dimension 4 is given by

-1 1
Qg = EARQ o+ 502(449). (4.8)
In view of the existence results of Theorem 2.1 and Theorem 2.2, it is natural

to find a solution of
02(4,) = (4.9)
for some positive function f. It turns out that it is natural to choose f = ¢|W,|? for

some constant ¢ and to use the continuity method to solve the family of equations

(*)5 : O'f)(Ag) = %AQRQ — 2’7”@}%2 (410)

where 7 is chosen so that [ ay(A,)dv, = =27 [ |W,|?dv,, for 6 € (0,1] and let §
tend to zero.

Indeed when § = 1, solution of (4.10) is a special case of an extremal metric of
the log-determinant type functional F[w] in Theorem 2.2, where we choose y2 = 1,
3 = i, we then choose ¥ = 7, so that & = 0. Notice that in this case, the
assumption (i) in the statement of Theorem 4.3 implies that v < 0. When 6 = 2,
equation (4.10) amounts to solving the equation

Qg = W, (4.11)

which we can solve by applying Theorem 2.1. Thus the bulk of the analysis consist
in obtaining apriori estimates of the solution as ¢ tends to zero, showing essentially
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that in the equation the term gAR is small in the weak sense. The proof ends by
first modifying the function |W|? to make it strictly positive and by then applying
the Yamabe flow to the metrics g5 to show that for sufficiently small § the smoothing
provided by the Yamabe flow yields a metric g € T'J.

The equation (4.3) becomes meaningful for 4-manifolds which admits a metric
g € T'T. In the article ([19]), when the manifold (M, g) is not conformally equivalent
to (8%, 9.), we provide apriori estimates for solutions of the equation (4.9) where
f is a given positive smooth function. Then we apply the degree theory for fully
non-linear elliptic equation to the following 1-parameter family of equations

oa(Ag) = tf+(1—1) (4.12)

to deform the original metric to one with constant o2(A,).

In terms of geometric application, this circle of ideas may be applied to char-
acterize a number of interesting conformal classes in terms of the the relative size
of the conformal invariant [ (Ag)dV, compared with the Euler number.

Theorem 4.4. ([21]) Suppose (M,g) is a closed {-manifold with Y (M, g) > 0.

(1) If [, 02(Ag)dvg > 1[5, [W,|? dvg, then M is diffeomorphic to (54, gc) or
(RP*, ge).

(I1I) If M is not diffeomorphic to (S*,g.) or (RP*,g.) and [,, 02(Ay)dv, =
1 Ja |Wy? dug, then either

(a) (M,g) is conformally equivalent to (CP?,grs), or

(b) (M,g) is conformal equivalent to ((S® x SY)/T, gprod)-

Remark. The theorem above is an L? version of an earlier result of Margerin [61].
The first part of the theorem should be compared to a result of Hamilton ([53]);
where he pioneered the method of Ricci flow and established the diffeomorphism of
M* to the 4-sphere under the assumption that the curvature operator be positive.

This first part of Theorem 4.4 applies the existence argument to find a con-
formal metric ¢’ which satisfies the pointwise inequality

1
o2(Ay) > ZWQ,F. (4.13)

The diffeomorphism assertion follows from Margerin’s ([61]) precise convergence
result for the Ricci flow: such a metric will evolve under the Ricci flow to one with
constant curvature. Therefore such a manifold is diffeomorphic to a quotient of the
standard 4-sphere.

For the second part of the assertion, we argue that if such a manifold is not
diffeomorphic to the 4-sphere, then the conformal structure realizes the minimum
of the quantity [ |W,|?dv,, and hence its Bach tensor vanishes. There are two
possibilities depending on whether the Euler number is zero or not. In the first
case, an earlier result of Gursky ([30]) shows the metric is conformal to that of the
space S1 x §3. In the second case, we solve the equation

1—¢

02(‘49/) = 4

Wy l* + C., (4.14)
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where C, is a constant which tend to zero as € tend to zero. We then let € tends to

zero. We obtain in the limit a C'»! metric which satisfies the equation on the open
set ) = {a|W(x) # 0}:

oa(Ay) = %zwg,zg. (4.15)

Then a Lagrange multiplier computation shows that the curvature tensor of the
limit metric agrees with that of the Fubini-Study metric on the open set where
W # 0. Therefore |IW,/| is a constant on { thus W cannot vanish at all. It follows
from the Cartan-Kahler theory that the limit metric agrees with the Fubini-Study
metric of CP? everywhere.

There is a very recent work of A. Li and Y. Li ([60]) extending work of ([20])
to classify the entire solutions of the equation ¢(A,) = 1 on R” thus providing
apriori estimates for this equation in the locally conformally flat case. There is also
a very recent work ([49]) on the heat flow of this equation, we have ([30]) used this
flow to derive the sharp version of the Moser-Onofri inequality for the oz energy
for all even dimensional spheres. In general, the geometric implications of the study
of oy, for manifolds of dimension greater than four remains open.
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Abstract

Classical multiscale analysis based on wavelets has a number of successful
applications, e.g. in data compression, fast algorithms, and noise removal.
Wavelets, however, are adapted to point singularities, and many phenom-
ena in several variables exhibit intermediate-dimensional singularities, such
as edges, filaments, and sheets. This suggests that in higher dimensions,
wavelets ought to be replaced in certain applications by multiscale analysis
adapted to intermediate-dimensional singularities,

My lecture described various initial attempts in this direction. In partic-
ular, I discussed two approaches to geometric multiscale analysis originally
arising in the work of Harmonic Analysts Hart Smith and Peter Jones (and
others): (a) a directional wavelet transform based on parabolic dilations; and
(b) analysis via anistropic strips. Perhaps surprisingly, these tools have po-
tential applications in data compression, inverse problems, noise removal, and
signal detection; applied mathematicians, statisticians, and engineers are ea-
gerly pursuing these leads.

Note: Owing to space constraints, the article is a severely compressed
version of the talk. An extended version of this article, with figures used in
the presentation, is available online at:

hitp://www-stat. stanford. edu/~donoho /Lectures /ICM2002
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1. Prologue

Since the last ICM, we have lost three great mathematical scientists of the
twentieth century: Alberto Pedro Calderdn (1922-1999), John Wilder Tukey (1915-
2000) and Claude Elwood Shannon (1916-2001). Although these three are not
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typically spoken of as a group, I find it fitting to mention these three together
because each of these figures symbolizes for me one aspect of the unreasonable
effectiveness of harmonic analysis.

Indeed we are all aware of the birth of harmonic analysis in the nineteenth
century as a tool for understanding of the equations of mathematical physics, but it
is striking how the original tools of harmonic analysis have frequently (a) changed,
and (b) been applied in ways the inventors could not have anticipated. Thus, (a)
harmonic analysis no longer means ‘Fourier Analysis’ exclusively, because wavelet
and other forms of decompositions have been invented by modern harmonic analysts
(such as Calderén); and (b) harmonic analysis finds extensive application outside
of mathematical physics, as a central infrastructural element of the modern infor-
mation society, because of the ubiquitous applications of the fast Fourier transform
(after Tukey) and Fourier transform coding (after Shannon).

There is a paradox here, because harmonic analysts are for the most part
not seeking applications, or at any rate, what they regard as possible applications
seem not to be the large-scale applications that actually result. Hence the impact
achieved by harmonic analysis has often not been the intended one After meditat-
ing for a while on what seems to be the ‘unreasonable’ effectiveness of harmonic
analysis, I have identified what seems to me a chain of argumentation that renders
the ‘unreasonable’ at least ‘plausible’. The chain has two propositions:

o Information has its own architecture. Each data source, whether imagery,
sound, text, has an inner architecture which we should attempt to discover
and exploit for applications such as noise removal, signal recovery, data com-
pression, and fast computation.

o Harmonic Analysis is about inventing and exploring architectures for infor-
mation. Harmonic analysts have always created new architectures for decom-
position, rearrangement and reconstruction of operators and functions.

In short, the inventory of architectures created by harmonic analysis amounts to an
intellectual patrimony which modern scientists and engineers can fruitfully drow
upon for inspiration as they pursue applications. Although there is no necessary
connection between the architectures that harmonic analysts are studying and the
architectures that information requires, it is important that we have many examples
of useful architectures available, and harmonic analysis provides many of these.
Occasionally, the architectures already inventoried by harmonic analysts will be
exactly the right ones needed for specific applications.

I stress that the ‘externally professed goals’ of harmonic analysis in recent
decades have always been theorems, e.g. about the almost everywhere convergence
of Fourier Series, the boundedness of Bochner-Riesz summation operators, or the
boundedness of the Cauchy integral on chord-arc curves. These externally professed
goals have, as far as I know, very little to do with applications where harmonic
analysis has had wide scale impact. Nevertheless, some harmonic analysts are aware
of the architectural element in what they do, and value it highly. As R.R. Coifman
has pointed out to me in private communication:

“The objective of Zygmund, Calderén and their school was not the
establishment of new theorems by any means possible. It was often to
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take known results that seemed like magic — e.g. because of the way
they used complex variables methods — and tear them apart, finding
the underlying structures and their inner interactions that made it abso-
lutely clear what was going on. The test of understanding was measured
by the ability to prove an estimate.”

In short, the goal was to find the right architecture, not merely to find the
right estimate.

2. Overview

In my lecture, I was able to discuss the possibility that a coherent subject
of Geometric Multiscale Analysis (GMA) can be developed — a subject spanning
both mathematics and a wide range of applications. It is at this point unclear what
the boundaries of the subject will be, but perhaps the speculative nature of what
I had to say will excite the interest of some readers. I found it useful to orga-
nize the presentation around the Calderén reproducing formula, which gave us the
continuous wavelet transform, but also can be adapted to give us other multiscale
transforms with interesting geometric aspects. The several different information
architectures I described give an intuitive understanding of what GMA might con-
sist of. In the article below, I will review some of the achievements of classical
1-dimensional multiscale analysis (wavelet analysis) starting in the 1980’s, both the
mathematical achievements and the extensive applications; then I will as a warm-up
discuss reasons that we need alternatives to 1-dimensional multiscale analysis and
its straightforward d-dimensional extensions, and some ideas such as ridgelets, that
point in the expected directions. In my lecture, I was able to discuss two harmonic
analysis results of the 1990’s — Hart Smith’s “Hardy space for FIO’s” and Peter
Jones’ “Travelling Salesman” theorem. Both results concern the higher-dimensional
setting, where it becomes possible to bring in geometric ideas. I suggested that,
in higher dimensions, there are interesting, nontrivial, nonclassical, geometric mul-
tiscale architectures, with applications paralleling the one-dimensional case. I was
able to sketch some developing applications of these post-classical architectures. If
these applications can be developed as extensively as has been done for classical
multiscale analysis, the impacts may be large indeed. In this article, I really have
space only to mention topics growing out of my discussion of Hart Smith’s paper.
For an extended version of the article, covering the talk more fully, see [26].

Note: Below we make a distinction between stylized applications (idealized
applications in mathematical models) and actual applications (specific contributions
to scientific discourse and technological progress); we always describe the two in
separate subsections.

3. Classical multiscale analysis

An efficient way to introduce classical multiscale analysis is to start from
Calderén’s reproducing formula, or as commonly called today, the Continuous
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Wavelet Transform. We suppose we have a real-valued function f : R = R which
we want to decompose into contributions from various scales and locations. We take
with a wavelet, an oscillatory real-valued function () satisfying the Calderdn ad-
missibility condition imposed on the Fourier transform P as fooo i?ﬁ(‘ft)f"% = 27,
V¢ # 0. We translate and dilate according to (¢44)(¢t) = ¥((t — b)/a)//a. We per-
form Wavelet Analysis by ‘hitting’ the function against all the different wavelets,
obtaining Wy(a,b) = (as, f); Wy is called the Continuous Wavelet Transform
(CWT). The CWT contains all the information necessary to reconstruct f, so we
can perform Wavelet Synthesis by integrating overall all scales and locations,
summing up wavelets with appropriate coefficients.

£(t) = [ W (2, BYtpa.s(B)p(dadb).

Here p(dadb) is the appropriate reference measure, in this case d&—f’ CZ—a The ‘tightness’
of the wavelet transform as a characterisation of the properties of f is expressed by

the Parseval-type relation [ W;(a,b)?u(dadb) = [ f(t)*dt. See also [16, 36, 42].

3.1. Mathematical results

The CWT maps f into a time-scale plane; by measuring properties of this time-
scale portrait we can obtain norms on functions which lead to interesting theories
of functional spaces and their properties; there are two broad scales of such spaces
we can describe. To define the Besov By , spaces we integrate over locations first,

and then over scales
1/p
db\ " da
Y. 74 —8\p " -
(/(](W(a,b)ia re) ) .

To define the Triebel-Lizorkin F]  spaces we integrate over scales first and then

over locations
) . da \*'1
(/ (/OW (a,D)la™)" a1+f1/p> db>

Here s = 0 — (1/p—1/2), and we adopt a convention here and below of ignoring the
low frequencies so that actually these formulas are only correct for functions which
are built from frequencies |£] > Ag; the correct general formulas would require an
extra term for the low frequencies which will confuse the novice and be tedious
for experts. Also for certain combinations of parameters p,q = 1, 00 for example,
changes ought to be made, based on maximal functions, BMO norms, etc., but in
this expository work we gloss over such issues.

Fach of these norms asks that the wavelet transform decay as we go to finer
scales, and so controls the oscillations of the functions. Intuition about some of
these spaces comes by thinking of a wavelet coefficient as something akin to a
difference operator such as f(b+ a) — 2f(b) + f(b — a); the various norms on the
continuous wavelet coeflicients measure explicitly the finite differences and implicitly

1/p
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the derivatives of the analyzed functions. The distinctions between spaces come in
the subtle aspects of choice of order of integrating in scale and in location and in
choice of p and ¢q. We get the following sequence of relations between the spaces
defined by the F' and B scales and classical spaces:

Ly LPNFPO?Q,1<p<oo.
H? . HPNF£72,0<p§1.
Sobolev: W ~ F"), 1 < p < 00.

Holder: C* ~ Bg‘mOo

There are also equivalences with non-classical, but very interesting, spaces, such as
the Bump Algebra Bip and almost-equivalences to some other fundamental spaces,
such as BV(R). The full story about such equivalence is told very well in [42, 36].

An important structural fact about these spaces is that they admit molecular
decompositions; we can define molecules as functions obeying certain size, smooth-
ness and vanishing moment conditions, which are localized near an interval of some
scale and location, and then show that, although elements of these spaces are de-
fined by norms on the continuum domain, functions belong to these spaces if and
only if they can be written as superpositions f(z) = 35 Agmq(z) where mq are
molecules and the Ag are scalar coeflicients, and where the coefficient sequence
(Ag)g obeys certain norm constraints. Results of this kind first emerged in the
1970’s; a canonical way to get such results uses the CWT [36]. Consider the dyadic
cells

Q={(a,b): 277 >a>27U /27 <b < (k+1)/2},

note that they obey p(Q) = 1; they are “unit cells’ for the reference measure. It
turns out that the behavior of W{a,b) at various points within such a cell @ stays
roughly comparable [16, 36], and that the ¢, all behave similarly as well. As a
result, the integral decomposition offered by the Calderdn reproducing formula can
sensibly be discretized into terms arising from different cells.

fx)

/W(a, bytpg b (x) p(da db)
%/QW(‘% b)ta () p(da db)

= Y Mg(a), Mg = / W (a, b)tpa pju(da db)
Q Q

3 dgma(@),  Ag=IW(, )l
Q

Now roughly speaking, each m¢ is a mixture of wavelets at about the same location
and scale, and so is something like a wavelet, a coherent oscillatory waveform of a
certain location and scale. This type of discretization of the Calderén reproducing
formula has been practiced since the 1970’s, for example by Calderdn, and by Coif-
man and Weiss [13, 14], who introduced the terms molecular decomposition (and
atomic decomposition) for discrete series of terms localized near a certain scale and
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location. Hence, the mg may be called molecules and the Ag represent the contri-
butions of various molecules. The spaces Fy, and Bj , can then be characterized
by the decomposition f(z) =3 o Agmg(z): we can define sequence-space norms

7, as in (3.2) below for which

Ifllrz, ~ I(A@)ells -

and similarly for Besov sequence norms b; ,. This gives a clear understanding of
the structure of f in terms of the distribution of the number and size of oscillations
across scales.

While the molecular decomposition is very insightful and useful for proving
structure theorems about functional spaces, it has two drawbacks which severely
restrict practical applications. First, the Ag are nonlinear functionals of the un-
derlying object f; secondly, the mg are variable objects which depend on f. As
a result, practical applications of the sum ZQ Agmyg are not as straightforward
as one might like. Starting in the early 1980’s, it was found that a much simpler
and more practical decomposition was possible; in fact with appropriate choice of
generating wavelet — different than usually made in the CWT — one could have an
orthonormal wavelet basis [42, 16].

= Z W (27, k)27 Vpo—i gy = Zaj,k%‘,k- (3.1)

ik ik

Essentially, instead of integrating over dyadic cells ), it is necessary only to sample
once per celll Several crucial advantages in applications flow from the fact that the
coeflicients a1, are linear in f and the v; 5 are fixed and known.

A theoretical advantage flows from the fact that the same norm equivalence
that was available for the amplitudes (Ag) in the molecular decomposition also
applies for the wavelet coeflicients:

1/4q

1fllsg, ~ lalsy, = [ DO lagulh)¥r2ie | (3-2)
7 k

1/q

Wles, ~ llalsz, = | [ Sl | L 63)

This implies that the wavelets #; ; make an unconditional basis for appropriate
spaces in the Besov and Triebel scales. This can be seen from the fact that the norm
involves only | |; a fact which is quite different from the case with Fourier analysis.
Unconditionality implies that the balls {f : || f|[g; < A} are closely inscribed by
and circumscribed by balls {f : [lalls; < A’} which are quite simple geometmc
objects, solid and orthosymmetric with respect to the wavelets as ‘principal axes’.
This solid orthosymmetry is of central significance for the optimality of wavelets for
many of the stylized applications mentioned below; compare [20, 22, 32].

Our last chapter in the mathematical development of classical multiscale meth-
ods concerns the connection between Besov spaces and approximation spaces. In the
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late 1960’s, Jaak Peetre observed that the space BY Joijer T > 1 was very special.
It served as the Approzimation Space for approximation in L norm by free knot
splines, i.e. as the set of functions approximable at rate n™7 by splines with n free
knots. In the 1980’s a more general picture emerged, through work of e.g. Brudnyi,
DeVore, Popov and Peller [18]: that the space BY . served as the approximation
space of many nonlinear approximation schemes (e.g. rational functions), under
L? approximation error, where 1/7 = o + 1/p. This says that although 7 < 1 at
first seems unnatural (because graduate mathematical training emphasizes convex
spaces) these nonconvex spaces are fundamental. The key structural fact is that
those spaces are equivalent, up to renorming, to the set of functions whose wavelet
coefficients belong to an £7 ball, 7 < 1. Hence, membership of wavelet coefficients
in an £7 ball for small 7 becomes of substantial interest. The intuitive appeal for
considering £7 balls is clear by considering the closely-related weak-£7 balls; they
can be defined as the constants C' in relations of the form

p{(a,b) : |(W(a,b)] > ¢} < Ce W7, >0,

or
#10G,k) : |ogp] > e} <CeTVT e>0.

They are visibly measures of the sparsity in the time-scale plane, and hence sparsity
of that plane controls the asymptotic behavior of numerous nonlinear approximation
schemes.

3.2. Stylized applications

We now mention some stylized applications of classical multiscale thinking, i.e.
applications in a model world where we can prove theorems in the model setting.

3.2.1. Nonlinear approximation

Since the work of D.J. Newman in the 1960’s it was understood that approx-
imation by rational functions could be dramatically better than approximation by
polynomials; for example the absolute value function [¢] on the interval [~1,1] can
be approximated at an exponential rate in n by rational functions with numerator
and denominator of degree n, while it can be approximated only at an algebraic rate
n~! by polynomials of degree n. While this suggests the power of rational approxi-
mation, it must also be noted that rational approximation is a highly nonlinear and
computationally complex process.

On the other hand, from the facts (a) that wavelets provide an unconditional
basis for Besov spaces, and (b) that certain Besov spaces are approximation spaces
for rational approximation, we see that wavelets give an effective algorithm for the
same problems where rational functions would be useful. Indeed, based on work by
DeVore, Popov, Jawerth, Lucier we know that if we consider the class of functions
approximable at rate & n~" by rational approximation, these same functions can
be approximated at the same rate simply by taking a partial reconstruction based
on the n “biggest” wavelet coefficients.
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In short, from the viewpoint of asymptotic rates of convergence, thresholding
of wavelet coefficients - a very weakly nonlinear approximation scheme - is fully as
effective as best rational approximation. The same assertion can be made comparing
nonlinear approximation by wavelets and by free knot splines.

3.2.2. Data compression

Consider the following mathematical idealization of data compression. We
have a function which is an unspecified element of a Besov Ball 7 = {f : || f||ps A <
A} and we wish to have a coder/decoder pair which can approximate any such
function to within an e-distance in L? norm by encoding into, and decoding from,
a finite bitstring.

In mathematical terms, we are studying the Kolmogorov e-entropy: we wish
to achieve N{e, F), the minimal number of bits required to represent every f in
F to within an L? error e. This is known, since Kolmogorov and Tikhomirov, to
behave as

N(e,F)y=e Y7 e—0. (3.4)

Now, up to renorming, the ball F is isometric to a ball in sequence space @ =
{a : |lals; . < A}. Such a ball is a subset of w¢” for 1/7 = 0 + 1/2 and each

element in it can be approximated in €2 error at a rate M ~1/7t1/2 by sparse vectors
containing only M nonzero coefficients. Here is a simple coder inspired by this
fact. Pick M (€) coefficients such that the £*-error of such an approximation is at
most (say) €/2. The M (e} coefficients achieving this can be quantized into integer

multiples of a base quantum ¢, according to a;; = |@;x/ql, with the quantum

chosen so that the quantized vector o!? defined by ag.q,i = q - a4, approximates

the original coefficients to within % error /2. The resulting integers a;  represent
the function f to within L? error € and their indices can be coded into bit strings,
for a total encoding length of not worse that O(log(e=')M(¢)) = O(log(e~1)e1/7).
Hence a very simple algorithm on the wavelet coefficients gets close to the optimal
asymptotics (3.4)! Underlying this fact is the geometry of the body O; because of
its solid orthosymmetry, it contains many high-dimensional hypercubes of ample
radius. Such hypercubes are essentially incompressible.

In fact the log(e™!) factor is removable in a wide range of o,p,q. In many
cases, the e-entropy can be attained, within a constant factor, by appropriate level-
dependent scalar quantization of the wavelet coefficients followed by run-length en-
coding. In other work, Cohen et al. have shown that by using the tree-organization
of wavelet coefficients one can develop algorithms which give the right order of
asymptotic behavior for the across many smoothness classes; e.g. [12].

In fact more is true. Suppose we use for Besov ball simply the ball {f :
lla(f)lles . < A} based on wavelet coefficients; then by transform coding as in
[25] we can get efficient codes with codelength precisely asymptotic equivalence
to the Kolmogorov e-entropy by levelwise £F-sphere vector quantization of wavelet
coefficients. Underlying this fact, the representation of the underlying functional
class as an orthosymmetric body in infinite-dimensional space is very important.
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3.2.3. Statistical estimation

Consider the following mathematical idealization of nonparametric curve esti-
mation. We have an unknown function f(¢) on [0, 1] which is an element of a Besov
Ball F = {f :|[fllp;, < A} We observe data Y from the white noise model

Y(dt) = f(t)dt + W (dt),

where the W (t) is a Wiener process and e the noise level, and we wish to reconstruct
f accurately. We measure risk using the mean squared error

and evaluate quality by the minimax risk

i R.(f. f).
min max (f. f)

Over a wide range of o, p, ¢, this minimax risk tends to zero at the rate (€2)27/(27+1),

In this setting, some simple algorithms based on noisy wavelet coefficients
Yie = [;1(d)Y (dt) can be quite effective. In effect, y; » = a; + €2;,5, where z;
is a white Gaussian noise. By simply applying thresholding to the noisy wavelet
coeflicients of Y,

ik = Uik iy, o> rel

at scales 0 < j < logy(e72) with threshold v/2log(e~1) , we obtain a new set of coef-
ficients; using these we obtained a nonlinear approximation f = 3° ik Qi k5 k- The
quantitative properties are surprisingly good; indeed, using again the wf” embed-
ding of the Besov body b} ,, we have that the £2-error of nonlinear approximation
to a using M terms converges at rate M ~1/7t1/2 Heuristically, the coefficients
surviving thresholding have errors of size = ¢, and the object can be approximated
by at most M of these with £2 error &~ M ~1/7+1/2; simple calculations suggest that
the risk of the estimator is then roughly €2 - M + M ~2/7+1 where M is the number
of coefficients larger than ¢ in amplitude; this is the same order as the minimax
risk €27/(27+11 (Rigorous analysis shows that for this simple algorithm, log terms
intervene [31].) If we are willing to refine the thresholding in a level-dependent way,
we can obtain a risk which converges to zero at the same rate as the minimax risk
as € — 0, e.g. [32]. Moreover, if we are willing to adopt as our Besov norm the
sequence space by . norm based on wavelet coefficients, then by applying a sequence
of particular scalar nonlinearities to the noisy wavelet coeficients (which behave
qualitatively like thresholds) we can get precise asymptotic equivalence to the min-
imax risk, i.e. precise asymptotic minimaxity [32]. Parallel results can be obtained
with wavelet methods in various inverse problems, where f is still the estimand,
but we observe noisy data on K f rather than f, with K a linear operator, such as
convolution or Radon transform [21].
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3.2.4. Fast computation

An important theme for scientific computation is the sparse representation,
not of functions, but of operators. For this purpose a central fact pointed out by
Yves Meyer [42] is that wavelets sparsify large classes of operators. Let T be a
Calderon-Zygmund operator (CZ0O); the matrix representation of such operator in
the wavelet basis

My = (i Tt

then M is sparse — all its rows and columns have finite £ norms for each p > 0. In
short, such an operator involves interactions between very few pairs of terms.

For implications of such sparsity, consider the work of Beylkin, Coifman, and
Rokhlin [3]. Suppose T is a CZO, and let Comp(e,n) denote the number of flops
required to compute an e-approximation to P,T F,, where P, is an projector onto
scales larger than 1/n. In [3] it was shown that, ignoring set-up costs,

Comp(e,n) = O(log(1/e)n)

so that such operators could be applied many times with cost essentially linear in
problem size, as opposed to the O(n?) cost nominally demanded by matrix multipli-
cation. The algorithm was roughly this: represent the operator in a wavelet basis,
threshold the coefficients, and keep the large coefficients in that representation. A
banded matrix results, which can be applied in order O(n) flops. (The story is a
bit more subtle, since the algorithm as written would suffer an additional O(log(n))
factor; to remove this, Beylkin, Coifman, and Rokhlin’s nonstandard form must be
applied.)

3.3. Applications

The possibility of applying wavelets to real problems relies heavily on the
breakthrough made by Daubechies [15] (building on work of Mallat [41]) which
showed that it was possible to define a wavelet transform on finite digital signals
which had orthogonality and could be computed in order n flops. Once this algo-
rithm was available, a whole range of associated fast computations followed. Cor-
responding to each of the ‘stylized applications’ just listed, many ‘real applications’
have been developed over the last decade; the most prominent are perhaps the use
of wavelets as part of the JPEG-2000 data compression standard, and in a variety of
signal compression and noise-removal problems. For reasons of space, we omit de-
tails, referring the reader instead to [33] and to various wavelet-related conferences
and books.

4. Need for geometric multiscale analysis

The many successes of classical multiscale analysis do not exhaust the oppor-
tunities for successful multiscale analysis. The key point is the slogan we formulated
earlier - Information has its own architecture. In the Information Era, where new
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data sources are proliferating endlessly, each with its own peculiarities and specific
phenomena, there is a need for expansions uniquely adapted to each type of data.

In this connection, note that classical wavelet analysis is uniquely adapted to
objects which are smooth apart from point singularities. If a function is C'* except
for step discontinuities at a finite set of points, its continuous wavelet transform
will be very sparse. In consequence, the decreasing rearrangement of its wavelet
coefficients will decay rapidly, and n-term approximations to the object will converge
rapidly in L? norm. With the right definitions the story in high dimensions is
similar: wavelets give a sparse representation of point singularities.

On the other hand, for singularities along lines, planes, curves, or surfaces, the
story is quite different. For functions in dimension 2 which are discontinuous along
a curve, but otherwise smooth, the 2-dimensional CWT will not be sparse. In fact,
the the decreasing rearrangement of its wavelet coefficients will decay like C/N,
and N-term approximations to the object will converge no faster than O(N 1) in
squared L? norm. Similar statements can be made for singularities of dimension
0 < k < d in dimension d. In short, wavelets are excellent for representing smooth
data containing point singularities but not singularities of intermediate dimensions.

There are many examples of data where singularities of intermediate dimen-
sions constitute important features. One example comes from extragalactic astron-
omy, where gravitational clustering has caused matter to congregate in ‘filaments’
and ’sheets’ in 3-dimensions. Another example comes from image analysis, say of
SAR imagery, where stream beds, ridge lines, roads and other curvilinear phenom-
ena punctuate the underlying background texture. Finally, recently-developed tools
for 3D imaging offer volumetric data of phsyical objects (eg biological organs) where
sheetlike structures are important.

We can summarize our vision for the future of multiscale analysis as follows.

If it is possible to sparsely analyze objects which are smooth apart from
intermediate-dimensional singularities, this may open new vistas in mathemat-
ical analysis, offering (a) new functional Spaces, and (b) new representation of
mathematically important operators.

If, further, it is possible algorithmize such analysis tools, this would open new
applications involving (a) data compression; (b) noise removal and recovery from
Ill-posed inverse problems; (c) feature extraction and pattern recognition; and (d)
fast solution of differential and integral equations.

But can we realistically expect to sparsely analyse such singularities? By
considering Calderdn-like formulas, we can develop some understanding.

4.1. Ridgelet analysis

We consider first the case of singularities of co-dimension 1. It turns out that
the ridgelet transform is adapted to such singularities.

Starting from an admissible wavelet 1/, define the ridgelet p, 5 o(2) = 1qp(upx),
where uy is a unit vector pointing in direction # and so this is a wavelet in one direc-
tion and constant in orthogonal directions [6]. In analogy to the continuous wavelet
transform, define the continuous ridgelet transform Ry(a,b,0) = {pa .0, f). There
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is a synthesis formula

flz) = f Ry(a,b,8)pap.0(z)p(dadbdf)
and a Parseval relation
17115 = /Rf(a,b,())gu(dadbdQ)

both valid for an appropriate reference measure p. Note the similarity to the
Calderén formula.

In effect this is an analysis of f into contributions from ‘fat planes’; it has
been extensively developed in Emmanuel Candés’ Stanford thesis (1998) and later
publications. Suppose we use it to analyze a function f(z) € L?*(R™) which
is smooth apart from a singularity across a hyperplane. If our function is, say,
fualx) = 1{u/w>a}e—“’3“2, Candes [5]. showed that the ridgelet transform of f, , is
sparse. For example, a sampling of the continuous ridgelet transform at dyadic lo-
cations and scales and directions gives a set of coefficients such that the rearranged
ridgelet coeflicients decay rapidly. It even turns out that we can define “orthonormal
ridgelets” (which are not true ridge functions) such that the orthonormal ridgelet
coefficients are sparse: they belong to every € with p > 0 [24]. In short, an
appropriate multiscale analysis (but not wavelet analysis) successfully compresses
singularities of co-dimension one.

4.2. k-plane ridgelet transforms

We can develop comparable reproducing formulas of co-dimension k in R?.
If Py denotes orthoprojector onto a k-plane in R?, and v an admissible wavelet
for k-dimensional space, we can define a k-plane Ridgelet: p, 5 p, (@) = ¢05(Pr)
and obtain a k-plane ridgelet analysis: Ry(a,b, Py) = {pas,p., f). We also obtain a
reproducing formula

fl@) = /Rf((l, b, Py)pas p, (@) u(dadbdPy)

and a Parseval relation ||f||3 = [ Ry(a,b, Py)?u(dadbdPy), with in both cases ()
the appropriate reference measure. In short we are analyzing the object f into
‘Fat Lines’, ‘Fat k-planes,” 1 < k < n — 1. Compare [23]. Unfortunately, all such
representations have drawbacks, since to use them one must fix in advance the
co-dimension k; moreover, very few singularities are globally flat!

4.3. Wavelet transforms for the full affine group

A more ambitious approach is to consider wavelets indexed by the general affine
group GA(n); defining (14 p9)(x) = 1(Ax + b) - |A|'/2. This leads to the wavelet
analysis Wy(A4,b) = (Y4, f). Taking into account the wide range of’anisotropic
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dilations and directional preferences poossible within such a scheme, we are analyz-
ing f by waveforms which represent a very wide range of behaviors: ‘Fat Points’,
‘Fat Line Segments’, ‘Fat Patches’, and so on.

This exciting concept unfortunately fails. No matter what wavelet we pick
to begin with, [W;(A,b)?u(dAdb) = 4+00. (technically speaking, we cannot get a
square-integrable representation of the general affine group; the group is too large)
[46, 47]. Moreover, synthesis fails: [ W (A, b)1bq 5(t)1(dA db) is not well-defined.
Finally, the transform is not sparse on singularities.

In short, the dream of using Calderén-type formulas to easily get a decomposi-
tion of piecewise smooth objects into ‘Fat Points’, ‘Fat Line Segments’, ‘Fat Surface
Patches’, and so on fails. Success will require hard work.

4.4. A cultural lesson

The failure of soft analysis is not unexpected, and not catastrophic. As Jerzy
Neyman once said: life is complicated, but not uninteresting. As Lennart Carleson
said:

There was a period, in the 1940’s and 1950’s, when classical analysis
was considered dead and the hope for the future of analysis was consid-
ered to be in the abstract branches, specializing in generalization. As is
now apparent, the death of classical analysis was greatly exaggerated ...
the reasons for this ... [include] ... the realization that in many prob-
lems complications cannot be avoided, and that intricate combinatorial
arguments rather than polished theories are in the center.

Our response to the failure of Calderdén’s formula for the full Az -+ b group was
to consider, in the ICM Lecture, two specific strategies for decomposing multidi-
mensional objects. In the coming section, we will consider analysis using a special
subset of the Az + b group, where a Calderdn-like formula still applies, and we can
construct a fairly complete analog of the wavelet transform — only one which is effi-
cient for singularities of co-dimension 1. In the lecture (but not in this article), we
also considered analysis using a fairly full subset of the Az + b group, but in a sim-
plified way, and extracted the results we need by special strategies (viz. Carleson’s
“intricate combinatorial arguments”) rather than smooth general machinery. The
results delivered in both approaches seem to indicate the correctness of the vision
articulated above.

5. Geometric multiscale analysis ‘with Calderén’

In harmonic analysis since the 1970’s there have been a number of important
applications of decompositions based on parabolic dilations

fa(@1,22) = fr(a' a1, axs),

so called because they leave invariant the parabola x4 = x% Calderén himself used
such dilations [4] and exhibited a reproducing formula where the scale variable acted
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through such dilations. Note that in the above equation the dilation is always twice
as strong in one fixed direction as in the orthogonal one.

At the same time, decompositions began to be used based on directional
parabolic dilations of the form

fap(z1,22) = fa(Rg(x1,22)").

Such dilations (essentially) leave invariant curves defined by quadratic forms with
@ as one of the principal directions. For example, Charles Fefferman in effect used
decompositions based on parabolic scaling in his study of Bochner-Riesz summa-
bility citeFefferman. FElias Stein used decompositions exhibiting parabolic scaling
in studying oscillatory integrals in the 1970°s and 1980’s [45]. In the 1990’s, Jean
Bourgain, Hart Smith, Chris Sogge, and Elias Stein found applications in the study
of oscillatory integrals and Fourier Integral operators.

The principle of parabolic scaling leads to a meaningful decomposition reminis-
cent of the continuous wavelet transform, only with a much more strongly directional
character. This point has been developed in a recent article of Hart Smith [37], who
defined a continuous wavelet transform based on parabolic scaling, a notion of di-
rectional molecule, showed that FIO’s map directional molecules into directional
molecules, and showed that FIO’s have a sparse representation in a discrete decom-
position. For this expository work, we have developed what seems a conceptually
simple, perhaps novel way of approaching this topic, which we hope will be accesible
to non-experts. Details underlying the exposition are available from [26].

5.1. Continuous directional multiscale analysis

We will work exclusively in R?, although everything generalizes to higher
dimensions. Consider a family of directional wavelets with three parameters: scale
a > 0, location b € R? and orientation # € [0,27). The orientation and location
parameters are defined by the obvious rigid motion

2.ba,bﬁ = 2.Da,O,O(]%Q (':E - b))

with Ry the 2-by-2 rotation matrix effecting planar rotation by ¢ radians. At
fine scales, the scale parameter a acts in a slightly nonstandard fashion based on
parabolic dilation, in the polar Fourier domain. We pick a wavelet ¢ ¢ with 2& of
compact support away from 0, and a bump ¢ o supported in [—1,1]. Here 919
should obey the usual admissibility condition and ||¢lls = 1. At sufficiently fine
scales (say a < 1/2) we define the directional wavelet by going to polar coordinates
(r,w) and setting

Iﬁaﬁ;@(r?w) = ?ﬁa,O(T) : (z)al/?,o(w), a < agp.

In effect, the scaling is parabolic in the polar variables r and w, with w being
the ‘thin’ variable; thus in particular the wavelet 1, ¢ o is not obtainable by affine
change-of-vartiables on ¢, oo for ¢’ # a. We omit description of the transform at
coarse scales, and so again ignore low frequency adjustment terms. Note that it is
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correct to call these wavelets directional, since they become increasingly needle-like
at fine scales.

Equipped with such a family of high-frequency wavelets, we can define a Di-
rectional Wavelet Transform

DW (a,b,0) = (hapo, f), a>0,beR?*0€]0,2m)

It is easy to see that we have a Calderén-like reproducing formula, valid for high-
frequency functions:

fx) = [ DW (4, b,0)4:u, 10 (x)p(da db d6)

and a Parseval formula for high-frequency functions:

I3 = / DW (a,b,0)*1u(da db db)

in both cases, ;1 denotes the reference measure ag% acf% %

Based on this transform, we can define seminorms reminiscent of Besov and
Triebel seminorms in wavelet analysis; while it is probably a major task to prove
that thse give well-founded spaces, and such work has not yet been done (for the
most part), it still seems useful to use these as a tool measuring the distribution
of a function’s ‘content’ across scale, location and direction. We get a directional
Besov-analog DB : integrating over locations and orientations first

(/ (/(ti(a,b,e))ga—s)pacli_i)gacgz_z/yg>q/p %y/p

and a Triebel-analog DI, by integrating over scales first

(IDW (a, b, 0)[a—*)1—2%__ " oas v .
(/(/ ) o)

In both cases we take s = ¢ — 3/2(1/p — 1/2). (There is the possibility of defining
spaces using a third index (eg By q,r) corresponding to the L” norm in the € variable,
but we ignore this here). As usual, the above formulas can only provide norms for
high-frequency functions, and would have to be modified at coarse scales if any low
frequencies were present in f. As in the case of the continuous wavelet transform
for R, there is some heuristic value in considering the transform as measuring finite
directional differences e.g. f(b+aeg)—2f(b)+ f(b—aey), where ey = (cos(8),sin(8))’;
however this view is ultimately misleading. It is better to think of the transform
as comparing the difference between polynomial approximation localized to two
different rectangles, one of size a by 1/a and the other, concentric and co-oriented,
of size 2a by v2a.

The transform is actually performing a kind of microlocal analysis of f far more
subtle than what is possible by simple difference/differential expressions. Indeed,
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consider the Heaviside H(z) = 1y,,-0}; then at fine scales DW(a,0,6) = 0 for
0] > a and DW(a,0,0) ~ a®/* for |§] < /a, so that fsﬂiDVV(a,O,())id() <
Ca®/* as @ — 0. In short, DW is giving very precisely the orientation of the
singularity. Moreover, for b # (0, 22)', Ogﬂ IDW (a,0,60){df — 0 rapidly as a — 0.
So the transform is localizing the singularity quite well at fine scales, in a way
that is difficult to imagine simple differences being able to do. Interpreting the
above observations, we learn that a smoothly windowed Heaviside f(z) = H(z)e™*
belongs in DBY, , but not in any better space DBZ, ., 0 > 0, while it belongs
in DB] , and not in any better space DBY .., 0 > 1. The difference between the
critical indices in these cases is indicative of the sensitivity of the p = 1 seminorms
to sparsity. Continuing in this vein, we have that for weak £# embeddings, for each
n>0
1{(a,5,0) : [DW (a,b,0)] > e} < Ce= /2

so that the space-scale-direction plane for the (windowed) Heaviside is almost in

L33 () ~ DB;?; 573> the Heaviside has something like 3/2-derivatives. In compar-
ison, the wavelet expansion of the Heaviside is only in £!, so the expansion is denser
and ‘more irregular’ from the wavelet viewpoint than from the directional wavelet

viewpoint. For comparison, the Dirac mass § belongs at best to BZ!_ and Bf}OO

0,00
while it belongs at best to DBQO?:Q and DB, iég. The ‘point singularity’ is more reg-
ular from the wavelet viewpoint than from the directional wavelet viewpoint, while
the Heaviside is more regular from the directional wavelet viewpoint than from the
wavelet viewpoint. In effect, the Dirac ‘misbehaves in every direction’, while the
Heaviside misbehaves only in one direction, and this makes a big difference for the
directional wavelet transform.

There are two obvious special equivalences: first, L* ~ DFy, ~ DBj, and
L? Sobolev Wir ~ DF}, ~ DBjY;. There are in general no other L¥ equiva-
lences. Outside the L? Sobolev scale, the only equivalence with a previously pro-
posed space is with Hart Smith’s “Hardy Space for Fourier Integral Operators”
[37): Hpro ~ DFY,. This space has a molecular decomposition into directional
molecules, which are functions that, at high frequency, are roughly localized in
space to an a by v/a rectangle and roughly localized in frequency to the dual rect-
angle rotated 90 degrees, using traditional ways of measuring localization, such as
boundedness of moments of all orders in the two principal directions. Under this
qualitative definition of molecule, Smith showed that H},;, has a molecular decom-
position f =} 5 Agmq(z) in which the coefficients obey an £' norm summability

condition 3 |4¢[27%/* < 1 when the directional molecules are L? normalized. This
is obviously the harbinger for a whole theory of directional molecular decomposi-
tions.

More generally, one can make a molecular decomposition of the directional
Besov and directional Triebel classes by discretizing the directional wavelet trans-
form according to tiles @ = Q(J, k1, k=2, £) which obey the following desiderata:

o In tile Q(4, k1, ko, £), scale a runs through a dyadic interval 277 > ¢ > 2-U+1),
e At scale 277, locations run through rectangularly shaped regions with aspect
ratio roughly 27 by 2779/2,
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e The location regions are rotated consistent with the orientation
b Ry, (k1 /27, ke )20/?). ‘ ‘
e The tile contains orientations running through 276/27/2 < 6 < 2m(£+41)/27/2.

Note again that for such tiles p(@) & 1. Over such tiles different values of DW (a, b#)
are roughly comparable and different wavelets v, 5 ¢ as well. Hence it is sensible to
decompose

@) = [ DW (a, b, 0)t6u 5 o (x)pa(dacdbd)

> [ DW . b.6)pao(dadba)

Q Q

= Y Mge),  Mg(s) = / DW (a, b, 8)1ha. 5.0 (2 (dacdbdf)
Q Q

= Y Agmg(x),  Ag =|IDW(a,b,0)lr2q)
Q

Morever, for any decomposition into directional molecules (not just the ap-
proach above), the appropriate sequence norm of the amplitude coefficients gives
control of the corresponding directional Besov or directional Triebel norm. It is
then relatively immediate that one can define sequence space norms for which we
have the norm equivalences

Ifllos;, < I(A@)ellasg »  [Ifllorg, < [(AQ)ellars, (5-5)

where we again omit discussion of low frequency terms. The sequence space equiv-

alence db 5 ~ df3, ~ € are trivial. An interesting equivalence of relevance to the

Heaviside example above is dbgg a3 ™ ¢%/3 so that, again, a smoothness space

with “p < 17 is equivalent to an £7 ball with 7 < 1.

Hart Smith made the crucial observation that the molecules for the Smith space
are invariant under diffeomorphisms. That is, if we take a C*° diffeomorphism ¢,
and a family of H};, molecules (such as mg(z)), then every mg(x) = mg(d(x))
is again a molecule, and the sizes of moments defining the molecule property are
comparable for mg and for mg. It follows that H}, is invariant under diffeomor-
phisms of the base space. His basic lemma underlying this proof was strong enough
to apply to invariance of directional molecules in every one of the directional Besov
and directional Triebel classes. Hence directional Besov and directional Triebel
classes are invariant under diffeomorphisms of the base space.

This invariance enables a very simple calculation, suggesting that the direc-
tional wavelet transform sparsifies objects with singularities along smooth curves, or
at least sparsifies such objects to a greater extent that does the ordinary wavelet
transform. Suppose we analyse a function f which is smooth away from a disconti-
nuity along a straight line; then the Heaviside calculation we did earlier shows that
most directional wavelet coefficients are almost in weak L?/?. Now since objects
with linear singularities have £2/3+¢ boundedness of amplitudes in a molecular de-
composition, and directional molecules are diffeomorphism invariant, this sparsity



226 D. L. Donoho

condition is invariant under diffeomorphisms of the underlying space. It follows
that an object which is smooth away from a discontinuity along a smooth curve
should also have molecular amplitudes in £2/3+¢,

This sparsity argument suggests that directional wavelets outperform wavelets
for representing such geometric objects. Indeed, for n > 0 there is an ¢ > 0 so that
£2/3+¢ houndedness of directional wavelet molecular amplitudes shows that approxi-
mation by sums of N directional molecules allows a squared-L? approximation error
of order O(N~2%7), whereas wavelet coefficients of such objects are only in £!, so
sums of N wavelets only allow squared-L? approximation error of size O(N71).

5.2. Stylized applications

The above calculations about sparsification of objects with curvilinear singu-
larities suggests the possibility of using the directional wavelet transform based on
parabolic scaling to pursue counterparts of all the various classical wavelet appli-
cations mentioned in Section 3: nonlinear approximation, data compression, noise
removal, and fast computations. It further suggests that such directional wavelet
methods might outperform calssical wavelets — at least for objects containing sin-
gularities along smooth curves, i.e. edges.

5.2.1. First discretization: curvelets

To develop applications, molecular decomposition is (once again) not enough:
some sort of rigid decomposition needs to be developed; an orthobasis, for example.

Candés and Donoho [7] developed a tight frame of elements exhibiting parabolic
dilations which they called curvelets, and used it to systematically develop some of
these applications. A side benefit of their work is knowledge that the transform
is essentially optimal, i.e. that there is no fundamentally better scheme of nonlin-
ear approximation. The curvelet system has a countable collection of generating
elements ~y,(x1,x2) , pb ~ (a7, b, 1y, 8¢, tm) which code for scale, location, and di-
rection. They obey the usual rules for a tight frame, namely, the reconstruction
formula and the Parseval relation:

fzz<7uaf>7ua Hf“g :Z<7Haf>2'

1

The transform is based on a series of space/frequency localizations, as follows.

e Bandpass filtering. The object is separated out into different dyadic scale
subbands, using traditional bandpass filtering with passband centered around
€] € [27,2+1).

s Spatial localization. Each bandpass object is then smoothly partitioned spa-
tially into boxes of side 277/2.

¢ Angular localization. Each box is analysed by ridgelet transform.

The frame elements are essentially localized into boxes of side 277 by 277/2 at
arange of scales, locations, and orientations, so that it is completely consistent with
the molecular decomposition of the directional Besov or directional Fourier classes.
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However, unlike the molecular decomposition, the coefficients are linear in f and
the frame elements are fixed elements. Moreover, an algorithm for application to
real data on a grid is relatively immediate.

5.2.2. Nonlinear approximation

In dimension 2, the analog to what was called free knot spline approximation is
approximation by piecewise polynomials on triangulations with N pieces. This idea
has generated a lot of interest but frustratingly few hard results. For one thing, it is
not obvious how to build such triangulations in a way that will fulfill their apparent
promise, and in which the resulting algorithm is practical and possible to analyze.

Here is a class of two-dimensional functions where this scheme might be very
attractive. Consider a class F of model ‘images’ which exhibit discontinuities across
C? smooth curves. These ‘images’ are supposed to be C? away from discontinuity.
Moreover, we assume uniform control both of the C2 norm for the discontinuity
curve and smooth function. One can imagine that very fine needle-like triangles
near curved discontinuities would be valuable; and this is indeed so, as [27] shows;
in an ideal triangulation one geta a squared error converging at rate N2 whereas
adaptive quadtrees and other simpler partitioning schemes give only N™' conver-
gence. Moreover, this rate is optimal, as shown in [27], if we allow piecewise smooth
approximation on essentially arbitrary triangulations with N pieces, even those de-
signed by some as yet unknown very clever and very nonlinear algorithm, we cannot
in general converge to such objects faster than rate N 2.

Surprisingly, a very concrete algorithm does almost this well: simply thresh-
olding the curvelet coeflicients. Candes and Donoho have shown the following [8]

Theorem: The decreasing rearrangement of the frame coefficients in the
curvelet system obeys the following inequality for oll f € F:

|y < Ck™*/210g®? (k), k>

This has exactly the implication one would have hoped for from the molecu-
lar decomposition of directional Besov classes: the frame coefficients are in £2/3+¢
for each € > 0. Hence, we can build an approximation to a smooth object with
curvilinear discontinuity from N curvelets with squared L2-error log®(N) - N~2; as
mentioned earlier, Wavelets would give squared L?-error > ¢N 1.

In words: approximation by sums of the N-biggest curvelet terms does essen-
tially as well in approximating objects in F as free-triangulation into N regions.
In a sense, the result is analogous to the result mentioned above in Section 3.2.1
comparing wavelet thresholding to nonlinear spline approximation, where we saw
that approximation by the N-biggest amplitude wavelet terms does as well as free-
knot splines with N knots. There has been a certain amount of talk about the
problem of characterizing approximation spaces for approximation by N arbitrary
triangles; while this problem seems very intractable, it is clear that the directional
Besov classes provide what is, at the moment, the next best thing.

5.2.3. Data compression
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Applying just the arguments already given in the wavelet case show that the
result of L? nonlinear approximation by curvelets, combined with simple quanti-
zation, gives near-optimal compression of functions in the class F above, i.e. the
number of bits in the compressed representation is optimal to within some polylog
factor. This seems to promise some interesting practical coders someday.

5.2.4. Noise removal

The results on nonlinear approximation by thresholding of the curvelet coef-
ficients have corresponding implications in statistical estimation. Suppose that we
have noisy data according to the white noise model

}f(dl'l,dl'g) = f(l’l,l'g)dl'ldl'g -+ €I/V(d$1,d$2)

where W is a Wiener sheet. Here f comes from the same ‘Image Model” F discussed
earlier, of smooth objects with discontinuities across C? smooth curves. We mea-
sure risk by Mean Squared Error, and consider the estimator that thresholds the
curvelet coefficients at an appropriate (roughly 2+/log(e—1)} multiple of the noise
level. Emmanuel Candes and I showed the following [9]:

Theorem: Appropriate thresholding of curvelet coefficients gives nearly the
optimal rate of convergence; with polylog(e) a polynomial in log(1/€), the estimator
FOT obeys

R(f, ) < polylog(e) - min e R(f, f).

Hence, in this situation, curvelet thresholding outperforms wavelet threshold-
ing at the level of rates: O(polylog(e)-€*/3) vs O(e). Similar results can be developed
for other estimation problems, such as the problem of Radon inversion. There the
rate comparison is polylog(e) - €4/% vs log(1/e€) - €2/%; [9]. In empirical work [44, 10],
we have seen visually persuasive results.

5.2.5. Improved discretization: directional framelets

The curvelet representation described earlier is a somewhat awkward way of
obtaining parabolic scaling, and also only indirectly related to the continuum di-
rectional wavelet transform. Candés and Guo [10] suggested a different tight frame
expansion based on parabolic scaling. Although this was not introduced in such a
fashion, for this exposition, we propose an alternate way to understand their frame,
simply as discretizing the directional wavelet transform in a way reminiscent of
(3.1); for details, see [26]. Assuming a very specific choice of directional wavelet,
one can get (the fine scale) frame coefficients simply by sampling the directional
wavelet transform, obtaining a decomposition

F= " DW@ I 60 2ml /2y s mepaire = D Okt 58Y
Jokd ik

(as usual, this is valid as written only for high-frequency functions). In fact this
can yield a tight frame, in particular the Parseval relation 37, , a5, = [If[|7-
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This has conceptual advantages: a better relationship to the continuous directional
wavelet transform and perhaps an easier path to digital representation. In compar-
ison with the original curvelets scheme, curvelets most naturally organizes matters
so that ‘within’ each location we see all directional behavior represented, whereas di-
rectional framelets most naturally organize matters so that ‘within’ each orientation
we see all locations represented.

5.2.6. Operator representation

Hart Smith, at the Berlin ICM, mentioned that decompositions based on
parabolic scaling were valuable for understanding Fourier Integral Operators (FI0’s)
[38]; in the notation of our paper, his claim was essentially that FIO’s of order
zero operate on fine-scale directional molecules approximately by performing well-
behaved affine motions — roughly, displacement, scaling and change of orientation.
Underlying his argument was the study of families of elements generated from a
single wavelet by true affine parabolic scaling ¢, 5 0(x) = ¢(F, o Ry © Spx) where
P, = diag{a,+/a) is the parabolic scaling operator and Syz = x - b is the shift.
Smith showed that if 7" is an FIO of order 0 and ¢ is directionally localized, the
kernel

Ka',b',(?' _ T
a,b,f - <¢a,b,9a d)a’,b’,f?’)

is rapidly decaying in its entries as one moves away from ‘the diagonal’ in an ap-
propriate sense.

Making this principle more adapted to discrete frame representations seems
an important priority. Candeés and Demanet have recently announced [11] that
actually, the matriz representation of FIOs of order O in the directional framelet
decomposition is sparse. That is, each row and column of the matrix will be in £7
for each p > 0. in a directional wavelet frame. This observation is analogous in
some ways to Meyer’s observation that the orthogonal wavelet transform gives a
sparse representation for Calderén-Zygmund operators. Candés has hopes that this
sparsity may form some day the basis for fast algorithms for hyperbolic PDE’s and
other FIOs.

5.3. Applications

The formalization of the directional wavelet transform and curvelet transform
are simply too recent to have had any substantial applications of the ‘in daily use
by thousands’ category. Serious deployment into applications in data compression
or statistical estimation is still off in the future.

However, the article [29] points to the possibility of immediate effects on re-
search activity in computational neuroscience, simply by generating new research
hypothesis. In effect, if vision scientists can be induced to consider these new types
of image representation, this will stimulate meaningful new experiments, and re-
analyses of existing experiments.

To begin with, for decades, vision scientists have been influenced by mathe-
matical ideas in framing research hypotheses about the functioning of the visual
cortex, particular the functioning of the V1 region. In the 1970’s, several authors
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suggested that the early visual system does Fourier Analysis; by the 1980’s the
cutting edge hypothesis became the suggestion that the early visual system does
Gabor Analysis; and by the 1990’s, one saw claims that the early visual system
does a form of wavelet analysis. While the hypotheses have changed over time, the
invariant is that vision scientists have relied on mathematics to provide language &
intellectual framework for their investigations. But it seems likely that the hypothe-
ses of these previous decades are incomplete, and that to these should be added the
hypothesis that the early visual system performs a directional wavelet transform
based on parabolic scaling. During my Plenary Lecture, biological evidence was
presented consistent with this hypothesis, and a proposal was made that future
experiments in intrinsic optical imaging of the visual cortex ought to attempt to
test this hypothesis. See also [29].

6. Geometric multiscale analysis ‘without Calderén’

In the last section we considered a kind of geometric multiscale analysis em-
ploying a Calderdn-like formula. In the ICM Lecture we also considered dispensing
with the need for Calderén formulas, using a cruder set of multiscale tools, but one
which allows for a wide range of interesting applications — very different from the
applications based on analysis/synthesis and Parseval. Our model for how to get
started in this direction was Peter Jones’ travelling salesman problem. Jones con-
sidered instead a countable number of points X = {z;} in [0, 1]? and asked: when
can the points of X be connected by a finite length (rectifiable) curve ? And, if
they can be, what is the shortest possible length? Jones showed that one should
consider, for each dyadic square ) such that the dilate 3Q) intersects X, the width
wg of the thinnest strip in the plane containing all the points in X N3Q, and define
Bo = wg/diam(Q)) the proportional width of that strip, relative to the sidelength
of Q. As Bg = 0 when the data lie on a straight line, this is precisely a measure
of how close to linear the data are over the square (). He proved the there is a
finite-length curve T visiting all the points in X = {x;} iff 37 3 diam(Q) < oo,
I find it very impressive that analysis of the number of points in strips of various
widths can reveal the existence of a rectifiable curve connecting those points. In
our lecture, we discussed this idea of counting points in anistropic strips and several
applications in signal detection and pattern recognition [1, 2], with applications in
characterizing galaxy clustering [34]. We also referred to interesting work such as
Gilad Lerman’s thesis [40], under the direction of Coifman and Jones, and to [30],
which surveys a wide range of related work. Look to [26] for an extended version
of this article covering such topics.

7. Conclusion

Important developments in ‘pure’ harmonic analysis, like the use of parabolic
scaling for study of convolution operators and FIOs, or the use of anisotropic strips
for analysis of rectifiable measures, did not arise because of applications to our
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developing ‘information society’, yet they seem to have important stylized appli-
cations which point clearly in that direction. A number of enthusiastic applied
mathematicians, statisticians, and scientists are attempting to develop true ‘real
world’ applications.

At the same time, the fruitful directions for new kinds of geometric multiscale
analysis and the possible limitations to be surmounted remain to be determined.
Stay tuned!
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Knotted Solitons
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Abstract

The dynamical model on 3+1 dimensional space-time admitting soliton
solutions is discussed. The proposal soliton is localized in the vicinity of a
closed contour, which could be linked and/or knotted. The topological charge
is Hopf invariant. Some applications in realistic physical systems are indicated.
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1. Introduction

The term “soliton” entered applied mathematics in 1965. It was coined by
M. Kruskal and N. Zabusky for a special solution of nonlinear Korteweg-de Vries
(KdV) equation, depicting solitary wave [1]. Use of convention of particle physics
language shows that the author envisioned the particle-like interpretation for the
object which they called soliton.

The attention of mathematical physicists to solitons was attracted after the
inverse scattering method was devised by G. Gardner, J. Green, M. Kruskal and
R. Miura for solving the KdV equation [2] and its extension to Nonlinear Schroedinger
Equation was found by V. Zakharov and A. Shabat [3]. In the 1970’s this method
and its generalizations got a lot of attention and involved quite a few active partic-
ipants. Rather complete review can be found in [4]. In the end of that decade the
quantum variant of the method was constructed and particle-like interpretations of
solitons got natural confirmation in terms of quantum field theory, see review in [5].
The mathematical structure of the quantum method was deciphered in pure alge-
braic way leading in the 1980’s to notion of quantum groups with new applications
in pure mathematics and mathematical physics.

The value of solitons for the particle physics consists in the possibility of going
beyond the paradigm of the perturbation theory. Indeed, soliton solutions corre-
spond to full nonlinear equations and disappear in their linearized form. Charac-
teristic for solitons is that they interact strongly if the excitations of the linearized

*St. Petersburg Department of Steklov Mathematical Institute, Russian Academy of Sciences,
Russia. E-mail: faddeev@pdmi.ras.ru
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fields interact weakly. Another attractive feature is the appearance of elementary
topological characteristics for solitons topological charges.

This was understood already in the middle of 1970’s by several groups as I
underlined in my lectures, when I was touring USA in 1975 (see e. g. [6]). However,
all these tantalizing features of solitons had one very important drawback: the
developed methods applied only in 1 + 1 dimensional space-time.

Naturally the search for 3 + 1 dimensional generalizations became eminent.
General considerations showed that many features of 1 4+ 1 dimensional systems,
such as complete integrability and existence of exact many-particle solutions could
not be generalized to 3 -+ 1 dimensions. However, the mere existence of “one-
particle” soliton solutions was not excluded. One particular example was introduced
by Skyrme in a pioneer paper [7] long before the soliton rush. Another example was
proposed by G. ’t Hooft and A. Polyakov in 1975 [8]. In the following years their
solutions got real applications in nuclear and high energy physics.

In both examples the solitons are “point-like”, namely their deviation from the
vacuum is concentrated around central point in space. Moreover they have spheri-
cal symmetry, allowing the separation of variables in the corresponding equations,
reducing them to ODE, which one can treat on a usual PC.

In my lectures [6], already mentioned, I proposed one more possibility for 3
-+ 1 dimensional system, allowing solitons. The model, which superficially looks
as a slight modification of Skyrme model, has quite distinct features. The center
of the would-be soliton is not a point, but a closed contour, possibly linked or
knotted. However my proposal remained unnoticed. The reason was evident: the
maximal symmetry for such a soliton is axial, reducing 3-dimensional nonlinear PDE
to 2-dimensional one. Existing computers were not able to treat such a problem.
Thus my proposal was in slumber for 20 years until my colleague Antti Niemi
became interested and agreed to sacrifice a year to learn computing and devising
the programm. The preliminary results published in [9] attracted the attention
of professionals in computational physics and now we have an ample evidence,
confirming my proposal [10], [11].

The development which followed showed unexpected universality of my model.
The variables, used in it, were shown to enter the list of degrees of freedom for several
systems, having realistic physical applications [12], [13].

In this talk I shall describe all these developments in detail. First 1 shall
introduce the model, then briefly discuss its numerical treatment and finish with
the description of the applications.

2. The field configurations and Hopf invariant
The space time is 4-dimensional Minkowski space M with linear coordinates

a#, = 0,1,2,3, 2° being time and z¥, k = 1,2, 3 space variables. The field ()
is defined on A and has values on 2-dimensional sphere S2:

s M- S
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The boundary condition on spatial infinity is introduced

i —— (2.1)

2 2

where 7 = ((2')? + (22)2 + (2*)?)'/? and 7 is a fixed vector, e.g. corresponding to

the north pole
fig = (0,0, 1).

We shall consider mostly the time independent configurations, corresponding to a
soliton at rest. The boundary condition (2.1) effectively compactifies the space R?,
turning it into sphere §%, thus the stationary configurations realize the map

ii:S% = 8% (2.2)

which are known to be classified by Hopf invariant, sort of topological charge.
In general, the density of topological charge is the zero component Jg of the
current J,, which is conserved
Opd, =0

independently of the equations of motion. Mathematically it is more natural to use
the 3-form J dual to 1-form J* = J,da* and define the topological charge as an
integral of J over space section

o=/ J

R3
In our case the 3-form J is constructed as follows. The pull-back of the volume
2-form on §? via map (2.2) defines the closed 2-form on the space time

H=H, da" Andz",
where antisymmetric tensor H,, is expressed via field configuration () as follows
H,, = (0,7 x 0,f, ). (2.3)
Here I use usual notations of vector analysis in 3-space. In fact H is exact
H=4dC

and current 3-form is given by

1
=—H .
J i ANC

In more detail, we have the relations
Hix = 0;Cr, — 0k Cy

and )
Q= E/EiijiijdBZ'-
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For regular configurations ¢ gets integer values. This integer has a nice inter-
pretation in the description of which I shall use the terminology of magnetostatic.
Tensor Hy, can be interpreted as a field strength of the stationary magnetic
field in Maxwell theory. The corresponding lines of force are defined via equations
d 1
= 5€iki Hej
where s is a local parameter along the line. It is easy to see that components of
fi(x) along these lines are constant

giving two “integrals of the motion”. In other words, the Maxwell lines of force are
the preimages of points on §? under the map (2.2). Hopf invariant is the intersection
number of any pair of such lines.

All these facts are well known and can be found in textbooks (see e.g. [14]).
However I decided to include them into my text to make it more selfcontained.

3. The dynamical model

I introduce the dynamical model by giving the relativistic action functional

A=a / (D7) "z + b / ()2 'z,

In the usual convention of high-energy physics A is dimensionless, so the parameter
a has dimension [length] = and parameter b is dimensionless. Corresponding static
energy E has the same form as A4 with space-time coordinates substituted by space
variables only

E=a / ()2 + b / (Hy)2d s (3.4)

and has proper dimension [length]™*. The structure of E is similar to that of
Skyrme model, where the field variable having values in $% is used and corresponding
topological charge is just a degree of map.

Usual check based on the scale transformation is favorable for (3.4) in the same
way as in Skyrme model. Indeed

E:E2+E4a

where E2 and E, are quadratic and quartic in derivatives of 7 correspondingly.
Thus under scaling x — Az we have

1
Eg — )\Eg, E4 — XEL;

and the virial theorem states that on the minimal configuration (if any)

Ef) = E4
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In terms of quantum theory FEs has a standard interpretation of the energy
of nonlinear sigma-model whereas E; is rather exotic. On the contrary in the
magnetic interpretation, mentioned above, E4 is a natural term — it is just the
Maxwell magnetic energy, whereas the nature of Es is not that clear. However in
what follows the presence of both Es and Ey is crucial for the existence of solitons
as the scaling argument already showed.

This is confirmed also by a beautiful estimate, obtained in [15]

E > QP4

which shows that in the sectors with nonzero @ the minimum of energy is strongly
positive. Thus the soliton solutions should be obtained by the minimizing of E with
Q@ # 0 fixed.

Unfortunately until now there exists no proof of the compactness of the mini-
mizing sequence in general case. For the case of axial symmetry uncouraging result
are obtained in [16]. So the main argument for the evidence of solitons in my model
is based on the numerical work.

4. Numerical work

To find the numerical evidence of the existence of localized solitons it is not
necessary to solve the nonlinear elliptic equation, obtained by the variational prin-
ciple

0E
o

Instead one can introduce an auxiliary time s and consider the parabolic equation

0. (4.5)

dii  OF
e _ T 4.6
ds on (4.6)
with initial value ;¢

Al s=0 = Tlinis

being a configuration with the prescribed Hopf invariant. Of course to simulate
(4.6) on the computer one is to use some difference scheme. If for large s solution
of (4.6) stabilizes it gives the solution of (4.5). In other words the soliton appears
as an attractor for the evolution equation.

There are of course many important practical details how to discretize equa-
tion, how to take into account the normalization condition #2 = 1 and how to
choose the initial configuration #in;e. The main papers [10] and [11] use different
prescription for all this, however quite satisfactorily the final results coincide. I refer
to these papers for the details of calculations and proceed to describe the results.

The iterative process was performed for the configuration with Q = 1,2,...7.
The results are as follows: for @ = 1 and @Q = 2 the solutions are axial symmetric.
The center line — the preimage of the point n = (0,0, ~1) — is a circle. The
surfaces ng = a, —1 < a < 1 are toroidal and they are spanned by the lines of force
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wrapping the torus once for Q = 1 and twice for @) = 2. In other words the soliton
can be viewed as a filament of lines of force, closed and twisted once or twice.

The solution for ¢ = 3 is similar but not axial symmetric any more, the
corresponding “cable” is warped. For () = 4 the soliton is a link of two twisted
filaments. Especially beautiful case is ¢ = 7, the central line of the corresponding
soliton is a trefoil knot.

The file [17] contains impressive moving pictures illustrating the convergence
of the iterations. I plan to show these movies in my talk, but unfortunately can not
do it in a written text.

Thus the numerical work gives the compelling evidence of the existence of
string-like solitons in my model. There remains an important mathematical chal-
lenge to provide the rigorous existence theorem. Another interesting direction is
to find some realistic applications of the model. Some progress in this direction is
already obtained and I proceed to the description of it.

5. The applications

Nonlinear fields such as 7i{x) rarely enter the dynamical models directly. How-
ever they can appear as a part of degrees of freedom in a suitable parameterization
of the original fields. For example in condensed matter theory one uses the complex
valued functions ¥, (z), « = 1, ..., N to describe the density amplitudes of Bose gas
or the gap function of superconductor. The interaction supports the configurations,
for which

N
P = Z ol (5.7)

is nonvanishing. In this case it is natural to use p as one of the independent variables
and introduce new variables

Xa = 2pa/p
such that
N
> lxel’ =1 (5.8)
a=1

In this way the compact target (I use the slang of the string theory) §2N—1

appears.
When magnetic interaction is introduced the invariance with respect to the
phase transformation
Palx) = M, (2)

SQN—l

is invoked. This means that the target changes

SN §2N LT (1).
In particular for N = 2 we have

S3/U(1) ~ §?
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and the field 7i(x) naturally appears. Quite satisfactorily the tensor H;;, also emerges
as a contribution to the magnetic field strength.

Let us illustrate it in more detail. From the beginning we shall treat the
stationary system, so no electric field will be used.

The magnetic field is described in a usual way by means of the vector potential
Ap(z) and its interaction with v-fields is introduced via covariant derivatives

Vith = Optp + i A
The energy density (of Landau-Ginsburg-Gross-Pitaevsky type) looks as follows

1

B= 3 Vil + F5 + Vilba) 5.9

a=1

where
Fip = 0; A, — Or 4

is the field strength of the magnetic field. The energy is invariant with respect to
the gauge transformations

Yo = Mo, Ap = A — 0.

We shall make the change of the field variables so that only gauge invariant ones
will remain. For that observe that the first term in the RHS of (5.9) is a quadratic

form in A
2

S IVithal® =D 10ktal® + Axdi + p7 A7,

a=1 a=1

2

where we use variable p from (5.7) and introduce current

Jk = —1 Z(?ﬁcﬁk% . ak?ﬁawa)-

a=1

It is easy to check, that under the gauge transformations the current J;, changes as
follows
Ji = Jp A+ 2p28k)\,

8o that the sum

1
Cp= A, + 2—p2Jk

is gauge invariant. We shall use this variable instead of A;. Another gauge invariant
combination is given by the quadratic form

= (Y, %) 7 (’“) , (5.10)

where 7 = (71,72, 73) are Pauli matrices

(01 (0 —i (1 0
n=%1 0/ 27\ o) 7 \o -1/
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Normalization (5.8) for x, implies that 7 is a real unit vector. In fact the map

(Xl?X’J) = 7

defined in (5.10) is a standard Hopf map. Variable 7 is manifestly gauge invariant
and the set of variables (p, 7, C)) is our gauge invariant choice, substituting for the
initial set (104, Ag). The energy density can be explicitly expressed via p, 7 and C
as follows

1
E = (3p)” + p*((0k7)* + CF) + 5(31@0@ = 0;Cr + Hy,)* +v(p,m3).

The most notable feature is the appearance of the tensor H, defined in (2.3).
The model, described in the main text, emerges if we put p = const and C = 0.
Hopefully nontrivial p and C, at least confined to some range, do not spoil the
soliton picture. This problem is under discussion now, see [13], [18].

Let us stress, that the use of two fields v,, @ = 1,2 is most essential in this
example. If N = 1 only variables p and C remain after the reduction, similar to
just described. If N > 2 the CP(N - 1) field generalizing 7 has no topological
characteristics.

Another application, considered recently [12], deals with the parameterization
for the SU(2) Yang-Mills field A% (x), p = 0,1,2,3, a = 1,2,3. The Yang-Mills
Lagrangian is invariant with respect to the nonabelian gauge transformations

SAL = 9, 4 freAbe”.

However in some treatments one reduces this invariance by the partial gauge fixing
to the abelian one

0B, =ieB,, 5442 = 0,e,

where B, = A}, +iA, is a complex vector field. I shall not discuss the reason for
this reduction here and proceed assuming that it is done. Observe, that two vector
fields A}, A% in generic situation define a plane in Minkowski space and introduce
an orthonormalized basis in this plane e, a = 1, 2.

ezeﬁ = 0a3.

Let e, = e, + ie’. The basis is defined up to rotation
e, — ey,
The fields B, can be written in terms of this basis as
B, = tne, + o8,

and thus two complex valued fields 1)1 and 15 appear. The situation becomes quite
similar to the previous example and indeed in [12] the complete parameterization of
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the Yang-Mills variables is introduced with appearance of fi-field and correspond-
ing H-tensor. This is an indication that the Yang-Mills theory can have string-like
excitations. However the situation is not that simple. The classical Yang-Mills the-
ory is conformally invariant and has no dimensional parameters. Thus no hope for
the localized regular classical solution exists. Nevertheless this complication could
be lifted by quantum corrections. The famous “dimensional transmutation”, which
leads to the appearance of dimensional parameter in quantum effective action, could
favor the nonvanishing value of the corresponding p-variable. All these considera-
tions at the moment are rather speculative and need much more work to become
reasonable. Personally I am quite impressed by this possibility and continue to work
on it.

6. Conclusions

I think that the topic of my talk is quite instructive. It connects different do-
mains in mathematics and mathematical physics: nonlinear PDE, elementary topol-
ogy, quantum field theory, numerical methods. It illustrates the essential unity of
mathematics, theoretical and applied. Finally it could lead to the realistic physical
applications. For all these reasons I decided to present it to the ICM2002.
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Abstract

Theoretical computer science has found fertile ground in many areas of
mathematics. The approach has been to consider classical problems through
the prism of computational complexity, where the number of basic compu-
tational steps taken to solve a problem is the crucial qualitative parameter.
This new approach has led to a sequence of advances, in setting and solving
new mathematical challenges as well as in harnessing discrete mathematics to
the task of solving real-world problems.

In this talk, I will survey the development of modern cryptography —
the mathematics behind secret communications and protocols — in this light.
I will describe the complexity theoretic foundations underlying the crypto-
graphic tasks of encryption, pseudo-randomuness number generators and func-
tions, zero knowledge interactive proofs, and multi-party secure protocols. I
will attempt to highlight the paradigms and proof techniques which unify
these foundations, and which have made their way into the mainstream of
complexity theory.
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1. Introduction

The mathematics of cryptography is driven by real world applications. The
original and most basic application is the wish to communicate privately in the
presence of an eavesdropper who is listening in. With the rise of computers as
means of communication, abundant other application arise, ranging from verifying
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authenticity of data and access priveleges to enabling complex financial transactions
over the internet involving several parties each with its own confidential information.

As a rule, in theoretical fields inspired by applications, there is always a subtle
(and sometimes not so subtle) tension between those who do “theory” and those
who “practice”. At times, the practitioner shruggs of the search for a provably
good method, saying that in practice his method works and will perform much
better when put to the test than anything for which a theorem could be proved.
The theory of Cryptography is unusual in this respect. Without theorems that
provably guarantee the security of a system, it is in a sense worthless, as there is
no observable outcome of using a security system other than the guarantee that no
one will be able to crack it.

In computational complexity based cryptography one takes feasible (or easy)
to mean those computations that terminate in polynomial time and infeasible (or
hard) those computations that do not!. Achieving many tasks of cryptography
relies on a gap between feasible algorithms used by the legitimate user versus the
infeasibility faced by the adversary. On close examination then, it becomes apparent
that a necessary condition for many modern cryptographic goals is that NP # P 2,
although it is not known to be a sufficient condition. A (likely) stronger necessary
condition which is also sufficient for many tasks is the existence of one-way functions:
those functions which are easy to compute but hard to invert with non-negligible
probability of success taken over a polynomial time samplable distribution of inputs.

In 1976 when Diffie and Hellman came out with their paper “New Direction
in Cryptography” [20] announcing that we are “on the brink of a revolution in
cryptoghraphy” hopes were high that the resolution of the celebrate P vs. NP
problem was close at hand and with it techniques to lower bound the number of
steps required to break cryptosystems. That did not turn out to be the case. As of
today, no non-linear lower bounds are known for any NP complete problem?.

Instead, we follow a 2-step program when faced with a cryptographic task
which can not be proved unconditionally (1) find the minimal assumptions necessary
and sufficient for the task at hand. (2) design a cryptographic system for the task
and prove its security if and only if the minimal assumptions hold. Proofs of security
then are realy proofs of secure design. They take a form of a constructive reduction.
For example, the existence of a one-way function has been shown a sufficient and
necessary condition for “secure” digital signatures to exist[29, 52, 60]. To prove this
statement one must show how to convert any “break” of the digital signature scheme
into an efficient algorithm to invert the underlying one-way function. Defining
formally “secure” and “break” is an essential preliminary step in accomplishing this
program.

We remark however that all security definitions (although not necessarily all security proofs)
still make sense for a different meaning of ‘easy’ and ‘hard’. For example, one may take easy to
mean linear time whereas hard to mean quadratic time. )

2This is the celebrated unresolved NP vs. P problem posed by Karp, Cook and Levin in the
early seventies. NP corresponds to those problems for which given a solution its correctness be
verified in polynomial time whereas P corresponds to those problems for which a solution can be
found in polynomial time.

SNP-complete problems are the hardest problems for N P. Namely, if an NP complete problem
can be solved in polynomial time and thus be in P, then all problems in NP are in P.
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These type of constructive reductions are a double edged sword. Say that sys-
tem has been proved secure if and only if integer factorization is not in polynomial
time. Then, either the system is breakable and then the reduction proof imme-
diately yields a polynomial time integer factorization algorithm which will please
the mathematicians to no end, or there exists no polynomial time integer factoriza-
tion algorithms and we have found a superb cryptosystem with guaranteed security
which will please the computer users to no end.

Curiously, whereas early hopes of complexity theory producing lower bounds
have not materialized, cryptographic research has yielded many dividends to com-
plexity theory. New research themes and paradigms, as well as techniques orig-
inating in cryptography, have made their way to the main stream of complexity
theory. Well known techniques include random self-reducibility, hardness amplifi-
cation, low degree polynomial representations of Boolean functions, and proofs by
hybrid and simulation arguments. Well known examples of research themes include
: interactive and probabilisticly checkable proofs and their application to show in-
approximability of NP-hard algorithmic problems, the study of average versus worst
case hardness of functions, and trading off hardness of computation for randomness
to be used for derandomizing probabilistic complexity classes.

These examples seem, on a superficial level, quite different from each other.
There are similarities however, in addition to the fact that they are investigated by
a common community of researchers, who use a common collection of techniques.
In all of the above, an “observer” is always present, success and failure are defined
“relative to the observer”, and if the observer cannot “distinguish” between two
probabilistic events, they are treated as identical. This is best illustrated by exam-
ples. (1) A probabilistically checkable proofs is defined to achieve soundness if the
process of checking it errs with exponentially small probability (which is indistin-
guishable from zero). (2) A function is considered hard to compute if all observers
fail to compute it with non negligible probability taken over a efficiently samplable
input distribution. It is not considered “hard” enough if it is only hard to compute
with respect to some worst case input never to be encountered by the observer. (3)
A source outputting bits according to some distribution is defined as pseudorandom
if no observer can distinguish it from a truly random source (informally viewed as
an on going process of flipping a fair coin).

1.1. Cryptography and classical mathematics

Computational infeasibility, which by algorithmic standards is the enemy of
progress, is actually the cryptographer’s best friend. When a computationally diffi-
cult problem comes along with some additional properties to be elaborated on in this
article, it allows us to design methods which while achieving their intended function-
ality are “infeasible” to break. Luckily, such computationally intensive problems are
abundant in mathematics. Famous examples include integer factorization, finding
short vectors in an integer lattice, and elliptic curve logarithm problem. Viewed this
way, cryptography is an external customer of number theory, algebra, and geometry.
However, the complexity theory view point has not left these fields untouched, and
often shed new light on old problems.
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In particular, the history of cryptography and complexity theory is intertwined
with the development of algorithmic number theory. This is most evident in the
invention of faster tests for integer primality testing and integer factorization [48]
whose quality is attested by complexity analysis rather than the earlier benchmark-
ing of their performance. A beautiful account on the symbiotic relationship between
number theory and complexity theory is given by Adleman [2] who prefaces his ar-
ticle by saying that “Though algorithmic number theory is one of man’s oldest
intellectual pursuit, its current vitality is unrivaled in history. This is due in part
to the injection of new ideas from computational complexity.”

1.2. Cryptography and information theory

In a companion paper to his famous paper on information theory, Shannon
[66] introduced a rigorous theory of perfect secrecy based on information theory.
The theory addresses adversary algorithms which have unlimited computational
resources. Thus, all definitions of security, which we will refer to henceforth as
information theoretic security, and proofs of possibility and impossibility are with
respect to such adversary. Shannon proves that “perfectly secure encryption” can
only exist if the size of secret information that legitimate parties exchange between
them in person prior to remote transmission, is as large as the total entropy of secret
messages they exchange remotely. Maurer [51] generalized these bounds to two-way
communications. This limits the practice of encryption based on information theory
a great deal. Even worse, the modern cryptographic tasks of public-key encryption,
digital signatures, pseudo random number generation, and most two party protocols
can be proved down right impossible information theoretically. To achieve those,
we turn to adversaries who are limited computationally and aim at computational
security with the cost of making computational assumptions or assumptions about
the physical world.

Having said that, some cryptographic tasks can achieve full information the-
oretic security. A stellar example is of multi party computation. Efficient and
information theoretic secure multi-party protocols are possible unconditionally tol-
erating less than half faults, if there are perfect private channels between each pair
of honest users [8, 19, 61, 33]. Statistical zero-knowledge proofs are another example
[32, 71].

Perfect private channels between pairs of honest users can be implemented in
several settings: (1) The noisy channel setting [45] (which is a generalization of
the wire tal channel [75]) where the communication between users in the protocol
as well as what the adversary taps is subject to noise). (2) A setting where the
adversary’s memory (i.e. ability to store data) is limited [18]. (3) The Quantum
Channels setting where by quantum mechanics, it is impossible for the adversary to
obtain full information on messages exchanged between honest users. Introducing
new and reasonable such settings which enable information theoretic security is an
important activity.

Moreover, often paradigms and construction introduced within the computa-
tional security framework can be and have been lifted out to achieve information
theoretic security. The development of randomness extractors from pseudo random
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number generators can be done in this fashion [72].

We note that whereas the computational complexity notions of secrecy, knowl-
edge, and pseudo-randomness are different than their information theoretic ana-
logues, techniques of error recovery developed in information theory are extremely
useful. Examples include the Haddamard error correcting codes which is used to
exhibit hard core predicates in one-way functions [28], and various polynomial based
error correcting codes which enable high fault tolerance in multi-party computation
[8].

To sum up, the theory of cryptography has in the last 30 years turned into a
rich field with its own rules, structure, and mathematical beauty which has helped
to shape complexity theory. In the talk, I will attempt to lead you through a
short summary of what I believe to have been a fascinating journey of modern
cryptography. I apologize in advance for describing my own journey, at the expense
of other points of view. T attach a list of references including several survey articles
that contain full details and proofs [40].

In the rest of the article, I will briefly reflect on a few points which will make
my lecture easier to follow.

2. Conventions and complexity theory terminol-
ogy

We say that an algorithm is polynomial time if for all inputs z, the algorithm
runs in time bounded by some polynomial in |z] where the latter denotes the length
of x when represented as a binary string. A probabilistic algorithm is one that can
make random choices, where without loss of generality each choice is among two
and is taken with probability 1/2. We view these choices as the algorithm coin
tosses. A probabilistic algorithm A on input x may have more than one possible
output depending on the outcome of its coin tosses, and we will let A(x) denote
the probability distribution over all possible outputs. We say that a probabilistic
algorithm is probabilistic polynomial time (PPT) if for any input z, the expectation
of the running time taken over the all possible coin tosses is bounded by some
polynomial in |z|, regardless of the outcome of the coin tosses.

In complexity theory, we often speak of language classes. A language is a
subset of all binary strings. The class P is the set of languages such that there
exists a polynomial time algorithm, which on every input z can decide if z is in
the language or not. The class BPP are those languages whose membership can
be decided by a probabilistic polynomial time algorithm which for every input,
is incorrect with at most negligible probability taken over the coin tosses of the
algorithm. The class NP is the class of languages accepted by polynomial time non-
deterministic algorithm which may make non-deterministic choices at every point
of computation. Another characterization of NP is as the class of languages that
have short proofs of memberships. Formally, NP = {L| there exists polynomial
time computable function f and & > 0, such that € L iff there exists y such that

fw,y) =1 and |y| < |al*}.
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In this article, we consider an ‘easy’ computation to be one which is carried
out by a PPT algorithm. A function v: N — R is negligible if it vanishes faster
than the inverse of any polynomial. All probabilities are defined with respect to
finite probability spaces.

3. Indistinguishability

Indistinguishability of probability distributions is a central concept in modern
cryptography. It was first introduced in the context of defining security of encryp-
tion systems by Goldwasser and Micali [31]. Subsequently, it turned out to play a
fundamental role in defining pseudo-randomness by Yao [76], and zero-knowledge
proofs by Goldwasser, Micali, and Rackoff [32].

Definition 1 Let X = {X}g, Y = {Yi} be two ensembles of probability distribu-
tions on {0,1}*. We say that X is computationally indistinguishable from Y
if V probabilistic polynomial time algorithms A, V ¢ > 0, 3ko, s.t Vk > ko,

1
|, Pr (A() = 1) = Pr (A() = )| < .

The algorithm A used in the above definition is called a polynomial time statistical
test.

Namely, for sufficiently long strings, no probabilistic polynomial time algo-
rithms can tell whether the string was sampled according to X or according to Y.
Note that such a definition cannot make sense for a single string, as it can be drawn
from either distribution. Although we chose to focus on polynomial time indistin-
guishability, one could instead talk of distribution which are indistinguishable with
respect to any other computational resource, in which case all the algorithms A in
the definition should be bounded by the relevant computational resource. This, has
been quite useful when applied to space bounded computations [53].

Of particular interest are those probability distributions which are indistin-
guishable from the uniform distribution, focused on in [76], and are called pseudo-
random distributions.

Let U = {Uj} denote the uniform probability distribution on {0, 1}*. That is,

for every o € {0, 1}*, Prycp, [z = o] = QL

Definition 2 We say that X = {X}; is pseudo random if it is computationally
indistinguishable from U. That is, V probabilistic polynomial time algorithms A, ¥V
¢ > 0 kg, such that Yk > kg,

1
| Pr 4@ =11 = Pr (4@ =1 < 7.
If 4A and ¢ such that the condition in definition 2 is violated, we say that X}, fails
the statistical test A.
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A simple but not very interesting example of two probability distributions
which are computationally indistinguishable are two distributions which are statis-
tically very close. For example, X = {X}} defined exactly as the uniform distri-
bution over {0,1}* with two exceptions, 0¥ appears with probability w5+ and 1
appears with probability gk% Then the uniform distribution and X can not be
distinguished by any algorithm (even one with no computational restrictions) as
long as it is only given a polynomial size sample from one of the two distributions.

It is fair to ask as this point whether computationally indistinguishability is
anything more than statistical closeness where the latter is formally defined as
follows.

Definition 3 Two probability distributions X,Y are statistically close if Ve > 0,
dko such that Yk > ko,

S|Pt e Xi) - (e Uy) < ki

t t
X and Y are far if they are not close.

Do there exist distributions which are statistically far apart and yet are com-
putationally indistinguishable? Goldreich and Krawczyk [27] who pose the question
note this to be the case by a counting argument. However their argument is non
constructive. The works on secure encryption and pseudo random number genera-
tors [31, 10, 76] imply the existence of efficiently constructible pairs of distributions
that are computationally indistinguishable but statistically far, under the existence
of one-way functions. The use of assumptions is no accident.

Theorem 4 [25] The existence of one-way functions is equivalent to the existence
of pairs of polynomial-time constructible distributions which are computationally
indistinguishable and statistically far.

4. Building blocks

A central building block required for many tasks in cryptography is the ex-
istence of a one-way function. Let us discuss this basic primitive as well as a few
others in some detail.

4.1. One-way functions

Informally, a one-way function is a function which is “easy” to compute but
“hard” to invert. Any probabilistic polynomial time (PPT) algorithm attempting
to invert the function on an element in its range, should succeed with no more than
“negligible” probability, where the probability is taken over the elements in the
domain of the function and the coin tosses of the PPT attempting the inversion.
We often refer to an algorithm attempting to invert the function as an adversary
algorithm.



252 S. Goldwasser

Definition 5 A function f: {0,1}* — {0,1}* is one-way if:

1. Fasy to Evaluate: there exists a PPT algorithm that on input x output f(x);
2. Hard to Invert: for all PPT algorithm A, for all ¢ > 0, there exists ko such
that for all k > kg,

1
Pr[A(F, f(z) =z ¢ f(2) = f(2)] <5
where the probability is taken over x € {0,1}* and the coin tosses of A.

Note Unless otherwise mentioned, the probabilities during this section are calcu-
lated uniformly over all coin tosses made by the algorithm in question.

A few remarks are in order. (1)The guarantee is probabilistic. The adversary
has low probability of inverting the function where the probability distribution is
taken over the inputs of length k to the one-way function and the possible coin
tosses of the adversary.

(2) The adversary is not asked to find x; that would be pretty near impossible.
It is asked to find some inverse of f(x). Naturally, if the function is 1-1 then the only
inverse is z. We note that it is much easier to find candidate one-way functions
without imposing further restrictions on its structure, but being 1-1 or at least
regular (that is, the number of preimage of any image is about of the range), it
results in easier and more efficient cryptographic constructions.

(3) One may consider a non-uniform version of the “Hard to invert” require-
ment, requiring the function to be hard to invert by all non-uniform polynomial
size family of algorithms, rather than by all probabilistic polynomial time algo-
rithms. The former extends probabilistic polynomial time algorithms to allow for
each different input size, a different polynomial size algorithm.

(4) The definition is typical to definitions from computational complexity the-
ory, which work with asymptotic complexity—what happens as the size of the prob-
lem becomes large. One-wayness is only asked to hold for large enough input lengths,
as k goes to infinity. Per this definition, it may be entirely feasible to invert f on,
say, 512 bit inputs. Thus such definitions are useful for studying things on a basic
level, but need to be adapted to be directly relevant to practice.

(5) The above definition can be considerably weakened by replacing the second
requirement of the function to require it to be hard to invert on some non-negligible
fraction of its inputs (rather than all but non-negligible fraction of its inputs ).
This relaxation to a weak one-way function is motivated by the following example.
Consider the function f : Z x Z ~» Z where f(x,y) = z -y. This function can
be easily inverted on at least half of its outputs (namely, on the even integers)
and thus is not a one-way function as defined above. Still, f resists all efficient
algorithms when z and y are primes of roughly the same length which is the case
for a non-negligible fraction (~ 7z) of the k-bit composite integers. Thus according
to our current state of knowledge of integer factorization, f does satisfy the weaker
requirement. Convertion between any weak one-way function to a one-way function
have been shown using “hardness amplification” techniques which expand the size of
the input by a polynomial factor [76]. Using expanders, constant factor expansions
(of the input size) construction of a one-way function from a weak one-way function
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is possible [26].

(6) To apply this definition to practice we must typically envisage not a single
one-way function but a family of them, parameterized by a security parameter k.
That is, for each value of the security parameter k, there is a family of functions,
each defined over some finite domain and finite ranges. The existence of a single
one-way function is equivalent to the existence of a collection of one-way functions.

Definition 6 A collection of one-way functions is a set F = {f; : D; — R;}ier
where I is an index set, and D; (R;) are finite domain(range) for i € I, satisfying
the following conditions.
1. Selection in Collection: 3 PPT algorithm S, that on input 1* outputs ani € T
where i} = k.
2. Selection in Domain: 3 PPT algorithm Sa that on inputi € I outputs x € Dy
3. Fasy to Evaluate: 3 PPT algorithm Eval such that for i € I and x € Dy,
Eval(i,z) = fi(x).
4. Hardness to Invert: ¥ PPT adversary algorithm A, ¢ > 0, 3 ko such that ¥V

k> ko, )
PGS f@) = 2 - S0 = J()] <

(the probability is taken over i € S1(1%), 2 € S»(i) and the coin tosses of A).

The hardness to invert condition can be made weaker by requiring only that
Je > 0, such that V PPT algorithm A, 3 ko such that V k > ko. Prob[A(1%,i, fi(z)) #
z, f(z) = f(2)] > 7= (the probability taken over i € S (1¥),z € S5(i) and the coin
tosses of A). We call collections which satisfy such weaker conditions, collection
of weak one-way functions. Transformations exist via sampling algorithms between
both types of collections.

Another useful and equivalent notion is of a ene-way predicate, first introduced
in [31]. This is a Boolean function of great use in encryption and protocol design.
A one-way predicate is equivalent to the existence of 0/1 problems, for which it is
possible to uniformly select an instance for which the answer is 0 (or respectively 1),
and yet for a (pre-selected) instance it is hard to compute with success probability
greater than % whether the answer is 0 or 1.

Definition 7 A one-way predicate is a Boolean function B : {0,1}* — {0,1} for
which
1. Sampling is possible: 3 PPT algorithm S that on input v € {0,1} and 1%,
outputs a random x such that B(z) = v and x € {0,1}*.
2. Guessing is hard: Ye > 0, ¥ PPT algorithms A, Vk sufficiently large, Prob[A(z)
= B(z)] <5+ % (probability is taken over v € {0,1},2 € S(1%,v), and the
coin tosses of A).

Proving the equivalence between one-way predicates and one-way functions is
easy in the forward direction, by viewing the sampling algorithm S as a function
over its coin tosses. To prove the reverse implication is quite involved. Toward this
goal, the notion of a hard core predicate of a one-way function was introduced in
[10, 76]. Jumping ahead, hard core predicate of one-way functions yield immediately
one-way predicates.
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4.1.1. Hard-core predicates

The fact that f is a one-way function obviously does not necessarily imply
that f(x) hides everything about x. It is easy to come up with constructions of
universal one-way functions in which one of the bits of x leaks from f(x). Even if
each bit of z is well hidden by f(x) then some function of all of the bits of = can
be easy to compute. For example, the least significant bit of z is easy to compute
from fp 4(x) = ¢g* mod p where p is a prime and g a generator for the cyclic group
Z, even though we know of no polynomial time algorithms to compute z from
Jp,g(x). Similarily, it is easy of compute the Jacobi symbol of 2 mod n from the
RSA function RSA, .(x) = 2° mod n where (e, ¢(n)) = 1, even though the fastest
algorithm to invert RS A, . needs to factor integer n first, which is not known to
be a polynomial time computation.

Yet, clearly there are some bits of information about 2 which cannot be com-
puted from f(x), given that x in its entirety is hard to compute. The question
is, which bits of & are hard to compute, and how hard to compute are they. The
answer is encouraging. For several functions f for which no polynomial time invert-
ing algorithm is known, we can identify particular bits of the pre-image of f which
can be proven (via a polynomial time reduction) to be as hard as to compute with
probability significantly better than %, as it is to invert f itself in polynomial time.
Examples of these can be found in [10, 31, 36, 1].

More generally, a hard-core predicate for f, is a Boolean predicate about x
which is efficiently computable given z, but is hard to compute from f(x) with

probability significantly better than %

Definition 8 A hard-core predicate of a function f : {0,1}* — {0,1}* is a Boolean
predicate B : {0,1}* — {0, 1}, such that
1. 3APPT algorithm Eval, such that Va Eval(z) = B(x)
2. ¥ PPT algorithm A, ¥ ¢ > 0, Jko, s.t.Vk > ko Pr[A(f(z)) = B(x)] < § + .
The probability is taken over the random coin tosses of A, and random choices
of x of length k.

Yao proposed a construction of a hard-core predicate for any one-way func-
tion [76]. A considerably simpler construction and proof general result is due to
Goldreich and Levin [28].

Theorem 9 [28] Let f be a length preserving one-way function. Define f'(xor) =
f(x) or, where |z] = |r| =k, and o is the concatenation function. Then

B(zor) =Xk z(mod 2)
is o hard-core predicate for f' (Notice that if [ is one-way then so is f').

Interestingly, the proof of the theorem can be regarded as the first example of
a polynomial time list decoding [63] algorithm. Essentially B(z,r) may be viewed
as the rth bit of a Haddamrd encoding of #. The proof of the theorem yields a
polynomial time error decoding algorithm which returns a polynomial size list of
candidates for z, as long as the encoding is subject to an error rate of less than

3 — € where € > ;L for some constant ¢ > 0, k = |z|. The length of the list is O(%).
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4.2. Trapdoor functions

A trapdoor function f is a one-way function with an extra property. There also
exists a secret inverse function (the trapdoor) that allows its possessor to efficiently
invert f at any point in the domain of his choosing. It should be easy to compute
f on any point, but infeasible to invert f with high probability without knowledge
of the inverse function. Moreover, it should be easy to generate matched pairs of
f’s and corresponding trapdoor.

Definition 10 A trapdoor function is a one-way function f : {0,1}* — {0,1}*
such that there exists a polynomial p and o probobilistic polynomial time algorithm
I such that for every k there exists o t, € {0,1}" such that |tg] < p(k) and for all
z € {0,135, I(f(2),ts) =y such that f(y) = f(x).

Trapdoor functions are much harder to locate than one-way function, as they
seem to require much more hidden structure. An important problem is to establish
whether one implies the other. Recent results of [41] indicate this may not the case.

A trapdoor predicate is a one-way predicate with an extra trapdoor property:
for every k, there must exist trapdoor information ¢; whose size is bounded by a
polynomial in k and whose knowledge enables the polynomial-time computation of
B(xz), for all x € {0,1}*. Restating as a collection of trapdoor predicates we get.

Definition 11 Let I be an index set and fori € I, D; a finite domain. A collection
of trapdoor is a set B ={B; : D; — {0,1} }ier such that:

1. 3 PPT algorithm Sy which on input 1% outputs (i,t;) where i € 1N {0,1}*,
and |t;] < poly(k) ( t; is the trapdoor).

2. 3 PPT algorithm Sa2 which on input i € I,v € {0,1} outputs x € D; such that
Bi (SIL’) = v.

8. 3 PPT algorithm S3 which on input i € I,x € Dy, t; outputs B;(x).

4. ¥ PPT adversary algorithms A, ¢ > 0, 3ko,Vk > ko, Prob[A(i,z) = By(z)] <
%—F % (the probability taken over i € S1(1%),v € {0,1},x € S2(i,v), and the
coins of A).

The existence of a trapdoor predicate is equivalent to the existence of secure
public-key encryption as we shall see in the next section. Trapdoor functions imply
trapdoor predicates, but it is an open problem to show that they are equivalent.

Claim 12 If trapdoor functions exist then collection of trapdoor predicates exist.

4.3. Candidate examples of building blocks

It has been shown by a fairly straightforward diagonalization argument [39]
how to construct a universal one-way function (i.e. a function which is one-way if
any one-way function exists). Still this is very inefficient, and concrete proposals for
one-way function are needed for any practical usage of cryptographic constructions
which utilized one-way functions. Moreover, looking into the algebraic, combinato-
rial, and geometric structure of concrete proposals has lead to many insights about
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what could be true about general one-way functions. The revelation process seems
almost always to start from proving properties about concrete examples to gener-
alizing to proving properties on general one-way functions.

Interesting proposals for one-way functions, trapdoor functions, and trapdoor
predicates have been based on hard computational problems from number theory,
coding theory, algebraic geometry, and geometry of numbers. What makes a com-
putational problem a “suitable” candidate? First, it should be put under extensive
scrutiny by the relevant mathematical community. Second, the problem should be
hard on the average and not only in the worst case. A big project in cryptography
is the construction of cryptographic functions which are provably hard to break on
the average under some worst-case computational complexity assumption. A central
technique is to show that a problem is as hard for an average instance as it is for
a worst case instance by random self reducibility [6]. A problem P is random self
reducible if there exists a probabilistic polynomial time algorithm that maps any
instance I of P to a collection of random instances of P such that given solutions to
the random instances, one can efficiently obtain a solution to the original instance.
Variations would allow mapping any instance of P to random instances of P'.*

Perhaps the most interesting problem in cryptography today is to show (or
rule out) that the existence of a one-way function is equivalent to the NP # BPP.

For lack of space, we discuss in brief a few proposals.

4.3.1. Discrete logarithm problem proposal

Let p be a prime integer and ¢ a generator for the multiplicative cyclic group
Zy = {1 <y < p|(y,p) = 1}. The discrete log problem (DLP) is given p,g, and
y € Z;, compute the unique x such that 1 <z < p-1and y = ¢* mod p. The
discrete log problem has been first suggested to be useful for key exchange over the
public channel by Diffie and Hellman [20].

The function DL(p, g,z) = (p,g,¢* mod p), and the corresponding collection
of functions DL = {DLy,, : Z,~1 — Z;, DL, 4(x) = ¢° mod p}<pgser where
I = {< p,g >,pprime , g generator} have served as proposals for a one-way func-
tion and a collection of one-way functions (respectively). On one hand, there exist
efficient algorithms to select pairs of (p, g) of a given length with uniform probability
[7], and to perform modulo exponentiation. On the other hand, the fastest algo-
rithms to solve the discrete log problem is the generalized number field sieve version
of the index-calculus method which runs in expected time el(cto(1))(log ») ¥ (log log p) )
(see survey [54]). Moreover, for a fixed prime p, DL(p, g, g° mod p) can be shown
as hard to invert on the average over the 1 < x < p~ 1 and g generators, as it is
for every g and =z.

4This technique was first observed and applied to the number theoretic problems of factoring,
discrete log, testing quadratic residuosity, and the RSA function. In each of these problems, one
could use the algebraic structure to show how to map a particular input uniformly and randomly
to other inputs in such a way that the answer for the original input can be recovered from the
answers for the targets of the random mapping. Showing that polynomials are randomly self
reducible over finite fields was applied to the low-degree polynomial representations of Boolean
functions, and has been a central and useful technique in probabilistically checkable proofs.
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An important open problem is to prove that, without fizing first the prime
p, solving the discrete log problem for an average instance (p,g,y) is hard on the
average as in the worst case.

In the mid-eighties an extension of the discrete logarithm problem over prime
integers, to computing discrete logarithms over elliptic curves was suggested by
Koblitz and V. Miller (see survey [46]). The attraction is that the fastest algorithms
known for computing logarithms over elliptic curves are of complexity O(,/p) for
finite field F,,. The main concern is that they have not been around long enough
to go under extensive scrutiny, and that the intersection between the mathematical
community who can offer such scrutiny and the cryptographic community is not
large.

4.3.2. Shortest vector in integer lattices proposal

In a celebrated paper [4] Ajtai described a problem that is hard on the au-
erage if some well-known integer lattice problems are hard to approrimate in the
worst case, and demonstrated how this problem can be used to construct one-way
functions. Previous worst case to average case reductions were applied to two pa-
rameter problems and the reduction was shown upon fixing one parameter (e.g. in
the discrete logarithm problem random self reducibility was shown fixing the prime
parameter), whereas the [4] reduction is the first which averages over all parameters.

Let V' be a set of n linearly independent vectors V = {v1, -+ ,v,,v; € R}.
The integer lattice spanned by V is the set of all possible linear combinations of the
v;’s with integer coeflicients, namely L(V) def {3, aw : a; € Zfor all i}. We call
V" the basis of the lattice L(V'). We say that a set of vectors L C R” is a lattice if
there is a basis V' such that L = L(V).

Finding “short vectors” (i.e., vectors with small Euclidean norm) in lattices
is a hard computational problem. There are no known eflicient algorithms to find
or even approximate - given an arbitrary basis of a lattice - either the shortest
non-zero vector in the lattice, or another basis for the same lattice whose longest
vector is as short as possible. Given an arbitrary basis B of a lattice L in R”, the
best algorithm to approximate (up to a polynomial factor in n) the length of the
shortest vector in L is the L? algorithm [49] which approximates these problems to
within a ratio of 2"/2 in the worst case, and its improvement [64] to ratio (1 + €)”
for any fixed ¢ > 0.

Ajtai reduced the worst-case complexity of problem (W) which is closely re-
lated the length of the shortest vector and basis in a lattice, to the average-case
complexity of problem (A) (version presented here is due to Goldreich, Goldwasser,
and Halevi [34]).

W : Given an arbitrary basis B of a lattice L, find a set of n linearly independent
lattice vectors, whose length is at most polynomially (in n) larger than the
length of the smallest set of n linearly independent lattice vectors. (The length
of a set of vectors is the length of its longest vector.)

A : Let parameters n,m,q € N be such that nlogg < m < six and ¢ = O(n®)
for some constant ¢ > 0. Given a matrix M € ngm, find a vector x €

{~1,0,1}™, 2 # 0 so that Mx =0 (mod g).
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Theorem 13 [4, 34] Suppose that it is possible to solve a uniformly selected instance
of Problem (A) in expected T (n,m, q)-time, where the expectation is taken over the
choice of the instance as well as the coin-tosses of the solving algorithm. Then it is
possible to solve Problem (W) in expected poly(|I]) - T'(n, poly(n),poly(n)) time on
every n-dimensional instance I, where the expectation is taken over the coin-tosses
of the solving algorithm.

The construction of a candidate one-way function follows in a straight forward
fashion. Let M be a random k x m matrix M with entries from Z,, where m and
q are chosen so that klogg < m < 5lz and ¢ = O(k¢) for some constant ¢ > 0 (k
here is the security parameter).

The one-way function candidate is then f(M,s) = (M, Ms mod ¢ = >, s;M; mod
q) where s = s182 -8y, € {0,1}™ and M, is the ’th column of M. We note that
this function is regular.

4.3.3. Factoring integers proposal

Consider the function Squaring(n,z) = (n,z? modn) where n = pq for
p,q € Z prime numbers and = € Z, and the corresponding collection of func-
tions Squaring = {Squaring,(x) = 2> mod n : Z — Z},n = pq,p, q primes, |p| =
lgl = k}. This function is easy to compute without knowing the factorization of n,
and is easy to invert given the factorization of n (the trapdoor) using fast square
root extraction algorithms modulo prime moduli [5] and the Chinese remainder the-
orem. Moreover, as the primes are abundant by the prime number theorem (= %
for k-bit primes) and there exist probabilistic expected polynomial time algorithms
for primality testing [30, 3], it is easy to uniformly select n, p, ¢ of the right form.

In terms of hardness to invert, Rabin [62] has shown it as hard to invert as it is
to factor n as follows. Suppose there exists a factoring algorithm A. Chooser € Z7
at random. Let y = A(r? mod n). If y # r or n — r, then let p = ged(r — y,n), else
choose another r and repeat. Within expected 2 trials you should obtain p. The

asymptotically proven fastest integer factorization algorithm to date is the number

1 2
field sieve which runs in expected time el(c+o(1))logn)3 (loglogn)¥) [59]  The hardest
input to any factoring algorithms are integers n = pg which are product of two
primes of similar length. Finally, for a fixed n, Squaring(n,-) can be shown as
hard to invert on the average over x € Z} as it is for any . We remark, that
integer factorization has been first proposed as a basis for a trapdoor function in
the celebrated work of Rivest, Shamir and Adelman [56].

By choosing p and ¢ to be both congruent to 3 mod 4 and restricting the
domain of Squaring,, to the quadratic residues mod n, this collection of functions
becomes a collection of permutations proposed by Williams [74], which are especially
easy to work with in many cryptographic applications.

An open problem is to prove that the difficulty of factoring integers is as hard
on the average as in the worst case. In our terminology an affirmative answer would
mean that 2% mod n is as hard to invert on the average over n and z, as it is for
any n and z.
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4.3.4. Quadratic residues vs. quadratic non residues proposal

Let n € Z. Then we call y € Z7 is a quadrotic residue mod n iff 4z € Z7 such
that y = 22 mod n. Let us restrict our attention to n = pg where p = ¢ = 3 mod 4.

Selecting a random quadratic residue mod n is easy by choosing r € Z) and
computing r? mod n. Similarily, for such n, selecting a random quadratic non-
residue is easy by choosing r € Z} and computing n —r? mod n (this is a quadratic
non-residue by the property of the n’s chosen).

On the other hand, deciding whether z is a quadratic residue modulo n for
n composite (which is the case if and only if it is a quadratic residue modulo
each of its prime factors), seems a hard computational problem. No algorithm
is known other than first factoring n and then deciding whether z is a quadratic
residue modulo all its prime factors. This is easy for a prime modulos by computing
the Legendre symbol (%) = 2" mod p (= 1 iff 2 is a quadratic residue mod p).
The Legendre symbol is generalizable to the Jacobi symbol for composite moduli
(%) = Hpa[n(%)a where n = IIp®. The Jacobi symbol only provides partial answer
to whether 2 mod 7 is a quadratic residue or not. Forz € Ji' ={x e Zy, (%) = 1},
it gives no information.

A proposal by Goldwasser and Micali [31] for a collection of trapdoor predicates
follows.

QR ={QR, : JI* = {0,1}}ner where I = {n = pq||p, q, primes, |p| = |q|},

QR (z) = 0 if z is a quadratic residue mod n
" — ] 1if 2 is a quadratic non-residue mod n

It can be proved that for every n distinguishing between random quadratic
residues and random quadratic non residues with Jacobi symbol -1, is as hard as
solving the problem entirely in the worst case.

Theorem 14 [31] Let S C I. If there exists a PPT algorithm which for every
n € S, can distinguish between quadratic residues and quadratic non-residues with
non-negligible probability over % (probability taken over the x € Z} and the coin
tosses of the distinguishing algorithm), then there exist a PPT algorithm which for
every n € S and every x € Z decides whether x is o quadratic residue mod n with

probability close to 1.

5. Encryption case study

As discussed in the introduction we would like to propose cryptographic schemes
for which we can prove theorems guaranteeing the security of our proposals. This
task includes a definition phase, construction phase and a reduction proof which is
best illustrated with an example. We choose the example of encryption.

We will address here the simplest setting of a passive adversary who can tap
the public communication channels between communicating parties. We will mea-
sure the running time of the encryption, decryption, and adversary algorithms as a
function of a security parameter k which is a parameter fixed at the time the cryp-
tosystem is setup. We model the adversary as any probabilistic algorithm which
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runs in time bounded by some polynomial in k. Similarily, the encryption and
decryption algorithms designed are probabilistic and run in polynomial time in k.

5.1. Encryption: definition phase

Definition 15 A public-key encryption scheme is a triple, (G, E, D), of probabilis-
tic polynomial-time algorithms satisfying the following conditions

1. key generation algorithm : On input 1% (the security parameter) algorithm G,
produces a pair (e,d) where e is called the public key, and d the corresponding
private key. (Notation: (e,d) € G(1¥).) We will also refer to the pair (e,d) a
pair of encryption /decryption keys.

2. An encryption algorithm: Algorithm E takes as inputs encryption key e from
the range of G(1%) and string m € {0,1}* called the message, and produces
as output string ¢ € {0,1}* called the ciphertext. (We use the notation ¢ €
E(e,m) or the shorthand ¢ € E.(m).) Note that as E is probabilistic, it may
produce many ciphertexts per message.

3. A decryption algorithm: Algorithm D takes as input decryption key d from the
range of G(1%), and a ciphertext ¢ from the range of E(e,m), and produces
as output o string m' € {0,1}*, such that for every pair (e,d) in the range of
G(1%), for every m, for every c € E(e,m), the prob(D(d,c) # m') is negligible.

4. Furthermore, this system is “secure” (see discussion below ).

A private-key encryption scheme is identically defined except that e = d. The
security definition for private-key encryption and public-key encryption are different
in one aspect only, in the latter e is a public input available to the whereas in the
former e is a secret not available to the adversary.

5.1.1. Defining security

Brain storming about what it means to be secure brings immediately to mind
several desirable properties. Let us start with the the minimal requirement and
build up.

First and foremost the private key should not be recoverable from seeing
the public key. Secondly, with high probability for any message space, messages
should not be entirely recovered from seeing their encrypted form and the public
file. Thirdly, we may want that in fact no useful information can be computed about
messages from their encrypted form. Fourthly, we do not want the adversary to be
able to compute any useful facts about traffic of messages, such as recognize that
two messages of identical content were sent, nor would we want her probability of
successfully deciphering a message to increase if the time of delivery or relationship
to previous encrypted messages were made known to her.

In short, it would be desirable for the encryption scheme to be the mathemat-
ical analogy of opaque envelopes containing a piece of paper on which the message
is written. The envelopes should be such that all legal senders can fill it, but only
the legal recipient can open it.
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Two definitions of security attempting to capture the “opaque envelope” anal-
ogy have been proposed in the work of [31] and are in use today: computational
indistinguishability and semantic security. The first definition is easy to work with
whereas the second seems to be the natural extension of Shannon’s perfect secrecy
definition to the computational world. They are equivalent to each other as shown
by [31, 67].

The first definition essentially requires that the the adversary cannot find a pair
of messages mg, my for which the probability distributions over the corresponding
ciphertexts is computationally distinguishable.

Definition 16 We say that o Public Key Cryptosystem (G, E, D) is computation-
ally indistinguishable if ¥V PPT algorithms F, A, and for ¥ constant ¢ > 0, Fko, V
k > ko, Ymo,my € F(1%), [mo| = |ma],

|Pr[A(e,¢) = 1 where (e,d) € G(1%); ¢ € E(e,mo)]

—Pr{A(e,0) = 1(e,d) € G(1F); ¢ € Ee,m)]| < —.

kc

Remarks about the definition

1. In the case of private-key cryptosystem, the definition changes slightly. The
encryption key e is not given to algorithm A.

2. Note that even if the adversary know that the messages being encrypted is
one of two, he still cannot tell the distributions of ciphertext of one message
apart from the other.

3. Any cryptosystem in which the encryption algorithm E is deterministic im-
mediately fails to pass this security requirement. (e.g given e,mg,m; and ¢ it
would be trivial to decide whether ¢ = E(e,mg) or ¢ = E(e,mq) as for each
message the ciphertext is unique.)

The next definition is called Semantic Security. It may be viewed as a com-
putational version of Shannon’s perfect secrecy definition. It requires that the ad-
versary should not gain any computational advantage or partial information from
having seen the ciphertext.

Definition 17 We say that an public key cryptosystem (G, E, D) is semantically
secure if ¥V PPT algorithm A 3 PPT algorithm B, s.t. ¥ PPT algorithm M, V
function h : M(1%) — {0,1}*, Ve > 0, 3ky, VE > ko, Pr[A(e, |m|,c) = h(m) |
(e,d) € G(1%); m € M(1%); c € E(e,m)] < Pr[B(e,|m|) = h(m) | m € M(1%)]+ .

The algorithm M corresponds to the message space from which messages are
drawn, and the function h{m) corresponds to information about message m ( for
example, h(m) = 1 if m has the letter ‘e’ in it).

Theorem 18 [31, 67] A Public Key Cryptosystem is computationally indistinguish-
able if and only if it is semantically secure.
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5.2. Encryption: construction phase

We turn now to showing how to actually build a public key encryption scheme
which is polynomial time indistinguishable. The construction shown here is by
Goldwasser and Micali [31]. The key to the construction is to answer a simpler
problem: how to securely encrypt single bits. Encrypting general messages would
follow by viewing each message as a string of bits each encrypted independently.

Given a collection of trapdoor predicates B, we define a public key cryptosys-
tem (G, E, D)p as follows:

Definition 19 A probabilistic encryption PEg = (G, E, D) based on trapdoor pred-
icates B is defined as:

1. Key generation algorithm G: On input 1%, G outputs (i,t;) where B; € B,
i € {0,1}* and t; is the trapdoor information. The public encryption key is i
and the private decryption key is t;. (This is achieved by running the sampling
algorithm Sy from the def of B.)

2. Let m = ma ...my where m; € {0,1} be the message.

E(i,m) encrypts m as follows:
Choose x; €g D; such that Bi(x;) =m; forj=1,...,n.
Output ¢ = fi(x1) ... filzn).

3. Let c =y ...yr where y; € D; be the cyph ertext.
D(t;,c) decrypts ¢ as follows:
Compute m; = B;(y;) forj=1,...,n.
Output m = mq ... Mmy.

It is clear that all of the above operations can be done in expected polynomial
time from the definition of trapdoor predicates and that messages can indeed be
sent this way.

Let us ignore for a minute the apparent inefficiency of this proposal in band-
width expansion and computation (which has been addressed by Blum and Gold-
wasser in [11]) and talk about security. It follows essentially verbatim from the
definition of trapdoor predicates that this system is polynomially time indistin-
guishable in the case the message is a single bit (i.e. n = 1). Even though every
bit individually is secure, it is possible in principle that some predicate computed
on all the bits (e.g. their parity) is easily computable. Luckily, it is not the case.

We prove polynomial time indistinguishability using the hybrid argument. This
method is a key proof technique in the theory of pseudo randomness and secure
protocol design, in enabling to show how to convert a slight “edge” in solving a
problem into a complete surrender of the problem.

As this is one of the most straight forward simplest examples of this technique
we shall give it in full.

Theorem 20 [31] Probabilistic encryption PEg = (G, E, D) is semantically secure
if and only if B is a collection of trapdoor predicates.
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Proof Suppose that (G, E, D) is not indistinguishably secure (i.e. not semantically
secure). Then there is a ¢ > 0, a PPT A and M such that for infinitely many k,
dmg,mq € Af(lk) with §m0§ = §m1§,

(*)  Pr[A(i,c) = 1 where (i,t;) € G(1%); ¢ € E(i,mo)]
1
Ea

where the probability is taken the choice of (i,¢;), the coin tosses of A and E.

Consider k& where (*) holds. Wlog, assume that |mo] = |m1] = k and that A
says 0 more often when ¢ is an encryption of mg and 1 more often when ¢ is an
encryption of my.

Define distributions D; = E(i,s;) for j = 0,1,...,k where so = mq, s = 1
and s; differs from s;4 in precisely 1 bit.

Let P; = Pr[A(i,¢) = ljc € D;).

Then Py — Py > 2 and since 35 (Pj41 — Pj) = Py — Po, 3j such that
Pip1 = P > o

Assume that s; and sj4q differ in the I*" bit; that is, s;; # 5,41 or, equiva-
lently, sj4+1; = s7; where s;, is the u-th bit of s;.

Now, consider the following algorithm B which takes input ¢,y and outputs 0
or 1 as its guess to the value of the hard core predicate B;(y).

B on input i, y:

—Pr[A(i,¢) = 1(i, t;) € G(1¥); ¢ € E(i,m1)] >

1. Choose y1, ...,y such that B;(y,) = s;, for r = 1,...,k using S; from the
definition of B.

2. Let ¢ =w1,...,9,.-.,y where y has replaced y; in the I*" block.

3. If A(1%,4,,mo,m1,c) = 0 then output s; ;.
If A(1%,4,,m0,m1,c) = 0 then output sji1, = ;.

Note that ¢ € E(i,s;) if B;(y) = s;; and ¢ € E(i, sj41) if Bi(y) = sj41.-
Thus, in step 3 of algorithm B, outputting s;,; corresponds to A predicting
that ¢ is an encryption of s;.

Claim Pr[B(i,y) = Bi(y)] > 3 + 2.

Proof
Pr[B, fily) = Bily)] = PrA(i,c) = Olc € Eli,s;)] Prlc € E(i,s;)]
+Pr[A(i,¢) = lc € E(i,8541)] Prlc € E(4, sj41)]
> (1= P)(3)+ (Pra)(3)
= S+ 5P =B
1 1
> 5 -+ RS

Thus, B will predict B;(y) given 4, y with probability better than § + .
This contradicts the assumption that B; is a trapdoor predicate.
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Hence, the probabilistic encryption PE = (G, E, D) is indistinguishably se-
cure.

5.3. Strengthening the adversary: non malleable security

The entire discussion so far has assumed that the adversary can listen to the
cipher texts being exchanged over the insecure channel, read the public-file (in the
case of public-key cryptography), generate encryptions of any message on his own
(for the case of public-key encryption), and perform probabilistic polynomial time
computation.

One may imagine a more powerful adversary who can intercept messages being
transmitted from sender to receiver and either stop their delivery all together or
alter them in some way. Even worse, suppose the adversary can after seeing a
ciphertext, request a polynomial number of related ciphertexts to be decrypted for
him. For definitions and constructions of encryption schemes secure against such
adverdary see [69, 21, 12, 17].

6. A constructive theory of pseudo randomness

A theory of randomness based on computability theory was developed by Kol-
mogorov, Solomonov and Chaitin [68, 47, 16]. This theory applies to individual
strings and defines the complexity of strings as the shortest program (running on
a universal machine) that generates that string. A perfectly random string is the
extreme case for which no shorter program than the length of the string itself can
generate it. Inherintly, it is impossible to generate perfect random strings from
shorter ones.

One of the surprising contributions of cryptographically motivated research
in the early eighties, has been a theory of randomness computational complexity
theory pioneered by Shamir [70] Blum and Micali [10], which makes it possible in
principle to deterministically generate random strings from shorter ones. Not to mix
notions, we will henceforth refer to this latter development as a theory of pseudo
randomness, and the strings generated as pseudo random. In contrast, when we
speak of choosing a truly random string of a fixed length over some alphabet, we
refer to selecting it with uniform probability over all strings of the same length. In
this section we shall only speak of binary alphabet. The notation z € g {0, 1}* will
thus be taken to mean that for every s € {0, 1}*, the probability of z = s is 1/2*.

Defining pseudo-random distributions is a special case of the definition of com-
putational indistinguishability, which we encountered earlier in the context of secure
encryption. A distribution over binary strings is called pseudo-random if it is com-
putationally indistinguishable from the uniform distribution over all binary strings
of the same length. The idea is that as long as we cannot tell apart samples from the
uniform distribution from samples of a distribution X in polynomial time , there is
no difference between using either distributions that can be observed in polynomial
time. In particular, any probabilistic algorithm, in which the internal coin flips of
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the algorithm are replaced by strings sampled from X, must not behave any dif-
ferent than it would using truly random coin flips. A counter example will yield a
statistical test to distinguish between X and the uniform distribution.

A deterministic polynomial time program which ’stretchs’ a short input string
selected with uniform distribution (henceforth called the ‘seed’), to a polynomial
long output string is called a pseudo random sequence generator. When such a
construction is accompanied with a proof that the output string distribution is
pseudo random we call the generator a strong pseudo random sequence generator
(SPRSG).5

In a culmination of a sequence of results by [70, 10, 76, 23, 42], Hastand,
Impagliazzo, Levin and Luby showed that a necessary and sufficient condition for
the existence of strong pseudo random sequence generators is the existence of one-
way functions.

The link between one-way functions and pseudo randomness starts from the
following observation. First, rephrase the fact that inverting one-way functions
is difficult, by saying that the inverse of a one-way function is unpredictable. In
particular, the hard-core of a one-way function is impossible to predict with any
non-negligible probability greater than % Second, show that impossibility to predict
is the ultimate test for pseudo randomness. Namely, if a pseudo-random sequence
generator has the property that it is difficult to predict the next bit from previous
ones with probability significantly better than % in time polynomial in the size of
the seed, then it is impossible to distinguish in polynomial time between strings
produced by the pseudo random sequence generators and truly random strings.
This is proved by turning any statistical test that distinguishes in polynomial time
pseudo random strings from random strings into polynomial time next bit predictor.
This link is not conditional on the existence of one-way functions. In fact, in work
by Nisan and Wigderson [57] they removed the requirement that the pseudo random
sequence generator has to work in time which is as fast as the algorithm trying to
distinguish the output sequences from truly random. Generators of this type are
generally useless for cryptographic applications (as they can not be generated in
feasible time) but are very useful for proving complexity theoretic results.

Strong pseudo random generators are useful for understanding the relation
between deterministic algorithms and probablistic algorithms. The idea which was
put forth by Yao [76] was to replace a single execution of a probablistic polynomial
time algorithm A with the majority output of all the executions of the same algo-
rithm, where each execution uses instead of random coins the output of a strong
pseudo random number generator on a different input seed. The cost of the latter
deterministic procedure will be a factor of 28 longer where k' is the seed length
used to generate the pseudo random sequences necessary. The algorithm A must
behave “the same” when it uses truly random coins as when it uses coins which
are pseudo-random, as otherwise it becomes a distinguisher between the uniform
and pseudo-random distributions, an impossible task for a probabilistic polynomial

5 Again the choice of polynomial-time is arbitrary here, a strong pseudo random sequence gen-
erator can be defined to be a deterministic program which works in time 7'(n) where n is the
seed length and is computationally indistinguishable with respect to algorithms which run in time
T’ (n) for time functions T',7".
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time algorithm. Putting this together, we get : if one-way functions exist, then
BPP C N.DTIME(2%). This tradeoff between the hardness of inverting the one-
way function, and randomness replacement, has been followed up with many papers
in complexity theory each either relaxing the hardness assumption or tightening the
relation between deterministic and probabilistic complexity classes.

Strong pseudo random generators are particularly useful for cryptography.
Suppose you need a large supply of random strings for your cryptographic applica-
tions (e.g. the choice of secret keys, internal coin tosses of an encryption algorithm,
etc.). If you use instead of truly random bits, pseudo random sequence generators
which are weak (e.g. predictable), it may completely destroy the underlying cryp-
tographic applications [14]. In contrast, we can replace any use of truly random
coins with strong pseudo random ones (assuming we have access to truly random
coins for the seeds — which is an interesting discussion all by itself), without fear
of compromising the security of the underlying application. Indeed, if as a result
of such replacement the cryptographic application becomes insecure, then a way is
found to distinguish outputs of SPRG from the uniform distribution. Many classical
pseudo random number generators which are quite useful and effective for Monte
Carlo simulations, have been shown not only weak but predictable in a strong sense
which makes them typically unsuitable for cryptographic applications. For example,
linear feedback shift registers [37] are well-known to be cryptographically insecure;
one can solve for the feedback pattern given a small number of output bits, and sim-
ilarily outputs of linear congruential generators [22]. In [44] Kannan, Lenstra, and
Lovasz use the L® algorithm to show that the binary expansion of any algebraic
number y (such as v/5 = 10.001111000110111...) is insecure, since an adversary
can identify y exactly from a sufficient number of bits, and then extrapolate y’s
expansion.

6.1. Pseudo random functions, permutations, and what else?

Similarily to defining pseudo random sequences one may ask what other ran-
dom objects can be replaced with pseudo-random counter parts. Goldreich, Gold-
wasser and Micali [23] considered in this light random functions, which from a gold
mind for applications. Pseudo random functions are defined to be for every size
k a subset of all functions from (and to) the binary strings of length k, which are
polynomial time indistinguishable from truly random functions by any algorithm
whose only access to the function is to query it on inputs of its choice. However,
in contrast with a truly random function, a pseudo random function has a short
description which if known enables efficient evaluation.

Let Hy = {f: {0,1}% — {0,1}*} then |Hy| = (2)". Let # = U, H;.

Definition 21 A polynomial time statistical test for functions is a polynomial time
algorithm T with access to a black box f from which T can request values of f(z)
for xz of T’s choice. A collection of functions F = |J,, Fi, where Fy, C Hj passes
the statistical test T if VQ € Qlz], 3ko, Yk > ko [T(Fy) — T(Hp)| < ﬁ where

T(Fk) = PrfeFk,coms of T[Tf(lk) = 1] and T(Hk) = Prfer,coms ofT[Tf(lk) = 1]
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Definition 22 A collection of functions F = | J, Iy, is a pseudo-random collection
of functions if

1. (Indezxing) For each k, there is a unique indez i € {0,1}* associated with each
[ € Fy. The function f € Fy, associated with index i will be written f;.

2. (Efficiency) There is a polynomial time function A so that A(i,z) = fi(z).

3. (Pseudo-randomness) F passes all polynomial time statistical tests for func-
tions.

Theorem 23 (23] If there exist one-way functions, then there exist pseudo-random
collections of functions.

An immediate application of pseudo random functions is the construction of
semantically secure private key cryptosystem as follows. Let s an index of a pseudo
random function f, be the joint secret key of the sender Alice and the receiver Bob.
Then to encrypt message m, Alice selects at random r € {0, 1}*, and sets the cipher
text ¢ = (r, fs(r)®m) where @ is the bit-wise exclusive-or of two strings. To decrypt
¢ = (a,b), Bob computes f;(a)®b.

Pseudo random functions have been used to derive negative results in compu-
tational learning theory by Valiant and Kearns [73]. They show that any concept
class (i.e. a set of Boolean functions) which contains a family of pseudo random
functions cannot be efficiently learnable under the uniform distribution and with
the help of membership queries. A learning algorithm is given oracle access to any
function in the class and is required to output a description of a function which is
close to the target function (being queried).

The work on natural proofs originated by Rudich and Razborov [55] use pseudo
random functions to derive negative results on the possibility of proving good com-
plexity lower bounds using a restricted class of circuit lower bound proofs referred
to as natural. It is proved that natural (lower bound) proofs cannot be established
for complexity classes containing a family of pseudo random functions.

An interesting question is to characterize which classes of random objects can
be replaced by pseudo random objects. Luby and Rackoff [50] treated the case
of pseudo random permutations and Naor and Reingold the case of permutations
with cyclic structure [58]. As any object can be abstracted as a restricted class of
functions, the real question is what form of access to the function does the statistical
test have. In the standard definition, the statistical test for functions can query the
functions at values of its choice. This may not be necessarily the natural choice in
every case. For example, if the function corresponds to the description of a random
graph (e.g. f(u,v) = 1if and only if an edge is present between vertices v and v).

Define the “ultimate” extension of a statistical test for functions on % bit
strings, to be given access to the entire truth table of the function (i.e. an exponential
size input). The following observation is then straightforward.

Theorem 24 Let f : {0,1}* — {0,1}* be polynomial time computable function,
for which the fastest inverting algorithm runs in time 2 for some € > 0. Then,
there exist collections of pseudo random functions which pass oll ultimate statistical
tests for functions.
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7. Interactive protocols, interactive proofs, and zero
knowledge interactive proofs

Secure one-way communication is a special case of general interactive proto-
cols. The most exciting developments in cryptography beyond public-key cryptog-
raphy has been the development of interactive protocols, interactive proofs, and
zero knowledge interactive proofs [32, 38, 76, 35, 8, 19, 13]. 5 Unfortunately, we
have no space to cover these developments in this article. These topics have been
surveyed extensively, and the interested reader may turn to [39, 40].

A few final words. Generally speaking, an interactive protocol consists of two
or more parties who cooperate and coordinate without a trusted “third” party to
accomplish a common goal, referred to as the functionality of the protocol, while
maintaining the secrecy of their private data. A functionality may be computing a
simple deterministic function such as majority of the inputs of the communicating
parties, or a more complicated probabilistic computation such as playing a non-
cooperative game without a trusted referee.

In the case of more than two parties, the case of adversarial coalitions of
participants who attempt to damage the functionality and break secrecy has been
considered. Very powerful and surprising theorems about the ability of playing
non-cooperative games without a trusted “third party” have been shown. A sample
theorem of Benor, Goldwasser, and Wigderson shows that in the presence of an
adversarial coalition containing less than a third of the parties, any probabilistic
computation can be performed maintaining functionality and perfect information
theoretic secrecy of the inputs, as long as each pair of parties can communicate in
perfect secrecy [8, 19]. These results make extensive use of error correcting codes
based on polynomials. The connection between these theorems and research in
game theory and threory of auctions is well worth examining.
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1. Introduction

Random matrices have their roots in multivariate analysis in statistics, and
since Wigner’s pioneering work [Wi] in 1955, they have been a very important
tool in mathematical physics. In functional analysis, random matrices and ran-
dom structures have in the last two decades been used to construct Banach spaces
with surprising properties. After Voiculescu in 1990-1991 used random matrices to
classification problems for von Neumann algebras, they have played a key role in
von Neumann algebra theory (cf. [V8]). In this lecture we will discuss some new
applications of random matrices to operator algebra theory, namely applications
to classification problems for C*-algebras and to the invariant subspace problem
relative to a von Neumann algebra.

The rest of this lecture is divided into eight sections:

Selfadjoint random matrices and Wigner’s semicircle law.

Free probability and Voiculescu’s random matrix model.

Ext(Cx(Fy)) is not a group for k > 2.

Other applications of random matrices to C*-algebras.

The invariant subspace problem relative to a von Neumann algebra.

The Fuglede-Kadison determinant and Brown’s spectral distribution measure.
Spectral subspaces for operators in Il -factors.

Voiculescu’s circular operator Y and the strictly upper triangular operator T'.
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2. Selfadjoint random matrices and Wigner’s semi-
circle law

A random matrix X is an n x n matrix whose entries are real or complex
random variables on a probability space (Q,F, P). We denote by SGRM(n,0?) the
class of selfadjoint random matrices

i,j=1

where X;;, 4,7 =1,...,n are n? complex random variables and
XM (V2ReX[ )iy, (V2ImX()ig;

are n? independent identical distributed real Gaussian random variables with mean
value 0 and variance 0. In the terminology of Mehta’s book [Me], X, is a Gaussian
unitary ensemble (GUE). In the following we put a2 = % which is the normalization
used in Voiculescu’s random matrix paper [V4]. By results of Gaudin, Mehta and
Wigner from 1960-1965, the joint distribution of the eigenvalues (in random order)
of X has density g given by

[

gnAy e ) = e [T = o) exp (— gZ)\?)

i< i=1

where ¢, is a normalization constant, and the (average) density for a single eigen-

value is given by
o) = <=3 nlyf 3o
n(T) = —=— AR A
2n = 2

where g, 1, ... is the sequence of Hermite functions. Moreover,

1
lim hn(flf) = % 4 — 1’2 1[_2721(1'), X € R

OO

(cf. [Me]). This is Wigner’s semicircle law for the GUE-case. In the sense of weak
convergence of probability measures, the semicircle law can be proved under much
more general assumptions on the entries (see Wigner [Wi]). Arnold proved in 1967
that the corresponding strong law also holds, i.e. for almost all w in the proba-
bility space €2, the empirical eigenvalue distribution of X,,(w) converges weakly to
the semicircular distribution 5-v/4 — a2 1[_s 5j(x)dx as n — oo. Very interesting
research have been carried out on the level spacing of the eigenvalues in the bulk
of the spectrum (cf. [Me]) and more recently near the boundary of the spectrum
(cf. [TW1], [TW2]} for selfadjoint Gaussian random matrices with real, complex or
symplectic entries (the GOE, GUE and GSE cases), but this is outside the scope of
the present lecture.
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3. Free probability and Voiculescu’s random ma-
trix model

Voiculescu proved in 1991 [V4] an extensive generalization of Wigner’s semi-
circle law to families of independent random matrices. In order to state the result,
we will need some basic concepts from free probability theory (cf. [V2], [V3] and
[VDN]).

Definition 3.1 [V2]

1. A non-commutative probability space is a pair (A, ) consisting of o unital
complex algebra A and a functional p: A~ C such that ¢(14) = 1.
2. A C*-probability space is a pair (A, @) consisting of a unital C*-algebra A and
a state p: A — C on A.
The connection to classical probability theory on a probability space (£, F, P)
is obtained by putting

A= ﬁ LP(Q)

and
pla) =E(a) = / a{w)dP(w), a€ A
Q

or A' = L>®(Q, P) with the same definition of ¢. The latter example is a C*-
probability space. To fit random matrices (of size n) into this framework, one must
instead consider the non-commutative algebra

An =[] LP(Q, M,(C))
p=1
with functional

wnla) = Etr,(a)) = /Qtrn(a(w))dw

where tr, = LTr is the normalized trace on M, (C).

Definition 3.2 [V2], [V3]

1. A family (a;)ic1 of elements in a non-commutative probability space is o free
family if for all n € N and all polynomials py,...,p, € C[X], one has

So(pl(a'il) Tl 'pn(afz‘,n)) =0

whenever iy # ia # + -+ # i, (neighbouring indices are different) and
pprlai,)) =0 for k=1,...,n.

2. A family (x:)ic; of elements in a C*-probability space (A, ) is called a semi-
circular family if (x;)icr is a free family, x; = x7, ga(:v?k—l) =0 and

2
oty = o [ VIR = (2,5)

T ), k+ 1
forallk e N andalli€ 1.
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We can now formulate Voiculescu’s generalization of Wigner’s semicircle law:

Theorem 3.3 [V4] Let I be an index set and let for each n € N, (Xﬁ"))ie, be a
family of independent SGRM(n, %)-distm‘buted selfadjoint random matrices. Then
asymptotically as n — o (Xg"))iel is a semicircular family, i.e. if (x;)icr is @
semicircular family index by I in o C*-probability space (A, @) then
lim Etrn (X0 X = o(ag, o) (3.1)
n— 0o P
for allp € N and all i,...,1, € 1.
The corresponding strong law: For almost all w € 2, one has

lim 1, (X (@) XV (W) = ol ), (3.2)

B+ CO

whick was proved independently by Hiai and Petz [HP2] and Thorbjrnsen [T].

4. Ext(C}(F})) is not a group for k > 2

Very recently Thorbjrnsen and the lecturer proved that the strong version
(3.2) of Voiculescu’s random matrix model also holds for the operator norm:

Theorem 4.1 [HT4] Let r € N and let for each n € N (X{™,..., X" be a set
of r independent SGRM(n, %)-distributed selfadjoint random matrices. Let further
(z1,...,2,) be a semicircular system in o C*-probability space (A, @), where ¢ is a
faithful state on A. Then there is o null set N C Q such that for all w € Q\N and
all non-commutative polynomials P in r variables

Tim [|P(X{" (@), X @) = 1P,
Let T" be a countable (discrete) group. The reduced group C*-algebra C;(T")
is the C*-subalgebra of B(£?(T')) generated by the set of unitaries {\(7y) | v € T},
where A\: T' — B(£?(T')) is the left regular representation. By the methods of [V3]
it follows that for the free group Fj on k generators, C¥(Fy) can be embedded in
C*(z1,...,21, 1), where zy, ..., 2 is a free semicircular family in a C*-probability
space (A, ) with ¢ faithful. Hence as a corollary of Theorem 4.1 we have

Corollary 4.2 [HT4] czj Let k € N, k > 2. Then C(Fy) can be embedded in the
quotient C*-algebra [T Mp(©)/ > Mp(C) where

TT0(© = {(on 0 € MO supllon] <
SMAO) = {@a)iy a0 € Ma(©), Tim [foall = 0}

In particular C*(Fy) is a MF-algebro in the sense of Blackadar and Kirchberg [BK].
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The invariant Ext(A4) for a C*-algebra A was introduced by Brown, Douglas
and Fillmore in [BDF]. Ext(A) is the set of all essential extensions B of A by the
compact operators K on the Hilbert space £2(N), and it has a natural semigroup
structure. Voiculescu proved in [V1] that Ext(A) is always a unital semigroup,
and by Choi and Effros [CE] Ext(A) is a group, when A is a nuclear C*-algebra.
Andersen [An] provided in 1978 the first example of a C*-algebra A for which Ext(A)
is not a group. The C*-algebra in [An] is generated by C;(F») and a projection
p € B(#?(Fy)). Since then it has been an open problem whether Ext(C(Fy)) is
a group (see [V6, Sect.5] for a more detailed discussion about this problem). It is
well known that a proof of Corollary 4.2 would provide a negative solution to this
problem (see [V6, 5.12], [V5] and [Ro]). The argument works for all k& > 2. Hence
we have

Corollary 4.3 [HT4] For all k € N, k > 2, Ext(C(F})) is not o group.

Remarks 4.4
a) Corollaries 4.2 and 4.3 also hold for k = cc.
b) C}(Fy) is not quasidiagonal (cf [Ro]) but the non-invertible extension B of C; (Fy)
obtained from Corollary 4.2 is quasidiagonal.
c) Cr(Fy) is an exact C*-algebra, but for any non-invertible extension B of C (Fy)
by the compact operators, B cannot be exact. This follows from the Lifting theorem
in [EH]. Other examples of non-exact extensions of exact C*-algebras by K are given
in [Ki2).

In the rest of this section, I will briefly outline the main steps in the proof of
Theorem 4.1. From (3.2) it follows that for all non-commutative polynomials P in
r variables

liminf | P(X{" (@),.... X @) > [Plas,...,a,)] (4.1)

B+ CO

for almost all w € Q (see [T]), so we “only” have to prove that

limsup || P(X{™ (), ..., X (W) < 1P, ....z0)| (4.2)
N CO
for almost all w € 2. Even the case r = 1 and P(x) = z is a difficult task. It
corresponds to proving that if X,, is SGRM(n, %)—distributed, n=1,2,... then for
almost all w €
lim sup Amax (X, (w)) < 2 liminf A5, (X (w)) > =2,
Nn—r 00 n—r00

where Amax and Ay, are the smallest and largest eigenvalue of X, (w). This

problem was settled by Bai and Yin [BY] in 1988 using Geman’s combinatorial
method [Ge]. (See also [Ba, Thm. 2.12] and [HT1, Thm. 3.1]).

Lemma 4.5 (The linearization trick) [HT4] In order to prove (4.2) it is suffi-

cient to show that for oll m € N and all selfadjoint m x m-matrices ag, ..., a, and
alle >0,
c(a®1+Y a0 X" (W) Colaw® 1+ ar®a)+] — e (4.3)

i=1 i=1
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holds eventually as n — oo for almost all w € Q. Here o(T) denotes the spectrum
of a matriz or an operator T.

Lemma 4.6 [HT4] Let ag, . ..,a, be as above, and put

7

S = a®l+ Y a@Xx™
=1
7

s = a0®1+2a¢®$i.
=1

Moreover, let G,,, G be the matriz valued Stieltjes transforms of S, and S, i.e. for
A€ Mp(C), and Im X = £ (X — X*) positive definite

Gn(X
G\

E((idm @ tro)(A® 1= 8,)71))

)
) = (idn@p)(A@1-s)7").

Then G () and G(X) are invertible and

a0+2az Na; + G0 = A (4.4)
lao + > aiGn(Nai + Gn(N) ' = A < %(K+II>\I|)QII(IW>\)—1II5 (4.5)

3

where C = 222 (57 {ag]2)? and K = [|aol| + 4 X, [lai|-

The equality (4.4) was proved by Lehner (cf. [Le, Prop.4.1] using Voiculescu’s
R-transform with amalgamation [V7]. The inequality (4.5) is more difficult. It
relies on the concentration phenomena used in Banach space theory, in form of [P1,
Theorem 4.7]. (See [Mi] for a general discussion of the concentration phenomena.)
Next we derive from (4.4) and (4.5) that

1Gn(N) =GV < E(K—*- [IAID?[} (T 2) =7 (4.6)

when A € M,,,(C) and Im A is positive definite. The estimate (4.6) implies that for
every f € C(R)

1
n2

E((trm @ trn) (£(Sn) = (trm @ 9)(f(5)) + O() (4.7)

for n - 0o. Moreover a second application of the concentration phenomena gives

2

Var((te, @ tra)(£(Sn)) < 25 B((trm @ trn) (£(S0)?)) (4.8)

~ 8n?

where Var denotes the variance. Now let g be a C*™(R)-function with values in
[0, 1] such that g vanishes on ¢(S) and g is 1 on the complement of a(s)+] — €, ¢[.
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By applying (4.7) and (4.8) to f = g — 1, one gets

El(trn ©tra)(9(S0) = 0(-3) (1.9)
Var((trm ® t1,)g(Sn)) = o(n—ﬂ). (4.10)

By a standard application of the Borel-Cantelli lemma (4.9) and (4.10) imply
(trm © trn)(g(Sn(w))) = O(n™*?)

almost surely. Hence the number of eigenvalues for S, (w) outside o(s)+] —¢e,¢[ is
O(n=/%)! almost surely, but being an integer, the number has to vanish eventually
as n — oo for almost all w € . Hence (4.3) holds.

5. Other applications of random matrices to C*-
algebras
A C*-algebra A is called exact if for every short exact sequence of C*-algebras
0—J-—B-B/J0
the sequence
0= A®mpinJ = A®pin B— ARpin (B/J) =0

is exact (cf. [Kil], [Wa]). The class of exact C*-algebras is very large: All nuclear
C*-algebras are exact and the reduced group C*-algebra C;(I') is exact for any
discrete subgroup I' of a connected locally compact group (cf. [Ki2]). In 1991 the
lecturer proved that 2-quasitraces on unital exact C*-algebras are traces (cf. [Haal]).
Combined with results of Handelman [Han] and Blackadar and Rrdam [BR], this
implies that

Every stably finite exact unital C™-algebra has a tracial state. (5.1)

Every state on the Kg-group, Ko(A) of an exact unital (5.2)
C*-algebra A is induced by a tracial state on A.
Later, Thorbjrnsen and the lecturer found new proofs based on random matrices
for (5.1) and (5.2). The key step in the proof was to show:

Theorem 5.1 [HT2] Let A be an exact unital C*-algebra, and let a1,...,a, € A
be elements in A for which

Za}‘ai = cla where ¢ > 1 (5.3)
i=1
> awa; < 14 (5.4)
i=1

Y4r,,, and try, are the normalized traces on M,,(C) and M, (C).
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and let Yl("), . ,Yr(") be random n x n-maotrices whose entries are rn® independent
identically distributed complex Gaussian random variables with density 2 exp(—n|z|?),
z € C. Put

Sn=Y a0y (5.5)
=1

and let 0(S5Sy) be the spectrum of 5SS, as a function of w € Q (the underlying
probability space). Then for almost all w € 2

limsup max(a(S:S,)) < (Ve+1)? (5.6)
lim inf min(0($}5,)) > (Ve 17 (5.7

The result is a kind of generalization of the results of Geman 1980 [Ge] and
Silverstein 1985 [Si] on the asymptotic behaviour of the largest and smallest eigen-
value of a random matrix of Wishart type. The estimates (5.6) and (5.7) were
proved by careful moment estimates and lengthy combinatorial arguments. With
Theorem 4.1 at hand, a much simpler proof of (5.6) and (5.7) can now be obtained
(cf. [HT4]).

Theorem 5.1 is not true in the general non-exact case (cf. [HT3]). It is unknown
whether (5.1) or (5.2) hold for general C*-algebras. Both problems are equivalent
to Kaplansky’s problem from the 1950’s: Is every AW*-factor of type II; a von
Neumann factor of type 11I; 7

Let me end this section by discussing another application of Theorem 4.1:
Junge and Pisier proved in [JP] that

B(H) Qmax B(H) # B(H) Qmin B(H). (5-8)

In the proof they consider a sequence of constants C(k), k € N: For fixed k € N
C(k) is the infimum of all € > 0 for which there exists a sequence of k-tuples of

unitary matrices (u{™, ... ,uzm))meN of size n(m) € N, such that for all m # m':

k
I Zuﬁm) @ ugm/)H < C.
=1

To obtain (5.8), Junge and Pisier proved that limg_, o % = 0. Subsequently,

Pisier [P2] proved that C(k) > 2vk — 1 for all k € N and Valette [V] proved, using
Ramanujan graphs, that C(k) < 2v/k — 1 when k is of the form k = p+1 for an odd
prime number p. It is an easy consequence of Corollary 4.2 that C(k) < 2k — 1
for all k > 2 and hence C(k) = 2k — 1 for all k > 2 (see [HT4]).

6. The invariant subspace problem relative to a
von Neumann algebra

The invariant subspace problem for operators on general Banach spaces were
settled by Enflo [E] and Read [Re] in the 1980’s, but for Hilbert spaces the problem
is still open:
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Problem 6.1 [Hal, pp. 100-101] Let H be a separable infinite dimensional Hilbert
space, and let 7' € B(H). Does there exist a non-trivial closed T-invariant subspace
of H?

More generally, one has the invariant subspace problem relative to a von Neu-
mann algebra:

Problem 6.2 Let M C B(H) be a von Neumann algebra on a separable Hilbert
space H, and let T' € M. Does there exist a non-trivial closed T-invariant subspace
K for T, such that K is affiliated with M (i.e. K is of the form K = P(H) for a
projection P € M)?

The problem is only interesting when dim(M) = 400 and when M is a factor,
i.e. when the center of M is just Cly,.

The infinite dimensional factors were divided into 4 types by Murray and von
Neumann in the late 1930’s (cf. [KR, Vol.2]}.

Type L : These are isomorphic to B(K) for some infinite dimensional Hilbert
space.

Type I1;: M has a tracial state, i.,e. there exists a functional tr: M —» C, such
that tr(1a) = 1, tr(S*S) > 0 and tr(ST) = tr(T'S) for all S, T € M.

Tupe I1,: M ~ N®B(K) where N is type IT; and dim K = +oc.

Type III: All other infinite dimensional factors.

In all 4 cases, problem 2 remains open (the Type I, case is of course equivalent
to Problem 7.1). We will in the following address the invariant subspace problem
relative to a factor of type II;.

7. The Fuglede-Kadison determinant and Brown’s
spectral distribution measure

Let M be a IIj-factor. Then M has a unique tracial state tr, and tr is nor-
mal and faithful (see eg. [KR, Vol.2, Sect.8]. The Fuglede-Kadison determinant
A: M - [0,00) can be defined (cf. [FK]) by:

A(T) = lim exp(tr(log(T"T +<1)3)), ¢ € M. (7.1)

If T is invertible, one has
A(T) = exp(tr(log |T1))
where |T| = (T*T)%. Moreover A has the following properties:
ASTY = ASAT), STeM
A(T) = A(TH)=A(T)), TeM
A(U) = 1, whenU € M is unitary.

A is an upper semi-continuous function on M but it is not continuous in the norm-
topology on M.
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Theorem 7.1 (L.G. Brown 1983 [Br]) Let M be a IL -factor and let T € M. Then
the function

1
A= 2—10gA(T- Al), AeC

w

s subharmonic and its Laplocian token in distribution sense
82 82 >

===+ == 7.2
(M = Re X, Ay = Im\) is o probability measure in C concentrated on the spectrum
o(T) of T.
Definition 7.2 The above measure pr is coalled Brown’s spectral distribution mea-
sure for T or just the Brown measure for T.

Example 7.3
a) The Fuglede-Kadison determinant and the Brown measure also make sense for
M = M,(C), and tr = L1 Tr the normalized trace on M, (C). In this case one gets

ATy = ¥/|detT]
1 n
E Z 5&' 5
=1
where Aq,..., A, are the eigenvalues of T repeated according to root multiplicity,
and dy, is the Dirac measure at A;.

b) f T is a normal operator (i.e. T*T = TT*) in a factor of type II;, T has a
spectral resolution

pnr

T = / ME().
o(T)

In this case pr is equal to tr o E.

Methods for computing Brown measures have been developed by Larsen and
the lecturer [HL] and by Biane and Lehner [BL].

8. Spectral subspaces for operators in II;-factors

In 1968, Apostol [Ap] and Foias [Fol], [Fo2] introduced the notion of spectral
subspaces for certain well behaved operators on Banach spaces, the decomposable
operators (see [LN] for a modern treatment of this theory):

Definition 8.1 [LN, Definition 1.1.1] An operator T on a Banach space X is called
decomposable if for any open covering C =V UW of the complex plane, there exist
closed T-invariant subspaces Y, Z of X such that

X = Y+Z (8.
o(Tly) C V ando(T|z) CW. (

oo oo
[N
A e
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I T e B(X) is decomposable, it has a spectral capacity, i.e. there exists a map
E from the closed subsets of C into the closed T-invariant subspaces of X, such
that

EM®) = 0 and E(C) =X (8.3)
X = E(W)+- -+ E(VN) for every finite (8.4)
open covering C=V, UV U---UV,
EN F,) = molE(F,), F,<Cclosed (8.5)
o(Tpr) € F, FCCclosed. (8.6)

Moreover, a spectral capacity is unique (cf. [LN, Sect.1]).

In this section we will discuss a new method for constructing spectral subspaces
of operators which works for all operators in “almost all” II;-factors, regardless of
whether the operator is decomposable in the above sense.

Definition 8.2 A I -factor M on a separable Hilbert space has the embedding
property if it can be embedded in the ultrapower R of the hyperfinite II;-factor R
for some free ultrafilter w on the natural numbers.

All T1;-factors of current interest have this embedding property, and in fact no
counterexamples are known. The question whether every II;-factor on a separable
Hilbert space can be embedded in R was first raised by Connes in 1976 [Co] (see
also [Ki2] and [HW] for further discussions about this problem}.

Let M be a Ij-factor, M C B(H), and let T € M. If K C H is a non-
trivial closed T-invariant subspace affiliated with A, and P = Pk is the orthogonal
projection on M, then according to the decomposition, H = K & K=+, we can write

(T T
T ( ; T) , (87)
where T3; = PTP and Tae = (1 — P)T(1 — P) are elements of the II;-factors

My = PMP and Ms = (1~ P)M(1—P). Let py, and pi7,, be the Brown measures
of T1; and Tas computed relative to My and Ma (respectively) then by [Br]:

BT = apiTy, + (1 - a’)p’Tm (88)

where a = trp(P).
The main result of [Haa2] is

Theorem 8.3 [Haa2] Let M be II -factor with the embedding property, and let
T € M. Then for every Borel set B C C there is a unique T-invariant subspace
K affiliated with M, such that pr,, @8 concentrated on B and pr,, s concentrated
on C\B, where T11 and Tae are defined as in (8.7). Moreover, Try(Pg) = pr(B),
where Pg € M is the projection onto K.

Remark 8.4 If T is decomposable and B is closed, then the subspace K coincide
with the spectral subspace E(B) characterized by (8.3)—-(8.6). However, already in
the hyperfinite II;-factor R, there are operators T' which are not decomposable.
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Corollary 8.5 [Haa2] Let T € M, where M is a I -factor with the embedding
property. If the Brown measure pp of T is not concentrated in a single point, then
T has a non-trivial closed invariant subspace affiliated with M.

Remark 8.6 Corollary 8.5 reduced the invariant subspace problem for II;-factors
M with the embedding problem to operators T' € M for which ur = d¢ (the Dirac-
measure at 0). It can be shown that pr = §p if and only if

lim ((T*)"T™) =0

B+ CO

in the strong operator topology on M (cf. [Haa2]).

In the rest of this section, I will briefly outline the proof of Theorem 8.3.
Let M be a IIj-factor and let T € M. Define the modified spectrum o'(T)
and modified spectral radius r'(T') by

o'(T) = supp(ur)
r'(T) = max{|\ | A€ d'(T)}.

Then o'(T) C o(T) and v'(T) < #(T).
The classical spectral radius formula

r(T) = lim [|T"|*

OO

has a modified version (cf. [Haa2]):

r'(T) = lim ( lim ||T7|

PO 13 00

)

Bled|=

where [|S||, = trar(|S|P)7, p > 0.

Spectral subspace lemma 8.7 [Haa2] Let M be o I -factor. (Here we do not
need the embedding property.) Let T € M and let F C C be a closed set. Then

(a) There exists a mazimal closed T -invariant subspace K affiliated with M such
that o' (Ti) C F, where o' (T ) is the modified spectrum of the operator T
considered as an element of the II) -factor P M Py (Pg is the projection of
H onto K ).

(b) Let K(F') be the subspace K defined by (o). Then

trar(Pr(ry) < p(F)
for all closed subsets F' of C.

Random distortion lemma 8.8 [Haa2| Let M be o II; -factor with the embedding
property ond let T € M. Then
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(a) There exist natural numbers k(1) < k(2) <... and T), € My(,,)(C) such that

sup || Thl| < oo. (8.9)
neN

(b) For every non-commutative polynomial p in two variables
lim_try () (p(T, T2)) = tr(p(T, T")) (8.10)
N CO

where try(y) is the normalized trace on M, (C).
(¢) Furthermore, there exists a sequence T, € My, (C) such that

ILm T, = Tull, = 0 forsomep>0 (8.11)
lim A(T, —=Al) = A(T —=Al) for almost all X € C (8.12)
N OO

ILm pr. = pr  weakly in Prob(C). (8.13)

The embedding property is needed in (b). To pass from (b) to (c) we use a
random distortion argument where we put

T) =T, +enXn V!

where X, Y, are random Gaussian matrices with independent entries and &, — 0.
Subsequently Sniady proved [Snl] that by using a different random distortion, one
can obtain a stronger result, namely in (c), (8.11) can be replaced by

nll—>n<;lo I, — Talle =0

where || - ||oo is the operator norm.

The random distortion lemma is used to reduce the proof of Theorem 8.3 to
the case of M = M,,(C) by an ultraproduct argument. For M = M,,(C), Theorem
8.3 is a corollary of Jordan’s normal form.

9. Voiculescu’s circular operator Y and the strictly
upper triangular operator T

Prior to the proof of theorem 8.3, Dykema and the lecturer had constructed
invariant subspaces for special operators in factors of type II;. An example of
particular interest is Voiculescu’s circular operator Y, which can be written as

-1
V2

where (X1, X2) is a semicircular system (cf. Section 3.). The von Neumann algebra
M =V N(Y') generated by Y is isomorphic to L(F3) (the von Neumann associated
to a free group on two generators) which is a factor of type II;. The operator Y is far
from being normal and for some time it was considered a possible counterexample

Y (X1 +iXy)
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for the invariant subspace problem relative to the II;-factor it generates. In [HL]
Larsen and the lecturer proved that

o(Y) =D (the closed unit disc in C) (9.1)

The Brown measure puy of Y is the uniform (9.2)

distribution on D, i.e. it has constant density .

Theorem 9.1 [DH1] For each r € (0,1) there is a unique projection p € M =
VN(Y) such that

pYp=Yp (ie. the range of p is Y -invariant) (9.3)
o(pYp) C{zeCllz[ <1} (9.4)
o((1-p)Y(1-p) C{zeC|r<|z[ <1} (9.5)

where the spectra in (9.4) and (9.5) are computed relative to pMp and
(1 —-p)M(1 ~p). Moreover
trar(p) = 2. (9.6)
This result was generalized to arbitrary R-diagonal elements by Sniady and
Speicher [SS]. Later Dykema and the lecturer proved

Theorem 9.2 [DH2] Voiculescu’s circular operator is decomposable in the sense of
Apostol and Foias (see Definition 8.1).
In [DH2] we also considered the “strictly upper triangular operator” 7. It is

defined in terms of its random matrix model:

Theorem/Definition 9.3 [DH2] Let for each n € N T, denote the strictly upper
triangular random matriz

0y ey
T,=1]-. tiﬁm 9.7)
0 0

for which the entries (tg?))i<j are W independent identically distributed complex
Gaussian random variables with densities 2 exp(—n|z|?), z € C. Then there is an

operator T in a I -factor M such that T,, converges in *-moments to T, i.e.
trar(P(T, 7)) = lim Etr,(P(T,,T})) (9.8)
N CO

for every non-commutative polynomial P. T is called the strictly upper triangulor
operator.

The strictly upper triangular operator is quasi nilpotent, i.e. o(T) = {0}, and
therefore its Brown measure pg is equal to dp. In view of remark 8.6 it could be
a candidate for a counterexample to the invariant subspace problem relative to a
11 -factor. However, this is not the case:
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Dykema and the lecturer proved in [DH2] that

te((T*T)") = CESI neN (9.9)
and in [Sn2], Sniady proved
ey n"*

a formula which was conjectured in [DH2].
Based on (9.10) and its proof, we recently proved

Theorem 9.4 [DH3] Let T be as above. Put Sy = k((T*)*T*)% and let F: [0,7] —
[0, 1] be the strictly increasing function given by F(0) =0, F(x) =1 and
1 sin v

T2 g<wv<n (9.11)
o o v

F(va exp(v cot v)) =1~
v

Then F(Si) converges in strong operator topology to the “diagonal operator” Dg

with matriz model .
-+ 0
n

S

’

Do, = . . (9.12)
0 1
In particular Do € VN(T). Moreover VN(T) is isomorphic to L{Fy) and the ranges

of the projections 1ig (Do), 0 < t < 1, form an uncountable family of non-trivial
invariant subspaces for T affiliated with VN(T').
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Algebraic Topology and Modular Forms
M. J. Hopkins*

1. Introduction

The problem of describing the homotopy groups of spheres has been funda-
mental to algebraic topology for around 80 years. There were periods when specific
computations were important and periods when the emphasis favored theory. Many
mathematical invariants have expressions in terms of homotopy groups, and at dif-
ferent times the subject has found itself located in geometric topology, algebra,
algebraic K-theory, and algebraic geometry, among other areas.

There are basically two approaches to the homotopy groups of spheres. The
oldest makes direct use of geometry, and involves studying a map f : S"% — S” in
terms of the inverse image f =1 () of a regular value. The oldest invariant, the degree
of a map, is defined in this way, as was the original definition of the Hopf invariant.
In the 1930’s Pontryagin' [43, 42] showed that the homotopy class of a map f is
completely determined by the geometry of the inverse image f~(B.(z)) of a small
neighborhood of a regular value. He introduced the basics of framed cobordism
and framed surgery, and identified the group mp+pS™ with the cobordism group of
smooth k-manifolds embedded in R"** and equipped with a framing of their stable
normal bundles.

The other approach to the homotopy groups of spheres involves comparing
spheres to spaces whose homotopy groups are known. This method was introduced
by Serre [50, 51, 16, 15] who used Eilenberg-MacLane spaces K (A, n), characterized
by the property
A i=n
0 otherwise.

mK(A,n) = {

By resolving a sphere into Eilenberg-MacLane spaces Serre was able to compute
Terno” for all & < 8.

For some questions the homotopy theoretic methods have proved more power-
ful, and for others the geometric methods have. The resolutions that lend themselves
to computation tend to use spaces having convenient homotopy theoretic proper-
ties, but with no particularly accessible geometric content. On the other hand, the
geometric methods have produced important homotopy theoretic moduli spaces and
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relationships between them that are difficult, if not impossible, to see from the point
of view of homotopy theory. This metaphor is fundamental to topology, and there is
a lot of power in spaces, like the classifying spaces for cobordism, that directly relate
to both geometry and homotopy theory. It has consistently proved important to
understand the computational aspects of the geometric devices, and the geometric
aspects of the computational tools.

A few years ago Haynes Miller and I constructed a series of new cohomology
theories, designed to isolate certain “sectors” of computation. These were successful
in resolving several open issues in homotopy theory and in contextualizing many
others. There seemed to be something deeper going on with one of them, and in [27)
a program was outlined for constructing it as a “homotopy theoretic” moduli space
of elliptic curves, and relating it to the Witten genus. This program is now complete,
and we call the resulting cohomology theory tmf (for tepological modular forms).
The theory of topological modular forms has had applications in homotopy theory,
in the theory of manifolds, in the theory of lattices and their f-series, and most
recently seems to have an interesting connection with the theory of p-adic modular
forms. In this note I will explain the origins and construction of tmf and the way
some of these different applications arise.

2. Sixteen homotopy groups

By the Freudenthal suspension theorem, the value of the homotopy group
Tk S™ is independent of n for n > k+ 1. This group is k" stable homotopy group
of the sphere, often written 75'(S°), or even as m;S° if no confusion is likely to
result. In the table below I have listed the values of 7,1 £S™ for n > 0 and &k < 15.

k 0] 1 | 2 | 3 [4]5] 6 7 8
kS | Z | ZJ2 | Zj2 | ZJ24 | 0| 0 | Z/2 | Z./240 | Z]2@ Z/2

9 10 | 11 [12] 13 | 14 15
(ZJ2)° | Z.J6 | Z.J504 | 0 | Z./3 | (Z]2)7 | Z.]2& 7. /480

In geometric terms, the group mp.pS™ is the cobordism group of stably framed
manifolds, and a homomorphism from m,+5S™ to an abelian group A is a cobordism
invariant with values in A. The groups in the above table thus represent universal
invariants of framed cobordism. Some, but not all of these invariants have geometric
interpretations.

When k& = 0, the invariant is simply the number of points of the framed 0-
manifold. This is the geometric description of the degree of a map.

When & = 1 one makes use of the fact that any closed 1-manifold is a disjoint
union of circles. The Z /2 invariant is derived from the fact that a framing on S*
differs from the framing which bounds a framing of D? by an element of 71 SO(N) =
Z]2.
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There is an interesting history to the invariant in dimension 2. Pontryagin
originally announced that the group 7,425 is trivial. His argument made use of
the classification of Riemann surfaces, and a new geometric technique, now known
as framed surgery. He later [44] correctly evaluated this group, but for his corrected
argument didn’t need the technique of surgery. Surgery didn’t reappear in again
until around 1960, when it went on to play a fundamental role in geometric topology.
The invariant is based on the fact that a stable framing of a Riemann surface X
determines a quadratic function ¢ : H'(3;Z/2) — Z /2 whose underlying bilinear
form is the cup product. To describe ¢, note that each 1-dimensional cochomology
class x € H'(X) is Poincaré dual to an oriented, embedded 1-manifold, C,, which
inherits a framing of its stable normal bundle from that of ¥. The manifold C,
defines an element of 7§*S° = Z /2, and the value of ¢(x) is taken to be this element.
The cobordism invariant in dimension 2 is the Arf invariant of ¢.

A similar construction defines a map

T2’ = Z/2. (2.1)

In [14] Browder interpreted this invariant in homotopy theoretic terms, and showed
that it can be non-zero only for 4k + 2 = 2™ — 2. It is known to be non-zero for
m5tS0, wEtS0, w5t S0, w5k SO and 7550, The situation for w8t _,S° with m > 6 is
unresolved, and remains an important problem in algebraic topology. More recently,
the case k = 1 of (2.1) has appeared in M-theory [58]. Building on this, Singer and
1[26] offer a slightly more analytic construction of (2.1), and relate it to Riemann’s
#-function.

Using K-theory, Adams [2] defined surjective homomorphisms (the d and e-
invariants)

Tan—158° = Z/dy,

mar S — Z/2,
mar190 = Z/20 7 /2,
g 280 — Z]2.

where d,, denotes the denominator of Bs,/(4n). He (and Mahowald [35]) showed
that they split the inclusion of the image of the J-homomorphism, making the
latter groups summands. A geometric interpretation of these invariants appears in
Stong [53] using Spin-cobordism, and an analytic expression for the e-invariant in
terms of the Dirac operator appears in the work of Atiyah, Patodi and Singer [7, 8].
The d-invariants in dimensions (8% + 1) and (8% + 2) are given by the mod 2 index
of the Dirac operator [11, 10].

This more or less accounts for the all of the invariants of framed cobordism that
can be constructed using known geometric techniques. In every case the geometric
invariants represent important pieces of mathematics. What remains is the following
list of homotopy theoretic invariants having no known geometric interpretation:

8 9 10 | 11 ] 12| 13 14 15
Zj2 | Z]2 | Z]3 Zj3 | Z]2 | )2
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This part of homotopy theory is not particularly exotic. In fact it is easy to give
examples of framed manifolds on which the geometric invariants vanish, while the
homotopy theoretic invariants do not. The Lie groups SU(3), U(3), Sp(2), Sp(1) x
Sp(2), Ga, U(1) x G2 have dimensions 8, 9, 10, 13, 14, and 15, respectively. They
can be made into framed manifolds using the left invariant framing, and in each case
the corresponding invariant is non-zero. We will see that the theory of topological
modular forms accounts for all of these invariants, and in doing so relates them to
the theory of elliptic curves and modular forms. Moreover many new invariants are
defined.

3. Spectra and stable homotopy

In order to explain the theory of topological modular forms it is necessary to
describe the basics of stable homotopy theory.

3.1. Spectra and generalized homology
Suppose that X is an (n — 1)-connected pointed space. By the Freudenthal
Suspension Theorem, the suspension homomorphism

Ttk (X) g 7Tn+k+1EX

is an isomorphism in the range k < 2n — 1. This is the stable range of dimensions,
and in order to isolate it and study only and stable homotopy theory one works in
the category of spectra.

Definition 3.2 (see [34, 23, 19, 20, 4]) A spectrum E consists of o sequence of
pointed spaces E,,, n=0,1,2,... together with maps

s¥ . SE, = Epyy (3.3)

whose adjoints
tf B, = QE, (3.4)
are homeomorphisms.

A map E — F of spectra consists of a collection of maps
fn: By — F,

which is compatible with the structure maps t¥ and ¢£.

For a spectrum E = {E,,,t,} the value of the group m,.1 E,, is independent of
n, and is written 7, £. Note that this makes sense for any n € Z. More generally, for
any pointed space X, the E-homology and E-cohomology groups of X are defined
as

E¥NX)=[2"X,E\is),
Ek(X) = li_H])’iTn_{.kEn AX.
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Any homology theory is represented by a spectrum in this way, and any map of
homology theories is represented (not necessarily uniquely) by a map of spectra.
For example, the spectrum H A with HA,, the Eilenberg-MacLane space K(A,n)
represents ordinary homology with coefficients in an abelian group A.

3.2. Suspension spectra and Thom spectra

In practice, spectra come about from a sequence of spaces X,, and maps ¢, :
YX, = Xpi1. If each of the maps ¢, is a closed inclusion, then the collection of
spaces

(LX), =l Q" X,

forms a spectrum. In case X,, = S, the resulting spectrum is the sphere spectrum
and denoted S°. By construction

xS0 = w580 = 7, 1 S n > 0.

In case X,, = ¥ X, the resulting spectrum is the suspension spectrum of X, denoted
¥>*X (or just X when no confusion with the space X is likely to occur). Its
homotopy groups are given by

T IX = 13X = 1,4, 2" X n > 0,

and referred to as the stable homotopy groups of X.

Another important class of spectra are Thom specira. Let BO(n) denote the
Grassmannian of n-planes in R®, and M O(n) the Thom complex of the universal
n-plane bundle over BO(n). The natural maps

SMO(n) = MO(n+ 1)

lead to a spectrum MO, the unoriented bordism spectrum. This spectrum was
introduced by Thom [54], who identified the group 7, M O with the group of cobor-
dism classes of k-dimensional unoriented smooth manifolds. Using the complex
Grassmannian instead of the real Grassmannian leads to the complex cobordism
spectrum MU. The group 7 MU can be interpreted as the group of cobordism
classes of k-dimensional stably almost complex manifolds [39]. More generally, a
Thom spectrum X¢ is associated to any map

¢: X - BG

from a space X to the classifying space BG for stable spherical fibrations.

The groups 7y MO and 7, MU have been computed [34, 39], as many other
kinds of cobordism groups. The spectra representing cobordism are among the few
examples that lend themselves to both homotopy theoretic and geometric investi-
gation.
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3.3. Algebraic structures and spectra

The set of homotopy classes of maps between spectra is an abelian group, and
in fact the category of abelian groups makes a fairly good guideline for contemplating
the general structure of the category of spectra. In this analogy, spaces correspond
to sets, and spectra to abelian groups. The smash product of pointed spaces

XAY =X xY/(z,%) ~ (x,9)

leads to an operation E A F on spectra analogous to the tensor product of abelian
groups. Using this “tensor structure” one can imitate many constructions of algebra
in stable homotopy theory, and form analogues of associative algebras (A..-ring
spectra), commutative algebras (Eo-ring spectra), modules, etc. The details are
rather subtle, and the reader is referred to [20] and [29] for further discussion.

The importance of refining common algebraic structures to stable homotopy
theory has been realized by many authors [38, 20, 55, 56], and was especially advo-
cated by Waldhausen.

The theory of topological modular forms further articulates this analogy. It
is built on the work of Quillen relating formal groups and complex cobordism.
In [45], Quillen portrayed the complex cobordism spectrum MU as the universal
cohomology theory possessing Chern classes for complex vector bundles (a complex
oriented cohomology theory). These generalized Chern classes satisfy a Cartan
formula expressing the Chern classes of a Whitney sum in terms of the Chern
classes of the summands. But the formula for the Chern classes of a tensor product
of line bundles is more complicated than usual one. Quillen showed [45, 4] that it
is as complicated as it can be. If E is a complex oriented cohomology theory, then
there is a unique power series

Fls,t] € m, E[s, ]
with the property that for two complex line bundles L; and Lo one has
C1(L1 & Lg) = F[Cl(Ll), Cl(Lg)].

The power series F'[s, ] is a formal group law over 7. E. Quillen showed that when
E = MU, the resulting formal group law is universal in the sense that if F is
any formal group law over a ring R, then there is a unique ring homomorphism
MU, - R classifying F. In this way the complex cobordism spectrum becomes a
topological model for the moduli space of formal group laws.

3.4. The Adams spectral sequence

There are exceptions, but for the most part what computations can be made
of the stable and unstable homotopy groups involve approximating a space by the
spaces of a spectrum E whose homotopy groups are known, or at least qualitatively
understood. A mechanism for doing this was discovered by Adams [1] in the case
E = HZ/p, and later for a general cohomology theory by both Adams [3, 5] and
Novikov [41, 40]. The device is known as the E-Adams spectral sequence for X,
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or, in the case E = MU, the Adams-Novikov spectral sequence for X (or, in case
X = 59 just the Adams-Novikov spectral sequence).

The Adams-Novikov spectral sequence has led to many deep insights in alge-
braic topology (see, for example, [47, 48] and the references therein). It is usually
displayed in the first quadrant, with the groups contributing to mS° all having -
coordinate k. The y-coordinate is the MU-Adams filtration, and can be described
as follows: a stable map f : S¥ — S° has filtration > s if there exists a factorization

Sk:XQ—)Xlﬁ"'—)Xs—lﬁXs:SO

with the property that each of the maps MU, X, — MU,X, 1 is zero. There is
a geometric interpretation of this filtration: a framed manifold M has filtration
> s if it occurs as a codimension n corner in a manifold NV with corners, equipped
with suitable almost complex structures on its faces (see [32]). The Adams-Novikov
spectral starts with the purely algebraic object

Byt = EXt?\ktU* my (MU MU, .

The quotient of the subgroup of 7%S° consisting of elements of Adams-Novikov
filtration at least s, by the subgroup of those of filtration at least (s + 1) is a
sub-quotient of the group Ext®! with (t — s) = k.

3.5. Asymptotics

For a number k, let g(k) = s be the largest integer s for which 7 S° has a non-
zero element of Adams-Novikov filtration s. The graph of g is the MU -vanishing
curve, and the main result of [18] is equivalent to the formula

lim g(k)

k—oo k

=0.

This formula encodes quite a bit of the large scale structure of the category of
spectra (see[18, 28, 48]}, and it would be very interesting to have a more accurate
asymptotic expression. This is special to complex cobordism. In the case of the
original Adams spectral sequence for a finite CW complex X (based on ordinary
homology with coeflicients in Z/p), it can be shown [25] that

ho 5 k) 1
k—rco k 2(p™ - 1)’

for some m. This integer m is an invariant of X know as the “type” of X. It
coincides with the largest value m for which the Morava K-group K(m).X is non-
zero. For more on the role of this invariant in algebraic topology, see [28, 22].

Now the Es-term of the Adams-Novikov spectral sequence is far from being
zero above the curve g(n), and a good deal of what happens in spectral sequence
has to do with getting rid of what is up there. A few years ago, Haynes Miller,
and I constructed a series of spectra designed to classify and capture the way this
happens. We were motivated by connective K O-theory, whose Adams-Novikov
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spectral sequence more or less coincides with the Adams-Novikov spectral for the
sphere above a line of slope 1/2, and is very easy to understand below that line
(and in fact connective KO can be used to capture everything above a line of slope
1/5 [37, 33, 36]). By analogy we called these cohomology theories EO,,. These
spectra were used to solve several problems about the homotopy groups of spheres.

The theory we now call tmf was originally constructed to isolate the “slope
1/6"-sector” of the Adams Novikov spectral sequence, and in [?], for the reasons
mentioned above, it was called eo;. In the next section the spectrum tmf will
be constructed as a topological model for the moduli space (stack) of generalized
elliptic curves.

4. tmf

4.1. The algebraic theory of modular forms
Let C be the projective plane curve given by the Weierstrass equation
y2 + arxy + asy = 2% + agx? + agx + ag (4.5)
over the ring
A= Z[(ll, U2, G3, A4, (lﬁ].

Let

be the graded ring with
Azn = H(C; (Qg,4)%")-

If u € As is the differential
dx

v= —,
2y + a1 + ag
then
A, ~ A[uﬂ].

The A-module As is free over A of rank 1, and is the module of sections of the

line bundle
w:=H°(Oc(~e)/Oc(—2e)) =~ p.0'C.

In this expression p : C' — Spec A is the structure map, and e : Spec A — C is the
point at oo.
Let GG be the algebraic group of projective transformations

= N+,
y = XNy + s+t

Such a transformation carries C' to the curve C' defined by an equation

y? + a\wy + ayy = 2° + abx® + alx + ag,



Algebraic Topology and Modular Forms 299
for some af. This defines an action of G on A,. The ring of invariants
H(G; A)

is the ring of modular forms over Z.

The structure of H°(G; A.) was worked out by Tate (see Deligne [17]). After
inverting 6 and completing the square and the cube, equation (4.5) can be put in
the form

P =8+ +é a0 € Alg],
with
j_$+af+4ag iy Tt
- 12 =y 2

The elements

Cq = 48 u464,

ce = 864 ubéq,

liein A,, and
HY(G; A,) = Zles, 6, A/ (¢3 — ci = 1728A).

We'll write
M, = HO(G; Aoy)

for the homogeneous part of degree 2n. It is the group of modular forms of weight
n over Z.

4.2. The topological theory of modular forms

In [27, 24] it is shown that this algebraic theory refines from rings to ring
spectra, leading to a topological model for the theory of elliptic curves and modular
forms. Here is a rough idea of how it goes.

The set of regular points of C' has a unique group structure in which the point
at oo is the identity element, and in which collinear points sum to zero. Expanding
the group law in terms of the coordinate t = x/y gives a formal group law

O'[s,t] € Als, 1]

over A, which, by Quillen’s theorem (see §3.3.) is classified by a graded ring homo-
morphism
MU, — A,.

The functor
X = MU (X) ®@pmu, A

is not quite a cohomology theory, but it becomes one after inverting ¢4 or A.
Based on this, a spectrum E 4 can be constructed with

W*EA = A*,
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and representing a complex oriented cohomology theory in which the formula for
the first Chern class of a tensor product of complex line bundles is given by

1 (L1 & Lg) = u—l Cf (u 1 (Ll),ucl(Lg)) .

A spectrum E¢ can be constructed out of the affine coordinate ring of G in a similar
fashion, as can an “action” of Eg on E4. The spectrum tmf is defined to be the
(~1)-connected cover of the homotopy fixed point spectrum of this group action.

To actually carry this out requires quite a bit of work. The difficulty is that
the theory just described only defines an action of Eg on E4 up to homotopy, and
this isn’t rigid enough to form the homotopy fixed point spectrum. In the end it
can be done, and there turns out to be an unique way to do it.

4.3. The ring of topological modular forms
The spectrum tmf is a homotopy theoretic refinement of the ring H°(G; A,),
there is a spectral sequence

H? (G; Ay) = s tmf .

The ring , tmf is the ring of topological modular forms, and the group mo, tmf the
group of topological modular forms of weight n. The edge homomorphism of this
spectral sequence is a homomorphism

Ton tmf — Afn

This map isn’t quite surjective, and there is the following result of myself and Mark
Mahowald

Proposition 4.6 The image of the map wa, tmf — M, has a basis given by the
monomials ‘
aijrCicb AP ik >0,7=0,1

where
1 1>0,7=0
ai:j:k = 2 j =1
24/ ged(24, k) i,7 =0.

In the table below I have listed the first few homotopy groups of tmf

E Jo] 1 ] 2 3 [4]5] 6 |7 8
mtmf | Z | Z2J2 | Z/2 | Z/24 | 0| 0 | Z/2 |0 | Z@ Z]2

9 10 | 11 ] 12| 13 14 15
Z[2Z[Z[6| 0 | Z |Z]3 | Z)2 | Z)2
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The homotopy homomorphism induced by the unit S — tmf of the ring tmf is the
“tmf-degree,” a ring homomorphism

750 5 7, tmf .

The tmf-degree is an isomorphism in dimensions < 6, and it take non-zero values on
each of the classes represented by the Lie groups SU(3), U(3), Sp(2), Sp(1) x Sp(2),
Ga, U(1) x o, regarded as framed manifolds via their left invariant framings. Thus,
combined with the Hopf-invariant and the invariants coming from KO-theory, the
tmf-degree accounts for all of 7, 8% for x < 15. In fact the Hopf-invariant and the
invariants coming from KO can also be described in terms of tmf and nearly all of
7, 9° for * < 60 can be accounted for.

5. 0O-series

5.1. Cohomology rings as rings of functions

Consider the computation
H*(CP*;Z) = Z[z].

On one hand this tells us something about the cell structure of complex projective
space; the cohomology class 2 is “dual” to the cell in dimension 2n. On the other
hand, a polynomial is a function on the affine line, and the elements of H*(CP>)
tell us something about the affine line. Combining these, the prospect presents
itself, of using the cell structure of one space to get information about the function
theory of another.

We will apply this not to ordinary cohomology, but to the cohomology theory
E 4. Before doing so, more of the function theoretic aspects of E4 need to be
spelled out. By construction, the ring EY%(CP*) is the ring of functions on the
formal completion of C at the point e at oc. The ring EY(H P>) is the ring of
functions which are invariant under the involution

T(r) =2
() (5.7)
T(y) = —y — 1T — ag

given by the “inverse” in the group law. The map
EL(CP%) — E}(pt)

corresponds to evaluation at e, and the reduced cohomology group Eg(CPOO) to
the ideal of formal function vanishing at e. Note that this is consistent with the
definition of As as sections of the line bundle w:

Ay =mE s =E%(S?) =117 = H* (Oc(—e)/Oc(—2e)).
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Now E9(C'P*) is the cohomology group of the Thom complex ES(CP*). More
generally, there is an additive correspondence

{virtual representations of U(1)} ¢ {divisors on C},

under which a virtual representation V' corresponds to a divisor D for which
B ((€P)") = H° (0T:(D) & ()™)Y,

where (V') is the multiplicity of the trivial representation in V. There is a similar
correspondence between even functions with divisors of the form D + 7% D, virtual
representations V' of SU(2) and E% ((HP>)") (with 7 the involution (5.7)).

5.2. The Hopf fibration and the Weierstrass P-function

Consider the function z in the Weierstrass equation (4.5). This function has a
double pole at e. We now ask if there is a “best” z to choose, ie, a function with a
double pole at e which is invariant under the action of r, s and ¢. Such a function
will be an eigenvector for A with eigenvalue A2. It is more convenient to search for
an quantity which is invariant under A as well, so instead we search for a quadratic
differential on C, i.e. a section

2’ € H° (C;0(e)®?)

which is invariant under r,s,t and X. Now the space H°(C; Q! (e)?) has dimension
2, and sits in a short exact sequence of vector spaces over Spec A

00— w? — H(C; Q' (e)?) = 04 = 0, (5.8)

where w is the line bundle of invariant differentials on C, and the second map is the
“residue at €”. This sequence is G-equivariant, and defines an element of

Ext'(0,w?) = HY(G; Ay).

The obstruction to the existence of an z' with residue 1 is the Yoneda class v of
this extension. Completing the square and cube in (4.5), gives the G-invariant
expression

(122 + al + 4as) u?,

so that 12v = 0. In fact the group H'(G; A4) is cyclic of order 12 with v as
generator. The group 73 tmf = 7 /24 is assembled from H'(G; A4) and H3(G; Ag)
Z/2, and sits in an exact sequence

I e

0 — H*(G; Ag) = mtmf — H'(G; Ag) — 0.

This 12 can also be seen transcendentally. Over the complex numbers, a choice
of z is given by the Weierstrass P-function:

1 1 1

NP g (z—=mr—-n)2  (m7+n)?
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The Fourier expansion of P(z,7)dz? is (with ¢ = €>™*™ and u = €*™ %)

s_ [y 1t ()
Plz,1)dz* = Z(l-q"u)2+12 22(1_qn)2 <u>

necZ n>1

Note that all of the Fourier coefficients of P are integers, except for the constant
term, which is 1/12. This is the same 12.

Under the correspondence between divisors and Thom complexes, the differ-
ential 2’ corresponds to a G-invariant element

Thop € BS (HPEV),

with V' the defining representation of SU(2). Now the spectrum HP2?™V has a
(stable) cell decomposition

HP21-L) — g0 ety ..

with one cell in every real dimension 4k. The 4-cell is attached to the O-cell by the
stable Hopf map v : S — S, which generates 73(S°) = Z/24. The restriction of
the quadratic differential :L’,'wp to the zero cell is given by the residue at e, and the
obstruction to the existence of an G-invariant x{,, with residue & is the image of k
under the connecting homomorphism

HY(G;A) — H' (G, ES (HP*™V/8%) . (5.9)
To evaluate (5.9), note that the map
H' (GES (HP*7V/S%) — H' (G;E4(S*)) = H' (G; Ay)) = Z/12

is projection onto a summand, and the image of (5.9) is contained in this summand.
Thus the obstruction to the existence of the quadratic differential x.p is the same
k € Z/12. In this way, the theory of topological modular forms relates the Hopf
map v to the constant term in the Fourier expansion of the Weierstrass P-function,
and to the existence of a certain quadratic differential on the universal elliptic curve.

5.3. Lattices and their 8-series

There is a slightly more sophisticated application of these ideas to the theory
of even unimodular lattices. Suppose that L is a positive definite, even unimodular
lattice of dimension 2d. The theto function of L, 8, is the generating function

Or(a) =) g2 {00

{el

= Z anna

n>0

L, = #{0] (1) = 2n}.
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It follows from the Poisson summation formula that 81(q) is the g-expansion of a
modular form over 7 of weight d, and so lies in the ring

Zlea, ce, A/ (ch — g — 1728A) C Z[q],

cg = 1240 Z oz(n)q",
n>0

cg =1~ 5042 o5(n)q”,
n>0

A=qJTa-gm™
n=1

Since the group of modular forms of a given weight is finitely generated, the first
few L,, determine the rest. This leads to many restrictions on the distributions of
lengths of vectors in a positive definite, even unimodular lattice.

The f-series of L is the value at z = 0 of the -function

9(3’7,) — Zeﬂi(€,€>1+2ﬂi(€,z>’ 2eC® L, g¢q= e?ﬂ'i?"
el

which, under the correspondence between divisors and representations has the fol-
lowing topological interpretation. Let V' be any d-dimensional (complex) virtual
representation of U(1)® L with the property that ¢, (V) = 0 and ¢2(V') corresponds
to the quadratic form, under the isomorphism

H*(B(U(1)® L); Z) = Sym® L*.

For example, if A = (a;;) is the matrix of the quadratic form with respect to some
basis, then V' could be taken to be

1
V=04 -+ 52&@'(1 - Lz)(l - Lj)a
(]

where L; is the character of U(1) ® L dual to the i*h basis element. The series
0(z,7) corresponds to a G-invariant element

gtr ¢ EQ((BU(1) 2 L)").

The restriction of #°P to {pt}" = $?" is an element of H%(G; As4), i.e. an algebraic
modular form of weight d. This modular form is 6.
Now the Thom spectrum (BU(1) ® L) has a stable cell decomposition

2d d(2d+1)
SQdU\/eQCH"QU \/ €2d+4U"' )

Since ¢; (V) = 0, the cells of dimension 2d+ 2 are not attached to the (2d)-cell. The
assumptions on the quadratic form, and on ¢2(V) imply that one of the (2d + 4)-
cells is attached to the (2d)-cell by (a suspension of) the stable Hopf map v. The
presence of this attaching map implies the following mod 24 congruence on 8y,.
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Theorem 5.10 Suppose L is a positive definite, even unimodular lattice of dimen-
sion 24k. Write
00(q) =% 4 a1 P VA 4 AR
Then
2 =0 mod 24. (5.11)

The above result was originally proved by Borcherds [12] as part of his investi-
gation into infinite product expansions for automorphic forms on certain indefinite
orthogonal groups. The above topological proof can be translated into the language
of complex function theory. The details are in the next section.

The congruence of Theorem 5.10 together with Proposition 4.6 give the fol-
lowing

Proposition 5.12 Suppose L is a positive definite, even unimodular lattice of di-
mension 2d. There is an element 92"” € tmf°(S2?) whose image in My is 0.

It can also be shown that the G-invariant
6P ¢ H(G; EQ(B(U(1) @ L))

is truly topological in the sense that it is the representative in the Ea-term of the
spectral sequence

HY(G;EYQ(B(UQ1) 2 L)) = tmf®(BU(1) @ L)Y),

of an element in tmf® (B(U(1)® L)Y). T don’t know of a direct construction of these
truly topological theta series.

5.4. An analytic proof of Theorem 5.10

The analytic interpretation of the proof of Theorem 5.10 establishes the result
in the form

r(q) dA _ Or(9) % =0 mod 24. (5.13)

Ab AT 0 TAR

Resa—g

The equivalence of (5.11) with (5.13) follows easily from the facts

ce =0 mod 24,
dA  dg
— = = 24.
X p mod

Set u = 2™ and for a vector p € L let

Z@EL q%(&@u(#v@
a(q,u)lmm

d)u(z?r) =

where
. (o]
o(gu)=u?(1-—u") ]

n=1

(1-q"u)(1-q"u)
(1-q)?
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is the Welerstrass o-function. It is immediate from the definition that
d)u