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Groups Interpretable
in Theories of Fields

E. Bouscaren®

Abstract

‘We survey some results on the structure of the groups which are definable
in theories of fields involved in the applications of model theory to Diophantine
geometry. We focus more particularly on separably closed fields of finite degree
of imperfection.

2000 Mathematics Subject Classification: 03C60, 03C45, 12L.12.
Keywords and Phrases: Groups, Fields, Definability, Algebraic groups.

1. Introduction

In the last ten years, the model theory of fields has seen striking new de-
velopments, with applications in particular to differential algebra and Diophantine
geometry. One of the main ingredients in these applications is the analysis of the
structure of groups definable in fields with added “definable structure”.

Model theory studies structures with a family of distinguished subsets of their
Cartesian products, the family of definable subsets, which is requested to be closed
under finite Boolean operations and projections. In the case of algebraically closed
fields, the definable sets are exactly the constructible sets in the Zariski topology
(finite Boolean combinations of Zariski closed sets). If one considers fields which
are not algebraically closed (for example, fields of positive characteristic which are
separably closed and not perfect) or algebraically closed fields with new operators
(differentially closed fields, fields with a generic automorphism), then the family of
definable sets is much richer than the family of Zariski constructible sets. In each
of the above cases, one can generalize the classical geometric notions, by using the
tools developed by model theory (abstract notion of independence, of dimensions...).
For example:

1. One can define “good” topologies which strictly contain the Zariski topol-

ogy.

*University Paris 7 - CNRS, Department of Mathematics, Case 7012, 2 Place Jussieu, 75251
Paris Cedex 05, France. E-mail: elibou@logique.jussieu.fr
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2. Different notions of dimensions can be attached to definable sets (or infinite
intersections of definable sets, which we call infinitely definable, or oco-definable,
sets). In the case of algebraically closed fields, all such possible notions of abstract
dimension must coincide and be equal to the classical algebraic dimension. In the
other cases, these dimensions may be different, some may take infinite ordinal values
or may be defined ounly for some special classes of definable (or co-definable) sets.

3. If K is any of the above mentioned fields, and if H is an algebraic group
defined over K, then the group H(K) of the K-rational points of H is a definable
group. But there are “new” families of definable groups which are not of this form.

In fact, it is precisely the study of certain specific families of “new” definable
groups of finite dimension which are at the center of the applications to Diophantine
geometry. We will not attempt here to explain how the model theoretic analysis of
the finite rank definable groups yields these applications. There have been in recent
years many surveys and presentations of the subject to which we refer the reader
(see for example, [4],[5], [14], [22] or [28]). We will come back to this subject, but
very briefly, at the end in Section 3.5..

The first general question raised by the existence of these new definable groups
is that of their relation to the classical algebraic groups. Remark that this question
already makes sense in the context of “pure” algebraically closed fields, about the
class of definable (= constructible) groups. In that case, it is true that any con-
structible group in an algebraically closed field K is constructibly isomorphic to the
K-rational points of an algebraic group defined over K (see for example [3] or [23]).

Let us now consider briefly the case of a field K of characteristic p > 0 which
is separably closed and not perfect. Then the class of constructible sets is no
longer closed under projection and there are many definable groups which are not
constructible, the most obvious one being K?. There are also some groups which are
proper intersections of infinite descending chains of definable groups: for example,
KP™ (=, K*"), the field of infinitely p-divisible elements of the multiplicative
group, or ), p"A(K), for A an Abelian variety defined over K.

It is nevertheless true, as we will see, that every definable group in K is
definably isomorphic to the K-rational points of an algebraic group defined over
K. Furthermore, as in the classical case of one-dimensional algebraic groups, it is
possible to give a complete description, up to definable isomorphism, of the one-
dimensional infinitely definable groups.

There are results of similar type for the other classes of enriched fields men-
tioned above. In this short paper, we will concentrate mainly on the case of separa-
bly closed fields (in Section 3.). Before this, in Section 2., we will only very briefly
present the model theoretic setting for two other examples of “enriched” fields, in
characteristic zero, differentially closed fields and generic difference fields. We hope
this will give the reader an idea of what the common features and the differences
might be in the model theoretic analysis of these different classes of fields.

Finally, there are of course many other classes of fields whose model theory
has been extensively developed in the past years with many connections to algebra,
semi-algebraic or subanalytic geometry, and which we are not going to mention
here: for example, valued fields, ordered fields, “o-minimal” expansions of the real
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field...

2. Two short examples

We will just very briefly describe the two characteristic zero examples men-
tioned above.

2.1. Differentially closed fields of characteristic zero

We consider a field K of characteristic zero, with a derivation §, that is, an
additive map from K to K which satisfies that for all z,y in K, é(zy) = 26(y) +
yo(y). We define the ring K;[X] of differential polynomials over K to be the ring
of polynomials in infinitely many variables K[X,d(X),82(X), - ,8"(X),---]. The
order of the differential polynomial f(X) in K3[X]is —1 if f € K and otherwise
the largest n such that §”(X) occurs in f(X) with non zero coefficient. We say
that K is differentially closed if for any non-constant differential polynomials f(X)
and g(X), where the order of g is strictly less than the order of f, there is a 2z such
that f(z) = 0 and g(z) # 0. In model theoretic terms, this means exactly that K
is existentially closed.

From now on we suppose that (K,0) is a large differentially closed field (a
universal domain).

We say that F' C K" is a d-closed set, if there are f1, -+, f, € K3[X1, -+, X))
such that F' = {(a1,--- ,an) € K™; fi{a1, - ,apn) =+ = frlaz, -+ ,a,) =0}. The
ring K5[Xq, -, X,] is of course not Noetherian but the d-closed sets (which cor-
respond to radical differential ideals) form the closed sets of a Noetherian topology
on K, the é-topology.

We now consider the d§-constructible sets, that is, the finite Boolean combi-
nations of d-closed sets. This class is closed under projection (this is quantifier
elimination for the theory), hence the definable sets (we call them J-definable sets)
are exactly the d-constructible sets. To every d-definable set one can associate a
dimension (the Morley rank) which can take infinite countable ordinal values.

There are “new” definable groups, which are not of the form H(K) for any al-
gebraic group H. In particular, any H(K) will have infinite dimension. In contrast,
the field of constants of K, Cons(K) = {a € K;§(x) = 0}, is a d-closed set which is
not constructible; it is an algebraically closed subfield of K and has dimension one.

Nevertheless the following is true:

Proposition 1 ([21]) Let G be a §-definable group in K. Then there is an algebraic
group H, defined over K, such that G is definably isomorphic to a (3-definable)
subgroup of H(L).

For the many more existing results on é-definable groups, we refer the reader
to [20], or from the differential algebra point of view, to [8].

2.2. Generic difference fields
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We now consider an algebraically closed field K with an automorphism o. We
say that (K, o) is a generic difference field if every difference equation which has a
solution in an extension of K has a solution in K. The theory of generic difference
fields has been extensively studied in [9] and [10].

Let us suppose that (K,0) is a generic difference field in characteristic zero.
We consider the ring of o-polynomials,

KU[Xla"' aXn] = K[Xla aXnaU(Xl)a: ,O'(Xn),dg(Xl),--- aUQ(Xn)a"']-

We say that F' C K™ is a fo-closed setif there are f1, -+, f, € Ks[X1, -+, Xy] such
that F = {(a1, - ,a,) € K" : fi(a1, -+ ,a,) = -+ = fr(a1, - ,a,) = 0}. The
o-closed sets form the closed sets of a Noetherian topology on K, the o-topology.
The class of o-definable sets is the closure under finite Boolean operations and
projections of the o-closed sets.

Again there are “new” o-definable groups. For example, the field Fiz(K) =
{a € K : 0(a) = a}, the fixed field of ¢ in K, is a o-closed set of dimension one.

Here the best result possible for arbitrary o-definable groups is the following:

Proposition 2 ([18]) Let G be a group definable in (K o). Then there are an
algebraic group H defined over K, o finite normal subgroup N1 of G, a o-definable
subgroup Hy of H(K) and a finite normal subgroup N2 of Hy, such that G/N1 and
Hi /Ny are o-definably isomorphic.

The analysis of groups of finite dimension is one of the main tools in Hrushovski’s
proof of the Manin-Mumford conjecture in [15].

3. Separably closed fields of finite degree of imper-
fection

Separably closed fields are particularly interesting from the model theoretic
point of view for many reasons, in addition to the fact that they form the framework
for Hrushovski’s proof of the Mordell-Lang conjecture in charactersitic p. Let us
just mention one reason here: they are the only fields known to be stable and non
superstable, and in fact it is conjectured that they are the only existing ones.

We will just focus on the main properties of the groups that are definable in a
separably closed field of finite degree of imperfection, but we need first to introduce
some notation and recall some basic facts (see [11]).

3.1. Some basic facts and notation

Let L be a separably closed field of charcteristic p > 0 and of finite degree of
imperfection which is not perfect, i.e., L has no proper separable algebraic extension,
and |L: L] = p¥, with 0 < v. In order to avoid confusion we denote the Cartesian
product of k copies of L by L**.

A subset B = {by,---,b,} of Lis called a p-basis of L if the set of p-monomials
of B, {M; :=T];_, b j € p¥} forms a linear basis of L over L. Each element
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in L can be written in a unique way as « = » ;. . ;" M;. From now on we fix a
p-basis B of L and the M;’s, with j € p”, always denote the p-monomials
of B. We suppose that L is large (a universal domain, or in model theoretic terms,
saturated) and we fix some small separably closed subfield K of L, containing B
and of same degree of imperfection v.

We let f; denote the map which to x associates ;. The x;’s are called the
p-components of x of level one. More generally, one can associate to x a tree of
countable height indexed by (p¥)<“, which we call the tree of p-components of x.
For o € (p¥)<¥, we define z,, by induction: 2y = z and if 7 € (p)", and j € p¥, we
let 2(, ;) be equal to f;i(x,); 2(;  is called a p-component of x of level n + 1.

We will also use the notation ay = (ag)ge(py)@, for a € L.

The ring K[Xo]. K[Xs] is the polynomial ring in countably many indeter-
minates indexed in a way which will allow the natural substitution by the p-
components of elements: for X a single variable, Xo, := (X5)sg(pr)<w, and for
X = (1,...,Y%) a k-tuple of variables, Xoo := (V1)oos---»(Yh)oo). The ring
K[X ] is a countable union of Noetherian rings, hence each ideal is countably gen-
erated. We let I°(X) denote the ideal of K[X,] generated by the polynomials
Xy — Zjep’/ ngg,j)]y[ja ae (pu)<w.

3.2. The A-topology

Given a set of polynomials S of K[Xu], let V(S) = {a € L** : f(ax) =
0 for all f € S}. Such a V(S5) is called A-closed (with parameters in K or over K)
in L.

Given A C L**, we define its canonical ideal I(A) over K, I(A) := {f €
K[Xx): flas) =0forall a € A}.

The A-closed subsets of LX* form the closed sets of the A-topology on L*F.
This topology is not Noetherian but is the limit of countably many Noetherian
topologies.

Let C be a commutative K-algebra. An ideal I of C is separable if, for all
G €C, jeEP I 3 e c?]tfj € I, then each ¢; € I.

Fact 3 (“Nullstellensatz”) 1. The map A — I{A) induces o bijection between
A-closed subsets of the affine space L* which are defined over K and ideals of K[X ]
which are separable and contain I°(X). The inverse map is I — V(I).

Now for the basic properties of the first-order theory:

Fact 4 1. The theory of separably closed fields of characteristic p, of degree of
imperfection v, and with p-basis {b1,...,b,} is complete and admits elimination of
quantifiers and elimination of imaginaries in the language

Ly, =101+, —, JU b, ..., U{fi;i € p”}.

In particular, any definable set is A-constructible, that is, a finite Boolean
combinations of definable A-closed sets. Remark that it is impossible to associate
to an arbitrary definable set a well-behaved notion of dimension: indeed, such a
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dimension would need to be invariant under definable bijections, but for every n
the map A, defined by A, () := (25 )se(pv)n , i @ definable bijection between L and
L*P"" | But some oo-definable sets will have a well-defined dimension, for example
the field LF™ := N, LP", which is the biggest algebraically closed subfield of L, has
dimension one. In fact, L¥”~ is the unique (up to definable isomorphism) infinitely
definable field of dimension one ([19], [13]}.

3.3. Definable groups

Again, amongst the definable groups, one finds the “classical” ones, that is
groups of the form H(L) for H any algebraic group defined over L. These groups
have certain specific properties which are not true of all the definable groups in
L. Recall that a definable subset X of G is said to be generic if G is covered by
a finite number of translates of X, and an element of G is generic for the group
if every definable set which contains it is generic. In an algebraic group, generics
in the topological sense coincide with generics for the algebraic group. Recall also
that a definable group is said to be connected if it has no proper definable subgroup
of finite index, and connected-by-finite if it has a definable connected subgroup of
finite index.

Proposition 5 ([6], [13]) Let H be an algebraic group defined over K. Then H(L)
is connected-by-finite. If H is connected (hence irreducible as an algebraic group),
then H(L) is connected (and irreducible for the A-topology) and if a € H(L) is a
generic point, then the ideal I{a) = {f € K[Xu] : faw) = 0} is minimal amongst
the ideals I(h), for h € H(L).

The above says that in the group H(L), the generics in the topological sense
coincide with generics for the group. In an arbitrary group defined in L, this need
not be the case.

Consider the definable bijection f from L to L defined in the following way:
if e L\LP, f(z) =aP,if x € LP\ L¥", f(x) = 2V/? ifx € ¥, f(2) = =

Transporting addition through f, one gets a group on L again, G := (L,x),
definably isomorphic to (L,+), hence connected. The set L itself is of course A-
closed and irreducible with associated ideal I(L) = I°(X). The ideal associated to
the (group) generic of (L, x) is generated by I°(X) and {X; = 0:1i € p”,i # 0},
and strictly contains I°(X).

This question of the uniqueness of the notion of generic is not the only one
posing problems for arbitrary definable groups in L. For example, there is no reason,
coming from general properties of stable (non superstable) theories, which a priori
forces all these definable groups to be connected-by-finite.

Nevertheless, one can in fact show that the situation is as close to the classical
one as it could be:

Proposition 6 [6] Bvery definable group G in L is connected-by-finite and is de-
finably isomorphic to the group of L-rational points of an algebraic group H defined
over L.
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One more remark, in the case of algebraic groups, by Prop. 5, irreducibility
transfers down to the set of L-rational points. But this is not the case for an
arbitrary variety: if one considers for example the irreducible variety defined by the
equation Y*" X 4+ ZP™ = 0, for m > 1, then the A-closed set V(L) is no longer
irreducible in the sense of the A-topology.

3.4. Minimal groups

The previous result enables us to give a complete description of groups of
dimension one, and more generally of some classes of commutative groups.

We say that an oo-definable set D is minimal if any definable subset of G is
finite or co-finite. If D is actually definable, then we say that D is strongly minimal.

The minimal groups are exactly the connected groups of dimension (U-rank)
equal to one. A minimal group must be commutative.

From the basic properties of commutative algebraic groups over an algebraically
closed field of characteristic p and Proposition 6, one can deduce:

Lemma 7 Let G be a minimal group oo-definable in L, then G has exponent p or
G is divisible.

We first consider the commutative groups of exponent p:

Proposition 8 [7] Let G be o commutative oo-definable group of exponent p de-
finable in L. Then G is definably isomorphic to a A-closed subgroup of the additive
group (L,+). Furthermore, if G is definable, then it is definably isogenous to the
group of L-rational points of a vector group.

Note that even when G is connected it is not necessarily definably isomorphic
to the group of rational points of a vector group.

Then we consider the commutative divisible groups, which we show to be
exactly the ones that were considered by Hrushovski in [13]:

Proposition 9 [7] 1. Let G be any oo-definable commutative divisible group in
L. Then G is definably isomorphic to some p>* A(L) := (1, p"A(L), for A a semi-
Abelian variety defined over L.

2. If A is a semi-Abelian variety defined over L, p> A(L), which is the maximal
divisible subgroup of A(L) is also the smallest oco-definable subgroup of A(L) which
is Zariski dense in A.

Finally, this analysis, together with some results from [11] and [13], yields the
full description of minimal groups.

Before stating the actual result, let us give some last definitions. The group
G is said to be of linear type if for every n, every definable subgroup of G*™ is a
finite Boolean combination of translates of definable subgroups of G*”. We define
the transcendence rank over K of a group G, defined over K, to be the maximum
of {tr.degree(K (9), K) : g € G}.
Proposition 10 Let G be an oo-definable minimal group in L.
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1. FEither G is not of linear type and then,

o (G is definably isomorphic to the multiplicative group ((me)*, s

o or G is definably isomorphic to E(L*") for E an elliptic curve defined
over LF™,

o or G is definably isogenous to (LP~ ,+). (isogenous here cannot be re-
placed by isomorphic).

2. Or G is of linear type and then,

o G is divisible and G is definably isomorphic to p™ A(L) for some simple
Abelian variety A defined over K which is not isogenous to an Abelian
variety defined over L¥"

o or (G is of exponent p and is definably isomorphic to o minimal A-closed
subgroup of (L, +).

In the divisible case G has finite transcendence rank; in the exponent p case,
all transcendence ranks are possible.

The induced module-type structure on the minimal groups of exponent p and
of linear type is analyzed in [2].

A short word about some of the tools involved in the proofs of Propositions
6 and 10: the proofs of 6, 1 and 2 all involve at some point the classical theorem
of Weil’s constructing an algebraic group from a generic group law on a variety, or
some generalizations of this theorem to an abstract model theoretic context. In the
specific case of separably closed fields, another fundamental tool is the analysis of
the properties of the A,,-functors, naturally associated to the maps A,: for each n,
A, is a covariant functor from the category of varieties V' defined over K to itself,
with the property that the L-rational points of the variety A,V are exactly the
image by the map A, of the L-rational points of V. In the case of an algebraic
group defined over K, A; is equal to the composition of the inverse of the Frobenius
and of the classical Weil restriction of scalars functor from K7 to K.

Finally, the way we have stated Proposition 10 uses the fact that if a minimal
group is not of linear type, then it is non orthogonal to L¥”~ (and hence definably
isogenous to the L?” -rational points of some definable group over L*~ ). The only
known proof of this so far uses the powerful abstract machinery of Zariski struc-
tures from [16]. This dichotomy result, for the particular case of groups of the
form p™ A(L}), is essential in Hrushovski’s proof of the Mordell-Lang conjecture in
characteristic p, which is still the only existing proof for the general case. In a
recent paper Pillay and Ziegler ([24]), show that, with some extra assumptions on
A, one can replace in this proof the heavy Zariski structure argument by a much
more elementary one. These extra assumptions are satisfied when A is an ordinary
semi-Abelian variety (i.e. A has the maximum possible number of p™-torsion points
for every n), case which was already covered by previous non model-theoretic proofs

(see [1]).

3.5. Final remarks and questions

As we have already mentioned earlier, the groups of finite dimension defin-
able in these “enriched” theories of fields play a major role in the applications of
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model theory to Diophantine geometry. In the characteristic zero case, the rele-
vant groups are the definable subgroups of the group of rational points of Abelian
varieties in differentially closed fields (Mordell-Lang conjecture for function fields
[13]), in generic difference fields (the Manin-Mumford conjecture [15], [5] and the
Tate-Voloch conjecture for semi-Abelian varieties defined over (), [25], [26]). In the
characteristic p case, the relevant groups are: the oo-definable divisible subgroups
of the group of rational points of semi-Abelian varieties in separably closed fields
(the Mordell-Lang conjecture for function fields [13]) and the definable subgroups of
the additive groups in generic difference fields of characteristic p (Drinfeld modules
[27).

One should note that, in fact, separably closed fields are just another instance
of a field with extra operators (derivations or automorphisms): one can equip any
separably closed field L of finite degree of imperfection, with an infinite family of
Hasse derivations in such a way that the resulting structure is bi-definably equivalent
with L considered as a structure in the language described in section 3.2.. There
are many interesting other possible types of “enriched” fields in this sense where
the complete analysis of the model theoretic structure remains to be done.

Finally, one crucial step towards possible further applications of the fine study
of finite rank definable sets to geometry would be an understanding of the structure
induced on the so-called trivial or disintegrated definable (or infinitely definable)
minimal sets, that is the minimal sets such that the induced pregeometry is disin-
tegrated. This condition immediately rules out definable groups. The absence of
any well-understood algebraic structure living on these “trivial” sets makes them
very difficult to analyze. The only results obtained so far are in the context of
differentially closed fields of characteristic 0: Hrushovski ([12]), building on some
results of Jouanolou ([17]), showed that in any trivial strongly minimal set defined
by a differential equation of order one, the induced pregeometry is locally finite.
The question of whether this is true for higher order equations is still open.

References

[1] D. Abramovic & F. Voloch, Towards a proof of the Mordell-Lang conjecture in
characteristic p, Intern. Math. Research Notices (IMRN), 2 (1992), 103-115.

[2] T. Blossier, Ensembles minimaux localement modulaires, These de Doctorat,
Université Paris 7, 2001.

[3] E. Bouscaren, Model-theoretic versions of Weil’s theorem on pre-groups, in
The Model Theory of Groups, (A. Nesin & A. Pillay, editors), Notre Dame
University Press, 1989.

[4] E. Bouscaren, Proof of the Mordell-Lang conjecture for function fields, in Model
theory and algebraic geometry (E. Bouscaren, editor), Lecture Notes in Math-
ematics, Vol. 1696, Springer-Verlag, 1998.

[5] E. Bouscaren, Théorie des modeles et conjecture de Manin-Mumford (d’apres
Ehud Hrushovski), Séminaire Bourbaki, Vol. 1999/2000, Astérisque No. 276
(2002), 137-159.

[6] E. Bouscaren & Francoise Delon, Groups definable in separably closed fields,
Transactions of the A.M.S., 354 (2002), 945-966.



12 E. Bouscaren

[7] E. Bouscaren & Francoise Delon, Minimal groups in separably closed fields,
The Journal of Symbolic Logic, 67 (2002), 239-259.

[8] A. Buium, Differential Algebra and Diophantine Geom., Hermann, Paris, 1994.

[9] Z. Chatzidakis & E. Hrushovski, The model theory of difference fields, Trans-
actions of the A.M.S, Vol. 351 (1999), 2997-3071.

[10] Z. Chatzidakis, E. Hrushovski & Y. Peterzil, The model theory of difference
fields II, Proceedings of the London Math. Soc. (to appear).

[11] F. Delon, Separably closed fields, in Model Theory and Algebraic Geometry, E.
Bouscaren (Ed.), Lecture Notes in Mathematics 1696, Springer-Verlag, 1998.

[12] E. Hrushovski, ODE’s of order 1 and a generalisation of a theorem of
Jouanolou’s, Manuscript, 1995.

[13] E. Hrushovski, The Mordell-Lang conjecture for function fields, Journal of the
A.M.S., 9 (1996), 667-690.

[14] E. Hrushovski, Geometric model theory, in Proceedings of the International
Congress of Mathematicians, Berlin, Vol. T (1998), Doc. Math., 281-302.

[15] E. Hrushovski, The Manin-Mumford conjecture and the model theory of dif-
ference fields, Annals of Pure and Applied Logic, 112 (2001), 43-115.

[16] E. Hrushovski & B. Zilber, Zariski Geometries, Journal of the A.M.S., 9 (1996),
1-56.

[17] J.P. Jouanolou, Hypersurfaces solutions d’une équation de Pfaff analytique,
Mathematische Annalen, 232 (1978), 239-245.

[18] P. Kowalski & A. Pillay, A note on groups definable in difference fields, preprint,
2000.

[19] M. Messmer, Groups and fields interpretable in separably closed fields, Trans-
actions of the A.M.S., 344 (1994), 361-377.

[20] A. Pillay, Differential algebraic groups and the number of countable differen-
tially closed fields, in Model Theory of Fields, D. Marker, M. Messmer & A.
Pillay, Lecture Notes in Logic 5, Springer, 1996.

[21] A. Pillay, Some foundational questions concerning differential algebraic groups,
Pacific Journal of Math., 179 (1997}, 179-200.

[22] A. Pillay, Model Theory and Diophantine geometry, Bulletin of the A.M.S., 34
(1997), 405-422.

[23] A. Pillay, Model theory of algebraically closed fields, in Model theory and al-
gebraic geometry (E. Bouscaren, editor), Lecture Notes in Mathematics, Vol.
1696, Springer-Verlag, 1998.

[24] A. Pillay & M. Ziegler, Jet spaces of varieties over differential and difference
fields, preprint, 2002.

[25] T. Scanlon, p-adic distance from torsion points of semi-Abelian varieties, Jour-
nal fir dir Reine und Angewandte Mathematik, 499 (1998), 225-236.

[26] T. Scanlon, The conjecture of Tate & Voloch on p-adic proximity to torsion,
Intern. Math. Research Notices (IMRN), 17 (1999), 909-914.

[27] T. Scanlon, Diophantine geometry of the torsion of a Drinfeld module, preprint
1999.

[28] T. Scanlon, Diophantine geometry from model theory, Bulletin of Symbolic
Logie, 7 (2001), 37-57.



ICM 2002 - Vol. 11 - 13-23

Motivic Integration and the Grothendieck
Group of Pseudo-Finite Fields

J. Denef* F. Loeser!

Abstract

Motivic integration is a powerful technique to prove that certain quantities
associated to algebraic varieties are birational invariants or are independent of
a chosen resolution of singularities. We survey our recent work on an extension
of the theory of motivic integration, called arithmetic motivic integration. We
developed this theory to understand how p-adic integrals of a very general type
depend on p. Quantifier elimination plays a key role.
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1. Introduction

Motivic integration was first introduced by Kontsevich [20] and further devel-
oped by Batyrev [3][4], and Denef-Loeser [8][9][12]. It is a powerful technique to
prove that certain quantities associated to algebraic varieties are birational invari-
ants or are independent of a chosen resolution of singularities. For example, Kont-
sevich used it to prove that the Hodge numbers of birationally equivalent projective
Calabi-Yau manifolds are equal. Batyrev [3] obtained his string-theoretic Hodge
numbers for canonical Gorenstein singularities by motivic integration. These are
the right quantities to establish several mirror-symmetry identities for Calabi-Yau
varieties. For more applications and references we refer to the survey papers [11] and
[21]. Since than, several other applications to singularity theory were discovered,
see e.g. Mustata [24].

In the present paper, we survey our recent work [10] on an extension of the
theory of motivic integration, called arithmetic motivic integration. We developed
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this theory to understand how p-adic integrals of a very general type depend on p.
This is used in recent work of Hales [18] on orbital integrals related to the Langlands
program. Arithmetic motivic integration is tightly linked to the theory of quantifier
elimination, a subject belonging to mathematical logic. The roots of this subject
go back to Tarski’s theorem on projections of semi-algebraic sets and to the work
of Ax-Kochen-Ersov and Macintyre on quantifier elimination for Henselian valued
fields (cf. section 4). We will illustrate arithmetic motivic integration starting
with the following concrete application. Let X be an algebraic variety given by
equations with integer coefficients. Denote by N, , the cardinality of the image
of the projection X (Z,) — X(Z/p"*™'), where Z, denotes the p-adic integers. A
conjecture of Serre and Oesterlé states that P,(T) := > N, ,T" is rational. This
n

was proved in 1983 by Denef [7] using quantifier elimination, expressing P,(T") as
a p-adic integral over a domain defined by a formula involving quantifiers. This
gave no information yet on how P,(T") depends on p. But recently, using arithmetic
motivic integration, we proved:

Theorem 1.1. There exists o canonically defined rational power series P(T)
over the ring KJ**'(Varq) ® Q, such that, for p > 0, P,(T) is obtained from P(T)
by applying to each coefficient of P(T') the operator N.

Here Ko(Varg) denotes the Grothendieck ring of algebraic varieties over Q,
and K§"°*(Varq) is the quotient of this ring obtained by identifying two varieties
if they have the same class in the Grothendieck group of Chow motives (this is
explained in the next section). Moreover the operator N, is induced by associating
to a variety over Q its number of rational points over the field with p elements, for
p> 0.

As explained in section 8 below, this theorem is a special case of a much more
general theorem on p-adic integrals. There we will also see how to canonically
associate a “virtual motive” to quite general p-adic integrals. A first step in the
proof of the above theorem is the construction of a canonical morphism from the
Grothendieck ring Ko (PFFq) of the theory of pseudo-finite fields of characteristic
zero, to KJ'(Varq) ® Q. Pseudo-finite fields play a key role in the work of Ax
[1] that leads to quantifier elimination for finite fields [19][14][5]. The existence
of this map is interesting in itself, because any generalized Euler characteristic,
such as the topological Euler characteristic or the Hodge-Deligne polynomial, can
be evaluated on any element of KJ**!(Varg) ® Q, and hence also on any logical
formula in the language of fields (possibly involving quantifiers). All this will be
explained in section 2. In section 3 we state Theorem 3.1, which is a stronger version
of Theorem 1.1 that determines P(T"). A proof of Theorem 3.1 is outlined in section
7, after giving a survey on arithmetic motivic integration in section 6.

2. The Grothendieck group of pseudo-finite fields

Let k be a field of characteristic zero. We denote by Ko(Vary) the Grothendieck
ring of algebraic varieties over k. This is the group generated by symbols [V] with
V" an algebraic variety over k, subject to the relations [V1] = [V2] if 1 is isomorphic
to Vo, and [V\ W] = [V] ~ [W]if W is a Zariski closed subvariety of W. The ring
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multiplication on Kg(Vary) is induced by the cartesian product of varieties. Let L
be the class of the affine line over k in Ko(Vary). When V' is an algebraic variety
over Q, and p a prime number, we denote by N,(V'} the number of rational points
over the field F,, with p elements on a model V of V' over Z. This depends on the
choice of a model V, but two different models will yield the same value of N,(V),
when p is large enough. This will not cause any abuse later on. For us, an algebraic
variety over k does not need to be irreducible; we mean by it a reduced separated
scheme of finite over k.

To any projective nonsingular variety over k one associates its Chow motive
over k (see [27]). This is a purely algebro-geometric construction, which is made in
such a way that any two projective nonsingular varieties, V7 and V5, with isomorphic
assoclated Chow motives, have the same cohomology for each of the known coho-
mology theories (with coefficients in a field of characteristic zero). In particular,
when k is Q, N, (V1) = N,(13), for p > 0. For example two elliptic curves define
the same Chow motive iff there is a surjective morphism from one to the other.
We denote by K{*°!(Vary) the quotient of the ring Ko(Vary) obtained by identi-
fying any two nonsingular projective varieties over & with equal associated Chow
motives. From work of Gillet and Soulé [15], and Guillén and Navarro Aznar[17], it
directly follows that there is a unique ring monomorphism from KJ*°*(Var) to the
Grothendieck ring of the category of Chow motives over k, that maps the class of a
projective nonsingular variety to the class of its associated Chow motive. What is
important for the applications, is that any generalized Euler characteristic, which
can be defined in terms of cohomology (with coefficients in a field of characteristic
zero), factors through K*°*(Vary). With a generalized Euler characteristic we mean
any ring morphism from Kg(Varg), for example the topological Euler characteristic
and the Hodge-Deligne polynomial when k& = C. For [V] in KJ**!(Var), with k =
Q, we put N,([V]) = N,(V); here again this depends on choices, but two different
choices yield the same value for N,([V]), when p is large enough.

With a ring formula ¢ over & we mean a logical formula build from polynomial
equations over k, by taking Boolean combinations and using existential and univer-
sal quantifiers. For example, (37)(z? +  +y = 0 and 4y # 1) is a ring formula
over Q. The mean purpose of the present section is to associate in a canonical way
to each such formula ¢ an element y.([¢]) of KI*!(Vary,) ® Q. One of the required
properties of this association is the following, when k = Q: If the formulas ¢, and 9
are equivalent when interpreted in F,, for all large enough primes p, then x.([¢1])
= Xc([w2]). The natural generalization of this requirement, to arbitrary fields k of
characteristic zero, is the following: If the formulas 1 and 2 are equivalent when
interpreted in K, for all pseudo-finite fields K containing k, then x.([¢1]) = xc([¢2])-
We recall that a pseudo-finite field is an infinite perfect field that has exactly one
field extension of any given finite degree, and over which each absolutely irreducible
variety has a rational point. For example, infinite ultraproducts of finite fields are
pseudo-finite. J. Ax [1] proved that two ring formulas over Q are equivalent when
interpreted in F,, for all large enough primes p, if and only if they are equivalent
when interpreted in K, for all pseudo-finite fields K containing Q. This shows
that the two above mentioned requirements are equivalent when k = Q. In fact, we
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will require much more, namely that the association ¢ = x.([¢]) factors through
the Grothendieck ring Ko(PFF}) of the theory of pseudo-finite fields containing k.
This ring is the group generated by symbols [¢], where ¢ is any ring formula over k,
subject to the relations [p1 or @a] = [p1] + [w2] — [w1 and 2], whenever ¢ and
have the same free variables, and the relations [p;1] = [p2], whenever there exists a
ring formula 1 over k that, when interpreted in any pseudo-finite field K containing
k, yields the graph of a bijection between the tuples of elements of K satisfying
and those satisfying 9. The ring multiplication on Ko(PFFy) is induced by the
conjunction of formulas in disjoint sets of variables. We can now state the following
variant of a theorem of Denef and Loeser [10].
Theorem 2.1. There exists a unique ring morphism

Xe : Ko(PFFy) — KJ(Varg) @ Q

satisfying the following two properties:
(i) For any formula @ which is a conjunction of polynomial equations over k, the
element x.([]) equals the class in Kt (Vary) ® Q of the variety defined by .
(ii) Let X be a normal affine irreducible variety over k, Y an unramified Galois
cover ' of X, and C a cyclic subgroup of the Galois group G of Y over X. For
such data we denote by py x ¢ o ring formule, whose interpretation in any field K
containing k, is the set of K-rational points on X that lift to o geometric point on
Y with decomposition group C (i.e. the set of points on X that lift to a K-rational
point of Y/C, but not to any K -rational point of Y/C' with C' o proper subgroup
of C). Then
C
xellovxel) = measeellevarec),

where Ng(C) is the normalizer of C in G.

Moreover, when k = Q, we have for all large enough primes p that N, (x.([¢]))
equols the number of tuples in ¥, that sotisfy the interpretation of ¢ in F,.

The proof of the uniqueness goes as follows: From quantifier elimination for
pseudo-finite fields (in terms of Galois stratifications, cf. the work of Fried and
Sacerdote [14][13, §26]), it follows that every ring formula over k is equivalent (in
all pseudo-finite fields containing k) to a Boolean combination of formulas of the
form py, x . Thus by (ii) we only have to determine x.([vy,v/c,c]), with C a cyclic
group. But this follows directly from the following recursion formula:

CIY/Cl= Y JAxe(lov,y/a,a)-

Asubgroup of C

This recursion formula is a direct consequence of (i), (ii), and the fact that the
formulas wy,y;c 4 yield a partition of ¥//C. The proof of the existence of the
morphism y. is based on the following. In [2], del Baiio Rollin and Navarro Aznar
assoclate to any representation over Q of a finite group G acting freely on an affine
variety Y over k, an element in the Grothendieck group of Chow motives over k. By

!Meaning that Y is an integral étale scheme over X with Y/G & X, where G is the group of
all endomorphisms of Y over X.
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linearity, we can hence associate to any Q-central function « on G (i.e. a Q-linear
combination of characters of representations of G over Q), an element x.(Y,a) of
that Grothendieck group tensored with Q. Using Emil Artin’s Theorem, that any Q-
central function « on G is a Q-linear combination of characters induced by trivial
representations of cyclic subgroups, one shows that x.(Y,a) € Kyo(Vary) ®@ Q.
For X := Y /@ and C any cyclic subgroup of G, we define x.([vv x,c]) := x(Y,6),
where 6 sends g € G to 1 if the subgroup generated by g is conjugate to C, and
else to 0. Note that 6 equals [C]/|Ng(C)| times the function on G induced by
the characteristic function on C of the set of generators of C. This implies our
requirement (ii), because of Proposition 3.1.2.(2) of [10]. The map (Y, ) = x.(Y, @)
satisfies the nice compatibility relations stated in Proposition 3.1.2 of loc. cit. This
compatibility (together with the above mentioned quantifier elimination) is used,
exactly as in loc. cit., to prove that the above definition of x.([¢v x c]) extends
by additivity to a well-defined map y. : Ko(PFFy) — KJ°!(Var,) ® Q. In loc.
cit., Chow motives with coefficients in the algebraic closure of Q are used, but
we can work as well with coefficients in Q, since here we only have to consider
representations of G over Q.

3. Arc spaces and the motivic Poincaré series

Let X be an algebraic variety defined over a field k of characteristic zero. For
any natural number n, the n-th jet space £,,(X) of X is the unique algebraic variety
over k whose K-rational points correspond in a bijective and functorial way to the
rational points on X over K[t]/t"™!, for any field K containing k. The arc space
L(X) of X is the reduced k-scheme obtained by taking the projective limit of the
varieties £,,(X) in the category of k-schemes.

We will now give the definition of the motivic Poincaré series P(T') of X. This
series is called the arithmetic Poincaré series in [10], and is very different from the
geometric Poincaré series studied in [8]. For notational convenience we only give
the definition here when X is a subvariety of some affine space A7*. For the general
case we refer to section 5 below or to our paper [10]. By Greenberg’s Theorem
[16], for each n there exists a ring formula @, over k such that, for all fields K
containing k, the K-rational points of £,(X), that can be lifted to a K-rational
point of £{X), correspond to the tuples satisfying the interpretation of ¢,, in K.
(The correspondence is induced by mapping a polynomial over K to the tuple
consisting of its coefficients.) Clearly, when two formulas satisfy this requirement,
then they are equivalent when interpreted in any field containing k, and hence define
the same class in Ko(PFFy). Now we are ready to give the definition of P(T):

P(T) =) xella))T™

Theorem 3.1. The motivic Poincaré series P(T) is a rational power series
over the ring KJ**!(Vary)[L™'] ® Q, with denominator a product of factors of the
form 1 — LeT®, with a,b € Z, b > 0. Moreover if k = Q, the Serre Poincaré
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series P,(T'), for p >0, is obtained from P(T') by applying the operator N, to each
coefficient of the numerator and denominator of P(T).

In particular we see that the degrees of the numerator and the denominator
of P,(T) remain bounded for p going to infinity. This fact was first proved by
Macintyre [23] and Pas [26].

4. Quantifier elimination for valuation rings

Let R be a ring and assume it is an integral domain. We will define the no-
tion of a DVR~formula over R. Such a formula can be interpreted in any discrete
valuation ring A O R with a distinguished uniformizer #. It can contain vari-
ables that run over the discrete valuation ring, variables that run over the value
group Z, and variables that run over the residue field. A DVR-formula over R is
build from quantifiers with respect to variables that run over the discrete valua-
tion ring, or over the value group, or over the residue field, Boolean combinations,
and expressions of the following form: g1(z) = 0, ord(g1(x)) < ord(ga2(x)) + L(a),
ord(g1(z)) = L{a) mod d, where g;(z) and g2(z) are polynomials over R in several
variables x running over the discrete valuation ring, where L(a) is a polynomial
of degree < 1 over Z in several variables a running over the value group, and d
is any positive integer (not a variable). Moreover we also allow expressions of the
form p(ac(hi(x)),...,ac(h.(z))), where @ is a ring formula over R, to be interpreted
in the residue field, hy(z),..., h.(x) are polynomials over R in several variables z
running over the discrete valuation ring, and ac(v), for any element v of the discrete
valuation ring, is the residue of the angular component ac(v) := v ~°"4?, For the
discrete valuation rings Z, and K[[t]], we take as distinguished uniformizer 7 the
elements p and t.

Theorem 4.1 (Quantifier Elimination of Pas [26]). Suppose that R has
characteristic zero. For any DVR-formula 6 over R there exists a DVR-formula
1 over R, which contains no quantifiers running over the valuation ring and no
quantifiers running over the value group, such that
(1) 6 < 1 holds in KI[t]], for all fields K containing R.

(2) 0 +— ¢ holds in Zy, for oll primes p>> 0, when R =Z.

The Theorem of Pas is one of several quantifier elimination results for Henselian
valuation rings, and goes back to the work of Ax-Kochen-Ersov and Cohen on the
model theory of valued fields, which was further developed by Macintyre, Delon [6],
and others, see e.g. Macintyre’s survey [22].

Combining the Theorem of Pas with the work of Ax mentioned in section 2,
one obtains

Theorem 4.2 (Ax-Kochen-Ersov Principle, version of Pas). Let o be
a DVR-formula over Z with no free variables. Then the following are equivalent:
(i) The interpretation of ¢ in Z, is true for all primes p > 0.
(i) The interpretation of o in K[[t]] is true for all pseudo-finite fields K of char-
acteristic zero.
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5. Definable subassignements and truncations

Let h : C — Sets be a functor from a category C to the category of sets. We
shall call the data for each object C of C of a subset h'(C) of h(C) a subassignement
of h. The point in this definition is that A’ is not assumed to be a subfunctor of h.
For h' and h'' two subassignements of h, we shall denote by A'NA' and h' UA", the
subassignements C = h'(C) N A" (C) and C = B'(C) U B"'(C), respectively.

Let k be a field of characteristic zero. We denote by Field;, the category of fields
which contain k. For X a variety over k, we consider the functor hx : K — X(K)
from Field;, to the category of sets. Here X (K') denotes the set of K-rational points
on X. When X is a subvariety of some affine space, then a subassignement h of
hx is called definable if there exists a ring formula ¢ over k such that, for any field
K containing k, the set of tuples that satisfy the interpretation of ¢ in K, equals
h(K). Moreover we define the class [h] of h in Ko(PFFy) as [¢]. More generally,
for any algebraic variety X over k, a subassignement h of hx is called definable if
there exists a finite cover (X;);er of X by affine open subvarieties and definable
subassignements h; of hx,, for ¢ € I, such that h = Userh;. The class [h] of b in
Ko(PFF}) is defined by linearity, reducing to the affine case.

For any algebraic variety X over k we denote by hpx) the functor K
X(K[[t]]) from Field;, to the category of sets. Here X (K][¢]]) denotes the set of
K[[t]]-rational points on X. When X is a subvariety of some affine space, then
a subassignement h of hy(xy is called definable if there exists a DVR-formula ¢
over k such that, for any field K containing k, the set of tuples that satisfy the
interpretation of ¢ in K[[t]], equals h(K). More generally, for any algebraic variety
X over k, a subassignement h of hp(x) is called definable if there exists a finite
cover (X;);er of X by affine open subvarieties and definable subassignements h; of
hexyys for @ € I, such that h = Ujerh;. A family of definable subassignements
hy, n € Z, of hyxy is called a definable family of definable subassignements if on
each affine open of a suitable finite affine covering of X, the family h,, is given by
a DVR-formula containing n as a free variable running over the value group.

Let X be a variety over k. Let h be a definable subassignement of h.(x),
and n a natural number. The truncation of h at level n, denoted by =, (h), is the
subassignement of h (x) that associates to any field K containing % the image
of h(K) under the natural projection map from X(K[[t]]) to L, (X)(K). Using
the Quantifier Elimination Theorem of Pas, we proved that =, (h) is a definable
subassignement of hy, (x), so that we can consider its class [, (h)] in Ko(PFFy).
Using the notion of truncations, we can now give an alternative (but equivalent)
definition of the motivic Poincaré series P(T'), which works for any algebraic variety
X over k, namely P(T) := 3 x([mn(hex)))T™.

A definable subassigne?nent hoof hy(x) is called weakly stable at level n if for
any field K containing k the set h(K) is a union of fibers of the natural projection
map from X(KI[t]]) to L,(X)(K). If X is nonsingular, with all its irreducible
components of dimension d, and h is a definable subassignement of hz(x, which is
weakly stable at level n, then it is easy to verify that

[ ()L™ = [ ()L™
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for all m > n. Indeed this follows from the fact that the natural map from £,,(X)

to L,(X) is a locally trivial fibration for the Zariski topology with fiber Agem—")d,
when X is nonsingular.

6. Arithmetic motivic integration

Here we will outline an extension of the theory of motivic integration, called
arithmetic motivic integration. If the base field k is algebraically closed, then it
coincides with the usual motivic integration.

We denote by K7t (Varg)[L~!] the completion of KZ*9!(Vary)[L~1] with re-
spect to the filtration of K§*!(Varg)[L™!] whose m-th member is the subgroup
generated by the elements [V]L™¢ with i — dimV > m. Thus a sequence [V;]L™*
converges to zero in K"t (Vary)[L~2], for i — +oo0, if i — dimV; — +00.

Definition-Theorem 6.1. Let X be an algebraic variety of dimension d over
a field k of characteristic zero, and let h be a definable subassignement of hp(x,.
Then the limit

v(h) := lim x.([m,(h))L-"+D4
N OO
exists in Ko (Vary)[L] ® Q and is called the arithmetic motivic volume of h.

We refer to [10, §6] for the proof of the above theorem. If X is nonsingular
and b is weakly stable at some level, then the theorem follows directly from what
we said at the end of the previous section. When X is nonsingular affine, but h
general, the theorem is proved by approximating h by definable subassignements
hi of heixy, i € N, which are weakly stable at level n(i). For h; we take the
subassignement obtained from h by adding, in the DVR~formula ¢ defining h, the
condition ordg(x) < i, for each polynomial g(z) over the valuation ring, that appears
in ¢. (Here we assume that ¢ contains no quantifiers over the valuation ring.) It
remains to show then that x.([r,(ordg(z) > )])L~("*D? goes to zero when both i
and n > i go to infinity, but this is easy.

Theorem 6.2. Let X be an algebraic variety of dimension d over a field k of
characteristic zero, and let h, h1 and hs be definable subassignements of hp(x,.
(1) If hi(K) = ho(K) for any pseudo-finite field K D k, then v(h1) = v(ha).

(Q) I/(hl U hg) = I/(hl) -+ I/(hg) - I/(hl N hg)

(3) If S is a subvariety of X of dimension < d, and if h C hy(s), then v(h) = 0.
(4) Let hy, n € N, be a definable family of definable subassignements of hy(xy. If
By NV hy = @, for all n # m, then > v(hy,) is convergent and equals v({J hy).

n n

(5) Change of variables formula. Let p: Y —» X be a proper birational morphism of
nonsingular irreducible varieties over k. Assume for any field K containing k that
the jacobian determinant of p at any point of p~'(h(K)) in Y (K[[t]]) has t-order
equal to e. Then vy (h) = L™ ¢vy(p~t(h)). Here vx, vy denote the arithmetic
motivie volumes relative to X, Y, and p~t(h) is the subassignement of heyy given
by K = p~ ' (h(K)) N Y (K[[t]).

Assertion (1) is a direct consequence of the definitions. Assertions (2) and (4)
are proved by approximating the subassignements by weakly stable ones. Moreover
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for (4) we also need the fact that h,, = @ for all but a finite number of n’s, when all
the h,,, and their union, are weakly stable (at some level depending on n). Assertion
(5) follows from the fact that for n >» e the map £, (Y) - £,,(X) induced by p is
a piecewise trivial fibration with fiber A{ over the image in £,,(X) of the points of
L(Y') where the jacobian determinant of p has ¢-order e. See [10] for the details.

7. About the proof of Theorem 3.1

We give a brief sketch of the proof of Theorem 3.1, in the special case that X
is a hypersurface in A with equation f(z) = 0. Actually, here we will only explain
why the image P(T') of P(T) in the ring of power series over K7t (Vary )L~} Q is
rational. The rationality of P(T") requires additional work. Let (z, n) be the DVR-
formula (3y)(f(y) = 0 and ord(z — y) > n), with d free variables z running over
the discrete valuation ring, and one free variable n running over the value group.
That formula determines a definable family of definable subassignements h,(_ ) of
by Ad)- Since hy(_ ny is weakly stable at level n, unwinding our definitions yields

that the arithmetic motivic volume on hpaqy of hy(— n) equals L—(+14 times the

n-th coefficient of P(T). To prove that P(T) is a rational power series we have to
analyze how the arithmetic motivic volume of h,(_ ,,) depends on n. To study this,
we use Theorem 4.1 (quantifier elimination of Pas) to replace the formula ¢(z,n) by
a DVR-formula v¢'(x, n) with no quantifiers running over the valuation ring and no
quantifiers over the value group. We take an embedded resolution of singularities
T Y A% of the union of the loci of the polynomials over the valuation ring, that
appear in ¥(x,n). Thus the pull-backs to Y of these polynomials, and the jacobian
determinant of m, are locally a monomial times a unit. Thus the pull-back of the
formula #(x,n) is easy to study, at least if one is not scared of complicated formula
in residue field variables. The key idea is to calculate the arithmetic motivic volume
of hy(— n)s by expressing it as a sum of arithmetic motivic volumes on h.(y,, using
the change of variables formula in Theorem 6.2. These volumes can be computed
explicitly, and this yields the rationality of P(T).

To prove that ﬁ(T) specializes to the Serre Poincaré series P,(T") for p > 0, we
repeat the above argument working with Z¢ instead of L(A{). The p-adic volume
of the subset of Zg defined by the formula ¢(x,n) equals p~ (19 times the n-
th coefficient of P,(T"). Because of Theorem 4.1.(2), we can again replace ¢(x,n)
by the formula #(x,n) that we obtained already above. That p-adic volume can
be calculated explicitly by pulling it back to the p-adic manifold Y (Z,), and one
verifies a posteriory that it is obtained by applying the operator NV, to the arithmetic
motivic volume that we calculated above. This verification uses the last assertion
in Theorem 2.1.

8. The general setting

_ We denote by M the image of Kg***(Vary)[L~'] in Kmot(Var,)[L~1], and by
Mioe the localization of M ® Q obtained by inverting the elements L? — 1, for all
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i > 1. One verifies that the operator N, can be applied to any element of M.,
for p > 0, yielding a rational number. The same holds for the Hodge-Deligne
polynomial which now belongs to Q(u,v). By the method of section 7, we proved
in [10] the following

Theorem 8.1. Let X be an algebraic variety over a field k of characteristic
zero, let h be a definable subassignement of ho(x), and hy, a definable family of
definable subassignements of hp(x.

(1) The motivic volume v(h) is contained in Myye.
(2) The power series > v(hn)T" € Myoe[[T]] is rational, with denominator a prod-
n

uct of factors of the form 1 — LT, with a,b € N, b # 0.

Let X be areduced separable scheme of finite type over Z, and let A = (A, )50
be a definable family of subsets of X(Z,), meaning that on each affine open, of a
suitable finite affine covering of X, A, can be described by a DVR-formula over
Z. (Here p runs over all large enough primes.) To A we associate in a canonical
way, its motivic volume v(h4) € My, in the following way: Let h4 be a definable
subassignement of hy(xgq), given by DVR-formulas that define A. Because these
formulas are not canonical, the subassignement h 4 is not canonical. But by the
Ax-Kochen-Ersov Principle (see 4.2), the set h4(K') is canonical for each pseudo-
finite field K containing Q. Hence v(ha) € M, is canonical, by Theorem 6.2.(1).
By the method of section 7, we proved in [10] the following comparison result:

Theorem 8.2. With the above notation, for all large enough primes p,
Ny (v(ha)) equals the measure of A, with respect to the canonical measure on X (Z,).

When X ® Q is nonsingular and of dimension d, the canonical measure on
X(Z,) is defined by requiring that each fiber of the map X(Z,) — X(Z,/p™) has
measure p~ ™% whenever m >> 0. For the definition of the canonical measure in the
general case, we refer to [25].

The above theorem easily generalizes to integrals instead of measures, but this
yields little more because quite general p-adic integrals (such as the orbital integrals
appearing in the Langlands program) can be written as measures of the definable
sets we consider. For example the p-adic integral [ |f(z)|dz on Zg equals the p-adic
measure of {(x,t) € ZI™ : ord,(f(x)) < ord,(t)}.
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Automorphism Groups of Saturated
Structures; A Review
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Abstract

We will review the main results concerning the automorphism groups of
saturated structures which were obtained during the two last decades. The
main themes are: the small index property in the countable and uncountable
cases; the possibility of recovering a structure or a significant part of it from
its automorphism group; the subgroup of strong automorphisms.
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1. Introduction

Saturated models play an important role in model theory. In fact, when study-
ing the model theory of a complete theory 7', one may work in a large saturated
model of T with its definable sets, and forget everything else about 7. This large sat-
urated structure is sometimes called the “universal domain”, sometimes the “mon-
ster model”.

A significant work has been done the last twenty years on the automorphism
groups of saturated models. It is this work that I want to review here. There is
a central question that I will use as a “main theme” to organize the paper: what
information about M and its theory are contained in its group of automorphisms?
In the best case, M itself is “encoded” in some way in this group; recovering M from
it is known as “the reconstruction problem”. A possible answer to this problem is a
theorem of the form: If M; and M are structures in a given class with isomorphic
automorphism groups, then M; and M, are isomorphic.

Throughout this paper, T is supposed to be a countable complete theory. The
countability of T is by no means an essential hypothesis. Its purpose is only to
make the exposition smoother, and most of the results generalize without difficulty

*CNRS, Université Denis Diderot Paris 7, 2 Place Jussieu, UFR de mathématiques, case 7012,
75521 Paris Cedex 05, France. E-mail: lascar@logique.jussieu.fr
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to uncountable theories. We will denote by Aut(M) the group of automorphisms of
the structure M, and if A is a subset of M, Aut 4(M) will be the pointwise stabilizer
of A:

Auts(M)y={f € Aut(M); YVae Afla)=a}.

When we say “definable”, we mean “definable without parameters”.

2. The countable case

As a preliminary remark, let us say that the automorphism group of a saturated
model is always very rich: if M has cardinality A, then its automorphism group has
cardinality 2*.

1 do not know who was the first to introduce the small index property. As we
will see, it is crucial in the subject.

Definition 1 Let M be a countable structure. We say that M (or Aut(M)) has
the small index property if for any subgroup H of Aut(M) of index less than 2%°,
there exists a finite set A C M such that Aut4a(M) C H.

Remark that the converse is true: any subgroup containing a subgroup of the
form Aut4(M) where A is finite, has a countable index in Awt(M). Moreover,
the subgroups containing a subgroup of the form Aut4(M) are precisely the open
neighborhoods of the identity for the pointwise convergence topology. In other
words, the small index property allows us to recover the topological structure of
Aut(M) from its pure group structure.

The small index property has been proved for a number of countable saturated
structures:

1. The infinite set without additional structure [23], [5].
. The linear densely ordered sets [25].

. The vector spaces over a finite field [6].

. The random graph [10].

. Various other classes of graphs [9].

. Generic relational structures [8].

. w-categorical w-stable structures [10].

=1 Oy Ut W

The small index property has also been proved for some countable structures
which are not saturated: for the free group with w-generators ([2]), for arithmetically
saturated models of arithmetic ([17]}.

There are examples of countable saturated structures which fail to have the
small index property. The simplest may be an algebraically closed field of charac-
teristic 0 of infinite countable transcendence degree: Let Q be the algebraic closure
of the field of rational numbers. There is an obvious homomorphism ¢ from Aut(M)

onto Aut(Q) (the restriction map). Now, it is well known that there is a subgroup
H of Aut(Q) of countable index (in fact of finite index) which is not closed for the
Krull topology, which is nothing else that the pointwise convergence topology. Then

@ Y(H) is not open, but of finite index in Aut(M).
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As we will see later, the small index property is particularly relevant for w-
categorical structures. Evans and Hewitt have produced an example of such a struc-
ture without the small index property ([7]).

With the pointwise convergence topology, Aut(M) is a topological polish
group. So, we may use the powerful tools of descriptive set theory. In many cases
(for example for structures 1-6 above), it can be shown that there is a (necessarily
unique) conjugacy class which is generic, that is, is the countable intersection of
dense open subsets. The elements of this class are called generic automorphisms,
and they play an important role in the proof of the small index property.

Another possible nice property of these automorphism groups which is some-
times obtained as a bonus of the proof of the small index property, is the fact that
its cofinality is not countable, that is, Aut(A) is not the union of a countable chain
of proper subgroups. This is proved in particular for the full permutation group of a
countable set ([21]), for the random graph and for w-categorical w-stable structures
([10]).

I would like to mention here the work of Rubin ([24]). He has shown how to
reconstruct a certain number of structures from their automorphism group using a
somewhat different method. His methods apply essentially to “combinatorial struc-
tures” such as the random graph, the universal homogeneous poset, the generic
tournament (a structure for which the small index property is not known), etc.

3. Subgroups and imaginary elements

Recall that an imaginary element of M is a class of a tuple of M™ modulo a
definable equivalence relation on M. For instance, if G is a group and H a definable
subgroup of G, then any coset of H in G" is an imaginary element. When we add
all these imaginary elements to a saturated structure M, we obtain the structure
M®1, and we can consider M*®? as a saturated structure (in a larger language).

It is clear that M and M*®? have canonically the same automorphism group:
every automorphism of M extends uniquely to an automorphism of AM¢?. This
shows a limitation to the reconstruction problem: If M and N are two structures
which are such that “M®? and N®? are isomorphic”, then Aut(M) and Aut(N)
are isomorphic via a bicontinuous isomorphism. The condition “AM¢? and N¢? are
isomorphic” may seem weird, but in fact, it is natural. Roughly speaking, it means
that M can be interpreted in N, and conversely (a little more in fact, see [1] for
more details). In this case, we say that M and N are bi-interpretable.

Consider now the case of an w-categorical structure M. It is not difficult to
see that any open subgroup of Aut(M) is the stabilizer Aut,(M) of an imaginary
element . Moreover, Aut(M) acts by conjugation on the set of its open subgroups,
and this action is (almost) isomorphic to the action of Aut(M) on M*? (almost
because two different imaginary elements o and § may have the same stabilizer).
So, from the topological group Aut(M) we can (almost) reconstruct its action on
Me?. We can do better:

Theorem 2 [1] Assume that M and N are countable w-categorical structures. Then
the following two conditions are equivalent:
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1. there is o bicontinuous isomorphism from Aut(M) onto Aut(N),
2. M and N are bi-interpretable.

In fact, these conditions are also equivalent to: there exists a continuous iso-
morphism from Aut(M) onto Aut(N) (see [15]). Thus, if one of the structure M
or N has the small index property and Aut(M) is isomorphic to Aut(N) (as pure
groups), then M and N are bi-interpretable.

Now, if M is not necessarily w-categorical (but still saturated), the situation
is a bit more complicated. We need to introduce new elements.

Definition 3 1. An ultra-imaginary element of M is a class modulo E, where E
is an equivalence relation on M™ (n < w) which is invariant under the action of
Aut(M). An ultra-imaginary element is finitary if n < w.

2. A hyperimaginary element of M is a class modulo E, where E is an equivalence
relation on M™ (n < w) which is defined by a (possibly infinite) conjunction of first
order formulas.

An imaginary element is hyperimaginary, and a hyperimaginary element is
ultra-imaginary. A hyperimaginary element is a class modulo an equivalence relation
E defined by a formula of the form

/\<Pzi

el

where the ; are first-order formulas (without parameters) and whose free variables
are among the zp for & < n. An ultra-imaginary element is a class modulo an
equivalence relation E defined by a formula of the form

V A

jeJiel

where the ¢, ; are first order-formulas (without parameters) and whose free variables
are among the z; for k < n.

If M is a countable saturated structure, the stabilizer of a finitary ultra-
imaginary element is clearly an open subgroup, and it is not difficult to see that
if H an open subgroup of Aut(M), then there exists a finitary ultra-imaginary el-
ement « such that H is the stabilizer of «. In the w-categorical case, any finitary
ultra-imaginary is in fact imaginary, and this explain why this case is so simple.

In some cases, for example for w-stable theories (see [18]), it is possible to
characterize, among all open subgroups, those which are of the form Aut, (M)
with « imaginary. Something similar has been done for countable arithmetically
saturated models of arithmetic in [11], and in [13], it is proved that if two such
models have isomorphic automorphism groups, then they are isomorphic.

4. Strong automorphisms

It is now time to introduce the group of strong automorphisms.
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Definition 4 [14] The group of strong automorphisms of M is the group generated
by the set

J{Autn (M) ; N < M}

and is denoted Autf(M).

It is easy to see that Autf(M) is a normal subgroup of Aut(M). Its index
is at most 2%¢. Moreover, the quotient group Aut(M)/Autf(M) depend only on
T : if M and M’ are two saturated models, M < AM’', then there is a natural
isomorphism from Aut(M)/Autf(M) onto Aut(M")/Autf(M'). Aut(M)/Autf(M)
will be denoted Gal(T) (of course, Gal stands for Galois). For example, if T is the
theory of algebraically closed fields of characteristic 0, Autf(M) = Autg(M) and
Gal(T) is (isomorphic to) the group of automorphisms of Q.

In fact this interpretation is general. Assume first that M is of cardinality
bigger than 2%°. Let « be an ultra-imaginary element of M. It can be shown that
the following conditions are equivalent:

1. card{f(a); f € Aut(M)} < card(M};

2. card{f(a); f € Aut(M)} < 2%
An equivalence relation is bounded if it has at most 2% classes (equivalently
less than card(M) classes). The above conditions are also equivalent to:

3. « (as a set) is the class modulo an invariant bounded equivalence relation.

If these conditions are satisfied, we say that « is bounded. It should be re-
marked that an imaginary element is bounded if and only if it is algebraic, if and
ouly if its orbit is finite.

We will denote by Bdd(M) the set of bounded ultra~-imaginary elements of M.
This set does not really depend on M (as soon as its cardinality is big enough) but
only on its theory: any invariant bounded equivalence relation has a representative
in any uncountable saturated model. We will allow ourself to write Bdd(T) when
convenient. Moreover Autf(M) is exactly the pointwise stabilizer of Bdd(M) so
that Gal(T") can be identified with the group of elementary permutations of Bdd(T).

With some care, we can generalize this interpretation to models of small cardi-
nality: for example, assume M countable, and let M’ be a large saturated extension
of M. Then any automorphism f of M extends to an automorphism of M', and if f;
and fo are two such extensions, then their action on Bdd(M') are equal; Autf(M) is
exactly the set of automorphisms whose extensions to M’ act trivially on Bdd(M').

In any case, Aut(M) leaves fixed the set of bounded imaginary elements and
the set of bounded hyperimaginary elements. In some cases (for example for al-
gebraically closed fields), Gal(T) acts faithfully on the set of bounded imaginary
elements. It is the case if T is stable ([14]). It is not known if it is always true
for simple theories, but it is true for the so-called low simple theories ([3]) and in
particular for supersimple theories. For simple theories, Gal(T) acts faithfully on
the set of bounded hyperimaginary elements ([12]). In [4] there is an example of
a theory where the action of Gal(T') on the set of hyperimaginary elements is not
faithful.



30 D. Lascar

There is a natural topology on Gal(T') (see [19] for details). It can be defined
in two different ways.

My favorite one is via the ultraproduct construction. Let (v; ; ¢ € I) be a
family of elements of Gal(T') and U an ultrafilter on 7. Choose a saturated model
M and, for each i € I an automorphism f; € Aut(M) lifting ~;. Consider the
ultrapower M' = [],.,, M. We can define the automorphism [],.,, fi on M'. This
automorphism acts on Bdd(M') = Bdd(T'), so defines an element of Gal(T), say 3.
This element 3 should be considered as a limit of the family (v; ; i € I) along U.
A subset X of Gal(T) is closed for the topology we are defining if it is closed for
this limit operation. You should be aware that the element § may depend on the
choices of the f;’s, because the topology we are defining is not Hausdorff in general.

The other way to define a topological structure on Gal(T) is to define a topol-
ogy on Bdd(T). I, as it is the case when T is stable, Gal(T") can be identified with a
group of permutation on the set of imaginary elements, then we just endow Gal(T)
with the pointwise convergence topology (that is we consider the set of imaginary
elements with the discrete topology). Otherwise, it is more complicated, and here
is what should be done in general:

For each n < w and E invariant bounded equivalence relation on M™, consider
the canonical mapping ¢ from M™ onto M™/E. By definition, a subset X of
M"/E is closed if and only if ' (X) is the intersection of a family of subsets
definable with parameters. Gal(T) acts on M"/E and the topology on Gal(T') is
defined as the coarsest topology which makes all these actions (with various n and
E)) continuous.

Now, we can prove:

Theorem 5 1. Gal(T) is a topological compact group.

2. It is Hausdorff if and only if it acts faithfully on the set of bounded hyperimag-
inary elements, if and only if it acts faithfully on the set of finitary bounded
hyperimaginary elements.

3. It is profinite if and only if it acts faithfully on the set of bounded imaginary
elements.

There is a Galois correspondence between the subgroups of Gal(T') and the
bounded ultra-imaginary elements: every subgroup of Gal(T) is the stabilizer of
an ultra-imaginary element. The hyperimaginary elements correspond to the closed
subgroups and the imaginary elements correspond to the clopen subgroups of Gal(T).

Let Hg be the topological closure of the identity. Then Hg is a normal sub-
group of Gal(T). If we consider Gal(T) as a permutation group on Bdd(T), Hy
is exactly the pointwise stabilizer of the set of bounded hyperimaginary elements.
So, if we set Galo(T) = Gal(T)/Hy, Galo(T) acts faithfully on the set of bounded
hyperimaginary elements. As a quotient group, Galg(T') is canonically endowed
with a topology. This way, we get a compact Hausdorff group.

Recently, L. Newelski ([22]) has proved that Hp is either trivial or of cardinality
2%,

I would like to conclude this section by a conjecture. In all the known examples
of countable saturated structures where the small index property is false, there is a
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non open subgroup of Gal(T') of countable index (and, its preimage by the canonical
homomorphism from Aut(M) onto Gal(T') is a non open subgroup of Aut(M) of
countable index). If A has a cardinality strictly less than card(M), define Autfa(M)
as the subgroup of Auts(M) generated by

J{Autn(M); ACN < M}.
The following conjecture is open, even in the w-categorical case:

Conjecture 6 Assume that M is a countable saturated structure and let H be a
subgroup of Autf(M) of index strictly less than 2%°. Then, there exists a finite
subset A C M such that Autfs(M) C H.

In [16], this conjecture is proved for almost strongly minimal sets (so, in par-
ticular for algebraically closed fields).

5. The uncountable case

We are now given a saturated structure M of cardinality A > Ng. The small
index property has a natural generalization. If we assume that A<* = X (i.e. there
is exactly A subsets of M of cardinality less than A) then any subgroup of Aut(M)
containing a subgroup of the form Aut4(M) with card(A) < X has index at most
A. The converse is true:

Theorem 7 [20] Assume that M is o saturated structure of uncountable cardinality
A= XY and let H be a subgroup of Aut(M) of cardinality at most X. Then, there
exists a subset A of M of cardinality less than X\ such that Aut (M) C H.

Here again, we may introduce a topological structure on Aut(M): if p is an
infinite cardinal, let 7,, be the group topology on Aut(M) for which a basis of open
neighborhoods of the identity is

{Aut4(M) ; AC M and card(A) < p}.

To complete this definition, let 7,(M) be the group topology on Aut(M) for which
a basis of open neighborhoods of the unit is

{Autfa(M); AC M and A finite}.

The above theorem just says that the subgroups of Aut(M) of index at most A
are exactly the open subgroups for 7,(M), and consequently, the topology Tx (M)
can be reconstructed from the pure group structure. It is also clear that the open
subsets for 7, are just the intersections of less than A 7,-open subsets. So, if one
knows 7, (M), one knows T (M).

With a few cardinality hypotheses, we can reconstruct one topological group
from another: (see [15] for details):
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1. Let M and M' be two saturated models of the same theory. Then we can
reconstruct (Aut(M'), T,) from (Aut(M), T,).

2. Let M and M' be two models of the same theory, and assume card(M) = A <
p = card(M'). Then we can reconstruct Aut(M') from (Aut(M),Ty) (and
from Aut(M) alone if A = A<*). In fact we can reconstruct (Aut(M'), To,(M'))
for every cardinal v, A < v < p.

3. Let M be a saturated structure of uncountable cardinality A = p™ = 2* and
assume that 7 has a saturated model of cardinality p. Then (Aut(M),7,)
can be reconstructed from Aut(M).

Let us give an example of a theorem which can be proved using the above
facts: Assume GCH and let 77 and T5 be two theories with saturated models A,
and My of cardinality p™*. Assume that Aut(M;) and Aut(Ms) are isomorphic.
Then, for all cardinal X, if T} has a saturated model of cardinality A, then T5 has
also a saturated model in cardinality A, and the automorphism groups of these two
models are isomorphic.
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Representations of Braid Groups

S. Bigelow™

Abstract

In this paper we survey some work on representations of B, given by the
induced action on a homology module of some space. One of these, called the
Lawrence-Krammer representation, recently came to prominence when it was
shown to be faithful for all n. We will outline the methods used, applying them
to a closely related representation for which the proof is slightly easier. The
main tool is the Blanchfield pairing, a sesquilinear pairing between elements
of relative homology. We discuss two other applications of the Blanchfield
pairing, namely a proof that the Burau representation is not faithful for large
n, and a homological definition of the Jones polynomial. Finally, we discuss
possible applications to the representation theory of the Hecke algebra, and
ultimately of the symmetric group over fields of non-zero characteristic.

2000 Mathematics Subject Classification: 20F36, 20C08.
Keywords and Phrases: Braid groups, Configuration spaces, Homological
representations, Blanchfield pairing.

1. Introduction

Artin’s braid group B,, was originally defined as a group of geometric braids
in R®. Representations of B,, have been studied for their own intrinsic interest, and
also in connection to other areas of mathematics, most notably to knot invariants
such as the Jones polynomial.

We will use the definition of B,, as the mapping class group of an n-times
punctured disk D,. A rich source of representations of B,, is the induced action on
homology modules of spaces related to D,,. The Burau representation, one of the
simplest and best known representations of braid groups, is most naturally defined
as the induced action of B,, on the first homology of a cyclic covering space of D,,.
Lawrence [9] extended this idea to configuration spaces in Dy, and was able to
obtain all of the so-called Temperley-Lieb representations.
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Lawrence’s work seems to have received very little attention until one of her ho-
mological representations was shown to be faithful, thus proving that braid groups
are linear and solving a longstanding open problem. Two independent and very
different proofs of this have appeared in [1] and [8]. In this paper we will outline
the former, emphasising the importance of the Blanchfield pairing. We then dis-
cuss two other applications of the Blanchfield pairing, namely the proof that the
Burau representation is not faithful for large n, and a homological definition of
the Jones polynomial of a knot. We conclude with some speculation on possible
future applications to representations of Hecke algebras when ¢ is a root of unity.
These are related to representations of the symmetric group S,, over fields of bad
characteristic, that is, fields in which n! = 0.

2. The Lawrence-Krammer representation

Let D be the unit disk centred at the origin in the complex plane. Fix arbitrary
real numbers —1 < p; < --- < p, < 1, which we will call “puncture points”. Let

Dn:D\{plaapn}

be the n-times punctured disk. The braid group B,, is the mapping class group of
D,,, that is, the set of homeomorphisms from D, to itself that act as the identity
on 0D, taken up to isotopy relative to dD. Let C be the space of all unordered
pairs of distinct points in D,,.

Suppose x is a point in D,,, and « is a simple closed curve in D, enclosing one
puncture point and not enclosing . Let ~v: I — C be the loop in C given by

Y(s) = {z, a(s)}-

Now suppose 1y and 79 are paths in D, such that = 5 is a simple closed curve that
does not enclose any puncture points. Let 7: I — C be the loop in C given by

7(s) = {ni(s), m2(s)}.

Let
@: 1 (C) = {g) & ()

be the unique homomorphism such that ®(v) = ¢ and ®(7) = ¢ for any v and 7
defined as above. For a proof of the existence and uniqueness of such a homomor-
phism, see [11]. Let C be the connected covering space of C' whose fundamental
group is the kernel of ®.

The second homology Hs(C') is a module over Z[g , where ¢ and ¢
act by covering transformations. The Lawrence-Krammer representation of B,
is the induced action of B,, on Hy(C) by Z[¢*", t=']-module automorphisms. More
precisely, given an element of B,, represented by a homeomorphism o: D,, — D,
consider the induced action ¢: C — C. There is a unique lift 5: ¢ — C that
acts as the identity on 8C. This induces an automorphism of HQ(C’), which can be
shown to respect the Z[g*!, t*']-module structure. See [11] for details.

+1 , tﬁ:l]
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3. The Blanchfield pairing

Let € > 0 be small. We define P, B C C as follows. Suppose {z,y} is a point
in C. We say {z,y} € P if either |z — y| < €, or there is a puncture point p; such
that |2 —p;| <eor |y —pi| <e. Wesay {z,y} € Bifx € 9D ory € 9D.

For u € Hao(C,P) and v € Ho(C,B) let (u-v) € Z denote the standard
algebraic intersection number. We define an intersection pairing

<.’ > Hg(é, ]5) X HQ(C,B) - Z[qilatil]

by
(u,v) = Z (u- ¢'tiv)g't! .
iL,JEZ
For a proof that these are well-defined, see [7, Appendix E], where the following

properties are also proved. o
For u € Hy(C, P), v € Hy(C,B), 0 € By, and X € Z[¢g*',t*'], we have

{ou, 00) = (u,0),

and
(A, v) = Mu,v) = (u, ),

where X is the image of A under the automorphism of Z[g*!, t*!] I

and ¢ to t™1.

taking ¢ to ¢~

4. A faithful representation

The aim of this section is to outline a proof of the following.

Theorem. Let C and P be as above. The induced action of B,, on Hy(C,P)
is faithful.

For the details, the reader is referred to [1], where the same techniques are
used to prove that B, acts faithfully on H2(C). Our use of relative homology here
actually simplifies the argument somewhat.

There is a slight technical difficulty in defining the action of B, on Hy(C, P).
Namely, the action of a braid on C need not preserve the set P. Thus we should
really take a limit as € approaches 0. The representation obtained is very simi-
lar to the Lawrence-Krammer representation, but has a slightly different module
structure, as discussed in [3].

Let E be the straight edge from p; to p2. Let E' be the set of points in C of
the form {z,y}, where z,y € E. Let E' be a lift of E' to C. This represents an
element of Ho(C, P), which we will call e. Let Fy and F, be parallel vertical edges
with endpoints on JD, passing between ps and p3. Let F' be the set of points in
C of the form {x,y}, where 2 € F; and y € Fy. Let F' be a lift of F' to C'. This
represents an element of Hy(C, B), which we will call f. Note that

<e?f> :O?
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since E' and F' are disjoint in C.

Suppose the action of B, on HQ(C, 15) is not faithful. It is not hard to show
that there must be a braid ¢ in the kernel of this representation such that o(E) is
not isotopic to E relative to endpoints. Now o(e) = e, so

(a(e), f) = 0.

From this, we will derive a contradiction.

By applying an isotopy, we can assume o(F) intersects Fy and Fy transversely
at a minimal number of points k& > 0. Let z1,...,2; be the points of ¢(E) N F,
and let y1,...,yx be the points of o(E) N Fy, numbered from top to bottom in both
cases.

For i,j € {1,...,k}, let a; ; and b; ; be the unique integers such that a(E")
intersects g%+ % F' at a point in the fibre over {2:,y;}, and let €; ; be the sign of
that intersection. Then

k&
<U(e)a f) = Z Z €i7jqai.j tbi.j .

j=1 f=1

To calculate a; ; and b, ;, it is necessary to specify choices of lift for E' and
F'. We will not do this since we only need to calculate differences ay 5 — a; ; and
by i — b; ;. To do this, let v be a path in C that goes from {a;,y;} to {ay,y;} in
o(E'"), and then back to {2;,y;} in F'. Then

q(ai’.j’ —aig) by g —big) — (I)(7)'

From this we can prove the following.
Lemma. For alli,j € {1,...,k} we have
o aij = z(aii+aj;),
o if by j > by; then a; p > ay; for some j' =1,...,k,
o if by j > by then ay j > aj; for somei =1,... k.

The first of these is [1, Lemma 2.1], and the second and third follow from the
proof of [1, Claim 3.4]. We now sketch the proof of the second in the special case
where y; lies between x; and y; along o(E).

Let o be the path from y; to y; along o¢(E). Let 8 be the path from y; to
y; along F>. Then b; ; — b; ; is two times the winding number of af around z;. In
particular, this winding number is positive. B

Let Dy be the once punctured disk D\ {z;}, and let Dy be its universal cover.
Let @3 be a lift of &8 to D;. This is a path from a point in the fibre over y; to a
“higher” point in the fibre over y;.

Let F; be the the segment of F going from y; upwards to D. Let F; be the
lift of F to D that has an endpoint at &(0). In order to reach a higher sheet in
Dy, & must intersectj?‘g+ . Let 4 be the loop in D, that follows @ to the first point
of intersection with I, and then follows F;;™ back to &(0).

Let v be the projection of ¥ to D;. This travels along o(E) from y; to some
point y; € Fi, then along Fy back to y;. Then a;p — a;; is the total winding
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number of v around the puncture points. We must show that this winding number
is positive.

By construction, 7 is a simple closed curve in D;. By the Jordan curve the-
orem, it must bound a disk B. Let B be the projection of B to Dy. This is an
immersed disk in D, whose boundary is v. Note that ¥ passes anticlockwise around
B, since the puncture x; lies to its right. Thus the total winding number of  around
the puncture points is equal to the total number of puncture points contained in B,
counted with multiplicities.

It remains to show that B intersects at least one puncture point. Suppose
not. Then B is an immersed disk in D,,. Using an “innermost disk” argument, one
can find an embedded disk B' in D,, whose boundary consists of a subarc of o(E)
and a subarc of Fy. Using B', one can isotope ¢(E) so as to have fewer points of
intersection with Fy, thus contradicting our assumptions.

This completes the proof of the second part of the lemma in the case where
y; lies between z; and y; along o(E). The remaining case, where z; lies between
y; and yj, is only slightly trickier. The third part of the lemma is similar to the
second. The first part of the lemma is much easier.

We now return to the proof of the theorem. Let a be the maximum of all
a; ;. Let b be the maximum of {b; ; : a;; = a}. Suppose i,j € {1,...,k} are such
that a; ; = @ and b; ; = b, and also ¢',j' € {1,...,k} are such that ¢y 4 = a and
by y = b. I claim that ¢; ; = ey y. From this claim, it follows that all occurrences
of ¢°t* in the expression

kk
(o). f) =YD eijg it
=1 j=1

occur with the same sign, so the coefficient of ¢°t® is non-zero in (o (e), f). This
provides our desired contradiction, and completes the proof of the theorem. It
remains to prove that ey j» = € ;.

Using the above lemma, it is not hard to show that a;; = a;; = a and
biy = b;; =b. Similarly, ay v = ay y = a and by y = by y =b. We will only need
the equalities

bZ,Z - bzy.] - b.]v.] - bi/,i/ = bi/;j/ = bj/vj/.
In fact, we only need these modulo two.

Orient o(E) so that it crosses Fy from left to right at x;. Let v be the path in
C which goes from {x;,y;} to {xy,ys} in E' and then back to {z;,y;} in F'. Now
by i+ — by ; is the exponent of ¢ in ®(~). The fact that this is an even number means
that the pair of points in D,, do not “switch places” when they go around this loop.
Thus o(E) crosses Fy from left to right at x}. By similar arguments,

o S(E) intersects Fy with the same sign at z; and zy,

o 3(E) intersects F» with the same sign at y; and vy,

® z; occurs before y; and xy occurs before y; with respect to the orientation
of o(E}.

It is now intuitively clear that E' must intersect F' with the same signs at {x;,v;}
and {xy,y; }. This can be proved rigorously by careful consideration of orientations
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of these surfaces, as discussed in [1, Section 2.1]. It follows that ¢; ; = €y j», which
completes the proof of the theorem.

5. The Burau representation

The proof that the Lawrence-Krammer representation is faithful basically re-
duces to proving that the Blanchfield pairing detects whether corresponding edges
in the disk can be isotoped to be disjoint. A converse to this idea leads to a proof
that the Burau representation is not faithful for large n.

The Burau representation can be defined by a similar but simpler construction
to that of the Lawrence-Krammer representation. Let

®: m(Dy) = (q)

be the homomorphism that sends each of the obvious generators to ¢. Let D,, be
the corresponding covering space. The Burau representation is the induced action
of B, on H1(Dn) by Z[g*']-module automorphisms.

Let P be an e-neighbourhood of the puncture points, and let P be the preimage
of P in D,,. The Blanchfield pairing in this context is a sesquilinear pairing

(,y: Hi(Dn,P)x Hi(D,,0D,) = Z[¢g*"].

Let E be the straight edge from p; to p2. Let E be alift of E to D,,. This
represents an element of Hy(D,,, P}, which we will call e. Let F be a vertical edge
with endpoints on 8D, passing between p,_; and p,. Let F be a lift of F to D,,.
This represents an element of Hy(D,,,dD,,), which we will call f. The following is
[2, Theorem 5.1].

Theorem. Let E, e, F and f be as above. The Burau representation of By,
is unfaithful if and only if there exists ¢ € By, such that {o(e), f} = 0, but o(E) is
not isotopic relative to endpoints to an edge that is disjoint from F.

Using this theorem, one can show that the Burau representation of B,, is not
faithful simply by exhibiting the required edges ¢(E) and F. Such edges can be
found by hand in the case n = 6. In the case n = 5, they can be found by a
computer search, and then laboriously checked by hand. The case n = 4 seems to
be beyond the reach of any known computer algorithm. This is the last open case,
since the Burau representation is known to be faithful for n < 3.

6. The Jones polynomial

In this section, we use the Blanchfield pairing to give a homological definition
of the Jones polynomial of a knot or link. The Jones polynomial was defined in [6]
using certain algebraically defined representations of braid groups. No satisfactory
geometric definition is known, but some insight might be offered by defining the rep-
resentations homologically and using the Blanchfield pairing. This was the original
motivation for Lawrence to study homological representations of braid groups.
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A geometric braid o € B, is a collection of n disjoint edges in C x R with
endpoints {1,...,n} x {0,1}, such that each edge goes from C x {0} to C x {1}
with a constantly increasing R component. The correspondence between geometric
braids and elements of the mapping class group is described in [1], and in many
other introductory expositions on braids. The plat closure of a geometric braid
o € Bs, is the knot or link obtained by using straight edges to connect (25 — 1, k)
to (24, k) for each j =1,...,n and k = 0,1. Every knot or link can be obtained in
this way.

Let C be the configuration space of unordered n-tuples of distinct points in
Dgn. Let

®: i (C) = {q) & (1)

be defined as in Section 2. Namely, if v is any loop in which one of the n-tuple
winds anticlockwise around a puncture point, and 7 is any loop in which two of the
n-tuple exchange places by an anticlockwise half twist, then ®(y) = g and ®(r) = t.
Let C be the covering space corresponding to &.

Define P, B C C similarly to those of Section 3. The Blanchfield pairing is a
sesquilinear pairing

(-,): Hy(C,P) x Hy(C, B) = Z[g**, t*].

For k=1,...,n, let F}; be the straight edge from pog_1 to pag. Let F' be the
set of points in C' of the form {z1,...,2,} where z; € F;. Let F be a lift of I to
C'. This represents an element of H,(C, P), which we call f. For k=1,...,n, let
ex: S' — D, be a figure-eight around py_1 and pgg in a small neighbourhood of
Fy. Let e be the map from the n-torus (S*)” to C given by

e(s1,...,8n) ={ei(s1),...,en(sn)}.

Let € be a lift of e to C'. This represents an element of H,(C), and hence of
H,(C, B), which we also call e.

The main result of [4] is the following.

Theorem. Let e and f be as above and suppose o € Ba,. The Jones polyno-
mial of the plat closure of o is

<O’(€), f))i(t:—q—l)a

up to sign and multiplication by o power of q%.

Here, the Jones polynomial is normalised so that the Jones polynomial of the
unknot is —q% e q—%. The correct sign and power of q% is also explicitly specified
in [4].

This result is due to Lawrence, who also achieved a similar result for the
two-variable Jones polynomial by a much more complicated construction [10].

7. The Hecke algebra
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We conclude with some speculation about possible applications of the Blanch-
field pairing to the representation theory of Hecke algebras. We first give a very
brief overview of the basic theory of Hecke algebras.

Let ¢ € C\ {0}. The Hecke algebra H,(q), or simply H,, is the C-algebra
given by generators gi,...,gn—1 and relations

® g:95 = g;9: if ii_-ji > 1,
® 0:9i9: = 9:959: if |i —j| =1,
e (9:—D)(g:+q) =0

It is an nl-dimensional C-algebra. We are restricting to the ring C for convenience,
although other rings can be used.

Note that H,(1) is the group algebra CS,, of the symmetric group S,. The
Hecke algebra is called a “quantum deformation” of CS,,. The representation theory
of CS5,, is well understood except when working over a field of finite characteristic
in which n! = 0. This is because the classical theory sometimes requires one to
divide by n!, the order of the group. When studying H,, it turns out to be useful
to be able to divide by

(I4+g+-+¢" NI 4+qg+-+¢"7)...(1+9q).

This is sometimes written as [n]!, and can be thought of as a “quantum deformation”
of nl. Note that [n]! = n!if ¢ = 1. A generic value of ¢ is one for which [n]! # 0.
The non-generic values are the primitive kth roots of unity for £k = 2,...,n. The
representation theory of H,, is well understood for generic values of ¢, but the
non-generic values are the subject of ongoing active research.

One of the most important papers on this subject is Dipper and James [3].
For every partition A of n, they define a H,-module S* called the Specht module.
They then define a bilinear pairing on S*, which we denote (-, )pj. Let S? denote
the set of u € S* such that (u,v)p; = 0 for all v € S*. Let D* be the quotient
module S*/S}. Dipper and James show that the non-zero D* form a complete list
of all distinct irreducible representations of H,,. For generic values of ¢ we have
D* = S*. For non-generic values of ¢, the D* are not well understood.

Lawrence [10] gave a homological definition of the Specht modules. The con-
struction begins with the action of B, on a homology module of a configuration
space. The variable ¢ is then specialised to —¢~', and a certain quotient module is
taken. A detailed treatment of the case A = (n — 2,2) is given in [3].

There is a Blanchfield pairing on the Specht modules as defined by Lawrence.
It would be nice if this were the same as the pairing defined by Dipper and James.
Unfortunately the Blanchfield pairing is sesquilinear, whereas the pairing defined
by Dipper and James is bilinear. This problem can be overcome as follows. Let
p: D, - D, be the conjugation map. Let g be the induced map on Hk(C’,B’).
Then the pairing

{u,v)" = (u, p(v))

can be shown to give a bilinear pairing on the Specht module.
For generic values of ¢, this topologically defined pairing is the same as the
algebraically defined pairing of Dipper and James, up to some renormalisation.
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There is some evidence that this can be made to work at non-generic values of ¢. If
s0, it would give rise to a new homological definition of the modules D*, and new
topological tools for studying them. In any case, it would be interesting to better
understand the behaviour of this Blanchfield pairing at roots of unity.
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Derived Categories of Coherent Sheaves

A. Bondal* D. Orlov!

Abstract

We show how derived categories build bridges across the current mathe-
matical mainstream, linking geometric and algebraic, commutative and non-
commutative, local and global banks. Arches in these bridges are pieces of
semiorthogonal decompositions of triangulated categories.
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1. Introduction

This paper is devoted to studying the derived categories D?(X) of coherent
sheaves on smooth algebraic varieties X and on their noncommutative counterparts.
Derived categories of coherent sheaves proved to contain the complete geometric
information about varieties (in the sense of the classical Italian school of algebraic
geometry) as well as the related homological algebra.

The situation when there exists a functor D?(M) — DP(X) which is fully
faithful is of special interest. We are convinced that any example of such a functor
is both algebraically and geometrically meaningful.

A particular case of a fully faithful functor is an equivalence of derived cate-
gories D?(M) — DV(X).

We show that smooth projective varieties with ample canonical or anticanoni-
cal bundles are uniquely determined by their derived categories. Hence the derived
equivalences between them boil down to autoequivalences. We prove that for such
a variety the group of exact autoequivalences is the semidirect product of the group
of automorphisms of the variety and the Picard group plus translations.

Equivalences and autoequivalences for the case of varieties with non-ample
(anti) canonical sheaf are now intensively studied. The group of autoequivalences
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is believed to be closely related to the holonomy group of the mirror-symmetric
family.

We give a criterion for a functor between derived categories of coherent sheaves
on two algebraic varieties to be fully faithful. Roughly speaking, it is in orthog-
onality of the images under the functor of the structure sheaves of distinct closed
points of the variety. If a functor ® : D*(M) — D(X) is fully faithful, then
it induces a so-called semiorthogonal decomposition of D?(X) into D°(M) and its
right orthogonal category.

It turned out that derived categories have nice behavior under special bira-
tional transformations like blow ups, flips and flops. We describe a semiorthogonal
decomposition of the derived category of the blow-up of a smooth variety X in a
smooth center Y C X. It contains one component isomorphic to D?(X) and several
components isomorphic to D?(Y).

We also consider some flips and flops. Examples support the conjecture that for
any generalized flip X --+ X T there exists a fully faithful functor D?(X+) — D¥(X)
and it must be an equivalence for generalized flops. This suggests the idea that the
minimal model program of the birational geometry can be viewed as a ‘minimization’
of the derived category D?(X) in a given birational class of X.

Then we widen the categorical approach to birational geometry by including in
the picture some noncommutative varieties. We propose to consider noncommuta-
tive desingularizations and formulate a conjecture generalizing the derived McKay
correspondence.

We construct a semiorthogonal decomposition for the derived category of the
complete intersections of quadrics. It is related to classical questions of algebraic
geometry, like ‘quadratic complexes of lines’, and to noncommutative geometric
version of Koszul quadratic duality.

2. Equivalences between derived categories

The first question that arises in studying algebraic varieties from the point
of view of derived categories is when varieties have equivalent derived categories
of coherent sheaves. Examples of such equivalences for abelian varieties and K3
surfaces were constructed by Mukai [Mul], [Mu2], Polishchuk [Po] and the second
author in [Or2], [Or3]. See below on derived equivalences for birational maps.

Yet we prove that a variety X is uniquely determined by its category D?(X),
if its anticanonical (Fano case) or canonical (general type case) sheaf is ample. To
this end, we use only the graded (not triangulated) structure of the category. By
definition a graded category is a pair (D, Tp) consisting of a category D (which we
always assume to be k-linear over a field k) and a fixed equivalence Tp : D~ D,
called translation functor. For derived categories the translation functor is defined
to be the shift of grading in complexes.

Of crucial importance for exploring derived categories are existence and prop-
erties of the Serre functor, defined in [BK].

Definition 1 [BK] [BO2] Let D be o k-linear category with finite-dimensional
Hom's. A covariant additive functor S : D — D is called o Serre functor if it
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is an equivalence and there are given bi—functorial isomorphisms for any A, B € D:
wa.p : Homp(A, B) = Homp(B, SA)".

A Serre functor in a category D, if it exists, is unique up to a graded natural
isomorphism.

If X is a smooth algebraic variety, n = dimX, then the functor () @ wx[n] is
the Serre functor in D?(X). Thus, the Serre functor in D°(X) can be viewed as a
categorical incarnation of the canonical sheaf wx.

Theorem 2 [BO2] Let X be a smooth irreducible projective variety with ample
canonical or anticanonical sheaf. If D*(X) is equivalent as a graded category to
DY(X') for some other smooth algebraic variety X', then X is isomorphic to X'.

The idea of the proof is that for varieties with ample canonical or anticanonical
sheaf we can recognize the skyscraper sheaves of closed points in D?(X) by means
of the Serre functor. In this way we find the variety as a set. Then we reconstruct
one by one the set of line bundles, Zariski topology and the structural sheaf of rings.

This theorem has a generalization to smooth orbifolds related to projective
varieties with mild singularities, as it was shown by Y. Kawamata [Kaw].

Now consider the problem of computing the group AutD?(X) of exact (i.e.
preserving triangulated structure) autoequivalences of D?(X) for an individual X.

Theorem 3 [BO2] Let X be a smooth irreducible projective variety with ample
canonical or anticanonical sheaf. Then the group of isomorphism classes of exact
autoequivalences D (X)) — DP(X) is generated by the automorphisms of the variety,
twists by oll invertible sheaves and translations.

In the hypothesis of Theorem 3 the group AutD?(X) is the semi-direct product
of its subgroups PicX & Z and Aut X, Z being generated by the translation functor:

AutD?(X) = AutX x (PicX & Z).

3. Fully faithful functors and semiorthogonal de-
compositions

An equivalence is a particular instance of a fully faithful functor. This is a
functor F : C - D which for any pair of objects X,Y € C induces an isomorphism
Hom(X , Y) =~ Hom(FX , FY'). This notion is especially useful in the context of
triangulated categories.

If a functor ® : DP(M) — Db(X) is fully faithful, then it induces a so-called
semiorthogonal decomposition of D?(X) into D?(M) and its right orthogonal.

Let B be a full triangulated subcategory of a triangulated category D. The
right orthogonal to B is the full subcategory B+ C D consisting of the objects C' such
that Hom(B, C) = 0 for all B € B. The left orthogonal * B is defined analogously.
The categories +B and B+ are also triangulated.
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Definition 4 [BK] A sequence of triangulated subcategories (Bo, ..., Byp) in a trian-
gulated category D is said to be semiorthogonal if B; C Bi* whenever 0 < j < i < n.
If o semiorthogonal sequence generates D as a triangulated category, then we call it
by semiorthogonal decomposition of the category D and denote this as follows:

D= <BO,....,Bn>.

Examples of semiorthogonal decompositions are provided by exceptional se-
quences of objects [Bo]. These arise when all B,’s are equivalent to the derived cate-
gories of finite dimensional vector spaces D?(k — mod). Objects which correspond to
the 1-dimensional vector space under a fully faithful functor F : D*(k — mod) — D
can be intrinsically defined as exzceptional, i.e. those satisfying the conditions
Hom'(E, E) = 0, when i # 0, and Hom®(E , E) = k. There is a natural ac-
tion of the braid group on exceptional sequences [Bo] and, under some conditions,
on semiorthogonal sequences of subcategories in a triangulated category [BK].

We propose to consider the derived category of coherent sheaves as an analogue
of the motive of a variety, and semiorthogonal decompositions as a tool for simpli-
fication of this ‘motive’ similar to splitting by projectors in Grothendieck motivic
theory.

Let X and M be smooth algebraic varieties of dimension n and m respectively
and F an object in D?(X x M). Denote by p and 7 the projections of M x X to M
and X respectively. With E one can associate the functor ®p : D(M) — DP(X)
defined by the formula:

L
Pp() = Rm.(E @ p"()).
It happens that any fully faithful functor is of this form.

Theorem 5 [O12] Let F : D*(M) — DY X) be an exact fully faithful functor,
where M and X are smooth projective varieties. Then there exists a unique up to
isomorphism object E € DY(M x X) such that F is isomorphic to the functor ®g.

The assumption on existence of the right adjoint to F, which was originally in
[O12], can be removed in view of saturatedness of D?(M) due to [BK], [BVdB].
This theorem is in conjunction with the following criterion.

Theorem 6 [BO1] Let M and X be smooth algebraic varieties and E € D*(M x X).
Then ® g is fully faithful functor if and only if the following orthogonality conditions
are verified:
i) Hom% (®p(0y,), ®(0,)) =0 for every i and ty # ta.
i) Hom%(®p(0y), ®p(0)) =k,
Hom’ (®(0;) , ®£(0,)) =0, for i ¢ [0, dimM].

Here t, t1, t2 stand for closed points in M and Oy, for the skyscraper sheaves.
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The criterion is a particular manifestation of the following important princi-
ple: suppose M is realized as an appropriate moduli space of pairwise homologically
orthogonal objects in a triangulated category D taken ‘from real life’, then one can
expect a sheaf of finite (noncommutative) algebras Ay, over Oy and a fully faithful
functor from the derived category D?(coh(Axr)) of coherent modules over Ay to D.

There are also strong indications that this principle should have a generaliza-
tion, at the price of considering noncommutative DG moduli spaces, to the case
when the orthogonality condition is dropped.

4. Derived categories and birational geometry

Behavior of derived categories under birational transformations shows that
they can serve as a useful tool in comprehending various phenomena of birational
geometry and play possibly the key role in realizing the minimal model program.

First, we give a description of the derived category of the blow-up of a variety
with smooth center in terms of the categories of the variety and of the center. Let ¥
be a smooth subvariety of codimension r in a smooth algebraic variety X. Denote X
the smooth algebraic variety obtained by blowing up X along the center Y. There
exists a fibred square:

¥ L X
rd 7wl
Y — X

where i and j are smooth embeddings, and p : Y = Y is the projective fibration of
the exceptional divisor ¥ in X over the center Y. Recall that ¥ = P(Ny /v ) is the
projective normal bundle. Denote by Oy (1) the relative Grothendieck sheaf.

Proposition 7 [Orl] Let L be any invertible sheaf on Y. The functors
Lr* : D'(X) — D*(X),
Rj.(L @ p*(-) : D'(Y) — D'(X)
are fully faithful.

Denote by D(X) the full subcategory of D*(X) which is the image of D?(X)
with respect to the functor L7* and by D(Y);, the full subcategories of D?(X) which
are the images of D*(Y') with respect to the functors Ryj.(O5 (k) ® p*(+)).

Theorem 8 [Or1][BO1] We have the semiorthogonal decomposition of the category
of the blow-up:

DH(X) = (DY) py1,, DY) 1, D(X) ),

Now we consider the behavior of the derived categories of coherent sheaves
with respect to the special birational transformations called flips and flops.
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Let Y be a smooth subvariety of a smooth algebraic variety X such that
Y = PF and Ny/y = O(-1)%UH) with 1 < k.

If X is the blow-up of X along Y, then the exceptional divisor Y > Pk x Pl s
the product of projective spaces. We can blow down X in such a way that Y projects
to the second component P! of the product. As a result we obtain a smooth variety
X, which for simplicity we assume to be algebraic, with subvariety Y+ = P!, This
is depicted in the following diagram:

7P

Y v+

P

X----—-- > Y+

The birational map X --+ X% is the simplest instance of flip, for I < k. I ]l = k&,
this is a flop.

Theorem 9 [BO1] In the above notations, the functor Rm Lat* : DY(X1) —
DY(X) is fully faithful for 1 < k. If 1 =k, it is an equivalence.

This theorem has an obvious generalization to the case when Y is isomorphic
to the projectivization of a vector bundle E of rank k on a smooth variety W,
q:Y — W, and Nx;y = ¢"F @ Og(~1) where F is a vector bundle on W of rank
I < k. Then the blow-up with a smooth center can be viewed as the particular case
of this flip when Y is a divisor in X. Kawamata [Kaw] generalized the theorem to
those flips between smooth orbifolds which are elementary (Morse type) cobordisms
in the theory of birational cobordisms due to Wlodarczyk et al. [W1], [AKMW].

{
Let X and X be smooth projective varieties. A birational map X -{o X+
will be called a generalized flip if for some (and consequently for any) its smooth

resolution
X
7
1

X----—-- > Y+

the difference D = #* K x —~7r+*K x+ between the pull-backs of the canonical divisors
is an effective divisor on X. The particular case when D = 0 is called generalized
flop.

Theorem 9 together with calculations of 3-dimensional flops with centers in
(—2)-curves [BO1] lead us to the following conjecture.

Conjecture 10 For any generalized flip X RN X there is an exact fully foithful
functor F : DY(XT) — DY(X). It is an equivalence for generalized flops.
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This conjecture was recently proved in dimension 3 by T. Bridgeland [Br].

The functor Rr, Lat" : D?(X+) —s Db(X) is not always fully faithful under
conditions of the conjecture, but we expect that it is such when X is replaced by
the fibred product of X and X over some common singular contraction of X and
X*. Namikawa proved that this is the case for Mukai symplectic flops [Na].

A fully faithful functor D?(X+) — DP(X) induces a semiorthogonal decom-
position of D?(X) into DP(X ) and its right orthogonal (which is trivial for flops).
Hence, passing from X to X for generalized flips has the categorical meaning of
breaking off semiorthogonal summands from the derived category. This suggests
the idea that the minimal model program of birational geometry should be inter-
preted as a minimization of the derived category D?(X) in a given birational class
of X. Promisingly, chances are that the very existence of flips can be achieved by
constructing X+ as an appropriate moduli space of objects in D?(X), in accordance
with the principle of the previous section (this is done by T. Bridgeland for flops in
dimension 3 [Br]).

5. Noncommutative resolutions of singularities

In this section we will give a perspective for categorical interpretation of the
minimal model program by enriching the landscape with the derived categories of
noncommutative varieties.

Let w: X — X be a proper birational morphism, where X has rational singu-
larities. Then R, : D?(X) — DP(X) identifies D?(X) with the quotient of D?(X)
by the kernel of Rm,. For this reason, let us call by a categorical desingulariza-
tion of a triangulated category D a pair (C, K) consisting of an abelian category C
of finite homological dimension and of K, a thick subcategory in D?(C) such that
D = D(C)/K. We expect that for D = D(X) there exists a minimal desingular-
ization, i.e. such one that D°(C) has a fully faithful embedding in D?(C') for any
other categorical desingularization (C', K') of D. Such a desingularization is unique
up to derived equivalence of C.

For the derived categories of singular varieties one may hope to find the min-
imal desingularizations in the spirit of noncommutative geometry.

Let X be an algebraic variety. We call by noncommutative (birational) desingu-
larization of X a pair (p, A) consisting of a proper birational morphism p: Y - X
and an algebra A = End(F) on Y, the sheaf of local endomorphisms of a torsion
free coherent Oy-module F, such that the abelian category of coherent A-modules
has finite homological dimension.

When f : Y - X is a morphism from a smooth Y onto an affine X with
fibres of dimension < 1 and Rf.(Oy) = Ox, M. Van den Bergh [VdB] has recently
constructed a noncommutative desingularization of X, which is derived equivalent
to DP(Y).

Conjecture 11 Let X has canonical singularities and q : Y - X a finite morphism
with smooth Y. Then the pair (idx,End(q.Oy)) is a minimal desingularization of
X.
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In particular, we expect that D°(coh(End(q.Oy))) has a fully faithful functor
into D*(X) for any (commutative) resolution of X. Moreover, if the resolution is
crepant then the functor has to be an equivalence.

Let X be the quotient of a smooth Y by an action of a finite group G. If
the locus of the points in ¥ with nontrivial stabilizer in G has codimension > 2,
then the category of coherent £nd{q,Oy )-modules is equivalent to the category of
G-equivariant coherent sheaves on Y. Therefore the conjecture is a generalization
of the derived McKay correspondence due to Bridgeland-King-Reid [BKR].

6. Complete intersection of quadrics and noncom-
mutative geometry

This section is related to the previous one by Grothendieck slogan that pro-
jective geometry is a part of theory of singularities.

Let X be a smooth intersection of two projective quadrics of even dimension
d over an algebraically closed field of characteristic zero. It appears that if we
consider the hyperelliptic curve C which is the double cover of P! that parameterizes
the pencil of quadrics, with ramification in the points corresponding to degenerate
quadrics, then D?(C) is embedded in D?(X) as a full subcategory [BO1]. This gives
a categorical explanation for the classical description of moduli spaces of semistable
bundles on the curve C as moduli spaces of (complexes of) coherent sheaves on X.

The orthogonal to D?(C) in D?(X) is decomposed into an exceptional sequence
(of line bundles ). More precisely, we have a semiorthogonal decomposition

DV(X) = <OX(—d+3),...,OX,D”(C)>. (6.1)

When a greater number of quadrics is intersected, objects of noncommutative
geometry naturally show up: instead of coherent sheaves on hyperelliptic curves
we must consider modules over a sheaf of noncommutative algebras. More about
noncommutative geometry is in the talk of T. Stafford at this Congress.

Consider a system of m quadrics in P(V), i.e. a linear embedding U ﬁ) S22V,
where dimU = m, dimV = n, 2m < n. Let X, the complete intersection of
the quadrics, be a smooth subvariety in P(V) of dimension n — m — 1. Let A =
@0 H°(X,0(i)) be the coordinate ring of X. This graded quadratic algebra is
k3

Koszul due to Tate [Ta]. The quadratic dual algebra B = A' is the generalized
homogeneous Clifford algebra. It is generated in degree 1 by the space V, the
relations being given by the kernel of the dual to ¢ map S?V — U™, viewed as a
subspace in V ® V. The center of B is generated by U* (a subspace of quadratic
elements in B) and an element d, which satisfies the equation d? = f where f is
the equation of the locus of degenerate quadrics in U. Algebra B is finite over the
central subalgebra S = S*U*. The Veronese subalgebra B., = @©By; is finite over
the Veronese subalgebra S, = ®S%'U*. Since Proj S., is isomorphic to P(U),
the sheafification of B, over Proj S, is a sheaf B of finite algebras over Op(g.
Consider the derived category D°(coh(B)) of coherent right B-modules.
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Theorem 12 Let X be the smooth intersection of m quadrics in P*™1, 2m < n.
Then there exists a fully faithful functor D®(coh(B)) — D*(X). Moreover,

() if 2m < n, we have o semiorthogonal decomposition
DVX) = <OX(-n Fom+1),... ,(’)X,D”(coh(B))>,
(ii) if 2m = n, there is an equivalence D*(coh(B)) = Db(X).

For m = 0, i.e. when there is no quadrics, the theorem coincides with Beilin-
son’s description of the derived category of the projective space [Be]. For m = 1,
this is Kapranov’s description of the derived category of the quadric [Kap].

For odd n, the element d generates the center of B over Op(y). Hence the
spectrum of the center of B is a ramified double cover Y over P(U). Also B yields
a coherent sheaf of algebras B' over Y, such that coh(B') is equivalent to coh(B).
For the above case of two even dimensional quadrics, B' is an Azumaya algebra
over Y = C. Since Brauer group of Y (taken over an algebraically closed field of
characteristic zero) is trivial, the category coh(B'} is equivalent to coh(Oy ). Hence
(6.1) follows from the theorem.

Furthermore, when X is a K3 surface, the smooth intersection of 3 quadrics
in P5, then the double cover Y is also a K3 surface, but B’ is in general a nontrivial
Azumaya algebra over Y. The theorem states an equivalence D?(X) ~ D?(coh(B')).

This theorem illustrates the principle from section 3. The fully faithful functor
is related to the moduli space of vector bundles on X, which are the restrictions to
X of the spinor bundles on the quadrics. The (commutative) moduli space involved
is either P(U) or Y, depending on parity of n.

Algebraically, the fully faithful functor in the theorem is given by an appropri-
ate version of Koszul duality. Theorem 12 has a generalization to a class of Koszul
Gorenstein algebras, which includes the coordinate rings of superprojective spaces.
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Algebraic Cobordism

M. Levine*

Abstract

Together with F. Morel, we have constructed in [6, 7, 8] a theory of al-
gebraic cobordism, an algebro-geometric version of the topological theory of
complex cobordism. In this paper, we give a survey of the construction and
main results of this theory; in the final section, we propose a candidate for a
theory of higher algebraic cobordism, which hopefully agrees with the coho-
mology theory represented by the Pi-spectrum MGL in the Morel-Voevodsky
stable homotopy category.

2000 Mathematics Subject Classification: 19E15, 14C99, 14C25.
Keywords and Phrases: Cobordism, Chow ring , K-theory.

1. Oriented cohomology theories

Fix a field k and let Schy denote the category of separated finite-type k-
schemes. We let Smy, be the full subcategory of smooth quasi-projective k-schemes.

We have described in [7] the notion of an oriented cohomology theory on Smy.
Roughly speaking, such a theory A* consists of a contravariant functor from Smy
to graded rings (commutative), which is also covariantly functorial for projective
equi-dimensional morphisms f : Y - X (with a shift in the grading):

Fot AT (V) = Armdimx Y (xy,
The pull-back g* and push-forward f, satisfy a projection formula and commute in
transverse cartesian squares. If L — X is a line bundle with zero-section s : X — L,
we have the first Chern class of L, defined by

ai(L) := s"(s.(1x)) € AY(X),

where 1x € A°(X) is the unit. A* satisfies the projective bundle formula:

*Department of Mathematics, Northeastern University, Boston, MA 02115, USA. E-mail:
marc@neu.edu
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(PB) Let &€ be arank r+ 1 locally free coherent sheaf on X, with projective bundle
q : P(£) — X and tautological quotient invertible sheaf ¢*£ — O(1). Let
& =c1(0(1)). Then A*(P(E)) is a free A*(X)-module with basis 1,¢,...,&".

Finally, A* satisfies a homotopy property: if p : V - X is an affine-space bun-
dle (i.e., a torsor for a vector bundle over X), then p* : A*(X) — A*(V) is an
isomorphism.

Examples 1.1. (1) The theories CH" and HZ*(—, Z /n(*)) on Smy, (also with Z;(x)
or @ (x) coefficients).

(2) The theory Kp[3,37!] on Smy,. Here 3 is an indeterminant of degree —1, used
to keep track of the relative dimension when taking projective push-forward.

Remarks 1.2. (1) In [8], we consider a more general (dual) notion, that of an
oriented Borel-Moore homology theory A,.. Roughly, this is a functor from a full
subcategory of Schy to graded abelian groups, covariant for projective maps, and
contravariant (with a shift in the grading) for local complete intersection morphisms.
In addition, one has external products, and a degree -1 Chern class endomorphism
& (L) : Au(X) = A._1(X) for each line bundle L on X, defined by é&(L)(n) =
s*(s.(n)), s : X = L the zero-section. As for an oriented cohomology theory,
there are various compatibilities of push-forward and pull-back, and A, satisfies a
projective bundle formula and a homotopy property.

This allows for a more general category of definition for A,, e.g., the category
Schy. As we shall see, the setting of Borel-Moore homology is often more natural
than cohomology. On Smy, the two notions are equivalent: to pass from Borel-
Moore homology to cohomology, one re-grades by setting A”(X) := A,—dim, x(X)
and uses the Lc.d. pull-back for A, to give the contravariant functoriality of A*,
noting that every morphism of smooth k-schemes is an l.c.i. morphism. We will
state most of our results for cohomology theories on Smy, but they extend to the
setting of Borel-Moore homology on Schy, (see [8] for details).

(2) Our notion of oriented cohomology is related to that of Panin [10], but is not
the same.

2. The formal group law

Let A, be an oriented cohomology theory on Smy,. As noticed by Quillen [11],
a double application of the projective bundle formula (PB) yields the isomorphism
of rings
A"(F)[[u, v]] = im A™(P" x P™),
n,m
the isomorphism sending uw to ¢1(pyO(1)) and v to ¢ (p3O(1)). The class of
a(pyO(1) @ p5O(1)) thus gives a power series Fy(u,v) € A*(k)[[u, v]] with

a(PiO1) @ psO(1)) = Fale(piO(1)), c1 (p30(1))).
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By the naturality of ¢;, we have the identity for X € Smy, with line bundles L, M,
(L@ M) = Faler(L), c1(M)).

In addition, Fa(u,v) = u+v mod uv, Fa(u,v) = Fa(v,u), and Fa(Fa(u,v),w) =
Fa(u, Fa(v,w)). Thus, Fa gives a formal group law with coefficients in A*(k).

Remark 2.3. Note that ¢; : Pic(X) — AY(X) is a group homomorphism if and
only if Fa(u,v) = u -+ v. If this is the case, we call A* ordinary, if not, A* is
extraordinary. U Fa(u,v) = u + v — auv with o a unit in A*(k), we call A*
multiplicotive and periodic.

Examples 2.4. For A* = CH* or H%*, Fy = u + v, giving examples of ordinary
theories. For the theory A = Ko[3,871], e1(L) = (1 — LYV)37L, and Fa(u,v) =
u + v — Buw, giving an example of a multiplicative and periodic theory.

Remark 2.5. Let L¥ = Zlas; | 4,j > 1], where we give a;; degree —i — j + 1, and
let I € L*[[u,v]] be the power series F' =u+v+ }_; a;jutvi. Let

L* =L/ F(u,0) = F(v,u), F(F(u,0),w) = F(u, F(v,w)),

and let Fy € L*[[u, v]] be the image of F. Then (Fp,L*} is the universal commuta-
tive dimension 1 formal group; L* is called the Lazard ring (cf. [5]).

Thus, if A* is an oriented cohomology theory on Smy, there is a canonical
graded ring homomorphism ¢4 : L* — A*(k) with ¢4(FL) = Fja.

3. Algebraic cobordism
The main result of [7, 8] is

Theorem 3.6. Let k be o field of characteristic zero.

1. There is a universal oriented Borel-Moore homology theory 1, on Schy. The
restriction of {1, to Smy yields the universal oriented cohomology theory "
on Smy,.

2. The homomorphism ¢q : L™ — Q*(k) is an isomorphism.

3. Leti: Z - X be a closed imbedding with open complement j : U — X. Then
the sequence

s

0.(2) &5 0.(X) L Q. (U) = 0
8 exact.

Idea of construction: We construct ,(X) in steps; the construction is inspired
by Quillen’s approach to complex cobordism [11].
1. Start with cobordism cyeles (f : Y — X,Lq,...,L,), with ¥ € Smy irre-
ducible, f : Y - X projective and Lq,. .., L, line bundles on Y (we allow r =
0). We identify two cobordism cycles if there is an isomorphism ¢ : ¥ — Y’  a
permutation o and isomorphisms L; = ¢* L’U( e Let Z.(X) be the free abelian
group on the cobordism cycles, graded by giving (f : Y — X, Lq,..., L,) de-
gree dimy Y — r.
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2. Let R™™(X) be the subgroup of Z,(X) generated by cobordism cycles of
the form (f : Y — X, #*Ly,..., 7" L., My,..., M), where 7 : ¥ - Z is a
smooth morphism in Smy, the L; are line bundles on Z, and r > dimy Z. Let
Z.(X) = Z,(X)/Rém(X).

3. Add the Gysin isomorphism: If L — Y is a line bundle and s : ¥ - L
is a section transverse to the zero-section with divisor ¢ : D — Y, identify
(f:Y - X,Ly,...,L.,L) with (foi : D — X,i*Ly,...,i*L,). We let
Q. (X) denote the resulting quotient of Z_(X). Note that on £, (X) we have,
for each line bundle L —+ X, the Chern class operator

a(L):92,(X) =92, ,(X)
(f:Y =X, Li,....L) = (f:Y = X, L1,..., L., fL)

as well as push-forward maps f, : Q,(X) = Q (X') for f : X — X' projective.

4. Impose the formal group law: Regrade LL by setting L,, :== L7". Let Q,.(X) be
the quotient of L, ®, (X)) by the imposing the identity of maps L, ®Q,(Y) —
L, ® Q,(X)

(id @ fu) o FL(é1 (L), &1 (M)) = 1d ® (fi 0 &1 (L @ M))

for f:Y - X projective, and L, M line bundles on Y. Note that, having im-
posed the relations in R%™, the operators & (L), & (M) are locally nilpotent,
s0 the infinite series Fp(é1(L), & (M)) makes sense.

As the notation suggests, the most natural construction of {2 is as an oriented
Borel-Moore homology theory rather than an oriented cohomology theory; the tran-
lation to an oriented cohomology theory on Smy is given as in remark 1.2(1). The
proof of theorem 3.6 uses resolution of singularities [4] and the weak factorization
theorem [1] in an essential way.

Remark 3.7. In addition to the properties of €2, listed in theorem 3.6, £, (X) is
generated by the classes of “elementary” cobordism cycles (f : ¥V —» X).

4. Degree formulas

In the paper [12], Rost made a number of conjectures based on the theory
of algebraic cobordism in the Morel-Voevodsky stable homotopy category. Many
of Rost’s conjectures have been proved by homotopy-theoretic means (see [3]); our
construction of algebraic cobordism gives an alternate proof of these results, and
settles many of the remaining open questions as well. We give a sampling of some
of these results.

4.1. The generalized degree formula

All the degree formulas follow from the “generalized degree formula”. We first
define the degree map Q*(X) — Q*(k).
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Definition 4.8. Let & be a field of characteristic zero and let X be an irreducible
finite type k-scheme with generic point 7 : x — X. For an element 5 of Q*(X), define
degn € Q*(k) to be the element mapping to i*n in *(k(x)) under the isomorphisms
O (k) = L* = Q*(k(x)) given by theorem 3.6(2).

Theorem 4.9(generalized degree formula). Let k be a field of characteristic
zero. Let X be an irreducible finite type k-scheme, and let n be in Q.(X). Let
Jfo: Bo = X be a resolution of singularities of X, with By quasi-projective over k.
Then there are a; € Q,.(k), and projective morphisms f; : B; - X such that

1. Fach B; is in Smy, f; : B; — f(B;) is birational and f(B;) is o proper closed
subset of X (fori>0).
2. m—(degn)[fo: Bo — X] =1y a[fi : Bi =& X] in Q.(X).

Proof. It follows from the definitions of * that we have

0" (k(x)) =l (1),
u

where the limit is over smooth dense open subschemes U of X, and Q*(k(x)) is the
value at Spec k(z) of the functor Q* on finite type k(z)-schemes. Thus, there is a
smooth open subscheme j : U — X of X such that j*n = (degn)[idy] in Q*(U).
Since U x x By 2 U, it follows that j*(n — (degn)[fo]) = 0 in Q*(U).

Let W = X \ U. From the localization sequence

0.W) = 0,.(x) 5 0.0) = o,

we find an element 1y € Q. (W) with i.(m) = n — (degn)[fo], and noetherian
induction completes the proof. O

Remark 4.10. Applying theorem 4.9 to the class of a projective morphism f :
Y — X, with XY € Smy, we have the formula

[f:Y = X] - (deg f)[idx] = Zai[fi :B; = X]

in Q*(X). Also, if dimy X = dim; Y, degf is the usual degree, i.e., the field
extension degree [k(Y) : k(X)) if f is dominant, or zero if f is not.

4.2. Complex cobordism

For a differentiable manifold M, one has the complex cobordism ring MU*(M ).
Given an embedding ¢ : k - C and an X € Smy, we let X7(C) denote the complex
manifold associated to the smooth C-scheme X x; C. Sending X to MU?*(X7(C))
defines an oriented cohomology theory on Smy; by the universality of £2*, we have
a natural homomorphism

R, 1 O (X) = MU (X7 (Q)).
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Now, if P = P(cy,...,cq) is a degree d (weighted) homogeneous polynomial,
it is known that the operation of sending a smooth compact d-dimensional complex
manifold M to the Chern number deg(P(ci,...,cq)(On)) (where @y, is the com-
plex tangent bundle) descends to a homomorphism MU 24 — 7. Composing with
R,, we have the homomorphism P : Q~%(k) — Z. If X is smooth and projective
of dimension d over k, we have P([X]) = deg(P(c1,...,ca)(Ox-(cy)); P([X]) is in
fact independent of the choice of embedding o.

Let sq(c1,. .., cq) be the polynomial which corresponds to 3, &4, where &1, ...
are the Chern roots. The following divisibility is known (see [2]): if d = p™ — 1 for
some prime p, and dim X = d, then s4(X) is divisible by p.

In addition, for integers d = p™ — 1 and r > 1, there are mod p character-
istic classes tq,, with tg1 = sa/p mod p. The s, and the t,, have the following
properties:

(4.1)

1. $4(X) € pZ is defined for X smooth and projective of dimension d = p” — 1.
tar(X) € Z/pis defined for X smooth and projective of dimension rd =

r(p™ - 1).
2. sy and tq, extend to homomorphisms sq : Q~4k) — pZ, ta, : Q"4 (k) —
Z/p.

3. If X and Y are smooth projective varieties with dim X, dimY > 0, dim X +
dimY =d, then s4(X xY) =0.

4. If Xy,..., X, are smooth projective varieties with ), dim X; = rd, then
tar(I]; Xi) = 0 unless d| dim X; for each i.

We can now state Rost’s degree formula and the higher degree formula:

Theorem 4.11(Rost’s degree formula). Let f : Y — X be ¢ morphism of
smooth projective k-schemes of dimension d, d = p™ — 1 for some prime p. Then
there is a zero-cycle n on X such that

54(Y) — (deg f)sa(X) = p- deg(n).

Theorem 4.12(Rost’s higher degree formula). Let f : Y — X be a morphism
of smooth projective k-schemes of dimension rd, d = p™ — 1 for some prime p.
Suppose that X admits o sequence of surjective morphisms

X=Xy Xy ... X, {1 X, =Speck,

such that:

1. dim X; = d(r ~ 7).

2. Let n be a zero-cycle on X; xx,., Speck(X;41). Then p|deg(n).

i1
Then
tar(Y) = deg(f)ta,(X).

Proof. These two theorems follow easily from the generalized degree formula.
Indeed, for theorem 4.11, take the identity of remark 4.10 and push forward to
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0*(k). Using remark 3.7, this gives the identity
[V] — (deg f)[X] = Zmz/a x By

in 0*(X), for smooth, projective k-schemes A;, B;, and integers m;, where each
B; admits a projective morphism f; : B; — X which is birational to its image and
not dominant. Since sy vanishes on non-trivial products, the only relevant part of
the sum involves those B; of dimension zero; such a Bj is identified with the closed
point b; := f;(B;) of X. Applying sq, we have

54(Y) — deg(f ijsd ) deg, (b;).

Since sq(A;) = pn; for suitable integers n;, we have

sa(Y) — deg(f)sa(X) = pdeg(D>_ mjn;b)).
J
Taking n = Zj m; njb; proves theorem 4.11.
The proof of theorem 4.12 is similar: Start with the decomposition of [f :
Y - X] — (deg f)[idx] given by remark 4.10. One then decomposes the maps
B; — X = X further by pushing forward to X7 and using theorem 4.9. Iterating
down the tower gives the identity in Q. (k)

Y]~ (deg LX) = 3o m(B5 oo x B

the condition (2} implies that, if d] dimy, B; forall j =0,...,r, then pjm;. Applying
tqar and using the property (4.1)(4) yields the formula. O

5. Comparison results

Suppose we have a formal group (f, R), giving the canonical homomorphism
¢y L — R. Let Qf; 5 be the functor

where Q*(X) is an L*-algebra via the homomorphism ¢q : L* — Q*(k). The
universal property of 0 gives the analogous universal property for Q(

In particular, let Q2% be the theory with (f(u,v), R) = (u+v,Z), and let 0% be
the theory with (f(u, v), R) = (u+v— puv,Z[3, 6—1]). We thus have the canomcal
natural transformations of oriented theories on Smy,

O - CHY; Q% — Ko[8,87). (5.2)

Theorem 5.13. Let k be a field of characteristic zero. The natural transformations
(5.2) are isomorphisms, i.e., CH" is the universal ordinary oriented cohomology
theory and Ko[3,371] is the universal multiplicative and periodic theory.
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Proof. For CH", this uses localization, theorem 4.9 and resolution of singulari-
ties. For K, one writes down an integral Chern character, which gives the inverse
isomorphism by the Grothendieck-Riemann-Roch theorem. O

6. Higher algebraic cobordism

The cohomology theory represented by the Pl-spectrum MGL in the Morel-
Voevodsky Al -stable homotopy category [9, 13] gives perhaps the most natural alge-
braic analogue of complex cobordism. By universality, 2" (X) maps to MGL?*™™(X);
to show that this map is an isomorphism, one would like to give a map in the other
direction. For this, the most direct method would be to extend 2* to a theory of
higher algebraic cobordism; we give one possible approach to this construction here.

The idea is to repeat the construction of €Q,, replacing abelian groups with
symmetric monoidal categories throughout. Comparing with the @-construction,
one sees that the cobordism cycles in R%¥™(X) should be homotopic to zero, but
not canonically so. Thus, we cannot impose this relation directly, forcing us to
modify the group law by taking a limit.

Start with the category Z(X)p, with objects (f : Y — X, L4,...,L,), where
Y is irreducible in Smy, f is projective, and the L; are line bundles on Y. A
morphism (f : Y — X, Ly,..., L) = (f :Y'— X, L{,..., L) in Z(X)o consist of
atuple (&, 91,...,14,,0), with ¢ : ¥ - Y an isomorphism over X, ¢ a permutation,

3£1d i Ly — d)*L’U( ;) an isomorphism of line bundles on Y. Form the category

Z(X) as the symmetric monoidal category freely generated by Z(X)o; grade Z(X)
by letting Zvn(X ) be the full symmetric monoidal subcategory generated by the
(f:Y =X, Lq,...,L,) with n = dimg Y - r.

Next, form Q (X)) by adjoining (as a symmetric monoidal category) an isomor-
phism g s : (foi: D — X,¢*Lq,...,i*Ly) = (f: Y — X, L4,...,L,, L) for each
section s : Y -+ L transverse to the zero-section with divisor ¢ : D — X. Given a
morphism ¢ := () (f:Y =X, Ly, Ly, L) = (f:Y' = X, I4,... L., L)
(with L = ¢*L' via ¢), let i' : D' -+ Y’ be the map induced by ¢, s' : Y’ — L' the
section induced by s, and

PP (foi:D— X,i*Ly,...,i"L,) — (f'od' : D' = X,i"L},...,i"" L)),

the morphism induced by 1. We impose the relation 1oy, s = vr/ & 01?. Finally,
for line bundles L, M with smooth transverse divisors ip : D — Y, ig : E — Y
defined by sections s : ¥ — L, t : Y — M, respectively, we impose the relation
YL,s © Vir, Myt t = YM,t © Yiz Lizs- Lhe grading on Z(X) extends to one on Q(X).

Given g : X — X' projective, we have the functor g, : Q(X) — Q(X'),
similarly, given a smooth morphism A : X — X', we have the functor h* : Q(X') —
Q(X). Given a line bundle L on X, we have the natural transformation ¢ (L)
sending (f:Y — X, Lq,..., L) to (f:Y - X, Ly,..., L., f*L).

Now let C be a symmetric monoidal category such that all morphisms are
isomorphisms, and let R be a ring, free as a Z-module. One can define a symmetric
monoidal category R ®y € with a symmetric monoical functor ¢ — R @y C which
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is universal for symmetric monoidal functors ¢ — C' such that C' admits an action
of R via natural transformations. In case R = Z, Z ®y C is the standard group
completion C71C. In general, if {e, | @ € A} is a Z-basis for R, then

RayC=]Jc'c,

with the R-action given by expressing xz : R — R in terms of the basis {e,}.

For each integer n > 0, let L&”) be the quotient of L, by the ideal of elements
of degree > n. We thus have the formal group (FLW,L&") ).

We form the category L™ @y Q(X), which we grade by total degree. For each
f:Y - X projective, with Y € Smy, and line bundles L, M, L1,..., L, on Y, we
adjoin an isomophism pr, a

fe(From (61 (L), é1(M))(idy, L1, ..., L)) = fo(id® é (L © M)(idy, L1, ..., L,)).

We impose the condition of naturality with respect to the maps in L") @y QH(Y),
in the evident sense; the Chern class transformations extend in the obvious manner.

We impose the following commutativity condition: We have the evident iso-
morphism ¢, ar : Fy 1 (é1(L), é (M)} — Fpo (é1(M), 6 (L)) of natural transforma-
tions, as well as 77 ar : é1(L @ M) — é& (M ® L}, the isomorphism induced by the
symmetry LM = M ® L. Then we impose the identity 77 ar 0 pr ar = par,potrn m-
We impose a similar identity between the associativity of the formal group law and
the associativity of the tensor product of line bundles.

We also adjoin a - 77 5 for all a € L™, with similar compatibilities as above,
respecting the L{™ -action and sum. This forms the symmetric monoidal category
Q0" (X), which inherits a grading from Q(X). We have the inverse system of graded
symmetric monoidal categories:

= QUTD(X) S QX)) - L

Definition 5.14. Set Q()(X) = 7, (BQW (X)) and Qp,,, (X) = lim Q) (X).

[

At present, we can only verify the following:

Theorem 5.15. There is ¢ natural isomorphism Qp, o(X) = Q,,(X).

Proof. First note that mp(Z,, (X)) is a commutative monoid with group completion
Zm(X). Next, the natural map (£, (X))t — Q,(X) is surjective with kernel
generated by the classes generating R4 (X). Given such an element v := (f :
Y - X, 7Ly, ...,5 Ly, My,..., M), with w : Y — Z smooth, and r > dimy Z,
suppose that the L; are very ample. We may then choose sections s; : Z — L; with
divisors D; all intersecting transversely. Iterating the isomorphisms vz, gives
a path from ¢ to 0 in BQ*(X) Passing to Bl (X)), the group law allows us
to replace an arbitrary line bundle witha difference of very ample ones, so all the

classes of this form go to zero in QE:}O(X ). This shows that the natural map

QU (X) = (L™ @ QX))
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is an isomorphism. Since (L™ ®1 Q,(X))m = Qm(X) for m > n, we are done. O
The categories ?2&,?) (X)) are covariantly functorial for projective maps, con-
travariant for smooth maps (with a shift in the grading) and have first Chern class
natural transformations é (L) : Qi (X) — ﬁg,?)_l(X) for L —+ X a line bundle.
We conjecture that the inverse system used to define {1, (X} is eventually
constant for all r, not just for r = 0. If this is true, it is reasonable to define the
space B, (X) as the homotopy limit

B, (X) := holim BQ (X).

One would then have Q,, (X)) = 7r (B, (X), 0) for all m, 7; hopefully the proper-
ties of €2, listed in theorem 3.6 would then generalize into properties of the spaces
BQ,,(X).
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Permutation Groups and
Normal Subgroups

Cheryl E. Praeger*

Abstract

Various descending chains of subgroups of a finite permutation group can
be used to define a sequence of ‘basic’ permutation groups that are analogues
of composition factors for abstract finite groups. Primitive groups have been
the traditional choice for this purpose, but some combinatorial applications
require different kinds of basic groups, such as quasiprimitive groups, that are
defined by properties of their normal subgroups. Quasiprimitive groups admit
similar analyses to primitive groups, share many of their properties, and have
been used successfully, for example to study s-arc transitive graphs. Moreover
investigating them has led to new results about finite simple groups.
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1. Introduction

For a satisfactory understanding of finite groups it is important to study simple
groups and characteristically simple groups, and how to fit them together to form
arbitrary finite groups. This paper discusses an analogous programme for studying
finite permutation groups. By considering various descending subgroup chains of
finite permutation groups we define in §2 sequences of ‘basic’ permutation groups
that play the role for finite permutation groups that composition factors or chief
factors play for abstract finite groups. Primitive groups have been the traditional
choice for basic permutation groups, but for some combinatorial applications larger
families of basic groups, such as quasiprimitive groups, are needed (see §3).

Application of a theorem first stated independently in 1979 by M. E. O’Nan
and L. L. Scott [4] has proved to be the most useful modern method for identifying
the possible structures of finite primitive groups, and is now used routinely for their

*Department of Mathematics & Statistics, University of Western Australia, 35 Stirling Highway,
Crawley, Western Australia 6009, Australia. E-mail: praeger@maths.uwa.edu.au


mailto:praeger@maths.uwa.edu.au

68 Cheryl E. Praeger

analysis. Analogues of this theorem are available for the alternative families of basic
permutation groups. These theorems have become standard tools for studying
finite combinatorial structures such as vertex-transitive graphs and examples are
given in §3 of successful analyses for distance transitive graphs and s-arc-transitive
graphs. Some characteristic properties of basic permutation groups, including these
structure theorems are discussed in §4.

Studying the symmetry of a family of finite algebraic or combinatorial systems
often leads to problems about groups of automorphisms acting as basic permutation
groups on points or vertices. In particular determining the full automorphism group
of such a system sometimes requires a knowledge of the permutation groups con-
taining a given basic permutation group, and for this it is important to understand
the lattice of basic permutation groups on a given set. The fundamental problem
here is that of classifying all inclusions of one basic permutation group in another,
and integral to its solution is a proper understanding of the factorisations of simple
and characteristically simple groups. In §3 and 84 we outline the current status of
our knowledge about such inclusions and their use.

The precision of our current knowledge of basic permutation groups depends
heavily on the classification of the finite simple groups. Some problems about
basic permutation groups translate directly to questions about simple groups, and
answering them leads to new results about simple groups. Several of these results
and their connections with basic groups are discussed in the final section §5.

In summary, this approach to analysing finite permutation groups involves
an interplay between combinatorics, group actions, and the theory of finite simple
groups. One measure of its success is its effectiveness in combinatorial applications.

2. Defining basic permutation groups

Let G be a subgroup of the symmetric group Sym(2) of all permutations of a
finite set £). Since an intransitive permutation group is contained in the direct prod-
uct of its transitive constituents, it is natural when studying permutation groups
to focus first on the transitive ones. Thus we will assume that G is transitive on 2.
Choose a point « € ) and let G, denote the subgroup of G of permutations that
fix «, that is, the stabiliser of a. Let Sub(G,G,) denote the lattice of subgroups
of G containing GG,. The concepts introduced below are independent of the choice
of a because of the transitivity of G. We shall introduce three types of basic per-
mutation groups, relative to £1 := Sub(G,G,) and two other types of lattices Lo
and L3, where we regard each £; as a function that can be evaluated on any finite
transitive group G and stabiliser G,.

For G, < H < G, the H-orbit containing « is aff = {a"|h € H}. If
G. < H < K < @, then the K-images of af form the parts of a K-invariant par-
tition P(K, H) of o, and K induces a transitive permutation group Comp(K, H)
on P(K, H) called a component of G. In particular the component Comp(G,G,)
permutes P(G,G,) = {{8} 18 € 0} in the same way that G permutes €2, and we
may identify G with Comp(G,G,).

For a lattice £ of subgroups of G containing G, we say that K covers H
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in Lif K,H € L, H < K, and there are no intermediate subgroups lying in L.
The basic components of G relative to L are then defined as all the components
Comp(K, H) for which K covers H in £. Each maximal chain G, = Gp < G1 <
--+ < G, = Gin L determines a sequence of basic components relative to £, namely
Comp(G1,Go), ..., Comp(G,.,G,—1), and G can be embedded in the iterated wreath
product of these groups. In this way the permutation groups occurring as basic
components relative to £, for some finite transitive group, may be considered as
‘building blocks’ for finite permutation groups. We refer to such groups as basic
permutation groups relative to L.

A transitive permutation group G on € is primitive if G, is a maximal sub-
group of G, that is, if Sub(G,G,) = {G,G,}. The basic components of G relative
to £1 = Sub(@G, G,,) are precisely those of its components that are primitive.

The basic groups of the second type are the quasiprimitive groups. A transitive
permutation group G on {1 is quasiprimitive if each nontrivial normal subgroup of
G is transitive on ). The corresponding sublattice is the set Lo of all subgroups
H € Sub(G, G,) such that there is a sequence Ho = H < Hy < --- < H, = G with
each subgroup of the form H; = G, N; where for i < r, N; is a normal subgroup of
H;.1, and N, = G. The basic components of G relative to Lo are precisely those
of its components that are quasiprimitive.

Basic groups of the third type are innately transitive, namely transitive per-
mutation groups that have at least one transitive minimal normal subgroup. The
corresponding sublattice will be £3. A subgroup N of G is subnormal in G if there
is a sequence Ng = N < Ny < ... < N, = (G such that, for i < r, N; is a normal
subgroup of N; 1. The lattice L3 consists of all subgroups of the form G, N, where
N is subnormal in G and normalised by G. All the basic components of G relative
to L3 are innately transitive. Note that each primitive group is quasiprimitive and
each quasiprimitive group is innately transitive. Proofs of the assertions about Lo
and L3 and their components may be found in [27)].

3. The role of basic groups in graph theory

For many group theoretic and combinatorial applications finite primitive per-
mutation groups are the appropriate basic permutation groups, since many problems
concerning finite permutation groups can be reduced to the case of primitive groups.
However such reductions are sometimes not possible when studying point-transitive
automorphism groups of finite combinatorial structures because the components of
the given point-transitive group have no interpretation as point-transitive automor-
phism groups of structures within the family under investigation. The principal
motivation for studying some of these alternative basic groups came from graph
theory, notably the study of s-arc transitive graphs (s > 2).

A finite graph T' = ({2, E} consists of a finite set {2 of points, called vertices, and
a subset F of unordered pairs from (2 called edges. For s > 1, an s-arc of ' is a vertex
sequence (ag, ag,...,as) such that each {oy, 001} I8 an edge and a;—1 # a1 for
all i. We usually call a 1-arc simply an arc. Automorphisms of I" are permutations
of 2 that leave E invariant, and a subgroup G of the automorphism group Aut(T) is
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s-are-transitive if G 1s transitive on the s-arcs of I'. If I is connected and is regular
of valency k > 0 so that each vertex is in k edges, then an s-arc-transitive subgroup
G < Aut(T') is in particular transitive on 2 and also, if s > 2, on (s — 1)-arcs. It is
natural to ask which of the components of this transitive permutation group G on
Q act as s-arc-transitive automorphism groups of graphs related to T.

For G, < H < (@, there is a naturally defined quotient graph 'y with vertex
set the partition of () formed by the G-images of the set aff, where two such G-
images are adjacent in ' if at least one vertex in the first is adjacent to at least one
vertex of the second. If I' is connected and G is arc-transitive, then I'y is connected
and @ induces an arc-transitive automorphism group of I'gy, namely the component
Comp(G, H). If H is a maximal subgroup of G, then Comp(G, H) is both vertex-
primitive and arc-transitive on I'g. This observation enables many questions about
arc-transitive graphs to be reduced to the vertex-primitive case.

Perhaps the most striking example is provided by the family of finite distance
transitive graphs. The distance between two vertices is the minimum number of
edges in a path joining them, and G is distance transive on T if for each i, G is
transitive on the set of ordered pairs of vertices at distance ¢. In particular if G
is distance transitive on I' then T" is connected and regular, of valency & say. If
k = 2 then T is a cycle and all cycles are distance transitive, so suppose that &£ > 3.
If 'y has more than two vertices, then Comp(G, H) is distance transitive on 'y,
while if I'y has only two vertices then H is distance transitive on a smaller graph
Iy, namely Iy has af as vertex set with two vertices adjacent if and only if they
are at distance 2 in I' (see for example [12]). Passing to I'gy or I's respectively and
repeating this process, we reduce to a vertex-primitive distance transitive graph.
The programme of classifying the finite vertex-primitive distance transitive graphs
is approaching completion, and surveys of progress up to the mid 1990’s can be
found in [12, 31]. The initial result that suggested a classification might be possible
is the following. Here a group G is almost simple if T < G < Aut(T) for some
nonabelian simple group T, and a permutation group G has affine type if G has an
elementary abelian regular normal subgroup.

Theorem 3.1 [28] If G is vertez-primitive and distance transitive on a finite graph
T', then either T is known explicitly, or G is almost simple, or G has affine type.

In general, if G is s-arc-transitive on I with s > 2, then none of the components
Comp(G, H) with G, < H < @G is s-arc-transitive on I'gy, so there is no hope that
the problem of classifying finite s-arc-transitive graphs, or even giving a useful
description of their structure, can be reduced to the case of vertex-primitive s-arc-
transitive graphs. However the class of s-arc transitive graphs behaves nicely with
respect to normal quotients, that is, quotients I'y where H = G, N for some normal
subgroup N of GG. For such quotients, the vertex set of 'y is the set of N-orbits,
G acts s-arc-transitively on I'y, and if I'y has more than two vertices then I" is a
cover of I'yy in the sense that, for two N-orbits adjacent in 'y, each vertex in one
N-orbit is adjacent in T" to exactly one vertex in the other N-orbit. We say that I' is
a normal cover of T'y. If in addition N is a maximal intransitive normal subgroup
of G with more than two orbits, then G is both vertex-quasiprimitive and s-arc-
transitive on 'y, see [24]. If some quotient Iy has two vertices then I' is bipartite,
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and such graphs require a specialised analysis that parallels the one described here.
On the other hand if T is not bipartite then T' is a normal cover of at least one
"'y on which the G-action is both vertex-quasiprimitive and s-arc-transitive. The
wish to understand quasiprimitive s-arc transitive graphs led to the development
of a theory for finite quasiprimitive permutation groups similar to the theory of
finite primitive groups. Applying this theory led to a result similar to Theorem 3.1,
featuring two additional types of quasiprimitive groups, called twisted wreath type
and product action type. Descriptions of these types may be found in [24] and [25].

Theorem 3.2 [24] If G is verter-quasiprimitive and s-arc-transitive on a finite
graph T with s > 2, then G is almost simple, or of affine, twisted wreath or product
action type.

Examples exist for each of the four quasiprimitive types, and moreover this
division of vertex-quasiprimitive s-arc transitive graphs into four types has resulted
in a better understanding of these graphs, and in some cases complete classifications.
For example all examples with G of affine type, or with 7' < G < Aut(T") and
T = PSLa2(q),Sz(q) or Ree(q) have been classified, in each case yielding new s-arc
transitive graphs, see [13, 25]. Also using Theorem 3.2 to study the normal quotients
of an s-arc transitive graph has led to some interesting restrictions on the number
of vertices.

Theorem 3.3 [15, 16] Suppose that T is a finite s-arc-transitive graph with s > 4.
Then the number of vertices is even and not a power of 2.

The concept of a normal quotient has proved useful for analysing many fami-
lies of edge-transitive graphs, even those for which a given edge-transitive group is
not vertex-transitive. For example it provides a framework for a systematic study
of locally s-arc-transitive graphs in which quasiprimitive actions are of central im-
portance, see [11].

We have described how to form primitive arc-transitive quotients of arc-trans-
itive graphs, and quasiprimitive s-arc-transitive normal quotients of non-bipartite
s-arc-transitive graphs. However recognising these quotients is not always easy
without knowing their full automorphism groups. To identify the automorphism
group of a graph, given a primitive or quasiprimitive subgroup G of automorphisms,
it is important to know the permutation groups of the vertex set that contain G,
that is the over-groups of G. In the case of finite primitive arc-transitive and
edge-transitive graphs, knowledge of the lattice of primitive permutation groups on
the vertex set together with detailed knowledge of finite simple groups led to the
following result. The socle of a finite group G, denoted soc((), is the product of
its minimal normal subgroups.

Theorem 3.4 [22] Let G be o primitive arc- or edge-transitive group of automor-
phisms of o finite connected graph T'. Then either G and Aut(I') have the same
socle, or G < H < Aut(T") where soc(G) # soc(H) and G, H are explicitly listed.

In the case of graphs T' for which a quasiprimitive subgroup G of Aut(T") is
given, it is possible that Aut(I') may not be quasiprimitive. However, even in this
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case a good knowledge of the quasiprimitive over-groups of a quasiprimitive group
is helpful, for if N is a maximal intransitive normal subgroup of Aut(T") then both G
and Aut(I") induce quasiprimitive automorphism groups of the normal quotient 'y,
where H = Aut(I"), N, and the action of G is faithful. This approach was used,
for example, in classifying the 2-arc transitive graphs admitting Sz(q) or Ree(q)
mentioned above, and also in analysing the automorphism groups of Cayley graphs
of simple groups in [8].

Innately transitive groups, identified in § as a third possibility for basic groups,
have not received much attention until recently. They arise naturally when inves-
tigating the full automorphism groups of graphs. One example is given in [7] for
locally-primitive graphs I' admitting an almost simple vertex-quasiprimitive sub-
group G of automorphisms. It is shown that either Aut(T') is innately transitive, or
G is of Lie type in characteristic p and Aut(I") has a minimal normal p-subgroup
involving a known G-module.

4. Characteristics of basic permutation groups

Finite primitive permutation groups have attracted the attention of mathe-
maticians for more than a hundred years. In particular, one of the central problems
of 19th century Group Theory was to find an upper bound, much smaller than n!,
for the order of a primitive group on a set of size n, other than the symmetric group
Sy, and the alternating group A,. It is now known that the largest such groups
occur for n of the form ¢(c — 1)/2 and are S, and A, acting on the unordered pairs
from a set of size ¢. The proofs of this and other results in this section depend on
the finite simple group classification.

If G is a quasiprimitive permutation group on Q, « € ), and H is a max-
imal subgroup of G containing G, then the primitive component Comp(G, H) is
isomorphic to G since the kernel of this action is an intransitive normal subgroup
of G and hence is trivial. Because of this we may often deduce information about
quasiprimitive groups from their primitive components, and indeed it was found in
[29] that finite quasiprimitive groups possess many characteristics similar to those
of finite primitive groups. This is true also of innately transitive groups. We state
just one example, concerning the orders of permutation groups acting on a set of
size n, that is, of degree n.

Theorem 4.1 [4, 29] There is a constant ¢ and an explicitly defined family F of
finite permutation groups such that, if G is a primitive, quasiprimitive, or innately
transitive permutation group of degree n, then either G € F, or |G| < nclogn,

The O’Nan-Scott Theorem partitions the finite primitive permutation groups
into several disjoint types according to the structure or action of their minimal
normal subgroups. It highlights the role of simple groups and their representations
in analysing and using primitive groups. One of its first successful applications was
the analysis of distance transitive graphs in Theorem 3.1. Other early applications
include a proof [6] of the Sims Conjecture, and a classification result [18] for maximal
subgroups of A, and 5,,, both of which are stated below.
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Theorem 4.2 [6] There is o function f such that if G is primitive on o finite set
Q, and for o € Q, Go has an orbit of length d in Q\ {«}, then |Go| < f(d).

Theorem 4.3 [18] Let G = A, or Sy, with M o mazimal subgroup. Then either M
belongs to an explicit list or M is almost simple and primitive. Moreover if H < G
and H is almost simple and primitive but not mazimal, then (H,n) is known.

This is a rather curious way to state a classification result. However it seems
almost inconceivable that the finite almost simple primitive groups will ever be
listed explicitly. Instead [18] gives an explicit list of triples (H, M,n), where H is
primitive of degree n with a nonabelian simple normal subgroup T not normalised
by M, and H < M < HA,,. This result suggested the possibility of describing the
lattice of all primitive permutation groups on a given set, for it gave a description
of the over-groups of the almost simple primitive groups. Such a description was
achieved in [23] using a general construction for primitive groups called a blow-up
construction introduced by Kovacs [14]. The analysis leading to Theorem 3.4 was
based on this theorem.

Theorem 4.4 [23] All inclusions G < H < S, with G primitive are either explicitly
described, or are described in terms of a blow-up of an explicitly listed inclusion
Gy < Hy < Sy, with n o proper power of ny.

Analogues of the (’Nan-Scott Theorem for finite quasiprimitive and innately
transitive groups have been proved in [3, 24] and enable similar analyses to be under-
taken for problems involving these classes of groups. For example, the quasiprimitive
version formed the basis for Theorems 3.2 and 3.3. It seems to be the most useful
version for dealing with families of vertex-transitive or locally-transitive graphs. A
description of the lattice of quasiprimitive subgroups of S,, was given in [2, 26] and
was used, for example, in analysing Cayley graphs of finite simple groups in [8].

Theorem 4.5 [2, 26] Suppose that G < H < S, with G quasiprimitive and imprim-
itive, and H quasiprimitive but H # A,,. Then either G and H have equal socles
and the same O’Nan-Scott types, or the possibilities for the O’Nan-Scott types of
G, H are restricted and are known explicitly.

In the latter case, for most pairs of O’Nan-Scott types, explicit constructions
are given for these inclusions. Not all the types of primitive groups identified by the
(’Nan-Scott Theorem occur for every degree n. Let us call permutation groups of
degree n other than A, and S,, nontrivial. A systematic study by Cameron, Neu-
mann and Teague [5] of the integers n for which there exists a nontrivial primitive
group of degree n showed that the set of such integers has density zero in the natural
numbers. Recently it was shown in [30] that a similar result holds for the degrees
of nontrivial quasiprimitive and innately transitive permutation groups. Note that
22 <Yl g < 2:23.

Theorem 4.6 [5, 30] For a positive real number x, the proportion of integersn < x
for which there exists o nontrivial primitive, quasiprimitive, or innately transitive
permutation group of degree n is at most (1 + o(1))e/logx, where ¢ = 2 in the case
of primitive groups, or ¢ =1+ 230:1 #@ for the other cases.
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5. Simple groups and basic permutation groups

Many of the results about basic permutation groups mentioned above rely
on specific knowledge about finite simple groups. Sometimes this knowledge was
already available in the simple group literature. However investigations of basic
permutation groups often raised interesting new questions about simple groups.
Answering these questions became an integral part of the study of basic groups,
and the answers enriched our understanding of finite simple groups. In this final
section we review a few of these new simple group results. Handling the primitive
almost simple classical groups was the most difficult part of proving Theorem 4.3,
and the following theorem of Aschbacher formed the basis for their analysis.

Theorem 5.1 [1] Let G be a subgroup of a finite almost simple classical group X
such that G does not contain soc(X), and let V' denote the natural vector space
associtated with X . Then either G lies in one of eight explicitly defined families of
subgroups, or G is almost simple, absolutely irreducible on V' and the (projective)
representation of soc(G) on V' cannot be realised over a proper subfield.

A detailed study of classical groups based on Theorem 5.1 led to Theorem 5.2,
a classification of the maximal factorisations of the almost simple groups. This
classification was fundamental to the proofs of Theorems 3.4 and 4.3, and has been
used in diverse applications, for example see [9, 17].

Theorem 5.2 [19, 20] Let G be o finite almost simple group and suppose that G =
AB, where A, B are both mazimal in G subject to not containing soc(G). Then
G, A, B are explicitly listed.

For a finite group G, let 7(G) denote the set of prime divisors of |G|. For
many simple groups G there are small subsets of #(G) that do not occur in the
order of any proper subgroup, and it is possible to describe some of these precisely
as follows.

Theorem 5.3 [21, Theorem 4, Corollaries 5 and 6] Let G be an almost simple group
with socle T, and let M be a subgroup of G not containing T.
(a) If G = T then for an explicitly defined subset II C w(T) with |II} < 3, if
I C w(M) then T, M are known explicitly, and in most cases w(T) = w(M).
(b) If n(T) C w(M) then T, M are known explicitly.

Theorem 5.3 was used in [10] to classify all innately transitive groups having no
fixed-point-free elements of prime order, settling the polycirculant graph conjecture
for such groups. Another application of Theorems 5.2 and 5.3 is the following
factorisation theorem that was used in the proof of Theorem 4.5. It implies in
particular that, if G is quasiprimitive of degree n with nonabelian and non-simple
socle, then S, and possibly A,, are the only almost simple over-groups of G.

Theorem 5.4 [26, Theorem 1.4] Let T, S be finite nonabelion simple groups such
that T has proper subgroups A, B with T = AB and A = S* for some £ > 2. Then
T=A,, B=A,_1, wheren =T : B|, and A is a transitive group of degree n.
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Finally we note that Theorem 4.6 is based on the following result about indices
of subgroups of finite simple groups.

Theorem 5.5 [5, 30] For a positive real number x, the proportion of integersn < x
of the form n = |T : M|, where T is a nonabelian simple group and M is either
a mazimal subgroup or o proper subgroup, and (T, M) # (A, An-1), is at most
(1+0(1))c/logz, wherec=1orc=3 1, #@) respectively.

We have presented a framework for studying finite permutation groups by
identifying and analysing their basic components. The impetus for extending the
theory beyond primitive groups came from the need for an appropriate theory of
basic permutation groups for combinatorial applications. Developing this theory
required the answers to specific questions about simple groups, and the power of
the theory is largely due to its use of the finite simple group classification.
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Norm Varieties and Algebraic Cobordism

Markus Rost*

Abstract

‘We outline briefly results and examples related with the bijectivity of the
norm residue homomorphism. We define norm varieties and describe some
constructions. We discuss degree formulas which form a major tool to handle
norm varieties. Finally we formulate Hilbert’s 90 for symbols which is the
hard part of the bijectivity of the norm residue homomorphism, modulo a
theorem of Voevodsky.

Introduction

This text is a brief outline of results and examples related with the bijectivity
of the norm residue homomorphism—also called “Bloch-Kato conjecture” and, for
the mod 2 case, “Milnor conjecture”.

The starting point was a result of Voevodsky which he communicated in 1996.
Voevodsky’s theorem basically reduces the Bloch-Kato conjecture to the existence
of norm varieties and to what I call Hilbert’s 90 for symbols. Unfortunately there
is no text available on Voevodsky’s theorem.

In this exposition p is a prime, k is a field with chark # p and KMk denotes
Milnor’s n-th K-group of k [15], [19].

Elements in KMk/p of the form

uw={a1,...,an} mod p

are called symbols (mod p, of weight n).
A field extension F of k is called a splitting field of u if up = 0 in KM F/p.
Let

h(n,p): Krjzwk/p—) Hé}c(kap’?n)a
{ag,...,an} = (a1, ..., an)

be the norm residue homomorphism.

*Department of Mathematics, The Ohio State University, 231 W 18th Avenue, Columbus, OH
43210, USA. E-mail: rost@math.ohio-state.edu, URL: http://www.math.ohio-state.edu/ rost
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1. Norm varieties

All successful approaches to the Bloch-Kato conjecture consist of an investi-
gation of appropriate generic splitting varieties of symbols. This goes back to the
work of Merkurjev and Suslin on the case n = 2 who studied the K-cohomology of
Severi-Brauer varieties [12]. Similarly, for the case p = 2 (for n = 3 by Merkurjev,
Suslin [14] and the author [18], for all n by Voevodsky [23]) one considers certain
quadrics associated with Pfister forms. For a long time it was not clear which sort of
varieties one should consider for arbitrary n, p. In some cases one knew candidates,
but these were non-smooth varieties and desingularizations appeared to be difficult
to handle. Finally Voevodsky proposed a surprising characterization of the nec-
essary varieties. It involves characteristic numbers and yields a beautiful relation
between symbols and cobordism theory.

Definition. Let u = {a1,...,a,} mod p be a symbol. Assume that u # 0. A
norm variety for u is a smooth proper irreducible variety X over k such that

(1) The function field k(X) of X splits u.
(2) dmX =d:=p" ! ~ 1.
(3) # #0 mod p.

Here $4(X) € Z denotes the characteristic number of X given by the d-th
Newton polynomial in the Chern classes of TX. It is known (by Milnor) that in
dimensions d = p” — 1 the number s4(X) is p-divisible for any X. If & C C one
may rephrase condition (3) by saying that X (C) is indecomposable in the complex
cobordism ring mod p.

We will observe in section 2. that the conditions for a norm variety are bira-
tional invariant.

The name “norm variety” originates from some constructions of norm varieties,
see section 3..

We conclude this section with the “classical” examples of norm varieties.

Example. The case n = 2. Assume that k contains a primitive p-th root ¢ of
unity. For a, b € k™ let A¢(a,b) be the central simple k-algebra with presentation

Ac(a,b) = (u,v | u¥ = a,v" = b,vu = (uv).

The Severi-Brauer variety X(a,b) of A¢(a,b) is a norm variety for the symbol
{a,b} mod p.
Example. The case p = 2. For a4, ..., a, € k™ one denotes by

[

{ar, ... an) = ®<1a —a;),

1
the associated n-fold Pfister form [9], [21]. The quadratic form
w="{a,....an-1) L {(—an)

is called a Pfister neighbor. The projective quadric Q(y) defined by ¢ = 0 is a norm
variety for the symbol {aq, ..., a,} mod 2.
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2. Degree formulas

The theme of “degree formulas” goes back to Voevodsky’s first text on the
Milnor conjecture (although he never formulated explicitly a “formula”) [22]. In
this section we formulate the degree formula for the characteristic numbers sy4. It
shows the birational invariance of the notion of norm varieties.

The first proof of this formula relied on Voevodsky’s stable homotopy theory
of algebraic varieties. Later we found a rather elementary approach [11], which is
in spirit very close to “elementary” approaches to the complex cobordism ring [16],

[4].

For our approach to Hilbert’s 90 for symbols we use also “higher degree formu-
las” which again were first settled using Voevodsky’s stable homotopy theory [3].
These follow meanwhile also from the “general degree formula” proved by Morel
and Levine [10] in characteristic O using factorization theorems for birational maps
[1].

We fix a prime p and a number d of the form d = p™ — 1.

For a proper variety X over k let

I(X) = deg(CHo(X)) C Z

be the image of the degree map on the group of O-cycles. One has I(X) = ¢(X)Z
where (X)) is the “index” of X, i. e., the ged of the degrees [k(z) : k] of the residue
class field extensions of the closed points x of X. If X has a k-point (in particular if
k is algebraically closed), then I(X) = Z. The group I(X) is a birational invariant
of X. We put

J(X) = I(X) + pZ.

Let X, Y beirreducible smooth proper varieties over k with dimY = dim X =
dandlet f: Y - X be a morphism. Define deg f as follows: If dim f(Y) < dim X,
then deg f = 0. Otherwise deg f € N is the degree of the extension k(Y)/k(X) of
the function fields.

Theorem (Degree formula for sq).

>

Sd(Y) Sd()&)

= (deg f) mod J(X).

Corollary. The class

@ mod J(X) € Z/J(X)

i$ 6 birational invariant.

Remark. If X has a k-rational point, then J(X) = Z and the degree formula
is empty. The degree formula and the birational invariants sq(X)/p mod J(X) are
phenomena which are interesting only over non-algebraically closed fields. Over the
complex numbers the only characteristic numbers which are birational invariant are
the Todd numbers.
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We apply the degree formula to norm varieties. Let u be a nontrivial symbol
mod p and let X be a norm variety for u. Since k(X) splits u, so does any residue
class field k(x) for x € X. As u is of exponent p, it follows that J(X) = pZ.

Corollary (Voevodsky). Let u be a nontrivial symbol and let X be a norm
variety of u. Let further Y be a smooth proper irreducible variety with dimY =
dim X and let f: Y — X be a morphism. Then Y is a norm variety for u if and
only if deg f is prime to p.

It follows in particular that the notion of norm variety is birational invariant.
Therefore we may call any irreducible variety U (not necessarily smooth or proper)
a norm variety of a symbol u if U is birational isomorphic to a smooth and proper
norm variety of u.

3. Existence of norm varieties

Theorem. Norm wvarieties exists for every symbol u € KMk/p for every p
and every n.

As we have noted, for the case n = 2 one can take appropriate Severi-Brauer
varieties (if k& contains the p-th roots of unity) and for the case p = 2 one can take
appropriate quadrics.

In this exposition we describe a proof for the case n = 3 using fix-point theo-
rems of Conner and Floyd in order to compute the non-triviality of the characteristic
numbers. Our first proof for the general case used also Conner-Floyd fix-point the-
ory. Later we found two further methods which are comparatively simpler. However
the Conner-Floyd fix-point theorem is still used in our approach to Hilbert’s 90 for
symbols.

Let u = {a,b,c} mod p with a, b, ¢ € k*. Assume that k contains a primitive
p-th root ¢ of unity, let A = Ac(a,b) and let

MS(A,¢)={x € A|Ned(z) =c}.

We call MS(A, ¢) the Merkurjev-Suslin variety associated with A and ¢. The sym-
bol u is trivial if and only if MS (A, ¢) has a rational point [12]. The variety MS(A4,¢)
is a twisted form of SL(p).

Theorem. Suppose u # 0. Then MS(A,c) is a norm variety for u.

Let us indicate a proof for a subfield £ C C (and for p > 2). Let U = MS(A4, ¢).
It is easy to see that k(U) splits u. Moreover one has dimU = dim A — 1 = p? — 1.
It remains to show that there exists a proper smooth completion X of U with
nontrivial characteristic number.

Let

U={[z,t] e P(A® k) | Nrd(z) = ct* }
be the naive completion of U. We let the group G = Z/px Z/p act on the algebra A
via
(r,8)-u=_"u, (r,8)-v=_v.

This action extends to an action on P(A @ k) (with the trivial action on k) which
induces a G-action on U. Let Fix(U) be the fixed point scheme of this action. One
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finds that Fix(U) consists just of the p isolated points [1,(%], i = 1, ..., p, which
are all contained in U.

The variety U is smooth, but U is not. However, by equivariant resolution
of singularities [2], there exists a smooth proper G-variety X together with a G-
morphism X — U which is a birational isomorphism and an isomorphism over U.

It remains to show that i
M #0 mod p.
p
For this we may pass to topology and try to compute sq4 (X (C)) We note that
for odd p, the Chern number sy is also a Pontryagin number and depends only on
the differentiable structure of the given variety. Note further that X has the same
G-fixed points as U since the desingularization took place only outside U.

Consider the variety

Z = { [Zﬁjzl xijuivj,t] eEP(Aak) ‘ il =t } .
This variety is a smooth hypersurface and it is easy to check

M #0 mod p.
p
As a G-variety, the variety Z has the same fixed points as X (“same” means that
the collections of fix-points together with the G-structure on the tangent spaces
are isomorphic). Let M be the differentiable manifold obtained from X(C) and
—Z(C) by a multi-fold connected sum along corresponding fixed points. Then M
is a G-manifold without fixed points. By the theory of Conner and Floyd [3], [7]
applied to (Z/p)?-manifolds of dimension d = p? — 1 one has

M
M =0 mod p.
D
Thus ¥ 7
sa( )ESd( ) mod p
D D

and the desired non-triviality is established.
The functions ®,,. We conclude this section with examples of norm varieties
for the general case.

Let a1, as, ...be a sequence of elements in k*. We define functions ®,, =
Py, .a, in p" variables inductively as follows.
(I)O (t) - tp,
p—1
@, (To, ..., Tp_1) = ¥, _1(Tp) H (1= an®,_1(Ty)).
i=1

Here the T; stand for tuples of p"~! variables. Let Ul(ay,...,a,) be the variety
defined by
Doy an (T) = 0n.

Theorem. Suppose that the symbol v = {a1,...,an} mod p is nontrivial.
Then Ulaq, ..., a,) is o norm variety of u.
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4. Hilbert’s 90 for symbols

The bijectivity of the norm residue homomorphisms has always been consid-
ered as a sort of higher version of the classical Hilbert’s Theorem 90 (which estab-
lishes the bijectivity for n = 1). In fact, there are various variants of the Bloch-Kato
conjecture which are obvious generalizations of Hilbert’s Theorem 90: The Hilbert’s
Theorem 90 for KM of cyclic extensions or the vanishing of the motivic cohomology
group H" ™' (k,Z(n)). In this section we describe a variant which on one hand is
very elementary to formulate and on the other hand is the really hard part of the
Bloch-Kato conjecture (modulo Voevodsky’s theorem).

Let u = {a1,...,an} € KMk/p be a symbol. Consider the norm map

Nu=>_ Npj: @KF = Kik
F F

where F runs through the finite field extensions of k (contained in some algebraic
closure of k) which split u. Hilbert’s Theorem 90 for u states that ker AV,, is generated
by the “obvious” elements.

To make this precise, we consider two types of basic relations between the
norm maps Np .

Let Fi, Iy be finite field extensions of k. Then the sequence

(Nrygra/r v~ Nrjgrs/r,

Np, o+N
Ki(F, ® Fy) h K\ Fy @ Ky By SNl pe
is a complex.
Further, if K/k is of transcendence degree 1, then the sequence
KoK 25 @) Kan(v) & Kok (2)
v

is a complex. Here v runs through the valuations of K/k, dx is given by the tame
symbols at each v and N is the sum of the norm maps Ny ()5 The sum formula
N odg = 0is also known as Weil’s formula.

We now restrict again to splitting fields of u. The maps in (1) yield a map

Ru= Y. Npern/m —Nrsmm): @ Ki(F R - @KF
Py, P2 F,Fs F

with M, o R, = 0. Let C be the cokernel of R, and let N,: C — Kik be the map
induced by N,. Then the maps in (2) yield a map

Su=) dx: PKK—C
K K

with V) 0 S, = 0 where K runs through the splitting fields of u of transcendence
degree 1 over k (contained in some universal field). Let Ho(u, K7) be the cokernel
of 8, and let N, : Ho(u, K1) — K1k be the map induced by V).
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Hilbert’s 90 for symbols. For every symbol u the norm map
Ny: H@(U,Kl) - K1k

18 injective.

Example. If u = 0, then it is easy to see that N, is injective. In fact, it is a
trivial exercise to check that A}, is injective.

Example. The case n = 1. The splitting fields F' of v = {a} mod p are
exactly the field extensions of k containing a p-th root of a. It is an easy exercise to
reduce the injectivity of N, (in fact of M) to the classical Hilbert’s Theorem 90,

i. e., the exactness of
1—0 Ni/k
KL — KiL —— Kik
for a cyclic extension L/k of degree p with ¢ a generator of Gal(L/k).
Example. The case n = 2. Assume that k contains a primitive p-th root ¢ of
unity. The splitting fields F' of v = {a,b} mod p are exactly the splitting fields of
the algebra Ac(a,b). One can show that

Hy(u, K1) = K1 Ac(a,b)

with N, corresponding to the reduced norm map Nrd [13]. Hence in this case
Hilbert’s 90 for u reduces to the classical fact SK1 A = 0 for central simple algebras
of prime degree [6].

Example. The case p = 2. The splitting fields F' of v = {a1,...,a,} mod
2 are exactly the field extensions of k which split the Pfister form {a1,...,a,)
or, equivalently, over which the Pfister neighbor {a1,...,a,-1) L {~a,) becomes
isotropic. Hilbert’s 90 for symbols mod 2 had been first established in [17]. This
text considered similar norm maps assoclated with any quadratic form (which are
not injective in general). A treatment of the special case of Pfister forms is contained
in [8].

Remark. One can show that the group Hp(u, K;) as defined above is also
the quotient of ©r Ky F by the R-trivial elements in ker V,,. This is quite analogous
to the description of K14 of a central simple algebra A: The group K; A is the
quotient of A* by the subgroup of R-trivial elements in the kernel of Nrd: A* —» F™.
Similarly for the case p = 2: In this case the injectivity of N, is related with the
fact that for Pfister neighbors ¢ the kernel of the spinor norm SO(p) — k*/(k*)?
is R-trivial.

In our approach to Hilbert’s 90 for symbols one needs a parameterization of
the splitting fields of symbols.

Definition. Let v = {ai,...,a,} modp be o symbol. A p-generic splitting
variety for u is a smooth variety X over k such that for every splitting field F
of u there exists o finite extension F'/F of degree prime to p and a morphism
Spec F' — X,

Theorem. Suppose chark = 0. Let m > 3 and suppose for n < m and every
symbolu = {aq,...,an} mod p over all fields over k there exists a p-generic splitting
variety for u of dimension p" ' — 1. Then Hilbert’s 90 holds for such symbols.

The proof of this theorem is outlined in [20].
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For n = 2 one can take here the Severi-Brauer varieties and for n = 3 the
Merkurjev-Suslin varieties. Hence we have:

Corollary. Suppose chark = 0. Then Hilbert’s 90 holds for symbols of
weight < 3.
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Diophantine Geometry over Groups
and the Elementary Theory of
Free and Hyperbolic Groups™

7. Selat

Abstract

We study sets of solutions to equations over a free group, projections of
such sets, and the structure of elementary sets defined over a free group. The
structre theory we obtain enable us to answer some questions of A. Tarski’s,
and classify those finitely generated groups that are elementary equivalent to
a free group. Connections with low dimensional topology, and a generalization
to (Gromov) hyperbolic groups will also be discussed.

2000 Mathematics Subject Classification: 14, 20.

Sets of solutions to equations defined over a free group have been studied
extensively, mostly since Alfred Tarski presented his fundamental questions on the
elementary theory of free groups in the mid 1940’s. Considerable progress in the
study of such sets of solutions was made by G. S. Makanin, who constructed an
algorithm that decides if a system of equations defined over a free group has a
solution [Mal], and showed that the universal and positive theories of a free group
are decidable [Ma2]. A. A. Razborov was able to give a description of the entire set
of solutions to a system of equations defined over a free group [Ra], a description
that was further developed by O. Kharlampovich and A. Myasnikov [Kh-My].

A set of solutions to equations defined over a free group is clearly a discrete
set, and all the previous techniques and methods that studied these sets are com-
binatorial in nature. Naturally, the structure of sets of solutions defined over a free
group is very different from the structure of sets of solutions (varieties) to systems of
equations defined over the complexes, reals or a number field. Still, perhaps surpris-
ingly, concepts from complex algebraic geometry and from Diophantine geometry
can be borrowed to study varieties defined over a free group.

*Partially supported by an Israel academy of sciences fellowship, an NSF grant DMS9729992
through the IAS, and the IHES.
tHebrew University, Jerusalem 91904, Israel. E-mail: zlil@math.huji.ac.il
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In this work we borrow concepts and techniques from geometric group the-
ory, low dimensional topology, and Diophantine geometry to study the structure of
varieties defined over a free (and hyperbolic) group. Our techniques and point of
view on the study of these varieties is rather different from any of the pre-existing
techniques in this field, though, as one can expect, some of our preliminary results
overlap with previously known ones. The techniques and concepts we use enable
the study of the structure of varieties defined over a free group and their projec-
tions (Diophantine sets), and in particular, give us the possibility to answer some
questions that seem to be essential in any attempt to understand the structure of
elementary sentences and predicates defined over a free (and hyperbolic) group.

In this note we summarize the main results of our work, that enable one to
answer affirmatively some of A. Tarski’s problems on the elementary theory of a free
group, and classify those finitely generated groups that are elementary equivalent to
a (non-abelian) free group. we further survey some of our results on the elementary
theory of a (torsion-free) hyperbolic group, that generalize the results on free groups.
The work itself appears in [Sel]-[Se8].

We start with what we see ag the main result on the elementary theory of a
free group we obtained - quantifier elimination. Quantifier elimination and its proof
is behind all the other results presented in this note.

Theorem 1 ([Se7],1). Let F be a non-abelian free group, and let Q(p) be a defin-
able set over F. Then Q(p) is in the Boolean algebra of AE sets over F.

In fact it is possible to give a strengthening of theorem 1 that specifies a
subclass of AFE sets that generates the Boolean algebra of definable sets, a more
refined description that is essential in studying other model-theoretic properties of
the elementary theory of a free group.

Theorem 1 proves that every definable set over a free group is in the Boolean
algebra of AFE sets. To answer Tarski’s questions on the elementary theory of a
free group, i.e., to show the equivalence of the elementary theories of free groups
of various ranks, we need to show that for coeflicient free predicates, our quantifier
elimination procedure does not depend on the rank of the coefficient group.

Theorem 2 ([Se7],2). Let Q(p) be a set defined by o coefficient-free predicate over
a group. Then there exists a set L(p) defined by a coefficient-free predicate which
is in the Boolean algebra of AE predicates, so that for every non-abelian free group
F, the sets Q(p) and L(p) are equivalent.

Theorem 2 proves that in handling coefficient-free predicates, our quantifier
elimination procedure does not depend on the rank of the coefficient (free) group.
This together with the equivalence of the AE theories of free groups ([Sal,[Hr]) im-
plies an affirmative answer to Tarski’s problem on the equivalence of the elementary
theories of free groups.

Theorem 3 ([SeT],3). The elementary theories of non-abelian free groups are
equivalent.
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Arguments similar to the ones used to prove theorems 2 and 3, enable us to
answer affirmatively another question of Tarski’s.

Theorem 4 ([SeT7],4). Let Fy, Fy be free groups for 2 < k < €. Then the standard
embedding Fy, — Fy is an elementary embedding.

More generally, let F, Fy be non-abelian free groups, let Fy be o free group, and
suppose that F' = I x Fy. Then the standard embedding Fy — F is an elementary
embedding.

Tarski’s problems deal with the equivalence of the elementary theories of free
groups of different ranks. OQur next goal is to get a classification of all the f.g. groups
that are elementary equivalent to a free group.

Non-abelian w-residually free groups (limit groups) are known to be the f.g.
groups that are universally equivalent to a non-abelian free group. If a limit group
contains a free abelian group of rank 2, it can not be elementary equivalent to a free
group. Hence, a f.g. group that is elementary equivalent to a non-abelian free group
must be a non-elementary (Gromov) hyperbolic limit group. However, not every
non-elementary hyperbolic limit group is elementary equivalent to a free group.
To demonstrate that we look at the following example. Suppose that G = F xy
F =< by,by > %y < bz, by > is a double of a free group of rank 2, suppose that w
has no roots in F, and suppose that the given amalgamated product is the abelian
JSJ decomposition of the group . By our assumptions, G is a hyperbolic limit
group (see [Sel], theorem 5.12).

Claim 5 ([Se7],5). The group G = F %oy~ F is not elementary equivalent to the
free group F.

In section 6 of [Sel] we have presented w-residually free towers, as an example
of limit groups (the same groups are presented in [Kh-My] as well, and are called
there NTQ groups).

A hyperbolic w-residually free tower is constructed in finitely many steps. In
its first level there is a non-cyclic free product of (possibly none) (closed) surface
groups and a (possibly trivial) free group, where each surface in this free product
is a hyperbolic surface (i.e., with negative Euler characteristic), except the non-
orientable surface of genus 2. In each additional level we add a punctured surface
that is amalgamated to the group associated with the previous levels along its
boundary components, and in addition there exists a retract map of the obtained
group onto the group associated with the previous levels. The punctured surfaces
are supposed to be of Euler characteristic bounded above by -2, or a punctured
torus.

The procedure used for eliminating quantifiers over a free group enables us to
show that every hyperbolic w-residually free tower is elementary equivalent to a free
group. The converse is obtained by using basic properties of the JSJ decomposition
and the (canonical) Makanin-Razborov diagram of a limit group ([Se7], theorem 6).
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Therefore, we are finally able to get a classification of those f.g. groups that are
elementary equivalent to a free group.

Theorem 6 ([SeT],7). A f.g. group is elementary equivalent to a non-abelian free
group if and only if it is a non-elementary hyperbolic w-residually free tower.

So far we summarized the main results of our work, that enable one to answer
affirmatively some of A. Tarski’s problems on the elementary theory of a free group,
and classify those finitely generated groups that are elementary equivalent to a (non-
abelian) free group. In the rest of this note we survey some of our results on the
elementary theory of a (torsion-free) hyperbolic group, that generalize the results
presented for a free group.

In the case of a free group, we have shown that every definable set is in the
Boolean algebra of AE sets. The same holds for a general hyperbolic group.

Theorem 7 ([Se8],6.5). Let T be a non-elementary torsion-free hyperbolic group,
and let Q(p) be o definable set over I'. Then Q(p) is in the Boolean algebra of AE
sets over 1.

Furthermore, if Q(p) is o set defined by a coefficient-free predicate defined over
T, then Q(p) can be defined by a coefficient-free predicate which is in the Boolean
algebra of AE predicates.

The procedure used for quantifier elimination over a free group enabled us
to get a classification of those f.g. groups that are elementary equivalent to a free
group (theorem 6). In a similar way, it is possible to get a classification of those f.g.
groups that are elementary equivalent to a given torsion-free hyperbolic group.
We start with the following basic fact, that shows the elementary invariance of
negative curvature in groups.

Theorem 8 ([Se8],7.10). Let T" be a torsion-free hyperbolic group, and let G be
o f.g. group. If G is elementary equivalent to T, then G is o torsion-free hyperbolic
group.

Theorem 8 restricts the class of f.g. groups that are elementary equivalent to a
given hyperbolic group, to the class of hyperbolic groups. To present the elementary
classification of hyperbolic groups we start with the following basic fact.

Proposition 9 ([Se8],7.1). Let T'1,T'y be non-elementary torsion-free rigid hy-
perbolic groups (i.e., T'1 and T's are freely-indecomposable and do not admit any
non-trivial cyclic splitting). Then Ty is elementary equivalent to Ty if and only if
I'y is isomorphic to T's.

Proposition 9 implies that, in particular, a uniform lattice in a real rank 1
semi-simple Lie group that is not SL2(R) is elementary equivalent to another such
lattice if and only if the two lattices are isomorphic, hence, by Mostow’s rigidity
the two lattices are conjugate in the same Lie group. By Margulis’s normality and
super-rigidity theorems, the same hold in higher rank (real) Lie groups.
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Theorem 10 ([Se8],7.2). Let L1, Ly be uniform lattices in real semi-simple Lie
groups that are not SLo(R). Then Ly is elementary equivalent to Lo if and only if
Ly and Lo are conjugate lattices in the same real Lie group G.

Proposition 9 shows that rigid hyperbolic groups are elementary equivalent
if and only if they are isomorphic. To classify elementary equivalence classes of
hyperbolic groups in general, we associate with every (torsion-free) hyperbolic group
T, a subgroup of it, that we call the elementary core of ', and denote EC(I"). The
elementary core is a retract of the ambient hyperbolic group T', and although it is
not canonical, its isomorphism type is an invariant of the ambient hyperbolic group.
The elementary core is constructed iteratively from the ambient hyperbolic group
as we describe in definition 7.5 in [Se8].

The elementary core of a hyperbolic group is a prototype for its elementary theory.

Theorem 11 ([Se8],7.6). Let T be a non-elementary torsion-free hyperbolic group
that is not a w-residually free tower, i.e., that is not elementary equivalent to a free
group. Then T is elementary equivalent to its elementary core EC(T'). Further-
more, the embedding of the elementary core EC(T) in the ambient group T is an
elementary embedding.

Finally, the elementary core is a complete invariant of the class of groups that
are elementary equivalent to a given (torsion-free) hyperbolic group.

Theorem 12 ([Se8],7.9). LetT'1,T's be two non-elementary torsion-free hyperbolic
groups. Then Ty and Tz are elementary equivalent if and only if their elementary
cores EC(T'y) and EC(T'9) are isomorphic.

Theorem 12 asserts that the elementary class of a torsion-free hyperbolic group
is determined by the isomorphism class of its elementary core. Hence, in order to be
able to decide whether two torsion-free hyperbolic groups are elementary equivalent
one needs to compute their elementary core, and to decide if the two elementary
cores are isomorphic. Both can be done using the solution to the isomorphism
problem for torsion-free hyperbolic groups.

Theorem 13 ([Se8],7.11). Let T'1,T'2 be two torsion-free hyperbolic groups. Then
it is decidable if Ty is elementary equivalent to T's.
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This article describes recent applications of algebraic geometry to non-
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describing graded algebras of small dimension.
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1. Introduction

In recent years a surprising number of significant insights and results in non-
commutative algebra have been obtained by using the global techniques of projective
algebraic geometry. This article will survey some of these results.

The classical approach to projective geometry, where one relates a commu-
tative graded domain C to the associated variety X = ProjC of homogeneous,
nonirrelevant prime ideals, does not generalize well to the noncommutative situa-
tion, simply because noncommutative algebras do not have enough ideals. However,
there is a second approach, based on a classic theorem of Serre: If C is generated
in degree one, then the categories coh(X) of coherent sheaves on X and qgrC of
finitely generated graded C-modules modulo torsion are equivalent.

Surprisingly, noncommutative analogues of this idea work very well and have
lead to a number of deep results. There are two strands to this approach. First,
since X can be reconstructed from coh(X) [21] we will regard coh(X) rather than
X as the variety since this is what generalizes. Thus, given a noncommutative
graded k-algebra R = @) R; generated in degree one we will consider qgr R as the
corresponding “noncommutative variety” (the formal definitions will be given in a
moment). In particular, we will regard qgr R as a noncommutative curve, respec-
tively surface, if dimy R; grows linearly, respectively quadratically. This analogy
works well, since there are many situations in which one can pass back and forth
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between R and qgr R [8] and, moreover, substantial geometric techniques can be
applied to study qgr R. A survey of this approach may be found in [25].

The second strand is more concrete. In order to use algebraic geometry to
study noncommutative algebras we need to be able to create honest varieties from
those algebras. This is frequently possible and such an approach will form the basis
of this survey. Once again, the idea is simple: when R is commutative, the points
of Proj R correspond to the graded factor modules M = R/I = p,.., M, for which
dimy M; = 1 for all i. These modules are still defined when R is noncommutative
and are called point modules. In many circumstances the set of all such modules is
parametrized by a commutative scheme and that scheme controls the structure of
R.

This article surveys significant applications of this idea. Notably:

o If R = @R, is a domain such that dimy R; grows linearly, then qer B =~
coh(X) for a curve X and R can be reconstructed from data on X. Thus,
noncommutative curves are commutative (see Section 4).

¢ The noncommutative analogues qgr R of the projective plane can be classified.
In this case, the point modules are parametrized by either P? (in which case
qgr R >~ P?) or by an cubic curve E C P2, in which case data on E determines
R (see Section 2).

o For strongly noetherian rings, as defined in Section 5, the point modules
are always parametrized by a projective scheme. However there exist many
noetherian algebras R for which no such parametrization exists. This has
interesting consequences for the classification of noncommutative surfaces.

We now make precise the definitions that will hold throughout this article.
All rings will be algebras over a fixed, algebraically closed base field k (although
most of the results actually hold for arbitrary fields). A k-algebra R is called
connected graded (cg) if R is a finitely generated N-graded k-algebra R = €p,.., R;
with Ry = k. Note that this forces dimy R; < oo for all . Usually, we will assume
that R is generated in degree one in the sense that R is generated by R; as a k-
algebra. If R = P, I is a right noetherian cg ring then define gr R to be the
category of finitely generated, Z-graded right R-modules, with morphisms being
graded homomorphisms of degree zero. Define the torsion subcategory, tors R, to
be the full subcategory of gr R generated by the finite dimensional modules and
write qgr R = gr R/ tors R. We write # for the canonical morphism gr R — qgr R
and set R = w(R).

One can—and often should—work more generally with all graded R-modules
and all quasi-coherent sheaves of Ox-modules, but two categories are enough.

In order to measure the growth of an algebra we use the following dimension
function: For a cg ring R = €,.., R:, the Gelfand-Kirillov dimension of R is
defined to be GKdim R = inf {a € R : dimy (37, R;) < n® for all n > 0} . Basic
facts about this dimension can be found in [17]. If R is a commutative cg algebra
then GKdim R equals the Krull dimension of R and hence equals dim Proj R + 1.
Thus a noncommutative curve, respectively surface, will more formally be defined
as qgr R for a cg algebra R with GKdim R = 2, respectively 3.
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2. Historical background

We begin with a historical introduction to the subject. It really started with
the work of Artin and Schelter [2] who attempted to classify the noncommutative
analogues R of a polynomial ring in three variables (and therefore of P?). The first
problem is one of definition. A “noncommutative polynomial ring” should obviously
be a cg ring of finite global dimension, but this is too general, since it includes the
free algebra. One can circumvent this problem by requiring that dimy R; grows
polynomially, but this still does not exclude unpleasant rings like k{z,y}/(xy) that
has global dimension two but is neither noetherian nor a domain. The solution is
to impose a Gorenstein condition and this leads to the following definition:

Definition 1 A cg algebra R is called AS-regular of dimension d if gldim R = d,
GKdim R < oo and R is AS-Gorenstein; that is, Ext'(k,R) = 0 for i # d but
Ext?(k,R) =k, up to a shift of degree.

One advantage with the Gorenstein hypothesis, for AS-regular rings of dimen-
sion 3, is that the projective resolution of k is forced to be of the form

0—R—R" - R™ S R—k—0

for some n and, as Artin and Schelter show in [2], this gives strong information
on the Hilbert series and hence the defining relations of R. In the process they
constructed one class of algebras that they were unable to analyse:

Example 2 The three-dimensional Sklyanin algebra is the algebra
Skls = Skls(a, b, ¢} = k{zo, 1,22}/ (azimip1 + bripiz; + cx?H 11 € Zs),
where (a,b,c) € P2\ F, for a (known) set F.

The original Sklyanin algebra Skly is a 4-dimensional analogue of Skls discov-
ered in [23]. Independently of [2], Odesskii and Feigin [18] constructed analogues of
Skly in all dimensions and coined the name Sklyanin algebra. See [13] for applica-
tions of Sklyanin algebras to another version of noncommutative geometry.

In retrospect the reason Skl is hard to analyse is because it depends upon an
elliptic curve and so a more geometric approach is required. This approach came
in [6] and depended upon the following simple idea. Assume that R is a cg algebra
that is generated in degree one. Define a point module to be a cyclic graded (right)
R-module M = &,., M; such that dim; M; = 1 for all ¢ > 0. The notation is
justified by the fact that, if R were commutative, then such a point module M
would be isomorphic to k[x] and hence equal to the homogeneous coordinate ring of
a point in Proj R. Point modules are easy to analyse geometrically and this provides
an avenue for using geometry in the study of cg rings.

We will illustrate this approach for S = Skl;. Given a point module M =
P M; write M; = mk for some m; € M; and suppose that the module structure
is defined by mux; = Ajjmeqq for some A;; € k. If f =3 fi;a:2; is one of the
relations for S, then necessarily mof = (3 fijAoidij)me, whence > fijAosAi; = 0.
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This defines a subvariety I' C P(S7) x P(S7) = P? x P? and clearly I' parametrizes
the truncated point modules of length three: cyclic R-modules M = My & M1 & Ms
with dimM; = 1 for 0 < i < 2. A simple computation (see [6, Section 3] or [25,
Section 8]) shows that I" is actually the graph of an automorphism ¢ of an elliptic
curve E C P2, It follows easily that I' also parametrizes the point modules. As a
morphism of point modules, ¢ is nothing more than the shift functor M = @ M;
Afzﬂl] =M &My

The next question is how to use F and o to understand Sklz. Fortunately,
one can create a noncommutative algebra from this data that is closely connected
to Sklz. This is the twisted homogeneous coordinate ring of E and is defined as
follows. Let X be a k-scheme, with a line bundle £ and automorphism o. Set
L,=LRL°® - ® Ec’n_l, where L7 = 7" L denotes the pull-back of £ along an
automorphism 7. Then the twisted homogeneous coordinate ring is defined to be
the graded vector space B = B(X,L,0) = k + ,,», By where B, = H*(X, L,,).
The multiplication on B = B(Y, L, o) is defined by the natural map

B, ®y B,, = HY(X,L,)®;c"H(X,L,,)

R

=~ HY(X,L,) @ HOX,£2") -2 HY(X, Lnim) = Buim.

The ring B has two significant properties. First, the way it has been con-
structed ensures that the natural isomorphism §; = H° (P2, Op2(1)) 2 B, induces a
ring homomorphism ¢ : S — B. With a little more work using the Riemann-Roch
theorem one can even show that B = §/¢S for some g € S3. Secondly—and this
will be explained in more detail in the next section—qgr B = coh(E). The latter
fact allows one to obtain a detailed understanding of the structure of B and the
former allows one to pull this information back to S.

To summarize, the point modules over the Sklyanin algebra Sklz are deter-
mined by an automorphism of an elliptic curve E and the geometry of E allows one
to determine the structure of Sklz. As is shown in [6] this technique works more
generally and this leads to the following theorem.

Theorem 3 [6, 26, 27] The AS-regular rings R of dimension 3 are classified. They
are all noetherian domains with the Hilbert series of a weighted polynomial ring
Elx,y, z]; thus the (x,y,2) can be given degrees (a,b,c) other than (1,1,1).
Moreover, R always maps homomorphicolly onto a twisted homogeneous coor-
dinate ring B = B(X, L, o), for some scheme X. Thus coh(X) ~ qgr B «» qgr R.

In this result, Artin, Tate and Van den Bergh [6] classified the algebras gen-
erated in degree one, while Stephenson [26, 27] did the general case.

There are strong arguments (see [11] or [25, Section 11]) for saying that the
noncommutative analogues of the projective plane are precisely the categories qgr R,
where R is an AS-regular ring with the Hilbert series 1/(1 — ¢)® of the unweighted
polynomial ring k[x,y, z]. So consider this class, which clearly includes the Sklyanin
algebra. The second paragraph of the theorem can now be refined to say that either
X = P2, in which case qgr R ~ coh(PP?), or X = E is a cubic curve in P2. Thus,
the theorem can be interpreted as saying that noncommutative projective planes are
either equal to P2 or contein o commutotive curve E.
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3. Twisted homogeneous coordinate rings

The ideas from [6] outlined in the last section have had many other applica-
tions, but before we discuss them we need to analyse twisted homogeneous coordi-
nate rings in more detail. The following exercise may give the reader a feel for the
construction.

Exercise 4 Perhaps the simplest algebra appearing in the theory of quantum
groups is the quantum (affine) plane k4(z,y] = k{z,y}/(xy — gyz), for ¢ € k™.
Prove that ky[z,y] = B(P', Op:1(1),0) where ¢ is defined by o(a: b) = (a : gb), for
(a:b) e P

For the rest of the section, fix a k-scheme X with an invertible sheaf £ and auto-
morphism o. When o = 1, the homogeneous coordinate ring B(X, L) = B(X, L, 1)
is a standard construction and one has Serre’s fundamental theorem: If £ is ample
then coh(X) =~ qgr(B). As was hinted in the last section, this does generalize to
the noncommutative case, provided one changes the definition of ampleness. Define
L to be g-ample if, for all F € coh(X), one has H(X, F & L,) =0for all ¢ > 0
and all n > 0. The naive generalization of Serre’s Theorem then holds.

Theorem 5 (Artin-Van den Bergh [7]) Let X be a projective scheme with an au-
tomorphism o and let L be a o-ample invertible sheaf. Then B = B(X,L,0) is a
right noetherian cg ring such that qgr(B) ~ coh(X).

This begs the question of precisely which line bundles are o-ample. A simple
application of the Riemann-Roch Theorem shows that

if X is a curve, then any ample invertible sheaf is o-ample, (3.1)

and the converse holds for irreducible curves. This explains why Theorem 5 could
be applied to the factor of the Sklyanin algebra in the last section.

For higher dimensional varieties the situation is more subtle and is described
by the following result, for which we need some notation. Let X be a projective
scheme and write Ay, (X) for the set of Cartier divisors of X modulo numerical
equivalence. Let o be an automorphism of X and let P, denote its induced action
on Al,m(X). Since AL, (X) is a finitely generated free abelian group, P, may
be represented by a matrix and P, is called quasi-unipotent if all the eigenvalues of

this matrix are roots of unity.

Theorem 6 (Keeler [15]) If o be an automorphism of o projective scheme X then:
(1) X has a o-ample line bundle if and only if P, is quasi-unipotent. If P, is
quasi-unipotent, then all ample line bundles are a-ample.
(2) In Theorem 5, B is also left noetherian.

There are two comments that should be made about Theorem 6. First, it is
standard that GKdim B(X, L) = 1 + dim X, whenever £ is ample. However, it
can happen that GKdim B(X, £,0) > 1 + dim X. Secondly, one can still construct
B(X, L,0) when L is ample but P, is not quasi-unipotent, but the resulting algebra
is rather unpleasant. Indeed, possibly after replacing £ by some £®", B(X,L, o)
will be a non-noetherian algebra of exponential growth. See [15] for the details.
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4. Noncommutative curves and surfaces

As we have seen, twisted homogeneous coordinate rings are fundamental to the
study of noncommutative projective planes. However, a more natural starting place
would be cg algebras of Gelfand-Kirillov dimension two since, as we suggested in the
introduction, these should correspond to noncommutative curves. Their structure
is particularly simple.

Theorem 7 [4] Let R be a cg domain of GK-dimension 2 generated in degree one.
Then there exists an irreducible curve Y with automorphism o and ample invertible
sheaf L such that R embeds into the twisted homogeneous coordinate ring B(Y, L, o)

with finite index. Bquivalently, R, 2 H(Y, L& L @ - ® E”n_l) forn > 0.
By (3.1) we may apply Theorem 5 to obtain part (1) of the next result.

Corollary 8 Let R be as in Theorem 7. Then:

(1) R is a noetherian domain with qgr R ~ coh(Y'). In particular, qgr R ~ qgr C
for the commutative ring C = B(Y, L,1d).

(2) If o] < oo then R is o finite module over its centre. If o] = oo, then R is a
primitive ring with at most two height one prime ideals.

If R is not generated in degree one, then the analogue of Theorem 7 is more
subtle, since more complicated algebras appear. See [4] for the details. One should
really make a further generalization by allowing R to be prime rather than a domain
and to allowing k to be arbitrary (since this allows one to consider the projective
analogues of classical orders over Dedekind domains). Theorem 7 and Corollary 8
do generalize appropriately but the results are more technical. The details can be
found in [3].

Although these results are satisfying they are really only half of the story.
As in the commutative case one would also like to define noncommutative curves
abstractly and then show that they can indeed be described by graded rings of the
appropriate form. Such a result appears in [19] but to state it we need a definition.

Let C be an Ext-finite abelian category of finite homological dimension with
derived category of bounded complexes D?(C). Recall that a cohomological functor
H : D*(C) — mod(k) is of finite type if, for A € DP’(C), only a finite number
of the H(A[n]) are non-zero. The category C is saturated if every cohomological
functor H : D?(C) — mod(k) of finite type is of the form Hom(A, —) (that is, H is
representable). If X is a smooth projective scheme, then coh(X) is saturated [10],
80 it is not unreasonable to use this as part of the definition of a “noncommutative
smooth curve.”

Theorem 9 (Reiten-Van den Bergh [19, Theorem V.1.2]) Assume that C is a con-
nected soturated hereditary noetherian category. Then C has one of the following
forms:

(1) mod(A) where A is an indecomposable finite dimensional hereditary algebra.
(2) coh(O) where O is o sheaf of hereditary Ox -orders over a smooth connected
projective curve X.
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It is easy to show that the abelian categories appearing in parts (1) and (2) of
this theorem are of the form qgr R for a graded ring R with GKdim R < 2, and so
this result can be regarded as a partial converse to Theorem 7. A discussion of the
saturation condition for noncommutative algebras may be found in [12].

If one accepts that noncommutative projective curves and planes have been
classified, as we have argued, then the natural next step is to attempt to classify all
noncommutative surfaces and this has been a major focus of recent research. This
program is discussed in detail in [25, Sections 8-13] and so here we will be very brief.
For the sake of argument we will assume that an (irreducible) noncommutative
surface is qgr R for a noetherian cg domain R with GKdim R = 3, although the
precise definition is as yet unclear. For example, Artin [1] demands that qgr R
should also possess a dualizing complex in the sense of Yekutieli [30]. Nevertheless
in attempting to classify surfaces it is natural to mimic the commutative proof:

(a) Classify noncommutative surfaces up to birational equivalence; equivalently
classify the associated graded division rings of fractions for graded domains R
with GKdim R = 3. Artin [1, Conjecture 4.1] conjectures that these division
rings are known.

(b) Prove a version of Zariski’s theorem that asserts that one can pass from any
smooth surface to a birationally equivalent one by successive blowing up and
down. Then find minimal models within each equivalence class.

Van den Bergh has created a noncommutative theory of blowing up and down
[28, 29] and used this to answer part (b) in a number of special cases. A key
fact in his approach is that (after minor modifications) each known example of a
noncommutative surface qgr R contains an embedded commutative curve C, just as
qgr(Skls) ¢ coh(E) = E in Section 2. This is important since he needs to blow up
points on that subcategory. In general, define a point in qgr R to be # (M) for a
point module M € gr R. Given such a point p, write p = w(R/I} = R/Z. Mimicking
the classical situation we would like to write

B=RoIol’®- -, (4.1)

and then define the blow-up of qgr R to be the category qgr B of finitely generated
graded B-modules modulo those that are right bounded. However, there are two
problems. A minor one is that 7 needs to be twisted to take into account the shift
functor on qgr R. The major one is that I is only a one-sided ideal of R, and so
there is no natural multiplication on B. To circumvent these problems, Van den
Bergh [28] has to define B in a more subtle category so that it is indeed an algebra.
It is then quite hard to prove that qgr B has the appropriate properties.

5. Hilbert schemes

Since point modules and twisted homogeneous coordinate rings have proved
so useful, it is natural to ask how generally these techniques can be applied. In
particular, one needs to understand when point modules, or other classes of modules,
can be parametrized by a scheme. Indeed, even for point modules over surfaces the
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answer was unknown until recently and this is obviously rather important for the
program outlined in the last section.

The best positive result is due to Artin, Small and Zhang [3, 9], for which we
need a definition. A k-algebra R is called strongly noetherian if R®y, C is noetherian
for all noetherian commutative k-algebras C.

Theorem 10 (Artin-Zhang [9, Theorems E4.3 and E4.4]) Assume that R is a
strongly noetherian, cg algebra and fix h(t) = > hit' € Kk[[t]]. Let C denote the
set of cyclic R-modules M = R/I with Hilbert series har(t) = Y dimy (M;)tt equal
to h(t). Then:

(1) C is naturally parametrized by a (commutative) projective scheme.
(2) There exists an integer d such that, if M = R/I € C, then I is generated in
degrees < d as a right ideal of R.

In particular, if R is a strongly noetherian cg algebra generated in degree one,
then the set of point modules is naturally parametrized by a projective scheme P.
In this case one can further show that the shift functor M — M3 [1] induces an
automorphism o of P. Thus one can form the corresponding twisted homogeneous
coordinate rings B = B(P, L, ¢) and for an appropriate line bundle £ there will exist
a homomorphism ¢ : R — B. Determining when ¢ is surjective is probably quite
subtle. This result cannot be used to shorten the arguments about the Sklyanin
algebra Skls given in Section 2, since one needs to use B(E, L, o) to prove that Skls
is noetherian.

Although we have concentrated on point modules, more general classes of
modules are also important. An example where line modules (modules M with the
Hilbert series of k[z,y]) are needed in a classification problem appears in [22].

How strong is the strongly noetherian hypothesis? Certainly most of the
standard examples of noetherian cg algebras (including the Sklyanin algebras) are
strongly noetherian (see [3, Section 4]) and so one might hope that this is always
the case. But in fact, as Rogalski [20] has shown, cg noetherian algebras that are
not strongly noetherian exist in profusion.

These examples are constructed as subrings of B = B(P", Op»(1),0) for an
appropriate automorphism . Given ¢ € Aut(P”), pick ¢ € P” and set € = {¢; =
07%(c) : i € N}. Then C is called critically dense if, for any infinite subset D C C,
the Zariski closure of D equals P™. This is not a particularly stringent condition,
since it holds for a generic set of (o, ¢) € Aut(P™) x P™. Corresponding to ¢ one has
the point module M = B/V B for some codimension one subspace V' = V{(c) C B;.
Rogalski’s example is then simply S(o,¢) = k(V) C B, and it has remarkable
properties:

Theorem 11 (Rogalski [20]) Keep the above notation. Assume that o € Aut(P")
and ¢ € P" for n > 2 are such that C is critically dense. Then:

(1) S = S(o,¢) is always noetherian but never strongly noetherian.

(2) The point modules for S are not naturally parametrized by a projective scheme.

(3) S satisfies the condition x1 but not the condition 2, as defined below. More-
over, qgr S has finite cohomological dimension.
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(4) The category qgr S is not Ext-finite; indeed if S = n(S) € qgr S, then H'(S) =
EXtégrs(S, 8) is infinite dimensional.

Some comments about the theorem are in order. First, the point modules for
S = 8(o,c) are actually parametrized by an “infinite blowup of P in the sense
that they are parametrized by P™ except that for each p € C one has a whole family
P, of point modules parametrized by P*~!. In contrast, the points in qgr$ are
actually parametrized by B since, if M, N € Pp, then #(N) = #(M) in qgr S.

The conditions y; in part (3) are defined as follows: A cg ring R satisfies x,,
if, for each 0 < j < n and each M € grR, one has dimy Extj(k, M) < oco. The
significance of x; is that, by [8, Theorem 4.5], one can reconstruct S = S(o, ¢) from
qgr S and so the peculiar properties of S are reflected in qgr S. In particular, part
(4) implies that S does not satisfy yo. The significance of part (4) is that, for all
the algebras R considered until now, Serre’s finiteness theorem holds in the sense
that H'(F) is finite dimensional for all F € qgr R and all i.

Here is the simplest example of S(o,¢). Pick algebraically independent ele-
ments p,q € k and define 0 € Aut(P?) by o(a:b:c) = (pa:gb:c). fe=(1:1:1) € P?
then C is critically dense and an argument like that of Exercise 4 shows that

B = k{z,y,z}/(zx — pxz, 2y — qyz, yx —pq 'ay) and S(o,c) = k{y —z, z — ).

This example was first considered by Jordan [14] who was able to parametrize the
point modules for S(o,¢) but was unable to determine if the ring was noetherian.

Rogalski’s examples show that, even for surfaces, the picture is much more
complicated than the discussion of the last section would suggest. Yet even these
examples appear in a geometric framework; indeed they can be constructed as blow-
ups of P” if one uses the naive approach of (4.1).

This works as follows. As before, assume that (o,¢) € Aut(P?)xP"* forn > 21is
such that C is critically dense. In coh(P") let Z, denote the ideal sheaf corresponding
to the point ¢. If £ is a coherent module over O = Op=, we form a bimodule L,
such that as a left module, £, = £ but the right action is twisted by o: if s € £, (U)
and a € Op=(cU), then sa € L,(U) is defined by the formula sa = a”s. See [7,
pp.252-3] for a more formal discussion. Now set J = Z, ®p O(1), € O(1), and let
B=B(o,c)= O J®J?® -, where J" is the image of 7" in O(1)%" = O(n)yn.
This does not define a sheaf of rings in the usual sense since we are “playing a game
of musical chairs with the open sets [7, p.252].” Nevertheless 5 does have an natural
graded algebra structure and so we can form qgr B in the usual way. If ¢ = 1 then
qer B is simply coh(X), where X is the blow-up of P™ at ¢. In contrast, Keeler,
Rogalski and the author have recently proved:

Theorem 12 [16] Pick (o,¢) € Aut(P") x P for n > 2 such that C is critically
dense. Then B = B(o,¢) is noetherian. Moreover qgr(B) =~ qgr S(o,¢).

Thus, qgr S(e, ¢} is nothing more than the (noncommutative) blow-up of P” at
a point! The differences between this blow-up and Van den Bergh’s are illustrative.
Van den Bergh had to work hard to ensure that the analogue of the exceptional
divisor really looks like a curve. Indeed much of his formalism is required for just
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this reason. In contrast, in Theorem 12 the analogue of the exceptional divisor
(which in this case equals B/(Z._,)B) is actually a point. This neatly explains the
structure of the points in qgrS(o, ¢); they are indeed parametrized by P" although
the point corresponding to ¢ (and hence the shifts of this point, which are nothing
more than the points corresponding to the ¢;) are distinguished.
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Deformations of Chiral Algebras

Dimitri Tamarkin*

Abstract

We start studying chiral algebras (as defined by A. Beilinson and V. Drin-
feld) from the point of view of deformation theory. First, we define the notion
of deformation of a chiral algebra on a smooth curve X over a bundle of local
artinian commutative algebras on X equipped with a flat connection (whereas
‘usual’ algebraic structures are deformed over a local artinian algebra) and we
show that such deformations are controlled by a certain *-Lie algebra g. Then
we try to contemplate a possible additional structure on g and we conjecture
that this structure up to homotopy is a chiral analogue of Gerstenhaber al-
gebra, i.e. a coisson algebra with odd coisson bracket (in the terminology of
Beilinson-Drinfeld). Finally, we discuss possible applications of this structure
to the problem of quantization of coisson algebras.

2000 Mathematics Subject Classification: 14, 18.

1. Introduction

Chiral algebras were introduced in [1]. In the same paper the authors intro-
duced the classical limit of a chiral algebra which they call a coisson algebra and
posed the problem of quantization of coisson algebras. The goal of this paper is to
show how the theory of deformation quantization (=the theory of deformations of
assoclative algebras of a certain type) in the spirit of [3] can be developed in this
situation.

Central object in the theory of deformations of associative algebras is the
differential graded Lie algebra of Hochschild cochains. It turns out that in our
situation it is more appropriate to use what we call pro-*-Lie-algebras rather than
usual Lie algebras (the notion of *-Lie algebra was also introduced in [1]). Next, we
compute the cohomology of the pro-*-Lie-algebra controlling chiral deformations of
a free commutative Dy-algebra SK, where K is a locally free Dx-module.

Next, we state an analogue of Gerstenhaber theorem which says that the coho-
mology of the deformation complex of an associative algebra carries the structure of
a Gerstenhaber algebra. We give a definition of a chiral analogue of Gerstenhaber

*Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, MA 02138,
USA. E-mail: tamarkin@math.harvard.edu
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algebra and define the operations of this structure on deformation pro-*-Lie algebra
of a chiral algebra.

Finally, mimicking Kontsevich’s formality theorem, we formulate the formality
conjecture for the deformation pro-*-Lie algebra of the chiral algebra S K mentioned
above and claim that this conjecture implies a 1-1 correspondence between defor-
mations of SK and coisson brackets on SK.

2. Chiral algebras and their deformations

2.1. Chiral operations
In [1] chiral operations are defined as follows. Let X be a smooth curve and

M;,N Dx-modules. Denote by i, : X - X7 the diagonal embedding and by
Jn 2 Up = X the open embedding of the complement to all diagonals in X, Set

Py (Mi, ..., My; N) = homopy, (juj" (M1 B -~ 8’ My,), ineN). (1)

In the case n = 0 set
Pch(]W) = HO(]W KDy Ox)
Let M be a fixed D x-module. Write

Papyay () = Py (M, M, ..., M; M),

It is explained in [1] that Pas is an operad.

2.1.1. Chiral algebras

Let lie be the operad of Lie algebras. A chiral algebra structure on M is a
homomorphism lie —» Py;. We have a standard chiral algebra structure on M = wx.
A chiral algebra M is called unital if it is endowed with an injection wy — M of
chiral algebras.

2.2. Deformations

2.2.1. Agreements

To simplify the exposition, we will only consider unital chiral algebras M with
the following restrictions: we assume that X is affine and the D x-module M can be
represented as M = wx & N, where N =2 E ®p, Dx for some locally free coherent
sheaf E.

2.2.2. Nilpotent Dx-algebras

Let E be a left Dx-module equipped with a commutative associative unital
product E® E — E. Let u : Ox -+ E be the unit embedding. Call E nilpotent if
there exists a Dyx-module splitting s : £ = M & Ox and a positive integer N such
that the N-fold product vanishes on M. M is then a unique maximal Dx-ideal in
E.
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2.2.3. Deformations over a nilpotent Dx-algebra

Let E be a nilpotent Dyx-algebra with maximal ideal M. We have a notion
of E-module and of an E-linear chiral algebra . For any Dx-module M, Mg =
M ®o, E is an E-module.

Let M be a chiral algebra. An E-linear unital chiral algebra structure on Mg
is called deformation of M over E if the induced structure on Mg/ M.Mgp = M
coincides with the one on M. Denote by G (E) the set of all isomorphism classes
of such deformations.

2.3. The functor Gj; and its representability

It is clear that E +~» G (E) is a functor from the category of nilpotent Dx-
algebras to the category of sets. In classical deformation theory one usually has a
functor from the category of (usual) local Arminian (=nilpotent and finitely dimen-
sional) algebras to the category of sets and one tries to represent it by a differential
graded Lie algebra. In this section we will see that in our situation a natural sub-
stitute for a Lie algebra is a so-called *-Lie algebra in the sense of [1]. More precise,
given a *-Lie algebra g, we are going to construct a functor Fy from the category of
nilpotent D x-algebras to the category of sets. In the next section we will show that
the functor Gy is 'pro-representable’ in this sense. We will construct a pro-*-Lie
algebra defy; (exact meaning will be given below) and an isomorphism of functors
GM and FdefM .

2.3.1. *-Lie algebras
[1] Let g;, N be right Dx-modules. Set

P*(Eu,---,gn;N) := homp, (91 X "'ggmin*N)a

and Pg(n) := P(g,...,8;9). It is known that P.q is an operad. A *-Lie algebra
structure on g is by definition a morphism of operads f : lie — P.q4. Let b € lie(2)
be the element corresponding to the Lie bracket. We call f(b) € P,4(2) the *-Lie
bracket.

2.3.2.

Let g be a *-Lie algebra and A be a commutative Dx-algebra. introduce a
vector space g{A) = g ®p, A. This space is naturally a Lie algebra. Indeed, we
have a *-Lie bracket g X g — i0.g. Multiply both parts by 4 X A:

(g X g) BDxxx (A X A) > 120 QD x (A X A) (*)

The left hand side is isomorphic to g(4) ® g(A4). The right hand side is isomorphic
to g ®p, (A ®o, A). Thus, (*) becomes:

8(4) ® g(4) = gy (A®ox A).
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The product on A gives rise to a map
g ®DX (‘4 ®OX ‘4) ] ®DX A=z 9(44),

and we have a map g(A4) ® g(4) — g(4). It is straightforward to check that this
map is a Lie bracket.

2.3.3.

Let now g be a differential graded *-Lie algebra and let A be a differential
graded commutative Dx-algebra. Then g(A) := g ®p, A is a differential graded
Lie algebra.

2.3.4.

Let A be a nilpotent Dx algebra and M 4 C A be the maximal nilpotent ideal.
Then g(M 4) is a nilpotent differential graded Lie algebra.

2.3.5.

Recall that given a differential graded nilpotent Lie algebra n, one can con-
struct the so called Deligne groupoid G,. Its objects are all x € n' satisfying
dx + [z,2]/2 = 0 (so called Maurer-Cartan elements). The group exp(n®) acts on
the set of Maurer-Cartan elements by gauge transformations. G, is the groupoid
of this action. Denote by D, the set of isomorphism classes of this groupoid. If
[ :n— misamap of differential graded Lie algebras such that the induced map on
cohomology H*(f) is an isomorphism for all i > 0, then the induced map Dy — Dy,
is a bijection. If n,m are both centered in non-negative degrees, then the induced
map G, — Gy, 18 an equivalence of categories. Since in our situation we will deal with
Lie algebras centered in arbitrary degrees, we will use Dy rather than groupoids.

2.3.6.

Set Far(A) = Dgiar,)- It is a functor from the category of nilpotent Dx-
algebras to the category of sets.

2.4. Pro-*-Lie- algebras

*_Lie algebras are insuflicient for description of deformations of chiral algebras.
We will thus develop a generalization. We need some preparation

2.4.1. Procategory

For an Abelian category C consider the category pro C whose objects are
functors I — C, where I is a small filtered category. Let Fy : I — C, k= 1,2 be
objects. Set

hOm(Fl,Fg) := liminv hehlimdir hhelh (F1 (il), Fg(’&g))

The composition of morphisms is naturally defined. One can show that pro C is
an Abelian category. Objects of pro C are called pro-objects.
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2.4.2. Direct image of pro-D-modules

Let M : I — Dy — mod be a pro-object, where Y is a smooth algebraic
variety and let f : Y — Z be a locally closed embedding. Denote the composition
feoM : I — Dy —mod simply by f.M. We will get a functor f, : pro Dy —mod —
pro Dz — mod.

2.4.3. Chiral and *-operations

For N, M; € pro Dx —mod we define P, (M, ..., My, N), Pop, (My,..., My, N)
by exactly the same formulas as for usual Dx-modules.

2.4.4. pro-*-Lie algebras

*.Lie algebra structure on a pro-Dx-module is defined in the same way as for
usual Dx-modules.

2.4.5.

For a pro-right Dx-module I — M and a left Dx-module L define a vector
space M @p, L = liminv ;(M ®p, L). For a *-Lie algebra g and a commutative
Dx-algebra a, g ®p, a is a Lie algebra. Construction is the same as for usual *-Lie
algebras. Similarly, we can define the functor ¥, from the category of nilpotent
Dx-algebras to the category of sets.

2.5. Representability of GG;; by a pro-*-Lie algebra

We are going to construct a differential graded *-pro-Lie algebra g such that
F, is equivalent to G . We need a couple of technical lemmas.

2.5.1.

Let Y be a smooth affine algebraic varieties and U,V be right Dy-modules.
Let Uy, € A be the family of all finitely generated submodules of U. Denote
prohom(U, V') = liminv , (U,, V') the corresponding pro-vector space.

2.5.2.

Let ¢ : X — Y be a closed embedding, let B be a Dy-module and M be a
Dx-module. Then
prohomy,  (B,i,(M ®0x Dx))

is a pro-Dx-module. Denote it by P(B,M). Let now ¥ = X"

Lemma 2.1 Assume that B = jp.ji(E @oyn Dx»), where E is locally free and
coherent. For any left Dx -module L we have

prohom(B,i,.(M ®o, L)) = P(B,M) @p, L.
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Proof. Let F = j,.jnE. We have B = F ®o,, Dx». Note that F =
limdir F,, where F, runs through the set of all free coherent submodules of F.
We have

P(B, M) = liminv homp., (Fx ©0,» Dxn,ins(M ®0y L))
= liminv F @0 ,n ine(M Qo Dx) @py L

= liminv homey, (Fa,in (M ®0, Dx)) @py L

= prohom(B, i,.(M ®o, Px)) @p, L.

2.5.3.

Let B, M be as above. We have a natural morphism

n

i i P(B, M) = P(B, M) @p, Dy — prohom(B, M ®p, ©(Dx)%0x ).

The above lemmas imply that ¢ is an isomorphism.

2.5.4.
Let M be a right Dx-module. Set
Up(n) =Pe,(M,M,...,M; M @ Dx) := prohom(jn*j;;M'X",in*(M ®Dx)),
it is a right pro-Dx-module. We will endow the collection Ups with the struc-
ture of an operad in *-pseudotensor category. This means that we will define the
composition maps

0; € P*(UM(n)aUM(m)aUM(n +m - 1))?

i=1,...,n+m -1, satisfying the operadic axioms. We need a couple of technical
facts.

2.5.5.

Let ip, : X — X" be the diagonal embedding and p}, : X" — X be the
projections. Lemma 2.5.3. implies that

Lemma 2.2
iUt (k) = Pch(]w,...,]w; M ®p, D}e}").

Lemma 2.3 For any Dx-modules M, S we have an isomorphism

e (M) @ pirS 2 i (M ® S).
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2.5.6.

We are now ready to define the desired structure. In virtue of 2.3 we have
natural maps:

Peh(Mi, ..., My; N) = Popy (M. .., M; @ Dx,..., My; (N ® Dx)).
Thus, we have maps:
Pen(My, ..., My;(N; @ Dx)) R P (N1, ... Ny (K @ Dx )
fpch(ﬂfl,,ﬂfn,(Nz®Dx))
Epch(Nl,---,Ni®DX,---,Nm§(K®DX)®DX)
Pch(Nl,---Ni—l,Afl,---,Afn,Ni-}-l,---,Nm;K@DX @Dx)
v Pen (N1, ... N1, My, ..., My, Ny, ..., Ny, K ® Dx).

{

R 4

By substituting A instead of all N;, M, K, we get the desired insertion map
0; : Upr(n) RUps(m) = d0.Upr(n 4+ m — 1).

2.5.7.

Similarly, we have insertion maps
o; : Un(n) @ Pepar(m) = Un(n +m — 1),

and
i : Pepyar(n) @ Unr(m) = Upr(n +m —1).

2.5.8.
Let O be a differential graded operad. Set

gon = O(n)sna

and go = @ng(’),n[l - n]
Let p, : O(n) — go » be the natural projection, which is the symmetrization
map. Define the brace (z,y) = 2{y}, 90,» ® g0,m —* 80,n+m-1 as follows.

a{y} = npn(o1(x,y)) (2)
and the bracket
[z, 9] = a{y} — (=1 Wy{a}. (3)
We see that [,] is a Lie bracket. Thus, ge is a differential graded Lie algebra. For an
operad O denote by O’ the shifted operad such that the structure of an O'-algebra
on a complex V' is equivalent to the structure of an O-algebra on a complex V[1].
Thus, O'(n) = O(n) ® ey[1 — n], where €, is the sign representation of S,,.

Let O be an operad of vector spaces. The set of Maurer-Cartan elements of
@ger is in 1-1 correspondence with maps of operads lie — O.

Assume that O(1) is a nilpotent algebra (" = 0 for any z € O(1)). Let A be
0O(1) with adjoined unit and let A* be the group of invertible elements. A* acts
on O by automorphisms. Therefore, A* acts on the set of maps lie — O. The
groupoid of this action is isomorphic to the Deligne groupoid of geo-.
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2.5.9.

Similarly, let A be a *-operad. Then formula 3 defines a Lie-* algebra g 4. We
have natural action of a usual pro-Lie algebra 8P .y (M) O 8 pro *_Lie algebra gy,

by derivations. The chiral bracket b € g}, (M) satisfies [b, b] = 0. Therefore, the
c

bracket with b defines a differential on gy,,. Denote this differential graded *-Lie
algebra by 0.

2.5.10.

To avoid using derived functors, we will slightly modify 947. Recall that M =
wx @ N, where N is free. Let

PEEA(M,..., M; M ©Dx) C Py (M, ..., M; M © Dx)
be the subset of all operations vanishing under all restrictions
PenM,... . M; M @Dx) = Pep,(M,..., M,wx,M,...,M; M ® Dx).
Let defy; C 0p7 be the submodule such that
defys = @, (PEEA(M, ..., M; M ® Dx) ® €,)%[1 - n].

We see that defy is a *-Lie differential subalgebra of 0.

2.5.11.

Proposition 2.4 The functors Gas and Fyef,, are canonically isomorphic.

2.6. Example

Let K be a free left Dx-module. Let T'K = K¥°xi. The symmetric group
S; acts on the Dx-module TUK; let S*K = (T'K)% be the submodule of invariants
and SK = ®2,5'K. SK is naturally a free commutative Dy-algebra and, hence,
SK” := SK ® wy is a chiral algebra. We will compute the cohomology of the
Dx-module defsgr-. Let SoK = @22, S'K. We have:

defsir = ©p(Pepy (SoK"[1], ..., SoK"[1]; SK™  Dx)[1])%".

On the other hand, denote by 2 := SK® K. Consider ) as an S K-Dx-module
of differentials of SK. We have the de Rham differential D : Sg K — ). We have a
through map

en s Pep (K17, K[1)", SK[1])% = PSE(QQ),..., Q1] SK[1]")>
B P4 (SoK[1]",. .., SoK[1]", SK[1]")5",

where PcSﬁ{ stands for S K-linear chiral operations. Denote by the same letter the
induced map
en: Pop (K1), ..., K([1]", SK[1]")% — defsk.
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Proposition 2.5 (1) de, =0;
(2) ¢, induces an isomorphism

P (K[A),..., K1), SK[1]")5 — H" " (defsx)[1 — nl.

2.6.1.

For a chiral algebra M denote by Hys the graded Lie algebra of cohomology
of def,,.

2.6.2.
Assume that K is finitely generated. Let

KY = hom(K,Dx) ® (wx) ™!
be the dual module. Then

Hsgr = Op(Pu(K",...,K";SK"®Dx)en)* [1 —n] = ©n(A"KY @0, SK)"[1-n].

2.6.3.

We will postpone the calculation of the *-Lie bracket on Hgg+ until we show
in the next section that Hjs has in fact a richer structure.

3. Algebraic structure on the cohomology of the
deformation pro-*-Lie algebra

We will keep the agreements and the notations from 2.2.1..

3.1. Cup product

We will define a chiral operation U € P}, defM[—l](Q) and then we will study
the induced map on cohomology.

J3.1.1.

Recall that
defy[-1] = @ (an)®",

where
an = Pep(N[1],..., N[1]; M @ Dx).

Let i, : X — X" be the diagonal embedding and let p* : X" — X U, C X" be
the complement to the union of all pairwise diagonals plz = p’z and j, : U, = X,
be the open embedding. Let U, ,, C X"*™ be the complement to the diagonals
plr = pla, where 1 <i<n,n+1<j<n+mand jum : Upm — X™™ be the
embedding
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Compute

J2xJ5 (an B ap,) = hom(]n*]:z(N[l]'Xln) X e Jo (N1 B
(in X im)x(jo2uji (M @ Dx B M © Dx)

= hom(]n*]Z(N[l]Xln) X Jm*]m(N[l] ™) R Ju (Un, )s
(in X im)x(Joxjs (M @ Dx B M ® Dx) ® j2O(Un,m)))

= hom(jn+m*j;+m(N[1])|Xln+ma (Zn x Zm)*(JQ*J’S(Af X Af)) @ DXXX))'

)?
)

Taking the composition with the chiral operation on M, we obtain a chiral
operation

Joxds (an R am) — hom(jn+m*j;+m(N[1])®n+main+m*(]w®DX ®Dx)) = t2ulntm,

Sntm
which induces a chiral operation from Pch( SaaSmia,"*™) and, hence, an opera-

tion U € (P, (defas[—1], defy [—1]; defas[—1]))%2. .

3.1.2.

To investigate the properties of this operation, consider the brace *-operation
{} € P.(defyr, defys; defas) defined by formula (2). Let

r: Pch(fll,zilg; 443) -y P, (441,442; 443)
be the natural map
Proposition 3.1 d(-{}) = r(U).

Let Uy, be the induced operation on Hps[—1]. The above proposition implies
that r(Ug) = 0. In virtue of exact sequence

0 — hom((A1)' ® (42), (A3)") = Py (A1, A; A3) 5 Pu(Aq, A2; A3),

Up, defines a Dx-commutative product Har[~1] ® Hag[~1] — Hag[~1], denoted by
the same letter.

3.1.3.

Proposition 3.2 Uy, is associative.

3.1.4. Leibnitz rule

We are going to establish a relation between U and -{}. This relation is similar
to the one of coisson algebras. Our exposition will mimic the definition of coisson
algebras from [1].
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3.1.5.
!
Let A4; be right Dx-modules. Write A1 @ Ay := (Al @ A5)"; P(A1, A2; 43) ==
! !
hom(A4; @ Az, A3). We have (A B) =i3(BRC);

!

inn(A © B) = s A ® p}(B).

We have a map
!
¢: P.(A1,A; B)® B(B,C; D) — P.(A1, A2 ® C; D)

!
defined as follows. Let v : 41 ® As — 9. Band m: B® C - D. Put

!

1 !
c(u,v) : zﬁlg(xﬁg & C) = (141&142)@}9;(01) b 22*B®p;(01) =~ Zg*(B & C) — ZQ*D

J3.1.6.

Denote ,
e = C([],Uh) S P*(HM,HM ® HM,HM)

! !
Let T : Hy @ Hy — Hyr @ Hyy be the action of symmetric group and let e’ be
!
the composition with 7. Let f € P.(Hy, Hy © Hpp; Hyr) be defined by:

!
Proposition 3.3 We have f = e+ e”.

In other words, the cup product and the bracket satisfy the Leibnitz identity.

3.1.7.

We see that Hjys has a pro-*-Lie bracket, (Hys)![1] has a commutative Dy-
algebra structure, and these structures satisfy the Leibnitz identity. Call this struc-
ture a c-Gerstenhaber algebra structure. Thus, our findings can be summarized as
follows.

Theorem 3.4 The cohomology of the deformation pro-*-Lie algebra of a chiral
algebra is naturally a pro-c-Gerstenhaber algebra.

3.2. Example M = (SK)"

We come back to our example 2.6.. For simplicity assume K is finitely gener-
ated free Dx-module. We have seen in this case that

(Hy)' [-1] =2 @ AN KY @ SE[~i] = S(KV[-1] & K).

Proposition 3.5 The cup product on Hyp coincides with the natural one on the
symmetric power algebra.
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3.2.1.

To describe the bracket it suffices to define it on the submodule of generators
G = (KY[-1] @ K)". Define [| € P.(G,G; Hp) to be zero when restricted onto
K"®R K" and KY"[-1] ® KV"[—-1]. Restriction onto K X KV[~1] takes values in
wx C Hyr and is given by the canonic #-pairing from [1]

(KYRK) = iswyx.

Recall the definition. We have KV" = hom(K",Dx ® wyx). For open U,V C X we
have the composition map

KU) @ KY(V) = Dx @wx(UNV) 2 igwx (U x V)

which defines the pairing. This uniquely defines the *-Lie bracket.

4. Formality Conjecture

Following the logic of Kontsevich’s formality theorem, one can formulate a
formality conjecture in this situation.

4.1. Quasi-isomorphisms

A map f : g — b of differential graded pro-*-Lie algebras is called quasi-
isomorphism if it induces an isomorphism on cohomology. Call a pro-*-Lie algebra
perfect if such is its underlying complex of pro-vector spaces. The morphism f is
called perfect quasi-isomorphism if it is a quasi-isomorphism and both g and h are
perfect.

Two perfect pro-*-lie algebras are called perfectly quasi-isomorphic if there
exists a chain of perfect quasi-isomorphisms connecting g and §.

Conjecture 4.1 defsg and Hsg are perfectly quasi-isomorphic.

The importance of this conjecture can be seen from the following theorem:

Theorem 4.2 Any chain of perfect quasi-isomorphisms between defgg- and Hgg~
establishes a bijection between the set of isomorphism classes of A-linear coisson
brackets on SK™ ® A which vanish modulo the maximal ideal M4 and the set of
isomorphism classes of all deformations of the chiral algebra SK” over A.

References

[1] A. Beilinson, V. Drinfeld, Chiral Algebras.

[2] W. Goldman, J. Millson, Deformations of Flat Bundles over Khler Manifolds,
Geometry and Topology, 129-145, Lect. Notes in Pure and Applied Math. 105
Dekker NY (1987).

[3] M. Kontsevich, Quantization of Poisson Manifolds, preprint.



Section 3. Number Theory

J. W. Cogdell, 1. 1. Piatetski-Shapiro: Converse Theorems,

Functoriality, and Applications to Number Theory ..................... 119
H. Cohen: Constructing and Counting Number Fields ....................... 129
Jean-Marc Fontaine: Analyse p-adique et Représentations Galoisiennes .. ... 139

A. Huber, G. Kings: Equivariant Bloch-Kato Conjecture and Non-abelian

Twasawa Main Conjecture ....... ... ..o e 149
Kazuya Kato: Tamagoewa Number Conjecture for zeta Values ............... 163

Stephen S. Kudla: Derivatives of Eisenstein Series and Arithmetic

GEOMEBETY oo et e e e e e e 173
Barry Mazur, Karl Rubin: Elliptic Curves and Class Field Theory .......... 185
Emmanuel Ullmo: Théorie Ergodique et Géométrie Arithmétique ........... 197

Trevor D. Wooley: Diophantine Methods for Exponential Sums, and
Exponential Sums for Diophantine Problems ......... ... ............... 207



ICM 2002 - Vol. 11 - 119-128

Converse Theorems, Functoriality,
and Applications to Number Theory

J. W. Cogdell* 1. I. Piatetski-Shapiro!

Abstract

There has been a recent coming together of the Converse Theorem for
GL, and the Langlands-Shahidi method of controlling the analytic properties
of automorphic L-functions which has allowed us to establish a number of new
cases of functoriality, or the lifting of automorphic forms. In this article we
would like to present the current state of the Converse Theorem and outline
the method one uses to apply the Converse Theorem to obtain liftings. We will
then turn to an exposition of the new liftings and some of their applications.

2000 Mathematics Subject Classification: 11F70, 22E55.
Keywords and Phrases: Automorphic forms, L-functions, Converse theo-
rems, Functoriality.

1. Introduction

Converse Theorems traditionally have provided a way to characterize Dirichlet
series associated to modular forms in terms of their analytic properties. Most
familiar are the Converse Theorems of Hecke and Weil. Hecke first proved that L-
functions associated to modular forms enjoyed “nice” analytic properties and then
proved “Conversely” that these analytic properties in fact characterized modular
L-functions. Weil extended this Converse Theorem to L-functions of modular forms
with level.

In their modern formulation, Converse Theorems are stated in terms of auto-
morphic representations of GL,,(A) instead of modular forms. Jacquet, Piatetski-
Shapiro, and Shalika have proved that the L-functions associated to automorphic
representations of GL,,(A) have nice analytic properties via integral representations
similar to those of Hecke. The relevant “nice” properties are: analytic continuation,
boundedness in vertical strips, and functional equation. Converse Theorems in this
context invert these integral representations. They give a criterion for an irreducible
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admissible representation II of GL, (A) to be automorphic and cuspidal in terms of
the analytic properties of Rankin-Selberg convolution L-functions L{s,II x 7') of II
twisted by cuspidal representations 7' of GL,,(A) of smaller rank groups.

To use Converse Theorems for applications, proving that certain objects are
automorphic, one must be able to show that certain L-functions are “nice”. How-
ever, essentially the only way to show that an L-function is nice is to have it asso-
ciated to an automorphic form. Hence the most natural applications of Converse
Theorems are to functoriality, or the lifting of automorphic forms, to GL,,. More
explicit number theoretic applications then come as consequences of these liftings.

Recently there have been several applications of Converse Theorems to estab-
lishing functorialities. These have been possible thanks to the recent advances in
the Langlands-Shahidi method of analysing the analytic properties of general au-
tomorphic L-functions, due to Shahidi and his collaborators [21]. By combining
our Converse Theorems with their control of the analytic properties of L-functions
many new examples of functorial liftings to GL,, have been established. These are
described in Section 4 below. As one number theoretic consequence of these lift-
ings Kim and Shahidi have been able to establish the best general estimates over
a number field towards the Ramamujan-Selberg conjectures for GLg, which in turn
have already had other applications.

2. Converse Theorems for GL,,

Let k be a global field, A its adele ring, and 1 a fixed non-trivial (continuous)
additive character of A which is trivial on k. We will take n > 3 to be an integer.

To state these Converse Theorems, we begin with an irreducible admissible
representation II of GL,(A). It has a decomposition II = ®'Il,, where I, is an
irreducible admissible representation of GL,,(k,). By the local theory of Jacquet,
Piatetski-Shapiro, and Shalika [9, 11] to each II, is associated a local L-function
L(s,11,) and a local e-factor (s, 11,1, ). Hence formally we can form

L(s, 1) = [ [ L(s, 11 and  e(s, L) = [ ] e(s, Iy, 4bu).

We will always assume the following two things about II:

(1) L(s,II) converges in some half plane Re(s) >> 0,
(2) the central character wry of II is automorphic, that is, invariant under k*.

Under these assumptions, (s, II,9) = (s, II) is independent of our choice of % [4].

As in Weil’s case, our Converse Theorems will involve twists but now by cus-
pidal automorphic representations of GL,,(A) for certain m. For convenience, let
us set A(m) to be the set of automorphic representations of GLy,(4), Ag(m) the
set of (irreducible) cuspidal automorphic representations of GLy,(A), and T(m) =
Uie, Ao(d). If S is a finite set of places, we will let 7°(m) denote the subset of
representations « € 7 with local components 7, unramified at all places v € S and
let Tg(m) denote those 7 which are unramified for all v ¢ S.
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Let 7' = @'w) be a cuspidal representation of GL,,(A) with m < n. Then
again we can formally define

L(s,Ix7') = HL(S,HU X ) and e(s,lIx ") = HE(S,HU X o 1hy)

since the local factors make sense whether II is automorphic or not. A consequence
of (1) and (2) above and the cuspidality of #' is that both L{s,II x #') and L(s, I x
) converge absolutely for Re(s) >> 0, where I and 7' are the contragredient
representations, and that £(s,II x #') is independent of the choice of 1.

We say that L(s,II x ') is nice if it satisfies the same analytic properties it
would if I were cuspidal, i.e.,

1. L(s,TI x 7') and L(s,II x 7') have continuations to entire functions of s,
2. these entire continuations are bounded in vertical strips of finite width,
3. they satisfy the standard functional equation

L(s,XI x 7') = e(s, 1 x ') L(1 — 8,1 x «').

The basic converse theorem for GL,, is the following.

Theorem 1. [6] Let II be an irreducible admissible representation of GLp(4)
as above. Let S be a finite set of finite places. Suppose that L(s, 11 x 7'} is nice
for all 7' € T%(n —2). Then 11 is quasi-automorphic in the sense that there is an
automorphic representotion I1' such that 1L, ~ 11, for ollv € S. If S is empty, then
in fact 11 is a cuspidal automorphic representation of GL,, (A).

It is this version of the Converse Theorem that has been used in conjunction
with the Langlands-Shahidi method of controlling analytic properties of L-functions
in the new examples of functoriality explained below.

Theorem 2. [4] Let 11 be an irreducible admissible representation of GLp(4)
as above. Let S be a non-empty finite set of places, containing S, such that the
class number of the ring og of S-integers is one. Suppose that L(s, 11 x #') is nice
for all 7' € Tg(n —1). Then 11 is quasi-automorphic in the sense that there is an
automorphic representation II' such that IL, ~ I for all v € S and all v ¢ S such
that both 11, and II), are unramified.

This version of the Converse Theorem was specifically designed to investigate
functoriality in the cases where one controls the L-functions by means of integral
representations where it is expected to be more difficult to control twists.

The proof of Theorem 1 with S empty and n — 2 replaced by n — 1 essentially
follows the lead of Hecke, Weil, and Jacquet-Langlands. It is based on the integral
representations of L-functions, Fourier expansions, Mellin inversion, and finally a
use of the weak form of Langlands spectral theory. For Theorems 1 and 2 where we
have restricted our twists either by ramification or rank we must impose certain local
conditions to compensate for our limited twists. For Theorem 1 are a finite number
of local conditions and for Theorem 2 an infinite number of local conditions. We
must then work around these by using results on generation of congruence subgroups
and either weak approximation (Theorem 1) or strong approximation (Theorem 2).

As for our expectations of what form the Converse Theorem may take in the
future, we refer the reader to the last section of [6].
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3. Functoriality via the Converse Theorem

In order to apply these theorems, one must be able to control the analytic
properties of the L-function. However the only way we have of controlling global L-
functions is to associate them to automorphic forms or representations. A minute’s
thought will then convince one that the primary application of these results will be
to the lifting of automorphic representations from some group H to GL,,.

Suppose that H is a reductive group over k. For simplicity of exposition we will
assume throughout that H is split and deal only with the connected component of its
L-group, which we will (by abuse of notation) denote by TH [1]. Let 7 = ®'m, be a
cuspidal automorphic representation of H and p a complex representation of “H. To
this situation Langlands has associated an L-function L(s, 7, p) [1]. Let us assume
that p maps “H to GL,(C). Then by Langlands’ general Principle of Functoriality
to w should be associated an automorphic representation II of GL, (A) satisfying
L(s, 1) = L(s,w, p), e(s, I} = (s, w, p), with similar equalities locally and for the
twisted versions [1]. Using the Converse Theorem to establish such liftings involves
three steps: construction of a candidate lift, verification that the twisted L-functions
are “nice”, and application of the appropriate Converse Theorem.

1. Construction of a candidate lift.: We construct a candidate lift II = ®'Il,
on GL,(A) place by place. We can see what II, should be at almost all places.
Since we have the arithmetic Langlands (or Hecke-Frobenius) parameterization of
representations 7, of H(k,) for all archimedean places and those non-archimedean
places where the representations are unramified [1], we can use these to associate
to m, and the map p, :*H, — "H — GL,(C) a representation II, of GL, (k,). This
correspondence preserves local I- and e-factors

L(s,I1,) = L(s,my,py)  and  &(s, Iy, 1) = (s, Ty, po, o)

along with the twisted versions. If H happens to be GL,, or a related group then
we in principle know how to associate the representation II, at all places now that
the local Langlands conjecture has been solved for GL,,. For other situations, we
may not know what II, should be at the ramified places. We will return to this
difficulty momentarily and show how one can work around this with the use of a
highly ramified twist. But for now, let us assume we can finesse this local problem
and arrive at a global representation IT = ®'Il, such that

L(s,1I) = HL(SaHv) = HL(Sanapv) = L(s,m,p)

and similarly e(s,II) = (s, 7, p) with similar equalities for the twisted versions. II
should then be the Langlands lifting of 7 to GL,,(A) associated to p.

2. Analytic properties of global L-functions: For simplicity of exposition, let us
now assume that p is simply a standard embedding of “H into GL,,(C), such as will
be the case if we consider H to be a split classical group, so that L(s,n,p) = L(s,w)
is the standard L-function of 7. We have our candidate II for the lift of 7 to GL,,
from above. To be able to assert that the II which we constructed place by place
is automorphic, we will apply a Converse Theorem. To do so we must control the
twisted L-functions L(s,II x 7') = L(s,w x «') for #' € 7 with an appropriate
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twisting set 7 from Theorem 1 or 2. In the examples presented below, we have
used Theorem 1 above and the analytic control of L(s, 7 x #') achieved by the so-
called Langlands-Shahidi method of analyzing the L-functions through the Fourier
coefficients of Eisenstein series [21]. Currently this requires us to take k to be a
number field. The functional equation L(s, 7 x #') = e(s, 7 x #')L(1 — s, % x 7') has
been proved in wide generality by Shahidi [18]. The boundedness in vertical strips
has been proved in close to the same generality by Gelbart and Shahidi [7]. As for
the entire continuation of L{s,7 x #'), a moments thought will tell you that one
should not always expect a cuspidal representation of H(A) to necessarily lift to a
cuspidal representation of GL,,(A). Hence it is unreasonable to expect all L{s, 7 xx')
to be entire. We had previously understood how to work around this difficulty from
the point of view of integral representations by again using a highly ramified twist.
Kim realized that one could also control the entirety of these twisted L-functions in
the context of the Langlands-Shahidi method by using a highly ramified twist. We
will return to this below. Thus in a fairly general context one has that L{s,w x #')
is entire for 7' in a suitably modified twisting set 7.

3. Application of the Converse Theorem: Once we have that L(s,7 x #') is
nice for a suitable twisting set 7' then from the equalities

L(s, T x ')y = L(s,m x ") and (s, x7") = (s, 7 x 7)

we see that the L(s,II x #') are nice and then we can apply our Converse Theorems
to conclude that 1II is either cuspidal automorphic or at least that there is an auto-
morphic II' such that I, = IT, at almost all places. This then effects the (possibly
weak) automorphic lift of 7 to II or II'.

4. Highly ramified twists: As we have indicated above, there are both local
and global problems that can be finessed by an appropriate use of a highly ramified
twist. This is based on the following simple observation.

Observation. Let II be as in Theorem 1 or 2. Suppose that n is o fixed
character of kX \AX . Suppose that L(s, T x 7'} is nice for oll 7' € T' = T @1, where
T is either of the twisting sets of Theorem 1 or 2. Then 11 is quasi-automorphic as
in those theorems.

The only thing to observe is that if #' € 7 then L(s,1Ix (' ®n)) = L(s, I®
7) x 7'} so that applying the Converse Theorem for II with twisting set 7 ® 7 is
equivalent to applying the Converse Theorem for I1 ® 7 with the twisting set 7. So,
by either Theorem 1 or 2, whichever is appropriate, Il ® 5 is quasi-automorphic and
hence II is as well.

If we now begin with 7 automorphic on H(A), we will take T to be the set of
finite places where 7, is ramified. For applying Theorem 1 we want S = T and for
Theorem 2 we would want S NT = §f. We will now take 7 to be highly ramified at
all places v € T, so that at v € T our twisting representations are all locally of the
form (unramified principal series)®@(highly ramified character).

In order to finesse the lack of knowledge of an appropriate local lift, we need
to know the following two local facts about the local theory of L-functions for H.

Multiplicativity of v-factors. If m, = Ind(7} , ® m ,), with 7, and ir-
reducible admissible representation of GL,,(k,), then we have ~v(s,m, X @l 1) =
y(s, Ty X WLU,%)V(S,M X Wévuawv)-
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Stability of v-factors. If 71, and w2 are two irreducible admissible repre-
sentations of H(k,) with the same central character, then for every sufficiently highly
ramified character 1y, of GL1(ky) we have v(s,®1 4 X Ny, o) = V{8, T2y X Ny, Py ).

Both of these facts are known for GL,, the multiplicativity being found in
[9] and the stability in [10]. Multiplicativity in a fairly wide generality useful for
applications has been established by Shahidi [19]. Stability is in a more primitive
state at the moment, but Shahidi has begun to establish the necessary results in a
general context in [20].

To utilize these local results, what one now does is the following. At the places
where 7, is ramified, choose II, to be arbitrary, except that it should have the same
central character as w,. This is both to guarantee that the central character of II
is the same as that of 7 and hence automorphic and to guarantee that the stable
forms of the ~-factors for 7, and II, agree. Now form II = ®'II,. Choose our
character 77 so that at the places v € T we have that the L- and ~-factors for
both 7, ® n, and II, ® 5, are in their stable form and agree. We then twist by
T' = T @ n for this fired character n. If #' € 7', then for v € T, #} is of the
form 7, = Ind(] |** ® ---® | |*") ® n,. So at the places v € T, applying both
multilplcativity and stability, we have

Y(s,me x 7w, th) = [[7(s + 50,70 @ 0y, 900)
= H7(3 + 55,1, ® m,%) = ’Y(S,HU X WL,%)

from which one deduces a similar equality for the L- and e-factors. From this it
will then follow that globally we will have L(s, 7 x 7'} = L(s,lIx #') for all ' € T
with similar equalities for the e-factors. This then completes Step 1.

To complete our use of the highly ramified twist, we must return to the ques-
tion of whether L(s, 7 x #') can be made entire. In analysing L-functions via the
Langlands-Shahidi method, the poles of the L-function are controlled by those of an
Fisenstein series. In general, the inducing data for the Kisenstein series must satisfy
a type of self-contragredience for there to be poles. The important observation of
Kim is that one can use a highly ramified twist to destroy this self-contragredience
at one place, which suffices, and hence eliminate poles. The precise condition will
depend on the individual construction. A more detailed explanation of this can be
found in Shahidi’s article [21]. This completes Step 2 above.

4. New examples of functoriality

Now take & to be a number field. There has been much progress recently in
utilizing the method described above to establish global liftings from split groups
H over k to an appropriate GL,,. Among them are the following.

1. Classical groups. Take H to be a split classical group over k, more specif-
ically, the split form of either SO2y,11, Spa,, or SOa,. The the L-groups ‘H are
then Sp,y,, (€), SO2,41(C), or 8O2,(C) and there are natural embeddings into the
general linear group Gli,(C), GLay41(C), or GLo, (C) respectively. Associated to
each there should be a lifting of admissible or automorphic representations from
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H(A) to the appropriate GLxy(A). The first lifting that resulted from the combi-
nation of the Converse Theorem and the Langlands-Shahidi method of controlling
automorphic L-functions was the weak lift for generic cuspidal representations from
SO27,41 to GLay, over a number field & obtained with Kim and Shahidi [2]. We can
now extend this to the following result.

Theorem. [2, 3] Let H be o split classical group over k as above and m a
globally generic cuspidal representation of H(A). Then there exists an automorphic
representation 11 of GLy(A) for the appropriate N such that I, is the local Lang-
lands lift of w, for all archimedean places v and almost all non-archimedean places
v where w, is unramified.

In these examples the local Langlands correspondence is not understood at the
places v where 7, is ramified and so we must use the technique of multiplicativity
and stability of the local y-factors as outlined in Section 3. Multiplicativity has
been established in generality by Shahidi [19] and in our first paper [2] we relied
on the stability of y-factors for SOg,41 from [5]. Recently Shahidi has established
an expression for his local coefficients as Mellin transforms of Bessel functions in
some generality, and in particular in the cases at hand one can combine this with
the results of [5] to obtain the necessary stability in the other cases, leading to the
extension of the lifting to the other split classical groups [3].

2. Tensor products. Let H = GL,, x GL,,. Then H = GL,,(C) x GL,(C).
Then there is a natural simple tensor product map from GL,,(C) x GL,(C) to
GL,»(C). The associated functoriality from GL,, x GL,, to GL,,, is the tensor
product lifting. Now the associated local lifting is understood in principle since the
local Langlands conjecture for GL,, has been solved. The question of global functo-
riality has been recently solved in the cases of GLg x GLg to GL4 by Ramakrishnan
[17] and GLa x GL3 to GLg by Kim and Shahidi [15, 16].

Theorem. [17, 15] Let w1 be o cuspidal representation of GL2(4) and 72 a
cuspidal representation of GLa(A) (respectively GL3(A)). Then there is an auto-
morphic representation I of GL4(A) (respectively GLg(A)) such that 11, is the local
tensor product lift of m1 » X w2, at all places v.

In both cases the authors are able to characterize when the lift is cuspidal.

In the case of Ramakrishnan [17] 7 = m X w2 with each #; cuspidal repre-
sentation of GL2(4) and II is to be an automorphic representation of GL4(A). To
apply the Converse Theorem Ramakrishnan needs to control the analytic proper-
ties of L(s, 1T x «') for 7' cuspidal representations of GL;(A) and GLo(A), that is,
the Rankin triple product L-functions L(s,II x #') = L{s,m x w2 x ©'). This he
was able to do using a combination of results on the integral representation for this
L-function due to Garrett, Rallis and Piatetski-Shapiro, and Ikeda and the work of
Shahidi on the Langlands-Shahidi method.

In the case of Kim and Shahidi [15, 16] 72 is a cuspidal representation of
GL3(A). Since the lifted representation II is to be an automorphic representation
of GLs(A), to apply the Converse Theorem they must control the analytic properties
of L(s,IIx 7'} = L(s,m x ma X 7') where now 7' must run over appropriate cuspidal
representations of GL,,(A) with m = 1,2, 3,4. The control of these triple products
is an application of the Langlands-Shahidi method of analysing L-functions and
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involves coefficients of Eisenstein series on GLj, Spin,,, and simply connected Eg
and E7 [15, 21]. We should note that even though the complete local lifting theory
is understood, they still use a highly ramified twist to control the global properties
of the L-functions involved. They then show that their lifting is correct at all local
places by using a base change argument.

3. Symmetric powers. Now take H = GLg, so PH = GLy(C). For each n > 1
there is the natural symmetric n-th power map sym™ : GLo(C) — GL,41(C). The
associated functoriality is the symmetric power lifting from representations of Gl
to representations of GL,11. Once again the local symmetric powers liftings are
understood in principle thanks to the solution of the local Langlands conjecture for
GL,. The global symmetric square lifting, so GLg to GL3, is an old theorem of
Gelbart and Jacquet. Recently, Kim and Shahidi have shown the existence of the
global symmetric cube lifting from GLs to GL4 [15] and then Kim followed with
the global symmetric fourth power lifting from GLs to GL5 [14].

Theorem. [15, 14] Let w be a cuspidal automorphic representation of GL2(A).
Then there exists an automorphic representation I of GL4(A) (resp. GL5(A)) such
that 1L, is the local symmetric cube (resp. symmetric fourth power) lifting of m,.

In either case, Kim and Shahidi have been able to give a very interesting
characterization of when the image is in fact cuspidal [15, 16].

The original symmetric square lifting of Gelbart and Jacquet indeed used the
converse theorem for GL3. For Kim and Shahidi, the symmetric cube was deduced
from the functorial GLa x GL3 tensor product lift above [15, 16] and did not require
a new use of the Converse Theorem. For the symmetric fourth power lift, Kim first
used the Converse Theorem to establish the exterior square lift from GL4 to GlLg
by the method outlined above and then combined this with the symmetric cube lift
to deduce the symmetric fourth power lift [14].

5. Applications

These new examples of functoriality have already had many applications. We
will discuss the primary applications in parallel with our presentation of the exam-
ples. k remains a number field.

1. Classical groups: The applications so far of the lifting from classical groups
to GL,, have been “internal” to the theory of automorphic forms. In the case of the
lifting from SOs2,1+1 to GLa,, once the weak lift is established, then the theory of
Ginzburg, Rallis, and Soudry [8] allows one to show that this weak lift is indeed a
strong lift in the sense that the local components II, at those v € S are completely
determined and to completely characterize the image locally and globally. This will
be true for the liftings from the other classical groups as well. Once one knows
that these lifts are rigid, then one can begin to define and analyse the local lift for
ramified representations by setting the lift of 7, to be the I, determined by the
global lift. This is the content of the papers of Jiang and Soudry [12, 13] for the case
of H = S509,11. In essence they show that this local lift satisfies the relations on
L-functions that one expects from functoriality and then deduce the local Langlands
conjecture for SOaqyr1 from that for Gla,. We refer to their papers for more detail
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and precise statements.

2. Tensor product lifts: Ramakrishnan’s original motivation for establishing
the tensor product lifting from GLg x GLs to GL4 was to prove the multiplicity one
conjecture for SLs of Langlands and Labesse.

Theorem. [17] In the spectral decomposition

L2, (SLa(R\SL2(8)) = @) mor

tnto irreducible cuspidal representations, the multiplicities m, are ot most one.

This was previously known to be true for GL,, and false for SL,, for n > 3.
For further applications, for example to the Tate conjecture, see [17].

The primary application of the tensor product lifting from GlLox GL3 to GLg of
Kim and Shahidi was in the establishment of the symmetric cube lifting and through
this the symmetric fourth power lifting, so the applications of the symmetric power
liftings outlined below are applications of this lifting as well.

3. Symmetric powers: It was early observed that the existence of the symmet-
ric power liftings of GLa to GL,1 for all n would imply the Ramanujan-Petersson
and Selberg conjectures for modular forms. Every time a symmetric power lift is
obtained we obtain better bounds towards Ramanujan. The result which follows
from the symmetric third and fourth power lifts of Kim and Shahidi is the following.

Theorem. [16] Let 7w be a cuspidal representation of GL2(A) such that the
symmetric cube lift of © is again cuspidal. Let diag(a,, 3,) be the Satake parameter

for an unremified local component. Then |ay,l, [3,] < qi/g. If in addition the fourth
symmetric power lift is not cuspidal, the full Ramanujan conjecture is valid.

The corresponding statement at infinite places, i.e., the analogue of the Sel-
berg conjecture on the eigenvalues of Mass forms, is also valid [14]. Estimates
towards Ramanujan are a staple of improving any analytic number theoretic es-
timates obtained through spectral methods. Both the 1/9 non-archimedean and
1/9 archimedean estimate towards Ramanujan above were applied in obtaining the
precise form of the exponent in our recent result with Sarnak breaking the convex-
ity bound for twisted Hilbert modular L-series in the conductor aspect, which in
turn was the key ingredient in our work on Hilbert’s eleventh problem for ternary
quadratic forms. Similar in spirit are the applications by Kim and Shahidi to the
hyperbolic circle problem and to estimates on sums of shifted Fourier coefficients
[15].

In addition Kim and Shahidi were able to obtain results towards the Sato-Tate
conjecture.

Theorem. [16] Let © be a cuspidal representation of GL2(A) with trivial cen-
tral character. Let diag(c,,3y) be the Satake parameter for an unramified local
component and let a, = a, + B,. Assuming = satisfies the Ramanujan conjecture,
there are sets T of positive lower density for which a, > 2cos(2r/11) — ¢ for all
ve Tt and ay, < —=2cos(2w/11) + € for all v € T~. [Note: 2cos(2m/11) = 1.68...]

Kim and Shahidi have other conditional applications of their liftings such
as the conditional existence of Siegel modular cusp forms of weight 3 (assuming
Arthur’s multiplicity formula for Sp,). We refer the reader to [15] for details on
these applications and others.
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Constructing and Counting
Number Fields

H. Cohen*

Abstract

In this paper we give a survey of recent methods for the asymptotic and
exact enumeration of number fields with given Galois group of the Galois
closure. In particular, the case of fields of degree up to 4 is now almost
completely solved, both in theory and in practice. The same methods also
allow construction of the corresponding complete tables of number fields with
discriminant up to a given bound.

2000 Mathematics Subject Classification: 11R16, 11R29, 11R45, 11Y40.
Keywords and Phrases: Discriminants, Number field tables, Kummer the-
ory.

1. Introduction

Let K be a number field considered as a fixed base field, K an algebraic
closure of K, and G a transitive permutation group on n letters. We consider
the set Fg n(G) of all extensions L/K of degree n with L C K such that the
Galois group of the Galois closure L of L/K viewed as a permutation group on
the set of embeddings of L into L is permutation isomorphic to G (i.e, n/m(Q)
times the number of extensions up to K-isomorphism, where m(G) is the number
of K-automorphisms of L). We write

Nin(G,X) = |{L € Fu(G), |[NR(L/K))| < X},

where 0(L/K) denotes the relative ideal discriminant and A the absolute norm.
The aim of this paper is to give a survey of new methods, results, and conjectures
on asymptotic and exact values of this quantity. It is usually easy to generalize
the results to the case where the behavior of a finite number of places of K in the
extension L/K is specified, for example if K = Q when the signature (Ry, R2) of L
is specified, with Ry + 2R, = n.

Remarks.
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1. It is often possible to give additional main terms and rather good error terms
instead of asymptotic formulas. However, even in very simple cases such as
G = 53, this is not at all easy.

2. The methods which lead to exact values of Nk (G, X) always lead to algo-
rithms for computing the corresponding tables, evidently only when
N Kvn(G,X ) is not too large in comparison to computer memory, see for ex-
ample [8] and [10].

General conjectures on the subject have been made by several authors, for
example in [3]. The most precise are due to G. Malle (see [24], [25]). We need the
following definition.

Definition 1.1. For any element g € S, different from the identity, define
the index ind(g) of g by the formula ind(g) = n — |orbits of g|. We define the index
(@) of a transitive subgroup G of Sy, by the formula

O = min ind(e) .
(@) ,emin in (9)

Examples.

1. The index of a transposition is equal to 1, and this is the lowest possible index
for a nonidentity element. Thus i(5,) = 1.

2. If G is an Abelian group, and if ¢ is the smallest prime divisor of |G|, then
i(Q) = [GI(1 - 1/0).

Conjecture 1.2. For each number field K and transitive group G on n letters
as above, there exist a strictly positive integer bi (G) and a strictly positive constant
¢k (@) such that

Nin(G,X) ~ ¢ (G) x1/UG) (IOgX)bK(G)—l .

In [25], Malle gives a precise conjectural value for the constant bg (G) which
is too complicated to be given here.
Remarks.

1. This conjecture is completely out of reach since it implies the truth of the
inverse Galois problem for number fields.

2. If true, this conjecture implies that for any composite n, the proportion of
Sy-extensions of K of degree n among all degree n extensions is strictly less
than 1 (but strictly positive), contrary to the case of polynomials.

The following results give support to the conjecture (see [2], [9], [18], [19], [20],
[21], [22], [23], [28], [30]).

Theorem 1.3. We will say that the above conjecture is true in the weak sense
if there exists cx (G) > 0 such that for all e > 0 we have

cx(G) X UG Nk (G, X) < XL/ e

1. (Mdki, Wright). The conjecture is true for all Abelian groups G.
2. (Davenport-Heilbronn, Datskovsky-Wright). The conjecture is true for n =3
and G = 53.
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3. (Cohen-Diaz-Olivier). The conjecture is true for n = 4 and G = Dy.

4. (Bhargava, Yukie). The conjecture is true for n =4 and G = Sy, in the weak
sense if K # Q.

5. (Kliners-Malle). The conjecture is true in the weak sense for all nilpotent
groups.

6. (Kable-Yukie). The conjecture is true in the weak sense forn =15 and G = S;.

The methods used to prove these results are quite diverse. In the case of
Abelian groups G, one could think that class field theory gives all the answers so
nothing much would need to be done. This is not at all the case, and in fact Kummer
theory is usually more useful. In addition, Kummer theory allows us more generally
to study solvable groups. We will look at this method in detail.

Apart from Kummer theory and class field theory, the other methods have a
different origin and come from the classification of orders of degree n, interpreted
through suitable classes of forms. This can be done at a very clever but still ele-
mentary level when the base field is (), and includes the remarkable achievement of
M. Bhargava in 2001 for quartic orders. Over arbitrary K, one needs to use and
develop the theory of prehomogeneous vector spaces, initiated at the end of the
1960’s by Sato and Shintani (see for example [26] and [27]), and used since with
great success by Datskovsky-Wright, and more recently by Wright-Yukie (see [29]),
Yukie and Kable-Yukie.

2. Kummer theory

This method applies only to Abelian, or more generally solvable extensions.

2.1. Why not class field theory?

It is first important to explain why class field theory, which is supposed to
be a complete theory of Abelian extensions, does not give an answer to counting
questions. Let us take the very simplest example of quadratic extensions, thus with
G = (5. A trivial class-field theoretic argument gives the exact formula

N X)=-1 PO e (2
k,2(Cs, X) + Z K\ Ma))
Ma)<X

where a runs over all integral ideals of K of norm less than or equal to X, CI}(K)
denotes the narrow ray class group modulo a, rk(G) denotes the 2-rank of an Abelian
group G, and Mg (n) is the generalization to number fields of the summatory func-
tion M (n) of the M&bius function.

This formula is completely explicit, the quantities CIT(K) and the function
Mg (n) are algorithmically computable with reasonable efficiency, so we can com-
pute Nk 2(Ca2, X} for reasonably small values of X in this way. Unfortunately, this
formula has two important drawbacks.

The first and essential one is that, if we want to deduce from it asymptotic
information on Nk 2(Cs, X), we need to control rk(CIF (K), which can be done,
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although rather painfully, but we also need to control Mg (n), which cannot be
done (recall for instance that the Riemann Hypothesis can be formulated in terms
of this function).

The second drawback is that, even for exact computation it is rather inefficient,
compared to the formula that we obtain from Kummer theory. Thus, even though
Kummer theory is used in a crucial way for the constructions needed in the proofs
of class field theory, it must not be discarded once this is done since the formula
that it gives are much more useful, at least in our context.

2.2. Quadratic extensions

As an example, let us see how to treat quadratic extensions using Kummer
theory instead of class field theory. Of course in this case Kummer theory is trivial
since it tells us that quadratic extensions of K are parameterized by K*/K** minus
the unit class. This is not explicit enough. By writing for any a € K*, aZ x = aq?
with a an integral squarefree ideal, it is clear that K*/K *2 {5 in one-to-one cor-
respondence with pairs (a,u), where a are integral squarefree ideals whose ideal
class is a square, and u is an element of the so-called Selmer group of K, i.e., the
group of elements u € K* such that uZ g = q2 for some ideal q, divided by K*?.
We can then introduce the Dirichlet series @ 2(Ca,s) = > ; NMO(L/K))™*, where
the sum is over quadratic extensions L/K in K. A number of not completely triv-
ial combinatorial and number-theoretic computations (see [9]) lead to the explicit
formula

- 272 N(2/0)
br2(Cons) = =1+ 7 Z[: e 2 bt

where x runs over all quadratic characters of the ray class group Cl.2(K) and
L (x,s) is the ordinary Dirichlet-Hecke L-function attached to x.

There are two crucial things to note in this formula. First of all, the sum on ¢
is only on integral ideals dividing 2, so is finite and very small. Thus, ®x 2(Cs,s) is
a finite linear combination of Euler products, and can directly be used much more
efficiently than the formula coming from class field theory to compute N 2(Co, X)
exactly. For example (but this of course does not need the above machinery) we
obtain Ng2(Cs,10%%) = 6079271018540266286517795.

Second, since Lg(x,s) extends to a meromorphic function in the whole com-
plex plane with no pole if x is not a trivial character, the polar part of ®x 2(Ca, s),
which is the only thing that we need for an asymptotic formula, comes only from
the contributions of the trivial characters, in which case Lk (x, s) is equal to (x(s)
times a finite number of Euler factors. We thus obtain

Nica(Ca, X) ~ KL

2" (ke (2)

where (g (1) is a convenient abuse of notation for the residue of (x(s) at s =
1. Apparently this simple result was first obtained by Datskovsky-Wright in [18],
although their proof is different.



Constructing and Counting Number Fields 133

2.3. General finite Abelian extensions

The same method can in principle be applied to any finite Abelian group
G. 1 say “in principle”, because in practice several problems arise. For the base
field K = @, a complete and explicit solution was given by Miki in [23]. For a
general base field, a solution has been given by Wright in [28], but the problem
with his solution is that the constant ¢k (G), although given as a product of local
contributions, cannot be computed explicitly without a considerable amount of
additional work. It is always a finite linear combination of Euler products.

In joint work with F. Diaz y Diaz and M. Olivier, using Kummer theory
in a manner analogous but much more sophisticated than the case of quadratic
extensions, we have computed completely explicitly the constants ¢k (G) for G = C;
the cyclic group of prime order £, for G = C4 and for G = Vi = (3 x Cy. Although
our papers are perhaps slightly too discursive, to give an idea the total number of
pages for these three results exceeds 100. We refer to [7], [13], [11], [15], [16] for the
detailed proofs, and to [12] and [14] for surveys and tables of results. We mention
here the simplest one, for G = V. We have

Niga(Va, X) ~ cx (V) X% log? X with

) 1 5 3 1y
ex(Va) = g ox (1) 11 (1 + ’\/_p> (1 - ’\/_p>
p

4 2 1 1-1/Np? 1+ 1/Np)?
2y (o N )el) + 1+ /D)
"/\/p -/\/pd ./\/p ./\/pe(p)'{"
I):i[ 1+i
p2Z K _/\/’p

Of course, the main difficulty is to compute correctly the local factor at 2.
As usual, we can use our methods to compute very efficiently the N function.
For example, we obtain (see [4]):

Ng 3(Cs, 10°7) = 501310370031289126,
Ng.a(Cy, 10°%) = 1220521363354404,
No.a(Vi, 10°%) = 22956815681347605884.

2.4. Dihedral D,-extensions

We can also apply our method to solvable extensions. The case of quartic
Dj-extensions, where Dy is the dihedral group of order 8, is especially simple and
pretty. Such an extension is imprimitive, i.e., is a quadratic extension of a quadratic
extension. Conversely, imprimitive quartic extensions are either D4-extensions, or
Abelian with Galois group Cy or V3. These can easily be counted as explained above,
and in any case will not contribute to the main term of the asymptotic formula,
so they can be neglected (or subtracted for exact computations). Since we have
treated completely the case of quadratic extensions, it is just a matter of showing
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that we are allowed to sum over quadratic extensions of the base field to obtain the
desired asymptotic formula (for the exact formula nothing needs to be proved), and
this is not difficult. In this way, we obtain that Ng 4(D4s, X) ~ ¢x(D4s) X for an
explicit constant cx (Dy) (in fact we obtain an error term O(X?/* +¢)). This result
is new even for K = (), although its proof not very difficult. In the case K = (,
we have for instance

_ 6 2 L((2)
@)= (D)2

= 0.1046520224 .. . ,

where the sum is over fundamental discriminants D, ro(D) = r»(Q(v/ D)), and
L((£), s) is the usual Dirichlet series for the character (£).

Remark. In the Abelian case, it is possible to compute the Euler products
which occur to hundreds of decimal places if desired using almost standard zeta-
product expansions, see for example [6]. Unfortunately, we do not know if it is
possible to express cg(D4) as a finite linear combination of Euler products (or at
least as a rapidly convergent infinite series of such), hence we have only been able
to compute 9 or 10 decimal places of this constant. We do not see any practical
way of computing 20 decimals, say.

Our method also allows us to compute Ng4(Ds, X) exactly. However, here a
miracle occurs: when k is a quadratic field, in the formula that we have given above
for @ 2(Ca,s) all the quadratic characters y which we need are genus characters
in the sense of Gauss, in other words there is a decomposition

Li(x,s) = L((%),$)L((%),5)

into a product of two suitable ordinary Dirichlet L-series. This gives a very fast
method for computing Ng 4(D4, X), and in particular we have been able to compute
No,4(Dy4, 10'7) = 1046519682006 7560.

We can also count the number of extensions with a given signature. The
method is completely similar, but here not all characters are genus characters.
In fact, it is only necessary to add a single nongenus character to obtain all the
necessary ones, but everything is completely explicit, and closely related to the
rational quartic reciprocity law. I refer to [5] for details.

2.5. Other solvable extensions

We can also prove some partial results in the case where G = A4 or G = 54 (of
course the results for Sy are superseded by Bhargava’s for K = @, and by Yukie’s
for general K; still, the method is also useful for exact computations), see [17].

In the case of quartic A; and Ss-extensions (or, for that matter, of cubic S3-
extensions), we use the diagram involving the cubic resolvent (the quadratic one
for S3-extensions), also called the Hasse diagram. We then have a situation which
bears some analogies with the Dy case. The differences are as follows. Instead of
having to sum over quadratic extensions of the base field K, we must sum over cubic
extensions, cyclic for A4 and noncyclic for S;. As in the D4-case, we then have to
consider quadratic extensions of these cubic fields, but generated by an element of
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square norm. It is possible to go through the exact combinatorial and arithmetic
computation of the corresponding Dirichlet series, the cubic field being fixed. This
in particular uses some amusing local class field theory. Asin the Dy case, we then
obtain the Dirichlet generating series for discriminants of A4 (resp., Si) extensions
by summing the series over the corresponding cubic fields.

Unfortunately, we cannot obtain from this any asymptotic formula. The reason
is different in the A4 and the S4 case. In the A4 case, the rightmost singularity of
the Dirichlet series is at s = 1/2. Unfortunately, this is simultaneously the main
singularity of each individual Dirichlet series, and also that of the generating series
for cyclic cubic fields. Thus, although the latter is well understood, it seems difficult
(but not totally out of reach) to paste things together. On the other hand, we can
do two things rigorously in this case. First, we can prove an asymptotic formula
for A,-extensions having a fized cubic resolvent. Tables show that the formula is
very accurate. Second, we can use our formula to compute Ng 4(5, X) exactly.
For instance, we have computed Ng4(A4,10'%) = 218369252. This computation
is much slower than in the Dy-case, because we do not have the miracle of genus
characters, and we must compute the class and unit group of all the cyclic cubic
fields.

In the S, case, the situation is different. The main singularity of each indi-
vidual Dirichlet series is still at s = 1/2 (because of the square norm condition),
and the rightmost singularity of the generating series for noncyclic cubic fields is
at s = 1, so the situation looks better (and analogous to the D4 situation with
s replaced by s/2). Unfortunately, as already mentioned we know almost nothing
about the generating series for noncyclic cubic fields, a fortiori with coefficients. So
we cannot go further in the asymptotic analysis. As in the A; case, however, we
can compute exactly either the number of Ss-extensions corresponding to a fixed
cubic resolvent, or even Ng 4(S4, X ) itself. The problem is that here we must com-
pute class and unit groups of all noncyclic cubic fields of discriminant up to X,
while cyclic cubic fields of discriminant up to X are much rarer, of the order of
X1/2 instead. We have thus not been able to go very far and obtained for example
Ng.a(S4,107) = 6541232.

3. Prehomogeneous vector spaces

The other methods for studying Nx (G, X} are two closely related methods:
one is the use of generalizations of the Delone-Fadeev map, which applies when
K = Q. The other, which can be considered as a generalization of the first, is the
use of the theory of prehomogeneous vector spaces, initiated by Sato and Shintani
in the 1960’s.

3.1. Orders of small degree

We briefly give a sketch of the first method. We would first like to classify
quadratic orders. It is well known that, through their discriminant, such orders are
in one-to-one correspondence with the subset of nonsquare elements of Z congruent
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to 0 or 1 modulo 4, on which SLi(Z) (the trivial group) acts. Thus, for fixed
discriminant, the orbits are finite (in fact of cardinality 0 or 1). For mazimal
orders, we need to add local arithmetic conditions at each prime p, which are easy
for p > 2, and slightly more complicated for p = 2.

We do the same for small higher degrees. For cubic orders, the classification
is due to Davenport-Heilbronn (see [19], [20]). These orders are in one-to-one cor-
respondence with a certain subset of Sym®(Z?), i.e., binary cubic forms, on which
SLo(Z) acts. Since once again the difference in “dimensions” is 4 — 3 = 1, for fixed
discriminant the orbits are finite, at least generically. For maximal orders, we again
need to add local arithmetic conditions at each prime p. These are easy to obtain
for p > 3, but are a little more complicated for p = 2 and p = 3. An alternate way
of explaining this is to say that a cubic order can be given by a nonmonic cubic
equation, which is almost canonical if representatives are suitably chosen.

For quartic orders, the classification is due to M. Bhargava in 2001, who showed
in complete detail how to generalize the above. These orders are now in one-to-
one correspondence with a certain subset of Z? @ Sym?(Z?), i.e., pairs of ternary
quadratic forms, on which SLo(Z) x SL3(Z) acts. Once again the difference in
“dimensions” is 2 x 6 — (3 + 8) = 1, so for fixed discriminant the orbits are finite,
at least generically. For maximal orders, we again need to add local arithmetic
conditions at each prime p, which Bhargava finds after some computation. An
alternate way of explaining this is to say that a quartic order can be given by the
intersection of two conics in the projective plane, the pencil of conics being almost
canonical if representatives are suitably chosen.

For quintic orders, only part of the work has been done, by Bhargava and
Kable-Yukie in 2002. These are in one-to-one correspondence with a certain subset
of Z42A?(Z5), i.e., quadruples of alternating forms in 5 variables, on which SL4(Z) x
SLs(Z) acts. Once again the difference in “dimensions” is 4 x 10 — (15 + 24) = 1,
so for fixed discriminant the orbits are finite, at least generically. The computation
of the local arithmetic conditions, as well as the justification for the process of
point counting near the cusps of the fundamental domain has however not yet been
completed.

Since prehomogeneous vector spaces have been completely classified, this the-
ory does not seem to be able to apply to higher degree orders, at least directly.

3.2. Results

Using the above methods, and generalizations to arbitrary base fields, the
following results have been obtained on the function Ng (G, X) (many other deep
and important results have also been obtained, but we fix our attention to this
function). It is important to note that they seem out of reach using more classical
methods such as Kummer theory or class field theory mentioned earlier.

Theorem 3.1. Let K be a number field of signature (r1,12), and as above
write (i (1) for the residue of the Dedekind zeta function of K at s = 1.

1. (Davenport-Heilbronn [19], [20]). We have Ng3(S3, X) ~ ¢g(S3) X with

1
co(Ss) = B3
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2. (Datskovsky-Wright [18]). We have Ng 3(53,X) ~ cx(S93) X with

3. (Bhargava [1], [2]). We have Ng a(Ss, X) ~ cg(Ss) X with

c@(s4)=gﬂ(1+%-i-}%> .

P

4. (Yukie [30]). There exist two strictly positive constants c1(K) and c2(K) such
that
1 X < Nga(S4, X) < e2 Xlog?(X) .

Under some very plausible convergence assumptions we should have in fact
NK74(S4,X) ~ CK(S4)X with

5\ 1\ 1 1 1
ex(fa) =2 (ﬁ> (ﬁ> I;I <1 TN TN Np4> '

5. (Kable-Yukie [21]). There exists o strictly positive constant ¢; such that for
all € > 0 we have

ClX < NQ75(S5,X) < X1+E .

Remark. It should also be emphasized that, although the above methods give
important and deep results on Nk ,,(G, X} for certain groups G, they shed almost
no light on the possible analytic continuation of the corresponding Dirichlet series
of which Ng (G, X) is the counting function. For example, in the simplest case
where K = (), n = 3, and G = 53, for which the result dates back to Davenport-
Heilbronn, no one knows how to give an analytic continuation of the Dirichlet series
>, 1d(L)] 7% even to R(s) = 1 (the sum being over cubic fields in Q and d(L) being
the absolute discriminant of L).
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Analyse p-adique et
Représentations Galoisiennes
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Abstract

The notion of a p-adic de Rham representation of the absolute Galois
group of a p-adic field was introduced about twenty years ago (see e.g. [Fo93]).
Three important results for this theory have been obtained recently: The struc-
ture theorem for the almost Cp-representations, the theorem weakly admissible
implies admissible and the theorem de Rham implies potentially semi-stable.
The proofs of the first two theorems are closely related to the study of a new
kind of analytic groups, the Banach-Colmez spaces and the proof of the third
uses deep results on p-adic differential equations on the Robba ring.
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1. Représentations p-adiques

1.1. — Dans tout ce qui suit, K est un corps de caractéristique 0, complet pour une
valuation discreéte, & corps résiduel k parfait de caractéristique p > 0. On choisit
une cloture algébrique K de K, on note C son complété et | |, la valeur absolue de
C normalisée par |p|, = p~!. On pose Gx = Gal(K/K).

Une représentation banachique (de G i) est un espace de Banach p-adique muni
d’une action linéaire et continue de Gg. Avec comme morphismes les applications
Q,-linéaires continues G g-équivariantes, ces représentations forment une catégorie
additive Q) -linéaire B(Gk ).

Une C-représentation (de Gk ) est un C-espace vectoriel de dimension finie
muni d’une action semi-linéaire et continue de Gg. Lorsque k est fini, la catégorie
Rep(Gg ) des C-représentations s’identifie & une sous-catégorie pleine de B(Gk) :
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Sud, Batiment 425, 91405 ORSAY Cedex, France. E-mail: fontaine@math.u-psud.fr
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PrOPOSITION [Fo00]. — Supposons k fini. Si Wy et Wy sont des C-représenta-
tions, toute application Q,-linégire continue G -équivariante de Wi dans Ws est
C-linéaire.

Disons que deux représentations banachiques S; et Sy sont presque isomorphes
¢’il existe un triplet (Vi, Vs, ) ol V; est un sous-(Q,-espace vectoriel de dimension
finie de S;, stable par Gk, et ot a : S1/Vi — S3/Va est un isomorphisme (dans
B(Gk)). Une presque-C-représentation (de Gk ) est une représentation banachique
qui est presque isomorphe & une C-représentation. On note C(G k) la sous-catégorie
pleine de B(G k) dont les objets sont les presque-C-représentations. Elle contient
la catégorie Rep(Gk) et la catégorie Repg, (Gk) des représentations p-adiques de
dimension finie (de Gg) comme sous-catégories pleines.

THEOREME A [Fo02]. — Supposons k fini. La catégorie C(G i) est abélienne. II
existe sur les objets de C(G k) une unique fonction additive dh : S = (d(S), h(5)) €
N x Z telle que dh(W) = (dime W,0) si W est une C-représentation et dh(V) =
(0,dimg, V) si V' est de dimension finie sur Q.

Si S et T sont des objets de C(G), les Qp-espaces vectoriels Exté(GK)(S, T)
sont de dimension finie et sont nuls pour i € {0,1,2}. On a

Yoo (—1)idimg, Exté g,y (S, T) = —[K : Qp]h(S)A(T).

1.2. — Soit () FR l’ensemble des suites (") ey d’éléments de C vérifiant
(2"t = () pour tout n. Avec les lois
(x + ) = im0 (27T 4y FmNE™ ot (24) (1) = g(M)y(7)

c’est un corps algébriquement clos de caractéristique p, complet pour la valeur
absolue définie par |z| = |2{?)], et on note R ’anneau de la valuation. Son corps
résiduel s’identifie au corps résiduel k de K. L’anneau W (R) des vecteurs de Witt
A coefficients dans R est intégre. Choisissons e,7 € R vérifiant ¢(® =1, V) £ 1
et 7® = p et, pour tout @ € R notons [a] = (a,0,0,...) son représentant de
Teichmiiller dans W(R). L’application § : W(R) — O¢ qui envoie (ag, a1, ...) sur
Y neN pal?) est un homomorphisme d’anneaux surjectif dont le noyau est I'idéal
principal engendré par £ = [r] —p. On note encore 8 : W(R)[1/p] — C Dapplication
déduite en rendant p inversible. Rappelons que B}, = liin‘neN W(R)1/p]/(£7) et
que le corps Byg des périodes p-adiques est le corps des fractions de B;R. Toute
unité a de R ’écrit d’une maniére unique sous la forme a = agat avec ap € k
et |at — 1| < 1, la série 3.7 (=1)"*!([a*] — 1)"/n converge dans B} vers un
élément noté logfa] ; on pose t = logle]. On a Bgp = BjR[l/t]. On note Agpq le
séparé complété pour la topologie p-adique de la sous-W(R)-algebre de W(R)[1/p]
engendrée par les £™/m! pour m € N. Alors A, ¢'identifie & un sous-anneau de
B contenant ¢ et on pose B, = A.,i5[1/p] et Bepss = BY,,[1/t] C Byg. La série

:2(-1)"*15" /np™ converge dans B}, vers un élément log[r] = log([x]/p) et on

@ voir [Fo88a] (resp. [Fo88b]) pour plus de détails sur la construction de Byg, B.ris €t By
(resp. sur les représentations p-adiques de de Rham et potentiellement semi-stables).
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note By la sous-Beris-algébre de Byr engendrée par log[w]. Pour tout b € R non
nul, il existe r,s € Z, avec s > 1 et une unité a de R tels que b®* = 7"a et on pose
log[b] = (rlog[n] +log[a])/s. On a By, = Beris[log[b]] dés que b n’est pas une unité.

Soit £ Iensemble des extensions finies de K contenues dans K. Pour tout
L € L, on pose G, = Gal(K /L) et on note Lo le corps des fractions de 'anneau des
vecteurs de Witt & coeflicients dans le corps résiduel de L. Le corps K se plonge
de facon naturelle dans B;R et laction de G ¢’étend de facon naturelle & Bypg,
I'anneau B, est stable par Gx. Pour tout L € £, on a (Byr)“* = L tandis que
(Bst)9t = Lo et Papplication naturelle L ®r, Byt — Bag est injective.

Pour toute représentation p-adique V' de G g de dimension finie A sur Q,, on
pose Dyp(V) = (K ®g, V)%, Dy(V) = (By ®g, V)9 et, si L est une extension
finie de K contenue dans K, Dy (V) = (By ®g, V). On a dimg Dar(V) < h
et on dit que V' est de de Rham si on a Pégalité. Clest le cas si dimg, Do(V) = h
auquel cas on dit que V' est semi-stable. C’est aussi le cas §'il existe L € L tel que
dimz, D 1,(V') = h, auquel cas on dit que V' est potentiellement semi-stable, ou si
lon veut préciser L, que V' est L-semi-stable.

TuEOREME B. — Toute représentotion p-adique de G g qui est de de Rham est
potentiellement semi-stable.

Soit K B, le plus petit sous-anneau de B;p contenant K et B,;. Ce théoreme
revient & dire que, pour toute représentation de de Rham V', I'inclusion ((K By;) ®q,
V)95 C (Byr ®g, V)9 est une égalité. Berger [Be02] en a ramené la preuve & un
résultat sur les équations différentielles p-adiques, résultat qui a ensuite été prouvé
indépendamment par André [An02], Kedlaya [Ke02] et Mebkhout [Me02], voir §3.

L’un des intéréts de ce théoréme est que 'on dispose d’une description algébri-
que ezplicite de la catégorie des représentations potentiellement semi-stables. Le
Frobenius usuel sur W(R) s’étend de facon naturelle en un endomorphisme ¢ de
Panneau By (on a pt = pt et p(log[r]) = plog[x]). Il existe une unique By~
dérivation N : By, — Bg telle que N(log[n]) = —1. L’action de ¢ et de N commu-
tent & celle de G et Ny = ppN.

Soit L € L telle que L/ K est galoisienne. Pour toute représentation p-adique
V de Gk, Dg (V) est un (¢, N, Gal(L/K))-module filtré de dimension finie, i.e.
c’est un Lg-espace vectoriel D de dimension finie, muni

— de deux applications ¢ : D — D, N : D — D, la premiére semi-linéaire
relativement & la restriction de ¢ a Lg et bijective, la deuxiéme linéaire, vérifiant
Ny =ppN,

— d’une action semi-linéaire de Gal(L/K), commutant & ¢ et & N,

— d’une filtration indexée par Z, décroissante, exhaustive et séparée, du K-
espace vectoriel D = (L ®p, D)SML/K) (si D = Dy, (V), on a Dg C (Byr ®q,
V)% et, pour tout i € Z, Fil'Dg = D N (Bjxtt ®g, V)6x).

On pose tg(D) = ¥ ;czi.dimg Fil'Dg /Fil'T Dg. Si D = @aeqDa est la
décomposition suivant les pentes du y-isocristal sous-jacent, on pose aussi ty (D) =
> acg@-dimp, Do. On dit que D est admissible si
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a) on a ty(D) =tn(D),
b) pour tout sous-Lg-espace vectoriel D' de D, stable par ¢, N et Gal(L/K),
onaty(D") <tn(D') (on a muni Df C Dg de la filtration induite).

TueorbkME C [CF00]. — Soit L C K une extension finie galoisienne de K.

i) Pour toute représentation L-semi-stable V', Dy 1, (V') est admissible.

ii) Le foncteur qui 6V associe Dy (V') induit une équivalence'® entre la sous-
catégorie pleine Repy, [ (Gk) de Repg (Gk) dont les objets sont les représentations

L-semi-stables et la catégorie des (p, N, Gal(L/K))-modules filtrés admissibles.

Remarque. Il était jusqu’a présent d’usage [Fo88b] d’appeler faiblement admis-
sible ce que nous appelons ici admissible. On savait (loc.cit., th.5.6.7) que Dy 1,
induit une équivalence entre la catégorie Rep,, ;(Gk) et une sous-catégorie pleine
de la catégorie des modules filtrés (faiblement) admissibles ; on conjecturait que ce
foncteur est essentiellement surjectif et c’est ce qui est prouvé dans [CF00].

2. Espaces de Banach-Colmez®

2.1. — Une C-algébre de Banach est une C-algébre normée complete A ; son spectre
mazimal est 'ensemble Spm~ A des sections continues s : A — C du morphisme
structural. Si f € A et s € Spmp A, on pose f(s) = s(f). Une C-algébre spectrale
est une C-algébre de Banach A telle que la norme est la norme spectrale, i.e. telle
que, pour tout f € A, |||l = supsespm.alf(s)|p ; dans ce cas, SpmcA est un
espace métrique complet (la distance étant définie par d(s1, s2) = sup| <1 [f(s1) —
f(s2)lp). Avec comme morphismes les homomorphismes continus de C-algébres, les
C-algébres spectrales forment une catégorie. La catégorie des variétés spectrales
affines sur C est la catégorie opposée.

Un groupe spectral commutatif affine sur C est un objet en groupes commu-
tatifs dans la catégorie des variétés spectrales affines sur C. Ces groupes forment,
de fagon évidente, une catégorie additive qui a des limites projectives finies. Le
foncteur qui & un groupe spectral commutatif affine associe le groupe topologique
sous-jacent est fidele. Si & = Spm A est un groupe spectral commutatif affine,
un sous-groupe spectral du groupe topologique sous-jacent est un sous-groupe 7 qui
admet une structure de groupe spectral (nécessairement unique) telle que l'inclusion
T -+ & est un morphisme de groupes spectraux.

Soit S un espace de Banach (p-adique) et Sp la boule unité. Un résequ de
S est un sous-Z,-module & qui est tel que l'on peut trouver r,s € Z vérifiant

(2) Crest méme une équivalence de catégories tannakiennes, cf. [Fo88b].

(3) C’est en cherchant & prouver le théoréme C que j’ai été conduit 3 m’intéresser aux presque
C-représentations. C’est Colmez qui a compris que les propriétés dont j’avais besoin provenaient
de structures analytiques. Cela nous a permis de prouver le théoréme C. Colmez a ensuite étudié
plus en détail ces structures analytiques [Co02]. Ce que je raconte ici est une interprétation, dans
le langage de [Fo02], §4, de ces travaux de Colmez et devrait étre développé dans [FP02].
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p’Sy C S C p*Sp. 1l revient au méme de dire qu’il existe une norme équivalente &
la norme donnée pour laquelle S est la boule unité.

Une C-structure analytique sur S est la donnée d’un C-groupe spectral com-
mutatif affine § et d’'un homomorphisme continu du groupe topologique sous-jacent
a4 S dans S dont I'image est un réseau et le noyau un Z,module de type fini. On
dit que deux C-structures analytiques S et T sur S sont équivalentes si S xg T est
un sous-groupe spectral de & x 7. Un (espace de) Banach analytique (sur C) est
la donnée d’un espace de Banach muni d’une classe d’équivalence de C-structures
analytiques (on les appelle les structures admissibles de S). On dit que S est effectif
g'il existe une structure admissible S telle que application & - S est injective.

Un morphisme de Banach analytiques f : § — T est une application Q-
linéaire continue telle qu’il existe des structures admissibles & de S et 7 de T et
un morphisme & = 7 qui induit f. Les Banach analytiques forment une catégorie
additive BAc.

Si S est un Banach analytique et si V' est un sous-(J,-espace vectoriel de dimen-
sion finie, le quotient S/V a une structure naturelle de Banach analytique. On dit
que deux Banach analytiques S; et So sont presque isomorphes 8’1l existe des sous-
Q,-espaces vectoriels de dimension finie V; de S; et V5 de S> et un isomorphisme
S1/Vi = S2/Va (de Banach analytiques).

Le groupe sous-jacent & O¢ a une structure naturelle de groupe spectral com-
mutatif affine : on a O¢ = SpmoC{X} ot C{X} est Palgebre de Tate des séries
formelles & coeflicients dans C' en l'indéterminée X dont le terme général tend vers
0. Ceci fait de C' un espace de Banach analytique effectif. Un Banach analytique
vectoriel est un Banach analytique isomorphe & C? pour un entier d convenable.
Un espace de Banach-Colmez est un Banach analytique presque wvectoriel, i.e. un
Banach analytique qui est presque isomorphe & un Banach analytique vectoriel.
On note BCe la sous-catégorie pleine de BA¢ dont les objets sont les espaces de
Banach-Colmez.

PrOPOSITION (théoreme de Colmez (V). — La catégorie BCo est abélienne
et le foncteur d’oubli de BCc dans la catégorie des (, -espaces vectoriels est exact
et fidele. Il existe sur les objets de BCo, une unique fonction additive dh : S =
(d(S),h(S)) € N x Z telle que dh(C?) = (d,0) et dh(V) = (0,dimg, V) si V est de
dimension finie sur (Q,.

2.2. — La meilleure facon de comprendre les théorémes A et C c’est d’utiliser le
résultat précédent pour les prouver ®). Lorsque k est fini, toute presque-C-représen-

(1) rest a peu prés le résultat principal de [Co02]. La définition donnée par Colmez de ce qu'il
appelle les Espaces de Banach de dimension finie (avec un E majuscule) est 1égérement différente.
1l n’est pas trés difficile de construire une équivalence entre sa catégorie et la notre [FP02].

(5) Crest ainsi que Colmez redémontre le théoréme C dans [Co02]. Moyennant une preuve un
peu plus compliquée, on peut n’utiliser qu'un résultat d’analyticité apparemment moins fort ; ¢’est

ce qu’on fait pour prouver le théoréme C dans [CF00] et le théoréme A dans [Fo02].
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tation est munie d’unee structure naturelle d’espace de Banach-Colmez ; toute
application (),-linéaire continue G g-équivariante d’une presque C-représentation
dans une autre est analytique. Le fait que C(Gk) est abélienne et existence de la
fonction dh résultent alors du théoreme de Colmez.

Le principe de la preuve du théoreme C est le suivant : On se rameéne facilement
au cas semi-stable, i.e. au cas ot L = K. Il g’agit de vérifier que, si D est un (¢, N)-
module filtré (faiblement) admissible de dimension h, il existe une représentation
p-adique V' de dimension % telle que Dy i (V) soit isomorphe & D. Une torsion
A la Tate permet de supposer que Fil’Dyg = Dg. Notons VS'{’O(D) le (Jy-espace
vectoriel des applications Kg-linéaires de D dans By, OBIR qui commutent & l’action
de petde N et Vs-if’l le quotient du K-espace vectoriel des applications K-linéaires
de Dk dans B;R par le sous-espace des applications qui sont compatibles avec la
filtration. On commence par vérifier que le noyau V,3(D) de 'application évidente
B:VIE%D) = V(D) est un Q,-espace vectoriel de dimension finie < h et que,
¢'il est de dimension h, alors la représentation duale Vi (D) est semi-stable et D
est isomorphe & Dy (Vi (D). La théorie des espaces de Banach analytiques permet
de munir V;1"%(D) et V;5"' (D) d’une structure d’espace de Banach-Colmez et on a
dh(V;E%(D)) = (tx(D), h) tandis que dh(V;"' (D)) = (tz(D),0). 1l suffit alors de
vérifier que application § est analytique. Comme tgy(D) = ty (D), I'additivité de
dh implique que 3 est surjective et que dh(V;3 (D)) = (0, h), ce qui signifie bien que
dimg, V(D) = h.

3. Equations différentielles

3.1. — Soit A un anneau commutatif et d : A — Q4 une dérivation de A dans
un A-module Q4. Ici, un A-module & connexion (sous-entendu relativement & d)
est un A-module libre de rang fini D muni d’une application V : D — D ® 14
vérifiant la régle de Leibniz. On dit que ce module est trivial 8'il est engendré par
le sous-groupe Dy ~g des sections horizontales.

Pour tout corps L de caractéristique 0, complet pour une valuation discrete,
notons (cf. par exemple [Ts98], §2) R, 1 Pannesu de Robba de L (ou “anneau des
fonctions analytiques sur une couronne d’épaisseur nulle” ), ¢’est-a-dire ’anneau des
séries D . a,z" & coefficients dans L vérifiant

Vs < 1,]an|s” = 0 sin = +oo et 3r < 1 tel que |aplr™ = 0 si n — —o0.

Le sous-anneau 53; , de R, 1, des fonctions »" a,x" telles que les a,, sont bornés
est un corps muni d’une valuation discréte (définie par | > a,2"| = supla,}) qui
nest pas complet mais est hensélien. Son corps résiduel s’identifie au corps des
séries formelles E = ki ((x)) ou k; désigne le corps résiduel de L. Pour toute
extension finie séparable F' de FE, il existe une, unique & isomorphisme unique pres,

extension non ramifiée 5}; de Ez ;, de corps résiduel F'. Posons Rp = R, 1 ® 4 Ep.
' gm L

Si kr désigne le corps résiduel de F, L' 'unique extension non ramifiée de L de

corps résiduel kr et si 2’ est un relévement dans Panneau des entiers de 5; d’une
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uniformisante de ¥, 'anneau Ry s’identifie & I'anneau de Robba R, 1.

Notons Q%QI.L le R, r-module libre de rang 1 de base dz, solution du probléme
universel pour les dérivations continues en un sens évident. Les modules a connexion
sur I'anneau R, ; forment une catégorie artinienne. Si D est un objet de cette
catégorie, on dit qu’il est unipotent si son semi-simplifié est trivial. On dit qu’il
est quasi-unipotent 8’1l existe une extension finie séparable F' de k((X)) telle que le
module & connexion sur Ry déduit de D par extension des scalaires soit unipotent.

Pour tout z dans laneeau des entiers de 5}; K,» 1l existe un unique endo-
morphisme continu ¢ de R, g, qui prolonge le Frobenius absolu sur Ky et vérifie
w(x) = ¥+ pz ; on appelle Frobenius un tel endomorphisme. Pour un tel ¢, on note
encore @ : Q%QI.KO - Q%QI.KO I'application induite. Soit D un module & connexion
sur Rp k,. Une structure de Frobenius sur D consiste en la donnée d’un Frobenius
@ sur R, i, et d'une application -semi-linéaire p : D — D commutant & V.

TutoriME (André, Kedlaya, Mebkhout (8)). — Tout module & connexion sur
R ko qui admet une structure de Frobenius est quasi-unipotent.

Avant de montrer comment Berger [Be2] déduit le théoreme B de cet énoncé,
rappelons quelques résultats de [Fo00], [Fo90] et [CCI8] (cf. aussi [Co98]). Dans
tout ce qui suit, V' est une représentation p-adique de Gg de dimension finie h.

3.2. — Soit K, le sous-corps de K engendré sur K par les racines de 'unité d’ordre
une puissance de p. Posons Hg = Gal(f/Koo) et 'y = Gig/Hgk. En utilisant
la. théorie de Sen [Se80], on montre [Fo00] que union Agr(V) des sous-K[[t]]-
modules de type fini de (Bqg ®g, V)7 stables par T'x est un Ko ((t))-espace
vectoriel de dimension A et qu’il existe une unique connexion
V :Agr(V) — Agr(V) @ dt/t
qui a la propriété que, pour tout sous-K[[t]]-module de type fini ¥ stable par Gk,
tout entier r > 0 et tout y € Y, il existe un sous-groupe ouvert I', , de T tel que, si
V(y) = Voly) ® dt/t, alors
v(y) = exp(log x(7).Vo)(y) (mod ¢"Y), pour tout v € T, .

Cette connexion est réguliere : le Ku[[t]-module AT (V) = (B ® V)N
Aqr(V) est un réseau de Ayr(V) vérifiant V(AL (V)) C AjL(V) ® dt/t. On
a Dar(V) = (Agr(V))'%. L’action de T'k est discrete sur Ayr(V)v—o ; on en
déduit que Agp(V)v=0 = Koo @k Dgr(V) donc que V est de de Rham si et seule-
ment si le module & connexion Ayzgp(V) est trivial. Ceci se produit si et seule-
ment §'il existe un réseau (nécessairement unique) AY. (V) de Ayp(V) vérifiant
V(AR(V)) C Agp(V) @ dt.

®) Crew [Cr98] a suggéré que ce théoréme pouvait étre vrai ; il a été prouvé indépendamment
par André [An02], Mebkhout [Me02] et Kedlaya [Ke01]. Pour André comme pour Mebkhout, c’est
un cas particulier d’un résultat plus général dont la preuve repose sur la théorie de Christol-
Mebkhout [CM]. La preuve de Kedlaya est plus directe : elle utilise une classification & la
Dieudonné-Manin des modules munis d’un Frobenius pour se ramener & un résultat de Tsuzuki

[Ts98]. Voir [Co01] pour une étude comparative plus détaillée.
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3.3. — Rappelons briévement la théorie des (¢, I')-modules [Fo80]. Soit O, 'adhé-
rence dans W(F R) de la sous-W (k)-algebre engendrée par [e] et 1/([e] — 1). Cest
un anneau de valuation discrete complet dont 'idéal maximal est engendré par p et
dont le corps résiduel Ey est le corps des séries formelles k((e ~ 1)) vu comme sous-
corps fermé de F'R. Notons Ognr le séparé complété pour la topologie p-adique de
l'union de toutes les sous-Og,-algébres finies étales de O, contenues dans W(FR).
C’est un anneau de valuation discrete complet dont le corps résiduel est une cléture
séparable E* de Ey. Son corps des fractions £ gidentifie & un sous-corps fermé du
corps B = W(FR)[1/p], stable par Paction de Gk et par le Frobenius . Le corps
Ex = (g n)Hx est une extension finie non ramifiée du corps des fractions de Og,.
Son corps résiduel Eg est une extension finie séparable de Ey ; le corps résiduel k'
de Eg est celui de K.

Alors, D(V) = (€™ ®g, V)75 est un (p,Tg)-module sur E, ie. un E-
espace vectoriel de dimension finie D muni d’un Frobenius y-semi-linéaire (que 'on
note encore ) et d’une action semi-linéaire continue de I'x commutant & 'action
de ¢ ; ce (¢, Tk )-module est étale, i.e. il existe un Og, -réseau D de D tel que D
est le Og, -module engendré par ¢(D). La correspondance V' = D(V') définit une
équivalence entre Repg (Gk) et la catégorie des (¢, 'k )-modules étales.

3.4. — Il n’y a pas de fleche naturelle de £ dans B;R, ce qui fait que la comparaison
entre Agp(V) et D(V) nest pas si facile. Toutefois, si a € R est non nul, [a] €
W(R) C B, est inversible dans B}, ce qui permet de voir 1/[a] = [1/a] comme
un élément de B;R. Tout élément de B s’écrit d’une maniére et d’une seule sous
la forme Y o p"[an], avec les a, € FR ; notons Bjy le sous-anneau de B
formé des séries de ce type qui convergent dans Bj,. Lapplication B}, — BJlj est
injective et permet d’identifier B, & une sous-W (R)[1/p]-algebre de B},. Pour
tout 7 € N, posons gt = gnr ¢"(Bip) et, pour tout b € gﬁw’%, notons ¢, (b)
l'unique ¢ € é;R C Bjp tel que ¢"(c) = b. On a gﬁm‘ C gfl’j ; soit Enrt
P'union des &' ML. Alors 5;; = (g "ML)HK est un sous-corps dense de £x stable par
. On pose D?(V) = (5"’”JL ®g, V)%, On peut le calculer & partir de D(V) :
c’est I'union des sous—é'};—espaces vectoriels de dimension finie de D(V') stables par
. Le résultat principal de [CC98] est que V' est surconvergente, ¢’est-a-dire que
Papplication naturelle £x ® D?(V) — D(V') est un isomorphisme.

Pour tout r € N, soit E;;r = (g,?r’?)HK. Alors D}j(V) = (g,fw’7L ®g, V)Hx

est aussi le plus grand sous—é';r—module M de type fini de D(V') tel que (M) C

52‘{ r+1M. Pour r assez grand, I'application naturelle 52.{ @ i Dj:(V) - D?(V) est
’ £

un isomorphisme. Lorsqu’il en est ainsi, on a gor(é';r) C Koo[[t]] et
Aan(V) = Kn((8)® 4 DI(V) et done Dan(V) = (Ko () ® 4 DI(V)".

3.5. — Wach [Wa96] a montré comment calculer Dy, (V') & partir de D?(V) lorsque
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V' est de hauteur finie. Cest Berger [Be02] qui a compris comment traiter le cas
général : Choisissons un relevement x dans Uanneau des entiers de 5;; d’une uni-
formisante de Ex. Si K désigne le corps des fractions de W(k'}, 5;; g’identifie
précisément au sous-anneau Ezv K de I'anneau de Robba R, k;. Ce dernier ne

dépend pas du choix de z et nous le notons 5}?9 ; il contient ¢t = logle]. Si L est
une extension finie de K contenue dans K, le corps F' = (E#)%IE/LK=) est une
extension finie de Ei et anneau Ezig g’identifie & 'anneau noté Ry au §3.1.

Rappelons (§1.2) que si u = log[e — 1], on a By = Beyris[u]. Les actions de ¢
et de g s’étendent de fagon évidente a 5}?’9, A ER901/t] et & Panneau ER¢[1/t][u]
des polynomes en u & coefficients dans £//[1/¢]. Berger montre que

Deris(V) = (€[] ® 4 DI )= et Dy (V) = (€291/8)[u] ® 4 pfyr=

(Paction de N sur Dy (V) est la restriction de —d/du & idm‘(m)'

3.6. — Posons D = DY(V) = E[1/t] ® t DT(V). En utilisant Paction de T'x
&

comme au §3.4, on définit une connexion V D — D @dt/t qui commute & Paction
de . Cette connexion est réguliére au sens qu’il existe un sous—é'}?g—module D+
de D, libre de rang h, stable par ¢ et vérifiant V(DV) C DT @ dt/t (prendre
Dt = & ®57L D?(V)). On vérifie que le £39-module libre Qé;;g admet d[¢]

K N
comme base. Mais dt/t = [¢] 7! /td[e] et ¢ n’est pas inversible dans €Y. On déduit

alors facilement du théoréme d’André—Kedlaya—Mgbkhout que V est potentiellement
semi-stable si et seulement s’il existe un sous-£xY-module libre D° de D, libre de
rang h, stable par p et vérifiant V(D°) C D°  dt.

11 ne reste plus qu’a construire un tel D° lorsque V est de de Rham. Fixons un
entier ro > 1 suffisamment grand pour que DjO(V) contienne une base de D?(V)
sur 5;; et pour que x € 530. Pour tout r > 7y le sous-anneau E;{?i de 5}?9 =Ru.k
formé des 3, a,2" vérifiant

Vs < 1,]an|s” = 0 sin = +00 et an,(e” — 1)7 = 0 sl 1+ —00
est stable par 'k et contient E}L{vr. Si D, = Dgf’r(V) = Ezfi ®57L D}j(V), alors

K,r
D est la réunion croissante des D, et w(D,) C D,41. L’application ¢, induit un

homomorphisme de E;{?i dans K ((t)) et un isomorphisme de K ((t)) Dgria D,
sur Agr(V). L'application @, : D, - Ayp(V) qui envoie a sur 1 ® a est injecﬁve.

Soit AY, (V) le sous-Koo((t))-module de Agp(V) engendré par les sections
horizontales. Pour tout r > ro, soit D? = {a € D, | ®;(a) € AY, (V) pour tout s >
r}. Ona DY C DY et D® = U,5,, DY est un sous-£-module de D, stable par ¢
et vérifiant V(D®) C D° @ dt. Si V est de de Rham on déduit du fait que AY, (V)
est un réseau de Agr(V) que DO est libre de rang h sur 5}?9. D’oti le théoreme B.
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Equivariant Bloch-Kato Conjecture and
Non-abelian Iwasawa Main Conjecture

A. Huber* G. Kings!

Abstract

In this talk we explain the relation between the {equivariant) Bloch-Kato
conjecture for special values of L-functions and the Main Conjecture of (non-
abelian) Iwasawa theory. On the way we will discuss briefly the case of Dirich-
let characters in the abelian case. We will also discuss how “twisting” in the
non-abelian case would allow to reduce the general conjecture to the case
of number fields. This is one the main motivations for a non-abelian Main
Conjecture.
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1. Introduction

The class number formula expresses the leading coefficient of a Dedekind-¢-
function of a number field F in terms of arithmetic invariants of F:

DB
wp

(r(0)" =

(h the class number, Ry the regulator, wp the number of roots of unity in F'). By
work of Lichtenbaum, Bloch, Beilinson, and Kato among others, the class number
formula has been generalized to other L-functions of varieties (or even motives)
culminating in the Tamagawa number conjecture by Bloch and Kato.

Iwasawa, on the other hand, initiated the study of the growth of the class
numbers in towers of number fields. His decisive idea was to consider the class
group of the tower as a module under the completed group ring of the Galois group
of the tower. From his work evolved the “Main Conjecture” describing this growth
in terms of the p-adic L-function.
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It is a surprising insight of Kato that an equivariant version of the Tamagawa
number conjecture can be viewed as a version of the Main Conjecture of Iwasawa
theory. Perrin-Riou, in her efforts to develop a theory of p-adic L-functions, arrived
at a similar conclusion.

The purpose of this paper is to make the connection between the equivariant
Tamagawa number conjecture and the Iwasawa Main Conjecture precise. In the
spirit of Kato, we formulate an Iwasawa Main Conjecture (3.2.1) for arbitrary mo-
tives and towers of number fields whose Galois group is a p-adic Lie group. This
formulation does not involve p-adic L-functions. We show that it is implied by the
equivariant Tamagawa number conjecture formulated by Burns and Flach. For ease
of exposition, we restrict to the case of L-values at very negative integers, where
the Bloch-Kato exponential does not play a role. The study of non-abelian Iwasawa
theory was initiated by Coates. Recently, there have been systematic results by
Coates, Howson, Ochi, Schneider, Sujatha and Venjakob.

Our interest in allowing general towers of number fields is motivated by the
possibility of reducing the Tamagawa number conjecture to an equivariant class
number formula (modulo hard conjectures, see 3.).

Important special cases of the Main Conjecture were considered by (alphabet-
ical order) Coates, Greenberg, Iwasawa, Kato, Mazur, Perrin-Riou, Rubin, Schnei-
der, Wiles and more recently by Ritter and Weiss.

It is a pleasure to thank C. Deninger, S. Howson, B. Perrin-Riou, A. Schmidt,
P. Schneider for helpful comments and discussions.

2. Non-abelian equivariant Tamagawa number con-
jecture

2.1. Notation

Fix p # 2 and let M be a motive over () with coefficients in ), for example
M = h(X), X a smooth projective variety over Q. It has Betti-realization Mg
and p-adic realization M,,. Let M"Y be the dual motive. In the p-adic realization it
corresponds to the dual Galois module. We denote by H},(Z, M(k)) the “integral”
motivic cohomology of the motive M in the sense of Beilinson [1].

For any finite Galois extension K/Q with Galois group G, let Q[G] be the
group ring of G. It is a non-commutative ring with center denoted Z(Q[G]).

We consider the deformation Q[G] ® M := h’(K)® M. If M = h"(X) and
K/Q is a number field, then h°(K) ® M = h"(X x K) considered as a motive over
Q.

We consider a finite set of primes S satisfying:

(*) Q|G] ® M and K have good reduction at all primes not dividing S, and p € S.

2.2. Equivariant L-functions
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We assume the usual conjectures about the L-functions of motives, like mero-
morphic continuation and functional equation etc., to be satisfied.

In order to define the equivariant L-function for G (without the Euler factors
at the primes dividing 5), consider a Galois extension E/Q such that E[G] =
@, Endp(V(p)), where V(p) are absolutely irreducible representations of G. Then
the center of E[G] is Z(E[G]) = @, E and the motives V(p) ® M have coefficients
in E. We define

Ls(G, M, k)" := (Lg(V(p) ® M, k)*)p € Z(E @q C[G))"

to be the element with p-component the leading coefficient at s = k of the £ ®g C-
valued L-functions Lg(V (p)® M, s) without the Euler factors at S. Then Ls(G, M, k)*
has actually values in Z(R[G])* (see [4] Lemma 7) and is independent of the choice
of E. We will always consider Lg(G, M, k)* as an element in Z(R[G]) C R[G].
Remark In [22] Kato uses a different description of this equivariant L-function.

2.3. Non-commutative determinants

We follow the point of view of Burns and Flach. Let A be a (possibly non-
commutative) ring and V(A4) the category of virtual objects in the sense of Deligne
[12]. V(A) is a monoidal tensor category and has a unit object 1,4. Moreover it is
a groupoid, i.e., all morphisms are isomorphisms. There is a functor

det 4 : {perfect complexes of A-modules and isomorphisms} — V' (A4)

which is multiplicative on short exact sequences. The group of isomorphism classes
of objects of V(A) is Ko(A4) and

Aut(14) = Ki(4) = Gloo(4)/E(4)

(E(A) the elementary matrices). In general Homy (4)(deta X,detqY) is either
empty or a Ky(A)-torsor. If A — B is a ring homomorphism, we get a functor
B® : V(A) — V(B) such that tensor product and det4 commute.

Convention By abuse of notation we are going to write z € det4 X for z : 14 —
det 4 X and call this a generator of det 4 X.

If A is commutative and local, then the category of virtual objects is equivalent
to the category of pairs (L,r) where L is an invertible A-module and r € Z. One
recovers the theory of determinants of Knudson and Mumford. The unit object
is 14 = (A,0) and one has Aut(14) = K1(A4) = A*. Thus K;(A) is used as
generalization of A* to the non-commutative case. Generators of det4 X = (L,0)
in the above sense correspond to A-generators of L.

2.4. Formulation of the conjecture

The original conjecture dates back to Beilinson [1] and Bloch-Kato [3]. The
idea of an equivariant formulation is due to Kato [23] and [22]. Fontaine and Perrin-
Riou gave a uniform formulation for mixed motives and all values of L-functions at
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all integer values [14], [15]. The generalization to non-abelian coefficients is due to
Burns and Flach [4].

For simplicity of exposition, we restrict to values at very negative integers.
In the absolute case this coincides with the formulation given by Kato in [23].
We consider a motive M and values at 1 — k where k is big enough. In the case
M = h"(X), k big enough means that

o k> inf{r,dim(X)}, (r, k) # (1,0); (2dim(X),dim(X) + 1) and 2k # r + 1.
e for all £ € S the local Euler factor Ly(M,/,s)™" at £ does not vanish at 1 — k.

Consider the (injective) reduced norm map rn : K1 (R[G]) — Z(R[G])* and
recall that Ls(G, MY, 1-k)* € Z(R[G])*. By strong approximation (see [4] Lemma
8) there is A € Z(Q[G])* such that ALg(G, MY (1 —Fk))* is in the image of K (R[G])
under rn. Let

)\LS(G,Af\/(l - k))* € 1R[Gn]

be the corresponding generator. For k big enough, we define the fundamental line

in V(Q[G)) as
A (G, MY (1= k)) = detge Hi(Z, QG) © M(k)) @ detga)(QG] & Mp(k —1))* .
Here + denotes the fixed part under complex conjugation.

Conjecture 2.4.1 Let M be as in 2., p # 2 a prime and k big enough.

1. The Beilinson regulator rp induces an isomorphism

Af(G,]WV(l —-k)) o R = 1R[G]-

2. Under this isomorphism the generator (ALs(G, MY (1 —k))*)™1 is induced by
a (unique) generator

(ATHO(G, ML k) € Ap(G, MY (1 - k).

The reduced norm is an isomorphism K1(Q,[G]) = Z(Q,[G])*. Using the operation
of K1(Q,[G]) on generators in A (G, MY (1 = k)) ® Q,, we put

5,(G, M, k) == (\"16(G, M, k)X € Ap(G, MY(1— k) ® Q.

Note that this generator is independent of the choice of \.

3. The p-adic regulator r, induces an isomorphism
Ap(GMY(1-F) ©Q, =
detg 1oy H' (Z[1/8], @ [G] © My (k) ® detg, o) (Qp [G] @ Mp(k — 1))

4. Let Tg C Mg be o lottice such that T, = Tp ® Z, C M, is Galois stable.
Under the last isomorphism 6,(G, M, k) is induced by a generator

gp(G, M, k) € detg (g RT(Z[1/5], Z,|G]=Ty(k))@detz [ (Z |Gl TE)(k—1))7.
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Remark a) The conjecture is compatible with change of group G. If G — G' is
a surjection, then the equivariant conjecture for G tensored with Q[G'] over Q[G]
gives the conjecture for G'.

b) The element 6,(G, M, k) is determined up to an element in the kernel of the map
K1 (Z,[G]) — K1(Q,[G]). In the commutative case, this map is always injective.
¢) The conjecture is independent of T'. It is also independent of S. This computation
shows that the definition of the equivariant L-function forces the use of the reduced
norm in the formulation of the conjecture.

3. Non-abelian Main Conjecture

3.1. Iwasawa algebra and modules

Let K, be a tower of finite Galois extensions of Q with Galois groups G,, such
that G = @Gn is a p-adic Lie group of dimension at least 1. Moreover, we
assume that only finitely many primes ramify in K, :=J,, Kp.

The classical example is the cyclotomic tower K, := Q((p» ) with (= a p”-th
root of unity. A non-abelian example is the tower K, := Q(E[p"]), where E[p"] are
the p™-torsion points of an elliptic curve E without CM defined over Q.

The ITwasowa algebra

A= 7y[[Goc] = @Zp[Gn]

is the ring of Z,-valued distributions on G. It is a possibly non-commutative
Noetherian semi-local ring. If G is in addition a pro-p-group without p-torsion it
is even a regular and local ring.

For the cyclotomic tower, A = Z[G][[t]] is the classical Iwasawa algebra. For
the tower of p™-torsion points of E, the Iwasawa algebra was studied by Coates and
Howson [8], [9]. Modules over such algebras are studied recently by Venjakob [36]
and by Coates-Schneider-Sujatha [10].

We are concerned with the complex of A-modules RI'(Z[1/S], A®z, T,(k)) and
(A®z Tp(k —1))". They are perfect complexes. Note that

RI(Z[1/5], Az, Tp(k)) = lim RT(Ok,[1/5], T, (k))

where Og,, is the ring of integers of K,,.

3.2. Formulation of the non-abelian Main Conjecture

The Main Conjecture can be viewed as a Bloch-Kato conjecture for the de-
formed “motive” A ® M with coeflicients in A.

Recall from 2.4.1 that the generators 6,(G,, M, k) are compatible under the
transition maps @ [Gr] — Qp [Gr—-1]. They define

Gp(Gooy M, k) = 1im 6, (G, M, k) €
lim [ detg, 6, RT(Z(1/S], G (Gl © My(k)) ® et ,1(Qy (Gl @ Mk = 1))*] |
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more precisely an element of @Hom‘/(@lj[gn])(l@lj[gn], ).
The map A — Q,[(5] induces an isomorphism

Q,[Gn] ®4 RT(Z[1/S), A® T, (k)) — RT(Z[1/S], Gy [Gn] ©q, M, (k) .

Conjecture 3.2.1 (Non-abelian Main Conjecture) Let M and S be as in 2.,
Goo as in 3., p# 2, Tp C Mg a lottice such thot T, := Tp @ Z,, is Galois stable
and k big enough (cf. section 2.). Then 6,(Go, M, k) is induced by a generator

0p(Goo, M, k) € [dety RT(Z[1/S],A® Ty (k) @ deta (A @ Tr(k — 1)*] .

The conjecture translates into the Iwasawa Main Conjecture in the case of Dirichlet
characters or CM-elliptic curves. See section 5. for more details.

Remark a) The conjecture is independent of the choice of lattice Ts. The correc-
tion factor (A ® Tg(k — 1))* compensates different choices of lattice.

b) Perrin-Riou [31] has defined a p-adic L-function and stated a Main Conjecture
for motives in the abelian case. She starts at the other side of the functional equa-~
tion, where the exponential map of Bloch-Kato comes into play. Her main tool is
the “logarithme élargi”, which maps Galois cohomology over K, to a module of
p-adic analytic nature. It would be interesting to compare her approach with the
above.

¢) A Main Conjecture for motives and the cyclotomic tower was formulated by
Greenberg [16], [17]. Ritter and Weiss consider the case of the cyclotomic tower
over a finite non-abelian extension [32].

Proposition 3.2.2 (see section 6.) The equivariant Bloch-Kato conjecture for
M, k and oll G,, is equivalent to the Main Conjecture for M, k and G .

3.3. Twisting

Assume that T}, becomes trivial over K, for example let G, be the image
of Gal(Q/Q) in Aut(7,). Let T be the Zy-module underlying T}, with trivial
operation of the Galois group. The map g ® t = g ® g~ 't induces an equivariant
isomorphism A ®z, T, = A ®z, T;“V. Hence there is an isomorphism

dety RT(Z[1/S),A® T,(k)) @ deta(A @ Tp(k — 1))T =
dety RT(Z[1/S], A& Ty (k) @ deta (A @ Ty (k — 1)*.
Note that TV can be viewed as a lattice in the Betti-realization of the trivial

motive h%(Q) ® M = Q(0) ® M¥™ where M is Mp considered as Q-vector
space.

Corollary 3.3.1 If the Main Conjecture is true for M and Q(0) ® M and k,
then _ _ ‘
8p(Gooy ML) = 0,(G oo, M™ )

up to an element in Ky (A) under the above isomorphism.
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Remark Even if 7}, is not trivial over K, the same method allows to twist with a
motive whose p-adic realization is trivial over K. A particular interesting case is
the motive Q(1) if K contains the cyclotomic tower. It allows to pass from values
of the L-function at k to values at & + 1.

Strategy This observation allows the following strategy for proving the Main Con-
jecture and the Bloch-Kato conjecture for all motives:

e first prove the equivariant Bloch-Kato conjecture for the motive h°(Q) = Q(0),
one fixed k and all finite groups G,,. For k = 1 this is an equivariant class
number formula.

® by proposition 3.2.2 this implies the Main Conjecture for the motives Q(k) ®
M"Y and all p-adic Lie groups Goo.

¢ for any motive M there is a K such that T, becomes trivial. Using corollary
3.3.1 it remains to show that gp(Goo, MYV k) induces 0,(G,, M, k) for all n.
This is a compatibility conjecture for elements in motivic cohomology and
allows to reduce to the case of number fields.

¢ the equivariant Bloch-Kato conjecture follows by 3.2.2.

4. Relation to classical Iwasawa theory in the crit-
ical case

4.1. Characteristic ideals

We restrict to the case G a pro-p-group without p-torsion. In this case the
Iwasawa algebra is local and Auslander regular ([36]). Its total ring of quotients is
a skew field D. Then Ko(A) = Ko(D) = 7, K1(A) = (A*)??, and K1 (D) = (D*)?*"
where 2P denotes the abelianization of the multiplicative group.

Let T be the category of finitely generated A-torsion modules. The localization
sequence for K-groups implies an exact sequence

(A")2 — (D*)*® = Ko(T) — 0.

If X is a A-torsion module, then we call its class in Ko(7) the characteristic ideal.
By the above sequence it is an element of D* up to [D*, D*]Im A*. If G is abelian,
Ko(T) is nothing but the group of fractional ideals that appears in classical Iwasawa
theory.

The characteristic ideal can also be computed from the theory of determinants.
The class of X in K¢(A) is necessarily 0, hence there exists a generator z € det (X).
Its image in D®deta (X)) = detp(0) = 1p is an element of K7 (D). This construction
yields a well-defined element of K1 (D)/Im K;(A) = Ko(7), in fact the inverse of
the characteristic ideal of X.

Note that a complex is perfect if and only if it is a bounded complex with
finitely generated cohomology. Such complexes also have characteristic ideals if
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their cohomology is A-torsion.

Remark Coates, Schneider and Sujatha study the category of A-torsion modules
in [10]. In particular, they also define a notion of characteristic ideal as object of
Ko(T?/T") where T%/T" denotes the quotient category of bounded finitely gener-
ated A-torsion modules by the sub-category of pseudo-null modules. They construct
a map

Ko(T) = Ko(T/T") = Ko(T"/T")

which maps the class of a module to the characteristic ideal in their sense. If G, is
abelian, then the two maps are isomorphisms and all notions of characteristic ideals
agree. In the general case, we do not know whether the map is injective. However,
it seems to us that the problem is not so much in passing to the quotient category
modulo pseudo-null modules but rather in projecting to the bounded part.

4.2. Zeta distributions
Let M, k, S and G, as before. Assume

H(Z,QG,] ® M(k)) = 0 for all G,,.

For k big enough, this implies that Mg(k — 1)™ = 0 and K, totally real. The
motives Q[G,] @ M (k) are critical in the sense of Deligne. Note that the only
motives expected to be critical and to satisfy our condition % big enough (see 2.)
are Artin motives (with k > 1).

In this case, the Beilinson conjecture asserts that Lg(Gp,, MY, 1-k) € Z(Q[G,])*
(no leading coeflicients has to be taken). We call

L5(Goo, MY, 1 - k) = @LS(GR,MVJ — k) € lim Z(Q,[Gn])"

the zeta distribution.
Let f,g € A such that the images fp,gn € Z,[G,] are units in Q,[G,]. Via
the reduced norm, they define a distribution

(en(fagn ' ))n € lim Z(Qy [G])™.

Remark It is not clear to us if the class of f/g € K;1(D) = (D*)*" is uniquely
determined by the sequence f,g,'. In the abelian case this is true and f/g is a
generalization of Serre’s pseudo measure (cf. [35]).

In this case the complexes RI'(Ok, [1/5], T,(k)) are torsion. Hence the com-
plex RI(Z[1/S),A@ T, (k) = Hm RT(Ok,[1/5],T,(k)) is bounded and its coho-
mology is A-torsion (see [18]). The main conjecture 3.2.1 takes the following form:

Conjecture 4.2.1 Let M be an Artin motive, k > 1, S, G as before (in particular
Goo pro-p and without p-torsion) and Q[G, ] ® M (k) critical for all n. There exist
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f,g € A such that the induced distribution (rn(fng;"))n € lim Z(Q,[Gy])* is the
zeta distribution Ls(Goo, MY, 1 — k) and the chamctemstzc ideal

[RT(Z[1/5], A Tp(k))[1] € Ko(T)
coincides with the image of fg~' € (D*)*P.

Remark a) The conjecture is isogeny invariant, i.e., independent of the choice of
lattice Tp,. The correction term (A ® Tp(k))T vanishes.

b) In the abelian case this means that the zeta distribution is a pseudo measure
and generates the characteristic ideal.

¢) In the case of the cyclotomic tower, a similar conjecture is formulated by Green-
berg, [16], [17].

d) If G is abelian, the above conjecture is easily seen to be implied by conjecture
3.2.1. The argument also works in the non-abelian case if the set of all elements of
A which, for all n, are units in Q,[G}] is an Ore set.

5. Examples

5.1. Dirichlet characters

Let x be a Dirichlet character, V' (x) its associated motive with coefficients in
E. Let Qx = J,, @, be the cyclotomic Zjy-extension of Q and G = Gal(Qx /Q) =
Im (5, In this case the equivariant L-function is Ls(Gy, V(x),s) = (Ls(px,$))ps
where p runs through all characters of G,, and Lg(py, s) is the Dirichlet L-function
associated to py. Let k be big enough, i.e., & > 1.

Critical case x(—1) = (-1)*.

Here H},(Z, E[G,] ® V(x)(k)) = 0 for all n. As in section 4., the equivariant
L-values give rise to the zeta distribution Ls(Goo, V(x)V, 1~ k) € m E[G,). It is
a classical calculation (Stickelberger elements) that this is in fact a pseudo measure,
which gives rise to the Kubota-Leopoldt p-adic L-function. Let O C FE be the ring
of integers, A = O,[[Goo]] the Iwasawa algebra and T,(x) C Vp(x) a Galois stable
lattice. The Iwasawa Main Conjecture 4.2.1 amounts to the following theorem:

Theorem 5.1.1 The zeta distribution Ls(Goo,V{(x)V,1 — k) generates
dety" HY(Z[1/S],A® T,(x)(k)) ® dety H*(Z[1/S], A® T,(x)(k)).

Remark This is a reformulation of the main theorem of Mazur and Wiles in [29].
There is an extension to the case of totally real fields by Wiles [37] and an equivariant
version by Burns and Greither [6].
Noun-critical case x(~1)=(~1)

Here H},(Z, E[G,] ® V(x)(k)) has E[Gy)-rank 1. It is a theorem of Borel
(resp. Soulé) that rp ® R (resp. r, ® (J,) is an isomorphism. By a theorem of
Beilinson-Deligne (see [21] or [19]}, the image of 6,(Gy, V(x), k) under r, is given
by

k—1

cx (G, tp (X)) T @ 100 (k = 1),
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where

cx (G, tp(x)) € H'(Z[1/8], OhGn] © Tp(x) (k)

is a twist of a cyclotomic unit and ¢,(x}(k — 1) is a generator of T,,(x)(k — 1). Let
Ck(GOOa tp(X)) = kr_l_ln Ck(Gna tP(X))

Theorem 5.1.2 There is a canonical isomorphism of A-determinants

deta (H'(Z[1/S], A® Ty(x) (k) ek (Coos t5(x))) =
dety HX(Z[1/S], A® Ty (x) (k).

Remark For p 4 ord(x) this is a consequence of theorem 5.1.1 and was shown
directly by Rubin [33] with Euler system methods. The restriction at the order of
x is removed in Burns-Greither [5] and Huber-Kings [20] by different methods.

The Tamagawa number conjecture for V (x)(r) (and hence for h°(F)(r) with
F an abelian number field) can be deduced from theorems 5.1.1 and 5.1.2, see
Burns-Greither [5] or Huber-Kings [20]. Previous partial results were proved in
Mazur-Wiles [29], Wiles [37], Kato [22], [23], Kolster-Nguyen Quang Do-Fleckinger
[26] and Benois-Nguyen Quang Do[2].

We would like to stress that the strategy 3. is used in Huber-Kings [20] to
prove theorems 5.1.1, 5.1.2 and the Tamagawa number conjecture from the class
number formula.

5.2. Elliptic curves

Let E be an elliptic curve over an imaginary quadratic field K with CM by Og.
The motive h'(E) considered with coefficients in K decomposes into V (1)) & V (1)),
where ) is the Gréssencharacter associated to E. The L-function of V' (v) is the
Hecke L-function of 1, which has a zero of order 1 at 2 — k, where k& > 2. Let
S = Np, where N is the conductor of ¢ and let K,, := K(E[p"]).

It is not known if H3,(Ok, K[G,]® V(¢)(k)) has K[Gy)-rank 1 but Deninger
[13] shows that rp ® R is surjective and that the Beilinson conjecture holds. It
is a result of Kings [25] that the image in étale cohomology of the zeta element
0p(Gr, V(9),2 — k) given by Beilinson’s Eisenstein symbol is given by

e (Gn, tp(¢))—1 ® (1) ,

where ey, (G, t,(¢)) € HY(Z[1/5], O,[Gn) 2T, (1) (k)) is the twist of an elliptic unit.
Let A := Op[[Goo]] and ex(G oo, tp(h)) = lim €4 (G, £,(¢))).

Theorem 5.2.1 There is a canonical isomorphism of determinants

dets (HY(Z[1/S), A® Ty() (k) /e (Goos t (1)) =2
deta H*(Z[1/S], A & T, ()(R)).

Remark 1) This is a reformulation of Rubin’s Iwasawa Main Conjecture [34].
2) In [25] the (absolute) Bloch-Kato conjecture for V(1) is deduced from this under
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the condition that H2(Z[1/S], T,(1)(k)) is finite (fulfilled for almost all k for fixed
D)

Kato [24] has investigated the case of elliptic curves over () and the cyclo-
tomic tower. His approach to the Birch-Swinnerton-Dyer conjecture uses the idea
of twisting cup-products of Eisenstein symbols to the value of the L-function at 1.
As a consequence he can prove one inclusion of the Iwasawa main conjecture in this

case. The result supports our general philosophy of twisting to the case of number
fields.

6. Proof of proposition 3.2.2

We want to give the proof of proposition 3.2.2. The implication from the Main
Conjecture to the equivariant Bloch-Kato conjecture is trivial. Conversely, we have
to show the following abstract statement:

Lemma 6.1 Let V € V(A) and §(n) € Z,[G,) ® V generators such that their
images 6(n) € Q,[G,] ® V are compatible under transition maps. Then there is a
generator 0' (00) € V inducing all 5(n).

The proposition follows with &(n) = gp(Gn, M, k) and

V = dety RT(Z[1/pS], A® Ty(k)) ® dets (A Tk — 1))+

We now prove the lemma. We first reduce to a statement about elements of
K;. By assumption, Z,[G,] ® V has a generator, in particular, its isomorphism
class is zero in Ko(Z[G,)). As Ko(A) — l{iglKo(Zp[Gn]) is an isomorphism, this
implies that the class of V is zero in Kp(A). Without loss of generality we can
assume V = 1. Recall that by our convention, a generator of 14 is nothing but
an element of the abelian group K7(A) for all rings A.

Let B, = Im K1 (Z,[G,,]) — K1(Q,[Gr]). By assumption 6(n) € B,,. There is
a system of short exact sequences

0 — SK1(Z,[Gy)) = Ki(Z,|Gy)) — By, — 0.

By [11] 45.22 the groups SK:1(Z,[G,]) are finite. The system of these groups is
automatically Mittag-Leffler. Hence we get a surjective map

lim K1 (Z,[G]) — lim B,,.

The system (6(n)), has a preimage (6'(n))n € m K (Z[Gr))-
All Z ,[G},] are semi-local, hence by [11] 40.44

Kl(Zp[Gn]) = GIQ(ZP[Gn])/E’Z(Zp[Gn])

where E5 is the subgroup of elementary matrices. We represent gl’p(n) by an element
of Glo(Z,[G,]). By assumption the image of 8'(n) in K (Zp[Gr-—1]) differs from
'(n — 1) by some elementary matrix in E5(Z,[Gr-1]). Elementary matrices can
be lifted to elementary matrices in Gla(Z,[Gy]). Hence we can assume that the
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clements 0'(n)) € Gla(Z,[G,)) form a projective system. The system defines an
element

3 (n) € Glo(A)

whose class in K4 (A) has the necessary properties.
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Spencer Bloch and the author formulated a general conjecture (Tama-
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ture, and describe some application of the philosophy of the conjecture to the
study of elliptic curves.
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Mysterious relations between zeta functions and various arithmetic groups
have been important subjects in number theory.
(0.0 zeta functions «+ arithmetic groups.

A classical result on such relation is the class number formula discovered in
19th century, which relates zeta functions of number field to ideal class groups and
unit groups. As indicated in (0.1)-(0.3) below, the formula of Grothendieck ex-
pressing the zeta functions of varieties over finite fields by etale cohomology groups,
Iwasawa main conjecture proved by Mazur-Wiles, and Birch and Swinnerton-Dyer
conjectures for abelian varieties over number fields, considered in 20th century, also
have the form (0.0).

(0.1) Formula of Grothendieck.

zeta functions <+ etale cohomology groups.
(0.2) Iwasawa main conjecture.

zeta functions, zeta elements + ideal class groups, unit groups.
(0.3) Birch Swinnerton-Dyer conjectures (see 4).

zeta functions «» groups of rational points, Tate-Shafarevich groups.

Here in (0.2), “zeta elements” mean cyclotomic units which are units in cyclo-
tomic fields and closely related to zeta functions. Roughly speaking, the relations

*Department of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo,
Japan. E-mail: kkato@ms.u-tokyo.ac.jp
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(often conjectural) say that the order of zero or pole of the zeta function at an in-
teger point is equal to the rank of the related finitely generated arithmetic abelian
group (Tate, the conjecture (0.3), Beilinson, Bloch, ...) and the value of the zeta
function at an integer point is related to the order of the related arithmetic finite
group.

In [BK], Bloch and the author formulated a general conjecture on (0.0) (Tama-
gawa number conjecture for motives). Further generalizations of Tamagawa number
conjecture by Fontaine, Perrin-Riou, and the author [FP], [Pe;] [Kaq], [Kag] have
the form
(0.4) zeta functions (= Euler products, analytic)

+» zeta elements (= Euler systems, arithmetic)

++ arithmetic groups.
Here the first > means that zeta functions enter the arithmetic world transforming
themselves into zeta elements, and the second +» means that zeta elements generate
“determinants” of certain etale cohomology groups.

The aim of this paper is to discuss (0.4) in an expository style. We review
(0.1) in §1, and then in §2, we describe the generalized Tamagawa number conjecture
(0.4), the relation with (0.2), and an application of the philosophy (0.4) to (0.3).

In this paper, we fix a prime number p. For a commutative ring R, let Q(R)
be the total quotient ring of R obtained from R by inverting all non-zerodivisors.

1. Grothendieck formula and zeta elements

Let X be a scheme of finite type over a finite field F,. We assume p is different
from char(F,).

In this §1, we first review the formula (1.1.2) of Grothendieck representing zeta
functions of p-adic sheaves on X by etale cohomology. We then show that those
zeta functions are recovered from p-adic zeta elements (1.3.5).

1.1. Zeta functions and etale cohomology groups in positive charac-
teristic case. The Hasse zeta function ((X,s) = [[, ¢y (1 — fr(z)7%) 7L, where
|X| denotes the set of all closed points of « and (x) denotes the residue field of x,
has the form ¢(X, s) = ((X/F,,¢q7°) where

CX/Fgu) = T (- u@)= deg(a) = [w(x) : Fy). (1.1.1)
z€|X|

A part of Weil conjectures was that ((X/F,,u) is a rational function in w,
and it was proved by Dwork and then slighly later by Grothendieck. The proof of
Grothendieck gives a presentation of ((X/F,, u) by using etale cohomologyy. More
generally, for a finite extension L of Q, and for a constructible L-sheaf 7 on X,
Grothendieck proved that the L-function L(X/F,, F,u) has the presentation

)m—l

LIX/F,, F,u) = [[detr,(1 — pu; H? (X @p, Fy, F)) (1.1.2)
q q et,e g 4
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where H} . is the etale cohomology with compact supports and ¢, is the action of
the g-th power morphism on X.

In the case L = Q, = F, ((X/F,,u) = L(X/F,, F, u).

1.2. p-adic zeta elements in positive characteristic case. Determinants
appear in the theory of zeta functions as above, rather often. The regulator of a
number field, which appears in the class number formula, is a determinant. Such
relation with determinant is well expressed by the notion of “determinant module”.

If R is a field, for an R-module V' of dimension r, detg(V") means the 1 dimen-
sional R-module AL(V). For a bounded complex C of R-modules whose cohomolo-
gies H™(C) are finite dimensional, detz(C) means @, ez {detp(H™(C))}®(=1",

This definition is generalized to the definition of an invertible R-module det g (C)
associated to a perfect complex C of R-modules for a commutative ring R (see
[KM]). det' (C) means the inverse of the invertible module det r(C).

By a pro-p ring, we mean a topological ring which is an inverse limit of finite
rings whose orders are powers of p. Let A be a commutative pro-p ring. By a ctf
A-complex on X, we mean a complex of A-sheaves on X for the etale topology with
constructible cochomology sheaves and with perfect stalks. For a ctf A-complex F
on X, Rl (X, F) (. means with compact supports) is a perfect complex over A.

For a commutative pro-p ring A and for a ctf A-complex F on X, we define the
p-adic zeta element ((X,F,A) which is a A-basis of det' Rl .(X,F). Consider
the distinguished triangle

Rt o(X, F) = RTeo(X ©p, Fq,F) —5 RToy (X @p, B, ). (1.2.1)
Since det is multiplicative for distinguished triangles, (1.2.1) induces an isomorphism

det 'Rl (X, F) 2 det ' RT ¢ (X @, Fyg, F) @4 detg RT ey (X ®p, Fy, F) 2 A.

(1.2.2)
We define ((X,F,A) to be the image of 1 € A in det;lRFem(X, F) under (1.2.2).
It is a A-basis of the invertible A-module det;lRFetvc(X ,F).

1.3. Zeta functions and p-adic zeta elements in positive character-
istic case. Let L be a finite extension of Q,, let O be the valuation ring of
L, and let F be a constructible Oy -sheaf on X. We show that the zeta function
L(X/¥,, Fr,u) of the L-sheaf F;, = F ®o, L is recovered from a certain p-adic
zeta element as in (1.3.5) below. Let

A = O [[Gal(F, /F,)]] = lim O [Gal(F jn /F,)]. (1.3.1)

Let s(A) be the A-module A which is regarded as a sheaf on the etale site of X via
the natural action of Gal(F,/F,). Then

Hi (X, F®o, s(A) 2lim HY (X @p, Fgn, F) (1.3.2)
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where the transition maps of the inverse system are the trace maps. From this, we
can deduce that H}} .(X,F ®0, s(A)) is a finitely generated Or-module for any m.

Hence we have Q(A) @4 RT'e; (X, F®o, s(A)) = 0 and this gives an identificatition
canonical isomorphism

Q(A) @4 dety RLer,o(X, F @0, H(A)) = Q(A). (133)

Note

Q(A) = Qlim Oy [ul/(u” — 1)) > Q(O[u]) = L(w). (1.3.4)
By a formal argument, we can prove the following (1.3.5) (1.3.6) which show

zeta function = zeta element,  zeta value = zeta element,

respectively.

L(X/Fy, Frou) = (X, F @0, s(A),A) in QA). (1.3.5)
If H} (X, FL) =0 for any m, L(X/F,, Fp,u) has no zero or pole at u = 1, and

L(X/F,, Fr,1) = ((X,F,0) in L. (1.3.6)

2. Tamagawa number conjecture

In 2.1, we describe the generalized version of Tamagawa number conjecture.
In 2.2 (resp. 2.3), we consider p-adic zeta elements associated to 1 (resp. 2) di-
mensional p-adic representations of Gal(Q/Q), and their relations to (0.2) (resp.

(0.3)).

2.1. The conjecture. Let X be a scheme of finite type over Z[%]. For a
complex of sheaves F on X for the etale topology, we define the compact support
version RI'¢; (X, F) of R['e,(X,F) as the mapping fiber of

RFet(Z[é], RfiF) — RU (R, RAF) @ R er(Qp, RAF).
where f : X — Spec(Z[]).
It can be shown that for a commutative pro-p ring A and for a ctf A-complex
Fon X, Rl (X, F) is perfect.
The following is a generalized version of the Tamagawa number conjecture
[BK] (see [FP], [Pes], [Ka1], [Kaz]). In [BK], the idea of Tamagawa number of
motives was important, but it does not appear explicitly in this version.

Conjecture. To any triple (X, A, F) consisting of a scheme X of finite type over

Z[%], a commutative pro-p ring A, and a ctf A-complex on X, we can associate a

A-basis (X, F,A) of

A(X,F,A) = det' RT . (X, F),
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which we call the p-adic zeta element associoted to F, satisfying the following con-
ditions (2.1.1)-(2.1.5).

(2.1.1) If X is o scheme over a finite field ¥y, ((X,F,A) coincides with the element
defined in §3.2.

(2.1.2) (rough form) If F is the p-adic realization of a motive M, ((X,F,A)
recovers the complex value lim,_,o s7¢L(M, s) where L(M, s) is the zeta function of
M and e is the order of L(M,s) at s = (.

(2.1.8) If A" is a pro-p ring and A — A’ is a continuous homomorphism, ((X, F ®%
A", A") coincides with the image of ((X, F, A) under A(X, FREA,A') 2 A(X, F)®a
Al

(2.1.4) For a distinguished triangle F' —» F —» F7 with common X and A, we have

X, FA) =X, FLoNCX,FLA) in AX,FA) = AX, FLARAA(X, F7LA).

(2.1.5) If Y is a scheme of finite type over Z[Il)] and f : X — Y is a separated
morphism,

CY,RAF.A) =X, F,A) in AY,RAF,A) = A(X,F,A).

By this (2.1.5), the constructions of p-adic zeta elements are reduced to the
case X = Spec(Z[%]). How to formulate the part (4.1.2) of this conjecture is reduced
to the case of motives over Q by (2.1.5) and L(M, s) = L(Rfi(M), s) (by philosophy
of motives), where f : X — Spec(Z[}]).

The conditions (2.1.3)-(2.1.5) are formal properties which are analogous to
formal properties of zeta functions. The conditions (2.1.1) and (2.1.3)-(2.1.5) can
be interpreted as
(2.1.6) The system (X, A, F) — ¢(X,F,A) is an “Euler system”.

In fact, let L be a finite extension of Q,, S a finite set of prime numbers
containing p, and let T be a free Op-module of finite rank endowed with a continuous
Op-linear action of Gal(Q/Q) which is unramified outside S. For m > 1, let
Ry = O4[Gal(Q(¢) /Q)] and let

2m = (R, (Z[3) jm (T @0, $(Rin)), Rm) € dety) RU et o(Z[Gms 7). T)-
(jm : Spec(Z[5]) — Spec(Z[L])).

Then the conditions (4.1.1) and (4.1.3)-(4.1.5) tell that when m varies, the
p-adic zeta elements z,, form a system satisfying the conditions of Euler systems
formulated by Kolyvagin [Ko].

We illustrate the relation (2.1.2) with zeta functions.

Let M be a motive over Q, that is, a direct summand of the motive H™(X)(r)
for a proper smooth scheme X over Q and for r € Z, and assume that M is endowed
with an action of a number field K. Then the zeta function L(M, s) lives in C, and
the p-adic zeta element lives in the world of p-adic etale cohomology. Since these
two worlds are too much different in nature, L{M,s) and the p-adic zeta element
are not simply related.
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However in the middle of C and the p-adic world,

(a) there is a 1 dimensional K-vector space Ag (M) constructed by the Betti
realization and the de Rham realization of M, and K-groups (or motivic cohomology
groups) associated to M.

Let 0o be an Archimedean place of K. Then

(b) there is an isomorphism

Ag(M) 8k Koo = Ko

constructed by Hodge theory and K-theory.

Let w be a place of K lying over p, let M,, be the representation of Gal(Q/Q)
over K, associated to M, and let T be a Gal(Q/Q)-stable O, -lattice in M,,.
Then

(c) there is an isomorphism

1
Ag (M) @k Ky — detig, RFet,c(Z[g—g], G M)
1.
=dety. RFet,c(Z[z—g], 5:T) @0y, Kuw

where j : Spec(Q) — Spec(Z[%]), constructed by p-adic Hodge theory and K-theory.

See [FP] how to construct (a)-(c) (constructions require some conjectures).
The part (2.1.2) of the conjecture is:

(d) there exists a K-basis ((M) of Ag(M) (called the rational zeta ele-
ment associated to M), which is sent to lim, .5 s7¢L(M,s) under the isomor-
phism (b) where e is the order of L(M,s) at s = 0, and to C(Z[%],j*T, Ok,)
in det;{i RFet,c(Z[%],j*]Ww) under the isomorphism (c).

The existence of ((M) having the relation with lim, .o s7¢L(M, s) was con-
jectured by Beilinson [Be].

How zeta functions and p-adic zeta elements are related is illustrated in the
following diagram.

Hodge theory (de Rham)

zeta functions side  (Betti)
regula’corT Tp—adic Hodge theory

(K-theory) -y  (etale) p-adic zeta elements side.
Chern class

We have the following picture.

"
automorphic rep 4 motives ey p-adic Gal rep

1 ) )

zeta functions rational zeta elements p-adic zeta elememts
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The left upper arrow with a question mark shows the conjecture that the map
{motives} — {zeta functions} factor through automorphic representations, which
is a subject of non-abelian class field theory (Langlands correspondences). As the
other question marks indicate, we do not know how to construct zeta elements in
general, at present.

2.2. p-adic zeta elements for 1 dimensional galois representations.
Let A be a commutative pro-p ring, and assume we are given a continuous homo-
morphism

p: Gal(Q/Q) = GL,(A)

which is unramified outside a finite set S of prime numbers S containing p. Let
F = A®" on which Gal(Q/Q) acts via p, regarded as a sheaf on Spec(Z[%]) for the
etale topology. We consider how to construct the p-adic zeta element ¢ (Z[é], F,A).

In the case n = 1, we can use the “universal objects” as follows. Such p comes
from the canonical homomorphism

Puniv - Gal(Q/Q) — GL1(Auniy) where Aypiv = Z,[[Gal(Q(Cnp=)/Q)]]

for some N > 1 whose set of prime divisors coincide with S and for some continuous
ring homomorphism Ayniy — A. We have F =2 Finiv ®4a,,,, A. Hence C(Z[%], F,A)
should be defined to be the image of (Z[%],funiv, Auniv). As is explained in [Kao]
Ch. 1,3.3,¢ (Z[%], Funivs Auniv) 18 the pair of the p-adic Riemann zeta function and
a system of cyclotomic units. Iwasawa main conjecture is regarded as the statemnet
that this pair is a Aypjv-basis of A(Z[%], Funivs Muniv)-

2.3. p-adic zeta elements for 2 dimensional Galois representations.
Now consider the case n = 2. The works of Hida, Wiles, and other people suggest
that the universal objects Ayniy and Funiv for 2 dimensional Galois representations
in which the determinant of the action of the complex conjugation is -1, are given
by

Auniv = lim p-adic Hecke algebras of weight 2 and of level Np”,

[

Funio = §m H' of modular curves of level Np”.
n

Beilinson [Be] discovered ratinal zeta elements in K5 of modular curves, and the im-
ages of these elements in the etale cohomology under the Chern class maps become
p-adic zeta elements, and the inverse limit of these p-adic zeta elements should be
¢ (Z[é], Funivs Auniv) at least conjecturally. By using this plan, the author obtained
p-adic zeta elements for motives associated to eigen cusp forms of weight > 2, from
Beilinson elements. Here it is not yet proved that these p-adic zeta elements are
actually basis of A, but it can be proved that they have the desired relations with
values L(E,x,1) and L(f,x,r) (1 <r < k — 1) for elliptic curves over Q (which
are modular by [Wi], [BCDT]) and for eigen cusp forms of weight & > 2, and for
Dirichlet charcaters y. Beilinson elements are related in the Archimedean world
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to limg_,0 s L(E, x, s) for elliptic curves E over Q, but not related to L(E, x,1).
However since they become universal (at least conjecturally) in the inverse limit in
the p-adic world, we can obtain from them p-adic zeta elements related to L(E, x, 1).
Using these elements and applying the method of Euler systems [Ko], [Pes], [Ruz],
[Kag], we can obtain the following results ([Kaa]).

Theorem. Let E be an elliptic curve over Q, let N > 1, and let x : Gal(Q({n)/Q)
>~ (Z/NZ)* — C be a homomorphism. If L(E,x,1) # 0, the x-part of E(Q({~))
and the x part of the Tate-shafarevich group of E over Q({xn) are finite.

The p-adic L-function L,(E) of E is constructed from the values L(E, x,1).

Theorem. Let E be an elliptic curve over Q which is of good reduction at p.

(1) rank(E(Q) < ords=1 L,(E).

(2) Assume E is ordinary at p. Let A = Z,[[Gal(Q((p/Q)]]. Then the
p-primary Selmer group of E over Q((pe) is A-cotorsion and its characteristic
polynomial divides p" L,(E) for some n.

This result was proved by Rubin in the case of elliptic curves with complex
multiplication ([Rui]).

As described above, we can obtain p-adic zeta elements of motives associated
to eigen cusp forms of weight > 2. For such modular forms, we can prove the
analogous statement as the above (2).

Mazur and Greenberg conjectured that the charcteristic polynomial of the
above p-primary Selmer group and the p-adic L-function divide each other.
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Derivatives of Eisenstein Series
and Arithmetic Geometry™

Stephen S. Kudlat

Abstract

‘We describe connections between the Fourier coeflicients of derivatives of
Eisenstein series and invariants from the arithmetic geometry of the Shimura
varieties M associated to rational quadratic forms (V, Q) of signature (n,2). In
the case n = 1, we define generating series ¢;(7) for 1-cycles (resp. ¢o(r) for
0-cycles) on the arithmetic surface M associated to a Shimura curve over Q.
These series are related to the second term in the Laurent expansion of an
Eisenstein series of weight 2 and genus 1 (resp. genus 2) at the Siegel-Weil
point, and these relations can be seen as examples of an ‘arithmetic’ Siegel-
Weil formula. Some partial results and conjectures for higher dimensional
cases are also discussed.

2000 Mathematics Subject Classification: 14G40, 14G35, 11F30.
Keywords and Phrases: Heights, Derivatives of Eisenstein series, Modular
forms.

1. Introduction

In this report, we will survey results about generating functions for arith-
metic cycles on Shimura varieties defined by rational quadratic forms of signature
(n,2). For small values of n, these Shimura varieties are of PEL type, i.e., can
be identified with moduli spaces for abelian varieties equipped with polarization,
endomorphisms, and level structure. By analogy with CM or Heegner points on
modular curves, cycles are defined by imposing additional endomorphisms. Re-
lations between the heights or arithmetic degrees of such cycles and the Fourier
coefficients of derivatives of Siegel Eisenstein series are proved in [10] and in subse-
quent joint work with Rapoport, [14], [15], [16], and with Rapoport and Yang [17],
[18]. These relations may be viewed as an arithmetic version of the classical Siegel-
Weil formula, which identifies the Fourier coefficients of values of Siegel Eisenstein
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t Mathematics Department, University of Maryland, College Park, MD 20742, USA. E-mail:
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series with representation numbers of quadratic forms. The most complete example
is that of anisotropic ternary quadratic forms (n = 1), so that the cycles are curves
and O-cycles on the arithmetic surfaces associated to Shimura curves. Other surveys
of the material discussed here can be found in [11] and [12].

2. Shimura curves

Let B be an indefinite quaternion algebra over @, and let D(B) be the product
of the primes p for which B, = B ®g @, is a division algebra. The rational vector
space

V={zeBjitr(x)=0}

with quadratic form given by Q(z) = —2? = v(z
reduced trace (resp. norm) of z, has signature (
conjugation gives an isomorphism G = GSpin(V') ~

), where tr(z) (resp. v(z)) is the
1,2). The action of B* on V by
B*. Let

D={weV(© | (ww) =0, (wd)<0}/C =P (C) \F'(R)

be the associated symmetric space. Let Op be a maximal order in B and let T" = OE.
be its unit group. The quotient M(C) = I'\D is the set of complex points of the
Shimura curve M (resp. modular curve, if D(B) = 1) determined by B. This space
should be viewed as an orbifold [I'\D]. For a more careful discussion of this and
of the stack aspect, which we handle loosely here, see [18]. The curve M has a
canonical model over . From now on, we assume that D(B) > 1, so that M is
projective. Drinfeld’s model M for M over Spec (Z) is obtained as the moduli stack
for abelian schemes (A, ) with an action ¢ : Op «» End(A4) satisfying the ‘special’
condition, [3]. It is proper of relative dimension 1 over Spec (Z), with semi-stable
reduction at all primes and is smooth at all primes p at which B splits, i.e., for
pt D(B). We view M as an arithmetic surface in the sense of Arakelov theory and
consider its arithmetic Chow groups with real coefficients CH r(A/l) = CH %(Wl),
as defined in [2]. Recall that these groups are generated by pairs (Z,g), where Z
is an R-linear combination of divisors on M and g is a Green function for Z, with
relations given by R-linear combinations of elements div (f) = (div(f), —log|f]?)
where f € Q(M)* is a nonzero rational function on M. These real vector spaces

1
come equipped with a geometric degree map degp : CH (M) — CH Y Mg) deg R,

— 2
where My is the generic fiber of M, an arithmetic degree map deg : CH (M) — R,
and the Gillet-Soulé height pairing, [2],

(,)V:CH M)xCH (M) — R

Let A be the universal abelian scheme over M. Then the Hodge line bundle w =
(7 /a) determined by A has a natural metric, normalized as in [18], section

3, and defines an element & € }Si:(/\/l), the group of metrized line bundles on
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M. We also write & for the image of this class in CH ! (M) under the natural
map, which sends a metrized line bundle £ = (£,]| ||) € Pic(M) to the class of
(div(s), —log||s||?), for any nonzero section s of L.

Arithmetic cycles in M are defined by imposing additional endomorphisms of
the following type.

Definition 1. ([10]) The space of special endomorphisms V(A,¢) of an abelion
scheme (A, 1), as above, is

V(A,t)={ 2z € End(A) |zoc(d) =e(b)ox, ¥Ybe Op, and tr(x) =0 },
with Z-valued quadratic form given by —x? = Q(z)ida.

2.1. Divisors

To obtain divisors on M, we impose a single special endomorphism. For a
positive integer ¢, let Z(¢) be the divisor on M determined by the moduli stack
of triples (A,¢,x) where (A,:) is as before and where x € V(A4,:) is a special
endomorphism with Q(z) = t. Note that, for example, the complex points Z(¢)(C)
of Z(t) correspond to abelian surfaces (A4, ¢) over C with an ‘extra’ action of the order
Z[v/—t] in the imaginary quadratic field Q(v/—t), i.e., to CM points on the Shimura
curve M(C). On the other hand, the cycles Z(¢) can have vertical components in
the fibers of bad reduction M, for p | D(B). More precisely, in joint work with M.
Rapoport we show:

Proposition 1. ([15]) For p| D(B), Z(t) contains components of the fiber of bad
reduction My, if and only if ord,(t) > 2 and no prime £ | D(B), £ # p, splits in
ke == Qv —1).

The precise structure of the vertical part of Z(t) is determined in [15] using
the Drinfeld-Cherednik p-adic uniformization of M,. For example, for p | D(B),
the multiplicities of the vertical components in the fiber M, of the cycle Z(p*"t)
grow with 7, while the horizontal part of this cycle remains unchanged.

1

To obtain classes in CH (M), we construct Green functions by the procedure
introduced in [10]. Let L = O NV. For t € Z~¢ and v € R.p, define a function
=(t,v) on M(C) by

E(tv)(2) = Y Bi(2nvR(z,2)),

w€L(t)

where L(t) = {z € L | Q(x) = t}, and, for z € D with preimage w € V(C),
R(z,2) = |(z,w)]? |(w,w)|~!. Here

Bilr) = /100 e "™yt du = ~Ei(~r)
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is the exponential integral. Recall that this function has a log singularity as r goes
to zero and decays exponentially as r goes to infinity. In fact, as shown in [10],
section 11, for any z € V(R) with Q(z) # 0, the function

§(x,2) := B1(27R(x, 2))

can be viewed as a Green function on D for the divisor D, := {z € D | (x,2) = 0}.
A simple calculation, [10], shows that, for ¢ > 0, Z(¢,v) is a Green function of
logarithmic type for the cycle Z(t), while, for ¢ < 0, Z(¢,v) is a smooth function on
M(T).

A e 1
Definition 2. (i) Fort € Z and v > 0, the class Z(t,v) € CH (M) is defined by:

(Z(1),E(t,v)) if t >0,
Zt,v) =4 -0+ (0,c—log(v)) ift=0
(O,E(t,@)) th < 0.

Here w is the metrized Hodge line bundle, as above, and the real constant ¢ is given
by

(-1 1
QC( )+1—10g47r Zpog
p|D(B)

% degq(@)-¢ = {0, 0) —(pr)(—1)

where Cp(p)(s) = C(s) [I,ip(s)(1 —p*) and v is Euler’s constant.
(ii) For T =u+iv € $ and q = e(7) = e>™7 the ‘arithmetic theta function’ ¢ (7)
18 given by the generating series

=> Z(tv)d

teZ

It is conjectured in [18] that the constant ¢ occurring in the definition of z (0,v)
is, in fact, zero. It may be possible to use recent work of Bruinier and Kihn, [4],
on the heights of curves on Hilbert modular surfaces to show that that {©, o) has
the predicted value and hence verify this conjecture.

Some justification for the terminology ‘arithmetic theta function’ is given by
the following result, which is closely related to earlier work of Zagier, [25], and
recent results of Borcherds, [1], cf. also [20].

Theorem 1. The arithmetic theta function ¢, (7) is a (nonholomorphic) modular
1
form of weight 2, valued in CH (M), for a subgroup T' C SLa(Z).

The proof of Theorem 1 depends on Borcherd’s result [1] and on the modularity
of various complex valued g-expansions obtained by taking height pairings of ¢ ()
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=1
with other classes in CH (M). We now describe some of these in terms of values
and derivatives of a certain Eisenstein series, [18], of weight 2

E(ms,DB)= Y (er+d) Fler+d7H 0372 &y(s,y, D(B)),
7€l o0 \SL2(Z)

associated to B and the lattice L, and normalized so that it is invariant under
s =% —s. The main result of joint work with M. Rapoport and T. Yang is the
following:

Theorem 2. ([18]) (i)
1(r, 53 D(B)) = deg(da(r)) = 3 demg(Z(t,0)) o'
t

(i)
1 - N 5 N
gi(’l’, 5; D(B)) = <¢1(7)aw> = Z(Z(t,v),w)qt.
t

Note that this result expresses the Fourier coefficients of the first two terms in
the Laurent expansion at the point s = £ of the Eisenstein series & (7, s; D(B)) in
terms of the geometry and the arithmetic geometry of cycles on M.

Next consider the image of

$1(7) ~ &1l 33 D(B)) - deg(e) " -0

in CH'(Mg), the usual Chow group of the generic fiber. By (i) of Theorem 2, it
lies in the Mordell-Weil space CH*(Mg)? ® C >~ Jac(M)(Q) @z C. In fact, it is
essentially the generating function defined by Borcherds, [1], for the Shimura curve
M, and hence is a holomorphic modular of weight % For the case of modular
curves, such a modular generating function, whose coefficients are Heegner points,
was introduced by Zagier, [25]. By the Hodge index theorem for CH' (M), 2], the
proof of Theorem 1 is completed by showing that the pairing of & (r) with each
class of the form (Y}, 0), for ¥, a component of the fiber M, p | D(B) and each
class of the form (0, ¢}, where ¢ € C™(M(C)), is modular.

2.2. O-cycles

We next consider a generating function for O-cycles on M. Recall that the
arithmetic Chow group CH 2(/\/1), with real coefficients, is generated by pairs (Z, g),
where Z is a real linear combination of O-cycles on M and g is a real smooth (1, 1)-
form on M(C). In fact, the arithmetic degree map, as defined in [2],

2 o 1
dog :CH'(M)~+ B, deg ((Z,9) = Y mlog k(P)|+5 [ g,
i M(C)
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where Z = ). n; P; for closed points P; of M with residue field k(F;), is an iso-
morphism.

Let 7 = u+iv € £, the Siegel space of genus 2, and for T € Syma(Z), let
T = 2mte(T7)  To define the generating series

(zSQ (T) = Z g(Ta ?)) qTa

TeSymz(Z)

q

we want to define classes Z(T,v) € 51\{2@\/1) for each T € Symo(Z) and v €
Symaz(R) 0.

We begin by considering cycles on M which are defined by imposing pairs of
endomorphisms. For T € Syma(Z )~ a positive definite integral symmetric matrix,
let Z(T') be the moduli stack over M consisting of triples (A4, ,x) where (4,¢) is as
before, and x = [z1,22] € V(4,¢)? is a pair of special endomorphisms with matrix
of inner products Q(x) = £ ((z;,z;)) = T. We call T the fundamental matrix of the
triple (4,¢,x). The following result of joint work with M. Rapoport describes the
cases in which Z(T') is, in fact, a O-cycle on M.

Proposition 2. ([15]) Suppose that T € Syma(Z)so. (i) The cycle Z(T) is either
empty or is supported in the set of supersingulor points in a fiber M, for o unique
prime p determined by T. In particulor, Z(T)g = B. The prime p is determined
by the condition that T is represented by the ternary quadratic space V¥#) = {z €
B®) | tr(z) = 0}, with Q") (z) = —x2, where BW) is the definite quaternion algebra
over (O with B§p) ~ By for all primes £ # p. If there is no such prime, then Z(T)
15 empty.

(it) (T regular) Let p be as in (i). Then, if pt D(B) or if p | D(B) but p* { T,
then Z(T') is a O-cycle in M,

(iii) (T irregular) Let p be as in (i). If p| D(B) and p* | T, then Z(T) is a union,
with multiplicities, of components of My, cf. [15], 176.

For T € Syma(Z )0 regular, as in (ii) of Proposition 2, we let

2(T,v) == 2(T) = (2(T),0) € CH " (M).

tl m

12}
& (where the quadratic form is taken with the opposite sign). We must therefore
assume that p # 2, although the results of the appendix to section 11 of [18] suggest
that it should be possible to eliminate this restriction. In this case, the vertical cycle
2Z(T') in the fiber M, is the union of those connected components of the intersection
Z(t1) xpm Z(t2) where the ‘fundamental matrix’, [15], is equal to 7. Here Z(¢1)
and Z(ta) are the codimension 1 cycles defined earlier. Note that, by Proposition
1, they can share some vertical components. We base change to Z, and set

For T = € Symo(Z )~ irregular, we use the results of [15], section

o~ e D
Z(T,v) :=x(Z(T), Oz(t) ®" Oz1y)) -log(p) € R=CH (M),
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where x is the Euler-Poincaré characteristic of the derived tensor product of the
structure sheaves Oz(;,y and Oz(y,), cf. [15], section 4. Note that the same defini-
tion could have been used in the regular case.

Next we consider nonsingular 7' € Syma(Z) of signature (1,1) or (0,2). In
this case, Z(T') is empty, since the quadratic form on V(A4,:) is positive definite,
and our ‘cycle’ should be viewed as ‘vertical at infinity’. For a pair of vectors
x = [21,22] € V(Q)? with nonsingular matrix of inner products Q(x) = £ ((2:,2;)),
the quantity

A(x) = [D Elar) * (),

where £(x1) * £(z2) is the x-product of the Green functions £(z1) and &(z2), [6],
is well defined and depends only on Q(x). In addition, A(x) has the following
remarkable invariance property.

Theorem 3. ([10, Theorem 11.6]) For k € O(2), A(x-k) = Az).

For T € Syma(Z) of signature (1,1) or (0,2) and for v € Syma(R)~¢, choose
a € GL2(R) such that v = a’a, and define

o~ e 2
Z(T,v) := > Alxa) €R~CH (M).
xeL?, Q(x)=T, mod T

Here L = Op NV and T' = OF, as before. Note that the invariance property of
Theorem 3 is required to make the right side independent of the choice of a.

We omit the definition of the terms for singular T7s, cf. [11].

By analogy with Theorem 1, we conjecture that, with this definition, the
generating series ¢ (7) is the g-expansion of a Siegel modular form of weight 3 for
a subgroup I C Spo(Z). More precisely, there is a normalized Siegel Eisenstein
series £4(7, ; D(B)) of weight 2 attached to B, [10].

Conjecture 1.

2

&(7,0;D(B)) = ¢u(7). (&)
This amounts to the family of identities

2

&r(7,0; D(B)) = Z(T,v)q" (C1r)
on Fourier coefficients, for all T € Symo(Z). Here the isomorphism d/e\g s being
used.

Theorem 4. ([10], [15]) The Fourier coefficient identity (Clr) holds in the follow-
ng coses:

(i) T € Symy(Z) is not represented by V' or by any of the spaces V®) of Proposition
2.

(In this case both Z(T,v) and & p(7.0; D(B)) are zero.)
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(i6) T € Syma(Z)~o is reqular and p+2D(B), [10].

(i) T € Syma(Z)~o is irregular with p # 2, or reqular with p | D(B) and p # 2,
[15].

(iv) T € Symo(Z) is nonsingular of signature (1, 1) or (0, 2), [10].

Theorem 4 is proved by a direct computation of both sides of (Cly). In case
(i), the computation of the Fourier coefficient & 1(7,0; D(B)) depends on the for-
mula of Kitaoka, [8], for the local representation densities «,(S,T') for the given T
and a variable unimodular S. The computation of ZA(T, v) = d/e\g ((Z(1),0)) de-
pends on a special case of a result of Gross and Keating, [7], about the deformations
of a triple of isogenies between a pair of p-divisible formal groups of dimension 1
and height 2 over Fp. Their result is also valid for p = 2, so it should be possible to
extend (ii) to the case p = 2 by extending the result of Kitaoka.

In case (iii), an explicit formula for the quantity x(Z(T'), Oz, ®k Oz, is
obtained in [15] using p-adic uniformization. The analogue of Kitaoka’s result is a
determination of «,(S,T') for arbitrary S due to T. Yang, [22]. In both of these
results, the case p = 2 remains to be done.

Case (iv) is proved by directly relating the function A, defined via the *-
product to the derivative at s = 0 of the confluent hypergeometric function of a
matrix argument defined by Shimura, [21]. The invariance property of Theorem 3
plays an essential role. The case of signature (1, 1) is done in [10]; the argument for
signature (0, 2) is the same.

A more detailed sketch of the proofs can be found in [11].

As part of ongoing joint work with M. Rapoport and T. Yang, the verification
of (Clr) for singular T of rank 1 is nearly complete.

3. Higher dimensional examples

N ey |
So far, we have discussed the generating functions ¢y (r) € CH (M) and

bao(7) € CH 2(A/l) attached to the arithmetic surface M, and the connections of
these series to derivatives of Kisenstein series. There should be analogous series de-
fined as generating functions for arithmetic cycles for the Shimura varieties attached
to rational quadratic spaces (V, @) of signature (n,2). At present there are several
additional examples, all based on the accidental isomorphisms for small values of
n, which allow us to identify the Shimura varieties in question with moduli spaces
of abelian varieties with specified polarization and endomorphisms. Here we briefly
sketch what one hopes to obtain and indicate what is known so far. The results
here are joint work with M. Rapoport.

Hilbert-Blumenthal varieties (n = 2), [14]. When the rational quadratic
space (V,Q) has signature (2,2), the associated Shimura variety M is a quasi-
projective surface with a canonical model over ). There is a model M of M
over Spec (Z[N71) defined as the moduli scheme for collections (4, A, ¢,77) where
A is an abelian scheme of relative dimension 8 dimension with polarization A, level
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structure 77, and an action of O¢ ® O, where O¢ is a maximal order in the Clifford
algebra C(V) of V and Oy is the ring of integers in the quadratic field k = Q(v/d) for
d = discr(V), the discriminant field of V', [14]. Again, a space V(A,¢) = V(A4, A, 1,7)
of special endomorphisms is defined; it is a Z-module of finite rank equipped with
a positive definite quadratic form Q. For T' € Sym,.(Z), we let Z(T') be the locus
of (A, A,¢,7,%x)’s where x = [21,...,2.], ; € V(A,¢) is a collection of r special
endomorphisms with matrix of inner products Q(x) = $((z;,2;)) = T.

One would like to define a family of generating functions according to the fol-
lowing conjectural chart. Again there is a metrized Hodge line bundle © € CH ! (M).
r=1, Z(t)g=HZ - curvedy (1) = 047+ 3,0 Z(t,v) ¢, (1(7),6%) = E(7,1).
r=2, Z(t)g=0-cycle, (1) = D>+ + Yy Z(T,0) ¢ (da(7), &) = E4(r, L),
r=3, Z(T)o=0, bs(r) = D3+7 + >0 Z(T,v) ¢Tdeg b3(7) L EL(r,0).

Here, the generating function ¢, (7) is valued in CH r(A/l), the rth arithmetic
Chow group, &,(7, s) is a certain normalized Siegel Eisenstein series of genus r, and
the critical value of s in the identity in the last column is the Siegel-Weil point
s0 = (dim(V) —r —1). Of course, one would like the ¢ (7)’s to be Siegel modular
forms of genus r and weight 2.

There are many technical problems which must be overcome to obtain such
results. For example, one would like to work with a model over Spec(Z). If V' is
anisotropic, then M is projective, but if V' is isotropic, e.g., for the classical Hilbert-
Blumenthal surfaces where it has (}rank 1, then one must compactify. Since the
metric on @ is singular at the boundary a more general version of the Gillet-Soulé
theory, currently being developed by Burgos, Kramer and Kiihn, [5], [19], will be
needed.

Nomnetheless, the chart suggests many identities which can in fact be checked
rigorously. For example, there are again rational quadratic spaces V(#) of dimension
4 and signature (4,0) obtained by switching the Hasse invariant of V' at p.

Theorem 5. [14], [11]. (¢) If T € Syms(Z)-o is not represented by any of the
V@) g, then Z(T) =0 and & 7(1,0) = 0.

(i) If T € Syms(Z)g is represented by VP) where p is a prime of good reduction
split in k, then Z(T') is a 0-cycle in M, and

deg ((Z(T),0)) ¢ = & 1(7,0). (%)

(i) If T € Syms(Z)~o is represented by V®) and p is a prime of good reduction
inert in k, then Z(T) is a O-cycle in M, if and only if p 4+ T. If this is the case,
then the Fourier coefficient identity (x) again holds. If p| T, then Z(T) is a union
of components of the supersingular locus of M.

Finally, say if V is anisotropic, one can consider the image cl(é, (7)) € H2 (M, C)
of ¢,(7) in the usual (Betti) cohomology of M(C). Of course, cl(¢g(r)) = 0 for
degree reasons. Joint work with J. Millson on generating functions for cohomology
classes of special cycles yields:
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Theorem 6. ([13], [9], [11]) Suppose that V is anisotropic. (i) cl(é, (7)) is a Siegel
modular form of genus r and weight 2 valued in H*"(M,C).
(ié) For the cup product pairing, ( cl(¢r(7)),cl(&) ) = &(7, s0), where so = $(3—7).

Part (ii) here generalizes (1) of Theorem 2 above, so that, again, the value at sg
of the Eisenstein series £, (7, s} involves the complex geometry, while, conjecturally,
the second term involves the height pairing.

Siegel modular varieties (n = 3), [16]. Here, an integral model M of the
Shimura variety M attached to a rational quadratic space of signature (3,2) can
be obtained as a moduli space of polarized abelian varieties of dimension 16 with
an action of a maximal order O¢ in the Clifford algebra of V. We just give the
relevant conjectural chart:

r=1, Z(t)g= TP G (1) = 047+ T o) dt (i(0).0%) £ E(r ).
r=2, Z(t)g=curve (1) = D247+ Y0 Z(T0) ¢7(da(r),0%) = €47, 1).
r=3, Z(T >@—0cycle, Bs(7) = D47+ Vg Z2(T,0) 47 (6o (1), >é ACE )
r=4, Z(T)q Ba(r) = &7+ Ygug Z(T,0) " deg da(r) = E4(r,

0).
Here the Elsenstein series and, conjecturally, the generating functions d)r( )
have weight g, and the values of the Eisenstein series should be related to the series
cl(¢-(7)). In the case of a prime p of good reduction a model of M over Spec (Zy)
is defined in [16], and cycles are defined by imposing special endomorphisms. For
example, for r = 4, the main results of [16] give a criterion for Z(T") to be a 0-cycle in
a fiber M, and show that, when this is the case, then d/e\g((Z(T), 0)) ¢’ = &y (7. 0).
The calculation of the left hand side is again based on the result of Gross and Keating
mentioned in the description of the proof of Theorem 4 above. This provides some
evidence for the last of the derivative identities in the chart.
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Elliptic Curves and Class Field Theory

Barry Mazur* Karl Rubin'

Abstract

Suppose E is an elliptic curve defined over Q. At the 1983 ICM the first
author formulated some conjectures that propose a close relationship between
the explicit class field theory construction of certain abelian extensions of
imaginary quadratic fields and an explicit construction that {conjecturally)
produces almost all of the rational points on E over those fields.

Those conjectures are to a large extent settled by recent work of Vatsal
and of Cornut, building on work of Kolyvagin and others. In this paper
we describe a collection of interrelated conjectures still open regarding the
variation of Mordell-Weil groups of E over abelian extensions of imaginary
quadratic fields, and suggest a possible algebraic framework to organize them.

2000 Mathematics Subject Classification: 11G05, 11R23.
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1. Introduction

Eighty years have passed since Mordell proved that the (Mordell-Weil) group
of rational points on an elliptic curve E is finitely generated, yet so limited is
our knowledge that we still have no algorithm guaranteed to compute the rank
of this group. I we want to ask even more ambitious questions about how the
rank of the Mordell-Weil group E(F') varies as F' varies, it makes sense to restrict
attention only to those fields for which we have an explicit construction, such as
finite abelian extensions of a given imaginary quadratic field K. Taking our lead
from the profound discovery of Iwasawa that the variational properties of certain
arithmetic invariants are well-behaved if one restricts to subfields of Zg—extensions
of number fields, we will focus on the following Mordell-Weil variation problem:

Fixing an elliptic curve E defined over Q, an imaginary quadratic field
K, and a prime number p, study the variation of the Mordell-Weil group
of E over finite subfields of the (unique) Z?-extension of K in K.

*Department of Mathematics, Harvard University, Cambridge, MA 02138, USA. E-mail:
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TDepartment of Mathematics, Stanford University, Stanford, CA 94305, USA. E-mail:
rubin@math.stanford.edu
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This problem was the subject of some conjectures formulated by the first
author at the 1983 ICM [8], conjectures which have recently been largely settled by
work of Vatsal [15] and Cornut [1] building on work of Kolyvagin and others.

Example. Let E be the elliptic curve y?+y = 2® —z, p = 5, and let K = Q(v/-7).
If F is a finite extension of K, contained in the Z? extension of K, then rank E(F) =
[F N K2 : K] where K3 is the anticyclotomic Zs-extension of K (see §2 for the
definition). One only has an answer like this in the very simplest cases.

Now with the same E and p, take K = Q(v/—~26). A guess here would be that
rank E(F) = [F N K2 ; K] + 2, but this seems to be beyond present technology.

The object of this article is to sketch a package of still-outstanding conjectures
in hopes that it offers an even more precise picture of this piece of arithmetic. These
conjectures are in some cases due to, and in other cases build on ideas of, Bertolini
& Darmon, Greenberg, Gross & Zagier, Haran, Hida, Iwasawa, Kolyvagin, Nekovar,
Perrin-Riou, and the authors, among others.

In sections 3 through 5 we describe the three parts of our picture: the arith-
metic theory (the study of the Selmer modules over Iwasawa rings that contain the
information we seek), the analytic theory (the construction and study of the relevant
L-functions, both classical and p-adic), and the universal norm theory which arises
from purely arithmetic considerations, but provides analytic invariants.

In the final section we suggest the beginnings of a new algebraic structure to
organize these conjectures. This structure should not be viewed as a conjecture,
but rather as a mnemonic to collect our conjectures and perhaps predict new ones.

More details and proofs will appear in a forthcoming paper.

2. Running hypotheses and notation

Fix a triple (E, K, p) where E is an elliptic curve of conductor N over Q, K
is an imaginary quadratic field of discriminant D < -4, and p is a prime number.
To keep our discussion focused and as succinct as possible, we make the following
hypotheses and conventions.

Assume that pis odd, that N, p and D are pairwise relatively prime, and that
if £ has complex multiplication, then K is not its field of complex multiplication.
Let Og C K denote the ring of integers of K. Assume further that there exists an
ideal N C O such that O /J\/’ is cyclic of order N (this is sometimes called the
Heegner Hypothesis), and that p is a prime of ordinary reduction for E. For
simplicity we will assume throughout this article that the p-primary subgroups of
the Shafarevich-Tate groups of E over the number fields we consider are all finite.

Proposition 1. Under the assumptions above, rank E(K) is odd.

Proof. This follows from the Parity Conjecture recently proved by Nekovar [11].

Let Ko denote the (unique) Z3-extension of K and T' := Gal(K/K), so
I = Z2. We define the Iwasawa ring

A :=7Z,[[T] ©z, Qp-
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(To simplify notation and to avoid some complications, we will often work with
Q,-vector spaces instead of natural Z,-modules; in particular we have tensored the
usual Iwasawa ring with Q,.) For every (finite or infinite) extension F of K in K
we also define

Ap = Zp[[Gal(F/K)]] ®ZP Qp, Ip = ker{A - AF}.

Then Ig is the augmentation ideal of A, and if [F' : K] is finite then Ay is just the
group ring Q[Gal(F/K)]. If Gal(F/K) is Z, or Z7, and M is a finitely generated
torsion Ap-module, then chara, (M) will denote the characteristic ideal of M. In
particular chara, (M) is a principal ideal of Ap.

There is a Q,-projective line of Z,-extensions of K, all contained in K.
Among these are two distinguished Z,-extensions:

e the cyclotomic Z,-extension K¥°!, the compositum of K with the unique
(cyclotomic) Z,-extension of Q (write Tty = Gal(KZY/K), Acya = A Kevel)s
e the anticyclotomic Z,-extension K2 the unique Z,-extension of K that
is Galois over Q with non-abelian, and in fact dihedral, Galois group (write

Fam;i = Gal(Ké’“g“/K), Aan’ci = 1\K:§ti).

Then T' = Fcycl P Tant; and A = Acycl Xz, Aanti-

Complex conjugation 7 : K — K acts on I, acting as +1 on Iy and —1 on
Tanti- This induces nontrivial involutions of A and A, which we also denote by 7.
If M is a module over A (or similarly over Ay, ), let M () denote the module whose
underlying abelian group is M but where the new action of v € T on m € M(7) is
given by the old action of v on m.

Our A-modules will usually come with a natural action of Gal(K../Q). These
actions are continuous and Zp-linear, and satisfy the formula 7(v-m) = ~"-7(m) for
every lift 7 of 7 to Gal(K /Q). Thus the action of any lift 7 induces an isomorphism
M = M), We will refer to such A or Agn-modules as semi-linear T-modules.
If M is a semi-linear 7-module and is free of rank one over A,u;, we define the sign
of M to be the sign £1 of the action of 7 on the one-dimensional Q,-vector space
M ®a,..; Ax. Such an M is completely determined (up to isomorphism preserving
its structure) by its sign.

Definition 2. If M and A are semi-linear 7-modules, then a (A-bilinear) A-valued
T-Hermitian pairing 7 is o A-module homomorphism 7 : M ®4 M) — A such
that for every lift 7 of 7 to Gal(Ko/Q)

m(m@n)=na(nem) =x(Fn7m).

3. Universal norms

Definition 3. If K C F C K, the universal norm module U(F) is the pro-
Jjective limit
UF) = Qe lm (B(L)©Z,)
KCLCF
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(projective limit with respect to traces, over finite extensions L of K in F) with
its natural Ap-structure. If F is o finite extension of K, then U(F) is simply
E(F)®Q,.

If F'is a Zp-extension of K, then U(F') is a free Ap-module of finite rank, and
is zero if and only if the Mordell-Weil ranks of E over subfields of F' are bounded
(cf. [8] §18 or [12] §2.2). The first author conjectured some time ago [8] that for
Z,-extensions F// K, and under our running hypotheses, U(F) = 0 if F # K2 and
U(K2%) is free of rank one over Azyi. The following theorem follows from recent
work of Kato [6] for K&¢“! and Vatsal [15] and Cornut [1] for K204,

Theorem 4. U(KZ) =0 and U(K2™) is free of rank one over Auni;.

For the rest of this paper we will write i/ for the anticyclotomic universal norm
module U(K2). Complex conjugation gives ¢ a natural semi-linear 7-module
structure. Since Uf is free of rank one over A,yui, we conclude that i/ is completely
determined (up to isomorphism preserving its 7-structure) by its sign.

Let 7¥ be the rank of the £1 eigenspace of 7 acting on E(K), so rank E(Q) =
r* and rank E(K) =7+ + r~. By Proposition 1, rank E(K) is odd so rT # r~.

Conjecture 5 (Sign Conjecture). The sign of the semi-linear T-module U is +1
ifrt >r7, and is ~1 if r~ > rT.

Remark. Equivalently, the Sign Conjecture asserts that the sign of ¢/ is +1 if twice
rank E(Q) is greater than rank E(K), and —1 otherwise.

As we discuss below in §4, the Sign Conjecture is related to the nondegeneracy
of the p-adic height pairing (see the remark after Conjecture 11).

The Aapi~-module U comes with a canonical Hermitian structure. That is, the
canonical (cyclotomic) p-adic height pairing (see [10] and [12] §2.3)

h:U - Z/[(T) % I2‘,ycl Xz, Aanti
is a 7-Hermitian pairing in the sense of Definition 2.

Conjecture 6 (Height Conjecture). The homomorphism h is an isomorphism
of free Aynii-modules of rank one

h:u A Z/[(T) ‘:') I1(‘,y(‘,l ®ZP Aanti-

anti

The A,nti-module ¢ has an important submodule, the Heegner submodule
‘H C U. Fix a modular parameterization Xo(N) —+ E. The Heegner submodule
H is the cyclic Agpi-module generated by a trace-compatible sequence ¢ = {¢p} of
Heegner points ¢;, € E(L)®Z,, for finite extensions L of K in K2, See for example
[8] §19 or [12] §3. Call such a ¢ € H a Heegner generator. The Heegner generators
of H are well-defined up to multiplication by an element of £T" C (Auuu)™. The
Aangi-submodule ‘H C U is stable under the semi-linear 7-structure of U/, so the
action of 7 gives an isomorphism U/H = U/H)) = U JH),
Let ¢{™) denote the element ¢ viewed in the Aanti-module H(T) . Since
(7€) @pnns (EYO)') = € @4, )

anti
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for every £y € £T, the element c®c\™) € H®y,,,, H(7) is independent of the choice
of Heegner generator, and is therefore a totally canonical generator of the free, rank
one Aapgi-module H @4, H.

Definition 7. The Heegner L-function (for the triple (E, K, p) satisfying our
running hypotheses) is the element

anti

L = hic®cd™) € Lya @z, Aani-
Conjecture 8. Ty ® char(Ud/H)? = AantiL  inside Tyl ® Aanti-

One sees easily that Lye ® char(Ud/H)? D Aaniil, and that Conjecture 8 is
equivalent to the Height Conjecture (Conjecture 6).

4. The analytic theory

The (“two-variable”) p-adic L-function for E over K is an element L € A
constructed by Haran [3] and by a different, more general, method by Hida [4] (see
also the papers of Perrin-Riou [13, 14]). The L-function L is characterized by the
fact that it interpolates special values of the classical Hasse-Weil L-function of twists
of E over K. More precisely, embedding Q both in C and Q,, if y : T' — Z* C Z
is a character of finite order then

Lepassicat (E/ kx5 1
(L) = ¢(x) classical { /K3 X )

872|| fell?

where Lelassical (B, X 8) 18 the Hasse-Weil L-function of the twist of E/r by x,
¢(x) is an explicit algebraic number (cf. [13] Théoréme 1.1), fg is the modular form
on I'g(N) corresponding to E, and ||fg]| is its Petersson norm.

Projecting L € A to the cyclotomic or the anticyclotomic line via the natural
projections A — Acya and A — Aunii, we get “one-variable” p-adic L-functions

(4.1)

L+ Lcycl € Acycl and L = Lanti € Aanti-

It follows from the functional equation satisfied by L ([13] Théoréme 1.1) and the
Heegner Hypothesis that Lan = 0. In other words, viewing A = Aung[[Ieyc]] as the
completed group ring of iy with coefficients in Auni, we have that the “constant
term” of L € Apnti[[Ieyci]] vanishes. We now consider its “linear term.”

There is a canonical isomorphism of (free, rank one) A, n-modules

Iz‘ycl Rz, Aanti = IKgonti/I%{étgu
which sends v ® 1 € Liyel ®z, Aanti toy —1 € IKSO““/IL;{gg“'

Conjecture 9 (A-adic Gross-Zagier Conjecture). Let L' denote the image of
L under the map IKE;OHM/IL;{:OMi = Tyl ®z, Aanti- Then

L'=d¢

where d is the degree of the modular paremetrization Xo(N) — E.
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Remark. Perrin-Riou [13] proved that if p splits in K and the discriminant D of
K is odd, then L' and d~'£ have the same image under the projection Auny —

Ak =Q,.

Let I := Ik, the augmentation ideal of A. For every integer r > O we have
I /Ir+ = Symgp (T') ® Q. Using the direct sum decomposition I' = Ttyc1 & Ling we
get a canonical direct sum decomposition

Symy, (T) = EBOF’”—” where I = (Tyet)®* @z, (Tanti)®. (4.2)
J=

Consider the canonical (two-variable) p-adic height pairing
(,): E(K)x E(K) — T ®Q,. (4.3)

Set r = rank E(K), which is odd by Proposition 1. Define the two-variable p-adic
regulator R,(E, K) to be the discriminant of this pairing:

Ry(E,K) :=t?det(P;, P;) € Symy (T) © Q, =T"/T"*,

where {1, ..., P.} generates a subgroup of E(K) of finite index ¢. For each integer
j=0,...,rlet R,(E, K) 77 be the projection of R,(E, K) into I'""77 ® Q,, under
(4.2), so that

R,(E,K)= @D R,(E,K) 9.
j=0

Recall that 7* is the rank of the +1-eigenspace E(K)* of 7 acting on E(K).
Proposition 10. R,(E, K)"~5 =0 unless j is even and j < 2min(r+,r7).

Proof. This follows from the fact that the height pairing (4.3} is 7-Hermitian, so
(rx,Ty) = {x,y)”, and therefore the induced height pairings

E(K)*x E(K)* 2 i ®Qp, E(K)T x E(K)™ = Tya ® Q,
vanish.

Conjecture 11 (Maximal nondegeneracy of the height pairing). If j is even
and 0 < j < 2min(rt,r7) then R,(E,K) =5 # 0.

Remark. Conjecture 11, or more specifically the nonvanishing of R,(E, K)" =%
when 7 = 2min(r™,77), implies the Sign Conjecture (Conjecture 5). This is proved
in the same way as Proposition 10, using the additional fact that the anticyclotomic
universal norms in E(K) ® Z,, are in the kernel of the anticyclotomic p-adic height
pairing (E(K) ® Z,) x (E(K) ® Zp) = Lt © Q.
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5. The arithmetic theory

For every algebraic extension F' of K, let Sel,,(E/ ) denote the p-power Selmer
group of E over F, the subgroup of H'(Gp, E[p™]) that sits in an exact sequence

0 — E(F)® Q,/Z, — Sel,(E,p) — WI(E,p)[p™] — 0
where III(E, ) is the Shafarevich-Tate group of E over F. Also write

Sp(E ) = Hom(Sel,(E/r), Qp/Zy) 2 Qp

for the tensor product of Q, with the Pontrjagin dual of the Selmer group.
The following theorem is proved using techniques which go back to [7]; see [2]
and [12] Lemme 5, §2.2.

Theorem 12 (Control Theorem). Suppose K C F' C K.
(i) The natural restriction map H'(F, E[p*]) — H'(Ku, E[p™]) induces an iso-
morphism Sp(E k) ©a Ar = Sp(E/p).
(ii) There is a canonical isomorphism U(F) = Homy,. (S,(E/p), Ar).

Conjecture 13 (Two-variable main conjecture [8, 12]). The two-variable p-
adic L-function L generates the ideal chara (Sp(E/x_ ) of A.

Restricting the two-variable main conjecture to the cyclotomic and anticyclo-
tomic lines leads to the following “one-variable” conjectures originally formulated
in [9] and [12], respectively. Let L' denote the image of L in Itye ®z, Aany as in
Conjecture 9, and Sy (E ganti )Jtors the Aangi-torsion submodule of Sp(E/ganu)).

Conjecture 14 (Cyclotomic and anticyclotomic main conjectures).
(i) Lcya generates the ideal chara (Sp(E ) ko)) of Acyer.
(ii) L' generates Toyel @ chara, . (Sp(E, ganti Jtors) inside Teyel @ Aanti-

Remark. Using Euler systems, Kato [6] and Howard [5] have proved (under some
mild additional hypotheses) divisibilities related to the cyclotomic and anticyclo-
tomic main conjectures, respectively, namely

Leyer € chary (SP(E/Kgcl)), chary (Z/l/‘}{)2 C chara,,,, (SP(E/Kgcl)tors)

anti

(note that Conjectures 8 and 9 predict that Toye ® chara,,, (U/H)? = L' Aanti)-

anti

Conjecture 15 (Two-variable p-adic BSD conjecture). Let r = rank E(K).
The two-variable p-adic L-function L € A is contained I” and

L = c(xun) #((E k) [ v - Ryp(E. K)  (mod I'T)

where ¢(Xtriv) 8 the rational number in the interpolation formula (4.1) for the trivial
character, UI(E k) is the Shafarevich-Tate group of E over K, and the c, are the
Tamagawa factors in the (usual) Birch and Swinnerton-Dyer conjecture for E over
K.
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6. Orthogonal A-modules

In this final section we introduce a purely algebraic template which, when it
“fits”, gives rise to many of the properties conjectured in the previous sections.

Keep the notation of the previous sections. In particular 7 : A - A is the
involution of A induced by complex conjugation on K, and if V is a A-module,
then V(") denotes V with A-module structure obtained by composition with 7. Let
V* = Homa(V,A). If V is a free A-module of rank r, then deta (V") will denote
the r-th exterior power of V and a 7-gauge on V is a A-isomorphism between the
free A-modules of rank one

ty : deta(V*) = deta (V)
or equivalently an isomorphism deta (V) @ deta (V7)) = A.

By an orthogonal A-module we mean a free A-module V' with semi-linear
7-structure endowed with a 7-gauge ¢ty and a A-bilinear 7-Hermitian pairing (Def-
inition 2)

7T:V ®A V(T) e A
Viewing # as a A-linear map V() = V*, the composition
ty odeta(m) : deta (V7)) — deta (V™) — deta (V)

must be multiplication by an element disc(V) € A that we call the discriminant
of the orthogonal A-module V. We further assume that disc(V') # 0, and we define
M = M(V,7) to be the cokernel of the (injective) map 7 : V(") — V*, so we have

00—V SV M—0. (6.1)

If K C F CKe,recall that Ip = ker{A — Ap} and define
V(F) ={z eV :n(a, V") CIp}/IpV = ker{V @a Ay 22 (V)" ®4 Ap)

and similarly V)(F) := ker{V) @Ar — V*@Ar}. Any lift 7 of 7 to Gal(K./Q)
induces an isomorphism V(F) — V{7)(F). From (6.1) we obtain

0 — VUNF) — VD) @A Ap — V@ Ap — M @5 Ap — 0 (6.2)
and (applying Hom( - , Ap) and using the Hermitian property of )
V(F) =2 Homa . (M @A Ar,AF). (6.3)
We have an induced pairing
mp  VIUE) @4, V(F) — 15 /12,

which we call the F-derived pairing. If F' is stable under complex conjugation then
V{7)(F) is canonically isomorphic to V(F){") and 7 is 7-Hermitian.
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Now suppose F' = K20, By (6.3), V(K24) is free over Aani. Applying the
determinant functor to (6.2), the r-gauge tyv induces an isomorphism

dety, ... V(K2 (7) = dety, ,, VT (K28) = Hom(deta,,, (M @4 Aanti), Aanti)-

anti

If V(K22%) has rank one over Ay, then V(K2) contains a unique maximal
T-stable submodule H such that the map

V(K29 () Zy Hom(deta,,,.(M & Aanti), Aanti)
D) Hom(]\/f & Aan’ci, Aan’ci) o ‘/’(Kgélti)

sends H() into H. (Namely, H = JV (K2") where J is the largest ideal of Aung;
such that J7 = J and J? C chara,,,, (M ® Aanti)tors-)
Recall that Sel,(E/r) denotes the p-power Selmer group of E over F' and

Sp(Esp) = Hom(Sel, (E/r), Qp/Zyp) © Qp.

Proposition 16. With notation as above, suppose that V is an orthogonal A-
module and oy : M = Sp(E/k.,) is an isomorphism. Then for every extension
F of K in K, v induces an isomorphism

~

V(F) — U(F)
where U(F) is the universal norm module defined in §3.
proof. This follows directly from Theorem 12 and (6.3).

Definition 17. We say that the orthogonal A-module V organizes the anticy-
clotomic arithmetic of (E, K, p) if the following three properties hold.
(a) disc(V') = L, the two-variable p-adic L-function of E.
(b) There is an isomorphism oy : M = Sp(Ex..).
(¢) The isomorphism V(K2 = f of Proposition 16 identifies H C V (K20t)
with the Heegner submodule H C U, and identifies the K™ -derived pairing
with the canonical p-adic height pairing into IKSOHM /I;[){gonti = Leyel @ Aanti.

Question. Given E, K, and p satisfying our running hypotheses, is there an or-
thogonal A-module V' that organizes the anticyclotomic arithmetic of (E, K, p)?

If one is not quite so (resp., much more) optimistic one could formulate an
analogous question with the ring A replaced by the localization of A at I (resp.,
with A replaced by Z,[[T']]).

Question. If V is an orthogonal A-module V' which organizes the anticyclotomic
arithmetic of (E, K, p), then for every finite extension F' of K in K, we have an
isomorphism E(F) ® Q, = U(F) = V(F) as in Proposition 16, a p-adic height
pairing on E(F) ® Q,, and the F-derived pairing on V(F'). How are these pairings
related?

When F = K2 condition (c) says that the two pairings are the same, but it
seems that in general they cannot be the same for finite extensions F/K.
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Theorem 18. Suppose that there is an orthogonal A-module V' that organizes the
anticyclotomic arithmetic of (E,K,p). Then Conjectures 18 (the 2-variable main
conjecture), and 14(i) (the cyclotomic main conjecture) hold.

If further the induced pairing V(K2) @ V(K27 — Tiyq @ Aani 15 sur-
jective, then Conjectures 6 (the Height Conjecture), 8, 9 (the A-adic Gross-Zagier
conjecture), and 14(ii) (the anticyclotomic main conjecture) also hold.

Brief outline of the proof of Theorem 18. Since disc(V') is a generator of chara (M),
the two-variable main conjecture follows immediately from (a) and (b} of Definition
17. The cyclotomic main conjecture follows from the two-variable main conjecture.

Now suppose that the induced pairing V (K2%) @ V(K2 (™) — Tooo © A
is surjective. By (c) of Definition 17 this is equivalent to the Height Conjecture,
which in turn is equivalent to Conjecture 8.

Howard proved in [5] that S,(E/gumu) is pseudo-isomorphic to Aan © B?
where B is a 7-stable torsion Auni;-module. By Theorem 12(i) the same is true
of M ® Aanti, and so the remark at the end of the definition of H shows that
H = char(B)V(K2t), Using (6.2), (6.3), and our assumption that the induced

pairing is surjective, one can show that the image of L in Ixanu /Iigmti generates

char(B)QIKgonu /T3 anii- The A-adic Gross-Zagier conjecture and the anticyclotomic
main conjecture follow from these facts and (c). O
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Abstract

‘We will present several examples in which ideas from ergodic theory can
be useful to study some problems in arithmetic and algebraic geometry.
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1. Introduction

Le but de ce rapport est d’expliquer différentes techniques permettant de mon-
trer ’équidistribution de certains ensembles de points de nature arithmétique sur
des variétés algébriques définies sur des corps de nombres et de donner des applica-
tions arithmétiques et géométriques de ces résultats.

Si X est une variété algébrique sur C et E une ensemble fini de X(C) on note
|E| son cardinal et Ag la mesure de Dirac normalisée

1
Ap=— 6,
F wzé

Si E,, est une suite d’ensembles finis de X (C) et p une mesure de probabilité sur
X(C), on dit que les E,, sont équidistribués pour p si pour toute fonction continue
bornée f sur X(C) on a

Ap, () = ﬁ S i) — [ i
n reF,

X(©
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Soit X une variété algébrique, une suite de points x,, de X est dite “générique”
si pour toute sous-variété ¥ de X, Y # X, {n € N ,z, € Y} est un ensemble fini.
(Il revient au méme de dire que z,, converge vers le point générique pour la topologie
de Zariski).

André et Oort ont formulé un analogue de la conjecture de Manin-Mumford
démontrée par Raynaud [18] [19] dans le cadre des variétés de Shimura. Dans ces
deux conjectures, on dispose de points spéciaux et de variétés spéciales. Pour la
conjecture de Manin-Mumford espace ambiant est une variété abélienne, les points
spéciaux sont les points de torsion et les variétés spéciales sont les “sous-variétés
de torsion” (translatés, par un point de torsion, d’une sous-variété abélienne).
Pour la conjecture d’André-Oort l'espace ambiant est une variété de Shimura,
les points spéciaux sont les points & multiplication complexe (ou points CM) et
les sous-variétés spéciales sont les “sous-variétés de type de Hodge” (des com-
posantes irréductibles de translatés par un opérateur de Hecke de sous-variétés de
Shimura). Nous préciserons ces définitions plus bas. Dans les deux cas ces con-
jectures s’énoncent sous la forme: une composante irréductible de 'adhérence de
Zariski d’un ensemble de points spéciaux est une sous-variété spéciale.

Dans ce cadre une suite de points x,, de X (X variété abélienne ou X variété
de Shimura) est dite “stricte” si pour toute sous-variété spéciale ¥ de X, V #
X, {n € Nz, € Y} est un ensemble fini. On remarque qu’avec ces définitions
les conjectures d’André-Oort et de Manin-Mumford se retraduisent de la maniére
suivante: Toute suite stricte de points spéciaux est générique.

Une conséquence géométrique (conjecturale pour les variétés de Shimura) que
I’on obtient en considérant ’adhérence de Zariski de ’ensemble des points spéciaux
d’une sous-variété M de X est Dexistence d’un ensemble fini {51,...,5,} de sous-
variétés spéciales avec S; C M telle que toute sous-variété spéciale S C M est
contenue dans 'un des S;.

Dans la premiere partie nous décrivons des résultats d’équidistribution pour
des suites de points de petite hauteur sur des variétés algébriques utilisant la
géométrie d’Arakelov. Le résultat le plus marquant est la résolution de la con-
jecture de Bogomolov (qui généralise la conjecture de Manin-Mumford et en donne
une nouvelle démonstration) pour les variétés abéliennes due & Zhang [24] et &
Pauteur du rapport [22].

Dans la deuxiéme partie nous expliquons des résutats d’équidistribution de
points de Hecke sur des variétés de la forme X = I'\G(R) pour un groupe algébrique
semi-simple et simplement connexe G et un réseau I'. Les méthodes combinent
théorie spectrale et théorie des représentations.

Dans la troisieme partie nous présentons des énoncés largement conjecturaux
pour I'équidistribution des points & multiplication complexe des variétés de Shimura.
La théorie analytique des nombres via les familles de fonctions L et la théorie des
formes automorphes y jouent un role central.

Dans une derniére partie nous expliquons comment la théorie de Ratner et
Margulis permet de démontrer des résultats d’équidistribution pour des suites de
sous-variétés “fortement spéciales” (appartenant & une classe assez large de sous-
variétés spéciales de dimension positive) des variétés de Shimura. Nous expli-
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querons la relation avec la conséquence géométrique de la conjecture d’André-Oort
précédemment décrite.

2. Equidistribution des points de petite hauteur

Exemple 2.1 On prend X = G,,, E, Pensemble des racines n-iéme de l'unité,
E,, est équidistribué pour la mesure uniforme sur le cercle unité g—i. En utilisant
lirréductibilité du polynome cyclotomique on voit que l'orbite sous Galois d’une
racine n-iéme primitive de unité est aussi équidistribuée pour g—i.

Exemple 2.2 On prend X = E une courbe elliptique sur C et E,, ensemble des
points de n torsion, alors E,, est équidistribué pour la mesure de Harr normalisée
sur E(C). Si E est défini sur un coprs de nombres K et E n’a pas de multiplication
complexe, par le théoréme de I'image ouverte de Serre, pour tout nombre premier p
assez grand le groupe de Galois agit transitivement sur les points d’ordre p. On en
déduit encore que les orbites sous Galois des points d’ordre p sont équidistribuées

pour la mesure de Haar normalisée.

La théorie d’Arakelov a permis de comprendre ces énoncés d’une maniére bien
plus générale. On montre [21] pour une variété arithmétique un théoréme général
d’équidistribution des orbites sous Galois de suite génériques de points dont la
hauteur (& la Arakelov) tend vers 0. Les exemples précédents correspondent & des
suites de points de hauteurs nulles. Pour les variétés abéliennes on obtient avec
Szpiro et Zhang le résultat suivant (qui donne des informations nouvelles méme
pour les points de torsion des courbes elliptiques & multiplication complexe):

Théoréme 2.3 [21] Soit A une variété abélienne sur un corps de nombres K. On
note hyr la hauteur de Néron-Tate sur les points algébriques de A (associée 4
un fibré inversible ample symétrique sur X ). Soit x,, une suite générique de points
algébriques de A telle que hyr(x,) tend vers 0. Pour toute place & Uinfini o Uorbite
sous Galois de x,, est équidistribuée pour la mesure de Haar normalisée dp, de

4,(C).

L’analogue de cet énoncé pour GJ, a été montré par Bilu [2] sans théorie
d’Arakelov. Une extension pour certaines variétés semi-abéliennes de ces résultats
a été obtenue par Chambert-Loir [6] par des méthodes Arakeloviennes. On peut
aussi comprendre grace aux travaux de Autissier [1] I'exemple 2.1 comme un cas
particulier de théoreme d’équidistribution vers la mesure d’équilibre d’un compact
de capacité 1 de lorbite sous Galois d’une suite de points entiers algébriques.

On trouvera dans [25] comment on obtient la conjecture de Bogomolov en
produisant une contradiction sur les mesures limites de suites de mesures associées
a des orbites sous Galois de points de petite hauteur. Retenons I’énoncé suivant di
& auteur [22] pour les courbes de genre g > 2 dans leur jacobienne et étendu en
dimension arbitraire par Zhang [24]:
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Théoréeme 2.4 Soit X une sous-variété d’une variété abélienne A définie sur un
corps de nombres K. Grace a la conjecture de Manin-Mumford démontrée par
Raynaud [19], on sait qu’il existe des sous-variétés de torsion (éventuellement de
dimension 0) {T1,..., T}, T; C X tels que si T C X est une sous-variété de
torsion alors T C T; pour un certain i. I existe alors ¢ > 0 tel que si P est un
point algébrique de X et P ¢ Ul_,T; alors hyt(P) > c.

3. Equidistribution des points de Hecke

Soient G un groupe algébrique linéaire presque simple et simplement connexe
sur O, T' € G(Q) un réseau de congruence et X = I'\G(R). Soit po la mesure
invariante normalisée sur X. Pour tout a € G(Q) on a une décomposition

Tal' = Uf4®) g,

avec deg(a) = |[I'\T'al'} € N. Pour tout 2 € X, on note T,.z l'ensemble des a;x
compté avec multiplicité. L’opérateur de Hecke T, ainsi défini est une correspon-
dance de degré deg(a) sur X; il induit une opération sur les espaces de fonctions
L*(X, po) (fonctions de carrés intégrables sur X) et CP(X) (fonctions continues
bornées sur X)) par

deg(a)

Ta-f( deg Z fa'?

i=1

Avec Clozel et Oh nous obtenons [3]:

Théoréme 3.1 On suppose que le Q-rang de G est différent de 0. Soit a,, € G(Q)
une suite telle que deg(a,) — 00. Pour tout x € X les T, .x sont équidistribués
pour po. De plus pour tout f € L*(X, o) on a la convergence L?

HTanf_/Xf-lmHm ().

On a en fait des résultats aussi dans le cas ou le (rang de G vaut 0. La
méthode de démonstration fournit des estimations trés précises pour la vitesse de
convergence dans le théoréme L?. Si on dispose de plus de régularité sur f (par
exemple f C° & support compact), cete vitesse est obtenue aussi pour la conver-
gence simple (ou uniforme sur les compacts). Pour G = SL,, (n > 3) ou G = Spa,
(n > 2) ces estimations sont essentiellement optimales.

On montre par des méthodes classiques que I'énoncé de convergence simple
du théoréme se déduit de I’énoncé L2. Pour montrer le théoreme L? on écrit la
décomposition spectrale de L2(X, uo) sous la forme adélique. Une fonction ¢ in-
tervenant dans la décomposition spectrale est alors propre pour les opérateurs de
Hecke et les valeurs propres s’interprétent comme des coefficients matriciaux de
représentations locales associées & ¢. Pour montrer le théoreme sous la forme L2,
on doit montrer que T,, ¢ — 0 quand n — 0o au sens L%, On se ramene ainsi
controler la décroissance de ces coefficients matriciaux. En (Jrang r > 2 on dispose
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d’assez d’informations sur le dual unitaire pour conclure grace aux travaux de Oh
([17], théoréme 5.7). En Qrrang 1 on utilise un principe de restriction & la Burger-
Sarnak en une place finie démontré dans [4] et une approximation de la conjecture
de Ramanujan pour SLs.

4. Equidistribution des points CM des variétés de
Shimura

Nous devons préciser un peu les définitions relatives aux variétés de Shimura,
afin d’expliquer ce que 'on entend par I'équidistribution des points CM.

Soit (G, X) une donnée de Shimura; G est un groupe algébrique réductif sur
Q et X est une G(R) classe de conjuguaison de morphismes

h: S——)GR

(S = Res ¢/r Gy, est le tore de Deligne) vérifiant les 3 propriétés de Deligne [10] [11].
Les composantes irréductibles de X sont alors des domaines symétriques hermitiens.

Soient Ay 'anneau des adeles finies de Q et K un sous-groupe compact ouvert
de G(A), on définit sur le corps C la variété de Shimura

Shi(G, X) = GQ\X x G(Af)/K.

On vérifie que Shg(G,X) est une réunion finie de quotients de composantes
irréductibles de X par des sous-groupes de congruences de G(Q). Par ailleurs
Shi(G,X) aun “modeéle canonique” sur un corps de nombres E(G, X ) ne dépendant
que de la donnée de Shimura (G, X).

Soit (G4, X1) une sous-donnée de Shimura de (G, X), on dispose alors d’une
application canonique

[ Shina,a;) — Shr(G, X).

Une sous-variété de type de Hodge est une composante irréductible d’un translaté
de I'image d’un tel morphisme par une correspondance de Hecke. (Moonen [15]
caractérise ces sous-variétés en termes de variations de structures de Hodge, d’oti le
nom.)

Pour h: S~ Gg, h € X, on définit le groupe de Mumford-Tate MT(h) de h
comme le plus petit Qsous-groupe H de G tel que h se factorise par Hgi. Si MT(h)
est un tore, on dit que h est spécial. Les points spéciaux de Shi (G, X) sont les
points de la forme [h, g K] avec g € G(Ays) et h spécial.

Fixons hp € X un élément spécial et Ty = M T (hg). L’ensemble

S(ho) = {lho,9K], g€ G(As)}

est appelé ensemble des points spéciaux de “type hg” de X. On a une action de
To(Ay) sur S(hg) donnée par t.[ho, K] = [ho, tgK]. Pour tout g € G(Ar), Porbite
sous To(Ay ) de [ho, gK] est finie, on appelle “orbite torique” de [ho, K] cette orbite.
La premiere question naturelle est
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Question 4.1 Soit z,, = [hy, g K| une suite générique de points spéciaux de S =
Shi(G,X). Est-il vrai que Uorbite torique de x,, est équidistribuée pour la mesure
invariante normalidee de Shi (G, X).

Notons qu’il n’est déja pas a priori évident de prévoir la proportion des points
de l'orbite torique dans les composantes de S. Il est peut-étre plus réaliste de
travailler dans chaque composante connexe de S (comme dans la derniere partie de
ce texte). Nous tairons dans la suite ces problemes de non connexité.

Les premiers résultats pour ces questions sont dus & Duke [12] pour la courbe
modulaire V(1) = SL(2,Z)\IL Il montre ’équidistribution des points & multiplica-
tion complexe par Panneau des entiers Ox quand le discriminant tend vers 'infini.
Nous expliquons dans [4], en utilisant en plus des résultats sur 1’équidistribution
des points de Hecke comment obtenir 'équidistribution des points & multiplica-
tion complexe par un ordre arbitraire de Ok quand le discriminant tend vers
Iinfini. Nous pensons plus généralement que la question 4.1 est liée aux problémes
d’équidistribution des points de Hecke décrits précédemment.

Des résultats pour I'équidistribution des orbites toriques de points CM sont
annoncés par S. Zhang [26] pour les courbes de Shimura et plus généralement des
variétés de Shimura de type quaternionique via un avatar de la formule de Gross-
Zagier. Pour les variétés modulaires de Hilbert des résultats de ce type sont an-
noncés indépendamment par P. Cohen [7] (par la méthode originale de Duke) et
par S. Zhang.

Les méthodes pour prouver ces énoncés comportent trois étapes que 'on va
décrire de maniére imprécise pour la concision de ce rapport. Soit S une variété
de Shimura, soit f une fonction non constante intervenant dans la décomposition
spectrale de 9, soit z,, € S une suite de points CM et E, son orbite torique. On
doit montrer que

. 1
lim E—i Z fly) :[Sfduo. (1)

n—o0 | Fy, oy

Lafonction f est alors une forme automorphe. La premiére étape est de montrer une
“tormule de classe” reliant ﬁ > yer, () alavaleur de la fonction L de f, tordue
par une forme automorphe que 'on définit & partir de E,,, au point critique. Ce type
de formule est obtenu par Waldspurger [23] pour des algébres de quaternions sur
un corps de nombres F et revisité par Zhang [26]dans le but d’obtenir les résultats
d’équidistribution.

Une fois la formule de classe établie, on dispose d’une famille de fonctions
L indexée par les entiers. On définit & partir de 'équation fonctionnelle de ces
fonctions une notion de “conducteur analytique” g,,. L’hypothése de Riemann (ou
de Lindeldf) prévoit une borne en 0(gf,) pour la valeur critique de la fonction L
considérée. Dans tous les exemples considérés, il est remarquable que pour mon-
trer I’équidistribution il faut améliorer la borne triviale (donnée par le principe de
convexité de Phragmen-Lindelof). Ce genre de questions a regu une attention con-
sidérable en théorie analytique des nombres et a été résolue dans de nombreux cas.
On pourra consulter la série de papiers [13] et [14] pour une présentation des prin-
cipaux résultats et applications de ce cercle d’idées. Notons que la démonstration



Théorie Ergodique et Géométrie Arithmétique. 203

de I'équidistribution des orbites toriques de points CM sur les variétés modulaires
de Hilbert utilise les résultats spectaculaires récents [8].

Pour les applications éventuelles a des énoncés arithmétiques, il parait im-
portant de remplacer les orbites toriques par les orbites sous Galois. De maniére
générale si [h, gK] est un point CM d’une variété de Shimura, T = MT(h) est le
tore associé et E = E(T,h) est le corps reflexe de la variété de Shimura associé a
la donnée de Shimura (7', h), Vaction de Galois (cf [10], [11] )se factorise & travers
laction de T'(Ay) via un morphisme de réciprocité (et la théorie du corps de classe}.

r:RespGm e — T
qui induit un morphisme non surjectif en général
7 Resp /oG, p (Ap) — T(Ays).
On s’attend néanmoins & une réponse positive a la question suivante:

Question 4.2 Soit x,, une suite générique de points CM sur une variété de Shimura
S, est-il vrai que les orbites sous Galois O{x,,) sont équidistribuées dans S pour la
mesure invariante?

De maniere encore plus optimiste, on espére (par analogie avec le cas des
variétés abéliennes) que le méme résultat est encore vrai pour des suites strictes
de points CM. Ce serait une conséquence de la conjecture d’André-Oort et de la
question précédente. Notons que nous espérons que des résultats d’équidistribution
pour les points CM soient en fait une étape pour montrer la conjecture en question
. (C’est au moins ce qui se passe dans le cas des variétés abéliennes).

5. Equidistribution de sous-variétés spéciales

Cette partie décrit un travail [5] en cours de préparation en commun avec
L. Clozel. Soit S une composante irréductible d’une variété de Shimura. Une
conséquence géométrique frappante de la conjecture d’André et Oort est la suivante:
Soit Y une sous-variété de 9, il existe un ensemble fini {S1,..., S, } de sous-variétés
spéciales avec S; C Y pour tout ¢ tel que toute variété spéciale Z de S contenue
dans Y est en fait contenue dans un des S;.

Supposons que S est une composante irréductible de Shi(G,X) pour un
groupe G que l'on suppose adjoint (pour simplifier). On a vu qu’une sous-variété
spéciale M est associée & une sous-donnée de Shimura (G1,X1). Si (1 est semi-
simple et X; contient un point spécial x; tel que le tore associé T'= MT(x1) C Gy
est tel que T est un tore maximal compact de G, on dit que M est fortement
spéciale. Par exemple les variétés modulaires de Hilbert (associées a des corps to-
talement réels de degré n sur Q) sont fortement spéciales dans I’espace de module A,,
des variétés abéliennes principalement polarisées de dimension n. On peut montrer:

Théoréme 5.1 Soit Y une sous-variété d’une variété de Shimura S. Il existe un
ensemble fini {S1,...,5,} de sous-variétés fortement spéciales de dimension pos-
itive S; C Y tel que si Z est une sous-variété fortement spéciale de dimension
positive avec Z CY alors Z C S; pour un certain i € {1,...,k}.
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Notons que cet énoncé ne dit rien sur les sous-variétés spéciales de dimension
0 (les points spéciaux), notons cependant le corollaire suivant:

Corollaire 5.2 Soit Y une sous-variété stricte de A, il existe ou plus un nombre
fini de sous-variétés modulaires de Hilbert contenu dans Y .

Le théoreme 5.1 se déduit d’un énoncé ergodique. Toute sous-variété spéciale
Z de S est muni d’'une maniére canonique d’une mesure de probabilité uz.

Théoréme 5.3 Soit S,, une suite de sous-variétés fortement spéciales Soit p, lo
mesure de probabilité associée 4 S,,. Il existe une sous-variété fortement spéciale
Z et une sous-suite pn, qui converge faiblement vers puyz. De plus Z contient Sy,
pour tout k assez grand.

On obtient la preuve du théoreme 5.1 en considérant une suite de sous-variétés
fortement spéciales maximales S,, parmi les sous-variétés fortement spéciales con-
tenues dans Y. En passant & une sous-suite on peut supposer que p, converge
faiblement vers pz. Comme le support de puz est contenu dans Y, on en déduit que
Z C Y. Par la maximalité des 5, et le fait que S,, C Z pour tout n assez grand,
on en déduit que la suite S, est stationaire.

On peut aussi réécrire cet énoncé avec la terminologie de [21]. On dit qu’une
suite S, de sous-variétés fortement spéciales est stricte si pour toute sous-variété
fortement spéciale M de 9,

{neN, S, C M}

est fini. On peut d’ailleurs prendre dans cette définition M spéciale car une sous-
variété spéciale contenant une sous-variété fortement spéciale est automatiquement
fortement spéciale. Dans ce language le théoreme 5.3 admet comme corollaire
immédiat:

Corollaire 5.4 Soit S,, une suite stricte de sous-variétés fortement spéciales de S.
Soit piy, et p les mesures de probabilités associées sur S,, et S. La suite u,, converge
faiblement vers p.

On peut appliquer cet énoncé & des suites de sous-variétés fortement spéciales
maximales. La condition d’étre stricte signifie alors de ne pas avoir de sous-suites
constantes. C’est par exemple le cas pour les variétés modulaires de Hilbert dans
le modules des variétés abéliennes principalement polarisées A4,,.

La preuve du théoréme 5.3 repose sur des résulats de Mozes et Shah [16]
qui précisent la conjecture de Raghunathan démontrée par Ratner [20]. Si S =
I\G(R)/ K pour un sous-groupe compact maximal K, et un réseau de congruence
Tonnote I = GR)TNT et S = TT\G(R)". Si H est un sous-groupe semi-simple
de G(R)™ tel que "N H est un réseau de H alors Mg = TT N H\H est fermé dans
S et est muni canoniquement d’une mesure de probabilité H-invariante ji.

Si My, est une suite de telles sous-variétés de S, le théoreme de Mozes Shah
[16] permet sous certaines hypothéses; au besoin en passant & une sous-suite; de
montrer la convergence faible de pgr, vers une mesure p canoniquement associée



Théorie Ergodique et Géométrie Arithmétique. 205

dun My = 'V N H\H. En général les sous-groupes H,, n’induisent pas de sous-
variétés spéciales sur S car H,, n’est pas toujours réductif et méme si H,, est réductif
Pespace symétrique associé a H,, n’a aucune raison d’étre hermitien. Un des points
clefs de la démonstration est de vérifier que si les H,, induisent des sous-variétés
fortement spéciales il en est de méme pour H. Pour passer de résultats sur S & des
résultats sur S on utilise aussi des résultats de Dani et Margulis ([9]thm. 2} qui
donnent des critéres de retour vers des compacts pour des flots unipotents sur S.
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Exponential Sums, and Exponential
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Abstract

Recent developments in the theory and application of the Hardy-
Littlewood method are discussed, concentrating on aspects associated with
diagonal diophantine problems. Recent efficient differencing methods for esti-
mating mean values of exponential sums are described first, concentrating on
developments involving smooth Weyl sums. Next, arithmetic variants of clas-
sical inequalities of Bessel and Cauchy-Schwarz are discussed. Finally, some
emerging connections between the circle method and arithmetic geometry are
mentioned.
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1. Introduction

Over the past fifteen years or so, the Hardy-Littlewood method has experi-
enced a renaissance that has left virtually no facet untouched in its application to
diophantine problems. Our purpose in this paper is to sketch what might be termed
the past, present, and future of these developments, concentrating on aspects as-
sociated with diagonal diophantine problems, and stressing modern developments
that make increasing use of less traditional diophantine input within ambient ana-
lytic methods. We avoid discussion of the Kloosterman method and its important
recent variants (see [5] and [8]), because the underlying ideas seem inherently con-
strained to quadratic, and occasionally cubic, diophantine problems. Our account
begins with a brief introduction to the Hardy-Littlewood (circle) method, using
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Waring’s problem as the basic example. The discussion here illustrates well the
issues involved in the analysis of systems of diagonal equations over arbitrary alge-
braic extensions of {J, and motivates that associated with more general systems of
homogeneous equations (see [1] and [14]).

Let s and %k be natural numbers with s > k& > 2, and consider an integer n
sufficiently large in terms of s and k. The circle method employs Fourier analysis
in order to obtain asymptotic information concerning the number, R(n) = R, x(n),
of integral solutions of the equation z¥ + --- 4 2% = n. Write P = n'/* and define
the exponential sum f(a) = f(a; P) by

f@= 3 elah),

1<g<P

wherein e(z) denotes e2™**. Then it follows from orthogonality that

R(n):/0 fla)’e(~na)dao.

When « is well-approximated by rational numbers with small denominators, one
has sharp asymptotic information concerning f(a). In order to be precise, let @
satisfy 1 < @ < 1P*2, and define the major ares 9 = M(Q) to be the union of
the intervals 9M(q,a) = {a € [0,1) : |ga — a] < QP7F}, with 0 < a < ¢ < Q and
(a,q) = 1. Also, put

P
S(g.a) = Yelart/a) and o(8) = [ e(31*)iy
r=1

and define f*(«) for a € [0, 1) by taking f*(«) = ¢71S(q, a)v(a—a/q), when « lies in
M(q,a) € M(Q), and otherwise by setting f*(«) = 0. Then the sharpest available
estimate (see Theorem 4.1 of [16]) establishes that' f(a) = f*(a) + Q(Q'/?F),
uniformly for « € M(Q). The functions S(¢, a) and v(3) are rather well-understood,
and thus one deduces that whenever s > max{4,k + 1} and @ < P, then

| #a)e(=najda = %},ﬁ)’”ssmm)m/k—l L om0,

for a suitable positive number 6. Here, the I'-function is that familiar from classical
analysis, and the singular series &, ;(n) is equal to the product of p-adic densities
[1,, vp(n), where for each prime p we write

vp(n) = hli_}ngoph(l—s)card{x €(Z/p"Z) : af 4+ +ab =n  (mod p")}.

tGiven a complex-valued function f(t) and positive function g(t), we use Vinogradov’s
notation f(t) < ¢(t), or Landau’s notation f(t) = O(g(#)), to mean that when £ is large, there is
a positive number C for which f(t) < Cg(#). Similarly, we write f(t) 3> g(t) when g(t) < f(#),
and f(t) x g(#) when f(t) < g(t) € f(t). Also, we write f(t) = o(g(t)) when as ¢t — oo, one
has f(t)/g(t) — 0. Finally, we use the convention that whenever ¢ occurs in a formula, then it is
asserted that the statement holds for each fixed positive number e.
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An asymptotic formula for R(n), with leading term determined by the major
arc contribution (1.1), now follows provided that the corresponding contribution
arising from the minor arcs m = [0, 1)\ 9 is asymptotically smaller. Although such
is conjectured to hold as soon as s > max{4,k + 1}, this is currently known only
for larger values of s. It is here that energy is focused in current research. One
typically estimates the minor arc contribution via an inequality of the type

< (sw 7@ / ()P do (12)

acm

/ fla)’e(~na)da

For suitable choices of ¢ and @, one now seeks bounds of the shape

1
sup /()] « P and [ [f(@)da < PR (1)
acm 0

with 7 > 0 and § small enough that (s — 2¢)7 > §. The right hand side of (1.2) is
then o(n®/*~1), which is smaller than the main term of (1.1) whenever &, j(n) 3> 1.
The latter is assured provided that non-singular p-adic solutions can be found for
each prime p, and in any case when s > 4k. Classically, one has two apparently
incompatible approaches toward establishing the estimates (1.3). On one side is
the differencing approach introduced by Weyl [23], and pursued by Hua [9], that
yields an asymptotic formula for R(n) whenever s > 2% 4 1. The ideas introduced
by Vinogradov [21], meanwhile, provide the desired asymptotic formula when s >
Ck?logk, for a suitable positive constant C.

2. Efficient differencing and smooth Weyl sums

Since the seminal work of Vaughan [15], progress on diagonal diophantine
problems has been based, almost exclusively, on the use of smooth numbers, by
which we mean integers free of large prime factors. In brief, one seeks serviceable
substitutes for the estimates (1.3) with the underlying summands restricted to be
smooth, the hope being that this restriction might lead to sharper bounds. Before
describing the kind of conclusions now available, we must introduce some notation.
Let A(P, R) denote the set of natural numbers not exceeding P, all of whose prime
divisors are at most R, and define the associated exponential sum h(a) = h{wo; P, R)
by

hia; P,R) = Z e(azx®).

z€A(P,R)

When ¢ is a positive integer, we consider the mean value S,(P, R) = fol [h(a)?tda,
which, by orthogonality, is equal to the number of solutions of the diophantine
equation z¥ + -+ + 2f = y¥ + - + vk, with 25,9, € AP, R) (1 <i <t). We
take R = P" in the ensuing discussion, with 7 a small positive number?. In these

2We adopt the convention that whenever 1 appears in a statement, implicitly or explicitly,
then it is asserted that the statement holds whenever 5 > 0 is sufficiently small in terms of e.
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circumstances one has card(A(P, R)) ~ ¢(n)P, where the positive number ¢(n) is
given by the Dickman function, and it follows that S;(P, R) > P! + P?~*, It is
conjectured that in fact Sy(P, R) < P¢(P*+ P*~%), We refer to the exponent \; as
being permissible when, for each € > 0, there exists a positive number n = n(t, k, €)
with the property that whenever R < P, one has Si(P, R) < P** . One expects
that the exponent A, = max{t, 2t —k} should be permissible, and with this in mind
we say that &, is an associated exponent when A\, = ¢ + &, is permissible, and that
A, is an admissible exponent when Ay = 2t — k + A, is permissible.

The computations required to determine sharp permissible exponents for a
specific value of k are substantial (see [20]}, but for larger % one may summarise some
general features of these exponents. First, for 0 <¢ < 2 and k > 2, it is essentially
classical that the exponent 8, = 0 is associated, and recent work of Heath-Brown
[6] provides the same conclusion also when t = 3 and k& > 238,607,918. When
t = o(\/lz), one finds that associated exponents exhibit quasi-diagonal behaviour,
and satisfy the property that §; — 0 as k — oo. To be precise, Theorem 1.3 of [28]
shows that whenever k > 3 and 2 < t < 2e~'k'/2, then the exponent

41172 4k
o0 = o exp (—@> , (2.1)

is associated. For larger ¢, methods based on repeated efficient differencing yield the
sharpest estimates. Thus, the corollary to Theorem 2.1 of [26] establishes that for
k > 4, an admissible exponent A; is given by the positive solution of the equation
Apedt/k = [el=2t/k The exponent A\, = 2t — k + ke' =2t/ is therefore always per-
missible. Previous to repeated efficient differencing, analogues of these permissible
exponents had a term of size ke™/* in place of ke'~2t/% (see [15]), so that in a
sense, the modern theory is twice as powerful as that available hitherto.

The above discussion provides a useable analogue of the mean-value estimate
n (1.3). We turn next to localised minor arc estimates. Take @ = P, and define m
as in the introduction. Suppose that s, ¢ and w are parameters with 2s > &k + 1 for
which A,, A, and A, are admissible exponents, and define

o(k) = k— Ay — AgA,
C2s(k+ Ay — Ay) Ftw(l+ Ay))

Then Corollary 1 to Theorem 4.2 of [27] shows that sup e, |h()| < PT=70)+< and
for large k this estimate holds with a(k)™! = k(logk + O(loglogk)). Applying an
analogue of (1.2) with % in place of f, and taking® t = [$k(log k+loglog k +1)] and
s = 2t+ k+ [Akloglog k/ log k], for a suitable A > 0, we deduce from our discussion
of permissible exponents that [ h(«)’e(—na)da = o(n®*/*¥=1). By considering the
representations of a given integer n with all of the kth powers R-smooth, it is now

3We write [2] to denote max{n € Z : n < z}.
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apparent that a modification of the argument sketched in the introduction shows
that R(n) 3> G, x(n)n®/*~! as soon as one confirms that

/ﬁm hia) e(—na)da ~ c(n)S%GSvk(n)ns/k—l. (2.2)

Sharp asymptotic information concerning h{«) is available throughout (@) only
when @ is a small power of log P, and so the proof of (2.2) involves pruning technol-
ogy. Such machinery, in this case designed to estimate the contribution from a set
of the shape M(P) \ M((log P)%), has evolved into a powerful tool. Such issues can
be handled these days with a number of variables barely exceeding max{4, %k + 1}.
This approach leads to the best known upper bounds on the function G(k) in
Waring’s problem, defined to be the least integer r for which all sufficiently large
natural numbers are the sum of at most r positive integral kth powers.
Theorem 2.1. One has G(k) < k(logk + loglogk + 2 + O(loglog k/ logk)).
This upper bound (Theorem 1.4 of [27]) refines an earlier one of asymptotically
similar strength (Corollary 1.2.1 of [24]) that gave the first sizeable improvement of
Vinogradov’s celebrated bound G (k) < (24 0(1))klog k, dating from 1959 (see [22]).
Aside from Linnik’s bound G(3) < 7 (see [11]), all of the sharpest known bounds on
G(k) for smaller k are established using variants of these methods. Thus one has
G#(4) < 12 (see [15], and here the # denotes that there are congruence conditions
modulo 16), G(5) < 17, G(6) < 24, G(7) < 33, G(8) < 42, G(9) < 50, G(10) < 59,
G(11) < 67, G(12) < 76, G(13) < 84, G(14) < 92, G(15) < 100, G(16) < 109,
G(17) < 117, G(18) < 125, G(19) < 134, G(20) < 142 (see [17], [18], [19], [20)).
Unfortunately, shortage of space obstructs any but the crudest account of
the ideas underlying the proof of the mean value estimates that supply the above
permissible exponents. The use of exponential sums over smooth numbers occurs
already in work of Linnik and Karatsuba (see [10]), but only with Vaughan’s new
iterative method [15] is a flexible homogeneous approach established. An alternative
formulation suitable for repeated efficient differencing is introduced by the author
in [24]. Suppose that the exponent Ay is permissible, and consider a polynomial
1 € Z[t] of degree d > 2. Given positive numbers M and T with M < T, and an
element = € A(T, R) with = > M, there exists an integer m with m € [M, MR]
for which mjx. Consequently, by applying a fundaemental lemma of combinatorial
flavour, one may bound the number of integral solutions of the equation

8

P(z) = Pplw) =Y (af —yf), (2.3)

i=1

with 1 < z,w < P and z;,y; € A(T,R) (1 < i < 8), in terms of the number of
integral solutions of the equation

i(2) = P(w) = m* Z(Uf - o), (2.4)
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with 1 < z,w <P, M <m < MR, @ ()¢ (w),m) =1 and us,v; € AT/M,R)
(1 < i < s). The implicit congruence condition ¥(z) = ¥(w) (mod m*) may
be analytically refined to the stronger one z = w (mod m*), and in this way
one is led to replace the expression 1(z) — 1(w) by the difference polynomial
P1(z;h;m) = m~*(3(z + hm*) — ¢(z)). Notice that when M > PY* one is
forced to conclude that z = w, and then the number of solutions of (2.4) is bounded
above by PMRS,(T/M,R) <« P M (T/M)*:. Otherwise, following an applica-
tion of Schwarz’s inequality to the associated mean value of exponential sums, one
may recover an equation of the shape (2.3) in which v(2) is replaced by 11 (2), and
T is replaced by T/M, and repeat the process once again. This gives a repeated
differencing process that hybridises that of Weyl with the ideas of Vinogradov.

It is now possible to describe a strategy for bounding a permissible expo-
nent Agi1 in terms of a known permissible exponent A;. We initially take T = P
and ¥(z) = z*, and observe that S, 1(P, R) is bounded above by the number of
solutions of (2.3). We apply the above efficient differencing process successively
with appropriate choices for M at each stage, say M = P?%, with 0 < ¢; < 1/k,
for the ith differencing operation. After some number of steps, say j, we take
¢; = 1/k in order to force the above diagonal situation that is easily estimated.
One then optimises choices for the ¢; in order to extract the sharpest upper bound
for Ss;1(P, R), and this in turn yields a permissible exponent Azy1. It transpires
that in this simplified treatment, successive admissible exponents are related by
the formula Ay = A (1~ ¢) + k¢ — 1, wherein one may take ¢ very close to
1/(k+ A;). Thus one finds that Az is essentially Ay (1—2/(k+ A;)), an observa-
tion that goes some way to explaining how it is that this method is about twice as
strong as previous approaches that would correspond to choices of ¢ close to 1/k.

Refined versions of this differencing process make use of all known permissible
exponents A; in order to estimate a particular exponent A;, and in such circum-
stances the process becomes highly iterative, and entails significant computation.
Such variants make use of refined Weyl estimates for difference polynomials, and es-
timates for the number of integral points on curves and surfaces (see [20]). Variants
of these methods apply also in the situation of Vinogradov’s mean value theorem
(see [25]), smooth Weyl sums with polynomial arguments (see [29]), and even for
sums relevant to counting rational lines on hypersurfaces (see [12]).

Frequent reference to underlying diophantine equations seems to limit these
methods to estimating even moments of smooth Weyl sums, and until recently
fractional moments could be estimated only by applying Holder’s inequality to in-
terpolate linearly between permissible exponents. However, a method [28] is now
available that permits fractional moments to be estimated non-trivially, thereby
“breaking classical convexity”, and moreover the number of variables being differ-
enced need not even be an integer. These new estimates can be applied to sharpen
permissible exponents (with integral argument}, and indeed the associated exponent
(2.1) is established in this way. Another consequence [32] of these developments is
the best available lower bound for N(X), which we define to be the number of
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integers not exceeding X that are represented as the sum of three positive integral
cubes. One has N(X) > X'7¢/3=¢ where £ = (v/2833 — 43)/41 = 0.24941301 .
arises from the permissible exponent A3 = 3 + ¢ for £ = 3. Earlier, Vaughan [15]
obtained an estimate of the latter type with 13/4 in place of 3 + £.

3. Arithmetic variants of Bessel’s inequality

Already in our opening paragraph we alluded to some of the applications
accessible to the methods of §2. We now turn to less obvious applications that
have experienced recent progress. We illustrate ideas once again with a simple
example, and consider the set Z(N) of integers n, with N/2 < n < N, that are not
represented as the sum of s positive integral kth powers. The standard approach to
estimating Z(N) = card(Z(N)) is via Bessel’s inequality We now take P = Nk,
When B C [0,1), write R*(n;B) =[5 h( (—na)da, and write also R*(n) =
R*(n;[0,1)). The theory of §2 ensures that when @ is a sufficiently small power
of log P, and s > 4k, then R*(n; M) = n*/k=1 Under such circumstances, an

application of Bessel’s inequality reveals that Z(N) is bounded above by
2

/ hia —na)do
neN

« (N#/E-1)=2 / Ih(e)]2* dav. (3.1)

When s > k(log k+loglog k+2+0(1)), the minor arc integral in (3.1) is o( N2#/k=1),
and thus it follows that Z(N) = o(N). Thus one may conclude that almost all
integers are sums of s ~ (3 + o(1))klog k positive integral kth powers.

The application of Bessel’s inequality in (3.1) makes inefficient use of underly-
ing arithmetic information, and fails, for example, to effectively estimate the number
of values of a polynomial sequence not represented in some prescribed form. Sup-
pose instead that we define a Fourier series over the exceptional set itself, namely
K(a) = ), e(na), where the summation is over n € Z(N). Since R*(n) = 0 for
n € Z(N), one has R*(n;m) = —R*(n; M), and thus we see that

/h (~a)da| .

Applying Schwarz’s inequality in combination with Parseval’s identity, we recover
the previous consequence of Bessel’s inequality via the bound
2

/m h(a)* K (—a)da| < ( fo 1 mmn?m)l/g ( /m §h(a)§25da>1/d. (3.2)

However, this formulation permits alternate applications of Schwarz’s inequality or
Hélder’s inequality. For example, the left hand side of (3.2) is bounded above by

Z R*(”])%*-(nl?;%l;m) < (Ns/k 1

N/2<n<N

NEZ(N) < / h() K (—a)da =
m

2

( fo 1 ih(a)”K(aFida) - ( /m §h(a)§25—2tda>1/d , (3.3)
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( fo 1 §K<a>z4da>1/4 ( /m ih(a)§45/3da> i )

In either case, the diophantine equations underlying the integrals on the left hand
sides of (3.3) and (3.4) contain arithmetic information that can be effectively ex-
ploited whenever the set Z(N) is reasonably thin.

The strategy sketched above has been exploited by Briidern, Kawada and Woo-
ley in a series of papers devoted to additive representation of polynomial sequences.
Typical of the kind of results now available is the conclusion [3] that almost all val-
ues of a given integral cubic polynomial are the sum of six positive integral cubes.
Also, Wooley [30], [31], has derived improved (slim) exceptional set estimates in
Waring’s problem when excess variables are available. For example, write E(N) for
the number of integers n, with 1 < n < N, for which the anticipated asymptotic
formula fails to hold for the number of representations of an integer as the sum of a
square and five cubes of natural numbers. Then in [31] it is shown that E(N) <« N°¢.

As a final illustration of such ideas, we highlight an application to the solubility
of pairs of diagonal cubic equations. Fix k = 3, define h(a) as in §2, and put

= fol |h(a)]Pe(—na)da for each n € N. Briidern and Wooley [4] have applied
the ideas sketched above to estimate the frequency with which large values of je(n)]
occur, and thereby have shown that, with £ defined as in the previous section,

and also by

S fele® -4 / / Shia+ B)2]dads < PO+,

z,y€A(P,R)

On noting that 6 + £ < 6.25, cognoscenti will recognise that this twelfth moment
of smooth Weyl sums, in combination with a classical exponential sum equipped
with Weyl’s inequality, permits the discussion of pairs of diagonal cubic equations
in 13 variables via the circle method. The exponent 6 + & improves an exponent
6 + 2¢ previously available for a (different) twelfth moment. Briidern and Wooley
[4] establish the following conclusion.

Theorem 3.1. Suppose that s > 13, and that a;,b; (1 < i < 8) are fizved
integers. Then the Hasse principle holds for the pair of equations

amai + o+ asad = bal + -+ byl = 0.
The condition s > 13 improves on the previous bound s > 14 due to Briidern

[2], and achieves the theoretical limit of the circle method for this problem.

4. Arithmetic geometry via descent

Let F(x) € Z[x1,...,25] be a homogeneous polynomial of degree d, and
consider the number, N(B), of integral zeros of the equation F(x) = 0, with
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x € [~B, B]°. When s is sufficiently large in terms of d, the circle method shows un-
der modest geometric conditions that N(B) is asymptotic to the expected product
of local densities. For fairly general polynomials, the condition on s is as severe as
s > (d—1)2%, though for diagonal equations the methods of §2 relax this condition
to s > (1 4+ o(l))dlogd. However, there is a class of varieties with small dimen-
sion relative to degree, for which the circle method supplies non-trivial information
concerning the density of rational points. The idea is to apply a descent process
in order to interpret points on the original variety in terms of corresponding points
on a new variety, with higher dimension relative to degree, more amenable to the
circle method.

To illustrate this principle, consider a field extension K of (@ of degree n with
associated norm form N(x) € Q[z1,...,zy). Also, let I and &k be natural numbers
with (k,]) = 1, and let « be a non-zero rational number. Then Heath-Brown and
Skorobogatov [7] descend from the variety /(1 — t)* = aN(x) to the associated
variety aN(a) + bN(v) = 2", for suitable integers a and b. The circle method
establishes weak approximation for the latter variety, and thereby it is shown that
the Brauer-Manin obstruction is the only possible obstruction to the Hasse principle
and weak approximation on any smooth projective model of the former variety.
One can artificially construct further examples amenable to the circle method. For
example, if we take linearly independent linear forms L;(x) € Qz1,...,z,]) (1 <
i < n 4+ r), then one can establish non-trivial lower bounds for the density of
rational points on the variety z¥ = Li(x)... L, ,(x) by descending to a variety
that resembles a system of r diagonal forms of degree k, with constrained varying
coefficients. The investigation of such matters will likely provide an active area
of research into the future. In this context we point to work of Peyre [13], which
addresses the interaction between descent and the circle method in some generality.
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Positively Curved Surfaces
in the Three-sphere

B. Andrews*

Abstract

In this talk I will discuss an example of the use of fully noulinear parabolic
flows to prove geometric results. I will emphasise the fact that there is a wide
variety of geometric parabolic equations to choose from, and to get the best
results it can be very important to choose the best flow. I will illustrate this
in the setting of surfaces in a three-dimensional sphere.

There are quite a few relevant results for surfaces in the sphere satisfy-
ing various kinds of curvature equations, including totally umbillic surfaces,
minimal surfaces and constant mean curvature surfaces, and intrinsically flat
surfaces. Parabolic flows can strengthen such results by allowing classes of
surfaces satisfying curvature inequalities rather than equalities: This was first
done by Huisken, who used mean curvature flow to deform certain classes of
surfaces to totally umbillic surfaces. This motivates the question “What is the
optimal result of this kind?” — that is, what is the weakest pointwise curva-
ture condition which defines a class of surfaces which retracts to the space of
great spheres?

The answer to this question can be guessed in view of the examples. To
prove it requires a surprising choice of evolution equation, forced by the re-
quirement that the pointwise curvature condition be preserved.

I will conclude by mentioning some other geometric situations in which
strong results can be proved by choosing the best possible evolution equation.
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1. Introduction

My aim in this talk is to demonstrate the use of fully nonlinear parabolic evolu-
tion equations as tools for proving results in differential geometry. I will emphasise
the fact that there is a wide variety of flows which are geometrically defined and
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potentially applicable to geometric problems, and that there is great benefit to be
had by choosing the flow carefully. I will focus on a particular application, relating
to surfaces in the 3-sphere, but the method has much wider applicability.

There are some well-known examples of geometric evolution equations of the
kind I want to consider: Eells and Sampson [8] used a heat flow to prove existence
of harmonic maps into non-positively curved targets; Hamilton considered the flow
of Riemannian metrics in the direction of their Ricci tensor, and proved that it
deforms metrics of positive Ricci curvature on three-manifolds [12] and metrics of
positive curvature operator on four-manifolds [13] to constant curvature metrics.
The Ricci flow also gives results in higher dimensions, proved by Huisken [14],
Nishikawa [24] and Margerin [19]-[21], if the curvature tensor is suitably pinched.
The mean curvature flow of submanifolds of Euclidean space is also well-known as
the gradient descent flow of the area functional, and because it arises in models
of interfaces such as in annealing metals. The examples I will concentrate on are
closest to the last example, as they are evolution equations describing submanifolds
moving with curvature-dependent velocity. There are many parabolic flows of this
kind, particularly for the codimension one (hypersurface) case: William Firey [11]
introduced the motion by Gauss curvature as a model for pebbles wearing away as
they tumble, and other flows which have been considered include motion by powers
of Gauss curvature [28], [6], the square root of the scalar curvature [7], the harmonic
mean of the principal curvatures [2]-[3], and the reciprocal of the mean curvature
[17]. More generally, one can take the velocity to be a function of the principal
curvatures which is monotone increasing in each argument.

This gives a huge variety of flows to choose from, so it makes sense to choose
the flow carefully to suit the problem. T will illustrate a strategy for choosing the
flow by asking that some desired curvature inequality be preserved under the flow.

I will begin, in the next two sections, by discussing some old results concerning
surfaces in the three-sphere. This motivates the results of the later sections.

2. Constant mean curvature surfaces

There is a well-known result of Simons [27] which says that a minimal hy-
persurface in a S™*! with the squared norm of the second fundamental form |A|?
less than n is in fact totally geodesic (hence a great n-sphere). This result comes
from an application of Simons’ identity which relates the second derivatives of mean

curvature to the Laplacian of the second fundamental form:
V’N’jH = Ahz‘j -+ iAighij - thhpj -+ ng‘,j - nhij.
From this we can deduce if the hypersurface is minimal (so H = 0)

0= AJA]? = 2|VA|” + 2|AP(JA]? - n).

If |A]? < n at a maximum, then the maximum principle implies |A|? is identically

zero, and the result follows. Also, if the maximum of |4|? is equal to n, then M
must be a product S*(a) x S*7*(b) in R¥! x R**+!1~* with radii @ and b determined
by the fact that M lies in S™' C R”*? and is minimal.
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Simons’ argument was taken up by other authors ([25], [5], [1]) in the slightly
more general setting of constant mean curvature hypersurfaces. The results are
similar: If the hypersurface has constant mean curvature H, and |A] is bounded
by a constant depending on n and H, then the hypersurface is totally umbillic,
hence a geodesic sphere in S”*1; if the inequality is not strict then the only extra
possibilities are products of spheres. The argument is similar to that above, but
complicated by the non-vanishing of the mean curvature.

Let me look closer at the situation for surfaces in the three-sphere: The intrin-
sic curvature of the surface is given by 1+ k162 = 1+ $ H? — 2| A[*. If M is minimal,
then H = 0, so |A|> < 2 is equivalent to positivity of the intrinsic curvature. This
is also true for constant mean curvature surfaces: In two dimensions, the curvature
condition from [25] and [5] is equivalent to positivity of the intrinsic curvature.

3. Flat tori

The condition of positive intrinsic curvature seems natural in view of the results
on constant mean curvature surfaces. For surfaces in space, positive curvature is
a rather restrictive condition — a compact surface satisfying this condition is the
boundary of a convex region. In the 3-sphere it seems somewhat less restrictive,
as we can see by considering the ‘boundary’ case of flat surfaces, where there are
the beautiful results of Weiner [32] and Enomoto [9] which classify flat tori in the
3-sphere by their Gauss maps. It was known for some time that there are many
examples of these (see [26]), since the inverse image of any smooth curve in S?
under the Hopf projection is a flat torus in S®. These examples are all invariant
under the action of U(1) on C? ~ R, but Weiner and Enomoto showed that there
are many examples which are not symmetric.

The Gauss map of a surface in S® can be thought of in several ways: One
can consider the tangent plane of the surface as a subspace of R*, which gives a
map from the surface to the Grassmannian Gs 4 of 2-planes in R*. The latter is a
metric product S? x S2, and the projections onto each factor are called the self-dual
and anti-self-dual Gauss maps. Alternatively, since S® is a group, one can map
the unit normal of the surface by either left or right translations to the Lie algebra
— this again gives two maps to S2, and of course these are the same as before:
The self-dual Gauss map is the same as the left-translation Gauss map, and the
anti-self-dual Gauss map is the same as the right-translation Gauss map.

Enomoto [9] observed that if M? is intrinsically flat in S, then both Gauss
maps are degenerate (their images are just curves in S2). Weiner gave the com-
plete classification result: The image curves 1 and 7o necessarily have zero to-
tal curvature, and if I; and Iy are subintervals of v; and 7o respectively, then
| [, &ds| + | [, sds| < m. Conversely, if y1 and 72 are any curves satisfying these
conditions, then there is a flat torus with these curves as the images of the two
Gauss maps, and the torus is unique up to motion by unit speed in the normal
direction.

This gives a very large family of flat tori in the 3-sphere, and from these we see
that surfaces with positive intrinsic curvature in S® can look quite complicated: The
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surface can look metrically like a long thin cylinder with caps on the ends, placed
in $? by ‘winding around’ a flat torus many times before closing off the ends.

4, Curvature flow

Curvature flow can give powerful generalisations of results like those from
[27], [25] and [5]: Huisken [16] extended techniques developed earlier for convex
hypersurfaces in Euclidean space [14] to prove the following result:

Theorem: Let MJ = xo(M) be a hypersurface in S™1 which satisfies
1
AP <« ——H? +2
n-—1

if n> 2, and
3 4
AP < SH? + -
|A]F < 7H +3
if n = 2. Then there exists a smooth family of hypersurfaces {M; = x(M)}o<taT
which satisfy the same curvature condition and move by mean curvature flow with
initial data My. Either T < oo and My is asymptotic to o family of geodesic spheres

shrinking to their common centre, or T = oo and M, approaches o great sphere.

This includes the result that there are no minimal surfaces with |4|? < n

except great spheres. It also implies the stronger statement that every hypersurface
satisfying |A|? < 5 H? 4 2 can be deformed, keeping this condition, to a great
sphere (except in the case n = 2). The condition |A]> < —7H? + 2 is the same
as that arrived at by Okumura [25] for constant mean curvature surfaces (Cheng
and Nakagawa [5] improved this for higher dimensions, but in two dimensions it is
sharp). The proof of the above result is significantly more difficult than that for
the constant mean curvature case.

The result seems very satisfying, except when n = 2 where the method does
not seem to work for Okumura’s condition [4]? < H? + 2. The latter is exactly the
condition of positive intrinsic curvature. This raises several questions: Does mean
curvature flow in fact preserve this condition? If not, is there any flow which does?

5. The optimal result

5.1. Choosing the evolution equation

Now we can illustrate the method: The previous questions can be answered in
a rather systematic way. The idea is to write down the conditions required for an
arbitrary flow by a function F of curvature to preserve positive intrinsic curvature.

We can write down an evolution equation for an arbitrary function G of the
principal curvatures x, and x9, and see what conditions are required for the flow
to preserve the condition G > 0. For convenience we can write G in the form

G(k1, k) = (k1 — k2)? — (k1 + K2)? (5.1)
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so that in the case we are interested in, p(z) = v4 + 22. We can also write
F = f(k1+ £2,G). (5.2)
Then the evolution equation for G is as follows:

% — FUV,V,G + Q) (Vh, Vh) + Z(h), (5.3)

where F is the matrix of derivatives of F with respect to the components of the
second fundamental form, which is positive definite as long as F is an increasing
function of each of the principal curvatures. The second term is a quadratic function
of the components of the derivative of the second fundamental form, with coefficients
depending on curvature h, explicitly given by

0= (Gijl'fwkl,mn _ Fijékl,mn) VihitV i b,

where F' is the second derivative of F with respect to the components of h. The
last term Z depends on the curvature alone, and has the form

7 = Gi’j (F(hfj -+ gz‘,j) -+ Fkl (hijhil - hkgh?j -+ gz‘,jhkg - gkghz‘,j))

—F (61(1 +R2)+ G2+ /@g)) ¥ (14 krk2) (ke — k1) (GYE? — F1G2).

To show that G > 0 is preserved (with G = 1+ k1k2), we consider the situation at a
point where G first attains a zero minimum. Then the first term on the right-hand
side of (5.3) is non-negative; we consider each of the other terms. The last term is
simplest: Substituting the forms of F' and G from (5.1} and (5.2), we find

Z:G(fH—}—%goQ),

so Z vanishes at a zero of (7, no matter what speed F' we use. This is another
indication of the fact that the condition of positive intrinsic curvature is optimal.
The gradient terms are the most complicated, but we can simplify them significantly
by observing two things: First, V1 is a totally symmetric 3-tensor, by the Codazzi
equation. Second, at a minimum of G, the gradients of G vanish. It follows that
there are only two independent components of Vh, and one finds that these never
mix in the expression for @}, so that

Q = a(Viha)? + B(Vahi1)?.

Since we have no further information about VA (that is, no reason to expect that
the magnitudes of these remaining components should vanish) we must impose the
condition that o and 8 are non-negative. This gives two conditions, which we can
interpret as conditions on the first and second derivatives of F. A fact which is
perhaps not obvious is that these conditions only involve the restriction of F' to the
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boundary of the set {G = 0} in the curvature plane, so we can consider F as defined
by (5.2) with G = 0. Then the conditions can be written explicitly as follows:

H 1_! " H 1_+_I
® , ® Sf_,S ® , v
l-gp @ =1+ @

In the case of interest, we have ¢ = v4 + H?2, and the first and last quantities are
both equal to —2H /(4 + H?). The only possibilities for F are the following:

H
F =, + Cy arctan (5> .

This applies only along the curve {G = 0}, so we are reasonably free to choose F
in the region where G > 0, as long as it is monotone in both principal curvatures.

5.2. The extreme case

The remarkably restricted form of the evolution equation is illuminated some-
what by considering the extreme case of flat surfaces: If the flow preserves positive
intrinsic curvature, then it must also preserve zero curvature. As outlined above,
the structure of surfaces with zero curvature is very well understood, and in par-
ticular the Gauss map G : M? — S2 x §? has the remarkable property that the
projection onto each factor is one-dimensional. This must be preserved under the
flow.

The flow we have ended up with is characterised by the fact that the Gauss
map evolves according to the mean curvature flow (now for codimension 2 surfaces
in 8?7 % S2, which means that each of the two curves coming from the two projections
of the Gauss map evolves according to the curve-shortening flow in S2. Since each
of the curves divides the area of the sphere into two equal parts, the image of
the Gauss map never develops singularities (at least in the case where the two
curves are homotopic to great circles traversed once), but in fact the flat tori will
in general develop singularities — this is analogous to the motion of a curve in
the plane with constant normal speed, which develops singularities even though the
normal direction stays constant at each point. Incidentally, there has been some
very impressive recent progress on mean curvature flow in higher codimension, due
to Mu-Tao Wang [29]-[31], who has used it to prove several very interesting results
regarding maps between manifolds.

The examples of flat tori can be used to prove that there is no other curvature-
driven flow of surfaces which preserves the condition of positive curvature, by giving
examples for any other flow of flat tori which do not stay flat.

5.3. Regularity

A technical issue which arises is the following: The speed we ended up with is
not concave or convex as a function of the second fundamental form. The regularity
estimates due to Krylov [18] and Evans [10] for fully nonlinear equations (needed
to prove that we get classical solutions of the flow) require concavity, so we cannot
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use these. Instead it is possible to adapt the estimates for elliptic equations in two
variables (due to Morrey [22] and Nirenberg [23]) to give good C%* estimates for
solutions of fully nonlinear parabolic equations in two space variables.

5.4. Curvature pinching

Now we come to the problem of choosing a good way to extend the speed from
the boundary {G = 0} to the interior of the region {G > 0}. The idea is to do this
in such a way that any compact surface with strictly positive curvature necessarily
has very strongly controlled curvature in the future — that is, we want the region
{G > 0} to be exhausted by a nested family of regions which stay away from the
boundary, and only approach infinity near the ‘umbillic’ line k1 = k9. This means
that any singularity which occurs will have to be totally umbillic, so occurs only
when the surface shrinks to a point while becoming spherical in shape.

This can be done in many ways. One which is relatively simple to describe,
but results in solutions which are only C%%, is as follows: Take

Fo arctan k1 -+ arctan kg, Ki1ke < 1;
Tmike + 1), Kiks > 1.

This is then a Lipschitz, monotone increasing function of the curvatures, and one
can check that the following regions of the curvature plane are preserved:

14 K1k2

0. = {im - sl < 22

} N {/il/ig S 1} U {i/ﬁl e /igi S g} N {/il/ig Z 1}
This means that the difference between the principal curvatures stays bounded even
if the curvature becomes large, which implies very strong control on singularities.
This is similar to the estimate used in [4] to prove that worn stones (i.e. convex
surfaces moving by their Gauss curvature) become round as they shrink to points.

With a little more work we can choose the speed to be a smooth function of
the principal curvatures, and then solutions are also smooth.

In the choice above, we also have the nice feature that minimal surfaces do
not move. We can with slight modifications arrive at a speed for which constant
mean curvature surfaces do not move, for any particular choice of the mean curva-
ture, as long as we are willing to work in the category of oriented surfaces. More
generally, we can contrive that for a given monotone increasing function ¢ of the
principal curvatures, surfaces satisfying ¢ = 0 do not move. Here F' (and ¢) must
be symmetric. We can also choose if desired a speed which is always positive, so
that there are no stationary solutions.

5.5. The results

The main result for the above speed is the following:

Theorem 1. Let x¢ be an immersion of S% in 8%, with non-negative intrinsic
curvature in the induced metric. Then the flow constructed above deforms My =
20(S?) through a family M; = x4(S?), with intrinsic curvature strictly positive for
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each t > 0, to either o great sphere (in infinite time) or to a point, with spherical
limiting shape (in finite time). If My is embedded, then so is My for each t > 0.

This includes in particular Simons’ result on mimimal surfaces. If we modify
the speed somewhat, then we get the following result, which gives in particular a
new result for Weingarten surfaces in the 3-sphere:

Theorem 2. Let ¢ be any smooth, strictly monotone function of k1 and ko defined
on {k162 + 1 > 0}. Then there exists o function F' which is smoothly defined on
{k1ka + 1 > 0}, and strictly monotone increasing in each argument, with sgnF =
sgng everywhere, such that the following holds: If My = x0(S?) is a smooth compact
surface in S* with non-negative intrinsic curvature, then the motion with speed F
deforms My through o smooth family {M;}o<i<T, each strictly positively curved,
which either converge to a point with spherical limiting shape with T < 0, or converge
to a totally umbillic surface (spherical cap) with ¢ =0 if T = .

This includes two cases: Either there is some point where ¢ = 0, in which case
there is a spherical cap with ¢ = 0 and the above result implies that this is the only
surface with ¢ = 0 with positive intrinsic curvature, or ¢ is never zero, in which case
all surfaces converge to points. In the latter case a very small geodesic sphere with
one choice of orientation will shrink inwards to its centre, while the same sphere
with the opposite orientation expands over the equator and eventually contracts to
the antipodal point. In this way we have a unique way of associating an oriented
surface with the point it eventually contracts to, and we deduce the following;:

Theorem 3. The space of oriented surfaces with positive intrinsic curvature in S°
retracts onto S°.

Finally, if we introduce some non-local terms in the speed, we can devise a
flow which fixes the enclosed volume, preserves positive intrinsic curvature, and gives
convergence to spherical caps, without moving constant mean curvature surfaces.

6. Other results by related methods

The methods I outlined above also yield interesting results for a variety of other
problems: One which works out similarly, and which has some interesting parallels,
is that of surfaces in three-dimensional hyperbolic space. The surfaces of interest
are those for which all of the principal curvatures are less than 1 in magnitude. We
can find a flow which deforms any such surface in a compact hyperbolic manifold to
a minimal surface, while keeping the principal curvatures less than 1 in magnitude.
Rather surprisingly, this flow is in a way the hyperbolic analogue of the one we just
described for the sphere: Instead of moving with speed equal to the sum of the
arctangents of the principal curvatures, we move with speed equal to the sum of
the hyperbolic arctangents of the principal curvatures. The resulting flow is very
well-behaved, and has the interesting property that the Gauss map of the surface
(the map which takes a point of the surface to its tangent plane, thought of as a
point in the Grassmannian of spacelike 2-planes in Minkowksi space R*1), evolves
according to mean curvature flow.
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The methods also give good results for hypersurfaces in higher-dimensional
spheres: Hypersurfaces with positive sectional curvatures can be deformed in such
a way as to preserve that condition, and similar results can be deduced. The
condition of positive sectional curvature can probably be relaxed: Positive sectional
curvature is implied by the condition of Okumura [25] for constant mean curvature
hypersurfaces, but not by the sharper condition of Cheng and Nakagawa [5] and
Alencar and do Carmo [1].
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Mass and 3-metrics of Non-negative
Scalar Curvature

Robert Bartnik*

Abstract

Physicists believe, with some justification, that there should be a corre-
spondence between familiar properties of Newtonian gravity and properties of
solutions of the Einstein equations. The Positive Mass Theorem (PMT), first
proved over twenty years ago [45, 53], is a remarkable testament to this faith.
However, fundamental mathematical questions concerning mass in general
relativity remain, associated with the definition and properties of quasi-local
mass. Central themes are the structure of metrics with non-negative scalar
curvature, and the role played by minimal area 2-spheres (black holes).
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1. Positive Mass Theorem

The Positive Mass Theorem provides a good example of “the unreasonable
effectiveness of physics in mathematics' 7. The need to define mass in general rela-
tivity is motivated directly by the physics imperative to establish a correspondence
between general relativity and classical Newtonian gravity. Already difficulties arise:
although the vacuum Einstein equations Ricas — 3 Rgas = 0 for the Lorentz metric
9ap suggest (by analogy with the wave equation, for example) that a mass (energy)
which includes contributions from the gravitational field, should be built from the
first derivatives of the field gng, it is clear that this is incompatible with coordinate
invariance.

The Schwarzschild vacuum spacetime metric, for r > max(0, 2M),

dr?

2 2 22 2
+TM/7’+T (d0* + sin” d dp*), (1.1)

ds? = — (1 —2m/r) dt?
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provides an important clue, since the parameter M € R governs the behaviour of
timelike geodesics and may be regarded as the total mass. Note that M > 0 ensures
the boundary r = 2M is smooth and totally geodesic in the hypersurfaces t = const.

A Riemannian 3-manifold (M, g) is said to be asymptotically flat it M\K ~
R*\B;(0) for some compact K, and M admits a metric § which is flat outside K,
and the metric components ¢;; in the induced rectangular coordinates satisfy

l9i = 95l = O(r™"), 18kgisl = O ™?),  |OkBigyl = O(r™?). (1.2)
The total mass of (M, g) is defined informally by [1]

1
MADM = Jor jiﬂ(oo) (0i9:5 — 0j91) dSj. (1.3)

If the scalar curvature R(g) € L'(M) then mapy is well-defined, independent of
the choices of rectangular coordinates and of exhaustion of M used to define §. (00)

— see [3, 15, 37] for weaker decay and smoothness assumptions.

For simplicity, the discussion here is restricted to C* Riemannian 3-dimensional
geometry. This corresponds to the case of time-symmetric initial data: (M, g) is a
totally geodesic spacelike hypersurface in a Lorentzian manifold, and we can identify
the local matter (equivalently, energy) density with the scalar curvature R(g) > 0.
This simplification entails a small loss of generality: most, but not all, of the results
we describe have been extended to general asymptotically flat space-time initial
data (M, g, K), where K;; is the second fundamental form of a spacelike hyper-
surface M. Some results also generalize to the closely related Bondi mass, which
measures mass and gravitational radiation flux near null infinity, and to mass on
asymptotically hyperbolic and anti-deSitter spaces cf. [51, 16], but these involve
additional complications which we will not discuss here.

The Positive Mass Theorem (PMT) in its simplest form is

Theorem 1 Suppose (M, g) is o complete asymptotically flat §-manifold with non-
negative scalar curvature R(g) > 0. Then mapuy > 0, and mapy =0 iff (M, g) =
(B, 9).

The rigidity conclusion in the case mapy = 0 shows that mapy > 0 for
(M, g) scalar flat (“matter-free”) but non-flat, so m 4pp does provide a measure of
the gravitational field.

Three distinct approaches have been successfully used to prove the PMT:
with stable minimal surfaces [45, 46]; with spinors [53, 36] and the Schrddinger-
Lichnerowicz identity [48, 35]; and using the Geroch foliation condition [23, 30].
A number of other appproaches have produced partial results: using spacetime
geodesics [42]; a nonlinear elliptic system for a distinguished orthonormal frame
[39, 18]; and alternative foliation conditions [32, 33, 6]. The connection between
these approachs remains mysterious; the only discernable common thread is mean
curvature, and this is quite tenuous.

The application of the positive mass theorem to resolve the Yamabe conjec-
ture [44, 34] is well known. Less well known is the proof of the uniqueness of the
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Schwarzschild spacetime amongst static metrics with smooth black hole boundary
[13], which we briefly outline.

A static spacetime is a Lorentzian 4-manifold with a hypersurface-orthogonal
timelike Killing vector. With V' denoting the length of the Killing vector, the metric
g on the spacelike hypersurface satisfies the static equations

Ric, = VIV,

AV = 0. (14)

Smoothness implies the boundary set ¥ = {V = 0} is totally geodesic; analyticity
of g,V can be used to show the asymptotic expansions

9 = (1+2m/r)dy; + 02,
V o= 1-m/r+0(?),

as 7 — oo for some constant m € R. The metrics g* = ¢ g where ¢ = (1£V)/2
both have R(g*) = 0, and g* is asymptotically flat with vanishing ADM mass,
and ¢~ is a (smooth) metric on a compact manifold. Gluing two copies of (M, g)
along the totally geodesic boundary ¥ and conformally changing to § = ¢*g where
é = ¢4 on the two copies of M, gives a complete AF manifold with R(§) = 0 and
vanishing mass. The PMT shows (M, §) is flat and it follows without difficulty that
(M, g) is Schwarzschild. This extends previous results [31, 43] which required the
boundary to be connected.

2. Penrose conjecture

A boundary component ¥ with mean curvature H = 0 is called a black hole or
horizon, since if (M, g) is a totally geodesic hypersurface then X is a trapped surface
and hence, by the Penrose singularity theorem [26], lies within an event horizon and
is destined to encounter geodesic incompleteness in the predictable future.

The spatial Schwarzschild metric g = % +72(d¥? + sin ¥9dp?) with M < 0
shows that the completeness condition in the PMT is important, but it can be
weakened to allow horizon boundary components of M. This follows immediately
from the minimal surface argument [45]; or by an extension to the Witten argument
[22], imposing one of the boundary conditions

1) = terh on ¥ = M, (2.1)

on the spinor field 1, where € = 4"7° satisfies €2 = 1. An interesting extension is
obtained by imposing the spectral boundary condition

Piyy=00n X% (2.2)

where P, is the projection onto the subspace of positive eigenspinors of the induced
Dirac operator Dy. Using the remarkable Hijazi-Bar estimate [28, 2]

Al 2 V4 /X, (2:3)
for the eigenvalues of Dy when ¥ ~ $?, Herzlich showed [27]
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Theorem 2 If (M, g) is asymptotically flat with R(g) > 0 and boundary ¥ ~ S*
with mean curvature satisfying
Hy <2/r (2.4)

where r = /|| /4x, then mapy > 0, with equality iff (M, g) = (R*\B(r),d).

The proof starts with the Riemannian form of the Schrédinger-Lichnerowicz-
Witten identity [48, 35, 53]

[Mawz? + LR(g) 2 — [DyI?) dvar = Altboc P anas + f w),  (2.5)

X

where p(v) is the Nester-Witten form [38]

p(h) = (¢, (Ds + 3 He)b) dvs. (2.6)

The boundary condition Pty = 0 is elliptic and it can be shown [8] there is
a spinor on M satisfying D1y = 0 with boundary conditions ¥ - 1o # 0 as
r — oo and (2.2) on . It follows from (2.3) and (2.2) that (¢, (Dsg + 1 Hx)y) <
(1Hs — |ATD]#|* <0 and the result follows.

Observe that in each case, equality leads to flat R®. An elegant physical argu-
ment lead Penrose to conjecture an analogous inequality, but which distinguishes
the Schwarzschild metric instead [40], see also [24].

Conjecture 3 (Penrose) If (M,g) satisfies the conditions of the PMT, except
that OM = ¥ is compact with vanishing mean curvature and such that ¥ is the
“outermost” closed minimal surface in M, then

mADMZ \/iEi/lG?T, (27)

with equality only for the Schwarzschild metric.

A closed minimal surface is said to be an outermost horizon or cuter-minimizing
horizon if M contains no least area surfaces homologous to ¥ in the asymptotic
region exterior to ¥. The outermost condition is essential, since examples of non-
negative scalar curvature manifolds can be constructed by forming the connected
sum of M and large spheres by arbitrarily small and large necks.

The Penrose conjecture has been established by Huisken and Hmanen [29, 30]
using a variational level set formulation of the inverse mean curvature flow [23], and
by Bray [12] by a very interesting conformal deformation argument. Bray’s proof
is more general since it takes into account contributions from all the connected
components of the boundary.

3. Quasi-local mass

Thus it is natural to consider 4/|X]/167 as the mass of a black hole (minimal
surface) £. More generally, the correspondence with Newtonian gravity suggests
that any bounded region (€2, g) should have a quasi-local mass, which measures both
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the matter density (represented in this case by the scalar curvature R(g) > 0), and
some contribution from the gravitational field. The rather satisfactory positivity
properties of the total mass, as established by the PMT, motivate the properties
we might expect such a geometric mass to possess [20, 14, 7).
1. (non-negativity) mgr(Q2) > 0;
2. (rigidity /strict positivity) mqr(Q2) = 0 if and only if (£, ¢) is flat;
3. (monotonicity) mgr (1) < mgr(l2) whenever 1 C {29, where it is un-
derstood that the inclusion is a metric isometry;
4. (spherical mass) mgr should agree with the spherical mass, for spherically
symmetric regions;
5. (ADM HLimit) mgy should be asymptotic to the ADM mass;
6. (black hole limit) mgr should agree with the black hole mass (2.7).

Many candidates have been proposed for quasi-local mass (see for example [10] for
a comparison of some definitions), the most significant being that of Hawking [25],

1= 1 2
mpy(X) = 16m (1 T6m ZH > (3.1)
where ¥ = 09. This equals M for standard spheres in Schwarschild. Although
mpy < 0 for surfaces in R?, it was shown in [14] that mg () > 0 for a stable constant
mean curvature 2-sphere ¥ in a 3-manifold of non-negative scalar curvature. Thus
for such “round” spheres, mpy is nonegative, and the black hole limit condition
is trivially satisfied. However the remaining properties, in particular rigidity and
monotonicity, are rather problematic. Although the twistorially-defined Penrose
quasi-local mass [41] is well-behaved in special cases [50], it is defined unambiguously
only for surfaces arising from embedding into a conformally flat spacetime, and even
then numerical experiments [11] strongly suggest that monotonicity is violated.

In fact, of the various proposals for mgr, only the definitions of [14, 5, 19)
are known to satisfy positivity. Dougan and Mason [19] show that the integral
$s. 11(1)) of the Nester-Witten 2-form (2.6) is positive for spinor fields ¢ on ¥ which
satisfy a certain elliptic system on . However, Bergqvist [9] shows that positivity
holds under much weaker conditions on 1, and there are many variant definitions
with similar properties. It would be useful to understand these DM-style definitions
better, and in particular whether any satisfy monotonicity.

Monotonicity and ADM-compatibility imply mgr(Q) < mapa (M, g) for any
region {) embedded isometrically in an (M, g) satisfying (as always) the PMT con-
ditions. This motivates the following definition [4, 30]

Definition 4 Let PM denote the set of all asymptotically flat 3-manifolds (M, g)
of non-negative scalar curvature, with boundary which if non-empty, consists of
compact outermost horizons, and such that (M, g) has no other horizons. For any
bounded open connected region (£, g), let PM(Q) be the set of (M,g) € PM such
that Q) embeds isometrically into M, and define

mor(Q) = inf{mapay(M,g) : (M, g) € PM(Q)}. (3.2)

We say that M satisfying these conditions is an admissible extension of 1.
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The horizon condition serves to exclude examples which hide 2 inside an ar-
bitrarily small neck, which would force the infimum to zero. This is a refinement
[30] of the original definition [4], which prohibited horizons altogether.

Clearly mgr(Q) is well-defined and finite, once the region Q admits just one
admissible extension. The PMT with horizon boundary implies non-negativity, and
monotonicity follows directly. Strict positivity of mqr, was established in [30], with
the slightly weaker rigidity conclusion that if mqgr(€2) = 0 then Q is locally flat.
Agreement with the spherical mass, and the ADM limit condition, follows also from
[30]. Bray’s results imply that mqr () agrees with the black hole mass in the limit
as {1 shrinks down to a black hole. In addition, mgr(Q) < mapum (M) for any
admissible extension M, so mgy is the optimal quasi-local mass definition with
respect to this condition.

The optimal form of the horizon condition remains conjectural. Bray has
suggested an alternative condition, that {2 be a “strictly minimizing hull” [30] in
M, so ¥ = 0f) has the least area amongst all enclosing surfaces in the exterior.
In this case we say ¥ is outer minimizing, and denote by mqgr (1) the quasilocal
mass function defined by restricting admissible extensions to those M in which X
is outer minimizing. For this modified definition the Penrose inequality [30, 12
applies to show that if 9 embeds into the Schwarzschild 3-manifold with the same
induced metric and mean curvature (cf. (4.1), (4.2)) and encloses the horizon, then
mgr(Q) = M. It is not clear how to establish this natural result for the unmodified
definition mgr (£2).

4. Static metrics

Although in many respects the definition of mgy, is quite satisfactory, it is not
constructive, and thus it is important to determine computational methods. The
key is the following [4]

Conjecture 5 The infimum in mqyr is reolised by a 3-metric agreeing with € in
the interior, static (1.4) in the exterior region, and such that the metric is Lipschitz-
continuous across the matching surface 3, and the mean curvatures of the two sides
agree along 2.

A similar conjecture for the space-time generalisation of the quasi-local mass,
asserts that the exterior metric is stationary, ie. admits a timelike Killing field [4, 7].

As motivation for this conjecture, note first that if R(g) > 0 in some region,
then a conformal factor ¢ can be found such that ¢*g has less mass and R(¢%g) > 0.
Thus a mass-minimizing metric for (4), if such a metric exists, must have vanishing
scalar curvature. Now if the linearization DR(g)h = 040,h — Atryh — Ric - h is
surjective then g admits a variation which produces positive scalar curvature. The
formal obstruction to surjectivity is non-trivial ker DR(g)*, which leads to the static
metric equations (1.4). Corvino [17] shows that if ker DR(g)* is trivial in U C M
then there are compactly supported metric variations in U which increase the scalar
curvature. This gives
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Theorem 6 If (M, g) realizes the infimum in Definition 4, then there is a V €
C*=(M\Q) such that g,V satisfy the static metric equations (1.4) in M\Q.

This suggests a computational algorithm for determining mqr(Q): find an
asymptotically flat static metric with boundary geometry matching that of 0. To
determine the appropriate boundary conditions, recall the second variation formula
for the area of the leaves of a foliation labelled by r:

R(g) =2D,H — |II> — H* + 2K — 2XA7'A,\ (4.1)

where II, H, K are respectively the second fundamental form, mean curvature and
Gauss curvature of the leaves, X is the lapse function, n = A™18, is the normal vector
and A, is the Laplacian on the leaves. Our conventions give H = —D,,(log /det g,)
where g, is the volume element of the leaves. This shows that R(g) will be defined
distributionally across a matching surface as a bounded function if

glrea = glrs, (1.2)
Hyq = Hsx.

Conjecture 7 ({1, g) determines a unique static asymptotically flat manifold (S, g)

with boundary X ~ 09 satisfying (4.2).

If true, this would give a prime candidate for the minimal mass extension. It
is known (Pengzi Miao, private communication) that the boundary conditions (4.2)
are elliptic for (1.4).

It is tempting to conjecture that mass-minimizing sequences for mgy should
converge to a static metric. For example, [3, Theorem 5.2] shows that a sequence
of metrics gg, close in the weighted Sobolev space W'E’f , g > 3,7 > 1/2, to the
flat metric § on R® and such that mapa(gx) — 0, converges strongly to 4 in
W12, Similar results, under rather different size conditions, are given in [21], and
a discussion of the general “weak compactness” conjecture may be found in [30].

5. Estimating quasi-local mass

To estimate mqy from above, it suffices to construct admissible extensions —
metrics with non-negative scalar curvature and satisfying (4.2). These boundary
conditions exclude the usual conformal method. Instead, metrics in quasi-spherical
form [6]

g=udr® + (rdd + pdr)? + (rsind dp + 5%dr)? (5.1)

satisfy a parabolic equation for u on S? evolving in the radial direction, when R(g) =
0, with 81, 32 freely specifiable. Since the metric 2-spheres S? have mean curvature
H, = (2 — divgz3)/ur > 0, (5.1) provides admissible extensions for 9Q = S? with
mean curvature H > 0. The underlying parabolic equation derives from (4.1), and
has been generalized to non-gpherical foliations in [49]. As an application, choosing
8 = 0 we can show
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Theorem 8 Suppose 0 = S? metrically, with H > 0. Then
2. ogr2
mqr() < ir(1 —1r rgg}nH ). (5.2)

This bound is sharp when € is a flat ball or a Schwarzschild horizon.

Finding lower bounds for mgy (€2) is more difficult. Bray’s definition of inner
mass [12, p243] gives a lower bound, but for fagr(€2). The difficulty here as above
lies in showing that a horizon inside ) remains outermost when the inner region is
glued to a general exterior region Mexy C M € PM(£2). This follows easily when
¥ = 01} is outer-minimizing in My, as guaranteed by the definition for fgr ().

On physical grounds one expects that if “too much” matter is compressed into
region which is “too small”, then a black hole must be present. The geometric
challenge lies in making this heuristic statement precise, and the only result in
this direction has been [47], which gives quantitative measures which guarantee the
existence of a black hole. An observation by Walter Simon (private communication)
is thus very interesting: if mqgr(Q2) = 1 (say) and {1 embeds isometrically into a
complete asymptotically flat manifold M without boundary and with non-negative
scalar curvature, and such that mapp (M) < 1, then M must have a horizon. This
reinforces the importance of finding good lower bounds for mgy, since the existence
of a horizon in a similar situation with gy does not follow.
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Geometry of Symplectic Intersections

P. Biran®

Abstract

In this paper we survey several intersection and non-intersection phenom-
ena appearing in the realm of symplectic topology. We discuss their im-
plications and finally outline some new relations of the subject to algebraic
geometry.
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1. Introduction

Symplectic geometry exhibits a range of intersection phenomena that cannot
be predicted nor explained on the level of pure topology or differential geometry.
The main players in this game are certain pairs of subspaces (e.g. Lagrangian
submanifolds, domains, or a mixture of both) whose mutual intersections cannot
be removed (or reduced) via the group of Hamiltonian or symplectic diffeomor-
phisms. The very first examples of such phenomena were conjectures by Arnold in
the 1960’s, and eventually established and further explored by Gromov, Floer and
others starting from the mid 1980s.

The first part of the paper will survey several intersection phenomena and the
mathematical tools leading to their discovery. We shall not attempt to present the
most general results and since the literature is vast the exposition will be far from
complete. Rather we shall concentrate on various intersection phenomena trying to
understand their nature and whether there is any relations between them.

The second part is dedicated to “non-intersections”, namely to situations
where the principles of symplectic intersections break down. In the case of La-
grangian submanifolds this absence of intersections is reflected in the vanishing of
a symplectic invariant called Floer homology. This vanishing when interpreted al-
gebraically leads to restrictions on the topology of Lagrangian submanifolds. As
a byproduct we shall explain how these restrictions can be used to study some
problems in algebraic geometry concerning hyperplane sections and degenerations.

*School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel. Email:
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2. Various intersection phenomena

In this section we shall make a brief tour through the zoo of symplectic inter-
sections, encountering three different species.

Before we start let us recall two important notions from symplectic geometry.
Let (M,w) be a symplectic manifold. A submanifold L C M is called Lagrangian if
dim L = § dim M and w vanishes on T(L). From now on we assume all Lagrangian
submanifolds to be closed. The second notion is of Hamiltonian isotopies. An
isotopy of diffeomorphisms {h; : M — M }o<i<1, starting with ho = id is called
Hamiltonian if the (time-dependent) vector field £; generating it satisfies that the
1-forms i¢,w are ezact for all 0 < ¢ < 1. Note that Hamiltonian isotopies preserve
the symplectic structure: hjw = w for all ¢£. Finally, two subsets A,B C M are
said to be Hamiltonianly isotopic if there exists a Hamiltonian isotopy h; such that
hi(A) = B. We refer the reader to [28] for the foundations of symplectic geometry.

2.1. Lagrangians intersect Lagrangians

The most fundamental Lagrangian intersection phenomenon occurs in cotan-
gent bundles. Let X be a closed manifold and T*(X) be its cotangent bundle
endowed with the canonical symplectic structure wean = . dp; A dg;. Denote by
Acan = 2, pidg; the Liouville form (so that wean = dAcan). Recall that a Lagrangian
submanifold L C T*(X) is called exact if the restriction Acan|7(z) is exact. Note
that the property of exactness is preserved by Hamiltonian isotopies. Denote by
Ox C T*(X) the zero-section. The following theorem was proved by Gromov in [22]:
Theorem A. Let L C T*(X) be an exact Lagrangian submanifold. Then:

1) For every Lagrangian L' which is Hamiltonianly isotopic to L we have LNL' # 0.
2) LN Ox # B. In particular, L cannot be separated from the zero-section by any
Hamiltonian isotopy.

If one assumes L to be a Hamiltonian image of the zero-section a more quan-
titative version of Theorem A holds:

Theorem B. Let L C T*(X) be a Lagrangian submanifold which is Hamiltonianly
wsotopic to the zero-section and intersects it transversely. Then

dim X

#LNOx > D bi(X),

=0

where b;(X) are the Betti numbers of X.

Chronologically Theorem B preceded Theorem A. It was conjectured by Arnold
(see [3] for the history), first proved for X = T” by Chaperon [12] and generalized
to all cotangent bundles by Hofer [23] and by Laudenbach and Sikorav [26]. Now a
days it can be viewed as a special case of Floer theory (see Section 2.4 below).

Note that the intersections described by both theorems above cannot in general
be understood on a purely topological level. Indeed, in general topology predicts less
than > b;(X) intersection points, and sometimes even none. Finally, note that in
general the statement of Theorem B fails if one assumes L to be only symplectically
isotopic to Ox, as the example X = T” shows.
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2.2. Balls intersect balls

Denote by B?"(R) the closed Euclidean ball of radius R, endowed with the
standard symplectic structure induced from R?". Denote by CP” the complex
projective space, endowed with its standard Kihler form o, normalized so that
fcpl o = w. The following obstruction for symplectic packing was discovered by
Gromov [22]:

Theorem C. Let M be either B*"(1) or CP™. Let B, , By, C M be the images of
two symplectic embeddings p1 : B> (Ry) — M, @3 : B*(Ry) — M. If R2+R3 > 1
then By, N By, # 0.

Since symplectic embeddings are also volume preserving there is an obvious
volume obstruction for having By, N B,, = . However, volume considerations
predict an intersection only if R?” + R3" > 1 (moreover for volume preserving
embeddings the latter inequality is sharp).

When one considers embeddings of several balls things become more compli-
cated and interesting. Here results are currently available only in dimension 4.
Theorem D. Let M be either B*(1) or CP?, and let By,,,...,Bsy C M be the
images of symplectic embeddings ¢ : BY(R) — M, k = 1,...,N, of N balls of
the same radius R. Then there exist i # j such that B,, N By, # 0 in each of the
following cases:

1. N=2or3 and R* > 1/2.
2. N =5 or6 and R? > 2/5.
3. N =7and R? > 3/8.
4. N=8and R* > 6/17.

Moreover all the above inequalities are sharp in the sense that in each case if the
inequality on R is not satisfied then there exist symplectic embeddings p1,..., 0N
as above with disjoint images B, ,..., B,y C M.

Statement 2 for N = 5 was proved by Gromov [22]. The rest was established
by McDuff and Polterovich [27]. Let us mention that for N =4 and any N > 9
this intersection phenomenon completely disappears in the sense that an arbitrarily
large portion of the volume of M can be filled by a disjoint union of N equal balls
(see [27] for N =4 and N = k2, and [5, 6] for the remaining cases).

2.3. Balls intersect Lagrangians

It turns out that there exist (symplectically) irremovable intersections also
between contractible domains (e.g. balls) and Lagrangian submanifolds.

Denote by RP™ C CP"™ the Lagrangian n-dimensional real projective space

(embedded as the fixed point set of the standard conjugation of CP™). The following
was proved in [7]:
Theorem E. Let B, C CP™ be the image of a symplectic embedding ¢ : B*"(R) —
CP™. If R* > 1/2 then B, NRP™ # . Moreover the inequality is sharp, namely
for every R* < 1/2 there exists a symplectic embedding ¢ : B*"(R) — CP™ whose
image avoids RP™.

In fact this pattern of intersections occurs in a wide class of examples (see [7]):
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Theorem E’. Let (M,w) be a closed Kihler manifold with [w] € H?*(M;Q) and
mo(M) = 0. Then for every € > 0 there exists a Lagrangian CW-compler A, C
(M, w) with the following property: every symplectic embedding o : B2"(¢) — (M, w)
must satisfy Image (p) N A, # 0.

By a Lagrangian CW-complex we mean a subspace A, C M which topologi-
cally is a CW-complex and the interior of each of its cells is a smoothly embedded
disc of M on which w vanishes.

2.4. Methods for studying intersections

Lagrangian intersections. The first systematic study of Lagrangian intersections
was based on the theory of generating function [12, 26] (an equivalent theory was
independently developed in contact geometry [13]). Gromov’s theory of pseudo-
holomorphic curves [22] gave rise to an alternative approach which culminated in
what is now called Floer theory. Each of these theories has its own advantage. Floer
theory works in larger generality and seems to have a richer algebraic structure, on
the other hand the theory of generating functions leads in some cases to sharper
results (see [20]).

Since Floer theory will appear in the sequel, let us outline a few facts about
it (the reader is referred to the works of Floer [16] and of Oh [29, 30] for de-
tails). Let (M,w) be a symplectic manifold and Lg, L1 C (M,w) two Lagrangian
submanifolds. In “ideal” situations Floer theory assigns to this data an invariant
HF(Ly, Ly). This is a Zo-vector space obtained through an infinite dimensional
version of Morse-Novikov homology performed on the space of paths connecting
Lo to Ly. The result of this theory is a chain complex CF(Lg, L) whose under-
lying vector space is generated by the intersection points Lg N Ly (one perturbs
Lo, Ly so their intersection becomes transverse). The homology of this complex
HF(Lg, Ly) is called the Floer homology of the pair (Lo, L;). The most impor-
tant feature of HF (Lo, L) is its invariance under Hamiltonian isotopies: if L{, Lj
are Hamiltonianly isotopic to Lo, Ly respectively, then HF(L{, L}) = HF (Lo, Ly).
From this point of view HF(Lg, L) can be regarded as a quantitative obstruction
for Hamiltonianly separating Lo from L. Indeed, the rank of H F(Lg, L) is a lower
bound on the number of intersection points of any pair of transversally intersecting
Lagrangians Lg, L] in the Hamiltonian deformation classes of Ly, Ly respectively.

Let us explain the “ideal situations” in which Floer homology is defined. First
of all there are restrictions on M: due to analytic difficulties manifolds are required
to be either closed or to have symplectically convex ends (e.g. C", cotangent bundles
or any Stein manifold). More serious restrictions are posed on the Lagrangians. For
simplicity we describe them only for the case when L; is Hamiltonianly isotopic
to Lp. From now on we shall write L = Ly and L' = L;. In Floer’s original
setting [16] the theory was defined under the assumption that the homomorphism
Ay ma(M,L) = R, defined by D — [, w, vanishes. The reason for this comes
from the construction of the differential of the Floer complex: the main obstruction
for defining a meaningful differential turns out to be existence of holomorphic discs
with boundary on L or L'. These discs appear as a source of non-compactness of
the space of solutions of the PDEs involved in the construction. Since holomorphic
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discs must have positive symplectic area the assumption A, = 0 rules out their
existence. Under this assumption Floer defined HF(L, L') and proved its invariance
under Hamiltonian isotopies. Moreover he showed that HF(L, L) is isomorphic to
the singular cohomology H*(L;Z2) of L. This together with the invariance give:
Theorem F. Let (M,w) be a symplectic manifold, either compact or with symplec-
tically convex ends. Let L C (M,w) be a Lagrangian submanifold with A, = 0.
Then for every Lagrangion L' which is Hamiltonianly isotopic to L and intersects L
transversally we have: # LN L' > rankHF(L, L") = rankH*(L; Z2). In particular
L cannot be separated from itself by o Hamiltonian isotopy.

Floer theory was extended by Oh [30] to cases when A, # 0. There are
two assumptions needed for this extension to work: the Maslov homomorphism
p s wo(M, L) - Z should be positively proportional to A, (such Lagrangians are
called monotone). The second assumption is that the positive generator Ny, of the
subgroup Imagep C Z is at least 2. In this setting Oh defined HF(L,L') and
proved its invariance under Hamiltonian isotopies. It is however no longer true
in general that HF(L, L) is isomorphic to H*(L;Zs). Still, Oh proved [29] that
HF(L,L) is related to H*(L; Z2) through a spectral sequence. Recently the theory
was considerably generalized by Fukaya, Oh, Ohta and Ono [21].

Intersections of balls. Theorems C and D were obtained using Gromov’s theory
of pseudo-holomorphic curves. The hard-core of the proofs consists of existence
of pseudo-holomorphic curves of specified degrees that pass through a prescribed
number of points in the manifold (see [22, 27]) for the details). From a more modern
perspective it can be viewed as an early application of Gromov-Witten invariants.
Finally, Theorems E and E’ are proved by a decomposition technique intro-
duced in [7] which enables to decompose symplectic manifolds as a disjoint union
of a symplectic disc bundle and a Lagrangian CW-complex. A variation on the
proof of Gromov’s non-squeezing theorem [22] gives an upper bound on the radius
of a symplectic ball that can be squeezed inside that disc bundle. Hence, a larger
ball must always intersect this CW-complex. For M = CP™, the corresponding
CW-complex turns out to be a smooth copy of RP™. See [7] for the details.

3. Some questions and speculations

Cot