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Groups Interprétable 
in Theories of Fields 

E. Bouscaren* 

Abstract 

We survey some results on the structure of the groups which are definable 
in theories of fields involved in the applications of model theory to Diophantine 
geometry. We focus more particularly on separably closed fields of finite degree 
of imperfection. 

2000 Mathematics Subject Classification: 03C60, 03C45, 12L12. 
Keywords and Phrases: Groups, Fields, Definability, Algebraic groups. 

1. Introduction 
In the last ten years, the model theory of fields has seen striking new de­

velopments, with applications in particular to differential algebra and Diophantine 
geometry. One of the main ingredients in these applications is the analysis of the 
structure of groups definable in fields with added "definable s tructure". 

Model theory studies structures with a family of distinguished subsets of their 
Cartesian products , the family of definable subsets, which is requested to be closed 
under finite Boolean operations and projections. In the case of algebraically closed 
fields, the definable sets are exactly the constructible sets in the Zariski topology 
(finite Boolean combinations of Zariski closed sets). If one considers fields which 
are not algebraically closed (for example, fields of positive characteristic which are 
separably closed and not perfect) or algebraically closed fields with new operators 
(differentially closed fields, fields with a generic automorphism), then the family of 
definable sets is much richer than the family of Zariski constructible sets. In each 
of the above cases, one can generalize the classical geometric notions, by using the 
tools developed by model theory (abstract notion of independence, of dimensions...). 
For example: 

1. One can define "good" topologies which strictly contain the Zariski topol­
ogy-
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4 E. Bouscaren 

2. Different notions of dimensions can be attached to definable sets (or infinite 
intersections of definable sets, which we call infinitely definable, or oo-definable, 
sets). In the case of algebraically closed fields, all such possible notions of abstract 
dimension must coincide and be equal to the classical algebraic dimension. In the 
other cases, these dimensions may be different, some may take infinite ordinal values 
or may be defined only for some special classes of definable (or oo-definable) sets. 

3. If K is any of the above mentioned fields, and if H is an algebraic group 
defined over K, then the group H(K) of the if-rational points of H is a definable 
group. But there are "new" families of definable groups which are not of this form. 

In fact, it is precisely the study of certain specific families of "new" definable 
groups of finite dimension which are at the center of the applications to Diophantine 
geometry. We will not attempt here to explain how the model theoretic analysis of 
the finite rank definable groups yields these applications. There have been in recent 
years many surveys and presentations of the subject to which we refer the reader 
(see for example, [4],[5], [14], [22] or [28]). We will come back to this subject, but 
very briefly, at the end in Section 3.5.. 

The first general question raised by the existence of these new definable groups 
is that of their relation to the classical algebraic groups. Remark that this question 
already makes sense in the context of "pure" algebraically closed fields, about the 
class of definable (= constructible) groups. In that case, it is true that any con­
structible group in an algebraically closed field K is constructibly isomorphic to the 
if-rational points of an algebraic group defined over K (see for example [3] or [23]). 

Let us now consider briefly the case of a field K of characteristic p > 0 which 
is separably closed and not perfect. Then the class of constructible sets is no 
longer closed under projection and there are many definable groups which are not 
constructible, the most obvious one being Kp. There are also some groups which are 
proper intersections of infinite descending chains of definable groups: for example, 
Kp ( = finK

p )j the field of infinitely p-divisible elements of the multiplicative 
group, or f]np

nA(K), for A an Abelian variety defined over K. 

It is nevertheless true, as we will see, that every definable group in K is 
definably isomorphic to the if-rational points of an algebraic group defined over 
K. Furthermore, as in the classical case of one-dimensional algebraic groups, it is 
possible to give a complete description, up to definable isomorphism, of the one-
dimensional infinitely definable groups. 

There are results of similar type for the other classes of enriched fields men­
tioned above. In this short paper, we will concentrate mainly on the case of separa­
bly closed fields (in Section 3.). Before this, in Section 2., we will only very briefly-
present the model theoretic setting for two other examples of "enriched" fields, in 
characteristic zero, differentially closed fields and generic difference fields. We hope 
this will give the reader an idea of what the common features and the differences 
might be in the model theoretic analysis of these different classes of fields. 

Finally, there are of course many other classes of fields whose model theory-
has been extensively developed in the past years with many connections to algebra, 
semi-algebraic or subanalytic geometry, and which we are not going to mention 
here: for example, valued fields, ordered fields, "o-minimal" expansions of the real 
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field... 

2. Two short examples 
We will just very briefly describe the two characteristic zero examples men­

tioned above. 

2.1. Differentially closed fields of characteristic zero 

We consider a field K of characteristic zero, with a derivation Ö, that is, an 
additive map from K to K which satisfies that for all x, y in K, 8(xy) = x5(y) + 
yö(y). We define the ring -?C$[X] of differential polynomials over K to be the ring 
of polynomials in infinitely many variables K[X, ö(X),ö2(X), • • • , ön(X), • • •]. The 
order of the differential polynomial f(X) in -?C$[X] is —1 if / G K and otherwise 
the largest n such that ön(X) occurs in f(X) with non zero coefficient. We say-
that K is differentially closed if for any non-constant differential polynomials f(X) 
and g(X), where the order of g is strictly less than the order of / , there is a z such 
that f(z) = 0 and g(z) ^ 0. In model theoretic terms, this means exactly that K 
is existentially closed. 

From now on we suppose that (K, Ö) is a large differentially closed field (a 
universal domain). 

We say that F C Kn is a ö-closed set, if there are / i , • • • , fr G Kg [X\, • • • , X„] 
suchthat F = {(cu,-•• ,a n ) € Kn; /i(cn, • • • ,an) = ••• = / r(cn,--- ,an) = 0}. The 
ring Kg [X\, • • • , X„] is of course not Noetherian but the ^-closed sets (which cor­
respond to radical differential ideals) form the closed sets of a Noetherian topology 
on K, the ö-topology. 

We now consider the ö-constructible sets, that is, the finite Boolean combi­
nations of ^-closed sets. This class is closed under projection (this is quantifier 
elimination for the theory), hence the definable sets (we call them ö-definable sets) 
are exactly the ^-constructible sets. To every ^-definable set one can associate a 
dimension (the Morley rank) which can take infinite countable ordinal values. 

There are "new" definable groups, which are not of the form H(K) for any al­
gebraic group H. In particular, any H(K) will have infinite dimension. In contrast, 
the field of constants of K, Cons(K) = {a G K; ö(x) = 0}, is a ^-closed set which is 
not constructible; it is an algebraically closed subfield of K and has dimension one. 

Nevertheless the following is true: 

Proposition 1 ([21]) Let G be a 5-definable group in K. Then there is an algebraic 
group H, defined over K, such that G is definably isomorphic to a (5-definable) 
subgroup of H(L). 

For the many more existing results on ^-definable groups, we refer the reader 
to [20], or from the differential algebra point of view, to [8]. 

2.2. Generic difference fields 
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We now consider an algebraically closed field K with an automorphism a. We 
say tha t (K, a) is a generic difference field if every difference equation which has a 
solution in an extension of K has a solution in K. The theory of generic difference 
fields has been extensively studied in [9] and [10]. 

Let us suppose tha t (K,a) is a generic difference field in characteristic zero. 
We consider the ring of a-polynomials, 

Ka[Xi,--- ,Xn] = K[Xlr-- , X „ , C T ( X I ) , : ••• ,a(Xn),a
2(X1), • • • ,a2(X, 

We say tha t F C Kn is a fa-closed sei if there are / i , • • • , fr G Ka[Xi, • • • ,X„] such 
tha t F = { ( a i , - - - ,an) G Kn : / i ( c n , - - - ,an) = ••• = / r ( c n , - - - ,an) = 0} . The 
CT-closed sets form the closed sets of a Noetherian topology on K, the a-topology. 
The class of a-definable sets is the closure under finite Boolean operations and 
projections of the a-closed sets. 

Again there are "new" a-definable groups. For example, the field Fix(K) = 
{a G K : a(a) = a}, the fixed field of a in K, is a a-closed set of dimension one. 

Here the best result possible for arbi trary a-definable groups is the following: 

P r o p o s i t i o n 2 ([18]) Let G be a group definable in (K,a). Then there are an 
algebraic group H defined over K, a finite normal subgroup N\ of G, a a-definable 
subgroup Hi of H(K) and a finite normal subgroup N2 of Hi, such thatG/Ni and 
Hi/N2 are a-definably isomorphic. 

The analysis of groups of finite dimension is one of the main tools in Hrushovski's 
proof of the Manin-Mumford conjecture in [15]. 

3. Separably closed fields of finite degree of imper­
fection 

Separably closed fields are particularly interesting from the model theoretic 
point of view for many reasons, in addition to the fact tha t they form the framework 
for Hrushovski's proof of the Mordell-Lang conjecture in charactersitic p. Let us 
just mention one reason here: they are the only fields known to be stable and non 
superstable, and in fact it is conjectured tha t they are the only existing ones. 

We will just focus on the main properties of the groups tha t are definable in a 
separably closed field of finite degree of imperfection, but we need first to introduce 
some notation and recall some basic facts (see [11]). 

3.1. Some basic facts and notation 
Let L be a separably closed field of charcteristic p > 0 and of finite degree of 

imperfection which is not perfect, i.e., L has no proper separable algebraic extension, 
and \L : Lp\ = pv, with 0 < v. In order to avoid confusion we denote the Cartesian 
product of k copies of L by Lxk. 

A subset B = {61, • • • ,bv} of L is called a p-basis of L if the set of p-monomials 

of B, {Mj := nr= i ^ > i e Pv] forms a linear basis of L over LP. Each element x 
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in L can be written in a unique way as x = X^eP" xfMj. From now on we fix a 
p-basis B of L and the Mj's, with j G p", always denote the p-monomials 
of B. We suppose that L is large (a universal domain, or in model theoretic terms, 
saturated) and we fix some small separably closed subfield K of L, containing B 
and of same degree of imperfection v. 

We let fj denote the map which to x associates Xj. The Xj's are called the 
p-components of x of level one. More generally, one can associate to i a tree of 
countable height indexed by (pv)<UJ, which we call the tree of p-components of x. 
For a G (pv)<UJ, we define x„ by induction: x$ = x and if r G (pv)n, and j G pv, we 
let X(Tj) be equal to fj(xT); %(T,j) is called a p-component of x of level n + 1. 

We will also use the notation aoo := (aCr)crG( „j<„ for a £ L. 
The ring if[Xoo]. iffX^] is the polynomial ring in countably many indeter-
minates indexed in a way which will allow the natural substitution by the p-
components of elements: for X a single variable, I œ := (Xcr)crG(pl-)«u, and for 
X = (Yi,...,Yk) a fc-tuple of variables, Xoo := ((Yi)<x>>- •••> (Yk)oo)- The ring 
IffXoo] is a countable union of Noetherian rings, hence each ideal is countably gen­
erated. We let I°(X) denote the ideal of iffX^] generated by the polynomials 

3.2. The A-topology 
Given a set of polynomials S of iffX^], let V(S) = {a G Lxk : / ( a œ ) = 

0 for all / G S}. Such a V(S) is called X-closed (with parameters in K or over K) 
in L. 

Given A C Lxk, we define its canonical ideal 1(A) over K, 1(A) := {/ G 
K[Xœ] : /(e«,) = 0 for all a G -4}. 

The A-closed subsets of Lxk form the closed sets of the X-topology on Lxk. 
This topology is not Noetherian but is the limit of countably many Noetherian 
topologies. 

Let C be a commutative if-algebra. An ideal I of C is separable if, for all 
Cj G C, j G pv, if 'Y^jç.pv <%Mj G / , then each Cj G / . 

Fact 3 ("Nullstellensatz") 1. The map A H- 1(A) induces a Injection between 
X-closed subsets of the affine space Lk which are defined over K and ideals of KIX^,] 
which are separable and contain I°(X). The inverse map is I H- V(I). 

Now for the basic properties of the first-order theory: 

Fact 4 1. The theory of separably closed fields of characteristic p, of degree of 
imperfection v, and with p-basis {bi,...,bv} is complete and admits elimination of 
quantifiers and elimination of imaginaries in the language 

£p,v = {0,1, +, - , . } U {h,..., K} U {ft; i G pv}. 

In particular, any definable set is A-constructible, that is, a finite Boolean 
combinations of definable A-closed sets. Remark that it is impossible to associate 
to an arbitrary definable set a well-behaved notion of dimension: indeed, such a 
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dimension would need to be invariant under definable bijections, but for every n 
the map A„, defined by Xn(x) := (av^eCp")", is a definable bijection between L and 
LxpVn. But some oo-definable sets will have a well-defined dimension, for example 
the field Lp°° := P|n Lp", which is the biggest algebraically closed subfield of L, has 
dimension one. In fact, Lp°° is the unique (up to definable isomorphism) infinitely-
definable field of dimension one ([19], [13]). 

3.3. Definable groups 

Again, amongst the definable groups, one finds the "classical" ones, that is 
groups of the form H(L) for H any algebraic group defined over L. These groups 
have certain specific properties which are not true of all the definable groups in 
L. Recall that a definable subset X of G is said to be generic if G is covered by 
a finite number of translates of X, and an element of G is generic for the group 
if every definable set which contains it is generic. In an algebraic group, generics 
in the topological sense coincide with generics for the algebraic group. Recall also 
that a definable group is said to be connected if it has no proper definable subgroup 
of finite index, and connected-by-finite if it has a definable connected subgroup of 
finite index. 

Proposi t ion 5 ([6], [13]) Let H be an algebraic group defined over K. Then H(L) 
is connected-by-finite. If H is connected (hence irreducible as an algebraic group), 
then H(L) is connected (and irreducible for the X-topology) and if a £ H(L) is a 
generic point, then the ideal 1(a) = {/ G iffX^] : / ( a œ ) = 0} is minimal amongst 
the ideals 1(h), for h G H(L). 

The above says that in the group H(L), the generics in the topological sense 
coincide with generics for the group. In an arbitrary group defined in L, this need 
not be the case. 

Consider the definable bijection / from L to L defined in the following way: 
if x G L \ Lp, f(x) = x", iîx£LP\ LP\ f(x) = XX/P, if a: G IA>', f(x) = x. 

Transporting addition through / , one gets a group on L again, G := (L,*), 
definably isomorphic to (L,+), hence connected. The set L itself is of course A-
closed and irreducible with associated ideal I(L) = I°(X). The ideal associated to 
the (group) generic of (L,*) is generated by I°(X) and {Xj = 0 : i G p",i ^ 0}, 
and strictly contains I°(X). 

This question of the uniqueness of the notion of generic is not the only one 
posing problems for arbitrary definable groups in L. For example, there is no reason, 
coming from general properties of stable (non superstable) theories, which a priori 
forces all these definable groups to be connected-by-finite. 

Nevertheless, one can in fact show that the situation is as close to the classical 
one as it could be: 

Proposi t ion 6 [6] Every definable group G in L is connected-by-finite and is de­
finably isomorphic to the group of L-rational points of an algebraic group H defined 
over L. 
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One more remark, in the case of algebraic groups, by Prop. 5, irreducibility 
transfers down to the set of L-rational points. But this is not the case for an 
arbitrary variety: if one considers for example the irreducible variety defined by the 
equation Yp X + Zp = 0, for m > 1, then the A-closed set V(L) is no longer 
irreducible in the sense of the A-topology. 

3.4. Minimal groups 
The previous result enables us to give a complete description of groups of 

dimension one, and more generally of some classes of commutative groups. 
We say that an oo-definable set D is minimal if any definable subset of G is 

finite or co-finite. If D is actually definable, then we say that D is strongly minimal. 
The minimal groups are exactly the connected groups of dimension (U-rank) 

equal to one. A minimal group must be commutative. 
From the basic properties of commutative algebraic groups over an algebraically-

closed field of characteristic p and Proposition 6, one can deduce: 

Lemma 7 Let G be a minimal group oo-definable in L, then G has exponent p or 
G is divisible. 

We first consider the commutative groups of exponent p: 

Proposition 8 [7] Let G be a commutative oo-definable group of exponent p de­
finable in L. Then G is definably isomorphic to a X-closed subgroup of the additive 
group (L,+). Furthermore, if G is definable, then it is definably isogenous to the 
group of L-rational points of a vector group. 

Note that even when G is connected it is not necessarily definably isomorphic 
to the group of rational points of a vector group. 

Then we consider the commutative divisible groups, which we show to be 
exactly the ones that were considered by Hrushovski in [13]: 

Proposition 9 [7] 1. Let G be any oo-definable commutative divisible group in 
L. Then G is definably isomorphic to some p°°A(L) := f]np

nA(L), for A a semi-
Abelian variety defined over L. 

2. If A is a semi-Abelian variety defined over L, p°°A(L), which is the maximal 
divisible subgroup of A(L) is also the smallest oo-definable subgroup of A(L) which 
is Zariski dense in A. 

Finally, this analysis, together with some results from [11] and [13], yields the 
full description of minimal groups. 

Before stating the actual result, let us give some last definitions. The group 
G is said to be of linear type if for every n, every definable subgroup of Gxn is a 
finite Boolean combination of translates of definable subgroups of Gxn. We define 
the transcendence rank over if of a group G, defined over K, to be the maximum 
of {tr.degree(if(#oo))iQ : g G G}. 
Proposition 10 Let G be an oo-definable minimal group in L. 
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1. Either G is not of linear type and then, 
• G is definably isomorphic to the multiplicative group ((Lp ) ,•), 
• or G is definably isomorphic to E(LP ) for E an elliptic curve defined 

over Lp , 
• or G is definably isogenous to (Lp°°,+). (isogenous here cannot be re­

placed by isomorphic). 
2. Or G is of linear type and then, 

• G is divisible and G is definably isomorphic to p°°A(L) for some simple 
Abelian variety A defined over K which is not isogenous to an Abelian 
variety defined over Lp , 

• or G is of exponent p and is definably isomorphic to a minimal X-closed 
subgroup of (L,+). 

In the divisible case G has finite transcendence rank; in the exponent p case, 
all transcendence ranks are possible. 

The induced module-type structure on the minimal groups of exponent p and 
of linear type is analyzed in [2]. 

A short word about some of the tools involved in the proofs of Propositions 
6 and 10: the proofs of 6, 1 and 2 all involve at some point the classical theorem 
of Weil's constructing an algebraic group from a generic group law on a variety, or 
some generalizations of this theorem to an abstract model theoretic context. In the 
specific case of separably closed fields, another fundamental tool is the analysis of 
the properties of the An-functors, naturally associated to the maps A„: for each n, 
An is a covariant functor from the category of varieties V defined over K to itself, 
with the property that the L-rational points of the variety AnV are exactly the 
image by the map A„ of the L-rational points of V. In the case of an algebraic 
group defined over K, Ai is equal to the composition of the inverse of the Frobenius 
and of the classical Weil restriction of scalars functor from KXIP to K. 

Finally, the way we have stated Proposition 10 uses the fact that if a minimal 
group is not of linear type, then it is non orthogonal to Lp°° (and hence definably 
isogenous to the Lp -rational points of some definable group over LP ) . The only-
known proof of this so far uses the powerful abstract machinery of Zariski struc­
tures from [16]. This dichotomy result, for the particular case of groups of the 
form p°°A(L), is essential in Hrushovski's proof of the Mordell-Lang conjecture in 
characteristic p, which is still the only existing proof for the general case. In a 
recent paper Pillay and Ziegler ([24]), show that, with some extra assumptions on 
A, one can replace in this proof the heavy Zariski structure argument by a much 
more elementary one. These extra assumptions are satisfied when A is an ordinary 
semi-Abelian variety (i.e. A has the maximum possible number of p"-torsion points 
for every n), case which was already covered by previous non model-theoretic proofs 
(see [1]). 

3.5. Final remarks and questions 
As we have already mentioned earlier, the groups of finite dimension defin­

able in these "enriched" theories of fields play a major role in the applications of 
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model theory to Diophantine geometry. In the characteristic zero case, the rele­
vant groups are the definable subgroups of the group of rational points of Abelian 
varieties in differentially closed fields (Mordell-Lang conjecture for function fields 
[13]), in generic difference fields (the Manin-Mumford conjecture [15], [5] and the 
Tate-Voloch conjecture for semi-Abelian varieties defined over Qp [25], [26]). In the 
characteristic p case, the relevant groups are: the oo-definable divisible subgroups 
of the group of rational points of semi-Abelian varieties in separably closed fields 
(the Mordell-Lang conjecture for function fields [13]) and the definable subgroups of 
the additive groups in generic difference fields of characteristic p (Drinfeld modules 
[27]). 

One should note that, in fact, separably closed fields are just another instance 
of a field with extra operators (derivations or automorphisms): one can equip any 
separably closed field L of finite degree of imperfection, with an infinite family of 
Hasse derivations in such a way that the resulting structure is bi-definably equivalent 
with L considered as a structure in the language described in section 3.2.. There 
are many interesting other possible types of "enriched" fields in this sense where 
the complete analysis of the model theoretic structure remains to be done. 

Finally, one crucial step towards possible further applications of the fine study 
of finite rank definable sets to geometry would be an understanding of the structure 
induced on the so-called trivial or disintegrated definable (or infinitely definable) 
minimal sets, that is the minimal sets such that the induced pregeometry is disin­
tegrated. This condition immediately rules out definable groups. The absence of 
any well-understood algebraic structure living on these "trivial" sets makes them 
very difficult to analyze. The only results obtained so far are in the context of 
differentially closed fields of characteristic 0: Hrushovski ([12]), building on some 
results of Jouanolou ([17]), showed that in any trivial strongly minimal set defined 
by a differential equation of order one, the induced pregeometry is locally finite. 
The question of whether this is true for higher order equations is still open. 
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Motivic Integration and the Grothendieek 
Group of Pseudo-Finite Fields 

J . Denef* F. Loeser1' 

Abstract 

Motivic integration is a powerful technique to prove that certain quantities 
associated to algebraic varieties are birational invariants or are independent of 
a chosen resolution of singularities. We survey our recent work on an extension 
of the theory of motivic integration, called arithmetic motivic integration. We 
developed this theory to understand how p-adic integrals of a very general type 
depend on p. Quantifier elimination plays a key role. 
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elimination. 

1. Introduction 
Motivic integration was first introduced by Kontsevich [20] and further devel­

oped by Batyrev [3] [4], and Denef-Loeser [8] [9] [12]. It is a powerful technique to 
prove tha t certain quantities associated to algebraic varieties are birational invari­
ants or are independent of a chosen resolution of singularities. For example, Kont­
sevich used it to prove tha t the Hodge numbers of birationally equivalent projective 
Calabi-Yau manifolds are equal. Batyrev [3] obtained his string-theoretic Hodge 
numbers for canonical Gorenstein singularities by motivic integration. These are 
the right quantities to establish several mirror-symmetry identities for Calabi-Yau 
varieties. For more applications and references we refer to the survey papers [11] and 
[21]. Since than , several other applications to singularity theory were discovered, 
see e.g. Mustafa [24]. 

In the present paper, we survey our recent work [10] on an extension of the 
theory of motivic integration, called ari thmetic motivic integration. We developed 
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this theory to understand how p-adic integrals of a very general type depend on p. 
This is used in recent work of Hales [18] on orbital integrals related to the Langlands 
program. Arithmetic motivic integration is tightly linked to the theory of quantifier 
elimination, a subject belonging to mathematical logic. The roots of this subject 
go back to Tarski's theorem on projections of semi-algebraic sets and to the work 
of Ax-Kochen-Ersov and Macintyre on quantifier elimination for Henselian valued 
fields (cf. section 4). We will illustrate arithmetic motivic integration starting 
with the following concrete application. Let X be an algebraic variety given by-
equations with integer coefficients. Denote by NP:„ the cardinality of the image 
of the projection X(ZP) —t X(Z/pn+1), where Zp denotes the p-adic integers. A 
conjecture of Serre and Oesterlé states that PP(T) := ^NP:nT

n is rational. This 
n 

was proved in 1983 by Denef [7] using quantifier elimination, expressing PP(T) as 
a p-adic integral over a domain defined by a formula involving quantifiers. This 
gave no information yet on how Pp(T) depends on p. But recently, using arithmetic 
motivic integration, we proved: 

Theo rem 1.1. There exists a canonically defined rational power series P(T) 
over the ring K™°*(VarQ) ® Q, such that, for p >• 0, PP(T) is obtained from P(T) 
by applying to each coefficient of P(T) the operator Np. 

Here K0(VarQ) denotes the Grothendieck ring of algebraic varieties over Q, 
and K™°*(VarQ) is the quotient of this ring obtained by identifying two varieties 
if they have the same class in the Grothendieck group of Chow motives (this is 
explained in the next section). Moreover the operator Np is induced by associating 
to a variety over Q its number of rational points over the field with p elements, for 
p > 0 . 

As explained in section 8 below, this theorem is a special case of a much more 
general theorem on p-adic integrals. There we will also see how to canonically 
associate a "virtual motive" to quite general p-adic integrals. A first step in the 
proof of the above theorem is the construction of a canonical morphism from the 
Grothendieck ring K 0 ( P F F Q ) of the theory of pseudo-finite fields of characteristic 
zero, to K™°*(VarQ) ® Q. Pseudo-finite fields play a key role in the work of Ax 
[1] that leads to quantifier elimination for finite fields [19] [14] [5]. The existence 
of this map is interesting in itself, because any generalized Euler characteristic, 
such as the topological Euler characteristic or the Hodge-Deligne polynomial, can 
be evaluated on any element of K™°*(VarQ) ® Q, and hence also on any logical 
formula in the language of fields (possibly involving quantifiers). All this will be 
explained in section 2. In section 3 we state Theorem 3.1, which is a stronger version 
of Theorem 1.1 that determines P(T). A proof of Theorem 3.1 is outlined in section 
7, after giving a survey on arithmetic motivic integration in section 6. 

2. The Grothendieck group of pseudo-finite fields 
Let k be afield of characteristic zero. We denote by K0(Varj;) the Grothendieck 

ring of algebraic varieties over k. This is the group generated by symbols [V] with 
V an algebraic variety over k, subject to the relations [Vi] = [V2] if Vi is isomorphic 
to Vii a n d [V \ W] = [V] — [W] if W is a Zariski closed subvariety of W. The ring 
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multiplication on K0(Varj;) is induced by the cartesian product of varieties. Let L 
be the class of the affine line over k in K0(Varj;). When V is an algebraic variety-
over Q, and p a prime number, we denote by NP(V) the number of rational points 
over the field Fp with p elements on a model V of V over Z. This depends on the 
choice of a model V, but two different models will yield the same value of NP(V), 
when p is large enough. This will not cause any abuse later on. For us, an algebraic 
variety over k does not need to be irreducible; we mean by it a reduced separated 
scheme of finite over k. 

To any projective nonsingular variety over k one associates its Chow motive 
over k (see [27]). This is a purely algebro-geometric construction, which is made in 
such a way that any two projective nonsingular varieties, V\ and V2, with isomorphic 
associated Chow motives, have the same cohomology for each of the known coho-
mology theories (with coefficients in a field of characteristic zero). In particular, 
when k is Q, Np(Vi) = Np(\~2), for p >• 0. For example two elliptic curves define 
the same Chow motive iff there is a surjective morphism from one to the other. 
We denote by K™°*(Varj;) the quotient of the ring K0(Varj;) obtained by identi­
fying any two nonsingular projective varieties over k with equal associated Chow 
motives. From work of Gillet and Soulé [15], and Guillen and Navarro Aznar[17], it 
directly follows that there is a unique ring monomorphism from K™°*(Varj;) to the 
Grothendieck ring of the category of Chow motives over k, that maps the class of a 
projective nonsingular variety to the class of its associated Chow motive. What is 
important for the applications, is that any generalized Euler characteristic, which 
can be defined in terms of cohomology (with coefficients in a field of characteristic 
zero), factors through K™°*(Varj;). With a generalized Euler characteristic we mean 
any ring morphism from K0(Varj;), for example the topological Euler characteristic 
and the Hodge-Deligne polynomial when k = C. For [V] in K™°*(Varj;), with k = 
Q, we put iVp([V]) = NP(V); here again this depends on choices, but two different 
choices yield the same value for iVp([V]), when p is large enough. 

With a ring formula ip over k we mean a logical formula build from polynomial 
equations over k, by taking Boolean combinations and using existential and univer­
sal quantifiers. For example, (3x)(x2 + x + y = 0 and Ay ^ 1) is a ring formula 
over Q. The mean purpose of the present section is to associate in a canonical way 
to each such formula (p an element Xe(M) of K™°*(Varj;) ® Q. One of the required 
properties of this association is the following, when k = Q: If the formulas ipi and ipi 
are equivalent when interpreted in F p , for all large enough primes p, then Xe([<Pi]) 
= Xc([<P2])- The natural generalization of this requirement, to arbitrary fields k of 
characteristic zero, is the following: If the formulas ipi and ipi are equivalent when 
interpreted in K, for all pseudo-finite fields K containing k, then Xe([<Pi]) = Xc([<P2])-
We recall that a pseudo-finite field is an infinite perfect field that has exactly one 
field extension of any given finite degree, and over which each absolutely irreducible 
variety has a rational point. For example, infinite ultraproducts of finite fields are 
pseudo-finite. J. Ax [1] proved that two ring formulas over Q are equivalent when 
interpreted in F p , for all large enough primes p, if and only if they are equivalent 
when interpreted in K, for all pseudo-finite fields K containing Q. This shows 
that the two above mentioned requirements are equivalent when k = Q. In fact, we 
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will require much more, namely that the association ip i—y Xc(M) factors through 
the Grothendieck ring K0(PFFj;) of the theory of pseudo-finite fields containing k. 
This ring is the group generated by symbols [tp], where tp is any ring formula over k, 
subject to the relations [tpi or ip2] = [ipi] + {^2} — [<Pi and ^2], whenever ipi and tp2 
have the same free variables, and the relations [tpi] = [1P2], whenever there exists a 
ring formula tp over k that, when interpreted in any pseudo-finite field K containing 
k, yields the graph of a bijection between the tuples of elements of K satisfying ipi 
and those satisfying ip2. The ring multiplication on K0(PFFj;) is induced by the 
conjunction of formulas in disjoint sets of variables. We can now state the following 
variant of a theorem of Denef and Loeser [10]. 

Theo rem 2.1 . There exists a unique ring morphism 

Xc • K0(PFFfc) —• K™°*(Varfc) <g> Q 

satisfying the following two properties: 
(i) For any formula tp which is a conjunction of polynomial equations over k, the 
element Xc(M) equals the class in K™°*(Varj;) ® Q of the variety defined by ip. 
(ii) Let X be a normal affine irreducible variety over k, Y an unramified Galois 
cover 1 of X, and C a cyclic subgroup of the Galois group G of Y over X. For 
such data we denote by *py,x,c ß ring formula, whose interpretation in any field K 
containing k, is the set of K-rational points on X that lift to a geometric point on 
Y with decomposition group C (i.e. the set of points on X that lift to a K-rational 
point of YjC, but not to any K-rational point of Y/C with C a proper subgroup 
ofC). Then 

ICI 
Xc([<PY,X,c]) = ,^ ,c,,Xc([fY,Y/C,c]), 

where N Q ( C ) is the normalizer of C in G. 
Moreover, when k = Q, we have for all large enough primes p that Np(xc([<p])) 

equals the number of tuples in Fp that satisfy the interpretation of tp inFp. 
The proof of the uniqueness goes as follows: From quantifier elimination for 

pseudo-finite fields (in terms of Galois stratifications, cf. the work of Fried and 
Sacerdote [14] [13, §26]), it follows that every ring formula over k is equivalent (in 
all pseudo-finite fields containing k) to a Boolean combination of formulas of the 
form ipY,x,c- Thus by (ii) we only have to determine XC([<PY,Y/C,C])I with C a cyclic 
group. But this follows directly from the following recursion formula: 

\C\[Y/C}= Yl \A\XC([<PY,Y/A,A]). 
A subgroup of O 

This recursion formula is a direct consequence of (i), (ii), and the fact that the 
formulas PY,Y/C,A yield a partition of Y/C. The proof of the existence of the 
morphism \c is based on the following. In [2], del Bario Rollin and Navarro Aznar 
associate to any representation over Q of a finite group G acting freely on an affine 
variety Y over k, an element in the Grothendieck group of Chow motives over k. By 

1 Meaning that Y is an integral étale scheme over X with Y/G = X, where G is the group of 
all endomorphisms of Y over X. 
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linearity, we can hence associate to any Q-central function a on G (i.e. a Q-linear 
combination of characters of representations of G over Q), an element Xc(Y,a) of 
that Grothendieck group tensored with Q. Using Emil Artin's Theorem, that any Ci-
central function a on G is a Q-linear combination of characters induced by trivial 
representations of cyclic subgroups, one shows that Xc(Y,a) G K™°*(Varj;) ® Q. 
For X := Y/G and C any cyclic subgroup of G, we define XC([<PY,X,C]) : = Xc(Y-,9), 
where 9 sends g G G to 1 if the subgroup generated by g is conjugate to C, and 
else to 0. Note that 9 equals \C\ / \NQ(C)\ times the function on G induced by 
the characteristic function on C of the set of generators of C. This implies our 
requirement (ii), because of Proposition 3.1.2.(2) of [10]. The map (Y, a) >-¥ Xc(Y, ct) 
satisfies the nice compatibility relations stated in Proposition 3.1.2 of loc. cit. This 
compatibility (together with the above mentioned quantifier elimination) is used, 
exactly as in loc. cit., to prove that the above definition of XC([<PY,X,C]) extends 
by additivity to a well-defined map Xc : K0(PFFj;) —• K™°*(Varj;) ® Q. In loc. 
cit., Chow motives with coefficients in the algebraic closure of Q are used, but 
we can work as well with coefficients in Q, since here we only have to consider 
representations of G over Q. 

3. Arc spaces and the motivic Poincaré series 

Let X be an algebraic variety defined over a field k of characteristic zero. For 
any natural number n, the n-th jet space £n(X) of X is the unique algebraic variety-
over k whose if-rational points correspond in a bijective and functorial way to the 
rational points on X over K[t]/tn+1, for any field K containing k. The arc space 
£(X) of X is the reduced fc-scheme obtained by taking the projective limit of the 
varieties £n(X) in the category of fc-schemes. 

We will now give the definition of the motivic Poincaré series P(T) of X. This 
series is called the arithmetic Poincaré series in [10], and is very different from the 
geometric Poincaré series studied in [8]. For notational convenience we only give 
the definition here when X is a subvariety of some affine space A™. For the general 
case we refer to section 5 below or to our paper [10]. By Greenberg's Theorem 
[16], for each n there exists a ring formula ipn over k such that, for all fields K 
containing k, the if-rational points of £n(X), that can be lifted to a if-rational 
point of £(X), correspond to the tuples satisfying the interpretation of ipn in K. 
(The correspondence is induced by mapping a polynomial over K to the tuple 
consisting of its coefficients.) Clearly, when two formulas satisfy this requirement, 
then they are equivalent when interpreted in any field containing k, and hence define 
the same class in K0(PFFj;). Now we are ready to give the definition of P(T): 

P(T):=J2xc(lv>n])Tr> 

Theorem 3.1. The motivic Poincaré series P(T) is a rational power series 
over the ring K™°*(Varj;)[L_:L] ® Q, with denominator a product of factors of the 
form 1 — L T 6 , with a,b G Z, b > 0. Moreover if k = Q, the Serre Poincaré 
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series PP(T), for p^>0, is obtained from P(T) by applying the operator Np to each 
coefficient of the numerator and denominator of P(T). 

In particular we see that the degrees of the numerator and the denominator 
of PP(T) remain bounded for p going to infinity. This fact was first proved by 
Macintyre [23] and Pas [26]. 

4. Quantifier elimination for valuation rings 

Let R be a ring and assume it is an integral domain. We will define the no­
tion of a DVR-formula over R. Such a formula can be interpreted in any discrete 
valuation ring A D R with a distinguished uniformizer n. It can contain vari­
ables that run over the discrete valuation ring, variables that run over the value 
group Z, and variables that run over the residue field. A DVR-formula over R is 
build from quantifiers with respect to variables that run over the discrete valua­
tion ring, or over the value group, or over the residue field, Boolean combinations, 
and expressions of the following form: gi(x) = 0, oid(gi(xj) < oid(g2(xj) + L(a), 
oid(gi(xj) = L(a) mod d, where gi(x) and #2(x) are polynomials over R in several 
variables x running over the discrete valuation ring, where L(a) is a polynomial 
of degree < 1 over Z in several variables a running over the value group, and d 
is any positive integer (not a variable). Moreover we also allow expressions of the 
form tp(~äc(hi(xj), ...,~äc(hr(x)j), where ip is a ring formula over R, to be interpreted 
in the residue field, hi(x),...,hr(x) are polynomials over R in several variables x 
running over the discrete valuation ring, and äc(w), for any element v of the discrete 
valuation ring, is the residue of the angular component ac(w) := vir^ordv. For the 
discrete valuation rings Zp and Ä" [[£]], we take as distinguished uniformizer n the 
elements p and t. 

Theorem 4.1 (Quantifier Elimination of Pas [26]). Suppose that R has 
characteristic zero. For any DVR-formula 9 over R there exists a DVR-formula 
ip over R, which contains no quantifiers running over the valuation ring and no 
quantifiers running over the value group, such that 
(1) 9 <—• ip holds in K[[t]], for all fields K containing R. 
(2) 9 <—• ip holds in Zp, for all primes p^> 0, when R = Z. 

The Theorem of Pas is one of several quantifier elimination results for Henselian 
valuation rings, and goes back to the work of Ax-Kochen-Ersov and Cohen on the 
model theory of valued fields, which was further developed by Macintyre, Delon [6], 
and others, see e.g. Macintyre's survey [22]. 

Combining the Theorem of Pas with the work of Ax mentioned in section 2, 
one obtains 

Theorem 4.2 (Ax-Kochen-Ersov Principle, version of Pas). Let a be 
a DVR-formula over Z with no free variables. Then the following are equivalent: 
(i) The interpretation of a in Zp is true for all primes p >• 0. 
(ii) The interpretation of a in K[[t]] is true for all pseudo-finite fields K of char­
acteristic zero. 



Motivic Integration 19 

5. Definable subassignements and truncations 
Let h : C —¥ Sets be a functor from a category C to the category of sets. We 

shall call the data for each object C of C of a subset h'(C) of h(C) a subassignement 
of h. The point in this definition is that h' is not assumed to be a subfunctor of h. 
For h' and h" two subassignements of h, we shall denote by h' n h" and h' U h", the 
subassignements C H> /i'(C) n h"(C) and C H> /i'(C) U h"(C), respectively. 

Let k be a field of characteristic zero. We denote by Fields the category of fields 
which contain k. For X a variety over k, we consider the functor hx '• K >-¥ X(K) 
from Fields to the category of sets. Here X(K) denotes the set of if-rational points 
on X. When X is a subvariety of some affine space, then a subassignement h of 
hx is called definable if there exists a ring formula ip over k such that, for any field 
K containing k, the set of tuples that satisfy the interpretation of ip in K, equals 
h(K). Moreover we define the class [h] of h in K0(PFFj;) as [ip]. More generally, 
for any algebraic variety X over k, a subassignement h of hx is called definable if 
there exists a finite cover (XJ)J G J of X by affine open subvarieties and definable 
subassignements hj of hxi, for i £ I, such that h = UjGj/i,. The class [h] of h in 
K0(PFFj;) is defined by linearity, reducing to the affine case. 

For any algebraic variety X over k we denote by hc{x) the functor K H> 
X(if[[i]]) from Fields to the category of sets. Here X(if[[i]]) denotes the set of 
if[[i]]-rational points on X. When X is a subvariety of some affine space, then 
a subassignement h of hc(x) is called definable if there exists a DVR-formula tp 
over k such that, for any field K containing k, the set of tuples that satisfy the 
interpretation of tp in if[[t]], equals h(K). More generally, for any algebraic variety 
X over k, a subassignement h of hc{x) is called definable if there exists a finite 
cover (Xj)jGj of X by affine open subvarieties and definable subassignements hj of 
hc(Xi); f° r i £ I, such that h = UjGj/i,. A family of definable subassignements 
hn, n £ Z, of hc(x) is called a definable family of definable subassignements if on 
each affine open of a suitable finite affine covering of X, the family hn is given by 
a DVR-formula containing n as a free variable running over the value group. 

Let X be a variety over k. Let h be a definable subassignement of hc{x), 
and n a natural number. The truncation of h at level n, denoted by nn(h), is the 
subassignement of hcn(x) that associates to any field K containing k the image 
of h(K) under the natural projection map from X(if[[i]]) to £n(X)(K). Using 
the Quantifier Elimination Theorem of Pas, we proved that nn(h) is a definable 
subassignement of hc„(x), so that we can consider its class [TT„(/I)] in K0(PFFj;). 
Using the notion of truncations, we can now give an alternative (but equivalent) 
definition of the motivic Poincaré series P(T), which works for any algebraic variety 
X over k, namely P(T) := EXe([7Tn(hC(x))])Tn. 

n 

A definable subassignement h of hc(x) is called weakly stable at level n if for 
any field K containing k the set h(K) is a union of fibers of the natural projection 
map from X(if[[i]]) to £n(X)(K). If X is nonsingular, with all its irreducible 
components of dimension d, and h is a definable subassignement of hc(x)-, which is 
weakly stable at level n, then it is easy to verify that 

[nn(h)]L-nd = [nm(h)]L-md 
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for all m> n. Indeed this follows from the fact that the natural map from £m(X) 
to £n(X) is a locally trivial fibration for the Zariski topology with fiber A™^n) , 
when X is nonsingular. 

6. Arithmetic motivic integration 
Here we will outline an extension of the theory of motivic integration, called 

arithmetic motivic integration. If the base field k is algebraically closed, then it 
coincides with the usual motivic integration. 

We denote by K g ^ V a r ^ f L - 1 ] the completion of K g ^ V a r ^ f L - 1 ] with re­
spect to the filtration of K™°*(Varj;)[L_1] whose ro-th member is the subgroup 
generated by the elements [V']L_* with i — dimF > m. Thus a sequence [Vi]L_* 
converges to zero in K™°*(Varj;)[L_1], for i H> +00, if * — dimV; H> +00. 

Definition-Theorem 6.1. Let X be an algebraic variety of dimension d over 
a field k of characteristic zero, and let h be a definable subassignement of hc(x) • 
Then the limit 

p(h) := lim Xc(M/0])L-("+ 1 ) r f 

exists in K™0*(Varj;)[L_1] ® Q and is called the arithmetic motivic volume of h. 
We refer to [10, §6] for the proof of the above theorem. If X is nonsingular 

and h is weakly stable at some level, then the theorem follows directly from what 
we said at the end of the previous section. When X is nonsingular affine, but h 
general, the theorem is proved by approximating h by definable subassignements 
hj of hc(x); i € N, which are weakly stable at level n(i). For hj we take the 
subassignement obtained from h by adding, in the DVR-formula tp defining h, the 
condition ordg(x) < i, for each polynomial g(x) over the valuation ring, that appears 
in tp. (Here we assume that tp contains no quantifiers over the valuation ring.) It 
remains to show then that Xc([Kn(ordg(x) > i)])L^^n+1^d goes to zero when both i 
and n >• i go to infinity, but this is easy. 

Theorem 6.2. Let X be an algebraic variety of dimension d over a field k of 
characteristic zero, and let h, hi and I12 be definable subassignements of hc(x) • 
(1) If hi(K) = fi2(K) for any pseudo-finite field K D k, then v(hi) = v(fi2)-
(2) v(hi U h2) = v(hi) + v(h2) - v(hi n h2) 
(3) If S is a subvariety of X of dimension < d, and if h a hc(s)> then v(h) = 0. 
(4) Let hn, n £ N , be a definable family of definable subassignements of hc(x)- V 
hnC\hm = 0j for all n ^ m, then J2 v{hn) *s convergent and equals v(\J hn). 

n n 

(5) Change of variables formula. Let p:Y—¥Xbea proper birational morphism of 
nonsingular irreducible varieties over k. Assume for any field K containing k that 
the jacobian determinant of p at any point of p^1(h(K)) in F(if[[i]]) has t-order 
equal to e. Then i>x(fo) = L - V y ( p - 1 ( ^ ) ) - Here vx, VY denote the arithmetic 
motivic volumes relative to X, Y, andp^1(K) is the subassignement ofhc(y) given 
by K^ p-^-^K)) n Y(K[[t]]). 

Assertion (1) is a direct consequence of the definitions. Assertions (2) and (4) 
are proved by approximating the subassignements by weakly stable ones. Moreover 
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for (4) we also need the fact that hn = 0 for all but a finite number of n's, when all 
the hn, and their union, are weakly stable (at some level depending on n). Assertion 
(5) follows from the fact that for n >• e the map £n(Y) —¥ £n(X) induced by p is 
a piecewise trivial fibration with fiber A | over the image in £n(X) of the points of 
£(Y) where the jacobian determinant of p has i-order e. See [10] for the details. 

7. About the proof of Theorem 3.1 
We give a brief sketch of the proof of Theorem 3.1, in the special case that X 

is a hypersurface in A^ with equation f(x) = 0. Actually, here we will only explain 
why the image P(T) of P(T) in the ring of power series over K™0*(Varj;)[L_1] ® Q is 
rational. The rationality of P(T) requires additional work. Let tp(x, n) be the DVR-
formula (3y)(f(y) = 0 and ord(a: — y) > n), with d free variables x running over 
the discrete valuation ring, and one free variable n running over the value group. 
That formula determines a definable family of definable subassignements h^_tH) of 
hc,Ady Since h^_tH) is weakly stable at level n, unwinding our definitions yields 
that the arithmetic motivic volume on hC/Ad^ of hv^^ equals JJ^(n+1^d times the 

n-th coefficient of P(T). To prove that P(T) is a rational power series we have to 
analyze how the arithmetic motivic volume of hv{-^n) depends on n. To study this, 
we use Theorem 4.1 (quantifier elimination of Pas) to replace the formula tp(x, n) by 
a DVR-formula ip(x,n) with no quantifiers running over the valuation ring and no 
quantifiers over the value group. We take an embedded resolution of singularities 
IT : Y —y Af of the union of the loci of the polynomials over the valuation ring, that 
appear in ip(x,n). Thus the pull-backs to Y of these polynomials, and the jacobian 
determinant of n, are locally a monomial times a unit. Thus the pull-back of the 
formula ip(x, n) is easy to study, at least if one is not scared of complicated formula 
in residue field variables. The key idea is to calculate the arithmetic motivic volume 
of /fy(_jn), by expressing it as a sum of arithmetic motivic volumes on hc(Y)-, using 
the change of variables formula in Theorem 6.2. These volumes can be computed 
explicitly, and this yields the rationality of P(T). 

To prove that P(T) specializes to the Serre Poincaré series PP(T) for p >• 0, we 
repeat the above argument working with Zd instead of £(Af). The p-adic volume 
of the subset of Zp defined by the formula tp(x, n) equals p-(n+1)d times the n-
th coefficient of PP(T). Because of Theorem 4.1.(2), we can again replace tp(x,n) 
by the formula ip(x,n) that we obtained already above. That p-adic volume can 
be calculated explicitly by pulling it back to the p-adic manifold Y(ZP), and one 
verifies a posteriory that it is obtained by applying the operator Np to the arithmetic 
motivic volume that we calculated above. This verification uses the last assertion 
in Theorem 2.1. 

8. The general setting 
We denote by M the image of K g ^ V a r ^ f L - 1 ] in K g ^ V a r ^ f L - 1 ] , and by 

Mioc the localization of M ® Q obtained by inverting the elements L* — 1, for all 
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i > 1. One verifies that the operator Np can be applied to any element of Mioc, 
for p >• 0, yielding a rational number. The same holds for the Hodge-Deligne 
polynomial which now belongs to Q(«,w). By the method of section 7, we proved 
in [10] the following 

Theo rem 8.1. Let X be an algebraic variety over a field k of characteristic 
zero, let h be a definable subassignement of hc(x)t and hn a definable family of 
definable subassignements of hc(x) • 

(1) The motivic volume v(h) is contained in Mioc-
(2) The power series ^v(hn)T

n £ -Mi0C[[T]] is rational, with denominator a prod-
n 

uct of factors of the form 1 — L _ a T 6 , with a, b £ N , 6 ^ 0. 
Let X be a reduced separable scheme of finite type over Z, and let A = (.4P)P>0 

be a definable family of subsets of X(ZP) , meaning that on each affine open, of a 
suitable finite affine covering of X, Ap can be described by a DVR-formula over 
Z. (Here p runs over all large enough primes.) To A we associate in a canonical 
way, its motivic volume V(ìIA) £ Mioc, in the following way: Let hf\ be a definable 
subassignement of /i£(x®Q)> given by DVR-formulas that define A. Because these 
formulas are not canonical, the subassignement hf\ is not canonical. But by the 
Ax-Kochen-Ersov Principle (see 4.2), the set ìIA(K) is canonical for each pseudo-
finite field K containing Q. Hence V(ìIA) £ Mioc is canonical, by Theorem 6.2.(1). 
By the method of section 7, we proved in [10] the following comparison result: 

Theo rem 8.2. With the above notation, for all large enough primes p, 
NP(V(ìIA)) equals the measure of Ap with respect to the canonical measure on X(ZP). 

When X ® Q is nonsingular and of dimension d, the canonical measure on 
X(ZP) is defined by requiring that each fiber of the map X(ZP) —t X(Zp/p

m) has 
measure p^md whenever m >• 0. For the definition of the canonical measure in the 
general case, we refer to [25]. 

The above theorem easily generalizes to integrals instead of measures, but this 
yields little more because quite general p-adic integrals (such as the orbital integrals 
appearing in the Langlands program) can be written as measures of the definable 
sets we consider. For example the p-adic integral J \f(x)\dx on Zp equals the p-adic 
measure of {(x, t) £ Zd+1 : oidp(f(xj) < ordp(t)}. 
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Abstract 

We will review the main results concerning the automorphism groups of 
saturated structures which were obtained during the two last decades. The 
main themes are: the small index property in the countable and uncountable 
cases; the possibility of recovering a structure or a significant part of it from 
its automorphism group; the subgroup of strong automorphisms. 
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1. Introduction 
Saturated models play an important role in model theory. In fact, when study­

ing the model theory of a complete theory T, one may work in a large saturated 
model of T with its definable sets, and forget everything else about T. This large sat­
urated structure is sometimes called the "universal domain", sometimes the "mon­
ster model". 

A significant work has been done the last twenty years on the automorphism 
groups of saturated models. It is this work tha t I want to review here. There is 
a central question tha t I will use as a "main theme" to organize the paper: what 
information about M and its theory are contained in its group of automorphisms? 
In the best case, M itself is "encoded" in some way in this group; recovering M from 
it is known as "the reconstruction problem". A possible answer to this problem is a 
theorem of the form: If Mi and M2 are structures in a given class with isomorphic 
automorphism groups, then Mi and M2 are isomorphic. 

Throughout this paper, T is supposed to be a countable complete theory. The 
countability of T is by no means an essential hypothesis. Its purpose is only to 
make the exposition smoother, and most of the results generalize without difficulty 
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to uncountable theories. We will denote by Aut(M) the group of automorphisms of 
the structure M, and if A is a subset of M, AUìA(M) will be the pointwise stabilizer 
of A: 

AutA(M) = {f £ Aut(M) ; Va G A f(a) = a} . 

When we say "definable", we mean "definable without parameters". 

2. The countable case 
As a preliminary remark, let us say that the automorphism group of a saturated 

model is always very rich: if M has cardinality A, then its automorphism group has 
cardinality 2A. 

I do not know who was the first to introduce the small index property. As we 
will see, it is crucial in the subject. 

Definition 1 Let M be a countable structure. We say that M (or Aut(M)) has 
the small index property if for any subgroup H of Aut(M) of index less than 2N°, 
there exists a finite set A c M such that AUìA(M) C H. 

Remark that the converse is true: any subgroup containing a subgroup of the 
form AUìA(M) where A is finite, has a countable index in Aut(M). Moreover, 
the subgroups containing a subgroup of the form AUìA(M) are precisely the open 
neighborhoods of the identity for the pointwise convergence topology. In other 
words, the small index property allows us to recover the topological structure of 
Aut(M) from its pure group structure. 

The small index property has been proved for a number of countable saturated 
structures: 

1. The infinite set without additional structure [23], [5]. 
2. The linear densely ordered sets [25]. 
3. The vector spaces over a finite field [6]. 
4. The random graph [10]. 
5. Various other classes of graphs [9]. 
6. Generic relational structures [8]. 
7. w-categorical w-stable structures [10]. 

The small index property has also been proved for some countable structures 
which are not saturated: for the free group with w-generators ([2]), for arithmetically-
saturated models of arithmetic ([17]). 

There are examples of countable saturated structures which fail to have the 
small index property. The simplest may be an algebraically closed field of charac­
teristic 0 of infinite countable transcendence degree: Let Q be the algebraic closure 
of the field of rational numbers. There is an obvious homomorphism tp from Aut(M) 
onto Aut(Q) (the restriction map). Now, it is well known that there is a subgroup 
H of Aut(Q) of countable index (in fact of finite index) which is not closed for the 
Krull topology, which is nothing else that the pointwise convergence topology. Then 
<p_1(ff) is not open, but of finite index in Aut(M). 
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As we will see later, the small index property is particularly relevant for OJ-
categorical structures. Evans and Hewitt have produced an example of such a struc­
ture without the small index property ([7]). 

With the pointwise convergence topology, Aut(M) is a topological polish 
group. So, we may use the powerful tools of descriptive set theory. In many cases 
(for example for structures 1-6 above), it can be shown that there is a (necessarily-
unique) conjugacy class which is generic, that is, is the countable intersection of 
dense open subsets. The elements of this class are called generic automorphisms, 
and they play an important role in the proof of the small index property. 

Another possible nice property of these automorphism groups which is some­
times obtained as a bonus of the proof of the small index property, is the fact that 
its cofinality is not countable, that is, Aut(M) is not the union of a countable chain 
of proper subgroups. This is proved in particular for the full permutation group of a 
countable set ([21]), for the random graph and for w-categorical w-stable structures 

([IO])-
I would like to mention here the work of Rubin ([24]). He has shown how to 

reconstruct a certain number of structures from their automorphism group using a 
somewhat different method. His methods apply essentially to "combinatorial struc­
tures" such as the random graph, the universal homogeneous poset, the generic 
tournament (a structure for which the small index property is not known), etc. 

3. Subgroups and imaginary elements 
Recall that an imaginary element of M is a class of a tuple of Mn modulo a 

definable equivalence relation on Mn. For instance, if G is a group and H a definable 
subgroup of Gn, then any coset of H in Gn is an imaginary element. When we add 
all these imaginary elements to a saturated structure M, we obtain the structure 
Meq, and we can consider Meq as a saturated structure (in a larger language). 

It is clear that M and Meq have canonically the same automorphism group: 
every automorphism of M extends uniquely to an automorphism of Meq. This 
shows a limitation to the reconstruction problem: If M and N are two structures 
which are such that uMeq and Neq are isomorphic", then Aut(M) and Aut(N) 
are isomorphic via a bicontinuous isomorphism. The condition "Meq and Neq are 
isomorphic" may seem weird, but in fact, it is natural. Roughly speaking, it means 
that M can be interpreted in N, and conversely (a little more in fact, see [1] for 
more details). In this case, we say that M and N are bi-interpretable. 

Consider now the case of an w-categorical structure M. It is not difficult to 
see that any open subgroup of Aut(M) is the stabilizer Auta(M) of an imaginary-
element a. Moreover, Aut(M) acts by conjugation on the set of its open subgroups, 
and this action is (almost) isomorphic to the action of Aut(M) on Meq (almost 
because two different imaginary elements a and ß may have the same stabilizer). 
So, from the topological group Aut(M) we can (almost) reconstruct its action on 
Meq. We can do better: 

Theo rem 2 [1] Assume that M and N are countable u-categorical structures. Then 
the following two conditions are equivalent: 
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1. there is a bicontinuous isomorphism from Aut(M) onto Aut(N); 
2. M and N are bi-interpretable. 

In fact, these conditions are also equivalent to: there exists a continuous iso­
morphism from Aut(M) onto Aut(N) (see [15]). Thus, if one of the structure M 
or N has the small index property and Aut(M) is isomorphic to Aut(N) (as pure 
groups), then M and N are bi-interpretable. 

Now, if M is not necessarily w-categorical (but still saturated), the situation 
is a bit more complicated. We need to introduce new elements. 

Definition 3 1. An ultra-imaginary element of M is a class modulo E, where E 
is an equivalence relation on Mn (n < u) which is invariant under the action of 
Aut(M). An ultra-imaginary element is finitary if n < u. 
2. A hyperimaginary element of M is a class modulo E, where E is an equivalence 
relation on Mn (n < u) which is defined by a (possibly infinite) conjunction of first 
order formulas. 

An imaginary element is hyperimaginary, and a hyperimaginary element is 
ultra-imaginary. A hyperimaginary element is a class modulo an equivalence relation 
E defined by a formula of the form 

where the tpi are first-order formulas (without parameters) and whose free variables 
are among the xu for k < n. An ultra-imaginary element is a class modulo an 
equivalence relation E defined by a formula of the form 

VA*'« 
jeJ tei 

where the tpij are first order-formulas (without parameters) and whose free variables 
are among the xu for k < n. 

If M is a countable saturated structure, the stabilizer of a finitary ultra-
imaginary element is clearly an open subgroup, and it is not difficult to see that 
if H an open subgroup of Aut(M), then there exists a finitary ultra-imaginary el­
ement a such that H is the stabilizer of a. In the w-categorical case, any finitary 
ultra-imaginary is in fact imaginary, and this explain why this case is so simple. 

In some cases, for example for w-stable theories (see [18]), it is possible to 
characterize, among all open subgroups, those which are of the form Auta(M) 
with a imaginary. Something similar has been done for countable arithmetically-
saturated models of arithmetic in [11], and in [13], it is proved that if two such 
models have isomorphic automorphism groups, then they are isomorphic. 

4. Strong automorphisms 
It is now time to introduce the group of strong automorphisms. 
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Definition 4 [14] The group of strong automorphisms of M is the group generated 
by the set 

\J{AutN(M); N <M] 

and is denoted Autf(M). 

It is easy to see that Autf(M) is a normal subgroup of Aut(M). Its index 
is at most 2N°. Moreover, the quotient group Aut(M)/Autf(M) depend only on 
T : if M and M' are two saturated models, M -< M', then there is a natural 
isomorphism from Aut(M)/Autf(M) onto Aut(M')/Autf(M'). Aut(M)/Autf(M) 
will be denoted Gal(T) (of course, Gal stands for Galois). For example, if T is the 
theory of algebraically closed fields of characteristic 0, Autf(M) = Autq(M) and 
Gal(T) is (isomorphic to) the group of automorphisms of Q. 

In fact this interpretation is general. Assume first that M is of cardinality-
bigger than 2N°. Let a be an ultra-imaginary element of M. It can be shown that 
the following conditions are equivalent: 

1. card{f(a) ; / G Aut(M)} < card(M); 
2. card{f(a) ; / G Aut(M)} < 2*°; 

An equivalence relation is bounded if it has at most 2N° classes (equivalently 
less than card(M) classes). The above conditions are also equivalent to: 

3. a (as a set) is the class modulo an invariant bounded equivalence relation. 

If these conditions are satisfied, we say that a is bounded. It should be re­
marked that an imaginary element is bounded if and only if it is algebraic, if and 
only if its orbit is finite. 

We will denote by Bdd(M) the set of bounded ultra-imaginary elements of M. 
This set does not really depend on M (as soon as its cardinality is big enough) but 
only on its theory: any invariant bounded equivalence relation has a representative 
in any uncountable saturated model. We will allow ourself to write Bdd(T) when 
convenient. Moreover Autf(M) is exactly the pointwise stabilizer of Bdd(M) so 
that Gal(T) can be identified with the group of elementary permutations of Bdd(T). 

With some care, we can generalize this interpretation to models of small cardi­
nality: for example, assume M countable, and let M' be a large saturated extension 
of M. Then any automorphism / of M extends to an automorphism of M', and if / i 
and /2 are two such extensions, then their action on Bdd(M') are equal; Autf(M) is 
exactly the set of automorphisms whose extensions to M' act trivially on Bdd(M'). 

In any case, Aut(M) leaves fixed the set of bounded imaginary elements and 
the set of bounded hyperimaginary elements. In some cases (for example for al­
gebraically closed fields), Gal(T) acts faithfully on the set of bounded imaginary-
elements. It is the case if T is stable ([14]). It is not known if it is always true 
for simple theories, but it is true for the so-called low simple theories ([3]) and in 
particular for supersimple theories. For simple theories, Gal(T) acts faithfully on 
the set of bounded hyperimaginary elements ([12]). In [4] there is an example of 
a theory where the action of Gal(T) on the set of hyperimaginary elements is not 
faithful. 
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There is a natural topology on Gal(T) (see [19] for details). It can be defined 
in two different ways. 

My favorite one is via the ultraproduct construction. Let (7, ; i £ I) be a 
family of elements of Gal(T) and U an ultrafilter on J. Choose a saturated model 
M and, for each i £ L an automorphism fi £ Aut(M) lifting 7$. Consider the 
ultrapower M' = Yli€U M. We can define the automorphism Y\i€U fi on M'. This 
automorphism acts on Bdd(M') = Bdd(T), so defines an element of Gal(T), say ß. 
This element ß should be considered as a limit of the family (7$ ; i £ I) along U. 
A subset X of Gal(T) is closed for the topology we are defining if it is closed for 
this limit operation. You should be aware that the element ß may depend on the 
choices of the / , ' s , because the topology we are defining is not Hausdorff in general. 

The other way to define a topological structure on Gal(T) is to define a topol­
ogy on Bdd(T). If, as it is the case when T is stable, Gal(T) can be identified with a 
group of permutation on the set of imaginary elements, then we just endow Gal(T) 
with the pointwise convergence topology (that is we consider the set of imaginary-
elements with the discrete topology). Otherwise, it is more complicated, and here 
is what should be done in general: 

For each n < u and E invariant bounded equivalence relation on Mn, consider 
the canonical mapping tpE from Mn onto Mn/E. By definition, a subset X of 
Mn/E is closed if and only if tp^(X) is the intersection of a family of subsets 
definable with parameters. Gal(T) acts on Mn/E and the topology on Gal(T) is 
defined as the coarsest topology which makes all these actions (with various n and 
E) continuous. 

Now, we can prove: 

Theorem 5 1. Gal(T) is a topological compact group. 

2. It is Hausdorff if and only if it acts faithfully on the set of bounded hyperimag­
inary elements, if and only if it acts faithfully on the set of finitary bounded 
hyperimaginary elements. 

3. It is profinite if and only if it acts faithfully on the set of bounded imaginary 
elements. 

There is a Galois correspondence between the subgroups of Gal(T) and the 
bounded ultra-imaginary elements: every subgroup of Gal(T) is the stabilizer of 
an ultra-imaginary element. The hyperimaginary elements correspond to the closed 
subgroups and the imaginary elements correspond to the clopen subgroups of Gal (T). 

Let H0 be the topological closure of the identity. Then H0 is a normal sub­
group of Gal(T). If we consider Gal(T) as a permutation group on Bdd(T), H0 

is exactly the pointwise stabilizer of the set of bounded hyperimaginary elements. 
So, if we set GOIQ(T) = Gal(T)/H0, GOIQ(T) acts faithfully on the set of bounded 
hyperimaginary elements. As a quotient group, GOIQ(T) is canonically endowed 
with a topology. This way, we get a compact Hausdorff group. 

Recently, L. Newelski ([22]) has proved that H0 is either trivial or of cardinality 
2N°. 

I would like to conclude this section by a conjecture. In all the known examples 
of countable saturated structures where the small index property is false, there is a 
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non open subgroup of G al (T) of countable index (and, its preimage by the canonical 
homomorphism from Aut(M) onto Gal(T) is a non open subgroup of Aut(M) of 
countable index). If A has a cardinality strictly less than card(M), define AUì/A(M) 
as the subgroup of AUìA(M) generated by 

\J{AutN(M) ; AÇN -<M}. 

The following conjecture is open, even in the w-categorical case: 

Conjecture 6 Assume that M is a countable saturated structure and let H be a 
subgroup of Autf(M) of index strictly less than 2N°. Then, there exists a finite 
subset A c M such that AutfA(M) C H. 

In [16], this conjecture is proved for almost strongly minimal sets (so, in par­
ticular for algebraically closed fields). 

5. The uncountable case 
We are now given a saturated structure M of cardinality A > K0. The small 

index property has a natural generalization. If we assume that A<A = À (i.e. there 
is exactly À subsets of M of cardinality less than A) then any subgroup of Aut(M) 
containing a subgroup of the form AUìA(M) with card(A) < X has index at most 
A. The converse is true: 

Theo rem 7 [20] Assume that M is a saturated structure of uncountable cardinality 
X = X<x, and let H be a subgroup of Aut(M) of cardinality at most X. Then, there 
exists a subset A of M of cardinality less than X such that AUìA(M) C H. 

Here again, we may introduce a topological structure on Aut(M): if ß is an 
infinite cardinal, let Tß be the group topology on Aut(M) for which a basis of open 
neighborhoods of the identity is 

{AutA(M) ; ACM and card(A) < ß) . 

To complete this definition, let Ta(M) be the group topology on Aut(M) for which 
a basis of open neighborhoods of the unit is 

{AutfA(M) ; ACM and A finite} . 

The above theorem just says that the subgroups of Aut(M) of index at most A 
are exactly the open subgroups for T\(M), and consequently, the topology T\(M) 
can be reconstructed from the pure group structure. It is also clear that the open 
subsets for T\ are just the intersections of less than A 7^-open subsets. So, if one 
knows Ta(M), one knows T\(M). 

With a few cardinality hypotheses, we can reconstruct one topological group 
from another: (see [15] for details): 
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1. Let M and M' be two saturated models of the same theory. Then we can 
reconstruct (Aut(M'),Ta) from (Aut(M),Ta). 

2. Let M and M' be two models of the same theory, and assume card(M) = A < 
ß = card(M'). Then we can reconstruct Aut(M') from (Aut(M),T\) (and 
from Aut(M) alone if A = A<A). In fact we can reconstruct (Aut(M'), % (M'j) 
for every cardinal v, X < v < ß. 

3. Let M be a saturated structure of uncountable cardinality A = ß+ = 211 and 
assume that T has a saturated model of cardinality ß. Then (Aut(M),Ta) 
can be reconstructed from Aut(M). 

Let us give an example of a theorem which can be proved using the above 
facts: Assume GCH and let TÌ and T2 be two theories with saturated models Mi 
and M2 of cardinality ß++. Assume that Aut(Mi) and Aut(M2) are isomorphic. 
Then, for all cardinal A, if Ti has a saturated model of cardinality A, then T2 has 
also a saturated model in cardinality A, and the automorphism groups of these two 
models are isomorphic. 
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Representations of Braid Groups 

S. Bigelow* 

Abstract 

In this paper we survey some work on representations of Bn given by the 
induced action on a homology module of some space. One of these, called the 
Lawrence-Krammer representation, recently came to prominence when it was 
shown to be faithful for all n. We will outline the methods used, applying them 
to a closely related representation for which the proof is slightly easier. The 
main tool is the Blanchfield pairing, a sesquilinear pairing between elements 
of relative homology. We discuss two other applications of the Blanchfield 
pairing, namely a proof that the Burau representation is not faithful for large 
n, and a homological definition of the Jones polynomial. Finally, we discuss 
possible applications to the representation theory of the Hecke algebra, and 
ultimately of the symmetric group over fields of non-zero characteristic. 

2000 Mathematics Subject Classification: 20F36, 20C08. 
Keywords and Phrases: Braid groups, Configuration spaces, Homological 
representations, Blanchfield pairing. 

1. Introduction 
Artin 's braid group Bn was originally defined as a group of geometric braids 

in R 3 . Representations of Bn have been studied for their own intrinsic interest, and 
also in connection to other areas of mathematics , most notably to knot invariants 
such as the Jones polynomial. 

We will use the definition of Bn as the mapping class group of an n-times 
punctured disk Dn. A rich source of representations of Bn is the induced action on 
homology modules of spaces related to Dn. The Burau representation, one of the 
simplest and best known representations of braid groups, is most naturally defined 
as the induced action of Bn on the first homology of a cyclic covering space of Dn. 
Lawrence [9] extended this idea to configuration spaces in Dn, and was able to 
obtain all of the so-called Temperley-Lieb representations. 
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E-mail: bigelow@unimelb.edu.au 

mailto:bigelow@unimelb.edu.au


38 S. Bigelow 

Lawrence's work seems to have received very little attention until one of her ho­
mological representations was shown to be faithful, thus proving that braid groups 
are linear and solving a longstanding open problem. Two independent and very-
different proofs of this have appeared in [1] and [8]. In this paper we will outline 
the former, emphasising the importance of the Blanchfield pairing. We then dis­
cuss two other applications of the Blanchfield pairing, namely the proof that the 
Burau representation is not faithful for large n, and a homological definition of 
the Jones polynomial of a knot. We conclude with some speculation on possible 
future applications to representations of Hecke algebras when q is a root of unity. 
These are related to representations of the symmetric group Sn over fields of bad 
characteristic, that is, fields in which n\ = 0. 

2. The Lawrenee-Krammer representation 
Let D be the unit disk centred at the origin in the complex plane. Fix arbitrary-

real numbers — l < p i < - - - < p n < l , which we will call "puncture points". Let 

Dn = D\{pi,...,pn} 

be the n-times punctured disk. The braid group Bn is the mapping class group of 
Dn, that is, the set of homeomorphisms from Dn to itself that act as the identity 
on dD, taken up to isotopy relative to dD. Let C be the space of all unordered 
pairs of distinct points in Dn. 

Suppose a: is a point in Dn, and a is a simple closed curve in Dn enclosing one 
puncture point and not enclosing x. Let 7 : J —¥ C be the loop in C given by 

7(s) = {x,a(s)\. 

Now suppose n and T2 are paths in Dn such that T1T2 is a simple closed curve that 
does not enclose any puncture points. Let r : I —¥ C be the loop in C given by 

T(s) = {ri(s),r2(s)}. 

Let 
* : MC) ^ (q) ® (t) 

be the unique homomorphism such that $(7) = q and $( r ) = t for any 7 and r 
defined as above. For a proof of the existence and uniqueness of such a homomor­
phism, see [11]. Let C be the connected covering space of C whose fundamental 
group is the kernel of $. 

The second homology H2(C) is a module over Z[g ± 1 , t ± 1 ] , where q and t 
act by covering transformations. The Lawrenee-Krammer representation of Bn 

is the induced action of Bn on H2(C) by Z[g±1,t±1]-module automorphisms. More 
precisely, given an element of Bn represented by a homeomorphism a: Dn —t Dn, 
consider the induced action a: C —¥ C. There is a unique lift à: C —¥ C that 
acts as the identity on dC. This induces an automorphism of H2(C), which can be 
shown to respect the Z[g±1,t±1]-module structure. See [11] for details. 
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3. The Blanchfield pairing 
Let e > 0 be small. We define P, B c C as follows. Suppose {x, y} is a point 

in C. We say {x, y} e F if either |x — y| < e, or there is a puncture point pi such 
that \x — Pì\ < e or \y — pt\ < e. We say {x,y} £ B if x £ dD or y £ dD. 

For u £ H2(C,P) and v £ H2(C,B) let (u • v) £ Z denote the standard 
algebraic intersection number. We define an intersection pairing 

(•,•): H2(C,P) xH2(C,É)^Z[q±1,t±1] 

by 

(u,v) = 2_. (u ' (fVvitft3• 

For a proof that these are well-defined, see [7, Appendix E], where the following 
properties are also proved. 

For u £ H2(C,P), v £ H2(C,B), a £ Bn, and A G Z[q±x ,t±x], we have 

(au,av) = (u,v), 

and 
(Xu,v) = X(u,v) = (u,Xv), 

where A is the image of A under the automorphism of Z[q±1 ,t±x] taking q to q^1 

and t to £_1. 

4. A faithful representation 
The aim of this section is to outline a proof of the following. 
Theorem. Let C and P be as above. The induced action of Bn on H2(C,P) 

is faithful. 
For the details, the reader is referred to [1], where the same techniques are 

used to prove that Bn acts faithfully on H2(C). Our use of relative homology here 
actually simplifies the argument somewhat. 

There is a slight technical difficulty in defining the action of Bn on H2(C, P). 
Namely, the action of a braid on C need not preserve the set P. Thus we should 
really take a limit as e approaches 0. The representation obtained is very simi­
lar to the Lawrenee-Krammer representation, but has a slightly different module 
structure, as discussed in [3]. 

Let E be the straight edge from pi to P2 • Let E' be the set of points in C of 
the form {x,y}, where x,y £ E. Let E' be a lift of E' to C. This represents an 
element of H2(C, P), which we will call e. Let Fi and F2 be parallel vertical edges 
with endpoints on dD, passing between p2 and p$. Let F' be the set of points in 
C of the form {x,y}, where x £ Fi and y £ F2. Let F' be a lift of F' to C. This 
represents an element of H2(C, B), which we will call / . Note that 

( e , / ) = 0 , 
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since E' and F' are disjoint in C. 
Suppose the action of Bn on H2(C,P) is not faithful. It is not hard to show 

that there must be a braid a in the kernel of this representation such that a(E) is 
not isotopie to E relative to endpoints. Now a(e) = e, so 

(a(e),f)=0. 

From this, we will derive a contradiction. 
By applying an isotopy, we can assume a(E) intersects Fi and F2 transversely 

at a minimal number of points k > 0. Let x\,...,xu be the points of a(E) n Fi, 
and let J /1 , . . . , y* be the points of a(E) n F2 , numbered from top to bottom in both 
cases. 

For i,j £ {l,...,k}, let a , j and bjj be the unique integers such that a(E') 
intersects qai-Jtbi-'F' at a point in the fibre over {xj,yj}, and let e,j be the sign of 
that intersection. Then 

k k 

j=l i= l 

To calculate a , j and bjj, it is necessary to specify choices of lift for E' and 
F'. We will not do this since we only need to calculate differences a,/j/ — a , j and 
bjiji — bjj. To do this, let 7 be a path in C that goes from {xj,yj} to {ar,/,j/j/} in 
CT(F'), and then back to {#», t/j} in F'. Then 

ç(Oi ' . j ' -Oi .3 ) f (6 i ' . j ' -6 i .3 ) = $(<y). 

From this we can prove the following. 
Lemma. For all i,j £ { 1 , . . . , k} we have 

• atJ = ^(ai4 + ajj), 
• if bjj > bj:i then aiji > a,,, for some j ' = 1 , . . . , k, 
• if bjj > bjj then a,/j > a,jj for some i' = 1 , . . . , k. 

The first of these is [1, Lemma 2.1], and the second and third follow from the 
proof of [1, Claim 3.4]. We now sketch the proof of the second in the special case 
where y, lies between x» and %jj along a(E). 

Let a be the path from yt to %jj along a(E). Let ß be the path from %jj to 
%ji along F2 . Then bjj — 6,,, is two times the winding number of aß around x». In 
particular, this winding number is positive. 

Let D\ be the once punctured disk D \ {#»}, and let D\ be its universal cover. 
Let äß be a lift of aß to D\. This is a path from a point in the fibre over yt to a 
"higher" point in the fibre over yt. 

Let F2 be the the segment of F2 going from yt upwards to dD. Let F^ be the 
lift of F2 to D\ that has an endpoint at ä(0). In order to reach a higher sheet in 
TJ>i, à must intersect F^ • Let 7 be the loop in D\ that follows à to the first point 
of intersection with F^ , and then follows F^ back to â(0). 

Let 7 be the projection of 7 to D\. This travels along a(E) from yt to some 
point yji £ F2 , then along F2 back to j / , . Then ajji — a,,, is the total winding 
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number of 7 around the puncture points. We must show that this winding number 
is positive. 

By construction, 7 is a simple closed curve in D\. By the Jordan curve the­
orem, it must bound a disk B. Let B be the projection of B to D\. This is an 
immersed disk in D, whose boundary is 7. Note that 7 passes anticlockwise around 
B, since the puncture x» lies to its right. Thus the total winding number of 7 around 
the puncture points is equal to the total number of puncture points contained in B, 
counted with multiplicities. 

It remains to show that B intersects at least one puncture point. Suppose 
not. Then B is an immersed disk in Dn. Using an "innermost disk" argument, one 
can find an embedded disk B' in Dn whose boundary consists of a subarc of a(E) 
and a subarc of F2 . Using B', one can isotope a(E) so as to have fewer points of 
intersection with F2 , thus contradicting our assumptions. 

This completes the proof of the second part of the lemma in the case where 
%ji lies between x» and %jj along a(E). The remaining case, where x» lies between 
%ji and t/j, is only slightly trickier. The third part of the lemma is similar to the 
second. The first part of the lemma is much easier. 

We now return to the proof of the theorem. Let a be the maximum of all 
üij. Let 6 be the maximum of {bjj : a , j = a}. Suppose i, j £ { 1 , . . . ,k} are such 
that aij = a and bjj = b, and also i',j' £ { 1 , . . . ,k} are such that a,/j/ = a and 
bjiji = 6. I claim that e,j = e,/j/. From this claim, it follows that all occurrences 
of qatb in the expression 

k k 

»=i i = i 

occur with the same sign, so the coefficient of qatb is non-zero in (a(e),f). This 
provides our desired contradiction, and completes the proof of the theorem. It 
remains to prove that e,/j/ = e , j . 

Using the above lemma, it is not hard to show that a,,, = a,jj = a and 
bi,i = bjj = b. Similarly, a,/,,/ = ay ji = a and 6,/,,/ = by ̂ y = b. We will only need 
the equalities 

Vi:i — Vi J — VjJ — Vi' ,£' — ui'J' — Oj' J' • 

In fact, we only need these modulo two. 
Orient a(E) so that it crosses Fi from left to right at x». Let 7 be the path in 

C which goes from {x,, j/,} to {x,/,j/,/} in E' and then back to {x,,t/j} in F'. Now 
bi',i' — bj:i is the exponent of t in $(7). The fact that this is an even number means 
that the pair of points in Dn do not "switch places" when they go around this loop. 
Thus a(E) crosses Fi from left to right at x\. By similar arguments, 

• ß(E) intersects Fi with the same sign at x, and x,/, 
• ß(E) intersects F2 with the same sign at %jj and %jy, 
• x, occurs before %jj and x,/ occurs before %jy with respect to the orientation 

oîa(E). 

It is now intuitively clear that E' must intersect F' with the same signs at {x,,t/j} 
and {xji, yj'}. This can be proved rigorously by careful consideration of orientations 
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of these surfaces, as discussed in [1, Section 2.1]. It follows that e,j = e,/j/, which 
completes the proof of the theorem. 

5. The Burau representation 
The proof that the Lawrenee-Krammer representation is faithful basically re­

duces to proving that the Blanchfield pairing detects whether corresponding edges 
in the disk can be isotoped to be disjoint. A converse to this idea leads to a proof 
that the Burau representation is not faithful for large n. 

The Burau representation can be defined by a similar but simpler construction 
to that of the Lawrenee-Krammer representation. Let 

# : Tii(Dn)^(q) 

be the homomorphism that sends each of the obvious generators to q. Let Dn be 
the corresponding covering space. The Burau representation is the induced action 
of Bn on Hi(Dn) by Z[g±1]-module automorphisms. 

Let F be an e-neighbourhood of the puncture points, and let F be the preimage 
of F in Dn. The Blanchfield pairing in this context is a sesquilinear pairing 

(•,•): Hi(Dn,P) x Hi(Dn,dDn) ^ Z^1]. 

Let E be the straight edge from pi to p2- Let F be a lift of F to Dn. This 
represents an element of Hi(Dn,P), which we will call e. Let F be a vertical edge 
with endpoints on dD, passing between pn-i and pn. Let F be a lift of F to Dn. 
This represents an element of Hi(Dn,dDn), which we will call / . The following is 
[2, Theorem 5.1]. 

Theorem. Let E, e, F and f be as above. The Burau representation of Bn 

is unfaithful if and only if there exists a £ Bn such that (a(e),f) = 0, but a(E) is 
not isotopie relative to endpoints to an edge that is disjoint from F. 

Using this theorem, one can show that the Burau representation of Bn is not 
faithful simply by exhibiting the required edges a(E) and F . Such edges can be 
found by hand in the case n = 6. In the case n = 5, they can be found by a 
computer search, and then laboriously checked by hand. The case n = 4 seems to 
be beyond the reach of any known computer algorithm. This is the last open case, 
since the Burau representation is known to be faithful for n < 3. 

6. The Jones polynomial 
In this section, we use the Blanchfield pairing to give a homological definition 

of the Jones polynomial of a knot or link. The Jones polynomial was defined in [6] 
using certain algebraically defined representations of braid groups. No satisfactory-
geometric definition is known, but some insight might be offered by defining the rep­
resentations homologically and using the Blanchfield pairing. This was the original 
motivation for Lawrence to study homological representations of braid groups. 
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A geometric braid a £ Bn is a collection of n disjoint edges i n C x R with 
endpoints { 1 , . . . ,n} x {0,1}, such that each edge goes from C x {0} to C x {1} 
with a constantly increasing R component. The correspondence between geometric 
braids and elements of the mapping class group is described in [1], and in many-
other introductory expositions on braids. The plat closure of a geometric braid 
<7 £ B2n is the knot or link obtained by using straight edges to connect (2j — 1, k) 
to (2j, k) for each j = 1 , . . . , n and k = 0,1. Every knot or link can be obtained in 
this way. 

Let C be the configuration space of unordered n-tuples of distinct points in 
F/2„. Let 

# : iTi(C) ^ (q) ® (t) 

be defined as in Section 2. Namely, if 7 is any loop in which one of the n-tuple 
winds anticlockwise around a puncture point, and r is any loop in which two of the 
n-tuple exchange places by an anticlockwise half twist, then $(7) = q and $(r ) = t. 
Let C be the covering space corresponding to $. 

Define P,BcC similarly to those of Section 3. The Blanchfield pairing is a 
sesquilinear pairing 

(•,•): H2(C,P) xH2(C,É)^Z[q±1,t±1]. 

For k = 1 , . . . , n, let Ff. be the straight edge from P2k-i to p2k- Let F be the 
set of points in C of the form {x i , . . . ,xn} where x, £ Ft. Let F be a lift of F to 
C. This represents an element of Hn(C,P), which we call / . For k = 1 , . . . , n, let 
eu : S1 —¥ Dn be a figure-eight around P2k-i and p2k in a small neighbourhood of 
Ff.. Let e be the map from the n-torus (S1)"" to C given by 

e(si,...,sn) = {ei(si),...,en(sn)}. 

Let ë be a lift of e to C. This represents an element of Hn(C), and hence of 
Hn(C,B), which we also call e. 

The main result of [4] is the following. 
Theorem. Let e and f be as above and suppose a £ B2n • The Jones polyno­

mial of the plat closure of a is 

Me) , / ) ) | ( t= - g - i ) , 

up to sign and multiplication by a power of q?. 
Here, the Jones polynomial is normalised so that the Jones polynomial of the 

unknot is — <p — q^?. The correct sign and power of q 2 is also explicitly specified 
in [4]. 

This result is due to Lawrence, who also achieved a similar result for the 
two-variable Jones polynomial by a much more complicated construction [10]. 

7. The Hecke algebra 
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We conclude with some speculation about possible applications of the Blanch­
field pairing to the representation theory of Hecke algebras. We first give a very-
brief overview of the basic theory of Hecke algebras. 

Let q £ C \ {0}. The Hecke algebra Hn(q), or simply Hn, is the C-algebra 
given by generators gi, • • • ,gn-i and relations 

• Qigj = g,gi if \i-j\ > i, 
• gtgj gì = 9ì9J9ì

 i f \i-j\ = 1, 
• (9i-l)(9i + q) = 0. 

It is an n!-dimensional C-algebra. We are restricting to the ring C for convenience, 
although other rings can be used. 

Note that Hn(l) is the group algebra CSn of the symmetric group Sn. The 
Hecke algebra is called a "quantum deformation" of CSn. The representation theory 
of CSn is well understood except when working over a field of finite characteristic 
in which n! = 0. This is because the classical theory sometimes requires one to 
divide by n!, the order of the group. When studying Hn it turns out to be useful 
to be able to divide by 

(1 + q + h qn^)(l + q+ h qn^2) ...(1 + q). 

This is sometimes written as [n]!, and can be thought of as a "quantum deformation" 
of n\. Note that [n]! = n! if q = 1. A generic value of q is one for which [n]! ^ 0. 
The non-generic values are the primitive fcth roots of unity for k = 2 , . . . , n. The 
representation theory of Hn is well understood for generic values of q, but the 
non-generic values are the subject of ongoing active research. 

One of the most important papers on this subject is Dipper and James [5]. 
For every partition A of n, they define a F%-module Sx called the Specht module. 
They then define a bilinear pairing on Sx, which we denote (•, -)DJ- Let Sx denote 
the set of u £ Sx such that («,W)DJ = 0 for all v £ Sx. Let Dx be the quotient 
module Sx/Sx. Dipper and James show that the non-zero Dx form a complete list 
of all distinct irreducible representations of Hn. For generic values of q we have 
Dx = Sx. For non-generic values of q, the Dx are not well understood. 

Lawrence [10] gave a homological definition of the Specht modules. The con­
struction begins with the action of Bn on a homology module of a configuration 
space. The variable t is then specialised to —q^1, and a certain quotient module is 
taken. A detailed treatment of the case A = (n — 2,2) is given in [3]. 

There is a Blanchfield pairing on the Specht modules as defined by Lawrence. 
It would be nice if this were the same as the pairing defined by Dipper and James. 
Unfortunately the Blanchfield pairing is sesquilinear, whereas the pairing defined 
by Dipper and James is bilinear. This problem can be overcome as follows. Let 
p: Dn —t Dn be the conjugation map. Let p be the induced map on Hf.(C,B). 
Then the pairing 

(u,v)' = (u,p(v)) 

can be shown to give a bilinear pairing on the Specht module. 
For generic values of q, this topologically defined pairing is the same as the 

algebraically defined pairing of Dipper and James, up to some renormalisation. 
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There is some evidence that this can be made to work at non-generic values of q. If 
so, it would give rise to a new homological definition of the modules Dx, and new 
topological tools for studying them. In any case, it would be interesting to better 
understand the behaviour of this Blanchfield pairing at roots of unity. 
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Derived Categories of Coherent Sheaves 

A. Bondal* D. Orlov1^ 

Abstract 

We show how derived categories build bridges across the current mathe­
matical mainstream, linking geometric and algebraic, commutative and non-
commutative, local and global banks. Arches in these bridges are pieces of 
semiorthogonal decompositions of triangulated categories. 
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1. Introduction 
This paper is devoted to studying the derived categories Vb(X) of coherent 

sheaves on smooth algebraic varieties X and on their noncommutative counterparts. 
Derived categories of coherent sheaves proved to contain the complete geometric 
information about varieties (in the sense of the classical Italian school of algebraic 
geometry) as well as the related homological algebra. 

The situation when there exists a functor Vb(M) —y Vb(X) which is fully-
faithful is of special interest. We are convinced tha t any example of such a functor 
is both algebraically and geometrically meaningful. 

A particular case of a fully faithful functor is an equivalence of derived cate­
gories Vb(M) - ^ Vb(X). 

We show tha t smooth projective varieties with ample canonical or anticanoni-
cal bundles are uniquely determined by their derived categories. Hence the derived 
equivalences between them boil down to autoequivalences. We prove tha t for such 
a variety the group of exact autoequivalences is the semidirect product of the group 
of automorphisms of the variety and the Picard group plus translations. 

Equivalences and autoequivalences for the case of varieties with non-ample 
(anti) canonical sheaf are now intensively studied. The group of autoequivalences 
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is believed to be closely related to the holonomy group of the mirror-symmetric 
family. 

We give a criterion for a functor between derived categories of coherent sheaves 
on two algebraic varieties to be fully faithful. Roughly speaking, it is in orthog­
onality of the images under the functor of the structure sheaves of distinct closed 
points of the variety. If a functor $ : Vb(M) —y Vb(X) is fully faithful, then 
it induces a so-called semiorthogonal decomposition of Vb(X) into Vb(M) and its 
right orthogonal category. 

It turned out that derived categories have nice behavior under special bira-
tional transformations like blow ups, flips and flops. We describe a semiorthogonal 
decomposition of the derived category of the blow-up of a smooth variety X in a 
smooth center Y c X. It contains one component isomorphic to Vb(X) and several 
components isomorphic to Vb(Y). 

We also consider some flips and flops. Examples support the conjecture that for 
any generalized flip X —•* X+ there exists a fully faithful functor Vb(X+) —t Vb(X) 
and it must be an equivalence for generalized flops. This suggests the idea that the 
minimal model program of the birational geometry can be viewed as a 'minimization' 
of the derived category Vb(X) in a given birational class of X. 

Then we widen the categorical approach to birational geometry by including in 
the picture some noncommutative varieties. We propose to consider noncommuta­
tive desingularizations and formulate a conjecture generalizing the derived McKay-
correspondence. 

We construct a semiorthogonal decomposition for the derived category of the 
complete intersections of quadrics. It is related to classical questions of algebraic 
geometry, like 'quadratic complexes of lines', and to noncommutative geometric 
version of Koszul quadratic duality. 

2. Equivalences between derived categories 
The first question that arises in studying algebraic varieties from the point 

of view of derived categories is when varieties have equivalent derived categories 
of coherent sheaves. Examples of such equivalences for abelian varieties and K3 
surfaces were constructed by Mukai [Mul], [Mu2], Polishchuk [Po] and the second 
author in [Or2], [Or3]. See below on derived equivalences for birational maps. 

Yet we prove that a variety X is uniquely determined by its category Vb(X), 
if its anticanonical (Fano case) or canonical (general type case) sheaf is ample. To 
this end, we use only the graded (not triangulated) structure of the category. By-
definition a graded category is a pair (V,Tx>) consisting of a category T> (which we 
always assume to be fc-linear over a field k) and a fixed equivalence Tp : T> —y T> , 
called translation functor. For derived categories the translation functor is defined 
to be the shift of grading in complexes. 

Of crucial importance for exploring derived categories are existence and prop­
erties of the Serre functor, defined in [BK]. 

Definition 1 [BK] [B02] Let V be a k-linear category with finite-dimensional 
Horn's. A covariant additive functor S : T> —t T> is called a Serre functor if it 
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is an equivalence and there are given bi functorial isomorphisms for any A, B £ T>: 

<PA,B • Homv(A , B) ^ Eomv(B , SA)*. 

A Serre functor in a category T>, if it exists, is unique up to a graded natural 
isomorphism. 

If X is a smooth algebraic variety, n = d imX, then the functor (•) ® w j [ n ] is 
the Serre functor in Vb(X). Thus, the Serre functor in Vb(X) can be viewed as a 
categorical incarnation of the canonical sheaf OJX • 

T h e o r e m 2 [B02] Let X be a smooth irreducible projective variety with ample 
canonical or anticanonical sheaf. IfVb(X) is equivalent as a graded category to 
T>b(Xr) for some other smooth algebraic variety X', then X is isomorphic to X'. 

The idea of the proof is tha t for varieties with ample canonical or anticanonical 
sheaf we can recognize the skyscraper sheaves of closed points in Vb(X) by means 
of the Serre functor. In this way we find the variety as a set. Then we reconstruct 
one by one the set of line bundles, Zariski topology and the structural sheaf of rings. 

This theorem has a generalization to smooth orbifolds related to projective 
varieties with mild singularities, as it was shown by Y. Kawamata [Kaw]. 

Now consider the problem of computing the group Aut£>6(X) of exact (i.e. 
preserving tr iangulated structure) autoequivalences of Vb(X) for an individual X . 

T h e o r e m 3 [B02] Let X be a smooth irreducible projective variety with ample 
canonical or anticanonical sheaf. Then the group of isomorphism classes of exact 
autoequivalences Vb(X) —t Vb(X) is generated by the automorphisms of the variety, 
twists by all invertible sheaves and translations. 

In the hypothesis of Theorem 3 the group Aut£>6(X) is the semi-direct product 
of its subgroups P i c X ® Z and A u t X , Z being generated by the translation functor: 

Aut£>6(X) ~ A u t X x (PicX e Z) . 

3. Fully faithful functors and semiorthogonal de­
compositions 

An equivalence is a particular instance of a fully faithful functor. This is a 
functor F : C ^tT> which for any pair of objects X , Y £ C induces an isomorphism 
Hom(X , Y) ~ H o m ( F X , FY). This notion is especially useful in the context of 
tr iangulated categories. 

If a functor $ : Vb(M) —y Vb(X) is fully faithful, then it induces a so-called 
semiorthogonal decomposition of Vb(X) into Vb(M) and its right orthogonal. 

Let B be a full tr iangulated subcategory of a tr iangulated category T>. The 
right orthogonal to B is the full subcategory B1- c T> consisting of the objects C such 
tha t Hom(B , C) = 0 for all B £ B. The left orthogonal ±B is defined analogously. 
The categories ±B and BL are also tr iangulated. 
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Definition 4 [BK] A sequence of triangulated subcategories (BQ,...,BU) in a trian­
gulated category T> is said to be semiorthogonal if Bj C B(- whenever 0 < j <i < n. 
If a semiorthogonal sequence generates V as a triangulated category, then we call it 
by semiorthogonal decomposition of the category T> and denote this as follows: 

V=(B0,....,Br 

Examples of semiorthogonal decompositions are provided by exceptional se­
quences of objects [Bo]. These arise when all B,'s are equivalent to the derived cate­
gories of finite dimensional vector spaces Vb(k — mod). Objects which correspond to 
the 1-dimensional vector space under a fully faithful functor F :Vb(k — mod) —¥ T> 
can be intrinsically defined as exceptional, i.e. those satisfying the conditions 
Hom'(B , E) = 0, when i ^ 0, and Hom°(ii', E) = k. There is a natural ac­
tion of the braid group on exceptional sequences [Bo] and, under some conditions, 
on semiorthogonal sequences of subcategories in a triangulated category [BK]. 

We propose to consider the derived category of coherent sheaves as an analogue 
of the motive of a variety, and semiorthogonal decompositions as a tool for simpli­
fication of this 'motive' similar to splitting by projectors in Grothendieck motivic 
theory. 

Let X and M be smooth algebraic varieties of dimension n and m respectively 
and E an object in Vb(X x M). Denote by p and IT the projections of M x X to M 
and X respectively. With E one can associate the functor <j># : Vb(M) —y Vb(X) 
defined by the formula: 

<t>E(-):=B,iT*(E(êp*(-)). 

It happens that any fully faithful functor is of this form. 

Theo rem 5 [Or2] Let F : Vb(M) -+ Vb(X) be an exact fully faithful functor, 
where M and X are smooth projective varieties. Then there exists a unique up to 
isomorphism object E £ Vb(M x X) such that F is isomorphic to the functor <j>#. 

The assumption on existence of the right adjoint to F, which was originally in 
[Or2], can be removed in view of saturatedness of Vb(M) due to [BK], [BVdB]. 

This theorem is in conjunction with the following criterion. 

Theo rem 6 [BOI] Let M and X be smooth algebraic varieties and E £ Vb(M x X). 
Then <J># is fully faithful functor if and only if the following orthogonality conditions 
are verified: 

i) E.omx($E(Otl) , $E(Ot2)) = 0 for every i andti^t2. 

it) Eomx(^E(Ot),^E(Ot)) = k, 

Eomx(^E(Ot) , &E(Ot)) = 0, for i </ [0,dimM]. 

Here t, t\, Ì2 stand for closed points in M and 0 ^ for the skyscraper sheaves. 
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The criterion is a particular manifestation of the following important princi­
ple: suppose M is realized as an appropriate moduli space of pairwise homologically 
orthogonal objects in a triangulated category V taken 'from real life', then one can 
expect a sheaf of finite (noncommutative) algebras AM over OM and a fully faithful 
functor from the derived category Vb(coh(AM)) of coherent modules over AM to V. 

There are also strong indications that this principle should have a generaliza­
tion, at the price of considering noncommutative DG moduli spaces, to the case 
when the orthogonality condition is dropped. 

4. Derived categories and birational geometry 
Behavior of derived categories under birational transformations shows that 

they can serve as a useful tool in comprehending various phenomena of birational 
geometry and play possibly the key role in realizing the minimal model program. 

First, we give a description of the derived category of the blow-up of a variety 
with smooth center in terms of the categories of the variety and of the center. Let Y 
be a smooth subvariety of codimension r in a smooth algebraic variety X. Denote X 
the smooth algebraic variety obtained by blowing up X along the center Y. There 
exists a fibred square: 

Y A X 
p 4- 7T 4-

Y A x 
where i and j are smooth embeddings, and p:Y—¥ Y is the projective fibration of 
the exceptional divisor Y in X over the center Y. Recall that Y = W(NX/Y) is the 
projective normal bundle. Denote by 0Y(1) the relative Grothendieck sheaf. 

Proposi t ion 7 [Ori] Let L be any invertible sheaf on Y. The functors 

LTT* :Vb(X) —yVb(X), 

Hj4L®p*(-j) : Vb(Y) —• Vb(X) 

are fully faithful. 

Denote by D(X) the full subcategory of Vb(X) which is the image of Vb(X) 
with respect to the functor hn* and by D(Y)k the full subcategories of Vb(X) which 
are the images of Vb(Y) with respect to the functors Rj»(öy(fc) ®p*(-)). 

Theorem 8 [Orl][B01] We have the semiorthogonal decomposition of the category 
of the blow-up: 

Vb(X) = (D(Y)^r+i,...,D(Y)^i,D(X)). 

Now we consider the behavior of the derived categories of coherent sheaves 
with respect to the special birational transformations called flips and flops. 
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Let Y be a smooth subvariety of a smooth algebraic variety X such that 
Y =ë P* and Nx/Y =* 0(^\)®{l+1) with I < k. 

If X is the blow-up of X along Y, then the exceptional divisor Y = Wk x Wl is 
the product of projective spaces. We can blow down X in such a way that Y projects 
to the second component P' of the product. As a result we obtain a smooth variety 
X+, which for simplicity we assume to be algebraic, with subvariety Y+ = P'. This 
is depicted in the following diagram: 

The birational map X —•* X+ is the simplest instance of flip, for I < k. If I = k, 
this is a flop. 

Theo rem 9 [BOI] In the above notations, the functor R7r»L7r+* : Vb(X+) —• 
Vb(X) is fully faithful for I < k. If I = k, it is an equivalence. 

This theorem has an obvious generalization to the case when Y is isomorphic 
to the projectivization of a vector bundle E of rank k on a smooth variety W, 
q : Y —y W, and Nx/Y = q*F(E) 0E( — 1) where F is a vector bundle on W of rank 
I < k. Then the blow-up with a smooth center can be viewed as the particular case 
of this flip when Y is a divisor in X. Kawamata [Kaw] generalized the theorem to 
those flips between smooth orbifolds which are elementary (Morse type) cobordisms 
in the theory of birational cobordisms due to Wlodarczyk et al. [Wl], [AKMW]. 

fi 
Let X and X+ be smooth projective varieties. A birational map X —+ X+ 

will be called a generalized flip if for some (and consequently for any) its smooth 
resolution 

the difference D = n*Kx —jr+*Kx+ between the pull-backs of the canonical divisors 
is an effective divisor on X. The particular case when D = 0 is called generalized 
flop. 

Theorem 9 together with calculations of 3-dimensional flops with centers in 
(—2)-curves [BOI] lead us to the following conjecture. 

fi 
Conjecture 10 For any generalized flip X —•* X+ there is an exact fully faithful 
functor F : Vb(X+) —• Vb(X). It is an equivalence for generalized flops. 
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This conjecture was recently proved in dimension 3 by T. Bridgeland [Br]. 
The functor R7r»L7r+* : Vb(X+) —• Vb(X) is not always fully faithful under 

conditions of the conjecture, but we expect that it is such when X is replaced by 
the fibred product of X and X+ over some common singular contraction of X and 
X+. Namikawa proved that this is the case for Mukai symplectic flops [Na]. 

A fully faithful functor Vb(X+) —• Vb(X) induces a semiorthogonal decom­
position of Vb(X) into Vb(X+) and its right orthogonal (which is trivial for flops). 
Hence, passing from X to X+ for generalized flips has the categorical meaning of 
breaking off semiorthogonal summands from the derived category. This suggests 
the idea that the minimal model program of birational geometry should be inter­
preted as a minimization of the derived category Vb(X) in a given birational class 
of X. Promisingly, chances are that the very existence of flips can be achieved by-
constructing X+ as an appropriate moduli space of objects in Vb(X), in accordance 
with the principle of the previous section (this is done by T. Bridgeland for flops in 
dimension 3 [Br]). 

5. Noncommutative resolutions of singularities 
In this section we will give a perspective for categorical interpretation of the 

minimal model program by enriching the landscape with the derived categories of 
noncommutative varieties. 

Let IT : X —t X be a proper birational morphism, where X has rational singu­
larities. Then RTT* : Vb(X) -+ Vb(X) identifies Vb(X) with the quotient of Vb(X) 
by the kernel of RîT*. For this reason, let us call by a categorical desingulariza-
tion of a triangulated category T> a pair (C, K.) consisting of an abelian category C 
of finite homological dimension and of K., a thick subcategory in Vb(C) such that 
T> = Vb(C)/K.. We expect that for T> = Vb(X) there exists a minimal desingular-
ization, i.e. such one that Vb(C) has a fully faithful embedding in T>b(C) for any-
other categorical desingularization (C',K.r) of X>. Such a desingularization is unique 
up to derived equivalence of C. 

For the derived categories of singular varieties one may hope to find the min­
imal desingularizations in the spirit of noncommutative geometry. 

Let X be an algebraic variety. We call by noncommutative (birational) desingu­
larization of X a pair (p, A) consisting of a proper birational morphism p : Y —¥ X 
and an algebra A = £nd(T) on Y, the sheaf of local endomorphisms of a torsion 
free coherent öy-module T, such that the abelian category of coherent „4-modules 
has finite homological dimension. 

When / : Y —t X is a morphism from a smooth Y onto an affine X with 
fibres of dimension < 1 and R/» (öy) = Ox, M. Van den Bergh [VdB] has recently-
constructed a noncommutative desingularization of X, which is derived equivalent 
toVb(Y). 

Conjecture 11 Let X has canonical singularities andq :Y—¥X a finite morphism 
with smooth Y. Then the pair (idx,£nd(q*ÖY)) is a minimal desingularization of 
X. 
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In particular, we expect that T>b(coh(£nd(q*ÖY))) has a fully faithful functor 
into Vb(X) for any (commutative) resolution of X. Moreover, if the resolution is 
crêpant then the functor has to be an equivalence. 

Let X be the quotient of a smooth Y by an action of a finite group G. If 
the locus of the points in Y with nontrivial stabilizer in G has codimension > 2, 
then the category of coherent £nd(g»öy )-modules is equivalent to the category of 
G-equivariant coherent sheaves on Y. Therefore the conjecture is a generalization 
of the derived McKay correspondence due to Bridgeland-King-Reid [BKR]. 

6. Complete intersection of quadrics and noncom­
mutative geometry 

This section is related to the previous one by Grothendieck slogan that pro­
jective geometry is a part of theory of singularities. 

Let X be a smooth intersection of two projective quadrics of even dimension 
d over an algebraically closed field of characteristic zero. It appears that if we 
consider the hyperelliptic curve C which is the double cover of P1 that parameterizes 
the pencil of quadrics, with ramification in the points corresponding to degenerate 
quadrics, then Vb(C) is embedded in Vb(X) as a full subcategory [BOI]. This gives 
a categorical explanation for the classical description of moduli spaces of semistable 
bundles on the curve C as moduli spaces of (complexes of) coherent sheaves on X. 

The orthogonal to Vb(C) in Vb(X) is decomposed into an exceptional sequence 
(of line bundles ). More precisely, we have a semiorthogonal decomposition 

Vb(X) = (öxhd + 3),...,öx,'Db(C)). (6.1) 

When a greater number of quadrics is intersected, objects of noncommutative 
geometry naturally show up: instead of coherent sheaves on hyperelliptic curves 
we must consider modules over a sheaf of noncommutative algebras. More about 
noncommutative geometry is in the talk of T. Stafford at this Congress. 

Consider a system of m quadrics in V(V), i.e. a linear embedding U ^y S2V*, 
where dimU = m, dimV = n, 2m < n. Let X, the complete intersection of 
the quadrics, be a smooth subvariety in W(V) of dimension n — m — 1. Let A = 
® H0(X,O(ij) be the coordinate ring of X. This graded quadratic algebra is 

Koszul due to Tate [Ta]. The quadratic dual algebra B = A is the generalized 
homogeneous Clifford algebra. It is generated in degree 1 by the space V, the 
relations being given by the kernel of the dual to <j> map S2V —¥ U*, viewed as a 
subspace in V <g> V. The center of B is generated by U* (a subspace of quadratic 
elements in B) and an element d, which satisfies the equation d2 = f where / is 
the equation of the locus of degenerate quadrics in U. Algebra B is finite over the 
central subalgebra S = S'U*. The Veronese subalgebra Bev = (BB2ì is finite over 
the Veronese subalgebra Sev = ®S2%U*. Since Proj Sev is isomorphic to V(U), 
the sheafification of Bev over Proj Sev is a sheaf B of finite algebras over öV(Vy 
Consider the derived category T>b(coh(Bj) of coherent right B-modules. 
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Theo rem 12 Let X be the smooth intersection of m quadrics in P " _ 1 , 2m < n. 
Then there exists a fully faithful functor T>b (coh(Bj) ^yVb(X). Moreover, 

(i) if 2m < n, we have a semiorthogonal decomposition 

Vb(X) = (Ox(^n + 2m+i),...,Ox,T)b(coh(B))sj, 

(ii) i /2m = n, there is an equivalence T>b(coh(Bj) ^y Vb(X). 

For m = 0, i.e. when there is no quadrics, the theorem coincides with Beilin-
son's description of the derived category of the projective space [Be]. For m = 1, 
this is Kapranov's description of the derived category of the quadric [Kap]. 

For odd n, the element d generates the center of B over öV(Vy Hence the 
spectrum of the center of B is a ramified double cover Y over W(U). Also B yields 
a coherent sheaf of algebras B' over Y, such that coh(B') is equivalent to coh(B). 
For the above case of two even dimensional quadrics, B' is an Azumaya algebra 
over Y = C. Since Brauer group of Y (taken over an algebraically closed field of 
characteristic zero) is trivial, the category coh(B') is equivalent to COìI(OY). Hence 
(6.1) follows from the theorem. 

Furthermore, when X is a K3 surface, the smooth intersection of 3 quadrics 
in P5 , then the double cover Y is also a K3 surface, but B' is in general a nontrivial 
Azumaya algebra over Y. The theorem states an equivalence Vb(X) ~ T>b (coh(B'j). 

This theorem illustrates the principle from section 3. The fully faithful functor 
is related to the moduli space of vector bundles on X, which are the restrictions to 
X of the spinor bundles on the quadrics. The (commutative) moduli space involved 
is either W(U) or Y, depending on parity of n. 

Algebraically, the fully faithful functor in the theorem is given by an appropri­
ate version of Koszul duality. Theorem 12 has a generalization to a class of Koszul 
Gorenstein algebras, which includes the coordinate rings of superprojective spaces. 
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Algebraic Cobordism 

M. Levine* 

A b s t r a c t 

Together with F. Morel, we have constructed in [6, 7, 8] a theory of al­
gebraic cobordism,., an algebro-geometric version of the topological theory of 
complex cobordism. In this paper, we give a survey of the construction and 
main results of this theory; in the final section, we propose a candidate for a 
theory of higher algebraic cobordism, which hopefully agrees with the coho­
mology theory represented by the P1-spectrum MGL in the Morel-Voevodsky 
stable homotopy category. 

2000 M a t h e m a t i c s Subject Classification: 19E15, 14C99, 14C25. 
Keywords and Ph ra se s : Cobordism, Chow ring , _R"-theory. 

1. Oriented cohomology theories 
Fix a field k and let Seh/, denote the category of separated finite-type k-

schemes. We let Sm^ be the full subcategory of smooth quasi-projective fc-schemes. 
We have described in [7] the notion of an oriented cohomology theory on S m j . 

Roughly speaking, such a theory A* consists of a contravariant functor from Sm^ 
to graded rings (commutative), which is also covariantly functorial for projective 
equi-dimensional morphisms f :Y —¥ X (with a shift in the grading): 

/ , :A*(Y)^A*-dimxY(X). 

The pull-back g* and push-forward /» satisfy a projection formula and commute in 
transverse cartesian squares. If L —¥ X is a line bundle with zero-section s : X —t L, 
we have the first Chern class of L, defined by 

Ci(L):=s*(s*(lx))£A1(X), 

where lx £ A°(X) is the unit. A* satisfies the projective bundle formula: 
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(PB) Let £ be a rank r + 1 locally free coherent sheaf on X, with projective bundle 
q : W(£) —t X and tautological quotient invertible sheaf q*£ —¥ 0(1). Let 
£ = ci(0(l)). Then A*(¥(£)) is a free .4*(X)-module with basis 1,£,.. • , f • 

Finally, A* satisfies a homotopy property: if p : V —¥ X is an affine-space bun­
dle (i.e., a torsor for a vector bundle over X), then p* : A*(X) —t A*(V) is an 
isomorphism. 

Examples 1.1. (1) The theories CH* and H?^(—, Z/n(*)) on Sm/. (also with Z/(*) 
or Qi(*) coefficients). 

(2) The theory K0[ß, ß^1] on Smj . Here ß is an indeterminant of degree —1, used 
to keep track of the relative dimension when taking projective push-forward. 

Remarks 1.2. (1) In [8], we consider a more general (dual) notion, that of an 
oriented Borel-Moore homology theory .4». Roughly, this is a functor from a full 
subcategory of Seh/, to graded abelian groups, covariant for projective maps, and 
contravariant (with a shift in the grading) for local complete intersection morphisms. 
In addition, one has external products, and a degree -1 Chern class endomorphism 
ci(L) : A*(X) —¥ -A»_i(X) for each line bundle L on X, defined by ci(L)(n) = 
S*(S»(JJ)), s : X —t L the zero-section. As for an oriented cohomology theory, 
there are various compatibilities of push-forward and pull-back, and .4» satisfies a 
projective bundle formula and a homotopy property. 

This allows for a more general category of definition for .4», e.g., the category 
Seh/.. As we shall see, the setting of Borel-Moore homology is often more natural 
than cohomology. On Smj , the two notions are equivalent: to pass from Borel-
Moore homology to cohomology, one re-grades by setting An(X) := .4„_dimfe x(X) 
and uses the l.c.i. pull-back for .4» to give the contravariant functoriality of A*, 
noting that every morphism of smooth fc-schemes is an l.c.i. morphism. We will 
state most of our results for cohomology theories on Sm/., but they extend to the 
setting of Borel-Moore homology on Seh/, (see [8] for details). 

(2) Our notion of oriented cohomology is related to that of Panin [10], but is not 
the same. 

2. The formal group law 
Let .4» be an oriented cohomology theory on Smj . As noticed by Quillen [11], 

a double application of the projective bundle formula (PB) yields the isomorphism 
of rings 

A*(k)[[u,v]] =* lim.4*(P" x P ro), 

the isomorphism sending u to ci(p\0(t)) and v to ci(plö(lj). The class of 
ci(p*0(t) ®P2Ö(1)) thus gives a power series FA(U,V) £ A*(k)[[u,v]] with 

ci(plO(l) ®p*20(l)) = FA(ci(plO(l)),ci(plO(l))). 



Algebraic Cobordism 59 

By the naturality of c\, we have the identity for X £ Sm/. with line bundles L, M, 

ci(L® M) = FA(ci(L),ci(M)). 

In addition, FA(U,V) = U + V mod uv, FA(U,V) = FA(V,U), and FA(FA(U,V), W) = 
FA(U,FA(V,WJ). Thus, FA gives a formal group law with coefficients in A*(k). 

Remark 2.3. Note that Ci : Pic(X) —t A1(X) is a group homomorphism if and 
only if FA(U,V) = U + V. If this is the case, we call A* ordinary, if not, A* is 
extraordinary. If FA(U,V) = u + v — auv with a a unit in A*(k), we call A* 
multiplicative and periodic. 

Examples 2.4. For A* = CH* or H2*, FA = U + V, giving examples of ordinary-
theories. For the theory A = if0[/5,/5_1], ci(L) = (1 — Lv)ß^1, and FA(U,V) = 
u + v — ßuv, giving an example of a multiplicative and periodic theory. 

Remark 2.5. Let L* = Z[ay | i, j > 1], where we give ay degree —i — j + 1, and 
let F £ L* [[«,v]] be the power series F = u + v + ^ • . ay«*wJ. Let 

L* = L* /F(u, v) = F(v, u), F(F(u, v),w) = F(u, F(v, w)), 

and let FL £ L* [[«, v]] be the image of F. Then (F^, L* ) is the universal commuta­
tive dimension 1 formal group; L* is called the Lazard ring (cf. [5]). 

Thus, if A* is an oriented cohomology theory on Sm/., there is a canonical 
graded ring homomorphism <pA '• L* —̂  A*(k) with <pA(Ft) = FA-

3. Algebraic cobordism 
The main result of [7, 8] is 

Theorem 3.6. Let k be a field of characteristic zero. 
1. There is a universal oriented Borel-Moore homology theory Q» on Sch/.. The 

restriction of 0» to Sm/. yields the universal oriented cohomology theory Q* 
on Sni/.. 

2. The homomorphism 4>Q : L* —t Q*(k) is an isomorphism. 
3. Let i : Z —¥ X be a closed imbedding with open complement j : U —¥ X. Then 

the sequence 

Sl.(Z) ^ 0 , (X) A 0,(17) - • 0 

is exact. 

Idea of construction: We construct 0»(X) in steps; the construction is inspired 
by Quillen's approach to complex cobordism [11]. 

1. Start with cobordism cycles (f : Y —t X, L\,... ,Lr), with Y £ Smj irre­
ducible, f :Y —¥ X projective and L\,...,Lr line bundles on Y (we allow r = 
0). We identify two cobordism cycles if there is an isomorphism <j>:Y —¥ Y', a 
permutation a and isomorphisms Lj = <j)*L',.y Let Z*(X) be the free abelian 
group on the cobordism cycles, graded by giving (/ : Y —t X, L\,..., Lr) de­
gree dim/. Y — r. 
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2. Let 1Zd%m(X) be the subgroup of Z*(X) generated by cobordism cycles of 
the form (/ : Y -ï X,n*Li,... ,n*Lr, Mi,..., Ms), where TX : Y -ï Z is a 
smooth morphism in Smj , the L, are line bundles on Z, and r > dim/. Z. Let 
Z,(X) = Z4X)/TZdim(X). 

3. Add the Gysin isomorphism: If L —¥ Y is a line bundle and s : Y —¥ L 
is a section transverse to the zero-section with divisor i : D —¥ Y, identify 
(/ : Y - • X,Li,...,Lr,L) with ( / o » : D 4 X,i*Lu... ,i*Lr). We let 
n„(X) denote the resulting quotient of Z_^(X). Note that on n„(X) we have, 
for each line bundle L —¥ X, the Chern class operator 

Ci(L) : £ , ( * ) - • 0 , - 1 (*) 
(/ : F -+ X,Li,...,Lr) ^ (f : F -+ X,LU. ..,Lr,fL) 

as well as push-forward maps /» : Ü»(X) —¥ Q*(X') for / : X —̂  X ' projective. 
4. Impose the formal group law: Regrade L by setting L„ := L _ n . Let 0»(X) be 

the quotient of L» ®Q» (X) by the imposing the identity of maps L» ®I2» (F) —̂  
L» ®Q,(X) 

(id ® /») o FL(ci(L),ci(M)) = id ® (fi oci(L® Mj) 

for f :Y —¥ X projective, and L, M line bundles on Y. Note that, having im­
posed the relations in 1Zd%m, the operators ci(L), ci(M) are locally nilpotent, 
so the infinite series FL(CI(L), ci(Mj) makes sense. 

As the notation suggests, the most natural construction of 0 is as an oriented 
Borel-Moore homology theory rather than an oriented cohomology theory; the tran­
sition to an oriented cohomology theory on Sm/. is given as in remark 1.2(1). The 
proof of theorem 3.6 uses resolution of singularities [4] and the weak factorization 
theorem [1] in an essential way. 

R e m a r k 3.7. In addition to the properties of 0» listed in theorem 3.6, 0»(X) is 
generated by the classes of "elementary" cobordism cycles (/ : Y —t X). 

4. Degree formulas 
In the paper [12], Rost made a number of conjectures based on the theory 

of algebraic cobordism in the Morel-Voevodsky stable homotopy category. Many 
of Rost's conjectures have been proved by homotopy-theoretic means (see [3]); our 
construction of algebraic cobordism gives an alternate proof of these results, and 
settles many of the remaining open questions as well. We give a sampling of some 
of these results. 

4.1. The generalized degree formula 

All the degree formulas follow from the "generalized degree formula". We first 
define the degree map Q*(X) —t Q*(k). 
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Definition 4.8. Let k be a field of characteristic zero and let X be an irreducible 
finite type fc-scheme with generic point i : x —¥ X. For an element n of 0*(X), define 
degn £ ii*(k) to be the element mapping to i*r\ in Q*(k(xj) under the isomorphisms 
n*(k) =* L* =ë n*(k(x)) given by theorem 3.6(2). 

Theorem 4.9(generalized degree formula). Let k be a field of characteristic 
zero. Let X be an irreducible finite type k-scheme, and let n be in 0»(X). Let 
/o : B0 —¥ X be a resolution of singularities of X, with B0 quasi-projective over k. 
Then there are a, £ 0»(fc), and projective morphisms fi : Bt —t X such that 

1. Each Bi is in Sni j , fi : Bt —t /(!?,) is birational and f(Bi) is a proper closed 
subset of X (for i > 0). 

2.ÌÌ- (degn)[/0 : B0 -+ X] = E [ = i ««[/« : Bt "• xi «" °* W -

Proof. It follows from the definitions of 0* that we have 

Ü*(k(x)) =limÜ*(U), 
u 

where the limit is over smooth dense open subschemes U of X, and ii*(k(xj) is the 
value at Specfc(ar) of the functor Q* on finite type fc(a:)-schemes. Thus, there is a 
smooth open subscheme j : U —¥ X of X such that j*n = (degn)fid^] in Q*(U). 
Since U xx B0 = U, it follows that j*(n - (degn)[/0]) = 0 in Q*(U). 

Let W = X \U. From the localization sequence 

n.(w) A o,(x) A 04c/) -• 0, 

we find an element % £ Q»(W) with »*(%) = n — (degn)[/o], and noetherian 
induction completes the proof. D 

Remark 4.10. Applying theorem 4.9 to the class of a projective morphism / : 
Y —¥ X, with X, F £ Sni/., we have the formula 

r 

[f : Y -+ X] - (deg/)[idx] = $ > [ / « : A ^ X] 
i=l 

in Q*(X). Also, if dim^X = dim/. Y, deg / is the usual degree, i.e., the field 
extension degree [k(Y) : k(X)] if / is dominant, or zero if / is not. 

4.2. Complex cobordism 
For a differentiable manifold M, one has the complex cobordism ring MU* (M). 

Given an embedding a : k —¥ C and an X e Sni/., we let Xer(C) denote the complex 
manifold associated to the smooth C-scheme I x j C . Sending X to MU2*(Xcr(C)) 
defines an oriented cohomology theory on Sni/.; by the universality of 0*, we have 
a natural homomorphism 

&„ : 0*(X) - • MU2*(Xa(<C)). 
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Now, if P = P(ci,. • • ,Cd) is a degree d (weighted) homogeneous polynomial, 
it is known that the operation of sending a smooth compact d-dimensional complex 
manifold M to the Chern number deg(F(ci , . . . , C</)(0M)) (where QM is the com­
plex tangent bundle) descends to a homomorphism MU^2d —¥ Z. Composing with 
3ftcr, we have the homomorphism P : Q^d(k) —>• Z. If X is smooth and projective 
of dimension dover k, we have F([X]) = deg(P(ci,... ,Cd)(Qx«(c)))', P([X]) is in 
fact independent of the choice of embedding a. 

Let Sd(ci,... ,Cd) be the polynomial which corresponds to ^ £f, where £ 1 , . . . 
are the Chern roots. The following divisibility is known (see [2]): if d = p n — 1 for 
some prime p, and dimX = d, then Sd(X) is divisible by p. 

In addition, for integers d = pn — 1 and r > 1, there are mod p character­
istic classes td,r, with td,i = Sd/p mod p. The Sd and the td,r have the following 
properties: 

(4.1) 

1. Sd(X) £ pZ is defined for X smooth and projective of dimension d = pn — 1. 
td,r(X) £ Z /p is defined for X smooth and projective of dimension rd = 
r(pn - 1). 

2. Sd and td,r extend to homomorphisms Sd '• ii^d(k) —¥ pZ, td,r '• ii^rd(k) —¥ 
Z/p. 

3. If X and Y are smooth projective varieties with dim X, dim Y > 0, dim X + 
dim F = d, then Sd(X x Y) = 0. 

4. If X i , . . . , X s are smooth projective varieties with ^ - d i m X j = rd, then 
td,r(Y\i xi) = 0 unless d\ dimXj for each i. 

We can now state Rost's degree formula and the higher degree formula: 

Theorem 4.11 (Rost's degree formula). Let f : Y —¥ X be a morphism of 
smooth projective k-schemes of dimension d, d = pn — 1 for some prime p. Then 
there is a zero-cycle n on X such that 

sd(Y) - (deg f)sd(X) = p • deg(n). 

Theorem 4.12(Rost's higher degree formula). Let f :Y —¥ X be a morphism 
of smooth projective k-schemes of dimension rd, d = pn — 1 for some prime p. 
Suppose that X admits a sequence of surjective morphisms 

X = X0 —¥ Xi —t ... —t X r _i —t Xr = Spec k, 

such that: 

1. dimXj = d(r — i). 
2. Let n be a zero-cycle on Xt Xxi+1 Specfc(Xj+i). Then p\ deg(n). 

Then 
td,r(Y) = deg(f)td,r(X). 

Proof. These two theorems follow easily from the generalized degree formula. 
Indeed, for theorem 4.11, take the identity of remark 4.10 and push forward to 
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0*(fc). Using remark 3.7, this gives the identity 

r 

[Y]^(degf)[X] = Y,m{AiXBi] 
i=l 

in Q*(X), for smooth, projective fc-schemes Ay By and integers rrij, where each 
Bi admits a projective morphism fi : Bt —t X which is birational to its image and 
not dominant. Since Sd vanishes on non-trivial products, the only relevant part of 
the sum involves those Bj of dimension zero; such a Bj is identified with the closed 
point bj := fj(Bj) of X. Applying Sd, we have 

sd(Y) -deg(f)sd(X) = J2m3sd(Aj)àegk(bj). 
j 

Since Sd(Aj) = prij for suitable integers rij, we have 

sd(Y) - deg(f)sd(X) = p d e g ( ^ m i n i 6 i ) . 
j 

Taking n = V . rnyrijbj proves theorem 4.11. 
The proof of theorem 4.12 is similar: Start with the decomposition of [/ : 

F —t X] — (deg/)[idx] given by remark 4.10. One then decomposes the maps 
Bi —¥ X = X0 further by pushing forward to X\ and using theorem 4.9. Iterating 
down the tower gives the identity in Q»(fc) 

[F] - (deg f)[X] = J2mi[Bt
0x...x B«]; 

i 

the condition (2) implies that, if d\ dim/. Bl- for all j = 0 , . . . , r, then p\rrij. Applying 
td,r and using the property (4.1)(4) yields the formula. D 

5. Comparison results 
Suppose we have a formal group (f,R), giving the canonical homomorphism 

<pf : L* -^ R. Let Q*. R) be the functor 

Q^ f i ) (X) = 0*(X)®L»-R, 

where Q*(X) is an L*-algebra via the homomorphism 4>Q : L* —t Q*(k). The 
universal property of 0* gives the analogous universal property for QT. R,. 

In particular, let 0̂ j_ be the theory with (f(u,v),R) = (« + w,Z),and let 0^ be 
the theory with (/(«, v),R) = (u + v — ßuv, Z[ß, ß^1]). We thus have the canonical 
natural transformations of oriented theories on Sni/. 

O ; - • CH*; Q*x - • K^ßJ-1]. (5.2) 

Theorem 5.13. Letk be a field of characteristic zero. The natural transformations 
(5.2) are isomorphisms, i.e., CH* is the universal ordinary oriented cohomology 
theory and K^ßjß^1] is the universal multiplicative and periodic theory. 



64 M. Levine 

Proof. For CH*, this uses localization, theorem 4.9 and resolution of singulari­
ties. For Ko, one writes down an integral Chern character, which gives the inverse 
isomorphism by the Grothendieck-Riemann-Roch theorem. D 

6. Higher algebraic cobordism 
The cohomology theory represented by the P1-spectrum MGL in the Morel-

Voevodsky Â1 -stable homotopy category [9, 13] gives perhaps the most natural alge­
braic analogue of complex cobordism. By universality, Q"(X) maps to MGL2n'n(X); 
to show that this map is an isomorphism, one would like to give a map in the other 
direction. For this, the most direct method would be to extend 0* to a theory of 
higher algebraic cobordism; we give one possible approach to this construction here. 

The idea is to repeat the construction of 0», replacing abelian groups with 
symmetric monoidal categories throughout. Comparing with the Q-construction, 
one sees that the cobordism cycles in 1Z.d%m(X) should be homotopic to zero, but 
not canonically so. Thus, we cannot impose this relation directly, forcing us to 
modify the group law by taking a limit. 

Start with the category Z(X)0, with objects (/ : F —t X, L\,..., Lr), where 
F is irreducible in Sni/., / is projective, and the L, are line bundles on F . A 
morphism (/ : F —t X, L\,..., Lr) —t ( / ' : F ' —t X, L[,..., L'r) in Z(X)0 consist of 
a tuple (<j), ipi,..., ipr, a), with <j> :Y —¥ Y' an isomorphism over X, a a permutation, 
and 'tpj : Lj —t <jfL',~ an isomorphism of line bundles on F . Form the category 

Z(X) as the symmetric monoidal category freely generated by Z(X)0; grade Z(X) 
by letting Zn(X) be the full symmetric monoidal subcategory generated by the 
(/ : F —t X, Li,..., Lr) with n = dim/. F — r. 

Next, form 0(X) by adjoining (as a symmetric monoidal category) an isomor­
phism 7L J S : ( / o i : D —t X,i*L\,... ,i*Lr) —t (f : Y —t X,L\,... ,Lr,L) for each 
section s : F —t L transverse to the zero-section with divisor i : D —t X. Given a 
morphism 0 := (</>,.._.) : ( / : F -+ X, Lu ..., Lr, L) -+ ( / ' : F ' -+X,L[,..., L'r, V) 
(with L=4>*L' via <j>), let i' : D' -t Y' be the map induced by <j>, s' : Y' -t V the 
section induced by s, and 

ipD : ( / o i : D -> X, i*Li,..., i*Lr) -> ( / ' o i' : D' -> X, i'*L[,..., i'*L'r), 

the morphism induced by tp. We impose the relation V ° 7 L , S = 1L',S' °'<PD'• Finally, 
for line bundles L, M with smooth transverse divisors iE : D —t Y, iE : E —ï Y 
defined by sections s : F —t L, t : F —t M, respectively, we impose the relation 
1L,S ° lì* M,ì* t = lM,t ° lì* L,i* s- The grading on Z(X) extends to one on 0(X) . 

Given g : X —t X' projective, we have the functor p» : 0(X) —t Q(X'), 
similarly, given a smooth morphism h : X —t X', we have the functor h* : O(X') —t 
Ü(X). Given a line bundle L on X, we have the natural transformation ci(L) 
sending (/ : F - • X, L i , . . . , Lr) to (/ : F - • X, Li,..., Lr, f*L). 

Now let C be a symmetric monoidal category such that all morphisms are 
isomorphisms, and let R be a ring, free as a Z-module. One can define a symmetric 
monoidal category R ®N C with a symmetric monoical functor C —¥ R ®N C which 
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is universal for symmetric monoidal functors C —¥ C such that C admits an action 
of R via natural transformations. In case R = Z, Z ®N C is the standard group 
completion C~1C. In general, if {ea | a £ A} is a Z-basis for R, then 

R®NC = ]JC-1C, 
a 

with the A-action given by expressing xx : R —¥ R in terms of the basis {ea}. 

For each integer n > 0, let L» be the quotient of L» by the ideal of elements 
of degree > n. We thus have the formal group (FL(„),li" ). 

We form the category l i") ®nÛ.(X), which we grade by total degree. For each 
f :Y —¥ X projective, with F £ Sni/., and line bundles L, M, L\,...,Lr on F , we 
adjoin an isomophism PL,M 

/»(FL(n) (ci(L), ci(M))(idY,Li,..., Lr)) ^ /»(id ®ëi(L® M)(idY,Li,..., Lr)). 

We impose the condition of naturality with respect to the maps in l i") ®N I2„(F), 
in the evident sense; the Chern class transformations extend in the obvious manner. 

We impose the following commutativity condition: We have the evident iso­
morphism ìL,M '• FL{n)(ci(L),ci(M)) —¥ Fh(„) (ci(M), ci(Lj) of natural transforma­
tions, as well as TL,M '• c\(L® M) —t ci(M ® L), the isomorphism induced by the 
symmetry L®M = M®L. Then we impose the identity TL,M°PL,M = PM,L°tL,M-
We impose a similar identity between the associativity of the formal group law and 
the associativity of the tensor product of line bundles. 

We also adjoin a • TL,M for all a £ l i " ) , with similar compatibilities as above, 
respecting the li") -action and sum. This forms the symmetric monoidal category 
Q(«) (X), which inherits a grading from O(X). We have the inverse system of graded 
symmetric monoidal categories: 

. . . - • Q("+1) (X) - • Q(") (X)^ ... . 

Definition 5.14. Set 0 ^ r ( X ) := n^BÜ^(X)) and iìm,r(x) := u ™ 0 ™ , ^ ) -
n 

At present, we can only verify the following: 

Theo rem 5.15. There is a natural isomorphism OTOj0(X) = QTO(X). 

Proof. First note that iro(Zm(Xj) is a commutative monoid with group completion 
Zm(X). Next, the natural map 7ro(0»i(X))+ —t 0*(X) is surjective with kernel 
generated by the classes generating TZdtm(X). Given such an element ip := (/ : 
F —t X,n*Li,... ,n*Lr, Mi,..., Ms), with n : Y —¥ Z smooth, and r > dim/. Z, 
suppose that the L, are very ample. We may then choose sections «j : Z —¥ Lt with 
divisors Di all intersecting transversely. Iterating the isomorphisms 7L ; ,Sì gives 
a path from tp to 0 in BÙr_(X). Passing to Bum (X), the group law allows us 
to replace an arbitrary line bundle witha difference of very ample ones, so all the 
classes of this form go to zero in Q^ 0 (X) . This shows that the natural map 

ü^Q(X)^(h^®hü4X))m 
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is an isomorphism. Since (li") ®L ^ » ( X ) ) T O = QTO(X) for m > n, we are done. D 
The categories 0™ (X) are covariantly functorial for projective maps, con­

travariant for smooth maps (with a shift in the grading) and have first Chern class 
natural transformations ci(L) : flm (X) —̂  Q^ tl1(X) for L —̂  X a line bundle. 

We conjecture that the inverse system used to define 0TOjr(X) is eventually 
constant for all r, not just for r = 0. If this is true, it is reasonable to define the 
space BOTO(X) as the homotopy limit 

BÜm(X) := holimBQ^)(X). 
n 

One would then have 0TOjr(X) = 7rr(TiOTO(X),0) for all m,r; hopefully the proper­
ties of 0» listed in theorem 3.6 would then generalize into properties of the spaces 
Bflm(X). 
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Permutation Groups and 
Normal Subgroups 

Cheryl E. Praeger* 

Abstract 

Various descending chains of subgroups of a finite permutation group can 
be used to define a sequence of 'basic' permutation groups that are analogues 
of composition factors for abstract finite groups. Primitive groups have been 
the traditional choice for this purpose, but some combinatorial applications 
require different kinds of basic groups, such as quasiprimitive groups, that are 
defined by properties of their normal subgroups. Quasiprimitive groups admit 
similar analyses to primitive groups, share many of their properties, and have 
been used successfully, for example to study s-arc transitive graphs. Moreover 
investigating them has led to new results about finite simple groups. 

2000 Mathematics Subject Classification: 20B05, 20B10 20B25, 05C25. 
Keywords and Phrases: Automorphism group, Simple group, Primitive 
permutation group, Quasiprimitive permutation group, Arc-transitive graph. 

1. Introduction 
For a satisfactory understanding of finite groups it is important to study simple 

groups and characteristically simple groups, and how to fit them together to form 
arbi trary finite groups. This paper discusses an analogous programme for studying 
finite permutat ion groups. By considering various descending subgroup chains of 
finite permutat ion groups we define in §2 sequences of 'basic' permutat ion groups 
tha t play the role for finite permutat ion groups tha t composition factors or chief 
factors play for abstract finite groups. Primitive groups have been the tradit ional 
choice for basic permutat ion groups, but for some combinatorial applications larger 
families of basic groups, such as quasiprimitive groups, are needed (see §3). 

Application of a theorem first stated independently in 1979 by M. E. O'Nan 
and L. L. Scott [4] has proved to be the most useful modern method for identifying 
the possible structures of finite primitive groups, and is now used routinely for their 
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analysis. Analogues of this theorem are available for the alternative families of basic 
permutation groups. These theorems have become standard tools for studying 
finite combinatorial structures such as vertex-transitive graphs and examples are 
given in §3 of successful analyses for distance transitive graphs and «-arc-transitive 
graphs. Some characteristic properties of basic permutation groups, including these 
structure theorems are discussed in §4. 

Studying the symmetry of a family of finite algebraic or combinatorial systems 
often leads to problems about groups of automorphisms acting as basic permutation 
groups on points or vertices. In particular determining the full automorphism group 
of such a system sometimes requires a knowledge of the permutation groups con­
taining a given basic permutation group, and for this it is important to understand 
the lattice of basic permutation groups on a given set. The fundamental problem 
here is that of classifying all inclusions of one basic permutation group in another, 
and integral to its solution is a proper understanding of the factorisations of simple 
and characteristically simple groups. In §3 and §4 we outline the current status of 
our knowledge about such inclusions and their use. 

The precision of our current knowledge of basic permutation groups depends 
heavily on the classification of the finite simple groups. Some problems about 
basic permutation groups translate directly to questions about simple groups, and 
answering them leads to new results about simple groups. Several of these results 
and their connections with basic groups are discussed in the final section §5. 

In summary, this approach to analysing finite permutation groups involves 
an interplay between combinatorics, group actions, and the theory of finite simple 
groups. One measure of its success is its effectiveness in combinatorial applications. 

2. Defining basic permutation groups 
Let G be a subgroup of the symmetric group Sym(Q) of all permutations of a 

finite set 0. Since an intransitive permutation group is contained in the direct prod­
uct of its transitive constituents, it is natural when studying permutation groups 
to focus first on the transitive ones. Thus we will assume that G is transitive on Q. 
Choose a point a £ ii and let Ga denote the subgroup of G of permutations that 
fix a, that is, the stabiliser of a. Let Sub(G,Ga) denote the lattice of subgroups 
of G containing Ga. The concepts introduced below are independent of the choice 
of a because of the transitivity of G. We shall introduce three types of basic per­
mutation groups, relative to C\ := Sub(G,Ga) and two other types of lattices £2 
and £3, where we regard each £t as a function that can be evaluated on any finite 
transitive group G and stabiliser Ga. 

For Ga < H < G, the If-orbit containing a is aH = {ah | h £ H}. If 
G a < H < K < G, then the FJ-images of aH form the parts of a FJ-invariant par­
tition V(K, H) of aK, and K induces a transitive permutation group Comp(F', H) 
on V(K,H) called a component of G. In particular the component Comp(G,Ga) 
permutes V(G,Ga) = {{ß} \ß £ 0} in the same way that G permutes 0, and we 
may identify G with Comp(G,Ga). 

For a lattice £ of subgroups of G containing Ga, we say that K covers H 
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in £ if K,H £ £, H < K, and there are no intermediate subgroups lying in £. 
The basic components of G relative to £ are then defined as all the components 
Comp(F', H) for which K covers H in £. Each maximal chain GQ = Go < Gi < 
• • • < Gr = G in £ determines a sequence of basic components relative to £, namely 
Comp(Gi,Go),.. •, Comp(G r ,G r_i), and G can be embedded in the iterated wreath 
product of these groups. In this way the permutation groups occurring as basic 
components relative to £, for some finite transitive group, may be considered as 
'building blocks' for finite permutation groups. We refer to such groups as basic 
permutation groups relative to £. 

A transitive permutation group G on Q is primitive if GQ is a maximal sub­
group of G, that is, if Sub(G, GQ) = {G,Ga}. The basic components of G relative 
to £i = Sub(G, GQ) are precisely those of its components that are primitive. 

The basic groups of the second type are the quasiprimitive groups. A transitive 
permutation group G on Q is quasiprimitive if each nontrivial normal subgroup of 
G is transitive on Q. The corresponding sublattice is the set £2 of all subgroups 
H £ Sub(G, GQ) such that there is a sequence H0 = H < H1 < • • • < Hr = G with 
each subgroup of the form Hi = GaNt where for i < r, Nt is a normal subgroup of 
Hi+i, and Nr = G. The basic components of G relative to £2 are precisely those 
of its components that are quasiprimitive. 

Basic groups of the third type are innately transitive, namely transitive per­
mutation groups that have at least one transitive minimal normal subgroup. The 
corresponding sublattice will be £3. A subgroup N of G is subnormal in G if there 
is a sequence N0 = N < Ni < • • • < Nr = G such that, for i < r, Nt is a normal 
subgroup of Ni+i. The lattice £3 consists of all subgroups of the form GaN, where 
N is subnormal in G and normalised by GQ. All the basic components of G relative 
to £3 are innately transitive. Note that each primitive group is quasiprimitive and 
each quasiprimitive group is innately transitive. Proofs of the assertions about £2 
and £3 and their components may be found in [27]. 

3. The role of basic groups in graph theory 
For many group theoretic and combinatorial applications finite primitive per­

mutation groups are the appropriate basic permutation groups, since many problems 
concerning finite permutation groups can be reduced to the case of primitive groups. 
However such reductions are sometimes not possible when studying point-transitive 
automorphism groups of finite combinatorial structures because the components of 
the given point-transitive group have no interpretation as point-transitive automor­
phism groups of structures within the family under investigation. The principal 
motivation for studying some of these alternative basic groups came from graph 
theory, notably the study of «-arc transitive graphs (s > 2). 

A finite graph F = (Q, E) consists of a finite set 0 of points, called vertices, and 
a subset E of unordered pairs from Q called edges. For s > 1, an s-arc of F is a vertex 
sequence (ao,ai,... ,as) such that each {ai,ai+i} is an edge and a,_i ^ a , + i for 
all i. We usually call a 1-arc simply an arc. Automorphisms of F are permutations 
of 0 that leave E invariant, and a subgroup G of the automorphism group Aut(F) is 
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s-arc-transitive if G is transitive on the «-arcs of F. If F is connected and is regular 
of valency k > 0 so that each vertex is in k edges, then an «-arc-transitive subgroup 
G < Aut(F) is in particular transitive on Q and also, if « > 2, on (« — l)-arcs. It is 
natural to ask which of the components of this transitive permutation group G on 
0 act as «-arc-transitive automorphism groups of graphs related to F. 

For Ga < H < G, there is a naturally defined quotient graph T'H with vertex 
set the partition of 0 formed by the G-images of the set aH, where two such G-
images are adjacent in T'H if at least one vertex in the first is adjacent to at least one 
vertex of the second. If F is connected and G is arc-transitive, then T'H is connected 
and G induces an arc-transitive automorphism group of T'H, namely the component 
Comp(G, H). If IT is a maximal subgroup of G, then Comp(G, H) is both vertex-
primitive and arc-transitive on T'H- This observation enables many questions about 
arc-transitive graphs to be reduced to the vertex-primitive case. 

Perhaps the most striking example is provided by the family of finite distance 
transitive graphs. The distance between two vertices is the minimum number of 
edges in a path joining them, and G is distance transive on F if for each i, G is 
transitive on the set of ordered pairs of vertices at distance i. In particular if G 
is distance transitive on F then F is connected and regular, of valency k say. If 
k = 2 then F is a cycle and all cycles are distance transitive, so suppose that k > 3. 
If T'H has more than two vertices, then Comp(G, H) is distance transitive on T'H, 
while if T'H has only two vertices then H is distance transitive on a smaller graph 
F2 , namely F2 has aH as vertex set with two vertices adjacent if and only if they 
are at distance 2 in F (see for example [12]). Passing to T'H or F2 respectively and 
repeating this process, we reduce to a vertex-primitive distance transitive graph. 
The programme of classifying the finite vertex-primitive distance transitive graphs 
is approaching completion, and surveys of progress up to the mid 1990's can be 
found in [12, 31]. The initial result that suggested a classification might be possible 
is the following. Here a group G is almost simple if T < G < Aut(T) for some 
nonabelian simple group T, and a permutation group G has affine type if G has an 
elementary abelian regular normal subgroup. 

Theorem 3.1 [28] If G is vertex-primitive and distance transitive on a finite graph 
T, then either T is known explicitly, or G is almost simple, or G has affine type. 

In general, if G is «-arc-transitive on F with « > 2, then none of the components 
Comp(G, H) with GQ < H < G is «-arc-transitive on T'H, so there is no hope that 
the problem of classifying finite «-arc-transitive graphs, or even giving a useful 
description of their structure, can be reduced to the case of vertex-primitive «-arc-
transitive graphs. However the class of «-arc transitive graphs behaves nicely with 
respect to normal quotients, that is, quotients T'H where H = GaN for some normal 
subgroup N of G. For such quotients, the vertex set of T'H is the set of iV-orbits, 
G acts «-arc-transitively on T'H, and if T'H has more than two vertices then F is a 
cover of T'H in the sense that, for two iV-orbits adjacent in T'H, each vertex in one 
iV-orbit is adjacent in F to exactly one vertex in the other iV-orbit. We say that F is 
a normal cover of T'H- If in addition N is a maximal intransitive normal subgroup 
of G with more than two orbits, then G is both vertex-quasiprimitive and «-arc-
transitive on T'H, see [24]. If some quotient T'H has two vertices then F is bipartite, 
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and such graphs require a specialised analysis that parallels the one described here. 
On the other hand if F is not bipartite then F is a normal cover of at least one 
T'H on which the G-action is both vertex-quasiprimitive and «-arc-transitive. The 
wish to understand quasiprimitive «-arc transitive graphs led to the development 
of a theory for finite quasiprimitive permutation groups similar to the theory of 
finite primitive groups. Applying this theory led to a result similar to Theorem 3.1, 
featuring two additional types of quasiprimitive groups, called twisted wreath type 
and product action type. Descriptions of these types may be found in [24] and [25]. 

Theo rem 3.2 [24] If G is vertex-quasiprimitive and s-arc-transitive on a finite 
graph T with « > 2, then G is almost simple, or of affine, twisted wreath or product 
action type. 

Examples exist for each of the four quasiprimitive types, and moreover this 
division of vertex-quasiprimitive «-arc transitive graphs into four types has resulted 
in a better understanding of these graphs, and in some cases complete classifications. 
For example all examples with G of affine type, or with T < G < Aut(T) and 
T = PSL2(y),Sz(g) or Ree(q) have been classified, in each case yielding new «-arc 
transitive graphs, see [13, 25]. Also using Theorem 3.2 to study the normal quotients 
of an «-arc transitive graph has led to some interesting restrictions on the number 
of vertices. 

Theo rem 3.3 [15, 16] Suppose that T is a finite s-arc-transitive graph with « > 4. 
Then the number of vertices is even and not a power of 2. 

The concept of a normal quotient has proved useful for analysing many fami­
lies of edge-transitive graphs, even those for which a given edge-transitive group is 
not vertex-transitive. For example it provides a framework for a systematic study 
of locally «-arc-transitive graphs in which quasiprimitive actions are of central im­
portance, see [11]. 

We have described how to form primitive arc-transitive quotients of arc-trans­
itive graphs, and quasiprimitive «-arc-transitive normal quotients of non-bipartite 
«-arc-transitive graphs. However recognising these quotients is not always easy 
without knowing their full automorphism groups. To identify the automorphism 
group of a graph, given a primitive or quasiprimitive subgroup G of automorphisms, 
it is important to know the permutation groups of the vertex set that contain G, 
that is the over-groups of G. In the case of finite primitive arc-transitive and 
edge-transitive graphs, knowledge of the lattice of primitive permutation groups on 
the vertex set together with detailed knowledge of finite simple groups led to the 
following result. The socle of a finite group G, denoted soc(G), is the product of 
its minimal normal subgroups. 

Theo rem 3.4 [22] Let G be a primitive arc- or edge-transitive group of automor­
phisms of a finite connected graph T. Then either G and Aut(F) have the same 
socle, or G < H < Aut(F) where soc(G) ^ soc(H) and G, H are explicitly listed. 

In the case of graphs F for which a quasiprimitive subgroup G of Aut(F) is 
given, it is possible that Aut(F) may not be quasiprimitive. However, even in this 
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case a good knowledge of the quasiprimitive over-groups of a quasiprimitive group 
is helpful, for if N is a maximal intransitive normal subgroup of Aut(F) then both G 
and Aut(F) induce quasiprimitive automorphism groups of the normal quotient T'H, 
where H = Aut(F)QiV, and the action of G is faithful. This approach was used, 
for example, in classifying the 2-arc transitive graphs admitting Sz(q) or Ree(q) 
mentioned above, and also in analysing the automorphism groups of Cayley graphs 
of simple groups in [8]. 

Innately transitive groups, identified in § as a third possibility for basic groups, 
have not received much attention until recently. They arise naturally when inves­
tigating the full automorphism groups of graphs. One example is given in [7] for 
locally-primitive graphs F admitting an almost simple vertex-quasiprimitive sub­
group G of automorphisms. It is shown that either Aut(F) is innately transitive, or 
G is of Lie type in characteristic p and Aut(F) has a minimal normal p-subgroup 
involving a known G-module. 

4. Characteristics of basic permutation groups 
Finite primitive permutation groups have attracted the attention of mathe­

maticians for more than a hundred years. In particular, one of the central problems 
of 19th century Group Theory was to find an upper bound, much smaller than n!, 
for the order of a primitive group on a set of size n, other than the symmetric group 
Sn and the alternating group An. It is now known that the largest such groups 
occur for n of the form c(c — l ) /2 and are Sc and Ac acting on the unordered pairs 
from a set of size c. The proofs of this and other results in this section depend on 
the finite simple group classification. 

If G is a quasiprimitive permutation group on Q, a £ 0 , and IT is a max­
imal subgroup of G containing GQ, then the primitive component Comp(G, H) is 
isomorphic to G since the kernel of this action is an intransitive normal subgroup 
of G and hence is trivial. Because of this we may often deduce information about 
quasiprimitive groups from their primitive components, and indeed it was found in 
[29] that finite quasiprimitive groups possess many characteristics similar to those 
of finite primitive groups. This is true also of innately transitive groups. We state 
just one example, concerning the orders of permutation groups acting on a set of 
size n, that is, of degree n. 

Theorem 4.1 [4, 29] There is a constant c and an explicitly defined family T of 
finite permutation groups such that, if G is a primitive, quasiprimitive, or innately 
transitive permutation group of degree n, then either G £ T, or \G\ < n c l o g " . 

The O'Nan-Scott Theorem partitions the finite primitive permutation groups 
into several disjoint types according to the structure or action of their minimal 
normal subgroups. It highlights the role of simple groups and their representations 
in analysing and using primitive groups. One of its first successful applications was 
the analysis of distance transitive graphs in Theorem 3.1. Other early applications 
include a proof [6] of the Sims Conjecture, and a classification result [18] for maximal 
subgroups of An and Sn, both of which are stated below. 
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Theo rem 4.2 [6] There is a function f such that if G is primitive on a finite set 
ii, and for a £ ii, Ga has an orbit of length d in ii\ {a}, then \Ga\ < f(d). 

Theorem 4.3 [18] Let G = An or Sn with M a maximal subgroup. Then either M 
belongs to an explicit list or M is almost simple and primitive. Moreover if H < G 
and H is almost simple and primitive but not maximal, then (H, n) is known. 

This is a rather curious way to state a classification result. However it seems 
almost inconceivable that the finite almost simple primitive groups will ever be 
listed explicitly. Instead [18] gives an explicit list of triples (H,M,n), where H is 
primitive of degree n with a nonabelian simple normal subgroup T not normalised 
by M, and H < M < HAn. This result suggested the possibility of describing the 
lattice of all primitive permutation groups on a given set, for it gave a description 
of the over-groups of the almost simple primitive groups. Such a description was 
achieved in [23] using a general construction for primitive groups called a blow-up 
construction introduced by Kovacs [14]. The analysis leading to Theorem 3.4 was 
based on this theorem. 

Theo rem 4.4 [23] All inclusions G < H < Sn with G primitive are either explicitly 
described, or are described in terms of a blow-up of an explicitly listed inclusion 
Gi < Hi < Sni with n a proper power of rii. 

Analogues of the O'Nan-Scott Theorem for finite quasiprimitive and innately-
transitive groups have been proved in [3, 24] and enable similar analyses to be under­
taken for problems involving these classes of groups. For example, the quasiprimitive 
version formed the basis for Theorems 3.2 and 3.3. It seems to be the most useful 
version for dealing with families of vertex-transitive or locally-transitive graphs. A 
description of the lattice of quasiprimitive subgroups of Sn was given in [2, 26] and 
was used, for example, in analysing Cayley graphs of finite simple groups in [8]. 

Theo rem 4.5 [2, 26] Suppose that G < H < Sn with G quasiprimitive and imprim­
itive, and H quasiprimitive but H ^ An. Then either G and H have equal socles 
and the same O'Nan-Scott types, or the possibilities for the O'Nan-Scott types of 
G, H are restricted and are known explicitly. 

In the latter case, for most pairs of O'Nan-Scott types, explicit constructions 
are given for these inclusions. Not all the types of primitive groups identified by the 
O'Nan-Scott Theorem occur for every degree n. Let us call permutation groups of 
degree n other than An and Sn nontrivial. A systematic study by Cameron, Neu­
mann and Teague [5] of the integers n for which there exists a nontrivial primitive 
group of degree n showed that the set of such integers has density zero in the natural 
numbers. Recently it was shown in [30] that a similar result holds for the degrees 
of nontrivial quasiprimitive and innately transitive permutation groups. Note that 
2-2 < 2^d=i 'dJÏSj < 2-23-

Theo rem 4.6 [5, 30] For a positive real number x, the proportion of integers n < x 
for which there exists a nontrivial primitive, quasiprimitive, or innately transitive 
permutation group of degree n is at most (1 + o(l))c/ Ioga:, where c = 2 in the case 
of primitive groups, or c= 1 + X^dLi déid) for ^ie °^ier cases-
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5. Simple groups and basic permutation groups 
Many of the results about basic permutation groups mentioned above rely-

on specific knowledge about finite simple groups. Sometimes this knowledge was 
already available in the simple group literature. However investigations of basic 
permutation groups often raised interesting new questions about simple groups. 
Answering these questions became an integral part of the study of basic groups, 
and the answers enriched our understanding of finite simple groups. In this final 
section we review a few of these new simple group results. Handling the primitive 
almost simple classical groups was the most difficult part of proving Theorem 4.3, 
and the following theorem of Aschbacher formed the basis for their analysis. 

Theorem 5.1 [1] Let G be a subgroup of a finite almost simple classical group X 
such that G does not contain soc(X), and let V denote the natural vector space 
associated with X. Then either G lies in one of eight explicitly defined families of 
subgroups, or G is almost simple, absolutely irreducible on V and the (projective) 
representation of soc(G) on V cannot be realised over a proper subfield. 

A detailed study of classical groups based on Theorem 5.1 led to Theorem 5.2, 
a classification of the maximal factorisations of the almost simple groups. This 
classification was fundamental to the proofs of Theorems 3.4 and 4.3, and has been 
used in diverse applications, for example see [9, 17]. 

Theorem 5.2 [19, 20] Let G be a finite almost simple group and suppose that G = 
AB, where A,B are both maximal in G subject to not containing soc(G). Then 
G, A, B are explicitly listed. 

For a finite group G, let n(G) denote the set of prime divisors of \G\. For 
many simple groups G there are small subsets of n(G) that do not occur in the 
order of any proper subgroup, and it is possible to describe some of these precisely 
as follows. 

Theo rem 5.3 [21, Theorem 4, Corollaries 5 and 6] Let G be an almost simple group 
with socle T, and let M be a subgroup of G not containing T. 

(a) If G = T then for an explicitly defined subset H Ç n(T) with |TI| < 3, if 
n C n(M) then T,M are known explicitly, and in most cases n(T) = n(M). 

(b) If n(T) C n(M) then T,M are known explicitly. 

Theorem 5.3 was used in [10] to classify all innately transitive groups having no 
fixed-point-free elements of prime order, settling the polycirculant graph conjecture 
for such groups. Another application of Theorems 5.2 and 5.3 is the following 
factorisation theorem that was used in the proof of Theorem 4.5. It implies in 
particular that, if G is quasiprimitive of degree n with nonabelian and non-simple 
socle, then Sn and possibly An are the only almost simple over-groups of G. 

Theorem 5.4 [26, Theorem 1.4] Let T,S be finite nonabelian simple groups such 
that T has proper subgroups A, B with T = AB and A = Se for some £ > 2. Then 
T = An, B = An-i, where n = \T : B\, and A is a transitive group of degree n. 
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Finally we note that Theorem 4.6 is based on the following result about indices 
of subgroups of finite simple groups. 

Theo rem 5.5 [5, 30] For a positive real number x, the proportion of integers n < x 
of the form n = \T : M\, where T is a nonabelian simple group and M is either 
a maximal subgroup or a proper subgroup, and (T,M) ^ (An,An^i), is at most 
(1 + o(lj)c/Ioga:, where c = 1 or c= X^dLi 11(d) resPectively. 

We have presented a framework for studying finite permutation groups by-
identifying and analysing their basic components. The impetus for extending the 
theory beyond primitive groups came from the need for an appropriate theory of 
basic permutation groups for combinatorial applications. Developing this theory-
required the answers to specific questions about simple groups, and the power of 
the theory is largely due to its use of the finite simple group classification. 
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Norm Varieties and Algebraic Cobordism 

Markus Rost* 

Abstract 

We outline briefly results and examples related with the bijectivity of the 
norm residue homomorphism. We define norm varieties and describe some 
constructions. We discuss degree formulas which form a major tool to handle 
norm varieties. Finally we formulate Hubert's 90 for symbols which is the 
hard part of the bijectivity of the norm residue homomorphism, modulo a 
theorem of Voevodsky. 

Introduction 
This text is a brief outline of results and examples related with the bijectivity 

of the norm residue homomorphism—also called "Bloch-Kato conjecture" and, for 
the mod 2 case, "Milnor conjecture". 

The start ing point was a result of Voevodsky which he communicated in 1996. 
Voevodsky's theorem basically reduces the Bloch-Kato conjecture to the existence 
of norm varieties and to what I call Hilbert 's 90 for symbols. Unfortunately there 
is no text available on Voevodsky's theorem. 

In this exposition p is a prime, k is a field with charfc ^ p and K^fk denotes 
Milnor's n-th FJ-group of k [15], [19]. 

Elements in K^fk/p of the form 

u = { c t i , . . . , an} mod p 

are called symbols ( m o d p , of weight n ) . 
A field extension F of k is called a splitting field of u if uE = 0 in KffF/p. 
Let 

h{n}Py.K^k/p^Hg(k,pfn), 
{ai,...,a„} H> (ai,...,an) 

be the norm residue homomorphism. 

* Department of Mathematics, The Ohio State University, 231 W 18th Avenue, Columbus, OH 
43210, USA. E-mail: rost@math.ohio-state.edu, URL: http://www.math.ohio-state.edu/~rost 

mailto:rost@math.ohio-state.edu
http://www.math.ohio-state.edu/~rost


78 Markus Rost 

1. Norm varieties 
All successful approaches to the Bloch-Kato conjecture consist of an investi­

gation of appropriate generic splitting varieties of symbols. This goes back to the 
work of Merkurjev and Suslin on the case n = 2 who studied the FJ-cohomology of 
Severi-Brauer varieties [12]. Similarly, for the case p = 2 (for n = 3 by Merkurjev, 
Suslin [14] and the author [18], for all n by Voevodsky [23]) one considers certain 
quadrics associated with Pfister forms. For a long time it was not clear which sort of 
varieties one should consider for arbitrary n, p. In some cases one knew candidates, 
but these were non-smooth varieties and desingularizations appeared to be difficult 
to handle. Finally Voevodsky proposed a surprising characterization of the nec­
essary varieties. It involves characteristic numbers and yields a beautiful relation 
between symbols and cobordism theory. 

Definition. Let u = {cti,... ,an} modp be a symbol. Assume that u ^ 0. A 
norm variety for u is a smooth proper irreducible variety X over k such that 

(1) The function field k(X) of X splits u. 
(2) 6àmX = d:=pn-1-l. 
(3) ^ i ^ 0 mod p. 

Here Sd(X) £ Z denotes the characteristic number of X given by the d-th 
Newton polynomial in the Chern classes of TX. It is known (by Milnor) that in 
dimensions d = pn — 1 the number Sd(X) is p-divisible for any X. If k C C one 
may rephrase condition (3) by saying that X(C) is indecomposable in the complex 
cobordism ring mod p. 

We will observe in section 2. that the conditions for a norm variety are bira-
tional invariant. 

The name "norm variety" originates from some constructions of norm varieties, 
see section 3.. 

We conclude this section with the "classical" examples of norm varieties. 
Example. The case n = 2. Assume that k contains a primitive p-th root ( of 

unity. For a, b £ k* let Aç (a, 6) be the central simple fc-algebra with presentation 

Aç(a,b) = (u,v | up = a,vp = b,vu = (uv). 

The Severi-Brauer variety X(a,6) of Aç(a,6) is a norm variety for the symbol 
{a, 6} mod p. 

Example. The case p = 2. For a,\, ..., an £ k* one denotes by 

n 

((ai,...,an)) =ÇQ{l,-a,i), 
l 

the associated n-fold Pfister form [9], [21]. The quadratic form 

ip= ((ai,...,an-i)) ± {-an) 

is called a Pfister neighbor. The projective quadric Q(*p) defined by (p = 0 is a norm 
variety for the symbol {cti, . . . , an} mod 2. 
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2. Degree formulas 
The theme of "degree formulas" goes back to Voevodsky's first text on the 

Milnor conjecture (although he never formulated explicitly a "formula") [22]. In 
this section we formulate the degree formula for the characteristic numbers Sd- It 
shows the birational invariance of the notion of norm varieties. 

The first proof of this formula relied on Voevodsky's stable homotopy theory 
of algebraic varieties. Later we found a rather elementary approach [11], which is 
in spirit very close to "elementary" approaches to the complex cobordism ring [16], 
[4]-

For our approach to Hilbert's 90 for symbols we use also "higher degree formu­
las" which again were first settled using Voevodsky's stable homotopy theory [3]. 
These follow meanwhile also from the "general degree formula" proved by Morel 
and Levine [10] in characteristic 0 using factorization theorems for birational maps 

We fix a prime p and a number d of the form d = pn — 1. 
For a proper variety X over k let 

I(X) = deg(CH0(X)) C Z 

be the image of the degree map on the group of 0-cycles. One has L(X) = i(X)Z 
where i(X) is the "index" of X, i. e., the gcd of the degrees [k(x) : k] of the residue 
class field extensions of the closed points a: of X. If X has a fc-point (in particular if 
k is algebraically closed), then L(X) = Z. The group L(X) is a birational invariant 
of X. We put 

J(X) = L(X)+pZ. 

Let X, Y be irreducible smooth proper varieties over k with dim F = dimX = 
d and let / : Y —t X be a morphism. Define deg / as follows: If dim f(Y) < dim X, 
then d e g / = 0. Otherwise d e g / £ N is the degree of the extension k(Y)/k(X) of 
the function fields. 

Theorem (Degree formula for Sd)-

M I ) = ( d e g / ) M ^ l modJ(X). 

Corollary. The class 

Sd(X) 

P 
mod J(X) G Z/ J(X) 

is a birational invariant. 
Remark. If X has a fc-rational point, then J (X) = Z and the degree formula 

is empty. The degree formula and the birational invariants Sd(X)/p mod J(X) are 
phenomena which are interesting only over non-algebraically closed fields. Over the 
complex numbers the only characteristic numbers which are birational invariant are 
the Todd numbers. 
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We apply the degree formula to norm varieties. Let « be a nontrivial symbol 
mod p and let X be a norm variety for u. Since k(X) splits u, so does any residue 
class field k(x) for a: G X. As « is of exponent p, it follows that J(X) = pZ. 

Corollary (Voevodsky). Let u be a nontrivial symbol and let X be a norm 
variety of u. Let further Y be a smooth proper irreducible variety with dim F = 
dim X and let f: Y —¥ X be a morphism. Then Y is a norm variety for u if and 
only if deg / is prime to p. 

It follows in particular that the notion of norm variety is birational invariant. 
Therefore we may call any irreducible variety U (not necessarily smooth or proper) 
a norm variety of a symbol u if U is birational isomorphic to a smooth and proper 
norm variety of u. 

3. Existence of norm varieties 
Theorem. Norm varieties exists for every symbol u £ Kffh/p for every p 

and every n. 
As we have noted, for the case n = 2 one can take appropriate Severi-Brauer 

varieties (if k contains the p-th roots of unity) and for the case p = 2 one can take 
appropriate quadrics. 

In this exposition we describe a proof for the case n = 3 using fix-point theo­
rems of Conner and Floyd in order to compute the non-triviality of the characteristic 
numbers. Our first proof for the general case used also Conner-Floyd fix-point the­
ory. Later we found two further methods which are comparatively simpler. However 
the Conner-Floyd fix-point theorem is still used in our approach to Hilbert's 90 for 
symbols. 

Let u = {a, b,c} mod p with a, b, c £ k*. Assume that k contains a primitive 
p-th root ( of unity, let A = AQ (a, 6) and let 

MS(A,c) = {x £ A | Nrd(ar) = c} . 

We call MS(A,c) the Merkurjev-Suslin variety associated with A and c. The sym­
bol« is trivial if and only if MS (A, c) has a rational point [12]. The variety MS(,A, c) 
is a twisted form of SL(p). 

Theorem. Suppose uj^O. Then MS(A,c) is a norm variety for u. 
Let us indicate a proof for a subfield k C C (and for p > 2). Let U = MS (A, c). 

It is easy to see that k(U) splits u. Moreover one has dim U = dim A — 1 = p2 — 1. 
It remains to show that there exists a proper smooth completion X of U with 
nontrivial characteristic number. 

Let 
Ü = {[x,t]£ P(A e k) | Nrd(ar) = ctp } 

be the naive completion of U. We let the group G = Z/p x Z/p act on the algebra A 

via 
(r, «) • u = (ru, (r, «) • v = (sv. 

This action extends to an action on P(.4 ® k) (with the trivial action on k) which 
induces a G-action on Ü. Let Fix(C7) be the fixed point scheme of this action. One 
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finds that Tix(Ü) consists just of the p isolated points [1, Ç], i = 1, • • •, P, which 
are all contained in U. 

The variety U is smooth, but Ü is not. However, by equivariant resolution 
of singularities [2], there exists a smooth proper G-variety X together with a G-
morphism X —t Ü which is a birational isomorphism and an isomorphism over U. 
It remains to show that 

Sd(X) 
5E 0 mod p. 

P 
For this we may pass to topology and try to compute Sd(X(C)). We note that 
for odd p, the Chern number Sd is also a Pontryagin number and depends only on 
the differentiable structure of the given variety. Note further that X has the same 
G-fixed points as Ü since the desingularization took place only outside U. 

Consider the variety 

z = { [ E L ' = I s « t - V , t ] £ P ( A e k ) I E f J = i 4 = t P } • 

This variety is a smooth hypersurface and it is easy to check 

— 5É 0 mod p. 
P 

As a G-variety, the variety Z has the same fixed points as X ("same" means that 
the collections of fix-points together with the G-structure on the tangent spaces 
are isomorphic). Let M be the differentiable manifold obtained from X(C) and 
—Z(C) by a multi-fold connected sum along corresponding fixed points. Then M 
is a G-manifold without fixed points. By the theory of Conner and Floyd [5], [7] 
applied to (Z/p)2-manifolds of dimension d = p2 — 1 one has 

= 0 mod p. 
P 

Thus 
Sd(X) _ Sd(Z) mod p 

P P 
and the desired non-triviality is established. 

The functions # „ . We conclude this section with examples of norm varieties 
for the general case. 

Let cti, Ü2, . . . be a sequence of elements in k*. We define functions $ n = 
$oi,...,a„ m Pn variables inductively as follows. 

<S>o(t)=tp, 
P - i 

*n(To,...,Tp_i) = *n_i(T0) IKl-a^n-iCTO). 
i=l 

Here the Tt stand for tuples of p " _ 1 variables. Let U(ai,...,an) be the variety-
defined by 

§a1,...,an-1(
T) = a„. 

Theorem. Suppose that the symbol u = {ai,... ,an} modp is nontrivial. 
Then U(ai,..., an) is a norm variety of u. 
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4. Hubert 's 90 for symbols 
The bijectivity of the norm residue homomorphisms has always been consid­

ered as a sort of higher version of the classical Hilbert's Theorem 90 (which estab­
lishes the bijectivity for n = 1). In fact, there are various variants of the Bloch-Kato 
conjecture which are obvious generalizations of Hilbert's Theorem 90: The Hilbert's 
Theorem 90 for Kff of cyclic extensions or the vanishing of the motivic cohomology 
group Hn+1(k, Z(n)). In this section we describe a variant which on one hand is 
very elementary to formulate and on the other hand is the really hard part of the 
Bloch-Kato conjecture (modulo Voevodsky's theorem). 

Let u = {cti,... ,an} £ Kffh/p be a symbol. Consider the norm map 

A4 = ^2 NF/k • 0 KiF - • Kik 
F F 

where F runs through the finite field extensions of k (contained in some algebraic 
closure of k) which split u. Hilbert's Theorem 90 for u states that ker A4 is generated 
by the "obvious" elements. 

To make this precise, we consider two types of basic relations between the 
norm maps NF/k. 

Let Fi, F2 be finite field extensions of k. Then the sequence 

ir IT? o , r \ (NF1IS,F2/F1,-NFIIS!F2/F2) NFl/k+Np2/k 

Ki(Li®i<2) y Kibi ® K1L2 y Kik (1) 

is a complex. 
Further, if K/k is of transcendence degree 1, then the sequence 

K2K ^ 0 KIK(V) ^U Kik (2) 

V 

is a complex. Here v runs through the valuations of K/k, dx is given by the tame 
symbols at each v and N is the sum of the norm maps NK(vyk. The sum formula 
N o dû- = 0 is also known as Weil's formula. 

We now restrict again to splitting fields of u. The maps in (1) yield a map 

Tlu = Y, (NFI(SF2/FI, ^ W 2 / F 2 ) : 0 Ki(Fi ® F2) -+ 0 KiF 
Fi,F2 Fi,F2 F 

with A4 ° 7*4 = 0. Let C be the cokernel of 7v4 and let A4 : C —¥ Kik be the map 
induced by A4. Then the maps in (2) yield a map 

Su = J2dK: QK2K->C 
K K 

with A4 ° Su = 0 where K runs through the splitting fields of u of transcendence 
degree 1 over k (contained in some universal field). Let H0(u,Ki) be the cokernel 
of Su and let Nu : H0(u, Ki) —t Kik be the map induced by A4-
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Hilbert's 90 for symbols. For every symbol u the norm map 

A4: H0(u,Ki)^Kik 

is injective. 
Example. If u = 0, then it is easy to see that Nu is injective. In fact, it is a 

trivial exercise to check that A4 is injective. 
Example. The case n = 1. The splitting fields F of « = {a} modp are 

exactly the field extensions of k containing a p-th root of a. It is an easy exercise to 
reduce the injectivity of Nu (in fact of A4) to the classical Hilbert's Theorem 90, 
i. e., the exactness of 

KiL ^ KiL ^ > Kik 

for a cyclic extension L/k of degree p with a a generator of Gal(F/fc). 
Example. The case n = 2. Assume that k contains a primitive p-th root ( of 

unity. The splitting fields F of « = {a, 6} mod p are exactly the splitting fields of 
the algebra Aç(a, 6). One can show that 

H0(u,Ki) = KiAç(a,b) 

with Nu corresponding to the reduced norm map Nrd [13]. Hence in this case 
Hilbert's 90 for u reduces to the classical fact SKiA = 0 for central simple algebras 
of prime degree [6]. 

Example. The case p = 2. The splitting fields F of « = {cti,... ,an} mod 
2 are exactly the field extensions of k which split the Pfister form ((ai,..., an)) 
or, equivalently, over which the Pfister neighbor ((cti,..., an_i)) _L (—an) becomes 
isotropic. Hilbert's 90 for symbols mod 2 had been first established in [17]. This 
text considered similar norm maps associated with any quadratic form (which are 
not injective in general). A treatment of the special case of Pfister forms is contained 
in [8]. 

Remark. One can show that the group H0(u,Ki) as defined above is also 
the quotient of (BFKiF by the F-trivial elements in ker A4. This is quite analogous 
to the description of KiA of a central simple algebra A: The group KiA is the 
quotient of A* by the subgroup of F-trivial elements in the kernel of Nrd : A* —t F*. 
Similarly for the case p = 2: In this case the injectivity of Nu is related with the 
fact that for Pfister neighbors ip the kernel of the spinor norm SO(ip) —¥ k*/(k*)2 

is F-trivial. 
In our approach to Hilbert's 90 for symbols one needs a parameterization of 

the splitting fields of symbols. 
Definition. Let u = {ai,... ,an} modp be a symbol. A p-generic splitting 

variety for u is a smooth variety X over k such that for every splitting field F 
of u there exists a finite extension F'/F of degree prime to p and a morphism 
S p e c F ' ^ X . 

Theorem. Suppose charfc = 0. Let m > 3 and suppose for n < m and every 
symbol u = {cti,... ,an} mod p over all fields over k there exists a p-generic splitting 
variety for u of dimension p " _ 1 — 1. Then Hilbert's 90 holds for such symbols. 

The proof of this theorem is outlined in [20]. 
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For n = 2 one can take here the Severi-Brauer varieties and for n = 3 the 
Merkurjev-Suslin varieties. Hence we have: 

Corollary. Suppose charfc = 0. Then Hilbert's 90 holds for symbols of 
weight < 3. 
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Diophantine Geometry over Groups 
and the Elementary Theory of 
Free and Hyperbolic Groups* 

Z. Selat 

A b s t r a c t 

We study sets of solutions to equations over a free group, projections of 
such sets, and the structure of elementary sets defined over a free group. The 
structre theory we obtain enable us to answer some questions of A. Tarski's, 
and classify those finitely generated groups that are elementary equivalent to 
a free group. Connections with low dimensional topology, and a generalization 
to (Gromov) hyperbolic groups will also be discussed. 
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Sets of solutions to equations defined over a free group have been studied 

extensively, mostly since Alfred Tarski presented his fundamental questions on the 

elementary theory of free groups in the mid 1940's. Considerable progress in the 

study of such sets of solutions was made by G. S. Makanin, who constructed an 

algorithm tha t decides if a system of equations defined over a free group has a 

solution [Mai], and showed tha t the universal and positive theories of a free group 

are decidable [Ma2]. A. A. Razborov was able to give a description of the entire set 

of solutions to a system of equations defined over a free group [Ra], a description 

tha t was further developed by O. Kharlampovich and A. Myasnikov [Kh-My]. 

A set of solutions to equations defined over a free group is clearly a discrete 

set, and all the previous techniques and methods tha t studied these sets are com­

binatorial in nature. Naturally, the structure of sets of solutions defined over a free 

group is very different from the structure of sets of solutions (varieties) to systems of 

equations defined over the complexes, reals or a number field. Still, perhaps surpris­

ingly, concepts from complex algebraic geometry and from Diophantine geometry-

can be borrowed to study varieties defined over a free group. 
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In this work we borrow concepts and techniques from geometric group the­
ory, low dimensional topology, and Diophantine geometry to study the structure of 
varieties defined over a free (and hyperbolic) group. Our techniques and point of 
view on the study of these varieties is rather different from any of the pre-existing 
techniques in this field, though, as one can expect, some of our preliminary results 
overlap with previously known ones. The techniques and concepts we use enable 
the study of the structure of varieties defined over a free group and their projec­
tions (Diophantine sets), and in particular, give us the possibility to answer some 
questions that seem to be essential in any attempt to understand the structure of 
elementary sentences and predicates defined over a free (and hyperbolic) group. 

In this note we summarize the main results of our work, that enable one to 
answer affirmatively some of A. Tarski 's problems on the elementary theory of a free 
group, and classify those finitely generated groups that are elementary equivalent to 
a (non-abelian) free group, we further survey some of our results on the elementary-
theory of a (torsion-free) hyperbolic group, that generalize the results on free groups. 
The work itself appears in [Sel]-[Se8]. 

We start with what we see as the main result on the elementary theory of a 
free group we obtained - quantifier elimination. Quantifier elimination and its proof 
is behind all the other results presented in this note. 

Theorem 1 ([Se7],l). Let F be a non-abelian free group, and let Q(p) be a defin­
able set over F. Then Q(p) is in the Boolean algebra of AE sets over F. 

In fact it is possible to give a strengthening of theorem 1 that specifies a 
subclass of AE sets that generates the Boolean algebra of definable sets, a more 
refined description that is essential in studying other model-theoretic properties of 
the elementary theory of a free group. 

Theorem 1 proves that every definable set over a free group is in the Boolean 
algebra of AE sets. To answer Tarski's questions on the elementary theory of a 
free group, i.e., to show the equivalence of the elementary theories of free groups 
of various ranks, we need to show that for coefficient free predicates, our quantifier 
elimination procedure does not depend on the rank of the coefficient group. 

Theorem 2 ([Se7],2). Let Q(p) be a set defined by a coefficient-free predicate over 
a group. Then there exists a set L(p) defined by a coefficient-free predicate which 
is in the Boolean algebra of AE predicates, so that for every non-abelian free group 
F, the sets Q(p) and L(p) are equivalent. 

Theorem 2 proves that in handling coefficient-free predicates, our quantifier 
elimination procedure does not depend on the rank of the coefficient (free) group. 
This together with the equivalence of the AE theories of free groups ([Sa],[Hr]) im­
plies an affirmative answer to Tarski's problem on the equivalence of the elementary-
theories of free groups. 

Theorem 3 ([Se7],3). The elementary theories of non-abelian free groups are 
equivalent. 
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Arguments similar to the ones used to prove theorems 2 and 3, enable us to 
answer affirmatively another question of Tarski's. 

Theorem 4 ( [Se7] ,4) . Let Fk, Fi be free groups for 2 < k < I. Then the standard 
embedding Fk —t Fi is an elementary embedding. 

More generally, let F, Fi be non-abelian free groups, let F2 be a free group, and 
suppose that F = Fi * F2 . Then the standard embedding Fi —t F is an elementary 
embedding. 

Tarski's problems deal with the equivalence of the elementary theories of free 
groups of different ranks. Our next goal is to get a classification of all the f.g. groups 
that are elementary equivalent to a free group. 

Non-abelian w-residually free groups (limit groups) are known to be the f.g. 
groups that are universally equivalent to a non-abelian free group. If a limit group 
contains a free abelian group of rank 2, it can not be elementary equivalent to a free 
group. Hence, a f.g. group that is elementary equivalent to a non-abelian free group 
must be a non-elementary (Gromov) hyperbolic limit group. However, not every 
non-elementary hyperbolic limit group is elementary equivalent to a free group. 
To demonstrate that we look at the following example. Suppose that G = F *<w> 

F = < 6i, 62 > *<«,> < bz, 64 > is a double of a free group of rank 2, suppose that w 
has no roots in F , and suppose that the given amalgamated product is the abelian 
JSJ decomposition of the group G. By our assumptions, G is a hyperbolic limit 
group (see [Sel], theorem 5.12). 

Claim 5 ([Se7],5). The group G = F *<w> F is not elementary equivalent to the 
free group F. 

In section 6 of [Sel] we have presented w-residually free towers, as an example 
of limit groups (the same groups are presented in [Kh-My] as well, and are called 
there NTQ groups). 

A hyperbolic w-residually free tower is constructed in finitely many steps. In 
its first level there is a non-cyclic free product of (possibly none) (closed) surface 
groups and a (possibly trivial) free group, where each surface in this free product 
is a hyperbolic surface (i.e., with negative Euler characteristic), except the non-
orientable surface of genus 2. In each additional level we add a punctured surface 
that is amalgamated to the group associated with the previous levels along its 
boundary components, and in addition there exists a retract map of the obtained 
group onto the group associated with the previous levels. The punctured surfaces 
are supposed to be of Euler characteristic bounded above by -2, or a punctured 
torus. 

The procedure used for eliminating quantifiers over a free group enables us to 
show that every hyperbolic w-residually free tower is elementary equivalent to a free 
group. The converse is obtained by using basic properties of the JSJ decomposition 
and the (canonical) Makanin-Razborov diagram of a limit group ([Se7], theorem 6). 
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Therefore, we are finally able to get a classification of those f.g. groups that are 
elementary equivalent to a free group. 

Theorem 6 ([Se7],7). A f.g. group is elementary equivalent to a non-abelian free 
group if and only if it is a non-elementary hyperbolic oj-residually free tower. 

So far we summarized the main results of our work, that enable one to answer 
affirmatively some of A. Tarski's problems on the elementary theory of a free group, 
and classify those finitely generated groups that are elementary equivalent to a (non­
abelian) free group. In the rest of this note we survey some of our results on the 
elementary theory of a (torsion-free) hyperbolic group, that generalize the results 
presented for a free group. 

In the case of a free group, we have shown that every definable set is in the 
Boolean algebra of AE sets. The same holds for a general hyperbolic group. 

Theorem 7 ([Se8],6.5). LetT be a non-elementary torsion-free hyperbolic group, 
and let Q(p) be a definable set over T. Then Q(p) is in the Boolean algebra of AE 
sets over T. 

Furthermore, ifQ(p) is a set defined by a coefficient-free predicate defined over 
T, then Q(p) can be defined by a coefficient-free predicate which is in the Boolean 
algebra of AE predicates. 

The procedure used for quantifier elimination over a free group enabled us 
to get a classification of those f.g. groups that are elementary equivalent to a free 
group (theorem 6). In a similar way, it is possible to get a classification of those f.g. 
groups that are elementary equivalent to a given torsion-free hyperbolic group. 
We start with the following basic fact, that shows the elementary invariance of 
negative curvature in groups. 

Theorem 8 ([Se8],7.10). Let T be a torsion-free hyperbolic group, and let G be 
a f.g. group. If G is elementary equivalent to T, then G is a torsion-free hyperbolic 
group. 

Theorem 8 restricts the class of f.g. groups that are elementary equivalent to a 
given hyperbolic group, to the class of hyperbolic groups. To present the elementary-
classification of hyperbolic groups we start with the following basic fact. 

Proposition 9 ([Se8],7.1). Let F i ,F 2 be non-elementary torsion-free rigid hy­
perbolic groups (i.e., Fi and F2 are freely-indecomposable and do not admit any 
non-trivial cyclic splitting). Then Fi is elementary equivalent to F2 if and only if 
Fi is isomorphic to F2 . 

Proposition 9 implies that, in particular, a uniform lattice in a real rank 1 
semi-simple Lie group that is not SL2(R) is elementary equivalent to another such 
lattice if and only if the two lattices are isomorphic, hence, by Mostow's rigidity 
the two lattices are conjugate in the same Lie group. By Margulis 's normality and 
super-rigidity theorems, the same hold in higher rank (real) Lie groups. 
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Theorem 10 ([Se8],7.2). Let Li,L2 be uniform lattices in real semi-simple Lie 
groups that are not SL2(R). Then Li is elementary equivalent to F2 if and only if 
Li and F2 are conjugate lattices in the same real Lie group G. 

Proposition 9 shows that rigid hyperbolic groups are elementary equivalent 
if and only if they are isomorphic. To classify elementary equivalence classes of 
hyperbolic groups in general, we associate with every (torsion-free) hyperbolic group 
F, a subgroup of it, that we call the elementary core of F, and denote EC(T). The 
elementary core is a retract of the ambient hyperbolic group F, and although it is 
not canonical, its isomorphism type is an invariant of the ambient hyperbolic group. 
The elementary core is constructed iteratively from the ambient hyperbolic group 
as we describe in definition 7.5 in [Se8]. 
The elementary core of a hyperbolic group is a prototype for its elementary theory. 

Theorem 11 ([Se8],7.6). LetT be a non-elementary torsion-free hyperbolic group 
that is not a oj-residually free tower, i.e., that is not elementary equivalent to a free 
group. Then T is elementary equivalent to its elementary core EC(T). Further­
more, the embedding of the elementary core EC(T) in the ambient group T is an 
elementary embedding. 

Finally, the elementary core is a complete invariant of the class of groups that 
are elementary equivalent to a given (torsion-free) hyperbolic group. 

Theorem 12 ([Se8],7.9). Le£Fi,F2 be two non-elementary torsion-free hyperbolic 
groups. Then Fi and F2 are elementary equivalent if and only if their elementary 
cores EC(T'i) and FC(F2) are isomorphic. 

Theorem 12 asserts that the elementary class of a torsion-free hyperbolic group 
is determined by the isomorphism class of its elementary core. Hence, in order to be 
able to decide whether two torsion-free hyperbolic groups are elementary equivalent 
one needs to compute their elementary core, and to decide if the two elementary-
cores are isomorphic. Both can be done using the solution to the isomorphism 
problem for torsion-free hyperbolic groups. 

Theorem 13 ([Se8],7.11). LetT'i,T2 be two torsion-free hyperbolic groups. Then 
it is decidable if T\ is elementary equivalent to F2 . 
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Abstract 

This article describes recent applications of algebraic geometry to non-
commutative algebra. These techniques have been particularly successful in 
describing graded algebras of small dimension. 
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1. Introduction 
In recent years a surprising number of significant insights and results in non-

commutative algebra have been obtained by using the global techniques of projective 
algebraic geometry. This article will survey some of these results. 

The classical approach to projective geometry, where one relates a commu­
tative graded domain C to the associated variety X = Proj C of homogeneous, 
nonirrelevant prime ideals, does not generalize well to the noneommutative situa­
tion, simply because noneommutative algebras do not have enough ideals. However, 
there is a second approach, based on a classic theorem of Serre: If C is generated 
in degree one, then the categories coh(X) of coherent sheaves on X and qgrC of 
finitely generated graded C-modules modulo torsion are equivalent. 

Surprisingly, noneommutative analogues of this idea work very well and have 
lead to a number of deep results. There are two strands to this approach. First, 
since X can be reconstructed from coh(X) [21] we will regard coh(X) rather than 
X as the variety since this is what generalizes. Thus, given a noneommutative 
graded fc-algebra R = (J) F , generated in degree one we will consider qgr R as the 
corresponding "noneommutative variety" (the formal definitions will be given in a 
moment). In particular, we will regard qgr F as a noneommutative curve, respec­
tively surface, if dim/. Ri grows linearly, respectively quadratically. This analogy-
works well, since there are many situations in which one can pass back and forth 
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between R and qgrF [8] and, moreover, substantial geometric techniques can be 
applied to study qgrF. A survey of this approach may be found in [25]. 

The second strand is more concrete. In order to use algebraic geometry to 
study noneommutative algebras we need to be able to create honest varieties from 
those algebras. This is frequently possible and such an approach will form the basis 
of this survey. Once again, the idea is simple: when R is commutative, the points 
of Proj R correspond to the graded factor modules M = R/I = @ i > 0 Mt for which 
dim*, Mi = 1 for all i. These modules are still defined when R is noneommutative 
and are called point modules. In many circumstances the set of all such modules is 
parametrized by a commutative scheme and that scheme controls the structure of 
R. 

This article surveys significant applications of this idea. Notably: 

• If R = (J) Ri is a domain such that dim/. F, grows linearly, then qgr R ~ 
coh(X) for a curve X and R can be reconstructed from data on X. Thus, 
noneommutative curves are commutative (see Section 4). 

• The noneommutative analogues qgr R of the projective plane can be classified. 
In this case, the point modules are parametrized by either P2 (in which case 
qgr R ~ P2) or by an cubic curve E c P2 , in which case data on E determines 
R (see Section 2). 

• For strongly noetherian rings, as defined in Section 5, the point modules 
are always parametrized by a projective scheme. However there exist many 
noetherian algebras R for which no such parametrization exists. This has 
interesting consequences for the classification of noneommutative surfaces. 

We now make precise the definitions that will hold throughout this article. 
All rings will be algebras over a fixed, algebraically closed base field k (although 
most of the results actually hold for arbitrary fields). A fc-algebra R is called 
connected graded (eg) if F is a finitely generated N-graded fc-algebra R = @ i > 0 F , 
with RQ = k. Note that this forces dim?. F, < oo for all i. Usually, we will assume 
that F is generated in degree one in the sense that F is generated by R\ as a k-
algebra. If F = ® i G N F , is a right noetherian eg ring then define gr F to be the 
category of finitely generated, Z-graded right F-modules, with morphisms being 
graded homomorphisms of degree zero. Define the torsion subcategory, tors R, to 
be the full subcategory of gr F generated by the finite dimensional modules and 
write qgrF = g r F / t o r s F . We write n for the canonical morphism g r F —¥ qgrF 
and set TZ = n(R). 

One can—and often should—work more generally with all graded F-modules 
and all quasi-coherent sheaves of Ox-modules, but two categories are enough. 

In order to measure the growth of an algebra we use the following dimension 
function: For a eg ring F = © i > 0 Ri, the Gelfand-Kirillov dimension of F is 
defined to be GKdim F = inf {a £ R : dinij;(^"=0 F,) < na for all n >• 0} . Basic 
facts about this dimension can be found in [17]. If F is a commutative eg algebra 
then GKdim F equals the Krull dimension of F and hence equals dim Proj F + 1. 
Thus a noneommutative curve, respectively surface, will more formally be defined 
as qgrF for a eg algebra F with GKdim F = 2, respectively 3. 
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2. Historical background 
We begin with a historical introduction to the subject. It really started with 

the work of Artin and Schelter [2] who attempted to classify the noneommutative 
analogues F of a polynomial ring in three variables (and therefore of P2). The first 
problem is one of definition. A "noneommutative polynomial ring" should obviously 
be a eg ring of finite global dimension, but this is too general, since it includes the 
free algebra. One can circumvent this problem by requiring that dim/. F , grows 
polynomially, but this still does not exclude unpleasant rings like k{x,y}/(xy) that 
has global dimension two but is neither noetherian nor a domain. The solution is 
to impose a Gorenstein condition and this leads to the following definition: 

Definition 1 A eg algebra R is called AS-regular of dimension d if gl dim R = d, 
GKdim F < oo and R is AS-Gorenstein; that is, Ext*(fc,F) = 0 for i ^ d but 
Extrf(fc, R) = k, up to a shift of degree. 

One advantage with the Gorenstein hypothesis, for AS-regular rings of dimen­
sion 3, is that the projective resolution of k is forced to be of the form 

0 —•+ F —• R(n) —• R(n) —• R —•+ jfc —•+ 0 

for some n and, as Artin and Schelter show in [2], this gives strong information 
on the Hilbert series and hence the defining relations of R. In the process they 
constructed one class of algebras that they were unable to analyse: 

Example 2 The three-dimensional Sklyanin algebra is the algebra 

Skl3 = Skl3(a, 6,c) = k{xo,xi,a;2}/'(aXjXj+i + bxj+ix» + cx2
+2 : i £ Z3), 

where (a, 6, c) £ P2 \ F , for a (known) set F . 

The original Sklyanin algebra Skl4 is a 4-dimensional analogue of Skl3 discov­
ered in [23]. Independently of [2], Odesskii and Feigin [18] constructed analogues of 
Skl4 in all dimensions and coined the name Sklyanin algebra. See [13] for applica­
tions of Sklyanin algebras to another version of noneommutative geometry. 

In retrospect the reason Skl3 is hard to analyse is because it depends upon an 
elliptic curve and so a more geometric approach is required. This approach came 
in [6] and depended upon the following simple idea. Assume that F is a eg algebra 
that is generated in degree one. Define a point module to be a cyclic graded (right) 
F-module M = @ i > 0 Mt such that dim?. Mt = 1 for all i > 0. The notation is 
justified by the fact that, if F were commutative, then such a point module M 
would be isomorphic to k[x] and hence equal to the homogeneous coordinate ring of 
a point in Proj R. Point modules are easy to analyse geometrically and this provides 
an avenue for using geometry in the study of eg rings. 

We will illustrate this approach for S = Skl3. Given a point module M = 
(J) Mi write Mi = m,fc for some m, £ Mt and suppose that the module structure 
is defined by m»Xj = Ayro,+i for some Ay £ k. If / = Yl fìj'xì'xj '1S> o n e °f t n e 

relations for S, then necessarily mo/ = (^/yAojAij)m2 , whence ^fij^oi^ij = 0. 
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This defines a subvariety F Ç P(S,J) x PfSJ) = P2 x P2 and clearly F parametrizes 
the truncated point modules of length three: cyclic F-modules M = M0 © Afi © Af2 

with dimAfj = 1 for 0 < i < 2. A simple computation (see [6, Section 3] or [25, 
Section 8]) shows that F is actually the graph of an automorphism a of an elliptic 
curve F c P2. It follows easily that F also parametrizes the point modules. As a 
morphism of point modules, a is nothing more than the shift functor M = (J) Mt H> 
M>! [1] = Mi © M2 © • • • . 

The next question is how to use E and a to understand Skl3. Fortunately, 
one can create a noneommutative algebra from this data that is closely connected 
to Skl3. This is the twisted homogeneous coordinate ring of E and is defined as 
follows. Let X be a fc-scheme, with a line bundle £ and automorphism a. Set 

n —1 

£n = £ ® £" ® • • • ® £" , where £T = T*£ denotes the pull-back of £ along an 
automorphism r. Then the twisted homogeneous coordinate ring is defined to be 
the graded vector space B = B(X,£,a) = k + ® n > 1 Bn where Bn = H°(X, £n). 
The multiplication on B = B(Y,£,a) is defined by the natural map 

Bn®kBm = E0(X,£n)®ka
nE°(X,£m) 

— H (X,£n) ®kH (X,£^n ) —y H (X, £n+m) = Bn+m-

The ring B has two significant properties. First, the way it has been con­
structed ensures that the natural isomorphism S\ = H°(P2,ÖP2(1)) = Fi induces a 
ring homomorphism <f> : S —ï B. With a little more work using the Riemann-Roch 
theorem one can even show that B = S/gS for some g £ S3. Secondly—and this 
will be explained in more detail in the next section—qgrF = coh(F). The latter 
fact allows one to obtain a detailed understanding of the structure of B and the 
former allows one to pull this information back to S. 

To summarize, the point modules over the Sklyanin algebra Skl3 are deter­
mined by an automorphism of an elliptic curve F and the geometry of F allows one 
to determine the structure of Skl3. As is shown in [6] this technique works more 
generally and this leads to the following theorem. 

Theorem 3 [6, 26, 27] The AS-regular rings R of dimension 3 are classified. They 
are all noetherian domains with the Hilbert series of a weighted polynomial ring 
k[x,y,z]; thus the (x,y,z) can be given degrees (a,b,c) other than (1,1,1). 

Moreover, R always maps homomorphically onto a twisted homogeneous coor­
dinate ring B = B(X,£,a), for some scheme X. Thus coh(X) ~ qgrF ^y qgrF. 

In this result, Artin, Tate and Van den Bergh [6] classified the algebras gen­
erated in degree one, while Stephenson [26, 27] did the general case. 

There are strong arguments (see [11] or [25, Section 11]) for saying that the 
noneommutative analogues of the projective plane are precisely the categories qgr F , 
where F is an AS-regular ring with the Hilbert series 1/(1 — t)3 of the unweighted 
polynomial ring k[x, y, z]. So consider this class, which clearly includes the Sklyanin 
algebra. The second paragraph of the theorem can now be refined to say that either 
X = P2 , in which case qgrF ~ coh(P2), or X = E is a cubic curve in P2. Thus, 
the theorem can be interpreted as saying that noneommutative projective planes are 
either equal to P2 or contain a commutative curve E. 
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3. Twisted homogeneous coordinate rings 
The ideas from [6] outlined in the last section have had many other applica­

tions, but before we discuss them we need to analyse twisted homogeneous coordi­
nate rings in more detail. The following exercise may give the reader a feel for the 
construction. 

Exercise 4 Perhaps the simplest algebra appearing in the theory of quantum 
groups is the quantum (affine) plane kq[x,y] = k{x,y}/(xy — qyx), for q £ k*. 
Prove that kq[x,y] = B(W1,Opi(l),a) where a is defined by a(a : 6) = (a : qb), for 
(a:b) £ P 1 . 

For the rest of the section, fix a fc-scheme X with an in verüble sheaf £ and auto­
morphism a. When a = 1, the homogeneous coordinate ring B(X,£) = B(X,£, 1) 
is a standard construction and one has Serre's fundamental theorem: If £ is ample 
then coh(X) ~ qgr(F). As was hinted in the last section, this does generalize to 
the noneommutative case, provided one changes the definition of ampleness. Define 
£ to be a-ample if, for all T £ coh(X), one has Hg(X, T ® £n) = 0 for all q > 0 
and all n >• 0. The naïve generalization of Serre's Theorem then holds. 

Theorem 5 (Artin-Van den Bergh [7]) Let X be a projective scheme with an au­
tomorphism a and let £ be a a-ample invertible sheaf. Then B = B(X,£,a) is a 
right noetherian eg ring such that qgr(F) ~ coh(X). 

This begs the question of precisely which line bundles are a-ample. A simple 
application of the Riemann-Roch Theorem shows that 

if X is a curve, then any ample invertible sheaf is a-ample, (3.1) 

and the converse holds for irreducible curves. This explains why Theorem 5 could 
be applied to the factor of the Sklyanin algebra in the last section. 

For higher dimensional varieties the situation is more subtle and is described 
by the following result, for which we need some notation. Let X be a projective 
scheme and write A^um(X) for the set of Cartier divisors of X modulo numerical 
equivalence. Let a be an automorphism of X and let Pa denote its induced action 
on .4jjum(X). Since Ajium(X) is a finitely generated free abelian group, Pa may­
be represented by a matrix and Pa is called quasi-unipotent if all the eigenvalues of 
this matrix are roots of unity. 

Theorem 6 (Keeler [15]) If a be an automorphism of a projective scheme X then: 
(1) X has a a-ample line bundle if and only if Pa is quasi-unipotent. If Pa is 

quasi-unipotent, then all ample line bundles are a-ample. 
(2) In Theorem 5, B is also left noetherian. 

There are two comments that should be made about Theorem 6. First, it is 
standard that GKdimB(X,£) = 1 + dimX, whenever £ is ample. However, it 
can happen that GKdim F (X, £, a) > 1 + dimX. Secondly, one can still construct 
B(X,£,a) when £ is ample but Pa is not quasi-unipotent, but the resulting algebra 
is rather unpleasant. Indeed, possibly after replacing £ by some £®n, B(X,£,a) 
will be a non-noetherian algebra of exponential growth. See [15] for the details. 
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4. Noneommutative curves and surfaces 
As we have seen, twisted homogeneous coordinate rings are fundamental to the 

study of noneommutative projective planes. However, a more natural starting place 
would be eg algebras of Gelfand-Kirillov dimension two since, as we suggested in the 
introduction, these should correspond to noneommutative curves. Their structure 
is particularly simple. 

Theorem 7 [4] Let R be a eg domain of GK-dimension 2 generated in degree one. 
Then there exists an irreducible curve Y with automorphism a and ample invertible 
sheaf £ such that R embeds into the twisted homogeneous coordinate ring B(Y,£,a) 
with finite index. Equivalently, Rn = H°(Y, £ ® £" ® • • • ® £"n ) for n >• 0. 

By (3.1) we may apply Theorem 5 to obtain part (1) of the next result. 

Corollary 8 Let R be as in Theorem 7. Then: 

(1) R is a noetherian domain with qgrF ~ coh(Y). In particular, qgrF ~ qgrC 
for the commutative ring C = B(Y,£,M). 

(2) If \a\ < oo then R is a finite module over its centre. If \a\ = oo, then R is a 
primitive ring with at most two height one prime ideals. 

If F is not generated in degree one, then the analogue of Theorem 7 is more 
subtle, since more complicated algebras appear. See [4] for the details. One should 
really make a further generalization by allowing F to be prime rather than a domain 
and to allowing k to be arbitrary (since this allows one to consider the projective 
analogues of classical orders over Dedekind domains). Theorem 7 and Corollary 8 
do generalize appropriately but the results are more technical. The details can be 
found in [5]. 

Although these results are satisfying they are really only half of the story. 
As in the commutative case one would also like to define noneommutative curves 
abstractly and then show that they can indeed be described by graded rings of the 
appropriate form. Such a result appears in [19] but to state it we need a definition. 

Let C be an Ext-finite abelian category of finite homological dimension with 
derived category of bounded complexes Db(C). Recall that a cohomological functor 
H : Db(C) —¥ mod(fc) is of finite type if, for A £ Db(C), only a finite number 
of the H(A[n]) are non-zero. The category C is saturated if every cohomological 
functor H : Db(C) —¥ mod(fc) of finite type is of the form Hom(A, —) (that is, H is 
representable). If X is a smooth projective scheme, then coh(X) is saturated [10], 
so it is not unreasonable to use this as part of the definition of a "noneommutative 
smooth curve." 

Theorem 9 (Reiten-Van den Bergh [19, Theorem V.l.2]) Assume thatC is a con­
nected saturated hereditary noetherian category. Then C has one of the following 
forms: 

(1) mod(A) where A is an indecomposable finite dimensional hereditary algebra. 
(2) coh(ö) where Ö is a sheaf of hereditary Ox-orders over a smooth connected 

projective curve X. 
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It is easy to show that the abelian categories appearing in parts (1) and (2) of 
this theorem are of the form qgr F for a graded ring F with GKdim F < 2, and so 
this result can be regarded as a partial converse to Theorem 7. A discussion of the 
saturation condition for noneommutative algebras may be found in [12]. 

If one accepts that noneommutative projective curves and planes have been 
classified, as we have argued, then the natural next step is to attempt to classify all 
noneommutative surfaces and this has been a major focus of recent research. This 
program is discussed in detail in [25, Sections 8-13] and so here we will be very brief. 
For the sake of argument we will assume that an (irreducible) noneommutative 
surface is qgrF for a noetherian eg domain F with GKdim F = 3, although the 
precise definition is as yet unclear. For example, Artin [1] demands that qgrF 
should also possess a dualizing complex in the sense of Yekutieli [30]. Nevertheless 
in attempting to classify surfaces it is natural to mimic the commutative proof: 

(a) Classify noneommutative surfaces up to birational equivalence; equivalently 
classify the associated graded division rings of fractions for graded domains F 
with GKdim F = 3. Artin [1, Conjecture 4.1] conjectures that these division 
rings are known. 

(b) Prove a version of Zariski's theorem that asserts that one can pass from any-
smooth surface to a birationally equivalent one by successive blowing up and 
down. Then find minimal models within each equivalence class. 

Van den Bergh has created a noneommutative theory of blowing up and down 
[28, 29] and used this to answer part (b) in a number of special cases. A key-
fact in his approach is that (after minor modifications) each known example of a 
noneommutative surface qgr F contains an embedded commutative curve C, just as 
qgr(Skl3) ^ coh(F) = F in Section 2. This is important since he needs to blow up 
points on that subcategory. In general, define a point in qgrF to be n(M) for a 
point module M £ gr F . Given such a point p, write p = n(R/L) = TZ/1. Mimicking 
the classical situation we would like to write 

B = K®1®12®--- , (4.1) 

and then define the blow-up of qgr F to be the category qgr B of finitely generated 
graded B-modules modulo those that are right bounded. However, there are two 
problems. A minor one is that 1 needs to be twisted to take into account the shift 
functor on qgr F . The major one is that J is only a one-sided ideal of F , and so 
there is no natural multiplication on B. To circumvent these problems, Van den 
Bergh [28] has to define B in a more subtle category so that it is indeed an algebra. 
It is then quite hard to prove that qgr B has the appropriate properties. 

5. Hilbert schemes 
Since point modules and twisted homogeneous coordinate rings have proved 

so useful, it is natural to ask how generally these techniques can be applied. In 
particular, one needs to understand when point modules, or other classes of modules, 
can be parametrized by a scheme. Indeed, even for point modules over surfaces the 
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answer was unknown until recently and this is obviously rather important for the 
program outlined in the last section. 

The best positive result is due to Artin, Small and Zhang [3, 9], for which we 
need a definition. A fc-algebra F is called strongly noetherian if R®kC is noetherian 
for all noetherian commutative fc-algebras C. 

Theorem 10 (Artin-Zhang [9, Theorems E4.3 and E4.4]) Assume that R is a 
strongly noetherian, eg algebra and fix h(t) = VJ/ijt* £ k[[t]]. Let C denote the 
set of cyclic R-modules M = R/L with Hilbert series ìIM(ì) = Ydìmk(Mi)t% equal 
to h(t). Then: 

(1) C is naturally parametrized by a (commutative) projective scheme. 
(2) There exists an integer d such that, if M = R/L £ C, then L is generated in 

degrees < d as a right ideal of R. 

In particular, if F is a strongly noetherian eg algebra generated in degree one, 
then the set of point modules is naturally parametrized by a projective scheme V. 
In this case one can further show that the shift functor M H> Af>i[l] induces an 
automorphism aofV. Thus one can form the corresponding twisted homogeneous 
coordinate rings B = B(V, £, a) and for an appropriate line bundle £ there will exist 
a homomorphism <p : R —t B. Determining when <p is surjective is probably quite 
subtle. This result cannot be used to shorten the arguments about the Sklyanin 
algebra Skl3 given in Section 2, since one needs to use B(E, £, a) to prove that Skl3 

is noetherian. 
Although we have concentrated on point modules, more general classes of 

modules are also important. An example where line modules (modules M with the 
Hilbert series of k[x, y]) are needed in a classification problem appears in [22]. 

How strong is the strongly noetherian hypothesis? Certainly most of the 
standard examples of noetherian eg algebras (including the Sklyanin algebras) are 
strongly noetherian (see [3, Section 4]) and so one might hope that this is always 
the case. But in fact, as Rogalski [20] has shown, eg noetherian algebras that are 
not strongly noetherian exist in profusion. 

These examples are constructed as subrings of B = B(Wn,Opn(l),a) for an 
appropriate automorphism a. Given a £ Aut(P"), pick c £ Wn and set C = {c, = 
<7_*(c) : i £ N}. Then C is called critically dense if, for any infinite subset T> C C, 
the Zariski closure of T> equals P". This is not a particularly stringent condition, 
since it holds for a generic set of (a, c) £ Aut(P") x P". Corresponding to c one has 
the point module M = B/VB for some codimension one subspace V = V(c) Ç B\. 
Rogalski's example is then simply S(a,c) = k(V) C B, and it has remarkable 
properties: 

Theorem 11 (Rogalski [20]) Keep the above notation. Assume that a £ Aut(P") 
and c £Wn for n > 2 are such that C is critically dense. Then: 

(1) S = S(a,c) is always noetherian but never strongly noetherian. 
(2) The point modules for S are not naturally parametrized by a projective scheme. 
(3) S satisfies the condition \i but not the condition \2, as defined below. More­

over, qgr S has finite cohomological dimension. 
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(4) The category qgr S is not Extfinite; indeed if S = TT(S) £ qgr S, then H1(<S) = 
ExtqgrS(<S, S) is infinite dimensional. 

Some comments about the theorem are in order. First, the point modules for 
S = S(a,c) are actually parametrized by an "infinite blowup of P"" in the sense 
that they are parametrized by P" except that for each p £ C one has a whole family 
Vp of point modules parametrized by P " _ 1 . In contrast, the points in qgr S are 
actually parametrized by P" since, if M, N £ Vp, then n(N) = n(M) in qgr S. 

The conditions \ì m part (3) are defined as follows: A eg ring F satisfies x» 
if, for each 0 < j < n and each M £ g rF , one has dimkExtJ

R(k, M) < oo. The 
significance of \i is that, by [8, Theorem 4.5], one can reconstruct S = S (a, c) from 
qgr S and so the peculiar properties of S are reflected in qgr S. In particular, part 
(4) implies that S does not satisfy %2- The significance of part (4) is that, for all 
the algebras F considered until now, Serre's finiteness theorem holds in the sense 
that H*(.F) is finite dimensional for all T £ qgrF and all i. 

Here is the simplest example of S(a,c). Pick algebraically independent ele­
ments p, q £ fcand define a £ Aut(P2) by a(a:b:c) = (pa:qb:c). If c = (1:1:1) £ P2 

then C is critically dense and an argument like that of Exercise 4 shows that 

B = k{x,y,z}/(zx —pxz, zy — qyz,yx —pq~1xy) and S(a,c) = k{y— x, z— x). 

This example was first considered by Jordan [14] who was able to parametrize the 
point modules for S(a,c) but was unable to determine if the ring was noetherian. 

Rogalski's examples show that, even for surfaces, the picture is much more 
complicated than the discussion of the last section would suggest. Yet even these 
examples appear in a geometric framework; indeed they can be constructed as blow­
ups of P" if one uses the naïve approach of (4.1). 

This works as follows. As before, assume that (a, c) £ Aut(P") x P" for n > 2 is 
such that C is critically dense. In coh(P") let lc denote the ideal sheaf corresponding 
to the point c. If £ is a coherent module over Ö = Op», we form a bimodule £a 

such that as a left module, £a = £ but the right action is twisted by a: if s £ £a (U) 
and a £ Op™(all), then sa £ £^(11) is defined by the formula sa = a"s. See [7, 
pp.252-3] for a more formal discussion. Now set J = lc ®o 0(ï)a Ç 0(ï)a and let 
B = B(a,c) = 0®J®J2®- • •, where Jn is the image of J ® " in 0(1)®" ~ 0(n)^. 
This does not define a sheaf of rings in the usual sense since we are "playing a game 
of musical chairs with the open sets [7, p.252]." Nevertheless B does have an natural 
graded algebra structure and so we can form qgr B in the usual way. If a = 1 then 
qgrß is simply coh(X), where X is the blow-up of P" at c. In contrast, Keeler, 
Rogalski and the author have recently proved: 

Theorem 12 [16] Pick (a,c) £ Aut(P") x P" for n > 2 such that C is critically 
dense. Then B = B(a,c) is noetherian. Moreover qgr(B) ~ qgrS^a, c). 

Thus, qgr S(a, c) is nothing more than the (noneommutative) blow-up of P" at 
a point! The differences between this blow-up and Van den Bergh's are illustrative. 
Van den Bergh had to work hard to ensure that the analogue of the exceptional 
divisor really looks like a curve. Indeed much of his formalism is required for just 
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this reason. In contrast, in Theorem 12 the analogue of the exceptional divisor 
(which in this case equals B/(XC_1)B) is actually a point. This neatly explains the 
structure of the points in qgr S (a, c); they are indeed parametrized by P" although 
the point corresponding to c (and hence the shifts of this point, which are nothing 
more than the points corresponding to the e,) are distinguished. 
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Deformations of Chiral Algebras 

Dimitri Tamarkin* 

Abstract 

We start studying chiral algebras (as defined by A. Beilinson and V. Drin-
feld) from the point of view of deformation theory. First, we define the notion 
of deformation of a chiral algebra on a smooth curve X over a bundle of local 
artinian commutative algebras on X equipped with a flat connection (whereas 
'usual' algebraic structures are deformed over a local artinian algebra) and we 
show that such deformations are controlled by a certain *-Lie algebra g. Then 
we try to contemplate a possible additional structure on g and we conjecture 
that this structure up to homotopy is a chiral analogue of Gerstenhaber al­
gebra, i.e. a coisson algebra with odd coisson bracket (in the terminology of 
Beilinson-Drinfeld). Finally, we discuss possible applications of this structure 
to the problem of quantization of coisson algebras. 

2000 Mathematics Subject Classification: 14, 18. 

1. Introduction 
Chiral algebras were introduced in [1]. In the same paper the authors intro­

duced the classical limit of a chiral algebra which they call a coisson algebra and 
posed the problem of quantization of coisson algebras. The goal of this paper is to 
show how the theory of deformation quantization (= the theory of deformations of 
associative algebras of a certain type) in the spirit of [3] can be developed in this 
situation. 

Central object in the theory of deformations of associative algebras is the 
differential graded Lie algebra of Hochschild cochains. It tu rns out tha t in our 
situation it is more appropriate to use what we call pro-*-Lie-algebras rather than 
usual Lie algebras (the notion of *-Lie algebra was also introduced in [1]). Next, we 
compute the cohomology of the pro-*-Lie-algebra controlling chiral deformations of 
a free commutative F>x-algebra SK, where K is a locally free F>x-module. 

Next, we state an analogue of Gerstenhaber theorem which says tha t the coho­
mology of the deformation complex of an associative algebra carries the structure of 
a Gerstenhaber algebra. We give a definition of a chiral analogue of Gerstenhaber 
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algebra and define the operations of this structure on deformation pro-*-Lie algebra 
of a chiral algebra. 

Finally, mimicking Kontsevich's formality theorem, we formulate the formality-
conjecture for the deformation pro-*-Lie algebra of the chiral algebra SK mentioned 
above and claim that this conjecture implies a 1-1 correspondence between defor­
mations of SK and coisson brackets on SK. 

2. Chiral algebras and their deformations 

2.1. Chiral operations 
In [1] chiral operations are defined as follows. Let X be a smooth curve and 

Mt,N F>x-modules. Denote by in : X —t Xn the diagonal embedding and by 
in '• Un —¥ Xn the open embedding of the complement to all diagonals in Xn. Set 

Pch(Mi,..., M„; N) = homi,x„ (j,j*(Mi M • • • M Mn), iwN). (1) 

In the case n = 0 set 
Pch(M) = H°(M ®Vx Ox). 

Let M be a fixed F^-module. Write 

FchM(«) = F c h ( M ' M ' - - - ' M ; M ) -
It is explained in [1] that PM is an operad. 

2.1.1. Chiral algebras 

Let lie be the operad of Lie algebras. A chiral algebra structure on M is a 
homomorphism lie —t PM • We have a standard chiral algebra structure on M = OJX • 
A chiral algebra M is called unital if it is endowed with an injection OJX —ï M of 
chiral algebras. 

2.2. Deformations 

2.2.1. Agreements 

To simplify the exposition, we will only consider unital chiral algebras M with 
the following restrictions: we assume that X is affine and the F^-module M can be 
represented as M = OJX ® N, where N = F ®ox ®x for some locally free coherent 
sheaf F . 

2.2.2. Nilpotent X>x-algebras 

Let F be a left T>x -module equipped with a commutative associative unital 
product F ® E —t E. Let u : Ox —*• E be the unit embedding. Call F nilpotent if 
there exists a Dx-module splitting s : F = M ® Ox and a positive integer N such 
that the iV-fold product vanishes on M. M is then a unique maximal T>x-ideal in 
F . 
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2.2.3. Deformations over a nilpotent X>x-algebra 

Let F be a nilpotent T>x -algebra with maximal ideal M. We have a notion 
of F-module and of an F-linear chiral algebra . For any T>x -module M, MF := 
M ®Ox E '1S a n F-module. 

Let M be a chiral algebra. An F-linear unital chiral algebra structure on MF 

is called deformation of M over E if the induced structure on MF/M.MF — M 
coincides with the one on M. Denote by GM(E) the set of all isomorphism classes 
of such deformations. 

2.3. The functor GM and its representability 

It is clear that F H> GM(E) is a functor from the category of nilpotent Dx-
algebras to the category of sets. In classical deformation theory one usually has a 
functor from the category of (usual) local Arminian (=nilpotent and finitely dimen­
sional) algebras to the category of sets and one tries to represent it by a differential 
graded Lie algebra. In this section we will see that in our situation a natural sub­
stitute for a Lie algebra is a so-called *-Lie algebra in the sense of [1]. More precise, 
given a *-Lie algebra g, we are going to construct a functor FB from the category of 
nilpotent T>x-algebras to the category of sets. In the next section we will show that 
the functor GM is 'pro-representable' in this sense. We will construct a pro-*-Lie 
algebra dei M (exact meaning will be given below) and an isomorphism of functors 
GM and F^f^. 

2.3.1. *-Lie algebras 

[1] Let Qi, N be right ©^-modules. Set 

P*(9i,---,9n,N) := homDx„(ßi M • • • M gn,in*N), 

and F»B(n) := P(g,... ,g;g). It is known that F»B is an operad. A *-Lie algebra 
structure on g is by definition a morphism of operads / : lie —t F»B. Let 6 £ lie(2) 
be the element corresponding to the Lie bracket. We call /(6) £ F»B(2) the *-Lie 
bracket. 

2.3.2. 

Let g be a *-Lie algebra and A be a commutative T>x -algebra, introduce a 
vector space g(A) = g ®x>x A. This space is naturally a Lie algebra. Indeed, we 
have a *-Lie bracket g i j - > Ì2*g- Multiply both parts by A M A: 

(g m g) ®Vxxx (A m A) -+ i2»g ®vxxx (A m A). (*) 

The left hand side is isomorphic to g(A) ® g(A). The right hand side is isomorphic 
to g ®T>X (A ®ox -4). Thus, (*) becomes: 

g(A) ® g(A) - • g ®Vx (A ®0x A). 
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The product on A gives rise to a map 

B ®vx (A ®0x A) -+ g ®Vx A ~ g(A), 

and we have a map g(A) ® g(A) —t g(A). It is straightforward to check that this 
map is a Lie bracket. 

2.3.3. 

Let now g be a differential graded *-Lie algebra and let A be a differential 
graded commutative F>x-algebra. Then g(A) := g ®x>x A is a differential graded 
Lie algebra. 

2.3.4. 

Let A be a nilpotent T>x algebra and MA C A be the maximal nilpotent ideal. 
Then Q(MA) is a nilpotent differential graded Lie algebra. 

2.3.5. 

Recall that given a differential graded nilpotent Lie algebra n, one can con­
struct the so called Deligne groupoid Qn. Its objects are all x £ n1 satisfying 
dx + [x,x]/2 = 0 (so called Maurer-Cartan elements). The group exp(n°) acts on 
the set of Maurer-Cartan elements by gauge transformations. Qn is the groupoid 
of this action. Denote by T>n the set of isomorphism classes of this groupoid. If 
/ : n —¥ m is a map of differential graded Lie algebras such that the induced map on 
cohomology Hl(f) is an isomorphism for all i > 0, then the induced map T>n —t T>m 

is a bijection. If n, m are both centered in non-negative degrees, then the induced 
map Qn —¥ Qm is an equivalence of categories. Since in our situation we will deal with 
Lie algebras centered in arbitrary degrees, we will use T>n rather than groupoids. 

2.3.6. 

Set F M (A) = X>B(MA)- It '1S a functor from the category of nilpotent T>x-
algebras to the category of sets. 

2.4. Pro-*-Lie- algebras 
*-Lie algebras are insufficient for description of deformations of chiral algebras. 

We will thus develop a generalization. We need some preparation 

2.4.1. Procategory 

For an Abelian category C consider the category pro C whose objects are 
functors I —¥ C, where J is a small filtered category. Let Fk : Lk —t C, k = 1,2 be 
objects. Set 

hom(Fi,F2) := liminv ,2G/2limdir iiei1(Fi(ii), F 2 ( î 2 ) ) -

The composition of morphisms is naturally defined. One can show that pro C is 
an Abelian category. Objects of pro C are called pro-objects. 
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2.4.2. Direct image of pro-F>-modules 

Let M : L —t Vy — mod be a pro-object, where Y is a smooth algebraic 
variety and let / : Y —¥ Z be a locally closed embedding. Denote the composition 
fioM : L —t T>z — mod simply by fi M. We will get a functor /„ : pro Vy — mod —¥ 
pro T>z — mod. 

2.4.3. Chiral and *-operations 

For N, Mi £ pro Vx -mod we define F*(Mi , . . . , Mn, N), P c h ( A / i , . . . , Mn, N) 
by exactly the same formulas as for usual ©^-modules. 

2.4.4. pro-*-Lie algebras 

*-Lie algebra structure on a pro-î^x-module is defined in the same way as for 
usual T>x-modules. 

2.4.5. 

For a pro-right T>x -module I —¥ M and a left T>x -module F define a vector 
space M ®vx L = liminv i(M ®vx L). For a *-Lie algebra g and a commutative 
T>x -algebra a, g ®x>x a is a Lie algebra. Construction is the same as for usual *-Lie 
algebras. Similarly, we can define the functor FB from the category of nilpotent 
T>x -algebras to the category of sets. 

2.5. Representabil i ty of GM by a pro-*-Lie algebra 

We are going to construct a differential graded *-pro-Lie algebra g such that 
FB is equivalent to GM . We need a couple of technical lemmas. 

2.5.1. 

Let Y be a smooth affine algebraic varieties and U, V be right X>y-modules. 
Let Ua,a £ A be the family of all finitely generated submodules of U. Denote 
prohom([7, V) = liminv a(Ua,V) the corresponding pro-vector space. 

2.5.2. 

Let i : X —t Y be a closed embedding, let F be a X>y-module and M be a 
F>x-module. Then 

prohomVY (B,i*(M ®ox T>x)) 

is a pro-F>x-module. Denote it by P(B,M). Let now Y = Xn. 

Lemma 2.1 Assume that B = jn*jn(E ®oXn F'x»), where E is locally free and 
coherent. For any left T>x -module L we have 

prohom(B,im(M®0x L)) =* P(B,M) ®Vx L. 
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Proof. Let F = jm.j*E. We have B = F ®öx„ î>x»- Note that F = 
limdir FQ, where FQ runs through the set of all free coherent submodules of F . 

We have 

P(B,M) = liminv h o m ^ » (FQ ® 0 x „ Vx^,in*(M®0x L)) 

~ liminv F* cgi0x„ t„ , (M ® 0 x D x ) ®i,x F 

=* liminv hom 0 x„ (Fa,im(M ®0x Vx)) ®vx L 

=* prohom(B,zn»(M cgi0x T>x)) ® P x F. 

2.5.3. 

Let F , Af be as above. We have a natural morphism 

i : im.P(B, M) ~ P(B, M) ®Vx vf>x -+ p rohom(F , M ®vx ®(Vxf°x ) . 

The above lemmas imply that i is an isomorphism. 

2.5.4. 

Let M be a right F>x-module. Set 

UM(n) = Vch(M, M,..., M ; M ® Vx) •= p rohom( j „ , j ;M H " , t„ , (M ® 2>x)), 

it is a right pro-F>x-module. We will endow the collection UM with the struc­
ture of an operad in *-pseudotensor category. This means that we will define the 
composition maps 

Oj G Px(UM(n),UM(m);UM(n + m - 1)), 

z = l , . . . , n + m — 1, satisfying the operadic axioms. We need a couple of technical 
tacts. 

2.5.5. 

Let in : X —t Xn be the diagonal embedding and pl
n : Xn -+ I be the 

projections. Lemma 2.5.3. implies that 

Lemma 2.2 

imUM(k) = Vch(M,...,M;M®Vx Vfn). 

Lemma 2.3 For any T>x -modules M,S we have an isomorphism 

in*(M)®pj
n*S^im.(M®S). 
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2.5.6. 

We are now ready to define the desired structure. In virtue of 2.3 we have 
natural maps: 

Vch(Mi,..., M„; N) -+ Vch(Mi,..., Mi ® Vx, • • •, M„; (N ® Vx))-

Thus, we have maps: 

Vch(Mi,..., M„; (Ni ® Vx)) M Vch(Ni, ...Nn;,(K® Vx)) 

- • Vch(Mi,...,Mn;(Ni®Dx)) 

mVch(Ni,...,Ni®Dx,...,Nm;(K®Dx)®Dx) 

-> V^N!,... Ni^i,Mi,..., Mn, Ni+1, ...,Nm;K®Vx®Vx) 

= Ì2*Vch(Ni,... Ni-lt Mi,..., Mn, Ni+1,. ..,Nm,K® Vx). 

By substituting M instead of all Ni, Mj, K, we get the desired insertion map 

Oj : UM(n) H UM (m) -ï Ì2*UM(^ + m — 1). 

2.5.7. 

Similarly, we have insertion maps 

Oj : UM(n) ® ̂ c h M ( m ) "^ UM(n + m - 1), 

and 
°i : -PchM(n) ® uM(m) -^ UM(n + m - 1). 

2.5.8. 

Let O be a differential graded operad. Set 

3o,n-=0(n)s% 

andßo = ©nflo,n[l - n]. 
Let pn : 0(n) —¥ go,n be the natural projection, which is the symmetrization 

map. Define the brace (x, y) >-¥ x{y}, go,n ® 9o,m, —* 9o,n+m-i as follows. 

x{y\ = npn(oi(x,y)) (2) 

and the bracket 
[x,y] = x{y}-(-l)WMy{x}. (3) 

We see that [, ] is a Lie bracket. Thus, go is a differential graded Lie algebra. For an 
operad O denote by O' the shifted operad such that the structure of an C-algebra 
on a complex V is equivalent to the structure of an ö-algebra on a complex V[l]. 
Thus, 0'(n) = 0(n) ® en[l — n], where en is the sign representation of Sn. 

Let O be an operad of vector spaces. The set of Maurer-Cartan elements of 
go> is in 1-1 correspondence with maps of operads lie —t O. 

Assume that 0(1) is a nilpotent algebra (xn = 0 for any x £ 0(1)). Let A be 
0(1) with adjoined unit and let Ax be the group of invertible elements. Ax acts 
on O by automorphisms. Therefore, Ax acts on the set of maps lie —t O. The 
groupoid of this action is isomorphic to the Deligne groupoid of go> • 
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2.5.9. 

Similarly, let A be a *-operad. Then formula 3 defines a Lie-* algebra g A- We 

have natural action of a usual pro-Lie algebra g-p (M) on a pro *-Lie algebra guM 

by derivations. The chiral bracket b £ gip ,M-, satisfies [6,6] = 0. Therefore, the 

bracket with 6 defines a differential on guM. Denote this differential graded *-Lie 
algebra by VM-

2.5.10. 

To avoid using derived functors, we will slightly modify BM • Recall that M = 
OJX © X, where N is free. Let 

V^d(M, ...,M;M® Vx) C Vcil(M, ...,M;M® Vx) 

be the subset of all operations vanishing under all restrictions 

Vch(M, ...,M;M®Vx)-> ^ c h ( M > • • • ,M,ux,M,..., M ; M ® Vx). 

Let defM C BM be the submodule such that 

defM = ®„(^g d (Af , ...,M;M® Vx) ® e„) s" [1 - n]. 

We see that def^f is a *-Lie differential subalgebra of 5M-

2.5.11. 

Proposition 2.4 The functors GM and F^ef are canonically isomorphic. 

2.6. Example 
Let K be a free left F>x-module. Let TXK = K °xi. The symmetric group 

Si acts on the Vx -module T%K; let S%K = (TlK)Si be the submodule of invariants 
and SK = ®^L0S

lK. SK is naturally a free commutative F>x-algebra and, hence, 
SKr := SK ® OJX is a chiral algebra. We will compute the cohomology of the 
F>x-module deign*. Let SQK = (Bn

<L1S
lK. We have: 

defSK* = ®n(Pch(SoKr[l],..., S0K
r[l]; SKr ® Vx)[l]f". 

On the other hand, denote by 0 := SK®K. Consider Q as an SK-Vx-module 
of differentials of SK. We have the de Rham differential D : SQK —ï Q. We have a 
through map 

c„ : Pch(K[l]r,..., K[l]r, SK[l]r)s» = F | f (Ü[l]r,..., Ü[l]r, SK[l]r)s» 

D pch(s0K[iY,..., s0K[i]r, SK[iy 

where Ps£ stands for SFJ-linear chiral operations. Denote by the same letter the 
induced map 

c, : Pch(K[l]r,..., K[1Y, SK[lYf- -+ defSif. 
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Proposi t ion 2.5 (1) dcn = 0; 
(2) cn induces an isomorphism 

Pch(K[l]r,..., K[1Y, SK[\]r)s» -+ F " - 1 ( d e f s x ) [ l - n]. 

2.6.1. 

For a chiral algebra M denote by H M the graded Lie algebra of cohomology 
of defM-

2.6.2. 

Assume that K is finitely generated. Let 

K* = hom(K,Vx)®(ux)~1 

be the dual module. Then 

HSK*^ ®n(P*(Kr,... ,Kr;SKr®Vx)en)
s»[l-n] = ®n(A

nK^' ®0x SK)r[l-n\. 

2.6.3. 

We will postpone the calculation of the *-Lie bracket on H$K>• until we show 
in the next section that H M has in fact a richer structure. 

3. Algebraic structure on the cohomology of the 
deformation pro-*-Lie algebra 

We will keep the agreements and the notations from 2.2.1.. 

3.1. Cup product 
We will define a chiral operation U £ F ^ def r_1-i(2) and then we will study 

the induced map on cohomology. 

3.1.1. 

Recall that 
de f M [ - l ] = ®n(ar, 

where 
an = Pch(N[l],...,N[l];M®Vx). 

Let in : X —t Xn be the diagonal embedding and let p% : Xn —t X Un C Xn be 
the complement to the union of all pairwise diagonals p%x = p>>x and j n : Un —¥ Xn 

be the open embedding. Let Un>m C Xn+m be the complement to the diagonals 
plx = pix, where 1 < i < n, n+l<j<n + m and j n m : Unm —̂  Xn+m be the 
embedding 
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Compute 

J2,jl(an H am) = hom(jmjn(N[lfn) H jm*Jm(N[lfm), 

(in X Ìm)*(Ì2*Ì2*(M ®VXMM® Vx))) 

- hom(jmjn(N[lfn) mjm*Jm(N[lfm) ® j,0(Un,m), 

(in X Ìm)*(h*J2 (M ®VX^M®VX)® j*0(Un,m))) 

^hom(jn+m*jn+m(N[l]fn+m,(in x im)*(h*Ul(M m M)) ®Vx^x)) • 

Taking the composition with the chiral operation on M, we obtain a chiral 
operation 

to.fe(an&am) -+ hom(jn+m*jn+m(X[l}fn+m,in+m*(M ®VX®VX)) ~ Ì2*an+m, 

which induces a chiral operation from F c | 1 (af" ,a^ m ;a r ^^*) and, hence, an opera­
tion U G ( F c h ( d e f M H ] , d e f M H ] ; d e f M H ] ) ) S 2 . 

3.1.2. 

To investigate the properties of this operation, consider the brace *-operation 
•{} G F»(defM,defM;defM) defined by formula (2). Let 

r : Pch(Ai,A2;A3) -+ P,(Ai,A2;A3) 

be the natural map 

Proposition 3.1 d(-{\) = r(U). 

Let Uft be the induced operation on HM[^1]- The above proposition implies 
that r(Uft) = 0. In virtue of exact sequence 

0 -+ hom((Ai)1 ® (A2)
l,(A3)

1) -> Pch(A1,A2;A3) 4 P.(A1,A2;A3), 

Uft defines a Vx -commutative product I / M [ - 1 ] ® HM[—1] —t HM[—1], denoted by 
the same letter. 

3.1.3. 

Proposition 3.2 U^ is associative. 

3.1.4. Leibnitz rule 

We are going to establish a relation between U and •{}. This relation is similar 
to the one of coisson algebras. Our exposition will mimic the definition of coisson 
algebras from [1]. 
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3.1.5. 
i 

Let Ai be right F>x-modules. Write A± ® A2 := (A[ ®Al
2)

r; Pi(Ai,A2;A3) := 

hom(.4i ® A2,A3). We have (.4 ® B) = i*2(B M C); 

i 

i2*(A® B) -+i2*A®p*2(B
l). 

We have a map 

c : Pr.(Ai,A2;B) ® P,(B, C; D) -+ P»(Ai,A2 ® C; D) 

1 

defined as follows. Let u : Ai M A2 —¥ Ì2*B and m : B ® C —¥ D. Put 

c(u,v) : AiM(A2 ® C) = (-41H.42)cgi_P;(C') -^ i2*B®p*2(C
l) ^ i2.(B ® C) -+ i2.D. 

3.1.6. 

Denote 
i 

e = c(0,Uft) G P*(HM,HM ® HM;HM). 
1 1 

Let T : HM ® HM —ï H M ® HM be the action of symmetric group and let eT be 

the composition with T. Let / G P*(HM,HM ® HM', HM) be defined by: 

HM E3 (HM ® HM) -^ HM E3 HM ~^ ì*HM-

Proposi t ion 3.3 We have f = e + eT. 

In other words, the cup product and the bracket satisfy the Leibnitz identity. 

3.1.7. 

We see that HM has a pro-*-Lie bracket, (HM)'[1] has a commutative Vx-
algebra structure, and these structures satisfy the Leibnitz identity. Call this struc­
ture a c-Gerstenhaber algebra structure. Thus, our findings can be summarized as 
follows. 

Theorem 3.4 The cohomology of the deformation pro-*-Lie algebra of a chiral 
algebra is naturally a pro-c-Gerstenhaber algebra. 

3.2. Example M = (SK)r 

We come back to our example 2.6.. For simplicity assume K is finitely gener­
ated free Vx -module. We have seen in this case that 

(HM)l[-l] ~ (Bi A* Kv ® SK[^i] ~ S(KV[^1] e K). 

Proposition 3.5 The cup product on HM coincides with the natural one on the 
symmetric power algebra. 
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3.2.1. 

To describe the bracket it suffices to define it on the submodule of generators 
G = (Kv[—1] ® K)r. Define [] G P*(G,G;HM) to be zero when restricted onto 
Kr M Kr and KVr[^l] H Ä"V r[-l] . Restriction onto K M Kv[^l] takes values in 
u)x C H M and is given by the canonic *-pairing from [1] 

(KvmK)r ^i2*üjx. 

Recall the definition. We have KVr = hom(Kr,Vx ® w x ) . For open U,V C X we 
have the composition map 

K(U) ® KV(V) -^Vx®ojx(Un V) = i2*ojx(U x V) 

which defines the pairing. This uniquely defines the *-Lie bracket. 

4. Formality Conjecture 
Following the logic of Kontsevich's formality theorem, one can formulate a 

formality conjecture in this situation. 

4.1. Quasi-isomorphisms 
A map / : g —¥ I) of differential graded pro-*-Lie algebras is called quasi-

isomorphism if it induces an isomorphism on cohomology. Call a pro-*-Lie algebra 
perfect if such is its underlying complex of pro-vector spaces. The morphism / is 
called perfect quasi-isomorphism if it is a quasi-isomorphism and both g and f) are 
perfect. 

Two perfect pro-*-lie algebras are called perfectly quasi-isomorphic if there 
exists a chain of perfect quasi-isomorphisms connecting g and h. 

Conjecture 4.1 deign and H$K are perfectly quasi-isomorphic. 

The importance of this conjecture can be seen from the following theorem: 

Theorem 4.2 Any chain of perfect quasi-isomorphisms between deign* and H$K* 
establishes a bijection between the set of isomorphism classes of A-linear coisson 
brackets on SKr ® A which vanish modulo the maximal ideal MA and the set of 
isomorphism classes of all deformations of the chiral algebra SKr over A. 
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Converse Theorems, Fune tor iality, 
and Applications to Number Theory 

J. W. Cogdell* I. I. Piatetski-Shapiro^ 

Abstract 

There has been a recent coming together of the Converse Theorem for 
GLn and the Langlands-Shahidi method of controlling the analytic properties 
of automorphic L-functions which has allowed us to establish a number of new 
cases of functoriality, or the lifting of automorphic forms. In this article we 
would like to present the current state of the Converse Theorem and outline 
the method one uses to apply the Converse Theorem to obtain liftings. We will 
then turn to an exposition of the new liftings and some of their applications. 
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1. Introduction 
Converse Theorems traditionally have provided a way to characterize Dirichlet 

series associated to modular forms in terms of their analytic properties. Most 
familiar are the Converse Theorems of Hecke and Weil. Hecke first proved tha t F-
functions associated to modular forms enjoyed "nice" analytic properties and then 
proved "Conversely" tha t these analytic properties in fact characterized modular 
F-functions. Weil extended this Converse Theorem to F-functions of modular forms 
with level. 

In their modern formulation, Converse Theorems are stated in terms of auto­
morphic representations of GLn(A) instead of modular forms. Jacquet , Piatetski-
Shapiro, and Shalika have proved tha t the F-functions associated to automorphic 
representations of GLn(A) have nice analytic properties via integral representations 
similar to those of Hecke. The relevant "nice" properties are: analytic continuation, 
boundedness in vertical strips, and functional equation. Converse Theorems in this 
context invert these integral representations. They give a criterion for an irreducible 
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admissible representation II of GL„ (A) to be automorphic and cuspidal in terms of 
the analytic properties of Rankin-Selberg convolution F-functions L(s, II x n') of II 
twisted by cuspidal representations n' of GLTO(A) of smaller rank groups. 

To use Converse Theorems for applications, proving that certain objects are 
automorphic, one must be able to show that certain F-functions are "nice". How­
ever, essentially the only way to show that an F-function is nice is to have it asso­
ciated to an automorphic form. Hence the most natural applications of Converse 
Theorems are to functoriality, or the lifting of automorphic forms, to GLn. More 
explicit number theoretic applications then come as consequences of these liftings. 

Recently there have been several applications of Converse Theorems to estab­
lishing functorialities. These have been possible thanks to the recent advances in 
the Langlands-Shahidi method of analysing the analytic properties of general au­
tomorphic F-functions, due to Shahidi and his collaborators [21]. By combining 
our Converse Theorems with their control of the analytic properties of F-functions 
many new examples of functorial liftings to GL„ have been established. These are 
described in Section 4 below. As one number theoretic consequence of these lift­
ings Kim and Shahidi have been able to establish the best general estimates over 
a number field towards the Ramamujan-Selberg conjectures for GL2, which in turn 
have already had other applications. 

2. Converse Theorems for G L n 

Let k be a global field, A its adele ring, and ip a fixed non-trivial (continuous) 
additive character of A which is trivial on k. We will take n > 3 to be an integer. 

To state these Converse Theorems, we begin with an irreducible admissible 
representation II of GLn(A). It has a decomposition II = C^'n^, where n^ is an 
irreducible admissible representation of GLn(fc„). By the local theory of Jacquet, 
Piatetski-Shapiro, and Shalika [9, 11] to each n^ is associated a local F-function 
L(s,Uv) and a local e-factor e(s,Uv,ipv). Hence formally we can form 

L(s,U) = JJ_L(s,Uv) and e(s,U,ip) = JJ_e(s,Uv,'ipv). 

We will always assume the following two things about II: 

(1) L(s,U) converges in some half plane Re(s) >> 0, 
(2) the central character un of II is automorphic, that is, invariant under kx. 

Under these assumptions, e(s, II, ip) = e(s, II) is independent of our choice of ip [4]. 
As in Weil's case, our Converse Theorems will involve twists but now by cus­

pidal automorphic representations of GLTO(A) for certain m. For convenience, let 
us set A(m) to be the set of automorphic representations of GLTO(A), Ao(m) the 
set of (irreducible) cuspidal automorphic representations of GLTO(A), and T(m) = 
UrfLi Ao(d). If S is a finite set of places, we will let Ts(m) denote the subset of 
representations n £ T with local components nv unramified at all places v £ S and 
let Ts(m) denote those n which are unramified for all v $ S. 
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Let ir' = ®'n'v be a cuspidal representation of GLTO(A) with m < n. Then 
again we can formally define 

L(s,U x n') = J jL ( s , I I „ x n'v) and e(s,U x n') = JJ_e(s,Uv x n'v,tpv) 

since the local factors make sense whether II is automorphic or not. A consequence 
of (1) and (2) above and the cuspidality of n' is that both L(s, II x n') and L(s, II x 
n') converge absolutely for Re(s) » 0, where II and n' are the contragredient 
representations, and that e(s,Il x n') is independent of the choice ofip. 

We say that L(s, II x n') is nice if it satisfies the same analytic properties it 
would if II were cuspidal, i.e., 

1. L(s,U x IT') and L(s, II x n') have continuations to entire functions of s, 
2. these entire continuations are bounded in vertical strips of finite width, 
3. they satisfy the standard functional equation 

L(s,U x IT') = e(s,U x n')L(l - s,ft x n'). 

The basic converse theorem for GL„ is the following. 
Theo rem 1. [6] Let II be an irreducible admissible representation of GL„(A) 

as above. Let S be a finite set of finite places. Suppose that L(s,U x n') is nice 
for all n' £ Ts(n — 2). Then II is quasi-automorphic in the sense that there is an 
automorphic representation II' such that n^ ~ Yl'v for all v $ S. If S is empty, then 
in fact II is a cuspidal automorphic representation of GL„ (A). 

It is this version of the Converse Theorem that has been used in conjunction 
with the Langlands-Shahidi method of controlling analytic properties of F-functions 
in the new examples of functoriality explained below. 

Theo rem 2. [4] Let II be an irreducible admissible representation o/GL„(A) 
as above. Let S be a non-empty finite set of places, containing Soo, such that the 
class number of the ring og of S-integers is one. Suppose that L(s,H x n') is nice 
for all IT1 £ Ts(n — 1). Then II is quasi-automorphic in the sense that there is an 
automorphic representation II' such that n^ ~ Yl'v for all v £ S and all v ^ S such 
that both n^ and Yl'v are unramified. 

This version of the Converse Theorem was specifically designed to investigate 
functoriality in the cases where one controls the F-functions by means of integral 
representations where it is expected to be more difficult to control twists. 

The proof of Theorem 1 with S empty and n — 2 replaced by n — 1 essentially 
follows the lead of Hecke, Weil, and Jacquet-Langlands. It is based on the integral 
representations of F-functions, Fourier expansions, Mellin inversion, and finally a 
use of the weak form of Langlands spectral theory. For Theorems 1 and 2 where we 
have restricted our twists either by ramification or rank we must impose certain local 
conditions to compensate for our limited twists. For Theorem 1 are a finite number 
of local conditions and for Theorem 2 an infinite number of local conditions. We 
must then work around these by using results on generation of congruence subgroups 
and either weak approximation (Theorem 1) or strong approximation (Theorem 2). 

As for our expectations of what form the Converse Theorem may take in the 
future, we refer the reader to the last section of [6]. 
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3. Functoriality via the Converse Theorem 
In order to apply these theorems, one must be able to control the analytic 

properties of the F-function. However the only way we have of controlling global F-
functions is to associate them to automorphic forms or representations. A minute's 
thought will then convince one that the primary application of these results will be 
to the lifting of automorphic representations from some group H to GLn. 

Suppose that H is a reductive group over k. For simplicity of exposition we will 
assume throughout that H is split and deal only with the connected component of its 
F-group, which we will (by abuse of notation) denote by LH [1]. Let n = ®'nv be a 
cuspidal automorphic representation of H and p a complex representation of LH. To 
this situation Langlands has associated an F-function L(s,n,p) [1]. Let us assume 
that p maps LH to GLn(C). Then by Langlands' general Principle of Functoriality 
to n should be associated an automorphic representation II of GLn(A) satisfying 
L(s,U) = L(s,n,p), e(s,U) = e(s,n,p), with similar equalities locally and for the 
twisted versions [1]. Using the Converse Theorem to establish such liftings involves 
three steps: construction of a candidate lift, verification that the twisted F-functions 
are "nice", and application of the appropriate Converse Theorem. 

1. Construction of a candidate lift: We construct a candidate lift II = C '̂n^ 
on GLn(A) place by place. We can see what n^ should be at almost all places. 
Since we have the arithmetic Langlands (or Hecke-Frobenius) parameterization of 
representations nv of H(kv) for all archimedean places and those non-archimedean 
places where the representations are unramified [1], we can use these to associate 
to nv and the map pv :LHV —¥ LH —t GLn(C) a representation n^ of GLn(fc„). This 
correspondence preserves local F- and e-factors 

L(s,Uv) = L(s,nv,pv) and e(s,Uv,ipv) = e(s,nv,pv,ipv) 

along with the twisted versions. If H happens to be GLTO or a related group then 
we in principle know how to associate the representation n^ at all places now that 
the local Langlands conjecture has been solved for GLTO. For other situations, we 
may not know what n^ should be at the ramified places. We will return to this 
difficulty momentarily and show how one can work around this with the use of a 
highly ramified twist. But for now, let us assume we can finesse this local problem 
and arrive at a global representation II = C '̂n^ such that 

L(s,U) = J j L ( s , n „ ) = Y[L(s,nv,pv) = L(s,n,p) 

and similarly e(s,U) = e(s,n,p) with similar equalities for the twisted versions. II 
should then be the Langlands lifting of n to GLn(A) associated to p. 

2. Analytic properties of global L-functions: For simplicity of exposition, let us 
now assume that p is simply a standard embedding of LH into GL„(C), such as will 
be the case if we consider H to be a split classical group, so that L(s, n, p) = L(s, n) 
is the standard F-function of n. We have our candidate II for the lift of n to GL„ 
from above. To be able to assert that the II which we constructed place by place 
is automorphic, we will apply a Converse Theorem. To do so we must control the 
twisted F-functions L(s, II x n') = L(s,n x n') for n' £ T with an appropriate 
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twisting set T from Theorem 1 or 2. In the examples presented below, we have 
used Theorem 1 above and the analytic control of L(s,n x n') achieved by the so-
called Langlands-Shahidi method of analyzing the F-functions through the Fourier 
coefficients of Eisenstein series [21]. Currently this requires us to take k to be a 
number field. The functional equation L(s, n xn') = e(s, n x n')L(l — s, n x n') has 
been proved in wide generality by Shahidi [18]. The boundedness in vertical strips 
has been proved in close to the same generality by Gelbart and Shahidi [7]. As for 
the entire continuation of L(s,n x n'), a moments thought will tell you that one 
should not always expect a cuspidal representation of H (A) to necessarily lift to a 
cuspidal representation of GL„(A). Hence it is unreasonable to expect all L(S,/KX/K') 

to be entire. We had previously understood how to work around this difficulty from 
the point of view of integral representations by again using a highly ramified twist. 
Kim realized that one could also control the entirety of these twisted F-functions in 
the context of the Langlands-Shahidi method by using a highly ramified twist. We 
will return to this below. Thus in a fairly general context one has that L(s,n x n') 
is entire for n' in a suitably modified twisting set T'. 

3. Application of the Converse Theorem: Once we have that L(s,n x n') is 
nice for a suitable twisting set T' then from the equalities 

L(s,U x n') = L(s,n x n') and e(s,U x n') = e(s,n x n') 

we see that the L(s, II x n') are nice and then we can apply our Converse Theorems 
to conclude that II is either cuspidal automorphic or at least that there is an auto­
morphic II' such that n^ = Yl'v at almost all places. This then effects the (possibly-
weak) automorphic lift of n to II or II'. 

4. Highly ramified twists: As we have indicated above, there are both local 
and global problems that can be finessed by an appropriate use of a highly ramified 
twist. This is based on the following simple observation. 

Observation. Let II be as in Theorem 1 or 2. Suppose that r\ is a fixed 
character ofkx\Ax . Suppose that L(s, II x n') is nice for all n' £ T' = T®r], where 
T is either of the twisting sets of Theorem 1 or 2. Then II is quasi-automorphic as 
in those theorems. 

The only thing to observe is that if n' £ T then L(s, II x (n' ® r]j) = L(s, (II ® 
if) x IT') so that applying the Converse Theorem for II with twisting set T ® r\ is 
equivalent to applying the Converse Theorem for II ® r\ with the twisting set T. So, 
by either Theorem 1 or 2, whichever is appropriate, II ®r] is quasi-automorphic and 
hence II is as well. 

If we now begin with n automorphic on H (A), we will take T to be the set of 
finite places where nv is ramified. For applying Theorem 1 we want S = T and for 
Theorem 2 we would want S n T = 0. We will now take r\ to be highly ramified at 
all places v £ T, so that at v £ T our twisting representations are all locally of the 
form (unramified principal series)®(highly ramified character). 

In order to finesse the lack of knowledge of an appropriate local lift, we need 
to know the following two local facts about the local theory of F-functions for H. 

Multiplicativity of 7-factors. If n'v = Ind(ir'i v ® n'2 v ) , with 7r- V and ir­
reducible admissible representation of GLri(kv), then we have ^(s,irv x n'v,ipv) = 
7(S,7T„ X ir'i v,XpvYf(s,Tïv X TT2 v,1pv)-
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Stabili ty of 7-factors. If ni:V and TT2,V are two irreducible admissible repre­
sentations ofH(kv) with the same central character, then for every sufficiently highly 
ramified character r]v of GL\(kv) we have ^(s,ni^v X r)v,ipv) = 7(s,7r2jt,

 x rh,'ipv)-
Both of these facts are known for GL„, the multiplicativity being found in 

[9] and the stability in [10]. Multiplicativity in a fairly wide generality useful for 
applications has been established by Shahidi [19]. Stability is in a more primitive 
state at the moment, but Shahidi has begun to establish the necessary results in a 
general context in [20]. 

To utilize these local results, what one now does is the following. At the places 
where nv is ramified, choose n^ to be arbitrary, except that it should have the same 
central character as nv. This is both to guarantee that the central character of n 
is the same as that of n and hence automorphic and to guarantee that the stable 
forms of the 7-factors for nv and n^ agree. Now form II = <g>'II„. Choose our 
character r\ so that at the places v £ T we have that the F- and 7-factors for 
both nv ® r)v and n^ ® r)v are in their stable form and agree. We then twist by 
T' = T ® T) for this fixed character r\. If n' £ T', then for v £ T, n'v is of the 
form n'v = Ind(\ \Sl ® • • • ® | |Sm) ® r)v. So at the places v £ T, applying both 
multilplcativity and stability, we have 

7(s,7T„ x n'v,ipv) = J j 7 ( s + Sj,7r„ ®i}v,ipv) 

= Y[>y(s + Si,Ylv ®i}v,ipv) =7(s , I I„ x n'v,ipv) 

from which one deduces a similar equality for the F- and e-factors. From this it 
will then follow that globally we will have L(s, n xn') = L(s, II x n') for all n' £ T' 
with similar equalities for the e-factors. This then completes Step 1. 

To complete our use of the highly ramified twist, we must return to the ques­
tion of whether L(s,n x n') can be made entire. In analysing F-functions via the 
Langlands-Shahidi method, the poles of the F-function are controlled by those of an 
Eisenstein series. In general, the inducing data for the Eisenstein series must satisfy 
a type of self-contragredience for there to be poles. The important observation of 
Kim is that one can use a highly ramified twist to destroy this self-contragredience 
at one place, which suffices, and hence eliminate poles. The precise condition will 
depend on the individual construction. A more detailed explanation of this can be 
found in Shahidi's article [21]. This completes Step 2 above. 

4. New examples of functoriality 
Now take k to be a number field. There has been much progress recently in 

utilizing the method described above to establish global liftings from split groups 
H over k to an appropriate GLn. Among them are the following. 

1. Classical groups. Take H to be a split classical group over k, more specif­
ically, the split form of either S0 2 „ + i , Sp2„, or S02„. The the F-groups LH are 
then Sp2n(C), S02„+ i(C), or S02„(C) and there are natural embeddings into the 
general linear group GL2„(C), GL2„+i(C), or GL2„(C) respectively. Associated to 
each there should be a lifting of admissible or automorphic representations from 
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H (A) to the appropriate GLjv(A). The first lifting that resulted from the combi­
nation of the Converse Theorem and the Langlands-Shahidi method of controlling 
automorphic F-functions was the weak lift for generic cuspidal representations from 
S0 2 „ + i to GL2„ over a number field k obtained with Kim and Shahidi [2]. We can 
now extend this to the following result. 

Theorem. [2, 3] Let H be a split classical group over k as above and n a 
globally generic cuspidal representation o/H(A). Then there exists an automorphic 
representation n of GLJV (A) for the appropriate N such that n^ is the local Lang-
lands lift of nv for all archimedean places v and almost all non-archimedean places 
v where nv is unramified. 

In these examples the local Langlands correspondence is not understood at the 
places v where nv is ramified and so we must use the technique of multiplicativity 
and stability of the local 7-factors as outlined in Section 3. Multiplicativity has 
been established in generality by Shahidi [19] and in our first paper [2] we relied 
on the stability of 7-factors for S0 2 „ + i from [5]. Recently Shahidi has established 
an expression for his local coefficients as Mellin transforms of Bessel functions in 
some generality, and in particular in the cases at hand one can combine this with 
the results of [5] to obtain the necessary stability in the other cases, leading to the 
extension of the lifting to the other split classical groups [3]. 

2. Tensor products. Let H = GLro x GL„. Then LH = GLro(C) x GL„(C). 
Then there is a natural simple tensor product map from GLTO(C) x GLn(C) to 
GLTOn(C). The associated functoriality from GL„ x GLTO to GLTO„ is the tensor 
product lifting. Now the associated local lifting is understood in principle since the 
local Langlands conjecture for GL„ has been solved. The question of global functo­
riality has been recently solved in the cases of GL2 x GL2 to GL4 by Ramakrishnan 
[17] and GL2 x GL3 to GL6 by Kim and Shahidi [15, 16]. 

Theorem. [17, 15] Let m be a cuspidal representation o/GL2(A) and 7r2 a 
cuspidal representation o/GL2(A) (respectively GL3(A)J. Then there is an auto­
morphic representation II o/GL4(A) (respectively GL6(A)) such that Ilv is the local 
tensor product lift of m,v x 7r2jt, at all places v. 

In both cases the authors are able to characterize when the lift is cuspidal. 
In the case of Ramakrishnan [17] n = m x 7r2 with each 7r, cuspidal repre­

sentation of GL2(A) and II is to be an automorphic representation of GL4(A). To 
apply the Converse Theorem Ramakrishnan needs to control the analytic proper­
ties of L(s,U x n') for n' cuspidal representations of GLi(A) and GL2(A), that is, 
the Rankin triple product F-functions L(s,II x n') = L(s,ni x 7r2 x n'). This he 
was able to do using a combination of results on the integral representation for this 
F-function due to Garrett, Rallis and Piatetski-Shapiro, and Ikeda and the work of 
Shahidi on the Langlands-Shahidi method. 

In the case of Kim and Shahidi [15, 16] 7r2 is a cuspidal representation of 
GL3(A). Since the lifted representation II is to be an automorphic representation 
of GL6 (A), to apply the Converse Theorem they must control the analytic properties 
of L(s, II x n') = L(s, 7Ti x 7T2 x n') where now n' must run over appropriate cuspidal 
representations of GLTO(A) with m = 1,2,3,4. The control of these triple products 
is an application of the Langlands-Shahidi method of analysing F-functions and 
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involves coefficients of Eisenstein series on GL5, Spin10, and simply connected E6 

and E7 [15, 21]. We should note that even though the complete local lifting theory-
is understood, they still use a highly ramified twist to control the global properties 
of the F-functions involved. They then show that their lifting is correct at all local 
places by using a base change argument. 

3. Symmetric powers. Now take H = GL2, so LH = GL2(C). For each n > 1 
there is the natural symmetric n-th power map symn : GL2(C) —¥ GLn + i(C). The 
associated functoriality is the symmetric power lifting from representations of GL2 

to representations of GL n + i . Once again the local symmetric powers liftings are 
understood in principle thanks to the solution of the local Langlands conjecture for 
GLn. The global symmetric square lifting, so GL2 to GL3, is an old theorem of 
Gelbart and Jacquet. Recently, Kim and Shahidi have shown the existence of the 
global symmetric cube lifting from GL2 to GL4 [15] and then Kim followed with 
the global symmetric fourth power lifting from GL2 to GL5 [14]. 

Theorem. [15, 14] Letn be a cuspidal automorphic representation o/GL2(A). 
Then there exists an automorphic representation II of GL4 (A) (resp. GL5 (A)) such 
that n^ is the local symmetric cube (resp. symmetric fourth power) lifting of nv. 

In either case, Kim and Shahidi have been able to give a very interesting 
characterization of when the image is in fact cuspidal [15, 16]. 

The original symmetric square lifting of Gelbart and Jacquet indeed used the 
converse theorem for GL3. For Kim and Shahidi, the symmetric cube was deduced 
from the functorial GL2 x GL3 tensor product lift above [15, 16] and did not require 
a new use of the Converse Theorem. For the symmetric fourth power lift, Kim first 
used the Converse Theorem to establish the exterior square lift from GL4 to GL6 

by the method outlined above and then combined this with the symmetric cube lift 
to deduce the symmetric fourth power lift [14]. 

5. Applications 
These new examples of functoriality have already had many applications. We 

will discuss the primary applications in parallel with our presentation of the exam­
ples. k remains a number field. 

1. Classical groups: The applications so far of the lifting from classical groups 
to GL„ have been "internal" to the theory of automorphic forms. In the case of the 
lifting from S0 2 „ + i to GL2„, once the weak lift is established, then the theory of 
Ginzburg, Rallis, and Soudry [8] allows one to show that this weak lift is indeed a 
strong lift in the sense that the local components n^ at those v £ S are completely-
determined and to completely characterize the image locally and globally. This will 
be true for the liftings from the other classical groups as well. Once one knows 
that these lifts are rigid, then one can begin to define and analyse the local lift for 
ramified representations by setting the lift of nv to be the n^ determined by the 
global lift. This is the content of the papers of Jiang and Soudry [12, 13] for the case 
of H = SC>2n+i • In essence they show that this local lift satisfies the relations on 
F-functions that one expects from functoriality and then deduce the local Langlands 
conjecture for S0 2 „ + i from that for GL2„. We refer to their papers for more detail 
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and precise statements. 
2. Tensor product lifts: Ramakrishnan's original motivation for establishing 

the tensor product lifting from GL2 x GL2 to GL4 was to prove the multiplicity one 
conjecture for SL2 of Langlands and Labesse. 

Theorem. [17] In the spectral decomposition 

Z4.p(SL2(*)\SL2(A))=0 m^n 

into irreducible cuspidal representations, the multiplicities m* are at most one. 
This was previously known to be true for GL„ and false for SL„ for n > 3. 

For further applications, for example to the Tate conjecture, see [17]. 
The primary application of the tensor product lifting from GL2 x GL3 to GL6 of 

Kim and Shahidi was in the establishment of the symmetric cube lifting and through 
this the symmetric fourth power lifting, so the applications of the symmetric power 
liftings outlined below are applications of this lifting as well. 

3. Symmetric powers: It was early observed that the existence of the symmet­
ric power liftings of GL2 to GL„+i for all n would imply the Ramanujan-Petersson 
and Selberg conjectures for modular forms. Every time a symmetric power lift is 
obtained we obtain better bounds towards Ramanujan. The result which follows 
from the symmetric third and fourth power lifts of Kim and Shahidi is the following. 

Theorem. [16] Let n be a cuspidal representation of GL2(A) such that the 
symmetric cube lift of'n is again cuspidal. Let diag(av,ßv) be the Satake parameter 
for an unramified local component. Then \av\, \ßv\ < qj . If in addition the fourth 
symmetric power lift is not cuspidal, the full Ramanujan conjecture is valid. 

The corresponding statement at infinite places, i.e., the analogue of the Sel­
berg conjecture on the eigenvalues of Mass forms, is also valid [14]. Estimates 
towards Ramanujan are a staple of improving any analytic number theoretic es­
timates obtained through spectral methods. Both the 1/9 non-archimedean and 
1/9 archimedean estimate towards Ramanujan above were applied in obtaining the 
precise form of the exponent in our recent result with Sarnak breaking the convex­
ity bound for twisted Hilbert modular F-series in the conductor aspect, which in 
turn was the key ingredient in our work on Hilbert's eleventh problem for ternary-
quadratic forms. Similar in spirit are the applications by Kim and Shahidi to the 
hyperbolic circle problem and to estimates on sums of shifted Fourier coefficients 
[15]. 

In addition Kim and Shahidi were able to obtain results towards the Sato-Tate 
conjecture. 

Theorem. [16] Let n be a cuspidal representation o/GL2(A) with trivial cen­
tral character. Let diag(av,ßv) be the Satake parameter for an unramified local 
component and let av = av + ßv. Assuming n satisfies the Ramanujan conjecture, 
there are sets T± of positive lower density for which av > 2cos(27r/ll) — e for all 
v £ T+ and av < ^2COS(2TT/11) + e for all v £ T~. [Note: 2COS(2TT/11) = 1.68.../ 

Kim and Shahidi have other conditional applications of their liftings such 
as the conditional existence of Siegel modular cusp forms of weight 3 (assuming 
Arthur's multiplicity formula for Sp4). We refer the reader to [15] for details on 
these applications and others. 
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Constructing and Counting 
Number Fields 

H. Cohen* 

Abstract 

In this paper we give a survey of recent methods for the asymptotic and 
exact enumeration of number fields with given Galois group of the Galois 
closure. In particular, the case of fields of degree up to 4 is now almost 
completely solved, both in theory and in practice. The same methods also 
allow construction of the corresponding complete tables of number fields with 
discriminant up to a given bound. 
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1. Introduction 
Let K be a number field considered as a fixed base field, K an algebraic 

closure of K, and G a transitive permutat ion group on n letters. We consider 
the set TK,U(G) of all extensions L/K of degree n with F c K such tha t the 
Galois group of the Galois closure L of L/K viewed as a permutat ion group on 
the set of embeddings of F into L is permutat ion isomorphic to G (i.e, n/m(G) 
times the number of extensions up to FJ-isomorphism, where m(G) is the number 
of K-automorphisms of F ) . We write 

NK,n(G,X) = \{L £ Tn(G), \N[v(L/K))\ < X}\ , 

where Q(L/K) denotes the relative ideal discriminant and TV the absolute norm. 
The aim of this paper is to give a survey of new methods, results, and conjectures 
on asymptotic and exact values of this quantity. It is usually easy to generalize 
the results to the case where the behavior of a finite number of places of K in the 
extension L/K is specified, for example if K = Q when the signature ( F i , R2) of F 
is specified, with F i + 2 F 2 = n. 

R e m a r k s . 
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1. It is often possible to give additional main terms and rather good error terms 
instead of asymptotic formulas. However, even in very simple cases such as 
G = S3, this is not at all easy. 

2. The methods which lead to exact values of NK,U(G,X) always lead to algo­
rithms for computing the corresponding tables, evidently only when 
NK,U(G,X) is not too large in comparison to computer memory, see for ex­
ample [8] and [10]. 

General conjectures on the subject have been made by several authors, for 
example in [3]. The most precise are due to G. Malle (see [24], [25]). We need the 
following definition. 

Definition 1.1. For any element g £ Sn different from the identity, define 
the index 'md(g) of g by the formula 'md(g) = n — |orbits of g\. We define the index 
i(G) of a transitive subgroup G of Sn by the formula 

i(G) = min ind(p) . 

Examples . 

1. The index of a transposition is equal to 1, and this is the lowest possible index 
for a nonidentity element. Thus i(Sn) = 1. 

2. If G is an Abelian group, and if £ is the smallest prime divisor of \G\, then 
i(G) = \G\(l-l/t). 

Conjecture 1.2. For each number field K and transitive group G onn letters 
as above, there exist a strictly positive integer 1>K(G) and a strictly positive constant 
CK(G) such that 

NK,n(G,X) ~ cK(G)X1/i{G\\ogX)bK{G)-1 . 

In [25], Malle gives a precise conjectural value for the constant bx(G) which 
is too complicated to be given here. 

Remarks. 

1. This conjecture is completely out of reach since it implies the truth of the 
inverse Galois problem for number fields. 

2. If true, this conjecture implies that for any composite n, the proportion of 
S^-extensions of K of degree n among all degree n extensions is strictly less 
than 1 (but strictly positive), contrary to the case of polynomials. 

The following results give support to the conjecture (see [2], [9], [18], [19], [20], 
[21], [22], [23], [28], [30]). 

Theorem 1.3. We will say that the above conjecture is true in the weak sense 
if there exists CK (G) > 0 such that for all e > 0 we have 

CK (G)-X1^G) < NK,n(G,X) < A-V'CGH* . 

1. (Moki, Wright). The conjecture is true for all Abelian groups G. 
2. (Davenport-Heilbronn, Datskovsky-Wright). The conjecture is true for n = 3 

and G = S3. 
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3. (Cohen-Diaz-Olivier). The conjecture is true for n = 4 and G = F 4 . 
4- (Bhargava, Yukie). The conjecture is true for n = 4 and G = S4, in the weak 

sense if K ^ Q. 
5. (Klüners-Malle). The conjecture is true in the weak sense for all nilpotent 

groups. 
6. (Kable-Yukie). The conjecture is true in the weak sense for n = 5 and G = S5. 

The methods used to prove these results are quite diverse. In the case of 
Abelian groups G, one could think that class field theory gives all the answers so 
nothing much would need to be done. This is not at all the case, and in fact Kummer 
theory is usually more useful. In addition, Kummer theory allows us more generally 
to study solvable groups. We will look at this method in detail. 

Apart from Kummer theory and class field theory, the other methods have a 
different origin and come from the classification of orders of degree n, interpreted 
through suitable classes of forms. This can be done at a very clever but still ele­
mentary level when the base field is Q, and includes the remarkable achievement of 
M. Bhargava in 2001 for quartic orders. Over arbitrary K, one needs to use and 
develop the theory of prehomogeneous vector spaces, initiated at the end of the 
1960's by Sato and Shintani (see for example [26] and [27]), and used since with 
great success by Datskovsky-Wright, and more recently by Wright-Yukie (see [29]), 
Yukie and Kable-Yukie. 

2. Kummer theory 
This method applies only to Abelian, or more generally solvable extensions. 

2.1. Why not class field theory? 
It is first important to explain why class field theory, which is supposed to 

be a complete theory of Abelian extensions, does not give an answer to counting 
questions. Let us take the very simplest example of quadratic extensions, thus with 
G = C2. A trivial class-field theoretic argument gives the exact formula 

NK,2(C2,X) = -1+ J2 1MCl+AK))MK
 ( X 

where 0 runs over all integral ideals of K of norm less than or equal to X, Cl^(K) 
denotes the narrow ray class group modulo 0, rk(G) denotes the 2-rank of an Abelian 
group G, and MK(U) is the generalization to number fields of the summatory func­
tion M(n) of the Möbius function. 

This formula is completely explicit, the quantities Cl^(K) and the function 
Mic(n) are algorithmically computable with reasonable efficiency, so we can com­
pute iVifj2(C2,X) for reasonably small values of X in this way. Unfortunately, this 
formula has two important drawbacks. 

The first and essential one is that, if we want to deduce from it asymptotic 
information on NK,2(C2,X), we need to control rk(Cl+(K), which can be done, 
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although rather painfully, but we also need to control MK(U), which cannot be 
done (recall for instance that the Riemann Hypothesis can be formulated in terms 
of this function). 

The second drawback is that, even for exact computation it is rather inefficient, 
compared to the formula that we obtain from Kummer theory. Thus, even though 
Kummer theory is used in a crucial way for the constructions needed in the proofs 
of class field theory, it must not be discarded once this is done since the formula 
that it gives are much more useful, at least in our context. 

2.2. Quadratic extensions 
As an example, let us see how to treat quadratic extensions using Kummer 

theory instead of class field theory. Of course in this case Kummer theory is trivial 
since it tells us that quadratic extensions of K are parameterized by K*/K*" minus 
the unit class. This is not explicit enough. By writing for any a £ K*, OLLK = nq2 

with o an integral squarefree ideal, it is clear that K*/K*" is in one-to-one cor­
respondence with pairs (o, «), where o are integral squarefree ideals whose ideal 
class is a square, and u is an element of the so-called Selmer group of K, i.e., the 
group of elements u £ K* such that UZK = q2 for some ideal q, divided by K**. 
We can then introduce the Dirichlet series $if,2(C72)«) = ^ L jV'(()(F/Kj)^s, where 
the sum is over quadratic extensions L/K in K. A number of not completely triv­
ial combinatorial and number-theoretic computations (see [9]) lead to the explicit 
formula 

<^2(C2,s) = ^l + — £ W ^ L ^ x , , ) , 
ÇK(2s) *-< M2/c)< 

x 

where \ r u n s o v e r a u quadratic characters of the ray class group Clc2(K) and 
LK('X,S) is the ordinary Dirichlet-Hecke F-function attached to \-

There are two crucial things to note in this formula. First of all, the sum on c 
is only on integral ideals dividing 2, so is finite and very small. Thus, $K,2(C2,S) is 
a finite linear combination of Euler products, and can directly be used much more 
efficiently than the formula coming from class field theory to compute iVifj2(C2, X) 
exactly. For example (but this of course does not need the above machinery) we 
obtain ÌVQ,2(C2 , IO25) = 6079271018540266286517795. 

Second, since LK(X, S) extends to a meromorphic function in the whole com­
plex plane with no pole if \ is n ° t a trivial character, the polar part of $K,2(C2,S), 

which is the only thing that we need for an asymptotic formula, comes only from 
the contributions of the trivial characters, in which case LK(X, S) is equal to C,K(S) 

times a finite number of Euler factors. We thus obtain 

NK,2(C2iX)~—-^X, 

where (K(1) is a convenient abuse of notation for the residue of (K(S) at s = 
1. Apparently this simple result was first obtained by Datskovsky-Wright in [18], 
although their proof is different. 
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2.3. General finite Abelian extensions 
The same method can in principle be applied to any finite Abelian group 

G. I say "in principle", because in practice several problems arise. For the base 
field K = Q, a complete and explicit solution was given by Maki in [23]. For a 
general base field, a solution has been given by Wright in [28], but the problem 
with his solution is that the constant CK(G), although given as a product of local 
contributions, cannot be computed explicitly without a considerable amount of 
additional work. It is always a finite linear combination of Euler products. 

In joint work with F. Diaz y Diaz and M. Olivier, using Kummer theory 
in a manner analogous but much more sophisticated than the case of quadratic 
extensions, we have computed completely explicitly the constants CK (G) for G = Ci 
the cyclic group of prime order I, for G = C4 and for G = V4 = C2 x C2. Although 
our papers are perhaps slightly too discursive, to give an idea the total number of 
pages for these three results exceeds 100. We refer to [7], [13], [11], [15], [16] for the 
detailed proofs, and to [12] and [14] for surveys and tables of results. We mention 
here the simplest one, for G = V4. We have 

NK,A(VA, X) ~ c/f (V4) X
1'2 log2 X with 

«™=^«<i> j n(i+i ) ( i -^ 

1 

n 
4 2 1 (1 - I / A V M P ) + (i + W P ) 2 

Np Np2 Np3 Npe{p)+1 

3 

p|2Zjf 1 + —7-
A/p 

Of course, the main difficulty is to compute correctly the local factor at 2. 
As usual, we can use our methods to compute very efficiently the N function. 

For example, we obtain (see [4]): 

NQ,3(C3, 1037) = 501310370031289126, 

ÌVQ,4(C4 , IO32) = 1220521363354404, 

ÌVQ,4(V4, IO36) = 22956815681347605884. 

2.4. Dihedral £)4-extensions 
We can also apply our method to solvable extensions. The case of quartic 

F4-extensions, where F 4 is the dihedral group of order 8, is especially simple and 
pretty. Such an extension is imprimitive, i.e., is a quadratic extension of a quadratic 
extension. Conversely, imprimitive quartic extensions are either F4-extensions, or 
Abelian with Galois group C4 or V4. These can easily be counted as explained above, 
and in any case will not contribute to the main term of the asymptotic formula, 
so they can be neglected (or subtracted for exact computations). Since we have 
treated completely the case of quadratic extensions, it is just a matter of showing 
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that we are allowed to sum over quadratic extensions of the base field to obtain the 
desired asymptotic formula (for the exact formula nothing needs to be proved), and 
this is not difficult. In this way, we obtain that NK,I(D±,X) ~ CK(D^) X for an 
explicit constant CK(D±) (in fact we obtain an error term 0 ( X 3 / 4 +e)) . This result 
is new even for K = Q, although its proof not very difficult. In the case K = Q, 
we have for instance 

6 2 - r 2 W F ( ( ^ ) , l ) 
C Q ( ^ ) = ^ E D2 L ; ^ ; 2 ; =0.1046520224.. . , 

where the sum is over fundamental discriminants D, r2(D) = r2(Q(VD)), and 
L((—),s) is the usual Dirichlet series for the character (—). 

Remark. In the Abelian case, it is possible to compute the Euler products 
which occur to hundreds of decimal places if desired using almost standard zeta-
product expansions, see for example [6]. Unfortunately, we do not know if it is 
possible to express C Q ( F 4 ) as a finite linear combination of Euler products (or at 
least as a rapidly convergent infinite series of such), hence we have only been able 
to compute 9 or 10 decimal places of this constant. We do not see any practical 
way of computing 20 decimals, say. 

Our method also allows us to compute Ì V Q J 4 ( F 4 , X ) exactly. However, here a 
miracle occurs: when k is a quadratic field, in the formula that we have given above 
for $fc,2(C72)«) all the quadratic characters \ which we need are genus characters 
in the sense of Gauss, in other words there is a decomposition 

Lk(x,s) = L((^),.s)L((^),s) 

into a product of two suitable ordinary Dirichlet F-series. This gives a very fast 
method for computing ÌVQ J 4 (F 4 , X), and in particular we have been able to compute 
iVQi4(F>4,1017) = 10465196820067560. 

We can also count the number of extensions with a given signature. The 
method is completely similar, but here not all characters are genus characters. 
In fact, it is only necessary to add a single nongenus character to obtain all the 
necessary ones, but everything is completely explicit, and closely related to the 
rational quartic reciprocity law. I refer to [5] for details. 

2.5. Other solvable extensions 
We can also prove some partial results in the case where G = A4 or G = S4 (of 

course the results for S4 are superseded by Bhargava's for K = Q, and by Yukie's 
for general K; still, the method is also useful for exact computations), see [17]. 

In the case of quartic A4 and ^-extensions (or, for that matter, of cubic S3-
extensions), we use the diagram involving the cubic resolvent (the quadratic one 
for S3-extensions), also called the Hasse diagram. We then have a situation which 
bears some analogies with the F 4 case. The differences are as follows. Instead of 
having to sum over quadratic extensions of the base field K, we must sum over cubic 
extensions, cyclic for A4 and noncyclic for S4. As in the F4-case, we then have to 
consider quadratic extensions of these cubic fields, but generated by an element of 
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square norm. It is possible to go through the exact combinatorial and arithmetic 
computation of the corresponding Dirichlet series, the cubic field being fixed. This 
in particular uses some amusing local class field theory. As in the F 4 case, we then 
obtain the Dirichlet generating series for discriminants of A4 (resp., S4) extensions 
by summing the series over the corresponding cubic fields. 

Unfortunately, we cannot obtain from this any asymptotic formula. The reason 
is different in the A4 and the S4 case. In the A4 case, the rightmost singularity of 
the Dirichlet series is at s = 1/2. Unfortunately, this is simultaneously the main 
singularity of each individual Dirichlet series, and also that of the generating series 
for cyclic cubic fields. Thus, although the latter is well understood, it seems difficult 
(but not totally out of reach) to paste things together. On the other hand, we can 
do two things rigorously in this case. First, we can prove an asymptotic formula 
for .44-extensions having a fixed cubic resolvent. Tables show that the formula is 
very accurate. Second, we can use our formula to compute NK,ì(Sì,X) exactly. 
For instance, we have computed ÌVQ J4(.44 , IO16) = 218369252. This computation 
is much slower than in the F4-case, because we do not have the miracle of genus 
characters, and we must compute the class and unit group of all the cyclic cubic 
fields. 

In the S4 case, the situation is different. The main singularity of each indi­
vidual Dirichlet series is still at s = 1/2 (because of the square norm condition), 
and the rightmost singularity of the generating series for noncyclic cubic fields is 
at s = 1, so the situation looks better (and analogous to the F 4 situation with 
s replaced by s/2). Unfortunately, as already mentioned we know almost nothing 
about the generating series for noncyclic cubic fields, a fortiori with coefficients. So 
we cannot go further in the asymptotic analysis. As in the A4 case, however, we 
can compute exactly either the number of ^-extensions corresponding to a fixed 
cubic resolvent, or even NK,ì(Sì,X) itself. The problem is that here we must com­
pute class and unit groups of all noncyclic cubic fields of discriminant up to X, 
while cyclic cubic fields of discriminant up to X are much rarer, of the order of 
X 1 / 2 instead. We have thus not been able to go very far and obtained for example 
ÌVQ,4(S4 , IO7) = 6541232. 

3. Prehomogeneous vector spaces 
The other methods for studying NK,U(G,X) are two closely related methods: 

one is the use of generalizations of the Delone-Fadeev map, which applies when 
K = Q. The other, which can be considered as a generalization of the first, is the 
use of the theory of prehomogeneous vector spaces, initiated by Sato and Shintani 
in the 1960's. 

3.1. Orders of small degree 

We briefly give a sketch of the first method. We would first like to classify 
quadratic orders. It is well known that, through their discriminant, such orders are 
in one-to-one correspondence with the subset of nonsquare elements of Z congruent 
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to 0 or 1 modulo 4, on which SLi(Z) (the trivial group) acts. Thus, for fixed 
discriminant, the orbits are finite (in fact of cardinality 0 or 1). For maximal 
orders, we need to add local arithmetic conditions at each prime p, which are easy 
for p > 2, and slightly more complicated for p = 2. 

We do the same for small higher degrees. For cubic orders, the classification 
is due to Davenport-Heilbronn (see [19], [20]). These orders are in one-to-one cor­
respondence with a certain subset of Sym3(Z2), i.e., binary cubic forms, on which 
SL2(Z) acts. Since once again the difference in "dimensions" is 4 — 3 = 1, for fixed 
discriminant the orbits are finite, at least generically. For maximal orders, we again 
need to add local arithmetic conditions at each prime p. These are easy to obtain 
for p > 3, but are a little more complicated for p = 2 and p = 3. An alternate way 
of explaining this is to say that a cubic order can be given by a nonmonic cubic 
equation, which is almost canonical if representatives are suitably chosen. 

For quartic orders, the classification is due to M. Bhargava in 2001, who showed 
in complete detail how to generalize the above. These orders are now in one-to-
one correspondence with a certain subset of Z2 ® Sym^Z3) , i.e., pairs of ternary-
quadratic forms, on which SL2(Z) x SL3(Z) acts. Once again the difference in 
"dimensions" is 2 x 6 — (3 + 8) = 1, so for fixed discriminant the orbits are finite, 
at least generically. For maximal orders, we again need to add local arithmetic 
conditions at each prime p, which Bhargava finds after some computation. An 
alternate way of explaining this is to say that a quartic order can be given by the 
intersection of two conies in the projective plane, the pencil of conies being almost 
canonical if representatives are suitably chosen. 

For quintic orders, only part of the work has been done, by Bhargava and 
Kable-Yukie in 2002. These are in one-to-one correspondence with a certain subset 
of Z4® A2(Z5), i.e., quadruples of alternating forms in 5 variables, on which SL4(Z) x 
SL5(Z) acts. Once again the difference in "dimensions" is 4 x 10 — (15 + 24) = 1, 
so for fixed discriminant the orbits are finite, at least generically. The computation 
of the local arithmetic conditions, as well as the justification for the process of 
point counting near the cusps of the fundamental domain has however not yet been 
completed. 

Since prehomogeneous vector spaces have been completely classified, this the­
ory does not seem to be able to apply to higher degree orders, at least directly. 

3.2. Results 
Using the above methods, and generalizations to arbitrary base fields, the 

following results have been obtained on the function NK,U(G,X) (many other deep 
and important results have also been obtained, but we fix our attention to this 
function). It is important to note that they seem out of reach using more classical 
methods such as Kummer theory or class field theory mentioned earlier. 

Theorem 3.1. Let K be a number field of signature (r\,r2), and as above 
write (K(1) for the residue of the Dedekind zeta function of K at s = 1. 

1. (Davenport-Heilbronn [19], [20]). We have NQ:3(S3,X) ~ cq(S3) X with 

CQ(S3) = TTjjy • 
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2. (Datskovsky-Wright [18]). We have NKß(S3,X) ~ cK(S3)X with 

f. (a, (2Y1-1 (IY2(K(1) 
, 3 ; \6j CK(3) ' 

3. (Bhargava [1], [2]). We have ÌVQ J 4 (S ' 4 ,X) ~ C Q ( S 4 ) X with 

,a-> 5 T T A ! 1 1 

6 Y V P -P P 

4- (Yukie [30]). There exist two strictly positive constants c\(K) and C2(K) such 
that 

ci X < NK,4(S4,X) < c2Xlog"J(X) . 

Under some very plausible convergence assumptions we should have in fact 
Arifj4(S'4,X) ~ CK(S4) X with 

5. (Kable-Yukie [21]). There exists a strictly positive constant c\ such that for 
all e > 0 we have 

ciX <NQ,5(S5,X)<X1+e . 

Remark. It should also be emphasized that, although the above methods give 
important and deep results on NK,U(G,X) for certain groups G, they shed almost 
no light on the possible analytic continuation of the corresponding Dirichlet series 
of which NK,U(G,X) is the counting function. For example, in the simplest case 
where K = Q, n = 3, and G = S3, for which the result dates back to Davenport-
Heilbronn, no one knows how to give an analytic continuation of the Dirichlet series 
^2L |d(F) |_ s even to 5R(s) = 1 (the sum being over cubic fields in Q and d(L) being 
the absolute discriminant of F). 
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The notion of a p-adic de Rhani representation of the absolute Galois 
group of a p-adic field was introduced about twenty years ago (see e.g. [Fo93]). 
Three important results for this theory have been obtained recently: The struc­
ture theorem for the almost Cp-representations, the theorem weakly admissible 
implies admissible and the theorem de Rham implies potentially semi-stable. 
The proofs of the first two theorems are closely related to the study of a new 
kind of analytic groups, the Banaeh-Golmez spaces and the proof of the third 
uses deep results on p-adic differential equations on the Robba ring. 
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1. Représentations p-adiques 
1.1. — Dans tout ce qui suit, K est un corps de caractéristique 0, complet pour une 

valuation discrète, à corps résiduel k parfait de caractéristique p > 0. On choisit 

une clôture algébrique K de K, on note C son complété et | |p la valeur absolue de 

C normalisée par \p\p = p^1. On pose GK = Gal(K/K). 

Une représentation banachique (de GK) est un espace de Banachp-adique muni 

d'une action linéaire et continue de GK- Avec comme morphismes les applications 

Qp -linéaires continues G A-équi variantes, ces représentations forment une catégorie 

additive Qp-linéaire B(GK)-

Une C-représentation (de GK) est un C-espace vectoriel de dimension finie 

muni d 'une action semi-linéaire et continue de GK- Lorsque k est fini, la catégorie 

Rep c (G i f ) des C-représentations s'identifie à une sous-catégorie pleine de B(GK) '• 
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Sud, Bâtiment 425, 91405 ORSAY Cedex, France. E-mail: fontaine@math.u-psud.fr 
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PROPOSITION [FoOO]. — Supposons k fini. Si W\ et W2 sont des C-représenta­
tions, toute application Qp-linéaire continue GK-équivariante de W\ dans W2 est 
C-linéaire. 

Disons que deux représentations banachiques Si et S2 sont presque isomorphes 
s'il existe un triplet (Vi,V2,o;) où V» est un sous-Qp-espace vectoriel de dimension 
finie de Si, stable par GK, et où a : Si/Vi —¥ S2/V2 est un isomorphisme (dans 
B(GK))- Une presque-C-représentation (de GK) est une représentation banachique 
qui est presque isomorphe à une C-représentation. On note C(GK) la sous-catégorie 
pleine de B(GK) dont les objets sont les presque-C-représentations. Elle contient 
la catégorie Repc(GK) et la catégorie RepQ (GK) des représentations p-adiques de 
dimension finie (de GK) comme sous-catégories pleines. 

THéORèME A [Fo02]. — Supposons k fini. La catégorie C(GK) est abélienne. Il 
existe sur les objets de C(GK) une unique fonction additive dh :S H> (d(S),h(Sj) £ 
N x Z telle que dh(W) = (dime W, 0) si W est une C-représentation et dh(V) = 
(0, diniQp V) si V est de dimension finie sur Qp. 

Si S et T sont des objets de C(GK), les Qp-espaces vectoriels Extl
CtGK^(S,T) 

sont de dimension finie et sont nuls pour i $ {0,1,2}. On a 
E?=0(^l) idimQpEx4 (Gjf )(S,F) = -[Ä- : Qp]h(S)h(T). 

1.2. — Soit W FJi l'ensemble des suites (x^)neN d'éléments de C vérifiant 
^x(n+i)y _ x(n) p 0 u r f0Ui n# Avec les lois 

(x + y)W = lïmm,^oo(x{n+m) + y(n+m)ym et (xy){n) = x{n)y{n) 

c'est un corps algébriquement clos de caractéristique p, complet pour la valeur 
absolue définie par |x| = | x ^ | p et on note F l'anneau de la valuation. Son corps 
résiduel s'identifie au corps résiduel k de K. L'anneau W(R) des vecteurs de Witt 
à coefficients dans F est intègre. Choisissons e,n £ R vérifiant e ^ = 1, gC1) ^ 1 
et n(°ï = p et, pour tout a £ R notons [a] = (a, 0,0,. . .) son représentant de 
Teichmüller dans W(R). L'application 6 : W(R) —¥ Oc qui envoie (ao,ai,...) sur 
S»eN-P"a« est un homomorphisme d'anneaux surjectif dont le noyau est l'idéal 
principal engendré par £ = [n] —p. On note encore 9 : W(R)[l/p] —¥ C l'application 
déduite en rendant p inversible. Rappelons que B^R = |im ^KW(R)[l/p]/(Çn) et 

-neN 
que le corps B^R des périodes p-adiques est le corps des fractions de F j f l . Toute 
unité a de F s'écrit d'une manière unique sous la forme a = aoa+ avec ao £ k 
et \a+ — 1| < 1, la série J2n=A^^n+1([a+~\ ~ l ) " / n converge dans Fj~fl vers un 
élément noté log [a] ; on pose t = log[e]. On a B^R = B^R[l/t]. On note Acris le 
séparé complété pour la topologie p-adique de la sous-W(F)-algèbre de W(R)[l/p] 
engendrée par les £TO/m! pour m G N. Alors Acris s'identifie à un sous-anneau de 
Fjj j contenant t et on pose Bfris = Acris[l/p] et F c r j S = Bfris[l/t] C B^R- La série 
J2n=A^^n+1^n/nPn c o n verge dans B^R vers un élément log[7r] = log([7r]/p) et on 

*- ' Voir [Fo88a] (resp. [Fo88b]) pour plus de détails sur la construction de BriR, BCTis et Bst 

(resp. sur les représentations p-adiques de de Rham et potentiellement semi-stables). 
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note B„t la sous-FcrjS-algèbre de B^R engendrée par log[7r]. Pour tout b £ R non 
nul, il existe r,s £ Z, avec s > 1 et une unité a de F tels que 6S = nra et on pose 
log[6] = (r log[7r] + log[a])/s. On a Bst = Bcris[log[b]] dès que 6 n'est pas une unité. 

Soit £ l'ensemble des extensions finies de K contenues dans K. Pour tout 
F £ £, on pose GL = Gal(K/L) et on note F0 le corps des fractions de l'anneau des 
vecteurs de Witt à coefficients dans le corps résiduel de F. Le corps K se plonge 
de façon naturelle dans Fj~fi et l'action de GK s'étend de façon naturelle à B^R, 
l'anneau Bst est stable par GK- Pour tout F £ £, on a (B(ìR)GL = L tandis que 
(Bst)

GL = L0 et l'application naturelle F ®L0 Bst —¥ B^R est injective. 
Pour toute représentation p-adique V de GK de dimension finie h sur Qp, on 

pose D,IR(V) = (K ®qp V)GK , Dst(V) = (Bst ®qp V)GK et, si F est une extension 
finie de K contenue dans K, Dst^(V) = (Bst ®qp V)GL. On a dim^ D<IR(V) < h 
et on dit que V est de de Rham si on a l'égalité. C'est le cas si dimjr0 Dst(V) = h 
auquel cas on dit que V est semi-stable. C'est aussi le cas s'il existe F e £ tel que 
dini£0 Dst^(V) = h, auquel cas on dit que V est potentiellement semi-stable, ou si 
l'on veut préciser F, que V est L-semi-stable. 

THéORèME B. — Toute représentation p-adique de GK qui est de de Rham est 
potentiellement semi-stable. 

Soit KBst le plus petit sous-anneau de B^R contenant K et Bst. Ce théorème 
revient à dire que, pour toute représentation de de Rham V, l'inclusion ((KBst)®qp 

V)GK C (BdR ®qp V)GK est une égalité. Berger [Be02] en a ramené la preuve à un 
résultat sur les équations différentielles p-adiques, résultat qui a ensuite été prouvé 
indépendamment par André [An02], Kedlaya [Ke02] et Mebkhout [Me02], voir §3. 

L'un des intérêts de ce théorème est que l'on dispose d'une description algébri­
que explicite de la catégorie des représentations potentiellement semi-stables. Le 
Frobenius usuel sur W(R) s'étend de façon naturelle en un endomorphisme (p de 
l'anneau Bst (on a ipt = pt et </?(log[7r]) = plog[7r]). Il existe une unique Bcris-
dérivation N : Bst —¥ Bst telle que iV(log[7r]) = —1. L'action de (p et de N commu­
tent à celle de GK et Nip = pipN. 

Soit L £ £ telle que L/K est galoisienne. Pour toute représentation p-adique 
V de GK, Dst^(V) est un (ip,N,Gal(L/Kj)-module filtré de dimension finie, i.e. 
c'est un F0-espace vectoriel D de dimension finie, muni 

- de deux applications ip : D —t D, N : D —t D, la première semi-linéaire 
relativement à la restriction de ip à F 0 et bijective, la deuxième linéaire, vérifiant 
Nip = pipN, 

- d'une action semi-linéaire de Gal(L/K), commutant hip et h N, 
- d'une filtration indexée par Z, décroissante, exhaustive et séparée, du K-

espace vectoriel DK = (L ®Lo D)G&i{L/K) (si D = Dst:L(V), on a DK C (BdR ®Qp 

V)GK et, pour tout i £ l , YïV'DK = DKC\ (F+f if ®Qp V)GK). 

On pose tn(D) = Xàez^-dimiï Fii*Djr/Fii*+1Djf. Si D = ® Q G Q F Q est la 
décomposition suivant les pentes du <p-isocristal sous-jacent, on pose aussi tjv(F) = 
E a e O a ' dim^o -Da- On dit que D est admissible si 
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a) on a tn(D) = ìN(D), 

b) pour tout sous-F0-espace vectoriel D' de D, stable par ip,N et Gal(L/K), 
on a ìH(D') < ìN(D') (on a muni D'K c DK de la filtration induite). 

THéORèME C [CFOO]. — Soit L d K une extension finie galoisienne de K. 
i) Pour toute représentation L-semi-stable V, Dst^(V) est admissible. 
ii) Le fondeur qui à, V associe Dst^(V) induit une équivalence^ entre la sous-

catégorie pleine Reps t L(GK) de RepQ (GK) dont les objets sont les représentations 
L-semi-stables et la catégorie des (ip, N,Gal(L/K))-modules filtrés admissibles. 

Remarque. Il était jusqu'à présent d'usage [Fo88b] d'appeler faiblement admis­
sible ce que nous appelons ici admissible. On savait (loc.cit., th.5.6.7) que Dst:L 
induit une équivalence entre la catégorie Reps t L(GK) et une sous-catégorie pleine 
de la catégorie des modules filtrés (faiblement) admissibles ; on conjecturait que ce 
foncteur est essentiellement surjectif et c'est ce qui est prouvé dans [CFOO]. 

2. Espaces de Banach-Colmez^ 
2.1 . — Une C-algèbre de Banach est une C-algèbre normée complète A ; son spectre 
maximal est l'ensemble SpmcA des sections continues s : A —t C du morphisme 
structural. Si / £ A et s £ SpmcA, on pose f(s) = s(f). Une C-algèbre spectrale 
est une C-algèbre de Banach A telle que la norme est la norme spectrale, i.e. telle 
que, pour tout / £ A, | | / | | = supsespmcA\f(s)\p ; dans ce cas, SpmcA est un 
espace métrique complet (la distance étant définie par d(si,s2) = sup||j|i<:L | /(«i) — 
f(s2)\p). Avec comme morphismes les homomorphismes continus de C-algèbres, les 
C-algèbres spectrales forment une catégorie. La catégorie des variétés spectrales 
affines sur C est la catégorie opposée. 

Un groupe spectral commutatif affine sur C est un objet en groupes commu-
tatifs dans la catégorie des variétés spectrales affines sur C. Ces groupes forment, 
de façon évidente, une catégorie additive qui a des limites projectives finies. Le 
foncteur qui à un groupe spectral commutatif affine associe le groupe topologique 
sous-jacent est fidèle. Si S = SpmcA est un groupe spectral commutatif affine, 
un sous-groupe spectral du groupe topologique sous-jacent est un sous-groupe T qui 
admet une structure de groupe spectral (nécessairement unique) telle que l'inclusion 
T —¥ S est un morphisme de groupes spectraux. 

Soit S un espace de Banach (p-adique) et SQ la boule unité. Un réseau de 
S est un sous-Zp-module S qui est tel que l'on peut trouver r, « e Z vérifiant 

(--J' C'est même une équivalence de catégories tannakiennes, cf. [Fo88b]. 

"• ' C'est en cherchant à prouver le théorème C que j ' a i été conduit à m'intéresser aux presque 

C-représentations. C'est Colmez qui a compris que les propriétés dont j'avais besoin provenaient 

de structures analytiques. Cela nous a permis de prouver le théorème C. Colmez a ensuite étudié 

plus en détail ces structures analytiques [Co02]. Ce que je raconte ici est une interprétation, dans 

le langage de [Fo02], §4, de ces travaux de Colmez et devrait être développé dans [FP02]. 
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prSo C S C PSSQ- H revient au même de dire qu'il existe une norme équivalente à 
la norme donnée pour laquelle S est la boule unité. 

Une C-structure analytique sur S est la donnée d'un C-groupe spectral com­
mutatif affine S et d'un homomorphisme continu du groupe topologique sous-jacent 
à S dans S dont l'image est un réseau et le noyau un Zp-module de type fini. On 
dit que deux C-structures analytiques S et T sur S sont équivalentes si S x s T est 
un sous-groupe spectral de S x T. Un (espace de) Banach analytique (sur C) est 
la donnée d'un espace de Banach muni d'une classe d'équivalence de C-structures 
analytiques (on les appelle les structures admissibles de S). On dit que S est effectif 
s'il existe une structure admissible S telle que l'application S —¥ S est injective. 

Un morphisme de Banach analytiques f : S —¥ T est une application Qp-
linéaire continue telle qu'il existe des structures admissibles S de S et T de T et 
un morphisme S —¥ T qui induit / . Les Banach analytiques forment une catégorie 
additive BAc-

Si S est un Banach analytique et si V est un sous-Qp-espace vectoriel de dimen­
sion finie, le quotient S/V a une structure naturelle de Banach analytique. On dit 
que deux Banach analytiques Si et S2 sont presque isomorphes s'il existe des sous-
Qp -espaces vectoriels de dimension finie V\ de S\ et V2 de S2 et un isomorphisme 
Si/Vi —¥ S2/V2 (de Banach analytiques). 

Le groupe sous-jacent à Oc a une structure naturelle de groupe spectral com­
mutatif affine : on a oc = Spm cC{X} où C{X} est l'algèbre de Tate des séries 
formelles à coefficients dans C en l'indéterminée X dont le terme général tend vers 
0. Ceci fait de C un espace de Banach analytique effectif. Un Banach analytique 
vectoriel est un Banach analytique isomorphe à Cd pour un entier d convenable. 
Un espace de Banach-Colmez est un Banach analytique presque vectoriel, i.e. un 
Banach analytique qui est presque isomorphe à un Banach analytique vectoriel. 
On note BCc la sous-catégorie pleine de BAc. dont les objets sont les espaces de 
Banach-Colmez. 

PROPOSITION (théorème de Colmez W). — La catégorie BCc <?s£ abélienne 
et le foncteur d'oubli de BCc dans la catégorie des Qp-espaces vectoriels est exact 
et fidèle. Il existe sur les objets de BCc, une unique fonction additive dh : S H> 
(d(S),h(Sj) G N x Z telle que dh(C) = (d,0) et dh(V) = (0,dimQp V) si V est de 
dimension finie sur Qp. 

2.2. — La meilleure façon de comprendre les théorèmes A et C c'est d'utiliser le 
résultat précédent pour les prouver ^ . Lorsque k est fini, toute presque-C-représen-

*- ' C'est à peu près le résultat principal de [Co02]. La définition donnée par Colmez de ce qu'il 

appelle les Espaces de Banach de dimension finie (avec un E majuscule) est légèrement différente. 

Il n'est pas très difficile de construire une équivalence entre sa catégorie et la nôtre [FP02]. 

"• ' C'est ainsi que Colmez redémontre le théorème C dans [Co02]. Moyennant une preuve un 

peu plus compliquée, on peut n'utiliser qu'un résultat d'analyticité apparemment moins fort ; c'est 

ce qu'on fait pour prouver le théorème C dans [CF00] et le théorème A dans [Fo02]. 
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tation est munie d'unee structure naturelle d'espace de Banach-Colmez ; toute 
application Qp-linéaire continue G/f-équivariante d'une presque C-représentation 
dans une autre est analytique. Le fait que C(GK) est abélienne et l'existence de la 
fonction dh résultent alors du théorème de Colmez. 

Le principe de la preuve du théorème C est le suivant : On se ramène facilement 
au cas semi-stable, i.e. au cas où F = K. Il s'agit de vérifier que, si D est un (ip, N)-
module filtré (faiblement) admissible de dimension h, il existe une représentation 
p-adique V de dimension h telle que Dst:K(V) soit isomorphe à D. Une torsion 
à la Tate permet de supposer que F'ù°DK = DK- Notons V^' (D) le Qp-espace 
vectoriel des applications FJ0-linéaires de D dans BstriB^R qui commutent à l'action 
de ip et de N et V^' le quotient du FJ-espace vectoriel des applications FJ-linéaires 
de DK dans B^R par le sous-espace des applications qui sont compatibles avec la 
filtration. On commence par vérifier que le noyau V*t(D) de l'application évidente 
ß : Vrf' (D) —̂  Vgl"' (D) est un Qp-espace vectoriel de dimension finie < h et que, 
s'il est de dimension h, alors la représentation duale Vst(D) est semi-stable et D 
est isomorphe à Dst(Vst.(D)). La théorie des espaces de Banach analytiques permet 
de munir V^' (D) et V^' (D) d'une structure d'espace de Banach-Colmez et on a 
dh(Vrf' (D)) = (tN(D),h) tandis que dh(V^' (D)) = (tn(D),0). Il suffit alors de 
vérifier que l'application ß est analytique. Comme tn(D) = ìN(D), l'additivité de 
dh implique que ß est surjective et que dh(V*t(D)) = (0, h), ce qui signifie bien que 
àimQpVs*tXD) = h. 

3. Equations différentielles 
3.1. — Soit A un anneau commutatif et d : A —t ÛA une dérivation de A dans 
un .4-module QA- Ici, un .4-module à connexion (sous-entendu relativement à d) 
est un .4-module libre de rang fini T> muni d'une application V : T> —t T> ® ÛA 
vérifiant la règle de Leibniz. On dit que ce module est trivial s'il est engendré par 
le sous-groupe ï>v=o des sections horizontales. 

Pour tout corps F de caractéristique 0, complet pour une valuation discrète, 
notons (cf. par exemple [Ts98], §2) 1ZX:L l'anneau de Robba de L (ou "anneau des 
fonctions analytiques sur une couronne d'épaisseur nulle"), c'est-à-dire l'anneau des 
séries X^nez an,xn à coefficients dans F vérifiant 

V« < 1, | a n | s n H- 0 si n H- +oo et 3r < 1 tel que |a„|r" n 0 si n n ^oo. 
t Le sous-anneau £s
x L de 1ZX:L des fonctions ^ anx

n telles que les an sont bornés 
est un corps muni d'une valuation discrète (définie par \^anx

n\ = sup|a„|) qui 
n'est pas complet mais est hensélien. Son corps résiduel s'identifie au corps des 
séries formelles F = kL,((x)) où fc^ désigne le corps résiduel de F. Pour toute 
extension finie separable F de F , il existe une, unique à isomorphisme unique près, 
extension non ramifiée £'F de £^ L de corps résiduel F . Posons TZF = 1ZX,L ® + £F-

£
r..L 

Si kp désigne le corps résiduel de F , F' l'unique extension non ramifiée de F de 
t corps résiduel kp et si x' est un relèvement dans l'anneau des entiers de £F d'une 
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uniformisante de F , l'anneau Tl.p s'identifie à l'anneau de Robba TZX':L'-

Notons Q^ le 7?.x ̂ -module libre de rang 1 de base dx, solution du problème 
universel pour les dérivations continues en un sens évident. Les modules à connexion 
sur l'anneau 1Z-X,L forment une catégorie artinienne. Si T> est un objet de cette 
catégorie, on dit qu'il est unipotent si son semi-simplifié est trivial. On dit qu'il 
est quasi-unipotent s'il existe une extension finie separable F de k((Xj) telle que le 
module à connexion sur TZp déduit de T> par extension des scalaires soit unipotent. 

t Pour tout z dans l'aneeau des entiers de £x K , il existe un unique endo-
morphisme continu ip de TZX:K0 qui prolonge le Frobenius absolu sur K0 et vérifie 
tp(x) = xp+pz ; on appelle Frobenius un tel endomorphisme. Pour un tel ip, on note 
encore ip : 0 ^ —t Qi^ l'application induite. Soit T> un module à connexion 
sur 1ZX:K0. Une structure de Frobenius sur T> consiste en la donnée d'un Frobenius 
ip sur 1ZX:K0 et d'une application tp-semi-linéaire ip-v :T> —¥T> commutant à V. 

THéORèME (André, Kedlaya, Mebkhout ^ ) . — Tout module à, connexion sur 
TZX,K0 qui admet une structure de Frobenius est quasi-unipotent. 

Avant de montrer comment Berger [Be2] déduit le théorème B de cet énoncé, 
rappelons quelques résultats de [FoOO], [Fo90] et [CC98] (cf. aussi [Co98]). Dans 
tout ce qui suit, V est une représentation p-adique de GK de dimension finie h. 
3.2. — Soit FJQO le sous-corps de K engendré sur K par les racines de l'unité d'ordre 
une puissance de p. Posons HK = Gal(K/K^,) et T'K = GK/HK- En utilisant 
la théorie de Sen [Se80], on montre [FoOO] que l'union AdR(V) des sous-FJ^[[£]]-
modules de type fini de (BdR ®QP V)HK stables par F ^ est un FJ0O((t))-espace 
vectoriel de dimension h et qu'il existe une unique connexion 

V :AdR(V)^AdR(V)®dt/t 

qui a la propriété que, pour tout sous-F^ff^-module de type fini Y stable par GK, 
tout entier r > 0 et tout y £ Y, il existe un sous-groupe ouvert Tr^y de F tel que, si 
V(y) = Vo(y) ® dt/t, alors 

7(y) = exp(logx(7)-Vo)(y) (mod trY), pour tout 7 £ Tr^y. 
Cette connexion est régulière : le F^ff^-module A^R(V) = (B^R ® V) n 

AdR(V) est un réseau de AdR(V) vérifiant V(Aj f l(F)) C A^R(V) ® dt/t. On 
a D(ìR(V) = (AdR(Vj)TK. L'action de F ^ est discrète sur AdR(V)y=o ; on en 
déduit que AdR(V)y=o = K^, ®K DdR(V) donc que V est de de Rham si et seule­
ment si le module à connexion AdR(V) est trivial. Ceci se produit si et seule­
ment s'il existe un réseau (nécessairement unique) A®R(V) de AdR(V) vérifiant 
V(A0

dR(V))cA0
dR(V)®dt. 

W Crew [Cr98] a suggéré que ce théorème pouvait être vrai ; il a été prouvé indépendamment 

par André [An02], Mebkhout [Me02] et Kedlaya [KeOl]. Pour André comme pour Mebkhout, c'est 

un cas particulier d'un résultat plus général dont la preuve repose sur la théorie de Christol-

Mebkhout [CM]. La preuve de Kedlaya est plus directe : elle utilise une classification à la 

Dieudonné-Manin des modules munis d'un Frobenius pour se ramener à un résultat de Tsuzuki 

[Ts98]. Voir [CoOl] pour une étude comparative plus détaillée. 
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3.3. — Rappelons brièvement la théorie des (ip, F)-modules [F08O]. Soit Og0 l'adhé­
rence dans W(FR) de la sous-W(fc)-algèbre engendrée par [e] et l/([e] — 1). C'est 
un anneau de valuation discrète complet dont l'idéal maximal est engendré par p et 
dont le corps résiduel F 0 est le corps des séries formelles k((e — 1)) vu comme sous-
corps fermé de FR. Notons 0~nr le séparé complété pour la topologie p-adique de 
l'union de toutes les sous-€>£0-algèbres finies étales de Og0 contenues dans W(FR). 
C'est un anneau de valuation discrète complet dont le corps résiduel est une clôture 
separable F s de F 0 . Son corps des fractions £nr s'identifie à un sous-corps fermé du 
corps F = W(FR)[l/p], stable par l'action de GK et par le Frobenius tp. Le corps 
£K = (£nr)Hli est une extension finie non ramifiée du corps des fractions de Og0. 
Son corps résiduel EK est une extension finie separable de F 0 ; le corps résiduel k' 
de EK est celui de K^. 

Alors, D(V) = (£nr ®qp V)HK est un (ip,Y K)-module sur £K, i.e. un EK-
espace vectoriel de dimension finie D muni d'un Frobenius tp-semi-linéaire (que l'on 
note encore ip) et d'une action semi-linéaire continue de F ^ commutant à l'action 
de ip ; ce (</?,IV)-module est étale, i.e. il existe un ögK-réseau T> de D tel que T> 
est le OgK-module engendré par tp(T>). La correspondance V H> D(V) définit une 
équivalence entre RepQ (GK) et la catégorie des (</?,IV)-modules étales. 

3.4. — Il n'y a pas de flèche naturelle de £nr dans BdR, ce qui fait que la comparaison 
entre AdR(V) et D(V) n'est pas si facile. Toutefois, si a G F est non nul, [a] £ 
W(R) C BdR est inversible dans B^R, ce qui permet de voir l/[a] = [I/o] comme 
un élément de B^R. Tout élément de B s'écrit d'une manière et d'une seule sous 
la forme X^n>-oo-P"[a«]' a v e c le s a » e -^-^ > n ° t ° n s B^R le sous-anneau de B 
formé des séries de ce type qui convergent dans Fj~fi. L'application B^R —t B^R est 
injective et permet d'identifier B^R à une sous-W(F)[l/p]-algèbre de B^R. Pour 

tout r e N, posons E™' = £nr n tpr(B^R) et, pour tout 6 £ E™' , notons tpr(b) 

l'unique c £ Fj~fi c Fj~fi tel que tpr(c) = b. On & £r
r'' c £r+i ; soit £"r>î 

l'union des £r
r . Alors £K = (Enr>\)HK est un sous-corps dense de EK stable par 

ip. On pose D'(V) = (£nr* ®qp V)HK. On peut le calculer à partir de D(V) : 
t c'est l'union des sous-£^--espaces vectoriels de dimension finie de D(V) stables par 

tp. Le résultat principal de [CC98] est que V est surconvergente, c'est-à-dire que 

l'application naturelle EK ® D* (V) —̂  D(V) est un isomorphisme. 

Pour tout r G N, soit £Kr = (£?r^)HK. Alors D\(V) = (£? r 't ®Qp V)HK 

t ' est aussi le plus grand sous-5^ r-module M de type fini de D(V) tel que tp(M) c 

4 j r + 1 M . Pour r assez grand, l'application naturelle 4 ® f DÎ(V) -+ rt(V) est 

t 
un isomorphisme. Lorsqu'il en est ainsi, on a tpr(£K r)

 c ^00[M] et 
AdR(V) = lfoo((*)) ® | Dl(V) et donc DdR(V) = (K^t)) ® | Dl(V)YK. 

3.5. — Wach [Wa96] a montré comment calculer Dst(V) à partir de D*(V) lorsque 
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V est de hauteur finie. C'est Berger [Be02] qui a compris comment traiter le cas 
t général : Choisissons un relèvement x dans l'anneau des entiers de £K d'une uni-
t formisante de EK- Si K'Q désigne le corps des fractions de W(k'), £K s'identifie 

t précisément au sous-anneau £! K, de l'anneau de Robba TZX K1 • Ce dernier ne 

dépend pas du choix de x et nous le notons £^s ; il contient t = log[e]. Si F est 
une extension finie de K contenue dans K, le corps F = (Es)GaX(K/LK^ est une 
extension finie de EK et l'anneau £r

F
a s'identifie à l'anneau noté TZp au §3.1. 

Rappelons (§1.2) que si u = log[e — 1], on a Bst = Bcris[u]. Les actions de tp 
'KS, à £]fS[l/£] et à l'anneau £^6 

3 
K 

et de Y'K s'étendent de façon évidente à £TK , à £TK\S/^\ et à l'anneau £jfS[l/£][u] 
des polynômes en « à coefficients dans £^s[l/t]. Berger montre que 

Dr ,(V) = (££»[!/*] ® f DÌ(V)f« et Dst(V) = (£r^[l/t][u] ® f DÌ(V)f« 

3.6. - Posons D = D^s 

(l'action de N sur Dst(V) est la restriction de —d/du ® idD±>V)). 

(V) = £rKS[l/t] ® | F t (F). En utilisant l'action de F*-

comme au §3.4, on définit une connexion V : D —ï D ® dt/t qui commute à l'action 
de tp. Cette connexion est régulière au sens qu'il existe un sous-£]^s-module D+ 

de D, libre de rang h, stable par tp et vérifiant V(F+) C D+ ® dt/t (prendre 
D+ = £r^9 ® J. D'(V)). On vérifie que le £]^s-module libre fl1

 ig admet d[e] 

4 bli, 
comme base. Mais dt/t = [e] - 1 /td[é] et t n'est pas inversible dans £^s. On déduit 
alors facilement du théorème d'André-Kedlaya-Mebkhout que V est potentiellement 
semi-stable si et seulement s'il existe un sous-£]^s-module libre D° de D, libre de 
rang h, stable par tp et vérifiant V(F°) C D° ® dt. 

Il ne reste plus qu'à construire un tel D° lorsque V est de de Rham. Fixons un 

entier rQ > 1 suffisamment grand pour que DÎ0(V) contienne une base de D^(V) 

sur £K et pour que x £ £r0. Pour tout r > r0 le sous-anneau £^g
r de £^g = HXZK' 

formé des X^»ez an,xn vérifiant 
V« < 1, | a n | s n H- 0 si n H- +oo et an(e

r — 1)" H- 0 si n H- ^oo 
f r' r' f 

est stable par F ^ et contient £Kr- Si Dr = Dr^9
r(V) = £^g

r ® ± Dl(V), alors 
D est la réunion croissante des Dr et tp(Dr) c D r+i- L'application tpr induit un 
homomorphisme de £^s

r dans FJ0O((t)) et un isomorphisme de FJ0O((t)) ®£r-ig Dr 

sur AdR(V). L'application $ r : Dr —t AdR(V) qui envoie a sur 1 ® a est injective. 
Soit A®R(V) le sous-FJ00((t))-module de AdR(V) engendré par les sections 

horizontales. Pour tout r > r0, soit D® = {a £ Dr \ $ s(a) £ A®R(V) pour tout s > 
r}. On a f l j c F ° + 1 et F 0 = U r> r oF° est un sous-£]^s-module de D, stable par tp 
et vérifiant V(F°) C D° ® dt. Si V est de de Rham on déduit du fait que A®R(V) 
est un réseau de AdR(V) que F 0 est libre de rang h sur £^s. D'où le théorème B. 
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Equivariant Bloch-Kato Conjecture and 
Non-abelian Iwasawa Main Conjecture 

A. Huber* G. Kings1' 

Abstract 

In this talk we explain the relation between the (equivariant) Bloch-Kato 
conjecture for special values of L-functions and the Main Conjecture of (non­
abelian) Iwasawa theory. On the way we will discuss briefly the case of Dirich­
let characters in the abelian case. We will also discuss how "twisting" in the 
non-abelian case would allow to reduce the general conjecture to the case 
of number fields. This is one the main motivations for a non-abelian Main 
Conjecture. 

2000 Mathematics Subject Classification: 11G40, 11R23, 19B28. 
Keywords and Phrases: Iwasawa theory, L-function, Motive. 

1. Introduction 
The class number formula expresses the leading coefficient of a Dedekind-(-

function of a number field F in terms of arithmetic invariants of F : 

CF(0)* = JAL 
WF 

(h the class number, Rp the regulator, wp the number of roots of unity in F ) . By-
work of Lichtenbaum, Bloch, Beilinson, and Kato among others, the class number 
formula has been generalized to other F-functions of varieties (or even motives) 
culminating in the Tamagawa number conjecture by Bloch and Kato . 

Iwasawa, on the other hand, initiated the study of the growth of the class 
numbers in towers of number fields. His decisive idea was to consider the class 
group of the tower as a module under the completed group ring of the Galois group 
of the tower. From his work evolved the "Main Conjecture" describing this growth 
in terms of the p-adic F-function. 
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It is a surprising insight of Kato that an equivariant version of the Tamagawa 
number conjecture can be viewed as a version of the Main Conjecture of Iwasawa 
theory. Perrin-Riou, in her efforts to develop a theory of p-adic F-functions, arrived 
at a similar conclusion. 

The purpose of this paper is to make the connection between the equivariant 
Tamagawa number conjecture and the Iwasawa Main Conjecture precise. In the 
spirit of Kato, we formulate an Iwasawa Main Conjecture (3.2.1) for arbitrary mo­
tives and towers of number fields whose Galois group is a p-adic Lie group. This 
formulation does not involve p-adic F-functions. We show that it is implied by the 
equivariant Tamagawa number conjecture formulated by Burns and Flach. For ease 
of exposition, we restrict to the case of F-values at very negative integers, where 
the Bloch-Kato exponential does not play a role. The study of non-abelian Iwasawa 
theory was initiated by Coates. Recently, there have been systematic results by 
Coates, Howson, Ochi, Schneider, Sujatha and Venjakob. 

Our interest in allowing general towers of number fields is motivated by the 
possibility of reducing the Tamagawa number conjecture to an equivariant class 
number formula (modulo hard conjectures, see 3.). 

Important special cases of the Main Conjecture were considered by (alphabet­
ical order) Coates, Greenberg, Iwasawa, Kato, Mazur, Perrin-Riou, Rubin, Schnei­
der, Wiles and more recently by Ritter and Weiss. 

It is a pleasure to thank C. Deninger, S. Howson, B. Perrin-Riou, A. Schmidt, 
P. Schneider for helpful comments and discussions. 

2. Non-abelian equivariant Tamagawa number con­
jecture 

2.1. Notat ion 

Fix p ^ 2 and let M be a motive over Q with coefficients in Q, for example 
M = hr(X), X a smooth projective variety over Q. It has Betti-realization MR 
and p-adic realization Mp. Let Mv be the dual motive. In the p-adic realization it 
corresponds to the dual Galois module. We denote by Hj^(Z,M(k)) the "integral" 
motivic cohomology of the motive M in the sense of Beilinson [1]. 

For any finite Galois extension K/Q with Galois group G, let Q[G] be the 
group ring of G. It is a non-commutative ring with center denoted Z(Q[G]). 

We consider the deformation Q[G] ® M := h°(K) ® M. If M = ¥'(X) and 
K/Q is a number field, then h°(K) ® M = hr(X x K) considered as a motive over 
Q-

We consider a finite set of primes S satisfying: 

(*) Q[G] ® M and K have good reduction at all primes not dividing S, and p £ S. 

2.2. Equivariant i -funct ions 
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We assume the usual conjectures about the F-functions of motives, like mero-
morphic continuation and functional equation etc., to be satisfied. 

In order to define the equivariant F-function for G (without the Euler factors 
at the primes dividing S), consider a Galois extension E/Q such that E[G] = 
(J) End E (V(pj), where V(p) are absolutely irreducible representations of G. Then 
the center of E[G] is Z(E[G]) = ® F and the motives V(p) ® M have coefficients 
in F . We define 

LS(G, M, k)* := (LS(V(P) ® M, k)*) £ Z(E ®Q C[G])* 

to be the element with p-component the leading coefficient at s = k of the F ®Q de­
valued F-functions Ls(V(p)®M, s) without the Euler factors at S. Then Lg(G, M, k)* 
has actually values in Z(R[G])* (see [4] Lemma 7) and is independent of the choice 
of F . We will always consider Lg(G, M, k)* as an element in Z(R[G]) c R[G]. 
Remark In [22] Kato uses a different description of this equivariant F-function. 

2.3. Non-commutat ive determinants 
We follow the point of view of Burns and Flach. Let A be a (possibly non-

commutative) ring and V(A) the category of virtual objects in the sense of Deligne 
[12]. V(A) is a monoidal tensor category and has a unit object 1A- Moreover it is 
a groupoid, i.e., all morphisms are isomorphisms. There is a functor 

det^ : {perfect complexes of .4-modules and isomorphisms} —¥ V(A) 

which is multiplicative on short exact sequences. The group of isomorphism classes 
of objects of V(A) is K0(A) and 

Aut(l^) = Ki(A) = Gl00(A)/E(A) 

(E(A) the elementary matrices). In general Hon iy^^de t^X, de t^F) is either 
empty or a K\ (-A)-torsor. If A —t B is a ring homomorphism, we get a functor 
B® : V(A) —t V(B) such that tensor product and det^ commute. 
Convention By abuse of notation we are going to write z £ detA X for z : 1 A —̂  
det^ X and call this a generator of det^ X. 

If A is commutative and local, then the category of virtual objects is equivalent 
to the category of pairs (L,r) where F is an invertible .4-module and r £ Z. One 
recovers the theory of determinants of Knudson and Mumford. The unit object 
is 1 A = (A,0) and one has Aut( l^) = Ki(A) = A*. Thus K\(A) is used as 
generalization of A* to the non-commutative case. Generators of det^ X = (L, 0) 
in the above sense correspond to .4-generators of F. 

2.4. Formulation of the conjecture 
The original conjecture dates back to Beilinson [1] and Bloch-Kato [3]. The 

idea of an equivariant formulation is due to Kato [23] and [22]. Fontaine and Perrin-
Riou gave a uniform formulation for mixed motives and all values of F-functions at 
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all integer values [14], [15]. The generalization to non-abelian coefficients is due to 
Burns and Flach [4]. 

For simplicity of exposition, we restrict to values at very negative integers. 
In the absolute case this coincides with the formulation given by Kato in [23]. 
We consider a motive M and values at 1 — k where k is big enough. In the case 
M = hr(X), k big enough means that 

• k > inf{r,dim(X)}, (r,k) ^ (1,0); (2dim(X), dim(X) + 1) and 2k ^ r + 1. 
• for all £ £ S the local Euler factor Li(Mp , s)^1 at £ does not vanish at 1 — k. 

Consider the (injective) reduced norm map rn : Ki(R[G]) —¥ Z(R[G])* and 
recall that L$(G, Mv, 1 — fc)* £ Z(M[G])*. By strong approximation (see [4] Lemma 
8) there is A G Z(Q[G])* such that AFS(G, M v ( l -k))* is in the image of FJi(R[G]) 
under rn. Let 

A F s ( G , M v ( l ^ f c ) ) * e l R [ G n ] 

be the corresponding generator. For k big enough, we define the fundamental line 
in V(Q[G]) as 

Af(G, M v ( l - kj) = d e t ^ j F ^ ( Z , Q G ] ® M (kj) ® detQ[G](Q[G] ® MB(k - 1))+ . 

Here + denotes the fixed part under complex conjugation. 

Conjecture 2.4.1 Let M be as in 2., p ^ 2 a prime and k big enough. 

1. The Beilinson regulator r-p induces an isomorphism 

A / ( G , M v ( l ^ f c ) ) ® R - l R [ G ] . 

2. Under this isomorphism the generator (XLg(G,Mv(I — k))*)^1 is induced by 
a (unique) generator 

(\-1ö(G,M,k)) £ Af(G,Mv(l^k)). 

The reduced norm is an isomorphism Ki(Qp[G]) — Z(QP[G])*. Using the operation 
of Ki(Qp[G]) on generators in Af(G, M v ( l - kj) ® Qp, we put 

öp(G,M,k) := (\-1ó(G,M,k,))\£ Af(G,Mv(l^k))®Qp. 

Note that this generator is independent of the choice of A. 

3. The p-adic regulator rp induces an isomorphism 

A / ( G , M v ( l ^ f c ) ) ® Q p -

de t^ [ G ] H^Zll/Sl^lG] ® Mp(k)) ® detQp[G](Qp[G] ® MB(k - 1))+. 

4- Let TR C MR be a lattice such that Tp = TR ® Zp c Mp is Galois stable. 
Under the last isomorphism öp(G,M,k) is induced by a generator 

ìp(G,M,k) £ detZp[G] RY^l/S],Zp[G]®Tp(k))®detZp[G](Zp[G]®TB)(k^l))+. 
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R e m a r k a) The conjecture is compatible with change of group G. If G —¥ G' is 
a surjection, then the equivariant conjecture for G tensored with Q[G'] over Q[G] 
gives the conjecture for G'. 
b) The element 8P(G, M, k) is determined up to an element in the kernel of the map 
Ki(Zp[G]) —¥ Ki(Qp[G]). In the commutative case, this map is always injective. 
c) The conjecture is independent of T. It is also independent of S. This computation 
shows that the definition of the equivariant F-function forces the use of the reduced 
norm in the formulation of the conjecture. 

3. Non-abelian Main Conjecture 

3.1. Iwasawa algebra and modules 
Let Kn be a tower of finite Galois extensions of Q with Galois groups Gn such 

that GQO : = fimG„ is a p-adic Lie group of dimension at least 1. Moreover, we 
assume that only finitely many primes ramify in Kœ := (Jn Kn. 

The classical example is the cyclotomic tower Kn := Q(CP» ) with £p» a p"-th 
root of unity. A non-abelian example is the tower Kn := Q(F[p"]), where E[pn] are 
the pn-torsion points of an elliptic curve F without CM defined over Q. 

The Iwasawa algebra 

A:=Zp[[Goo]] = ]jmZp[Gn] 

is the ring of Zp-valued distributions on GQO- It is a possibly non-commutative 
Noetherian semi-local ring. If GQO is in addition a pro-p-group without p-torsion it 
is even a regular and local ring. 

For the cyclotomic tower, A = Zp[Gi][[r]] is the classical Iwasawa algebra. For 
the tower of pn-torsion points of F , the Iwasawa algebra was studied by Coates and 
Howson [8], [9]. Modules over such algebras are studied recently by Venjakob [36] 
and by Coates-Schneider-Sujatha [10]. 

We are concerned with the complex of A-modules RY(Z[1/S], A®zpTp(k)) and 
(A ®z Tß(k — 1))+ . They are perfect complexes. Note that 

FF(Z[1/S], A ®Zp Tp(k)) = lim RY(0Kn [1/S], Tp(k)) 

where OK„ is the ring of integers of Kn. 

3.2. Formulation of the non-abelian Main Conjecture 
The Main Conjecture can be viewed as a Bloch-Kato conjecture for the de­

formed "motive" A ® M with coefficients in A. 
Recall from 2.4.1 that the generators öp(Gn,M,k) are compatible under the 

transition maps QP[G„] —¥ Qp[G„_i]. They define 

ôp(G00,M,k) = ^môp(Gn,M,k) £ 

l ta[detQ p [ G n ]FF(Z[l /S] ,%[G„]®M p ( fc))®detQ p [ G n ] (Q p [G„]®MB ( fc^l)r 
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more precisely an element of fimHoml/(Qp[Gn])(lQp[Gn], • ). 
The map A —t Qp [G„] induces an isomorphism 

QP[Gn] ®A RY(Z[l/S],A®Tp(kj) -> FF(Z[1/S],Q,[G„] ®Qp Mp(kj) . 

Conjecture 3.2.1 (Non-abelian Main Conjecture) Let M and S be as in 2., 
GQO as in 3., p ^ 2, TR C MR a lattice such that Tp := TR ® Zp is Galois stable 
and k big enough (cf. section 2.). Then öp(G00,M,k) is induced by a generator 

ìp(G00,M,k)£ [detAFF(Z[l/S],A®rp(fc)) ®detA(A®FB(fc - 1))+] . 

The conjecture translates into the Iwasawa Main Conjecture in the case of Dirichlet 
characters or CM-elliptic curves. See section 5. for more details. 

Remark a) The conjecture is independent of the choice of lattice TR. The correc­
tion factor (A ®TB(k — 1))+ compensates different choices of lattice. 
b) Perrin-Riou [31] has defined a p-adic F-function and stated a Main Conjecture 
for motives in the abelian case. She starts at the other side of the functional equa­
tion, where the exponential map of Bloch-Kato comes into play. Her main tool is 
the "logarithme élargi", which maps Galois cohomology over K^ to a module of 
p-adic analytic nature. It would be interesting to compare her approach with the 
above. 
c) A Main Conjecture for motives and the cyclotomic tower was formulated by 
Greenberg [16], [17]. Ritter and Weiss consider the case of the cyclotomic tower 
over a finite non-abelian extension [32]. 

Proposition 3.2.2 (see section 6.) The equivariant Bloch-Kato conjecture for 
M, k and all Gn is equivalent to the Main Conjecture for M, k and G^. 

3.3. Twisting 
Assume that Tp becomes trivial over K^,, for example let GQO be the image 

of Gal(Q/Q) in Aut(Fp). Let Tp
n v be the Zp-module underlying Tp with trivial 

operation of the Galois group. The map g ® t >-¥ g ® g^1t induces an equivariant 
isomorphism A ®zp Tp = A ®zp Tp

n v . Hence there is an isomorphism 

detA FF(Z[1/S], A® Tp(kj) ® detA(A ®TB(k^ 1))+ ~ 

detA FF(Z[1/S], A®T*riv(k)) ® detA(A ® TB
riv(k - 1))+. 

Note that TB"V can be viewed as a lattice in the Betti-realization of the trivial 
motive h°(Q) ® M t r i v = Q(0) ® M t r i v where M t r i v is MB considered as Q-vector 
space. 

Corollary 3.3.1 / / the Main Conjecture is true for M and Q(0) ® M t n v and k, 
then _ _ 

(5p(G0O,M,fc) = ^(G0 O ,M t r i v ,fc) 

up to an element in FJi(A) under the above isomorphism. 
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Remark Even if Tp is not trivial over K^,, the same method allows to twist with a 
motive whose p-adic realization is trivial over K^. A particular interesting case is 
the motive Q(l) if K^ contains the cyclotomic tower. It allows to pass from values 
of the F-function at k to values at k + 1. 

S t ra tegy This observation allows the following strategy for proving the Main Con­
jecture and the Bloch-Kato conjecture for all motives: 

• first prove the equivariant Bloch-Kato conjecture for the motive h°(Q) = Q(0), 
one fixed k and all finite groups Gn. For k = 1 this is an equivariant class 
number formula. 

• by proposition 3.2.2 this implies the Main Conjecture for the motives Q(k) ® 
M t n v and all p-adic Lie groups GQO . 

• for any motive M there is a K^ such that Tp becomes trivial. Using corollary 
3.3.1 it remains to show that öp(G00,M

triv, k) induces 8p(Gn, M, k) for all n. 
This is a compatibility conjecture for elements in motivic cohomology and 
allows to reduce to the case of number fields. 

• the equivariant Bloch-Kato conjecture follows by 3.2.2. 

4. Relation to classical Iwasawa theory in the crit­
ical case 

4.1. Characteristic ideals 
We restrict to the case GQO a pro-p-group without p-torsion. In this case the 

Iwasawa algebra is local and Auslander regular ([36]). Its total ring of quotients is 
a skew field D. Then K0(A) ^K0(D)^Z, K±(A) = (A*)ab, and Ki(D) = (F*) a b 

where -ab denotes the abelianization of the multiplicative group. 
Let T be the category of finitely generated A-torsion modules. The localization 

sequence for FJ-groups implies an exact sequence 

(A*)ab - • (F*) a b - • KQ(T) - • 0. 

If X is a A-torsion module, then we call its class in K0(T) the characteristic ideal. 
By the above sequence it is an element of D* up to [D*,D*] Im A*. If GQO is abelian, 
K0 (T) is nothing but the group of fractional ideals that appears in classical Iwasawa 
theory. 

The characteristic ideal can also be computed from the theory of determinants. 
The class of X in K0(A) is necessarily 0, hence there exists a generator x £ detA(X). 
Its image in F®detA(X) = det£>(0) = I D is an element of K\(D). This construction 
yields a well-defined element of Ki(D)/lmKi(A) = K0(T), in fact the inverse of 
the characteristic ideal of X. 

Note that a complex is perfect if and only if it is a bounded complex with 
finitely generated cohomology. Such complexes also have characteristic ideals if 
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their cohomology is A-torsion. 

Remark Coates, Schneider and Sujatha study the category of A-torsion modules 
in [10]. In particular, they also define a notion of characteristic ideal as object of 
K0(T

b/T1) where Tb'/T1 denotes the quotient category of bounded finitely gener­
ated A-torsion modules by the sub-category of pseudo-null modules. They construct 
a map 

K0(T) -+ Focr/r1) -+ Kotro/T1) 

which maps the class of a module to the characteristic ideal in their sense. If GQO is 
abelian, then the two maps are isomorphisms and all notions of characteristic ideals 
agree. In the general case, we do not know whether the map is injective. However, 
it seems to us that the problem is not so much in passing to the quotient category 
modulo pseudo-null modules but rather in projecting to the bounded part. 

4.2. Zeta distributions 
Let M, k, S and GQO as before. Assume 

Hj^ (Z ,qG„] ® M(k)) = 0 for all G„. 

For k big enough, this implies that MB(k — 1)+ = 0 and Kn totally real. The 
motives Q[Gn] ® M(k) are critical in the sense of Deligne. Note that the only-
motives expected to be critical and to satisfy our condition k big enough (see 2.) 
are Artin motives (with k > 1). 

In this case, the Beilinson conjecture asserts that Ls(Gn, Mv, l—k)€ Z(Q[Gn])* 
(no leading coefficients has to be taken). We call 

£ 5 (Goo ,M v , l -k) = H m L s ( G n , M v , 1 -k) £ Hm^(Qp[G„])* 

the zeta distribution. 
Let / ,g £ A such that the images fn,9n € Zp[Gn] are units in QP[G„]. Via 

the reduced norm, they define a distribution 

(Tn(fng-1))n£lfiaiZ(Qp[Gn]r. 

Remark It is not clear to us if the class of f/g £ K\(D) = (F*) a b is uniquely-
determined by the sequence fnQn1- In the abelian case this is true and f/g is a 
generalization of Serre's pseudo measure (cf. [35]). 

In this case the complexes RY(ÖKn[l/S],Tp(k)) are torsion. Hence the com­
plex RY(Z[l/S],A®Tp(k)) = limnFF(O i fn[l/S],Fp(fc)) is bounded and its coho­
mology is A-torsion (see [18]). The main conjecture 3.2.1 takes the following form: 

Conjecture 4.2.1 Let M be an Artin motive, k > 1, S, G^ as before (in particular 
GQO pro-p and without p-torsion) and Q[Gn] ® M(k) critical for all n. There exist 



Equiv. Bloch-Kato Conjecture and Non-abelian Iwasawa Main Conjecture 157 

f,g £ A such that the induced distribution (m(fngn
1j)n £ limZ(Qp[G„])* is the 

zeta distribution £s(Goo, Mv, 1 — k) and the characteristic ideal 

[RY(Z[l/S],A®Tp(k))[l]]£K0(T) 

coincides with the image of fg^1 £ (F*) a b . 

Remark a) The conjecture is isogeny invariant, i.e., independent of the choice of 
lattice Tp. The correction term (A®TB(kj)+ vanishes. 
b) In the abelian case this means that the zeta distribution is a pseudo measure 
and generates the characteristic ideal. 
c) In the case of the cyclotomic tower, a similar conjecture is formulated by Green-
berg, [16], [17]. 
d) If GQO is abelian, the above conjecture is easily seen to be implied by conjecture 
3.2.1. The argument also works in the non-abelian case if the set of all elements of 
A which, for all n, are units in Qp [G„] is an Ore set. 

5. Examples 

5.1. Dirichlet characters 
Let x be a Dirichlet character, V(x) its associated motive with coefficients in 

F . Let Qoo = U» Q» be the cyclotomic Zp-extension of Q and GQO = Gal(Qoo/Q) = 
lim Gn. In this case the equivariant F-function is Ls(Gn,V(x),s) = (Ijs(px,s))p, 
where p runs through all characters of Gn and Ls(px, s) is the Dirichlet F-function 
associated to px- Yet k be big enough, i.e., k > 1. 
Critical case x( — 1) = ( —!)*• 

Here Hji4(Z,E[G„] ® V(x)(kj) = 0 for all n. As in section 4., the equivariant 
F-values give rise to the zeta distribution £s(Goo,V(x)v, l—k)€ Um E[G„]. It is 
a classical calculation (Stickelberger elements) that this is in fact a pseudo measure, 
which gives rise to the Kubota-Leopoldt p-adic F-function. Let Ö C F be the ring 
of integers, A = öp[[Goo]] the Iwasawa algebra and Tp(x) C Vp(x) a Galois stable 
lattice. The Iwasawa Main Conjecture 4.2.1 amounts to the following theorem: 

Theorem 5.1.1 The zeta distribution £ s (G 0 O , I / (x ) v , 1 — k) generates 

det^1 H^Z^/S], A® Tp(x)(k)) ® detA H2(Z[1/S], A® Tp(X)(k)). 

Remark This is a reformulation of the main theorem of Mazur and Wiles in [29]. 
There is an extension to the case of totally real fields by Wiles [37] and an equivariant 
version by Burns and Greither [6]. 
Non-critical case x( — 1) = (^ l )* - 1 -

Here Hji4(Z,E[G„] ® V(x)(kj) has F[G„]-rank 1. It is a theorem of Borei 
(resp. Soulé) that r-p ® R (resp. rp ® Qp) is an isomorphism. By a theorem of 
Beilinson-Deligne (see [21] or [19]), the image of öp(Gn,V(x),k) under rp is given 
by 

c^Gn-Mx))'1 ®tp(x)(k ^ I), 
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where 
Ck(Gn,tP(xï) e H1(Z[l/S],Op[Gn]®Tp(x)(k)) 

is a twist of a cyclotomic unit and tp(x)(k — 1) is a generator of Tp(x)(k — 1). Let 
Ck(Goo,tp(x)) •= ^nCk(Gn,tp(x))-

Theorem 5.1.2 There is a canonical isomorphism of A-determinants 

detA (H1(Z[l/S],A®Tp(x)(kj)/ck(G00,tp(x))) = 

detA H2(Z[1/S], A® Tp(x)(k)). 

Remark For p { ord(x) this is a consequence of theorem 5.1.1 and was shown 
directly by Rubin [33] with Euler system methods. The restriction at the order of 
X is removed in Burns-Greither [5] and Huber-Kings [20] by different methods. 

The Tamagawa number conjecture for V(x)(r) (and hence for h°(F)(r) with 
F an abelian number field) can be deduced from theorems 5.1.1 and 5.1.2, see 
Burns-Greither [5] or Huber-Kings [20]. Previous partial results were proved in 
Mazur-Wiles [29], Wiles [37], Kato [22], [23], Kolster-Nguyen Quang Do-Fleckinger 
[26] and Benois-Nguyen Quang Do[2]. 

We would like to stress that the strategy 3. is used in Huber-Kings [20] to 
prove theorems 5.1.1, 5.1.2 and the Tamagawa number conjecture from the class 
number formula. 

5.2. Elliptic curves 
Let F be an elliptic curve over an imaginary quadratic field K with CM by OK-

The motive ft1(F) considered with coefficients in K decomposes into V(ip) ® V('ip), 
where ip is the Grössencharacter associated to F . The F-function of V(ip) is the 
Hecke F-function of ip, which has a zero of order 1 at 2 — k, where k > 2. Yet 
S = Np, where N is the conductor of ip and let Kn := K(E[pn]). 

It is not known if Hj^(OK,K[G„] ® V(ip)(k)) has FJ[G„]-rank 1 but Deninger 
[13] shows that r-p ® R is surjective and that the Beilinson conjecture holds. It 
is a result of Kings [25] that the image in étale cohomology of the zeta element 
öp(Gn,V(ip),2 — k) given by Beilinson's Eisenstein symbol is given by 

efe(G„,£p(i/0)_1 ®tp(ip) , 

where ek(Gn,tp(ipj) £ H1(Z[l/S],Op[G„]®Tp(ip)(kj) is the twist of an elliptic unit. 
Let A := Op[[Goo]j and ek(G oo, tp(ij))) = ljmnek(Gn,tp(ipj). 

Theorem 5.2.1 There is a canonical isomorphism of determinants 

detA (H1(Z[l/S],A®Tp(<<P)(k))/ek(G00,tp(<<P))) -

detAH2(Z[l/S],A®Tp(iP)(k)). 

Remark 1) This is a reformulation of Rubin's Iwasawa Main Conjecture [34]. 
2) In [25] the (absolute) Bloch-Kato conjecture for V('tp) is deduced from this under 
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the condition that H2(Z[l/S],Tp(ip)(k)) is finite (fulfilled for almost all k for fixed 

P). 
Kato [24] has investigated the case of elliptic curves over Q and the cyclo­

tomic tower. His approach to the Birch-Swinnerton-Dyer conjecture uses the idea 
of twisting cup-products of Eisenstein symbols to the value of the F-function at 1. 
As a consequence he can prove one inclusion of the Iwasawa main conjecture in this 
case. The result supports our general philosophy of twisting to the case of number 
fields. 

6. Proof of proposition 3.2.2 
We want to give the proof of proposition 3.2.2. The implication from the Main 

Conjecture to the equivariant Bloch-Kato conjecture is trivial. Conversely, we have 
to show the following abstract statement: 

Lemma 6.1 Let V £ V(A) and ö(n) £ ZP[G„] ® V generators such that their 
images ö(n) £ Qp [G„] ® V are compatible under transition maps. Then there is a 
generator Ö' (oo) £ V inducing all ö(n). 

The proposition follows with ö(n) = 8p(Gn, M, k) and 

V = detA RY(Z[l/pS],A®Tp(kj) ® detA(A ® TB(k - 1))+. 

We now prove the lemma. We first reduce to a statement about elements of 
Ki. By assumption, Zp[Gn] ® V has a generator, in particular, its isomorphism 
class is zero in K0(ZP[G„]). As K0(A) —t ljmK0(Zp[G„]) is an isomorphism, this 
implies that the class of V is zero in K0(A). Without loss of generality we can 
assume V = 1A . Recall that by our convention, a generator of 1 A is nothing but 
an element of the abelian group K\(A) for all rings A. 

Let Bn = ImFJi(Zp[G„]) —¥ Ki(Qp[G„]). By assumption ö(n) £ Bn. There is 
a system of short exact sequences 

0 -+ SKi(Zp[Gn]) -+ Ki(Zp[Gn]) -+ Bn -+ 0. 

By [11] 45.22 the groups SKi(Zp[Gn]) are finite. The system of these groups is 
automatically Mittag-Leffler. Hence we get a surjective map 

l imFJ 1(Z p[G„])^f imF„. 

The system (ö(n))n has a preimage (ö'(nj)n £ HmF'i(Zp[G„]). 
All Zp[Gn] are semi-local, hence by [11] 40.44 

Ki(Zp[Gn]) - Gl2(Zp[Gn])/E2(Zp[Gn]) 

where F 2 is the subgroup of elementary matrices. We represent ö'(n) by an element 
of Gl2(Zp[Gn]). By assumption the image of ö'(n) in Ki(Zp[Gn-i]) differs from 
5'(n — 1) by some elementary matrix in F2(Zp[G„_i]). Elementary matrices can 
be lifted to elementary matrices in Gi2(Zp[Gn]). Hence we can assume that the 
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elements ö'(nj) £ G12(ZP[G„]) form a projective system. The system defines an 
element 

ô'p(n) £ G12(A) 

whose class in K\ (A) has the necessary properties. 
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Abst rac t 

Spencer Bloch and the author formulated a general conjecture (Tama­
gawa number conjecture) on the relation between values of zeta functions of 
motives and arithmetic groups associated to motives. We discuss this conjec­
ture, and describe some application of the philosophy of the conjecture to the 
study of elliptic curves. 
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Mysterious relations between zeta functions and various arithmetic groups 
have been important subjects in number theory. 
(0.0) zeta functions <H> arithmetic groups. 

A classical result on such relation is the class number formula discovered in 
19th century, which relates zeta functions of number field to ideal class groups and 
unit groups. As indicated in (0.1)-(0.3) below, the formula of Grothendieck ex­
pressing the zeta functions of varieties over finite fields by etale cohomology groups, 
Iwasawa main conjecture proved by Mazur-Wiles, and Birch and Swinnerton-Dyer 
conjectures for abelian varieties over number fields, considered in 20th century, also 
have the form (0.0). 
(0.1) Formula of Grothendieck. 

zeta functions <H> etale cohomology groups. 
(0.2) Iwasawa main conjecture. 

zeta functions, zeta elements <H> ideal class groups, unit groups. 
(0.3) Birch Swinnerton-Dyer conjectures (see 4). 

zeta functions <H> groups of rational points, Tate-Shafarevich groups. 
Here in (0.2), "zeta elements" mean cyclotomic units which are units in cyclo­

tomic fields and closely related to zeta functions. Roughly speaking, the relations 
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(often conjectural) say that the order of zero or pole of the zeta function at an in­
teger point is equal to the rank of the related finitely generated arithmetic abelian 
group (Tate, the conjecture (0.3), Beilinson, Bloch, ...) and the value of the zeta 
function at an integer point is related to the order of the related arithmetic finite 
group. 

In [BK], Bloch and the author formulated a general conjecture on (0.0) (Tama­
gawa number conjecture for motives). Further generalizations of Tamagawa number 
conjecture by Fontaine, Perrin-Riou, and the author [FP], [Pei] [Kai], [Ka2] have 
the form 
(0.4) zeta functions (= Euler products, analytic) 

•try zeta elements (= Euler systems, arithmetic) 
•try arithmetic groups. 

Here the first -try means that zeta functions enter the arithmetic world transforming 
themselves into zeta elements, and the second -try means that zeta elements generate 
"determinants" of certain etale cohomology groups. 

The aim of this paper is to discuss (0.4) in an expository style. We review 
(0.1) in §1, and then in §2, we describe the generalized Tamagawa number conjecture 
(0.4), the relation with (0.2), and an application of the philosophy (0.4) to (0.3). 

In this paper, we fix a prime number p. For a commutative ring F , let Q(R) 
be the total quotient ring of F obtained from F by inverting all non-zerodivisors. 

1. Grothendieck formula and zeta elements 
Let X be a scheme of finite type over a finite field F g . We assume p is different 

from char(Fg). 
In this §1, we first review the formula (1.1.2) of Grothendieck representing zeta 

functions of p-adic sheaves on X by etale cohomology. We then show that those 
zeta functions are recovered from p-adic zeta elements (1.3.5). 

1.1. Zeta functions and etale cohomology groups in positive charac­
teristic case. The Hasse zeta function ((X,s) = Ylxeix\ (1 — t M 1 ) - 8 ) - 1 ) where 
|X| denotes the set of all closed points of x and K(X) denotes the residue field of x, 
has the form ((X,s) = ((X/Fq,q^s) where 

C(X/F g , « )= J J ( l - u ^ W ) - 1 , deg(x) = [K(x):Fq]. (1.1.1) 
x€ |X | 

A part of Weil conjectures was that ((X/Fq,u) is a rational function in u, 
and it was proved by Dwork and then slighly later by Grothendieck. The proof of 
Grothendieck gives a presentation of ((X/Fq, u) by using etale cohomologyy. More 
generally, for a finite extension F of Q p and for a constructible F-sheaf J7 on X, 
Grothendieck proved that the L-function L(X/Fq,J

7,u) has the presentation 

L(X/Fq,F,u) = l[detL(l - <pqu ; F™C(X ®Fq F.„F))^1^1 (1.1.2) 
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where F™ c is the etale cohomology with compact supports and tpq is the action of 
the q-th power morphism on X. 

In the case F = Q p = T, C,(X/Fq,u) = L(X/Fq,J
7,u). 

1.2. p-adic zeta elements in positive characteristic case. Determinants 
appear in the theory of zeta functions as above, rather often. The regulator of a 
number field, which appears in the class number formula, is a determinant. Such 
relation with determinant is well expressed by the notion of "determinant module". 

If F is a field, for an F-module V of dimension r, detfl(F) means the 1 dimen­
sional F-module Ar

R(V). For a bounded complex C of F-modules whose cohomolo-
gies Hm(C) are finite dimensional, detfl(C) means ®TOGz {detfl(FTO(G))}®^1^"*. 

This definition is generalized to the definition of an invertible F-module detp(C) 
associated to a perfect complex C of F-modules for a commutative ring F (see 
[KM]). det^j1(G) means the inverse of the invertible module detfl(G). 

By a pro-p ring, we mean a topological ring which is an inverse limit of finite 
rings whose orders are powers of p. Let A be a commutative pro-p ring. By a ctf 
A-complex on X, we mean a complex of A-sheaves on X for the etale topology with 
constructible cohomology sheaves and with perfect stalks. For a ctf A-complex T 
on X, RYet:C(X, T) (c means with compact supports) is a perfect complex over A. 

For a commutative pro-p ring A and for a ctf A-complex J7 on X, we define the 
p-adic zeta element ((X, T, A) which is a A-basis of det7v

1FFetjC(X, T). Consider 
the distinguished triangle 

FF e t ; C (X,^) -+ RYet,c(X®Fq Fq,F) ^ RYet,c(X ®Fq Fq,F). (1.2.1) 

Since det is multiplicative for distinguished triangles, (1.2.1) induces an isomorphism 

det i- i
1FFe t iC(X,^) ~ d e t ^ F F r f ^ X ®Fq Fq,F) ®A detARYet,c(X ®Fq Fq,F) s* A. 

(1.2.2) 
We define ((X, T, A) to be the image of 1 G A in detA

1FFe t j C(X,T) under (1.2.2). 
It is a A-basis of the invertible A-module det7v

1FFetjC(X, T). 
1.3. Zeta functions and p-adic zeta elements in positive character­

istic case. Let F be a finite extension of Qp , let Op be the valuation ring of 
F, and let J7 be a constructible O^-sheaf on X. We show that the zeta function 
L(X/Fq,J

7p,u) of the F-sheaf Tp = T ®oL L is recovered from a certain p-adic 
zeta element as in (1.3.5) below. Let 

A = 0L[[Gal(Fg/Fg)]] = h jnO L [Gal (F r /F g ) ] . (1.3.1) 
n 

Yet s(A) be the A-module A which is regarded as a sheaf on the etale site of X via 
the natural action of Gal(Fg /Fg) . Then 

H™C(X,T®0L s(Aj) - fimF™c(X ®Fq Fqn,T) (1.3.2) 
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where the transition maps of the inverse system are the trace maps. From this, we 
can deduce that H™c(X,J7®oL s(Aj) is a finitely generated O^-module for any rn. 
Hence we have Q(N) ®AFFetjC(X, J7®oL s(Aj) = 0 and this gives an identification 
canonical isomorphism 

Q(A) ®A detX1RYet,c(X,T®oL t(A)) = Q(A). (1.3.3) 

Note 
Q(A) = Q(hjnOL[«]/(«" - 1)) D Q(0L[u]) = L(u). (1.3.4) 

n 

By a formal argument, we can prove the following (1.3.5) (1.3.6) which show 

zeta function = zeta element, zeta value = zeta element, 

respectively. 

L(X/Fq,TL,u) = aX,T®oLs(A),A) in Q(A). (1.3.5) 

If F™C(X,Tp) = 0 for any rn, L(X/Fq,J
7p,u) has no zero or pole at u = 1, and 

L(X/Fq,TL,l) = aX,T,0L) in F. (1.3.6) 

2. Tamagawa number conjecture 
In 2.1, we describe the generalized version of Tamagawa number conjecture. 

In 2.2 (resp. 2.3), we consider p-adic zeta elements associated to 1 (resp. 2) di­
mensional p-adic representations of Gal(Q/Q), and their relations to (0.2) (resp. 
(0.3)). 

2.1. The conjecture. Let X be a scheme of finite type over Z[-]. For a 
complex of sheaves J7 on X for the etale topology, we define the compact support 
version FFe t jC(X, J7) of FF e t (X, J7) as the mapping fiber of 

FF e t (Z[- ] , RfsF) -+ FF e t (R, RfiF) ® FF e t (Q p , RfiF). 
P 

where / : X —t Spec(Z[-]). 
It can be shown that for a commutative pro-p ring A and for a ctf A-complex 

T on X, RYet:C(X, J7) is perfect. 
The following is a generalized version of the Tamagawa number conjecture 

[BK] (see [FP], [Pei], [Kai], [Ka2]). In [BK], the idea of Tamagawa number of 
motives was important, but it does not appear explicitly in this version. 

Conjecture. To any triple (X, A, J7) consisting of a scheme X of finite type over 
Z[ì] , a commutative pro-p ring A, and a ctf A-complex on X, we can associate a 
A-basis ((X, T, A) of 

A(X,T,A) = det^RTet^X, J7), 
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which we call the p-adic zeta element associated to T, satisfying the following con­
ditions (2.1.1)-(2.1.5). 
(2.1.1) If X is a scheme over a finite field Fq, ((X, T, A) coincides with the element 
defined in §3.2. 
(2.1.2) (rough form) If T is the p-adic realization of a motive M, ((X, T, A) 
recovers the complex value lims_s.0 s~eL(M, s) where L(M, s) is the zeta function of 
M and e is the order of L(M, s) at s = 0. 
(2.1.3) If A' is a pro-p ring and A —t A' is a continuous homomorphism, ((X, T®A 

A', A') coincides with the image ofC,(X,T,A) under A(X,J7®j(A',A') =ë A ( X , F ) ® A 

A'. 
(2.1-4) For a distinguished triangle T' —¥ T —¥ J7" with common X and A, we have 

((X,T,A) = C(X,^' ,A)®C(X,^",A) in A(X,^ ,A) = A(X,F,A)®AA(X,TV,A). 

(2.1.5) If Y is a scheme of finite type over Z[-] and f : X —¥ Y is a separated 
morphism, 

C(F, RfiF, A) = C(X, T, A) in A(Y, RfiF, A) = A(X,T, A). 

By this (2.1.5), the constructions of p-adic zeta elements are reduced to the 
case X = Spec(Z[^]). How to formulate the part (4.1.2) of this conjecture is reduced 
to the case of motives over Q by (2.1.5) and L(M, s) = L(Rf\(M), s) (by philosophy 
of motives), where / : X —t Spec(Z[-]). 

The conditions (2.1.3)-(2.1.5) are formal properties which are analogous to 
formal properties of zeta functions. The conditions (2.1.1) and (2.1.3)-(2.1.5) can 
be interpreted as 
(2.1.6) The system (X, A, J7) H> ((X,T, A) is an "Euler system". 

In fact, let F be a finite extension of Qp, S a finite set of prime numbers 
containing p, and let F be a free O^-module of finite rank endowed with a continuous 
0£-linear action of Gal(Q/Q) which is unramified outside S. For m > 1, let 
Rm = 0L[Gal(Q(Cro)/Q)] and let 

zm = (Rm(Z[^],jm,(T®oL s(Rm)),Rm) £ de t^FF e t i C (Z[C r o , ^ s ] ,F ) . 
(jm : Spec(Z[^]) -+ Spec(Z[i])). 

Then the conditions (4.1.1) and (4.1.3)-(4.1.5) tell that when m varies, the 
p-adic zeta elements zm form a system satisfying the conditions of Euler systems 
formulated by Kolyvagin [Ko]. 

We illustrate the relation (2.1.2) with zeta functions. 
Let M be a motive over Q, that is, a direct summand of the motive Hm(X)(r) 

for a proper smooth scheme X over Q and for r £ Z, and assume that M is endowed 
with an action of a number field K. Then the zeta function L(M, s) lives in C, and 
the p-adic zeta element lives in the world of p-adic etale cohomology. Since these 
two worlds are too much different in nature, L(M, s) and the p-adic zeta element 
are not simply related. 
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However in the middle of C and the p-adic world, 
(a) there is a 1 dimensional FT-vector space AK (M) constructed by the Betti 

realization and the de Rham realization of M, and F'-groups (or motivic cohomology 
groups) associated to M. 

Yet oo be an Archimedean place of K. Then 
(b) there is an isomorphism 

AK(M)®KK00 ^Kvo 

constructed by Hodge theory and F'-theory. 
Let w be a place of K lying over p, let Mw be the representation of Gal(Q/Q) 

over Kw associated to M, and let F be a Gal(Q/Q)-stable OKW -lattice in Mw. 
Then 

(c) there is an isomorphism 

AK(M) ®K K„ - + d e t ^ F F e t j C ( Z [ - ] , j,Mw) 
— p 

=detöKwRYet,c(Z[-],;j*T) ®0liw KW 
P 

where j : Spec(Q) —¥ Spec(Z[|]), constructed by p-adic Hodge theory and F'-theory. 
See [FP] how to construct (a)-(c) (constructions require some conjectures). 

The part (2.1.2) of the conjecture is: 
(d) there exists a F'-basis ((M) of AK(M) (called the rational zeta ele­

ment associated to M), which is sent to lims_s.0 s~eL(M, s) under the isomor­
phism (b) where e is the order of L(M,s) at s = 0, and to £(Z[^], j»T,OKW) 
in de t ^FF e t j C (Z [ ì ] , j*Mw) under the isomorphism (c). 

The existence of ((M) having the relation with lims_s.0 s~eL(M, s) was con­
jectured by Beilinson [Be]. 

How zeta functions and p-adic zeta elements are related is illustrated in the 
following diagram. 

zeta functions side (Betti) < — (de Rham) 

regulator p-adic Hodge theory 

(F'-theory) • (etale) p-adic zeta elements side. 
Chern class 

We have the following picture. 

? 
automorphic rep <—:— motives y p-adic Gal rep 

zeta functions rational zeta elements p-adic zeta elememts 
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The left upper arrow with a question mark shows the conjecture that the map 
{motives} —¥ {zeta functions} factor through automorphic representations, which 
is a subject of non-abelian class field theory (Langlands correspondences). As the 
other question marks indicate, we do not know how to construct zeta elements in 
general, at present. 

2.2. p-adic zeta e lements for 1 dimensional galois representa t ions . 
Let A be a commutative pro-p ring, and assume we are given a continuous homo­
morphism 

p : G a l ( Q / Q ) ^ G F „ ( A ) 

which is unramified outside a finite set S of prime numbers S containing p. Let 
j7 — j\_(Sn o n which Gal(Q/Q) acts via p, regarded as a sheaf on Spec(Z[^]) for the 
etale topology. We consider how to construct the p-adic zeta element £(Z[^|], T, A). 

In the case n = 1, we can use the "universal objects" as follows. Such p comes 
from the canonical homomorphism 

Pu„iv : Gal(Q/Q)-*-GLi(Au n i v) where Auniv = Zp[[Gal(Q(0vp°°)/Q)]] 

for some N > 1 whose set of prime divisors coincide with S and for some continuous 
ring homomorphism Aun;v —t A. We have T — .Funiv ®Auniv A. Hence £(Z[^|], T, A) 
should be defined to be the image of £(Z[^|],-Funjv, Aun;v). As is explained in [Ka2] 
Ch. I, 3.3, £(Z[^|], .Funivj Au„iv) is the pair of the p-adic Riemann zeta function and 
a system of cyclotomic units. Iwasawa main conjecture is regarded as the statemnet 
that this pair is a Aun;v-basis of A(Z[^], -Funjv, Aun;v). 

2.3. p-adic zeta e lements for 2 dimensional Galois representa t ions . 
Now consider the case n = 2. The works of Hida, Wiles, and other people suggest 
that the universal objects Aun;v and -Funiv for 2 dimensional Galois representations 
in which the determinant of the action of the complex conjugation is -1 , are given 
by 

AUniv = ^Tû p-adic Hecke algebras of weight 2 and of level Npn, 
n 

Fumy = hm F 1 of modular curves of level Npn. 
n 

Beilinson [Be] discovered ratinai zeta elements in K2 of modular curves, and the im­
ages of these elements in the etale cohomology under the Chern class maps become 
p-adic zeta elements, and the inverse limit of these p-adic zeta elements should be 
C(Z[iy],.Funivj Au„iv) at least conjecturally. By using this plan, the author obtained 
p-adic zeta elements for motives associated to eigen cusp forms of weight > 2, from 
Beilinson elements. Here it is not yet proved that these p-adic zeta elements are 
actually basis of A, but it can be proved that they have the desired relations with 
values L(E,x, 1) and L(f,x,r) (1 < r < k — 1) for elliptic curves over Q (which 
are modular by [Wi], [BCDT]) and for eigen cusp forms of weight k > 2, and for 
Dirichlet charcaters x- Beilinson elements are related in the Archimedean world 
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to lims_s.o s^1L(E,x,s) for elliptic curves F over Q, but not related to L(E,x, 1). 
However since they become universal (at least conjecturally) in the inverse limit in 
the p-adic world, we can obtain from them p-adic zeta elements related to L(E, x, 1). 
Using these elements and applying the method of Euler systems [Ko], [Pe2], [Ru2], 
[Ka3], we can obtain the following results ([Raj). 

Theorem. Let E be an elliptic curve over Q, let N > 1, and let x '• Ga/(Q((iv)/Q) 
= (Z/NZ)X -t C be a homomorphism. If L(E,x,l) # 0, the XrPart °f E(Q((N)) 

and the x P^rt of the Tate-shafarevich group of E over Q((JV) are finite. 

The p-adic L-function LP(E) of F is constructed from the values L(E,x, 1). 

Theorem. Let E be an elliptic curve over Q which is of good reduction at p. 
(1) rank(E(Q) < ord8=1Lp(E). 
(2) Assume E is ordinary at p. Let A = Zp[[Gal(Q((p^/Q)]]. Then the 

p-primary Seltner group of E over Q((p~) is A-cotorsion and its characteristic 
polynomial divides pnLp(E) for some n. 

This result was proved by Rubin in the case of elliptic curves with complex 
multiplication ([Rui]). 

As described above, we can obtain p-adic zeta elements of motives associated 
to eigen cusp forms of weight > 2. For such modular forms, we can prove the 
analogous statement as the above (2). 

Mazur and Greenberg conjectured that the charcteristic polynomial of the 
above p-primary Selmer group and the p-adic L-function divide each other. 
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We describe connections between the Fourier coefficients of derivatives of 
Eisenstein series and invariants from the arithmetic geometry of the Shimura 
varieties M associated to rational quadratic forms (V,Q) of signature (n,2). In 
the case n = 1, we define generating series 4>i{r) for 1-cycles (resp. «feM for 
0-cycles) on the arithmetic surface M associated to a Shimura curve over Q. 
These series are related to the second term in the Laurent expansion of an 
Eisenstein series of weight § and genus 1 (resp. genus 2) at the Siegel-Weil 
point, and these relations can be seen as examples of an 'arithmetic' Siegel^ 
Weil formula. Some partial results and conjectures for higher dimensional 
cases are also discussed. 
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1. Introduction 
In this report, we will survey results about generating functions for arith­

metic cycles on Shimura varieties defined by rational quadratic forms of signature 

(n, 2). For small values of n, these Shimura varieties are of P E L type, i.e., can 

be identified with moduli spaces for abelian varieties equipped with polarization, 

endomorphisms, and level structure. By analogy with CM or Heegner points on 

modular curves, cycles are defined by imposing additional endomorphisms. Re­

lations between the heights or arithmetic degrees of such cycles and the Fourier 

coefficients of derivatives of Siegel Eisenstein series are proved in [10] and in subse­

quent joint work with Rapoport , [14], [15], [16], and with Rapopor t and Yang [17], 

[18]. These relations may be viewed as an ari thmetic version of the classical Siegel-

Weil formula, which identifies the Fourier coefficients of values of Siegel Eisenstein 

*Partially supported by NSF grant DMS-9970506 and by a Max-Planck Research Prize from 
the Max-Planck Society and Alexander von Humboldt Stiftung. 

t Mathematics Department, University of Maryland, College Park, MD 20742, USA. E-mail: 
ssk@math.umd.edu 

mailto:ssk@math.umd.edu


174 S. S. Kudla 

series with representation numbers of quadratic forms. The most complete example 
is that of anisotropic ternary quadratic forms (n = 1), so that the cycles are curves 
and 0-cycles on the arithmetic surfaces associated to Shimura curves. Other surveys 
of the material discussed here can be found in [11] and [12]. 

2. Shimura curves 
Let F be an indefinite quaternion algebra over Q, and let D(B) be the product 

of the primes p for which Bp = B ®Q QP is a division algebra. The rational vector 
space 

V = { x £ B | tr(x) = 0 } 

with quadratic form given by Q(x) = —x2 = v(x), where tr(x) (resp. v(x)) is the 
reduced trace (resp. norm) of x, has signature (1,2). The action of F x on V by-
conjugation gives an isomorphism G = GSpin(V) ~ F x . Let 

D = { w £ V(C) | (w,w) = 0, (w,w) < 0 }/Cx ~ P^C) \P 1(R) 

be the associated symmetric space. Let 0B be a maximal order in F and let F = Oß 
be its unit group. The quotient M(C) = Y\D is the set of complex points of the 
Shimura curve M (resp. modular curve, if D(B) = 1) determined by F . This space 
should be viewed as an orbifold [F\F]. For a more careful discussion of this and 
of the stack aspect, which we handle loosely here, see [18]. The curve M has a 
canonical model over Q. From now on, we assume that D(B) > 1, so that M is 
projective. Drinfeld's model M for M over Spec (Z) is obtained as the moduli stack 
for abelian schemes (.4, i) with an action i : 0B <L-¥ End(.4) satisfying the 'special' 
condition, [3]. It is proper of relative dimension 1 over Spec(Z), with semi-stable 
reduction at all primes and is smooth at all primes p at which F splits, i.e., for 
p\D(B). We view M. as an arithmetic surface in the sense of Arakelov theory and 
consider its arithmetic Chow groups with real coefficients CH (A4) = CHR(A4), 
as defined in [2]. Recall that these groups are generated by pairs (Z,g), where Z 
is an R-linear combination of divisors on A4 and g is a Green function for Z, with 
relations given by R-linear combinations of elements div (/) = (div(/), ^ l o g | / | 2 ) 
where / £ Q(M)X is a nonzero rational function on A4. These real vector spaces 

come equipped with a geometric degree map degQ : CH (A4) —̂  CH1(MQ) —̂  R, 

where MQ is the generic fiber of A4, an arithmetic degree map deg : CH (A4) —¥ R, 
and the Gillet-Soulé height pairing, [2], 

( , ) : C F ^ M ) x C F ^ M ) —• R. 

Let A be the universal abelian scheme over M. Then the Hodge line bundle u = 
e*(0^,_M) determined by A has a natural metric, normalized as in [18], section 

3, and defines an element û £ Pic(^M), the group of metrized line bundles on 
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M. We also write û for the image of this class in CH (M) under the natural 
map, which sends a metrized line bundle £ = (£,\\ ||) £ Pic(M) to the class of 
(div(s), — log ||«||2), for any nonzero section s of £. 

Arithmetic cycles in M are defined by imposing additional endomorphisms of 
the following type. 

Definition 1. ([10]) The space of special endomorphisms V(A,i) of an abelian 
scheme (A,i), as above, is 

V(A, c) = { x £ End(.4) | x o t(fe) = t(fe) ox, V6 G 0B, and tr(x) = 0 }, 

with Z-valued quadratic form given by —x2 = Q(x) id^. 

2.1. Divisors 

To obtain divisors on A4, we impose a single special endomorphism. For a 
positive integer t, let Z(t) be the divisor on M determined by the moduli stack 
of triples (A,L,X) where (A,i) is as before and where x £ V(A,i) is a special 
endomorphism with Q(x) = t. Note that, for example, the complex points Z(t)(C) 
of Z(t) correspond to abelian surfaces (.4, i) over C with an 'extra' action of the order 
Z[y^t] in the imaginary quadratic field Q(\/—t), i.e., to CM points on the Shimura 
curve M(C). On the other hand, the cycles Z(i) can have vertical components in 
the fibers of bad reduction Mp for p | D(B). More precisely, in joint work with M. 
Rapoport we show: 

Proposition 1. ([15]) For p | D(B), Z(t) contains components of the fiber of bad 
reduction Mp if and only if ordp(t) > 2 and no prime £ | D(B), £ ^ p, splits in 
h •= Q(V~t). 

The precise structure of the vertical part of Z(t) is determined in [15] using 
the Drinfeld-Cherednik p-adic uniformization of Mp. For example, for p | D(B), 
the multiplicities of the vertical components in the fiber Mp of the cycle Z(p2rt) 
grow with r, while the horizontal part of this cycle remains unchanged. 

To obtain classes in CH (M), we construct Green functions by the procedure 
introduced in [10]. Let F = 0B n V. For t £ Z>0 and v £ R>o, define a function 
E(t,v) on M(C) by 

E(t,v)(z)= J2 ßi(^vR(x,z)), 
x£L(t) 

where L(t) = {x £ L \ Q(x) = t}, and, for z £ D with preimage w £ V(C), 
R(x,z) = |(a;,w)|2 | (w,w)|_ 1 . Here 

/•OO 
ßi(r) = / e-ruu-xdu = ^Ei(^r) 
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is the exponential integral. Recall that this function has a log singularity as r goes 
to zero and decays exponentially as r goes to infinity. In fact, as shown in [10], 
section 11, for any x £ V(M.) with Q(x) ^ 0, the function 

(,(x,z) := ßi(2nR(x,z)) 

can be viewed as a Green function on D for the divisor Dx := {z £ D | (x, z) = 0}. 
A simple calculation, [10], shows that, for t > 0, E(t,v) is a Green function of 
logarithmic type for the cycle Z(t), while, for t < 0, E(t,v) is a smooth function on 
M(C). 

Definition 2. (i) For t £ Z and v > 0, the class Z(t,v) £ CH (M) is defined by: 

Z(t,v) 

( (Z(t),E(t,v)) ift>0, 

^0! + (0,c^log(w)) ift = 0, 

{ (0,E(t,v)) ift<0. 

Here û is the metrized Hodge line bundle, as above, and the real constant c is given 
by 

- degQ(Ô!)-c = (<2>,<2>)-CD(B)(-1) 
S l > p\D(B) 

where C,D(B)(S) = C,(s) UP\D(B)(^ ^P S)
 an<^ 7 *s Eider's constant. 

(ii) For T = u + iv £ Sj and q = e(r) = e27!lT, the 'arithmetic theta function' 4>I(T) 

is given by the generating series 

4 > I ( T ) • = ' ^ Z ( t , v ) q t . 

tez 

It is conjectured in [18] that the constant c occurring in the definition of Z(0, v) 
is, in fact, zero. It may be possible to use recent work of Bruinier and Kühn, [4], 
on the heights of curves on Hilbert modular surfaces to show that that (û,û) has 
the predicted value and hence verify this conjecture. 

Some justification for the terminology 'arithmetic theta function' is given by 
the following result, which is closely related to earlier work of Zagier, [25], and 
recent results of Borcherds, [1], cf. also [20]. 

Theorem 1. The arithmetic theta function 4>I(T) is a (nonholomorphic) modular 
„ —~~i 

form of weight | , valued in CH (A4), for a subgroup Y' c SL2(Z). 

The proof of Theorem 1 depends on Borcherd's result [1] and on the modularity 
of various complex valued g-expansions obtained by taking height pairings of <pi (T) 



Eisenstein Series and Arithmetic Geometry 177 

with other classes in CH (A4). We now describe some of these in terms of values 
and derivatives of a certain Eisenstein series, [18], of weight § 

£I(T,S,D(B))= Y, (cT + d)-i\cT + d\-{s-i)v^s-i)^i(sr/,D(B)), 

associated to F and the lattice F, and normalized so that it is invariant under 
s H> —s. The main result of joint work with M. Rapoport and T. Yang is the 
following: 

Theo rem 2. ([18]) (i) 

^I(T,—,D(B)) = deg(<j>i(T)) =J2degQ(Z(t,v))qt. 

(ii) 

£[(T,\;D(B)) = (MT),û) = 5 ^ ( f (t,w),w>g*. 
2' 

t 
Note that this result expresses the Fourier coefficients of the first two terms in 

the Laurent expansion at the point s = \ of the Eisenstein series £I(T, S; D(Bj) in 
terms of the geometry and the arithmetic geometry of cycles on A4. 

Next consider the image of 

- M r W i ( r , i ; F (F) ) • d e g M - 1 • cD 

in CH1(MQ), the usual Chow group of the generic fiber. By (i) of Theorem 2, it 
lies in the Mordell-Weil space CH1(Mq)° ® C ~ Jac(M)(Q) ®z C. In fact, it is 
essentially the generating function defined by Borcherds, [1], for the Shimura curve 
M, and hence is a holomorphic modular of weight §. For the case of modular 
curves, such a modular generating function, whose coefficients are Heegner points, 

was introduced by Zagier, [25]. By the Hodge index theorem for CH (A4), [2], the 
proof of Theorem 1 is completed by showing that the pairing of <pi (T) with each 
class of the form (Yp,0), for Yp a component of the fiber Mp, p | F ( F ) and each 
class of the form (0,(p), where <p £ C°°(M(C)), is modular. 

2.2 . 0-cycles 

We next consider a generating function for 0-cycles on .M. Recall that the 
arithmetic Chow group CH (M), with real coefficients, is generated by pairs (Z,g), 
where Z is a real linear combination of 0-cycles on M and g is a real smooth (1,1)-
form on .M(C). In fact, the arithmetic degree map, as defined in [2], 

deg : CH (A4) -+ R, deg ((Z,gj) = \>mlog \k(Pi)\ + - I 9, 
M(C) 
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where Z = J2ìnìPì f° r dosed points Pi of M with residue field fc(Fj), is an iso­
morphism. 

Let r = u + iv £ SJ2, the Siegel space of genus 2, and for T £ Sym2(Z), let 
qT = e

2 7 r r t r(T T). To define the generating series 

4>2(T)= Y. 2 ( 2 » gT, 
T€Sym2(Z) 

we want to define classes Z(T,v) £ CH (M) for each T £ Sym2(Z) and v £ 
Sym2(R)>0 . 

We begin by considering cycles on M which are defined by imposing pairs of 
endomorphisms. For T £ Sym2(Z)> 0 a positive definite integral symmetric matrix, 
let Z(T) be the moduli stack over M consisting of triples (.4, i, x) where (.4, i) is as 
before, and x = [ari,a:2] £ Y(A,i)2 is a pair of special endomorphisms with matrix 
of inner products Q(x) = |((x»,Xj)) = T. We call T the fundamental matrix of the 
triple (A,i,x). The following result of joint work with M. Rapoport describes the 
cases in which Z(T) is, in fact, a 0-cycle on M. 

Proposition 2. ([15]) Suppose thatT £ Sym2(Z)>0 . (i) The cycle Z(T) is either 
empty or is supported in the set of supersingular points in a fiber Mp for a unique 
prime p determined by T. In particular, Z(T)Q = 0. The prime p is determined 
by the condition that T is represented by the ternary quadratic space V^ = { x £ 
F ^ | tr(ar) = 0 }, with Q^(x) = —x2, where F ^ is the definite quaternion algebra 
over Q with Bf ~ B( for all primes £ ^ p. If there is no such prime, then Z(T) 
is empty. 
(ii) (T regular) Let p be as in (i). Then, if p \ D(B) or if p | F ( F ) but p2 \ T, 
then Z(T) is a 0-cycle in Mp. 
(in) (T irregular) Letp be as in (i). If p | F ( F ) andp2 | T, then Z(T) is a union, 
with multiplicities, of components of A4P, cf. [15], 176. 

For T £ Sym2(Z)> 0 regular, as in (ii) of Proposition 2, we let 

Z(T,v) := Z(T) = (Z(T),0) £ Gif (M). 

For T = f 1 J £ Sym2(Z)> 0 irregular, we use the results of [15], section 

8 (where the quadratic form is taken with the opposite sign). We must therefore 
assume that p ^ 2 , although the results of the appendix to section 11 of [18] suggest 
that it should be possible to eliminate this restriction. In this case, the vertical cycle 
Z(T) in the fiber Mp is the union of those connected components of the intersection 
Z(h) XM Z(t2) where the 'fundamental matrix', [15], is equal to T. Here Z(ti) 
and Z(t2) are the codimension 1 cycles defined earlier. Note that, by Proposition 
1, they can share some vertical components. We base change to Zp and set 

Z(T,v) := x(Z(T), Oz(tl) ®h Oz(t2)) • log(p) G R ~ CH2(M), 
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where x '1S the Euler-Poincaré characteristic of the derived tensor product of the 
structure sheaves Oz(t{) a n d Oz(t2),

 CI>- [15]) section 4. Note that the same defini­
tion could have been used in the regular case. 

Next we consider nonsingular T £ Sym2(Z) of signature (1,1) or (0,2). In 
this case, Z(T) is empty, since the quadratic form on V(A,i) is positive definite, 
and our 'cycle' should be viewed as 'vertical at infinity'. For a pair of vectors 
x = [#i,#2] € V'(Q)2 with nonsingular matrix of inner products Q(x) = \ ((xi,Xj)), 
the quantity 

A(x) := / £(xi)*£(x2) , 
JD 

where £(#i) * Ç(x2) is the *-product of the Green functions £(#i) and £(12), [6], 
is well defined and depends only on Q(x). In addition, A(x) has the following 
remarkable invariance property. 

Theorem 3. ([10, Theorem 11.6]) For k £ 0(2), A(x • k) = A(x). 

For T £ Sym2(Z) of signature (1,1) or (0,2) and for v £ Sym2(R)>0 , choose 
a £ GF2(R) such that v = a1 a, and define 

Z(T,v):= Yl A(x a) eR~CF2(,V(). 
x G L 2 , Q(x) = T, mod F 

Here F = 0B n V and F = Oß, as before. Note that the invariance property of 
Theorem 3 is required to make the right side independent of the choice of a. 

We omit the definition of the terms for singular F's, cf. [11]. 
By analogy with Theorem 1, we conjecture that, with this definition, the 

generating series <p2 (T) is the g-expansion of a Siegel modular form of weight § for 
a subgroup F' c Sp2(Z). More precisely, there is a normalized Siegel Eisenstein 
series £2(T,S;D(B)) of weight | attached to F , [10]. 

Conjecture 1. 

£2(T,0; D(B)) = 4>2(T). (CI) 

This amounts to the family of identities 

£ 2 ; T ( T , 0 ; F ( F ) ) = Z(T,v)qT (C1T) 

on Fourier coefficients, for all T £ Sym2(Z). Here the isomorphism deg is being 
used. 

Theorem 4. ([10], [15]) The Fourier coefficient identity (Cip) holds in the follow­
ing cases: 
(i) T £ Sym2(Z) is not represented by V or by any of the spaces V^ of Proposition 
2. 
(In this case both Z(T,v) and £'2 T(T,0;D(B)) are zero.) 
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(ii) T £ Sym2(Z)>0 is regular a,ndp\2D(B), [10]. 
(iii) T G Sym2(Z)> 0 is irregular with p ^ 2, or regular with p \ D(B) and p ^ 2, 
[15]. 
(iv) T G Sym2(Z) is nonsingular of signature (1,1) or (0,2), [10]. 

Theorem 4 is proved by a direct computation of both sides of (Cip). In case 
(ii), the computation of the Fourier coefficient £'2 T(T,0;D(B)) depends on the for­
mula of Kitaoka, [8], for the local representation densities ap(S,T) for the given T 
and a variable unimodular S. The computation of Z(T,v) = deg ((Z(T),Oj) de­
pends on a special case of a result of Gross and Keating, [7], about the deformations 
of a triple of isogenies between a pair of p-divisible formal groups of dimension 1 
and height 2 over Fp . Their result is also valid for p = 2, so it should be possible to 
extend (ii) to the case p = 2 by extending the result of Kitaoka. 

In case (iii), an explicit formula for the quantity x(Z(T),Oz(t1) ®L Oz(t2)) '1S 

obtained in [15] using p-adic uniformization. The analogue of Kitaoka's result is a 
determination of ap(S,T) for arbitrary S due to T. Yang, [22]. In both of these 
results, the case p = 2 remains to be done. 

Case (iv) is proved by directly relating the function A, defined via the *-
product to the derivative at s = 0 of the confluent hypergeometric function of a 
matrix argument defined by Shimura, [21]. The invariance property of Theorem 3 
plays an essential role. The case of signature (1,1) is done in [10]; the argument for 
signature (0,2) is the same. 

A more detailed sketch of the proofs can be found in [11]. 
As part of ongoing joint work with M. Rapoport and T. Yang, the verification 

of (Cip) for singular T of rank 1 is nearly complete. 

3. Higher dimensional examples 

So far, we have discussed the generating functions 4>I(T) £ CH (M) and 

4>2(T) £ CH (M) attached to the arithmetic surface M, and the connections of 
these series to derivatives of Eisenstein series. There should be analogous series de­
fined as generating functions for arithmetic cycles for the Shimura varieties attached 
to rational quadratic spaces (V,Q) of signature (n,2). At present there are several 
additional examples, all based on the accidental isomorphisms for small values of 
n, which allow us to identify the Shimura varieties in question with moduli spaces 
of abelian varieties with specified polarization and endomorphisms. Here we briefly 
sketch what one hopes to obtain and indicate what is known so far. The results 
here are joint work with M. Rapoport. 

Hilbert-Blumenthal varieties (n = 2), [14]. When the rational quadratic 
space (V,Q) has signature (2,2), the associated Shimura variety M is a quasi-
projective surface with a canonical model over Q. There is a model M of M 
over Spec(Z[iV-1]) defined as the moduli scheme for collections (A,X,i,f]) where 
A is an abelian scheme of relative dimension 8 dimension with polarization A, level 



Eisenstein Series and Arithmetic Geometry 181 

structure fj, and an action of Oc ® Ok, where Oc is a maximal order in the Clifford 
algebra C(V) of V and Ok is the ring of integers in the quadratic field k = Q(Vd) for 
d = discr(V), the discriminant field of V, [14]. Again, a space V(A, i) = V(A, X, i, fj) 
of special endomorphisms is defined; it is a Z-module of finite rank equipped with 
a positive definite quadratic form Q. For T £ Sym r(Z), we let Z(T) be the locus 
of (A,\,i,fj,x)'s where x = [xi,... ,xr], xi £ V(A,i) is a collection of r special 
endomorphisms with matrix of inner products Q(x) = | ( ( X J , £ J ) )

 = ^ • 

One would like to define a family of generating functions according to the fol­

lowing conjectural chart. Again there is a metrized Hodge line bundle û £ CH (A4). 

r = l, Z(t)q = HZ - cu rved ( r ) = w+? + ]T t # 0 Jj(£, v) <?*, (<Î>I(T),û2) = £[(T,1). 

r = 2, Z(*)Q =0-cycle, 4>2(T) = ÔJ2+? + £ T # 0 % » QT(MT),û) = £2(T, §). 

r = 3, Z(T)Q = $, ^ ( r ) = ^ + ? + E T # 2 ( T , « ) Ä ^ ( r ) = £3(r,0). 

Here, the generating function <j>r(r) is valued in CH (A4), the rth arithmetic 
Chow group, £r(r, s) is a certain normalized Siegel Eisenstein series of genus r, and 
the critical value of s in the identity in the last column is the Siegel-Weil point 
«o = |(dim(Vr) —r — 1). Of course, one would like the </>r(r)'s to be Siegel modular 
forms of genus r and weight 2. 

There are many technical problems which must be overcome to obtain such 
results. For example, one would like to work with a model over Spec (Z). If V is 
anisotropic, then M is projective, but if V is isotropic, e.g., for the classical Hilbert-
Blumenthal surfaces where it has Q-rank 1, then one must compactify. Since the 
metric on û is singular at the boundary a more general version of the Gillet-Soulé 
theory, currently being developed by Burgos, Kramer and Kühn, [5], [19], will be 
needed. 

Nonetheless, the chart suggests many identities which can in fact be checked 
rigorously. For example, there are again rational quadratic spaces V ^ of dimension 
4 and signature (4,0) obtained by switching the Hasse invariant of V at p. 

Theorem 5. [14], [11]. (i) If T £ Sym3(Z)> 0 is not represented by any of the 
Vb) 's, then Z(T) = 0 and £^T(T,0) = 0. 

(ii) If T £ Sym3(Z)> 0 is represented by V^ where p is a prime of good reduction 
split in k, then Z(T) is a 0-cycle in Mp and 

dTg((Z(T),0j)qT = £^T(T,0). (*) 

(iii) If T £ Sym3(Z)> 0 is represented by V^ and p is a prime of good reduction 
inert in k, then Z(T) is a 0-cycle in Mp if and only if p \T. If this is the case, 
then the Fourier coefficient identity (*) again holds. If p\ T, then Z(T) is a union 
of components of the super singular locus of A4 p. 

Finally, say if V is anisotropic, one can consider the image cl(</v(r)) G H2r(M,C) 
of 4>r(T~) in the usual (Betti) cohomology of A4(C). Of course, C\(4>Z(T)) = 0 for 
degree reasons. Joint work with J. Millson on generating functions for cohomology 
classes of special cycles yields: 
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Theorem 6. ([13], [9], [11]) Suppose thatV is anisotropic (i) C1(çV(T)) is a Siegel 
modular form of genus r and weight 2 valued in H2r(M,C). 
(ii) For the cup product pairing, ( cl((f>r(TJ),cl(û) ) = £r(T,so), where so = | ( 3 —r). 

Part (ii) here generalizes (i) of Theorem 2 above, so that, again, the value at so 
of the Eisenstein series £r(r, s) involves the complex geometry, while, conjecturally, 
the second term involves the height pairing. 

Siegel modular varieties (n = 3), [16]. Here, an integral model M of the 
Shimura variety M attached to a rational quadratic space of signature (3,2) can 
be obtained as a moduli space of polarized abelian varieties of dimension 16 with 
an action of a maximal order Oc in the Clifford algebra of V. We just give the 
relevant conjectural chart: 

0i ( T ) = W + ? + £ M O % « ) ? * > (Mr),û3)= £{(T3-1, 

2, 

3, 

4, 

Z(t)q --

Z(t)q •-

Z(T)q 

Z(T)q 

Humbert 
surface ' ' 2 i 

- , S i 7 , V^ 9/rp „,\ „Til l^\ ,-,2\ curve <f>2(r) = û r + ? + X ^ Z(F, v) <? ih(r),ûi^) = £2(T,1) 

= 0-cycle, 4>Z(T) = ùHl + Y.T^Z(T,v)qT(4>2(T),ù) = £ 3 ( r , | ) . 

= 0, <MT)=cu4+? + £ T # 0 S ( F , W ) g T | e i < M T ) = £'4(T,0). 

Here the Eisenstein series and, conjecturally, the generating functions <j>r(r) 
have weight §, and the values of the Eisenstein series should be related to the series 
c\(4>r(TJ). In the case of a prime p of good reduction a model of M over Spec (Zp) 
is defined in [16], and cycles are defined by imposing special endomorphisms. For 
example, for r = 4, the main results of [16] give a criterion for Z(T) to be a 0-cycle in 
a fiber Mp and show that, when this is the case, then deg((Z(T),0j)qT = £4 T(T, 0). 
The calculation of the left hand side is again based on the result of Gross and Keating 
mentioned in the description of the proof of Theorem 4 above. This provides some 
evidence for the last of the derivative identities in the chart. 
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Elliptic Curves and Class Field Theory 

Barry Mazur* Karl Rubin^ 

A b s t r a c t 

Suppose E is an elliptic curve defined over Q. At the 1983 ICM the first 
author formulated some conjectures that propose a close relationship between 
the explicit class field theory construction of certain abelian extensions of 
imaginary quadratic fields and an explicit construction that (conjecturally) 
produces almost all of the rational points on E over those fields. 

Those conjectures are to a large extent settled by recent work of Vatsal 
and of Cornut, building on work of Kolyvagin and others. In this paper 
we describe a collection of interrelated conjectures still open regarding the 
variation of Mordell-Weil groups of E over abelian extensions of imaginary 
quadratic fields, and suggest a possible algebraic framework to organize them. 
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1. Introduction 
Eighty years have passed since Mordell proved tha t the (Mordell-Weil) group 

of rational points on an elliptic curve F is finitely generated, yet so limited is 
our knowledge tha t we still have no algorithm guaranteed to compute the rank 
of this group. If we want to ask even more ambitious questions about how the 
rank of the Mordell-Weil group E(F) varies as F varies, it makes sense to restrict 
at tention only to those fields for which we have an explicit construction, such as 
finite abelian extensions of a given imaginary quadratic field K. Taking our lead 
from the profound discovery of Iwasawa tha t the variational properties of certain 
arithmetic invariants are well-behaved if one restricts to subfields of Z^-extensions 
of number fields, we will focus on the following Mordell-Weil variation problem: 

Fixing an elliptic curve E defìned over Q , an imaginary quadratic fìeld 
K, and a prime number p, study the variation of the Mordell-Weil group 
of E over fìnite subfìelds of the (unique) Z2 -extension of K in K. 
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This problem was the subject of some conjectures formulated by the first 
author at the 1983 ICM [8], conjectures which have recently been largely settled by-
work of Vatsal [15] and Cornut [1] building on work of Kolyvagin and others. 

Example. Let F be the elliptic curve y2 + y = x3 —x,p= 5, and let K = Q(-\/—7). 
If F is a finite extension of K, contained in the Z\ extension of K, then rank E(F) = 
[F n K^u : K] where K^u is the anticyclotomic Z5-extension of K (see §2 for the 
definition). One only has an answer like this in the very simplest cases. 

Now with the same F and p, take K = Q(V^26). A guess here would be that 
rank E(F) = [F n K%£u : K] + 2, but this seems to be beyond present technology. 

The object of this article is to sketch a package of still-outstanding conjectures 
in hopes that it offers an even more precise picture of this piece of arithmetic. These 
conjectures are in some cases due to, and in other cases build on ideas of, Bertolini 
& Darmon, Greenberg, Gross & Zagier, Haran, Hida, Iwasawa, Kolyvagin, Nekovâr, 
Perrin-Riou, and the authors, among others. 

In sections 3 through 5 we describe the three parts of our picture: the arith­
metic theory (the study of the Selmer modules over Iwasawa rings that contain the 
information we seek), the analytic theory (the construction and study of the relevant 
F-functions, both classical and p-adic), and the universal norm theory which arises 
from purely arithmetic considerations, but provides analytic invariants. 

In the final section we suggest the beginnings of a new algebraic structure to 
organize these conjectures. This structure should not be viewed as a conjecture, 
but rather as a mnemonic to collect our conjectures and perhaps predict new ones. 

More details and proofs will appear in a forthcoming paper. 

2. Running hypotheses and notation 
Fix a triple (E,K,p) where F is an elliptic curve of conductor N over Q, K 

is an imaginary quadratic field of discriminant D < —4, and p is a prime number. 
To keep our discussion focused and as succinct as possible, we make the following 
hypotheses and conventions. 

Assume that p is odd, that N, p and D are pairwise relatively prime, and that 
if F has complex multiplication, then K is not its field of complex multiplication. 
Let OK C K denote the ring of integers of K. Assume further that there exists an 
ideal Af C OK such that OK/A" is cyclic of order N (this is sometimes called the 
Heegner Hypothesis), and that p is a prime of ordinary reduction for F . For 
simplicity we will assume throughout this article that the p-primary subgroups of 
the Shafarevich-Tate groups of F over the number fields we consider are all finite. 

Proposition 1. Under the assumptions above, rank E(K) is odd. 

Proof. This follows from the Parity Conjecture recently proved by Nekovâr [11]. 

Let KQO denote the (unique) Z2-extension of K and T := Gal(K0O/Ä'), so 
r = Z2 . We define the Iwasawa ring 

A : = Z p [ [ r ] ] ® Z p Q p . 
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(To simplify notation and to avoid some complications, we will often work with 
Qp-vector spaces instead of natural Zp-modules; in particular we have tensored the 
usual Iwasawa ring with Qp.) For every (finite or infinite) extension F of K in K œ 

we also define 

AF := Zp[[Gal(F/K)]] ®Zp Qp, IF := ker{A -» A F } . 

Then IK is the augmentation ideal of A, and if [F : K] is finite then Ap is just the 
group ring Qp[Gal(F/K)]. If Gal(F/K) is Zp or Z2 , and M is a finitely generated 
torsion Af-module, then charAF (M) will denote the characteristic ideal of M. In 
particular charAF(M) is a principal ideal of Ap. 

There is a Qp-projective line of Zp-extensions of K, all contained in K ^ . 
Among these are two distinguished Zp-extensions: 

• the cyclotomic Zp-extension K^ci, the compositum of K with the unique 
(cyclotomic) Zp-extension of Q (write Fcyci = Gal(K^d/K), Acyci = A^-cyd), 

• the anticyclotomic Zp-extension K%£u, the unique Zp-extension of K that 
is Galois over Q with non-abelian, and in fact dihedral, Galois group (write 
Fanti = Gal(F^J 1 /K), Aa„ti = AK^)-

Then T = Ycyci ® Fanti and A = Acyd ®Zp Aanti. 
Complex conjugation r : K —¥ K acts on F, acting as +1 on Fcyci and ~1 on 

Fanti. This induces nontrivial involutions of A and Aanti, which we also denote by r . 
If M is a module over A (or similarly over Aanti), let M^ denote the module whose 
underlying abelian group is M but where the new action of 7 £ T on TO £ M^ is 
given by the old action of 7T on rn. 

Our A-modules will usually come with a natural action of Gal(K0O/Q). These 
actions are continuous and Zp-linear, and satisfy the formula f (7-771) = 7T -f(ro) for 
every lift f of r to Gal(K0O/Q). Thus the action of any lift f induces an isomorphism 
Af ^ M(T\ We will refer to such A or Aa„ti-modules as semi-linear r -modules . 
If M is a semi-linear r-module and is free of rank one over Aantj, we define the sign 
of M to be the sign ±1 of the action of r on the one-dimensional Qp-vector space 
M ®A„ti A if. Such an M is completely determined (up to isomorphism preserving 
its structure) by its sign. 

Definition 2. If M and A are semi-linear T-modules, then a (A-bilinear) A-valued 
r -Hermi t i an pair ing IT is a A-module homomorphism ix : M ®A M^ —̂  A such 
that for every lift f of r to Gal(K0O/Q) 

n(m ® n) = n(n ® m)T = n(fn ® fro). 

3. Universal norms 

Definition 3. If K C F C Koo, the universal n o r m module U(F) is the pro­
jective limit 

U(F):=Qp® Hm (E(L)®Zp) 
KCLCF 
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(projective limit with respect to traces, over finite extensions L of K in F) with 
its natural Ap-structure. If F is a finite extension of K, then U(F) is simply 
E(F)®QP. 

If F is a Zp-extension of K, then U(F) is a free A^-module of finite rank, and 
is zero if and only if the Mordell-Weil ranks of F over subfields of F are bounded 
(cf. [8] §18 or [12] §2.2). The first author conjectured some time ago [8] that for 
Zp-extensions F/K, and under our running hypotheses, U(F) = 0 if F ^ K%gu and 
U(K%£U) is free of rank one over Aanti- The following theorem follows from recent 
work of Kato [6] for K^ci and Vatsal [15] and Cornut [1] for K%gu. 

Theorem 4. U(K^cl) = 0 and U(K%£U) is free of rank one over Aanti. 

For the rest of this paper we will write U for the anticyclotomic universal norm 
module U(K^U). Complex conjugation gives U a natural semi-linear r-module 
structure. Since U is free of rank one over Aanti, we conclude that U is completely-
determined (up to isomorphism preserving its r-structure) by its sign. 

Let i^ be the rank of the ±1 eigenspace of r acting on E(K), so rank F(Q) = 
r+ and rank E(K) = r+ + r^. By Proposition 1, rank E(K) is odd so r+ ^ r^. 

Conjecture 5 (Sign Conjecture). The sign of the semi-linear r-module U is +1 
if r+ > r - , and is — 1 if r - > r + . 

Remark. Equivalently, the Sign Conjecture asserts that the sign of U is +1 if twice 
rankF(Q) is greater than rank E(K), and —1 otherwise. 

As we discuss below in §4, the Sign Conjecture is related to the nondegeneracy 
of the p-adic height pairing (see the remark after Conjecture 11). 

The Aanti-module U comes with a canonical Hermitian structure. That is, the 
canonical (cyclotomic) p-adic height pairing (see [10] and [12] §2.3) 

h '• U ®A„ti U(T) > rcyci ®Zp Aa„ti 

is a T-Hermitian pairing in the sense of Definition 2. 

Conjecture 6 (Height Conjecture). The homomorphism h is an isomorphism 
of free Awt\-modules of rank one 

h '• U ®A„ti U(T) ^ rcyci ®Zp Aanti-

The Aanti-module U has an important submodule, the Heegner submodule 
% C U. Fix a modular parameterization X0(N) —t E. The Heegner submodule 
% is the cyclic Aa„ti-module generated by a trace-compatible sequence c = {cp} of 
Heegner points cp £ E(L)®ZP for finite extensions F of K in K^u. See for example 
[8] §19 or [12] §3. Call such a c £ % a Heegner generator. The Heegner generators 
of % are well-defined up to multiplication by an element of ± F c (Aa n t i)

x . The 
Aanti-submodule W C Wis stable under the semi-linear r-structure of U, so the 
action of r gives an isomorphism U/H, ^t (UfiH)^ — U^/H^. 

Let c^ denote the element c viewed in the Aant;-module 'HST\ Since 

(±7C) ®A„ t i ( ± 7 C ) ( T ) = C®A„ t i C ( T ) 
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for every ±7 £ ±Y, the element c®c^ £ 'H®^Dii'H^T'> is independent of the choice 
of Heegner generator, and is therefore a totally canonical generator of the free, rank 
one Aanti-module % ®A„ti %^ • 

Definition 7. The Heegner F-function (for the triple (E,K,p) satisfying our 
running hypotheses) is the element 

£ := h(c® C ( T )) G Fcyci ®Zp Aanti. 

Conjecture 8. Fcyci ® cha,r(U/H)2 = Aa n t i£ inside Fcyci ® Aant i. 

One sees easily that Fcyci ® char(U/H)2 D Aantj£, and that Conjecture 8 is 
equivalent to the Height Conjecture (Conjecture 6). 

4. The analytic theory 
The ( "two-variable" ) p-adic F-function for F over K is an element L £ A 

constructed by Haran [3] and by a different, more general, method by Hida [4] (see 
also the papers of Perrin-Riou [13, 14]). The F-function L is characterized by the 
fact that it interpolates special values of the classical Hasse-Weil F-function of twists 
of F over K. More precisely, embedding Q both in C and Qp, if x '• T —¥ Z x c Z p

x 

is a character of finite order then 

x(L) = C ( X ) L d a 7 a : ; i !^ X ' 1 ) (4.1) 

where LciaiSSjcaii(E/K, X,s) '1S the Hasse-Weil F-function of the twist of E/K by x, 
c(x) is an explicit algebraic number (cf. [13] Théorème 1.1), fp is the modular form 
on Y'o(N) corresponding to F , and | | /#| | is its Petersson norm. 

Projecting L £ A to the cyclotomic or the anticyclotomic line via the natural 
projections A —t Acyci and A —t Aant;, we get "one-variable" p-adic F-functions 

L 1-̂  Fcyci £ Acyci and L 1-̂  F a n t ; £ Aant;. 

It follows from the functional equation satisfied by L ([13] Théorème 1.1) and the 
Heegner Hypothesis that Fanti = 0. In other words, viewing A = Aant;[[rcyci]] as the 
completed group ring of Fcyci with coefficients in Aant;, we have that the "constant 
term" of L £ Aant; [[Fcyci]] vanishes. We now consider its "linear term." 

There is a canonical isomorphism of (free, rank one) Aant;-modules 

Icycl ®ZP Aanti — I if >nti / I K% 

which sends 7 <g> 1 £ Fcyci ®Zp Aanti to 7 - 1 £ IK^/1 2 
ifanti 

Conjecture 9 (A-adic Gross-Zagier Conjecture). Let L' denote the image of 
L under the map Isanti /I^„ t i ^y Fcyci ®zp Aanti. Then 

L' = d-x£ 

where d is the degree of the modular parametrization X0(N) —t E. 
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Remark. Perrin-Riou [13] proved that if p splits in K and the discriminant D of 
K is odd, then F' and d^1£ have the same image under the projection Aanti —* 
A A- = Qp. 

Let I := IK, the augmentation ideal of A. For every integer r > 0 we have 
jjyjr+i ^ Syniz (r) ® Qp. Using the direct sum decomposition F = Fcyci ® Fanti we 
get a canonical direct sum decomposition 

SymL (r) = ê Yr-J'J where Y^ := (1^,)®' ®Zp (Ywtif
j. (4.2) 

P 3=0 

Consider the canonical (two-variable) p-adic height pairing 

( , ) : E(K) x E(K) —• T ® Qp. (4.3) 

Set r = rankE(K), which is odd by Proposition 1. Define the two-variable p-adic 
regulator Rp(E,K) to be the discriminant of this pairing: 

RP(E, K) := r2 det(F i, P5) £ Sym^ (r) ® Qp ~ F / F + 1 , 

where {Pi,..., Fr} generates a subgroup of E(K) of finite index t. For each integer 
j = 0, . . . , r let RP(E, K)r^j'j be the projection of RP(E, K) into F r _ - " ® Qp under 
(4.2), so that 

RP(E,K)= ê Rp(E,Ky-". 
3=0 

Recall that r1*1 is the rank of the ±l-eigenspace Efö)1^ of r acting on E(K). 

Proposition 10. Rp(E,K)r^J>J = 0 unless j is even and j < 2min( r+ , r _ ) . 

Proof. This follows from the fact that the height pairing (4.3) is r-Hermitian, so 
(rx,Ty) = (x,y)T, and therefore the induced height pairings 

E(K)± x E(K)± -+ Fanti ® Qp, E(K)+ x E(K)~ -+ Fcycl ® Qp 

vanish. 

Conjecture 11 (Maximal nondegeneracy of the height pairing). If j is even 
and 0 < j < 2min(r+ , r - ) then Rp(E,K)r'-^ # 0. 

Remark. Conjecture 11, or more specifically the nonvanishing of Rp(E,K)r^J>J 
when j = 2min( r+ , r _ ) , implies the Sign Conjecture (Conjecture 5). This is proved 
in the same way as Proposition 10, using the additional fact that the anticyclotomic 
universal norms in E(K) ® Zp are in the kernel of the anticyclotomic p-adic height 
pairing (E(K) ® Zp) x (E(K) ® Zp) - • Fanti ® Qp. 
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5. The arithmetic theory 
For every algebraic extension F of K, let Selp(E/F) denote the p-power Selmer 

group of F over F , the subgroup of ^(Gp, E[p°°]) that sits in an exact sequence 

0 —• E(F) ® Qp/Zp —• Selp(F /F) —• HI(F /F)[p°°] —• 0 

where IH(E/F) is the Shafarevich-Tate group of F over F . Also write 

Sp(E/p) = Hom(Selp(F /F), Qp/Zp) ® Qp 

for the tensor product of Q p with the Pontrjagin dual of the Selmer group. 
The following theorem is proved using techniques which go back to [7]; see [2] 

and [12] Lemme 5, §2.2. 

Theorem 12 (Control Theorem). Suppose K C F C K œ . 

(i) The natural restriction map ^(FjEfy00]) —t F1(K0O ,F[p°°]) induces an iso­
morphism Sp(E/j^ao) ®A Ap ^y Sp(E/p). 

(ii) There is a canonical isomorphism U(F) ^y YlomAf,(Sp(E/p),Ap). 

Conjecture 13 (Two-variable main conjecture [8, 12]). The two-variable p-
adic L-function L generates the ideal chax\(Sp(E/Kao)) of A. 

Restricting the two-variable main conjecture to the cyclotomic and anticyclo­
tomic lines leads to the following "one-variable" conjectures originally formulated 
in [9] and [12], respectively. Let F ' denote the image of L in Fcyci ®Zp Aant; as in 
Conjecture 9, and SP(E/K^itors the Aanti-torsion submodule of SP(E/K^;tij)-

Conjecture 14 (Cyclotomic and anticyclotomic main conjectures). 

(i) Fc y c i generates the ideal charA<sy<sl(Sp(E,K<sy<sij) of Acyc\. 

(ii) V generates Fcyci ® charA„ti(<Sp(S/if«ti)t0rs) inside Fcyci ® Aant i. 

Remark. Using Euler systems, Kato [6] and Howard [5] have proved (under some 
mild additional hypotheses) divisibilities related to the cyclotomic and anticyclo­
tomic main conjectures, respectively, namely 

Fc y c i £ charAcycl(<Sp(F / ifcyci)), char A „ t i (U/H) 2 C charA[int i(<Sp(F / i fcyci) tors) 

(note that Conjectures 8 and 9 predict that Fcyci ® charABnti (U/H)2 = F'Aant;). 

Conjecture 15 (Two-variable p-adic BSD conjecture). Let r = rankF(FJ). 
The two-variable p-adic L-function Y £ A is contained F and 

L = C(X t r iv)#(HI(F / i f )) J J cv • RP(E, K) (mod F+ 1 ) 
V 

where c(xtriv) is the rational number in the interpolation formula (4.1) for the trivial 
character, TH(E/K) is the Shafarevich-Tate group of E over K, and the cv are the 
Tamagawa factors in the (usual) Birch and Swinnerton-Dyer conjecture for E over 
K. 
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6. Orthogonal A-modules 
In this final section we introduce a purely algebraic template which, when it 

"fits", gives rise to many of the properties conjectured in the previous sections. 
Keep the notation of the previous sections. In particular r : A —t A is the 

involution of A induced by complex conjugation on K, and if V is a A-module, 
then V^ denotes V with A-module structure obtained by composition with r . Let 
V* = HOIIIA(V, A) . If V is a free A-module of rank r , then detA(V'T) will denote 
the r- th exterior power of V and a r - g a u g e on V is a A-isomorphism between the 
free A-modules of rank one 

tv : d e t A ( F * ) ^ d e t A ( V ' ( T ) ) 

or equivalently an isomorphism detA(V) ® detA(Vr(T^) - ^ A. 
By an o r t h o g o n a l A-module we mean a free A-module V with semi-linear 

r -s t ructure endowed with a r-gauge tv and a A-bilinear r-Hermit ian pairing (Def­
inition 2) 

IT : V ®A V(T) —y A. 

Viewing n as a A-linear map V^ —̂  V*, the composition 

tv o detA(7r) : detA(V'(T )) —y d e t A ( F * ) —y detA(V'(T )) 

must be multiplication by an element disc(V) £ A tha t we call the d i scr iminant 
of the orthogonal A-module V. We further assume tha t disc(V) ^ 0, and we define 
M = M(V, ix) to be the cokernel of the (injective) map ix : V^ —̂  V*, so we have 

0 — • V{T) — • V* — • M — • 0. (6.1) 

If K C F c KQO, recall t ha t I F = ker{A -» Ap} and define 

V(F) := {x £ V : TT(X,V{T)) C I F } / I F F = ke r{F ®A AF ^ (V{T))* ®A AF} 

and similarly V^ (F) := ker{VrM ®\F _+ V*®AF}. Any lift f of r to G a ^ K ^ / Q ) 
induces an isomorphism V(F) —̂  V^(F). From (6.1) we obtain 

0 — • V{T) (F) — • V{T) ® A A F — • V* ®A Ap — • M ®A Ap — • 0 (6.2) 

and (applying Hom( • , Ap) and using the Hermitian property of n) 

V(F) ~ HomA F (M ®A Ap, AF). (6.3) 

We have an induced pairing 

np : V^(F) ®AF V(F) — • I F / F F , 

which we call the F-derived pairing. If F is stable under complex conjugation then 
\/(Ti(F) is canonically isomorphic to V(F)^T'> and -Kp is r-Hermit ian. 
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Now suppose F = K%gu. By (6.3), V(Ä'^ t l) is free over Aanti- Applying the 
determinant functor to (6.2), the r-gauge tv induces an isomorphism 

detA„ti V(K^tì)^ = detA„ti V^(K^tì) ^ Hom(detA„ti (M ®A Aant i), Aant i). 

If V(K%£U) has rank one over Aanti, then V(Ä'^ t l) contains a unique maximal 
r-stable submodule H such that the map 

V{Kanti)(r) ^ Hom(de t A „ t i ( M ® A a n t i ) , Aanti) 

D H o m ( M ® Aanti, Aanti) ~ F(FT^nt i) 

sends H^ into F . (Namely, F = JV(ÜT^ltl) where J is the largest ideal of Aanti 
such that JT = J and J2 C charA„ t i(M ® Aanti)tors-) 

Recall that Selp(E/F) denotes the p-power Selmer group of F over F and 
SP(E/F) = Hom(Selp(F /F), Qp/Zp) ® Qp. 

Proposition 16. With notation as above, suppose that V is an orthogonal A-
module and tpv '• M ^y Sp(E/Kao) is an isomorphism. Then for every extension 
F of K in KQO, ifiv induces an isomorphism 

V(F) ^ U(F) 

where U(F) is the universal norm module defined in §3. 

proof. This follows directly from Theorem 12 and (6.3). 

Definition 17. We say that the orthogonal A-module V organizes the anticy­
clotomic arithmetic of (E,K,p) if the following three properties hold. 

(a) disc(V) = L, the two-variable p-adic L-function of E. 
(b) There is an isomorphism tpv '• M ^y Sp(E/j^ao). 
(c) The isomorphism V(K%£U) = U of Proposition 16 identifies H c V(K%£U) 

with the Heegner submodule % C U, and identifies the K^u -derived pairing 
with the canonical p-adic height pairing into IK»•>« /I2

K^Bti — Fcyci ® Aanti-

Question. Given F , K, and p satisfying our running hypotheses, is there an or­
thogonal A-module V that organizes the anticyclotomic arithmetic of (E,K,p)l 

If one is not quite so (resp., much more) optimistic one could formulate an 
analogous question with the ring A replaced by the localization of A at I (resp., 
with A replaced by Zp[[r]]). 

Question. If V is an orthogonal A-module V which organizes the anticyclotomic 
arithmetic of (E,K,p), then for every finite extension F of FT in Koo, we have an 
isomorphism E(F) ® Qp = U(F) = V(F) as in Proposition 16, a p-adic height 
pairing on E(F) ®QP, and the F-derived pairing on V(F). How are these pairings 
related? 

When F = K^u condition (c) says that the two pairings are the same, but it 
seems that in general they cannot be the same for finite extensions F/K. 
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Theorem 18. Suppose that there is an orthogonal A-module V that organizes the 
anticyclotomic arithmetic of (E,K,p). Then Conjectures 13 (the 2-variable main 
conjecture), and H(i) (the cyclotomic main conjecture) hold. 

If further the induced pairing V^F^J*1) ® Vfó^*1)^ —̂  Fcyci ® Aanti is sur-
jective, then Conjectures 6 (the Height Conjecture), 8, 9 (the A-adic Gross-Zagier 
conjecture), and 14(H) (the anticyclotomic main conjecture) also hold. 

Brief outline of the proof of Theorem 18. Since disc(F) is a generator of char A (M), 
the two-variable main conjecture follows immediately from (a) and (b) of Definition 
17. The cyclotomic main conjecture follows from the two-variable main conjecture. 

Now suppose that the induced pairing V(K^tl) ® V(K^tl)^ —̂  Fcyci ® Aanti 
is surjective. By (c) of Definition 17 this is equivalent to the Height Conjecture, 
which in turn is equivalent to Conjecture 8. 

Howard proved in [5] that SP(E/K^ti) is pseudo-isomorphic to Aanti © B2 

where F is a r-stable torsion Aantrmodule. By Theorem 12(1) the same is true 
of M ® Aanti) and so the remark at the end of the definition of F shows that 
F = chai(B)\/(K^tl). Using (6.2), (6.3), and our assumption that the induced 
pairing is surjective, one can show that the image of L in IK»•>« /I2

K^Bti generates 
char(F)2Iif!1nti/I2

?[inti. The A-adic Gross-Zagier conjecture and the anticyclotomic 
main conjecture follow from these facts and (c). D 
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1. Introduction 
Le but de ce rapport est d'expliquer différentes techniques permettant de mon­

trer l'équidistribution de certains ensembles de points de nature arithmétique sur 
des variétés algébriques définies sur des corps de nombres et de donner des applica­
tions arithmétiques et géométriques de ces résultats. 

Si X est une variété algébrique sur C et F une ensemble fini de X(C) on note 
\E\ son cardinal et Ap la mesure de Dirac normalisée 

1 ' x£E 

Si En est une suite d'ensembles finis de X(C) et ß une mesure de probabilité sur 
X(C), on dit que les En sont équidistribués pour ß si pour toute fonction continue 
bornée / sur X(C) on a 

AEM) = T^n E / ( * ) — • / f"-
l^nl p „ JX(C) xeEn 
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Soit X une variété algébrique, une suite de points xn de X est dite "générique" 
si pour toute sous-variété Y de X, Y ^ X, {n £ N ,xn £ Y} est un ensemble fini. 
(Il revient au même de dire que xn converge vers le point générique pour la topologie 
de Zariski). 

André et Oort ont formulé un analogue de la conjecture de Manin-Mumford 
démontrée par Raynaud [18] [19] dans le cadre des variétés de Shimura. Dans ces 
deux conjectures, on dispose de points spéciaux et de variétés spéciales. Pour la 
conjecture de Manin-Mumford l'espace ambiant est une variété abélienne, les points 
spéciaux sont les points de torsion et les variétés spéciales sont les "sous-variétés 
de torsion" (translatés, par un point de torsion, d'une sous-variété abélienne). 
Pour la conjecture d'André-Oort l'espace ambiant est une variété de Shimura, 
les points spéciaux sont les points à multiplication complexe (ou points CM) et 
les sous-variétés spéciales sont les "sous-variétés de type de Hodge" (des com­
posantes irréductibles de translatés par un opérateur de Hecke de sous-variétés de 
Shimura). Nous préciserons ces définitions plus bas. Dans les deux cas ces con­
jectures s'énoncent sous la forme: une composante irréductible de l'adhérence de 
Zariski d'un ensemble de points spéciaux est une sous-variété spéciale. 

Dans ce cadre une suite de points xn de X (X variété abélienne ou X variété 
de Shimura) est dite "stricte" si pour toute sous-variété spéciale Y de X, Y ^ 
X, {n £ N ,xn £ Y} est un ensemble fini. On remarque qu'avec ces définitions 
les conjectures d'André-Oort et de Manin-Mumford se retraduisent de la manière 
suivante: Toute suite stricte de points spéciaux est générique. 

Une conséquence géométrique (conjecturale pour les variétés de Shimura) que 
l'on obtient en considérant l'adhérence de Zariski de l'ensemble des points spéciaux 
d'une sous-variété M de X est l'existence d'un ensemble fini {Si,... ,Sr} de sous-
variétés spéciales avec S, C M telle que toute sous-variété spéciale S C M est 
contenue dans l'un des Si. 

Dans la première partie nous décrivons des résultats d'équidistribution pour 
des suites de points de petite hauteur sur des variétés algébriques utilisant la 
géométrie d'Arakelov. Le résultat le plus marquant est la résolution de la con­
jecture de Bogomolov (qui généralise la conjecture de Manin-Mumford et en donne 
une nouvelle démonstration) pour les variétés abéliennes due à Zhang [24] et à 
l'auteur du rapport [22]. 

Dans la deuxième partie nous expliquons des résutats d'équidistribution de 
points de Hecke sur des variétés de la forme X = F\G(R) pour un groupe algébrique 
semi-simple et simplement connexe G et un réseau F. Les méthodes combinent 
théorie spectrale et théorie des représentations. 

Dans la troisième partie nous présentons des énoncés largement conjecturaux 
pour l'équidistribution des points à multiplication complexe des variétés de Shimura. 
La théorie analytique des nombres via les familles de fonctions F et la théorie des 
formes automorphes y jouent un rôle central. 

Dans une dernière partie nous expliquons comment la théorie de Ratner et 
Margulis permet de démontrer des résultats d'équidistribution pour des suites de 
sous-variétés "fortement spéciales" (appartenant à une classe assez large de sous-
variétés spéciales de dimension positive) des variétés de Shimura. Nous expli-
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querons la relation avec la conséquence géométrique de la conjecture d'André-Oort 
précédemment décrite. 

2. Equidistribution des points de petite hauteur 

Exemple 2.1 On prend X = GTO, En l'ensemble des racines n-ième de l'unité, 
En est équidistribué pour la mesure uniforme sur le cercle unité | ^ . En utilisant 
l'irréductibilité du polynôme cyclotomique on voit que l'orbite sous Galois d'une 
racine n-ième primitive de l'unité est aussi équidistribuée pour | ^ . 

Exemple 2.2 On prend X = F une courbe elliptique sur C et En l'ensemble des 
points de n torsion, alors En est équidistribué pour la mesure de Harr normalisée 
sur F(C). Si F est défini sur un coprs de nombres K et E n'a pas de multiplication 
complexe, par le théorème de l'image ouverte de Serre, pour tout nombre premier p 
assez grand le groupe de Galois agit transitivement sur les points d'ordre p. On en 
déduit encore que les orbites sous Galois des points d'ordre p sont équidistribuées 
pour la mesure de Haar normalisée. 

La théorie d'Arakelov a permis de comprendre ces énoncés d'une manière bien 
plus générale. On montre [21] pour une variété arithmétique un théorème général 
d'équidistribution des orbites sous Galois de suite génériques de points dont la 
hauteur (à la Arakelov) tend vers 0. Les exemples précédents correspondent à des 
suites de points de hauteurs nulles. Pour les variétés abéliennes on obtient avec 
Szpiro et Zhang le résultat suivant (qui donne des informations nouvelles même 
pour les points de torsion des courbes elliptiques à multiplication complexe): 

Théorème 2.3 [21] Soit A une variété abélienne sur un corps de nombres K. On 
note fiMP la hauteur de Néron-Tate sur les points algébriques de A (associée à 
un fibre inversible ample symétrique sur X). Soit xn une suite générique de points 
algébriques de A telle que hNp(xn) tend vers 0. Pour toute place à l'infini a l'orbite 
sous Galois de xn est équidistribuée pour la mesure de Haar normalisée dßa de 
A AC). 

L'analogue de cet énoncé pour G^ a été montré par Bilu [2] sans théorie 
d'Arakelov. Une extension pour certaines variétés semi-abéliennes de ces résultats 
a été obtenue par Chambert-Loir [6] par des méthodes Arakeloviennes. On peut 
aussi comprendre grâce aux travaux de Autissier [1] l'exemple 2.1 comme un cas 
particulier de théorème d'équidistribution vers la mesure d'équilibre d'un compact 
de capacité 1 de l'orbite sous Galois d'une suite de points entiers algébriques. 

On trouvera dans [25] comment on obtient la conjecture de Bogomolov en 
produisant une contradiction sur les mesures limites de suites de mesures associées 
à des orbites sous Galois de points de petite hauteur. Retenons l'énoncé suivant dû 
à l'auteur [22] pour les courbes de genre g > 2 dans leur jacobienne et étendu en 
dimension arbitraire par Zhang [24]: 
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Théorème 2.4 Soit X une sous-variété d'une variété abélienne A définie sur un 
corps de nombres K. Grâce à la conjecture de Manin-Mumford démontrée par 
Raynaud [19], on sait qu'il existe des sous-variétés de torsion (éventuellement de 
dimension 0) {Ti,...,Tr}, Ti c X tels que si T c X est une sous-variété de 
torsion alors T c Tt pour un certain i. Il existe alors c > 0 tel que si F est un 
point algébrique de X et F ^ U^=1Fj alors îIMP(P) > c. 

3. Equidistribution des points de Hecke 
Soient G un groupe algébrique linéaire presque simple et simplement connexe 

sur Q, F C G(Q) un réseau de congruence et X = F\G(R). Soit ßo la mesure 
invariante normalisée sur X. Pour tout a £ G(Q) on a une décomposition 

FaF = ö^a)Yai 

avec deg(a) = |F\FaF| £ N. Pour tout a; G X, on note Ta.x l'ensemble des a,a; 
compté avec multiplicité. L'opérateur de Hecke Ta ainsi défini est une correspon­
dance de degré deg (a) sur X; il induit une opération sur les espaces de fonctions 
L2(X,ß0) (fonctions de carrés intégrables sur X) et G°(X) (fonctions continues 
bornées sur X) par 

deg(a) 

Avec Clozel et Oh nous obtenons [3]: 

Théorème 3.1 On suppose que le Q-rang de G est différent de 0. Soit an £ G(Q) 
une suite telle que deg(an) —¥ oo. Pour tout x £ X les Tan.x sont équidistribués 
pour ß0- De plus pour tout f £ L2(X,ßQ) on a la convergence L2 

\TaJ- [ /-A*olU=« —• 0. 
Jx 

On a en fait des résultats aussi dans le cas ou le Q-rang de G vaut 0. La 
méthode de démonstration fournit des estimations très précises pour la vitesse de 
convergence dans le théorème F2 . Si on dispose de plus de régularité sur / (par 
exemple / C°° à support compact), cete vitesse est obtenue aussi pour la conver­
gence simple (ou uniforme sur les compacts). Pour G = SLn (n > 3) ou G = Sp2n 

(n > 2) ces estimations sont essentiellement optimales. 
On montre par des méthodes classiques que l'énoncé de convergence simple 

du théorème se déduit de l'énoncé F2 . Pour montrer le théorème F2 on écrit la 
décomposition spectrale de L2(X,ßQ) sous la forme adélique. Une fonction <j> in­
tervenant dans la décomposition spectrale est alors propre pour les opérateurs de 
Hecke et les valeurs propres s'interprètent comme des coefficients matriciaux de 
représentations locales associées à <j>. Pour montrer le théorème sous la forme F 2 , 
on doit montrer que Tan<j> —¥ 0 quand n - * o o a u sens F2 . On se ramène ainsi à 
contrôler la décroissance de ces coefficients matriciaux. En Q-rang r > 2 on dispose 
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d'assez d'informations sur le dual unitaire pour conclure grâce aux travaux de Oh 
([17], théorème 5.7). En Q-rang 1 on utilise un principe de restriction à la Burger-
Sarnak en une place finie démontré dans [4] et une approximation de la conjecture 
de Ramanujan pour SL2. 

4. Equidistribution des points CM des variétés de 
Shimura 

Nous devons préciser un peu les définitions relatives aux variétés de Shimura 
afin d'expliquer ce que l'on entend par l'équidistribution des points CM. 

Soit (G, X) une donnée de Shimura; G est un groupe algébrique réductif sur 
Q et X est une G(R) classe de conjuguaison de morphismes 

h : S —y GR 

(S = Res C/RGTO est le tore de Deligne) vérifiant les 3 propriétés de Deligne [10] [11]. 
Les composantes irréductibles de X sont alors des domaines symétriques hermitiens. 

Soient Â/ l'anneau des adèles finies de Q et F ' un sous-groupe compact ouvert 
de G (A), on définit sur le corps C la variété de Shimura 

ShK(G,X) = G(Q)\X x G(Af)/K. 

On vérifie que SîIK(G,X) est une réunion finie de quotients de composantes 
irréductibles de X par des sous-groupes de congruences de G(Q). Par ailleurs 
SîIK(G, X) a un "modèle canonique" sur un corps de nombres E(G, X) ne dépendant 
que de la donnée de Shimura (G,X). 

Soit (Gi,Xi) une sous-donnée de Shimura de (G,X), on dispose alors d'une 
application canonique 

/ : ShKnGi(Kf) —y Sh,K(G,X). 

Une sous-variété de type de Hodge est une composante irréductible d'un translaté 
de l'image d'un tel morphisme par une correspondance de Hecke. (Moonen [15] 
caractérise ces sous-variétés en termes de variations de structures de Hodge, d'où le 
nom.) 

Pour / i : § - > GR, h £ X, on définit le groupe de Mumford-Tate MT(h) de h 
comme le plus petit Q-sous-groupe H de G tel que h se factorise par F R . Si MT(h) 
est un tore, on dit que h est spécial. Les points spéciaux de SîIK(G,X) sont les 
points de la forme [h,gK] avec g £ G(A/) et h spécial. 

Fixons ho £ X un élément spécial et T0 = MT(hQ). L'ensemble 

S(ho) = {[ho,gK], g£G(Afj\ 

est appelé ensemble des points spéciaux de "type ho" de X. On a une action de 
T0(Af) sur S(ho) donnée par t.[ho,gK] = [hQ,tgK]. Pour tout g £ G(A/), l'orbite 
sous T0(Af) de [ho,gK] est finie, on appelle "orbite torique" de [ho,gK] cette orbite. 
La première question naturelle est 



202 E. Ullmo 

Question 4.1 Soit xn = [hn,gnK] une suite générique de points spéciaux de S = 
SìIK(G,X). Est-il vrai que l'orbite torique de xn est équidistribuée pour la mesure 
invariante normalisée de SîIK(G,X). 

Notons qu'il n'est déjà pas à priori évident de prévoir la proportion des points 
de l'orbite torique dans les composantes de S. Il est peut-être plus réaliste de 
travailler dans chaque composante connexe de S (comme dans la dernière partie de 
ce texte). Nous tairons dans la suite ces problèmes de non connexité. 

Les premiers résultats pour ces questions sont dus à Duke [12] pour la courbe 
modulaire Y (Y) = SL(2,Z)\M. Il montre l'équidistribution des points à multiplica­
tion complexe par l'anneau des entiers OK quand le discriminant tend vers l'infini. 
Nous expliquons dans [4], en utilisant en plus des résultats sur l'équidistribution 
des points de Hecke comment obtenir l'équidistribution des points à multiplica­
tion complexe par un ordre arbitraire de OK quand le discriminant tend vers 
l'infini. Nous pensons plus généralement que la question 4.1 est liée aux problèmes 
d'équidistribution des points de Hecke décrits précédemment. 

Des résultats pour l'équidistribution des orbites toriques de points CM sont 
annoncés par S. Zhang [26] pour les courbes de Shimura et plus généralement des 
variétés de Shimura de type quaternionique via un avatar de la formule de Gross-
Zagier. Pour les variétés modulaires de Hilbert des résultats de ce type sont an­
noncés indépendamment par P. Cohen [7] (par la méthode originale de Duke) et 
par S. Zhang. 

Les méthodes pour prouver ces énoncés comportent trois étapes que l'on va 
décrire de manière imprécise pour la concision de ce rapport. Soit S une variété 
de Shimura, soit / une fonction non constante intervenant dans la décomposition 
spectrale de S, soit xn £ S une suite de points CM et En son orbite torique. On 
doit montrer que 

lim ïh E f(y) = / fd*>- (!) 

La fonction / est alors une forme automorphe. La première étape est de montrer une 
"formule de classe" reliant -rg-r Y^y€En f(y) à la valeur de la fonction F de / , tordue 
par une forme automorphe que l'on définit à partir de En, au point critique. Ce type 
de formule est obtenu par Waldspurger [23] pour des algèbres de quaternions sur 
un corps de nombres F et revisité par Zhang [26]dans le but d'obtenir les résultats 
d'équidistribution. 

Une fois la formule de classe établie, on dispose d'une famille de fonctions 
F indexée par les entiers. On définit à partir de l'équation fonctionnelle de ces 
fonctions une notion de "conducteur analytique" qn. L'hypothèse de Riemann (ou 
de Lindelôf) prévoit une borne en 0(q(

n) pour la valeur critique de la fonction F 
considérée. Dans tous les exemples considérés, il est remarquable que pour mon­
trer l'équidistribution il faut améliorer la borne triviale (donnée par le principe de 
convexité de Phragmen-Lindelôf). Ce genre de questions a reçu une attention con­
sidérable en théorie analytique des nombres et a été résolue dans de nombreux cas. 
On pourra consulter la série de papiers [13] et [14] pour une présentation des prin­
cipaux résultats et applications de ce cercle d'idées. Notons que la démonstration 
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de l'équidistribution des orbites toriques de points CM sur les variétés modulaires 
de Hilbert utilise les résultats spectaculaires récents [8]. 

Pour les applications éventuelles à des énoncés arithmétiques, il paraît im­
portant de remplacer les orbites toriques par les orbites sous Galois. De manière 
générale si [h,gK] est un point CM d'une variété de Shimura, T = MT(h) est le 
tore associé et F = E(T, h) est le corps réflexe de la variété de Shimura associé à 
la donnée de Shimura (T,h), l'action de Galois (cf [10], [11] )se factorise à travers 
l'action de F(A/) via un morphisme de réciprocité (et la théorie du corps de classe). 

r : Resp/qGm,:E —y T 

qui induit un morphisme non surjectif en général 

r : Res i ï / QG r o i i ï(A /) —y T(Af). 

On s'attend néanmoins à une réponse positive à la question suivante: 

Question 4.2 Soit xn une suite générique de points CM sur une variété de Shimura 
S, est-il vrai que les orbites sous Galois 0(xn) sont équidistribuées dans S pour la 
mesure invariante? 

De manière encore plus optimiste, on espère (par analogie avec le cas des 
variétés abéliennes) que le même résultat est encore vrai pour des suites strictes 
de points CM. Ce serait une conséquence de la conjecture d'André-Oort et de la 
question précédente. Notons que nous espérons que des résultats d'équidistribution 
pour les points CM soient en fait une étape pour montrer la conjecture en question 
. (C'est au moins ce qui se passe dans le cas des variétés abéliennes). 

5. Equidistribution de sous-variétés spéciales 
Cette partie décrit un travail [5] en cours de préparation en commun avec 

L. Clozel. Soit S une composante irréductible d'une variété de Shimura. Une 
conséquence géométrique frappante de la conjecture d'André et Oort est la suivante: 
Soit Y une sous-variété de S, il existe un ensemble fini {Si,..., Sr} de sous-variétés 
spéciales avec S, C Y pour tout i tel que toute variété spéciale Z de S contenue 
dans Y est en fait contenue dans un des Si. 

Supposons que S est une composante irréductible de SHK(G,X) pour un 
groupe G que l'on suppose adjoint (pour simplifier). On a vu qu'une sous-variété 
spéciale M est associée à une sous-donnée de Shimura (G\,X\). Si G\ est semi-
simple et Xi contient un point spécial xi tel que le tore associé T = MT(x\) C G\ 
est tel que FR est un tore maximal compact de G, on dit que M est fortement 
spéciale. Par exemple les variétés modulaires de Hilbert (associées à des corps to­
talement réels de degré n sur Q) sont fortement spéciales dans l'espace de module An 

des variétés abéliennes principalement polarisées de dimension n. On peut montrer: 

Théorème 5.1 Soit Y une sous-variété d'une variété de Shimura S. Il existe un 
ensemble fini {Si,... ,Sk} de sous-variétés fortement spéciales de dimension pos­
itive Si C Y tel que si Z est une sous-variété fortement spéciale de dimension 
positive avec Z c Y alors Z c Si pour un certain i £ {!,... ,k}. 
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Notons que cet énoncé ne dit rien sur les sous-variétés spéciales de dimension 
0 (les points spéciaux), notons cependant le corollaire suivant: 

Corollaire 5.2 Soit Y une sous-variété stricte de An, il existe au plus un nombre 
fini de sous-variétés modulaires de Hilbert contenu dans Y. 

Le théorème 5.1 se déduit d'un énoncé ergodique. Toute sous-variété spéciale 
Z de S est muni d'une manière canonique d'une mesure de probabilité ßz-

Théorème 5.3 Soit Sn une suite de sous-variétés fortement spéciales Soit ßn la 
mesure de probabilité associée à Sn. Il existe une sous-variété fortement spéciale 
Z et une sous-suite ßnk qui converge faiblement vers ßz- De plus Z contient Snk 

pour tout k assez grand. 

On obtient la preuve du théorème 5.1 en considérant une suite de sous-variétés 
fortement spéciales maximales Sn parmi les sous-variétés fortement spéciales con­
tenues dans Y. En passant à une sous-suite on peut supposer que ßn converge 
faiblement vers ßz- Comme le support de ßz est contenu dans Y, on en déduit que 
Z c Y. Par la maximalité des Sn et le fait que Sn C Z pour tout n assez grand, 
on en déduit que la suite Sn est stationaire. 

On peut aussi réécrire cet énoncé avec la terminologie de [21]. On dit qu'une 
suite Sn de sous-variétés fortement spéciales est stricte si pour toute sous-variété 
fortement spéciale M de S, 

{n G N, Sn C M} 

est fini. On peut d'ailleurs prendre dans cette définition M spéciale car une sous-
variété spéciale contenant une sous-variété fortement spéciale est automatiquement 
fortement spéciale. Dans ce language le théorème 5.3 admet comme corollaire 
immédiat: 

Corollaire 5.4 Soit Sn une suite stricte de sous-variétés fortement spéciales de S. 
Soit ßn et ß les mesures de probabilités associées sur Sn et S. La suite ßn converge 
faiblement vers ß. 

On peut appliquer cet énoncé à des suites de sous-variétés fortement spéciales 
maximales. La condition d'être stricte signifie alors de ne pas avoir de sous-suites 
constantes. C'est par exemple le cas pour les variétés modulaires de Hilbert dans 
le modules des variétés abéliennes principalement polarisées An. 

La preuve du théorème 5.3 repose sur des résulats de Mozes et Shah [16] 
qui précisent la conjecture de Raghunathan démontrée par Ratner [20]. Si S = 
F\G(R)/F'0O pour un sous-groupe compact maximal Kœ et un réseau de congruence 
F, on note F+ = G(R)+ fiF et S = F+\G(R) + . Si F est un sous-groupe semi-simple 
de G(R)+ tel que F+ n F est un réseau de F alors MH = F+ n H\H est fermé dans 
S et est muni canoniquement d'une mesure de probabilité F-invariante ßn-

Si MH„ est une suite de telles sous-variétés de S, le théorème de Mozes Shah 
[16] permet sous certaines hypothèses; au besoin en passant à une sous-suite; de 
montrer la convergence faible de ßnn vers une mesure ßn canoniquement associée 
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à un MH = F+ n H\H. En général les sous-groupes Hn n'induisent pas de sous-
variétés spéciales sur S car Hn n'est pas toujours réductif et même si Hn est réductif 
l'espace symétrique associé à Hn n'a aucune raison d'être hermitien. Un des points 
clefs de la démonstration est de vérifier que si les Hn induisent des sous-variétés 
fortement spéciales il en est de même pour F . Pour passer de résultats sur S à des 
résultats sur S on utilise aussi des résultats de Dani et Margulis ([9]thm. 2) qui 
donnent des critères de retour vers des compacts pour des flots unipotents sur S. 
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Diophantine Methods for 
Exponential Sums, and Exponential 

Sums for Diophantine Problems 
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A b s t r a c t 

Recent developments in the theory and application of the Hardy-
Littlewood method are discussed, concentrating on aspects associated with 
diagonal diophantine problems. Recent efficient differencing methods for esti­
mating mean values of exponential sums are described first, concentrating on 
developments involving smooth Weyl sums. Next, arithmetic variants of clas­
sical inequalities of Bessel and Cauchy-Schwarz are discussed. Finally, some 
emerging connections between the circle method and arithmetic geometry are 
mentioned. 
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1. Introduction 
Over the past fifteen years or so, the Hardy-Littlewood method has experi­

enced a renaissance tha t has left virtually no facet untouched in its application to 

diophantine problems. Our purpose in this paper is to sketch what might be termed 

the past , present, and future of these developments, concentrating on aspects as­

sociated with diagonal diophantine problems, and stressing modern developments 

tha t make increasing use of less tradit ional diophantine input within ambient ana­

lytic methods. We avoid discussion of the Kloosterman method and its important 

recent variants (see [5] and [8]), because the underlying ideas seem inherently con­

strained to quadrat ic , and occasionally cubic, diophantine problems. Our account 

begins with a brief introduction to the Hardy-Littlewood (circle) method, using 

*Department of Mathematics, University of Michigan, East Hall, 525 East University Av­
enue, Ann Arbor, MI 48109-1109, USA. E-mail: wooley@umich.edu 
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Waring's problem as the basic example. The discussion here illustrates well the 
issues involved in the analysis of systems of diagonal equations over arbitrary alge­
braic extensions of Q, and motivates that associated with more general systems of 
homogeneous equations (see [1] and [14]). 

Let s and k be natural numbers with s > k > 2, and consider an integer n 
sufficiently large in terms of s and k. The circle method employs Fourier analysis 
in order to obtain asymptotic information concerning the number, R(n) = Rs^(n), 
of integral solutions of the equation xk + • • • + xk = n. Write F = nxlk and define 
the exponential sum f(a) = f(a; P) by 

f(a) = Y, <axk), 
1<X<P 

wherein e(z) denotes e27!tz. Then it follows from orthogonality that 

R(n) = / f(a)se(—na)da. 

When a is well-approximated by rational numbers with small denominators, one 
has sharp asymptotic information concerning f(a). In order to be precise, let Q 
satisfy 1 < Q < \Pkl2, and define the major arcs 9Jt = 9Jl(Q) to be the union of 
the intervals 97l(g, a) = {a £ [0,1) : \qa — a\ < QP^k}, with 0 < a < q < Q and 
(a, q) = 1. Also, put 

<i , - p 

S(q,a) = y2e(ark/q) and v(ß) = / e(ßjl 

_ i Jo 
)dl, 

and define f*(ct) fora £ [0,1) by taking f*(a) = q^1 S(q, a)v(a—a/ q), when a lies in 
%R(q,a) Ç 9Jt(Q), and otherwise by setting f*(a) = 0. Then the sharpest available 
estimate (see Theorem 4.1 of [16]) establishes that1 f(a) = f*(a) + 0(Q1^2+f), 
uniformly for a £ HfJl(Q). The functions S(q, a) and v(ß) are rather well-understood, 
and thus one deduces that whenever s > max{4, k + 1} and Q < P, then 

f(a)'e(-na)da = F ^ * Y ^ ' 6 « . f c ( n K / * ~ 1 + 0(n* / f c_1~*), (1-1) 

for a suitable positive number ö. Here, the F-function is that familiar from classical 
analysis, and the singular series &s,k(n) is equal to the product of p-adic densities 
u p vp(n), where for each prime p we write 

Vp(n) = lim p f e (1 - s )card{x £ (Z/phZ)s : xk H h xk = n (mod phj\. 

1 Given a complex-valued function f(t) and positive function g(t), we use Vinogradov's 
notation f(t) -C g(t), or Landau's notation f(t) = 0(g(t)), to mean that when t is large, there is 
a positive number C for which f(t) < Cg(t). Similarly, we write f(t) 3> g(t) when g(t) -C f(t), 
and f(t) x g(t) when f(t) -C g(t) -C /(*)• Also, we write f(t) = o(g(t)) when as t —>• oo, one 
has f(t)/g(t) —>• 0. Finally, we use the convention that whenever e occurs in a formula, then it is 
asserted that the statement holds for each fixed positive number e. 
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An asymptotic formula for R(n), with leading term determined by the major 
arc contribution (1.1), now follows provided that the corresponding contribution 
arising from the minor arcs m = [0,1) \ 9Jt is asymptotically smaller. Although such 
is conjectured to hold as soon as s > max{4,fc + 1}, this is currently known only 
for larger values of s. It is here that energy is focused in current research. One 
typically estimates the minor arc contribution via an inequality of the type 

f(a)se(—na)da < ( sup \f(a)\ ) / |/(a)|2*do;. (1.2) 
\aGm / Jo 

For suitable choices of t and Q, one now seeks bounds of the shape 

sup \f(a)\ -C F ! - T + e and f \f(a)\2tda -C p?t-k+s+^ ^ 
aGm JO 

with r > 0 and Ö small enough that (s — 2t)r > Ö. The right hand side of (1.2) is 
then o(ns/k~r), which is smaller than the main term of (1.1) whenever &s,k(n) ^ 1-
The latter is assured provided that non-singular p-adic solutions can be found for 
each prime p, and in any case when s > 4k. Classically, one has two apparently-
incompatible approaches toward establishing the estimates (1.3). On one side is 
the differencing approach introduced by Weyl [23], and pursued by Hua [9], that 
yields an asymptotic formula for R(n) whenever s > 2k + 1. The ideas introduced 
by Vinogradov [21], meanwhile, provide the desired asymptotic formula when s > 
Ck2 log k, for a suitable positive constant C. 

2. Efficient differencing and smooth Weyl sums 
Since the seminal work of Vaughan [15], progress on diagonal diophantine 

problems has been based, almost exclusively, on the use of smooth numbers, by 
which we mean integers free of large prime factors. In brief, one seeks serviceable 
substitutes for the estimates (1.3) with the underlying summands restricted to be 
smooth, the hope being that this restriction might lead to sharper bounds. Before 
describing the kind of conclusions now available, we must introduce some notation. 
Let A(P, R) denote the set of natural numbers not exceeding F , all of whose prime 
divisors are at most F , and define the associated exponential sum h(a) = h(a; P, R) 
by 

h(a;P,R)= J ^ e(axk). 
xeA(P,R) 

When £ is a positive integer, we consider the mean value St(P, R) = J0 \h(a)\2tda, 
which, by orthogonality, is equal to the number of solutions of the diophantine 
equation x\ + • • • + xk = y\ + • • • + yk, with x»,y, £ A(P, R) (1 < i < t). We 
take F x Pv in the ensuing discussion, with n a small positive number2. In these 

2We adopt the convention that whenever r} appears in a statement, implicitly or explicitly, 
then it is asserted that the statement holds whenever r\ > 0 is sufficiently small in terms of e. 
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circumstances one has card(„4(F, Rj) ~ c(n)P, where the positive number c(n) is 
given by the Dickman function, and it follows that St(P,R) >• F* + p2t—k. It is 
conjectured that in fact St(P, R) -C Pe(Pt + p2*-*). We refer to the exponent Xt as 
being permissible when, for each e > 0, there exists a positive number n = n(t, k,e) 
with the property that whenever F < Pv, one has St(P,R) -C PXt+e. One expects 
that the exponent Xt = max{£, 2t — k} should be permissible, and with this in mind 
we say that 5t is an associated exponent when Xt = t + 5t is permissible, and that 
A* is an admissible exponent when Xt = 2t — k + At is permissible. 

The computations required to determine sharp permissible exponents for a 
specific value of k are substantial (see [20]), but for larger k one may summarise some 
general features of these exponents. First, for 0 < t < 2 and k > 2, it is essentially-
classical that the exponent 5t = 0 is associated, and recent work of Heath-Brown 
[6] provides the same conclusion also when t = 3 and k > 238,607,918. When 
t = o(Vk), one finds that associated exponents exhibit quasi-diagonal behaviour, 
and satisfy the property that 5t —t 0 as k —¥ oo. To be precise, Theorem 1.3 of [28] 
shows that whenever k > 3 and 2 < t < 2e~1k1/2, then the exponent 

A 4 f c V 2 ( A k \ (OU 

is associated. For larger t, methods based on repeated efficient differencing yield the 
sharpest estimates. Thus, the corollary to Theorem 2.1 of [26] establishes that for 
k > 4, an admissible exponent At is given by the positive solution of the equation 
Ate

At^k = fee1-2*/*. The exponent Xt = 2t — k + fee1-2*/* is therefore always per­
missible. Previous to repeated efficient differencing, analogues of these permissible 
exponents had a term of size fee-*/* in place of fee1-2*/* (see [15]), so that in a 
sense, the modern theory is twice as powerful as that available hitherto. 

The above discussion provides a useable analogue of the mean-value estimate 
in (1.3). We turn next to localised minor arc estimates. Take Q = P, and define m 
as in the introduction. Suppose that s, t and w are parameters with 2« > k + 1 for 
which A s , A* and Aw are admissible exponents, and define 

m k^At^AsAw 

a(k) 2(s(k + AW^ At) + tw(l + Asj) ' 

Then Corollary 1 to Theorem 4.2 of [27] shows that supQGm \h(a)\ -C p1^cr(*!)+'!) and 
for large k this estimate holds with a(k)^1 = k(logk + O(loglogfc)). Applying an 
analogue of (1.2) with h in place of/, and taking3 t = [|fc(logfc + loglogfc+ 1)] and 
s = 2t+k+ [Ak log log k/ log k], for a suitable A > 0, we deduce from our discussion 
of permissible exponents that Jm h(a)se(—na)da = o(ns/k^r). By considering the 
representations of a given integer n with all of the fcth powers F-smooth, it is now 

3We write [z] to denote max{n e Z : n < z}. 
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apparent that a modification of the argument sketched in the introduction shows 
that R(n) >• 6Sjfc(n)ns/'*!_1 as soon as one confirms that 

h(a)'e(-na)da ~ c ^ ) 8 ^ ^ ]i^S&s,u(n)ns'k-1. (2.2) 

Sharp asymptotic information concerning h(a) is available throughout HfJl(Q) only 
when Q is a small power of log F , and so the proof of (2.2) involves pruning technol­
ogy. Such machinery, in this case designed to estimate the contribution from a set 
of the shape HfJl(P) \ 9Jt((log P)s), has evolved into a powerful tool. Such issues can 
be handled these days with a number of variables barely exceeding max{4, k + 1}. 

This approach leads to the best known upper bounds on the function G(k) in 
Waring's problem, defined to be the least integer r for which all sufficiently large 
natural numbers are the sum of at most r positive integral fcth powers. 

Theo rem 2.1 . One has G(k) < k(logk + log log k + 2 + O(log log A;/log A;)). 
This upper bound (Theorem 1.4 of [27]) refines an earlier one of asymptotically-

similar strength (Corollary 1.2.1 of [24]) that gave the first sizeable improvement of 
Vinogradov's celebrated bound G(k) < (2 + o(l))fclogfc, dating from 1959 (see [22]). 
Aside from Linnik's bound C7(3) < 7 (see [11]), all of the sharpest known bounds on 
G(k) for smaller k are established using variants of these methods. Thus one has 
G#(4) < 12 (see [15], and here the # denotes that there are congruence conditions 
modulo 16), C7(5) < 17, C7(6) < 24, G(7) < 33, G(8) < 42, G(9) < 50, G(10) < 59, 
G(l l ) < 67, G(12) < 76, G(13) < 84, G(U) < 92, G(15) < 100, G(16) < 109, 
G(17) < 117, G(18) < 125, G(19) < 134, G(20) < 142 (see [17], [18], [19], [20]). 

Unfortunately, shortage of space obstructs any but the crudest account of 
the ideas underlying the proof of the mean value estimates that supply the above 
permissible exponents. The use of exponential sums over smooth numbers occurs 
already in work of Linnik and Karatsuba (see [10]), but only with Vaughan's new 
iterative method [15] is a flexible homogeneous approach established. An alternative 
formulation suitable for repeated efficient differencing is introduced by the author 
in [24]. Suppose that the exponent As is permissible, and consider a polynomial 
ip £ Z[t] of degree d > 2. Given positive numbers M and T with M < T, and an 
element x £ A(T, R) with x > M, there exists an integer m with m £ [M, MR] 
for which m\x. Consequently, by applying a fundamental lemma of combinatorial 
flavour, one may bound the number of integral solutions of the equation 

(2.3) 

in terms of the number of with 1 
integral 

< z,w < 
solutions 

'ip(z) — '(p('W 

P and Xi,iji £ A(T, 

of the equation 

'ip(z) — ip(w) 

) = ^(xï - VÏ 
i=l 

R) (1 < i < s) 

S 

_ (2-4) 
i=l 
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with 1 < z,w < F , M < m < MR, (ip'(z)ip'(w), m) = 1 and m,Vi £ A(T/M,R) 
(1 < i < s). The implicit congruence condition ip(z) = ip(w) (mod mk) may­
be analytically refined to the stronger one z = w (mod mk), and in this way-
one is led to replace the expression ip(z) — ip(w) by the difference polynomial 
ip\(z;h;m) = mrk(tp(z + hmk) — fp(zj). Notice that when M > Pxlk, one is 
forced to conclude that z = w, and then the number of solutions of (2.4) is bounded 
above by PMRSS(T/M,R) < P1+tM(T/M)x'. Otherwise, following an applica­
tion of Schwarz's inequality to the associated mean value of exponential sums, one 
may recover an equation of the shape (2.3) in which ip(z) is replaced by ip\(z), and 
T is replaced by T/M, and repeat the process once again. This gives a repeated 
differencing process that hybridises that of Weyl with the ideas of Vinogradov. 

It is now possible to describe a strategy for bounding a permissible expo­
nent As+i in terms of a known permissible exponent As. We initially take T = P 
and ip(z) = zk, and observe that Ss+i(P,R) is bounded above by the number of 
solutions of (2.3). We apply the above efficient differencing process successively 
with appropriate choices for M at each stage, say M = P^1, with 0 < <pi < 1/k, 
for the zth differencing operation. After some number of steps, say j , we take 
<j>j = 1/k in order to force the above diagonal situation that is easily estimated. 
One then optimises choices for the <pi in order to extract the sharpest upper bound 
for Ss+i(P,R), and this in turn yields a permissible exponent A s+i . It transpires 
that in this simplified treatment, successive admissible exponents are related by 
the formula A s + i = As(l — <j>) + k<j> — 1, wherein one may take <j> very close to 
l/(k + As). Thus one finds that A s + i is essentially A s ( l — 2/(k + As)), an observa­
tion that goes some way to explaining how it is that this method is about twice as 
strong as previous approaches that would correspond to choices of <j> close to 1/k. 

Refined versions of this differencing process make use of all known permissible 
exponents As in order to estimate a particular exponent At, and in such circum­
stances the process becomes highly iterative, and entails significant computation. 
Such variants make use of refined Weyl estimates for difference polynomials, and es­
timates for the number of integral points on curves and surfaces (see [20]). Variants 
of these methods apply also in the situation of Vinogradov's mean value theorem 
(see [25]), smooth Weyl sums with polynomial arguments (see [29]), and even for 
sums relevant to counting rational lines on hypersurfaces (see [12]). 

Frequent reference to underlying diophantine equations seems to limit these 
methods to estimating even moments of smooth Weyl sums, and until recently-
fractional moments could be estimated only by applying Holder's inequality to in­
terpolate linearly between permissible exponents. However, a method [28] is now 
available that permits fractional moments to be estimated non-trivially, thereby 
"breaking classical convexity", and moreover the number of variables being differ­
enced need not even be an integer. These new estimates can be applied to sharpen 
permissible exponents (with integral argument), and indeed the associated exponent 
(2.1) is established in this way. Another consequence [32] of these developments is 
the best available lower bound for N(X), which we define to be the number of 
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integers not exceeding X that are represented as the sum of three positive integral 
cubes. One has N(X) > X1-^3-", where £ = (^2833 - 43)/41 = 0.24941301... 
arises from the permissible exponent A3 = 3 + £ for k = 3. Earlier, Vaughan [15] 
obtained an estimate of the latter type with 13/4 in place of 3 + £. 

3. Arithmetic variants of Bessel's inequality 
Already in our opening paragraph we alluded to some of the applications 

accessible to the methods of §2. We now turn to less obvious applications that 
have experienced recent progress. We illustrate ideas once again with a simple 
example, and consider the set Z(N) of integers n, with N/2 < n < N, that are not 
represented as the sum of s positive integral fcth powers. The standard approach to 
estimating Z(N) = ca,rd(Z(Nj) is via Bessel's inequality. We now take F = N1^. 
When 03 Ç [0,1), write F*(n;Q3) = Jm h(a)se(—na)da, and write also R*(n) = 
R*(n; [0,1)). The theory of §2 ensures that when Q is a sufficiently small power 
of logF, and s > 4k, then F*(n;9Jt) x nslk^x. Under such circumstances, an 
application of Bessel's inequality reveals that Z(N) is bounded above by 

E 
N/2<n<N 

R*(n)^R*(n;Wl) 
R*(n;Wl) 

« (JV*/*-1)-2 £ 
»GN 

h(a)se(—na)da 

<^(N s/k-l}-2 \h(a)\2s da. (3.1) 

When s > |fc(logfc+loglogfc+2+o(l)), the minor arc integral in (3.1) is o(N2s/k^1), 
and thus it follows that Z(N) = o(N). Thus one may conclude that almost all 
integers are sums of s ~ ( | + o(l))fclogfc positive integral fcth powers. 

The application of Bessel's inequality in (3.1) makes inefficient use of underly­
ing arithmetic information, and fails, for example, to effectively estimate the number 
of values of a polynomial sequence not represented in some prescribed form. Sup­
pose instead that we define a Fourier series over the exceptional set itself, namely 
K(a) = ^2ne(na), where the summation is over n £ Z(N). Since R*(n) = 0 for 
n £ Z(N), one has F*(n;m) = ^F*(n;9Jt), and thus we see that 

h(a)sK(-a)da Ns/k-1Z(N)<§: / h(a)"K(-a)da 
Jm 

Applying Schwarz's inequality in combination with Parseval's identity, we recover 
the previous consequence of Bessel's inequality via the bound 

<•! \ 1 / 2 / f \ 1 / 2 

\K(a)\2da] I I » - ' ~ M 2 « ' h(a)sK(-a)da < \h(a)Ysda (3.2) 

However, this formulation permits alternate applications of Schwarz's inequality or 
Holder's inequality. For example, the left hand side of (3.2) is bounded above by 

\h(a)2tK(a)2\da) / \h(a)\2s-2tda) , (3.3) 



214 T. D. Wooley 

and also by 

l f \K(a)\Ada) ( f \h(a)\Asf3da) . (3.4) 

In either case, the diophantine equations underlying the integrals on the left hand 
sides of (3.3) and (3.4) contain arithmetic information that can be effectively ex­
ploited whenever the set Z(N) is reasonably thin. 

The strategy sketched above has been exploited by Brüdern, Kawada and Woo-
ley in a series of papers devoted to additive representation of polynomial sequences. 
Typical of the kind of results now available is the conclusion [3] that almost all val­
ues of a given integral cubic polynomial are the sum of six positive integral cubes. 
Also, Wooley [30], [31], has derived improved (slim) exceptional set estimates in 
Waring's problem when excess variables are available. For example, write E(N) for 
the number of integers n, with 1 < n < N, for which the anticipated asymptotic 
formula fails to hold for the number of representations of an integer as the sum of a 
square and five cubes of natural numbers. Then in [31] it is shown that E(N) -C Ne. 

As a final illustration of such ideas, we highlight an application to the solubility 
of pairs of diagonal cubic equations. Fix k = 3, define h(a) as in §2, and put 
c(n) = JQ \h(a)\5e(—na)da for each n £ N. Brüdern and Wooley [4] have applied 
the ideas sketched above to estimate the frequency with which large values of \c(n)\ 
occur, and thereby have shown that, with £ defined as in the previous section, 

E c(xz - yz)\2 = \h(afh(ßfh(a + ß)2\dadß -C F 6 + ç + e . 
x,yeA(P,R) J0 J0 

On noting that 6 + £ < 6.25, cognoscenti will recognise that this twelfth moment 
of smooth Weyl sums, in combination with a classical exponential sum equipped 
with Weyl's inequality, permits the discussion of pairs of diagonal cubic equations 
in 13 variables via the circle method. The exponent 6 + £ improves an exponent 
6 + 2£ previously available for a (different) twelfth moment. Brüdern and Wooley 
[4] establish the following conclusion. 

Theo rem 3.1 . Suppose that s > 13, and that a,, 6, (1 < i < s) are fixed 
integers. Then the Hasse principle holds for the pair of equations 

aixf + h asx
3
s = bixf + h bsx

3
s = 0. 

The condition s > 13 improves on the previous bound s > 14 due to Brüdern 
[2], and achieves the theoretical limit of the circle method for this problem. 

4. Arithmetic geometry via descent 
Let F(x) £ Z[xi,...,xs] be a homogeneous polynomial of degree d, and 

consider the number, N(B), of integral zeros of the equation F(x) = 0, with 
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x e [—B,B]S. When s is sufficiently large in terms of d, the circle method shows un­
der modest geometric conditions that N(B) is asymptotic to the expected product 
of local densities. For fairly general polynomials, the condition on s is as severe as 
s > (d— l)2rf, though for diagonal equations the methods of §2 relax this condition 
to s > (1 + o(l))dlogd. However, there is a class of varieties with small dimen­
sion relative to degree, for which the circle method supplies non-trivial information 
concerning the density of rational points. The idea is to apply a descent process 
in order to interpret points on the original variety in terms of corresponding points 
on a new variety, with higher dimension relative to degree, more amenable to the 
circle method. 

To illustrate this principle, consider a field extension K of Q of degree n with 
associated norm form N(x) £ Q[#i , . . . ,x„]. Also, let I and k be natural numbers 
with (k,l) = 1, and let a be a non-zero rational number. Then Heath-Brown and 
Skorobogatov [7] descend from the variety tl(l — t)k = aN(x) to the associated 
variety aN(u) + bN(v) = zn, for suitable integers a and 6. The circle method 
establishes weak approximation for the latter variety, and thereby it is shown that 
the Brauer-Manin obstruction is the only possible obstruction to the Hasse principle 
and weak approximation on any smooth projective model of the former variety. 
One can artificially construct further examples amenable to the circle method. For 
example, if we take linearly independent linear forms Fj(x) £ Q[xi,... ,x„] (1 < 
i < n + r), then one can establish non-trivial lower bounds for the density of 
rational points on the variety zk = Fi ( x ) . . . Ln+r (x) by descending to a variety 
that resembles a system of r diagonal forms of degree k, with constrained varying 
coefficients. The investigation of such matters will likely provide an active area 
of research into the future. In this context we point to work of Peyre [13], which 
addresses the interaction between descent and the circle method in some generality. 
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Positively Curved Surfaces 
in the Three-sphere 

B. Andrews* 

Abstract 

In this talk I will discuss an example of the use of fully nonlinear parabolic 
flows to prove geometric results. I will emphasise the fact that there is a wide 
variety of geometric parabolic equations to choose from, and to get the best 
results it can be very important to choose the best flow. I will illustrate this 
in the setting of surfaces in a three-dimensional sphere. 

There are quite a few relevant results for surfaces in the sphere satisfy­
ing various kinds of curvature equations, including totally umbillic surfaces, 
minimal surfaces and constant mean curvature surfaces, and intrinsically flat 
surfaces. Parabolic flows can strengthen such results by allowing classes of 
surfaces satisfying curvature inequalities rather than equalities: This was first 
done by Huisken, who used mean curvature flow to deform certain classes of 
surfaces to totally umbillic surfaces. This motivates the question "What is the 
optimal result of this kind?" — that is, what is the weakest pointwise curva­
ture condition which defines a class of surfaces which retracts to the space of 
great spheres? 

The answer to this question can be guessed in view of the examples. To 
prove it requires a surprising choice of evolution equation, forced by the re­
quirement that the pointwise curvature condition be preserved. 

I will conclude by mentioning some other geometric situations in which 
strong results can be proved by choosing the best possible evolution equation. 

2000 Mathematics Subject Classification: 53C44, 53C40. 
Keywords and Phrases: Surfaces, Curvature, Parabolic equations. 

1. Introduction 
My aim in this talk is to demonstrate the use of fully nonlinear parabolic evolu­

tion equations as tools for proving results in differential geometry. I will emphasise 
the fact tha t there is a wide variety of flows which are geometrically defined and 
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potentially applicable to geometric problems, and that there is great benefit to be 
had by choosing the flow carefully. I will focus on a particular application, relating 
to surfaces in the 3-sphere, but the method has much wider applicability. 

There are some well-known examples of geometric evolution equations of the 
kind I want to consider: Eells and Sampson [8] used a heat flow to prove existence 
of harmonic maps into non-positively curved targets; Hamilton considered the flow 
of Riemannian metrics in the direction of their Ricci tensor, and proved that it 
deforms metrics of positive Ricci curvature on three-manifolds [12] and metrics of 
positive curvature operator on four-manifolds [13] to constant curvature metrics. 
The Ricci flow also gives results in higher dimensions, proved by Huisken [14], 
Nishikawa [24] and Margerin [19]—[21], if the curvature tensor is suitably pinched. 
The mean curvature flow of submanifolds of Euclidean space is also well-known as 
the gradient descent flow of the area functional, and because it arises in models 
of interfaces such as in annealing metals. The examples I will concentrate on are 
closest to the last example, as they are evolution equations describing submanifolds 
moving with curvature-dependent velocity. There are many parabolic flows of this 
kind, particularly for the codimension one (hypersurface) case: William Firey [11] 
introduced the motion by Gauss curvature as a model for pebbles wearing away as 
they tumble, and other flows which have been considered include motion by powers 
of Gauss curvature [28], [6], the square root of the scalar curvature [7], the harmonic 
mean of the principal curvatures [2]-[3], and the reciprocal of the mean curvature 
[17]. More generally, one can take the velocity to be a function of the principal 
curvatures which is monotone increasing in each argument. 

This gives a huge variety of flows to choose from, so it makes sense to choose 
the flow carefully to suit the problem. I will illustrate a strategy for choosing the 
flow by asking that some desired curvature inequality be preserved under the flow. 

I will begin, in the next two sections, by discussing some old results concerning 
surfaces in the three-sphere. This motivates the results of the later sections. 

2. Constant mean curvature surfaces 
There is a well-known result of Simons [27] which says that a minimal hy­

persurface in a Sn+1 with the squared norm of the second fundamental form \A\2 

less than n is in fact totally geodesic (hence a great n-sphere). This result comes 
from an application of Simons' identity which relates the second derivatives of mean 
curvature to the Laplacian of the second fundamental form: 

VjVjF = Ahij + \A\2hij - Hh\hpj + F^y - n % . 

From this we can deduce if the hypersurface is minimal (so F = 0) 

0 = A|,4|2 - 2|V-4|2 + 2|,4|2(|,4|2 - n). 

If |.4|2 < n at a maximum, then the maximum principle implies |.4|2 is identically-
zero, and the result follows. Also, if the maximum of |.4|2 is equal to n, then M 
must be a product Sk(a) x Sn^k(b) in Rk+1 x Rn+1^k, with radii a and 6 determined 
by the fact that M lies in Sn+1 C Rn+2 and is minimal. 
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Simons' argument was taken up by other authors ([25], [5], [1]) in the slightly-
more general setting of constant mean curvature hypersurfaces. The results are 
similar: If the hypersurface has constant mean curvature H, and |.4| is bounded 
by a constant depending on n and H, then the hypersurface is totally umbillic, 
hence a geodesic sphere in Sn+1; if the inequality is not strict then the only extra 
possibilities are products of spheres. The argument is similar to that above, but 
complicated by the non-vanishing of the mean curvature. 

Let me look closer at the situation for surfaces in the three-sphere: The intrin­
sic curvature of the surface is given by I + K1K2 = 1 + | F 2 ^ | | . 4 | 2 . If M is minimal, 
then F = 0, so \A\2 < 2 is equivalent to positivity of the intrinsic curvature. This 
is also true for constant mean curvature surfaces: In two dimensions, the curvature 
condition from [25] and [5] is equivalent to positivity of the intrinsic curvature. 

3. Flat tori 
The condition of positive intrinsic curvature seems natural in view of the results 

on constant mean curvature surfaces. For surfaces in space, positive curvature is 
a rather restrictive condition — a compact surface satisfying this condition is the 
boundary of a convex region. In the 3-sphere it seems somewhat less restrictive, 
as we can see by considering the 'boundary' case of flat surfaces, where there are 
the beautiful results of Weiner [32] and Enomoto [9] which classify flat tori in the 
3-sphere by their Gauss maps. It was known for some time that there are many-
examples of these (see [26]), since the inverse image of any smooth curve in S2 

under the Hopf projection is a flat torus in S3. These examples are all invariant 
under the action of U(Y) on C2 ~ F 4 , but Weiner and Enomoto showed that there 
are many examples which are not symmetric. 

The Gauss map of a surface in S3 can be thought of in several ways: One 
can consider the tangent plane of the surface as a subspace of F 4 , which gives a 
map from the surface to the Grassmannian G2,4 of 2-planes in F 4 . The latter is a 
metric product S2 x S2, and the projections onto each factor are called the self-dual 
and anti-self-dual Gauss maps. Alternatively, since S3 is a group, one can map 
the unit normal of the surface by either left or right translations to the Lie algebra 
— this again gives two maps to S2, and of course these are the same as before: 
The self-dual Gauss map is the same as the left-translation Gauss map, and the 
anti-self-dual Gauss map is the same as the right-translation Gauss map. 

Enomoto [9] observed that if M2 is intrinsically flat in S3, then both Gauss 
maps are degenerate (their images are just curves in S2). Weiner gave the com­
plete classification result: The image curves 71 and 72 necessarily have zero to­
tal curvature, and if fi and I2 are subintervals of 71 and 72 respectively, then 
I fj nds\ + \ fj nds\ < IT. Conversely, if 71 and 72 are any curves satisfying these 
conditions, then there is a flat torus with these curves as the images of the two 
Gauss maps, and the torus is unique up to motion by unit speed in the normal 
direction. 

This gives a very large family of flat tori in the 3-sphere, and from these we see 
that surfaces with positive intrinsic curvature in S3 can look quite complicated: The 
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surface can look metrically like a long thin cylinder with caps on the ends, placed 
in S3 by 'winding around' a flat torus many times before closing off the ends. 

4. Curvature flow 
Curvature flow can give powerful generalisations of results like those from 

[27], [25] and [5]: Huisken [16] extended techniques developed earlier for convex 
hypersurfaces in Euclidean space [14] to prove the following result: 

Theorem: Let MQ = XQ(M) be a hypersurface in Sn+1 which satisfies 

\A\2 < -^—H2 + 2 
n — 1 

if n > 2, and 

W- < -^ + -

if n = 2. Then there exists a smooth family of hypersurfaces {Mt = xt(M)}o<t<T 
which satisfy the same curvature condition and move by mean curvature flow with 
initial data M0. Either T < oo and Mt is asymptotic to a family of geodesic spheres 
shrinking to their common centre, or T = oo and Mt approaches a great sphere. 

This includes the result that there are no minimal surfaces with |.4|2 < n 
except great spheres. It also implies the stronger statement that every hypersurface 
satisfying |.4|2 < -^-j-F2 + 2 can be deformed, keeping this condition, to a great 
sphere (except in the case n = 2). The condition |.4|2 < -^-j-F2 + 2 is the same 
as that arrived at by Okumura [25] for constant mean curvature surfaces (Cheng 
and Nakagawa [5] improved this for higher dimensions, but in two dimensions it is 
sharp). The proof of the above result is significantly more difficult than that for 
the constant mean curvature case. 

The result seems very satisfying, except when n = 2 where the method does 
not seem to work for Okumura's condition |.4|2 < H2 + 2. The latter is exactly the 
condition of positive intrinsic curvature. This raises several questions: Does mean 
curvature flow in fact preserve this condition? If not, is there any flow which does? 

5. The optimal result 

5.1. Choosing the evolution equation 
Now we can illustrate the method: The previous questions can be answered in 

a rather systematic way. The idea is to write down the conditions required for an 
arbitrary flow by a function F of curvature to preserve positive intrinsic curvature. 

We can write down an evolution equation for an arbitrary function G of the 
principal curvatures Ki and K2, and see what conditions are required for the flow 
to preserve the condition G > 0. For convenience we can write G in the form 

G(KI,K2) = (KI - K 2 ) 2 — </?(KI + K 2 ) 2 (5.1) 
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so that in the case we are interested in, (p(x) = \/4 + x2. We can also write 

F = f(Ki+K2,G). (5.2) 

Then the evolution equation for G is as follows: 

BC 
— = FijViVjG + Q(h)(Vh,Vh) + Z(h), (5.3) 

where F is the matrix of derivatives of F with respect to the components of the 
second fundamental form, which is positive definite as long as F is an increasing 
function of each of the principal curvatures. The second term is a quadratic function 
of the components of the derivative of the second fundamental form, with coefficients 
depending on curvature h, explicitly given by 

Q = (GiJFkl'mn - pijGkl'mn^ VihaVjhr, 

where F is the second derivative of F with respect to the components of h. The 
last term Z depends on the curvature alone, and has the form 

Z = Gij (F(h%j + gij) + Fkl (hijhli - hklh^ + gijhki - <?«%)) 

= F ( G ^ I + K2) + G2(l + K 2 ) ) + (1 + KIK2)(K2 - KI^F2 - F1G2). 

To show that G > 0 is preserved (with G = 1 + K\K2), we consider the situation at a 
point where G first attains a zero minimum. Then the first term on the right-hand 
side of (5.3) is non-negative; we consider each of the other terms. The last term is 
simplest: Substituting the forms of F and G from (5.1) and (5.2), we find 

so Z vanishes at a zero of G, no matter what speed F we use. This is another 
indication of the fact that the condition of positive intrinsic curvature is optimal. 
The gradient terms are the most complicated, but we can simplify them significantly 
by observing two things: First, Vh is a totally symmetric 3-tensor, by the Codazzi 
equation. Second, at a minimum of G, the gradients of G vanish. It follows that 
there are only two independent components of V/i, and one finds that these never 
mix in the expression for Q, so that 

Q = a(Vih22)2 + ß(V2hn)2. 

Since we have no further information about Vh (that is, no reason to expect that 
the magnitudes of these remaining components should vanish) we must impose the 
condition that a and ß are non-negative. This gives two conditions, which we can 
interpret as conditions on the first and second derivatives of F . A fact which is 
perhaps not obvious is that these conditions only involve the restriction of F to the 
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boundary of the set {G = 0} in the curvature plane, so we can consider F as defined 
by (5.2) with G = 0. Then the conditions can be written explicitly as follows: 

1 — tp' tp fi 1 + tp' tp 

In the case of interest, we have ip = \/4 + H2, and the first and last quantities are 
both equal to —2H/(4 + H2). The only possibilities for F are the following: 

F = C\ + C2 arctan f — 

This applies only along the curve {G = 0}, so we are reasonably free to choose F 
in the region where G > 0, as long as it is monotone in both principal curvatures. 

5.2. The extreme case 
The remarkably restricted form of the evolution equation is illuminated some­

what by considering the extreme case of flat surfaces: If the flow preserves positive 
intrinsic curvature, then it must also preserve zero curvature. As outlined above, 
the structure of surfaces with zero curvature is very well understood, and in par­
ticular the Gauss map G : M2 —t S2 x S2 has the remarkable property that the 
projection onto each factor is one-dimensional. This must be preserved under the 
flow. 

The flow we have ended up with is characterised by the fact that the Gauss 
map evolves according to the mean curvature flow (now for codimension 2 surfaces 
in S2xS2, which means that each of the two curves coming from the two projections 
of the Gauss map evolves according to the curve-shortening flow in S2. Since each 
of the curves divides the area of the sphere into two equal parts, the image of 
the Gauss map never develops singularities (at least in the case where the two 
curves are homotopic to great circles traversed once), but in fact the flat tori will 
in general develop singularities — this is analogous to the motion of a curve in 
the plane with constant normal speed, which develops singularities even though the 
normal direction stays constant at each point. Incidentally, there has been some 
very impressive recent progress on mean curvature flow in higher codimension, due 
to Mu-Tao Wang [29]-[31], who has used it to prove several very interesting results 
regarding maps between manifolds. 

The examples of flat tori can be used to prove that there is no other curvature-
driven flow of surfaces which preserves the condition of positive curvature, by giving 
examples for any other flow of flat tori which do not stay flat. 

5.3. Regularity 
A technical issue which arises is the following: The speed we ended up with is 

not concave or convex as a function of the second fundamental form. The regularity-
estimates due to Krylov [18] and Evans [10] for fully nonlinear equations (needed 
to prove that we get classical solutions of the flow) require concavity, so we cannot 
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use these. Instead it is possible to adapt the estimates for elliptic equations in two 
variables (due to Morrey [22] and Nirenberg [23]) to give good C2,a estimates for 
solutions of fully nonlinear parabolic equations in two space variables. 

5.4. Curvature pinching 
Now we come to the problem of choosing a good way to extend the speed from 

the boundary {G = 0} to the interior of the region {G > 0}. The idea is to do this 
in such a way that any compact surface with strictly positive curvature necessarily 
has very strongly controlled curvature in the future — that is, we want the region 
{G > 0} to be exhausted by a nested family of regions which stay away from the 
boundary, and only approach infinity near the 'umbillic' line Ki = K2. This means 
that any singularity which occurs will have to be totally umbillic, so occurs only 
when the surface shrinks to a point while becoming spherical in shape. 

This can be done in many ways. One which is relatively simple to describe, 
but results in solutions which are only C2'a, is as follows: Take 

J arctanKi +arctanK2, K1K2 < 1; 

l f (« l«2 + l) , KiK2 > 1. 

This is then a Lipschitz, monotone increasing function of the curvatures, and one 
can check that the following regions of the curvature plane are preserved: 

„ f, 1 1 + K1K2 Ì . , , f, , 21 
iie = < 1 «i — K2\ < > n {K1K2 < i ) u < |KI — K2\ < - > n {K1K2 > l ) . 

This means that the difference between the principal curvatures stays bounded even 
if the curvature becomes large, which implies very strong control on singularities. 
This is similar to the estimate used in [4] to prove that worn stones (i.e. convex 
surfaces moving by their Gauss curvature) become round as they shrink to points. 

With a little more work we can choose the speed to be a smooth function of 
the principal curvatures, and then solutions are also smooth. 

In the choice above, we also have the nice feature that minimal surfaces do 
not move. We can with slight modifications arrive at a speed for which constant 
mean curvature surfaces do not move, for any particular choice of the mean curva­
ture, as long as we are willing to work in the category of oriented surfaces. More 
generally, we can contrive that for a given monotone increasing function <j> of the 
principal curvatures, surfaces satisfying <j> = 0 do not move. Here F (and <j>) must 
be symmetric. We can also choose if desired a speed which is always positive, so 
that there are no stationary solutions. 

5.5. The results 
The main result for the above speed is the following: 

Theorem 1. Let XQ be an immersion of S2 in S3, with non-negative intrinsic 
curvature in the induced metric. Then the flow constructed above deforms M0 = 
XQ(S2) through a family Mt = xt(S2), with intrinsic curvature strictly positive for 
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each t > 0, to either a great sphere (in infinite time) or to a point, with spherical 
limiting shape (in finite time). If M0 is embedded, then so is Mt for each t > 0. 

This includes in particular Simons' result on mimimal surfaces. If we modify 
the speed somewhat, then we get the following result, which gives in particular a 
new result for Weingarten surfaces in the 3-sphere: 

Theorem 2. Let <p be any smooth, strictly monotone function of Ki and K,2 defined 
on {K,IK,2 + 1 > 0}. Then there exists a function F which is smoothly defined on 
{K1K2 + 1 > 0}, and strictly monotone increasing in each argument, with sgnF = 
sgncf) everywhere, such that the following holds: If M0 = XQ(S2) is a smooth compact 
surface in S3 with non-negative intrinsic curvature, then the motion with speed F 
deforms M0 through a smooth family {Mt}0<t<T, each strictly positively curved, 
which either converge to a point with spherical limiting shape with T < 0, or converge 
to a totally umbillic surface (spherical cap) with <p = 0 if T = oo. 

This includes two cases: Either there is some point where <p = 0, in which case 
there is a spherical cap with <p = 0 and the above result implies that this is the only-
surface with <p = 0 with positive intrinsic curvature, or <p is never zero, in which case 
all surfaces converge to points. In the latter case a very small geodesic sphere with 
one choice of orientation will shrink inwards to its centre, while the same sphere 
with the opposite orientation expands over the equator and eventually contracts to 
the antipodal point. In this way we have a unique way of associating an oriented 
surface with the point it eventually contracts to, and we deduce the following: 

Theorem 3. The space of oriented surfaces with positive intrinsic curvature in S3 

retracts onto S3. 

Finally, if we introduce some non-local terms in the speed, we can devise a 
flow which fixes the enclosed volume, preserves positive intrinsic curvature, and gives 
convergence to spherical caps, without moving constant mean curvature surfaces. 

6. Other results by related methods 

The methods I outlined above also yield interesting results for a variety of other 
problems: One which works out similarly, and which has some interesting parallels, 
is that of surfaces in three-dimensional hyperbolic space. The surfaces of interest 
are those for which all of the principal curvatures are less than 1 in magnitude. We 
can find a flow which deforms any such surface in a compact hyperbolic manifold to 
a minimal surface, while keeping the principal curvatures less than 1 in magnitude. 
Rather surprisingly, this flow is in a way the hyperbolic analogue of the one we just 
described for the sphere: Instead of moving with speed equal to the sum of the 
arctangents of the principal curvatures, we move with speed equal to the sum of 
the hyperbolic arctangents of the principal curvatures. The resulting flow is very-
well-behaved, and has the interesting property that the Gauss map of the surface 
(the map which takes a point of the surface to its tangent plane, thought of as a 
point in the Grassmannian of spacelike 2-planes in Minkowksi space R3'1), evolves 
according to mean curvature flow. 
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The methods also give good results for hypersurfaces in higher-dimensional 
spheres: Hypersurfaces with positive sectional curvatures can be deformed in such 
a way as to preserve that condition, and similar results can be deduced. The 
condition of positive sectional curvature can probably be relaxed: Positive sectional 
curvature is implied by the condition of Okumura [25] for constant mean curvature 
hypersurfaces, but not by the sharper condition of Cheng and Nakagawa [5] and 
Alencar and do Carmo [1]. 
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Mass and 3-metries of Non-negative 
Scalar Curvature 
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Abstract 

Physicists believe, with some justification, that there should be a corre­
spondence between familiar properties of Newtonian gravity and properties of 
solutions of the Einstein equations. The Positive Mass Theorem (PMT), first 
proved over twenty years ago [45, 53], is a remarkable testament to this faith. 
However, fundamental mathematical questions concerning mass in general 
relativity remain, associated with the definition and properties of quasi-local 
mass. Central themes are the structure of metrics with non-negative scalar 
curvature, and the role played by minimal area 2-spheres (black holes). 

2000 Mathematics Subject Classification: 53C99, 83C57. 
Keywords and Phrases: Quasi-local mass, Einstein equations, Scalar cur­
vature. 

1. Positive Mass Theorem 
The Positive Mass Theorem provides a good example of "the unreasonable 

effectiveness of physics in mathematics1 ". The need to define mass in general rela­
tivity is motivated directly by the physics imperative to establish a correspondence 
between general relativity and classical Newtonian gravity. Already difficulties arise: 
although the vacuum Einstein equations Ricaß — \Rgaß = 0 for the Lorentz metric 
gaß suggest (by analogy with the wave equation, for example) tha t a mass (energy) 
which includes contributions from the gravitational field, should be built from the 
first derivatives of the field gaß, it is clear tha t this is incompatible with coordinate 
invariance. 

The Schwarzschild vacuum spacetime metric, for r > max(0, 2 M ) , 

ds2 = - (1 - 2M/r) dt2 + *'2 + r2(dd2 + sin2 ê dtp2), (1.1) 

* School of Mathematics and Statistics, University of Canberra, ACT 2601, Australia. E-mail: 
robert.bartnik@canberra.edu.au 

1with apologies to Eugene Wigner [52]. 
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provides an important clue, since the parameter M £ R governs the behaviour of 
timelike geodesies and may be regarded as the total mass. Note that M > 0 ensures 
the boundary r = 2M is smooth and totally geodesic in the hypersurfaces t = const. 

A Riemannian 3-manifold (M, g) is said to be asymptotically flat if M\K ~ 
R3 \Fi(0) for some compact K, and M admits a metric g which is flat outside K, 
and the metric components #y in the induced rectangular coordinates satisfy 

\9ij - gij\ = O^-1), \dk9ij\ = 0(r-2), \dkdmj\ = 0(r-3). (1.2) 

The total mass of (M,g) is defined informally by [1] 

m ADM = -T7T- f (di9ij -djgu)dSj. (1.3) 
l t ) 7 r J.S2(oo) 

If the scalar curvature R(g) £ L1(M) then UIADM is well-defined, independent of 
the choices of rectangular coordinates and of exhaustion of M used to define §32/^ 
— see [3, 15, 37] for weaker decay and smoothness assumptions. 

For simplicity, the discussion here is restricted to C°° Riemannian 3-dimensional 
geometry. This corresponds to the case of time-symmetric initial data: (M, g) is a 
totally geodesic spacelike hypersurface in a Lorentzian manifold, and we can identify 
the local matter (equivalently, energy) density with the scalar curvature R(g) > 0. 
This simplification entails a small loss of generality: most, but not all, of the results 
we describe have been extended to general asymptotically flat space-time initial 
data (M,g,K), where FTy is the second fundamental form of a spacelike hyper­
surface M. Some results also generalize to the closely related Bondi mass, which 
measures mass and gravitational radiation flux near null infinity, and to mass on 
asymptotically hyperbolic and anti-deSitter spaces cf. [51, 16], but these involve 
additional complications which we will not discuss here. 

The Positive Mass Theorem (PMT) in its simplest form is 

Theorem 1 Suppose (M, g) is a complete asymptotically flat 3-manifold with non-
negative scalar curvature R(g) > 0. Then UIADM > 0, and UIADM = 0 iff (M,g) = 
(R3,ô). 

The rigidity conclusion in the case UIADM = 0 shows that UIADM > 0 for 
(M,g) scalar flat ("matter-free") but non-flat, so UIADM does provide a measure of 
the gravitational field. 

Three distinct approaches have been successfully used to prove the PMT: 
with stable minimal surfaces [45, 46]; with spinors [53, 36] and the Schrödinger-
Lichnerowicz identity [48, 35]; and using the Geroch foliation condition [23, 30]. 
A number of other appproaches have produced partial results: using spacetime 
geodesies [42]; a nonlinear elliptic system for a distinguished orthonormal frame 
[39, 18]; and alternative foliation conditions [32, 33, 6]. The connection between 
these approachs remains mysterious; the only discernable common thread is mean 
curvature, and this is quite tenuous. 

The application of the positive mass theorem to resolve the Yamabe conjec­
ture [44, 34] is well known. Less well known is the proof of the uniqueness of the 
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Schwarzschild spacetime amongst static metrics with smooth black hole boundary 
[13], which we briefly outline. 

A static spacetime is a Lorentzian 4-manifold with a hypersurface-orthogonal 
timelike Killing vector. With V denoting the length of the Killing vector, the metric 
g on the spacelike hypersurface satisfies the static equations 

RiCg = V~lV2V, ( . 
AgV = 0. { ' 

Smoothness implies the boundary set S = {V = 0} is totally geodesic; analyticity 
of g, V can be used to show the asymptotic expansions 

9ij = (1 + 2m/r)% + 0(r- 2) , 
V = 1 — m/r + 0(r~2), 

as r —t oo for some constant m £ R. The metrics g± = <p±g where <j>± = (1 ± V)/2 
both have R(g^) = 0, and g+ is asymptotically flat with vanishing ADM mass, 
and g^ is a (smooth) metric on a compact manifold. Gluing two copies of (M,g) 
along the totally geodesic boundary S and conformally changing to g = 4>4g where 
<f> = <j>± on the two copies of M, gives a complete AF manifold with R(g) = 0 and 
vanishing mass. The PMT shows (M, g) is flat and it follows without difficulty that 
(M,g) is Schwarzschild. This extends previous results [31, 43] which required the 
boundary to be connected. 

2. Penrose conjecture 
A boundary component S with mean curvature F = 0 is called a black hole or 

horizon, since if (M, g) is a totally geodesic hypersurface then S is a trapped surface 
and hence, by the Penrose singularity theorem [26], lies within an event horizon and 
is destined to encounter geodesic incompleteness in the predictable future. 

The spatial Schwarzschild metric g = 1_'2M/r + r2 (d'à2 + sin édtp2) with M < 0 
shows that the completeness condition in the PMT is important, but it can be 
weakened to allow horizon boundary components of M. This follows immediately 
from the minimal surface argument [45]; or by an extension to the Witten argument 
[22], imposing one of the boundary conditions 

ip = ±eip on S = dM, (2.1) 

on the spinor field tp, where e = 7"7° satisfies e2 = 1. An interesting extension is 
obtained by imposing the spectral boundary condition 

P+'ip = 0 on S (2.2) 

where F + is the projection onto the subspace of positive eigenspinors of the induced 
Dirac operator T>-£. Using the remarkable Hijazi-Bär estimate [28, 2] 

|A| > V47r/|S|, (2.3) 

for the eigenvalues of VY. when S ~ S2, Herzlich showed [27] 
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Theo rem 2 If (M, g) is asymptotically flat with R(g) > 0 and boundary S ~ S2 

with mean curvature satisfying 
Hn < 2/r (2.4) 

where r = ^/|£|/47r, then UIADM > 0, with equality iff (M,g) = (R3 \F(r) ,5) . 

The proof starts with the Riemannian form of the Schrödinger-Lichnerowicz-
Witten identity [48, 35, 53] 

(\V'tp\2 + \R(g)\'tp\2 - \Vip\2)dvM = 4Tx\'tp00\
2mADM + f p(ip), (2.5) 

M JT. 

where ß('ip) is the Nester-Witten form [38] 

ß(iP) = ( ^ ( ^ + 1 ^ * 5 : . (2.6) 

The boundary condition P+ip\j: = 0 is elliptic and it can be shown [8] there is 
a spinor on M satisfying Vip = 0 with boundary conditions ip —¥ rpoo ^ 0 as 
r ^ oo and (2.2) on S. It follows from (2.3) and (2.2) that {tp, (£>s + |FE)i/>) < 
(^H-£ — \Xi\)\ip\2 < 0 and the result follows. 

Observe that in each case, equality leads to flat R3. An elegant physical argu­
ment lead Penrose to conjecture an analogous inequality, but which distinguishes 
the Schwarzschild metric instead [40], see also [24]. 

Conjecture 3 (Penrose) If (M,g) satisfies the conditions of the PMT, except 
that DM = S is compact with vanishing mean curvature and such that S is the 
"outermost" closed minimal surface in M, then 

niADM > \/|S|/167T, (2.7) 

with equality only for the Schwarzschild metric. 

A closed minimal surface is said to be an outermost horizon or outer-minimizing 
horizon if M contains no least area surfaces homologous to S in the asymptotic 
region exterior to S. The outermost condition is essential, since examples of non-
negative scalar curvature manifolds can be constructed by forming the connected 
sum of M and large spheres by arbitrarily small and large necks. 

The Penrose conjecture has been established by Huisken and Ilmanen [29, 30] 
using a variational level set formulation of the inverse mean curvature flow [23], and 
by Bray [12] by a very interesting conformai deformation argument. Bray's proof 
is more general since it takes into account contributions from all the connected 
components of the boundary. 

3. Quasi-local mass 
Thus it is natural to consider y/\S\/16w as the mass of a black hole (minimal 

surface) S. More generally, the correspondence with Newtonian gravity suggests 
that any bounded region (Q, g) should have a quasi-local mass, which measures both 
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the matter density (represented in this case by the scalar curvature R(g) > 0), and 
some contribution from the gravitational field. The rather satisfactory positivity 
properties of the total mass, as established by the PMT, motivate the properties 
we might expect such a geometric mass to possess [20, 14, 7]. 

1. (non-negativity) ntQL^l) > 0; 
2. ( r igidi ty/s t r ic t positivity) ntQL^l) = 0 if and only if (ii,g) is flat; 
3. (monotonicity) rriQL^li) < TOQL(02) whenever Qi c 0 2 , where it is un­

derstood that the inclusion is a metric isometry; 
4. (spherical mass) UIQL should agree with the spherical mass, for spherically-

symmetric regions; 
5. (ADM limit) UIQL should be asymptotic to the ADM mass; 
6. (black hole limit) UIQL should agree with the black hole mass (2.7). 

Many candidates have been proposed for quasi-local mass (see for example [10] for 
a comparison of some definitions), the most significant being that of Hawking [25], 

'""V^^i'-àl"1) i3A> 
where S = 90 . This equals M for standard spheres in Schwarschild. Although 
rriH < 0 for surfaces in R3, it was shown in [14] that mij(S) > 0 for a stable constant 
mean curvature 2-sphere S in a 3-manifold of non-negative scalar curvature. Thus 
for such "round" spheres, rriR is nonegative, and the black hole limit condition 
is trivially satisfied. However the remaining properties, in particular rigidity and 
monotonicity, are rather problematic. Although the twistorially-defined Penrose 
quasi-local mass [41] is well-behaved in special cases [50], it is defined unambiguously-
only for surfaces arising from embedding into a conformally flat spacetime, and even 
then numerical experiments [11] strongly suggest that monotonicity is violated. 

In fact, of the various proposals for rriQL, only the definitions of [14, 5, 19] 
are known to satisfy positivity. Dougan and Mason [19] show that the integral 
§^ ß('ip) of the Nester-Witten 2-form (2.6) is positive for spinor fields ip on S which 
satisfy a certain elliptic system on S. However, Bergqvist [9] shows that positivity 
holds under much weaker conditions on ip, and there are many variant definitions 
with similar properties. It would be useful to understand these DM-style definitions 
better, and in particular whether any satisfy monotonicity. 

Monotonicity and ADM-compatibility imply niQL(ii) < mADM(M,g) for any 
region Q embedded isometrically in an (M,g) satisfying (as always) the PMT con­
ditions. This motivates the following definition [4, 30] 

Definition 4 Let VM denote the set of all asymptotically flat 3-manifolds (M,g) 
of non-negative scalar curvature, with boundary which if non-empty, consists of 
compact outermost horizons, and such that (M, g) has no other horizons. For any 
bounded open connected region (ii,g), let VM(ii) be the set of (M,g) £ VM such 
that 0 embeds isometrically into M, and define 

mQL(ii) = inî{mADM(M,g) : (M,g) £ VM(iì)}. (3.2) 

We say that M satisfying these conditions is an admissible extension ofii. 
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The horizon condition serves to exclude examples which hide 0 inside an ar­
bitrarily small neck, which would force the infimum to zero. This is a refinement 
[30] of the original definition [4], which prohibited horizons altogether. 

Clearly irtQL^l) is well-defined and finite, once the region Q admits just one 
admissible extension. The PMT with horizon boundary implies non-negativity, and 
monotonicity follows directly. Strict positivity of UIQL was established in [30], with 
the slightly weaker rigidity conclusion that if niQL(ii) = 0 then Q is locally flat. 
Agreement with the spherical mass, and the ADM limit condition, follows also from 
[30]. Bray's results imply that niQL(ii) agrees with the black hole mass in the limit 
as 0 shrinks down to a black hole. In addition, niQL(ii) < niADM(M) for any-
admissible extension M, so UIQL is the optimal quasi-local mass definition with 
respect to this condition. 

The optimal form of the horizon condition remains conjectural. Bray has 
suggested an alternative condition, that 0 be a "strictly minimizing hull" [30] in 
M, so S = 90 has the least area amongst all enclosing surfaces in the exterior. 
In this case we say S is outer minimizing, and denote by ìTIQL(ìì) the quasilocal 
mass function defined by restricting admissible extensions to those M in which S 
is outer minimizing. For this modified definition the Penrose inequality [30, 12] 
applies to show that if 9 0 embeds into the Schwarzschild 3-manifold with the same 
induced metric and mean curvature (cf. (4.1), (4.2)) and encloses the horizon, then 
niQL(ii) = M. It is not clear how to establish this natural result for the unmodified 
definition niQL(ii). 

4. Static metrics 
Although in many respects the definition of UIQL is quite satisfactory, it is not 

constructive, and thus it is important to determine computational methods. The 
key is the following [4] 

Conjecture 5 The infimum in UIQL is realised by a 3-metric agreeing with Q in 
the interior, static (1-4) in the exterior region, and such that the metric is Lipschitz-
continuous across the matching surface S, and the mean curvatures of the two sides 
agree along S. 

A similar conjecture for the space-time generalisation of the quasi-local mass, 
asserts that the exterior metric is stationary, ie. admits a timelike Killing field [4, 7]. 

As motivation for this conjecture, note first that if F (g) > 0 in some region, 
then a conformai factor <p can be found such that (p^g has less mass and R(<j)Ag) > 0. 
Thus a mass-minimizing metric for (4), if such a metric exists, must have vanishing 
scalar curvature. Now if the linearization DR(g)h = ögögh — Atrgh — Rie • h is 
surjective then g admits a variation which produces positive scalar curvature. The 
formal obstruction to surjectivity is non-trivial ker DR(g)*, which leads to the static 
metric equations (1.4). Corvino [17] shows that if ker DR(g)* is trivial in U C M 
then there are compactly supported metric variations in U which increase the scalar 
curvature. This gives 
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Theorem 6 If (M,g) realizes the infimum in Definition 4, then there is a V £ 
C°°(M\ii) such that g,V satisfy the static metric equations (1-4) in M\Q. 

This suggests a computational algorithm for determining roQL(O): find an 
asymptotically flat static metric with boundary geometry matching that of 90 . To 
determine the appropriate boundary conditions, recall the second variation formula 
for the area of the leaves of a foliation labelled by r: 

R(g) = 2DnH - \II\2 - H2 + 2K - 2A"1ArA (4.1) 

where II, H, K are respectively the second fundamental form, mean curvature and 
Gauss curvature of the leaves, À is the lapse function, n = X^1dr is the normal vector 
and Ar is the Laplacian on the leaves. Our conventions give F = ^F„(log y/detgr) 
where gr is the volume element of the leaves. This shows that R(g) will be defined 
distributionally across a matching surface as a bounded function if 

glran = g\r-£, , . 
F 0 f i = F E . ( ' j 

Conjecture 7 (ii,g) determines a unique static asymptotically flat manifold (S,g) 
with boundary S ~ 90 satisfying (4-2). 

If true, this would give a prime candidate for the minimal mass extension. It 
is known (Pengzi Miao, private communication) that the boundary conditions (4.2) 
are elliptic for (1.4). 

It is tempting to conjecture that mass-minimizing sequences for UIQL should 
converge to a static metric. For example, [3, Theorem 5.2] shows that a sequence 
of metrics gk, close in the weighted Sobolev space Wl'?, q > 3 ,r > 1/2, to the 
flat metric Ö on R3 and such that mADAf(gk) —* 0, converges strongly to ö in 
W1'2. Similar results, under rather different size conditions, are given in [21], and 
a discussion of the general "weak compactness" conjecture may be found in [30]. 

5. Estimating quasi-local mass 
To estimate UIQL from above, it suffices to construct admissible extensions — 

metrics with non-negative scalar curvature and satisfying (4.2). These boundary-
conditions exclude the usual conformai method. Instead, metrics in quasi-spherical 
form [6] 

g = u2 dr2 + (rdâ + ß1dr)2 + (r sine dtp + ß2dr)2 (5.1) 

satisfy a parabolic equation for u on S2 evolving in the radial direction, when R(g) = 
0, with ß1 ,ß2 freely specifiable. Since the metric 2-spheres S2 have mean curvature 
Hr = (2 — div$2ß)/ur > 0, (5.1) provides admissible extensions for 9 0 = S2 with 
mean curvature F > 0. The underlying parabolic equation derives from (4.1), and 
has been generalized to non-spherical foliations in [49]. As an application, choosing 
ß = 0 we can show 



238 Robert Bartnik 

Theorem 8 Suppose 9 0 = S2 metrically, with H > 0. Then 

mQL(iì) < | r ( l - | r 2 m i n F 2 ) . (5.2) 

This bound is sharp when 0 is a flat ball or a Schwarzschild horizon. 
Finding lower bounds for roQL(O) is more difficult. Bray's definition of inner 

mass [12, p243] gives a lower bound, but for ?BQL(0) . The difficulty here as above 
lies in showing that a horizon inside 0 remains outermost when the inner region is 
glued to a general exterior region Mex t C M £ VM(iì). This follows easily when 
S = 9 0 is outer-minimizing in Me x t , as guaranteed by the definition for ?BQL(0) . 

On physical grounds one expects that if "too much" matter is compressed into 
region which is "too small", then a black hole must be present. The geometric 
challenge lies in making this heuristic statement precise, and the only result in 
this direction has been [47], which gives quantitative measures which guarantee the 
existence of a black hole. An observation by Walter Simon (private communication) 
is thus very interesting: if roQL(O) = 1 (say) and 0 embeds isometrically into a 
complete asymptotically flat manifold M without boundary and with non-negative 
scalar curvature, and such that niADM(M) < 1, then M must have a horizon. This 
reinforces the importance of finding good lower bounds for UIQL , since the existence 
of a horizon in a similar situation with ûIQL does not follow. 
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Geometry of Symplectic Intersections 
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Abstract 

In this paper we survey several intersection and non-intersection phenom­
ena appearing in the realm of symplectic topology. We discuss their im­
plications and finally outline some new relations of the subject to algebraic 
geometry. 
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1. Introduction 
Symplectic geometry exhibits a range of intersection phenomena that cannot 

be predicted nor explained on the level of pure topology or differential geometry. 
The main players in this game are certain pairs of subspaces (e.g. Lagrangian 
submanifolds, domains, or a mixture of both) whose mutual intersections cannot 
be removed (or reduced) via the group of Hamiltonian or symplectic diffeomor-
phisms. The very first examples of such phenomena were conjectures by Arnold in 
the 1960's, and eventually established and further explored by Gromov, Floer and 
others starting from the mid 1980s. 

The first part of the paper will survey several intersection phenomena and the 
mathematical tools leading to their discovery. We shall not attempt to present the 
most general results and since the literature is vast the exposition will be far from 
complete. Rather we shall concentrate on various intersection phenomena trying to 
understand their nature and whether there is any relations between them. 

The second part is dedicated to "non-intersections", namely to situations 
where the principles of symplectic intersections break down. In the case of La­
grangian submanifolds this absence of intersections is reflected in the vanishing of 
a symplectic invariant called Floer homology. This vanishing when interpreted al­
gebraically leads to restrictions on the topology of Lagrangian submanifolds. As 
a byproduct we shall explain how these restrictions can be used to study some 
problems in algebraic geometry concerning hyperplane sections and degenerations. 
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2. Various intersection phenomena 
In this section we shall make a brief tour through the zoo of symplectic inter­

sections, encountering three different species. 
Before we start let us recall two important notions from symplectic geometry. 

Let (M,(jj) be a symplectic manifold. A submanifold F c M is called Lagrangian if 
dim F = | dim M and OJ vanishes on T(L). From now on we assume all Lagrangian 
submanifolds to be closed. The second notion is of Hamiltonian isotopies. An 
isotopy of diffeomorphisms {ht : M —t M}o<t<i, starting with ho = id is called 
Hamiltonian if the (time-dependent) vector field & generating it satisfies that the 
1-forms i^toj are exact for all 0 < t < 1. Note that Hamiltonian isotopies preserve 
the symplectic structure: hfu = u for all t. Finally, two subsets A,B c M are 
said to be Hamiltonianly isotopie if there exists a Hamiltonian isotopy ht such that 
hi(A) = B. We refer the reader to [28] for the foundations of symplectic geometry. 

2.1. Lagrangians intersect Lagrangians 
The most fundamental Lagrangian intersection phenomenon occurs in cotan­

gent bundles. Let X be a closed manifold and T*(X) be its cotangent bundle 
endowed with the canonical symplectic structure u;can = ^dpi A dqi. Denote by 
Acan = "Y^Pidqi the Liouville form (so that u;can = dAcan). Recall that a Lagrangian 
submanifold F c T*(X) is called exact if the restriction Acan|T(L) is exact. Note 
that the property of exactness is preserved by Hamiltonian isotopies. Denote by-
Ox C T*(X) the zero-section. The following theorem was proved by Gromov in [22]: 
Theo rem A. Let L c T*(X) be an exact Lagrangian submanifold. Then: 
1) For every Lagrangian L' which is Hamiltonianly isotopie to L we have LC\U ^ 0. 
2) L n Ox 7̂  0- In particular, L cannot be separated from the zero-section by any 
Hamiltonian isotopy. 

If one assumes F to be a Hamiltonian image of the zero-section a more quan­
titative version of Theorem A holds: 
Theo rem B . Let L c T*(X) be a Lagrangian submanifold which is Hamiltonianly 
isotopie to the zero-section and intersects it transversely. Then 

dimX 

#FnOx> Yl 6iW> 
3=0 

where bj(X) are the Betti numbers of X. 
Chronologically Theorem B preceded Theorem A. It was conjectured by Arnold 

(see [3] for the history), first proved for X = Tn by Chaperon [12] and generalized 
to all cotangent bundles by Hofer [23] and by Laudenbach and Sikorav [26]. Now a 
days it can be viewed as a special case of Floer theory (see Section 2.4 below). 

Note that the intersections described by both theorems above cannot in general 
be understood on a purely topological level. Indeed, in general topology predicts less 
than 2^6j(X) intersection points, and sometimes even none. Finally, note that in 
general the statement of Theorem B fails if one assumes F to be only symplectically 
isotopic to Ox, as the example X = Tn shows. 
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2.2. Balls intersect balls 

Denote by B2n(R) the closed Euclidean ball of radius F , endowed with the 
standard symplectic structure induced from R2". Denote by CF" the complex 
projective space, endowed with its standard Kahler form a, normalized so that 
/cpi f = 7T. The following obstruction for symplectic packing was discovered by 
Gromov [22]: 
Theo rem C. Let M be either B2n(l) or <CPn. Let BVl, BV2 c M be the images of 
two symplectic embeddings tpx : B2n(Ri) -+ M, tp2 : B

2n(R2) -+ M. If R\ + F2. > 1 
then BVl n BV2 ^ 0. 

Since symplectic embeddings are also volume preserving there is an obvious 
volume obstruction for having Blfil fl BV2 = 0. However, volume considerations 
predict an intersection only if R2n + Ff" > 1 (moreover for volume preserving 
embeddings the latter inequality is sharp). 

When one considers embeddings of several balls things become more compli­
cated and interesting. Here results are currently available only in dimension 4. 
Theo rem D. Let M be either F 4 ( l ) or CP2, and let BVï,...,BVN c M be the 
images of symplectic embeddings tpk : B4(R) —t M, k = 1,...,N, of N balls of 
the same radius R. Then there exist i ^ j such that Bipi n Blfii ^ $ in each of the 
following cases: 

1. N = 2 or 3 and R2 > 1/2. 
2. N = 5 or 6 and R2 > 2/5. 
3. N = 7 and R2 > 3/8. 
4. N = 8 and R2 > 6/17. 

Moreover all the above inequalities are sharp in the sense that in each case if the 
inequality on R is not satisfied then there exist symplectic embeddings tpi,..., tpM 
as above with disjoint images BiPl,..., F ^ c M. 

Statement 2 for N = 5 was proved by Gromov [22]. The rest was established 
by McDuff and Polterovich [27]. Let us mention that for N = 4 and any N > 9 
this intersection phenomenon completely disappears in the sense that an arbitrarily-
large portion of the volume of M can be filled by a disjoint union of N equal balls 
(see [27] for N = 4 and N = k2, and [5, 6] for the remaining cases). 

2.3. Balls intersect Lagrangians 

It turns out that there exist (symplectically) irremovable intersections also 
between contractible domains (e.g. balls) and Lagrangian submanifolds. 

Denote by RF" C CF" the Lagrangian n-dimensional real projective space 
(embedded as the fixed point set of the standard conjugation of CPn). The following 
was proved in [7]: 
Theo rem E. Let Bv c CF" be the image of a symplectic embedding tp : B2n(R) —t 
CPn. If R2 > 1/2 then Bv n RF" ^ 0. Moreover the inequality is sharp, namely 
for every R2 < 1/2 there exists a symplectic embedding tp : B2n(R) —t CPn whose 
image avoids RF" . 

In fact this pattern of intersections occurs in a wide class of examples (see [7]): 
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Theorem E'. Let (M,oj) be a closed Kahler manifold with [OJ] £ H2(M;Q) and 
n2(M) = 0. Then for every e > 0 there exists a Lagrangian CW-complex Af_ c 
(M,(jj) with the following property: every symplectic embedding tp : B2n(e) —¥ (M,oj) 
must satisfy Image (ip) n Af_ ^ 0. 

By a Lagrangian CW-complex we mean a subspace Af_ c M which topologi-
cally is a CW-complex and the interior of each of its cells is a smoothly embedded 
disc of M on which u vanishes. 

2.4. Methods for studying intersections 

Lagrangian intersections. The first systematic study of Lagrangian intersections 
was based on the theory of generating function [12, 26] (an equivalent theory was 
independently developed in contact geometry [13]). Gromov's theory of pseudo-
holomorphic curves [22] gave rise to an alternative approach which culminated in 
what is now called Floer theory. Each of these theories has its own advantage. Floer 
theory works in larger generality and seems to have a richer algebraic structure, on 
the other hand the theory of generating functions leads in some cases to sharper 
results (see [20]). 

Since Floer theory will appear in the sequel, let us outline a few facts about 
it (the reader is referred to the works of Floer [16] and of Oh [29, 30] for de­
tails). Let (M,(jj) be a symplectic manifold and F 0 ,F i c (M,oj) two Lagrangian 
submanifolds. In "ideal" situations Floer theory assigns to this data an invariant 
HF(L0,Li). This is a Z2-vector space obtained through an infinite dimensional 
version of Morse-Novikov homology performed on the space of paths connecting 
F0 to L\. The result of this theory is a chain complex CF(L0,Li) whose under­
lying vector space is generated by the intersection points F 0 fl L\ (one perturbs 
F 0 ,F i so their intersection becomes transverse). The homology of this complex 
HF(L0,Li) is called the Floer homology of the pair (F 0 ,Fi ) . The most impor­
tant feature of F F ( F 0 , F i ) is its invariance under Hamiltonian isotopies: if L'0,L'i 
are Hamiltonianly isotopie to F 0 ,F i respectively, then HF(L'0,L'i) = F F ( F 0 , F i ) . 
From this point of view HF(L0, L\) can be regarded as a quantitative obstruction 
for Hamiltonianly separating F 0 from L\. Indeed, the rank of HF(L0, L\) is a lower 
bound on the number of intersection points of any pair of transversally intersecting 
Lagrangians L'0, L\ in the Hamiltonian deformation classes of F 0 , L\ respectively. 

Let us explain the "ideal situations" in which Floer homology is defined. First 
of all there are restrictions on M : due to analytic difficulties manifolds are required 
to be either closed or to have symplectically convex ends (e.g. C", cotangent bundles 
or any Stein manifold). More serious restrictions are posed on the Lagrangians. For 
simplicity we describe them only for the case when L\ is Hamiltonianly isotopie 
to F0 . From now on we shall write L = L0 and F' = L\. In Floer's original 
setting [16] the theory was defined under the assumption that the homomorphism 
Au : n2(M,L) —¥ R, defined by D >-¥ fDuj, vanishes. The reason for this comes 
from the construction of the differential of the Floer complex: the main obstruction 
for defining a meaningful differential turns out to be existence of holomorphic discs 
with boundary on F or F'. These discs appear as a source of non-compactness of 
the space of solutions of the PDEs involved in the construction. Since holomorphic 
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discs must have positive symplectic area the assumption Au = 0 rules out their 
existence. Under this assumption Floer defined HF(L, L') and proved its invariance 
under Hamiltonian isotopies. Moreover he showed that HF(L, L) is isomorphic to 
the singular cohomology F*(F;Z2) of F. This together with the invariance give: 
Theorem F. Let (M,oj) be a symplectic manifold, either compact or with symplec-
tically convex ends. Let L c (M,oj) be a Lagrangian submanifold with Au = 0. 
Then for every Lagrangian L' which is Hamiltonianly isotopie to L and intersects L 
transversally we have: jpL<T\L' > r ankFF(F,F ' ) = rankF*(F;Z2) . In particular 
L cannot be separated from itself by a Hamiltonian isotopy. 

Floer theory was extended by Oh [30] to cases when Au ^ 0. There are 
two assumptions needed for this extension to work: the Maslov homomorphism 
ß : n2(M,L) —¥ Z should be positively proportional to Au (such Lagrangians are 
called monotone). The second assumption is that the positive generator NL of the 
subgroup Imager C Z is at least 2. In this setting Oh defined HF(L,L') and 
proved its invariance under Hamiltonian isotopies. It is however no longer true 
in general that HF(L,L) is isomorphic to F*(F;Z 2) . Still, Oh proved [29] that 
HF(L, L) is related to H*(L; Z2) through a spectral sequence. Recently the theory-
was considerably generalized by Fukaya, Oh, Ohta and Ono [21]. 

Intersections of balls. Theorems C and D were obtained using Gromov's theory 
of pseudo-holomorphic curves. The hard-core of the proofs consists of existence 
of pseudo-holomorphic curves of specified degrees that pass through a prescribed 
number of points in the manifold (see [22, 27]) for the details). From a more modern 
perspective it can be viewed as an early application of Gromov-Witten invariants. 

Finally, Theorems E and E' are proved by a decomposition technique intro­
duced in [7] which enables to decompose symplectic manifolds as a disjoint union 
of a symplectic disc bundle and a Lagrangian CW-complex. A variation on the 
proof of Gromov's non-squeezing theorem [22] gives an upper bound on the radius 
of a symplectic ball that can be squeezed inside that disc bundle. Hence, a larger 
ball must always intersect this CW-complex. For M = CPn, the corresponding 
CW-complex turns out to be a smooth copy of RF" . See [7] for the details. 

3. Some questions and speculations 
Cotangent bundles. The following questions show that even in the case of cotan­
gent bundles the most fundamental invariants are not completely understood. 

1. Let F c T*(X) be an exact Lagrangian (not necessarily Hamiltonianly iso­
topie to Ox)- By Theorem A, F n Ox # 0- Is it true that HF(L, Ox) # 0 ? 

2. Let F 0 ,F i c T*(X) be two exact Lagrangians (again, not necessarily Hamil­
tonianly isotopie neither to Ox nor to each other). Is it true that F 0 n F i ^ 0 ? 
Is it true that HF(LQ, Lx) # 0 ? 

These questions are of a theoretical importance, since the zero section and its Hamil­
tonian images are the only known examples of exact Lagrangians in T*(X). 

Symplectic packing. Lack of tools (or new ideas) prevent us from understanding 
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symplectic packings in dimension higher than 4. The only packing obstructions 
known in these dimensions are described in Theorem C. Note that CF" admits full 
packing by N = kn equal balls [27], but it is unclear what happens for other values 
of N. In view of this and Theorem C, the first unknown case (for n > 3) is of 
N = 2n + 1 equal balls. 

The situation in dimension 4 is only slightly better. Except of CF2 and a few 
other rational surfaces no packing obstructions are known. It is known that for every 
symplectic 4-manifold (M,oj) with [OJ] £ H2(M;Q) packing obstruction (for equal 
balls) disappear once the number of balls is large enough (see [6]), but nothing is 
known when the number of balls is small. In fact even the case of one ball is poorly-
understood (namely, what is the maximal radius of a ball that can be symplectically 
embedded in M). The reason here is that the methods yielding packing obstructions 
strongly rely on the geometry of algebraic and pseudo-holomorphic curves in the 
manifold. The problem is that most symplectic manifolds have very few (or none 
at all) J-holomorphic curves for a generic choice of the almost complex structure. 
Thus, even in dimension 4 it is unknown whether or not packing obstructions is a 
phenomenon particular to a sporadic class of manifolds such as CF 2 . 

Is everything Lagrangian? Weinstein's famous saying could be relevant for the 
intersection described in Theorems C,D and E. In other words, it could be that 
these intersections are in fact Lagrangian intersections under disguise. To be more 
concrete, let | < R2 < ^ r and consider a Lagrangian LR lying on the boundary 
dB2n(R). Is it possible to Hamiltonianly separate LR from itself inside F 2 " ( l ) ? 

If we can find a Lagrangian LR for which the answer is negative then this 
would strongly indicate that Theorem C is in fact a Lagrangian intersections result. 
Namely it would imply Theorem C for F i = F2 under the additional assumption 
that tpi,tp2 are symplectically isotopie. A good candidate for LR seems to be the 
split torus dB2(x/R/n) x • • • x dB2(x/R/n) C dB2n(R), but one could try other 
Lagrangians as well. 

Attempts to approach this question with traditional Floer homology fail. The 
reason is that Floer homology is blind to sizes: both to the "size" of the Lagrangian 
LR as well as to the "size" of the domain in which we work F 2 " ( l ) . Indeed it 
is easy to see that HF(LR,LR) whether computed inside F 2 " ( l ) or in R2" is the 
same, hence vanishes. The meaning of "sizes" can be made precise: the size of LR 
is encoded in its Liouville class, and the size of F 2 "( l ) could be encoded here by 
the action spectrum of its boundary. 

It would be interesting to try a mixture of symplectic field theory [19] with 
Floer homology. This would require a sophisticated counting of holomorphic discs 
with k punctures (for all k > 0), where the boundary of the discs goe to LR and 
the punctures to periodic orbits on 9F2"(1). 

It is interesting to note that when the radii of the balls are not equal things 
become more complicated. Indeed suppose that R\ + F | > 1 and consider two 
Lagrangian submanifolds LRX , LR2 lying on the boundaries of the balls BiPl, BV2. 
Then clearly LRX and LR2 can be disjoint even though the balls BiPl, BV2 do intersect 
(e.g. two concentric balls BiPl c BiP2, where Fi < F2). It would be interesting 
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to see to which extent this mutual position can be detected on the level of the 
Lagrangians LRX and LR2 alone. Or, in more pictorial (but less mathematical) 
terms, do the Lagrangians LRX and LR2 know that they lie one "inside" the other ? 

Returning to the case of equal balls, if the above plan is feasible, it would 
be interesting to try similar approaches for more than two balls as described in 
Theorem D. A similar approach could be tried in the situation of Theorem E. Here 
one could expect an irremovable intersection between a Lagrangian submanifold 
LR C dBv and RF" . 

Quantitative intersections. In contrast to the quantitative version of Lagrangian 
intersections given by Theorems B and F, Theorems C^E provide only existence of 
intersections. Is it possible to measure the size of these intersections ? 

More concretely, consider two balls BiPl,BiP2 c F 2 " ( l ) with F 2 + Ff > 1 but 
with R2n + Ff" < 1 (so that V o ^ F ^ ) + V o ^ F ^ ) < 1). Is it possible to bound 
from below the size of BiPl n BV2 ? 

It is not hard to see that volume is a wrong candidate for the size since for every 
e > 0 there exist two such balls with V o ^ F ^ C\BV2) < e. Symplectic capacities seem 
also to be inappropriate for this task. It could be that "size" should be replaced 
here by a kind of "complexity" or a trade-off between capacity and complexity: 
namely if the intersection has large capacity (e.g. when BiPl c BV2) the complexity-
is low, and vice-versa. Note that in dimension 2 a possible notion of complexity of 
a set is the number of connected components of its interior. 

A related problem is the following. Consider two symplectic balls BiPl, BV2 c 
CF" of radii R\, R2, where Ff+Ff. = 1. Assume further that Int ( F ^ J n l n t (BV2) = 
0. Theorem C implies that the balls must intersect hence the intersection occurs 
on the boundaries: dBiPl n dBiP2 ^ 0. What can be said about the intersection 
dBiPl n dBiP2 ^ 0, in terms of size, dynamical properties etc. ? 

It is easy to see that this intersection cannot be discrete. Moreover, an argu­
ment based on the work of Sullivan [37] shows that the intersection must contain at 
least one entire (closed) orbit of the characteristic foliation of the boundaries of the 
balls (see [33] for a discussion on this point). Looking at examples however suggests 
that the number of orbits in the intersection should be much larger. 

The same problem can be considered also for (some of) the extremal cases 
described in Theorem D. Similarly one can study the intersection dBv n RF" where 
Bv c CF" is a symplectic ball of radius R2 = 1/2 whose interior is disjoint from 
RF" . It is likely that methods of symplectic field theory [19] could shed some light 
on this circle of problems. 

Stable intersections. The problems described here come from Polterovich [32]. 
Let (M, OJ) be a symplectic manifold and A c M a subset. We say that A has the 
Hamiltonian intersection property if for every Hamiltonian diffeomorphism / we 
have f(A) n A ^ 0. We say that A has the stable Hamiltonian intersection property 
if Osi x A c T* (S1) x M has the Hamiltonian intersection property. Polterovich dis­
covered in [32] that if there exists a subset A c M with open non-empty complement 
and with the stable Hamiltonian property then the universal cover Ham(M, OJ) of the 
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group of Hamiltonian diffeomorphisms has infinite diameter with respect to Hofer's 
metric. Note that when 7Ti(Ham(M,u;)) is finite the same holds also for Ham(M,w) 
itself. (See [32] for the details and references for other results on the diameter of 
Ham). This is applicable when (M,OJ) contains a Lagrangian submanifold A with 
HF(A,A) # 0, since then HF(0Si x A, 0Si x A) = (Z2®Z2) ® H F(A, A) # 0. For 
example, taking A = RF" c CF" Polterovich proved that diamHam(CF") = oo 
(for n= 1,2 the same holds for diaroHam(CF")). 

In view of the above the following question seems natural: does every closed 
symplectic manifold contain a subset A with open non-empty complement and with 
the stable Hamiltonian intersection property ? Note that besides Lagrangian sub­
manifolds (with H F ^ 0) no other stable Hamiltonian intersection phenomena are 
known. It would also be interesting to find out whether the intersections described 
in Theorems C,D,E and especially E' continue to hold after stabilization. 

4. Intersections versus non-intersections 
In contrast to cotangent bundles there are manifolds in which every compact 

subset can be separated from itself by a Hamiltonian isotopy. The simplest example 
is C" : indeed linear translations are Hamiltonian, and any compact subset can be 
translated away from itself. Clearly the same also holds for every symplectic mani­
fold of the type M x C by applying translations on the C factor. Note that manifolds 
of the type M x C sometime appear in "disguised" forms (e.g. as subcriticai Stein 
manifolds, see Cieliebak [14]). 

The "non-intersections" property has quite strong consequences on the topol­
ogy of Lagrangian submanifolds already in C". Denote by u;std the standard sym­
plectic structure of C" and let A be any primitive of ujstd- Note that the restriction 
A|T(L) °f A to any Lagrangian submanifold F c C" is closed. The following was 
proved by Gromov in [22]: 
Theorem G. Let F c C" be a Lagrangian submanifold. Then the restriction of X 
to L is not exact. In particular H1^; R) ^ 0. 

Indeed if A were exact on F then Au : iT2(Cn,L) —t R must vanish, hence by-
Theorem F it is impossible to separate F from itself by a Hamiltonian isotopy. On 
the other hand, as discussed above, in C" this is always possible. We thus get a 
contradiction. (Gromov's original proof is somewhat different, however a careful 
inspection shows it uses the failure of Lagrangian intersections in an indirect way). 
Arguments exploiting non-intersections were further used in clever ways by Lalonde 
and Sikorav [25] to obtain information on the topology of exact Lagrangians in 
cotangent bundles (see also Viterbo [42] for further results). 

An important property of symplectic manifolds W having the "non-intersections" 
property is the following vanishing principle: for every Lagrangian submanifold 
L c W with well defined Floer homology we have HF(L, L) = 0. Applying this 
vanishing to C" yields restrictions on the possible Maslov class of Lagrangian sub­
manifolds of C". (Conjectures about the Maslov class due to Audin appear already 
in [1]. First results in this directions are due to Polterovich [31] and to Viterbo [41]. 
The interpretation in Floer-homological terms is due to Oh [29]. Generalizations 
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to other manifolds appear in [2] and [11]. Finally, consult [21] for recent results 
answering old questions on the Maslov class). 

4.1. Lagrangian embeddings in closed manifolds 

The ideas described above can be applied to obtain information on the topol­
ogy of Lagrangian submanifolds of some closed manifolds. Note that in comparison 
to closed manifolds the case of C" can be regarded as local (Darboux Theorem). Of 
course, "local" should by no means be interpreted as easy. On the contrary, char­
acterization of manifolds that admit Lagrangian embeddings into C" is completely 
out of reach with the currently available tools. 

Below we shall deal with the "global" case, namely with Lagrangians in closed 
manifolds. One (coarse) way to "mod out" local Lagrangians is to restrict to La­
grangians F with H\(L;Z) zero or torsion (so that by Theorem G they cannot lie 
in a Darboux chart). The pattern arising in the theorems below is that under such 
assumptions in some closed symplectic manifolds we have homological uniqueness 
of Lagrangian submanifolds. Let us view some examples. 

We start with CF" . It is known that a Lagrangian submanifold F c CF" 
cannot have H\(L;Z) = 0 (see Seidel [39], see also [10] for an alternative proof). 
However, F c CF" may have torsion H\(L;Z) as the example RF" c CF" shows. 
Theorem H. Let L c CF" be a Lagrangian submanifold with H\(L; Z) a 2-torsion 
group (namely, 2H\(L;Z) = 0). Then: 

1. H*(L;Z2) = F*(RF";Z 2 ) as graded vector spaces. 
2. Let a £ F 2 (CF" ;Z 2 ) be the generator. Then O\L £ H2(L;Z2) generates the 

subalgebra F e v e n (F ;Z 2 ) . Moreover if n is even the isomorphism in 1 is of 
graded algebras. 

Statement 1 of the theorem was first proved by Seidel [39]. An alternative 
proof based on "non-intersections" can be found in [8]. Let us outline the main 
ideas from [8]. Consider CF" as a hypersurface of C F " + 1 . Let U be a small 
tubular neighbourhood of CF" inside C F " + 1 . The boundary dU looks like a circle 
bundle over CF" (in this case it is just the Hopf fibration). Denote by F^ —t L 
the restriction of this circle bundle to F c CF" . A local computation shows that 
U can be chosen so that F^ c C F " + 1 \ CF" becomes a Lagrangian submanifold. 
(This procedure works whenever we have a symplectic manifold S embedded as a 
hyperplane section in some other symplectic manifolds M). The next observation 
is that Y'L C C F " + 1 \ CF" is monotone and moreover its minimal Maslov number 
NrL is the same as the one of F. Due to our assumptions on H\(L;Z) this number 
turns out to satisfy NrL > n + 1. The crucial point now is that HF(Y'L,Y'L) = 0. 
Indeed, the symplectic manifold C F " + 1 \ CF" can be completed to be C"+ 1 where 
Floer homology vanishes. 

Having this vanishing we turn to an alternative computation of HF(Y'L,Y'L). 

This computation is based on the theory developed by Oh [29] for monotone La­
grangian submanifolds. According to [29] Floer homology can be computed via a 
spectral sequence whose first stage is the singular cohomology of the Lagrangian. 
The minimal Maslov number has an influence both on the grading as well as on the 
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number of steps it takes the sequence to converge to HF. In our case we have a spec­
tral sequence starting with H*(Y'L; Z2) and converging to HF(Y'L,Y'L) = 0. A com­
putation through this process together with the information that NrL > n+1 makes 
it possible to completely recover F * ( F L ; Z 2 ) . It turns out that H%(TL;Z2) = Z2 

for i = 0,1, n and n + 1, while H1(YL; Z2) = 0 for all 1 < i < n. Going back from 
F * ( F L ; Z 2 ) to F*(F;Z2) is now done by the Gysin exact sequence of the circle 
bundle Y'L —ï L and noting that the second Stiefel-Whitney class of this bundle is 
nothing but the restriction O\L of the generator a £ F 2 ( C F " ; Z2). 

Summarizing the proof, there are three main ingredients: 

1. Transforming the Lagrangian F into a related Lagrangian F^ living in a differ­
ent manifold such that F^ can be Hamiltonianly separated from itself. Con­
sequently we obtain HF(Y'L,Y'L) = 0. 

2. Relating HF(Y'L,Y'L) to H*(Y'L) via the theory of Floer homology (e.g. a 
spectral sequence). 

3. Passing back from H*(YL) to H*(L). 

Similar ideas work in various other cases (see [8]). For example, consider 
CF" x CF" . This manifold has Lagrangians with H\(L;Z) = 0, e.g. CF" which 
can be embedded as the "anti-diagonal" {(z,w) £ CF" x CF"|w = z}. 
Theorem I. Let L c CF" x CF" be a Lagrangian with HX(L;Z) = 0. Then 
H*(L;Z2) — F*(CF";Z 2 ) , the isomorphism being of graded algebras. 

Another application of this circle of ideas is for Lagrangian spheres. Recently 
Lagrangian spheres have attracted special attention due to their relations to inter­
esting symplectic automorphisms [38, 39] and to symplectic Lefschetz pencils [15]. 
Theorem J. 1) Let M be a closed symplectic manifold with n2(M) = 0, and 
denote by m = dime M its complex dimension. If M x CF" (where m,n > 1) has 
a Lagrangian sphere then m = n + 1 (mod 2n + 2). 
2) Let M = CF" x CF™, m + n > 3, be endowed with the split symplectic form 
(n + 1)<7 ® (m + 1)<7. If M has a Lagrangian sphere then gcd(n + 1, m + 1) = 1. 

Let us remark that when m = n + 1 any product of the form CF" x M (with 
dime M = n + 1) indeed has a Lagrangian sphere, after a possible rescaling of the 
symplectic form on the M factor (see [2], [10]). We are not aware of any other 
examples, namely when m = n + 1 (mod 2n + 2) but t n / i i + 1 ) . 

5. Relations to algebraic geometry 
The purpose of this section is to show how ideas from Section 4 are related to 

algebraic geometry. We shall not present new results here but rather try to outline 
a new direction in which symplectic methods can be used in algebraic geometry. 

5.1. Hyperplane sections 
Let S be a smooth projective variety. The classical Lefschetz theorem provides 

restrictions on smooth varieties X that may contain S as their hyperplane section. It 
was discovered by Sommese [35] that there exist projective varieties S that cannot 
be hyperplane sections (or even ample divisors) in any smooth variety X. For 
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example, Sommese proved that Abelian varieties of (complex) dimension > 2 have 
this property (see [35] for more examples). 

Let us outline an alternative approach to this problem using symplectic geom­
etry. Let X c C F ^ be a smooth variety. Denote by X v c (CF^)* the dual variety 
(namely, the variety of all hyperplanes F £ (CPN )* that are non-transverse to X). 
Theo rem K. Suppose that £ = X n F 0 C X is a smooth hyperplane section of X 
obtained from a projective embedding X c C F ^ . Then either S has a Lagrangian 
sphere (for the symplectic structure induced from CPN), or codimc(Xv) > 1. 

Here is an outline of the proof. Suppose that codimc(Xv) = 1. Choose a 
generic line £ C (CF^)* intersecting X v transversely (and only at smooth points of 
X v ) . Consider the pencil {Xr\H}net parametrized by £. Passing to the blow-up X 
of X along the base locus of the pencil we obtain a holomorphic map n : X —t £ as 
CF 1 . The critical values of n are in 1-1 correspondence with the point of £ n X v . 
Moreover, the fact that £ intersects X v transversely implies that n is a so called 
Lefschetz fibration, namely each critical point of n has non-degenerate (complex) 
Hessian (in other words, locally n looks like a holomorphic Morse function). The 
condition codimc(Xv) = 1 ensures that £ n X v ^ 0 hence at least one of the fibres 
of n is singular. Let X0 be such a fibre and p £ X0 a critical point of n. The 
important point now is that the vanishing cycle (corresponding to p) that lies in 
the nearby smooth fibre Xf_ can be represented by a (smooth) Lagrangian sphere. 
By Moser argument all the smooth divisors in the linear system {X fl H}H€^CPNy-
are symplectomorphic. In particular S has a Lagrangian sphere too. 

The existence of Lagrangian vanishing cycles was known folklorically for long 
time. Its importance to symplectic geometry was realized by Arnold [4], Donald­
son [15] and by Seidel [38]. 

Theorem K can be applied as follows: given a smooth variety S, use methods 
of symplectic geometry to prove that S contains no Lagrangian spheres, say for 
any symplectic structure compatible with the complex structure of S. Then by-
Theorem K the only chance for S to be a hyperplane section is inside a variety X 
with "small dual", namely codimc(Xv) > 1. Let us remark that smooth varieties 
X c C F ^ with codimc(Xv) > 1 are quite rare, and have very restricted geometry 
(see e.g. Zak [43] and Ein [17, 18]). Using the theory of "small dual varieties" we 
can either rule out this case or get strong restrictions on the pair (X, S). 

Let us illustrate this on the example mentioned at the beginning of the section. 
Let S be an Abelian variety of complex dimension n>2. Note that S cannot have 
a Lagrangian sphere for any Kahler form. Indeed, if S had such a sphere then the 
same would hold also for the universal cover of S which is symplectomorphic to C". 
But this is impossible in view of Theorem G. Thus if S is a hyperplane section of 
X c C F ^ then codimc(Xv) > 1. It is well known [24] that in this case X must 
have rational curves (in fact lots of them). In particular n2(X) ^ 0. By Lefschetz's 
theorem we get ^ ( S ) ^ 0. But this is impossible since S is an Abelian variety. We 
therefore conclude that S cannot be a hyperplane section in any smooth variety X. 

An analogous (though symplectically more involved) argument should apply-
also to any algebraic variety S with c\ = 0 and 6i(S) ^ 0 (see [9]). An application 
of more refined symplectic tools (e.g. methods described in Section 4.1 above) can 
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be used to obtain many more examples. 
Here is another typical application: let C be a projective curve of genus > 0. 

It was observed by Silva [34] that C x CF" can be realized as a hyperplane section 
in various smooth varieties. Note that by Theorem J, C x CF" cannot have any 
Lagrangian spheres. It immediately follows that the only smooth varieties X that 
support C x CF" as their hyperplane section must have small dual. For n < 5 
results of Ein [17, 18] make it even possible to list all such X's. 

We conclude with a remark on the methods. The symplectic approach outlined 
above gives coarser results. Indeed Sommese [35] provides examples of varieties that 
cannot be ample divisors whereas the methods above only rule out the possibility 
of being very ample. On the other hand the symplectic approach has an advantage 
in its robustness with respect to small deformations (see [9], cf. [36]). 

5.2. Degenerations of algebraic varieties 
The methods of the previous section can also be used to study degenerations 

of algebraic varieties. Let Y be a smooth projective variety. We say that Y admits 
a Kahler degeneration with isolated singularities if there exists a Kahler manifold 
X and a proper holomorphic map n : X —t D to the unit disc D C C with the 
following properties: 

1. Every 0 ^ t £ D is a regular value of n (hence, all the fibres Xt = 7r -1(i), 
t ^ 0, are smooth Kahler manifolds). 

2. 0 is a critical value of n and all the critical points of n are isolated. 
3. Y is isomorphic (as a complex manifold) to one of the smooth fibres of n, say 

Xt0 ,to^0. 

As in the previous section this situation is related to symplectic geometry-
through the Lagrangian vanishing cycle construction. As pointed out by Seidel [39] 
one can locally morsify each of the critical points in X0 = 7r_1(0) and then by-
applying Moser's argument obtain for each critical point of IT at least one Lagrangian 
sphere in the nearby fibre Xf_. Since all the smooth fibres are symplectomorphic we 
obtain Lagrangian spheres also in Y. 

Applying results from Section 4 to this situation we obtain examples of pro­
jective varieties that do not admit any degeneration with isolated singularities. For 
example, let Y be any of the following: 

• CF" , n > 2. Or more generally CF" x M, where M is a smooth variety with 
n2(M) = 0 and dime M ^ n + 1 (mod n + 1). 

• Any variety whose universal cover is C", (n > 2), or a domain in C". 

Then by the results in Section 4, Y has no Lagrangian spheres, hence does not 
admit any degeneration as above. More examples can be found in [9]. 

This point of view seems non-trivial especially when Hn(Y;Z) = 0, where 
n = dime Y. In these cases the vanishing cycles are zero in homology and it seems 
that there are no obvious topological obstructions for degenerating Y as above. 
^From the list above, the first non-trivial example should be CF" with n = odd > 3. 
It would be interesting to figure out to which extent the above statement could be 
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proved within the tools of pure algebraic geometry. Note that Lagrangian spheres 
are a non-algebraic object and it seems that their existence/non-existence cannot 
be formalized in purely algebro-geometric terms. 

Another direction of applications should be to find an upper bound on the 
number of singular points of an algebraic variety X0 that can be obtained from a 
degeneration of Y. Note that the vanishing cycles of different singular points of 
X0 are disjoint. Thus the idea here is to obtain an upper bound on the number 
of possible disjoint Lagrangian spheres that can be embedded in Y. The simplest 
test case here should be the quadric Q = {z2 + • • • + z 2

+ 1 = 0} C C F " + 1 , where 
n > 2. Clearly Q can be degenerated to a variety X0 with isolated singularities 
(e.g. to a cone over a smaller dimensional quadric). It seems reasonable to expect 
that in every such degeneration the singular fibre X0 will have only one singular 
point. Note that for n = even this easily follows from topological reason but it may 
not be so when n = odd > 3 because Hn(Q;Z) = 0. From a symplectic point of 
view the above statement would follow if we could prove that every two Lagrangian 
spheres in Q must intersect. This is currently still unknown but there are evidences 
supporting this conjecture [8]. It is likely that a refinement of the methods from [40] 
would be useful for this purpose. More generally, one could try to bound the number 
of singular fibres in a degeneration of other hypersurfaces S c C F " + 1 (in terms of 
deg(S) and n). See [8, 9] for the conjectured bounds. 
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Black Holes and the Penrose Inequality 
in General Relativity 

Hubert L. Brav 

Abstract 

In a paper [23] in 1973, R. Penrose made a physical argument that the 
total mass of a spacetime which contains black holes with event horizons of 
total area A should be at least -\/A/167r. An important special case of this 
physical statement translates into a very beautiful mathematical inequality 
in Riemannian geometry known as the Riemannian Penrose inequality. One 
particularly geometric aspect of this problem is the fact that apparent horizons 
of black holes in this setting correspond to minimal surfaces in Riemannian 3-
manifolds. The Riemannian Penrose inequality was first proved by G. Huisken 
and T. Ilmanen in 1997 for a single black hole [17] and then by the author in 
1999 for any number of black holes [6]. The two approaches use two different 
geometric flow techniques. The most general version of the Penrose inequality 
is still open. 

In this talk we will sketch the author's proof by flowing Riemannian man­
ifolds inside the class of asymptotically flat 3-manifolds (asymptotic to R 3 

at infinity) which have nonnegative scalar curvature and contain minimal 
spheres. This new flow of metrics has very special properties and simulates 
an initial physical situation in which all of the matter falls into the black 
holes which merge into a single, spherically symmetric black hole given by 
the Schwarzschild metric. Since the Schwarzschild metric gives equality in the 
Penrose inequality and the flow decreases the total mass while preserving the 
area of the horizons of the black holes, the Penrose inequality follows. We will 
also discuss how these techniques can be generalized in higher dimensions. 

2000 Mathematics Subject Classification: 53, 83. 
Keywords and Phrases: Black holes, Penrose inequality, Positive mass 
theorem, Quasi-local mass, General relativity. 

1. Introduction 
A natural interpretation of the Penrose inequality is tha t the mass contributed 

by a collection of black holes is (at least) y/A/16w, where A is the total area of the 
event horizons of the black holes. More generally, the question "How much mat ter 
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is in a given region of a spacetime?" is still very much an open problem [12]. In this 
paper, we will discuss some of the qualitative aspects of mass in general relativity, 
look at examples which are informative, and sketch a proof of the Riemannian 
Penrose inequality. 

1.1. Total mass in general relativity 
Two notions of mass which are well understood in general relativity are local 

energy density at a point and the total mass of an asymptotically flat spacetime. 
However, defining the mass of a region larger than a point but smaller than the 
entire universe is not very well understood at all. 

Suppose (M3,g) is a Riemannian 3-manifold isometrically embedded in a 
(3+1) dimensional Lorentzian spacetime. Suppose that M3 has zero second fun­
damental form in the spacetime. This is a simplifying assumption which allows us 
to think of (M3,g) as a "t = 0" slice of the spacetime. The Penrose inequality 
(which allows for M3 to have general second fundamental form) is known as the 
Riemannian Penrose inequality when the second fundamental form is set to zero. 

We also want to only consider (M3,g) that are asymptotically flat at infinity, 
which means that for some compact set K, the "end" M3\K is diffeomorphic to 
R 3 \Bi(0) , where the metric g is asymptotically approaching (with certain decay-
conditions) the standard flat metric % on R 3 at infinity. The simplest example of 
an asymptotically flat manifold is (R3, #y) itself. Other good examples are the con-
formal metrics (R3, u(a:)4(%), where u(x) approaches a constant sufficiently rapidly 
at infinity. (Also, sometimes it is convenient to allow (M3,g) to have multiple 
asymptotically flat ends, in which case each connected component of M3\K must 
have the property described above.) 

The purpose of these assumptions on the asymptotic behavior of (M3,g) at 
infinity is that they imply the existence of the limit 

m=—lim / y2(gij,iVj - giijvj) dp, (1) 

where Sa is the coordinate sphere of radius a, vis the unit normal to Sa, and dß is 
the area element of Sa in the coordinate chart. The quantity m is called the to ta l 
mass (or ADM mass) of (M3,g) (see [1], [2], [24], and [27]). 

Instead of thinking of total mass as given by equation 1, it is better to consider 
the following example. Going back to the example (R3, u(x)4öij), if we suppose that 
u(x) > 0 has the asymptotics at infinity 

u(a:) = a+6/ |a : | + 0(l/ |a: |2) (2) 

(and derivatives of the C(l/|ar|2) term are ö(l / |a: |3)) , then the total mass of (M3,g) 
is 

m = 2ab. (3) 

Furthermore, suppose (M3,g) is any metric whose "end" is isometric to (R3\K, 
u(a:)4(5y), where u(x) is harmonic in the coordinate chart of the end (R3\K, öij) 
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and goes to a constant at infinity. Then expanding u(x) in terms of spherical har­
monics demonstrates that u(x) satisfies condition 2. We will call these Riemannian 
manifolds (M3 ,g) harmonically flat at infinity, and we note that the total mass 
of these manifolds is also given by equation 3. 

A very nice lemma by Schoen and Yau is that, given any e > 0, it is always 
possible to perturb an asymptotically flat manifold to become harmonically flat 
at infinity such that the total mass changes less than e and the metric changes 
less than e pointwise, all while maintaining nonnegative scalar curvature (discussed 
in a moment). Hence, it happens that to prove the theorems in this paper, we 
only need to consider harmonically flat manifolds! Thus, we can use equation 3 
as our definition of total mass. As an example, note that ( R 3 , % ) has zero total 
mass. Also, note that, qualitatively, the total mass of an asymptotically flat or 
harmonically flat manifold is the 1/v rate at which the metric becomes flat at 
infinity. 

1.2. Local energy density 
Another quantification of mass which is well understood is local energy density. 

In fact, in this setting, the local energy density at each point is 

M = ^ (4) 

where R is the scalar curvature of the 3-manifold (which has zero second funda­
mental form in the spacetime) at each point. Thus, we note that ( R 3 , % ) has zero 
energy density at each point as well as zero total mass. This is appropriate since 
(R3,öij) is in fact a "t = 0" slice of Minkowski spacetime, which represents a vac­
uum. Classically, physicists consider p > 0 to be a physical assumption. Hence, 
from this point on, we will not only assume that (M3,g) is asymptotically flat, but 
also that it has nonnegative scalar curvature, 

R > 0. (5) 

This notion of energy density also helps us understand total mass better. After 
all, we can take any asymptotically flat manifold and then change the metric to 
be perfectly flat outside a large compact set, thereby giving the new metric zero 
total mass. However, if we introduce the physical condition that both metrics have 
nonnegative scalar curvature, then it is a beautiful theorem that this is in fact 
not possible, unless the original metric was already ( R 3 , % ) ! (This theorem is 
actually a corollary to the positive mass theorem discussed in a moment.) Thus, 
the curvature obstruction of having nonnegative scalar curvature at each point is a 
very interesting condition. 

Also, notice the indirect connection between the total mass and local energy-
density. At this point, there does not seem to be much of a connection at all. Total 
mass is the 1/v rate at which the metric becomes flat at infinity, and local energy-
density is the scalar curvature at each point. Furthermore, if a metric is changed 
in a compact set, local energy density is changed, but the total mass is unaffected. 
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The reason for this is that the total mass is not the integral of the local 
energy density over the manifold. In fact, this integral fails to take potential energy 
into account (which would be expected to contribute a negative energy) as well as 
gravitational energy (discussed in a moment). Hence, it is not initially clear what 
we should expect the relationship between total mass and local energy density to 
be, so let us begin with an example. 

1.3. Example using super harmonic functions in R3 

Once again, let us return to the (R3,u(a:)4(%) example. The formula for the 
scalar curvature is 

R = ^8u(x)-5Au(x). (6) 

Hence, since the physical assumption of nonnegative energy density implies non-
negative scalar curvature, we see that u(x) > 0 must be superharmonic (Au < 0). 
For simplicity, let's also assume that u(x) is harmonic outside a bounded set so 
that we can expand u(x) at infinity using spherical harmonics. Hence, u(x) has the 
asymptotics of equation 2. By the maximum principle, it follows that the minimum 
value for u(x) must be a, referring to equation 2. Hence, 6 > 0, which implies 
that m > 0! Thus we see that the assumption of nonnegative energy density at 
each point of (R3,u(a:)4(%) implies that the total mass is also nonnegative, which 
is what one would hope. 

1.4. The positive mass theorem 
More generally, suppose we have any asymptotically flat manifold with non-

negative scalar curvature, is it true that the total mass is also nonnegative? The 
answer is yes, and this fact is know as the positive mass theorem, first proved by 
Schoen and Yau [25] in 1979 using minimal surface techniques and then by Witten 
[30] in 1981 using spinors. 

Theorem 1 (Schoen-Yau) Let (M3,g) be any asymptotically flat, complete Rie­
mannian manifold with nonnegative scalar curvature. Then the total mass m > 0, 
with equality if and only if (M3,g) is isometric to (R3,ö). 

1.5. Black holes 
Another very interesting and natural phenomenon in general relativity is the 

existence of black holes. Instead of thinking of black holes as singularities in a 
spacetime, we will think of black holes in terms of their horizons. Given a surface 
in a spacetime, suppose that it admits an outward shell of light. If the surface area 
of this shell of light is decreasing everywhere on the surface, then this is called a 
trapped surface. The outermost boundary of these trapped surfaces is called the 
apparent horizon of the black hole. Apparent horizons can be computed based on 
their local geometry, and an apparent horizon always implies the existence of an 
event horizon outside of it [15]. 

Now let us return to the case we are considering in this paper where (M3,g) 
is a "t = 0" slice of a spacetime with zero second fundamental form. Then it is a 
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very nice geometric fact that apparent horizons of black holes intersected with M3 

correspond to the connected components of the outermost minimal surface S 0 of 
(M3,g). 

All of the surfaces we are considering in this paper will be required to be 
smooth boundaries of open bounded regions, so that outermost is well-defined with 
respect to a chosen end of the manifold [6]. A minimal surface in (M3,g) is a surface 
which is a critical point of the area function with respect to any smooth variation 
of the surface. The first variational calculation implies that minimal surfaces have 
zero mean curvature. The surface S 0 of (M3,g) is defined as the boundary of the 
union of the open regions bounded by all of the minimal surfaces in (M3,g). It 
turns out that S 0 also has to be a minimal surface, so we call S 0 the outermost 
minimal surface. 

We will also define a surface to be (strictly) outer minimizing if every 
surface which encloses it has (strictly) greater area. Note that outermost minimal 
surfaces are strictly outer minimizing. Also, we define a horizon in our context to 
be any minimal surface which is the boundary of a bounded open region. 

It also follows from a stability argument (using the Gauss-Bonnet theorem 
interestingly) that each component of a stable minimal surface (in a 3-manifold with 
nonnegative scalar curvature) must have the topology of a sphere. Furthermore, 
there is a physical argument, based on [23], which suggests that the mass contributed 
by the black holes (thought of as the connected components of S0) should be defined 
to be y/Ao/16n, where AQ is the area of S0 . Hence, the physical argument that the 
total mass should be greater than or equal to the mass contributed by the black 
holes yields that following geometric statement. 

The Riemannian Penrose Inequality 
Let (M3,g) be a complete, smooth, 3-manifold with nonnegative scalar curvature 
which is harmonically flat at infinity with total mass m and which has an outermost 
minimal surface S 0 of area A0. Then 

" ^ V ï S - (7) 

with equality if and only if(M3,g) is isometric to the Schwarzschild metric (R 3 \{0}, 
(1 + 5rn)4<%) outside their respective outermost minimal surfaces. 

The above statement has been proved by the author [6], and by Huisken and 
Ilmanen [17] where A0 is defined instead to be the area of the largest connected 
component of S 0 . We will discuss both approaches in this paper, which are very-
different, although they both involve flowing surfaces and/or metrics. 

We also clarify that the above statement is with respect to a chosen end of 
(M3,g), since both the total mass and the definition of outermost refer to a par­
ticular end. In fact, nothing very important is gained by considering manifolds 
with more than one end, since extra ends can always be compactified by connect 
summing them (around a neighborhood of infinity) with large spheres while still 
preserving nonnegative scalar curvature, for example. Hence, we will typically con­
sider manifolds with just one end. In the case that the manifold has multiple ends, 
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we will require every surface (which could have multiple connected components) in 
this paper to enclose all of the ends of the manifold except the chosen end. 

Other contributions on the Penrose Conjecture have also been made by Her­
zlich [16] using the Dirac operator which Witten [30] used to prove the positive 
mass theorem, by Gibbons [14] in the special case of collapsing shells, by Tod [29], 
by Bartnik [4] for quasi-spherical metrics, and by the author [7] using isoperimetric 
surfaces. There is also some interesting work of Ludvigsen and Vickers [21] using 
spinors and Bergqvist [5], both concerning the Penrose inequality for null slices of 
a space-time. 

1.6. The Schwarzschild metric 

The Schwarzschild metric (R3 \{0}, (1 + ^ T ) 4 % ) J referred to in the above 
statement of the Riemannian Penrose Inequality, is a particularly important exam­
ple to consider, and corresponds to a zero-second fundamental form, space-like slice 
of the usual (3+l)-dimensional Schwarzschild metric (which represents a spherically-
symmetric static black hole in vacuum). The 3-dimensional Schwarzschild metrics 
have total mass m > 0 and are characterized by being the only spherically sym­
metric, geodesically complete, zero scalar curvature 3-metrics, other than (R3 ,#y). 
They can also be embedded in 4-dimensional Euclidean space (x,y,z,w) as the set 
of points satisfying \(x,y,z)\ = f^ + 2m, which is a parabola rotated around an 
S2. This last picture allows us to see that the Schwarzschild metric, which has two 
ends, has a Z2 symmetry which fixes the sphere with w = 0 and \(x,y,z)\ = 2m, 
which is clearly minimal. Furthermore, the area of this sphere is 47r(2ro)2, giving 
equality in the Riemannian Penrose Inequality. 

2. The conformai flow of metrics 
Given any initial Riemannian manifold (M3,g0) which has nonnegative scalar 

curvature and which is harmonically flat at infinity, we will define a continuous, 
one parameter family of metrics (M3,gt), 0 < t < oo. This family of metrics 
will converge to a 3-dimensional Schwarzschild metric and will have other special 
properties which will allow us to prove the Riemannian Penrose Inequality for the 
original metric (M3,g0). 

In particular, let S 0 be the outermost minimal surface of (M3,g0) with area 
A0. Then we will also define a family of surfaces £(£) with S(0) = S 0 such that 
£(£) is minimal in (M3,gt). This is natural since as the metric gt changes, we 
expect that the location of the horizon £(£) will also change. Then the interesting 
quantities to keep track of in this flow are A(t), the total area of the horizon £(£) 
in (M3,gt), and m(t), the total mass of (M3,gt) in the chosen end. 

In addition to all of the metrics gt having nonnegative scalar curvature, we 
will also have the very nice properties that 

A'(t) = 0, (8) 

m'(t) < 0 (9) 
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for all t > 0. Then since (M3,gt) converges to a Schwarzschild metric (in an 
appropriate sense) which gives equality in the Riemannian Penrose Inequality as 
described in the introduction, 

which proves the Riemannian Penrose Inequality for the original metric (M3,g0). 
The hard part, then, is to find a flow of metrics which preserves nonnegative scalar 
curvature and the area of the horizon, decreases total mass, and converges to a 
Schwarzschild metric as t goes to infinity. 

2.1. The definition of the flow 
In fact, the metrics gt will all be conformai to go- This conformai flow of 

metrics can be thought of as the solution to a first order o.d.e. in t defined by-
equations 11, 12, 13, and 14. Let 

gt = utixfgo (11) 

and UQ(X) = 1. Given the metric gt, define 

Ti(t) = the outermost minimal area enclosure of S 0 in (M3,gt) (12) 

where So is the original outer minimizing horizon in (M3,go). In the cases in which 
we are interested, £(£) will not touch S0 , from which it follows that £(£) is actually 
a strictly outer minimizing horizon of (M3,gt). Then given the horizon £(£), define 
vt(x) such that 

Agovt(x) = 0 outside £(£) 
vt(x) = 0 on £(f) (13) 

l i m ^ o o t ^ x ) = - e - * 

and vt(x) = 0 inside £(£). Finally, given vt(x), define 

ut(x) = 1 + / vs(x)ds (14) 
Jo 

so that ut(x) is continuous in t and has uo(x) = 1-
Note that equation 14 implies that the first order rate of change of ut(x) is 

given by Vt(x). Hence, the first order rate of change of gt is a function of itself, ga, 
and vt(x) which is a function of go, t, and £(£) which is in turn a function of gt and 
S0 . Thus, the first order rate of change of gt is a function of t, gt, go, and S 0 . 

Theorem 2 Taken together, equations 11, 12, 13, and 14 define a first order 
o.d.e. in t for ut(x) which has a solution which is Lipschitz in the t variable, C1 in 
the x variable everywhere, and smooth in the x variable outside S(£). Furthermore, 
£(£) is a smooth, strictly outer minimizing horizon in (M3,gt) for all t > 0, and 
£(i2) encloses but does not touch S(£i) for all t2 > h > 0. 
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Since Vt(x) is a superharmonic function in (M3,g0) (harmonic everywhere 
except on £(£), where it is weakly superharmonic), it follows that Ut(x) is super-
harmonic as well. Thus, from equation 14 we see that limx_>0Out(x) = e -* and 
consequently that Ut(x) > 0 for all t by the maximum principle. Then since 

R(gt) = ut(x)-5(^8Ago + R(go))ut(x), (15) 

it follows that (M3,gt) is an asymptotically flat manifold with nonnegative scalar 
curvature. 

Even so, it still may not seem like gt is particularly naturally defined since the 
rate of change of gt appears to depend on t and the original metric go in equation 
13. We would prefer a flow where the rate of change of gt can be defined purely as 
a function of gt (and So perhaps), and interestingly enough this actually does turn 
out to be the case. In section 2.4. we prove this very important fact and define a 
new equivalence class of metrics called the harmonic conformai class. Then once 
we decide to find a flow of metrics which stays inside the harmonic conformai class 
of the original metric (outside the horizon) and keeps the area of the horizon £(£) 
constant, then we are basically forced to choose the particular conformai flow of 
metrics defined above. 

Theo rem 3 The function A(t) is constant in t and m(t) is non-increasing in t, for 
all t > 0. 

The fact that A'(t) = 0 follows from the fact that to first order the metric 
is not changing on £(£) (since Vt(x) = 0 there) and from the fact that to first 
order the area of £(£) does not change as it moves outward since £(£) is a critical 
point for area in (M3,gt). Hence, the interesting part of theorem 3 is proving that 
m'(t) < 0. Curiously, this follows from a nice trick using the Riemannian positive 
mass theorem, which we describe in section 2.3.. 

Another important aspect of this conformai flow of the metric is that outside 
the horizon £(£), the manifold (M3,gt) becomes more and more spherically sym­
metric and "approaches" a Schwarzschild manifold (R3 \{0}, s) in the limit as t goes 
to oo. More precisely, 

Theo rem 4 For sufficiently large t, there exists a diffeomorphism <pt between 
(M3,gt) outside the horizon £(£) and a fixed Schwarzschild manifold (R3\{0},s) 
outside its horizon. Furthermore, for all e > 0, there exists a T such that for all 
t > T, the metrics gt and <j>t(s) (when determining the lengths of unit vectors of 
(M3,gt)) are within e of each other and the total masses of the two manifolds are 
within e of each other. Hence, 

mUtl = J_ 

Theorem 4 is not that surprising really although a careful proof is reasonably-
long. However, if one is willing to believe that the flow of metrics converges to a 
spherically symmetric metric outside the horizon, then theorem 4 follows from two 
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facts. The first fact is that the scalar curvature of (M3,gt) eventually becomes 
identically zero outside the horizon £(£) (assuming (M3,g0) is harmonically flat). 
This follows from the facts that £(£) encloses any compact set in a finite amount of 
time, that harmonically flat manifolds have zero scalar curvature outside a compact 
set, that ut(x) is harmonic outside £(£), and equation 15. The second fact is that 
the Schwarzschild metrics are the only complete, spherically symmetric 3-manifolds 
with zero scalar curvature (except for the flat metric on R3). 

The Riemannian Penrose inequality, inequality 7, then follows from equation 
10 using theorems 2, 3 and 4, for harmonically flat manifolds [6]. Since asymp­
totically flat manifolds can be approximated arbitrarily well by harmonically flat 
manifolds while changing the relevant quantities arbitrarily little, the asymptoti­
cally flat case also follows. Finally, the case of equality of the Penrose inequality-
follows from a more careful analysis of these same arguments. 

2.2. Qualitative discussion 

The diagrams above and below are meant to help illustrate some of the prop­
erties of the conformai flow of the metric. The above picture is the original met­
ric which has a strictly outer minimizing horizon S0 . As t increases, £(£) moves 
outwards, but never inwards. In the diagram below, we can observe one of the 
consequences of the fact that A(t) = A0 is constant in t. Since the metric is not 
changing inside £(£), all of the horizons £(s), 0 < s < t have area A0 in (M3,gt). 
Hence, inside £(£), the manifold (M3,gt) becomes cylinder-like in the sense that it 
is laminated (meaning foliated but with some gaps allowed) by all of the previous 
horizons which all have the same area A0 with respect to the metric gt-
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(M3,öo) 

Now let us suppose that the original horizon £ 0 of (M3,g) had two compo­
nents, for example. Then each of the components of the horizon will move outwards 
as t increases, and at some point before they touch they will suddenly jump out­
wards to form a horizon with a single component enclosing the previous horizon with 
two components. Even horizons with only one component will sometimes jump out­
wards, but no more than a countable number of times. It is interesting that this 
phenomenon of surfaces jumping is also found in the Huisken-Ilmanen approach to 
the Penrose conjecture using their generalized 1/H flow. 

2.3. Proof tha t m'(t) < 0 
The most surprising aspect of the flow defined in section 2.1. is that m'(t) < 0. 

As mentioned in that section, this important fact follows from a nice trick using the 
Riemannian positive mass theorem. 

The first step is to realize that while the rate of change of gt appears to depend 
on t and go, this is in fact an illusion. As is described in detail in section 2.4., the 
rate of change of gt can be described purely in terms of gt (and So). It is also true 
that the rate of change of gt depends only on gt and £(£). Hence, there is no special 
value of t, so proving m'(t) < 0 is equivalent to proving ro'(O) < 0. Thus, without 
loss of generality, we take t = 0 for convenience. 

Now expand the harmonic function vo(x), defined in equation 13, using spher­
ical harmonics at infinity, to get 

v0(x) = -l + ^-i+o(T^) (17) 
Fl \\x\ J 

for some constant c. Since the rate of change of the metric gt at t = 0 is given by 
vo(x) and since the total mass m(t) depends on the 1/r rate at which the metric gt 
becomes flat at infinity (see equation 3), it is not surprising that direct calculation 
gives us that 

m'(0) = 2 (c -m(0) ) . (18) 

Hence, to show that ro'(0) < 0, we need to show that 

c<m(0). (19) 

In fact, counterexamples to equation 19 can be found if we remove either of 
the requirements that S(0) (which is used in the definition of vo(xj) be a minimal 
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surface or that (M3,g0) have nonnegative scalar curvature. Hence, we quickly see 
that equation 19 is a fairly deep conjecture which says something quite interesting 
about manifold with nonnegative scalar curvature. Well, the Riemannian positive 
mass theorem is also a deep conjecture which says something quite interesting about 
manifolds with nonnegative scalar curvature. Hence, it is natural to try to use the 
Riemannian positive mass theorem to prove equation 19. 

Thus, we want to create a manifold whose total mass depends on c from 
equation 17. The idea is to use a reflection trick similar to one used by Bunting and 
Masood-ul-Alani for another purpose in [11]. First, remove the region of M3 inside 
S(0) and then reflect the remainder of (M3,g0) through S(0). Define the resulting 
Riemannian manifold to be (M3,g0) which has two asymptotically flat ends since 
(M3,g0) has exactly one asymptotically flat end not contained by S(0). Note that 
(M3,g0) has nonnegative scalar curvature everywhere except on S(0) where the 
metric has corners. In fact, the fact that S(0) has zero mean curvature (since it 
is a minimal surface) implies that (M3,g0) has distributional nonnegative scalar 
curvature everywhere, even on S(0). This notion is made rigorous in [6]. Thus we 
have used the fact that S(0) is minimal in a critical way. 

Recall from equation 13 that vo(x) was defined to be the harmonic function 
equal to zero on S(0) which goes to — 1 at infinity. We want to reflect vo(x) to be 
defined on all of (M3,g0). The trick here is to define vo(x) on (M3,g0) to be the 
harmonic function which goes to —1 at infinity in the original end and goes to 1 at 
infinity in the reflect end. By symmetry, VQ(X) equals 0 on S(0) and so agrees with 
its original definition on (M3,g0). 

The next step is to compactify one end of (M3, g0). By the maximum principle, 
we know that VQ(X) > —1 and c > 0, so the new Riemannian manifold (M3, (vo(x) + 
l)49o) does the job quite nicely and compactifies the original end to a point. In 
fact, the compactified point at infinity and the metric there can be filled in smoothly 
(using the fact that (M3,g0) is harmonically flat). It then follows from equation 15 
that this new compactified manifold has nonnegative scalar curvature since vo(x) +1 
is harmonic. 

The last step is simply to apply the Riemannian positive mass theorem to 
(M3, (vo(x) + l)4go)- R is not surprising that the total mass rô(0) of this manifold 
involves c, but it is quite lucky that direct calculation yields 

m(0) = - 4 ( c - m ( 0 ) ) , (20) 

which must be positive by the Riemannian positive mass theorem. Thus, we have 
that 

ro'(0) = 2(c-m(0)) = -^m(O) < 0. (21) 

2.4. The harmonic conformai class of a metr ic 

As a final topic which is also of independent interest, we define a new equiv­
alence class and partial ordering of conformai metrics. These new objects provide 
a natural motivation for studying conformai flows of metrics to try to prove the 
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Riemannian Penrose inequality. Let 

92 = u(x)^gi, (22) 

where #2 and gi are metrics on an n-dimensional manifold Mn, n > 3. Then we 
get the surprisingly simple identity that 

Agi(u<P) = u^Ag2(<P) + <pAgi(u) (23) 

for any smooth function <p. This motivates us to define the following relation. 

Definition 1 Define 

if and only if equation 22 is satisfied with Agi (u) = 0 and u(x) > 0. 

Then from equation 23 we get the following lemma. 

Lemma 1 The relation ~ is reflexive, symmetric, and transitive, and hence is an 
equivalence relation. 

Thus, we can define the following equivalence class of metrics. 

Definition 2 Define 
[9]H = {g I g ~ g} 

to be the harmonic conformai class of the metric g. 

Of course, this definition is most interesting when (Mn,g) has nonconstant positive 
harmonic functions, which happens for example when (Mn,g) has a boundary. 

Also, we can modify the relation ~ to get another relation >. 

Definition 3 Define 

92 >gi 

if and only if equation 22 is satisfied with —Agi(u) > 0 and u(x) > 0. 

Then from equation 23 we get the following lemma. 

Lemma 2 The relation > is reflexive and transitive, and hence is a partial order­
ing. 

Since y is defined in terms of superharmonic functions, we will call it the superhar­
monic partial ordering of metrics on Mn. Then it is natural to define the following 
set of metrics. 

Definition 4 Define 

\d]s = {S I 9h9}-

This set of metrics has the property that if g £ [g]s, then [g]s C [g]s 
Also, the scalar curvature transforms nicely under a conformai change of the 

metric. In fact, assuming equation 22 again, 

R(g2) = u(x)~(-^) (^cnAgi + R(gij) u(x) (24) 

where cn = _9 '. This gives us the following lemma. 
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Lemma 3 The sign of the scalar curvature is preserved pointwise by ~ . That is, if 
92 ~ gi, then sgn(R(g2)(x)) = sgn(R(gi)(xj) for all x £ Mn. Also, if g2 > gi, and 
pi has non-negative scalar curvature, then g2 has non-negative scalar curvature. 

Hence, the harmonic conformai equivalence relation ~ and the superharmonic 
partial ordering > are useful for studying questions about scalar curvature. In 
particular, these notions are useful for studying the Riemannian Penrose inequal­
ity which concerns asymptotically flat 3-manifolds (M3,g) with non-negative scalar 
curvature. Given such a manifold, define m(g) to be the total mass of (M3,g) and 
A(g) to be the area of the outermost horizon (which could have multiple compo­
nents) of (M3,g). Define P(g) = "p£L to be the Penrose quotient of (M3,g). 

y'Ma) 
Then an interesting question is to ask which metric in [g]$ minimizes P(g). 

Section 2. of this paper can be viewed as an answer to the above question. We 
showed that there exists a conformai flow of metrics (starting with g0) for which the 
Penrose quotient was non-increasing, and in fact this conformai flow stays inside 
[go]s- Furthermore, gt2 £ [gtt]s for all t2 > t\ > 0. We showed that no matter 
which metric we start with, the metric converges to a Schwarzschild metric outside 
its horizon. Hence, the minimum value of P(g) in [g]$ is achieved in the limit by-
metrics converging to a Schwarzschild metric (outside their respective horizons). 

In the case that g is harmonically flat at infinity, a Schwarzschild metric (out­
side the horizon) is contained in [g]s- More generally, given any asymptotically flat 
manifold (M3,g), we can use R 3 \B r (0) as a coordinate chart for the asymptotically-
flat end of (M3,g) which we are interested in, where the metric #y approaches #y 
at infinity in this coordinate chart. Then we can consider the conformai metric 

C x 4 

gc={1 + W\)9 (25) 

in this end. In the limit as C goes to infinity, the horizon will approach the coordi­
nate sphere of radius C. Then outside this horizon in the limit as C goes to infinity, 
the function (1 + ßr) will be close to a superharmonic function on (M3,g) and the 
metric gc will approach a Schwarzschild metric (since the metric g is approach­
ing the standard metric on R 3 ) . Hence, the Penrose quotient of gc will approach 
(ltm)^1/2, which is the Penrose quotient of a Schwarzschild metric. 

As a final note, we prove that the first order o.d.e. for {gt} defined in equations 
11, 12, 13, and 14 is naturally defined in the sense that the rate of change of gt is a 
function only of gt and not of go or t. To see this, given any solution gt = Ut(x)4go 
to equations 11, 12, 13, and 14, choose any s > 0 and define üt(x) = ut(x)/us(x) 
so that 

gt = ut(xfgs (26) 

and us(x) = 1. Then define vt(x) such that 

AgBvt(x) = 0 outside £(£) 
vt(x) = 0 on £(f) (27) 

fmia^ooW^a:) = _ e - (* -») 
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and vt(x) = 0 inside £(£). Then what we want to show is 

üt(x) = 1+ / vr(x)dr (28) 
J s 

To prove the above equation, we observe that from equations 23, 27, and 13 it 
follows that 

vt(x) = vt(x)us(x) (29) 

,us(x) = e _ s . Hence, since 

ut(x) = us(x) + / vr(x)dr (30) 
Ja 

by equation 14, dividing through by us(x) yields equation 28 as desired. Thus, we 
see that the rate of change of gt (x) at t = s is a function of vs (x) which in turn is 
just a function of gs(x) and the horizon £(s). Hence, to understand properties of 
the flow we need only analyze the behavior of the flow for t close to zero, since any-
metric in the flow may be chosen to be the base metric. 
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Abstract 

In recent years, there are many progress made in Kahler geometry. In 
particular, the topics related to the problems of the existence and uniqueness 
of extremal Kahler metrics, as well as obstructions to the existence of such 
metrics in general Kahler manifold. In this talk, we will report some recent 
developments in this direction. In particular, we will discuss the progress 
recently obtained in understanding the metric structure of the infinite di­
mensional space of Kaehler potentials, and their applications to the problems 
mentioned above. We also will discuss some recent on Kaehler Ricci flow. 
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In the last few years, we have witnessed a rapid progress in Kahler geometry. 
In particular, the topic related to the existence, to the uniqueness of extremal Kahler 
metrics, and to obstructions to the existence of such metrics. In this talk, we will 
give a brief survey of these exciting progress made in this direction. 

0.1. Some background 
Let (M,OJ) be a polarized n-dimensional compact Kahler manifold, where OJ is 

a Kahler form on M. In local coordinates z\, • • • ,zn, we have 
n 

OJ = sf^i ^2 9fjdz% Adzj > 0, 

where {gn} is a positive definite Hermitian matrix function. The Kahler condition 
requires tha t a; is a closed positive ( l , l )-form. The Kahler metric corresponding to 
OJ is given by 

n 

9u = Yl 9aßdza ®dz$. 
a,/3=l 
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For simplicity, in the following, we will often denote by OJ the corresponding Kahler 
metric. The Kahler class of w is its cohomology class [OJ] in H2(M, R). It follows 
from the Hodge-Dolbeault theorem that any other Kahler metric in the same Kahler 
class is of the form 

ï£ > 0 
. . -, dzidzi 
*J=I 

for some real valued function tp on M. 
Given a Kahler metric OJ, its volume form is 

—^ = (>/=!)" det ( W ) dz1 A dzT A • • • A dzn Adz". 

Its Ricci (curvature) form is: 

Ric(oj) = y/^ÏRfj dwi dwj = —y^ïdd log det ojn. 

Note also that R(OJ) = g^Rfj corresponds to one half times the scalar curvature 
as it is usually defines in Riemannian geometry. We say that the first Chern class 
of M is positive of negative definite, if there exists a real valued function ip on 

fi'2 <*> 

M such that Rß + dw,ßW. is, respectively, positive of negative definite. A Kahler 
metric is Kähler-Einstein, if the Ricci form is proportional to the Kahler form by 
a constant factor. A Kahler metric is called extremal in the sense of E. Calabi [3], 

if it is a critical point of the functional / \Ric(oj)\2 ojn, or, equivalently, if the 
J M 

complex gradient vector field of the scalar curvature function ga/3 (OJ) d^' ^f- is a 
holomorphic vector field. 

0.2. Existence of extremal Kahler metrics 
It is well known that a Kähler-Einstein metric satisfies a Monge-Ampere equa­

tion 
OJ^ 

log det —- = —A tp+ hu 
0Jn 

where [Ric(ojj] = X [OJ] and 

Ric(oj) — À OJ = idd hw. 

In Calabi's work in the 1950s, he made conjectures about the existence of Kähler-
Einstein metrics on compact Kahler manifolds with definite first Chern class. In 
1976, Aubin and Yau independently obtained existence when the first Chern class 
is negative. Around the same time, Yau proved also the existence of a Kähler-
Einstein metric when the first Chern class vanishes. This is a celebrated work; and 
any Kahler manifold admit such a metric is called "Calabi-Yau" manifold. The 
positive case remains open, but significant progress has been made in the last two 
decades. G. Tian proved in [29] the existence of Kähler-Einstein metrics on any-
complex surface with positive first Chern class and reductive automorphism group. 
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In 1997, Tian [30] proved that existence of Kähler-Einstein metrics with positive 
scalar curvature is equivalent to an analytic stability. It remains open how this an­
alytic stability follows from certain algebraic stability in geometric invariant theory. 

The construction of complete non-compact Calabi-Yau manifolds has also en­
joyed a good deal of success through the work of Calabi, Tian and Yau, Anderson, 
Kronheimer, LeBrun, Joyce and many others. These non-compact metrics are re­
lated to manifolds with G2 and Spin(7) holonomy, which are important in M-theory. 

A lot of effort has also gone into constructing special or explicit examples of 
Kähler-Einstein metrics and extremal Kahler metrics. The same is true for hyper-
kaehler metrics as well. Counter examples to the existence of extremal metrics have 
given by Levine, Burns-De Bartolomeis, and LeBrun. 

There has not been much progress made on the existence of extremal metrics 
in general. One of the possible reasons is the lack of maximum principle for non­
linear equations of 4th order. A general existence result, even in complex surfaces, 
will be highly interesting. 

0.3. Obstructions 
In 1983, A. Futaki [19] introduced a complex character T(X, [OJ]) on the com­

plex Lie algebra of all holomorphic vector fields X in M, depending only on the 
Kahler class [OJ], and show that its vanishing is a necessary condition for the exis­
tence of a Kähler-Einstein metric on the manifold. In 1985, E. Calabi[4] generalized 
Futaki's result to cover the more general case of any extremal Kahler metric: the 
generalized Futaki invariant of a given Kahler class is zero or not, according to 
whether any extremal metric in that class has constant scalar curvature or not. S. 
Bando also obtained some generalizations of the Futaki invariant. More recently, 
a finite family of obstructions was introduced in [14]. For any holomorphic vector 
field X inducing the trivial translation on the Albanese torus there exists a complex 
valued potential function 9x,u, uniquely determined up to additive constants, de­
fined by the equation: LXOJ = \fi^ïdd9x( Here Lx denote the Lie derivative along 
vector field X.). Now, for each k = 0,1, • • -n, define the functional c^sk(X,oj) by1 

%(X,oj) = (n^k) [ exojn 

JM 

+ ((k+ l)Aöx R icM* A w""* -(n-k) Bx Ric(u;)fc+1 A a;"-*-1) . 
J M ^ ' 

Here and elsewhere, Aw denotes the one half times the Laplacian-Beltrami operator 
of the induced Riemannian structure OJ. 

The next theorem assures that the above integral gives rise to a holomorphic 
invariant. 

1This is a formula for canonical Kahler class. For general Kahler class, see [14]. 
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Theo rem 0.1. [14] The integral c^sk(X,oj) is independent of choices of Kahler met­
rics in the Kahler class [OJ], that is, c^sk(X,oj) = c^sk(X,oj') so long as the Kahler 
forms OJ and OJ' represent the same Kahler class. Hence, the integral c^sk(X,oj) is 
a holomorphic invariant, which will be denoted by c^k(X, [OJ]). Note that % is the 
usual Futaki invariant. 

0.4. Uniqueness of extremal Kahler metrics 
We now turn to the uniqueness of extremal metrics. In the 1950s, Calabi used 

the maximum principle to prove the uniqueness of Kähler-Einstein metrics when 
the first Chern class is non-positive. In 1987, Mabuchi introduced the "K-energy", 
which is essentially a potential function for the constant scalar curvature metric 
equation. Using the K-energy, he and Bando [2] proved that the uniqueness of 
Kähler-Einstein metric up to holomorphic transformations when the first Chern 
class is positive. Recently, Tian and X. H. Zhu proved that the uniqueness of 
Kähler-Ricci Soliton on any Kahler manifolds with positive first Chern class. 

Theo rem 0.2. [31], [32] The Kahler Ricci solitoti of a Kahler manifold M is 
unique modulo the automorphism subgroup Autr(M); more precisely, if UJI,UJ2 are 
two Kahler Ricci solitons with respect to a holomorphic vector field X, i.e., they 
satisfies 

Ric(oJi) — oji = £x(oJi), where i = 1,2. (0.1) 

Then there are automorphism a in Aut°(M) and r in Autr(M) such that a^X £ 
r)r(M) and a*0J2 = T*a*oJi, where m(M) denotes the Lie algebra of Autr(M). In 
fact, a^X lies in the center ofnr(M). Moreover, this vector field X is unique up 
to conjugations. 

Following a program of Donaldson (which will be explained in Subsection 0.7), 
we proved in 1998 [10] that the uniqueness for constant scalar curvature metric in 
any Kahler class when Ci < 0 along with some other interesting results: 

Theo rem 0.3. [10] / / the first Chern class is strictly negative, then the extremal 
Kahler metric is unique in each Kahler class. Moreover, the K energy must have a 
uniform lower bound if there exists an extremal Kahler metric in that Kahler class. 

Very recently, Donaldson proved a beautiful theorem which states 

Theo rem 0.4. [18] For algebraic Kahler class with no non-trivial holomorphic 
vector field, the constant scalar curvature metric is unique. 

The two theorems overlaps in a lot cases, but mutually non-inclusive. 

0.5. Lower bound of the K energy 
According to T. Mabuchi and S. Bando[2], the existence of a lower bound of 

the K energy is a necessary condition for the existence of Kähler-Einstein metrics 
in the first Chern class. Tian [30] showed that in a Kahler manifold with positive 
first Chern class and no non-trivial holomorphic fields, the Kähler-Einstein metric 
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exists if and only if the Mabuchi functional is proper. When the first Chern class is 
negative, making use of Tian's explicit formulation [30], a simple idea in [9] reduces 
a lower bound of the K energy to the existence of critical point for the following 
convex functional: 

n-l 

J(tp) = - £ ( p + 1 ) i ( n _ j > _ 1 ) ! Jv V Ricci(ojo) A a,?"*"1 (ddtpf, 

where Ricci(oJo) < 0. In complex surfaces, we solves this existence problem com­
pletely, which leads to the following interesting result: 

Theo rem 0.5. [9] Suppose dimV = 2 and Ci(V) < 0. For any Kahler class [OJQ], 

if 2 \u p [wo] + [Ci(V)] > 0, then the K energy has a lower bound in this 
Kahler class. 

It will be very interesting to generalize this result to higher dimensional Kahler 
manifold. 

0.6. Donaldson's program 

Mabuchi defined in [25] a Weil-Petersson type metric on the space of Kahler 
potentials in a fixed Kahler class. Consider the space of Kahler potentials 

% = {tp | OJV = OJ + Bdtp > 0, on M}. 

A tangent vector in % is just a real valued function in M. For any vector 
ip £ Tv%, we define the length of this vector as: 

W'PWl = Ifi'P2 d ß v -

It is easy to see that the geodesic equation for this metric is 

* (t) 9* dwa dwß ~ ' 

pi2 

where gaß = goaß + dw ßw^ > 0. It is first observed (cf. Semmes S. [27] )that one 
can complexified the t variable, denoted it by w„+i. Then, the geodesic equation 
becomes a homogenous complex Monge-Ampere equation: 

/ f)2 \ 
d e t % i] + 7 T = = 0 , on S x M. (0.2) 

V dwißwj J {n+1){n+1) 

Here S = [0,1] x S1. It turns out that we don't need to restrict to this special case. 
For any Riemann surface S with boundary, and for any C°° map tpo from 9S to %, 
one can always ask the following existence problem: 
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Question 0.6. (Donaldson[16])For any smooth map tpo : 9S —t %, does there 
exists a smooth map tp : S —t % which satisfies the Homogenous Monge-Ampere 
equation 0.2 such that tp = tpo in 9S ? 

Theorem 0.7. (X. Chen [10]) For any smooth map tpo : 9S —t %, there always 
exists a C1'1 map tp : S —t'H which solves the Homogenous Monge-Ampere equation 
0.2 such that tp = tpo in 9S . 

An important conjecture by Donaldson in [16] was that the space of Kahler 
potentials is a metric space which is path-connected with respect to this Weil-
Petersson metric. This conjecture was complete verified here. 

Theorem 0.8. [10] The space % is a genuine metric space: the minimal distance 
between any two Kahler metrics is realized by the unique C1'1 geodesic; and the 
length of this geodesic is positive. 

Collaborating with E. Calabi, we proved the following 

Theorem 0.9. [5] The space H in a fixed Kahler class is a non-positively curved 
space in the sense of Alexandrov: Suppose A, B, C are three smooth points in % 
and P\ is a geodesic interpolation point for 0 < X < 1 : the distance from P to B 
and C are respectively Xd(B, C) and (1 — X)d(B, c) 2. Then the following inequality 
holds: 

d(A,Px)
2 < (1 - X)d(A,B)2 + Xd(A,C)2 - A • (1 - X)d(B,C)2. 

Theorem 0.10. [5] Given any two Kahler potentials tpi andtp2 in % and a smooth 
curve tp(t),0 <t<l which connects them in %. Suppose tp(s,i) are the family of 
curves under the Calabi flow and suppose that L(s) is the length of this curve at 
time s. Then 

where D is the 2nd order Lichernowicz operator. For any smooth function f in 
n 

V, D(f) = \ J f}aßdza <g> dz^ where f}(Xß is the second covariant derivatives of 
a,/3=l 

/• 

0.7. The Calabi flow and the Kahler Ricci flow 
In a sequence of papers [11], and [14] [12], we develop some new techniques in 

attacking the convergence problems for the geometric flow, in particular, the Calabi 
flow and the Kahler Ricci flow. The main ideas are to find a set of new functionals 
which will be preserved (or decreased) under the flow with a uniform lower bound, 
then using the principle of concentration to attack the compactness/convergence 
problem. Following our work [11], M. Struwe [28] gave a more concise proof on 
Ricci flow and Calabi flow in Riemann surface. This simple idea of using integral 
estimates in the flow should be able to be applied in other geometric flows. 

2 ln affine space, this means P\ = A B + (1 — A) C. 
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0.7.1. The Calabi flow on Riemann surfaces 

The Calabi flow is the gradient flow of the K energy and it is a 4th order 
parabolic equation, proposed by E. Calabi in 1982. Namely, for a given Kahler 
manifold (M, [OJ]), the Calabi flow was defined by 

^ ß = R(OJ,„) -£— / R(OJ) ojn. 

dt v ^ vol(M)JM
 v ; 

The local existence for this flow is known, while very little is known for its long 
term existence since this is a 4th order flow. The only known result is in Riemann 
surface where Chrusciel proved that the flow converges exponentially fast to a unique 
constant scalar curvature metric. In 1998 [11], we gave a new proof based on some 
geometrical integral estimate and concentration compactness principle. Now the 
challenging question is: 

Question 0.11. Does the Calabi flow exists globally for any smooth initial metric? 

0.7.2. The Kahler Ricci flow 

A Kahler Ricci flowis defined by 

d_ 
Ft 

OJV = OJV — Ric(oJv). 

This flow was first studied by H. D. Cao , following the work of R. Hamilton on 
the Ricci flow3. Cao[6] proved that the flow always exists for all the time along 
with some other interesting results. It was proved by S. Bando [1] for 3-dimensional 
Kahler manifolds and by N. Mok [26] for higher dimensional Kahler manifolds that 
the positivity of bisectional curvature is preserved under the Kahler Ricci flow. 
The main issue here is the global convergence on manifold with positive bisectional 
curvature. In the work with Tian, we found a set of new functionals {Ek}^=Q 

on curvature tensors such that the Ricci flow is the gradient like flow of these 
functionals. On Kähler-Einstein manifold with positive scalar curvature, if the 
initial metric has positive bisectional curvature, we can prove that these functionals 
have a uniform lower bound, via the effective use of Tian's inequality. Consequently, 
we are able to prove the following theorem: 

Theorem 0.12. [14],[12] Let M be a Kähler-Einstein manifold with positive scalar 
curvature. If the initial metric has nonnegative bisectional curvature and positive 
at least at one point, then the Kahler Ricci flow will converge exponentially fast to 
a Kähler-Einstein metric with constant bisectional curvature. 

The above theorem in complex dimension 1 was proved first by Hamilton [21]. 
B. Chow [15] later showed that the assumption that the initial metric has positive 

3 The Ricci flow was introduced by R. Hamilton [20] in 1982. There are extensive study in this 
subject (cf. [22]) since his famous work in 3-dimensonal manifold with positive Ricci curvarure (cf. 
[22] for further references). Another important geometric flow is the so called "mean curvature 
flow. " The codimension 1 case was studied extensively by G. Huisken and many others. Recently, 
there are some interesting progress made in codimension 2 case (cf. [7] [24] for further references). 



280 Xiuxiong Chen 

curvature in S2 can be removed since the scalar curvature will become positive after 
finite time anyway. 

Corollary 0.13. The space of Kahler metrics with non-negative bisectional curva­
ture is path-connected. 

Moreover, we can carry over the proof of Theorem 0.12 to a more general case 
of Kahler orbifolds, for which we will not go into details here. Now the definition 
of these functionals Ek = E® — Jk (k = 0,1, • • • ,n): 

Definition 0.14. For any k = 0,1, • • • ,n, we define a functional E® on % by 

i=0 

where 

and 

ck = T71T7V / hu, I ^2 Ric(w)* A o ) ' * ) A OJ 
1 

voï(M) JM 

Ric(oj) - OJ = y/=îddhu, and [ (eh- - l)ojn = 0. 
J M 

Definition 0.15. For each k = 0,1,2, • • • ,n — l, we will define Jk:l0 as follows: Let 
tp(t) (t £ [0,1]) be a path from 0 to tp in %, we define 

Put Jn = 0 for convenience in notations. 

Note that E0 is the well known K energy function introduced by T. Mabuchi 
in 1987. Direct computations lead to 

Theorem 0.16. For any k = 0,1, • • • ,n, we have 

dEk - k+1 f AJ tWicK/Ac^-
dt vol(M) JM

 v \dt 

Here {tp(i){ is any path in %. 

Note that under the Kahler Ricci flow, these functionals essentially decreases! 
We then prove the derivative of these functionals along a curve of holomorphic 
automorphisms give rise to a set of holomorphic invariants c^sk(k = 0,1, • • • , n) (cf. 
Theorem 0.1). In case of Kähler-Einstein manifolds, all these invariants vanishes. 
This give us freedom to re-adjust the flow so that the evolving Kahler potentials 
are perpendicular to the first eigenspace of a fixed Kähler-Einstein metric. Then 
we will be able to show that the evolved volume form has a uniform lower bound. 
From this point on, the boot-strapping process will give us necessary estimates to 
obtain global convergence. 
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0.8. Some new result with G. Tian 
In 2001, Donaldson proved the following 

Theorem 0.17. [17] (Openness) For any smooth solution to the geodesic equation 
with a disc domain, there are always exists a smooth solution to the geodesic equation 
if we perturb the boundary data in a small open set (of the given boundary data). 

This is somewhat surprising result since it is very hard to deform any solution 
of a homogenous Monge-Ampere equation even locally. However, Donaldson was 
able to make clever use of the Fredholm theory of holomorphic discs with totally real 
boundary in his proof. Then the problem of closed-ness becomes very important in 
light of this theorem. Tian and I are able to establish the closed-ness in this case. 

Theorem 0.18. [13] (Closure property) The defamation of geodesic solution in the 
preceding theorem is indeed closed, provided we allow solution to be smooth almost 
everywhere. 

This is a deep theorem and we will not go into detail here due to the expository-
nature of this talk. However, this theorem, along with the ideas of proof, shall have 
implication in both geometry and other Monge-Ampere type equation in the future. 

References 
[i 

[2 

[3; 

[4; 

[5; 

[6; 

[7; 

[8" 

[9 

[10; 

[H 

S. Bando. On the three dimensional compact Kahler manifolds of nonnegative 
bisectional curvature. J. D. G., 19:283^297, 1984. 
S. Bando and T. Mabuchi. Uniquness of Einstein Kahler metrics modulo con­
nected group actions. In Algebraic Geometry, Advanced Studies in Pure Math. , 
1987. 
E. Calabi. Extremal Kahler metrics. In Seminar on Differential Geometry, 
volume 16 of 102, 259^290. Ann. of Math. Studies, University Press, 1982. 
E. Calabi. Extremal Kahler metrics, II. In Differential geometry and Complex 
analysis, 96^114. Springer, 1985. 

E. Calabi and X. X. Chen. Space of Kahler metrics (II), 1999. to appear in 
J .D.G. 
H. D. Cao. Deformation of Kahler metrics to Kähler-Einstein metrics on com­
pact Kahler manifolds. Invent. Math., 81:359^372, 1985. 
J.Y. Chen and J.Y. Li. mean curvature flow of surfaces in 4-manifolds, 2000. 
Adv. in Math, (to appear). 
J.Y. Chen and J.Y. Li. quaternionic maps between hyperkähler manifolds, 2000. 
J. D. G. 
X. X. Chen. On lower bound of the Mabuchi energy and its application. In­
ternational Mathematics Research Notices, 12, 2000. 
X. X. Chen. Space of Kahler metrics. Journal of Differential Geometry,, 
56:189^234, 2000. 
X. X. Chen. Calabi flow in Riemann surface revisited: a new point of views. 
(6):276^297, 2001. "International Mathematics Research Notices". 



282 Xiuxiong Chen 

[12] X. X. Chen and G. Tian. Ricci flow on Kähler-Einstein manifolds, 2000. Sub­
mitted to Annals of Mathematics. 

[13] X. X. Chen and G. Tian. Space of Kahler metrics (III), 2000. preprint. 
[14] X. X. Chen and G. Tian. Ricci flow on complex surfaces, 2002. Inventiones 

mathemticae. 
[15] B. Chow. The Ricci flow on the 2-sphere. J. Diff. Geom., 33:325^334, 1991. 
[16] S.K. Donaldson. Symmetric spaces, kahler geometry and Hamiltonian dynam­

ics. Amer. Math. Soc. Transi. Ser. 2, 196, 13^33, 1999. Northern California 
Symplectic Geometry Seminar. 

[17] S.K. Donaldson. Holomorphic Discs and the complex Monge-Ampere equation, 
2001. to appear in Journal of Sympletic Geometry. 

[18] S.K. Donaldson. Scalar curvature and projective embeddings, I, 2001. to appear 
in Journal of Differential Geometry. 

[19] A. Futaki. An obstruction to the existence of Einstein Kahler metrics. Inv. 
Math. Fase, 73(3):437^443, 1983. 

[20] R. Hamilton. Three-manifolds with positive Ricci curvature. J. Diff. Geom., 
17:255^306, 1982. 

[21] R. Hamilton. The Ricci flow on surfaces. Contemporary Mathematics, 71:237^ 
261, 1988. 

[22] R. Hamilton. The formation of singularities in the Ricci flow, volume IL In­
ternat. Press, 1993. 

[23] J.Y. Li J.Y. Chen and G. Tian. two dimensional graphs moving by mean 
curvature flow, 2000. preprint. 

[24] Wang M. T. Mean curvature flow of surfaces in einstein four-manifolds. J. D. 
Geometry, 57(2):301^338, 2001. 

[25] T. Mabuchi. Some Sympletic geometry on compact kahler manifolds I. Osaka, 
J. Math., 24:227^252, 1987. 

[26] N. Mok. The uniformization theorem for compact Kahler manifolds of non-
negative holomorphic bisectional curvature. J. Differential Geom., 27:179^214, 
1988. 

[27] S. Semmes. Complex monge-ampere and sympletic manifolds. Amer. J. Math., 
114:495^550, 1992. 

[28] M. S. Struwe. Curvature flows on surfaces, August 2000. priprint. 
[29] G. Tian. On Calabi's conjecture for complex surfaces with positive first chern 

class. Invent. Math., 101(1):101-172, 1990. 
[30] G. Tian. Kähler-Einstein metrics with positive scalar curvature. Invent. Math., 

130:1^39, 1997. 
[31] G. Tian and X. H. Zhu. Uniqueness of kähler-Ricci Soliton, 1998. priprint. 
[32] G. Tian and X. H. Zhu. A new holomorphic invariant and uniqueness of Kähler-

Ricci Soliton, 2000. priprint. 



ICM 2002 • Vol. II • 283^291 

On the Sehrödinger Flows 

Weiyue Ding* 

Abstract 

We present some recent results on the existence of solutions of the Sehrödinger 
flows, and pose some problems for further research. 
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1. Introduction 
Recently the research on so-called Sehrödinger flow (or Sehrödinger map [l]-[4]) 

has been carried out by several authors. This is an infinite-dimensional Hamiltonian 
flow defined on the space of mappings from a Riemannian manifold (M,g) into a 
Kahler manifold (N,J,h), where g is the Riemannian metric on M, and h is the 
Kahler metric on N, with J being the complex structure on N. This flow is defined 
by the following equation 

ut = J(U)T(U), (1.1) 

where T(U) is the so-called tension field well-known in the theory of harmonic maps. 
In local coordinates, T(U) is given by 

-, • f)ii^ ßu 
T(U)1 = A M u ' - gaßY)k(u)" ' R. x ' tf }kX 'dxa dxß 

Here AM is the Laplace-Beltrami operator on M and Y%-k are the Christoffel symbols 
of the Riemannian connection on N. Obviously, the Sehrödinger flows preserves the 
energy E(u) of mapping u, i.e. E(u(tj) = E(u(0j), where 

'Peking Univ. and AMSS, CAS, China. E-mail: dingwy@math.pku.edu.cn 
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Sehrödinger flows are related to various theories in mechanics and physics. A 
well-known and important example is the so-called Heisenberg spin chain system 
(also called ferromagnetic spin chain system [7]). This is just the Sehrödinger flow 
into S2. Consider S2 as the unit sphere in R3, then the equation for the system is 
given by 

ut = u x Au. 

Note that, for a mapping u from M into S2, 

J(u) = ux : TUS" —• TUS" 

is the standard complex structure on S2, and the tension field of the map u into 
S2 is given by T(U) = Au + |V«|2«. So, we have u x Au = J(U)T(U). Another 
interesting example of the Sehrödinger flow is the anisotropic Heisenberg spin chain 
system, i.e. the Sehrödinger flow into Poincaré disk H( — l). 

Comparing to other geometric nonlinear evolutionary systems, such as the heat 
flow of harmonic maps (parabolic system) and wave maps (hyperbolic system), the 
study of Sehrödinger flows is still at the beginning stage. There are some remarkable 
results on the existence of solutions for certain specific cases. E.g. for the Heisenberg 
spin chain system (N = S2), Zhou et. al. [9] proved the global existence for M = S1, 
and Sulem et. al. [10] proved the local existence for M = Rm. There are some 
more recent works, see [1], [3] and [11]. For the general case, however, it turns out 
that even local existence is hard to prove. In this respect, a recent result obtained 
by Youde Wang and this author ([4]) states 

Theorem Let (M, g) be a closed Riemannian manifold of dimension m, and 
let (N, J, h) is a closed Kahler manifold. If mo is the smallest integer greater than 
ro/2 (i.e. mo = [m/2] + 1), and «o £ Wk,2(M,N) for any k > mo + 3, then 
the initial value problem for (1.1) with initial value «o has a unique local solution. 
Moreover, if uo £ C°°(M,N), the local solution is C°° smooth. 

We remark that, the maximal existence time of the local solution in the above 
result, depends only on the Wm o + 1-norm of the initial map «o for any k. This is 
why we can get local existence in the C°° case. Also, for the existence part, the 
regularity of «o can be lowered to Wk'2 with k > mo + 1, however we do not know 
how to get the uniqueness if k < mo + 3. 

In the following, we give a description of the proof of the above Theorem in 
Section 2 and 3. Then, in Section 4, we pose some important problems for future 
research of the Sehrödinger flows. 

2. Some inequalities for Sobolev section norms of 
maps 

Let n : E —y M be a Riemannian vector bundle over M. Then we have the 
bundle APT*M ® E —y M over M which is the tenser product of the bundle E 
and the induced p-form bundle over M, where p = 1,2,• • • ,dim(Af). We define 
F(A*>T*M ® E) as the set of all smooth sections of hPT*M ®E —y M. There 
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exists a induced metric on SPT*M®E —y M from the metric on T*M and E such 
that for any si, s2 £ Y(i\PT*M ® E) 

(si,s2)= ^2 (si(eh,---,eip),s2(eh,---,eip)), 
Ìl<Ì2<---<Ìp 

where {e,} is an orthonormal local frame of TM. We define the inner product on 
Y(APT*M®E) as follows 

(si,s2)= / {si,s2)(x)dM = / (si,s2)(x) * 1. 
J M J M 

The Sobolev space L2(M,A*>T*M ® E) is the completion of F(A*>T*M ® E) with 
respect to the above inner product (•,•), we may also define analogously the Sobolev 
spaces Hk'r(M,APT*M ® E) or Hk>r(M,E). Yet V be the covariant differential 
induced by the metric on E, then we can take the completion of the smooth sections 
of E in the norm, 

|s|U,r = ||s||ff*.-(M,£;) = (52 / |V's | rdM) 
. n J M 

We call the above Sobolev spaces as the bundle-valued Sobolev spaces. 
In [4] We establish the following interpolation inequality for sections on vector 

bundles, which was proved for functions on RTO by Gagliardo and Nirenberg, and 
for functions on Riemannian manifolds by Aubin ([8]). 

Lemma 2.1 Let M be a compact Riemannian manifold with dim(M) = m and 
E be a Riemannian vector bundle over M. Let q, r be real numbers 1 < q, r < oo and 
j,m integers 0 < j < n. Then there exists a constant C(M) depending m,n,j,q,r 
and a, and on M, but not depending on the choice of metrics on E, such that for 
alls£C°°(E): 

where 

\^s\\LP<C(M)\\s\\a
Hn.4s\\L,a, (2.1 

1 3 / I n\ ., , 1 
- = ^+a[ + l - o - , 
p m \r mj q 

for all a in the interval - < a < 1, for which p is non-negative. If r = -^ ^ 1, 
then the above interpolation inequality is not true for a = 1. 

The so-called Sobolev section norms of mapping u £ C°°(M,N), where M is 
a closed Riemannian manifold, is defined as the Sobolev section norms of V« where 
V« is regarded as a section on the bundle u*(TN) ® T*M. Then with s = Vu, we 
have by Lemma 2.1, 

| |V i+1«||Lp < C7||V«||^„| |V«||i7Q , (2.2) 

where the constants in (2.1) satisfy the conditions of Lemma 2.1. Obviously, the 
Hk'2 norm of maps u £ C°°(M, N) is nonlinear with respect to u. 
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In order to prove Theorem we need to consider the problem of comparing the 
Wk'2 norm with Hk'2 norm of maps u £ C°°(M, N) (i.e. Sobolev section norm). We 
assume that M is a closed Riemannian manifold and N is a compact Riemannian 
manifold with or without boundary. It will be convenient to imbed N isometrically 
into some Euclidean space RK, and consider N as a compact submanifold of RK. 
Then the map u can be represented as u = (u1,- • • ,uK) with u% being globally-
defined functions on M. The we have 

k 

\\u\\2
Wk,2 = 5 ^ H ^ H i 2 ' 

ì=0 

where 

WD'iiWh = 52 nDaUi L2, 

and D denotes the covariant derivative for functions on M. The Hk'2 norm of 
u is defined similarly, only we need to replace D by V, where V is the covariant 
derivative for sections of the bundle u*(TN) over M ( For simplicity we also write 
V« = Du). In [4] Ding and Wang obtained the following lemma. 

L e m m a 2.2 Assume that k > ro/2. Then there exists a constant C=C(N,k) 
such that for all u £ C°°(M, N), 

k 

IIDull^-i.2 < C£||Vu||/r*-i.2, (2-3) 
t=i 

and 
k 

||Vu||ff*-i.2 < C52 \\Du\\\vk^,2. (2.4) 

3. The proof of theorem 
In this section we prove the local existence of smooth solutions for the initial 

value problem of the Sehrödinger flow 

ut = J(U)T(U), ( 

u(;0) = Uo£C°°(M,N). { ' 

We need to employ an approximate procedure and solve first the following perturbed 
problem 

ut = er(u) + J(U)T(U), . > 

u(;0) = uo£C00(M,N), [à ' 

where e > 0 is a small number. 
The advantage of (3.2) is that the equation with e > 0 is uniformly parabolic. 

Hence the initial value problem has a unique smooth solution uf_ £ C°°(M x 
[0,Tf],N) for some Tf_ > 0. The problem is then to obtain a uniform positive 
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lower bound T of Tf, and uniform bounds for various norms of uf_(t) in suitable 
spaces for t in the t ime interval [0,T). (Since we shall use L2 estimates, the norms 
are Wk'2(M,N)— norms for all positive integer k.) Once we get these bounds it is 
clear tha t the uf_ subconverge to a smooth solution of (3.1) as e —¥ 0. 

Now let u = uf_ be a solution of (3.2), then it is easy to see tha t the energy 
E(u(tj) is uniformly bounded for t £ [0,Tf), i.e. 

E(u(tj) < E(u0). (3.3) 

In the following we will make estimations on L2—norms of all covariant deriva­
tives Vku (k = 2 ,3 , •• •). 

L e m m a 3.1 Let mo = [m/2] + 1, where [q] denotes the integral part of a posi­

tive number q, and let «o £ C°°(M,N). There exists a constant T = T(\\UO\\H'^O+1-2) 

> 0, independent of e £ [0,1], such that ifu £ C°°(M x [0,Te]) is a solution of (3.1) 

with e £ (0,1] then 

Tf_>T(\\Vuo\\H^o.'2) 

and 

IIVu(t)\\Hk,2 < C(k, | |Vuo| |/r*.0 t £ [0, T] 

for all k > mo-

P r o o f Fix a k > mo, and let I be any integer with 1 < I < k. Suppose tha t 
a be a multi-index of length I, i.e. a = (cti, • • •, aj). Then we have for t <Tf_ 

1 d 
|V a Viu | |^2 = / ( V a V i « , V t V a V i « ) . (3.4) 

J M 

Exchanging the order of covariant differentiation we have (cf. [9]) 

V t V a V i « = V a V i V t « + 52 V b # ( « ) ( V c « , V d V t « ) V e V i « , 

where the sum is over all multi-indexes b , c, d, e with possible zero lengths, except 
tha t |c| > 0 always holds, such tha t 

(b, c , d , e ) = <r(a) 

is a permutat ion of a. Noting tha t we may replace V*u in the terms of the summa­
tion by the right hand side of equation (3.2), the above identity can be rewritten 
as 

V t V a V i « = V a V i V t « + Q (3.5) 

with 

IQI < (7(1, M) 52 IV^ul • • • |VJ''u| (3.6) 

where the summation is over all (ji, • • •, js) satisfying 

i i > h > • • • > Je, I + 1 > 3ì > 1, i i + • • • + je = l + 3, s > 3. (3.7) 
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For the first term in the right hand side of (3.5), we may use the equation (3.2) to 
get 

VaViVt« = VaVi(er(«) + J(U)T(U)) 

= eVaViVfcVfc« + J(«)VaViVfcVfc« (3.8) 

where we have used the integrability of the complex structure J of the Kahler 
manifold N. By exchanging the orders of covariant differentiation as above, we get 
from (3.5) and (3.8) 

VtVaVj« = eVfcVfcVaVj« + J(«)VfcVfcVaVi« + Q 

where Q satisfies (3.6-3.7). Substituting this into (3.4) and integrating by part we 
then have 

^ l | V a V , « | | l 2 

= / ( -e |VV aVi«| 2 -(VfcVaVi«, J(«)VfcVaVi«) + (VaVi«,Q)). 
J M 

Note that the first integrand is non-positive and the second vanishes, so we have by 
(3.6) 

IVaVé«!!2, < c(i,M)52 f | v ' + 1 u | | V 
J M 

and consequently 

d_ 
dt j M 

Vl+1u\\2
L2<C(l,M)52 I IV '+^IIV^ul- ' - IV^ul , (3.9) 

JM 

where the summation is over all (ji, • • • js) satisfying (3.7). 
To treat the integrals in the summation of (3.9), i.e. 

V m « | | V i l « | - - - | V i " « | , (3.10) 
M 

we need the following lemmas which can be proved by applying Lemma 2.1, the 
Holder inequality and some combination techniques. Especially, the proof of Lemma 
3.3 is slightly tricky, for details we refer to [4]. 

Lemma3 .2 Leti be the integral (3.10), where (ji,---,js) satisfy (3.7). If 
1 < I < mo, then there exists a constant C = C(M,l) such that 

I<C\[Vu\\£mo,2\[Vu\\f2\[Vl+1u\\L2, 

where A = [I + 3 + (ro/2 — 1)« — m/2]/mo and B = s — A. 

L e m m a 3 . 3 Assume I > mo- Then there exists a constant C = C(M,l) such 
that 
(l)ifji=l + l, 

i < c||v'+1«||2
2||v«||^72||v«ir2;ro/roo. 
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(2) if 3i < h 
/ < C ( H - | | V u | | ^ . 2 ) ( l + ||Vu||â.-i.2) 

where A = A(m,l). 

Now, return to the proof of Lemma 3.1. We first consider the case 1 < I < mo 
in (3.9). Then Lemma 3.2 together with (3.3) leads to 

j TOO <+3 

jt\m\Hmo, <c5252\m\A^2, 
1=1 s=3 

where 
A(s, I) = [I + 3 + (m/2 - 1)« - m/2]/m0-

If we let f(t) = \\Vu(t)\\Hmo,2 + 1, then we have 

f'<CfA°, f(0) = \\VUOWH~O.'2 + 1, (3.11) 

where A0 = max{A(s,l) : 3 < s < I + 3,1 < I < mo}. The constant C in 
(3.11) depends only on mo, M and N. It follows from (3.11) that there exists 
T = T(N, | |V«0 | |H/"*O.2) > 0 and K0 > 0 such that 

\[Vu(t)\\Hmo,2 < K0, t£[0,T]. (3.12) 

For any k > mo, we need to consider the case mo < I < k in (3.9). Lemma 
3.3, (3.3) and (3.12) then imply 

j\\VufHk,2 < C(l + | |V«| |^ ,2)(1 + ||Vu||£*_i.2). (3.13) 

For k = mo + 1, we see from (3.12) that the summation in (3.13) is bounded since 
fc — 1 = mo- Then, since (3.13) is a linear differential inequality for ||Vu||^fc,2, there 
exists a constant K\ > 0 such that 

\[Vu(t)\\Hmo+i,2 < Ki, t£[0,T]. (3.14) 

It now is clear that one can show inductively using (3.13) the existence of if, > 0 
for any i > 1 such that 

\\Vu(t)\\Hmo+i,2 < Ki, t £ [0,T]. (3.15) 

Since we assume M is compact, consequently ||W(£)||L°° is uniformly bounded for 
t£[0,T]. 

It is easy to find that the solution to (3.2) with e £ (0,1) must exist on the 
time interval [0, T]. Otherwise, we always extend the time interval of existence to 
cover [0,T], i.e., we always have Tf_ > T. Thus, Lemma 3.1 has been proved. 

Proof of Theorem First, we would like to mention that N is always regarded 
as an embedded submanifold of RK. If «o : M —y N is C°°, then, Lemma 3.1 
claims that the initial value problem (3.2) admits a unique smooth solution uf_ 

file:////VuoWh~o.'2
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which satisfies the estimates in Lemma 3.1. It follows from Proposition 2.2 that, 
for any k > 0 and e £ (0,1], there holds 

max \\ut\\Wk.2{M) <Ck(M,u0), 
te[o,T] v 

where Ck(M, u0) does not depend on e. Hence, by sending e —y 0 and applying the 
embedding theorem of Sobolev spaces to u, we have ue —y u £ Ck(M x [0,T],N) 
for any k. It is very easy to check that « is a solution to the initial value problem 
(3.1). The uniqueness was addressed in Proposition 2.1 in [1]. 

Finally, if u0 : M —y N is not C°°, but u0 £ Wk>2(M,N), we may always 
select a sequence of C°° maps from M into N, denoted by u»o, such that 

Uio —• «o in Wk'2, as i —̂  oo. 

This together with the definition of covariant differential leads to 

||V«jo||iîfe-i.2 —H|Vuo||iffc-i.2, as i —¥ oo. 

Thus, there exists a unique, smooth solution m, defined on time interval [0,TJ, of 
the Cauchy problem (3.1) with «0 replaced by «,o- Furthermore, it is not difficult 
to see from the arguments in Lemma 3.1 that if i is large enough, then there exists 
a uniform positive lower bound of Tt, denoted by T, such that the following holds 
uniformly with respect to large enough i: 

sup \\Vui(t)\\Hk-i,2 < C(T, ||Vuo||ijfc-i.2). 
te[o,T] 

It follows from Lemma 2.2 and the last inequality that 

sup ||I?«j(t)||H/fe-i,2 <C'(T,\\Duo\\wk-1-2), 
t€[0,T] 

where D denotes the covariant derivative for functions on M. Therefore, there 
exists a « G L°°([0,T], Wk~1'2(M,Nj) such that 

u* —+U [weakly*] in L°°([0,T],Wk>2(M,Nj) 

upon extracting a subsequence and re-indexing if necessary. It is easy to verify that 
« is a strong solution to (3.1) (see [4]). 

Remark For the Sehrödinger flow from an Euclidean space into a Kahler 
manifold, in [4] we obtained similar local existence results. 

4. Some problems 
1. For the one-dimensional case, i.e. dim M = 1, we conjecture the Sehrödinger 

flows should exist globally whenever the target N is a compact Kahler manifold. 
This is still open, and is supported by the result with N being Hermitian locally-
symmetric ([ll]). 
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The result by Terng and Uhlenbeck [2] shows that for some special targets (e.g. 
complex Grassmannians), the Sehrödinger flows are bi-Hamiltonnian integrable sys­
tems. In their work, they assume that M = R1, and their result can be generalized 
to compact Hermitian symmetric spaces (cf. [12]). An interesting open problem is, 
for these special targets, whether or not the Sehrödinger flows are bi-Hamiltonnian 
systems if M = S1. 

2. For higher dimensional cases, i.e. dim M > 2, we believe that the Sehrödinger 
flow may develop finite-time singularities. There are however no such examples 
known by now. 

3. All present results in the study of the Sehrödinger flows depend on the 
global estimates for the solutions. We do not know if one can find some kind of 
local estimates for the solutions. It has been well known from the research of various 
geometric flows that local estimates are important for the analysis of singularities. 
It is therefore desirable to develop some new methods to attack the question before 
any serious advance can be made for the study of the Sehrödinger flows. 
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Differential Geometry 
via Harmonic Functions 

;* P.Li-

Abstract 

In this talk, I will discuss the use of harmonic functions to study the geometry 
and topology of complete manifolds. In my previous joint work with Luen-fai Tarn, we 
discovered that the number of infinities of a complete manifold can be estimated by 
the dimension of a certain space of harmonic functions. Applying this to a complete 
manifold whose Ricci curvature is almost non-negative, we showed that the manifold 
must have finitely many ends. In my recent joint works with Jiaping Wang, we 
successfully applied this general method to two other classes of complete manifolds. 
The first class are manifolds with the lower bound of the spectrum Ai(A-f) > 0 and 
whose Ricci curvature is bounded by 

Rie M > Ai(A-f). 
TO — 1 

The second class are stable minimal hypersurfaces in a complete manifold with non-
negative sectional curvature. In both cases we proved some splitting type theorems 
and also some finiteness theorems. 
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Keywords and Phrases: Harmonic function, Ricci curvature, Minimal hypersur­
face, Parabolic manifold. 

1. Introduction 
In 1992, the author and Luen-fai Tam [12] discovered a general method to 

determine if a complete, non-compact, Riemannian manifold have finitely many-
ends. An end is simply defined to be an unbounded component of the compliment 
of a compact set in the manifold. If the number of ends is finite, their technique 
also provides an estimate on the number of ends. In particular, they applied this 
method to prove that a certain class of manifolds must have finitely many ends. 
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Theorem 1 (Li-Tarn). Let Mm be a complete, non-compact, manifold with 

RìCM(X) > —k(r(x)), 

where k(r) is a continuous non-increasing function satisfying 

j . r o - 1 ^ r ~ j ^r <- 0Q^ 

>o 

Then there exists a constant 0 < C(m, k) < oo depending only on m and k, such 
that, M has at most C(m, k) number of ends. 

Since a manifold with non-negative Ricci curvature will satisfy the hypothesis, 
this theorem can be viewed as a perturbed version of the splitting theorem [4] of 
Cheeger-Gromoll. A weaker version of the above theorem for manifolds with non-
negative Ricci curvature outside a compact set was also independently proved by 
Cai [1]. 

In some recent work of Jiaping Wang and the author, they successfully applied 
the general theory of determining the number of ends to other situations. The 
purpose of this note is to give a quick overview of the theory and its applications 
to manifolds with positive spectrum and minimal hypersurfaces. 

2. General theory 
Throughout this article, we will assume that (Mm, ds2

M) is an m-dimensional, 
complete, non-compact Riemannian manifold without boundary. In terms of local 
coordinates (x\,x2,... ,xm), if the metric is given by 

/Vf — Qì'i ^"^ï £vX j y 

then the Laplacian is defined by 

A- — — ( r— 
y/g dxi V V1 dxj 

where (g%:>) = (#y) _ 1 and g = det(^y). A function is said to be harmonic on M if 
it satisfies the Laplace equation 

A/(*) = 0 

for all x £ M. 
In order to state the general theorem, it is necessary for us to define the 

following spaces. 

Definition 1. Let 

nD(M) = {/1 A / = 0, U/H«, < oo, /" |V/ | 2 < oo} 
JM 

be the space of bounded harmonic functions with finite Dirichlet integral defined on 
M. 
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Definition 2. Let 
n+(M) = ({f\Af = 0,f>0}) 

be the space spanned by the set of positive harmonic functions defined on M. 

Definition 3. Let 

%'(M) = ( { / | A / = 0, bounded from one side on each end}) 

be the space spanned by the set of harmonic functions defined on M, which has the 
property that each one is bounded either from above or below on each end. 

Observe that these spaces are monotonically contained in each other, i.e., 

nD(M) cn+(M) cn'(M). 

Yet us also recalled the following potential theoretic definition. 

Definition 4. An end E of M is non-parabolic if it admits a positive Green's 
function with Neumann boundary condition on dE. Otherwise, E is said to be 
parabolic. 

It is important to note that if M has at least one non-parabolic end, then M 
admits a positive Green's function. In this case, we say that M is non-parabolic. 
The interested reader can refer to [11] for more detail descriptions. Let us now state 
the general theorem in [12]. 

Theorem (Li-Tam). Let M be a complete, non-compact manifold without bound­
ary. Then there exists a subspace K. C %'(M), such that, d im£ is equal to the 
number of ends of M. 

Moreover, if M is non-parabolic , then the subspace K. can be taken to be in 
%+(M). Also there exists another subspace KM C %D(M), such that, dimK-N is 
equal to the number of non-parabolic ends of M. 

At this point, it is important to point out that even though an estimate on 
the dimension of the spaces %'(M), %+(M), or %D(M) will imply an estimate on 
the number of ends of corresponding type, however, in general, these spaces can be 
bigger than K. or KM- Hence to effectively use the above theorem, one should use 
the constructive argument in the proof of the theorem to give an estimate on K. and 
KM directly. Indeed, this was the case in the proof of Theorem 1. This is also true 
for the two applications stated in the subsequence sections. 

3. Manifolds with positive spectrum 
A complete manifold (M, ds2

M) is conformally compact if M is topologically a 
manifold with boundary given by DM. Moreover, there is a background metric ds^ 
on (M, DM) such that 

ds%i = p dso, 
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where p is a defining function for DM satisfying the conditions 

p = 0 on dM 

and 
d p # 0 on ÔM. 

A direct computation reveals that the sectional curvature, KM, of the complete 
metric ds2 has asymptotic value given by 

KM ~ -\dp\2, 

near dM. Hence if (M,ds2
M) is also assumed to be Einstein with 

RìCM = — (m - 1), 

then 
KM(x) ~ - 1 , 

as x —ï oo. 
In 1999, Witten-Yau [19] proved a theorem concerning the AdS/CFT corre­

spondence, which effectively ruled out the existence of worm holes. It is also a very-
interesting theorem in Riemannian geometry. 

Theorem (Witten-Yau) . Let Mm be a conformally compact, Einstein manifold 
of dimension at least 3. Suppose the boundary dM of M has positive Yamabe 
constant, then 

Hm-1(M,Z) = 0. 

In particular, this implies that dM is connected and M must have only 1 end. 

Shortly after, Cai-Galloway [2] relaxed the assumption of Witten-Yau by as­
suming the boundary dM has non-negative Yamabe constant. We would also like 
to point out that by a theorem of Schoen [17], a compact manifold has non-negative 
Yamabe constant is equivalent to the fact that it is conformally equivalent to a 
manifold with non-negative scalar curvature. 

In his Stanford thesis, X. Wang [18] generalized the Witten-Yau, Cai-Galloway 
theorem by studying L2 harmonic 1-forms. 

Theorem (Wang). Let Mm be a conformally compact manifold of dimension at 
least 3. Suppose the Ricci curvature of M is bounded by 

RìCM > — (m — 1) 

and the lower bound of the spectrum of the Laplacian Ai (M) has a positive lower 
bound given by 

Xi(M)> ( m - 2 ) , 
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then either 

(1) M has no non-constant L2-harmonic 1-forms, i.e., 

H1(L2(M)) = 0; 

or 
(2) M = R x N with the warped product metric 

ds2
M = dt2 + cosh" tds2

N, 

where (N,ds2
N) is a compact manifold with RìCM > —(m — 2). Moreover, Ai (M) = 

m — 2. 

To see that this is indeed a generalization of the theorems of Witten-Yau and 
Cai-Galloway, one uses a theorem of Mazzeo [16] asserting that on a conformally 
compact manifold 

H1(L2(Mj)-H1(M,dM). 

By a standard exact sequence argument, the conclusion that H1 (L2 (Mj) = 0 implies 
that M has only 1 end. In addition to this, one also uses a theorem of Lee [10] giving 
a lower bound on Ai for conformally compact, Einstein manifold with non-negative 
Yamabe constant on dM. 

Theorem (Lee). Let M be a conformally compact, Einstein manifold with 

RìCM = — (TO — 1). 

Suppose that dM has non-negative Yamabe constant, then 

Xi(M)>^l. 

! — 1 ^ 2 

Since m
 4 ' > m — 2, Wang's theorem implies the theorems of Witten-Yau 

and Cai-Galloway. Observe that the warped product case in Wang's theorem has 
negative Yamabe constant on dM. 

At this point, let us also recall a theorem of Cheng [5] stating that: 
Theorem (Cheng). Let M be a complete manifold with 

RìCM > —(TO — 1), 

then 
(m - l ) 2 

Ai(Af) < 

3heng a 

Ai(Af) 

4 
Combining the results of Cheng and Lee we conclude that 

(m - l ) 2 

4 
for conformally compact, Einstein manifolds, whose Ricci curvature is given by 

RìCM = —(TO — 1) 

and has non-negative Yamabe constant for its boundary. 
In the authors recent joint work with Jiaping Wang [14] , they proved this 

splitting type theorem without assuming the manifold is conformally compact. 
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Theorem 2 (Li-Wang). Let Mm be a complete manifold with dimension m > 3. 
Suppose the Ricci curvature of M is bounded by 

RìCM > —(TO — 1) 

and 
Ai(Af) >m-2, 

then either 
(1) M has only 1 end with infinite volume; 

or 
(2)M = R x N with the warped product metric 

ds2
M = dt2 + cosh" tds2

N, 

where (N,ds2
N) is compact with RìCM > —(TO — 2). Moreover, Xi(M) = m — 2. 

It is worth noting that this theorem implies that when the lower bound for 
Ai (M) of Cheng is achieved, then either 

(Y)M has only 1 end with infinite volume, 
or 

(2)Af = R x N is the warped product and m = 3. 
Also, since all the ends of a conformally compact manifold must have infinite 

volume, Theorem 2 is, in fact, a generalization of the theorems of Witten-Yau, Cai-
Galloway, and Wang. It is also interesting to note that without the conformally 
compactness assumption, it is possible to have finite volume ends as indicated by-
following example. 

Example 1. Let Mm = R x N"1^1 with the warped product metric 

dsM = dt" + exp(2t) ds"N, 

where N is a compact manifold with 

Rie M > 0. 

A direct computation shows that M has Ricci curvature bounded by 

RìCM > —(TO — 1) 

and 
Ai(Af) >m-2. 

In fact, when m = 3, Ai (M) = 1. Obviously M has two ends. One end E has 
infinite volume growth with 

VE(T) ~ C exp((m — 1) r), 
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while the other end e has finite volume with volume decay given by 

Ve(oo) — Ve(r) ~ C exp( — (m — 1) r). 

We would like to point out that the pair of conditions 

RìCM > — (TO — 1) 1 

~ > (1) 
Ai(Af) > r o - 2 J w 

is equivalent to the pair of conditions 

^ . TO — 1 ., ,. 
RtcM> » A i M ) 

m - 2 y (2) 

Ai (M) > 0 . 

On the other hand, the pair of conditions 
TH, ~ 1 

mcM>-—x^M) } (3) 
Ai(Af)=0 

are equivalent to the single assumption that 

Rie M > 0, 

because the condition Ai(M) = 0 is a consequence of the curvature assumption. 
Taking this point of view, Theorem 2 can be viewed as an analogue to the 

splitting theorem of Cheeger-Gromoll. Similarly to the fact that Theorem 1 is a 
perturbed version of the Cheeger-Gromoll splitting theorem, the following theorem 
in [14] is a perturbed version of Theorem 2. 

Theorem 3 (Li-Wang). Let Mm be a complete manifold with m > 3. Suppose 
Bp(R) C M is a geodesic ball such that 

RicM>-(m-l) on M\BP(R) 

and the lower bound of the spectrum of the Dirichlet Laplacian on M \ BP(R) is 
bounded by 

Xi(M\Bp(Rj) > r o - 2 + e 

for some e > 0. Then there exists a constant 0 < C(m,R,a,v,e) < oo depending 
only on m, R, a = ìnfBp(3R) RìCM, V = infxeBp(2R)Vx(R), and e, so that the 
number of infinite volume ends of M is at most C(m,R,a,v,e). 

In both Theorem 2 and Theorem 3, the authors only managed to estimate the 
number of infinite volume ends by estimating the number of non-parabolic ends. In 
fact, when a manifold has positive spectrum, they proved that an end must either 
be non-parabolic with exponential volume growth, or it must be parabolic and finite 
volume with exponential volume decay. Moreover, these growth and decay estimates 
can be localized at each end. 
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Theo rem 4 (Li-Wang). Let M be a complete, non-compact, Riemannian mani­
fold. Suppose E is an end of M given by a unbounded component of M \ BP(R), 
where BP(R) is a geodesic ball of radius R centered at some fixed point p £ M. 
Assume that the lower bound of the spectrum Xi (E) of the Dirichlet Laplacian on 
E is positive. Then as r —t oo, either 

(1) E is non-parabolic and has volume growth given by 

VE(r) > d exp(2y/\1(E)r) 

for some constant C\ > 0; 
or 

(2) E is parabolic and has finite volume with volume decay given by 

V(E) - VE(r) < C2 exp(-2v%(£7)r) 

for some constant C2 > 0. 
In particular, if Ai (M) > 0, then M must have exponential volume growth 

given by 
Vp(r) > Ci exp(2V%(M)r). 

Both the volume growth and the volume decay estimates are sharp. For ex­
ample, the growth estimate is achieved by the hyperbolic m-space, H™. Also, in 
Example 1 when dimension m = 3, the infinite volume end achieves the sharp vol­
ume growth estimate and the finite volume end achieves the sharp volume decay-
estimate. It is also interesting to point out that the sharp volume growth estimate 
is previously not known for manifolds with Ai (M) > 0. 

4. Minimal hypersurfaces 
Let us recall that the well-known Bernstein's theorem (Bernstein, Fleming, 

Almgren, DeGiorgi, Simons) asserts that an entire minimal graph Mm c RTO+1 

must be linear if m < 7. Moreover, the dimension restriction is necessary as indi­
cated by the examples of Bombieri, DeGiorgi, and Guisti. Since minimal graphs 
are necessarily area minimizing and hence stable (second variation of the area func­
tional is non-negative), Fischer-Colbrie and Schoen [8] considered a generalization 
of Bernstein's theorem in this category. They proved that a complete, oriented, 
immersed, stable minimal surface in a complete manifold with non-negative scalar 
curvature must be conformally equivalent to either C or R x S1. Moreover, if the 
ambient manifold is R3 then the minimal surface must be planar. This special case 
was independently proved by do Carmo and Peng [6]. 

Later, Fischer-Colbrie [7] studied the structure of minimal surfaces with finite 
index. Recall that a minimal surface has finite index means that there are only a 
finite dimension of variations such that the second variations of the area functional 
is negative. In this case, Fischer-Colbrie proved that a complete, oriented, im­
mersed, minimal surface with finite index in a complete manifold with non-negative 
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scalar curvature must be conformally equivalent to a compact Riemann surface with 
finitely many punctures. In particular, M must have finitely many ends. The spe­
cial case when N = R3 was also independently proved by Gulliver [9]. It is in the 
spirit of the number of ends that Cao, Shen and Zhu [3] found a higher dimensional 
statement for stable minimal hypersurfaces in RTO+1. 

Theorem (Cao-Shen-Zhu). Let Mm C RTO+1 be a complete, oriented, immersed, 
stable minimal hypersurface in Rm+1, then M must have only 1 end. 

This theorem is recently generalized to minimal hypersurfaces with finite index 
by the author and Jiaping Wang [13]. 

Theo rem 5 (Li-Wang). Let Mm c RTO+1 be a complete, oriented, immersed, 
minimal hypersurface with finite index in Rm+1, then M must have finitely many 
ends. 

In another paper [15], they also considered complete, properly immersed, stable 
(or with finite index) minimal hypersurfaces in a complete, non-negatively curved 
manifold. 

Theo rem 6 (Li-Wang). Let Mm c Nm+1 be a complete, oriented, properly im­
mersed, stable, minimal hypersurface. Suppose N is a complete manifold with non-
negative sectional curvature. Then either 

(1) M has only 1 end; 
or 

(2) M = R x S with the product metric, where S is a compact manifold with 
non-negative sectional curvature. Moreover, M is totally geodesic in N. 

Theorem 7 (Li-Wang). Let Mm c Nm+1 be a complete, oriented, properly im­
mersed, minimal hypersurface with finite index. Suppose N is a complete manifold 
with non-negative sectional curvature. Then M must have finitely many ends. 

It is interesting to point out that in the case when M = R x S, the manifold is 
parabolic. In this case, it is necessary to estimate the space K. rather than K.'. Again, 
the crucial point is to follow the construction of K. and obtain sufficient estimates 
on the functions in K. so that analytic techniques can be applied. In the case of 
Theorem 5, since the ambient manifold is RTO+1 and hence the ends of M must all 
be non-parabolic, it is sufficient to estimate the space K.' as stated in Theorem 2. 
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Abstract 

In recent years, we have established the iteration theory of the index for 
symplectic matrix paths and applied it to periodic solution problems of non­
linear Hamiltonian systems. This paper is a survey on these results. 
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Since P. Rabinowitz's pioneering work [35] of 1978, variational methods have 
been widely used in the study of existence of solutions of Hamiltonian systems. But 
how to study the geometric multiplicity and stability of periodic solution orbits 
obtained by variational methods has kept to be a difficulty problem. For example 
let x = x(i) be a r-periodic solution of a Hamiltonian system 

x(t) = JH'(x(tj), Vt€R. (0.1) 

The ro-th iteration xm of x is defined by induction m — 1 times via x(t + r) = x(t) 
for t > 0. It runs m-times along the orbit of x. Geometrically these iterations 
produce the same solution orbit of (0.1), but they are different as critical points 
of corresponding functionals. This multiple covering phenomenon causes major 
difficulties in the study. 

A natural way to study solution orbits found by variational methods is to study 
the Morse-type index sequences of their iterations. But when one studies general 
Hamiltonian systems, the Morse indices of the critical points of the correspond­
ing functional are always infinite. To overcome this difficulty, in their celebrated 
paper [6] of 1984, C. Conley and E. Zehnder defined an index theory for any non-
degenerate paths in Sp(2n) with n > 2, i.e., the so called Conley-Zehnder index 
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theory. This index theory was further defined for non-degenerate paths in Sp(2) 
by E. Zehnder and the author in [33] of 1990. The index theory for degenerate 
linear Hamiltonian systems was defined by C. Viterbo in [39] and the author in [20] 
of 1990 independently. In [25] of 1997, this index was extended to any degenerate 
symplectic matrix paths. 

Motivated by the iteration theories for the Morse type index theories estab­
lished by R. Bott in 1956 and by I. Ekeland in 1980s, in recent years the author 
extended the index theory mentioned above, introduced an index function theory for 
symplectic matrix paths, and established the iteration theory for the index theory 
of symplectic paths. Applying this index iteration theory to nonlinear Hamiltonian 
systems, interesting results on periodic solution problems of Hamiltonian systems 
are obtained. Here a brief survey is given on these subjects. Readers are referred 
to the author's recent book [30] for further details. 

1. Index function theory for symplectic paths 
As usual we define the symplectic group by Sp(2n) = {M £ GL(R2") | MTJM 

= J}, where J = \ J, J is the identity matrix on R", and MT denotes the 

transpose of M. For OJ £ U, the unit circle in the complex plane C, we define the 
w-singular subset in Sp(2n) by Sp(2n)2, = {M £ Sp(2n) |a!_"det(7(r) — OJ I) = 0}. 
Here for any M £ Sp(2n)°, we define the orientation of Sp(2n)2, at M by the 
positive direction -f^Mexp(tJ)\t=o- Since the fundamental solution of a general 
linear Hamiltonian system with continuous symmetric periodic coefficient 2n x 2n 
matrix function B(t), 

x(t) = JB(t)x(t), V t € R , (1.1) 

is a path in Sp(2n) starting from the identity, for r > 0 we define the set of 
symplectic matrix paths by VT(2n) = {7 £ C([0,r],Sp(2n)) | T ( 0 ) = I}- For any 
two path £ and n : [0,r] —¥ Sp(2n) with £(r) = n(0), as usual we define n * Ç(t) 
by Ç(2t) if 0 < t < T/2, and n(2t — r) if r / 2 < t < r. We define a special path 
C: [0 , r ] ->Sp(2n)by 

dt) = diag(2 - - , . . . , 2 - - , (2 - -)-\..., (2 - - ) " 1 ) , for 0 < t < T. 
T T T T 

Definition 1. (cf. [27]) For any r > 0, OJ £ U, and 7 £ VT(2n), we define 
the uj-nullity of 7 by 

Vu(l) = d im c ker c (7 ( r ) -UJI). (1.2) 

7/7 is OJ non-degenerate, i.e., ^ ( 7 ) = 0, we define the oj-index of 7 by the inter­
section number 

M 7 ) = [ S p ( 2 < : 7 * C ] - (1-3) 

7/7 is OJ degenerate, i.e., ^ ( 7 ) > 0, we let Td) be the set of all open neighborhoods 
0/7 in VT(2n), and define 

iu(l) = sup inf{iu(ß) I ß £ U, vu(ß) = 0}. (1.4) 
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Then we call (4,(7), ^ ( 7 ) ) £ Z x { 0 , 1 , . . . , 2n} the index function of 7 atoj. 
The relation of this index (ii(^),vi(^j) with the Morse index of r-periodic 

solutions of the problem (1) was proved by C. Conley, E. Zehnder, and the author 
in [6], [33], and [20] (cf. Theorem 6.1.1 of [30]). 

2. Iteration theory of the index for symplectic paths 
Given a path 7 £ VT(2n), its iteration is defined inductively by *y(t + T) = 

7(1)7(7-) for t > 0, i.e., 

1
m(t)=l(t^JT)1(Ty, JT<t<(j+Y)T,j = 0,l,...,m^l, (2.1) 

for any m in the natural integer set N. For our applications of this index theory to 
nonlinear Hamiltonian systems, we are facing two types of problems: 

(1) knowing the end point 7(7-) of a path 7 £ VT(2n), the initial index 
(ii(7), ^1(7)), and the iteration time TO, want to find the index ii("fm) of the ro-th 
iterated path 7™; 

(2) knowing the end point 7(7-) of a path 7 £ VT(2n), the initial index 
(ii (7), ^1(7)), and the index (hd™), vid™)) of the ro-th iterated path 7™, want 
to find the iteration time TO. 

To solve these problems, we first generalize Bott's formula of the iterated 
Morse index for closed geodesies to the index theory for general symplectic paths: 

Theo rem 2 (cf. [27]). For any r > 0, 7 £ VT(2n), z £ U, and TO £ N , there 
hold: 

iz(lm)= 52 M7), M7™)= 52 ^(7)- (2-2) 
Ulm=Z Ulm=Z 

By (2.2) it is easy to see that the mean index i(*y) = limTO_s.+0O ii(^m)/m for 
any 7 £ VT(2n) is always a finite real number. 

To further solve the problems (1) and (2), we need to go beyond the Bott-type 
formula (2.2). For a given path 7 we consider to deform it to a new path r\ in 
VT(2n) so that 

iihm) = ii(vm), Pihm) = Mr]m), V T O G N , (2.3) 

and that (ii(rim),i,i(,rjmj) is easy enough to compute. This leads to finding homo-
topies 5 : [0,1] x [0,r] —¥ Sp(2n) starting from 7 in VT(2n) and keeping the end 
points of the homotopy always stay in a certain suitably chosen maximal subset 
of Sp(2n) so that (2.3) always holds. By (2.2), this set is defined to be the path 
connected component Q°(M) containing M = 7(7-) of the set 

Ü(M) = {N £ Sp(2n) I a(N) n U = a(M) n U, and 

i/A(iV) = i/A(M)VAGCT(Af)nU}. (2.4) 

Here we call Q°(M) the homotopy component of M in Sp(2n). 
Using normal forms of symplectic matrices (cf. [32], [13]), we then decompose 

7(7-) within Q°(7(r)) into product of 10 special 2 x 2 and 4 x 4 symplectic normal 
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form matrices, which we call basic normal forms. Correspondingly by the homotopy 
invariance and symplectic additivity of the index theory, the computations in (2.3) 
are reduced to iterations of those paths in Sp(2) or Sp(4) whose end points are 
one of the 10 basic normal form matrices. The study of the index for iterations 
of any symplectic paths is carried out for paths in Sp(2) via the R3-cylindrical 
coordinate representation of Sp(2), then for hyperbolic and elliptic paths in Sp(2n). 
This yields the precise iteration formula obtained in [29] of the index theory for any 
symplectic path 7 £ VT(2n) in terms of the basic norm form decomposition of 7(7-), 
(z(7, l) , i /(7 ,1)) , and the iteration time TO. 

For any M £ Sp(2n), its splitting numbers at an OJ £ U is defined in [27] by 

SM(OJ)= Hm tu ( ± v = T e ) ( 7 ) - t u ( 7 ) , (2.5) 

via any 7 £ VT(2n) satisfying 7(7-) = M. Then it is proved that the splitting 
numbers of M at OJ can be characterized algebraically. 

Motivated by the precise iteration formulae of [29], the following second index 
iteration formula of any symplectic path is established by C. Zhu and the author. 
Here we denote by (z(7,TO), 1/(7, TO)) = (ii(7™), ^1(7™)). 

Theorem 3 (cf. [34]). For any r > 0, 7 £ VT(2n), and m £ N , there holds: 

*(7,m) = m(*(7,l) + S + ( l ) - C ( M ) ) 
n, 
2TT 

2 52 EAsM(e^=Tl>)^(SM(i) + C(Mj), (2.6) 
9G(0,2TT) 

where M = 7 ( r ) , C(M) = X^O<9<2TT ^MÌ6^^9)'
 an(^ ^(a) = minjfc £ Z | k > a} 

for any a £ R. 
In order to solve problems on nonlinear Hamiltonian systems, various index 

iteration inequalities for any path 7 £ VT(2n) and TO £ N are proved by D. Dong, 
C. Liu, C. Zhu and the author in [7], [16], [17], and [34]. 

Theorem 4. For any 7 £ VT(2n) and m £ N, the following iteration inequal­
ities always hold. 

Estimate via mean index (cf. [16], [17]): 

7m(7) — n < z(7, TO) < mid) + n ~ v(l,m)- (2-7) 

Estimate via initial index (cf. [18]): 

m(i(y,l) + 1/(7,1) - n) + n - 1/(7,1) < i(y,m) 

< m(z(7,1) + n)—n — (1/(7, m) — 1/(7,1)). (2.8) 

Successive index estimate (cf. [34]): 

e(/y(TÌ) 
1/(7, m) — < i(y,m + 1) — i(y,m) — i(j, 1) 

< V ( 7 , i ) - V ( 7 , m + 1 ) + Ä ) ) . (2.9) 
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Here we define e(M) to be the total multiplicity of eigenvalues of M on U and call 
it the elliptic height of M. 

A consequence of the iteration inequality (2.8) together with the necessary and 
sufficient conditions for any equality in (2.8) to hold for some TO yields a new proof 
of the following theorem of D. Dong and the author on controlling the iteration 
time TO via indices: 

Theo rem 5 (cf. [7]). For any 7 £ VT(2n) and m £ N , suppose z(7 ,m) < n+1, 
i(l, 1) > n> and v(~i, 1) > 1- Then TO = 1. 

Note also that the inequality (2.9) yields a way to estimate the ellipticity of 
solution orbits of Hamiltonian systems obtained by variational methods via their 
iterated indices. 

In order to study the properties of solution orbits of the system (0.1) on a 
given energy hypersurface, when the number of orbits is finite, we need to study-
common properties of any given finite family of symplectic paths 7j- £ VTj (2n) with 
1 < 3 < Q- This leads to the following common index jump theorem of C. Zhu 
and the author proved in [34]. For any 7 £ VT(2n), its m-th index jump Gmd) is 
defined to be the open interval Gmd) = (i(l,m) + v(^,'rn) — 1,1(7, TO + 2)). 

Theo rem 6 (cf. [34]). Let 7j- £ VTj(2n) with 1 < j < q satisfying 

* ( 7 i ) > 0 , * ( 7 i , l ) > n , l<j<q. (2.10) 

Then there exist infinitely many positive integer tuples (N,mi,... ,mq) £ N g + 1 

such that 
Q 

$^[2N^KI,2N + K2]C P | & r o j - i ( 7 i ) , (2.11) 
3=1 

where K! = mini<j-<g(z(7j-, l )+2S'+ ( T . )( l)- i / (7 i , 1)) and K2 = mini<j-<gz(7 j-,l)-l. 

In order to prove this theorem, we need to make each index jump to be as big 
as possible, and to make their largest sizes happen simultaneously to guarantee the 
existence of a non-empty largest common intersection interval among them. By the 
term E(^) in the abstract iteration formula (2.6), such a problem is reduced to a 
dynamical system problem on a torus, and is solved by properties of closed additive 
subgroups of tori. 

3. Applications to nonlinear Hamiltonian systems 

So far, we have applied our index iteration theory to three important problems 
on periodic solutions of nonlinear Hamiltonian systems. Let T > 0 and suppose x 
is a non-constant T-periodic solution of the nonlinear Hamiltonian system (0.1). 
Suppose the minimal period of x is r = T/k for some k £ N. We denote by 
"fx £ VT(2n) the fundamental solution of the linearized Hamiltonian system (1.1) 
at x with B(t) = H"(x(tj), and the iterated index of x by (i(x,m),v(x,mj) = 
(i(,yx,m),i,(,yx,mj) for all TO £ N. 
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3.1. Prescribed minimal period solution problem 

In [35] of 1978, P. Rabinowitz posed a conjecture on whether the Hamiltonian 
system possesses periodic solutions with prescribed minimal period when the Hamil­
tonian function satisfies his superquadratic conditions. This conjecture is studied 
by D. Dong and the author as an application of our index iteration theory. Note 
that for a non-constant r-periodic solution x of the autonomous system (0.1), the 
condition on the nullity in Theorem 5 always holds. Thus Theorem 5 yields: 

Theo rem 7 (cf. [7]). For any non-constant r-periodic solution x of (0.1), 
denote its minimal period by T/TO for some m £ N. Suppose i(x\[0,T}, 1) < n + 1 
and n < i(x\[ojT/m], 1). Then TO = 1, i.e., r is the minimal period of x. 

Here the first estimate on the index holds if x is obtained by minimax or min­
imization methods, and the second estimate on the index holds if the Hamiltonian 
function H is convex in a certain weak sense along the orbit of x. This result reveals 
the intrinsic relationship between the minimal period of a periodic solution and its 
indices, and unifies all the results on Rabinowitz's conjecture under various convex­
ity conditions. Specially, it recovers the famous theorem of I. Ekeland and H. Hofer 
in 1985 (cf. [11]) who solved Rabinowitz's conjecture for convex superquadratic 
Hamiltonian systems. 

3.2. Periodic points of the Poincaré map of Lagrangian sys­
tems on tori 

In 1984, C. Conley stated a conjecture on whether the Poincaré map of any 
1-periodic time dependent Hamiltonian system defined on the standard torus T2n = 
R 2 " / Z 2 " always possesses infinitely many periodic points which are produced by 
contractible periodic solutions of the corresponding Hamiltonian system on T2n. 
A celebrated partial answer to this conjecture was given by D. Salamon and E. 
Zehnder in 1992 (cf. [37]) for a large class of symplectic manifolds on which every 
contractible integer periodic solution of the Hamiltonian system has at least one 
Floquet multiplier not equal to 1. So far Conley conjecture is still open and seems 
far from being completely understood. 

In [28], we studied the Lagrangian system version of this conjecture. Consider 

d 
— Li(t,x,x)-Lx(t,x,x) = 0, x£Rn, (3.1) 

where L,x and L,x denote the gradients of L with respect to x and x respectively. 
The main result is the following: 

Theo rem 8 (cf. [28]). Suppose the Lagrangian function L satisfies 
(LI) L(t,x,p) = \A(t)p-p+ V(t,x), where \A(t)p-p > A|p|2 for all (t,p) £ 

R x R" and some fixed constant X > 0. 
(L2) A £ C3(K,£s(K

n)), V £ C 3 ( R x R " , R ) , both A and V are 1-periodic in 
all of their variables, where £s(R

n) denotes the set ofnxn real symmetric matrices. 
Then the Poincaré map \P of the system (3.1) possesses infinitely many peri­

odic points on TTn produced by contractible integer periodic solutions of the system 
(3.1). 
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In the proof of Theorem 8, the above inequality (2.7) plays a crucial role. By 
this inequality, at very high iteration level, a global homological injection map can 
be constructed which maps a generator of a certain non-trivial local critical group 
to a nontrivial homology class [a] in a global homology group, if the number of 
contractible integer periodic solution towers of the system (3.1) is finite. But on the 
other hand, by a technique of V. Bangert and W. Klingenberg in [3], it is shown 
that this homology class [a] must be trivial globally. This contradiction then yields 
the conclusion of Theorem 8. 

3.3. Closed characteristics on convex compact hypersurfaces 

Denote the set of all compact strictly convex C2-hypersurfaces in R 2 " by 
%(2n). For S £ %(2n) and x £ S, let Afe(x) be the outward normal unit vector at 
x of S. We consider the problem of finding r > 0 and a curve x £ C1([0,r],R2") 
such that 

x(t) = JNj;(x(t)), x(t)£Z, W e R , , . 
X(T) = x(0). [ ' 

A solution (T,X) of the problem (3.1) is called a closed characteristic on S. Two 
closed characteristics (T,X) and (a,y) are geometrically distinct, if x(R) ^ J/(R). 
We denote by T(S) the set of all geometrically distinct closed characteristics (r, x) 
on S with r being the minimal period of x. Note that the problem (3.1) can be 
described in a Hamiltonian system version and solved by variational methods. A 
closed characteristic (T,X) is non-degenerate, if 1 is a Floquet multiplier of x of 
precisely algebraic multiplicity 2, and is elliptic, if all the Floquet multipliers of x 
are on U. Let # A denote the total number of elements in a set A. 

This problem has been studied for more than 100 years since at least A. M. 
Liapunov in 1892. A long standing conjecture on the multiplicity of closed charac­
teristics is whether 

*JÇ£)>n, VE€ft(2n). (3.2) 

The first break through on this problem in the global sense was made by P. Ra-
binowitz [35] and A. Weinstein [40] in 1978. They proved # T ( £ ) > 1 for all 
S £ %(2n). Besides many results under pinching conditions, in 1987-1988, I. 
Ekeland-L. Lassoued, I. Ekeland-H. Hofer, and A, Szulkin proved # T ( S ) > 2 for 
all S £ %(2n) and n > 2. In 1998, H. Hofer, K. Wysocki, and E. Zehnder proved 
in [14]: # T ( £ ) = 2 or +oo for every S £ H(4). In recent years C. Liu, C. Zhu, and 
the author gave the following answers to the conjecture (3.2): 

Theorem 9 (cf. [34]). There holds 

#T(E) > [ |] + 1, VS G H(2n), (3.3) 

where [a] = maxjfc £ Z\k < a} for any a £ R. Moreover, if all the closed 
characteristics on S are non-degenerate, then # T ( S ) > n. 

Theorem 10 (cf. [19]). For any S £ %(2n), if S is symmetric with respect 
to the origin, i.e., x £"£ implies —a: £ S, then # T ( S ) > n. 

Very recently, Y. Dong and the author further proved the following result. 
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Theo rem 11 (cf. [8]). Let E £ %(2n) be P-symmetric with respect to the 
origin, i.e., x £ 'S implies Px £ E, where P = diag(—In-k,Ik, —In^k,Ik) for some 
fixed integer k £ [0,n — 1]. Let E(fc) = {(x,y) £ (Rk)2 | (0,x, 0,y) £ E}. Suppose 
*T(S(k)) <k or *T(S(k)) = +00 holds. Then #T(E) > n - 2k. 

Proof of Theorem 11 depends on a new index iteration theory for symplectic 
paths iterated by the formula 7(£ + r) = P/y(t)P,y(T) for t > 0. 

The second long standing conjecture on closed characteristics is whether there 
always exists at least an elliptic closed characteristic on any E £ %(2n). Up to the 
author's knowledge, the existence of one elliptic closed characteristic on E e %(2n) 
was proved by I. Ekeland in 1990 when E is v^-pmched by two spheres, and by 
G.-F. Dell'Antonio, B. D'Onofrio, and I. Ekeland in 1992 when E is symmetric with 
respect to the origin. Recently using an enhanced version of the iteration estimate 
(2.9) on the elliptic height, based on results in [29] the following result was further 
proved by C. Zhu and the author. 

Theo rem 12 (cf. [34]). For E £ H(2n), suppose # T ( E ) < +oo. Then there 
exists at least an elliptic closed characteristic on E. Moreover, suppose n > 2 and 
# T ( E ) < 2[n/2]. Then there exist at least two elliptic elements in T(E). 

The main ingredient in the proofs of Theorems 9 to 12 is our index iteration 
theory mentioned above. To illustrate this method, we briefly describe below the 
main idea in the proof of (3.3) in Theorem 9. Because each closed characteristic on 
E corresponds to infinitely many critical values of the related dual action functional, 
our way to solve the problem is to study how the index intervals of iterated closed 
characteristics cover the set of integers 2N — 2 + n to count the number of closed 
characteristics on E. Suppose q = #J"(E) < +oo. In the proof of the multiplicity-
claim (3.3) of Theorem 9, the most important ingredient is the following estimates: 

q > # ( ( 2 N - 2 + n )nn? = 1 & r o j - i ( 7 * , . ) ) 

> # ( ( 2 N - 2 + n )n [2A r -Ki ,2A r + K2]) 
Tl 

> [3] + !' (3-4) 

The first inequality in (3.4) is a new version of the Liusternik-Schnirelman the­
oretical argument at the iterated index level, which distinguishes solution orbits 
geometrically instead of critical points only as usual methods do. The second in­
equality in (3.4) uses the common index jump Theorem 6. The last inequality in 
(3.4) uses the Morse theoretical approach. Roughly speaking, the common index 
jump theorem picks up as many as possible points of 2N — 2 + n in the interval 
[2N - Ki,2N + K2] C C\q-=1G2m,j-i(lxj), which yields a lower bound for # T ( E ) . 

As usual, a hypersurface E c R 2 " is star-shaped if the tangent hyperplane at 
any x £'S does not intersect the origin. Closed characteristics on E can be defined 
by (3.1) too. In this case, the result &JCZ) > 1 was proved by P. Rabinowitz in [35] 
of 1978. Then multiplicity results were proved under certain pinching conditions on 
star-shaped E. Recently, the following result for the free case was proved by X. Hu 
and the author: 

Theo rem 13 (cf. [15]). Let 'S be a star-shaped compact C2-hypersurface in 
R2". Suppose all the closed characteristics on E and all of their iterates are non-
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degenerate. Then # T ( E ) > 2. Moreover, ifn = 2 and # T ( E ) < +00 further holds, 
then there exist at least two elliptic closed characteristics on E. 

Here the crucial point is to prove i(x, 1) > n when (r, x) is the only geomet­
rically distinct closed characteristic on E. This conclusion is proved by using our 
index iteration theory and an identity of non-degenerate closed characteristics on 
E proved by C. Viterbo in 1989. 

Because of Theorem 9 and other indications, we suspect that the following 
holds: 

{ # T ( E ) I E G H(2n)} = {k £ Z | [ |] + 1 < k < n} U {+00}. (3.5) 

We also suspect that closed orbits of the Reeb field on a compact contact hypersur­
faces in a symplectic manifold may have similar properties. 

Many other problems related to iterations of periodic solution orbits are still 
open, for example, the Seifert conjecture on the existence of at least n brake orbits 
for the given energy problem of classical Hamiltonian systems on R" (cf. [38], [1] 
and the references there in), and the conjecture on the existence of infinitely many 
geometrically distinct closed geodesies on every compact Riemannian manifold (cf. 
[2] and the solution for S2 by J. Franks and V. Bangert). We believe that our index 
iteration theory for symplectic paths and the methods we developed to establish 
and apply it to nonlinear problems will have the potential to play more roles in the 
study on these problems and in other mathematical areas. 
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Some Applications of Collapsing 
with Bounded Curvature 

Anton Petrunin* 

A b s t r a c t 

In my talk I will discuss the following results which were obtained in 
joint work with Wilderich Tüschniann. 

1. For any given numbers m, C and D, the class of m-dimensional simply 
connected closed smooth manifolds with finite second homotopy groups which 
admit a Riemannian metric with sectional curvature \K\ < C and diameter 
< D contains only finitely many diffeomorphism types. 

2. Given any rn and any S > 0, there exists a positive constant io = 
io(m,,S) > 0 such that the injectivity radius of any simply connected compact 
m-dimensional Riemannian manifold with finite second homotopy group and 
Ricci curvature Rie >S,K<l,is bounded from below by io(m,,S). 

I also intend to discuss Riemannian megafolds, a generalized notion of 
Riemannian manifolds, and their use and usefulness in the proof of these re­
sults. 

2000 Mathematics Subject Classification: 53C. 

This note is about a couple of applications and variations of techniques de­

veloped in [CFG], which we found jointly with W. Tuschmann. Namely I will talk 

about injectivity radius estimates for positive pinching, a generalized notion of man­

ifolds, and finiteness theorems for Riemannian manifolds with bounded curvature. 

The purpose of this note is to give an informal explanation of ideas in these proofs 

and for more details I refer the reader to [PT]. 

1. Injectivity radius estimates and megafolds 
Is it t rue tha t positive pinching of the sectional curvatures of a simply con­

nected manifold implies some lower positive bound for the injectivity radius, which 

does not depend on the manifold? For dimension = 3 this was proved by Burago 

and Toponogov [BT]. More generally, they proved the following: 
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Theorem A. Given any ö > 0, there exists a positive constant io = io($) > 
0 such that the injectivity radius of any simply connected compact 3-dimensional 
Riemannian manifold with Ricc> 5, K < 1, is bounded from below by io-

Moreover they made a conjecture that this result should be also true for higher 
dimensions. Later on some new examples of manifolds with positively pinched cur­
vature were found by Alloff and Wallach, Eschenburg and Bazaikin ([AW], [E], [B]) 
which disprove this conjecture in general, but since then closely related conjec­
tures appeared on almost each list of open problems in Riemannian geometry. The 
theorem which we proved can be formulated as follows: 
Theorem B. Given any m and any ö > 0, there exists a positive constant io = 
io(m,ö) > 0 such that the injectivity radius of any simply connected compact m-
dimensional Riemannian manifold with finite second homotopy group and Ricc> ö, 
K < 1, is bounded from below by io(m,ö). 

Theorem B generalizes the Burago-Toponogov Theorem A to arbitrary dimen­
sions and is also in even dimensions interesting, since there is no Synge theorem 
for positive Ricci curvature. For sectional curvature pinching a similar result was 
obtained independently by Fang and Rong [FR]. 

Now I will turn to one proof of this statement which is described in the ap­
pendix of [PT] (The main part of paper contains an other proof). This proof makes 
use of a generalized notion of Riemannian manifold, which was also described by 
Gromov in the end of section 8 + of [G3], and employs a "tangential" version of 
Gromov-Hausdorff convergence. Here I will just give an informal analogy which 
describes this notion. The formal aspects and all further details can be found in 
[PT]. 

One may think about a manifold as a set of charts and glueing mappings. For 
a Riemannian manifold, denoting the disjoint union of all charts with the pulled 
back metrics by (U,g), the set of all glueing maps defines an isometric pseudo-group 
action by a pseudogroup G on (U,g). Here is the definition of a pseudogroup action: 
Definition. A pseudogroup action (or pseudogroup of transformations) on a man­
ifold M is given by a set G of pairs of the form p = (Dp,p), where Dp is an open 
subset of M and p is a homeomorphism Dp —t M, so that the following properties 
hold: 

(1) p,q £ G implies po q = (q^1 (Dp n q(Dpj),po q) £ G; 
(2) p £ G implies p^1 = (p(Dp),p^1) £ G; 
(3) (M, id) £ G; 
(4) if P is a homeomorphism from an open set D c M into M and D = 

(ja Da, where Da are open sets in M, then the property (D,p) £ G is equivalent to 
(Da,p\i)a) £ G for any a. 

We call the pseudo-group action natural if in addition the following is true: 
(i)' If (D,p) £ G and p can be extended as a continuous map to a boundary 

point x £ dD, then there is an element (D',pr) £ G such that x £ D', D c D' and 

P'\D =P-
To form a manifold this action must be in addition properly discontinuous 
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and free. If it just properly discontinuous then we obtain an orbifold. In the case 
of a general (isometric!) pseudogroup action we obtain a it Riemannian megafold 
(cf. [PT]). The megafold which is obtained this way will be denoted by (M,g) = 
((U,g):G). 

Now we come to the main notion of this section: 
Definition. A sequence of Riemannian megafolds (Mn,gn) is said to Grothendieck-
Lipschitz converge (GL-converge) to a Riemannian megafold (M,g) if there are 
representations (Mn,gn) = ((Un,gn) : Gn) and (M,g) = ((U,g) : G) such that 

(a) The (Un,gn) Lipschitz converge to (U,g), and 
(b) For some sequence en —¥ 0 there is a sequence of e±l!n -bi-Lipschitz homeo-

morphisms hn : (Un,gn) —¥ (U,g) such that the pseudogroup actions on {(Un,gn)} 
converge (with respect to the homeomorphisms hn) to a pseudogroup action on 
{(.U,g)}. 

I.e., for any converging sequence of elements pnk £ Gnk (Unk,Mnk) there exists 
a sequence pn £ Gn which converges to the same local isometry on U, and the 
pseudogroup of all such limits, acting on U, coincides with the pseudogroup action 
G(U,M). 

Here are two simple examples of GL-convergence: 
Consider the sequence of Riemannian manifolds S^ x R, which for e —¥ 0 

Gromov-Hausdorff converge to R. Then this sequence converges in the GL-topology 
to a Riemannian megafold M, which can described as follows: It is covered by one 
single chart U = R2, and the pseudogroup G simply consists of all vertical shifts of 
R2. I.e., M is nothing but (R2 : R) where R acts by parallel translations. (Note 
that (R2 : R) ^ R2 /R, these megafolds even have different dimensions!) 

The Berger spheres, as they Gromov-Hausdorff collapse to S2, converge in 
Grothendieck-Lipschitz topology to the Riemannian megafold (S2 x R : R). Here 
R acts by parallel shifts of S2 x R. 

Notice that a Riemannian metric on a megafold ((U,g) : G) defines a pseu-
dometric on the set of G orbits. In particular one has that the diameter of a 
Riemannian megafold is well defined. Now here is the basic result, whose proof is 
obvious from the definitions: 

Theorem C. The set of Riemannian m-manifolds (megafolds) with bounded sec­
tional curvature \K\ < 1 and diameter < D is precompact (compact) in the 
Grothendieck-Lipschitz topology. 

Now let us state some natural questions which arise from this theorem: 
1. Which Riemannian megafolds can be approximated by manifolds with 

bounded curvature and diameter? 
Note that the infinitesimal motions of the pseudogroup G give rise to a Lie 

algebra of Killing fields on a megafold (U, g) from which one can recover an isometric 
local action of a connected Lie group on (U,g). Yet us call this group G0. Then 
G0 is obviously an invariant of the megafold, i.e., does not depend on a particular 
representation (U : G). It follows now from [CFG] that if (M,g) is a limit of 
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Riemannian manifolds with bounded curvature, then G0(M) must be nilpotent. A 
direct construction moreover shows that this condition is also sufficent. 

(Note that since a pure Ar-structure on a simply connected manifold is given 
by a torus action, one also has the following: If a megafold can be approximated 
by simply connected manifolds with bounded curvature, then G0(M) = Rk.) 

2. How can one recover the Gromov-Hausdorff limit space from a Grothendieck-
Lipschitz limit? 

Let M = ((U,g) : G) be a GL-limit of Riemannian manifolds. The GH-limit 
is the space of G orbits with the induced metric, in other words: The Gromov-
Hausdorff limit is nothing but (U,g)/G. 

Riemannian megafolds are actually not that general objects as they might 
seem at first sight. Indeed, given a Riemannian megafold (M,g) we can consider 
its orthonormal frame bundle (FM,g), equipped with the induced metric. Now 
consider some representation of it, say, (FM,g) = ((U,g) : G). Then the G pseu­
dogroup action is free on U, so that its closure G also acts freely. Therefore the 
corresponding factor, equipped with the induced metric, is a Riemannian manifold 
Y = (U/G,g), and there is a Riemannian submersion (FM,g) —t (U/G,g) whose 
fibre is G0/Y0, where F0 is a dense subgroup of G0 (Roughly speaking, F0 is gener­
ated by the intersections of G0 and G). If we assume that M is simply connected, 
then G0 = Rk and F0 is the homotopy sequence image of n2(Y). In particular, the 
dimension of the free part of n2(Y) is at least k + 1. 

Notice that for Riemannian megafolds one can define the de Rham complex 
just as well as for manifolds. (In fact I am not aware of a single notion or theorem 
in Riemannian geometry which does not admit a straightforward generalization to 
Riemannian megafolds!) From the above characterization of Riemannian megafolds 
it is not hard to obtain the following: 
Theorem D. Let Mn be a sequence of compact simply connected Riemannian 
m-manifolds with bounded curvatures and diameters and H%R(Mn) = 0 which 
Grothendieck-Lipschitz converges to a Riemannian megafold (M,g). 

Then M is either a Riemannian manifold and the manifolds Mn converge to 
M in the Lipschitz sense, or H^R(M) ^ 0. 

It is in particular straightforward to show that ïfRïcc(M) > 0, then H^R(M) = 
0. Moreover, a Grothendieck-Lipschitz limit of manifolds with uniformly bounded 
sectional curvatures and Ricc> ö > 0 is a Riemannian megafold with Ricc> ö > 0. 

Now we can prove Theorem B: Assume it is wrong. Then we can find a 
collapsing sequence of simply connected manifolds with finite 7i2 and positive Ricci-
pinching, and we obtain a megafold with H^R ^ 0 as a GL-limit. Applying the 
Bochner formula for 1-forms on this megafold, we obtain a contradiction. 

2. Finiteness theorems 
The following result appeared as a co-product of the theorem above, and it 

came as a nice surprise. Let me first formulate this finiteness results from [PT]: 
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Theorem E (The ^-Finiteness Theorem). For given m, C and D, there is 
only a finite number of diffeomorphism types of simply connected closed m-dimen­
sional manifolds M with finite second homotopy groups which admit Riemannian 
metrics with sectional curvature \K(M)\ < C and diameter diam(M) < D. 
Theorem F (A "classification" of simply connected closed manifolds). For 
given m, C and D, there exists a finite number of closed smooth simply connected 
manifolds Et with finite second homotopy groups such that any simply connected 
closed m-dimensional manifold M admitting a Riemannian metric with sectional 
curvature \K(M)\ < C and diameter diam(M) < D is diffeomorphic to a factor 
space M = Ei/Tki, where 0 < fcj = 62 (M) = dim Et — m and Tki acts freely on 
Ei. 

Here is a short account of other finiteness results which only require volume, 
curvature, and diameter bounds: For manifolds M of a given fixed dimension m, 
the conditions 

• vol(M) > v > 0, \K(M)\ < C and diam(Af) < D imply finiteness of diffeo­
morphism types (Cheeger ([C]) 1970); this conclusion continues to hold for 
vol(M) >v>0,jM \R\m/2 < C, |RicM | < C, diam(Af) < D (Anderson and 
Cheeger ([AC1]) 1991); 

• vol(M) > v > 0, K(M) > C diam(Af ) < D imply finiteness of homeomor­
phism types (Grove-Petersen ([GP]) 1988, Grove-Petersen-Wu ([GPW]) 1990); 
Perelman, ([Pe]) 1992) (if in addition m > 4, these conditions imply finiteness 
of diffeomorphism types) and Lipschitz homeomorphism types (Perelman, un­
published); 

• K(M) > C and diam(Af) < D imply a uniform bound for the total Betti 
number (Gromov [Gl] 1981). 
The 7T2-Finiteness Theorem requires two-sided bounds on curvature, but no 

lower uniform volume bound. Thus, in spirit it is somewhere between Cheeger's 
Finiteness and Gromov's Betti number Theorem. 

Each of the above results has (at least) two quite different proofs, the origi­
nal one and one which uses Alexandrov techniques. (For Gromov's Betti number 
theorem we made such a proof recently, jointly with V. Kapovich and it turned out 
that one can even give an upper estimate for the total number of critical points 
of a Morse function on such a manifold, which due to the Morse inequality is a 
stronger condition.) Let me now explain roughly this second way of proving of such 
theorems: 

I will take Cheeger's theorem as an example: Assume it is wrong. Then 
there is an infinite number of non-diffeomorphic manifolds with bounded curvature, 
diameter and a lower bound on the volume. Then due to Gromov's compactness 
theorem a subsequence of them has a limit. Then, due to the volume bound, this 
limit space has the same dimension, and is in fact just little worse than Riemannian; 
it is a manifold with a smooth structure and curvature bounded in the sense of 
Alexandrov. Then one only has to prove the stability result, i.e. one has to prove 
that starting from some big number all manifolds are diffeomorphic to the limit 
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space. In the case of two-sided curvature bound it is really simple, and for just 
lower curvature bound it is already a hard theorem of Perelman, but still it works 
along this lines. 

Now for both of these proofs it is very important to have a uniform lower 
positive volume bound to prevent collapsing. In fact, if one removes this bound 
then it is not hard to construct infinite sequence of non-diffeomorphic manifolds. 
This holds for two-sided bounded as well as for lower curvature bound. And if we 
would try to prove it the same way as before we would get a limit space of possibly-
smaller dimension. Therefore the stability result can not hold this way. 

This partly explains why Theorem E looks a bit surprising, we add one topo­
logical condition and get real finiteness result. The proof can go along the same 
lines. Take a sequence of nondiffeomorphic Riemannian manifold (Mn,gn), by Gro­
mov's compactness theorem we have a limit space (for some subsequence) X. The 
sequence must collapse, otherwise the same arguments as before would work. Since 
the Mn are simply connected, from [CFG] we have that collapsing takes place along 
some r*-orbits of some Tfc-action. 

Now assume for simplicity that X is a manifold and n2(Mn) = 0. Then all 
Mn are diffeomorphic to Tk bundles over X. Since the Mn are simply connected so 
is X. Therefore the diffeomorphism type of Mn depends only on the Euler class en 

which in this case can be interpreted as the following mapping: 

0 = 7r2(M„) - • 7T2(X) -% m(Tk) - • 7Ti(M„) = 0. 

Therefore en isan isomorphism between two groups and up to automorphisms of 
Tk all possible Euler classes en are the same. In particular, for large n all Mn are 
diffeomorphic. 

That is not quite a proof since we had made quite strong assumptions on the 
way. But it turns out that the general case can be ruled out using a few already-
standard tricks from [CFG] and [GK], namely, by passing to the frame bundles 
FMn and by conjugating group actions. 
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Collapsed Riemannian Manifolds 
with Bounded Sectional Curvature* 
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A b s t r a c t 

One of the most important developments in Riemannian geometry over 
the last two decades is the structure theory of Cheeger-Fukaya-Gromov, for 
manifolds Mn of bounded sectional curvature, say | K M » | < 1, which are suf­
ficiently collapsed. Roughly, Mn is called e-collapsed, if it appears to have 
dimension less than n, unless the metric is rescaled by a factor > e_ 1 . For ex­
ample, a very thin cylinder is very collapsed (although its curvature vanishes 
identically). 

If one fixes e and in addition, a bound, d, on the diameter, then in each 
dimension, there are only finitely many manifolds, which are not e-collapsed. 
The basic result of collapsing theory states the existence of a constant, e(n) > 0, 
such that a manifold which is e-collapsed, for e < e(n), has a particular kind of 
singular fibration structure with flat (or "almost flat" ) fibers. The fibers lie in 
the e-collapsed directions. 

The first nontrivial collapsing with bounded curvature, arose in a se­
quence of metrics on the 3-sphere constructed by M. Berger. The first major 
result on the collapsed manifolds (still a corner stone of the theory) is M. 
Gromov's description of "almost flat manifolds" i.e. manifolds admitting a se­
quence of metrics with curvature and diameter going to zero. Gromov showed 
that such manifolds are infranilmanifolds. 

We will survey the main development of the collapsing theory and its 
applications to Riemannian geometry since 1990. The common starting point 
is the existence of the above mentioned singular fibration structure. Many 
new geometrical and topological constraints of collapsed metrics have been 
discovered that are accompanied with new ideas and techniques as well as 
tools from related fields, and light has been shed on some classical problems 
and conjectures, which do not, on the face of it, involve collapsing. Substantial 
progress has been made on manifolds with non-positive curvature, on positively 
pinched manifolds, collapsed manifolds with an a priori diameter bound, and 
subclasses whose members satisfy additional topological conditions e.g. 2-
connectedness. 
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One of the most important developments in Riemannian geometry over the last 
two decades is the structure theory of Cheeger-Fukaya-Gromov for manifolds Mn 

of bounded sectional curvature, say |secM»| < 1, which are sufficiently collapsed. 
Roughly, Mn is called e-collapsed, if it appears to have dimension less than n, unless 
the metric is rescaled by a factor > e_ 1 . 

For scaling reasons, collapsing and boundedness of tend to oppose one another. 
Nevertheless, very collapsed manifolds with bounded curvature do in fact exist. For 
example, a very thin cylinder is very collapsed, although its curvature vanishes 
identically. 

If one fixes e and in addition, a bound, d, on the diameter, then in each 
dimension, there only finitely many manifolds, which are not e-collapsed; see [Ch]. 
The basic result of collapsing theory states the existence of a constant e(n) > 0, 
such that a manifold which is e-collapsed, for e < e(n), has a particular kind of 
singular fibration structure with flat (or "almost flat") fibers. The fibers lie in the 
e-collapsed directions; see [CGI,2], [CFG], [Ful-3]. 

The first nontrivial example of a collapsing sequence with bounded curvature 
(described in more detail below) was constructed by M. Berger in 1962; see [CFG]. 
The first major result on the collapsed manifolds (still a cornerstone of the theory) 
was M. Gromov's characterization of "almost flat manifolds" i.e. manifolds admit­
ting a sequence of metrics with curvature and diameter going to zero. Gromov 
showed that such manifolds are infranil. Later in [Ru], they were shown to actually 
be nilmanifolds; compare [GMR]. 

We will survey the development of collapsing theory and its applications to 
Riemannian geometry since 1990; compare [Fu4]. The common starting point for 
all of these is the above mentioned singular fibration structure. However, new tech­
niques have been introduced and tools from related fields have been brought in. As a 
consequence, light has been shed on some classical problems and conjectures whose 
statements do not involve collapsing. Specifically, substantial progress has been 
made on manifolds with nonpositive curvature, on positively pinched manifolds, 
collapsed manifolds with an a priori diameter bound, and subclasses of manifolds 
whose members satisfy additional topological conditions e.g. 2-connectedness. 

1. Collapsed manifolds of bounded sectional 
curvature 

Convention: unless otherwise specified, "collapsing" refers to a sequence of 
Riemannian manifolds with sectional curvature bounded in absolute value by one 
and injectivity radii uniformly converge to zero, while "convergence" means "con­
vergence with respect to the Gromov-Hausdorff distance. 

Recall that a map from a metric space (X,dx) to a metric space (Y,dy) is 
called an e-Gromov-Hausdorff approximation, if of f(X) is e-dense in Y and if 
\dx(x,x') — dY(f(x),f(x'j)\ < e. The Gromov-Hausdorff distance between two 
(compact) metric spaces is the infimum of e as above, for all possible e-Gromov-
Hausdorff approximations from X to Y and vice versa. (To be more precise, one 
should say "pseudo-distance", since isometric metric spaces have distance zero.) 



Collapsed Riemannian Manifolds with Bounded Sectional Curvature 325 

The collection of all compact metric spaces is complete with respect to the Gromov-
Hausdorff distance. 

a. Flat manifolds, collapsing by scaling and torus actions 

For fixed (M,g), the family, {(M, e2g)} converges to a point as e —¥ 0. How­
ever, if the curvature is not identically zero, it blows up. On the other hand, for 
any compact flat manifold, (M,g), the the manifolds, (M,e2g) continue to be flat. 
More generally, if (M,g) is a (possibly nonflat) manifold with an isometric torus 
r*-action for which all T^-orbits have the same dimension, then one obtains a col­
lapsing sequence by rescaling g along the orbits i.e. by putting gf = e2go ® g^, 
where go is the restriction of g to the tangent space of a Tfc-orbit and g^ is the 
orthogonal complement. A computation shows that gf_ has bounded sectional cur­
vature independent of e. The collapse constructed by Berger in 1962 was of this 
type. In his example, M3 is the unit 3-sphere and the S1 action is by rotation in 
the fibers of the Hopf fibration S1 —¥ S3 —¥ S2. The limit of this collapse is the 
2-sphere with a metric of constant curvature = 4; see [Pet]. 

More generally, a collapsing construction has been given by Cheeger-Gromov 
for manifolds which admit certain mutually compatible local torus actions (possibly 
by tori of different dimensions) for which all orbits have positive dimension; see 
the notion of F-structure given below and (1.2.1). As above, for each individual 
local torus action, one obtains locally defined collapsing sequence. The problem 
is to patch together these local collapsings. If the orbits are not all of the same 
dimension, the patching requires a suitable scaling of the metric (by a large constant) 
in the transition regions between orbits of different dimensions; see [CGI]. Hence, 
in contrast to the Berger example, in general the diameters of such nontrivially 
patched collapsings necessarily go to infinity. 

b. Almost flat manifolds and collapsing by inhomogeneous scaling 

Although a compact nilmanifold (based on a nonablian nilpotent Lie group) 
admits no flat metric, a sequence metrics on such a manifold which collapses to a 
point can be constructed by a suitable inhomogeneous scaling process; see [Grl]. 
As an example, regard a compact nilmanifold M3 as the total space of a principle 
circle bundle over a torus. A canonical metric g on M3 splits into horizontal and 
vertical complements, g = gh®9h- Then gf = (egu) ® (e2g^) has bounded sectional 
curvature independent of e, while (M3,ge) converges to a point. The inhomogeneity 
of the scaling is essential in order for the curvature to remain bounded; compare 
Theorem 3.4. 

c. Positive rank F-structure and collapsed manifolds 

The notion of an F-structure may be viewed as a generalization of that of 
a torus action. An F-structure J7 on a manifold is defined by an atlas T = 
{(\'i,Ui,Tki)}, satisfying the following conditions: 
(1.1.1) {Ui} is a locally finite open cover for M. 
(1.1.2) 7T, : Vi —¥ Ui is a finite normal covering and V» admits an effective torus 
rfci-action such that it extends to a TTI(Uì) K Tfci-action. 
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(1.1.3) If Ui fl Uj ^ 0, then 7ri
_1(L/j n Uj) and 7TJ1(L/J n Uj) have a common finite 

covering on which the lifting Tfci— and Tkj-actions commute. 
If ki = k, for all i, then T is called pure. Otherwise, T is called mixed. The 

compatibility condition, (1.1.3), implies that M decomposes into orbits, (an orbit 
at a point is the smallest set containing all the projections of the Tki-orbits at 
the point.) The minimal dimension of all such orbits is called the rank of T. An 
orbit is called regular, if it has a tubular neighborhood in which the orbits form a 
fibration. Otherwise, it is called singular. An F-structure T is called polarized if all 
Tki-actions are almost free. An F-structure is called injective (resp. semi-injective) 
if the inclusion of any orbit to M induces an injective (resp. nontrivial) map on the 
fundamental groups. 

A Cr-structure is an injective F-structure with an atlas that satisfies two ad­
ditional properties: i) V» = D» x Tki and Tki acts on V» by the multiplication, ii) If 
Ui fl Uj ^ 0, then fc» < kj or vice versa; see [Bui]. This notion arises in the context 
of nonpositive curvature. 

A metric is called an ^-invariant (or simply invariant), if the local T^'-actions 
are isomeric. For any F-structure, there exists an invariant metric. 

A manifold may not admit any nontrivial F-structure; compare Corollary 2.5. 
In fact, a simple necessary condition for a closed manifold M2n to admit a positive 
rank F-structure is the vanishing of its Euler characteristic; see [CGI]. 

A necessary and sufficient condition for the existence of a collapsing sequence 
of metrics is the existence of an F-structure of positive rank; see [CGI], [CG2]. 

Theorem 1.2 (Collapsing and F-structure of positive rank). ([CGI,2]) Let 
M be a manifold without boundary. 
(1.2.1) If M admits a positive rank (resp. polarized) F-structure, then M admits a 
continuous one-parameter family of invariant metrics gf_ such that \sec9e\ < 1 and 
the injectivity radius (resp. volume) of gf_ converges uniformly to zero as e —¥ 0. 
(1.2.2) There exists a constant e(n) (the critical injectivity radius) such that if 
Mn admits a metric g with \secg\ < 1 and the injectivity radius is less than e(n) 
everywhere, then M admits a positive rank F-structure almost compatible with the 
metric. 

The F-structure in (1.2.2) is actually a substructure of a so called nilpotent 
Killing structure on M whose orbits are infra-nilmanifolds; see [CFG] and compare 
to Theorem 3.5. Such an infra- nilmanifold orbit at a point contains all sufficiently-
collapsed directions of the metric; the orbit of its sub F-structure, which is defined 
by the 'center' of the infra-nilmanifold, only contains the most collapsed directions 
comparable to the injectivity radius at a point. A unsolved problem pertaining to 
nilpotent structures is whether a collapse as in (1.2.1) can be constructed for which 
the diameters of the nil-orbits converge uniformly to zero (as holds for F-structures). 

The construction of the F-structure in (1.2.2) relies only on the local geom­
etry. Hence, (1.2.2) can be applied to a collapsed region in a complete manifold 
of bounded sectional curvature. In this way, for such a manifold, one obtains a 
thick-thin decomposition, in which the thin part carries an F-structure of positive 
rank; see [CFG]. 
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Theorem 1.2 has been the starting point for many subsequent investigations 
of collapsing in various situations. The guiding principle is that additional geomet­
rical properties of a collapsing should be mirrored in properties of its associated 
F-structure, which in turn, puts constraints on the topology. For instance, if a col­
lapsing satisfies additional geometrical conditions such as: i) volume small, ii) uni­
formly bounded diameter, iii) nonpositive curvature, iv) positive pinched curvature, 
v) bounded covering geometry i.e. the injectivity radii of the Riemannian universal 
covering has a uniform positive lower bound, then one may expect corresponding 
topological properties of the F-structure such as: i) existence of a polarization, 
ii) pureness, iii) existence of a Cr-structure, iv) the existence of a circle orbit, v) 
injective F-structure. Results on such correspondences and their applications will 
occupy the rest of this paper. 

d. Topological invariants associated to a volume collapse 

The existence of a sufficiently (injectivity radius) collapsed metric as in (1.2.2) 
imposes constraints on the underlying topology. For instance, the simplicial vol­
ume of M vanishes; see [Gr3]. As mentioned earlier, for a closed M2n, the Euler 
characteristic of M2n also vanishes; see [CFG]. 

In this subsection, we focus on some topological invariants associated to certain 
(partially) volume collapsed metrics: the minimal volume, the L2 -signature and the 
limiting n-invariant; see below. 

The minimal volume, MinVol(AT), of M, is the infimum of the volumes over all 
complete metrics with |SCCM| < 1- Clearly, MinVol(M) is a topological invariant. 
Gromov conjectured that there exists a constant e(n) > 0 such that Min Vol (Mn) < 
e(n) implies that MinVol(Mn) = 0 (the gap conjecture for minimal volume). By-
Theorem 1.2, it would suffice to show that a sufficiently volume collapsed manifold 
admits a polarized F-structure. On a 3-manifold, any positive rank F-structure has 
a polarized substructure and thus Theorem 1.2 implies Gromov's gap conjecture in 
dimension 3. However, for n > 4, there are n-manifolds which admit a positive rank 
F-structure but which admit no polarized F-structure; see [CGI]. 

Theorem 1.3 (Volume collapse and Polarized F-structure). ([Ro2]) There 
is a constant e > 0 such that if MinVol(M4) < e, then M4 admits a polarized 
F-structure and thus MinVol(M4) = 0. 

For a complete open manifold with bounded sectional curvature and finite 
volume (necessarily volume collapsed near infinity), the integral of an invariant 
polynomial of the curvature form may depend on the particular metric; see [CG3]. 
It is of interest to find a class of metrics for which integral of characteristic forms 
have a topological interpretation. Cheeger-Gromov showed that for any open com­
plete manifold M4k of finite volume and bounded covering geometry outside some 
compact subset, the integral of the Hirzebruch signature form over M4k is indepen­
dent of the metric; see [CG3] and the references therein. Cheeger-Gromov showed 
that this integral is equal to the so called I/2-signature and conjectured that it can 
take only rational values. (The notion of L2-signature, whose definition involves 
the concept of Von Neumann dimension, was first introduced by Atiyah and Singer 
in the context of coverings of compact manifolds.) 
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Theorem 1.4 (Rationality of geometric signature). ([Ro3]) If an open com­
plete manifold, M4, of finite volume has bounded covering geometry outside a com­
pact subset, then the integral of the Hirzebruch signature form over M4 is a rational 
number. 

The main idea is to show that M4 admits a polarized F-structure T outside 
some compact subset and an exhaustion by compact submanifolds, Mf, such that 
the restriction of T to the boundary of M™ is injective. The integral over M4 is the 
limit of the integrals over Mf, to which we apply the Atiyah-Patodi-Singer formula 
to reduce to showing the rationality of the limit of the ^-invariant terms. By making 
use of the special property of T and Theorem 1.5 below, we are able to conclude 
that the limit of the ^-invariant term is rational. 

Cheeger-Gromov showed that if a sequence of volume collapsed metrics on 
a closed manifold N4"-^1 have bounded covering geometry, then the sequence of 
the associated ^-invariants converges and the limit is independent of the particular 
sequence of such metrics. They conjectured that the limit is rational. 

Theorem 1.5 (Rationality of limiting ^-invariants). ([Rol]) If a closed man­
ifold N3 admits a sequence of volume collapsed metrics with bounded covering ge­
ometry, then N3 admits an injective F-structure and the limit of the n-invariants 
is rational. 

The idea is to show that N3 admits an injective F-structure T. For an injective 
F-structure, the collapsing constructed in (1.2.1) has bounded covering geometry 
and may be used to compute the limit. Results from 3-manifold topology play a 
role in the proof of the existence of the injective F-structure. 

2. Collapsed manifolds with nonpositive sectional 
curvature 

A classical result of Preismann says that for a closed manifold Mn with neg­
ative sectional curvature, any abelian subgroup of the fundamental group is cyclic. 
By bringing in the discrete group technique, Margulis showed that if the metric is 
normalized such that — 1 < SCCM» < 0, then there exists at least one point at which 
the injectivity radius is bounded below by a constant e(n) > 0. 

The study of the subsequent study of collapsed manifolds with — 1 < sec < 0 
may be viewed as an attempt to describe the special circumstances under which 
the conclusions of the Preismann and Margulis theorem can fail, if the hypothesis 
is weakened to nonpositive curvature; see [Bul-3], [CCR1,2], [Eb], [GW], [LY], [Sc]. 

A collapsed metric with nonpositive curvature tends to be rigid in a precise 
sense; see (2.2.1) and (2.2.2). Namely, there exists a canonical Cr-structure whose 
orbits are flat totally geodesic submanifolds. Of necessity, the construction of this 
Cr-structure is global. By contrast, the construction of less precise (but more gen­
erally existing) F-structure is local; see [CG2]. 

Let Mn = Mn/Y, where Mn denotes the universal covering space of Mn with 
the pull-back metric. A local splitting structure on a Riemannian manifold is a F-
equivariant assignment to each point (of an open dense subset of Mn) a specified 
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neighborhood and a specified isometric splitting of this neighborhood, with a non-
trivial Euclidean factor. Hence, a necessary condition for a local splitting structure 
is the existence of a plane of zero curvature, at every point of Mn. A local splitting 
structure is abelian if the projection to Mn of every nontrivial Euclidean factor as 
above is a closed embedded flat submanifold, and n addition, if two projected leaves 
intersect, then one of them is contained in the other. 

Theorem 2.1 (Abelian local splitting structure and Cr-structure). ([CCR1]) 
Let Mn be a closed manifold of —1 < SCCM™ < 0. 
(2.1.1) If the injectivity radius is smaller than e(n) > 0 everywhere, then Mn admits 
an abelian local splitting structure. 
(2.1.2) If Mn admits an abelian local splitting structure, then it admits a compatible 
Cr-structure, whose orbits are the flat submanifolds (projected leaves) of the abelian 
local splitting structure. In particular, MinVol(Mn) = 0. 

Theorem 2.1 was conjectured by Buyalo, who proved the cases n = 3,4; see 
[Bul-3], [Sc]. 

Let x £ Mn. Yet Yf(x) ^ 1 denote the subgroup of F generated by those 7 
whose displacement function, öj(x) = d(x,,y(xj), satisfies d(x,,y(xj) < e. (In the 
application, e is small.) If all Yf(x) are abelian, then the minimal sets, {Min(Fe (£))}, 
of the Yf(x) give the desired abelian local splitting structure in (2.1.1). In general, 
Yf(x) is only Bieberbach. Then, a crucial ingredient in (2.1.1) is the existence of 
a 'canonical' abelian subgroup of Yf_ (x) of finite index consisting of those elements 
which are stable in the sense of [BGS]. In spirit, the proof of (2.1.2) is similar to the 
construction in [CG2], but the techniques used are quite different. 

The following are some specific questions pertaining to abelian local splitting 
structures: 
(2.2.1) If some metric g on M of nonpositive sectional curvature has an abelian 
local splitting structure, does every nonpositively curved metric also have such a 
structure? 

(2.2.2) If M has a Cr-structure, does every any nonpositively curved metric on M 
have a compatible local splitting structure? 

Note that an affirmative answer to (2.2.1) and (2.2.2) would imply a kind of 
semirigidity. It would imply that all nonpositively curved metrics on M are alike 
in a precise sense. 

Theorem 2.3 (F-structure and local splitting structure). ([CCR2]) Let Xn, 
Mn be closed manifolds such that Xn admits a nontrivial F-structure. Let f : Xn —t 
Mn have nonzero degree. Then every metric of nonpositive sectional curvature on 
Mn has a local splitting structure. 

We conjecture that if an F-structure has positive rank, then the local splitting 
structure is abelian. This conjecture, whose proof would provide an affirmative 
answer to (2.2.2), has been verified in dimension 3 and in some additional special 
cases; see [CCR2]. 

We conclude this section with two consequences of Theorem 2.3. 
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Corollary 2.4 (Generalized Margulis Lemma). ([CCR2]) Let Mn be a closed 
manifold of nonpositive sectional curvature. If the Ricci curvature is negative at 
some point, then for every metric with \sec\ < 1, there is a point with injectivity 
radius > ö(n) > 0. 

Another consequence is a geometric obstruction for a nontrivial F-structure. 

Corollary 2.5 (Nonexistence of F-structure). ([CCR2]) If a closed manifold 
M admits a metric of nonpositive sectional curvature such that the Ricci curvature 
is negative at some point, then M does not admit a nontrivial F-structure. 

3. Collapsed manifolds with bounded sectional 
curvature and diameter 

In this section, we discuss the class of collapsed manifolds of bounded sectional 
curvature whose diameters are also bounded. By the Gromov's compactness theo­
rem, any sequence of such collapsed manifolds contains a convergent subsequence; 
see [GLP]. Hence, without loss of the generality, we only need to consider convergent 
collapsing sequences. 

(3.1) Let M™ GH> X denote a sequence of closed manifolds converging to a compact 
metric space X such that |secMf | < 1 and dim(X) < n. 

Main Problem 3.2. For i large, investigate relations between geometry and topol­
ogy of M™ and that of X. The following are some specific problems and questions. 
(3.2.1) Find topological obstructions for the existence of M™ as in (3.1). 
(3.2.2) To what extent is the topology of the M™ in (3.1) stable when i is sufficiently-
large? 
(3.2.3) Under what additional conditions is it true that {M™} as in (3.1) contains 
a subsequence of constant diffeomorphism type? If all M™ are diffeomorphic, then 
to what extent do the metrics converge? 

Note that by the Cheeger-Gromov convergence theorem, the above problems 
are well understood in the noncollapsed situation dim(X) = n. 

Theorem 3.3 (Convergence). ([Ch], [GLP]) Let Aff ^-y X be as in (3.1) 
except dim(X) = n. Then for i large, M™ is diffeomorphic to some fixed Mn 

which is homeomorphic to X and there are diffeomorphisms, fi : Mn —t M™, such 
that the pulled back metrics, f*(gi), converge to a metric, g^, in the C1'®-topology 
(0<a<l). 

Note that as a consequence of Theorem 3.3, topological stability of a sequence 
as in (3.1) will immediately yield a corresponding finiteness result in terms of the 
dimension and bounds on curvature and diameter. 

e. Structure of collapsed manifolds with bounded diameter 

As described in Section 1, any closed nilmanifold Mn admits metrics collapsing 
to a point. 
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Theorem 3.4 (Almost flat manifolds). ([Grl]) Let Aff ^^y X be as in (3.1). 
If X is a point, then a finite normal covering space of M™ of order at most c(n) is 
diffeomorphic to a nilmanifold Nn/Y'i (i large), where Nn is the simply connected 
nilpotent group. 

Theorem 3.4 can be promoted to a description of convergent collapsing se­
quence, of manifolds, M™, as in (3.1). As mentioned following Theorem 1.2, any 
sufficiently collapsed manifold admits a nilpotent Killing structure; see [CFG]. Here 
a bound on diameter forces the nilpotent Killing structure to be pure. 

For a closed Riemannian manifold Mn, its frame bundle F(Mn) admits a 
canonical metric determined by the Riemannian connection up to a choice of a bi-
invariant metric on 0(n). A fibration, N/Y —t F(Mn) —t Y, is called 0(n)-invariant 
if the 0(n)-action on F(Mn) preserves both the fiber N/Y (a nilmanifold) and the 
structural group. By the 0(n)-invariance, 0(n) also acts on the base space Y. A 
canonical metric is invariant if its restriction on each N/Y is left-invariant. A pure 
nilpotent Killing structure on M is an 0(n)-invariant fibration on F(Mn) for which 
the canonical metric is also invariant. 

Theorem 3.5 (Fibration). ([CFG]) Let Aff ^ y X be as in (3.1). Then F(M?) 

equipped with canonical metrics contains a convergent subsequence, F(M") GH> Y, 
and F(M") admits an 0(n)-invariant fibration N/Y'i —t F(M") —t Y for which the 
canonical metric is ei-close in the C1 sense to some invariant metric, where e, —¥ 0. 

The following properties are crucial for the study of particular instances of 
collapsing as in (3.1). 

Proposition 3.6. Let Aff ^^y X be as in (3.1). 
(3.6.1) (Regularity) ([Ro5]) For any e > 0, M™ admits an invariant metric gi such 
that min(secM?) — e < sec(M?,gi) < max(secMp) + e for i large. 
(3.6.2) (Equivariance) ([PT], [GK]) The induced 0(n)actions on Y from the O(re­
action on F(M") are C1 -close and therefore are all 0(n)-equivariant for i large. 

f. Obstructions to collapsing with bounded diameter 

Theorem 3.7 (Polarized F-structure and vanishing minimal volume). 

([CR2]) Let M" GH> X be as in (3.1). Then the F-sub structure associated to the 
pure nilpotent Killing structure on M™ contains a (mixed) polarized F-structure. In 
particular, MinVol(Mf) = 0. 

Theorem 3.7 may be viewed as a weak version of the Gromov's gap conjecture. 
Note that the associated F-structure on M™ may not be polarized. The existence 
of a polarized substructure puts constraints on the singularities of the structure. 

Theorem 3.8 (Absence of symplectic structure). ([FR3]) Let Mf ^ ^ X be 
as in (3.1). Ifm(M™) is finite, then M™ does not support any symplectic structure. 

The proof of Theorem 3.8 includes a nontrivial extension of the well known 
fact that any S1 -action on a closed simply connected symplectic manifold which 
preserves the symplectic structure has a nonempty fixed point set. 
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A geometric obstruction to the existence of a collapsing sequence in (3.1) is 
provided by: 

Theorem 3.9 (Geometric collapsing obstruction). ([Ro7]) Let Mf GH) X 
be as in (3.1). Then limsup(maxM?* RìCM?) > 0. 

A key ingredient in the proof is a generalization of a theorem of Bochner assert­
ing that a closed manifold of negative Ricci curvature admits no nontrivial invariant 
pure F-structure (Bochner's original theorem only guarantees the nonexistence of a 
nontrivial isometric torus action.) 

Theorem 3.10 (Pure injective F-structure). ([CRI]) Let Mf ^ h X be as 
in (3.1). If Mf has bounded covering geometry and m(Mf) is torsion free, then 
for i large Mf admits a pure injective F-structure. 

g. The topological and geometric stability 

In this subsection, we address Problems (3.2.2) and (3.2.3). Observe that 
by the Gromov's Betti number estimate, [Gr2], the sequence in (3.1) contains a 
subsequence whose cohomology groups, fl»(M",Q), are all isomorphic. On the 
other hand, examples have been found showing that {H*(Mf,<Q)} can contain 
infinitely many distinct ring structures; see [FR2]. 

Theorem 3.11 (^-Stabil ity). ([FR2]; compare [Ro4], [Tu]) Let Mf ^^y X be 
as in (3.1). Then for q > 2 and after passing to a subsequence, the q-th homotopy 
group TTq(Mf) are all isomorphic, provided that irq(Mf) are finitely generated (e.g. 
sec,Mf > 0 or iri(Mf) is finite). 

Note that in contrast to the Betti number bound, Theorem 3.11 does not hold 
if upper bound on the sectional curvature is removed; see [GZ]. 

We now discuss sufficient topological conditions for diffeomorphism stability. 
Consider the sequence of fibrations, N/Y'i —t F(Mf) —t Y, associated to (3.1). One 
would like to know when all N/Y'i are diffeomorphic. 

Proposition 3.12. ([FR4]) Let Mf ^^y X be as in (3.1). If m(Mf) contains 
no free abelian group of rank two, then N/Y'i is diffeomorphic to a torus. 

In low dimensions, we have: 

Theorem 3.13 (Diffeomorphism stability—low dimensions). ([FR3], [Tu]) 

For n < 6, let Mf ^ ^ X be as in (3.1). If in(Mf) = 1, then there is a subse­
quence all whose members are diffeomorphic. 

Note that for n > 7, one cannot expect Theorem 3.13; see [AW]. Hence, 
additional restrictions are required in higher dimensions. Observe that if Mf are 
2-connected, then all Tk —t F(Mf) —t Y are equivalent as principle Tfc-bundles. In 
particular all F(Mf) are diffeomorphic. 

Using (3.6.2), Petrunin-Tuschmann showed that the equivalence can be chosen 
that is also 0(n)-equivariant, and concluded the diffeomorphism stability for two-
connected manifolds; see [PT]. For the special case in which the Mf are positively 
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pinched, the same conclusion was obtained independently in [FRI] via a different 
approach. 

We introduce a topological condition which when Mf is simply connected, 
reduces to the assumption that iT2(Mf) is finite. In the nonsimply connected case 
however, there are manifolds with n2(M) infinite, which satisfy our condition. 

Let M denote the universal covering of M. For a homomorphism, p : m (M) —t 
Âut(Zk), the semi-direct product, M xni(M) %>k, is a bundle of p(7Ti(Af))-modules 
which can be viewed as a local coefficient system over M. We denote it by Z*. 
Let bq(M,Zp) denote the rank of the cohomology group, Hq(M,'Lk

p), with the local 
coefficient system Z*. We refer to the integer 

bq(M,Zk) = max {&,(M,Z*)} 

as the q-th twisted Betti number of M. Clearly, bq(M, Zfc) is a topological invariant 
of M. Moreover, k • b2(M,Z) < bq(M,ïk), with equality if n1(M) = 1. 

Theorem 3.14 (Diffeomorphism stability and geometric stability). ([FR4]) 

Let Mf GH> X be as in (3.1) with k = n — dim(X). Assume that Mf satisfies: 
(3.14.1) TTi(Mf) is a torsion group with torsion exponents uniformly bounded from 
above. 
(3.14.2) The second twisted Betti number b2(Mf,Zk) = 0. 
Then there are diffeomorphisms, fi, from Mn to (a subsequence of) {Mf}, such 
that the distance functions ofpullback metrics, f*(gi), on Mn, converge to a pseudo-
metric doo in C°-norm. Moreover, Mn admits a foliation with leaves diffeomorphic 
to flat manifolds (that are not necessarily compact) and a vector V tangent to a leaf 
if and only if \\V\\9i —¥ 0. 

The proof of Theorem 3.14 is quite involved. 
Finally, we mention that J. Lott has systematically investigated the analytic 

aspects for a collapsing in (3.1); for details, see [Lol-3]. 

4. Positively pinched manifolds 

In this section, we further investigate a subclass of the class of collapsed man­
ifolds with bounded diameter: collapsed manifolds with pinched positive sectional 
curvature; see [AW], [Ba], [Es], [Pü] for examples. 

In the spirit of Theorem 3.4, we first give the following classification result. 

Theorem 4.1 (Maximal collapse with pinched positive curvature). ([R08]) 

Let Mf ^^y X be as in (3.1) such that secM? > ö > 0. Then dim(X) > ^ 
"" d i life 0 "" 

and equality implies that Mf ~ Sn/Zqi (a lens space), where Mf —t Mf is a 
covering space of order < ^4^-. 

By Theorem 3.5, (3.6.1) and Proposition 3.12, the proof of Theorem 4.1 reduces 
to the classification of positively curved manifolds which admit invariant pure F-
structures of maximal rank; see [GS]. 
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Theorem 4.2 (Positive pinching and almost cyclicity of m). ([Ro6]) Let 

Mf GH) X be as in (3.1) such that secM? > ö > 0. Then for i sufficiently large, 
iTi(Mf) has a cyclic subgroup whose index is less than w(n). 

By Theorem 3.5 and (3.6.1), the following result easily implies Theorem 4.2. 

Theorem 4.3 (Symmetry and almost cyclicity of m). ([Ro6]) Let Mn be 
a closed manifold of positive sectional curvature. If Mn admits an invariant pure 
F-structure, then m(Mn) has a cyclic subgroup whose index is less than a constant 
w(n). 

In the special case of a free isometric action, from the homotopy exact sequence 
associated to the fibration, S1 —¥ Mn —t Mn/S1, together with the Synge theorem, 
one sees that m(Mn) is cyclic. The proof of the general case is by induction on n 
and is rather complicated. 

We now consider the injectivity radius estimate. Klingenberg-Sakai and Yau 
conjectured that the infimum of the injectivity radii of all 5-pinched metrics on 
Mn is a positive number which depends only on Ö and the homotopy type of the 
manifold. By a result of Klingenberg, this conjecture is easy in even dimensions. In 
odd dimensions it is open. 

Theorem 4.4 (Noncollapsing). ([FR4]; compare [FRI], [PT]) For n odd, let 
Mn be a closed manifold satisfying 0 < ö < secM™ < 1 and \m(Mn)\ < c. If 
~ I T — 1 

b(Mn,Z~î~) = 0, then the injectivity radius of Mn is at least e(n,ö,c) > 0. 

If Theorem 4.4 were false, then by Theorem 3.14 and (3.6.1) one could assume 

the existence of a sequence, (M,gì) GH> X, with Ô/2 < secSi < 1, such that the 
distance functions of the metrics gi also converge. In view of the following theorem 
this would lead to a contradiction. 

Theorem 4.5 (Gluing). ([PRT]) Let (M,gt) ^^y X as in (1.3). If the distance 
functions of gi converge to a pseudo-metric, then lim inf (min secgi) < 0. 

Yet fi : (M, gì) GH> X denote an e, Gromov-Hausdorff approximation, where 
e, —¥ 0. For an open cover {Bj} for X by small (contractible) balls, the assumption 
on the distance functions implies (roughly) that the tube, Cy = ff1(Bj), is a subset 
of M independent of i. Clearly, the universal covering Cy of Cy is noncompact. 
The idea is to glue together the limits of the Cy (modulo some suitable group of 
isometries with respect to the pullback metrics) to form a noncompact metric space 
with curvature bounded below by liminf(minsecSi) in the comparison sense; see 
[BGP], [Pe]. On the other hand, the positivity of the curvature implies that the 
space so obtained would have to be compact. 

The above results on ^-pinched manifolds may shed a light on the topology of 
positively curved manifolds. It is tempting to make the following conjecture (which 
seems very difficult). 

Conjecture 4.6. Let Mn denote a closed manifold of positive sectional curvature. 
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(4.6.1) (Almost cyclicity) m(Mn) has a cyclic subgroup with index bounded by a 
constant depending only on n. 
(4.6.2) (Homotopy group finiteness) For q > 2, nq(M

n) has only finitely many-
possible isomorphism classes depending only on n and q. 
(4.6.3) (Diffeomorphism finiteness) If irq(M

n) = 0 (q = 1,2), then Mn can have 
only finitely many possible diffeomorphism types depending only on n. 

Note that (4.6.1)-(4.6.3) are false for nonnegatively curved spaces. By the 
results in this section, Conjecture 4.6 would follow from an affirmative answer to 
the following: 

Problem 4.7 (Universal pinching constant). ([Be], [Ro5]) Is there a constant 
0 < ö(n) « 1 such that any closed n-manifold of positive sectional curvature 
admits a #(n)-pinched metric? 

A partial verification of (4.6.2) is obtained by [FR2]. 

Theorem 4.8. ([FR2]) Let Mn denote a closed manifold of positive sectional cur­
vature. For q > 2, the minimal number of generators for nq(M

n) is less than 
c(q,n). 

Previously, by Gromov the minimal number of generators of m (Mn) is bounded 
above by a constant depending only on n. 
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Complex Hyperbolic Triangle Groups* 

Richard Evan Schwartz1' 

Abstract 

The theory of complex hyperbolic discrete groups is still in its childhood 
but promises to grow into a rich subfield of geometry. In this paper I will 
discuss some recent progress that has been made on complex hyperbolic de­
formations of the modular group and, more generally, triangle groups. These 
are some of the simplest nontrivial complex hyperbolic discrete groups. In 
particular, I will talk about my recent discovery of a closed real hyperbolic 
3-manifold which appears as the manifold at infinity for a complex hyperbolic 
discrete group. 
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1. Introduction 
A basic problem in geometry is the deformation problem. One s tar ts with a 

finitely generated group F, a Lie group G\, and a larger Lie group G2 D G\. Given 
a discrete embedding p0 : Y —t G\ one asks if po fits inside a family pt : Y —t G2 of 
discrete embeddings. Here discrete embedding means an injective homomorphism 
onto a discrete set. 

A nice setting for the deformation problem is the case when G\ and G2 are 
isometry groups of rank one symmetric spaces, X\ and X2, and F is isomorphic to a 
lattice in G\. If X i = H2, the hyperbolic plane, and X 2 = H3, hyperbolic 3-space, 
then we are dealing with the classic and well-developed theory of quasifuchsian 
groups. 

The (p, q,r)-reflection triangle group is possibly the simplest kind of lattice 
in Isom(iT'). This group is generated by reflections in the sides of a geodesic 
triangle having angles n/p, n/q, n/r (subject to the inequality 1/p+l/q+l/r < 1.) 
We allow the possibility tha t some of the integers are infinite. For instance, the 
(2 ,3 , oo)-reflection triangle group is commensurable to the classical modular group. 
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The reflection triangle groups are rigid in Isom(iì3), in the sense that any two 
discrete embeddings of the same group are conjugate. We are going to replace H3 

by CH", the complex hyperbolic plane. In this case, we get nontrivial deformations. 
These deformations provide an attractive problem, because they furnish some of the 
simplest interesting examples in the still mysterious subject of complex hyperbolic 
deformations. While some progress has been made in understanding these examples, 
there is still a lot unknown about them. 

In §2 we will give a rapid introduction to complex hyperbolic geometry. In 
§3 we will explain how to generate some complex hyperbolic triangle groups. In §4 
we will survey some results about these groups and in §5 we will present a more 
complete conjectural picture. In §6 we will indicate some of the techniques we used 
in proving our results. 

2. The complex hyperbolic plane 
The book [8] is an excellent general reference for complex hyperbolic geometry. 

Here are some of the basics. 
C2'1 is a copy of the vector space C3 equipped with the Hermitian form 

n 

(U, V) = -u3v3 + Y^ ujVj- (1) 
3=1 

Here U = (u\,u2,uz) and V = (v\,v2,vz). A vector V is called negative, null, or 
positive depending (in the obvious way) on the sign of (V, V). We denote the set of 
negative, null, and positive vectors, by Ar_, N0 and N+ respectively. 

C" includes in complex projective space CP" as the affine patch of vectors 
with nonzero last coordinate. Let [ ] : C2'1 — {0} —ï CP2 be the projectivization 
whose formula, expressed in the affine patch, is 

[(vi,v2,v3)] = (vi/v3,v2/v3). (2) 

The complex hyperbolic plane, CH", is the projective image of the set of negative 
vectors in C2'1. That is, CH2 = [AT_]. The ideal boundary of CH2 is the unit 
sphere S3 = [N0]- If [X],[F] £ CHn the complex hyperbolic distance ß([X],[F]) 
satisfies 

Q([X],[Y}) = 2cosh-1 y/6(X7ni 6(X,Y) = j ^ ^ y j - (3) 

Here X and Y are arbitrary lifts of [X] and [Y]. See [8, 77]. The distance we defined 
is induced by an invariant Riemannian metric of sectional curvature pinched between 
— 1 and —4. This Riemannian metric is the real part of a Kahler metric. 

SU(2,1) is the Lie group of ( , ) preserving complex linear transformations. 
PU(2,1) is the projectivization of SU(2,1) and acts isometrically on CH". The 
map SU(2,1) —t PU(2,1) is a 3-to-l Lie group homomorphism. The group of 
holomorphic isometries of CH" is exactly PU(2,1). The full group of isometries 
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of CH" is generated by PU(2,1) and by the antiholomorphic map (01,02,23) —̂  
(~Zi,Z2,Z3). 

An element of PU(2,1) is called elliptic if it has a fixed point in CH". It 
is called hyperbolic (or loxodromic) if there is some e > 0 such that every point in 
CH" is moved at least e by the isometry. An element which is neither elliptic nor 
hyperbolic is called parabolic. 

CH" has two different kinds of totally geodesic subspaces, real slices and 
complex slices. Every real slice is isometric to CH" n R" and every complex slice is 
isometric to CH2 n C1. The ideal boundaries of real and complex slices are called, 
respectively, H-circles and C-circles. The complex slices naturally implement the 
Poincaré model of the hyperbolic plane and the real slices naturally model the Klein 
model. It is a beautiful feature of the complex hyperbolic plane that it contains 
both models of the hyperbolic plane. 

3. Reflection triangle groups 
There are two kinds of reflections in lsom(CH"). A real reflection is an 

anti-holomorphic isometry conjugate to the map (z,w) —¥ (z,w). The fixed point 
set of a real reflection is a real slice. We shall not have much to say about the 
explicit computation of real reflections, but rather will concentrate on the complex 
reflections. 

A complex reflection is a holomorphic isometry conjugate to the involution 
(z,w) —¥ (z,—w). The fixed point set of a complex reflection is a complex slice. 
There is a simple formula for the general complex reflection: Let C £ N+. Given 
any U £ C2'1 define 

2(U,C)d 
Ic(U) = ^U + -çëjçfC. (4) 

le is a complex reflection. 
We also have the formula 

U M V = («3W2 — « 2 ^ 3 , U1V3 — U3V1, U1V2 — u2vi). (5) 

This vector is such that (U, U S V) = (V, U S V) = 0. See [8, p. 45]. 
Equations 4 and 5 can be used in tandem to rapidly generate triangle groups 

defined by complex reflections. One picks three vectors Vi,V2,V2 £ AT_. Next, we 
let Cj = Vj-i M Vj+i- Indices are taken mod 3. Finally, we let fi = Icr The 
complex reflection fi fixes the complex line determined by the points [Yfi-i] and 
[Vj+i]. This, the group (Ii,l2,h) is a complex-reflection triangle group determined 
by the triangle with vertices [Vi], [V2], [V3]. 

Here is a quick dimension count for the space of (p, q, r)-triangle groups gen­
erated by complex reflections. We can normalize so that [Vi] = 0. The stabi­
lizer of 0 in PU(2,1) acts transitively on the unit tangent space at 0. We can 
therefore normalize so that [V2] = (s,0) where s £ (0,1). Finally, the isometries 
(z, w) —¥ (z, exp(i9)iv) stabilize both [Vi] and [V2]. Applying a suitable isometry we 
arrange that [V3] = (t+iu, v) where t,u,v £ (0,1). We cannot make any further nor­
malizations, so the space of triangles in CH" mod isometry is 4-real dimensional. 
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Each of the three angles (p, q, r) puts 1 real constraint on the triangle. For instance, 
the p-angle places the constraint that (Iihy is the identity. Since 4 — 3 = 1, we see 
heuristically that the space of (p, q, r)-complex reflection triangle groups is 1-real 
dimensional. 

The argument we just gave can be made rigorous, and extends to the case 
when some of the integers are infinite. (In this case the corresponding vectors are 
null rather than negative.) In the (oo, oo, oo)-case, the parameter is the angular 
invariant arg((Vi, V2)(V2, \'z)(V3, V\)). Compare [10]. 

This 1-dimensionality of the deformation space makes the (p, q, r)-triangle 
groups an especially attractive problem to study. Indeed, there is a completely-
canonical path of deformations. The starting point for the path of deformations is 
the case when the vectors have entirely real entries. (That is, u = 0.) In this case, 
the three complex reflections stabilize the real slice R" n CH". 

4. Some results 
To obtain a deformation of the (p, q, r)-reflection triangle group we choose a 

slice, either real or complex, and a triple of reflections, either real or complex, which 
restrict to the reflections in the sides of a (p, q, r)-geodesic triangle in the slice. A 
priori there are 4 possibilities, given that the slice and the reflection types can be 
either real or complex. These choices lead to different outcomes. 

If we start with complex reflections stabilizing a complex slice, the group has 
order 2, because the reflections will all stabilize the same slice. 

A more interesting case involving complex slices is given by: 

Theo rem 4.1 [8] po : Y -^yIsom(CH") stabilizes a complex slice and acts on this 
slice with compact quotient then any nearby representation pt also stabilizes a com­
plex slice. 

Goldman's theorem applies to any co-compact lattice po(Y). In the case of 
triangle groups, which are rigid in H", it says that any nearby representation is 
conjugate the original. In contrast: 

Theo rem 4.2 [4, 12] There is a 1-parameter family pt.(Y(2,3,00j) of discrete faith­
ful representations of the modular group having the property that po stabilizes a real 
slice and pi stabilizes a complex slice. For every parameter the generators are real 
reflections. 

Thus, in the case of non-cocompact triangle groups, two of the remaining 
3 cases can be connected. In their paper, Falbel and Koseleff claim that their 
technique works for Y(p, q, 00) when max(p, q) = 4. For higher values of p and q it 
is not known what happens. 

The remaining case occurs when we start with complex reflections stabilizing 
a real slice. This is the case we discussed in the previous section. Henceforth we 
restrict our attention to this case. 

Goldman and Parker introduced this topic and studied the case of the ideal 
triangle group F(oo,oo,oo). They found that there is a 1-real parameter family of 
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non-conjugate representations, {pt, t £ (^00,00)}. Once again p0 stabilizes a real 
slice. Paraphrasing their more precise formulation: 

Theo rem 4.3 [10] There are symmetric neighborhoods I C J of 0 such that pt is 
discrete and faithful if t £ I and not both discrete and faithful if t $ J. 

J consists of the parameter values t such that the element pt.(hhh) is not an 
elliptic element. For t $ J, this element is elliptic. If it has finite order then the 
representation is not faithful; if it has infinite order then the representation is not 
discrete. The (very slightly) smaller interval J is the interval for which their proof 
works. They conjectured that pt should be discrete and faithful iff t £ J. 

We proved the Goldman-Parker conjecture, and sharpened it a bit. 

Theo rem 4.4 [16] pt is discrete and faithful if and only if t £ J. Furthermore, pt 
is indiscrete if t $ J. 

The group L = ps(Y (00,00,00)), when s £ d J is especially beautiful. We call 
this group the last ideal triangle group. (There are really two groups, one for each 
endpoint of J, but these are conjugate.) This group seems central in the study 
of complex hyperbolic deformations of the modular group. For instance, Falbel 
and Parker recently discovered that L arises as the endpoint of a certain family of 
deformations of the modular group, using real reflections. See [5] for details. 

Recall that L, like all discrete groups, has a limit set Q(L) c S3 and a do­
main of discontinuity A(L) = S3 — Q(L). The quotient A(L)/L is a 3-dimensional 
orbifold, commonly called the orbifold at infinity. 

Theorem 4.5 [17] A(L)/L is commensurable to the Whitehead link complement. 

The Whitehead link complement is a classic example of a finite volume hy­
perbolic 3-manifold. The surprise in the above result is that a real hyperbolic 
3-manifold makes its appearance in the context of complex hyperbolic geometry. 

One might wonder about analogues of Theorem 4.4 for other triangle groups. 
Below we will conjecture that the space of discrete embeddings is a certain interval. 
In his thesis [22], Justin Wyss-Gallifent studied some special cases of this question. 
He made a very interesting discovery concerning the (4,4,00) triangle group: 

Theo rem 4.6 [22] Let S be the set of parameters t for which the representation 
Pt(F(4,4,00)) is discrete (but not necessarily injective). Then S contains isolated 
points and, in particular, is not an interval. 

There seems to be an interval J of discrete embeddings and, outside of J, an 
extra countable sequence {tj} of parameters for which ptj is discrete but not an 
embedding. This sequence accumulates on the endpoints of J. 

Motivated by [17] I wanted to produce a discrete complex hyperbolic group 
whose orbifold at infinity was a closed hyperbolic 3-manifold. The extra represen­
tations found by Wyss-Gallifent seemed like a good place to start. Unfortunately, 
there is a cusp built into the representations of the (4,4,00) triangle groups. 



344 Richard Evan Schwartz 

Instead, I considered the (4,4,4)-groups, and found that the extra discrete 
deformations exist. pt(Y(4,4,4)) seems to be discrete embedding iff all the elements 
of the form pt(fiJjfiJk) are not elliptic. Here i,j, k are meant to be distinct. (For 
all these parameters, the element pt(filjlk) is still a loxodromic element.) There 
is a countable collection i5, te,... of parameters such that ptó (lì fi li fi) has order j . 
All these representations seem discrete. For ease of notation we set pj = ptó • 

For j = 5,6,7,8,12 we can show by arithmetic means that pj is discrete. The 
representation p5 was too complicated for me to analyze and pg has a cusp. The 
simplest remaining candidate is p-j. 

Theorem 4.7 [18] G = p7(F(4,4,4)) is a discrete group. The orbifold at infinity 
A(G)/G is a closed hyperbolic 3-orbifold. 

In the standard terminology, A(G)/G is the orbifold obtained by labelling the 
braid (AB)15(AB^2)3 with a 2. Here A and B are the standard generators of the 
3-strand braid group. 

A spherical CR structure on a 3-manifold is a system of coordinate charts into 
S3 whose transition functions are restrictions of complex projective transformations. 
Kamishimaand Tsuboi [13] produced examples of spherical CR structures on Seifert 
fibered 3-manifolds, but our example in theorem 4.7 gives the only known spherical 
CR structure on a closed hyperbolic 3-manifold. We think that Theorem 4.7 holds 
forali j = 8,9,10.... 

Concerning the specific topic of triangle groups generated by complex reflec­
tions, I think that not much else is known. Recently a lot of progress has been 
made in understanding triangle groups generated by real reflections. See [3] and [4]. 
There has been a lot of other great work done recently on complex hyperbolic dis­
crete groups, for instance [1], [2], [9], [20], [21]. Also see the references in Goldman's 
book [f8]. 

5. A conjectural picture 
We will consider the 1-parameter family pt (p, q, r) of representations of the 

(p, q, r)-reflection triangle group, using complex reflections. We arrange that po 
stabilizes a real slice. We choose our integers so that p < q < r. We let Ip, Iq, Jr 

be the generators of the reflection triangle group. The notation is such that Ip is 
the reflection in the side of the triangle opposite p, etc. Define 

WA = Ipfilqfi] Wß = Iplqlr- (6) 

Conjecture 5.1 The set oft for which pt.(p,q,r) is a discrete embedding is the 
closed interval consisting of the parameters t for which neither Pì(WA) nor pt(Wß) 
is elliptic. 

We call the interval of Conjecture 5.1 the critical interval. 
We say that the triple (p, q, r) has type A if the endpoints of the critical interval 

correspond to the representations when WA is a parabolic element. In other words, 
WA becomes elliptic before WB- We say otherwise that (p,q,r) has type B. 
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Conjecture 5.2 The triple (p,q,r) has type A if p < 10 and type B if p> 13. 

The situation is rather complicated when p £ {10,11,12,13}. Our Java applet 
[19] lets the user probe these cases by hand, though the roundoff error makes a few 
cases ambiguous. The extra deformation, which was the subject of Theorem 4.7, 
seems part of a more general pattern. 

Conjecture 5.3 / / (p,q,r) has type A then there is a countable collection of pa­
rameters ti,t2,h... for which ptj(p,q,r) is infinite and discrete but not injective. If 
(p, q, r) has type B then all infinite discrete representations pt (p, q, r) are embeddings 
and covered by Conjecture 5.1. 

The proviso about the infinite image arises because there always exists an extremely-
degenerate representation of Y(p, q, r) onto Z/2. The generators are all mapped to 
the same complex reflection. 

In summary, there seems to be a critical interval J, such the representations 
Pt (p, q, r) are discrete embeddings iff t £ I. Depending on the endpoints of J, there 
are either no additional discrete representations, or a countable collection of extra 
discrete representations. 

It is interesting to see what happens as t moves to the boundary of J from 
within J. We observed a certain kind of monotonicity to the way the representation 
varies. Let F be the abstract (p,q,r) triangle group. For any word W £ Y, let 
Wt = Pt(W). We will concentrate on the case when W is an infinite word. For 
t £ I, the element Wt is (conjecturally) either a parabolic or loxodromic. Let X(Wt) 
be the translation length of Wt-

Conjecture 5.4 As t increases monotonically from 0 to dì, the quantity X(Wt) 
decreases monotonically for all infinite words W. 

Conjecture 5.4 is closely related to some conjectures of Hanna Sandler [15] 
about the behavior of the trace function in the ideal triangle case. I think that 
there is some fascinating algebra hiding behind the triangle groups^in the form of 
the behavior of the trace function—but so far it is unreachable. 

6. Some techniques of proof 

If G Clsom(X), one can try to show that G is discrete by constructing a 
fundamental domain for G. One looks for a set F C I such that the orbit G(F) 
tiles X. This means that the translates of F only intersect F in its boundary. 
The Poincaré theorem [B, §9.6] gives a general method for establishing the tiling 
property of F based on how certain elements of G act on dF. 

When X = Hn, one typically builds fundamental domains out of polyhedra 
bounded by totally geodesic codimension-1 faces. When X = CHn, the situation 
is complicated by the absence of totally geodesic codimension-1 subspaces. The 
most natural replacement is the bisector. A bisector is the set of points in CHn 

equidistant between two given points. Mostow [14] used bisectors in his analysis 



346 Richard Evan Schwartz 

of some exceptional non-arithmetic lattices in Isom(CiT'), and Goldman studied 
them extensively in [8]. (See Goldman's book for additional references on papers 
which use bisectors to construct fundamental domains.) 

My point of view is that there does not seem to be a "best" kind surface to 
use in constructing fundamental domains in complex hyperbolic space. Rather, I 
think that one should be ready to fabricate new kinds of surfaces to fit the problem 
at hand. It seems that computer experimentation often reveals a good choice of 
surface to use. In what follows I will give a quick tour of constructive techniques. 

Consider first the deformations Gt = Pt(oo, 00,00) of the ideal triangle group, 
introduced in [10]. According to [16] these groups are discrete for t £ [0,T]. Here 
r is the critical parameter where the product of the generators is parabolic. It 
is convenient to introduce the Clifford torus. Thinking of CH" as the open unit 
ball in C", the Clifford torus is the subset T = {\z\ = \w\} C S3. Amazingly 
T has 3 foliations by C-circles: The horizontal foliation consists of C-circles of 
the form {(z,w)\z = zo}- The vertical foliation consists of C-circles of the form 
{(z,w)\w = wo}- The diagonal foliation consists of C-circles having the form 
{(z,w)\ z = Àow}. 

Recall that Gt is generated by 3 complex reflections. Each of these reflections 
fixes a complex slice and hence the bounding C-circle. One can normalize so that 
the three fixed C-circles lie on the Clifford torus, one in each of the foliations. 
Passing to an index 2 subgroup, we can consider a group generated by 4 complex 
reflections: Two of these reflections, H\ and H2, fix horizontal C-circles hi and h2 

and the other two, V\ and V2, fix vertical C-circles v\ and 1)2. 

The ideal boundary of a bisector is called a spinal sphere. This is an embedded 
2-sphere which is foliated by C-circles (and also by i2-circles.) We can find a 
configuration of 4-spinal spheres S(l,v), S(2,v), S(l,h) and S(2,h). Here S(j,v) 
contains Vj as part of its foliation and S(j,h) contains hj as part of its foliation. 
The map Hj stabilizes S(j, h) and interchanges the two components of S3 — S(j, h). 
Analogous statements apply to the Vs. 

The two spheres S(h,j) are contained in the closure of one component of 
S3 —T and the two spheres S(v,j) are contained in the closure of the other. When 
the parameter t is close to 0 these spinal spheres are all disjoint from each other, 
excepting tangencies, and form a kind of necklace of spheres. Given the way the 
elements Hj and Vj act on our necklace of spheres, we see that we are dealing with 
the usual picture associated to a Schottky group. In this case the discreteness of the 
group is obvious. 

As the parameter increases, the two spinal spheres S(v, 1) and S(v,2) collide. 
Likewise, S(h, 1) and S(h, 2) collide. Unfortunately, the collision parameter occurs 
before the critical parameter. For parameters larger than this collision parameter, 
we throw out the spinal spheres and look at the action of G on the Clifford torus 
itself. (This is not the point of view taken in [10] but it is equivalent to what they 
did.) 

Let H be the subgroup generated by the reflections Hi and H2 • One finds that 
the orbit H(T) consists of translates of T which are disjoint from each other except 
for forced tangencies. Even though H is an infinite group, most of the elements in 
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H move T well off itself, and one only needs to take care in checking a short finite 
list of words in H. Once we know how H acts on T we invoke a variant of the 
ping-pong lemma to get the discreteness. 

At some new collision parameter, the translates of the Clifford torus collide 
with each other. Again, the collision parameter occurs before the critical parameter. 
This is where the work in [16] comes in. I define a new kind of surface called a hybrid 
cone. A hybrid cone is a certain surface foliated by arcs of H-circles. These arcs 
make the pattern of a fan: Each arc has one endpoint on the arc of a C-circle 
and the other endpoint at a single point common to all the arcs. I cut out two 
triangular patches on the Clifford torus and replace each patch by a union of three 
hybrid cones. Each triangular patch is bounded by three arcs of C-circles; so that 
the hybrid cones are formed by connecting these exposed arcs to auxilliary points 
using arcs of H-circles. In short, I put some dents into the Clifford torus to make it 
fit better with its ff-translates, and the I apply the ping-pong lemma to the dented 
torus. 

I also use hybrid cones in [17], to construct a natural fundamental domain 
in the domain of discontinuity A(L) for the last ideal triangle group L. In this 
case, the surfaces fit together to make three topological spheres, each tangent to 
the other two along arcs of H-circles. The existence of this fundamental domain 
lets me compute explicitly that A(L)/L is commensurable to the Whitehead link 
complement. 

Falbel and Zocca [6] introduce related surfaces called C-spheres, which are 
foliated by C-circles. These surfaces seem especially well adapted to groups gen­
erated by real reflections. See [3] and [4]. Indeed, Falbel and Parker construct a 
different fundamental domain for L using C-spheres. See [5]. 

To prove Theorem 4.7 in [18] I introduce another method of constructing 
fundamental domains. My proof revolves around the construction of a simplicial 
complex Z C C2 '1 . The vertices of Z are canonical lifts to C2 '1 of fixed points of 
certain elements of the group G = p7(F(4,4,4)). The tetrahedra of Z are Euclidean 
convex hulls of various 4-element subsets of the vertices. Comprised of infinitely-
many tetrahedra, Z is invariant under the element hfih- Modulo this element Z 
has only finitely many tetrahedra. 

Recall that [ ] is the projectivization map. Let [Z0] = [Z] n S3. I deduce the 
topology of the orbifold at infinity by studying the topology of [Z0] • To show that 
my analysis of the topology at infinity is correct, I show that one component F of 
CH" — [Z] has the tiling property: The G-orbit of F tiles CH". Now, Z is an 
essentially combinatorial object, and it not too hard to analyze the combinatorics 
and topology of Z in the abstract. The hard part is showing that the map Z —¥ [Z] 
is an embedding. Assuming the embedding, the combinatorics and topology of Z 
are reproduced faithfully in [Z], and I invoke a variant of the Poincaré theorem. 

After making some easy estimates, my main task boils down to showing that 
the projectivization map [ ] is injective on all pairs of tetrahedra within a large but 
finite portion of Z. Roughly, I need to check about 1.3 million tetrahedra. The 
sheer number of checks forces us to bring in the computer. I develop a technique for 
proving, with rigorous machine-aided computation, that [ ] is injective on a given 
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pair of tetrahedra. 
A novel feature of my work is the use of computer experimentation and 

computer-aided proofs. This feature is also a drawback, because it only allows 
for the analysis of examples one at a time. To make this analysis automatic I 
would like to see a kind of marriage of complex hyperbolic geometry and computa­
tion. On the other hand, I would greatly prefer to see some theoretical advances in 
discreteness-proving which would eliminate the computer entirely. 
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Fukaya Categories and Deformations 

Paul Seidel* 

Abstract 

It is widely believed that the right "cycles" for symplectic geometry are 
Lagrangian submanifolds of symplectic manifolds (see for instance Weinstein's 
1981 survey). This can be given several different meanings, depending on 
the kind of symplectic geometry one is interested in. In one direction, the 
development of Floer cohomology for Lagrangian submanifolds, culminating 
in recent work of Fukaya, Oh, Ohta and Ono, has led to the definition of a 
"Fukaya category" associated to a symplectic manifold. I want to look at the 
relation between the Fukaya category of an affine variety M C C^ and that 
of its projective closure M C CPN. This can be set up as a "deformation 
problem" in the abstract algebraic sense. 

2000 Mathematics Subject Classification: 57R17, 57R56, 18E30. 

Soon after their first appearance [7], Fukaya categories were brought to the 
attention of a wider audience through the homological mirror conjecture [14]. Since 
then Fukaya and his collaborators have undertaken the vast project of laying down 
the foundations, and as a result a fully general definition is available [9, 6]. The task 
tha t symplectic geometers are now facing is to make these categories into an effective 
tool, which in particular means developing more ways of doing computations in and 
with them. 

For concreteness, the discussion here is limited to projective varieties which are 
Calabi-Yau (most of it could be carried out in much greater generality, in particular 
the integrability assumption on the complex structure plays no real role). The 
first step will be to remove a hyperplane section from the variety. This makes 
the symplectic form exact, which simplifies the pseudo-holomorphic map theory 
considerably. Moreover, as far as Fukaya categories are concerned, the affine piece 
can be considered as a first approximation to the projective variety. This is a fairly-
obvious idea, even though its proper formulation requires some algebraic formalism 
of deformation theory. A basic question is the finite-dimensionality of the relevant 
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deformation spaces. As Conjecture 4 shows, we hope for a favourable answer in 
many cases. It remains to be seen whether this is really a viable strategy for 
understanding Fukaya categories in interesting examples. 

Lack of space and ignorance keeps us from trying to survey related develop­
ments, but we want to give at least a few indications. The idea of working relative 
to a divisor is very common in symplectic geometry; some papers whose viewpoint 
is close to ours are [12, 16, 3, 17]. There is also at least one entirely different ap­
proach to Fukaya categories, using Lagrangian fibrations and Morse theory [8, 15, 4]. 
Finally, the example of the two-torus has been studied extensively [18]. 

1. Symplectic cohomology 

We will mostly work in the following setup: 

Assumpt ion 1. X is a smooth complex projective variety with trivial canonical 
bundle, and D a smooth hyperplane section in it. We take a suitable small open 
neighbourhood U D D, and consider its complement M = X\U. Both X and M are 
equipped with the restriction of the Fubini-Study Kahler form. Then M is a compact 
exact symplectic manifold with contact type boundary, satisfying ci(M) = 0. 

Consider a holomorphic map u : S —t X, where S is a closed Riemann surface. 
The symplectic area of u is equal (up to a constant) to its intersection number with 
D. When counting such maps in the sense of Gromov-Witten theory, it is convenient 
to arrange them in a power series in one variable t, where the tk term encodes 
the information from curves having intersection number k with D. The t° term 
corresponds to constant maps, hence is sensitive only to the classical topology of X. 
Thus, for instance, the small quantum cohomology ring QH*(X) is a deformation 
of the ordinary cohomology H*(X). 

As we've seen, there are only constant holomorphic maps from closed Riemann 
surfaces to M = X \ D. But one can get a nontrivial theory by using punctured 
surfaces, and deforming the holomorphic map equation near the punctures through 
an inhomogeneous term, which brings the Reeb dynamics on dM into play. This 
can be done more generally for any exact symplectic manifold with contact type 
boundary, and it leads to the symplectic cohomology SH*(M) of Cieliebak-Floer-
Hofer [2] and Viterbo [26, 27]. Informally one can think of SH*(M) as the Floer 
cohomology HF*(M \ dM, H) for a Hamiltonian function H on the interior whose 
gradient points outwards near the boundary, and becomes infinite as we approach 
the boundary. For technical reasons, in the actual definition one takes the direct 
limit over a class of functions with slower growth (to clarify the conventions: our 
SHk(M) is dual to the FH2n^k(M) in [26]). The algebraic structure of symplectic 
cohomology is different from the familiar case of closed M, where one has large quan­
tum cohomology and the WDVV equation. Operations SH*(M)®P -t SH*(M)®q, 
for p > 0 and q > 0, come from families of Riemann surfaces with p + q punctures, 
together with a choice of local coordinate around each puncture. The Riemann 
surfaces may degenerate to stable singular ones, but only if no component of the 
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normalization contains some of the first p and none of the last q punctures. This 
means that if we take only genus zero and q = 1 then no degenerations at all are 
allowed, and the resulting structure is that of a Batalin-Vilkovisky (BV) algebra 
[10]. For instance, let M = D(T*L) be a unit cotangent bundle of an oriented closed 
manifold L. Viterbo [27] computed that SH*(M) = ff„_»(AL) is the homology of 
the free loop space, and a reasonable conjecture says that the BV structure agrees 
with that of Chas-Sullivan [1]. 

Returning to the specific situation of Assumption 1, and supposing that U has 
been chosen in such a way that the Reeb flow on dM becomes periodic, one can use 
a Bott-Morse argument [19] to get a spectral sequence which converges to SH*(M). 
The starting term is 

EPi=iH9(M) P=°> (1) 
1 \Hi+3P(dM) p<0. { ' 

It might be worth while to investigate this further, in order to identify the dif­
ferentials (very likely, a version of the relative Gromov-Witten invariants [12] for 
D c X). But even without any more effort, one can conclude that each group 
SHk(M) is finite-dimensional. In particular, assuming that dimc(X) > 2 (and 
appealing to hard Lefschetz, which will be the only time that we use any algebraic 
geometry) one has 

dimSH2(M) < b2(M) + b0(dM) = b2(X). (2) 

2. Fukaya categories 

M (taken as in Assumption 1) is an exact symplectic manifold, and there is a 
well-defined notion of exact Lagrangian submanifold in it. Such submanifolds L have 
the property that there are no non-constant holomorphic maps u : (£, 9S) —t (M, L) 
for a compact Riemann surface S, hence a theory of "Gromov-Witten invariants 
with Lagrangian boundary conditions" would be trivial in this case. To get some­
thing interesting, one removes some boundary points from S, thus dividing the 
boundary into several components, and assigns different L to them. The part of 
this theory where S is a disk gives rise to the Fukaya A^-category J(M). 

The basic algebraic notion is as follows. An A^-category A (over some field, 
let's say Q) consists of a set of objects Ob A, and for any two objects a graded 
Q-vector space of morphisms homA(Xo,Xi), together with composition operations 

pA : homA(X0,Xi) —y homA(X0, Xi)[l], 

p2
A : homA(Xi,X2) ® homA(X0,Xi) —y homA(Xo,X2), 

p?A : homA(X2,X3) <g> homA(Xi,X2) ® homA(X0,Xi) -> 

—>homA(X0 ,X3)[-l], .... 

These must satisfy a sequence of quadratic "associativity" equations, which ensure 
that p}A is a differential, pA a morphism of chain complexes, and so on. Note that by 
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forgetting all the pA with d > 3 and passing to p3r c o r i 0 m o l °gy in degree zero, one 
obtains an ordinary Q-linear category, the induced cohomological category H°(A) 
- actually, in complete generality H°(A) may not have identity morphisms, but we 
will always assume that this is the case (one says that A is cohomologically unital). 

In our application, objects of A = y(M) are closed exact Lagrangian sub­
manifolds L c M \ dM, with a bit of additional topological structure, namely a 
grading [14, 22] and a Spin structure [9]. If L0 is transverse to L\, the space of 
morphisms homA(Lo,Li) = CF(LQ,Li) is generated by their intersection points, 
graded by Maslov index. The composition pA counts "pseudo-holomorphic (d+ 1)-
gons", which are holomorphic maps from the disk minus d + 1 boundary points to 
M. The sides of the "polygons" lie on Lagrangian submanifolds, and the corners are 
specified intersection points; see Figure 1. There are some technical issues having to 
do with transversality, which can be solved by a small inhomogeneous perturbation 
of the holomorphic map equation. This works for all exact symplectic manifolds 
with contact type boundary, satisfying ci = 0, and is quite an easy construction by-
today's standards, since the exactness condition removes the most serious problems 
(bubbling, obstructions). 

Figure 1: 

It is worth while emphasizing that, unlike the case of Gromov-Witten in­
variants, each one of the coefficients which make up pA depends on the choice 
of perturbation. Only by looking at all of them together does one get an object 
which is invariant up to a suitable notion of quasi-isomorphism. To get something 
which is well-defined in a strict sense, one can descend to the cohomological cate­
gory iJ°(3r(Af )) (which was considered by Donaldson before Fukaya's work) whose 
morphisms are the Floer cohomology groups, with composition given by the "pair-
of-pants" product; but that is rather a waste of information. 

At this point, we must admit that there is essentially no chance of computing 
J(M) explicitly. The reason is that we know too little about exact Lagrangian 
submanifolds; indeed, this field contains some of the hardest open questions in 
symplectic geometry. One way out of this difficulty, proposed by Kontsevich [14], 
is to make the category more accessible by enlarging it, adding new objects in a 
formal process, which resembles the introduction of chain complexes over an additive 
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category. This can be done for any A^-category A, and the outcome is called the 
Aoo-category of twisted complexes, Tw(A). It contains the original Aoo-category 
as a full subcategory, but this subcategory is not singled out intrinsically, and 
very different A can have the same Tw(A). The cohomological category Db(A) = 
H°(Tw(Aj), usually called the derived category of A, is triangulated (passage to 
cohomology is less damaging at this point, since the triangulated structure allows 
one to recover many of the higher order products on Tw(A) as Massey products). 
For our purpose it is convenient to make another enlargement, which is Karoubi or 
idempotent completion, and leads to a bigger A^-category Tw7!(A) D Tw(A) and 
triangulated category Dn(A) = H°(Twn(Aj). The main property of Dn(A) is that 
for any object X and idempotent endomorphism n : X —t X, n2 = n, there is a 
direct splitting X = im(n) ® ker(n). The details, which are not difficult, will be 
explained elsewhere. 

3. Picard-Lefschetz theory 

We will now restrict the class of symplectic manifolds even further: 

Assumpt ion 2. In the situation of Assumption 1, suppose that X is itself a hy­
perplane section in a smooth projective variety Y, with Xy — Gy(—X). Moreover, 
X = X0 should be part of a Lefschetz pencil of such sections {Xz}, whose base locus 
is D = X0 fl XQO . 

This gives a natural source of Lagrangian spheres in M, namely the vanishing 
cycles of the Lefschetz pencil. Recall that to any Lagrangian sphere S one can 
associate a Dehn twist, or Picard-Lefschetz monodromy map, which is a symplectic 
automorphism rg. The symplectic geometry of these maps is quite rich, and contains 
information which is not visible on the topological level [20, 21, 22]. The action of 
Ts on the Fukaya category is encoded in an exact triangle in Tw(3r(Af )), of the form 

^rs(L) (3) 

HF*(S,L)<g)S 

for any L, and where the <g> is just a direct sum of several copies of S in various 
degrees. This is a consequence of the long exact sequence in Floer cohomology [23]. 

In the situation of Assumption 2, if we choose a distinguished basis of vanishing 
cycles Si,...,Sm for the pencil, the product of their Dehn twists is almost the 
identity map. More precisely, taking into account the "grading" of the objects of 
the Fukaya category, one finds that 

TSl...TSm(L)^L[2] 

where [2] denotes change in the grading by 2. By combining this trick with (3) one 
can prove the following result: 
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Theo rem 3. Si,...,Sm are split-generators for D7'('J(Mj). This means that any 
object ofTw7'('J(Mj) can be obtained from them, up to quasi-isomorphism, by re­
peatedly forming mapping cones and idempotent splittings. 

4. Hochschild cohomology 

The Hochschild cohomology HH*(A,A) of an A^-category A can be defined 
by generalizing the Hochschild complex for algebras in a straightforward way, or 
more elegantly using the A^-category fun(A,A) of functors and natural transfor­
mations, as endomorphisms of the identity functor. A well-known rather imprecise 
principle says that "Hochschild cohomology is an invariant of the derived category". 
In a rigorous formulation which is suitable for our purpose, 

HH*(A,A) h. HH*(Twn(A),Twn(Aj). (4) 

This is unproved at the moment, because Tw7!(A) itself has not been considered 
in the literature before, but it seems highly plausible (a closely related result has 
been proved in [13]). Hochschild cohomology is important for us because of its 
role in deformation theory, see the next section; but we want to discuss its possible 
geometric meaning first. 

Let M be as in Assumption 1 (one could more generally take any exact sym­
plectic manifold with contact type boundary and vanishing ci). Then there is a nat­
ural "open-closed string map" from the symplectic cohomology to the Hochschild 
cohomology of the Fukaya category: 

SH*(M) —• HH*($(M),$(Mj). (5) 

This is defined in terms of Riemann surfaces obtained from the disk by removing one 
interior point and an arbitrary number of boundary points. Near the interior point, 
one deforms the holomorphic map equation in the same way as in the definition 
of SH*(M), using a large Hamiltonian function; otherwise, one uses boundary-
conditions as for J(M). Figure 2 shows what the solutions look like. 

HH* (A, A) for any A carries the structure of a Gerstenhaber algebra, and one 
can verify that (5) is a morphism of such algebras. Actually, since SH*(M) is a 
BV algebra, one expects the same of HH*('J(M),'J(Mj). This should follow from 
the fact that 7(M) is a cyclic A^-category in some appropriate weak sense, but 
the story has not yet been fully worked out (two relevant papers for the algebraic 
side are [25] and [24]). 

Conjecture 4. If M is as in Assumption 2, (5) is an isomorphism. 

Assumption 2 appears here mainly for the sake of caution. There are a number 
of cases which fall outside it, and to which one would want to extend the conjecture, 
but it is not clear where to draw the line. Certainly, without some restriction on 
the geometry of M, there can be no connection between the Reeb flow on dM and 
Lagrangian submanifolds? 
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Lagrangian submanifolds 

Periodic orbit of the 
Hamiltonian 

Figure 2: 

5. Deformations of categories 

The following general definition, due to Kontsevich, satisfies the need for a 
deformation theory of categories which should be applicable to a wide range of sit­
uations: for instance, a deformation of a complex manifold should induce a defor­
mation of the associated differential graded category of complexes of holomorphic 
vector bundles. By thinking about this example, one quickly realizes that such 
a notion of deformation must include a change in the set of objects itself. The 
AQO-formalism, slightly extended in an entirely natural way, fits that requirement 
perfectly. The relevance to symplectic topology is less immediately obvious, but it 
plays a central role in Fukaya, Oh, Ohta and Ono's work on "obstructions" in Floer 
cohomology [9] (a good expository account from their point of view is [5]). 

For concreteness we consider only A^-deformations with one formal parame­
ter, that is to say over Q[[t]]. Such a deformation £ is given by a set Ob £ of objects, 
and for any two objects a space homcfiXo, Xi) of morphisms which is a free graded 
Q[[r]]-module, together with composition operations as before but now including a 
0-ary one: this consists of a so-called "obstruction cocycle" 

p\ £ hom\(X,X) (6) 

for every object X, and it must be of order t (no constant term). There is a sequence 
of associativity equations, extending those of an A^-category by terms involving 
p\. Clearly, if one sets t = 0 (by tensoring with Q over Q[[r]]), p% vanishes and the 
outcome is an ordinary A^-category over Q. This is called the special fibre and 
denoted by £ s p . One says that £ is a deformation of £ s p . 

A slightly more involved construction associates to £ two other A^-categories, 
the global section category £.gi and the generic fibre £.gen, which are defined over 
Q[[t]] and over the Laurent series ring Q[t_1 ][[t]], respectively. One first enlarges £ 
to a bigger A^-deformation £c by coupling the existing objects with formal connec­
tions (the terminology comes from the application to complexes of vector bundles). 
Objects of £c are pairs (X,a) consisting of X £ Ob £ and an a e hom\(X, X) 
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which must be of order t. The morphism spaces remain the same as in £, but 
all the composition maps are deformed by infinitely many contributions from the 
connection. For instance, 

A*e„ = Me + ß\(a) + ß\(a,a) + • • • £ hom\ ((X,a), (X,aj) = hom\(X,X). (7) 

Egi C £c is the full A^-subcategory of objects for which (7) is zero; and £.gen is 
obtained from this by inverting t. The transition from £ s p to £sj and £.gen affects 
the set of objects in the following way: if for some X one cannot find an a such 
that (7) vanishes, then the object is "obstructed" and does not survive into £ sj; if 
on the other hand there are many different a, a single X can give rise to a whole 
family of objects of £ s j . Finally, two objects of £.gen can be isomorphic even though 
the underlying objects of £ s p aren't; this happens when the isomorphism involves 
negative powers of t. 

The classification of A^-deformations of an A^-category A is governed by its 
Hochschild cohomology, or rather by the dg Lie algebra underlying HH*+1 (A, A), in 
the sense of general deformation theory [11]. We cannot summarize that theory here, 
but as a simple example, suppose that HH2(A,A) = Q. Then a nontrivial .4 œ -
deformation of A, if it exists, is unique up to equivalence and change of parameter 
t >-¥ f(t) (to be accurate, f(t) may contain roots of t, so the statement holds over 
Q[[t, fil2, fil3,...]]). The intuitive picture is that the "versai deformation space" 
has dimension < 1, so that any two non-constant arcs in it must agree up to 
reparametrization. 

In the situation of Assumption 1, the embedding of our exact symplectic man­
ifold M into X should give rise to an A^-deformation J (M c X). We say "should" 
because the details, which in general require the techniques of [9], have not been car­
ried out yet. Roughly speaking one takes the same objects as in J(M) and the same 
morphism spaces, tensored with Q[[t]], but now one allows "holomorphic polygons" 
which map to X, hence may intersect the divisor D. The numbers of such polygons 
intersecting D with multiplicity k will form the tk term of the composition maps 
in J(M c X). Because there can be holomorphic discs bounding our Lagrangian 
submanifolds in X, nontrivial obstruction cocycles (6) may appear. 

The intended role of J(M c X) is to interpolate between 'J(M), which we 
have been mostly discussing up to now, and the Fukaya category ^(X) of the closed 
symplectic manifold X as defined in [9, 6]. The t° coefficients count polygons which 
are disjoint from D, and these will automatically lie in M, so that 

•J(M c X)sp ~ -J(M). 

The relation between the generic fibre and ^(X) is less straightforward. First of all, 
J(M c X)gen will be an A^-category over Q[£-1 ,£]], whereas 7(X) is defined over 
the Novikov ring At. Intuitively, one can think of this difference as the consequence 
of a singular deformation of the symplectic form. Namely, if one takes a sequence of 
symplectic forms (all in the same cohomology class) converging towards the current 
[D], the symplectic areas of holomorphic discs u would tend to the intersection 
number u • D. A more serious issue is that J(M c X)gen is clearly smaller than 
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7(X), because it contains only Lagrangian submanifolds which lie in M. However, 
that difference may disappear if one passes to derived categories: 

Conjecture 5. In the situation of Assumption 2, there is a canonical equivalence 
of triangulated categories 

D*(Ï(M C X)gen ®Q[t-i][[t]] At) - D*(f(X)). 

In comparison with the previous conjecture, Assumption 2 is far more impor­
tant here. The idea is that there should be an analogue of Theorem 3 for D*(9r(X)), 
saying that this category is split-generated by vanishing cycles, hence by objects 
which are also present in J(M c X). 

To pull together the various speculations, suppose that Y = CP" + 1 for some 
n > 3; X c Y is a hypersurface of degree n + 2; and D c X is the inter­
section of two such hypersurfaces. Then D7'('J(Mj) is split-generated by finitely-
many objects, hence Tw7'('J(Mj) is at least in principle accessible to computa­
tion. Conjecture 4 together with (2), (4) tells us that HH2(7(M),'3:(Mj) =ë 
HH2(Tw7'('J(Mj),Tw7'('J(Mjj) is at most one-dimensional, so an A,»-deformation 
of Tw7'('J(Mj) is unique up to a change of the parameter t. From this deformation, 
Conjecture 5 would enable one to find D*(9r(X)), again with the indeterminacy in 
the parameter (fixing this is somewhat like computing the mirror map). 
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Heat Kernels and the Index Theorems on 
Even and Odd Dimensional Manifolds* 
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Abstract 

In this talk, we review the heat kernel approach to the Atiyah-Singer index 
theorem for Dirac operators on closed manifolds, as well as the Atiyah-Patodi-
Singer index theorem for Dirac operators on manifolds with boundary. We also 
discuss the odd dimensional counterparts of the above results. In particular, 
we describe a joint result with Xianzhe Dai on an index theorem for Toeplitz 
operators on odd dimensional manifolds with boundary. 
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1. Introduction 
As is well-known, the index theorem proved by Atiyah and Singer [ASI] in 

1963, which expresses the analytically defined index of elliptic differential operators 
through purely topological terms, has had a wide range of implications in mathe­
matics as well as in mathematical physics. Moreover, there have been up to now 
many different proofs of this celebrated result. 

The existing proofs of the Atiyah-Singer index theorem can roughly be divided 
into three categories: 

(i) The cobordism proof: this is the proof originally given in [ASI]. It uses 
the cobordism theory developed by Thom and modifies Hirzebruch's proof of his 
Signature theorem as well as his Riemann-Roch theorem; 

(ii) The if- theoretic proof: this is the proof given by Atiyah and Singer in 
[AS2]. It modifies Grothendieck's proof of the Hirzebruch-Riemann-Roch theorem 
and relies on the topological i f - theory developed by Atiyah and Hirzebruch. The 
Bott periodicity theorem plays an important role in this proof; 
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(iii) The heat kernel proof: this proof originates from a simple and beautiful 
formula due to Mckean and Singer [MS], and has closer relations with differential 
geometry as well as mathematical physics. It also lead directly to the important 
Atiyah-Patodi-Singer index theorem for Dirac operators on manifolds with bound­
ary. 

In this article, we will survey some of the developments concerning the heat 
kernel proofs of various index theorems, including a recent result with Dai [DZ2] 
on an index theorem for Toeplitz operators on odd dimensional manifolds with 
boundary. 

2. Heat kernels and the index theorems on even 
dimensional manifolds 

We start with a smooth closed oriented 2n-dimensional manifold M and two 
smooth complex vector bundles E, F over M, on which there is an elliptic differential 
operator between the spaces of smooth sections, D+ : Y(E) —t Y(F). 

If we equip TM with a Riemannian metric and E, F with Hermitian metrics 
repectively, then Y(E) and Y(F) will carry canonically induced inner products. 

Let £>_ : Y(F) —t Y(E) be the formal adjoint of D+ with respect to these 
inner products. Then the index of D+ is given by 

indD+ = dim (kerD+) — dim (kerD_). (2-1) 

It is a topological invariant not depending on the metrics on TM, E and F. 
The famous Mckean-Singer formula [MS] says that ind D+ can also be com­

puted by using the heat operators associated to the Laplacians £>_£>+ and £>+£>_. 
That is, for any t > 0, one has 

ind D+ = Tr [exp (-tD_D+)] - Tr [exp (-tD+D_)]. (2.2) 

By introducing the Z2-graded vector bundle E ® F and setting D = ( ® D-

we can rewrite the difference of the two traces in the right hand side of (2.2) as a 
single "supertrace" as follows, 

ind D+ = Trs [exp (^tD2)] , for any t > 0. (2.2)' 

Let Pt(x,y) be the smooth kernel of exp(—tD2) with respect to the volume 
form on M. For any / £ Y(E ® F), one has 

exp (^tD2) f(x) = [ Pt(x,ij)f(ij)dy. (2.3) 
JM 

In particular, 

Trs [exp (^tD2)] = / Tr8[Pt(x,x)]dx. (2.4) 
JM 
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Now, for simplicity, we assume that the elliptic operator D is of order one. 
Then by a standard result, which goes back to Minakshisundaram and Pleijiel [MP], 
one has that when t > 0 tends to 0, 

Pt(x,x) = (a-n + a-n+it +••• + aQtn + ox (tnj), (2.5) 
(4nt)n 

where a* G End ((E © F)x), i = -n,..., 0. 
By (2.2)', (2.4) and (2.5), and by taking t > 0 small enough, one deduces that 

/ Tr8[ai]dx = 0, -n<i<0, 
JM IM 

ind£>+ = ( — ) / Trs[ao]da;. (2.6) 
\47ry JM 

Mckean and Singer conjectured in [MS] that for certain geometric operators, 
there should be some "fantastic cancellation" so that the following far reaching 
refinement of (2.6) holds, 

Tr s [a i ]=0, ^n<i<0, 

and moreover, Trs [a®] can be calculated simply in the Chern-Weil geometric theory 
of characteristic classes. 

In fact, as a typical example, let M be an even dimensional compact smooth 
oriented spin manifold carrying a Riemannian metric g™. Yet R™ be the cur­
vature of the Levi-Civita connection associated to g™. Yet S(TM) = S+(TM) 
(BS-(TM) be the Hermitian vector bundle of (TM, #™)-spinors, and 
D+ : Y(S+(TMj) —t T(S-(TM)) the associated Dirac operator. 

One then has the formula (cf. [BGV, Chap. 4, 5]), 

f / p T M \ - | m a x f / V^ï p2 
lim Trs [PAx, x)] dx = \ A - — - H := <̂  det1 /2 ^ ~ 
*-° I v 27T ; / | ^ s i n h ^ 

which implies the Atiyah-Singer index theorem [ASI] for D+ : 
(2.7) 

i- / TjTM \ 

ind D+ = A(M) := A[ . (2.8) 
JM \ 2TT J 

A result of type (2.7) is called a local index theorem. The first proof of such a 
local result was given by V. K. Patodi [P] for the de Rham-Hodge operator d + d*. 
Other direct heat kernel proofs of (2.7) have been given by Berline-Vergne, Bismut, 
Getzler and Yu respectively. We refer to [BGV] and [Yu] for more details. 

The heat kernel proof of the local index theorem leads to a generalization of 
the index theorem for Dirac operators to the case of manifolds with boundary. This 
was achieved by Atiyah, Patodi and Singer in [APS], and will be reviewed in the 
next section. 

file:///47ry
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3. The index theorem for Dirac operators on even 
dimensional manifolds with boundary 

Let M be a smooth compact oriented even dimensional spin manifold with 
(nonempty) smooth boundary dM. Then dM is again oriented and spin. 

Let g™ be a metric on TM. Yet gT9M be its restriction on TdM. We 
assume for simplicity that g™ is of product structure near the boundary dM. 
Yet S (TX) = S+(TX) ® S-(TX) be the Z2-graded Hermitian vector bundle of 
(TX, gTX )-spinors. 

Since now M has a nonempty boundary dM, the associated Dirac operator 
D+ : Y(S+(TMj) —t T(S-(TM)) is not elliptic. To get an elliptic problem, one 
needs to introduce an elliptic boundary condition for D+, and this was achieved by 
Atiyah, Patodi and Singer in [APS]. It is remarkable that this boundary condition, 
to be described right now, is global in nature. 

First of all, the Dirac operator D+ induces canonically a formally self-adjoint 
first order elliptic differential operator 

DQM '• Y (S^(TM)\QM) —ï Y (S^(TM)\QM) , 

which is called the induced Dirac operator on the boundary dM. 
Clearly, the L2-completion of S+(TM)\QM admits an orthogonal decomposi­

tion 
L2(S+(TM)\dx)= 0 Ex, (3.1) 

AeSpec(-DeM) 

where E\ is the eigenspace of A. 
Let L2

>0(S+(TM)\QM) denote the direct sum of the eigenspaces E\ associ­
ated to the eigenvalues A > 0. Let P>o denote the orthogonal projection from 
L2(S+(TM)\QM) to L2

>0(S+(TM)\QM)- We call P>o the Atiyah-Patodi-Singer pro­
jection associated to DQM, to emphasize its role in [APS]. 

Then by [APS], the boundary problem 

(D+,P>o) :{u:u£ Y(S+(TMj), P>0 (U\9M) = 0} -> Y(S-(TMj), (3.2) 

is Fredholm. We call this elliptic boundary problem the Atiyah-Patodi-Singer 
boundary problem associated to D+. We denote by ind(D+,P>o) the index of 
the Fredholm operator (3.2). 

The Atiyah-Patodi-Singer index theorem The following identity holds, 

ind (D+,P>o)= / Äl -^— J -rj(DdM). (3.3) 

The boundary correction term TJ(DQM) appearing in the right hand side of 
(3.3) is a spectral invariant associated to the induced Dirac operator DQM on dM. 
It is defined as follows: for any complex number s £ C with Re(s) > dim M, define 

n(DdM,s)= 2 ^ —nrji—• (3-4) 
AeSpec(-DeM) 
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By using the heat kernel method, one can show easily that ï](DQM,S) can be ex­
tended to a meromorphic function on C, which is holomorphic at s = 0. Following 
[APS], we then define 

_ dim (ker £>eM) + »} (-DOM, 0) 
n (DdM) = 2 (3-5) 

and call it the (reduced) eta invariant of DQM-
The eta invariants of Dirac operators have played important roles in many-

aspects of topology, geometry and mathematical physics. 
In the next sections, we will discuss the role of eta invariants in the heat kernel 

approaches to the index theorems on odd dimensional manifolds. 

4. Heat kernels and the index theorem on odd di­
mensional manifolds 

Let M be now an odd dimensional smooth closed oriented spin manifold. Let 
g™ be a Riemannian metric on TM and S(TM) the associated Hermitian vector 
bundle of (TAf,^™)-spinors.1 In this case, the associated Dirac operator D : 
Y(TM) —t Y(TM) is (formally) s elf-adjoint.2 Thus, one can proceed as in Section 
3 to construct the Atiyah-Patodi-Singer projection 

P>o • L2(S(TMj) -+ Ll0(S(TMj). 

Now consider the trivial vector bundle C * over M. We equip C * with the 
canonical trivial metric and connection. Then F>0 extends naturally to an orthog­
onal projection from L2(S(TM) <g> C^) to L%0(S(TM) <g> C^) by acting as identity 
on C ^ . We still denote this extension by P>o-

On the other hand, let 
g:M - • U(N) 

be a smooth map from M to the unitary group U(N). Then g can be interpreted 
as automorphism of the trivial complex vector bundle CN. Moreover g extends 
naturally to an action on L2(S(TM) ® C*) by acting as identity on L2(S(TMj). 
We still denote this extended action by g. 

With the above data given, one can define a Toeplitz operator Tg as follows, 

Tg = P>ogP>o • Lio (S(TM) <g> C " ) —• L\0 (S(TM) ® C " ) . (4.1) 

The first important fact is that Tg is a Fredholm operator. Moreover, it is 
equivalent to an elliptic pseudodifferential operator of order zero. Thus one can 
compute its index by using the Atiyah-Singer index theorem [AS2], as was indicated 
in the paper of Baum and Douglas [BD], and the result is 

indT, = - (A(TAf)ch(<?), [M]} , (4.2) 

1 Since now M is of odd dimension, the bundle of spinors does not admit a Z2-graded structure. 
2In fact, if M bounds an even dimensional spin manifold, then D can be thought of as the 

induced Dirac operator on boundary appearing in the previous section. 
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where ch(g) is the odd Chern character associated to g. 
There is also an analytic proof of (4.2) by using heat kernels. For this one 

first applies a result of Booss and Wojciechowski (cf. [BW]) to show that the 
computation of ind Tg is equivalent to the computation of the spectral flow of the 
linear family of self-adjoint elliptic operators, acting of Y(S(TM) ® CN), which 
connects D and gDg^1. The resulting spectral flow can then be computed by-
variations of ^-invariants, where the heat kernels are naturally involved. 

The above ideas have been extended in [DZ1] to give a heat kernel proof of a 
family extension of (4.2). 

5. An index theorem for Toeplitz operators on odd 
dimensional manifolds with boundary 

In this section, we describe an extension of (4.2) to the case of manifolds with 
boundary, which was proved recently in my paper with Xianzhe Dai [DZ2]. This 
result can be thought of as an odd dimensional analogue of the Atiyah-Patodi-Singer 
index theorem described in Section 3. 

This section is divided into three subsections. In Subsection 4.1, we extend the 
definition of Toeplitz operators to the case of manifolds with boundary. In Subsec­
tion 4.2, we define an ^-invariant for cylinders which will appear in the statement 
of the main result to be described in Subsection 4.3. 

5.1. Toeplitz operators on manifolds with boundary 
Let M be an odd dimensional oriented spin manifold with (nonempty) bound­

ary dM. Then dM is also oriented and spin. Let g™ be a Riemannian metric on 
TM such that it is of product structure near the boundary dM. Yet S(TM) be the 
Hermitian bundle of spinors associated to (M,g™). Since dM ^ 0, the Dirac op­
erator D : Y(S(TMj) —t Y(S(TMj) is no longer elliptic. To get an elliptic operator, 
one needs to impose suitable boundary conditions, and it turns out that again we 
will adopt the boundary conditions introduced by Atiyah, Patodi and Singer [APS]. 

Let DQM '• Y(S(TM)\QM) —t Y(S(TM)\QM) be the canonically induced Dirac 
operator on the boundary dM. Then DQM is elliptic and (formally) self-adjoint. 
For simplicity, we assume here that DQM is invertible, that is, ker DOM = 0. 

Let PdM,>o denote the Atiyah-Patodi-Singer projection from L2(S(TM)\QM) 

to L2
>Q(S(TM)\QM). Then (D, PQM;>Q) forms a self-adjoint elliptic boundary prob­

lem. We will also denote the corresponding elliptic self-adjoint operator by Dp8M>0. 
Yet L2

P >Q(S(TMj) be the space of the direct sum of eigenspaces of non-
negative eigenvalues of DpaM >0. Yet PpBM >0 >o denote the orthogonal projection 
from L2(S(TM)) to L2

PgM^;0(S(TM)). 

Now let C ^ be the trivial complex vector bundle over M of rank N, which 
carries the trivial Hermitian metric and the trivial Hermitian connection. We extend 
PpBMi>0,>o to act as identity on C * . 

Let g : M —¥ U(N) be a smooth unitary automorphism of CN. Then g extends 
to an action on S(TM) ® C ^ by acting as identity on S(TM). 
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Since g is unitary, one verifies easily that the operator gP$M,>o9^1 is an orthog­
onal projection on L2((S(TM)(E)CN)\QM), and that gPdM,>o9^1 ^ PdM,>o is apseu-
dodifferential operator of order less than zero. Moreover, the pair (D,gP$M,>o9^1) 
forms a self-adjoint elliptic boundary problem. We denote its associated elliptic 
self-adjoint operator by DgPgM >og-i-

Yet L2
 p ! >0(S(TM )®CJV) be the space of the direct sum of eigenspaces 

of nonnegative eigenvalues of DgPgM >og-i • Yet PgpBM >oS-\>o denote the orthogo­
nal projection from L2(S(TM) ® Ck) to L2

gPgM >og_^>Q(S(TM) ® C*) . 

Clearly, if « e L2(S(TM) ® C*) verifies -POM,>O(«|OM) = 0, then gs verifies 

gPdM,>og^ ((gs)\9M) = 0. 

Definition 5.1 The Toeplitz operator Tg is defined by 

T9 = PgPeM.^og-1 ,>o9PPeM.>o,>0 '• 

LhM,>_0,>o (S(TM) ® C») -+ L2
gPgM>_og^^0 (S(TM) ® C») -

One verifies that Tg is a Fredholm operator. The main result of this section 
evaluates the index of Tg by more geometric quantities. 

5.2. An ^-invariant associated to g 
We consider the cylinder [0,1] x dM. Clearly, the restriction of g on dM 

extends canonically to this cylinder. 
Let -D|[o,i]xOM be the restriction of D on [0,1] x dM. We equip the boundary-

condition PdM,>o at {0} x dM and the boundary condition Id — gPdM,>o9^1 at 
{1} x dM. Then (-D|[O,I]XOMJ PBM;>Q, Id — gP$M,>o9^1) forms a self-adjoint elliptic 
boundary problem. We denote the corresponding elliptic self-adjoint operator by 

-PeM,>o,S-PeM,>oS_1 ' 

Let n(DPgM >0}9pBM >og-
1i s) be the ^-function of s £ C which, when Re(s) > > 

0, is defined by 
(n \ - Y^ sSn(A) 

fl \uPdM.xsigPaM.xsg-11 s) — / „ i x Is ' 
A#0 ' ' 

where A runs through the nonzero eigenvalues of DPgM >0,gpBM >og-
1-

It is proved in [DZ2] that under our situation, n(DPgM >0}9pBM >og-i,s) can be 
extended to a meromorphic function on C which is holomorphic at s = 0. 

Yet rj(DpBM >Q}9pBM > o S-1) be the reduced ^-invariant defined by 

^ \DPBM.yo^gPBM.yog-1) 

_ dfmker ^I>peM,>0,speM,>oS-iJ + n (-DpeM,>0,speM,>oS-i) 
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5.3. An index theorem for Tg 

Yet V ™ be the Levi-Civita connection associated to the Riemannian metric 
g™. Yet R™ = ( V ™ ) 2 be the curvature of V ™ . Also, we use d to denote 
the trivial connection on the trivial vector bundle C * over M. Then g^1dg is a 
F(End(CJV)) valued 1-form over M. 

Yet ch(g,d) denote the odd Chern character form (cf. [Z]) of (g,d) defined by 

( d i m M - l ) / 2 , . n+i 

n=0 

Yet VM denote the Calderón projection associated to D on M (cf. [BW]). Then 
VM is an orthogonal projection on L2((S(TM) ® CN)\$M), and that VM — PdM,>o 
is a pseudodifferential operator of order less than zero. 

Let Tß(PßM,>o,9PdM,>o9^1 ,PM) £ Z be the Maslov triple index in the sense 
of Kirk and Lesch [KL, Definition 6.8]. 

We can now state the main result of [DZ2], which generalizes an old result of 
Douglas and Wojciechowski [DoW], as follows. 

Theorem 5.2 The following identity holds, 

i- ^ / R™\ / \ 
indTs = - J^ A [-1^] ch(9,d) + rj (l>peM.>0,flpeM.>ofl-i) 

- T p ( P d M , > 0 , 9 P d M , > 0 9 ~ 1 ; P M ) • 

The following immediate consequence is of independent interests. 

Corollary 5.3 The number 

jTM 

IM 

is an integer. 

— / R™\ / \ 
•4 { - ^ j c h ^ ' d ) - ^ i W . ä o . f l i W . ä o f l - 1 ) 

The strategy of the proof of Theorem 5.2 given in [DZ2] is the same as that 
of the heat kernel proof of (4.2). However, due to the appearance of the boundary 
dM, one encounters new difficulties. To overcome these difficulties, one makes use 
of the recent result on the splittings of n invariants (cf. [KL]) as well as some ideas 
involved in the Connes-Moscovici local index theorem in noneommutative geometry 
[CM] (see also [CH]). Moreover, the local index calculations appearing near dM is 
highly nontrivial. We refer to [DZ2] for more details. 
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The Topology of Out(Fn) 

Mladen Bestvina* 

Abstract 

We will survey the work on the topology of Out(Fn) in the last 20 years 
or so. Much of the development is driven by the tantalizing analogy with 
mapping class groups. Unfortunately, Out(Fn) is more complicated and less 
well-behaved. 

Culler and Vogtmann constructed Outer Space Xn, the analog of Te­
ichmüller space, a contractible complex on which Out(Fn) acts with finite 
stabilizers. Paths in Xn can be generated using "foldings" of graphs, an oper­
ation introduced by Stallings to give alternative solutions for many algorithmic 
questions about free groups. The most conceptual proof of the contractibility 
of Xn involves folding. 

There is a normal form of an automorphism, analogous to Thurston's nor­
mal form for surface homeomorphisms. This normal form, called a "(relative) 
train track map", consists of a cellular map on a graph and has good prop­
erties with respect to iteration. One may think of building an automorphism 
in stages, adding to the previous stages a building block that either grows 
exponentially or polynomially. A complicating feature is that these blocks are 
not "disjoint" as in Thurston's theory, but interact as upper stages can map 
over the lower stages. 

Applications include the study of growth rates (a surprising feature of free 
group automorphisms is that the growth rate of / is generally different from 
the growth rate of / _ 1 ) , of the fixed subgroup of a given automorphism, and 
the proof of the Tits alternative for Out(Fn). For the latter, in addition to 
train track methods, one needs to consider an appropriate version of "at­
tracting laminations" to understand the dynamics of exponentially growing 
automorphisms and run the "ping-pong" argument. The Tits alternative is 
thus reduced to groups consisting of polynomially growing automorphisms, 
and this is handled by the analog of Kolchin's theorem (this is one instance 
where Out(Fn) resembles GL„(Z) more than a mapping class group). 

Morse theory has made its appearance in the subject in several guises. 
The original proof of the contractibility of Xn used a kind of "combinatorial" 
Morse function (adding contractible subcomplexes one at a time and studying 
the intersections). Hatcher-Vogtmann developed a "Cerf theory" for graphs. 
This is a parametrized version of Morse theory and it allows them to prove 
homological stability results. One can "bordify" Outer Space (by analogy 
with the Borei-Serre construction for arithmetic groups) to make the action 

'Department of Mathematics, University of Utah, USA. E-mail: bestvina@math.utah.edu 
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of Out(Fn) cocompact and then use Morse theory (with values in a certain 
ordered set) to study the connectivity at infinity of this new space. The result 
is that Out(Fn) is a virtual duality group. 

Culler-Morgan have compactified Outer Space, in analogy with Thurston's 
compactification of Teichmüller space. Ideal points are represented by actions 
of Fn on R-trees. The work of Rips on group actions on R-trees can be used 
to analyze individual points and the dynamics of the action of Out(Fn) on the 
boundary. The topological dimension of the compactified Outer Space and of 
the boundary have been computed. The orbits in the boundary are not dense; 
however, there is a unique minimal closed invariant set. Automorphisms with 
irreducible powers act on compactified Outer Space with the standard North 
Pole - South Pole dynamics. By first finding fixed points in the boundary of 
Outer Space, one constructs a "hierarchical decomposition" of the underlying 
free group, analogous to the Thurston decomposition of a surface homeomor­
phism. 

The geometry of Outer Space is not well understood. The most promising 
metric is not even symmetric, but this seems to be forced by the nature of 
Out(Fn). Understanding the geometry would most likely allow one to prove 
rigidity results for Oiit(F„). 

2000 Mathematics Subject Classification: 57M07, 20F65, 20E08. 
Keywords and Phrases: Free group, Train tracks, Outer space. 

1. Introduction 
The aim of this note is to survey some of the topological methods developed in 

the last 20 years to s tudy the group Out(Fn) of outer automorphisms of a free group 
Fn of rank n. For an excellent and more detailed survey see also [69]. Stallings' 
paper [64] marks the turning point and for the earlier history of the subject the 
reader is referred to [55]. Out(Fn) is defined as the quotient of the group Aut(Fn) 
of all automorphisms of Fn by the subgroup of inner automorphisms. On one hand, 
abelianizing Fn produces an epimorphism Out(Fn) —t Out(Zn) = GLn(Z), and on 
the other hand Out(Fn) contains as a subgroup the mapping class group of any-
compact surface with fundamental group Fn. A leitmotiv in the subject, promoted 
by Karen Vogtmann, is tha t Out(Fn) satisfies a mix of properties, some inherited 
from mapping class groups, and others from arithmetic groups. The table below 
summarizes the parallels between topological objects associated with these groups. 

Outer space is not a manifold and only a polyhedron, imposing a combinatorial 
character on Out(Fn). 

2. Stallings' Folds 
A graph is a 1-dimensional cell complex. A map / : G —¥ G' between graphs is 

simplicial if it maps vertices to vertices and open 1-cells homeomorphically to open 
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M a p p i n g 

class g r o u p s 

Teichmüller 

space 

Thurston 

normal form 

Harer's 

bordification 

measured 

laminations 

Harvey's 

curve complex 

Out(Fn) 

Culler-Vogtmann's 

Outer space 

train track 

representative 

bordification of 

Outer space 

K-trees 

? 

G L „ ( Z ) 

( a r i t h m e t i c g r o u p s ) 

GLn(R)/On 

(symmetric spaces) 

Jordan 

normal form 

Borei-Serre 

bordification 

flag manifold 

(Furstenberg boundary) 

Ti ts 

building 

a l g e b r a i c 

p r o p e r t i e s 

finiteness properties 

cohomological dimension 

growth rates 

fixed points (subgroups) 

Bieri-Eckmann 

duality 

Kolchin theorem 

Tits alternative 

rigidity 

1-cells. The simplicial map / is a fold if it is surjective and identifies two edges that 
share at least one vertex. A fold is a homotopy equivalence unless the two edges 
share both pairs of endpoints and in that case the induced homomorphism in m 
corresponds to killing a basis element. 

Theorem 1 (Stallings [63]). A simplicial map f : G 
nected graphs can be factored as the composition 

G' between finite con-

G — (jr0 —y (jrx Gk G' 

where each Gì —¥ Gj+i is a fold and Gk —¥ G' is locally injective (an immersion). 
Moreover, such a factorization can be found by a (fast) algorithm. 

In the absence of valence 1 vertices the last map Gk —¥ G' can be thought 
of as the core of the covering space of G' corresponding to the image in m of / . 
The following problems can be solved algorithmically using Theorem 1 (these were 
known earlier, but Theorem 1 provides a simple unified argument). Let F be a free 
group with a fixed finite basis. 

• Find a basis of the subgroup H generated by a given finite collection hi,--- ,hu 
of elements of F. 

• Given w £ F, decide if w £< hi, • • • ,hu >• 
• Given w £ F, decide if w is conjugate into < hi,- • • ,hu >• 
• Given a homomorphism <j> : F —t F' between two free groups of finite rank, 

decide if <j> is injective, surjective. 
• Given finitely generated H < F decide if it has finite index. 
• Given two f.g. subgroups Hi,H2 < F compute HiriH2 and also the collection 

of subgroups Hi fl flf where g £ F. In particular, is Hi malnormal? 
• Represent a given automorphism of F as the composition of generators of 

Aut(F) of the following form: 
Signed permutations: each a, maps to a, or to a, 
Change of maximal tree: cti H> cti, 

Todd-Coxeter process [65]. 

± i H> a1 a, or a, H> 0,% (i > 1). 
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3. Culler-Vogtmann's Outer space 
Fix the wedge of n circles Rn and a natural identification 7ri(i?n) — Fn in 

which oriented edges correspond to the basis elements. Thus any <j> £ Out(Fn) can 
be thought of as a homotopy equivalence Rn —¥ Rn. A marked metric graph is a 
pair (G,g) where 

• G is a finite graph without vertices of valence 1 or 2. 
• g : Rn —¥ G is a homotopy equivalence (the marking). 
• G is equipped with a path metric so that the sum of the lengths of all edges 

is 1. 

Outer space Xn is the set of equivalence classes of marked metric graphs under 
the equivalence relation (G, g) ~ (G',gr) if there is an isometry h : G —¥ G' such 
that gh and g' are homotopic [28]. 

If a is a loop in Rn we have the length function la : Xn —t R where la(G,g) is 
the length of the immersed loop homotopic to g(ct). The collection {la} as a ranges 
over all immersed loops in Rn defines an injection Xn —t R°° and the topology 
on Xn is defined so that this injection is an embedding. Xn naturally decomposes 
into open simplices obtained by varying edge-lengths on a fixed marked graph. The 
group Out(Fn) acts on Xn on the right via 

(G,g)4>=(G,g4>). 

Theorem 2 (Culler-Vogtmann [28]). Xn is contractible and the action ofOut(Fn 

is properly discontinuous (with finite point stabilizers). Xn equivariantly deforma­
tion retracts to a (2n — 3) -dimensional complex (n > 1). 

If (G,g) and (G',gr) represent two points of Xn, there is a "difference of 
markings" map h : G —¥ G' such that hg and g' are homotopic. Representing h as a 
composition of folds (appropriately interpreted) leads to a path in Xn from (G,g) 
to (G',gr). Arranging that these paths vary continuously with endpoints leads to a 
proof of contractibility of Xn [66],[60],[71]. 

Corollary 3. The virtual cohomological dimension vcd(Out(Fnj) = 2n — 3 (n > 1). 

Theorem 4 (Culler [26]). Every finite subgroup of Out(Fn) fixes a point of Xn. 

Outer space can be equivariantly compactified [27]. Points at infinity are 
represented by actions of Fn on R-trees. 

4. Train tracks 
Any <j) £ Out(Fn) can be represented as a cellular map / : G —¥ G on a marked 

graph G. We say that <f> is reducible if there is such a representative where 

• G has no vertices of valence 1 or 2, and 
• there is a proper /-invariant subgraph of G with at least one non-contractible 

component. 
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Otherwise, we say that <j> is irreducible. 
A cellular map / : G —¥ G is a train track map if for every k > 0 the map 

/* : G —¥ G is locally injective on every open 1-cell. For example, homeomorphisms 
are train track maps and Culler's theorem guarantees that every <j> £ Out(Fn) of 
finite order has a representative / : G —¥ G which is a homeomorphism. More 
generally, we have 

Theorem 5 (Bestvina-Handel [12]). Every irreducible outer automorphism <f> 
can be represented as a train track map f : G —¥ G. 

Any vertex v £ G has a cone neighborhood, and the frontier points can be 
thought of as "germs of directions" at v. A train track map (or any cellular map 
that does not collapse edges) / induces the "derivative" map Df on these germs 
(on possibly different vertices). We declare two germs at the same vertex to be 
equivalent (and the corresponding "turn" illegal) if they get identified by some 
power of Df (and otherwise the turn is legal). An immersed loop in G is legal if 
every turn determined by entering and then exiting a vertex is legal. It follows 
that / sends legal loops to legal loops. This gives a method for computing the 
growth rate of <j>, as follows. The transition matrix (ay) of / (or more generally of a 
cellular map G —¥ G that is locally injective on edges) has ay equal to the number of 
times that the /-image of j t h edge crosses ith edge. Applying the Perron-Frobenius 
theorem to the transition matrix, one can find a unique metric structure on G such 
that / expands lengths of edges (and also legal loops) by a factor A > 1. For a 
conjugacy class 7 in Fn the growth rate is defined as 

GR(4>,'--/) = limsuplog(||ç!i*!(7)||)/fc 

where | |7| | is the word length of the cyclically reduced word representing 7. Growth 
rates can be computed using lengths of loops in G rather than in Rn. 

Corollary 6. If <j> is irreducible as above, then either 7 is a <j>-periodic conjugacy 
class, or GR(<j),^) = log A. Moreover, lim sup can be replaced by lim. 

The proof of Theorem 5 uses a folding process that successively reduces the 
Perron-Frobenius number of the transition matrix until either a train track repre­
sentative is found, or else a reduction of <j> is discovered. This process is algorithmic 
(see [13],[21]). 

Another application of train tracks is to fixed subgroups. 

Theorem 7 (Bestvina-Handel [12]). Let $ : Fn —t Fn be an automorphism 
whose associated outer automorphism is irreducible. Then the fixed subgroup Fix($) 
is trivial or cyclic. Without the irreducibility assumption, the rank of Fix($) is at 
most n. 

It was known earlier by the work of Gersten [39] that Fix($) has finite rank 
(for simpler proofs see [42],[25]). The last sentence in the above theorem was conjec­
tured by Peter Scott. Subsequent work by Collins-Turner [24], Dicks-Ventura [31], 
Ventura [68], Martino-Ventura [58], imposed further restrictions on a subgroup of 
Fn that occurs as the fixed subgroup of an automorphism. To analyze reducible 
automorphisms, a more general version of a train track map is required. 
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Definition 8. A cellular map / : G —¥ G on a finite graph with no vertices of 
valence 1 that does not collapse any edges is a relative train track map if there is a 
filtration 

0 = G0 C • • • C Gm = G 

into f-invariant subgraphs with the following properties. Denote by Hr the closure 
of Gr \ Gr-i, and by Mr the part of the transition matrix corresponding to Hr. 
Then Mr is the zero matrix or an irreducible matrix. If Mr is irreducible and the 
Perron-Frobenius eigenvalue Ar > 1 then: 

• the derivative Df maps the germs in Hr to germs in Hr, 
• if a is a nontrivial path in G r_i with endpoints in G r_i C\Hr then f(ct), after 

pulling tight, is also a nontrivial path with endpoints in G r_i n Hr, and 
• every legal path in Hr is mapped to a path that does not cross illegal turns in 

Hr. 

As an example, consider the automorphism a H> a,b >-¥ ab,c >-¥ caba^1b^1d, 
d H> dbcd represented on the rose R±. The strata are 0 C Gi = {a} C {a, 6} C G. 
Hi and H2 have A = 1 while H3 has A3 > 1. The following is an analog of Thurston's 
normal form for surface homeomorphisms. 

Theorem 9. [12] Every automorphism of Fn admits a relative train track repre­
sentative. 

Consequently, automorphisms of Fn can be thought of as being built from 
building blocks (exponential and non-exponential kinds) but the later stages are 
allowed to map over the previous stages. This makes the study of automorphisms 
of Fn more difficult (and interesting) than the study of surface homeomorphisms. 
Other non-surface phenomena (present in linear groups) are: 

• stacking up non-exponential strata produces (nonlinear) polynomial growth, 
• the growth rate of an automorphism is generally different from the growth 

rate of its inverse. 

5. Related spaces and structures 
Unfortunately, relative train track representatives are far from unique. As a 

replacement, one looks for canonical objects associated to automorphisms that can 
be computed using relative train tracks. There are 3 kinds of such objects, all stem­
ming from the surface theory: laminations, R-trees, and hierarchical decompositions 
ofFn [59]. 
Laminations. Laminations were used in the proof of the Tits alternative for 
Out(Fn). To each automorphism one associates finitely many attracting lamina­
tions. Each consists of a collection of "leaves", i.e. biinfinite paths in the graph G, 
or alternatively, of an F„-orbit of pairs of distinct points in the Cantor set of ends 
of Fn. A leaf £ can be computed by iterating an edge in an exponentially growing 
stratum Hr. The other leaves are biinfinite paths whose finite subpaths appear as 
subpaths of I. Some of the attracting laminations may be sublaminations of other 
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attracting laminations, and one focuses on the maximal (or topmost) laminations. 
It is possible to identify the basin of attraction for each such lamination. Let % 
be any subgroup of Out(Fn). Some of the time it is possible to find to elements 
f,g £ % that attract each other's laminations and then the standard ping-pong 
argument shows that < f,g >= F2. Otherwise, there is a finite set of attracting 
laminations permuted by %, a finite index subgroup W o C H that fixes each of these 
laminations and a homomorphism ( "stretch factor" ) H0 —* A to a finitely generated 
abelian group A whose kernel consists entirely of polynomially growing automor­
phisms. There is an analog of Kolchin's theorem that says that finitely generated 
groups of polynomially growing automorphisms can simultaneously be realized as 
relative train track maps on the same graph (the classical Kolchin theorem says 
that a group of unipotent matrices can be conjugated to be upper triangular, or 
equivalently that it fixes a point in the flag manifold). The main step in the proof 
of the analog of Kolchin's theorem is to find an appropriate fixed R-tree in the 
boundary of Outer space. This leads to the Tits alternative for Out(Fn): 

Theorem 10 (Bestvina-Feighn-Handel [9],[10],[7]). Any subgroup H ofOut(Fn] 
either contains F2 or is virtually solvable. 

A companion theorem [8] (for a simpler proof see [1]) is that solvable subgroups 
of Out(Fn) are virtually abelian. 
R-trees. Points in the compactified Outer space are represented as Fractions 
on R-trees. It is then not surprising that the Rips machine [5], which is used to 
understand individual actions, provides a new tool to be deployed to study Out(Fn). 
Gaboriau, Levitt, and Lustig [37] and Sela [59] find another proof of Theorem 7. 
Gaboriau and Levitt compute the topological dimension of the boundary of Outer 
Space [36]. Levitt and Lustig show [51] that automorphisms with irreducible powers 
have the standard north-south dynamics on the compactified Outer space. Guirardel 
[43] shows that the action of Out(Fn) on the boundary does not have dense orbits; 
however, there is a unique minimal closed invariant set. For other applications of 
R-trees in geometric group theory, the reader is referred to the survey [2]. 
Cerf theory. An advantage of Aut(Fn) over Out(Fn) is that there is a natural 
inclusion Aut(Fn) —t Aut(Fn+i). One can define Aider Space AXn similarly to 
Outer space, except that all graphs are equipped with a base vertex, which is allowed 
to have valence 2. The degree of the base vertex v is 2n — valence(w). Denote by Dk 

the subcomplex of AXn consisting of graphs of degree < k. Hatcher-Vogtmann [47] 
develop a version of Cerf theory and show that Dk is (k — l)-connected. Since the 
quotient Dk/Aut(Fn) stabilizes when n is large, one sees that (rational) homology 
Hi(Aut(Fnj) also stabilizes when n is large (n > 3i/2). Hatcher-Vogtmann show 
that the same is true for integral homology and in the range n > 2i + 3. They also 
make explicit computations in low dimensions [49] and all stable rational homology 
groups Hi vanish for i < 7. 

Bordification. The action of Out(Fn) on Outer space Xn is not cocompact. By-
analogy with Borei-Serre bordification of symmetric spaces [14] and Harer's bordi­
fication of Teichmüller space [44], Bestvina and Feighn [6] bordify Xn, i.e. equiv­
ariantly add ideal points so that the action on the new space BXn is cocompact. 
This is done by separately compactifying every simplex with missing faces in Xn 
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and then gluing these together. To see the idea, consider the case of the theta-
graph in rank 2. Varying metrics yields a 2-simplex a without the vertices. As a 
sequence of metrics approaches a missing vertex, the lengths of two edges converge 
to 0. Restricting a metric to these two edges and normalizing so that the total 
length is 1 gives a point in [0,1] (the length of one of the edges), and a way to 
compactify a by adding an interval for each missing vertex. The compactified a 
is a hexagon. This procedure equips the limiting theta graph with a metric that 
may vanish on two edges, in which case a "secondary metric" is defined on their 
union. In general, a graph representing a point in the bordification is equipped with 
a sequence of metrics, each defined on the core of the subgraph where the previous 
metric vanishes. 

Lengths of curves (at various scales) provide a "Morse function" on BXn 

with values in a product of [0,oo)'s with the target lexicographically ordered. The 
sublevel and superlevel sets intersect each cell in a semi-algebraic set and it is 
possible to study how the homotopy types change as the level changes. A distinct 
advantage of BXn over the spine of Xn (an equivariant deformation retract) is that 
the change in homotopy type of superlevel sets as the level decreases is very simple 
- via attaching of cells of a fixed dimension. 

Theorem 11 (Bestvina-Feighn [6]). BXn and Out(Fn) are (2n — 5)-connected 
at infinity, and Out(Fn) is a virtual duality group of dimension 2n — 3. 

Mapping tori. If <p : Fn —t Fn is an automorphism, form the mapping torus M(<j>). 
This is the fundamental group of the mapping torus G x [0, l]/(x, 1) ~ (/(#), 0) of 
any representative f : G —¥ G, and it plays the role analogous to 3-manifolds 
that fiber over the circle. Such a group is always coherent [33]. A quasi-isometry 
classification of these groups seems out of reach, but the following is known. When 
<j> has no periodic conjugacy classes, M (fi) is a hyperbolic group [20]. When <j> 
has polynomial growth, M(<j>) satisfies quadratic isoperimetric inequality [57] and 
moreover, M(<j>) quasi-isometric to M(ip) for ip growing polynomially forces ip to 
grow as a polynomial of the same degree [56]. Bridson and Groves announced [16] 
that M((f>) satisfies quadratic isoperimetric inequality for all <j>. 

Geometry. Perhaps the biggest challenge in the field is to find a good geometry 
that goes with Out(Fn). The payoff would most likely include rigidity theorems 
for Out(Fn). Both mapping class groups and arithmetic groups act isometrically 
on spaces of nonpositive curvature. Unfortunately, the results to date for Out(Fn) 
are negative. Bridson [15] showed that Outer space does not admit an equivariant 
piecewise Euclidean CAT(0) metric. Out(Fn) (n > 2) is far from being CAT(0) 
[17],[40]. 

An example of a likely rigidity theorem is that higher rank lattices in simple 
Lie groups do not embed into Out(Fn). A possible strategy is to follow the proof 
in [11] of the analogous fact for mapping class groups. The major missing piece of 
the puzzle is the replacement for Harvey's curve complex; a possible candidate is 
described in [48]. 
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Invariants of Legendrian Knots 

Yu. V. Chekanov* 

Abstract 

We present two different constructions of invariants for Legendrian knots in 
the standard contact space R3. These invariants are defined conibinatorially, 
in terms of certain planar projections, and are useful in distinguishing Leg­
endrian knots that have the same classical invariants but are not Legendrian 
isotopie. 

2000 Mathematics Subject Classification: 57R17. 
Keywords and Phrases: Legendrian submanifold, Legendrian knot. 

1. Introduction 

1.1. Legendrian knots 
A smooth knot L in the standard contact space (R3 ,a) = ({(q,p,«)}, du—pdq) 

is called Legendrian if it is everywhere tangent to the 2-plane distribution ker(a) 
(or, in other words, if the restriction of a to L vanishes). Two Legendrian knots 
are Legendrian isotopie if the they can be connected by a smooth path in the 
space of Legendrian knots (or, equivalently, if one can be sent to another by a 
diffeomorphism g of R3 such that g*a = (pa, where (p > 0). In order to visualize 
a knot in R3, it is convenient to project it to a plane. In the Legendrian case, the 
character of the resulting picture will depend on the choice of the projection. The 
useful two are: the Lagrangian projection n: R3 —¥ R2, (q,p,u) >-¥ (q,p), and the 
front projection a: R3 —¥ R2, (p,q,u) >-¥ (q,u). In Figure 1, two projections of the 
simplest Legendrian knot (unknot) are shown. 

We say that a Legendrian knot L C R3 is 7r-generic if all self-intersections 
of the immersed curve n(L) are transverse double points. We can represent a n-
generic Legendrian knot L by its (Lagrangian) diagram: the curve n(L) C R2, 
at every crossing of which the overpassing branch (the one with the greater value 
of u) is marked. Of course, not every abstract knot diagram in R2 is a diagram of 
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Figure 1: Lagrangian projection and front projection 

a Legendrian knot, or is oriented diffeomorphic to such (it requires a bit of extra 
work to check whether a given diagram corresponds to a Legendrian knot, cf. [1]). 

Given a Legendrian knot L c l 3 , its a-projection, or front, a(L) C R2 is a 
singular curve with nowhere vertical tangent vectors. Its singularities, generically, 
are semi-cubic cusps and transverse double points. We say that L is a-generic if, 
moreover, all self-intersections of a(L) have different ^-coordinates. Every closed 
planar curve with these types of singularities and nowhere vertical tangent vectors 
is a front of a Legendrian knot. Note that there is no need to explicitly indicate 
the type of a crossing of a front: the overpassing branch (the one with the greater 
value of p) is always the one with the greater slope. 

1.2. Classical invariants 
The so-called classical invariants of an oriented Legendrian knot L are defined 

as follows. The first of them is, formally, just the smooth isotopy type of L. The 
Thurston-Bennequin number ß(L) of L is the linking number (with respect to the 
orientation defined by a Ada) between L and s(L), where « is a small shift along the 
u direction. The Maslov number m(L) (which actually is an invariant of Legendrian 
immersion) is twice the rotation number of the projection of L to the (q,p) plane 
(or, equivalently, the value of the Maslov 1-cohomology class on the fundamental 
class of L). The change of orientation on L changes the sign of m(L) and preserves 
ß(L). The Thurston-Bennequin number of a 7r-generic Legendrian knot L can be 
computed by counting the crossings of its Lagrangian diagram n(L) with signs: 

0(L) = # ( X ) - # ( X ) 
(where the q axis is horizontal and the p axis is vertical). In terms of the front 
projection, the classical invariants can be computed as follows. The Maslov number 
of a CT-generic oriented Legendrian knot L is the number of the right cusps of the 
front a(L), counted with signs depending on the orientations: 

m(L) = # ( » - # ( » . 

The Thurston-Bennequin number of L is the number of crossings of a(L) counted 
with signs minus half the total number of cusps (= the number of right cusps): 

w = #(X) + #(X)-#(X)-#(X)-#(H 
For the Legendrian knot shown in Figure 1, we have m = 0, ß = — 1. 
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1.3. New invariants and classification results 
It is easy to show that every smooth knot admits a Legendrian realization. A 

natural question to ask is whether there exists a pair of Legendrian knots which 
have the same classical invariants but are not Legendrian isotopie The answer is 
positive: 

Theo rem 1.1. [1, 2] There exist Legendrian knots L,L' (see Figure 2 on p. 390, 
Figure 6 on p. 393) that have the same classical invariants (smooth knot type ï>2, 
m = 0, ß = 1) but are not Legendrian isotopie. 

In the next two sections, we present two combinatorial constructions of Leg­
endrian knot invariants. The first one associates to the Lagrangian projection of 
a Legendrian knot a differential graded algebra (DGA). The second construction 
deals with decompositions of the front projection into closed curves. Each of the two 
provides a proof of Theorem 1.1. The invariants do not change when the orientation 
of the knot reverses, so essentially they are invariants of non-oriented Legendrian 
knots. It should be mentioned that these constructions also produce, with minor 
modifications, invariants of Legendrian links. 

The number of Legendrian knots with given classical invariants is known to be 
finite [3]. Eliashberg and Fraser gave a classification of Legendrian realization for 
smooth unknots [5, 6]. It turned out that smooth unknots are Legendrian simple 
in the sense that the Legendrian isotopy types of their Legendrian realizations are 
determined by the classical invariants. Etnyre and Honda obtained a classification 
of Legendrian realization for torus knots and the figure eight knot [8]. Again, these 
smooth knot types proved to be Legendrian simple. The 52 is the simplest knot 
type for which the classification is not known. By Theorem 1.1, the type 52 is not 
Legendrian simple. Conjecturally, two Legendrian knots of smooth type 52 with 
the same classical invariants are Legendrian isotopie unless they form the pair L, L' 
from Theorem 1.1. Several interesting examples of knots with coinciding classical 
invariants but not Legendrian isotopie were constructed by Ng [14, 15]. 

2. DGA of a Legendrian knot 

2.1. Definitions 
In this section, we associate with every 7r-generic Legendrian knot L a DGA 

(A,d) over Z/2Z ([1]; a similar construction was also given by Eliashberg). This 
DGA is related to the symplectic field theory introduced by Eliashberg, Givental, 
and Hofer in [7] (see [10]). 

Let {ai ,•••, an} be the set of crossings of Y = n(L). Define A to be the tensor 
algebra (free associative unital algebra) T(ai,..., an) with generators c t i , . . . , an. 
The grading on A takes values in the group Z/m(L)Z and is defined as follows. 
Given a crossing a,j, consider the points z + , z_ £ L such that ir(z+) = ir(z-) = UJ 
and the «-coordinate of z+ is greater than the «-coordinate of z— These points 
divide L into two pieces, 71 and 72, which we orient from z+ to z_. We can assume, 
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without loss of generality, that the intersecting branches are orthogonal at a. Then, 
for e £ {1,2}, the rotation number of the curve 7r(7e) has the form Ne/2 + 1/4, 
where Ne £ Z. Clearly, Ni —N2 is equal to ±m(L). Hence Ni and N2 represent the 
same element of the group F = Z/m(L)Z, which we define to be the degree of a,j. 

We are going to define the differential d. For every natural k, fix a (curved) 
convex fc-gon 11^ c R2 whose vertices #§, • • •, xt-i a r e numbered counter-clockwise. 
The form dq A dp defines an orientation on R2. Denote by Wk(Y) the collection of 
smooth orientation-preserving immersions / : II & —t R2 such that f(dllk) C Y. Note 
that / £ Wk(Y) implies f(xk) £ {cti , . . . , an}. Consider the set of nonparametrized 
immersions Wk(Y), which is the quotient of Wk(Y) by the action of the group 
{g £ DiS+(Ilk)\g(xk) = xk}. The diagram Y divides a neighbourhood of each of 
its crossings into four sectors. We call positive two of them which are swept out 
by the underpassing curve rotating counter-clockwise, and negative the other two 
(the sectors are marked in Figure 1). For each vertex xk of the polygon II*, a 
smooth immersion / £ Wk(Y) maps its neighbourhood in 11^ to either a positive 
or a negative sector; we shall say that xk is, respectively, a positive or a negative 
vertex for / . Define the set W£(Y) to consist of immersions / £ Wk(Y) such that 
the vertex XQ is positive for / , and all other vertices are negative. Let W£(Y,aj) = 
{/ G W+(Y) | f(xk) = afi}. Denote Ax = {en,... ,an} <g> 1/21 c A, Ak = (Ai)®k. 
Then A = (Bfl0Ai. Let d = ^k>o®k, where dk(At) £ Ai+k-i- Define 

dk(aj) = Yl f(xi)---f(xk) 
feW++1(Y,aj) 

(for k = 0, we have do(a,j) = #(1A'1
+(F, UJ)), and extend d to A by linearity and the 

Leibniz rule. The following theorem says that (A, d) is indeed a DGA: 

Theo rem 2 .1 . The differential d is well defined. We have deg(9) = —1 and d2 = 0. 

Define the (l-th, where I £ Y) stabilization of a DGA (T(ai,... ,an),d) to 
be the DGA (T(ai,... ,an,an+i,an+2),d), where deg(a„+i) = I, deg(a„+2) = 
/ —1, d(an+i) = an+2, and d acts on ai,...,an as before. An automorphism of 
T(ai,..., an) is called elementary if it sends a, to a, + v, where v does not involve 
a,, and fixes a,j for j ^ i. Two DGAs (T(ai,... ,an),d), (T(ai,... ,an),d') are 
called tame isomorphic if one can be obtained from another by a composition of 
elementary automorphisms; they are called stable tame isomorphic if they become 
tame isomorphic after (iterated) stabilizations. 

Theo rem 2.2. Let (A,d), (A',dr) be the DGAs of (n-generic) Legendrian knots 
L,L'. If L and L' are Legendrian isotopie then (A,d) and (A',dr) are stable 
tame isomorphic. In particular, the homology rings H(A,d) = ker (9)/im (9) and 
H(A',d') = ker (9)/im (9) are isomorphic as graded rings. 

The hard part in the proof of Theorem 2.1 is to show that 92 = 0. The proof of 
this fact mimics, in a combinatorial way, the classical gluing-compactness argument 
of the Floer theory (cf. [11]). The proof of Theorem 2.2 involves a careful study of 
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the behaviour of the DGA associated with a Legendrian knot when its Lagrangian 
diagram goes through elementary bifurcations (Legendrian Reidemeister moves). 

It turns out that one cannot replace the coefficient ring Z/2Z by Z: in some 
sense, our homology theory is not oriented. However, the construction described 
above can be modified to associate with a Legendrian knot L a DGA graded by Z and 
having Z[s, s^1] (where deg(s) = m(Lj) as a coefficient ring [10]. After reducing the 
grading to Z/ro(L)Z, and applying the homomorphism Z[s, s^1] —¥ Z/2Z sending 
both s and 1 G Z to 1 G Z/2Z, this Z ^ s ^ - D G A becomes the Z/2Z-DGA of the 
knot L. 

2.2. Poincaré polynomials 
Homology rings of DGAs can be hard to work with. We are going to define an 

easily computable invariant I, which is a finite subset of the group monoid No[F], 
where No = {0,1 , . . .} , F = Z/ro(L)Z. Assume that do = 0. Then 92 = 0. Since 
9(Ai) c Ai, we can consider the homology H(Ai,di) = ker(9i|J41)/im(9i|J41), 
which is a vector space graded by the cyclic group F. Define the Poincaré polynomial 
P{A,d)£No[Y]by 

P(A,d)(t) = J2dim(HX(Ai,di))tX, 
Aer 

where H\(Ai,di) is the degree À homogeneous component of H(Ai,di). Define 
the group Auto (A) to consist of graded automorphisms of A such that for each i £ 
{ 1 , . . . ,n} we have #(a,) = a, + c», where c, G A0 = Z/2Z. (of course, c, = 0 when 
deg(ctj) 7̂  0). Consider the set Uo(A,d) consisting of automorphisms g £ Auto(A) 
such that (9s)o = 0 (where d9 = g^1 o 9 o g). Define 

I(A,d) = {P{A9g)\g£Uo(A,d)}. 

Since Auto (A) has at most 2" elements, this invariant is not hard to compute. We 
can associate with every (7r-generic) Legendrian knot L the set I(L) = I(AL,8L)-

Note that P( — l) = ß(L) for P £ I(L). One can show that J is an invariant of 
stable tame DGA isomorphism. Hence Theorem 2.2 implies the following 

Corollary 2.3. If L is Legendrian isotopie to L' then I(L) = I(L'). 

The set I(L) can be empty (cf. Section 4) but no examples are known where 
I(L) contains more than one element. Also, for all known examples of pairs L, L' of 
Legendrian knots with coinciding classical invariants we have F( l ) = P'(l), where 
P £ 1(E), P' £ I(L'). Other, more complicated invariants of stable tame isomorfism 
were developed and applied to distinguishing Legendrian knots in [15]. 

2.3. Examples 
l a . Let (A,d) = (T(ai,... ,a®),d) be the DGA of the Legendrian knot L given 
in Figure 2. We have m(L) = 0, ß(L) = 1, deg(a,) = 1 for i < 4, deg(as) = 2, 
deg(ag) = —2, deg(a,) = 0 for i > 7, d(ai) = 1 + a-j + a-ja^a^, d(a2) = 1 + ag + 
a5a6a9, 8(0,3) = 1 + asa7, d(afi) = 1 + asa9, d(at) = 0 for i > 5. 
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Figure 2: Lagrangian projections of two Legendrian 52 knots 

l b . Let (A',d) = (T(ai,... ,a®),d) be the DGA of the Legendrian knot L' given 
in Figure 2. We have m(L') = 0, ß(L') = 1, deg(a,) = 1 for i < 4, deg(a,) = 0 
for i > 5, 9(ai) = 1 + a7 + a5 + a7a6a5 + a9asa5, d(a2) = 1 + a8 + a5a6a9, 
9(03) = 1 + a%a,T, 9(04) = 1 + a%ag, 9(a») = 0 for i > 5. 

An explicit computation shows that I(L) = {t^ + ^ + t2}, I(L') = fôfl + t1} 
and hence Theorem 1.1 follows from Corollary 2.3. 

Figure 3: Lagrangian projection of a Legendrian 62 knot 

2. [14] Let (A, 9) = (T(ai,..., an), 9) be the DGA of the Legendrian knot K given 
in Figure 3. We have m(K) = 0, ß(K) = -7, deg(aj) = 1 for i £ {1,2,7,9,10}, 
deg(a,) = 0 for i £ {3,4}, deg(a,) = —1 for i £ {5,6,8,11}; 9(ai) = 1 + 0100503, 
d(a2) = 1 + a3 + a3a6aio + a3ana7, d(ai) = a5 + a n + ana 7 a 5 , d(a6) = ana8, 
d(a7) = a$aio, d(ag) = 1 + aioan, d(a,i) = 0 for i £ {3,5,8,10,11}. Denote 
by K the 'Legendrian mirror' of if — the image of K under the map (q,p,u) >-¥ 
(—q,p, —u). The Legendrian knots K,K have the same classical invariants. How­
ever, they are not Legendrian isotopie, and it is possible to distinguish them by-
means of their DGAs. There exist homology classes £+,£- in the graded homol­
ogy ring H(A,d) such that deg(£+) = 1, deg(£_) = —1, and £+£- = 1 (choose 
£+ = [aio], C- = [an])- It follows from the definitions that the DGA for K is ob­
tained from (A, 9) by applying the anti-automorphism reversing the order of gener-
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ators in all monomials. Thus, if K and K are Legendrian isotopie then the graded 
homology ring H (A, 9) is anti-isomorphic to itself, and there exist £+,£!_ G H (A, 9) 
such that deg(£|_) = 1, deg(£L) = —1, £-£+ = 1. But one can check that such 
classes do not exist (see [14, 15] for details) and hence K and K are not Legendrian 
isotopie. Note that 'first order invariants' such as Poincaré polynomials are useless 
in distinguishing Legendrian mirror knots. 

3. Admissible decompositions of fronts 

3.1. Definitions 
In this section, we present the invariants of Legendrian knots constructed in [2]. 

These invariants are defined in terms of the front projection. 
Given a a-generic oriented Legendrian knot L, denote by C(L) the set of 

its points corresponding to cusps of a(L). The Maslov index p:L\ C(L) —¥ Y = 
Z/ro(L)Z is a locally constant function, uniquely defined up to an additive constant 
by the following rule: the value of p jumps at points of C(L) by ±1 as shown in 
Figure 4. We call a crossing of S = a(L) Maslov if p takes the same value on both 
its branches. 

ß = i+l~^^ / \ ^~-li = i+l 

[1 = i-^ \ / ^ - / / = i 

Figure 4: Jumps of the Maslov index near cusps 

Assume that S = a(L) is a union of closed curves Xi,..., Xn that have finitely-
many self-intersections and meet each other at finitely many points. Then we call 
the unordered collection {Xi,... ,Xn} a decomposition of S. A decomposition 
{Xi,...,Xn} is called admissible if it satisfies certain conditions, which we are 
going to define. The first two are as follows: 

(1) Each curve Xi bounds a topologically embedded disk: Xt = dBt. 
(2) For each i £ {l,...,n}, q £ R, the set Bi(q) = {« G R | (q,u) £ Bi} is either 

a segment, or consists of a single point « such that (q,u) is a cusp of S, or is 
empty. 

Conditions (1) and (2) imply that each curve Xt has exactly two cusps (and hence 
the number of curves is half the number of cusps). Each Xt is divided by cusps 
into two pieces, on which the coordinate q is a monotone function. Near a crossing 
x £ XiCi Xj, the decomposition of S may look in one of the three ways represented 
in Figure 5. Conditions (1) and (2), in particular, rule out the decomposition shown 
in Figure 5a. We call the crossing point x switching if Xt and Xj are not smooth 
near x (Figure 5b), and non-switching otherwise (Figure 5c). 

(3) If (qo, u) £ Xi fl Xj (i ^ j) is switching then for each q ^ q0 sufficiently close 
to qo the set Bi(q) fl Bj(q) either coincides with Bi(q) or Bj(q), or is empty. 
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Figure 5: Local decompositions 

(4) Every switching crossing is Maslov. 

We call a decomposition admissible if it satisfies Conditions (l)-(3), and graded 
admissible if it also satisfies Condition (4). Denote by Adm(S) (resp. Adm+(S)) 
the set of admissible (resp. graded admissible) decompositions of S. Given D £ 
Adm(S), denote by Sw(£>) the set of its switching points. Define 0(D) = #(-D)) — 
#(Sw(D)). 

Theo rem 3.1. If a-generic Legendrian knots L,L' c R3 are Legendrian isotopie 
then there exists a one-to-one mapping g: Adm(<r(L)) —¥ Adm(<r(L')) such that 
g(Adm+(a(L))) = Adm+(<r(L')) and 6(g(D)) = 9(D) for each D £ Adm(a(L)). 
In particular, the numbers #(Adm(a(L))) and #(Adm+(a(L))) are invariants of 
Legendrian isotopy. 

3.2. Remarks 
1. Decompositions of fronts were first considered by Eliashberg in [4] (only-

Conditions (1) and (2) were involved). 

2. No examples are known where the total number of admissible decompositions 
#(Adm(S)) is different for two Legendrian knots with coinciding classical invariants. 

3. The proof of Theorem 3.1 goes as follows: we connect L with L' by a generic path 
in the space of Legendrian knots and define a canonical way to extend admissible 
decompositions through the points where the front is not a-generic. The mapping 
g depends on the choice of the path: a loop in the space of Legendrian knots lifts 
to an automorphism of Adm(<r(L)) which can be non-trivial even when the loop is 
contractible. The meaning of this phenomenon is not clear. 

4. It would be interesting to understand the relation between admissible decompo­
sitions and DGAs of Legendrian knots. The first result in this direction is that if 
Adm+(<r(L)) is nonempty then the set I(L) defined in the previous section is also 
nonempty [12]. 

3.3. Examples 
Note that every admissible decomposition D of a front S is uniquely defined 

by its set of switching points. Indeed, denote by X(S) the set of crossings of S, then 
each subset E C -V(E) defines a decomposition D(E) of S which near x £ -V(E) has 
the form shown in Figure 5b if a; G E, and the form shown in Figure 5c otherwise. 
Clearly, if E = Sw(D) then D = D(E). 

The Legendrian knots represented by the fronts S, £ ' in Figure 6 are respec­
tively Legendrian isotopie to the Legendrian knots L, L' defined in Figure 2. We are 
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Figure 6: Fronts of two Legendrian 52 knots 

going to show that #(Adm+ (S)) = 1, #(Adm+ (S ' ) ) = 2, and hence Theorem 1.1 
is a consequence of Theorem 3.1. Assume that D £ Adm(S). Consider the curve 
Xi £ D containing the piece of S indicated by the lower arrow. Being applied to 
Xi, Conditions (1) and (2) imply that C2,C3 G Sw(D). Similarly, looking at the 
curve X2 £ D containing the piece of S indicated by the upper arrow, we conclude 
that C4,C5 G Sw(D). If one of the crossings ci,c$ is switching, so is the other. Then 
either Sw(D) = {02,03,04,05} or Sw(D) = {ci,c2,C3,Ci,C5,ce}. It is not hard to 
check that both decompositions are admissible but only the first one is graded. Thus 
#(Adm+ (S)) = 1. Arguing similarly, one can find that #(Adm(S')) = 2, where 
the admissible decompositions Di,D2 are defined by Sw(Di) = {02,03,04,05}, 
Sw(£>2) = {ci,c2,03,04,05,cfi}, and are both graded. 

4. Instability of invariants 
There are two stabilizing operations, S_ and S+, on Legendrian isotopy classes 

of oriented Legendrian knots, defined as follows. Given an oriented Legendrian knot 
L, we perform one of the operations shown in Figure 7 in a small neighbourhood of a 
point on L. One can check that, up to Legendrian isotopy, the resulting Legendrian 
knot S±(L) does not depend on the choices involved, and the operations S-,S+ 
commute. An important observation is that two Legendrian knots L, L' have the 
same classical invariants if and only if they are stable Legendrian isotopie in the 
sense that there exist n _ , n + G No such that S"~(S"+(L)) is Legendrian isotopie 
toS"- (S+ + (L ' ) ) [13]. 
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Figure 7: Stabilizations 

Thus the invariants constructed in Sections 2 and 3 cannot be stable. In fact, 
they fail already after the first stabilization. The homology ring H of the DGA 
corresponding to S±(L) vanish, and the set I(S±(Lj) is empty. This can be easily 
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derived from the fact that the DGA of S±(L) can be obtained from the DGA 
of L by adding a new generator a such that d(a) = 1. The front of S±(L) has no 
admissible decompositions because Conditions (1) and (2) cannot hold for the curve 
Xi containing the newly created cusps. 

Studying Legendrian realizations of non-prime knots, Etnyre and Honda con­
structed, for each m, examples of Legendrian knots that have the same classical 
invariants but are not Legendrian isotopie even after m stabilizations [9]. Their 
proof uses the classification of Legendrian torus knots given in [8]. It is an open 
problem to find invariants distinguishing those knots, or any pair of stabilized knots 
with the same classical invariants. 
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Finite Dimensional Approximations 
in Geometry 

M. Furata* 

Abstract 

In low dimensional topology, we have some invariants defined by using solu­
tions of some nonlinear elliptic operators. The invariants could be understood 
as Euler class or degree in the ordinary cohomology, in infinite dimensional 
setting. Instead of looking at the solutions, if we can regard some kind of 
homotopy class of the operator itself as an invariant, then the refined version 
of the invariant is understood as Euler class or degree in cohomotopy theory. 
This idea can be carried out for the Seiberg-Witten equation on 4-dimensional 
manifolds and we have some applications to 4-dimensional topology. 
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Keywords and Phrases: Seiberg-Witten, 4-manifold, Finite dimensional 
approximation. 

1. Introduction 
The purpose of this paper is to review the recent developments in a formal 

framework to extract topological information from nonlinear elliptic operators. 
We also explain some applications of the idea to 4-dimensional topology by-

using the Seiberg-Witten theory. 
A prototype is the notion of index for linear elliptic operators. In this intro­

duction we explain this linear case. Later we mainly explain the Seiberg-Witten 
case. 

Let D : Y(E°) —t r ( £ ' 1 ) be an linear elliptic operator on a close manifold X. 
The index mdD is defined to be 

mdD = d i m K e r D — dimCofcerD. 

We can extend this definition as follows. Take any decomposition D = L ® L' : 
V° ® W° —¥ V1 ® W1. such tha t L : V° —¥ V1 is a linear map between two finite 
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dimensional vector spaces and that L' : W° —¥ W1 is an isomorphism between 
infinite dimensional vector spaces. Then we have 

indD = dim V° — dim V1. 

It is easy to check that the right-hand-side is independent of the choice of the 
decomposition. For example we have decomposition satisfying V° = KerD, V1 = 
CokerD, L = 0, which gives the former definition of the index. 

An important property of ind D is its invariance under continuous variation of 
D. This property is closely related to the above well-definedness. 

Another way to understand this property is to consider the whole space of 
Fredholm maps. Then the given map D sits in the space and the indD is nothing 
but the label of the connected component containing D. 

In other words, there are presumably three possible attitudes: 

1. The essential data is "supported" on KerD and CokerD. 
2. It is convenient to look at "some" finite dimensional approximation. L : V° —¥ 

V1. 
3. The essential data is the whole map D : Y(E°) —t F (I?1). 

When one considers a family of elliptic operators and tries to define the index 
of the family, it is not enough to look at their kernels and cokernels. 

It is tempting to regard the finite dimensional approximation as a topological 
version of the notion of "low energy effective theory" in physics. In this story, the 
whole map D would be regarded as a given original theory. 

In this paper we explain a nonlinear version of the notion of index which is 
formulated by using finite dimensional approximations. 

2. Non-linear cases 
While every elliptic operator on a closed manifold has its index as topological 

invariant, it is quite rare that a nonlinear elliptic operator gives some topological 
invariant. 

We have three examples of this type of invariants: the Donaldson invariant, 
the Gromov-Ruan-Witten invariant and the Seiberg-Witten invariant. Moreover, 
the Casson invariant is regarded a variant of the Donaldson invariant. Some other 
finite type invariants for 3-manifolds are also supposed to be related to these kinds 
of invariant [37]. 

Even for these cases, however, it is not obvious how to proceed to obtain 
nonlinear version of index in full generality. 

Let us first give several examples of finite dimensional approximations. 

1. C. Conley and E. Zehnder solved the Arnold conjecture for torus by reducing 
a certain variational problem to a finite dimensional Morse theory [10]. 

2. Casson's definition of the Casson invariant. Taubes gave an interpretation of 
the Casson invariant via gauge theory [41]. In other words, Casson's construc­
tion gave a finite dimensional approximation of the gauge theoretical setting 
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by Taubes. (The statement of the Atiyah-Floer conjecture could be regarded 
as a partial finite dimensional approximation along fibers.) 

3. Seiberg-Witten equation. The moduli space of Seiberg-Witten equation is 
known to be compact for closed 4-manifolds. This enables us to globalize the 
Kuranishi construction to obtain finite dimensional approximations [18], [3]. 

4. Seiberg-Witten-Floer theory C. Manolescu and P.B. Kronheimer defined Floer 
homotopy type for Seiberg-Witten theory, which is formulated as spectrum 
[32] [27]. 

5. Kontsevish explained an idea to define invariants of 3-manifolds by using 
configuration spaces. This idea was realized by Fukaya [13], Bott-Cattaneo [5] 
[6], and Kuperberg-Thurston [28]. Formally the configuration spaces appear 
as finite approximations of certain path spaces. 

3. Kuranishi construction 
While the index is regarded as the infinitesimal information of a nonlinear 

elliptic operator, its local information is given by the Kuranishi map, which has 
been used to describe local structure in various moduli problems [29]. 

A few years ago the Arnold conjecture was solved in a fairly general setting and 
the Gromov-Ruan-Witten invariant was defined for general symplectic manifolds. 
These works were done by several groups independently [14], [31], [34], [38]. A key 
of their arguments was to construct virtual moduli cycle over Q. 

In their case, the point is to glue local structure to obtain some global data 
to define invariants. Since their invariants are defined by evaluating cohomology 
classes, it was enough to have the virtual moduli cycle. 

4. Global approximation 
The notion of Fukaya-Ono's Kuranishi structure or Ruan's virtual neighbor­

hood is defined as equivalence class of collections of maps, which define the moduli 
space. The collection of maps is necessary because the moduli space as topological 
space is not enough to recover the nature of the singularity on it. 

The data depend on the choice of various choice of auxiliary data. When 
we change the data, the change of the moduli space is supposed to be given by a 
cobordism, even with the extra structure we have to look at. 

Suppose we would like to regard this structure itself as an invariant. Then 
we have to identify the place where the invariant lives. Since cobordism classes 
are identified by Pontrjagin-Thom construction, what we need would be a certain 
stable version of Pontrjagin-Thom construction. 

In the case of symplectic geometry or Donaldson's theory, this construction 
has not been done. A main problem seems to describe a finite dimensional ap­
proximation of the ambient space where the compactification of the moduli space 
lies. (The same problem occurs for Kotschick-Morgan conjecture.) Since the com­
pactification is fairly complicated, it is not straightforward to identify the finite 
dimensional approximation. 
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However in the Seiberg-Witten case, the moduli spaces are known to be com­
pact for closed 4-manifolds and it is not necessary to take any further compactifi-
cations. 

Let us briefly recall the Seiberg-Witten equation for a closed Spin0 manifold 
X. For simplicity we assume bfiX) = 0. Let W = W° ® W1 be the spinor bundle 
and A be the space of connections on det W° = det W1. Then the Seiberg-Witten 
equation is given by a map 

Y(W°) xA^ Y(WV) x F(A+), 

where F(A+) is the self-dual 2-forms for a fixed Riemannian metric. This is an 
[/(l)-equivariant map. The inverse image of 0 divided by S1 is the moduli space, 
which is known to be compact. 

A finite approximation of the above map is defined by global version of the 
Kuranishi construction. The approximation is a proper [/(l)-equivariant map 

C a o 0 E d o _ ^ C a i & R d i 

for some natural numbers co,ci,do and di. The differences Co — ci and do — di 
depends only on the topology of X and its spinc-structure. 

The invariant we have is the stable homotopy class of the above [/(l)-equivariant 
proper map, or equivalently, the [/(l)-equivariant map from the sphere S(Ca° ®Rrf° ) 
to the sphere S(Cai ® Rrfl ). 

S. Bauer and the author pointed out that the invariant constructed above is a 
refinement of the usual Seiberg-Witten invariant [3]. 

5. 4-dimensional topology and Seiberg-Witten 
theory 

We explain some applications of the finite dimensional approximation to 4-
dimensional topology. 

(1) Bauer's connected sum formula [2] 
Suppose X is the connected sum of X0 and Xi. If the neck of the connected 

sum is long enough, it is known that the moduli space of the solution of the Seiberg-
Witten equation (or anti-self-dual equation) for X is identified with the product of 
the moduli spaces for X0 and Xi. When Xi = CP2, then this gives the blowing-up 
formula. When ò+(X 0) ,ò _(Xi) > 1, this gives vanishing of the Seiberg-Witten 
(or the Donaldson) invariant of X = X 0 # X i . Bauer essentially showed that the 
product formula holds true for the virtual neighborhood of the moduli spaces, if we 
use Ruan's terminology. In the language of stable maps between spheres, "product" 
becomes "join". In particular Bauer's formula gives the blowing-up formula for the 
refined invariant. When 6+(X 0) ,6 _(Xi) > 1, the join is torsion. It is, however, not 
necessary zero. In this way Bauer gave many new examples of 4-manifolds which 
are homeomorphic but not diffeomorphic to each other. 

Ishida-Lebrun [24] [25] obtained some applications of the connected sum for­
mula to Riemannian geometry. 
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(2) Intersection form of spin 4-manifolds 
When 4-manifold is spin, we have certain extra symmetry, and the place where 

the invariant lives is a set of Fm(2)-equivariant stable maps [18]. 
When X is a closed spin 4-manifold with 6i(X) = 0, the Seiberg-Witten map 

for the spin structure is a Fm(2)-equivariant map formally given by 

H°° ® R°° - • M00 ® R°°, 

where R is the non-trivial 1-dimensional real representation space of Pin(2). and 
H is the 4-dimentional real irreducible representation space of Pin(2). Yet Z/4 be 
the subgroup of Pin(2) generated by an element in Pin(2) \ U(Y). The differences 
of the power oo's are given by the index of some elliptic operators. 

A finite dimensional approximation is given by a Fm(2)-equivariant proper 
map 

for some co,ci,do,di satisfying 

C 0 _ C l = _ ? î ^ ) , do-d1 = b+(X). 

This existence implies some inequality between the signature and the second Betti 
number. 

To obtain the inequality explicitly we can use the following results. 
Theorem Suppose k > 0 and k = a mod 4 for a = 0,1,2, or 3. Then 

there does not exist a G-equivariant continuous map from S(Mk+x ® IF) to S(W ® 
R2fc+a ^1+y). for the following G and a'. 

1. (B. Schmidt [39] see also [40] [11] [33]) G = Z/4 and a' = a for a = 1,2,3. 
2. (F - Y.Kametani [20]) G = Pin(2) and a' = 3 for a = 0. 

From the above non-existence results, we have the following inequality, which 
is a partial result towards the 11/8-conjecture b+ > 3\sign (X)/16|. 

Theorem Let X be a closed spin 4-manifold with sign(X) = —16k < 0. If 
k = a mod 4 for a = 0,1,2 or 3, then we have b+ > 2k + b, where a' = a if a = 1,2,3 
and a' = 3 if a = 0. 

Equivariant version and V-manifold version can be formulated similarly [7], 
[12], [16], [1]. There are some applications of these extended versions: 

1. C. Bohr [4] and R. Lee - T.-J. Li [30] investigated the intersection forms of 
closed even 4-manifolds which are not spin. 

2. Y. Fukumoto, M. Ue and the author [16] [15] [17] [42], and N. Saveliev [36] 
investigated homology cobordims groups of homology 3-spheres. 

When 6i > 0, we can construct another closed spin 4-manifold with 6i = 0 without 
changing the intersection form. It implies that we can assume 6i = 0 to obtain 
restriction on the intersection form. However when the intersection form on H1 (X) 
is non-trivial, we may have a stronger restriction. Y. Kametani, H. Matsue, N. Mi­
nami and the author found that such a phenomenon actually occurs if there are 
ai,«2,«3,«4 £ -ff1(X,Z) such that (na*>[^]) is odd [22]. 
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6. Seiberg-Witten-Floer homotopy type 

Recently C. Manolescu and P. B. Kronheimer extends the above formulation 
for closed 4-manifolds to the relative version [32], [27]. Let us explain their theory 
briefly. 

We mentioned that Conley-Zehnder used a finite dimensional approximation of 
a Morse function on an infinite dimensional space to approach the Arnold conjecture 
for torus. Following this line, Conley exteded the notion of Morse index and defined 
the Conley index for compact isolated set [9]. The Conley index is not a number, 
but a homotopy type of spaces. Floer extracted some information from the Conley 
index just by looking at some finite dimensional skeleton of the Conley index under 
some assumption. Floor's formulation has the advantage that the Floer homology 
is defined even when the Conley index is not rigorously defined. 

On the other hand R. L. Cohen, J. D. S. Jones and G. B. Segal tried to define 
certain stable homotopy type directly which should be an extended version of the 
Conley index [8]. They called it the Floer homotopy type. At that time the Floer 
homology was defined only for the Donaldson theory and the Gromov-Ruan-Witten 
theory. In these theories the moduli spaces are non-compact in general. This cause 
a serious difficulty to carry out their program. 

In the Seiberg-Witten theory, we have a strong compactness for the moduli 
spaces. Manolescu and Kronheimer succeeded to construct the Floer homotopy 
type as spectra for the Seiberg-Witten theory by using this compactness. 

They also defined relative invariant for 4-manifolds with boundary is also de­
fined and it extends the invariant in [3]. 

7. Concluding remarks 

The idea of finite dimensional approximation is closely related to the notion 
of "low energy effective theory" in physics. Actually the approximation should be 
regarded just as a part of the vast notion which we can deal with rigorously or 
mathematically. 

Since Witten's realization of Donaldson theory as a TQFT, the formal rela­
tion between mathematically regorous definition of invariants and their formal path 
integral expressions has suggested many things. For instance, the well-definedness 
of the Donaldson invariant is based on the fact that the formal dimension of the 
moduli space increases when the instanton number goes up. This fact seems equiv­
alent to the other fact that the pure Yang-Mills theory is asymptitotically free (for 
N=2 SUSY theory) and its renormalized theory does exists. 

In the case of the finite dimensional approximations of Seiberg-Witten theory, 
the suspension maps give relations between many choices of approximations. If we 
use some generalized cohomology theories to detect our invariants, the suspension 
maps induces the Thom isomorphisms, or integrations along fibers. If we compare 
this setting with physics, the family of integrations look quite similar to the renor-
malization group. It seems the Thom classes which play the role of vacua. In this 
sense, one could say that the family of finite approximations is a topological version 
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of the renormlization group. This topological setting is very limitted. It, however, 
has one advantage: Usually the path integral expression is supposed to take values 
in real or complex numbers. On the other hand our invariants could take values in 
torsions. 

Let us conclude this survey by giving three open problems. 

1. What is the correct formulation of the geography of spin 4-manifolds with 
61 > 0? (If the intersection on H1 is complicated enough, then sign (X) 
would have stronger restriction.) 

2. When an oriented closed 3-manifold is a link of isolated algebraic singular 
point, construct a canonical Galois group action on some completion of the 
Floer homotopy type of Kronheimer-Manolescu. (This problem was suggested 
by a hand-written manuscript by D. Johnson in which Casson-type invariants 
were defined.) 

3. The Seiberg-Witten map is quadratic. Extract non-topological information 
from this structure. (Is it possible to approach the 11/8-conjecture from this 
point of view?) 
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Géométrie de Contact: 
de la Dimension Trois 

vers les Dimensions Supérieures 

Emmanuel Giroux* 

Résumé 

On décrit ici des relations entre la géométrie globale des variétés de contact 
closes et celle de certaines variétés symplectiques, à savoir les variétés de Stein 
compactes. L'origine de ces relations est l'existence de livres ouverts adaptés 
aux structures de contact. 
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Mots clés : Structures de contact, Livres ouverts. 

La géométrie de contact en dimension trois a connu un essor important durant 
la dernière décennie grâce au développement de méthodes topologiques adéquates. 
Dans le prolongement des travaux de D. Bennequin [Be] et de Y. Eliashberg [EU], 
la théorie des « surfaces convexes » [Gii] et l'étude des rocades (bypasses) [Ho] ont 
mené à une classification complète des structures de contact sur quelques variétés 
simples et, plus récemment, à une classification grossière sur toutes les variétés 
closes [Co, HKM, CGH]. En fait, comme on essaiera de le montrer plus loin, les 
structures de contact en dimension trois sont des objets purement topologiques, 
un peu comme les structures symplectiques en dimension deux. En termes précis, 
sur toute variété close V de dimension trois, les classes d'isotopie des structures 
de contact se trouvent en correspondance bijective avec les classes d'isotopie et de 
stabilisation des livres ouverts dans V, l'opération élémentaire de stabilisation étant 
un plombage positif [Gi2]. 

En dimension supérieure, des méthodes radicalement différentes permettent 
de mettre en évidence une correspondance similaire [GM] et, au-delà, de faire ap­
paraître des liens étroits entre la géométrie globale des variétés de contact closes et 
celle de certaines variétés symplectiques compactes. Les livres ouverts qu'on associe 
à une structure de contact sont en effet particuliers : leurs pages sont des variétés de 
Stein compactes, leur monodromie est un difféomorphisme symplectique à support 
dans l'intérieur et l'opération élémentaire de stabilisation qui les unifie est un plom­
bage lagrangien positif. En outre, l'outil essentiel pour les construire est la théorie 

* Unité de Mathématiques Pures et Appliquées, École Normale Supérieure de Lyon, 46 allée 
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des fibres positifs que S. Donaldson a introduite et développée en géométrie sym-
plectique dans [Dol, Do2] et qui a été adaptée en géométrie de contact dans [IMP]. 

A. Structures de contact et livres ouverts 
Dans ce texte, V désigne toujours une variété close et orientée. Les champs 

d'hyperplans tangents qu'on considère sur V sont coorientés, donc aussi orientés 
puisque V l'est. Un tel champ £ est le noyau d'une forme a, appelée équation de £, 
unique à multiplication près par une fonction positive. On dit que £ est une structure 
de contact si da induit sur £ en tout point une forme symplectique directe, i.e. si 
V est de dimension impaire 2n + 1 et si a A (da)n est en tout point un élément de 
volume direct pour l'orientation de V. 

D'autre part, un livre ouvert dans V est un couple (K,9) formé des objets 
suivants : 

- une sous-variété close K c V de codimension deux à fibre normal trivial ; 
- une fibration 9: V\K —¥ S1 qui, dans un voisinage KxD2 de K = K x {0}, 

coïncide avec la coordonnée angulaire normale. 
On peut aussi voir les livres ouverts autrement. Soit <j>: F - > F u n difféomorphisme 
d'une variété compacte égal à l'identité près du bord K = dF. Sa suspension, à 
savoir la variété compacte 

£ ( F , ^ ) = ( F x [ 0 , l ] ) / ~ , où ( p , l ) ~ M p ) , 0 ) , 

est bordée par K x S1 - car <j> | K = id - et la variété close 

ë (F ,^) = S ( F , ^ ) U 0 ( A : X D 2 ) , 

possède un livre ouvert évident. En outre, tout livre ouvert (K, 9) dans V identifie V 
à Yi(F,4>), où F est une fibre de 9 (un peu rétrécie) et <j> l'application de premier 
retour sur F d'un flot transversal aux fibres de 9 et constitué, près de K, de rotations 
autour de K. Le difféomorphisme <j>, défini seulement à conjugaison et isotopie près, 
est la monodromie de (K,9). 

Toute la discussion à venir tourne autour de la définition suivante : 

Définition 1 [Gi2, GM]. Une structure de contact £ sur V est dite portée par un 
livre ouvert (K, 9) si elle admet une équation a ayant les propriétés suivantes : 

- a induit sur K une forme de contact ; 
- da induit sur chaque fibre F de 9 une forme symplectique ; 
- l'orientation de K définie par la forme de contacta coïncide avec son orien­

tation comme bord de la variété symplectique (F,da). 
Une telle forme a sera dite adaptée à (K,9). 

Exemple [GM]. So i t / : (C",0) —¥ (C, 0) une fonction holomorphe ayant à l'origine 
un point critique isolé et soit H l'hypersurface (singulière) / _ 1 ( 0 ) . Il existe une 
boule fermée lisse B autour de l'origine dans C" et un feuilletage de B \ {0} par 
des sphères strictement pseudoconvexes Sr, où r £ ]0,1] et Si = dB, tels que, pour 
r assez petit, les propriétés suivantes soient satisfaites : 
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- la sphère Sr est transversale à H, de sorte que K = H n Sr est une sous-
variété close de Sr de codimension deux et à fibre normal trivial ; 

- l'application 9 = a r g / : Sr \ K —t S1 est une fibration qui fait de (K,9) un 
livre ouvert ; 

- le livre ouvert (K, 9) porte la structure de contact sur Sr définie par le champ 
des tangentes complexes. 

Autrement dit, chaque livre ouvert donné dans la sphère par le théorème de fibration 
de J. Milnor porte, à isotopie près, la structure de contact standard. 

B. Structures de contact et livres ouverts en di­
mension trois 

En dimension trois, divers travaux ont depuis longtemps fait apparaître des 
connivences entre les structures de contact et les livres ouverts sans toutefois établir 
aucun lien formel. Dans [TW], W. Thurston et H. Winkelnkemper construisent des 
formes de contact sur toute variété close V a partir d'un livre ouvert dans V. 
Avec les termes de la définition 1, ils démontrent en fait que tout livre ouvert 
dans V porte une structure de contact. Dans [Be] d'autre part, pour transformer en 
théorème de géométrie de contact son résultat sur les tresses fermées, D. Bennequin 
met en évidence la propriété suivante : toute courbe transversale à la structure de 
contact standard £o dans R 3 - structure d'équation dz + r2d9 = 0 - est isotope, 
parmi les courbes transversales, à une tresse fermée c'est-à-dire une courbe trans­
versale au livre ouvert formé par l'axe des z et la coordonnée angulaire 9. Or cette 
propriété vient de ce que ce livre ouvert porte &>• Enfin, dans [To], I. Torisu a clai­
rement dégagé les relations entre les livres ouverts et les configurations de théorie 
de Morse considérées dans [Gil] pour étudier les structures de contact convexes au 
sens de [EG]. 

La première observation qui montre l'étroitesse des liens imposés par la défini­
tion 1 et découle de la stabilité des structures de contact est la suivante : 

Proposition 2 [Gi2]. Sur une variété close de dimension trois, toutes les structures 
de contact portées par un même livre ouvert sont isotopes. 

Quant à la question de savoir quelles structures de contact possèdent un livre 
ouvert porteur, la réponse est simple : 

Théorème 3 [Gi2]. Sur une variété close de dimension trois, toute structure de 
contact est portée par un livre ouvert. 

Cependant, comme l'illustre l'exemple des fibrations de Milnor, le livre ouvert 
qui porte une structure de contact donnée est loin d'être unique - même à isotopie 
près. Pour appréhender ce phénomène, quelques définitions sont utiles. 

Soit F c V une surface compacte à bord et C C F un arc simple et propre. 
On dit qu'une surface compacte F ' c V s'obtient à partir de F par le plombage 
positif (resp. négatif) d'un anneau le long de C si F ' = F U A où A C V est un 
anneau ayant les propriétés suivantes : 

- A n F est un voisinage régulier de C dans F ; 
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- A est inclus dans une boule fermée B dont l'intersection avec F est réduite à 
An F et l'enlacement des deux composantes de dA dans B vaut 1 (resp. —1). 

Un résultat de J. Stallings affirme que, si (K,9) est un livre ouvert dans V et si 
F est l'adhérence d'une fibre de 9, alors, pour toute surface F ' obtenue à partir 
de F par le plombage d'un anneau, il existe un livre ouvert (K',9r) tel que K' soit 
le bord de F ' et que F ' soit l'adhérence d'une fibre de 9'. Dans la suite, on dira 
que le livre (K',9r) et l'entrelacs K' sont eux-mêmes obtenus par plombage à partir 
respectivement de (K,9) et de K. En outre, on dira qu'un livre ouvert (K',9r) est 
une stabilisation d'un autre (K, 9) s'il s'obtient à partir de (K, 9) par une suite finie 
de plombages positifs. 

Théorème 4 [Gi2]. Dans une variété close de dimension trois, deux livres ou­
verts quelconques qui portent une même structure de contact ont des stabilisations 
isotopes. 

Les théorèmes 3 et 4 permettent de traduire nombre de questions sur les 
structures de contact en questions sur les livres ouverts, autrement dit sur les 
difféomorphismes des surfaces compactes à bord. En ce sens, ce sont les analogues 
des théorèmes de S. Donaldson [Do2] sur les pinceaux de Lefschetz dans les variétés 
symplectiques de dimension quatre. Ils admettent cependant, à la différence de 
ceux-ci, des démonstrations purement topologiques dont on décrit brièvement les 
idées ci-dessous, après avoir introduit l'outil essentiel. On supposera le lecteur fa­
milier avec certaines notions de géométrie de contact en dimension trois (structures 
de contact vrillées/tendues, invariant de Thurston-Bennequin des courbes legen-
driennes, surfaces ^-convexes). 

On appelle cellule polyédrale dans V l'image d'un polyèdre convexe compact 
euclidien par un plongement topologique. Une telle cellule possède une structure 
affine induite par son paramétrage et son intérieur est, par définition, l'image de 
l'intérieur « intrinsèque » du polyèdre, c'est-à-dire de son intérieur topologique dans 
son enveloppe affine. Une cellulation polyédrale de V désigne ici un recouvrement 
fini de V par des cellules polyédrales ayant les propriétés suivantes : 

- les intérieurs des cellules forment une partition de V ; 
- le bord de chaque cellule D est une union de cellules Dj et les inclusions 

Dj —t D sont affines ; 
- les cellules de dimension deux (et moins) sont lisses, i.e. sont les images de 

plongements lisses. 
Les cellulations polyédrales ont cet avantage sur les triangulations d'être très faciles 
à subdiviser : toute subdivision d'un sous-complexe se prolonge trivialement. En 
outre, elles jouent un rôle clé dans la démonstration du théorème de Reidemeister-
Singer donnée dans [Si], démonstration qui sert de guide pour établir le théorème 4. 

Esquisse de la démonstration du théorème 3. Soit £ une structure de contact 
sur V. On construit d'abord dans (V, £) une cellulation de contact, c'est-à-dire une 
cellulation polyédrale A ayant les propriétés suivantes : 

1) chaque cellule de dimension 1 est un arc legendrien ; 
2) chaque cellule de dimension 2 est ^-convexe et l'invariant de Thurston-

Bennequin de son bord vaut —1 ; 
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3) chaque cellule de dimension 3 est contenue dans le domaine d'une carte de 
Darboux. 

On épaissit ensuite le 1-squelette L de A en une surface compacte F (presque) 
tangente à £ le long de L et on choisit un voisinage régulier W de L assez petit pour 
que F = F n W soit une surface proprement plongée dans W. Quitte à prendre W 
plus petit, £ admet une équation a vérifiant les conditions suivantes : 

- da induit sur F une forme d'aire ; 
- a est non singulière sur K = dF et oriente K comme le bord de (F,da). 

D'autre part, pour toute cellule D de dimension 2, la propriété 2) dit que le bord 
de D n (V \ Int W) intersecte K en deux points (à isotopie près). Il en résulte qu'il 
existe une fibration 9 : V \ K —t S1 ayant Int F pour fibre. Quitte à rogner W, on 
peut supposer que W est une union de fibres de 9 sur lesquelles da induit une forme 
d'aire. Il reste à voir que £ est isotope, relativement à W, à une structure de contact 
portée par (K, 9). Le point clé est que £ est tendue sur W* = V \ Int W et que dW* 
est une surface ^-convexe dont le découpage est fourni par K. D 

Etapes de la démonstration du théorème 4. Soit A une cellulation de contact 
de (V, £). On dira ici qu'un livre ouvert porteur (K, 9) est associé à A si, comme dans 
la démonstration du théorème 3, l'une des fibres de 9 contient le 1-squelette de A et 
se rétracte dessus par une isotopie de contact. En imitant [Si], on montre d'abord 
que tout livre ouvert porteur admet une stabilisation associée à une cellulation de 
contact. On se ramène ainsi à considérer le cas de deux livres ouverts porteurs 
associés à des cellulations de contact A0 et Ai en position générale. D'après [Si], 
A0 et Ai possèdent une subdivision commune A2 qui s'obtient, à partir de A0 

comme de Ai, par des bissections. On déforme alors A2 , relativement à l'union des 
1-squelettes de A0 et Ai, en une cellulation vérifiant les propriétés 1) et 3) des cel­
lulations de contact et ayant des 2-cellules ^-convexes. Il suffit ensuite de subdiviser 
le 2-squelette de A2 pour obtenir une cellulation de contact A et on montre pour 
finir que le livre ouvert associé à A est une stabilisation de ceux associés à A0 et 
à Ai. D 

On discute maintenant quelques corollaires des théorèmes 3 et 4. 
On rappelle d'abord qu'un théorème de M. Hilden et J. Montesinos affirme 

que toute variété close V de dimension trois est un revêtement à trois feuillets de 
la sphère S3 simplement ramifié au-dessus d'un entrelacs (simplement signifie que 
le degré local aux points de ramification dans V vaut deux). On obtient le même 
résultat pour les variétés de contact closes : 

Corollaire 5 [Gi2]. Toute variété de contact close de dimension trois est un revête­
ment à trois feuillets de la sphère de contact standard (S3,£o) simplement ramifié 
au-dessus d'un entrelacs transversal à &>• 

Un autre corollaire concerne la dynamique des flots de Reeb. Un flot de Reeb 
sur une variété de contact est un flot qui préserve la structure de contact tout en 
lui étant transversal et en pointant du côté positif. Un exemple typique est le flot 
géodésique sur le fibre cotangent unitaire d'une variété riemannienne. Les flots de 
Reeb d'une structure de contact donnée £ sont en bijection avec les équations de £ : 
à toute forme a correspond l'unique champ de vecteurs VQ qui engendre le noyau 
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de da et sur lequel a vaut 1. En prenant une équation de £ adaptée à un livre ouvert 
porteur, on obtient : 

Corollaire 6 [Gi2]. Sur toute variété de contact close de dimension trois, il existe 
un flot de Reeb qui admet une section de Poincaré-Birkhoff, c'est-à-dire une surface 
compacte qui rencontre toutes les orbites, dont l'intérieur est transversal au flot et 
dont chaque composante du bord est une orbite périodique. 

En fait, il n'est pas exclu que tout flot de Reeb admette une telle section 
[HWZ] (ceci impliquerait la conjecture de Weinstein selon laquelle tout flot de Reeb 
a une orbite périodique) mais c'est là un problème de nature différente, certainement 
inaccessible par des méthodes topologiques. 

Une question naturelle au vu des théorèmes 3 et 4 est de savoir comment lire 
sur la monodromie de ses livres ouverts porteurs si une structure de contact est 
tendue, ou remplissable en un quelconque sens. La seule réponse connue concerne 
les structures de contact holomorphiquement remplissables, c'est-à-dire réalisables 
comme champs des tangentes complexes au bord de variétés de Stein compactes. 
Le corollaire suivant précise un résultat de A. Loi et R. Piergallini : 

Corollaire 7 [LP, Gi2]. Une structure de contact sur une variété close de dimension 
trois est holomorphiquement remplissable si et seulement si elle est portée par un 
livre ouvert dont la monodromie est un produit de twists de Dehn à droite. 

Pour finir, on donne un corollaire de pure théorie des nœuds. On appelle ici 
entrelacs fibre dans V tout entrelacs orienté K pour lequel il existe une fibration 
9: V \ K —t S1 qui fait de (K'9) un livre ouvert et induit sur K l'orientation 
prescrite. Lorsque V est une sphère d'homologie, un théorème de F. Waldhausen 
assure que cette fibration, si elle existe, est unique à isotopie près. Le résultat suivant 
répond à une question posée par J. Harer dans [Ha] : 

Corollaire 8 [Gi2]. Deux entrelacs fibres quelconques dans une sphère d'homologie 
entière V s'obtiennent l'un à partir de l'autre par une suite de plombages et de 
« déplombages » (opérations inverses). 

Démonstration. Une trivialisation de V étant choisie, les classes d'homotopie de 
champs de plans tangents à V sont repérées par leur invariant de Hopf à savoir 
l'enlacement des fibres des applications V —¥ S2 correspondantes. On considère 
alors un livre ouvert quelconque (K,9) dans V et on note (K',9r) un livre ouvert 
obtenu à partir de (K, 9) par un plombage négatif. Les trois observations suivantes 
démontrent le corollaire : 

- toute structure de contact £' portée par (K', 9') est vrillée car l'âme de l'an­
neau plombé est isotope à une courbe legendrienne non nouée dans (V, £') 
dont l'invariant de Thurston-Bennequin vaut +1 ; 

- l'invariant de Hopf de £' est supérieur d'une unité à celui des structures de 
contact portées par (K,9) (voir [NR]) ; 

- si deux structures de contact vrillées ont le même invariant de Hopf, elles 
sont isotopes d'après [EU] et deux livres ouverts quelconques qui les portent 
ont donc des stabilisations isotopes. 

Cet argument borne en outre par h + 2 le nombre des (dé) plombages négatifs 
nécessaires pour passer d'un livre ouvert à un autre, où h désigne la différence 
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entre les invariants de Hopf correspondants. D 

C. Structures de contact et livres ouverts en di­
mension supérieure 

En dimension supérieure à trois, les livres ouverts porteurs de structures de 
contact ne sont pas quelconques : leurs fibres ont une structure symplectique inva­
riante par la monodromie. Pour préciser ce point, quelques définitions sont utiles. 

Soit F une variété compacte, à bord K = dF. Une forme symplectique exacte u 
sur Int F est convexe à l'infini s'il existe sur Int F un champ de Liouville (champ de 
vecteurs w-dual d'une primitive de u) qui est transversal à toutes les hypersurfaces 
K x {t}, t £ ]0,1], où if x [0,1] est un voisinage collier de K = K x {0}. On dit 
en outre que (Int F, u) est une variété de Weinstein [EG] s'il existe un tel champ 
de Liouville qui, de plus, est le (pseudo) gradient d'une fonction de Morse F —t R 
constante et sans points critiques sur K. L'exemple typique de variété de Wein­
stein est l'intérieur d'une variété de Stein compacte. On nomme ainsi toute variété 
complexe compacte F qui admet une fonction strictement pluri-sous-harmonique 
/ : F —t R constante et sans points critiques sur le bord. La 2-forme iddf définit 
alors une structure symplectique. Il ressort en fait du travail de Y. Eliashberg [E12] 
que toute variété de Weinstein est symplectiquement difféomorphe à l'intérieur d'une 
telle variété de Stein compacte. 

Si maintenant a est une forme de contact adaptée à un livre ouvert (K,9), 
sa différentielle da induit sur chaque fibre de 9 une structure symplectique exacte 
convexe à l'infini. Celle-ci dépend du choix de a mais sa completion [EG] est bien 
définie à isotopie près. Le théorème de W. Thurston et H. Winkelnkemper et la 
proposition 2 s'étendent alors ainsi en grande dimension : 

Proposition 9 [GM]. Soit F une variété compacte avec, sur Int F , une forme 
symplectique exacte convexe à l'infini et soit <p: F —t F un difféomorphisme sym­
plectique égal à l'identité près de K = dF. Il existe alors sur £(F, 4>) une structure 
de contact portée par le livre ouvert évident. De plus, deux structures de contact 
portées par un même livre ouvert et qui induisent sur ses pages des structures sym­
plectiques ayant des complétions isotopes sont isotopes. 

Quant au théorème 3, il se généralise comme suit : 

Théorème 10 [GM]. Toute structure de contact sur une variété close Y est portée 
par un livre ouvert dont chaque fibre est une variété de Weinstein. 

Esquisse de la démonstration. Soit £ une structure de contact, a une équation 
de £ et J une structure presque complexe sur £ calibrée par da | ç. On note VQ le 
champ de Reeb associé à a et g la métrique riemannienne sur V qui vaut da(.,J.) 
sur £ et rend VQ unitaire et orthogonal à £. En termes élémentaires, le théorème 
principal de [IMP] montre qu'il existe des constantes C, n > 0 et des fonctions 
Sk : V —¥ C, k > 1, vérifiant les conditions suivantes : 

- en tout point de V, 

\sk(p)\ < C) \d-Sk — ikskO,] < Ck1'2 et \d(_Sk\ < C ; 

file:///d-Sk
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- en tout point p où \sk(p)\ < n, 

\d(,Sk(p)\ > rjk1/2 . 

(Ici, d^Sk et d^Sk sont les parties respectivement J-linéaire et J-antilinéaire de 
dsu | (_•) En termes plus parlants, les fonctions su sont des sections approximative­
ment holomorphes et équitransversales du fibre L®k —t V, où L est le fibre hermitien 
trivial F x C - * V muni de la connexion unitaire définie par la forme —ia. 

Les estimations ci-dessus entraînent d'abord que, pour \w\ < n, l'ensemble 
Kw = sZ1(w) est une sous-variété et que la forme aw induite par a sur Kw est une 
forme de contact (voir [IMP]). En effet, aw est non singulière pour k assez grand 
puisque son noyau est égal au noyau de dsk |ç et que \dtSk\ > nk1/2 tandis que 
\®Zsk\ < C- Mieux, ces inégalités montrent que, pour k grand,le noyau de aw est 
proche d'un sous-espace J-complexe de £ si bien que daw y est non dégénérée. 

L'observation suivante est que l'application arg«/.: V \ K —t S1 est une fi­
bration dont les fibres sont transversales au champ de Reeb VQ en tout point où 
Is*;I > fl- Pour le voir, on note que l'estimation sur dsu — iksua implique que 

\d-Sk(^a) — iksk\ < Ck1'2. 

Ainsi, en un point p où \sk(p)\ > n et pour k assez grand, dsu(p) (V a) est proche de 
iksk(p), i.e. est non nul et presque orthogonal à Sk(p)- Par suite, les sous-variétés 

s^1(Re), où Re = {re%e, r > n}, 

sont transversales au champ de Reeb VQ. 
Ces arguments montrent que le livre ouvert (K = K0, 9 = argsk), pour k 

assez grand, porte la structure de contact £ = ker a. Il reste à vérifier que les fibres 
de 9 sont des variétés de Weinstein. Pour simplifier, on prouve ci-dessous l'assertion 
analogue en géométrie symplectique. D 

Proposition 11. Soit W une variété close, u une forme symplectique entière sur W 
et Hk une sous-variété symplectique de W en dualité de Poincaré avec koj et obtenue 
par la construction de Donaldson [Dol], à partir d'un fibre hermitien en droites L 
muni d'une connexion unitaire de courbure —ioj. Pour k assez grand, (W \ Hk,oj) 
est une variété de Weinstein. 

Démonstration. En reprenant les arguments de [Do2], on peut supposer que Hk 
est le lieu d'annulation d'une section Sk '• V —¥ L®k qui vérifie, en tout point de W, 

\dk$k\ < c\dkSk\ avec c < —j=. 
v 2 

Dans la trivialisation de L®k donnée au-dessus de W \ Hk par la section unitaire 
« = Sk/\$k\, la connexion est définie par une 1-forme —iX où dX = koj. Si on pose 
Sk = pu, l'inégalité ci-dessus donne 

\ckp/<p + J*X\ < \dip/ip — <7*A|, 

ce qui montre que J*À est plus loin de dtp/ip que de —dip/ip. Le champ de Liouville 
dual de À est alors un pseudogradient de log</?. D 
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Comme en dimension trois, le livre ouvert porteur d'une structure de contact 
donnée n'est pas unique. On décrit dans [GM] une opération de plombage le long 
d'un disque lagrangien - dans laquelle les twists de Dehn-Seidel viennent rempla­
cer les twists de Dehn - qui permet d'établir des analogues du théorème 4 et du 
corollaire 7. Ces résultats ramènent l'étude des structures de contact à celles des 
difféomorphismes symplectiques des variétés de Stein compactes qui sont l'identité 
près du bord. Ils permettent peut-être ainsi de rapprocher les travaux de Y. Eliash­
berg, H. Hofer et A. Givental sur la théorie symplectique des champs de ceux de, par 
exemple, de P. Seidel sur l'nomologie de Floer et les groupes de difféomorphismes 
symplectiques. On peut aussi se demander si le théorème 10 cache des obstructions 
à l'existence d'une structure de contact sur les variétés closes. D'après [Qu], toute 
variété close V de dimension 2n + 1 possède un livre ouvert dont chaque fibre a le 
type d'homotopie d'un complexe cellulaire de dimension n. Il est probable que, si 
V admet un champ d'hyperplans tangents muni d'une structure presque complexe, 
il existe un tel livre ouvert pour lequel chaque fibre est une variété presque com­
plexe et est donc, d'après [E12], l'intérieur d'une variété de Stein compacte. Toute 
la difficulté serait donc vraiment de réaliser la monodromie par un difféomorphisme 
symplectique... Dans cet ordre d'idée, voici un corollaire concret du théorème 10 
obtenu par F. Bourgeois et qui montre, en réponse à une vieille question, que tout 
tore de dimension impaire possède une structure de contact : 
Corollaire 12 [Bo]. Si une variété close V admet une structure de contact, V x T 2 

en admet une aussi. 

Démonstration. Soit £ une structure de contact sur V, soit a une équation de 
£ adaptée à un livre ouvert porteur (K,9) et soit N = K x D 2 un voisinage de 
K = K x {0} dans lequel 9 est la coordonnée angulaire normale. On note r la 
coordonnée radiale normale dans N et on pose 

â = a + f(r)(cos9dxi — sin9dx2), (xi,x2) £ T2 = R 2 /Z 2 , 

où la fonction/(r) vaut r pour r <r0, 1 pour r > 2r0 et vérifie f'(r) > 0. Un calcul 
montre que, si on choisit r0 assez petit, â est une forme de contact sur V x T 2 . D 
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Abstract 

The cyclotomic trace of Bökstedt-Hsiang-Madsen, the subject of 
Bökstedt's lecture at the congress in Kyoto, is a map of pro-abelian groups 

K-fiA) ^ . T R ; ( A ; p ) 

from Quillen's algebraic A"-theory to a topological refinement of Connes' cyclic 
homology. Over the last decade, our understanding of the target and its 
relation to A"-theory has been significantly advanced. This and possible future 
development is the topic of my lecture. 

The cyclotomic trace takes values in the subset fixed by an operator F 
called the Frobenius. It is known that the induced map 

K*(A,Z/pv) - ^ TR;(A;P,Z/PV)F=1 

is an isomorphism, for instance, if A is a regular local Fp-algebra, or if A 
is a henselian discrete valuation ring of mixed characteristic (0,p) with a 
separably closed residue field. It is possible to evaluate A"-theory by means 
of the cyclotomic trace for a wider class of rings, but the precise connection 
becomes slightly more complicated to spell out. 

The pro-abelian groups TR*(A;p) are typically very large. But they come 
equipped with a number of operators, and the combined algebraic structure is 
quite rigid. There is a universal example of this structure — the de Rham-Witt 
complex — which was first considered by Bloch-Deligne-Illusie in connection 
with Grothendieck's crystalline cohomology. In general, the canonical map 

W.Qq
A^TR-q(A-p) 

is an isomorphism, if q < 1, and the higher groups, too, can often be expressed 
in terms of the de Rham-Witt groups. This is true, for example, if A is a 
regular Fp-algebra, or if A is a smooth algebra over the ring of integers in a 
local number field. The calculation in the latter case verifies the Lichtenbaum-
Quillen conjecture for focal number fields, or more generally, for henselian 
discrete valuation fields of geometric type. 
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1. Algebraic üC-theory 
The algebraic if-theory of Quillen [30], inherently, is a multiplicative theory. 

Trace invariants allow the study of this theory by embedding it in an additive 
theory. It is possible, by this approach, to evaluate the if-theory (with coefficients) 
of henselian discrete valuation fields of mixed characteristic. We first recall the 
expected value of the if-groups of a field k. 

The groups K*(k) form a connected anti-commutative graded ring, there is a 
canonical isomorphism I: k* ^y Kfik), and £(x) • 1(1 — x) = 0. One defines the 
Milnor if-groups K^(k) to be the universal example of this algebraic structure [29]. 
The canonical map K^(k) —¥ Kq(k) is an isomorphism, if q < 2. Yet us now fix the 
attention on the if-groups with finite coefficients. (The rational if-groups, while of 
great interest, are of a rather different nature [11, 12].) The groups if» (k,Z/m) form 
an anti-commutative graded Z/m-algebra, at least if v2(m) ^ 1,2 and vz(m) ^ 1. 
And if ßm C k, there is a canonical lifting 

K2(k,Z/m) 
b / 

y 

ßm-—-—>Ki(k), 

which to a primitive roth root of unity ( associates the Bott element 6ç. Hence, in 
this case, there is an additional map of graded rings Sz/m(pm) —* K*(k,Z/m). The 
Beilinson-Licthenbaum conjectures predict that the combined map 

i f f (k) 8 z S z / r o ( f a ) -+ K.(k,Z/m) 

be an isomorphism of graded rings [1, 26]. The case TO = 2V follows from the 
celebrated proof of the Milnor conjecture by Voevodsky [34]. We here consider 
the case of a henselian discrete valuation field of mixed characteristic (0,p) with 
p odd and m = pv [20, 14]. The groups K^(k)/m typically are non-zero in only 
finitely many degrees. Hence, above this range, the groups K*(k,Z/m) are two-
periodic. All rings (resp. graded rings, resp. monoids) considered in this paper 
are assumed commutative (resp. anti-commutative, resp. commutative) and unital 
without further notice. 

2. The de Rham-Witt complex 
Let V be a henselian discrete valuation ring with quotient field K of charac­

teristic zero and residue field k of odd characteristic p. (At this writing, we further 
require that V be of geometric type, i.e. that V be the henselian local ring at 
the generic point of the special fiber of a smooth scheme over a henselian discrete 
valuation ring V0 C V with perfect residue field.) A first example of a trace map is 
provided by the logarithmic derivative 

^M Kf(K)^œ{VM) 
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which to the symbol {cti,. • • ,aq} associates the form d l o g a i . . . dlogag . The right 
hand side is the de Rham complex with log poles in the sense of Kato [25] : A log 
ring (A,M) is a ring A and a map of monoids a: M —t (A, •); a log differential 
graded ring (E*,M) is a differential graded ring E* together with maps of monoids 
a: M —t (E0,-) and dlog: M —t (E1,-^) such that d o dlog = 0 and such that 
da(a) = a(a)dlogafor all a £ M; the de Rham complex Q?A M) is the universal log 
differential graded ring with underlying log ring (A,M). We will always consider 
the ring V with the canonical log structure 

a: M = VnK*<-+V. 

(In this case, there are natural short-exact sequences 

O ^ Q ^ Q ^ ^ Q r ^ O . ) 

The logarithmic derivative, however, is far from injective. It turns out that this can 
be rectified by incorborating the Witt vector construction which we now recall. 

The ring of Witt vectors associated with a ring A is the set of "vectors" 

IA'(A) = { (a 0 , a i , . . . ) | en £ A} 

with a new ring structure, see [19]. The ring operations are polynomial in the 
coordinates. The projection IF(A) —t A, which to (ao,ai,...) associates a®, is a 
natural ring homomorphism with the unique natural multiplicative section 

[ ]:A^W(A), [a] = (a,0,0,...). 

If F is a perfect field of characteristic p > 0, then W(F) is the unique (up to unique 
isomorphism) complete discrete valuation ring of mixed characteristic (0,p) such 
that W(F)/p ^y F. In general, the ring IF(A) is equal to the inverse limit of the 
rings Wn(A) of Witt vectors of length n. But rather than forming the limit, we 
shall consider the limit system of rings W.(A) as a pro-ring. There is a natural 
map of pro-rings F: W.(A) —¥ W.-i(A), called the Frobenius, and a natural map 
of W.(A)-modules V: F» W._i(A) —t W.(A), called the Verschiebung. The former 
is given, as the ring structure, by certain polynomials in the coordinates; the latter 
is given by V(ao,..., a„_2) = (0, a®,..., an-2), and FY = p. Finally, we note that 
if (A, M) is a log ring, then the composite 

M ̂  A^Xw.(A) 

makes (W.(A),M) a pro-log ring. 
There is a natural way to combine differential forms and Witt vectors; the 

result is called the de Rham-Witt complex. It was considered first for ¥p -algebras 
by Bloch-Deligne-Illusie [3, 23] in connection with the crystalline cohomology of 
Berthelot-Grothendieck [2]. A generalization to log-Fp-algebras was constructed 
by Hyodo-Kato [22]. The following extension to log-Z (^-algebras was obtained in 
collaboration with lb Madsen [19, 20]: Let (A, M) be a log ring such that A is a 
Z(p)-algebra with p odd. A Witt complex over (A, M) is: 
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(i) a pro-log differential graded ring (ET, M E) and a map of pro-log rings 

A: (W.(A),M)->(E?,ME); 

(ii) a map of pro-log graded rings 

F : ET -> ET_i, 

such that ÀF = FA and such that 

Fdlog„ a = dlog„_i a, for all a £ M, 

FdA[a]„ = A[a]^Z1dA[a]„_i, for all a £ A; 

(iii) a map of pro-graded modules over the pro-graded ring ET, 

V: F*ET_i -+ET, 

such that XV = VX, FV = p and FdV = d. 
A map of Witt complexes over (A, M) is a map of pro-log differential graded 

rings which commutes with the maps A, F and V. Standard category theory shows 
that there exists a universal Witt complex over (A,M). This, by defintion, is the 
de Rham-Witt complex W. WA M). (The canonical maps W.(A) —t W. 0,9A M) and 
01A M ) —t Wi 01 i M ) are isomorphisms, so the construction really does combine 
differential forms and Witt vectors.) We lift the logarithmic derivative to a map 

i f f ( i f ) ^ I ^ Q » l / j M ) 

which to the symbol {ai,...,aq} associates dlogncti...dlognaq. This trace map 
better captures the Milnor A'-groups. Indeed, the following result was obtained in 
collaboration with Thomas Geisser [14]: 

Theo rem 2.1 Suppose that pp» C K and thatk is separably closed. Then the trace 
map induces an isomorphism of pro-abelian groups 

KM(K)/p«^(WMlViM)/p«)F=1. 

To prove this, we first show that Wn iiq,v M)/p has a (non-canonical) k-vector 
space structure and find an explicit basis. The dimension is 

dimfc {Wnü\ViM)lp) = e Y,P 
n - l 

where \k : kp\ = pr and e the ramification index of Ä". It is not difficult to see that 
this is an upper bound for the dimension. The proof that it is also a lower bound is 
more involved and uses a formula for the de Rham-Witt complex of a polynomial 
extension by Madsen and the author [19]. We then evaluate the kernel of 1 — F 
and compare with the calculation of KiM(K)/p by Kato [24, 4]. The assumption 
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that the residue field k be separably closed is not essential. In the general case, one 
instead has a short-exact sequence 

0 -+ (W. 0^M) ® M p . ) F = 1 -+ K(K)/p* -+ (W. 0^ M ) /p") F = 1 -+ 0, 

where the superscript (resp. subscript) "F = 1" indicates Frobenius invariants 
(resp. coinvariants). 

We discuss a global version of theorem 2.1. Let Vu be a henselian discrete 
valuation ring with quotient field K0 of characteristic zero and perfect residue field 
fco of odd characteristic p. Let X be a smooth Vp-scheme, and let i (resp. j) denote 
the inclusion of the special (resp. generic) fiber as in the cartesian diagram 

X" >X< -

/ 

Spec K0
 c > Spec Vu < 5 Spec fco-

Suppose that ßpv c K0. Then the proof of theorem 2.1 shows that there is a 
short-exact sequence of sheaves of pro-abelian groups on Y for the étale topology 

o -+ i*R":fizip%q) -+ i*(w. n\XiM)lp
v) ^ i*(w. oiXM)/p

v) -+ o. 

The left hand term is the sheaf of p-adic vanishing cycles. 

3. The cyclotomic trace 
We now turn to Quillen ÜT-theory. The analog of the logarithmic derivative is 

the topological Dennis trace with values in topological Hochschild homology, 

if»(C)^THH»(C), 

defined by Bökstedt [5]. It is a refinement of earlier trace maps by Dennis [9] 
and Waldhausen [35]. We will use a variant of the construction due to Dundas-
McCarthy [10, 27] that can be applied to a category with cofibrations and weak 
equivalences in the sense of Waldhausen [36]. The category C we consider is the 
category of bounded chain complexes of finitely generated projective V-modules. 
The cofibrations are the degree-wise monomorphisms, and the weak equivalences 
are the chain maps C —¥ C such that K ®v C —¥ K ®v C is a quasi-isomorphism. 
The ÜT-theory of this category is canonically isomorphic to Quillen's ÜT-theory of 
the field K. We showed in [20] that the groups 

THH»(l/|if) = THH»(C) 

form a log differential graded ring with underlying log ring (V, M), where the struc­
ture map dlog is given by the composite 

M = V n K* 4 Ki(K) -> THRi(V\K). 
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The canonical map from the de Rham complex 

nlv,M)^™Eq(V\K) 

is compatible with the trace maps and is an isomorphism, if q < 2. The topological 
Dennis trace, again, is far from injective. This can be rectified by a construction 
which, in retrospect, can be seen as incorporating Witt vectors. The result is the 
cyclotomic trace of Bökstedt-Hsiang-Madsen [6] which we now recall. The reader 
is referred to [20, 15, 10] for details. 

The topological Dennis trace, we recall, is defined as the map of homotopy 
groups induced from a continuous map of spaces 

K(C) -+ THH(C). 

As a consequence of Connes' theory of cyclic sets, the right hand space is equipped 
with a continuous action by the circle group T. Moreover, the image of the trace 
map is point-wise fixed by the T-action. Let 

TR"(C;_p)=THH(<:)c'p"-1 

be the subset fixed by the subgroup Cp»-i C T of the indicated order. It turns out 
that, as n and q varies, the homotopy groups 

TR^(V\K;p) = 7Tq(TRn(C;p)) 

form a Witt complex over (V,M); see [21, 18, 20]. The map F is induced from 
the obvious inclusion map, and the map V is the accompanying transfer map. The 
structure maps in the limit system and the map A, however, are more difficult to 
define. The former was defined in [6] and the latter in [21]. The topological Dennis 
trace induces a map of pro-abelian groups 

Kq(K)^TRq(V\K;p). 

This is the cyclotomic trace. It takes values in the subset fixed by the Frobenius 
operator. The canonical map 

WnOlVM)^TR"q(V\K;p) 

is compatible with the trace maps from Milnor ÜT-theory and Quillen ÜT-theory, 
respectively, and is an isomorphism, if q < 2. The following is a combination of 
results obtained in collaboration with Thomas Geisser [15] and lb Madsen [21, 20]. 

Theo rem 3.1 Suppose that k is separably closed. Then the cyclotomic trace in­
duces an isomorphism of pro-abelian groups 

Kq(K,1/pv) ^TR-(V\K;p,1/pv) F=\ 
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We briefly outline the steps in the proof: We proved in [15] that the sequence 

0 - • ifg(fc,Z/p») - • TRg(fc;p,Z/p») i - 4 TRg(fc;p,Z/p») - • 0 

is exact. This uses [4, 16, 18]. Given this, the theorem by McCarthy [28] that 
for nilpotent extensions, relative ÜT-theory and relative topological cyclic homology 
agree, and the continuity results of Suslin [32] for ÜT-theory and Madsen and the 
author [21] for TR show that also the sequence 

0 -+ Kq(V,Z/pv) -+ TR'(F;p,Z/p») i = 4 TR'(F;p,Z/p») -+ 0 

is exact. Theorem 3.1 follows by comparing the localization sequence of Quillen [30] 

• • • -+ Kq(k,Z/p») A Kq(V,Z/p») ^ Kq(K,Z/p») -+ • • • 

to the corresponding sequence by Madsen and the author [20] 

• • • -+ TR^(fc;p,Z/p») 4 TRn
q(V ;p,1/pv) ^ TRg(F| if ;p,Z/p») - + • • . . 

Again, the assumption in the statement of theorem 3.1 that the residue field k be 
separably closed is not essential. The general statement will be given below. It is 
also not necessary for theorem 3.1 to assume that V be of geometric type. 

4. The Tate spectral sequence 
If G is a finite group and X a G-space, it is usually not possible to evaluate 

the groups 7r»(XG) from knowledge of the G-modules 7r»(X). At first glance, this 
is the problem that one faces in evaluating the groups 

TRn
q(C]p) = Txq(TEE(C)c^). 

However, the mapping fiber of the structure map TR"(C;p) —̂  TR"_ 1(C;p), it turns 
out, is given by the Borei construction ML (Cp—i, THH(C)) whose homotopy groups 
are the abutment of a (first quadrant) spectral sequence 

Elt = Hs(Cp„-i,TEEt(Cj) => 7rJ+tH.(Cp»-i,THH(C)). 

This suggests that the groups TRq (C;p) can be evaluated inductively starting from 
the case n = 1. However, it is generally difficult to carry out the induction step. 
In addition, the absence of a multiplicative structure makes the spectral sequence 
above difficult to solve. The main vehicle to overcome these problems, first employed 
by Bökstedt-Madsen in [7], is the following diagram of fiber sequences 

H.(Cp»-i,THH(C)) >TRn(C;p) » T R ^ ^ p ) 

r f 

H. (Cp»-i, THH(C)) • B (Cp»-i, THH(C)) • É(Cp»-i, THH(C)) 
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together with a multiplicative (upper half-plane) spectral sequence 

E2
}t = H-s(Cpn-i,TEEt(Cj) ^ 7r,+tlî(Cp,.-i,THH(C)) 

starting from the Tate cohomology of the (trivial) Cp»-i-module TEEt.(C). The 
lower fiber sequence is the Tate sequence; see Greenlees and May [17] or [20]. In 
favorable cases, the maps F and F induce isomorphisms of homotopy groups in 
non-negative degrees. Indeed, this is true in the case at hand (if k is perfect). The 
differential structure of the spectral sequence 

Elt = H-s(Cpn^,TEEt(y\K,1/pj) ^ 7r s + t(H(Gp n-1 ,THH(F|if)),Z/p) 

was determined in collaboration with lb Madsen [20] in the case where the residue 
field fc is perfect. This is the main calculational result of the work reported here. The 
following result, for perfect fc, is a rather immediate consequence. The extension to 
non-perfect fc is given in [19]. 

Theo rem 4.1 Suppose that ßpv c K. Then the canonical map is an isomorphism 
of pro-abelian groups 

W. 0*(VM) ® z S Z / P . ( A V ) ^ TR;(F | i f ;p ,Z/p») . 

We can now state the general version of theorem 3.1 which does not require 
that the residue field fc be separably closed. The second tensor factor on the left 
hand side in the statement of theorem 4.1 is the symmetric algebra on the Z/p»-
module ßpv, which is free of rank one. Spelling out the statement for the group in 
degree q, we get an isomorphism of pro-abelian groups 

0 W. 0\-2^ ® ßp ^ TR'(F|if ;p, Z/p»). 

In the case of a separably closed residue field, theorem 3.1 idenfies the Frobenius 
fixed set of the common pro-abelian group with Kq(K,Z/pv). In the general case, 
one has instead a short-exact sequence 

0 _• 0 (W. 0^M
2s ® np)F=1-+ Kq(K, Z/p») -+ 0 (W. 0\-2^ ® ßp)F-U 0 

valid for all integers q. (There is a similar sequence for the topological cyclic ho­
mology group TCg(V\K;p,Z/pv) [20] which includes the summand "s = 0" on the 
left.) Comparing with the general version of theorem 2.1, we obtain the following 
result promised earlier [20, 14]. 

Theo rem 4.2 Suppose that ßpv c K. Then the canonical map 

if»M(if) ®z S Z / P . ( A V ) ^ K*(K,Z/pv) 

is an isomorphism. 
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5. Galois descent 
We now assume that the residue field fc be perfect. In homotopy theoretic 

terms, theorem 4.1 states that the pro-spectrum TR'(V|Ä";p) is equivalent to the 
( — l)-connected cover of its localization with respect to complex periodic ÜT-theory, 
see [8]. This suggests the possibility of completely understanding the homotopy 
type of this pro-spectrum. We expect that this, in turn, is closely related to the 
following question. Let K be an algebraic closure of K with Galois group GK, and 
let V be the integral closure of V in K. (The ring V is a valuation ring with value 
group the additive group of rational numbers.) 

Conjecture 5.1 If k is perfect then for all q > 0, the canonical map 

T'R-(V\K;p,QP/Zp) -+ TRq(V\K;p,QP/%PfK 

be an isomorphism of pro-abelian groups and that the higher continuous cohomology 
groups H^ont(GK,TR^(V\K;p,Qp/Zp)) vanish. 

It follows from Tate [33] that the groups ü*ont(Gif,TRg
l(I / |A>;p,Qp)) vanish 

for i > 0 and q > 0. One may hope that these methods will help shed some light 
on the structure of the groups fl'*ont(G

rü-,TR™(V|Ä';p,Qp/Zp)). We now describe 
the structure of these G/f-modules; proofs will appear elsewhere. 

The group TRq(V\K;p,Qp/Zp) is divisible, if q > 0, and uniquely divisible, 
if q > 0 and even. The Tate module TPTR™(V|Ä";p) is a free module of rank one 
over TR%(V\K;p,Zp), and the canonical map an isomorphism: 

STR0»(v|if;P,zp)(4TR?(V1if;p)) ^ TK(V\K;p,Zp) 

(note that TR^(V\K;p,Qp/Zp) ^ TRn
q(V\R;p,Zp)®%IZp). We note the formal 

analogy with the results on K*(K) by Suslin [31, 32]. 
The structure of the ring TR^(V|Ä";p,Zp) = Wn(V) is well-understood (un­

like that of Wn(Vj): Following Fontaine [13], we let Rv be the inverse limit of the 
diagram V/p 4- V/p 4- • • • with the Frobenius as structure map. This is a per­
fect Fp-algebra and an integrally closed domain whose quotient field is algebraically-
closed. There is a surjective ring homomorphism 9n: W(RV) -» Wn(V) whose 
kernel is a principal ideal. If e = {e(")}„>i is a compatible sequence of primitive 
p»_1st roots of unity considered as an element of Ry, and if en is the unique p"th 
root of e, then ([e] — l)/([e»] — 1) is a generator. Moreover, as n varies, the maps 
9n constitute a map of pro-rings compatible with the Frobenius maps. 

The Bott element 6€j„ £ TPTR™(V|Ä";p) determined by the sequence e is not 
a generator (so the statement of theorem 4.1 is not valid for K). Instead there is a 
generator af_:„ such that 6€j„ = ([e„] — l)-a(,n. The structure map of the pro-abelian 
group TpTRi(V|Ä";p) (resp. the Frobenius) takes af_:„ to ([en_i] — l)/([e»] — 1) • 
af_:n-i (resp. to a e i„_i), and the action of the Galois group is given by 

cr _ / x [e»] - ! 
at,n ~ X\°~) r cr] _ i ' at,n, 
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where \'- GK —̂  Aut(^p°°) = Z* is the cyclotomic character. 
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Symplectic Sums and 
Gromov-Witten Invariants 

Eleny-Nicoleta IoneF 

Abstract 

Gromov-Witten invariants of a symplectic manifold are a count of holo­
morphic curves. We describe a formula expressing the GW invariants of a 
symplectic sum X#Y in terms of the relative GW invariants of X and V. 
This formula has several applications to enumerative geometry. As one appli­
cation, we obtain new relations in the cohomology ring of the moduli space of 
complex structures on a genus g Riemann surface with n marked points. 

2000 Mathematics Subject Classification: 57R17, 53D45, 14N35. 

1. Gromov-Witten invariants 
A symplectic structure on a closed smooth manifold X2N consists of a closed, 

non-degenerate 2-form OJ. Gromov's idea [8] was tha t one could obtain information 
about the symplectic structure on X by studying holomorphic curves. For tha t 
one needs to introduce an almost complex structure, which is an endomorphism 
J £ End(TX) with J 2 = —Id. Such a J is compatible with u if the bilinear 
form g(v,w) = OJ(V,JW) defines a Riemannian metric on TX. For a fixed sym­
plectic s tructure, the space of compatible almost complex structures is a nonempty, 
contractible space. 

One then considers the moduli space of J-holomorphic maps from Riemann 
surfaces into X . Constraints are imposed on the maps, requiring the domain to 
have a certain form and the image to pass through geometric representatives of 
fixed homology classes in X . When the right number of constraints are chosen 
there will be finitely many maps satisfying those constraints; the (oriented) count of 
these maps will give the corresponding Gromov-Witten invariant. In general, there 
are several technical difficulties one must overcome to get a well-defined Gromov-
Witten invariant. The foundations of this theory began with [8], [24], [25] and have 
been developed since then by the efforts of a large group of mathematicians (see, 
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for example, the references in [15] and [22]). Here we present a brief overview of 
the technical setup. 

Consider (X, UJ) a symplectic manifold. For each compatible almost complex 
structure J and perturbation v one considers maps / : C —¥ X from a genus g 
Riemann surface C with n marked points which satisfy the pseudo-holomorphic 
map equation df = v and represent a fixed homology class A = [/] £ H2(X). The 
set of such maps (modulo reparametrizations), together with their limits, forms the 
compact space of stable maps Mg,n(X,A). For each stable map f : C —¥ X, the 
domain determines a point in the Deligne-Mumford moduli space Mg,n of genus 
g Riemann surfaces with n marked points (see also §3). The evaluation at each 
marked point determines a point in X. All together, this gives a natural map 

Mg,n(X,A)^Mg,nxXn. 

For generic (J,v) the image of this map carries a fundamental homology class 
[GIA'x,/i,s,»] which is defined to be the Gromov-Witten invariant of (X,UJ). The 
dimension of this homology class, given by an index computation, is 

dimÄ4r
Sj„(X, A) = 2ci(TX)A + (dimX - 6)(1 - g) + 2n. 

A cobordism argument shows that the homology class [GWx,/t,s,n] is independent 
of generic (J, v) and moreover depends only on the isotopy class of the symplectic 
form UJ. Frequently, the Gromov-Witten invariant is thought of as a collection of 
numbers obtained by evaluating the homology class [GWx,/t,s,n] on a basis of the 
dual cohomology group. For complex algebraic manifolds these symplectic invari­
ants can also be defined by algebraic geometry, and in important cases the invariants 
are the same as the counts of curves that are the subject of classical enumerative 
algebraic geometry. 

The next important question is to find effective ways of computing the GW 
invariants. One useful technique is the method of 'splitting the domain'. Anytime 
we have a relation in the cohomology of Mg,n it pulls back to a relation (sometimes 
trivial) between the GW invariants of a symplectic manifold X. As an example, 
suppose that the constraints imposed on the domain of the holomorphic curves are 
boundary classes in H*(Mg:„) (as defined in section 3 below). One then obtains 
recursive relations which relate such GW invariant to invariants of lower degree or 
genus. This method was first used by Kontsevich and Ruan-Tian [25] to determine 
recursively the genus 0 invariants of the projective spaces P". These recursive 
relations follow from the observation that in the Deligne-Mumford space Mo,4 — P1 

each boundary class corresponds to a point, and are thus all homologous to each 
other. 

In joint work with Thomas H. Parker, the author established a general formula 
describing the behavior of GW invariants under the operation of 'splitting the target' 
([14], [15], [16]). Because we work in the context of symplectic manifolds the natural 
splitting of the target is the one associated with the symplectic cut operation and 
its inverse, the symplectic sum. The next section describes the symplectic sum 
operation and the main ingredients entering the sum formula for GW invariants. 
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2. Symplectic sums 
The operation of symplectic sum is defined by gluing along codimension two 

submanifolds (see [7], [21]). Specifically, let X be a symplectic manifold with a 
codimension two symplectic submanifold V. Given a similar pair (Y, V) with a 
symplectic identification between the two copies of V and a complex anti-linear 
isomorphism between the normal bundles NxV and NyV of V in X and in Y we 
can form the symplectic sum X # y Y . 

Perhaps it is in more natural to describe the symplectic sum not as a single 
manifold but as a family Z —¥ D over the disk depending on a parameter X £ D. 
For À 7̂  0 the fibers Z\ are smooth and symplectically isotopie to X # y Y while the 
central fiber Z0 is the singular manifold X Uy Y. In a neighborhood of V the total 
space Z is NxV ® NyV and the fiber Z\ is defined by the equation xy = X where 
x and y are coordinates in the normal bundles NxV and NyV — (NxV)*. The 
fibration Z —¥ D extends away from V as the disjoint union of X x D and Y x D. 

Our overall strategy for proving the symplectic sum formula for GW invari­
ants [16] is to relate the pseudo-holomorphic maps into Z\ for À small to pseudo-
holomorphic maps into Z0- One expects the stable maps into the sum to be pairs 
of stable maps into the two sides which match in the middle. A sum formula thus 
requires a count of stable maps in X that keeps track of how the curves intersect 
V. 

So the first step is to construct Gromov-Witten invariants for a symplectic 
manifold (X,UJ) relative to a codimension two symplectic submanifold V. These 
invariants were introduced in a separate paper with Thomas H. Parker [15] and 
were designed for use in symplectic sum formulas. Of course, before speaking of 
stable maps one must extend the almost complex structure J and the perturbation 
v to the symplectic sum. To ensure that there is such an extension we require that 
the pair (J, v) be V-compatible. The precise definition is given in section §6 of [15], 
but in particular for such pairs V is a J-holomorphic submanifold — something 
which is not true for generic J. The relative invariant gives counts of stable maps 
for these special V-compatible pairs. Such counts are in general different from 
those associated with the absolute GW invariants described in the first section of 
this note. 

Restricting to V-compatible pairs has repercussions. Any pseudo-holomorphic 
map f : C —¥ V into V then automatically satisfies the pseudo-holomorphic map 
equation into X. So for V-compatible (J,v), stable maps may have domain com­
ponents whose image lies entirely in V, so they are far from being transverse to V. 
Worse, the moduli spaces of such maps can have dimension larger than the dimen­
sion of Mg:n(X, A). We circumvent these difficulties by restricting attention to the 
stable maps which have no components mapped entirely into V. Such 'V-regular' 
maps intersect V in a finite set of points with multiplicity. After numbering these 
points, the space of V-regular maps separates into components labeled by vectors 
s = (si,..., Si), where £ is the number of intersection points and Sk is the multi­
plicity of the kth intersection point. Each (irreducible) component M.^ (X, A) of 
V-regular stable maps is an orbifold; its dimension depends of g, n, A and on the 
vector of multiplicities s. 
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Next key step is to show that the space of V-regular maps carries a fundamental 
homology class. For this we construct an orbifold compactification A4 (X,A), 
the space of V-stable maps. The relative invariants are then defined in exactly the 
same way as the GW invariants. We consider the natural map 

Mln,,(X, A) -+ Mg,n+i x Xn x Ve. (2.1) 

The new feature is the last factor (the evaluation at the £ points of contact with 
V) which allows us to constrain how the images of the maps intersect V. Thus the 
relative invariants give counts of V-stable maps with constraints on the complex 
structure of the domain, the images of the marked points, and the geometry of the 
intersection with V. There is one more complication: to be useful for a symplectic 
sum formula, the relative invariant should record the homology class of the curve in 
X \ V rather than in X. This requires keeping track of some additional homology 
data which is intertwined with the intersection data, as explained in [15]. 

We now return to the discussion of the symplectic sum formula. As previ­
ously mentioned, the overall strategy is to relate the pseudo-holomorphic maps into 
Z0, which are simply maps into X and Y which match along V, with pseudo-
holomorphic maps into Z\ for À close to zero. For that we consider sequences of 
stable maps into the family Z\ of symplectic sums as the 'neck size' À —¥ 0. These 
limit to maps into the singular manifold Z0 = X Uy Y. A more careful look reveals 
several features of the limit maps. 

First of all, if the limit map fi : Co —t Z0 has no components in V then f0 

has matching intersection with V on X and Y side. For such a limit map fi all 
its intersection points with V are nodes of the domain Co- Ordering this nodes 
we obtain a sequence of multiplicities s = (si,..., S() along V. But it turns out 
that the squeezing process is not injective in general. For a fixed A ^ 0 there are 
\s\ = si •... • s.( many stable maps into Z\ close to fi-

Second, connected curves in Z\ can limit to curves whose restrictions to X 
and Y are not connected. For that reason the GW invariant, which counts stable 
curves from a connected domain, is not the appropriate invariant for expressing a 
sum formula. Instead one should work with the 'Gromov-Taubes' invariant GT, 
which counts stable maps from domains that need not be connected. Thus we seek 
a formula of the general form 

GTx#vy = GTX * GTY (2.2) 

where * is the operation that adds up the ways curves on the X and Y sides match 
and are identified with curves in Z\. That necessarily involves keeping track of 
the multiplicities s and the homology classes. It also involves accounting for the 
limit maps which have components in V; such maps are not counted by the relative 
invariant and hence do not contribute to the left side of (2.2). 

Finally, we need to consider limit maps which have components mapped en­
tirely in V. We deal with that possibility by squeezing the neck not in one region, 
but several regions. As a result, the formula (2.2) in general has an extra term 
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called the S-matrix which keeps track of how the genus, homology class, and inter­
section points with V change as the images of stable maps pass through the neck 
region. One sees these quantities changing abruptly as the map passes through the 
neck — the maps are "scattered" by the neck. The scattering occurs when some 
of the stable maps contributing to the GT invariant of Z\ have components that 
lie entirely in V in the limit as À —¥ 0. Those maps are not V-regular, so are not 
counted in the relative invariants of X or Y. But this complication can be analyzed 
and related to the relative invariants of the ruled manifold P(Arx V ® C). 

Putting all these ingredients together, we can at last state the main result of 
[16]. 

Theo rem 2.1 Let Z be the symplectic sum of (X, V) and (Y, V) and fix a decom­
position of the constraints a into ax on the X side and ay on the Y side. Then 
the GT invariant of Z is given in terms of the relative invariants of (X, V) and 
(Y,V) by 

GTz(a) = GTx'(ax) * Sv * GT%(aY) (2.3) 

where * is the convolution operation and Sv is the S-matrix defined in [16]. 

Several applications of this formula are described in the next two sections (see 
also [16] for more applications). But the full strength of the symplectic sum theorem 
has not yet been used. 

A.-M. Li and Y. Ruan also have a sum formula [18]. Eliashberg, Givental, and 
Hofer are developing a general theory for invariants of symplectic manifolds glued 
along contact boundaries [3]. Jun Li has recently adapted our proof to the algebraic 
case [19]. 

3. Relations in H*(Aig,n) 
A smooth genus g curve with n marked points is stable if 2g — 2 + n > 0. 

The set of such curves, modulo diffeomorphisms, forms the moduli space A4g,n. 
The stability condition assures that the group of diffeomorphisms acts with finite 
stabilizers, and so A4g,n has a natural orbifold structure. Its Deligne-Mumford 
compactification A4g,n is a projective variety. Elements of A4g,n are called stable 
curves; these are connected unions of smooth stable components G, joined at d 
double points with a total of n marked points and Euler characteristic \ = 2 — 2g+d. 
The compactification A4g,n is also an orbifold, and in fact Looijenga proved that 
it has a finite degree cover which is a smooth manifold. In any event, the rational 
cohomology of A4g,n satisfies Poincaré duality. Throughout this section we work 
only with rational coefficients. 

There are several maps between moduli spaces of stable curves. First, there is 
a projection 7r, : Mg:n+i —¥ A4g,n that forgets the marked point xi (and collapses 
the components that become unstable). Second, we can consider the attaching maps 
that build a boundary stratum in A4g,n. For each topological type of a stable curve 
with d nodes, with components G, of genus gi and n, marked points the attaching 
map £ at the d nodes takes UiA4g^ni onto a boundary stratum of A4g,n. 
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We focus next on three kinds of natural classes in H*(A4g,n) (or the Chow 
ring). For each i between 1 and n let Lt —¥ A4g,n denote the relative cotangent 
bundle to the stable curve at the marked point xi. The fiber of F, over a point G = 
(S, x i , . . . , xn) £ Mg:„, is the cotangent space to S at x», and its first Chern class 
ipi is called a descendant class. So there are n descendant classes ifi,..., ipn, one for 
each marked point. Next, there are tautological (or Mumford-Morita-Miller) classes 
Ko,Ki,... obtained from powers of descendants by the formula Ka = (7rn+i)»(^+ì) 
for each a > 0 (where 7r» denotes the push forward map in cohomology defined 
using the Poincaré duality). Finally, the Poincaré dual of a boundary stratum is 
called a boundary class. These three kinds of natural classes are all algebraic and 
even dimensional; we define their degree to be their complex dimension. 

One natural — and difficult — problem is to describe the structure of the 
cohomology rings of A4g,n and A4g,n- This arises from a different perspective as well 
since H*(Mg:„) is also the cohomology of the mapping class group (for more details, 
see Tillman's I.CM. talk). In genus zero Keel [17] determined the cohomology ring 
of Mo,n in terms of generators (which are boundary classes) and relations. For 
higher genus far less is known about the cohomology ring. 

In this section we will instead focus on finding relations in the cohomology ring. 
For example, in genus 0 all relations come from the "4-point relation", essentially 
that in the cohomology of Mo,4 — P1 the four ipt classes as well as the three 
boundary classes are all cohomologous (all being Poincaré dual to a point). In 
genus 1 it is also known that ifi is equal to 1/12 of the boundary class in A4i,i-
One might wonder whether in higher genus all the ip classes come from the boundary. 
That turns out not to be true in genus g > 2, but in genus 2 Mumford [23] found a 
relation in A42,i expressing ip2 as a combination of boundary classes. Several years 
ago, Getzler [6] found a similar relation for ipiip2 in A42,2 and he conjectured that 
this pattern would continue in higher genus. In fact, 

Theo rem 3.1 When g > 1, any product of descendant or tautological classes 
of degree at least g (or at least g — 1 when n = 0) vanishes when restricted to 
H*(Mg,n,Q). 

This result was proved by the author in [11]. It extends an earlier result of 
Looijenga [20], who proved that a product of descendant classes of degree at least 
g + n — 1 vanishes in the Chow ring A* (C™) of the moduli space C™ of smooth genus 
g curves with n not necessarily distinct points. 

The idea of proof of Theorem 3.1 is simple. We start with the moduli space 
yd,g,n of degree d holomorphic maps from smooth genus g curves with n marked 
points to S2 which have a fixed ramification pattern over r marked points in the 
target. We then consider its relative stable map compactification yd,g,n (closely-
related to the space of admissible covers [9]). The space yd,g,n has an orbispace 
structure and it comes with two natural maps st and q that record respectively the 
domain and the target of the cover. 

yd,g,n 
___V V _ (3.1) 
Mg,n A4o,r 
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A simple way to get relations in the cohomology of A4g,n is to pull back by q known 
relations in the cohomology of Mo,r, and then push them forward by st. 

To begin with, note that the diagram above provides several other natural 
classes in A4g,n: for each choice of ramification pattern, st*y,i,g,n defines a cycle 
in A4g,n- The most useful ones turn out to be the "2-point ramification cycles", 
for which all but at most two of the branch points are simple. Pushing forward 
such cycles by the attaching map of a boundary stratum gives a generalized 2-point 
cycle. 

To prove Theorem 3.1, we choose a degree d of the cover and a 2-point ram­
ification cycle yd,g,n in such a way that the stabilization map st : yd,g,n —* ^g,n 
has finite, nonzero degree. The key step is the following proposition. 

Proposition 3.2 The Poincaré dual of any degree m product of descendant and 
tautological classes can be written as a linear combination of generalized 2-point 
ramification cycles of codimension m. 

But the codimension of a 2-point ramification cycle is at most g. A simple 
degeneration argument proves that the cycles of codimension exactly g vanish on 
•Mg,n, thus implying Theorem 3.1. 

There are three main ingredients in the proof of Proposition 3.2. First, the 
relative cotangent bundle to the domain is related to the pullback of the relative 
cotangent bundle to the target, so we can express the descendant classes in the 
domain via descendant classes in the target. Second, the target has genus zero and 
(nontrivial) products of descendants in A4o,r are Poincaré dual to boundary cycles 
D. This means that we can relate a product of descendants on the domain to cycles 
of type st*q*D. Finally, a degeneration formula, which is essentially a consequence 
of the symplectic sum Theorem 2.1, expresses cycles of type st*q*D in terms of 
2-point ramification cycles. 

The degree g in Theorem 3.1 is the lowest degree in which some monomial 
in descendants would vanish on A4g,n (see the discussion in [10]). However, there 
are lower degree polynomial relations in descendent and tautological classes. For 
example, if we restrict our attention to the moduli space A4g of smooth genus g 
curves then the subring generated by the tautological classes is called the tautological 
ring R*. Looijenga's result [20] implies that R* = 0 for * > g — 1 and Faber [4] 
made the following 

Conjecture 3.3 The classes Ki,..., K[s/3] generate the tautological ring R*. 

We refer the reader to [4] for the full conjecture. 

It turns out that techniques similar to those of Theorem 3.1 produce several 
other sets of relations between tautological classes. One such set of relations implies 
that, for each a > [g/3], the class Ka can be written as polynomial in lower degree 
tautological classes, as required by Faber's conjecture. A detailed proof will appear 
in [11]. 

4. Further applications 
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There are other applications of the sum formula (2.3). One such application 
considered in [16] begins with the following simple observation. Given any symplec­
tic manifold X with a codimension 2 symplectic submanifold V, we can write X as 
a (trivial) symplectic sum X # y F y where Py is the ruled manifold W(NxV ® C) 
and V is identified with its infinity section. We can then obtain recursive formulas 
for the GW invariants of X by moving constraints from one side to the other and 
applying the symplectic sum formula. 

In [15] we used this method to obtain both (a) the Caporaso-Harris formula for 
the number of nodal curves in P2 [2], and (b) the "quasimodular form" expression for 
the rational enumerative invariants of the rational elliptic surface [1]. In hindsight, 
our proof of (a) is essentially the same as that in [2]; using the symplectic sum 
formula makes the proof considerably shorter and more transparent, but the key-
ideas are the same. Our proof of (b), however, is completely different from that of 
Bryan and Leung in [1]. 

We end with another interesting application of the Symplectic Sum Theorem 
2.1. For each symplectomorphism / of a symplectic manifold X, one can form the 
symplectic mapping cylinder 

Xf = X x R x Sx/Z (4.1) 

where the Z action is generated by (x, s, 9) H> (f(x), s + 1,9). In a joint paper [13] 
with T. H. Parker we regarded Xf as a symplectic sum and computed the Gromov 
invariants of the manifolds Xf and of fiber sums of the Xf with other symplectic 
manifolds. The result is a large set of interesting non-Kähler symplectic manifolds 
with computational ways of distinguishing them. In dimension four this gives a 
symplectic construction of the 'exotic' elliptic surfaces of Fintushel and Stern [5]. 
In higher dimensions it gives many examples of manifolds which are diffeomorphic 
but not 'equivalent' as symplectic manifolds. 

More precisely, fix a symplectomorphism / of a closed symplectic manifold X, 
and let /»* denote the induced map on flfe(X;Q). Note that Xf fibers over the 
torus T2 with fiber X. If det ( i — /*i) = ±1 then there is a well-defined section 
class T. Our main result of [13] computes the genus one Gromov invariants of the 
multiples of this section class. These are the particular GW invariants that, in 
dimension four, CH. Taubes related to the Seiberg-Witten invariants (see [27] and 
[12]). 

Theorem 4.1 If det (I—f*i) = ± 1 , the partial Gromov series of Xf for the section 
class T is given by the Lefschetz zeta function of f in the variable t = tr-' 

GrT(Xf) = Cf(t) I L odd d e t ( j - tf*k) 
life even d e t ( J ~ */**) ' 

When Xf is a four-manifold, a wealth of examples arise from knots. Asso­
ciated to each fibered knot K in S3 is a Riemann surface S and a monodromy 
diffeomorphism /#- of S. Taking f = fK gives symplectic 4-manifolds XK of the 
homology type of S2 x T2 with 

Gr(XK)- ÄK{tT) 

(i^tTy 
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where AK(t) = det(i — i/*i) is the Alexander polynomial of K and T is the section 
class. 

We can elaborate on this construction by fiber summing Xf with other 4-
manifolds. For example, let E(n) be the simply-connected minimal elliptic surface 
with fiber F and holomorphic Euler characteristic n. Then E(l) is the rational 
elliptic surface and K3 = E(2). Forming the fiber sum of XK with E(n) along the 
tori T = F, we obtain a symplectic manifold 

E(n,K) = E(n)#F=TXK. 

homeomorphic to E(n). In fact, for fibered knots K, K' of the same genus there is 
a homeomorphism between E(n, K) and E(n, K') preserving the periods of UJ and 
the canonical class K. For n > 1 we can compute the full (not just partial) Gromov 
series. 

Proposition 4.2 For n > 2, the Gromov and Seiberg-Witten series of E(n,K) are 

Gr(E(n,Kj) = SW(E(n,Kj) = AK(tF) (1 - tF)n-2. (4.2) 

Thus fibered knots with distinct Alexander polynomials give rise to symplectic 
manifolds E(n, K) which are homeomorphic but not diffeomorphic. In particular, 
there are infinitely many distinct symplectic 4-manifolds homeomorphic to E(n). 
Fintushel and Stern [5] have independently shown how (4.2) follows from knot theory 
and results in Seiberg-Witten theory. 

References 
[1] J. Bryan and N.-C Leung, The enumerative geometry of K3 surfaces and 

modular forms, J. Amer. Math. Soc. 13 (2000), 371-410. 
[2] L. Caporaso and J. Harris, Counting plane curves in any genus, Invent. Math. 

131 (1998), 345^392. 
[3] Y. Eliashberg, A. Givental and H. Hofer, Introduction to Symplectic Field The­

ory, G AFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal. 2000, Special Volume, 
Part II, 560^673. 

[4] C. Faber, A conjectural description of the tautological ring of the moduli space 
of curves, Moduli of curves and abelian varieties, 109^129, Aspects Math., E33, 
Vieweg, Braunschweig, 1999. 

[5] R. Fintushel and R. Stern, Knots, Links and fiManifolds, Invent. Math. 134 
(1998), 363-100. 

[6] E. Getzler, Topological recursion relations in genus 2, Integrable systems and 
algebraic geometry (Kobe/Kyoto, 1997), 73^106, World Sci. Publishing, River 
Edge, NJ, 1998. 

[7] R. Gompf, A new construction of symplectic manifolds, Annals of Math., 142 
(1995), 527^595. 

[8] M. Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 
82 (1985), 307^347. 



436 Eleny-Nicoleta Ionel 

[9] J. Harris, I. Morrison, Moduli of curves, Graduate Texts in Math, vol 187, 
Springer-Verlag, 1998. 

[10] E. Ionel, Topological recursive relations in H29(A4g,n), to appear in Invent. 
Math. 

[11] E. Ionel, On relations in the tautological ring of A4g, in preparation. 
[12] E. Ionel and T. H. Parker, The Gromov invariants of Ruan-Tian and Taubes, 

Math. Res. Lett. 4 (1997), 521^532. 
[13] E. Ionel and T. H. Parker, Gromov Invariants and Symplectic Maps, Math. 

Annalen, 314, 127^158 (1999). 
[14] E. Ionel and T. H. Parker, Gromov-Witten Invariants of Symplectic Sums, 

announcement, Math. Res. Lett., 5(1998), 563^576. 
[15] E. Ionel and T. H. Parker, Relative Gromov-Witten Invariants, to appear in 

Annals of Math. 
[16] E. Ionel and T. H. Parker, The Symplectic Sum Formula for Gromov-Witten 

Invariants, preprint, math.SG/0010217. 
[17] S. Keel, Intersection theory of moduli space of stable n-pointed curves of genus 

zero, Trans. Amer. Math. Soc. 330(1992), 545^574. 
[18] A.-M. Li, Y. Ruan, Symplectic surgery and Gromov-Witten invariants of 

Calabi-Yau 3-folds, Invent. Math. 145 (2001), 151-218. 
[19] Jun Li, A Degeneration formula of GW-invariants, preprint, 

math.AG/0110113. 
[20] E. Looijenga, On the tautological ring of A4g, Invent. Math. 121(1995), 411-

419. 
[21] J. McCarthy and J.Wolfson, Symplectic Normal Connect Sum, Topology, 33 

(1994) 729^764. 
[22] D. McDuff and D. Salamon, J-holomorphic curves and quantum cohomology, 

A.M.S., Providence, R.I., 1994. 
[23] D. Mumford, Towards an enumerative geometry of the moduli space of curves 

in Arithmetic and geometry II (éd. M. Artin and J. Tate), Progress in Math, 
vol 36, Birkhäuser, Basel, 1983. 

[24] T. H. Parker and J. Wolfson, Pseudo-holomorphic maps and bubble trees, Jour. 
Geometric Analysis, 3 (1993) 63^98. 

[25] Y. Ruan and G. Tian, A mathematical theory of quantum cohomology, J. Dif­
ferential Geom. 42 (1995), 259^367. 

[26] Y. Ruan and G. Tian, Higher genus symplectic invariants and sigma models 
coupled with gravity, Invent. Math. 130 (1997), 455^516. 

[27] C. H. Taubes, Counting pseudo-holomorphic curves in dimension four, J. Diff. 
Geom. 44 (1996), 818^893. 



ICM 2002 • Vol. II • 437-146 

Knots, von Neumann Signatures, 
and Grope Cobordism* 

Peter Teiehner^ 

Abstract 

We explain new developments in classical knot theory in 3 and 4 dimen­
sions, i.e. we study knots in 3-space, up to isotopy as well as up to concordance. 
In dimension 3 we give a geometric interpretation of the Kontsevich integral 
(joint with Jim Conant), and in dimension 4 we introduce new concordance 
invariants using von Neumann signatures (joint with Tim Cochran and Kent 
Orr). The common geometric feature of our results is the notion of a grope 
cobordism. 

2000 Mathematics Subject Classification: 57M25, 57N70, 46L89. 
Keywords and Phrases: Knot, Signature, von Neumann algebra, Concor­
dance, Kontsevich integral, Grope. 

1. Introduction 
A lot of fascinating mathematics has been created when successful tools are 

transferred from one research area to another. We shall describe two instances 
of such transfers, both into knot theory. The first transfer realizes commutator 
calculus of group theory by embedded versions in 3- and 4-space, and produces 
many interesting geometric equivalence relations on knots, called grope cobordism 
in 3-space and grope concordance in 4-space. It turns out that in 3-space these 
new equivalence relations give a geometric interpretation (Theorem 2) of Vassiliev's 
finite type invariants [21] and that the Kontsevich integral [17] calculates the new 
theory over Q (Theorem 3). 

In 4-space the new equivalence relations factor naturally through knot concor­
dance, and in fact they organize all known concordance invariants in a wonderful 
manner (Theorem 5). They also point the way to new concordance invariants (The­
orem 6) and these are constructed using a second transfer, from the spectral theory 
of self-adjoint operators and von Neumann's continuous dimension [20]. 
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1.1. A geometric interpretation of group commutators 

To explain the first transfer into knot theory, recall that every knot bounds a 
Seifert surface (embedded in 3-space), but only the trivial knot bounds an embedded 
disk. Thus all of knot theory is created by the difference between a surface and a 
disk. The new idea is to filter this difference by introducing a concept into knot 
theory which is the analogue of iterated commutators in group theory. Commutators 
arise because a continuous map <j> : S1 —¥ X extends to a map of a surface if and only 
if 4> represents a commutator in the fundamental group mX. Iterated commutators 
can similarly be expressed by gluing together several surfaces. Namely, there are 
certain finite 2-complexes (built out of iterated surface stages) called gropes by-
Cannon [1], with the following defining property: <j> : S1 —¥ X represents an element 
in the fc-th term of the lower central series of 7TiX if and only if it extends to a 
continuous map of a grope of class k. Similarly, there are symmetric gropes which 
geometrically implement the derived series of niX, see Figures 2. and 3. 

Gropes, therefore, are not quite manifolds but the singularities that arise are of 
a very simple type, so that these 2-complexes are in some sense the next easiest thing 
after surfaces. Two sentences on the history of the use of gropes in mathematics are 
in place, compare [11, Sec.2.11]. Their inventor Stan'ko worked in high-dimensional 
topology, and so did Edwards and Cannon who developed gropes further. Bob 
Edwards suggested their relevance for topological 4-manifolds, where they were 
used extensively, see [11] or [12]. It is this application that seems to have created 
a certain " Angst " of studying gropes, so we should point out that the only really-
difficult part in that application is the use of infinite constructions, i.e. when the 
class of the grope goes to infinity. 

One purpose of this note is to convince the reader that (finite) gropes are a 
very simple, and extremely powerful tool in low-dimensional topology. The point 
is that once one can describe iterated commutators in mX by maps of gropes, one 
might as well study embedded gropes in 3-space (respectively 4-space) in order to 
organize knots up to isotopy (respectively up to concordance). In Section 2. we shall 
explain joint work with Jim Conant on how gropes embedded in 3-space lead to a 
geometric interpretation of Vassiliev's knot invariants [21] and of the Kontsevich 
integral [17]. 

1.2. von Neumann signatures and knot concordance 

In Section 3. we study symmetric gropes embedded in 4-space, and explain how 
they lead to a geometric framework for all known knot concordance invariants and 
beyond. More precisely, we explain our joint work with Tim Cochran and Kent 
Orr [6], where we define new concordance invariants by inductively constructing 
representations into certain solvable groups G, and associating a hermitian form 
over the group ring ZG to the knot K, which is derived from the intersection form 
of a certain 4-manifold with fundamental group G and whose boundary is obtained 
by 0-surgery on K. This intersection form represents an element in the Cappell-
Shaneson F-group [2] of ZG and we detect it via the second transfer from a different 
area of mathematics: The standard way to detect elements in Witt groups like the 
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F-group above is to construct unitary representations of G, and then consider the 
corresponding (twisted) signature of the resulting hermitian form over C. It turns 
out that the solvable groups G we construct do not have any interesting finite 
dimensional representations, basically because they are "too big" (e.g. not finitely-
generated), a property that is intrinsic to the groups G in question because they 
are "universal solvable" in the sense that many 4-manifold groups (with the right 
boundary) must map to G, extending the given map of the knot group. 

However, every group G has a fundamental unitary representation given by 
£2G, the Hilbert space of square summable sequences of group elements with com­
plex coefficients. The resulting (weak) completion of CG is the group von Neumann 
algebra AfG. It is of type Ifi because the map Ŷ  agg >-¥ cti extends from CG to 
give a finite faithful trace on AfG. 

The punchline is that hermitian forms over the completion AfG are much 
easier to understand than over CG because they are diagonalizable (by functional 
calculus of self-adjoint operators). Here one really uses the von Neumann algebra, 
rather than the G*-algebra completion of CG because the functional calculus must 
be applied to the characteristic functions of the positive (respectively negative) real 
numbers, which are bounded but not continuous. 

The subspace on which the hermitian form is positive (respectively negative) 
definite has a continuous dimension, which is the positive real number given by the 
trace of the projection onto that subspace. As a consequence, one can associate to 
every hermitian form over AfG a real valued invariant, the von Neumann signature. 
In [6] we use this invariant to construct our new knot concordance invariants, and 
a survey of this work can be found in Section 3. It is not only related to embedded 
gropes in 4-space but also to the existence of towers of Whitney disks in 4-space. 
Unfortunately, we won't be able to explain this aspect of the theory, but see [6, 
Thm.8.12]. 

1.3. Noneommutat ive Alexander modules 

In Section 3. we shall hint at how the interesting representations to our solvable 
groups are obtained. But it is well worth pointing out that the methods developed 
for studying knot concordance have much simpler counterparts in 3-space, i.e. if one 
is only interested in isotopy invariants. 

A typical list of knot invariants that might find its way into a text book 
or survey talk on classical knot theory, would contain the Alexander polynomial, 
(twisted) signatures, (twisted) Arf invariants, and maybe knot determinants. It 
turns out that all of these invariants can be computed from the homology of the 
infinite cyclic covering of the knot complement, and are in this sense "commutative" 
invariants. 

Instead of the maximal abelian quotient one can use other solvable quotient 
groups of the knot group to obtain "noneommutative" knot invariants. The canon­
ical candidates are the quotient groups Gn of the derived series G^ of the knot 
group (compare Section 3. for the definition). One can thus define the higher order 
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Alexander modules of a knot K to be the ZG„+i-modules 

An(K) := Hi(S3 \ K;ZGn+i). 

The indexing is chosen so that Ao is the classical Alexander module. For n > 1 
these modules are best studied by introducing further algebraic tools as follows. By 
a result of Strebel the groups Gn are torsionfree. Therefore, the group ring ZGn 

satisfies the Ore condition and has a well defined (skew) quotient field. This field is 
in fact the quotient field of a (skew) polynomial ring K^f^ 1] , with K„ the quotient 
field of ZfGW/G*"}] and Gi = (t) = Z. Thus one is exactly in the context of [6, 
Sec.2] and one can define explicit noneommutative isotopy invariants of knots. For 
example, let dn(K) be the dimension (over the field K„+i ) of the rational Alexander 
module 

A(F')£giZG„+ 1K„+ i[ t± 1] . 

It is shown in [6, Prop.2.11] that these dimensions are finite with the degree of the 
usual Alexander polynomial being do(K). Moreover, Cochran [5] has proven the 
following non-triviality result for these dimensions. 

Theo rem If K is a nontrivial knot then for n > 1 one has 

do(K) <di(K) + l<d2(K) + l<---< dn(K) + 1 < 2 • genus of K. 

Moreover, there are examples where these numbers are strictly increasing up to any 
given n. 

Corollary / / one of the inequalities in the above theorem is strict then K is not 
fibered. Furthermore, 0-surgery on K cross the circle is not a symplectic 4-manifold. 

The first statement is clear: For fibered knots the degree of the Alexander 
polynomial do(K) equals twice the genus of the knot K. The second statement 
follows from a result of Kronheimer [18] who showed that this equality also holds if 
the above 4-manifold is symplectic. 

Recently, Harvey [16] has studied similar invariants for arbitrary 3-manifolds 
and has proven generalizations of the above results: There are lower bounds for 
the Thurston norm of a homology class, analogous to dfiK), that are better than 
McMullen's lower bound, which is the analogy of do(K). As a consequence, she 
gets new algebraic obstructions to a 4-manifold of the form M3 x S1 admitting a 
symplectic structure. 

Just like in the classical case n = 0, there is more structure on the rational 
Alexander modules. By [6, Thm.2.13] there are higher order Blanchfield forms which 
are hermitian and non-singular in an appropriate sense, compare [5, Prop. 12.2]. It 
would be very interesting to know whether the n-th order Blanchfield form deter­
mines the von Neumann ^-invariant associated to the G„+i-cover. So far, these 
^-invariants are very mysterious real numbers canonically associated to a knot. 

Only in the bottom case n = 0 do we understand this ^-invariant well: The 
F2-index theorem implies that the von Neumann ^-invariant corresponding to the 
Z-cover is the von Neumann signature of a certain 4-manifold with fundamental 
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group Z. Moreover, this signature is the integral, over the circle, of all (Levine-
Tristram) twisted signatures of the knot [7, Prop.5.1] (and is thus a concordance 
invariant). For n > 1 there is in general no such 4-manifold available and the 
corresponding ^-invariants are not concordance invariants. 

2. Grope cobordism in 3-space 
We first give a more precise treatment of the first transfer from group theory 

to knot theory hinted at in the introduction. Recall that the fundamental group 
consists of continuous maps of the circle S1 into some target space X, modulo 
homotopy (i.e. 1-parameter families of continuous maps). Quite analogously, clas­
sical knot theory studies smooth embeddings of a circle into S3, modulo isotopy 
(i.e. 1-parameter families of embeddings). To explain the transfer, we recall that 
a continuous map <j> : S1 —¥ X represents the trivial element in the fundamental 
group 7TiX if and only if it extends to a map of the disk, <j) : D2 —t X. Moreover, 
4> represents a commutator in mX if and only if it extends to a map of a surface 
(i.e. of a compact oriented 2-manifold with boundary S1). The first statement has 
a straightforward analogy in knot theory: K : S1 ^y S3 is trivial if and only if it ex­
tends to an embedding of the disk into S3. However, every knot "is a commutator" 
in the sense that it bounds a Seifert surface, i.e. an embedded surface in S3. 

Figure 1: Gropes of class 3, with one respectively two boundary circles 

Recall from the introduction that gropes are finite 2-complexes defined by the 
following property: <j> : S1 —¥ X represents an element in the fc-th term niXk of the 
lower central series of 7TiX if and only if it extends to a continuous map of a grope of 
class k. Here Gk is defined inductively for a group G by the iterated commutators 

G2 := [G,G] and Gk := [G,Gk-i] for k > 2. 

Accordingly, a grope of class 2 is just a surface, and one can obtain a grope of class k 
by attaching gropes of class (k — 1) to g disjointly embedded curves in the bottom 
surface. Here g is the genus of the bottom surface and the curves are assumed to 
span one half of its homology. This gives gropes of class k with one boundary circle 
as on the left of Figure 2. It's not the most general way to get gropes because of 
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re-bracketing issues, and we refer to [9, Sec.2.1] for details. The boundary of a grope 
is by definition just the boundary of the bottom surface, compare Figure 2. 

Definition 1 Two (smooth oriented) knots in S3 are grope cobordant of class k, 
if there is an embedded grope of class k in S3 (the grope cobordism J such that its 
boundary consists exactly of the given knots. 

An embedding of a grope is best defined via the obvious 3-dimensional local 
model. Since every grope has a 1-dimensional spine, embedded gropes can then be 
isotoped into the neighborhood of a 1-complex. As a consequence, embedded gropes 
abound in 3-space! It is important to point out that if two knots Ki cobounds a 
grope then Ki and FJ2 might very well be linked in a nontrivial way. Thus it is a 
much stronger condition on K to assume that it is the boundary of an embedded 
grope than to say that it cobounds a grope with the unknot. For example, if K 
bounds an embedded grope of class 3 in S3 then the Alexander polynomial vanishes. 
Together with Stavros Garoufalidis, we recently showed [13] that the 2-loop term 
of the Kontsevich integral detects many counterexamples to the converse of this 
statement. 

In joint work with Jim Conant [9], we show that grope cobordism defines 
equivalence relations on knots, one for every class k £ N. Moreover, Theorem 2 
below implies that the resulting quotients are in fact finitely generated abelian 
groups (under the connected sum operation). For the smallest values k = 2,3,4 
and 5, these groups are isomorphic to 

{0},Z/2,Zand Z x Z/2 

and they are detected by the first two Vassiliev invariants [10, Thm.4.2]. 
The following theorem is formulated in terms of clasper surgery which was 

introduced independently by Habiro [15] and Goussarov [14], as a geometric answer 
to finite type invariants a la Vassiliev [21]. We cannot explain the definitions here 
but see [9, Thm.l and 3]. We should say that the notion of a capped grope is well 
known in 4 dimensions, see [11, Sec.2]. In our context, it means that all circles at 
the "tips" of the grope bound disjointly embedded disks in 3-space which are only-
allowed to intersect the bottom surface of the grope. 

Theo rem 2 Two knots K0 and Ki are grope cobordant of class k if and only if Ki 
can be obtained from K0 by a finite sequence of clasper surgeries of grope degree k 
(as defined below). 

Moreover, two knots are capped grope cobordant of class k if and only if they 
have the same finite type invariants of Vassiliev degree < k. 

As a consequence of this result, the invariants associated to grope cobordism 
are highly nontrivial as well as manageable. For example, we prove the following 
result in [10, Thm. 1.1]: 

Theo rem 3 The (logarithm of the) Kontsevich integral (with values in BB
<h), graded 

by the new grope degree k, is an obstruction to finding a grope cobordism of class k 
between two knots. Moreover, this invariant is rationally faithful and surjective. 
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Here Ba
<k is one of the usual algebras of Feynman diagrams known from the 

theory of finite type invariants, but graded by the grope degree. More precisely, 
Ba

<k is the Q-vector space generated by connected uni-trivalent graphs of grope 
degree i, 1 < i < k, with at least one univalent vertex and a cyclic ordering at 
each trivalent vertex. The relations are the usual IHX and AS relations. The grope 
degree is the Vassiliev degree (i.e. half the number of vertices) plus the first Betti 
number of the graph. Observe that both relations preserve this new degree. 

Read backwards, our results give an interpretation of the Kontsevich integral 
in terms of the geometrically defined equivalence relations of grope cobordism. 

3. Grope concordance 
We now turn to the 4-dimensional aspects of the theory. It may look like the 

end of the story to realize that any knot with trivial Arf invariant bounds a grope 
of arbitrary big class embedded in D4, [10, Prop.3.8]. However, group theory has 
more to offer than the lower central series. Recall that the derived series of a group 
G is defined inductively by the iterated commutators 

G{1) := [G,G] and G{h) := [G{h-1], G{h-1]] for h > 1. 

Accordingly, we may define symmetric gropes with their complexity now measured 
by height, satisfying the following defining property: A continuous map <f> : S1 —¥ X 
represents an element in mX^ if and only if it extends to a continuous map of a 
symmetric grope of height h. Thus a symmetric grope of height 1 is just a surface, 
and a symmetric grope of height h is obtained from a bottom surface by attaching 
symmetric gropes of height (h — 1) to a full symplectic basis of curves. This defines 
symmetric gropes of height h with one boundary circle as in Figure 3. 

Figure 2: Symmetric gropes of height 2 and 2.5 

Note that a symmetric grope of height h is also a grope of class 2h, just like in 
group theory. But conversely, not every grope is symmetric. It should also be clear 
from Figure 3. how one defines symmetric gropes with half-integer height (even 
though there is no group theoretic analogue). 
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In the following definition we attempt to distinguish the terms "cobordant" 
and "concordant" in the sense that the latter refers to 4 dimensions, whereas the 
former was used in dimension 3, see Definition 1. Historically, these terms were used 
interchangeably, but we hope not to create any confusion with our new distinction. 

Definition 4 Two oriented knots in S3 are grope concordant of height h £ |N, if 
there is an embedded symmetric grope of height h in S3x [0,1] such that its boundary 
consists exactly of the given knots Kt : S1 ^y S3 x {i}. 

Observe that since an annulus is a symmetric grope of arbitrary height we 
indeed get a filtration of the knot concordance group. This group is defined by-
identifying two knots which cobound an embedded annulus in S3 x [0,1], where there 
are two theories depending on whether the embedding is smooth or just topological 
(and locally flat). For grope concordance the smaller topological knot concordance 
group is the more natural setting: a locally flat topological embedding of a grope 
(defined by the obvious local model at the singular points) can be perturbed to 
become smooth. This perturbation might introduce many self-intersection points 
in the surface stages of the grope. However, these new singularities are arbitrarily-
small and thus they can be removed at the expense of increasing the genus of the 
surface stage in question but without changing the height of the grope. 

In joint work with Tim Cochran and Kent Orr [6], we showed that all known 
knot concordance invariants fit beautifully into the scheme of grope concordance! 
In particular, all known invariants turned out to already be invariants of grope 
concordance of height 3.5: 

Theorem 5 Consider two knots Kt in S3. Then 

1. Ki have the same Arf invariant if and only if they are grope concordant of 
height 1.5 (or class 3). 

2. Ki are algebraically concordant in the sense of Levine [19] (i.e. all twisted 
signatures and twisted Arf invariants agree) if and only if they are grope con­
cordant of height 2.5. 

3. If Ki are grope concordant of height 3.5 then they have the same Casson-
Gordon invariants [3]. 

The third statement includes the generalizations of Casson-Gordon invariants 
by Gilmer, Kirk-Livingston, and Letsche. In [6] we prove an even stronger version 
of the third part of Theorem 5. Namely, we give a weaker condition for a knot 
K to have vanishing Casson-Gordon invariants: it suffices that K is (1.5) -solvable. 
All the obstruction theory in [6] is based on the definition of (h)-solvable knots, 
h £ |N, which we shall not give here. Suffice it to say that this definition is closer 
to the algebraic topology of 4-manifolds than grope concordance. In [6, Thm.8.11] 
we show that a knot which bounds an embedded grope of height (h + 2) in D4 is 
(ft)-solvable. 

It should come as no surprise that the invariants which detect grope concor­
dance have to do with solvable quotients of the knot group. In fact, the above 
invariants are all obtained by studying the Witt class of the intersection form of a 
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certain 4-manifold M4 whose boundary is obtained by 0-surgery on the knot. The 
different cases are distinguished by the fundamental group m AI, namely 

1. m M is trivial for the Arf invariant, 
2. mM is infinite cyclic for algebraic concordance, and 
3. m AI is a dihedral group for Casson-Gordon invariants. 

So the previously known concordance invariants stopped at solvable groups which 
are extensions of abelian by abelian groups. To proceed further in the understand­
ing of grope (and knot) concordance, one must be able to handle more complicated 
solvable groups. A program for that purpose was developed in [6] by giving an elab­
orate boot strap argument to construct inductively representations of knot groups 
into certain universal solvable groups. On the way, we introduced Blanchfield du­
ality pairings in solvable covers of the knot complement by using noneommutative 
localizations of the group rings in question. 

The main idea of the boot strap is that a particular choice of "vanishing" of the 
previous invariant defines the map into the next solvable group (and hence the next 
invariant). In terms of gropes this can be expressed quite nicely as follows: pick 
a grope concordance of height h £ N and use it to construct a certain 4-manifold 
whose intersection form gives an obstruction to being able to extend that grope to 
height h.5. There is an obvious technical problem in such an approach, already-
present in [3]: to show that there is no grope concordance of height h.5, one needs 
to prove non-triviality of the obstruction for all possible gropes of height h. One 
way around this problem is to construct examples where the grope concordances of 
small height are in some sense unique. This was done successfully in [6] for the level 
above Casson-Gordon invariants, and in [7] we even obtain the following infinite 
generation result. Let Qu be the graded quotient groups of knots, grope concordant 
of height h to the unknot, modulo grope concordance of height h.5. Then the results 
of Levine and Casson-Gordon show that Q2 and Qz are not finitely generated. 

Theo rem 6 Q4 is not finitely generated. 

The easiest example of a non-slice knot with vanishing Casson-Gordon in­
variants is given in [6, Fig.6.5]. As explained in the introduction, the last step in 
the proof of Theorem 6 is to show that the intersection form of the 4-manifold in 
question is nontrivial in a certain Witt group. Our new tool is the von Neumann 
signature which has the additional bonus that it takes values in R, which is not 
finitely generated as an abelian group. This fact makes the above result tractable. 
We cannot review any aspect of the von Neumann signature here, but see [6, Sec.5]. 

Last but not least, it should be mentioned that we now know that for every 
h £ N the groups Qu are nontrivial. This work in progress [8] uses as the main 
additional input the Cheeger-Gromov estimate for von Neumann ^-invariants [4] in 
order to get around the technical problem mentioned above. It is very likely that 
non of the groups Qu, h £ ~H,h > 2, are finitely generated. 
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1. Introduction 
Twenty years ago, Mumford initiated the systematic study of the cohomology 

ring of moduli spaces of Riemann surfaces. Around the same time, Harer proved 
that the homology of the mapping class groups of oriented surfaces is independent of 
the genus in low degrees, increasing with the genus. The (co)homology of mapping 
class groups thus stabelizes. At least rationally, the mapping class groups have the 
same (co)homology as the corresponding moduli spaces. This prompted Mumford 
to conjecture that the stable rational cohomology of moduli spaces is generated 
by certain tautological classes that he defines. Much of the recent interest in this 
subject is motivated by mathematical physics and, in particular, by string theory. 
The study of the category of strings led to the discovery of an infinite loop space, 
the cohomology of which is the stable cohomology of the mapping class groups. We 
explain here a homotopy theoretic approach to Mumford's conjecture based on this 
fact. As byproducts infinite families of torsion classes in the stable cohomology are 
detected, and the divisibility of the tautological classes is determined. An analysis 
of the category of strings in a background space leads to the formulization of a 
parametrized version of Mumford's conjecture. 

The paper is chiefly a summary of the author's work and her collaboration with 
lb Madsen. Earlier this year Madsen and Weiss announced a solution of Mumford's 
conjecture. We touch on some of the consequences and the ideas behind this most 
exciting new developement. 
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2. Mumford's conjecture 
Let Fg be an oriented, connected surface of genus g with s marked points 

and n boundary components. Let Diïï(Fg ) be its group of orientaton preserving 
diffeomorphisms that fix the n boundary components pointwise and permute the s 
marked points. By [2], for genus at least 2, Diïï(Fg ) is homotopic to its group 
of components, the mapping class group r* . Furthermore, if the surface has 
boundary, r* acts freely on Teichmüller space. Hence, 

B mS(Fln) ~ BT'gin ~ M'Sin for n > l,g > 2, 

where A4s
gn denotes the moduli space of Riemann surfaces appropriately marked. 

When n = 0, the action of the mapping class group on Teichmüller space has finite 
stabilizer groups and the latter is only a rational equivalence. 

We recall Harer's homology stability theorem [4] which plays an important 
role through out the paper. 

Harer Stability Theorem 2.1. H*BYs
g^n is independent of g and n in degrees 

3* < g — 1-

Ivanov [5], [6] improved the stability range to 2* < g — 1 and proved a version 
with twisted coefficients. Glueing a torus with two boundary components to a 
surface FSji induces a homomorphism FSji —t Yg+i:i. Let F œ := lim^oo FSji be 
the stable mapping class group. 

Mumford [12] introduced certain tautological classes in the cohomology of the 
moduli spaces A4g. Topological analogues were studied by Miller [10] and Morita 
[11]: Let E be the universal F-bundle over B Diff(F), and let TVE be its vertical 
tangent bundle with Euler class e £ H2 E. Define 

f ei+1 £ H2iB Y)ïS(F). 
JF 

Here JF denotes "integration over the fiber" - the Gysin map. Miller and Morita 
showed independently that the rational cohomology of the stable mapping class 
group contains the polynomial ring on the K,. 

Mumford Conjecture 2.2. H^BY^; Q) ~ Q[KI ,K2,...]. 

2.1. Remark. 
The stable cohomology of the decorated mapping class groups is known modulo 

H*BY00 because of decoupling [1]. For example, let F ^ := limYs
gl. The following 

is a consequence of Theorem 2.1. 

Proposition 2.3. (BF^)+ ~ OT+ x B(ES I Sv)+. 

Here Y+ denotes Quillen's plus-construction on Y with respect to the maximal 
perfect subgroup of the fundamental group. It is important to note that the plus 
construction does not change the (co)homology. In particular, 

ff*Brœ = H*BY+ . 
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3. String category 
The category underlying the quantum mechanics of a state space X is the 

path category VX. Its objects are particles represented by points in X. As time 
evolves a particle sweeps out a path. Thus a morphism between particles a and 6 
is a continuous path in X starting at a and ending at 6. Concatenation of paths 
defines the composition in the category. 

{ objects : a, b, • • • £ X, 

morphisms : TT map([0, t],X). 

t>o 

In string theory, the point objects are replaced by closed loops in X. As time 
evolves these strings sweep out a surface. Thus the space of morphisms from one 
string to another is now described by a continuous map from an oriented surface F 
to X. The parametrization of the path should be immaterial. To reflect this, take 
homotopy orbits under the action of Diff(F).1 Composition is given by concate­
nation of paths, i.e. by glueing of surfaces along outgoing and incoming boundary-
components. 

To be more precise, let LX = map(S'1,X) denote the free loop space on X. 
A cobordism F is a finite union 

^gi,m+mi U • • • U rgktnk-^mk 

where n = £,«,. boundary components are considered incoming and m = Ejro, 
outgoing. For technical reasons we will assume m, > 0. The category of strings in 
X is then 

SX= < 

objects : a,ß,---£ J J (FX)", 

morphisms : TT E Diff(F) x Diff(F) map(F, X) 

The disjoint union is taken over all cobordisms F , one for each topological type. 

3.1. Elliptic elements. 
The category SX was first introduced by Segal [14]. A functor from the path 

category VX to the category of n-dimensional vector spaces and their isomorphisms 
defines a vector bundle on X with connection. In particular, it defines an element 
in the F'-theory of X. A functor from SX to an appropriate (infinite dimensional) 
vector space category is also referred to as a gerbe (or F-field) with connection. In 
[14], Segal proposes this as the underlying geometric object of elliptic cohomology. 
More recently, this notion has been refined by Teichner and Stolz. 

1 Strings should also be independent of the parametrization. One should therefore take 
homotopy orbit spaces of the objects under the S1 action. In that case the diffeomorphisms of the 
surfaces need not be the identity on the boundary. The resulting category has the same homotopy 
type as SX in the sense that its classifying space is homotopic to that of SX. 
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3.2. Conformai field theory. 
The category S := S(*) is studied in conformai field theory [15]. Its objects 

are the natural numbers and its morphims are Riemann surfaces. A conformai field 
theory (CFT) is a linear space H which is an algebra over S. Thus each element in 
Mg:n+m, defines a linear map from H®" to H®TO. The physical states of a topological 
conformai field theory (TCFT) form a graded vector space A». Each element of the 
homology H*A4g,n+m defines a linear map from Afn to Afm. 

3.3. Gromov-Witten theory. 
Let X be a symplectic manifold. A model for the homotopy orbit spaces in the 

definition of SX is the fiber bundle map(FSj„,X) —t Mg:„(X) —t A4g,n over the 
Riemann moduli space. In each fiber, F comes equipped with a complex structure 
and we may replace the continuous maps by the space of pseudo-holomorphic maps 
hol(F^,X) yielding a category S h o lX. This is the category relevant to Gromov-

Witten theory. Note, for X a complex Grassmannian, a generalized flag manifold, or 
a loop group, the degree d-component of hol(F s ,X) approximates the components 
of map(F s ,X) in homology. The categories SX and S h o lX are therefore closely-
related. 

4. From categories to infinite loop spaces 
There is a functorial way to associate to a category C a topological space \C\, the 

realization of its nerve. It takes equivalences of categories to homotopy equivalences. 
It is a generalization of the classifying space construction of a group: \G\ = BG 
where G is identified with the category of a single object and endomorphism set 
G. The path-category VX of a connected space X is a many object group up to 
homotopy. The underlying "group" is the space OX = map»(S'1,X) of based loops 
in X. Again one has \VX\ ~ B(iiX) ~ X. A functor from VX to n-dimensional 
vector spaces and their isomorphisms thus defines a map 

X —• BGLnC, 

and hence an element in the FJ-theory of X. Motivated by this, we would like 
to understand the classifying space of the string category SX and its relation to 
elliptic cohomology. 

Definition 4.1. St(X) := Ü\SX\. 

Theorem 4.2. St is a homotopy functor from the category of topological spaces to 
the category of infinite loop spaces. 

We recall that Z is an infinite loop space if it is homotopic to some Z0 such that 
successive based spaces Zt can be found with homeomorphisms 7, : Zt ~ ÛZi+i. 
Any infinite loop space Z gives rise to a generalized homology theory ft» which 
evaluated on a space Y is 

h*Y := 7T» lim ttl(Zi A Y). 



Strings and the Stable Cohomology of Mapping Class Groups 451 

Infinite loop spaces are abelian groups up to homotopy in the strongest sense. 
The proof of Theorem 4.2 can be sketched as follows, compare [16]. SX is a 

symmetric monoidal category under disjoint union. Infinite loop space machinery 
(see for example [13]) implies that its classifying space \SX\ is a homotopy abelian 
monoid in the strongest sense. But 7To|<SX| = HiX is a group. Hence homotopy 
inverses exist and \SX\ is an infinite loop space. 

Using another piece of infinite loop space machinery (a generalization of the 
group completion theorem) and Harer Stability Theorem 2.1, one can identify the 
string theory of a point as Z x FF+ . As an immediate consequence we have 

Corollary 4.3. ([16]) St(*) ~Zx FF+ is an infinite loop space. 

5. CFT-operad 
We offer now a different perspective on Theorem 4.1 and Corollary 4.3. Let 

A4 = {Mn}n>o with A4(n) = J_L>0 BY'g:„+i be the operad contained in the CFT 
category S. A space X is an algebra over A4 if there are compatible maps A4 (n) x 
X " —t X. In particular X has a monoid structure. Let QX be its group completion. 
QX is homotopic to X if and only if TTOX is a group. 

Theorem 5 .1. ([18]) If X is an algebra over A4 then its group completion QX is 
an infinite loop space. 

CFT is therefore closely linked to the theory of infinite loop spaces. The 
crucial point of the proof is a decoupling result similar to Proposition 2.3. The 
corresponding statement for TCFT's implies that Getzler's Batalin-Vilkovisky al­
gebra structure on the physical states A» is stably trivial, see [17]. The following 
examples illustrate the strength of Theorem 5.1. 

Example 5.1. 
Let Xi be the disjoint union IL>o BTg,i- ^ n a s a Pr°duct induced by glueing 

Fg:i and Fu:i to the "legs" of a pairs of pants surface F0j3. Miller observes in [10] that 
this induces a double loop space structure on the group completion QXi ~Zx F F + . 
This product extends to an Af-algebra structure. Hence Miller's double loop space 
structure extends to an infinite loop space structure. Wahl [19] proved that it is 
equivalent to the infinite loop spaces structure implied by Corollary 4.3. 

Example 5.2. 
Let X2 be the disjoint union of the Borei constructions 

Eg := E Diff(FSjl) x Differ) map(FSjl,d;X,*). 

As the functions to X map the boundary to a point, they can be extended from 
Fg:i to Fg+i:i via the constant map. X2 thus becomes an Af-algebra and QX2 = 
Z x (linij-s-oo Eg)+ is an infinite loop space. QX2 is homotopic to St(X) when X 
is simply connected. 
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Example 5.3. 
Let C(Fg:i;X) denote the space of unordered configurations in the interior of 

Fg:i with labels in a connected space X. Let Cg be its Borei construction. Their 
disjoint union defines an Af-algebra X3 . The following decoupling result determines 
its group completion. 

Proposition 5.2. QX3 ~Zx ( l i m ^ ^ Cg)+ ~Zx BY+, x Q(BS1 A X+). 

Q = l imQ0 0^0 0 is the free infinite loop space functor and X + denotes X with 
a disjoint basepoint. Note the close relation with the above example. By work of 
McDuff and Bödigheimer, there is a homotopy equivalence 

C(F9il;X)~ mar>(FgA,d;S2 AX). 

Note though that the induced Diff(FSji)-action from the left on the right is non-
trivial on the sphere in the target space. 

6. Refinement of Mumford's conjecture 
Infinite loop spaces are relatively rare and the question arises whether Z x FF+ 

can be understood in terms of well-known infinite loop spaces. This question was 
addressed in joint work with Madsen. 

Let P' be the Grassmannian of oriented 2-planes in rf+2 and let —Li be the 
complement of the canonical 2-plane bundle L over P'. The one-point compactifi­
cation, the Thom space Th(—Lj), restricts on the subspace P ' _ 1 to the suspension 
of Th(—L/_i). Taking adjoints yields maps Th(—L/_i) —t QTh(—Lj), and we may-
define 

Q°°Th(^F) := lim Q ' T I ì ( ^ F J ) -

More generally, for any space X, define 

n ° ° ( T h ( - L ) A X + ) := lim ül(Th(-Lt) A X+). 
/—»oo 

Conjecture 6 .1 . There is a homotopy equivalence of infinite loop space 

a : St(X) ^ Q°°(Tft(^F) A X+). 

Remarks 6.2. 
For X = *, Conjecture 6.1 postulates a homotopy equivalence a : Z x FF+ —t 

Q°°Th(^F). A proof of this has been announced by Madsen and Weiss, see Section 8. 
The Mumford conjecture follows from this as we will explain presently. Conjecture 
6.1 claims in addition that St(_) is a homology functor, i.e. 7r» St(_) is the homology 
theory associated to the infinite loop space Q°°Th(^F). 
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The infinite loop space Q°°Th(^F) is well-studied, more recently because of 
its relation to Waldhausen F'-theory. The inclusion of —Li into the trivial bundle 
F © (-Li) ~ P' x rf+2 induces a map 

w : 0°°Th(^F) —• Q(P~). 

UJ has homotopy fibre ii2Q(S°). As the stable homotopy groups of the sphere 
are torsion in positive dimensions, w is a rational equivalence. Let P°° —¥ BU 
be the map that classifies F. By Bott periodicity, the map can be extended to 
the free infinite loop space F : Qo(V°°) —¥ BU. The subscript here indicates the 
0-component. F has a splitting and is well known to be a rational equivalence: 

F*(ng°Th(-L);Q!)'"*-'* Q[ci,C2,...]. 

The Z/p-homology of Q°°Th(^F) has recently been determined by Galatius [3]. 

Figure 1: Surface h(F) C rf+2 with tubular neighborhood U. 

To define a map a comes down to defining maps from the morphism spaces 
of SX. (See also Example 5.2.) a is the homotopy theoretic interpretation of the 
formula defining K, where the wrong way map JF is replaced by the (pre)transfer 
map of Becker and Gottlieb. We give now an explicid description of this map. 

For simplicity, let F be a closed surface. Consider the space of smooth embed­
dings Emb(F, rf+2). By Whitney's embedding theorem, as I —¥ oo, it may serve 
as a model for F Diff(F). Let 

(ft,/) £ Emb(F,R'+2) x Di f r (F) map(F,X). 

Choose a tubular neighborhood U of h(F) such that every t £ U can uniquely be 
written as x + v with x £ h(F) and v normal to the tangent plane Txh(F). a sends 
(ft, / ) to the continuous function a(h, f) : Sl+2 —¥ Th(^Fj) A X + defined by 

t H> 
oo if t $ U, 

((Txh(F),v),f(h-1(xj) if t = x + v£ U. 

In [8], a is shown to be a 3-connected map of infinite loop spaces and the 
tautological classes are identified. Let il(chi) £ H2tBU denote the z-th integral 
Chern character class. Then 

Ki = a* o UJ* o L*(i\chi). 
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7. Splittings and (co) homological results 
The main result of [8] is a partial splitting of the composition 

UJ o a : Z x F F + — • Q(P°?) ~ Q(S°) x Q(P°°). 

This is achieved by constructing a map ß from P + to Z x F F + and then extending 

it to the free infinite loop space Q(W°^) utilizing the infinite loop space structure 

on Z x F F + . In order to construct ß, approximate P°° ~ BS1 by the classifying 

spaces of cyclic groups Cp» for n —¥ oo, one prime p at a t ime, as the cyclic groups 

can be mapped into suitable mapping class groups. However, this means tha t we 

have to work with p-completions. 

Let YpA denote the p-completion of Y and g £ Zp be a topological generator 

of the p-adic units (g = 3 if p = 2). Denote by fik : P°° —¥ (V°°)p the map tha t 

represents k times the first Chern class in H2(W°°,ZP). 

T h e o r e m 7 .1 . [8]. There exists a map ß : (Q(S°) x Q(P°°))£ - • (Z x F F + )£ 

such that 

Ü O Ö ° ^ ( " o 2 l-gi/j* 

The map 1 — gfi9 induces multiplication by 1 — gn+1 on H2n(^°°;Z^) which 
is a p-adic unit precisely if n ^ —1( mod p — 1). The following applications of 
Theorem 7.1 are also found in [8]. There is a splitting Q(W°^)p ~ F 0 x • • • x F p _ 2 

corresponding to the idempotent decomposition of Z[Z/px] c Z P [Z*] . 

Corol lary 7 .2 . For some Wp, there is a splitting of infinite loop spaces 

(Z x F F + )£ ~ F 0 x • • • x F p _ 3 x Wp. 

The Z/p-homology of Q ( P + ) is well-understood in terms of Dyer-Lashof op­

eration. These are homology operations for infinite loop spaces tha t are formally-

similar to the Steenrod operations. For each generator a, £ H2i^°° = Z there is 

an infinite family of Z/p-homology classes freely generated by the Dyer-Lashof op­

erations. The product F 0 x • • • x F p _ 3 contains precisely those families for which 

i ^ ^ l ( m o d p — 1), giving a huge collection of new p-torsion in H^BY^. 

For odd primes p , Madsen and Schlichtkrull [MS] found split surjective maps 

lo and l_i of infinite loop spaces such tha t the following diagram is commutative 

Q°°Th(^F)£ — ^ Q(P^)£ 

1 9V , in, ,, n r n A (Z x BU)$ — ^ (Z x BU)' 
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Corollary 7.3. For odd primes p and some space Vp, there is a splitting of spaces 

(FF+ )£ ~ BU£ x Vp. 

This gives a Zp-integral version of Miller and Morita's theorem: the polynomial 
algebra Zp[ci,c2,...] is a split summand of H*(BY00; Zp). The divisibility of the 
tautological classes K, at odd primes p can also be deduced from the above diagram. 

Corollary 7.4. If i = —l(modp— 1), then K, is divisible by p1+"p(*+1) where vp is 
the p-adic valuation. Otherwise, p does not divide K,. 

In the light of [9] this result is sharp. 

8. Geometric interpretation 
a : FF+ —t Qg°Th(^F) is a homotopy equivalence if and only if it induces 

an isomorphism in oriented cobordism theory Qf°. An element in Q | ° ( F F + ) = 
0 | ° (FF 0 O ) is a cobordism class of oriented surface bundles F —t En+2 ^y Mn. An 
element in Q|°(Qg°Th(^F)) is a cobordism class of pairs [n : En+2 —t Mn,n] of 
smooth maps n and stable bundle surjections from F F to TT*TM. (Upto cobordism 
one can assume that n is a vector bundle surjection.) a maps a bundle [F —t 
E ^y M] to the pair [n : E —t M, Dn] where Dn denotes the differential of n. 
Hence, a is a homotopy equivalence if and only if each cobordism class of pairs 
[n : En+2 —t Mn,n] contains a "unique" representative with n a submersion. 

It is this geometric formulation that underpins the solution to the Mumford 
conjecture by Madsen and Weiss. A key ingredient of the proof is the Phillips-
Gromov ft-principle of submersion theory: A pair (g : X —t M, g : TX —t g*TM) 
can be deformed to a submersion - provided X is open. F above, however, is closed. 
The approach taken in [9] is to replace n : E —t M by g = nopn : X = E x R —t M. 
Now the submersion ft-principle applies and g can be replaced by a submersion / . 
The proof then consists of a careful analysis of the singularities of the projection 
pi'i : X —t R on the fibers of / . At a critical point it uses Harer's Stability Theorem 
2.1. 

Madsen-Weiss Theorem 8.1. The map a : Z x FF+ -¥ ii°°Th(-L) is a homo­
topy equivalence. 
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Non-zero Degree Maps 
between 3-Manifolds* 

Shicheng Wangf 

A b s t r a c t 

First the title could be also understood as "3-manifolds related by non­
zero degree maps" or "Degrees of maps between 3-manifolds" for some aspects 
in this survey talk. 

The topology of surfaces was completely understood at the end of 19-th 
century, but maps between surfaces kept to be an active topic in the 20-th 
century and many important results just appeared in the last 25 years. The 
topology of 3-manifolds was well-understood only in the later 20-th century, 
and the topic of non-zero degree maps between 3-manifolds becomes active 
only rather recently. 

We will survey questions and results in the topic indicated by the title, 
present its relations to 3-manifold topology and its applications to problems 
in geometry group theory, fixed point theory and dynamics. 

There are four aspects addressed: (1) Results concerning the existence 
and finiteness about the maps of non-zero degree (in particular of degree one) 
between 3-manifolds and their suitable correspondence about epimorphisms 
on knot groups and 3-manifold groups. (2) A measurement of the topological 
complexity on 3-manifolds and knots given by "degree one map partial order", 
and the interactions between the studies of non-zero degree map among 3-
manifolds and of topology of 3-manifolds. (3) The standard forms of non-zero 
degree maps and automorphisms on 3-manifolds and applications to minimiz­
ing the fixed points in the isotopy class. (4) The uniqueness of the covering 
degrees between 3-manifolds and the uniqueness embedding indices (in partic­
ular the co-Hopfian property) between Kleinian groups . 

The methods used are varied, and we try to describe them briefly. 
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0. Introduction 
The topology of surfaces was completely understood by the end of 19th century, 

but maps between surfaces keep to be an active topic in the 20th century, and 
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some basic results just appeared in the last 25 years, among which are the Nielsen-
Thurston classification of surface automorphisms [Th3], and Edmonds' standard 
form for surface maps [El]. Then fine results followed, say the realization of Nielsen 
number in the isotopy class of surface automorphisms by Jiang [J], and the simple 
loop theorem for surface maps by Gabai [Ga2]. 

The topology of 3-manifolds was well-understood only in the later 20th century-
due to many people's deep results, in particular Thurston's great contribution to 
the geometrization of 3-manifolds, and the topic of non-zero degree maps between 
3-manifolds becomes active only rather recently. 

We will survey the results and questions in the topic indicated by the title, 
present its relations to 3-manifold topology and its applications to problems in 
geometry group theory, fixed point theory and dynamics. The methods used are 
varied, and we try to describe them briefly. 

For standard terminologies of 3-manifolds and knots, see the famous books 
of J. Hempel, W. Jaco and D. Rolfsen. For a proper map / : M —¥ N between 
oriented compact 3-manifolds, deg(/), the degree of / , is defined in most books 
of algebraic topology. A closed orientable 3-manifold is said to be geometric if 
it admits one of the following geometries: H3 (hyperbolic), PSL2R, H2 x E1, 
Sol, Nil, E3 (Euclidean), S2 x E1, and S3 (spherical). A compact orientable 3-
manifold M admits a geometric decomposition if each prime factor of M is either 
geometric or Haken. Thurston's geometrization conjecture asserts that any closed 
orientable 3-manifold admits a geometric decomposition. Each Haken manifold 
M with dM a (possibly empty) union of tori has a Jaco-Shalen-Johannson (JSJ) 
torus decomposition, that is, it contains a minimal set of tori, unique up to isotopy, 
cutting M into pieces such that each piece is either a Seifert manifold or a simple 
manifold, which admits a complete hyperbolic structure with finite volume [Th2]. 

In the remainder of the paper, all manifolds are assumed to be compact 
and orientable, all automorphisms are orientation preserving, all knots are in 
S3, all Kleinian groups are classical, and all maps are proper, unless otherwise 
specified. 

Let M and N be 3-manifolds and d > 0 an integer. We say that M d-dominates 
(or simply dominates) N if there is a map / : M —¥ N of degree ±d. Denote by 
D(M, N) the set of all possible degrees of maps from M to N. A 3-manifold M is 
small if each closed incompressible surface in M is boundary parallel. 

Due to space limitation, quoted literature are only partly listed in the refer­
ences; while the others are briefly indicated in the context. 

1. Existence and finiteness 
A fundamental question in this area (and in 3-manifold theory) is the following. 

Question 1.1. Given a pair of closed 3-manifolds M and N, can one decide if M 
d-dominates N? In particular, can one decide if M 1-dominates N? 
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The following two natural problems concerning finiteness can be considered as 
testing cases of Question 1.1. 

Question 1.2 [Ki, Problem 3.100 (Y. Rong)]. Let M be a closed 3-manifold. Does 
M 1-dominate at most finitely many closed 3-manifolds? 

Question 1.3. Let N be a closed 3-manifold. When is \D(M,N)\ finite for any-
closed 3-manifold M ? 

An important progress towards the solution of Question 1.2 is the following: 

Theo rem 1.1 ([So2], [WZh2], [HWZ3]). Any closed 3-manifold 1-dominates at 
most finitely many geometric 3-manifolds. 

Theorem 1.1 was proved by Soma when the target manifolds N admit hyper­
bolic geometry [So2]. The proof is based on the argument of Thurston's original 
approach to the deformation of acylindrical manifolds. Porti and Reznikov had a 
quick proof of Soma's result, based on the volume of representations [Re2]. How­
ever Soma's approach deserves attention as it proves that the topological types of 
all hyperbolic pieces in closed Haken manifolds 1-dominated by M are finite [So3]. 
Theorem 1.1 was proved in [WZh2] when the target manifolds admit geometries 

of H2 x E1, PSL2(R), Sol or Nil. The proof for the case of H2 x E1 geometry-
invokes Gabai's result that embedded Thurston Norm and singular Thurston Norm 
are equal [Gal], and the proof for case of PSL2(R) geometry uses Brooks and Gold­
man's work on Seifert Volume [BG]. Theorem 1.1 was proved in [HWZ3] when the 
target manifolds admit S3 geometry, using the linking pairing of 3-manifolds. Note 
that only finitely many 3-manifolds admit the remaining two geometries. 

For maps between 3-manifolds which are not necessarily orientable, there is a 
notion of geometric degree (See D. Epstein, Proc. London Math. Soc. 1969). It is 
worth mentioning that if d-dominating maps are defined in terms of geometric de­
gree, then Rong constructs a non-orientable 3-manifold which 1-dominates infinitely-
many lens spaces [Ro3]. Actually there is a non-orientable hyperbolic 3-manifold 
which 1-dominates infinitely many hyperbolic 3-manifolds [BW1]. Such examples 
do not exist in dimension n > 3 due to Gromov's work on simplicial volume and 
H.C. Wang's theorem that, for any V > 0, there are at most finitely many closed 
hyperbolic n-manifolds of volume < V. 

The answer to Question 1.2 is still unknown for closed irreducible 3-manifolds 
admitting geometric decomposition. The following result is related. 

Theo rem 1.2 ([Rol], [So3]). For any 3-manifold M there exists an integer NM, 
such that if M = Afi —t Mi —¥ .... —¥ Afi is a sequence of degree one maps with 
k > NM, and each Mi admits a geometric decomposition, then the sequence contains 
a homotopy equivalence. 

The situation for Question 1.3 can be summarized in the following theorem. 
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Theorem 1.3 ([Grl], [BG], [W2]). Suppose N is a closed 3-manifold admitting 
geometric decomposition. Then 

(1) |F(Af, N)\ is finite if either a prime factor of N contains a hyperbolic piece 

in its JSJ decomposition, or N itself admits the geometry of PSL2(R). 
(2) \D(N, N)\ is infinite if and only if either (i) N is covered by a torus bundle 

over the circle or a surfacexS1, or (ii) each prime factor of N has a cyclic or finite 
fundamental group. 

Part (1) of Theorem 1.3 follows from the work of Gromov [Grl] and Brooks-
Goldman [BW]. Part (2) can be found in [W2]. Note that if \D(N,N)\ is infinite 
and D(M,N) contains non-zero integers, then \D(M,N)\ is also infinite. I suspect 
that Theorem 1.3 (2) indicates a general solution to Question 1.3. 

There are many partial results for Question 1.1: When both AI and N are 
Seifert manifolds with infinite fundamental groups Rong has an algorithm to deter­
mine if AI 1-dominates N [Ro3]. When N is the Poincaré homology sphere and a 
Heegaard diagram of AI is given, Hayat-Legrand, Matveev and Zieschang have an 
algorithm to decide if AI d-dominates N [HMZ]. There are simple answers to Ques­
tion 1.1 in the following cases: (1) AI and N are prism spaces and d = 1 [HWZ2]; 
(2) At = N admit geometry of S3 and /» an automorphism on m [HKWZ]; (3) N 
is a lens space. I will state (3) as a theorem, since both its statement and proof 
are short, and since it has rich connections with previous results and with different 
topics. 

Theorem 1.4 ([HWZ1], [HWZ3]). A closed 3-manifold AI d-dominates the lens 
space L(p,q) if and only if there is an element a in the torsion part of Hi(M,Z) 
such that a® a = -^ in Q/Z, where a® a is the self-linking number of a. 

A direct consequence of Theorem 1.4 is the known fact that L(p, q) 1-dominates 
L(m,n) if and only if p = km and n = kqc2 mod m. This fact has at least four 
different proofs: using equivariant maps between spheres by de Rham (J. Math. 
1931) and by Olum (Ann. of Math. 1953), using Whitehead torsion by Cohen 
(GTM 10, 1972), using pinch in [RoW] and using linking pair in [HWZ1]. 

Degree one maps from general 3-manifolds to some lens spaces, in particu­
lar the RP3, have been studied by Bredon-Wood (Invent. Math. 1969) and by-
Rubinstein (Pacific J. Math. 1976) to find one-sided incompressible surfaces, by 
Luft-Sjerve (Topo. Appi. 1990) to study cyclic group actions on 3-manifolds, by 
Shastri-Williams-Zvengrowski [SWZ] in theoretical physics, by Taylor (Topo. Appi. 
1984) to define normal bordism classes of degree one maps, and by Kirby-Melvin 
(Invent. Math. 1991) to connect with new 3-manifold invariants. 

Degree one maps induce epimorphisms on m. There are easy examples indicate 
that Question 1.2 does not have direct correspondence in the level of 3-manifold 
groups [BW1], [RWZli]. However the following related question was raised in 1970's. 

Question 1.4 [Ki, Problem 1.12 (J. Simon)]. Conjectures: 
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(1) Given a knot group G, there is a number NQ such that any sequence of 
epimorphisms of knot groups G —¥ Gi —¥ .... —¥ Gn with n > NQ contains an 
isomorphism. 

(2) Given a knot group G, there are only finitely many knot groups H for 
which there is an epimorphism G —¥ H. 

According to a conversation with Gonzalez-Acuna, who discussed Question 1.4 
with Simon before it was posed, the epimorphisms in Question 1.4 are peripheral 
preserving in their minds. 

Theorem 1.5 ([So5], [RW]). The conjecture in Question 1.4 (1) holds if the knot 
complements involved are small. The conjecture in Question 1.4 (2) holds if the 
knot complements are small and the epimorphisms are peripheral preserving. 

The first claim is due to Soma [So5] and the second claim is in [RW]. Both of 
them invoke Culler-Shalen's work on the representation varieties of knot groups. It 
is also proved that any infinite sequence of epimorphisms among 3-manifold groups 
contains an isomorphism if all manifolds are either hyperbolic [So5] or Seifert fibered 
[RWZli]. In [RWZh], the proof uses the fact that epimorphisms between aspherical 
Seifert manifolds with the same m rank are realized by maps of non-zero degree. 
Both this fact and Question 1.4 (1) are variations of the Hopfian property. 

We end this section by mention that there are results about D(M, N) in [DW] 
for (n — l)-connected 2n-manifolds, n > 1, which are quite explicit and of interest 
from both topological and number-theoretic point of view. 

2. Uniqueness 
The following question is raised in 1970's. 

Question 2.1 [Ki, Problem 3.16 (W. Thurston)]. Suppose a 3-manifold AI is not 
covered by (surface) x S1 or a torus bundle over S1. Yet f,g : AI —t N be two 
coverings, must deg(f) = deg(g)? 

It is known [WWu2] that Question 2.1 has positive answer if AI admits geo­
metric decomposition and is not a graph manifold (AI is a graph manifold if each 
piece of its JSJ decomposition is Seifert fibered.) For graph manifolds there are four 
different covering invariants introduced in middle 1990's by [WWu2], Luecke and 
Wu [LWu], Neumann [N] and Reznikov [Rei] . Unfortunately all those four cov­
ering invariants are either vanishing or not well-defined for some non-trivial graph 
manifolds. It is also known that covering degree is uniquely determined if the graph 
manifold in the target is either a knot complement [LWu] or its corresponding graph 
is simple [WWu2, N]. The positive answer to Question 2.1 for graph manifolds was 
finally obtained in [YW], using the matrix invariant defined in [WWu2] and an 
elegant application of matrix theory due to Yu. 
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Theorem 2.1 ([WWu2], [YW]). For 3-manifolds admitting geometric decomposi­
tion and not covered by either (surface)xS1 or a torus bundle over S1, covering 
degrees are uniquely determined by the manifolds involved. 

It is worth mentioning an interesting fact that any knot complement is non-
trivially covered by at most two knot complements and any knot complement non-
tri vially covers at most one knot complement. The first claim follows from the 
cyclic surgery theorem of Culler-Gordon-Luecke-Shalen and the positive answer to 
the Smith Conjecture. The second claim is in [WWul]. 

Question 2.1 is equivalent to asking the uniqueness of indices of finite index 
embeddings between 3-manifold groups. Recently there are also some discussions 
on the uniqueness of indices of self-embeddings of groups. A group G is said to be 
co-Hopf if each self-monomorphism of G is an isomorphism. 

Question 2.2. Let G be either a 3-manifold group, or a Kleinian group, or a word 
hyperbolic group. When is G co-Hopf? 

The cohopficity of groups were first considered by Baer (Bull. AMS 1944). 
For word hyperbolic groups it was first considered by Gromov in 1987 [Gr2, p.157], 
and subsequently by Rips-Sela (GAFA, 1994), Sela [Se], and Kapovich-Wise (Isreal 
J. Math. 2001). Cohopficity of 3-manifold groups was first studied in 1989 by-
Gonzalez-Acuna and Whitten [GWh], and then in [WWu2] and [PW]. The answer 
for 3-manifolds admitting geometric decomposition with boundary either empty set 
or a union of tori is known [GWh], [WWu2], and partial results for 3-manifolds with 
boundary of high genus surfaces are in [PW]. Cohopficity of Kleinian groups was 
first considered in 1992 in an early version of [PW], then in 1994 in an early version 
of [WZhl], also by Ohshika-Potyagailo (Ann. Sci. Ecole Norm. Sup. 1998) and 
Delzant-Potyagailo (MPI Preprint, 2000) for high dimensional Kleinian groups. 

Theorem 2.2. Suppose K is a non-elementary, freely indecomposable, geometri­
cally finite Kleinian group and K contains no Z ® Z subgroup. Then 

(l)[Se], [PW], [WZhl] K is co-Hopf if K is a group of one end. 
(2)[\NZhl] If the singular locus of the hyperbolic 3-orbifold H3/K is a 1-

manifold, then K is co-Hopf if and only if no circle component of singular locus 
meets a minimal splitting system of hyperbolic cone planes. 

The proof of Theorem 2.2 (1) in [WZhl], influenced by that of torsion free 
case in [PW], use a generalization of Thurston-Gromov's finiteness theorem on the 
conjugacy classes of group embeddings (Delzant, Comm. Math. Helv. 1995) and 
a proper conjugation theorem of Kleinian groups (Wang-Zhou, Geometriae Dedi­
cata, 1995). Theorem 2.2 (2) is proved by using 3-dimensional hyperbolic orbifold 
structures and orbifold maps, which turn out to be useful geometric tools. 

Note that groups in Theorem 2.2 are word hyperbolic groups. According 
to Sela ([Se] and his MSRI preprints in 1994), people once expected that a non-
elementary word hyperbolic group is co-Hopf if and only if it has one end. Sela 
proved this expectation for the torsion free case [Se]. Theorem 2.2 (2) and examples 
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in [WZhl] show that cohopficity phenomenon is very complicated in the torsion case. 
In particular there are co-Hopf word hyperbolic groups which have infinitely many-
ends. 

Inspired by Questions 2.1 and 2.2 it is natural to ask 

Question 2.3. Are the indices (including the infinity) of embeddings H —t G 
between co-Hopf groups unique? 

3. Interactions with 3-manifold topology 
Degree one maps define a partial order on Haken manifolds and hyperbolic 

3-manifolds. By Gordon-Luecke's theorem knots are determined by their comple­
ments [GL]. We say that a knot K 1-dominates a knot K' if the complement of K 
1-dominates the complement of K'. 1-domination among knots also gives a partial 
order on knots. This partial order seems to provide a good measurement of com­
plexity of 3-manifolds and knots. The reactions of non-zero degree maps between 
3-manifolds and 3-manifold topology are reflected in the following very flexible 

Question 3.1. Suppose AI and N are 3-manifolds (knots) and AI 1-dominates 
(d-dominates) N. 

(1) Is a(AI) not "smaller" than a(N) for a topological invariant <7? 
(2) If AI and N are quite "close", are they homeomorphic? do they admit the 

same topological structure? 

Positive answers to Question 3.1 (1) are known in many cases. Suppose AI 
1-dominates N. Then a(M) > a(N) when a is either the rank of m, or Gromov's 
simplicial volume, or Haken number (of incompressible surfaces), or genus of knots; 
a(N) is a direct summand of a(M) when a is the homology group, and a(N) is a 
factor of a(M) if a is the Alexander polynomial of knots. The answer to Question 
3.1 (1) is still unknown for many invariants of knots and 3-manifolds, for example 
crossing number, unknotting number, Jones polynomial, knot energy, and tunnel 
number, etc. Li and Rubinstein are specially interested in Question 3.1 (1) for 
Casson invariant in order to prove it is a homotopy invariant [LRu]. 

There are both positive and negative answers to Question 3.1 (2), depending on 
the interpretation of the problem. On the negative side, Kawauchi has constructed, 
using the imitation method invented by himself, degree one maps between non-
homeomorphic 3-manifolds AI and N with many topological invariants identical, 
see his survey paper [Ka]. On the positive side, there are many results. An easy-
one is that if AI d-dominates N and both AI and N are aspherical Seifert manifolds, 
then the Euler number of AI is zero if and only if that of N is zero [Wl]. A deeper 
result is Gromov-Thurston's Rigidity theorem, which says that a degree one map 
between hyperbolic 3-manifolds of the same volume is homotopic to an isometry 
[Th2]. The following are some recent results in this direction. 

Theo rem 3.1 ([So4], [Sol]). (1) For any V > 0, suppose f : AI —t N is a degree 
one map between closed hyperbolic 3-manifolds with Vol(M) < V. Then there is a 
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constant c = c(V) such that (1 — c)Vol(AI) < Vol(N) implies that f is homotopic 
to an isometry. 

(2) If AI —t N is a map of degree d between Haken manifolds such that \\M\\ = 
d\\N\\, then f can be homotoped to send H(M) to H(N) by a covering, where \\*\\ 
is the Gromov norm and H(*) is the hyperbolic part under the JSJ decomposition. 

Theorem 3.2 ([BW1], [BW2]). (1) Let AI and N be two closed irreducible 3-
manifolds with the same first Betti number and suppose AI is a surface bundle. If 
f : AI —t N is a map of degree d, then N is also a surface bundle. 

(2) Let At and N be two closed, small hyperbolic 3-manifolds. If there is a 
degree one map f : AI —t N which is a homeomorphism outside a submanifold 
H c N of genus smaller than that of N, then AI and N are homeomorphic. 

(1) and (2) of Theorem 3.1 provide a stronger version and a generalization of 
Gromov-Thurston's Rigidity theorem, respectively. In respect of Theorems 3.2, the 
following examples should be mentioned: There are degree one maps between two 
non-homeomorphic hyperbolic surface bundles with the same first Betti number 
and between two non-homeomorphic small hyperbolic 3-manifolds [BW2]. The 
constructions of those maps are quite non-trivial. There are many applications 
of Theorem 3.2. We list two of them which are applications of Theorem 3.2 to 
Thurston's surface bundle conjecture and to Dehn surgery respectively, where degree 
one maps constructed by surgery on null-homotopic knots are involved. 

Theorem 3.3 ([BW1], [BW2]). (1) There are closed hyperbolic 3-manifolds AI 
such that any tower of abelian covering of AI contains no surface bundle. 

(2) Suppose AI is a small hyperbolic 3-manifold and that k C AI is a null-
homotopic knot, which is not in a 3-ball. If the unknotting number of k is smaller 
than the Heegaard genus of M, then every closed 3-manifold obtained by a non-
trivial Dehn surgery on k contains an incompressible surface. 

4. Standard forms 
Question 4.1. What are standard forms of non-zero degree maps and of automor­
phisms of 3-manifolds? 

Sample answers to analogs of Question 4.1 in dimension 2 are that each map 
of non-zero degree between closed surfaces is homotopic to a pinch followed by a 
branched covering [El], and each automorphism on surfaces can be isotoped to a 
map which is either pseudo Anosov (Anosov), or periodic, or reducible [Th3]. 

Theorem 4.1 (Haken, Waldhausen, [E2], [Ro2]). (1) A degree one map between 
closed 3-manifolds is homotopic to a pinch. 

(2) A map of degree at least three between closed 3-manifolds is homotopic to 
a branched covering. 

(3) A non-zero degree map between Seifert manifolds with infinite m is homo-
topic to a fiber preserving pinch followed by a fiber preserving branched covering. 
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(1) is proved by Haken (Illinois J. Math. 1966), also by Waldhausen, and a 
quick proof using differential topology is in [RoW]. (2) is proved by Edmonds [E2] 
quickly after Hilden-Montesinos's result that each 3-manifold is a 3-fold branched 
covering of 3-sphere. (3) is due to Rong [Ro2], which invokes [El]. According to 
conversations with D. Gabai and with M. Freedman, people are still wondering if 
each map of degree 2 between closed 3-manifolds is homotopic to a pinch followed 
by a double branched covering. 

For non-prime 3-manifolds, Cesar de Sa and Rourke claim that every auto­
morphism is a composition of those preserving and permuting prime factors (Bull. 
AMS, 1979), and those so-called sliding maps. A proof is given by Hendricks and 
Laudenbach [HL], and by McCullough [Mc]. 

Standard forms of automorphisms on prime 3-manifolds admitting geomet­
ric decomposition have been studied in [JWW]. The orbifold version of Nielsen-
Thurston's classification of surface automorphisms is established, i.e., each orbifold 
automorphism is orbifold-isotopic to a map which is either (pseudo) Anosov, or 
periodic, or reducible. We then have the following theorem. 

Theo rem 4.2 ([JWW]). Let AI be a closed prime 3-manifold admitting geomet­
ric decomposition. Let f : AI —t AI be an automorphism. Let fi be the product 
neighborhood of the JSJ tori. Then 

(1) f is isotopie to an affine map if AI is a 3-torus. 
(2) f is isotopie to an isometry if AI is the Euclidean manifold having a Seifert 

fibration over RP2 with two singular points of index 2. 
(3) f is isotopie to a map which preserves the torus bundle structure over 

1-orbifold if AI admits the geometry of Sol. 
(4) for all the remaining cases, f can be isotoped so that fi is invariant under 

f, and for each f-orbit O of the components in {fi, AI — fi}, f\0 is an isometry ifO 
is hyperbolic, f\0 is affine if O belongs to fi, otherwise there is a Seifert fibration 
on O so that f is fiber preserving and the induced map on the orbifold is either 
periodic, or (pseudo) Anosov, or reducible. 

As in dimension 2, standard forms in Theorems 4.2 are useful in the study of 
fixed point theory and dynamics of 3-manifold automorphisms. The following is a 
result in this direction. 

Theo rem 4.3 ([JWW]). Suppose AI is a closed prime 3-manifold admitting geo­
metric decomposition and f : AI —t AI is an automorphism. Then 

(1) the Nielsen number N(f) is realized in the isotopy class of f. 
(2) f is isotopie to a fixed point free automorphism unless some component 

of the JSJ decomposition of AI is a Seifert manifold whose orbifold is neither a 
2-sphere with a total of at most three holes or cone points nor a projective plane 
with a total of at most two holes or cone points. 
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1. Introduction 
The purpose of this note is to give a survey on recent progress on characteristic 

classes of flat bundles, and how they behave in a family. 

2. Characteristic classes 
Let X be a smooth algebraic variety over a field k. In [13] and [15], we defined 

the ring 

AD(X) = ®nADn(X) 

= ®nW(X,K^d^ün
x/k A . - . ^ Q ^ 1 ) (2.1) 

of algebraic differential characters. Here the Zariski sheaf K.ff is the kernel of the 
residue map from Milnor F'-theory at the generic point of X to Milnor F'-theory at 
codimension 1 points. More precisely, K.^ satisfies a Gersten type resolution (see 
[16] and [18]) 

/Cf 4 ( * f c ( x ) , . ^ ( f e W ) ^ e i e x ( i ) * I , . ^ i ( « ( x ) ) - ^ 

• • • ®œGxw iz,*K%_a(K(x)) - • . . . - • ®xexWix,,K^(K(x))). 

Here X^ means the free group on points in codimension a, while ix : x —ï X is the 
embedding. The map dlog({ai , . . . ,an}) = dlogai A • • • Adloga„ from Kff(k(X)) 
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to ^klX)/k c a r r i e s K-n to 

This defines the map dlog : K.^ —¥ 0 

üx/k = Ker(ü-{x)^®xex^ii^j 

n 
X/k-

By the Gersten resolution, Hn(X,K.ff) = CHn(X), the Chow group of codi­
mension n points. Thus one has a forgetful map 

ADn(X) f ^f CHn(X). (2.2) 

The restriction map to the generic point Spec(fc(X)) fulfills 

ADHX) 4 F ° ( X , Q x / f c / d l o g O x ) c A F 1 ( f c ( X ) ) 

ADn(X) -+ Ha{X,^/d^^)c^/k/dYÏ%^/k, for n > 2 (2.3) 

(see [2]). It is no longer injective for n > 2. 
The Kahler differential d : ^2

xfi} —̂  ^x/k cisd defines 

. 4 D » ( I ) 4 f f ° ( I , f ì ^ c M ) . (2.4) 

The ring AD(X) = ®nADn(X) contains the subring 

AF(X)eisd(X) = ®„AF« l sd(X) e „ H" (X, /Cf ^ 1 Qx/k -+ ... -+ iifj^x)) 

= K e r ( A F ( X ) 4 ® „ F ° ( X , Q ^ c l s d ) ) . (2.5) 

We call them the closed characters. The restriction map to Spec(fc(X)) fulfills 

AF^XOcisd 4 F°(X,Qx / f c j C l s d /dlogOx)cAF1(fc(X))eisd 
i2n—l\ r- 0-2»— 
lDR ) u nDR AF"(X)eisd -+ ^ f t ^ f l ^ f f ^ W ^ l A ) . f o r n > 2 (2.6) 

(see [2]). Here HP
DR is the Zariski sheaf of de Rham cohomology. 

If fc is the field of complex numbers C, one can change from the Zariski topology 
to the analytic one. This yields a map 

AD(X) = ® „ A F " ( X ) 4 

D(X) = ®nD
n(X) = ®nif"

n(X&n,Z(n)^Ax4...^A^-1). (2.7) 

Here D(X) is the ring of differential characters defined by Cheeger-Simons ([10]). 
One has 

i(AF(X)cisd) C en f f^ -^Xan .C /Zfn ) ) C D(X). (2.8) 

It is classical that AD1(X) is the group of isomorphism classes of lines bundles 
F with connection V. If £y £ Y(Uij,Ox) is a cocycle of F in a local frame e, of 
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F on Ui, and V(e») = a, £ Y(Ui,iix,k) is the local form of the connection, then 
dlogÇij = ctj —ai = ö(a)ij defines the Cech cocycle of ci((L, Vj). In [12], [13], [15], 
we generalize this class. 

Theo rem 2.1 ([12], [13], [15]). Associated to an algebraic bundle E with connection 
V (resp. with integrable connection), one has characteristic classes cn((E,\7j) £ 
ADn(X) (resp. £ ADn(X)cis^). These classes satisfy the following properties: 

(1) The classes c»((F, V)) £ AD*(X) are functorial and additive. 
(2) ci((E,\7j) is the isomorphism class of (det(E),det(Vj). 
(3) forget (cn((E,\7jj) = cn(E) £ CHn(X) is the Chern class of the underlying 

algebraic bundle E in the Chow group. 
(4) d(cn((E,\7))) = c„(V2) G F°(X,Q2»fcjClsd) is the Chern-Weil form which is 

the evaluation of the invariant polynomial cn on the curvature V2 . 
(5) The restriction to the generic point cn((E,\7)\k(x)) is the algebraic Chern-

Simons invariant CSn((E,\7j) defined in [4]. It has values in H°(X, 
nx/k/dlogOx) (resp.H°(X,nx/kcisd/dlogOx)) for n = 1, and in H°(X, 

^xTkl^xfk) (resp.H^X^fi1)) for n>2. 
(6) //fc C C, then i(Cn((E,Vjj) £ Dn(X)(resp. £ F f ^ - ^ X ^ C / Z ^ ) ) ) is the 

differential character defined by Chern-Cheeger-Simons, denoted by cn(Ejn) £ 
F 2 " - 1 (X a n ,C /Z(n ) ) i /V is integrable. 

If fc = C, V is flat and the underlying monodromy is finite, then the existence 
of cn((E, V))immediately implies that the Chern-Simons classes in F 2 " _ 1 ( X a n , 
Q(n)/Z(nj) are in the smallest possible level of the coniveau filtration ([14]). 

If X is complex projective smooth, V is integrable and n > 2, we relate 
CSn((E, V)) for n > 2 to the (generalized) Griffiths' group Griff"(X). It consists of 
cycles which are homologous to 0 modulo those which are homologous to 0 on some 
divisor([4], definition 5.1.1). For n = 2, [2] implies that GriS"(X) is the classical 
Griffiths' group. For n > 2, Reznikov's theorem ([19]) (answering positively Bloch's 
conjecture [3]), together with the existence of the lifting cn((E, V)), imply that the 
classes CSn((E, V)) lie in the image Im of the global cohomology H2n^1(X,Q(nj) 
in H°(X,H2n(Q(nj). This subgroup Im maps to Griff"(X). One has 
Theo rem 2.2 ([4], Theorem 5.6.2). 

image of CSn((E,\7j) £ GrifP(X) ®Q 

is the Chern class c(/j_"s(E) ® Q of the underlying algebraic bundle E. Moreover, 
CSn((E, V)) =0 if and only if c«r i f f(F) ® Q = 0. 

A relative version AD(X/S) of AD(X) is defined in [6]. We give here an 
example of application. 
Theo rem 2.3([6], Corollary 3.15). Let f : X —t S be a smooth projective family 
of curves over a field fc. Let (E,\7x/s) be a bundle with a relative connection. 

Then there are classes c2((F,V)) G AD2(X/S) := ïïf"(X,K.2 ^ 1 Û^®^ / s ) lifting 
the classes c2(E) £ CH2(X). There is a trace map /» : AD2(X/S) - • AD1(S) 
compatible with the trace map on Chow groups /» : CH2(X) —t CF 1 (S ) . Thus 
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f*c2(E, V) is a connection on the line bundle /»02(F), which depends functorially 
on the choice of Vx/s on E. 

We now study the behavior at 00 of CSn((E, Vj) for n > 2 in characteristic 
0. Let j : X —t X be a smooth compactification of X. Recall that a de Rham class 
G HpR(k(X)/k) at the generic point is called unramified if it lies in H°(X,Hg

DR c 
H«DR(k(X)/k)([2]). 
Theorem 2.4. We assume k to be of characteristic 0, and V to be integrable. Then 
CSn((E, Vj) is unramified for n>2. 
Proof. If (F, V) is regular singular, this is shown in [4], theorem 6.1.1. In general, 
one may argue as follows. One has 

H^X^R1) = K e r ( F ° ( X , ^ f l
1 ) * 4 ®xeX,XlH

2
D

n
R

2(x/kj). 

Thus it is enough to show that the residue map at each generic point at 00 dies. 
At a smooth point of a divisor D at 00, the residue depends only on the formal 
completion of X along D. So we may assume that V is a connection on Ox = 
k(D)[[x]], integrable relative to fc. By a variant (see [1], proposition 5.10.) of 
Levelt's theorem ([17]) for absolute flat connections, there are a finite extension 
K D k(D), and a ramified extension n : K[[x]] C FJffy]], yN = x for some N £ N\{0} 
such that n*(V) = ®(F ® U). Here F is integrable of rank 1 and U is integrable 
with logarithmic poles along y=0. Since Resy=on*(a) = Ar7r*(Resœ=o(o;)), and 
HpR(k(D)/k) C Hp

DR(K/k), functoriality and additivity of the classes imply that 
we may assume V = F ® U on K(fixj) with K = k(D), In a local frame we have 

dx 
the equations U = Y h S where F G GL(r,K[[x]]),E G M(r,K[[x]]) <g> 0 ^ , and 

dx 
L = d(f) + A h ß where / G K((x)),X £ k,ß £ SlY- with dß = 0. The explicit 

formula Res Tr(A(d(A))"-1) G H^fi^K) of CSn((E,Vj) £ H^iK^x))) and 
[4], prop. 5.10 in the logarithmic case, imply that 

ffff (IT 

CSn((E,Yj) = Tr(d(f) + ^f+ ß)(d(T)™ + dS)" - 1 . 

This is the sum of 2 terms with rational coefficients, Res Tr(d(/) + /3)(d(S)" -2 

dx dx 
d(Y) — ) and Res Tr(A—(d(S)" - 1)) . Both terms are obviously exact. 
Discussion 2.5. We assume here fc = C, V is integrable and n > 2. We consider the 
image c„ (F j n | c ( x ) ) G H°(X,H2n-HC/Z(n))) of CSn((E,V)) £ H^X,^^1). 
When X is not compact, there is Deligne's unique algebraic (F, V) with regular sin­
gularities at 00 with the given underlying local system F ^ ( [ l l ] ) , but there are many-
irregular connections (F, V). The topological class Cn(E^n) £ F 2 " _ 1 (X a n ,C /Z(n ) ) 
is not, a priori, extendable to X, but we have seen that its restriction to Spec(C(X)) 
is unramified. 

There is on X a fundamental system of Artin neighborhoods U which are 
geometrically successive fiberings in affine curves. Topologically they are Km 
and their fundamental group is a successive extension of free groups in finitely-
many letters. On such an open U, the class cn(Ejn) lies in H2n^1(Uain,C/Z(nj) = 
ff^Mtfan.t^C/Zfn)). 
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If U is such that m(Ua,n,u) is isomorphic as an abstract group to 7Ti(Van,w), 
where V is an Artin neighborhood on a rational variety, then Ejn\u becomes a 
representation of 7Ti(Van,w), and since then H° (V ,H?pR~1) = 0 for n > 2 and V C V 
a good compactification, one obtains cn(Ejn\c(X)) = 0,n > 2 in this case. Such an 
example is provided by a product of smooth affine curves of any genus. It has the 
fundamental group of a product of P1 minus finitely many points. 
Quest ion 2.6. In view of the previous discussion, we may ask what complex 
smooth varieties X are dominated by h :Y —¥ X proper, with Y smooth, such that 
Y has an Artin neighborhood, the fundamental group of which is the fundamental 
group of an Artin neighborhood on a rational variety, or more generally of a variety 
for which H° (smooth compactification, HQH) = 0 for n > 1. We have seen that 
this would imply vanishing modulo torsion of cn(Ejn\c(X)), n > 2, or equivalently 
CSn((E,V)) £ HOiX^-HQln))). 

On the other hand, if X is projective smooth, Reznikov's theorem ([19]) 
shows vanishing modulo torsion of the Chern-Cheeger-Simons classes in Jf2"^1 (Xan, 
C/Q(n)). It is a consequence of Simpson's nonabelian Hodge theory on smooth pro­
jective varieties. Our classes CSn((E, Vj) live at the generic point of X. We don't 
have a nonabelian mixed Hodge theory at disposal. Yet one may ask whether it is 
always true that CSn((E, Vj) £ H°'(X,H2n-1 (Q(n))) for n > 2, even if many X 
don't have the topological property explained above. 

3. The behavior of the algebraic Chern-Simons 
classes in families in the regular singular case 

The algebraic Chern-Simons invariants CSn((E,Vj) have been studied in a 
family in [5]. Given / : X —t S a proper smooth family, and (F, V) a flat connection 
on X, the Gauß-Manin bundles 

F 7 * ( Û x / S ® F , V x / s ) 

carry the Gauß-Manin connection GMl(V). We give a formula for the invariants 
CS„((GM*(V)-rank (V) • GAF(d))) on S, as a function of CSn((E,Vj) and of 
characteristic classes of / . Here (0,d) is the trivial connection. 

More generally, we may assume that / is smooth away from a normal crossings 
divisor T c S such that Y = / _ 1 ( F ) c X is a normal crossings divisor with the 
property that 0^. , s(logF) is locally free. Then (E,V) has logarithmic poles along 
Y U Z where Y U Z C X is a normal crossings divisor, still with the property that 
0^. , s(log(F + Zj) is locally free. That is Z is the horizontal divisor of singularities 
of V. The formula involves the top Chern class Cd(iix,s(log(Y + Zj) £ Md(X, K,d —̂  
®iXzLd), rigidified by the residue maps iix,s(log(Y + Zj) —t Ozt, as defined by T. 
Saito in [20]. One of its main features is that CSn((GM*(V) — rank (V) • GM%(d))) 
vanishes if CSn((E,Vj) vanishes. It is 
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Theo rem 3.1 ([5], Theorem 0.1). 

CSn^i^yiGM^V) - rank(V) • GMfidjj) 

= hl)dim{X/S)f*cdim{x/S)(nx/s(log(Y + Z)),res) • CSn((E,V)). 

Here • is the cup product of the algebraic Chern-Simons invariants with this rigidified 
class, which is well defined, as well as the trace /» to S. 
Discussion 3.2. One weak point of the method used in [5] is that it does not 
allow to understand a formula for the whole invariants cn((E,Vj), but only for 
CSn(E, V). Indeed, we use the explicit formula studied in [4] to compute it, which 
can't exist for the whole class in AD(X), as it in particular involves the Chern 
classes of the underlying algebraic bundle F in the Chow group. 

4. The determinant of the Gauss-Manin connec­
tion: the irregular rank 1 case 

Now we no longer assume that (F, V) is regular singular at oo. In the next 
two sections, we reduce ourselves to the case where / : X —t S is a family of curves, 
and we consider only the determinant of the Gauß-Manin connection. That is we 
consider 

det (GM) := ^ ( - l ) i c i ( G M i 

G H 1 ^ , © ! ^1 Q )̂ c nl(S)/diog(k(S)r. 

Since the determinant is recognized at the generic point of S, we replace S by its 
function field K := k(S) in the next two sections. In other words, X/K is an affine 
curve. Let X/K be its smooth compactification. 

In this section, we assume that the integrable connection (F, V) we start with 
on X has rank 1. Following Deligne's idea (see his 1974 letter to Serre published 
as an appendix to [7], we first reduce the problem of computing the determinant 
of the cohomology of V on the curve to the one of computing the determinant of 
cohomology of an integrable invariant connection, still denoted by V, on a gen­
eralized Jacobian. More precisely, V has a divisor (with multiplicities) of irregu­
larity ^i'miPi, where m, — l=irregularity of V in pt £ X \ X. On the Jacobian 
G = P i c ( X , ^ ! rriiPi) of line bundles trivialized at the order m, at the points pi, 
there is an invariant connection which pulls back to V via the cycle map. On the 
torsor p~1(uJxŒ^imiPi)) under the affine group p^1(Ox), where p : G —¥ Pic(X), 
one considers the hypersurface S : ^ . resPi = 0. We show that the relative invariant 
connection V/K on G, while restricted to S e P~1(^xŒ^i mìPìj), acquires exactly-
one zero which is a FJ-rational point K of G. Restricting V to this special point 
yields a connection V|K on K. The formula then says that the determinant of the 
Gauß-Manin connection is the sum of this connection V|K and of a 2-torsion term, 
which we describe now. In a given frame of F at a singularity pi, the local equation 
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of the connection is a, = a,-^y+lower order terms, where ti is a local parameter 

and a, G fcx. Then the 2-torsion connection ^ d l o g a , G iì1
K,k/dlogKx does not 

depend on the choices and is well defined. The 2-torsion term is the sum over the 
irregular points of these 2-torsion connections. Summarizing, one has 
Theo rem 4.1 ([7], Theorem 1.1). 

d e t f ^ ( - l ) i F i ( X , ( Q ^ / i f ® F , V x / K ) , G A F ( V ) J 

= ( -1 )V | K + Yl TY<ilogai£n1
K/k/dlogKx. 

i,ro;>2 

Discussion 4.2. The formula described above is global. As such, it has a spirit 
which is different from Deligne's formula describing the global e-factor of an £-adic 
character over a curve over a finite field as a product of local e-factors. However, 
choosing another FJ-rational point K' £ P~1(uxŒ*imiPi))i it is e a s y to write the 
difference V|K< — V|K as a sum of explicitly given connections on K. One has 
u • K1 = K, where u = FJu» G p^Ox = O i ( ^ ^ , p i /

r n P i ) x / ^ x • Then Vv = 
V|K — J2i ReSj,;dlog«j A a». Correspondingly, one may write the right hand side of 
the formula above as 

( —1)V|K' + y j f sup (l , —^)dloga, + ResPidlog«j A a, 
i 

In particular, the choice of some differential form v £ OJX/K ® K(X), generating 
UJx/KŒ*miPi) a t the point Pi, defines a trivialization of ujx/KŒ*imiPi) thus a 

point K(V). We write a, = giv with gt £ (Ox,pi/xnPi)
x. Then the formula reads 

Theo rem 4.3 ([7], Formula 5.4). 

det (^(-lYiH'iX,^« ®L,V x/K^^MfiV) 

(-l)det(V)|K( l,) + J ^ fsup ( l ,—1)dloga i + ResPidgigi
 1 Aajj . 

5. The determinant of the Gauss-Manin connec­
tion: the irregular higher rank case 

We assume in this section that we have an affine curve X over K = k(S), k of 
characteristic zero as in the rank 1 case. The integrable connection (F, V) we are 
given on X has higher rank r. 

In the rank one case, for any rank one bundle contained in j*E, the equation 
of the connection in a local formal frame at a singular point is of the shape a = 

dt ß 
a 1 —j-, where m G N,a G FJ[[r]]x, ß G 0 ^ ® FJ[[r]]. In particular, (m — 1) is 

the irregularity of the connection ([11]). Here £ is a local parameter. If r > 1, it is 
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no longer the case that j*E necessarily contains a rank r bundle such that in a local 
dti ßi 

formal frame of this bundle, the local equation has the shape Ai = a,—- H ^-j-, 
ti ti 

with a, G GL(r,K[[ti]]),ßi G ifiK ® M(r,K[[ti]]). We call an integrable connection 
(F, V) with this existence property an admissible connection. 

Even if (E,V) is admissible, its determinant connection det(F, V) might have 
much lower order poles (for example trivial). This indicates that one can not extend 
directly in this form the formula 4.1. However, assuming (E,V) to be admissible 
and choosing some v £ OJX/K ® ^(X) which generates i^C^,imiPi) a t Pi a s f° r 

formula 4.3, the right hand side of 4.3 makes sense, if one replaces dloga, by 
d log det (a»). Using global methods inspired by the Higgs correspondence between 
Higgs fields and connections on complex smooth projective varieties ([21]), one is 
able to prove the "same" formula as 4.3 in the higher rank case on P1. 
Theo rem 5.1 ([8], Theorem 1.3). If (E,V) is admissible and has at least one 
irregular point, and if v £ OJX/K ® ^(X) generates uCJ^^iPi) at the points pi, 

then 

det lj2(^y(Hi(X,(nx/K®L,Vx/K),GMi(Vj)) 

= (-1)V|K(„) + ^2 (SUP C1» -y)dlogdet(ai(pij) + Tr R e s ^ d t ^ 1 A AA . 
ì 

The connection Res T r ^ d g , ^ 1 A At £ Q1
K/dlogKx is well defined, as well as 

TH, ' 
the 2-torsion connection sup (l , —-)dlogdet(a,(p,)). 

However, one needs a different method in order to understand the contribution 
of singularities in which (F, V) is not admissible. 

We describe now the origin of the method contained [1]. It is based on the 
idea that Tate's method ([22]) applies for connections. 

Locally formally over the Laurent series field K((tj), E becomes a r-dimensional 
vector space over K((tj). The relative connection VK((T))/K '• E —¥ i^K((t))/K ® E 
is a Fredholm operator. This means that FF(VX/K),ì = 0,1 are finite dimen­
sional FJ-vector spaces, and that VX/K carries compact lattices to compact lat­
tices. Let F = ®\K((ij) be the choice of a local frame. A compact lattice is a 
FJ-subspace of F which is commensurable to ®iFJ[[r]]. Given 0 fi^ v ^ G ^K((t))lK, 
one composes VK((t))/K,v '•= l/^1 ° ^K((t))/K '• E —t E to obtain a Fredholm 
endomorphism. To a Fredholm endomorphism A : E —t E, one associates a 
1-dimensional FJ-vector space X(A) = det(F°(A)) ® de t (F 1 (A)) _ 1 together with 
the degree x(A) = dimF°(A) — dimF1(A). We call this a super-line. It does 
not refer to the topology defined by compact lattices. Then one measures how A 
moves a compact lattice F c E. First for 2 lattices F and F', one takes a smaller 
compact lattice N c F n F' and defines det(F : F') := det(L/N) • det(F'/A r)_ 1 , 
where • is the tensor product of super-lines and det(L/N) has degree dim(L/N). 
This does not depend on the choice of N. Then one defines asymptotic superlines. 
The compact one is XC(A) = det(A(F) : F) -det(FnKer(A)) and the discrete one is 
Xd(A) = det(F : A^1^)) • det(V/(L + A(\'j). They do not depend on the choice of 
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F. Taking Ofi^ v £ UJXIK®K(X) a rational differential form, and F m ; n the minimal 
extension of F , X the complement of the singularities of v and VX/K, o n e h a s 

V\-\ det H*(X / K,Emin) = ®X€XXXXd(VK(m/K:l,)-det(Ev) 

as a product of discrete lines. 
On the other hand, one has the relation X(A) = Xd(A) • AC(A)_1. One easily 

computes that x(^K((t))/K,v) = 0,X(VK((t))/K,i>) = 1- Setting 

£-x(VK((t))/K,v) = XC(VK((t)/K,v) • d e t ( F ) _ , 

this implies immediately the product formula. 
Theo rem 5.2 ([1], (1.3.1)). 

det H* (X/K, Fm i n) = ®xex\xex(V K((t))/K,v)-

It remains to endow the local e lines with a connection, compatible with the 
Gauß-Manin connection on the left. One chooses a section of the vector fields 
TK/k C Tx/k a n d a relative differential form v which is annihilated by this section. 
One applies Grothendieck's definition of a connection. The Gauß-Manin connection 
is given by the infinitesimal automorphismp\detH*(X/K, Fm;n) —t pi det H*(X/K, 
Fm;n) on K ®k K, induced by r : p\Em\n —t p2Emin,r £ TK/k, which by the 
choice commutes to VX/K• By functoriality of the e lines, this defines a K ®k K 
homomorphism p\e —t p\e. This is the e-connection. 
Theo rem 5.3 ([1], Theorem 5.6). For an admissible connection of local equation 
A dt ß . , „ , , , . . 

A = a 1 - , with m> 2, the local e-connectton is 
jm £™ — 1 — 

dt m 
e(Vif((t))/if, —) = TrRes t = 0daa_ 1A + — dlogdet(a(t = 0)) 

G Ü^JdlogK-. 

The restriction on the choice of v given by the commutativity constraint with 
some lifting of vector fields of K is not necessary. The construction is more general. 

Given a relative connection V K ((t))/K, the e-lines for 0 ^ v £ u L » , , K build a 
super-line bundle on the ind-scheme ^Knt\\iK- The line bundle obeys a connection 
relative to K on ^Knt\\iK- Formula 5.2 identifies line bundles with connections 
relative to K, where the left hand side carries the constant connection. The choice 
of an integrable lifting V of VX/K yields a lifting of the relative connection on the e 
line to an integrable connection relative to fc. Formula 5.2 identifies line bundles with 
integrable connections where the left hand side carries the Gauß-Manin connection 
([1], 1.3). 

The e lines and connections are additive in exact sequences and compatible 
with push-downs. By a variant of Levelt's theorem for integrable formal connections, 
this allows to show that all connections are induced from admissible ones, for which 
we have the formula 5.3. 
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Question 5.4. We don't know how to precisely relate the algebraic group viewpoint 
developed to treat the rank 1 case, and the special rational point found there, with 
the polarized Fredholm line method which works in general. 
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Hilbert Schemes of Points on Surfaces 

L. Göttsehe* 

Abstract 

The Hilbert scheme S*-n> of points on an algebraic surface S is a simple 
example of a moduli space and also a nice (crêpant) resolution of singularities 
of the symmetric power S-"''. For many phenomena expected for moduli spaces 
and nice resolutions of singular varieties it is a model case. Hilbert schemes 
of points have connections to several fields of mathematics, including modu­
li spaces of sheaves, Donaldson invariants, enumerative geometry of curves, 
infinite dimensional Lie algebras and vertex algebras and also to theoretical 
physics. This talk will try to give an overview over these connections. 
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0. Introduction 
The Hilbert scheme S^ of points on a complex projective algebraic surface S is 

a a parameter variety for finite subschemes of length n on S. It is a nice (crêpant) 
resolution of singularities of the n-fold symmetric power S^ of S. If S is a K3 
surface or an abelian surface, then S^ is a compact, holomorphic symplectic (thus 
hyperkähler) manifold. Thus S^ is at the same time a basic example of a moduli 
space and an example of a nice resolution of singularities of a singular variety. There 
are a number of conjectures and general phenomena, many of which originating from 
theoretical physics, both about moduli spaces for objects on surfaces and about nice 
resolutions of singularities. In all of these the Hilbert scheme of points can be viewed 
as a model case and sometimes as the main motivating example. Hilbert schemes 
of points on a surface have connections to many topics in mathematics , including 
moduli spaces of sheaves and vector bundles, Donaldson invariants, Gromov-Witten 
invariants and enumerative geometry of curves, infinite dimensional Lie algebras and 
vertex algebras, noneommutative geometry and also theoretical physics. 
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It is usually best to look at the Hilbert schemes S^ for all n at the same 
time, and to study their invariants in terms of generating functions, because new 
structures emerge this way. For Euler numbers, Betti numbers and conjecturally 
for the elliptic genus these generating functions will be modular forms and Jacobi 
forms. This fits into general conjectures from physics about invariants of moduli 
spaces. Also the cohomology rings of the S^ for different n are closely tied together. 
The direct sum over n of all the cohomologies is a representation for the Heisenberg 
algebra modeled on the cohomology of S, and the cohomology rings of the S^ can 
be described in terms of vertex operators. In the case that the canonical divisor of 
the surface S is trivial, this leads to an elementary description of the cohomology 
rings of the S^n\ which coincides with the orbifold cohomology ring of the symmetric 
power, giving a nontrivial check of a conjecture relating the cohomology ring of a 
nice resolution of an orbifold to the recently defined orbifold cohomology ring. 

The Hilbert schemes S^ are closely related to other moduli spaces of objects 
on S, including moduli of vector bundles and moduli of curves e.g. via the Serre 
correspondence and the Mukai Fourier transform. This leads to applications to the 
geometry and topology of these moduli spaces, to Donaldson invariants, and also 
to formulas in the enumerative geometry of curves on surfaces and Gromov-Witten 
invariants. We want to explain some of these results and connections. We will not 
attempt to give a complete overview, but rather give a glimpse of some of the more 
striking results. 

1. The Hilbert scheme of points 
In this article S will usually be a smooth projective surface over the complex 

numbers. We will study the Hilbert scheme S^ = Hilbn(S) of subschemes of length 
n on S. The points of S^ correspond to finite subschemes W C S of length n, 
in particular a general point corresponds just to a set of n distinct points on S. 
S^ is projective and comes with a universal family Zn(S) C S^ x S, consisting of 
the (W, x) with x £ W. An important role in applications of S^ is played by the 
tautological vector bundles F ^ := n*q*(L) of rank n on S^. Here n : Zn(S) —̂  S^ 
and q : Zn(S) —¥ S are the projections and F is a line bundle on S. 

Closely related to S^ is the symmetric power S^ = Sn/Gn, the quotient 
of Sn by the action of the symmetric group Gn. The points of S^ correspond to 
effective 0-cycles ^ n»[xj], where the xi are distinct points of S and the sum of the 
rii is n. The forgetful map 

p : SW - • S{n), W ^ Y, l e n ( °w,x ) M 

is a morphism. The symmetric power S^ is singular, as for instance the fix-locus of 
any transposition in Gn has codimension 2. On the other hand by [22] S^ is smooth 
and connected of dimension 2n and p : S^ —t S^ is a resolution of singularities. 
In fact this is a particularly nice resolution: If Y is a Gorenstein variety, i.e. the 
dualizing sheaf is a line bundle Ky, a resolution / : X —t Y of singularities is called 
crêpant if it preserves the canonical divisor, that is f*Ky = Kx- It is easy to see 
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that p : S^ —t S^ is crêpant. In the special case that S is an abelian surface or a 
K3 surface one can get a better result: A complex manifold X is called holomorphic 
symplectic if there exists an everywhere non-degenerate holomorphic 2-form <j> on 
X. If furthermore <j> is unique up to scalar, X is called irreducible holomorphic 
symplectic. A Kahler manifold X of real dimension in is called hyperkähler if its 
holonomy group is Sp(n). Compact complex manifolds are holomorphic symplectic 
if and only of they admit a hyperkähler metric. In [7] it is shown that for a K3 surface 
S the Hilbert scheme S^ is irreducible holomorphic symplectic. There also, for 
an abelian surface A, the generalized Kummer varieties are constructed from AM. 
They form another series of irreducible holomorphic symplectic manifolds. The only-
other examples of compact hyperkähler manifolds, known not to be diffeomorphic 
to one in the above two series are the two isolated examples of resolutions of singular 
moduli spaces of sheaves on K3 and abelian surfaces in [47],[48]. 

2. Betti number, Euler numbers, elliptic genus 
For many questions about the Hilbert schemes S^ one should look at all 

n at the same time. The first instance of this are the Betti numbers and Euler 
numbers, for which we can find generating functions in terms of modular forms. 
Let % := {T £ C | S(r) > 0}. A modular form of weight k on Sl(2, Z) is a function 
/ : H - • C s.th. 

'(£ï!)=<" +«''<"• (* dH<2-z>' 
Furthermore, writing q = e 2 " T , we require that, in the Fourier development / ( r ) = 
12nezanQn, all the the negative Fourier coefficients vanish. If also cto = 0, / 
is called a cusp form. The most well-known modular form is the discriminant 
A ( T ) := g [ ] n > 0 ( l — qn)24, the unique cusp form of weight 12. The Dirichlet eta 
function is n = A1 /2 4 . 

For a manifold X we denote by p(X, z) := '^2i(^l)tbi(X)zt the Poincaré poly­
nomial and by e(X) = p(X, 1) the Euler number. The Betti numbers and Euler 
numbers of the S^ have very nice generating functions [24]: 

j2p(s[n],z)tn=nn(i-^-2+v)(-i),+iSi(s). (2.1) 
n>0 k>\ i=0 

In particular Y,n>oe(sln])Qn~<S)/2i = v(r)~<S) • 
This was first shown in [19] in the case of the projective plane and of Hirzebruch 

surfaces using a natural C* action. The proof in [24] uses the Weil Conjectures. 
An important role in this proof as in all subsequent generalizations and refinements 
is played by the following natural stratification of S^ and S^ parametrized by 
the set P(n) of partitions of n. For a partition a = (ni,...,nr) £ P(n), the 
corresponding locally closed stratum Sa

n of S^ consists of the set of zero cycles 
^i[#i] + • • • + nr[a:r] with xi,...,xr distinct points of S. We put Sa = p~1(Sa )• 
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A partition a = (ni,...,nr) £ P(n) can also be written as a = ( l a i , . . . , n a " ) , 
where a, is the number of occurences of i in (m,..., nr). We put \a\ = r = ^ a^. 
Then (2.1) can be reformulated as 

p(S^,z)= Y, p(S{ai) x ...xS{a-),z)z2{n-^). (2.2) 
a£P(n) 

This result has been refined to Hodge numbers in [30], [11] and this was generalized 
in [13] to the Douady space of a complex surface. It has been further refined to 
determine the motive and the Chow groups [14] and the element in the Grothendieck 
group of varieties of S M [28]. 

Partially motivated by (2.1) and using arguments from physics in [15] a con­
jectural refinement to the Krichever-Höhn elliptic genus is given. We restrict our 
attention to the case that Kx = 0 when the elliptic genus is a Jacobi form. For a 
complex vector bundle F on a complex manifold X and a variable t we put 

At(F) : = 0 A ' ( E ) t ' , St(E) := (£)Sk(E)tk. 
k>0 k>0 

For the holomorphic Euler characteristic we write x(A^, A t(F)) := ^x(X, AkE)tk 

and similarly for St(E). Then the elliptic genus is defined by 

<KX,q,y) := X [X, J ] A_y-lqmTx ® A_ygm-iTx ® Sqm(Tx ® T*x] 
\ ™>! 

Writing <j>(S) := ^2m>0 i c(m,l)qmyl, the conjecture is 

£ 4>(S^)pN = u Ti n-^ 
^-^ -LJ- (1 — pnqm 
N>0 n>0,m>0 

M yfiQniyl\c(nni:l) 

3. Infinite dimensional Lie algebras and the coho­
mology ring 

We saw that one gets nice generating functions in n for the Betti numbers of the 
S^. Now we shall see that the direct sum of all the cohomologies of the S M carries 
a new structure which governs the ring structures of the Hilbert schemes. We only 
consider cohomology with rational coefficients and thus write H*(X) for H*(X, Q). 
We write H := H*(S); for n > 0 let H„ := H*(S^). and H := ® n > 0 H „ . 
We shall see that H is an irreducible module under a Heisenberg algebra. This 
was conjectured in [54] and proven in [45],[32]. H contains a distingished element 
1 £ H 0 = Q. We denote by Js and Js[n] the evaluation on the fundamental class 
of S and S^. Define for n > 0 the incidence variety 

Zhn := {(Z,x,W) £ SW xSx SV+n^ \ Z c W,p(W) - p(Z) = n[x]}, 
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and use this to define operators 

pn:H -> End(H); pn(a)(y) := pi^(pr*2(a) Upr{(y) D [Z,,„]). 

Let p-n(a) := ( —l)np_n(a)t, where t denotes the adjoint with respect to / 5 [ n ] , and 
Po(a) := 0. By [45],[32] the pn(a) fulfill the commutation relations of a Heisenberg 
algebra: 

[Pn(a),Pm(ß)] = (^iT^nôn-n-J a-ßJidH, n, m £ Z, a, ß £ H. (3.1) 
J S 

We can interpret this as follows. Let H = H+ ® FA be the decomposition into even 
and odd cohomology. Put S*(H) := @ i > 0 S

%(H+) ® @ i > 0 A*(FA). The Fock space 
associated to H is F(H) := S*(H ® tQ[t]). Using the above theorems one readily 
shows that there is an isomorphism of graded vector spaces F(H) —¥ H. With this 
H becomes an irreducible module under the Heisenberg-Clifford algebra. 

The ring structure of the H*(S^) is connected to the Heisenberg algebra 
action. Given an action of a Heisenberg algebra, a standard construction gives 
an action of the corresponding Virasoro algebra. The important fact however, 
proven in [37] is that the Virasoro algebra generators have a geometrical inter­
pretation tying them to the ring structure of the cohomology of the S^. Let 
Ö : S —¥ S x S be the diagonal embedding, and let Ö* : H*(S) —¥ H*(S x S) be 
the corresponding pushforward. Let pvpn-v8(a) : H*(S) —¥ End(H) be defined 
as pvpn-v(ß x 7) := p„(/?)pn_„(7) applied to 5* (a) £ H x H. For B / 0 define 
Ln(a) := Y<ve7.PvPn-v8*(ct), and L0(a) := Y,v>aPvP-v8*(a). These operators 
satisfy the relations of the Virasoro algebra: 

Yi^ — fi / f \ 

[Ln(a),Lm(ßj] = (n -m)Ln+m(ab) + 6n _TO——— f / c2(S ,)a6jidH. (3.2) 

Let d : H —̂  H be the operator which on each H*(S^) is the multiplication with 
ci(€>M), where O^ = nJZn(Sj) is the tautological vector bundle associated to 
the trivial line bundle on S. The tie given in [37] to the ring structure is: 

[d,pn(a)] = nLn(a) + (f\pn(Ksa), n>0,a£ H*(S). (3.3) 

In [42], for each a £ H*(S), classes a^ £ H*(S^) are defined as generatizations 
of the Chern characters ch(F^) of tautological bundles, which are studied in [37]. 
The homogeneous components of the a^ generate the ring H*(S^). [37],[42] 
relate the multiplication by the a M to the higher order commutators with d: Let 
«[*] : H -> H be the operator which on every H*(S^) is the multiplication with 
«["], then 

[a^,pi(ßj] =eMad(d))pi(aß), (3.4) 

where for an operator A : H —t H, ad(d)A = [d, A]. 
(3.2),(3.3),(3.4) determine the cohomology rings of the S^. In case Kg = 0 

this is used in [38],[39] to give an elementary description of the cohomology rings 
H*(S^) in terms of the symmetric group, which we will relate below to orbifold 
cohomology rings. 
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4. Orbifolds and orbifold cohomology 

Let X be a compact complex manifold with an action of a finite group G and 
assume that for all 1 ^ g £ G the fixlocus Xs has codimension > 2. The quotient 
X/G will usually be singular, but the stack quotient [X/G] is a smooth orbifold. In 
physics [16],[17] the following orbifold Euler characteristic has been introduced 

e(X,G):= Y. e(X^h)=Y<X9IC(9))-
gh=hg<EG [g]CG 

Here the first sum runs over all commuting pairs in G and Xs'h is the set of common 
fixpoints; the second sum runs over the conjugacy classes [g] of elements in G and 
C(g) is the centralizer of g. If Y —t X/G is a crêpant resolution, then it was 
expected that e(X,G) = e(Y). As the conjugacy classes of the symmetric group 
Gn correspond to the partitions of n, one can see [33] using formula (2.2) that this 
is true for the resolution of S^ by S^n\ which was an important check for this 
conjecture. 

Orbifold Euler numbers have been refined to orbifold cohomology groups [60]. 
We again take all cohomology with Q coefficients. Define a rationally graded Q-
vector space 

H*orb([X/G]) := 0 H*(X"/C(g)). 
M CG 

The grading is defined as follows. Assume for simplicity that all Xs are connected. 
For x £ Xs let e27!tri,..., e27!trk be the eigenvalues of g on Tx,x- Put a(g) := ^ rì € 
Q where rt £ [0,1). This is independent of x. For a £ Hl(Xs/C(gj) its degree in 
the [g]-th summand of H*rb([X/G\) is i + 2a(g). If X/G is Gorenstein, then it is 
easy to see that a(g) £ Z>0. For crêpant resolutions Y —t X/G, it was conjectured 
that H*rb([X/G]) = H*(Y) as graded vector spaces. In the case of S^ —t S^ 
this can again be verified from formula (2.2). In [6] it has been established for all 
crêpant resolutions Y —t X/G. 

Recently orbifold cohomology rings, i.e. a ring structure on the orbifold co­
homology have been defined as a special case of quantum cohomology of orbifolds 
[12],[2],[1]. In [50] it is conjectured for an orbifold X with a hyperkähler resolution 
Y —t X, i.e. a crêpant resolution such that Y is hyperkähler, that the orbifold 
cohomology ring of X is isomorphic to H*(Y). The most relevant case of such a 
resolution is S^ —t S^ when K$ = 0. This is precisely the case in which [39] 
gives an elementary description of the cohomology ring of S^. In [21],[52] an el­
ementary description of the orbifold cohomology of a quotient [X/G] by a finite 
group is given. We define H*(X,G) := J2geG H*(XS). This carries a G-action 
by h • ag = (h*a)hgh-i, and, for a suitable grading on H*(X,G), it follows that 
the G invariant part is just H*rb([X/G\) as a graded vector space. In order to 
define the ring structure on H*rb([X/G\) one therefore defines a ring structure on 
H*(X,G) compatible with the G-action. In [39] the cohomology ring H*(S^) is 
also described as the Gn invariant part of a ring structure on H*(Sn,Gn) and one 
checks that the two ring structures on H*(Sn,Gn) coincide up to an explicit sign 
change, thus proving the conjecture of [50] for S^. 
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If n :Y —¥ X/G is only a crêpant resolution but not hyperkähler, then usually 
H*rb([X/G\) and H*(Y) are not isomorphic as rings. However in [51] a precise 
conjecture is made relating the two: One has to correct H*rb([X/G\) by Gromov-
Witten invariants coming from classes of rational curves Y contracted by n. In the 
case of the Hilbert scheme these curve classes are the multiples of a unique class. 
The conjecture was verified for S^. 

5. Moduli of vector bundles 
We denote by Mg(r,ci,c2) the moduli space of Gieseker F-semistable coher­

ent sheaves of rank r o n S with Chern classes ci, c2. Here a sheaf T of rank r > 0 on 
S is called semistable, \fx(f3®Hn)/r' < x(J7®Hn)/r for all sufficiently large n and 
for all subsheaves Q C T of positive rank r'. As Mg(l,0,c2) ~ Pic°(S) x S^-C2\ the 
Hilbert scheme of points is a special case. We will often restrict our attention to the 
case of r = 2 and write Mg(ci,c2). The Hilbert schemes of points are related in sev­
eral ways to the Mg(ci,c2). The most basic tie is the Serre correspondence which 
says that under mild assumptions rank two vector bundles on S can be constructed 
as extensions of ideal sheaves of finite subschemes by line bundles. Related to this 
is the dependence of the Mg(ci,c2) on the ample divisor H via a system of walls 
and chambers. This has been studied by a number of authors (e.g. [49],[23],[18]). 
Assume for simplicity that S is simply connected. A class £ £ H2(S,Z) defines a 
wall of type (01,02) if £ + ci £ 2H2(S, Z) and c\ — 4c2 < £2 < 0. The correspond­
ing wall is W^ = {a £ H2(S,H) | a • £ = 0}. The connected components of the 
complement of the walls in H2(X, R) are called the chambers of type (01,02). If a 
sheaf £ £ Mg(ci,c2) is unstable with respect to F, then there is a wall W^ with 
F £ < 0 < F£ and an extension 

0^1z®A^£^lwxB^0, 

where A,B £ Pic(S) with A — B = £ and lz, lw are the ideal sheaves of zero 
dimensional schemes on S. It follows that Mg(ci,c2) depends only on the chamber 
of H and the set theoretic change under wallcrossing is given in terms of Hilbert 
schemes of points on S. In the case e.g. of rational surfaces and K3-surfaces, 
the change can be described as an explicit sequence of blow ups along P*. bundles 
over products S^ x S^ followed by blow downs in another direction [23],[18]. 
The change of the Betti and Hodge numbers under wallcrossing can be explicitly-
determined and this can be used e.g. to determine the Hodge numbers of Mg (01,02) 
for rational surfaces. For suitable choices of H one can find the generating functions 
in terms of modular forms and Jacobi forms [27]. 

The appearance of modular forms is in accord with the S-duality conjectures 
[54] from theoretical physics, which predict that under suitable assumptions the 
generating functions for the the Euler numbers of moduli spaces of sheaves on 
surfaces should be given by modular forms. One of the motivating examples for 
this conjecture is the case that S is a K3-surface. In this case the conjecture is that, 
if Mg(ci,c2) is smooth, then it has the same Betti numbers as the Hilbert scheme of 
points on S of the same dimension. Assuming this, the formula (2.1) for the Hilbert 
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schemes of points implies that the generating function for the Euler numbers is a 
modular form. If Ci is primitive this was shown in [29]. The result was shown in 
general for Mg(r, 01,02) with r > 0 in [57],[59], by relating the Hilbert scheme and 
the moduli space via birational correspondences and deformations. One concludes 
that Mg(r,ci,c2) has the same Betti numbers as the Hilbert scheme of points of 
the same dimension, as both spaces are holomorphic symplectic [44] and birational 
manifolds with trivial canonical class have the same Betti numbers [5]. Similar 
results are shown in [58] for abelian surfaces. Other motivating examples for the 
S-duality conjecture were the case of P2 [56] and the blowup formula relating the 
generating function for the Euler numbers of the moduli spaces of rank 2 sheaves on 
a surface S to that on the blowup of S in a point, which has since been established 
([40],[41], see also [27]). 

The moduli spaces Mg(ci,c2) can be used to compute the Donaldson invari­
ants of S. In case pg = 0 these depend on a metric, corresponding to the dependence 
of Mg(ci,c2) on H. For rational surfaces one can use the above description of the 
wallcrossing for the Mg(ci,c2) to determine the change of the Donaldson invari­
ants in terms of Chern numbers of generalizations of the tautological sheaves FM 
on products S^ x S^ of Hilbert schemes of points [18],[23]. The leading terms 
of these expressions can be explicitly evaluated. The wallcrossing of Donaldson 
invariants has also been studied in gauge theory (e.g.[35],[36]). There a conjecture 
about the structure of the wallcrossing formulas is made. Assuming this conjecture 
one can determine the generating functions for the wallcrossing in terms of modular 
forms [25],[31]. 

6. Enumerative geometry of curves 
Now we want to see some striking relations between the Hilbert schemes S^ 

and the enumerative geometry of curves on S. First let S be a K3 surface and 
F a primitive line bundle on S. Then F2 = 2g — 2, where the linear system \L\ 
has dimension g and a smooth curve in \L\ has geometric genus g. As a node 
imposes one linear condition, one expects a finite number of rational curves (i.e. 
curves of geometric genus 0) in \L\. Partially based on arguments from physics, a 
formula is given in [55] for the number of rational curves in \L\ and in [8] this made 
mathematically precise. Writing ng for the number of rational curves in \L\ with 
F2 = 2g — 2 (counted with suitable multiplicities), the formula is 

E % ^ = !> (6-1) 
9>0 

where A is again the discriminant. By (2.1) this implies the surprizing fact that ng 

is just the Euler number of S^. In fact the argument relates the number of curves 
to S^: Yet C —t \L\ be the universal curve and let J —t \L\ be the corresponding 
relative compactified Jacobian, whose fibre over the point corresponding to a curve 
C is the compactified Jacobian J(C) [3]. One can show that e(J(Cj) = 0 unless 
g(C) = 0. It follows that e(J) is the sum over the e(J(Cj) for C £ \L\ with 
g(C) = 0. It is not difficult to show that S^ and J are birational. J is also smooth 
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and hyperkähler as a moduli space of sheaves on a K3 surface [44]. As already used 
in the section on vector bundles, birational manifolds with trivial canonical bundle 
have the same Betti numbers [5]. Thus J and S^ have the same Euler numbers. 
This shows (6.1), where the multiplicity of a rational curve C is e(J(Cj). By [20] 
this multiplicity is the multiplicity of the corresponding moduli space of stable maps, 
in particular it is always positive. In [26] a conjectural generalization of (6.1) to 
arbitrary surfaces S is given. 

Conjecture 6.1 

1. For all ö > 0, there exists a universal polynomial Tg(x,y,z,w), such that for 
all projective surfaces S and all sufficiently ample line bundles L on S the 
number of ö-nodal curves in a general ö-dimensional linear subspace of \L\ is 
Ts(x(L),x(Os),LKs,K2). 

2. There are universal power series Bi,B2 £ Z[[q]] whose coefficients can be 
explicitely determined, such that 

^XE),x(Ps),LKs,Kifi(DG2f = ( ^ ^ ^ U v f -

Here D = q-fi and G2 = — 2\^--

The expectation that universal polynomials should exist is implicit in [53],[34] 
where the Tg are determined for Ö < 8. In [26] also another tie of the conjecture to 
the Hilbert scheme of points is given: conjecturally the numbers Tg(x(L),x(Os), 
LKs, Kg) are suitable intersection numbers on the Hilbert scheme S^ of 3ó points 
of S. If S is a K3 surface or an abelian surface, then the conjecture predicts that 
the generating function can be written in terms of modular forms. In this case 
a modified version of Conjecture 6.1 was proven for primitive line bundles in [9] 
and [10], replacing the numbers of o"-nodal curves with the corresponding modified 
Gromov-Witten invariants. In [43] a proof of the conjecture is published. 
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Vector Bundles on a K3 Surface* 

Shigeru Mukai1' 

Abstract 

A K3 surface is a quaternionic analogue of an elliptic curve from a view 
point of moduli of vector bundles. We can prove the algebraicity of certain 
Hodge cycles and a rigidity of curve of genus eleven and gives two kind of 
descriptions of Fano threefolds as applications. In the final section we discuss 
a simplified construction of moduli spaces. 

2000 Mathematics Subject Classification: 14J10, 14J28, 14J60. 

1. Introduction 
A locally free sheaf F of o x - m o d u l e s is called a vector bundle on an algebraic 

variety X. As a natural generalization of line bundles vector bundles have two 
important roles in algebraic geometry. One is the linear system. If F is generated 
by its global sections H°(X,E), then it gives rise to a morphism to a Grassmann 
variety, which we denote by $E '• X —y G(H°(E),r), where r is the rank of F . 
This morphism is related with the classical linear system by the following diagram: 

$ L 1 1 Pliicker (1) 
X 

I 
P*H°(L) • 

• ^ G(H°(E),r) 

I 
• • • - • P * ( A r F ° ( F ) ) , 

Pliicker 

where F is the determinant line bundle of F and $ L is the morphism associated to 
it. 

The other role is the moduli. The moduli space of line bundles relates a 
(smooth complete) algebraic curve with an abelian variety called the Jacobian va­
riety, which is crucial in the classical theory of algebraic functions in one variable. 
The moduli of vector bundles also gives connections among different types varieties, 
and often yields new varieties tha t are difficult to describe by other means. 
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In higher rank case it is natural to consider the moduli problem of F under 
the restriction that det F is unchanged. In view of the above diagram, vector 
bundles and their moduli reflect the geometry of the morphism X —y P*H°(L) 
via Grassmannians and Pliicker relations. In this article we consider the case where 
X is a K3 surface, which is one of two 2-dimensional analogues of an elliptic curve 
and seems an ideal place to see such reflection. 

2. Curves of genus one 
The moduli space of line bundles on an algebraic variety is called the Picard 

variety. The Picard variety Pic C of an algebraic curve C is decomposed into the 
disjoint union IJd € ZPicd C by the degree d of line bundles. Here we consider the 
case of genus 1. All components Pic^G are isomorphic to G if the ground field 
is algebraically closed. 1 But this is no more true otherwise. For example the 
Jacobian Pico G has always a rational point but G itself does not. 2 We give other 
examples: 

Example 1 Let G4 be an intersection of two quadrics qi (x) = q2 (x) = 0 in the 
projective space P 3 and F the pencil of defining quadrics. Then the Picard variety 
PÌC2 G4 is the double cover of F ~ P 1 and the branch locus consists of 4 singular 
quadrics in P. Precisely speaking, its equation is given by r 2 = disc (Xiqi + X2q2). 

Let G(2,5) C P 9 be the 6-dimensional Grassmann variety embedded into P 9 

by the Pliicker coordinate. Its projective dual is the dual Grassmannian G(5,2) c 
P 9 , where G(2,5) parameterizes 2-dimensional subspaces and G(5,2) quotient spaces. 

Example 2 A transversal linear section G = G(2,5) n Hi n • • • n H5 is a curve genus 
1 and of degree 5. Its Picard variety PÌC2 G is isomorphic to the dual linear section 
G = G(5,2) n {Hi,... ,H5), the intersection with the linear subspace spanned by 5 
points Hi,... ,H5 £ P 9 . 

3. Moduli K3 surfaces 
A compact complex 2-dimensional manifold S is a K3 surface if the canonical 

bundle is trivial and the irregularity vanishes, that is, Kg = F 1 ( ö s ) = 0. A 
smooth quartic surface S4 C P 3 is the most familiar example. Let us first look at 
the 2-dimensional generalization of Example 1: 

Example 3 Let Ss be an intersection of three general quadrics in P 5 and N the 
net of defining quadrics. Then the moduli space Ms(2,ös(l),2) is a double cover 
of N ~ P 2 and the branch locus, which is of degree 6, consists of singular quadrics 
in N. 

Here Ms(r, L,s), L being a line bundle, is the moduli space of stable sheaves 
F on a K3 surface S with rank r, det F ~ F and x(E) = r + s. Surprisingly two 

1More precisely, this holds true if C has a rational point. 
2Two components Pico C and Pic 9 _i C deserve the name Jacobian. They coincide in our case 

9 = 1 -
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surfaces S$ = (2) n (2) n (2) c P 5 and Af s(2,O s( l) ,2) ^h P 2 in this example 
are both K3 surfaces. This is not an accident. In respect of moduli space, vector 
bundles a K3 surface look like Picard varieties in the preceding section. 

Theo rem 1 ([10],[11]) The moduli space M$(r, L, s) is smooth of dimension (L2) — 
2rs + 2. Ms(r, L, s) is again a K3 surface if it is compact and and of dimension 2. 

A K3 surface S and a moduli K3 surface appearing as Ms(r,L,s) are not 
isomorphic in general 3 but their polarized Hodge structures, or periods, are iso­
morphic to each other over Q ([11]). The moduli is not always fine but there always 
exists a universal P r _ 1-bundle over the product S x Ms(r,L,s). Yet A be the 
associated sheaf of Azumaya algebras, which is of rank r2 and locally isomorphic to 
the matrix algebra Matr(OsxM)- A is isomorphic to End E if a universal family E 
exists. The Hodge isometry between H2(S,Q) and H2(Ms(r,L,s),Q) is given by 
c2(-4)/2r G H4(S x Af,Q) ~ H2(S,Q)V ® H2(M,Q). 

Example 2 has also a K3 analogue. Let Si 2 C P 1 5 be a 10-dimensional 
spinor variety SO(10)/U(5), that is, the orbit of a highest weight vector in the 
projectivization of the 16-dimensional spinor representation. The anti-canonical 
class is 8 times the hyperplane section and a transversal linear section S = £12 n 
F i n • • • n H$ is a K3 surface (of degree 12). As is similar to G(2,5) the projective 
dual Si2 C P 1 5 of Si2 is again a 10-dimensional spinor variety. 

Example 4 The moduli space Ms(2,Os(l),3) is isomorphic to the dual linear 
section S = £12 n {Hi,..., H$). 

In this case, moduli is fine and the relation between S and the moduli K3 are 
deeper. The universal vector bundle E on the product gives an equivalence between 

the derived categories T)(S) and T)(S) of coherent sheaves, the duality S ~ S holds 
(cf. [17]) and moreover the Hilbert schemes HihV S and Hilb" S are isomorphic to 
each other. 

Remark (1) Theorem 1 is generalized to the non-compact case by Abe [1]. 
(2) If a universal family E exists, the derived functor with kernel E gives an equiva­
lence of derived categories of coherent sheaves on S and the moduli K3 (Bridgeland 
[4]). In even non-fine case the derived category D(S) is equivalent to that of the 
moduli K3 M twisted by a certain element a £ H2(M,Z/rZ) (Cäldäraru [5]). 

4. Shafarevieh conjecture 
Let S and T be algebraic K3 surfaces and / a Hodge isometry between 

H2(S, Z) and H2(T,Z). Then the associated cycle Zf £ H4(SxT,Z) ~H2(S,Z)V® 
H2 (T, Q) on the product S x T is a Hodge cycle. This is algebraic by virtue of the 
Torelli type theorem of Shafarevieh and Piatetskij-Shapiro. Shafarevieh conjectured 
in [23] a generalization to Hodge isometries over Q. Our moduli theory is able to 
answer this affirmatively. 

3We take the complex number field C as ground field except for sections 2 and 7. 
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Theorem 2 Let f : H2(S,Q) —• H2(T,Q) be a Hodge isometry. Then the asso­
ciated (Hodge) cycle Zf £ H4(S x T, Q) is algebraic. 

In [11], we already proved this partially using Theorem 1 (cf. [21] also). What 
we need further is the moduli space of projective bundles. Let F —• S be a P r _ 1 -
bundle over S. The cohomology class [F] £ ^(SjPGL^jOsj) and the natural 
exact sequence (in the classical topology) 

0 —•+ Z/rZ —•+ SL(r,Os) —• PGL(r,Os) —• 1 

define an element of H2(S,Z/rZ), which we denote by w(P). 
Fix a £ H2(S,Z) and r, we consider the moduli of P r _ 1-bundles F over S 

with w(P) = a mod r which are stable in a certain sense. If the self intersection 
number (a2) is divisible by 2r, then the moduli space contains a 2-dimensional 
component, which we denote by Ms(a/r). The following, a honest generalization 
of computations in [11], is the key of our proof: 

Proposition 1 Assume that (a2) is divisible by 2r2. Then H2(Ms(a/r),Z) is 
isomorphic to L0 + Za/r c H2(S, Q) as polarized Hodge structure, where L0 is the 
submodule of H2 (S, Z) consisting of ß such that the intersection number (ß.a) is 
divisible by r. 

For example let S2 be a double cover of P 2 with branch sextic. If a G H2 (S, Z) 
satisfies (a. h) = 1 mod 2 and (a2) = 0 mod 4, then Ms (a/2) is a K3 surface of degree 
8. This is the inverse correspondence of Example 1 (cf. [26], [20]). Details will be 
published elsewhere. 

5. Non-Abelian Brill-Noether locus 
Let G be a smooth complete algebraic curve. As a set a Brill-Noether locus of 

G is a stratum of the Picard variety Pic G defined by h°(L), the number of global 
sections of a line bundle F. The standard notation is 

Wr
d = {[L] I h°(L) > r + 1} c Picrf G, 

for which we refer [2]. Non-Abelian analogues are defined in the moduli space lie (2) 
of stable 2-bundles on G similarly. The non-Abelian Brill-Noether locus of type III 
is 

SUC(2,K :n) = {F\ detF~Oc(Kc), h°(F) > n} C Uc(2) 

for a non-positive integer n, and type II is 

SUC(2,K : nG) = {F\ det F ~ det G ® Oc(Kc), dimHom(G,F) > n} c Uc(2) 

for a vector bundle G of rank 2 and n = deg G mod 2. By virtue of the (Serre) 
duality, these have very special determinantal descriptions. We give them scheme 
structures using these descriptions ([16]). 
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Assume that G lies on a K3 surface S. If F belongs to Ms(r, L, s), then the 
restriction F | c is of canonical determinant and we have h°(E\c) > h°(E) > x(E) = 
r + s. So E\c belongs to Slic(2,K : r + s) if it is stable. This is one motivation 
of the above definition. The case of genus 11, the gap value of genera where Fano 
3-folds of the next section do not exist, is the moist interesting. 

Theorem 3 ([15]) If C is a general curve of genus 11, then the Brill-Noether lo­
cus T = Slic(2,K : 7) of type III is a K3 surface and the restriction L of the 
determinant line bundle is of degree 20. 

There exists a universal family £ on G x T. We moreover have the following: 

• the restriction £\XXT is is stable and belongs to Mr(2, L, 5), for every x £ C, 
and 

• the classification morphism G —• T = MT(2,L,5) is an embedding. 

This embedding is a non-Abelian analogue of the Albanese morphism X —• 
Pico(PicoX) and we have the following: 
Corollary A general curve of genus eleven has a unique embedding to a K3 surface. 

In [9], we studied the forgetful map ipg from the moduli space Vg of pairs of 
a curve G of genus g and a K3 surface S with C C S to the moduli space Mg of 
curves of genus g and the generically finiteness of ipn. The above correspondence 
G H> T gives the inverse rational map of ipn. We recall the fact that ipio is not 
dominant in spite of the inequality dimoio = 29 > dim .Mio = 27 ([12]). 

6. Fano 3-folds 

A smooth 3-dimensional projective variety is called a Fano 3-fold if the anti-
canonical class — Kx is ample. In this section we assume that the Picard group 
PicX is generated by —Kx- The self intersection number (—Kx)3 = 2g — 2 is 
always even and the integer g > 2 is called the genus, by which the Fano 3-folds are 
classified into 10 deformation types. The values of g is equal to 2 , . . . , 10 and 12. A 
Fano 3-folds of genus g < 5 is a complete intersection of hypersurfaces in a suitable 
weighted projective space. 

By Shokurov [25], the anticanonical linear system | — Kx\ always contain a 
smooth member S, which is a K3 surface. In [13] we classified Fano 3-folds X of 
Picard number one using rigid bundles, that is, F £ Ms(r,L,s) with (F2) — 2rs = 
—2. For example X is isomorphic to a linear section of the 10-dimensional spinor 
variety, that is, 

x~S i 3 nf f i n " -n f f 7 ) (2) 
in the case of genus 7 and a linear section 

x ~Zi6nHinH2nH3, (3) 

of the 6-dimensional symplectic, or Lagrangian, Grassmann variety Sie = SP(6)/ 
U(3) C P 1 3 in the case of genus 9. The non-Abelian Brill-Noether loci shed new 
light on this classification. 
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Theorem 4 A Fano 3-fold X of genus 7 is isomorphic to the Brill-Noether locus 
Slic(2,K : 5) of Type III for a smooth curve C of genus 7. 

This description is dual to the description (2) in the following sense. First two 
ambient spaces of X, the moduli lie(2) and the Grassmannian G(5,10) D £12 are 
of the same dimension. Secondly let Ari and N2 be the normal bundles of X in 
these ambient spaces. Then we have Ari ~ A^7 ® Öx(-Kx), that is, two normal 
bundles are twisted dual to each other. 

Theorem 5 A Fano 3-fold of genus 9 is isomorphic to the Brill-Noether locus 
SUc(2,K:3G) of Type II for a nonsingular plane quartic curve C and G a rank 2 
stable vector bundle over C of odd degree. 

This descriptions is also dual to (3) in the above sense: The moduli lie (2) and 
the Grassmannian G(3,6) D Eie are of the same dimension and the two normal 
bundles of X are twisted dual to each other. Each Fano 3-fold of genus 8, 12 and 
conjecturally 10 has also such a pair of descriptions. 

7. Elementary construction 
The four examples in sections 1 and 2 are very simple and invite us to a 

simplification of moduli construction. Let G4 be as in Example 1 and Mat2 the 
affine space associated to the 16-dimensional vector space © i = 0 ( C 2 ® C2)ar,, where 
(xi) is the homogeneous coordinate of P 3 . Let Mat2,i be the closed subscheme 
defined by the condition that 

A(x) = Xà=o AìXì £ Mat2 is of rank < 1 everywhere on G4 

and R its coordinat ring. Then the Picard variety PÌC2 G4 is the projective spectrum 
ProjFS L ( 2^ x S L ( 2^ of the invariant ring by construction. (See [18] for details.) The 
above condition is equivalent to that det A(x) is a linear combination of qi(x) and 
q2(x). The invariant ring is generated by three elements by Theorem 2.9.A of Weyl 
[28]. Two of them, say Bi,B2, are of degree 2 and correspond to qi(x) and q2(x), 
respectively. The rest, say T of degree 4, is the determinant of 4 by 4 matrix 
obtained from the four coefficients A 0 , . . . , A 3 £ C2 <g> C2 of A(x). There is one 
relation T2 = f±(Bi,B2) . Hence ProjFS L ( 2^ x S L ( 2^ is a double cover of P 1 as 
desired. 

The moduli space Ms(2,ös(l),2) in Example 3 is constructed similarly. Let 
Alti be the affine space associated to the vector space © i = 0 ( A J C4)ar, and Alt^ 
the subscheme defined by the condition that Xà=o -^*x* e -41*4 is of rank < 2 
everywhere on S$- Then the invariant ring of the action of SL(4) on Alt^2 is 
generated by four elements Bi,B2,B$,T of degree 2, 2, 2, 6. There is one relation 
T2 = fi(Bi,B2, B3) and Ms(2 ,O s ( l ) , 2), the projective spectrum Proj RSL{4), is a 
double cover of P 2 as described. 

The moduli space of vector bundles on a surface was first constructed by 
Gieseker [6]. He took the Mumford's GIT quotient [19] of Grothendieck's Quot 
scheme [7] by PGL and used the Gieseker matrix to measure the stability of the 
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action. In the above construction, we take the quotient of Alt^2, which is nothing 
but the affine variety of Gieseker matrices of suitable rank 2 vector bundles, by a 
general linear group GF(4). 

The Jacobian, or the Picard variety, of a curve is more fundamental. Weil [27] 
constructed Pics G as an algebraic variety using the symmetric product Syms G 
and showed its projectivity by Lefschetz' 30 theorem. Later Seshadri and Oda 
[24] constructed Pic^ G for arbitray d (over the same ground field as G) by also 
taking the GIT quotient of Quot schemes. The above constructions eliminate Quot 
schemes and the concept of linearization from those of Gieseker, Seshadri and Oda. 

References 
[i 

[2 

[io; 

[n 

[12; 

[13; 

[14; 

K. Abe: A remark on the 2-dimensional moduli spaces of vector bundles on 
K3 surfaces, Math. Res. Letters, 7(2000), 463^470. 
E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris : Geometry of alge­
braic curves, I, Springer-Verlag, 1985. 
M. F. Atiyah : Vector bundles over an elliptic curve, Proc. London Math. 
Soc, 7(1957), 414-452. 
T. Bridgeland: Equivalences of triangulated categories and Fourier-Mukai 
transformations, Bull. London Math. Soc, 31(1999), 25-34. 
A. Cäldäraru: Non-fine moduli spaces of sheaves on K3 surfaces, preprint. 
D. Gieseker: On the moduli of vector bundles on an algebraic surface, Ann. 
Math. 106(1977), 45-60. 
A. Grothendieck : Techniques de construction et theorem d'existence en 
géométrie algébrique, iV: Les schémas de Hilbert, Sem. Bourbaki, t. 13, 
1960/61, n° 221. 
V.A. Iskovskih : Fano 3-folds, II, Izv. Akad. Nauk SSSR,42(1978) : English 
translation, Math. USSR Izv. 12(1978), 469^505. 
S. Mori and S. Mukai: The uniruledness of the moduli space of curves of genus 
11, in 'Algebraic Geometry, Proceedings, Tokyo/Kyoto 1982', Series: Lecture 
Notes in Mathematics, vol. 1016, (M, Raynaud and T. Shioda eds.), Springer 
Verlag, 1983, 334^353. 
S. Mukai: Symplectic structure of the moduli space of sheaves on an abelian 
or K3 surface, Invent. Math., 77(1984), 1 0 H 1 6 . 
—: On the moduli space of bundles on K3 surfaces, I, in 'Vector Bundles on 
Algebraic Varieties ', Tata Institute of Fundamental Research, Bombay, 1987, 
341-413. 
— : Curves, K3 surfaces and Fano manifolds of genus < 10, in 'Algebraic 
Geometry and Commutative Algebra in honor of Masayoshi NAGATA', (H. 
Hijikata and H. Hironaka et al eds.), Kinokuniya, Tokyo, 1988, 367^377. 
— : Biregular classification of Fano threefolds and Fano manifolds of coindex 
3, Proc. Nat. Acad. Sci., USA, 86 (1989), 3000^3002. 
— : New developments in the theory of Fano 3-folds: Vector bundle method 
and moduli problem, Sugaku, 47(1995), 125^144.: English translation, Sug-
aku Expositions, to appear. 



502 Shigeru Mukai 

[15] —: Curves and K3 surfaces of genus eleven, in 'Moduli of Vector Bundles', 
Series: Pure and Applied Math., (Maruyama M. ed.), Mercel Dekker, New 
York, 1996, 189-197. 

[16] — : Non-Abelian Brill-Noether theory and Fano 3-folds, Sugaku, 49(1997), 
1-24.: English translation, Sugaku Expositions, 14(2001), 125-153. 

[17] —: Duality of polarized K3 surfaces, in Proceedings of Euroconference on 
Algebraic Geometry, (K. Hulek and M. Reid ed.), Cambridge University Press, 
1998, 107-122. 

[18] —: Moduli theory, I, II, Iwanami Shoten, Tokyo, 1998, 2000: English trans­
lation, An introduction to invariants and moduli, to appear from Cambridge 
University Press. 

[19] D. Mumford : Geometric invariant theory, Springer Verlag, 1965. 
[20] P. E. Newstead : Stable bundles of rank 2 and odd degree over a curve of 

genus 2, Topology, 7(1968), 205-215. 
[21] V. V. Nikulin : On correspondences between surfaces of K3 type, Izv. Akad. 

Nauk SSSR Ser. Mat., 51 (1987), 402-411. English translation, Math. USSR 
Izv., 30(1988), 375-383. 

[22] D. Orlov : Equivalences of derived categories and K3 surfaces, J. Math. Sci. 
(New York), 84(1997), 1361-1381. 

[23] I. R. Shafarevieh : Le théorème de Torelli pour les surfaces algébriques de 
type K3, Actes Congrès Intern. Math., Nice 1970, 413-417(1971). 

[24] C.S. Seshadri and T. Oda : Compactifications of the generalized Jacobian 
Variety, Trans. Amer. Math. Soc, 253(1979), 1-90. 

[25] V.V. Shokurov : Smoothness of the general anticanonical divisor, Izv. Acad. 
Nauk SSSR 43(1979), 430-441 : English translation, Math. USSR Izv. 
14(1980), 395-405. 

[26] A. Tjurin : On intersection of quadrics, Russian Math. Survey 30(1975), 
51-105. 

[27] A. Weil : Variétés abéliennes et courbes algébriques, Hermann, Paris, 1948. 
[28] H. Weyl : The classical groups, Princeton Univ. Press, 1939. 



ICM 2002 • Vol. II • 503-512 

Three Questions 
in Gromov-Witten Theory 

R. Pandharipande* 

Abstract 

Three conjectural directions in Gromov-Witten theory are discussed: Goren­
stein properties, BPS states, and Virasoro constraints. Each points to basic 
structures in the subject which are not yet understood. 
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1. Introduction 
Let X be a nonsingular projective variety over C. Gromov-Witten theory-

concerns integration over M S i „ ( X , fi), the moduli space of stable maps from genus 
g, n-pointed curves to X representing the class ß £ H2(X,Z). While substantial 
progress in the mathematical s tudy of Gromov-Witten theory has been made in 
the past decade, several fundamental questions remain open. My goal here is to 
describe three conjectural directions: 

(i) Gorenstein properties of tautological rings, 
(ii) BPS states for threefolds, 

(iii) Virasoro constraints. 

Each points to basic structures in Gromov-Witten theory which are not yet under­
stood. New ideas in the subject will be required for answers to these questions. 

2. Gorenstein properties of tautological rings 
The study of the structure of the entire Chow ring of the moduli space of 

pointed curves Mg>n appears quite difficult at present. As the principal motive 
is to understand cycle classes obtained from algebro-geometric constructions, we 
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may restrict inquiry to the system of tautological rings, R*(Mg^n). The tautological 
system is defined to be the set of smallest Q-subalgebras of the Chow rings, 

F*(MS ,„)CA*(MS ;„) , 

satisfying the following three properties: 

(i) R*(Mg:„) contains the cotangent line classes fii,... ,fin where 

fii =ci(Li), 

the first Chern class of the ith cotangent line bundle. 
(ii) The system is closed under push-forward via all maps forgetting markings: 

Tr, :R*(Mg,n)^R*(Mg^i). 

(iii) The system is closed under push-forward via all gluing maps: 

7T» : F*(AfSlj„lU{»}) ®Q F*(Afff2j„2U{»}) —t R*(Mgi+g2:ni+n2), 

7T» : F*(AfSlj„lU{»j»}) —¥ R*(Mg1+i^ni). 

Natural algebraic constructions typically yield Chow classes lying in the tautological 
ring. See [7], [18] for further discussion. 

Consider the following basic filtration of the moduli space of pointed curves: 

Mgtn D M£ n D Mr
g'n D Cg^n. 

Here, M c denotes the moduli of pointed curves of compact type, Mg*n denotes 
the moduli of pointed curves with rational tails, and Cg>n denotes the moduli of 
pointed curves with a fixed stabilized complex structure Cg. The choice of Cg will 
play a role below. 

The tautological rings for the elements of the filtration are defined by the 
images of R*(Mg:„) in the associated quotient sequence: 

R*(Mg,n) -> R*(Mln) -+ R*(Mr
g%) -+ R"(Cg,n) ^ 0. (2.1) 

Remarkably, the tautological rings of the strata are conjectured to resemble coho­
mology rings of compact manifolds. 

A finite dimension graded algebra R is Gorenstein with socle in degree s if 
there exists an evaluation isomorphism, 

cj>:Rs^Q, 

for which the bilinear pairings induced by the ring product, 

Rr x Rs-r - ì F 4 Q , 

are nondegenerate. The cohomology rings of compact manifolds are Gorenstein 
algebras. 
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Conjecture 1. The tautological rings of the filtration of Mg>n are finite dimensional 
Gorenstein algebras. 

The Gorenstein structure of R*(Mg) with socle in degree g — 2 was discovered 
by Faber in his study of the Chow rings of Mg in low genus. The general conjecture 
is primarily motivated by Faber's original work and can be found in various stages 
in [5], [19], and [7]. 

The application of the conjecture to the stratum Cg>n takes a special form due 
to the choice of the underlying curve Cg. The conjecture is stated for a nonsingular 
curve Cg defined over Q or, alternatively, for the tautological ring in F*(GSj„,Q). 
The tautological ring of Cg>n in Chow is not Gorenstein for all Cg by recent results 
of Green and Griffiths. 

Two main questions immediately arise if the tautological rings are Gorenstein 
algebras: 

(i) Can the ring structure be described explicitly? 
(ii) Are the tautological rings associated to embedded compact manifolds in the 

moduli space of pointed curves? 

The tautological ring structures are implicitly determined by the conjectural Goren­
stein property and the Virasoro constraints [10]. 

As the moduli space of curves may be viewed as a special case of the moduli 
space of maps, a development of these ideas may perhaps be pursued more fully in 
Gromov-Witten theory. It is possible to define a tautological ring for AfSj„(X, ß) 
in the context of the virtual class by assuming the Gorenstein property, but no 
structure has been yet been conjectured. Again, the Virasoro constraints in principle 
determine the tautological rings. 

3. BPS states for threefolds 
Let X be a nonsingular projective variety over C of dimension 3. Let {7Q}Q G J4 

be a basis of H*(X,Z) modulo torsion. Let {7a}ae£>2 a n ( l {7a}ae£>>2 denote the 
classes of degree 2 and degree greater than 2 respectively. The Gromov-Witten 
invariants of X are defined by integration over the moduli space of stable maps 
(against the virtual fundamental class): 

(ja1,---,Ja„)g,ß= _ evJ(7Ql)...e<(7aJ, (3.1) 
J{Mg,n(X,ß)]vir 

where evj is the zth evaluation map. As the moduli spaces are Deligne-Mumford 
stacks, the Gromov-Witten invariants take values in Q. 

Let {to} be a set of variables corresponding to the classes {70}• The Gromov-
Witten potential Fx (t, X) of X may be written, 

FX = F*=0 + FX, (3.2) 

as a sum of constant and nonconstant map contributions. 
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The constant map contribution F? Q may be further divided by genus: 

Eß=0 = Fj^=0 + Fj = 0 + Y^ Fß=o-

The genus 0 constant contribution records the classical intersection theory of X: 

7^0 \ —2 \ "* ta3ta2tai / 
Fß=o = A Z ^ 3J J Tai U 7a2 U 7 0 s . 

The genus 1 constant contribution is obtained from a virtual class calculation: 

^=0 = E *a<7a>f=l,̂ =o = - E If / 7a UC2(X). 
oGD 2 a € D 2

 X 

Similarly, the genus g > 2 contributions are 

F3
ß=o = (l)lß=o = M ) s ^ I (MX) - ci(X) U c2(X)) • / Xg]_i. 

2 .IX JM„ 

The Hodge integrals which arise here have been computed in [6]: 

a \B2n\ \B2n—2\ 1 
A s - i 

3 _ \*->2g\ | - " 2 g - 2 | 

M o - 2«? 2«?^ 2 ( 2 p - 2 ) ! ' 

where F2S and B2g-2 are Bernoulli numbers. The constant map contributions to 
Fx are therefore completely understood. 

The second term in (3.2) is the nonconstant map contribution: 

^ = EE*f-
S>0/3#0 

Since the virtual dimension of the moduli space Mg (X, ß) is 

[c1(X) + 3g-3 + 3-3g = f ci(X), 
Jß Jß 

the classes ß satisfying fi ci(X) < 0 do not contribute to the potential Fx. There­

fore, Fx may be divided into two sums: 

Fx --- E 
S>0 

+E 
s>o 

E n 
ß?0, fßCl(X) = 0 

E n-
ß^O, fßCl(X)>0 

In case ß ^ 0, we will write the series Fî(t, À) in the following form: 

ni 
n>0 a i , . . . , a n £ . D > 2 
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The degree 2 variables {ta}aeD2
 a r e formally suppressed in q via the divisor equa­

tion: 
8 TT h7a t„ 

<T = 1 1 (la , (la = C • 
a£D2 

Cohomology classes of degree 0 or 1 do not appear in nonvanishing Gromov-Witten 
invariants (3.1) for curve classes ß fi^O. 

We will define new invariants ni (7Q l , . . . , 7Qn ) for every genus g, curve class 
ß ̂  0, and classes 7Q l , . . . , 7Q„. Our primary interest will be in the case where the 
following conditions hold: 

(i) deg(7Qi) > 2 for all i. 
(ii) n + jß ci(X) = YJi=i deg(7Qi)-

The invariants will be defined to satisfy the divisor equation (which allows for the 
extraction of degree 2 classes 7a) and defined to vanish if degree 0 or 1 classes are 
inserted or if condition (ii) is violated. If L ci (X) = 0, then nî is well-defined 
without cohomology insertions. 

The new invariants nî ( 7 Q l , . . . , 7Q„ ) are defined via Gromov-Witten theory by 
the following equation: 

FX = E E »s A*-2 s 1 (sm(dX/2)y-" dß 

d I A/2 I q 

g>0 ß^to, fßCl(X)=0 d>0 v ' 7 

E E^y E t*~ •••**! 
g>0 ß^o, fß ci(X)>0 »>0 ai,...,o„G-D>2 

g. , x 2 a_2 / s i n ( A / 2 ) V g - 2 + W x ) 

•nß(la1,--- ,lan)X
9 I I ^ . 

The above equation uniquely determines the invariants n | ( 7 Q l , . . . ,7Q„). 

Conjecture 2. For all nonsingular projective threefolds X, 

(i) the invariants nî ( 7 Q l , . . . , 7Q„ ) are integers, 
(ii) for fixed ß, the invariants nî ( 7 Q l , . . . , 7Q„ ) vanish for all sufficiently large 

genera g. 

If X is a Calabi-Yau threefold, the Gopakumar-Vafa conjecture is recovered 
[15], [16]. Here, the invariants nî arise as BPS state counts in a study of Type 
IIA string theory on X via M-theory. The outcome is a physical deduction of the 
conjecture in the Calabi-Yau case. 

Gopakumar and Vafa further propose a mathematical construction of the 
Calabi-Yau invariants nî using moduli spaces of sheaves on X. The invariants 
nî should arise as multiplicities of special representations of SI2 in the cohomology 
of the moduli space of sheaves. The local Calabi-Yau threefold consisting of a curve 
G together with a rank 2 normal bundle N satisfying ci(N) = OJC should be the 
most basic case. Here the BPS states ns

d should be found in the cohomology of an 
appropriate moduli space of rank d bundles on G. A mathematical development of 
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the proposed connection between integrals over the moduli of stable maps and the 
cohomology of the moduli of sheaves has not been completed. However, evidence 
for the program can be found both in local and global calculations in several cases 
[1], [20], [21]. 

The conjecture for arbitrary threefolds is motivated by the Calabi-Yau case 
together with the degeneracy calculations of [29]. Evidence can be found, for ex­
ample, in the low genus enumerative geometry of P 3 [9], [29]. If the conjecture is 
true, the invariants nî(^ai,... ,7Qn) of P 3 may be viewed as defining an integral 
enumerative geometry of space curves for all g and ß. Classically the enumerative 
geometry of space curves does not admit a uniform description. 

The conjecture does not determine the Gromov-Witten invariants of threefolds. 
A basic related question is to find some means to calculate higher genus invariants of 
Calabi-Yau threefolds. The basic test case is the quintic hypersurface in P 4 . There 
are several approaches to the genus 0 invariants of the quintic: Mirror symmetry, lo­
calization, degeneration, and Grothendieck-Riemann-Roch [2],[3], [8],[11],[23]. But, 
the higher genus invariants of the quintic are still beyond current string theoretic 
and geometric techniques. The best tool for the higher genus Calabi-Yau case, 
the holomorphic anomaly equation, is not well understood in mathematics. On 
the other hand, all the invariants of P 3 may be in principle calculated by virtual 
localization [17]. 

4. Virasoro constraints 
Let X be a nonsingular projective variety over C of dimension r. Let {^a} be 

a basis of H*(X,C) homogeneous with respect to the Hodge decomposition, 

1 « é P " * ( I , C ) . 

The descendent Gromov-Witten invariants of X are: 

(rkl ( 7 o i ) . . . -r*, (7a„))lß = _ '<Pt e v i ( 7 a i ) - - - '<Pn" ev;(7a„)• 
J[Mg.n(X,ß)]"ir-

Yet {tfi} be a set of variables. Let Fx(t,X) be the generating function of the 
descendent invariants: 

FX = E A2-2 E <? E h E £ • • • m (n. (7., ) • • • nn (7.. ))lß-
g>0 ß£H2(X,Z) n>0 ai...a„ 

ki...kn 

The partition function Zx is formed by exponentiating Fx : 

Zx = exp(F x ) . (4.1) 
We will now define formal differential operators {Lf.}k>-i m the variables r | 

satisfying the Virasoro bracket, 
[Lk,L(] = (k-l)Lk+i. 

The definitions of the operators Lk will depend only upon the following three struc­
tures of H*(X,C): 



Three Questions in Gromov-Witten Theory 509 

(i) the intersection pairing gat, = Jx 7a U 7&, 
(ii) the Hodge decomposition 7a £ HPa'Qa(X,C), 

(iii) the action of the anticanonical class ci(X). 

The formulas for the operators Lk are: 

Ek = 2.^ / A [bg + lrili (C%)gtmdb,m+k-i 
ro=0 j = 0 

+ ^( - l ) '»+ 1 [ J a -m- l ] f (C«)« J Ö 0 i r a Ö M _ r a „ 1 „ 1 ) 

+ Ç(Ck+1)abt
a
0t

bo 
à~ko 

48 JX 
{(3-r)cr(X)-2c1(X)cr-i(X)), 

where the Einstein convention for summing over the repeated indices a,b £ A is 
followed. 

Several terms require definitions. For each class 7 a , a half integer ba is obtained 
from the Hodge decomposition, 

ba=pa + (l-r)/2. 

The combinatorial factor [x]f is defined by: 

[x]i = eu+i-i(x,x + l,...,x + k), 

where e^ is the fcth elementary symmetric function. The matrix Cb
a is determined 

by the action of the anticanonical class, 

G Q
6 76=c i (X)U7 Q , 

The indices of G are lowered and raised by the metric gat, and its inverse gab. The 
terms t^ and 9QjTO are defined by: 

fa _ 4-a _ x x lm — lm uaO"rol) 

da,m = 9/dta
m, 

where both are understood to vanish if m < 0. 

Conjecture 3. For all nonsingular projective varieties X, L\,(ZX) = 0. 

The conjecture for varieties X with only (p,p) cohomology was made by 
Eguchi, Hori, and Xiong [4]. The full conjecture involves ideas of Katz. In case 
X is a point, the constraints specialize to the known Virasoro formulation of Wit-
ten's conjecture [22], [30] (see also [25]). After the point, the simplest varieties 
occur in two basic families: curves Cg of genus g and projective spaces P " of di­
mension n. A proof of the Virasoro constraints for target curves Cg is presented 
in a sequence of papers [26], [27], [28]. Gi ventai has recently proven the Virasoro 
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constraints for the projective spaces P " [12], [13], [14]. The two families of vari­
eties are quite different in flavor. Curves are of dimension 1, but have non-(p,p) 
cohomology, non-semisimple quantum cohomology, and do not always carry torus 
actions. Projective spaces cover all target dimensions, but have algebraic cohomol­
ogy, semisimple quantum cohomology, and always carry torus actions. 

The Virasoro constraints are especially appealing from the point of view of 
algebraic geometry as all nonsingular projective varieties are covered. While many-
aspects of Gromov-Witten theory may be more naturally pursued in the symplec­
tic category, the Virasoro constraints appear to require more than a symplectic 
structure to define. For example, the bracket 

[Fi, F_i] = 2Fo, 

depends upon formulas expressing the Chern numbers, 

Cr(X), / Ci(X)cr-l(X), 
x Jx 

in terms of the Hodge numbers hp,q of X (see [24]]). 
The Virasoro constraints may be a shadow of a deeper connection between 

the Gromov-Witten theory of algebraic varieties and integrable systems. In case 
the target is the point or the projective line, precise connections have been made to 
the KdV and Toda hierarchies respectively. The connections are proven by explicit 
formulas for the descendent invariants in terms of matrix integrals (for the point) 
and vacuum expectation in ATTV (for the projective line) [22], [25], [27]. The 
extent of the relationship between Gromov-Witten theory and integrable systems 
is not known. In particular, an understanding of the surface case would be of great 
interest. Perhaps a link to integrable systems can be found in the circle of ideas 
involving Hilbert schemes of points, Heisenberg algebras, and Göttsche's conjectures 
concerning the enumerative geometry of linear series. 

Finally, one might expect Virasoro constraints to hold in the context of Gromov-
Witten theory relative to divisors in the target X. For the relative theory of 1-
dimensional targets X, Virasoro constraints have been found and play a crucial role 
in the proof of the Virasoro constraints for the absolute theory of X [28]. 
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Update on 3-folds 

Miles Reid* 

A b s t r a c t 

The familiar division of compact Riemann surfaces into 3 cases 

g = 0, 5 = 1 and g > 2 

corresponds to the well known trichotomy of spherical, Euclidean and hyper­
bolic non-Euclidean plane geometry. Classification aims to treat all projective 
algebraic varieties in terms of this trichotomy; the model is Castelnuovo and 
Enriques' treatment of surfaces around 1900 (reworked by Kodaira in the 
1960s). The canonical class of a variety may not have a definite sign, so we 
usually have to beat it up before the trichotomy applies, by a minimal model 
program (MMP) using contractions, flips and fibre space decompositions. The 
classification of 3-folds was achieved by Mori and others during the 1980s. 

New results over the last 5 years have added many layers of subtlety to 
higher dimensional classification. The study of 3-folds also yields a rich crop of 
applications in several different branches of algebra, geometry and theoretical 
physics. My lecture surveys some of these topics. 
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Keywords and P h r a s e s : Mori theory, Minimal model program, Classifica­
tion of varieties, Fano 3-folds, Birational geometry. 

1. Popular introduction: the great trichotomy 
A trichotomy is a logical division into three cases, where we expect to win 

something in each case. The cases here are similar to the "much too small, just 
right, much too big" of Goldilocks and the Three Bears, or the geometric division 
of conic sections into ellipse, parabola and hyperbola due to Appollonius of Perga 
(200 BC) , or the cosmological question of whether the universe contracts again into 
a big crunch, tends to an asymptotic state or continues expanding exponentially. 
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1.1. Euclidean and non-Euclidean geometry 

Euclid's famous parallel postulate (c. 300 BC) states that 

if a line falls on two lines, with interior angles on one side adding to 
< 180°, the two lines, if extended 
which the angles add to < 180°. 

indefinitely, meet on the side on 

We are in plane geometry, assumed homogeneous so that any construction involving 
lines, distances, angles, triangles and so on can be carried out at any point and in 
any orientation with the same effect. In this context the great trichotomy is the 
observation, probably due originally to Omar Khayyam (11th a ) , Nasir al-Din al-
Tusi (13th c.) and Gerolamo Saccheri (1733), that two other cases besides Euclid's 
are logically coherent (see Figure 1). In spherical geometry, the two lines meet 

spherical Euclidean hyperbolic 

Figure 1: The parallel postulate 

on both sides whatever the angles, whereas in hyperbolic non-Euclidean geometry, 
the two lines may diverge even though the angle sum is < 180°. Whether lines 
eventually meet is a long-range question, but it reflects the local curvature of the 
geometry. 

1.2. Gauss and Riemann on differential geometry 

A local surface S in 3-space is positively curved if all its sections bend in the 
same direction like the top of a sphere (see Figure 2). S is flat (or developable) if 

positive flat 

Figure 2: Local curvature 

negative 

it is straight in one direction like a cylinder, and negatively curved if its sections 
bend in opposite directions like a saddle or Pringle's chip. Gauss in his Theorema 
Egregium (1828) and Riemann in his Habilitationsschrift (1854) found that curva­
ture is intrinsic to the local distance geometry of S, independent of how S sits in 
3-space: living on a sphere S of radius R, we can measure the perimeter of a disc of 
radius r, which is 27r(sin j^)R, always less than the Euclidean value 27rr. If we lived 
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in the hyperbolic plane, the perimeter of a disc of radius r would be 27r(sinh j j )F, 
bigger than the Euclidean value, and growing exponentially with r. 

Riemann in particular generalised Gauss' ideas on surfaces to a space given lo­
cally by an n-tuple (xi,..., xn) of real parameters (a "many-fold extended quantity" 
or manifold), with distance arising from a local arc length ds given by a quadratic 
form ds2 = ^gijdxidxj. The curvature is then a function of the second derivatives 
of the metric function #y. Riemann's differential geometry works with manifolds 
that are not homogeneous, e.g., having positive, zero, or negative curvature at dif­
ferent points. It was a key ingredient in Einstein's general relativity (1915), which 
treats gravitation as curvature of space-time. 

1.3. Riemann surfaces 
The story moves on from real manifolds (e.g., surfaces depending on 2 real 

variables) to Riemann surfaces, parametrised instead by a single complex variable. 
The point here is Cauchy's discovery (c. 1815) that differentiable functions of a 
complex variable are better behaved than real functions, and much more amenable 
to algebraic treatment. Riemann discovered that a compact Riemann surface C has 
an embedding C ^y P^ into complex projective space whose image is defined by a 
set of homogeneous polynomial equations. 

A projective algebraic curve C C P^ is nonsingular if at every point P £ C 
we can choose N — 1 local equations fi,..., /jv-i so that the Jacobian matrix -?^fi 
has maximal rank N — 1. It follows from the implicit function theorem that one 
of the linear coordinates z = zi of fN can be chosen as a local analytic coordinate 
on C. In other words, a compact Riemann surface is analytically isomorphic to a 
nonsingular complex projective curve. 

1.4. The genus of an algebraic curve 
The canonical class Kc = û ^ = Tc of a curve C is the holomorphic line 

bundle of 1-forms on C; it has transition functions on U n U' the Jacobian of the 
coordinate change ^ - , where z,z' are local analytic coordinates on U,U'. If z is a 
rational function on C that is an analytic coordinate on an open set U C C then a 
1-form on U is f(z)dz with / a regular function on U. That is, iic = Ö • dz, or dz 
is a basis of iic on U. 

The genus g(C) can be defined in several ways: topologically, a compact Rie­
mann surface is a sphere with g handles (see Figure 3). It has Euler number 

g = 0, sphere 9=1, torus g > 2, general type 

Figure 3: The genus of a Riemann surface 

e(C) = 2 — 2g, which equals deg To- The most useful formula for our purpose is 
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deg Kc = 2g — 2. We see that 

KC < 0 <=> g = 0, KC = 0 <=> g=l, Kc > 0 <=> g > 2. 

This trichotomy is basic for the study of a curve C from every point of view, 
including topology, differential geometry, complex function theory, moduli, all the 
way through to algebraic geometry and Diophantine number theory. To relate 
this briefly to curvature as discussed in Section 1.2, for an arbitrary Riemannian 
metric, the average value of curvature over C equals — deg Kc by the Gauss^Bonnet 
theorem; moreover, by the Riemann mapping theorem, there exists a metric on C in 
the conformai class of the complex structure with constant positive, zero or negative 
curvature in the three cases. 

2. Classification of 3-folds 
The great trichotomy also drives classification in higher dimensions. The 

meaning of "higher dimensions" is time-dependent: dim 2 was worked out around 
1900 by Castelnuovo and Enriques, dim 3 during the 1980s by Mori and others, and 
dim 4 is just taking off with Shokurov's current work. I concentrate on dim 3, where 
these issues first arose systematically. 

2.1. Preliminaries: the canonical class Kx 

An n-dimensional projective variety X can be embedded X ^y P^ , and is 
given there by homogeneous polynomial equations; nonsingular means that at every 
point F e X, we can choose N — n of the defining equations so that the Jacobian 
matrix -jfifi has rank N — n, with n linear coordinates of P ^ providing local analytic 
coordinates on X. 

The canonical class of X is Kx = iìx = /\niix. It has many interpretations: 
it is the line bundle obtained as the top exterior power of the holomorphic cotangent 
bundle; it has transition functions on U n U' the Jacobian determinant det jfi1 , 

where x,x' are systems of local analytic coordinates on open sets U,U' C X; its 
sections are holomorphic n-forms; at a nonsingular point P £ X, its sections are 
generated by the holomorphic volume form d#i A- • • Adxn , so that iix = Ox -dxi A 
• • • A dxn . 

For MMP to work in dim > 3, we are eventually forced to allow certain mild 
singularities. The theory in dim 3 is now standard and not very hard (see [YPG] and 
compare the foreword to [CR]). We always insist that the first Chern class of Kx 
restricted to the nonsingular locus X° c X comes from an element of H2(X, Q), 
that I continue to denote by Kx- This ensures that the pullback f*Kx by a 
morphism / : Y —t X is defined, together with the intersection number KxC with 
every curve C C X (obtained by evaluating Kx £ H2 against the class [C] £ 
H2(X,Q)). Note that —KxC is an integral or average value of Ricci curvature 
(a 2-form) calculated over a 2-cycle [C] corresponding to a holomorphic curve; we 
have taken several steps back from varieties of constant curvature suggested by the 
colloquial pictures in Section 1. 
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In many contexts, the canonical class of a variety is closely related to the 
discrepancy divisor. If / : Y —¥ X is a birational morphism, its discrepancy A/ 
is defined by Ky = f*Kx + A/; if X and Y are nonsingular this is the divisor 

of zeros A/ = div (det ^fifi J of the Jacobian determinant of / , or its appropriate 

generalisation if X and Y are singular. Since the components of A/ are exceptional, 
it follows that if A/ > 0, then there exists a component F of A/ such that KyC < 0 
for almost every curve C C F . It is known that every section s £ H°(Y,nKy) 
vanishes along A/ for every n > 0. A morphism / is crêpant if A/ = 0; then 
Ky = f*Kx, so that Ky is numerically zero relative to / . 

2.2. The trichotomy: Kx < 0, Kx = 0 or Kx > 0? 
The naive section heading is misleading: Kx may have "different sign" at 

different points of X and in different directions. The aim is not to apply the 
trichotomy to X itself, but to modify it first to a variety X ' by a MMP. We need 
to be more precise; we say that Kx is nef or numerically nonnegative if KxC > 0 
for every C C X (nef is an acronym for numerically eventually free - we hope that 
\nKx\ is a free linear system for some n > 0). As we saw at the end of Section 2.1, 
a discrepancy divisor A/ > 0 for a birational morphism / : Y —t X is a local 
obstruction to the nefdom of Ky. Mori theory (or the MMP) is concerned with the 
case that Kx is not nef. 

2.3. Results of MMP for 3-folds 
The Mori category consists of (quasi-)projective n-folds X with Q-factorial 

terminal singularities; see [YPG] for details. For X in the Mori category, an ele­
mentary contraction is a morphism ip : X —t Xi such that 

(i) Xi is a normal variety and ip has connected fibres. 
(ii) All curves C C X contracted by </? have classes in a single ray in H2(X,R), 

and KxC < 0. This implies that —Kx is relatively ample. 

An elementary contraction X —t S with dim S < dimX is a Mori fibre space (Mfs). 
The case to bear in mind is when S = pt.; then (ii) implies that —Kx is ample and 
p(X) = rank PicX = 1, that is, X is a Fano 3-fold with p = 1. If dim S = d i m X ^ l 
then X —t S is a conic bundle. 

Theorem 1 (see for example [KM])] An elementary contraction exists if and only if 
Kx is not nef. For any 3-fold X in the Mori category there is a chain of birational 
transformations 

A —> A i —> • • • —> A n = A 

where (1) each step Xi —•* Xi+i is an elementary divisorial contraction or flip of 
the Mori category, and (2) the final object X' either has Kx> nef or has a Mfs 
structure X' —t S. 

Each birational step Xj —•* Xi+i removes a subvariety of X on which Kx is 
negative. A divisorial contraction contracts an irreducible surface in X to a curve 
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or a point. A flip is a surgery operation that cuts out a finite number of curves in 
Xj on which K is negative, replacing them with curves on which K is positive. At 
the end of the MMP comes the dichotomy: either Kx> is nef, or —Kx1 is ample on 
a global structure of X' . 

The main theorem on varieties with Kx nef is the existence of an Iitaka^ 
Kodaira fibration X —t Y, with fibres the curves C C X with KxC = 0. This 
gives a natural case division according to dim Y. The extreme cases are Calabi-Yau 
varieties (CY), where Kx = 0, and varieties of general type, where X —t Y is 
birational to a canonical model Y having canonical singularities and ample Ky. 

This takes my story up to around 1990; for more details, see Kollâr and Mori 
[KM] or Matsuki [M]. 

3. Lots of recent progress 

3.1. Extension of M M P to dimension 4 

Already from the mid 1980s, it was understood that the MMP could in large 
parts be stated in all dimensions as a string of conjectures (or the log MMP, where 
we proceed in like manner, but directed by a log canonical class Kx + D). The 
difficult parts in dim > 3 are the existence of flips (or log flips), and the termination 
of a chain of flips. Recent work of Shokurov [Sh] has established the existence of log 
flips in dim 4; the key idea is the reduction to prelimiting flips, already prominent 
in Shokurov's earlier work (see [FA], Chapter 18). 

3.2. Rationally connected varieties 

A variety X is rational if it is birationally equivalent to P". That is, there are 
dense Zariski open sets X0 C X and U C Vn, and an isomorphism X0 — U such 
that both ip and ip^1 are given by rational maps. In other words, X has a one-to-one 
parametrisation by rational functions. By analogy with curves and surfaces, one 
might hope that rational varieties have nice characterisations, and that rationality-
behaves well under passing to images or under deformation. Unfortunately, in 
dim > 3, our experience is that this is not the case, and we are obliged to give up 
on the question of rationality.1 

However, it turns out that the notion of rationally connected variety developed 
independently by Campana and by Kollâr, Miyaoka and Mori is a good substitute. 
X is rationally connected if there is a rational curve through any two points P,Q £ 
X. See [Ca], [KMM], [Ko] and [GHS] for developments of this notion. 

1This is of course exaggerated. Rationality itself remains the major issue in many contexts, in 
particular the rationality of GIT quotients. Iskovskikh's conjectured rationality criterion for conic 
bundles remains one of the driving forces of 3-fold birational geometry. Thanks to Slava Shokurov 
for reminding me of this important point. 
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3.3. Explicit classification results for 3-folds 

Section 2.3 discussed the Mori category and its elementary contractions. The 
explicit classification manifesto of the foreword of [CPR] calls for the abstract def­
initions and existence results to be translated into practical lists of normal forms. 
The ideal result here is Mori's theorem [YPG], Theorem 6.1, that classifies 3-fold 
terminal singularities into a number of families; these relate closely to cyclic cov­
ers between Du Val singularities, and deform to varieties having only the terminal 
cyclic quotient singularities ^(l,a,—a). 

To complete our grasp of Mori theory, we hope for explicit classification results 
in this style for divisorial contractions, flips and Mfs. The last few years have seen 
remarkable progress by Kawakita [Kal], [Ka2] on divisorial contractions to points. 
A guiding problem in this area was Corti's 1994 conjecture ([Co2], p. 283) that 
every Mori divisorial contraction ip: X —t Y to a nonsingular point F £ Y is a 
(l,a,b) weighted blowup. Kawakita proved this, and went on to classify explicitly 
the divisorial contractions to compound Du Val singularities of type A. There are 
also results of Tziolas on contractions of surfaces to curves. For progress on Mfs see 
Section 4.3. 

3.4. Calabi-Yau 3-folds and mirror symmetry 

A CY manifold X is a Kahler manifold with Kx = 0, usually assumed sim­
ply connected, or at least having Hx(öx) = 0. A popular recipe for constructing 
CY 3-folds is due to Batyrev, based on resolving the singularities of toric complete 
intersections. This gives some 500,000,000 families of CY 3-folds, so much more im­
pressive than a mere infinity (see the website [KS]). There are certainly many more; 
I believe there are infinitely many families, but the contrary opinion is widespread, 
particularly among those with little experience of constructing surfaces of general 
type. 

Calabi-Yau 3-folds are the scene of exciting developments related to the 
Strominger-Yau-Zaslow special Lagrangian approach to mirror symmetry. For lack 
of space, I refer to Gross [Gr] for a recent discussion. 

3.5. Resolution of orbifolds and McKay correspondence 

Klein around 1870 and Du Val in the 1930s studied quotient singularities <C2/G 
for finite groups G C SL(2,C). Du Val characterised them as singularities that "do 
not affect the condition of adjunction", that is, as surface canonical singularities. 
Quotient singularities <C3/G by finite subgroups G C SL(3,C) were studied by many-
authors around 1990; they proved case-by-case that a crêpant resolution exists, and 
that its Euler number is equal to the number of conjugacy classes of G, as predicted 
by string theorists. The McKay correspondence says that the geometry of the 
crêpant resolution of C3 /G can be described in terms of the representation theory 
of G. This has now been worked out in a number of contexts; see my Bourbaki talk 
[Bou]. 
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3.6. The derived category as an invariant of varieties 

The derived category D(A) of an Abelian category A was introduced by 
Grothendieck and Verdier in the 1960s as a technical tool for homological alge­
bra. A new point of view emerged around 1990 inspired by results of Beilinson and 
Mukai: for a projective nonsingular variety X over C, write D(X) for the bounded 
derived category of coherent sheaves on X; following Bondal and Orlov, we con­
sider D(X) up to equivalence of C-linear triangulated category as an invariant of 
X, somewhat like a homology theory; the Grothendieck group K0(X) is a natural 
quotient of D(X). 

The derived category D(X) is an enormously complicated and subtle object 
(already for P2); in this respect it is like the Chow groups, that are usually infi­
nite dimensional, and contain much more information than anyone could ever use. 
Despite this, there are contexts, usually involving moduli constructions, in which 
"tautological" methods give equivalences of derived categories between D(X) and 
D(Y). An example is the method of [BKR] that establishes the McKay correspon­
dence on the level of derived categories by Fourier-Mukai transform. There is no 
such natural treatment for the McKay correspondence in ordinary (co-)homology 
(see [Cr]). 

The following conjectural discussion is based on ideas of Bondal, Orlov and 
others, as explained by Bridgeland (and possibly only half-understood by me). As I 
said, classification divides up all varieties into F J > 0 , F ' = 0 , F ' < 0 and construc­
tions made from them. Current work with F (X) assumes that X is nonsingular, but 
I ignore this technical point. There must be some sense in which the derived cate­
gory of a variety with FJ < 0 is "small" or "discrete"; for example, a semi-orthogonal 
sum of discrete pieces arising from smaller dimension. A contraction of the MMP 
should break off a little K < 0 semi-orthogonal summand; for nonsingular blowups, 
this is known [O], and also for certain flips [K]. For a variety X with K = 0, we 
expect F (X) to have enormous symmetry, like a K3 or CY 3-fold; and for a variety 
with K > 0, D(X) should be very infinite but rigid and indecomposable. Bondal 
and Orlov [BO] have proved that F (X) determines X uniquely if ±Kx is ample, 
but as far as I know, they have not established a qualitative difference between the 
two cases. 

Right up to Kodaira's work on surfaces in the 1960s, minimal models were 
seen in terms of tidying away — 1-curves to make a really neat choice of model in a 
birational class, that eventually turns out to be unique. In contrast, starting from 
around 1980, the MMP in Mori theory sets itself the direct aim of making K nef 
if possible. Derived categories give us a revolutionary new aim: each step of the 
MMP chops off a little semi-orthogonal summand of F (X) . 

4. Fano 3-folds: biregular and birational geometry 

4.1. The Sarkisov program 
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The modem view of MMP and classification of varieties is as a biregular theory: 
although we classify varieties up to birational equivalence, the aims and the methods 
are stated in biregular terms. Beyond the MMP, the main birational problems are 
the following: 

(1) If X is birational to a Mfs as in Theorem 1, then in how many different ways 
is it birational to a Mfs? 

(2) Can we decide when two Mfs are birationally equivalent? 
(3) Can we determine the group of birational selfmaps of a Mfs? 

The Sarkisov program gives general answers to these questions, at least in principle. 
It untwists any birational map ip: X —•* Y between the total spaces of two Mfs 
X/S and Y/T as a chain of links, generalising Castelnuovo's famous treatment of 
birational maps of P2. A Sarkisov link of Type II consists of a Mori divisorial 
extraction, followed by a number of antiflips, flops and flips (in that order), then a 
Mori divisorial contraction. 

More generally, the key idea is always to reduce to a 2-ray game in the Mori 
category (see [Co2], 269^272). By definition of Mfs, we have p(X/S) = 1, but for 
a 2-ray game we need a contraction X ' —t S' with p(X' /S') = 2. A Sarkisov link 
starts in one of two ways (depending on the nature of the map ip we are trying 
to untwist): either blow X up by a Mori extremal extraction X ' —t X and leave 
S" = S; or find a contraction S —¥ S' of S so that p(X/S') = 2 and leave X = X'. 
In either case, the Mori cone of the new X' /S" is a wedge in R2 with a marked Mori 
extremal ray, and we can play a 2-ray game that contracts the other ray, flipping 
it whenever it defines a small contraction. It is proved that, given ip: X —t Y, 
one or other of these games can be played, and the link ends as it began in a Mori 
divisorial contraction or a change of Mfs structure, making four types of links. Each 
link decreases a (rather complicated) invariant of ip, and it is proved that a chain 
of links terminates. See [Co] and Matsuki [M] for details. 

4.2. Birational rigidity 
While the Sarkisov program factors birational maps as a chain of links that 

are elementary in some categorical sense, an explicit description of general links is 
still a long way off. To obtain generators of the Cremona group of P3 would involve 
classifying every Mfs X/S that is rational, and every Sarkisov link between these; 
for the time being, this is an impossibly large problem. There is, however, a large 
and interesting class of Mfs for which there are rather few Sarkisov links. 

A Mori fibre space X —t S is birationally rigid if for any other Mfs Y —t T, a 
birational map ip: X —•* Y can only exist if it lies over a birational map S —•* T 
such that X/S and Y/T have isomorphic general fibres (but ip need not induce an 
isomorphism of the general fibres - this is a tricksy definition). If S = pt., so that 
X is a Fano variety with p(X) = 1, the condition means that the only Mfs Y/T 
birational to X is Y = X itself. For example, P2 is not rigid, since it is birational to 
all the scrolls F n . Following imaginative but largely non-rigorous work of Fano in 
the 1930s, Iskovskikh and Manin proved in 1971 that a nonsingular quartic 3-fold 
X4 c P4 is birationally rigid. This proof has since been simplified and reworked 
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by many authors. The main result of [CPR] is that a general element X of any 
of the famous 95 families of Fano hypersurface X^ c P ( l , a i , . . . ,a4) is likewise 
birationally rigid. 

It is interesting to take a result of Corti and Mella [CM] as an example go­
ing beyond the framework of [CPR]. The codim 2 complete intersection X3j4 c 
P5( l , 1,1,1,2,2) is a Fano 3-fold; write xi,...,X/i,yi,y2 for homogeneous coordi­
nates and fi = £4 = 0 for the equations of X3j4. By a minor change of coordinates, 
I can assume that #4 = yiy2 + g'(xi,... ,£4). Then X3j4 has 2 x | (1,1,1) quotient 
singularities at the t/i, y2 coordinate points. [CM] shows that blowing up either of 
these point leads to a Sarkisov link 

(4.1) 

Here the midpoint Y5 of the link is a general quintic containing the plane II = P2 , 
say given by II : (#4 = t/i = 0). Thus Y5 : (A4£4 — F3J/1 = 0), where A 4 , F 3 are 
quartic and cubic; note that Y5 itself is not in the Mori category, because it is not 
factorial. We obtain X3j4 by adding y2 = ^fi = ^fi to its homogeneous coordinate 

ring, and Z± by adding Xo = ^r = jfi • 
This example makes several points: X3j4 and Z± are both Mori Fano 3-folds 

with p = 1. They are not birationally rigid, since they are birational to one another. 
[CM] proves that they are not birational to any Mfs other than X3j4 and Z4, so they 
form a bi-rigid pair. X3j4 is general in its family, whereas Z4 has in general a double 
point locally isomorphic to x2 + y2 + z3 + t3. This is a new kind of phenomenon 
that arises many times as soon as we go beyond the Fano hypersurfaces. 

4.3. Explicit classification of Fano 3-folds 
The anticanonical ring R(X,—Kx) = @H°(—nKx) of a Fano 3-fold X is 

a Gorenstein ring. Choosing a minimal set of homogeneous generators xo, • • •, XM 
of R with wtXj = Oj defines an embedding X ^y P(ao, . . . ,ctjv) as a projectively 
normal variety. The codimension of X is its codimension N — 3 in this embedding. 
If N < 3 the equations defining X are well understood, and we can describe X 
explicitly. For example, Altinok [Al] gives 69 families of Fano 3-folds whose general 
element has anticanonical ring of codim 3, given by the 4 x 4 Pfaffians of a 5 x 5 
matrix, that is, a section of a weighted Grassmannian wGr(2,5) in the sense of 
[CR2]. 

The paper [ABR] explains how to use the formulas of [YPG] and the ideas 
of [Al] to make a computer database that includes all possible Hilbert series for 
R(X, —Kx)- In most cases the rings themselves can be studied by projection meth­
ods, as described in [Ki], in fact usually by projections of the simplest type. In 
other words, as in (4.1), we can make a weighted blowup Y —t X of a terminal 
quotient singularity of X of type ^(1, a, —a). If we know R(Y, -Ky) and the ideal 
of the blown up P( l ,a , —a) in it, we can reconstruct X by Kustin-Miller unpro-
jection [PR]. Takagi's examples in [Ki], 6.4 and 6.8 is a warning that this process 
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is entertaining and nontrivial: there are two different families of Fano 3-folds in 
codim 4 with the same Hilbert series, obtained by unprojections that are numeri­
cally identical, and that differ only in the way that their unprojection planes embed 
II = P2 <L-¥ wGr(2,5) in the weighted Grassmannian. These are the Tom and Jerry 
unprojections of [Ki], Section 8. The K3 surface sections of the two families form 
a single unobstructed family, but their extension to Fano 3-folds break up into two 
families; this is reminiscent of the extension-deformation theory of the del Pezzo 
surface of degree S$, 
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Sur les Algèbres Vertex Attachées 
aux Variétés Algébriques 
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A b s t r a c t 

Sganarelle: ... Mais encore faut-il croire quelque chose dans le monde: 
qu'est-ce donc que vous croyez? 

Dom Juan: Ce que je crois? 
Sganarelle: Oui. 
Dom Juan: J e crois que deux et deux sont qua t re , Sganarelle, et que 

qua t re et qua t re sont huit . 
Molière, Dom, Juan 
One dicusses sheaves of vertex algebras over smooth varieties and their 

connections wi th characteris t ic classes. 
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1. Introduction 
Le but de cette note est de presenter une classification de certaines algèbres 

vertex, qui peuvent être associées à des variétés algébriques lisses; ceci est l'occasion 
de rencontrer des classes caractéristiques "style Pontryagin-Atiyah-Chern-Simons". 
Ceci a été obtenu dans [GMS] dont la presente note est un complément. On propose 
ici une définition plus simple d'une algébroïde vertex (infra, 2.4, 2.6), un énoncé 
plus précis et une démonstration courte du résultat principal de op. cit. (infra, 
3.4, 3.6, 3.7). À la fin on propose une construction directe des algèbres vertex 
associées aux courbes, à l'aide des algèbres de Virasoro introduites par A.Beilinson. 
Le point de départ de cette note était une tentative de comprendre le complexe de 
de Rham chiral découvert par F.Malikov, [MSV]. Je remercie vivement mes amis et 
collaborateurs Arkady Vaintrob, Fyodor Malikov et Vassily Gorbounov. 
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2. Algébroïdes vertex 
2.1 . On fixe un corps de base k de caractéristique 0. Rappelons qu'une algèbre 

vertex est un fc-espace vectoriel V muni d'un vecteur distingué 1 £ V (dit vacuum) 
et d'une famille d'applications fc-linéaires (^ : V ®k V —y V (i £ Z) telles que 
x(ì)y = 0 pour i assez grand. Si l'on pose dx := #(_2)1, on obtient un opérateur 
d : V —• V. Les axiomes de [B] doivent être vérifiés. On n'est intéressé que par 
les algèbres vertex Z>0- graduées, ce qui signifie que l'espace V est muni d'une Z>0-
graduation (dite poids conforme), V = ®n>o Vn, 1 £ Vo et Vn(j)VTO C Vn+m-«-i-
En particulier dVn C Vn+i. Les morphismes de telles algèbres étant définis de 
manière évidente, on obtient la catégorie Vert des algèbres vertex Z >0-graduées. 

2.2. "Données classiques" associées à une algèbre ver tex. Soit V £ 
Vert. Pour être bref on écrira xy au lieu de X(_i)j/; c'est une opération non com­
mutative et non associative en général. On a VnVm C Vn+TO. Posons A(V) = Vo; 
l'opération xy est commutative et associative sur Vo; donc A(V) devient une k-
algèbre commutative avec unité 1. Posons A(V) = Y\. Soit O(F) le sous-fc-
vectoriel de A(V) engendré par les éléments adb, a,b £ A(V). Alors O(F) de­
vient un A(F)-module et d : A(V) —y 0 (F) est une dérivation. En outre, si l'on 
pose T(V) := A(V)/Sï(V), l'opération ax induit une structure de A(F)-module sur 
T(V). (Par contre, A(V) n'est pas un A(F)-module en général, à cause de la non 
associativité de l'opération ax.) L'opération (0)

 : A(V) x A(V) —y A(V) induit 
l'application [,] : T(A) x T(A) —• T(A) qui est un crochet de Lie; l'opération 
(o) : A(V) x A(V) —y A(V) induit une action de T(V) sur A(V) par dérivations; 
on a [r,ar'] = a[T,r'] + T(a)[T,r'], i.e. T(V) devient une A(V)-algébroïde de 
Lie. Ya première opération induit aussi une action de l'algèbre de Lie T(V) sur 
fi(V) telle que d est un morphisme de T(V)-modules, et T(OUJ) = r(a)oj + ar(oj). 
Enfin, l'opération ^ : A(V) x A(V) —y A est symétrique et induit un ac­
couplement A(V)-bilinéaire (,) : T(V) x 0(V) —y A(V) telle que T((T',OJ)) = 
([T,T'],OJ) + (T',T(üJ)) et (ar)(uj) = ar(oj) + (r,oj)da. 

2.3. "Données quant iques ." Les propriétés (Algl) — (Alg3) ci-dessous 
sont vérifiées, où a G A(V), x,y,z £ A(V), n : A(V) —y T(A) étant la projection 
canonique. 

(Algl) (ax){i)y = a(x{i)y) - n(x)n(y)(a). 
(Alg2) x{0)y + y{0)X = d(x{i)y); (dx){0)y = 0. 
(Alg3) x{o)(y{i)z) = (x{0)y){i)z + y{i)(x{0)z), i = 0,1. 
2.4. Soit A une fc-algèbre commutative de type fini, lisse sur k. Posons 

Q(A) = £t\/k, T(A) = Derk(A,A) (l'algèbre de Lie de fc-dérivations de A). Soit 
d = ÔDR '• A —y Q(A) la dérivation universelle. On a l'accouplement non dégénéré 
A-bilinéaire (,) : T(A) x Q(A) —y A; l'algèbre de Lie T(A) agit sur Q(A) par la 
dérivée de Lie. Ces données vérifient toutes les propriétés de 2.2. 

Une A-algébroïde vertex est un fc-espace vectoriel A muni d'un sous-espace 
F1 A C A avec les identifications de fc-vectoriels F1 A = 0(A), A/F1A = T(A) 
et des opérations fc-bilinéaires (_i) : Ax A —y A, (a,x) H- ax = a(_i)X, (i) : 
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A x A —y A symétrique, (0) : Ax A —y A. On demande que (i) A(_i)Q(A) c 
O(A) et que l'action de A sur Q(A) et sur T(A) induite par (_i) coïncide avec 
l'action canonique; (ii) 0(A)(j)Q(A) = 0 (i = 0,1); O(0)-4 C Û(A), l'opération 
T(A) x T(A) —• T(A) induite par (0) coïncide avec le crochet de Lie, et l'action 
induite T(A) x Q(A) —• Q(A) coïncide avec la dérivée de Lie; (iii) Pacccouplement 
(, ) : T(A) x Q(A) —y A induit par ^ coïncide avec l'accouplement canonique. 
Enfin, les propriétés (Algl) — (Alg3) doivent être vérifiées. Dans (Alg3) pour i = 1 
on interprète la partie de gauche comme n(x)(y(i)z). 

Soit T'(A) une algèbre de Lie dg concentrée en degrés —1,0, avec T^1(A) = 
T°(A) = T(A), d : T^1(A) —y T°(A) l'identité, le crochet [,]o,-i l'action adjointe. 
Soit Si'(A) : 0 —• A —• Q(A) —• Q(A)/9A —y 0 le complexe concentré en 
degrés —2,-1,0 avec les différentielles évidentes. Ce complexe est un module dg 
sur T'(A) (l'action de T°(A) est par la dérivée de Lie, la composante [,]_!,_! : 
T^1(A) x Q_1(A) —• Q_2(A) étant l'accouplement canonique, et la composante 
[,]-i,o étant définie par [T,UI] = iT(dw), où a) G Q(A)/9A est l'image de u; € Û(A), 
d : ^i\/k —y ^A/k e s t ^a différentielle de de Rham, iT : ii2

A,k —> &\/k est la 
convolution avec r ) . On peut exprimer les axiomes (Alg2) et (Alg3) en disant que 
l'on a une algèbre de Lie dg A' : 0 —y A —y A —y A/dA —• 0, concentrée 
en degrés —2,-1,0, extension de T'(A) par Q'(A) (considérée comme une sous-
algèbre de Lie abélienne), telle que l'action de T'(A) sur Q'(A) induite coïncide 
avec celle décrite ci-dessus. Un morphisme g : A —y A' est une application 
fc-linéaire respectant les opérations (^ et les filtrations, qui induit l'identité sur 
O(A), T( A). D'où la catégorie Alg A des A-algébroïdes vertex, qui est un groupoïde 
(chaque morphisme est un isomorphisme). 

2.5. Soit A comme dans 2.4. On définit la catégorie VertA dont les objets 
sont V £ Vert munies d'un isomorphisme de fc-algèbres A(V) ^ > A, cet isomor­
phisme identifiant les données classiques (T(V),Sï(V),d, (,)) correspondantes avec 
les données standardes (T(A),Sï(A),dDR,{,)) décrites dans 2.4. Les morphismes 
sont les morphismes des algèbres vertex induisants l'identité sur les données clas­
siques. 

La construction 2.2, 2.3 donne lieu au foncteur Alg : VertA —> Alg A , V >-¥ 
A(V). Ce foncteur admet l'adjoint à gauche U : Alg A —> VertA, l'algèbre vertex 
UA étant appelée l'algèbre enveloppante d'un algébroïde vertex A. Pour chaque 
A £ Alg A le morphisme d'adjonction A —y Alg(UA) est un isomorphisme. 

2.6. Le langage suivant est un peu plus explicite et est parfois commode. 
Appelons A-algébroïde vertex scindée un couple B = ((,),c), où (, ) : T(A) x 
T(A) —• A (resp. c : T(A) x T(A) —• 0(A)) est une application fc-bilinéaire 
symétrique (resp. antisymétrique). On demande que les propriétés (AlgScindl)-
(AlgScind3) ci-dessous soient vérifiées. 

(AlgScindl) (arfir1) - a(r,6r ') - 6(ar,r ') + a6(r,r ') = ^r ' (a)r(6) . 
(AlgScind2) (T",C(T,T')) + (T',C(T,T")) = <[r,r'],r"> + <r',[T,T"])-T((T<,r">) 

+r'((r,r"))/2 + r"((r,r '))/2. 
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(AlgScind3) 3 { T ( C ( T ' , T " ) ) + T'(C(T",T)) + T"(C(T,T'J) - C([T,T'],T")-

c ( [ r ' , r " ] , r ) - c ( [ r " , r ] , r ' ) } = ö { < r , | [ r ' , r " ] + c ( r ' , r " ) > + <rM[r" , r ] + c(r",r)> + 
(T",I[T,T'] + C(T,T'))}. 

Ses propriétés entraînent que (, ) et c sont des opérateurs différentiels, d'ordres 
2 et 3 respectivement. 

Étant donnés deux A-algébroïdes vertex scindées B = ((, ),c) et B' = ((,) ' ,c '), 
un morphisme f : B —• B' est par définition une application fc-linéaire h = 
hf : T(A) —• Q(A) satisfaisant les propriétés (Morl)-(Mor3) ci-dessous (dont la 
première implique que h est un opérateur différentiel d'ordre 2). 

(Mori) (T',h(aT)) - {ar,r') + {ar,^)' = a{(T<,h(T)) - (T,T<) + (r',r)'}. 
(Mor2) (T,T>) - (T,T'Y = (r,ft(r')) + (T'MT)). 

(Mor3) 
c (r ,r ' ) -C(r ,r ' )=r ' ( / l (r ) ) -r ( / l (r ' ) ) + M[T,r']) + ö{<r,/l(r')>-<r',MT)>}/2. 
La composition est définie par hff = hf + hf, l'identité est hid = 0. D'où 

on obtient le groupoïde AlgScindA des A-algébroïdes vertex scindées. Étant donné 
B comme ci-dessus, on pose A(B) = T(A) ® Q(A) et définit les opérations a), i = 
— 1,0,1 par les formules <ï(-I)T = (ar, —7(0, r)) , où 7(0,r) £ Q(A) est défini par 

( r ' ,7(a , r ) ) = (aT,fi) - a(fi,T) +TT'(O) 

(l'axiome (AlgScindl) signifie que cette expression est A-linéaire en r ' ) ; T(O)T' = 
([T,T'],-C(T,T') + \8{T,T'), T(I)T' = (T,T'). Ceci définit A(B) £ AlgA- Si / : 
B —y B' est comme ci-dessus, on définit le morphisme g(f) : A(B) —• A(B') par 
9(f)(T) = (T,hf(TJ). Ceci définit un foncteur AlgScindA —> AlgA qui est une 
équivalence des catégories. 

2.7. Exemple. Supposons que A est telle que T(A) soit un A-module libre 
et il existe une A-base b = { n , . . . , r„} de T(A) telle que [r,, TJ] = 0 pour tous i,j. 
Nous appelerons telles algèbres petites est les bases b abéliennes. On pose 

(an, brfib = -bTiTj(a) - ar ir i(6) - Ti(b)Tj(a), (2-7){,) 

cb(aTi, bTj) = -{Ti(b)dTj(a) - Tj(a)dTi(b)} + -d{bTiTj(a) - ar ir i(6)}. (2.7)c 

Alors Bb = ((,)b,Cb) est une A-algébroïde vertex scindée. 

3. Classification 
3.1. Une algèbre A étant toujours comme dans 2.4, on définit un groupoïde 

Gr(Çv^' ') dont les objets sont les formes différentielles fermées UJ £ Yl^.'/fi, avec 

Homgr(Q^>Au)iu)') = & e iï2
A/k\dn = u) -u)'}. 

Ya composition des morphismes est l'addition de 2-formes. L'addition des 3-formes 
induit une structure d'un groupe abélien en catégories sur ce groupoïde. 
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On remarque que si A, A' sont deux A-algébroïdes vertex avec le même espace 

sous-jacent la même opération ^ , alors X(Q)y — x^oyy £ 0 (A) ; cet élément ne 

dépend que des n(x),n(y), où n : A —y T(A) est l 'application canonique, d'où 

l'application CA,A' '• T(A) x T(A) — • fi (A). De plus, cette application est A-

bilinéaire, et OJA,A'(T,T',T") '•= (T,CA,A'(T',T")) est antisymétrique en T,T',T", 

donc UJA,A' Peut être considérée comme une 3-forme différentielle, et cette forme 

est fermée. 

Réciproquement, étant donné A = AlgA et u £ fi^/jT, on définit A' = A + 

OJ £ AlgA ayant le même espace sous-jacent que A et la même opération ^ , avec 

(0)' =(o) - w . 

Si g : A + OJ —y A fi OJ' est un morphisme, alors (g — id) (A) C fi (A), (g — 

id)\n(A) = 0, donc g — id induit une application hg : T(A) — • fi(A). La fonc­

tion, r]g(T,Tr) := (T,hg(r)) est antisymétrique en T,T' et A-bilinéaire, donc peut 

être considérée comme une 2-forme différentielle; on a dr\ = OJ — OJ'. Ceci in­

duit une bijection HoniAigA(A + OJ,A + OJ') = {n £ ^i\/k\dn = OJ — OJ'}. On a 

HornAigA (A, A') = HomAigA (A + OJ, A! -i- OJ). Cela définit une Action 

+ : Mg A x Gr(tt[l3)) — • AlgA- (3.1.1) 

3 .2 . T h é o r è m e . Si A est petite (voir 2.7), alors le groupoïde AlgA est un 

Torseur sous Gr(QA ) par rapport à l'Action (3.1.1), c'est à dire, pour chaque 

A £ AlgA le foncteur A + ? : Gr(iilfi ') —y AlgA est une équivalence. 

Par exemple, l'ensemble no(AlgA) des classes d'isomorphisme de AlgA est un 

torseur sous HpR(A). Grace à 2.6 le Torseur AlgA est non-vide pour A petite. 

3 . 3 . Soient A peti te, et b = { r ,} ,b ' = {fi} deux bases abéliennes, d'où les 

algébroïdes scindées Bb, B^; on a T[ = ^TJ (la règle de Einstein est sous-entendue), 

4> = ( # J ) € GLn(A) (pour être bref, on écrit b' = <j>b). On définit une application 

hb',b '• T(A) —y fi(A), comme étant l 'unique opérateur satisfaisant (Mori ) , tel 

que (fi,hb',b(Tj)) = ^k(Ti,T'j)b- De plus, on définit une application C(,',b : T(A) x 

T(A) — • fi(A) comme étant l 'unique opérateur tel que ßb',b : = ((>)b)Cb',b) s ° i t 

une algébroïde vertex scindée, et hb>,b soit un morphisme d'algébroïdes scindées 

Bb< —y Bb',b- D'où la 3-forme av ,b € fi^/jT telle que Bb = Bb',b + QV,b- Si 

b" = {T"} est la troisième base abélienne, avec r " = # J V j , on définit la 2-forme 

/?b",b',b : = hb",b' + hb\b — hb",b € ^A/k-

3.4. T h é o r è m e . ßb»,w,b = kjri^fi^dfidcj)}, ab ' ,b = ^-{(^dfi)3}. 
Démonstration. Il resuite de (2.7) que 

CbW,rj) = iHr'r^r'dT'M -r'rmr'r'j^r'dcP- (i ++j)}, (3A)C 

(jl^b = tr{-20-1rfr_î(0) + ^ M W - T 1 ^ ) } (3.4){J) 

d'où, en utilisant (Mor i ) , 

fcb'.bOn = Hr'dfi'^) - ±<i>-1T!'(<i>)<i>-1d<i> + <i>-1il>-1Tl'(il>)d<i>}. (3.4)fc 
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Par définition, Cb',b(7j,rj) = fi(h(Tjj) — TJ(/I(TJ')); ov,b = Cb — Cb',b, d'où; 

ab'.bOf.TJ) = - i ^ ^ r / W ^ r j ^ ^ ö ^ - (* ++j)}. (3.4)Q 

En outre, (3.4)^ entraîne 

/V.b'.bOn = ^ r l f ' r ' r f W Ö ^ - ^ ' ( « f V 1 ^ } (3-% 

d'où le théorème. Ici l'on identifie une 3-forme a avec une application antisymétrique 
T(A) x T(A) —y fi(A) définie par a(r,r') = iTiT>a. A 

3.5. Classe de Pontryagin . Soit X une variété algébrique lisse sur fc, 
E un fibre vectoriel sur X. Choisissons une recouvrement affine il = {£/,} de 

v 
X, et des bases b1 des r(o/j,öx)-modules Y(Ui,E), d'où le cocycle de Cech <j> = 
(4>ij), 4>ij £ Y(Uij,GLn(Oxj), b1 = <j>ijb3 sur t/y, 4>ij4>jk = 4>ik sur Uijk. Con-

v 
sidérons les cochaînes de Cech P2(4>) = (2^tr{<l>7k

1<l>ïj1d<l>ijd<l>jk}) £ C2(il,il2
x), 

PÂ4>) = (ItrU^d^ij)3}) £ C ^ U , ^ ) ; \>n a dv &(</>) = 0, dDRp2(^) = 
J Cech 

dv P3(4>),dDRP3(4>) = 0. Il en résulte que p(<j>) := (p2(4'),P3 (<!>)) € Z2(ii,iix' ') 
Cech 

où Ctx' ' := (Yl2
x —y Ylx

er), la différentielle totale dans le bicomplexe de Cech 
à coefficients dans ce complexe étant d = don + ( —l)'Dfi'dv . De plus, si l'on 

Cech 

c h o i s i t d e s a u t r e s b a s e s 'b1 = gib1, d ' ù g = (gi) £ C°(il, GLn(Oxj), l e c o c y c l e 

c o r r e s p o n d a n t e s t <j>' = 9 <j>, o ù 9<j>ij = gi^ijgj1 • O n d é f i n i t 

Pï(<Î>,9) •= (^tr{<P7j
i9rld9ì<l>ìj9fi1d9j + ^ d ^ g ^ d g j - g ì 1 d g i d f c j ^ } ) , 

1 r , _ 1 . x Q ^ X , , x / , , x . X X „ 1 . . . . ~ J 2 , 3 > N 
Mg) ••= LHig^dgi)3}); p(4>,g) = (iH^,g),P3(g)) £ C ^ f i K& x 

Alors pz(a4>) = Ps(^) + dy pz(g) + dDRp2((j),g),P2((j)s) = M'P) + ch ^2(^,9), 
Cech Cech 

d'où p(9(j>) = p((j>) + dp(fi,g). Donc la classe p(E) de p(<j>) dans H2(X,Qx ') qu'on 
peut appeler la classe de Pontryagin-Atyiah-Chern-Simons (pacs), ne depend que 
de E. On remarque que p(<j>) = p(fi^u), donc p(E) = p(E*). 

3.6. Les groupoïdes Algr(u,ox)i U C X, forment un champ Stlflx sur la 
topologie de Zariski (même étale), parsque les opérations ^ sont des opérateurs 
différentiels qui se localisent. D'après 3.2, VYLgx est une gerbe sous Ylx ' (lo­
calement non-vide, mais pas localement connexe). Donc la classe caractéristique 
c(2Ugx) £ H2(X,Qx ') est définie, telle que C(%LIQX) = 0 ssi Y(X,W,gx) est non-
vide. Rappelons sa définition. On choisit un recouvrement affine il = {£/,} de X 
avec Ui petites; on choisit les objets Ai £ T(Ui,%Ltgx)- Sur les doubles intersec­
tions, il existe les isomorphismes fty : Aj\uió ~^y Aifiji, + «y , «y £ ii3'^er(Uij). 
Si l'on pose ßijk := hij\Uijk - hik\uijk + hjk\uijk € ü2(Uijk), on a c ( { ^ } , { % } ) := 
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((aij),(ßijkj) £ Z2(ii,Ylx '). Pour une autre famille ({v4-},{/iy}) il existent 

hi : Ai ^ > A'i + at, at £ fi^/jT; alors (hj + ay )o / iy : „4, -^> A'j + (a.j + ay) et 

(h'ij + ai) ohi '• Ai ~^y A'j + («y + «»), donc il existe l'unique /3y £ fi^;fc telle que 

dßij = a'ij - (Xij + ai - aj. Alors d((at), (/%)) = c({„4-},{>y}) - c ( { ^ } , { % } ) ; 

par définition c(%Ltgx) est la classe de c({„4j}, {^y}) dans la cohomologie. 
Soit fix le fibre tangent de X. Choisissons des bases bonnes b% de T(Ui,Tx), 

avec b1 = <j)ijbfi <j> = (finj) £ Z1 (il,GLn(Oxj)- Alors, d'après 3.4, abibi = Pz(4>)ìj 
et ßbibibi

 : = hvb1 — ^b'b' + ^b'b^ = P2(<f>)iji- De plus, si {'b1} est une autre famille 
des bases bonnes, avec 'b1 = #,&*, g = (gi), alors a/b;b; = Pz(g)i et hibi 'bi ^hbibi + 
h/bib

l — hi bjbj = P2(4>,g)ij. En particulier, on a 
3.7. Théorème . c(2Ugx) = p(T~x), où fix est le fibre tangent de X. A 
Soit (f> comme dans 3.6, p = p(fi>); soit G'i'p le groupoïde dont les objets sont 

les 1-cochaînes de Cech OJ £ C1(il,Çlx ') telles que du = p, avec Homgrp(oj,oj') = 
{n £ C°(il, Ylx ')\ dn = OJ — OJ'}. Ya construction 3.6 donne lieu au foncteur GP —• 
T(X,%Ltgx) qui est une équivalence des catégories. Il en résulte que 7ToF(X, 2Ugx) 
est un torseur sous HX(X, Çlx' '), non-vide si et seulement si p(Tx) = 0, et pour 
A £ T(X,$Llgx) le groupe Aut(A) est isomorphe à H°(X,Ylx '). 

4. Exemple 
Soit X une courbe lisse sur fc. Dans ce cas Ylx ' = 0, donc sur X il existe 

l'unique, à isomorphisme unique près, ox-algébroïde vertex Ax • On propose ici une 
construction directe de Ax- Pour j e Z on a défini dans [BS] le faisceau d'algèbres 
de Lie différentielles graduées Aj (j-ième Virasoro) sur X (cf. [BS] 3.1). On a 
A%j = 0 pour i ^ —2, —1,0; Aj" = Ox, A® = fix- On a la suite exacte canonique 
des fc-vectoriels (des ö^-modules si j = 0) 0 —y ilx —y Aj1 -^ fix —> 0; Par 
définition, la différentielle d : Aj1 —y A® est égale à n et d : Aj2 —y Aj1 est 
égale à la composée de la différentielle de de Rham avec l'inclusion ûx ^y Aj1. 
Comme il est expliqué dans op. cit., la catégorie des algèbres de Lie dg comme ci-
dessus est un k-espace vectoriel en catégories; en particulier, on peut les multiplier 
par un scalaire. On a l'isomorphisme canonique Aj ~^y (6j2 — 6j + l)v40. Pour 
chaque À G fc on a l'isomorphisme des fc-modules XA0 ^ * A0, donc la structure 
canonique d'un ö^-module sur A0 induit une structure de ö^-module sur XA0-

Considérons l'algèbre de Lie dg 6„4o- On pose Ax = GAg1- On définit les 
opérations par a(_i)X = ax — 2dn(x)(a); X(Q)y = [n(x),y], x^yy = [x,y] (a £ 
Ox, x,y £ Ax)- Alors les axiomes (Algl)-(Alg3) sont vérifiés, et l'on obtient une 
algébroïde vertex sur X. 
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Topology of Singular Algebraic Varieties 

B. Tötaro* 

Abstract 

I will discuss recent progress by many people in the program of extending 
natural topological invariants from manifolds to singular spaces. Intersection 
homology theory and mixed Hodge theory are model examples of such invari­
ants. The past 20 years have seen a series of new invariants, partly inspired by 
string theory, such as motivic integration and the elliptic genus of a singular 
variety. These theories are not defined in a topological way, but there are 
intriguing hints of their topological significance. 

2000 Mathematics Subject Classification: 14F43, 32S35, 58J26. 
Keywords and Phrases: Intersection homology, Weight filtration, Elliptic 
genus. 

1. Introduction 

The most useful fact about singular complex algebraic varieties is Hironaka's 
theorem tha t there is always a resolution of singularities [20]. It has long been 
clear tha t the non-uniqueness of resolutions poses a difficulty in many applications. 
Many different methods have been used to get around this difficulty so as to define 
invariants of singular varieties. One approach is to t ry to describe the relation 
between any two resolutions, leading to ideas such as cubical hyperresolutions [18] 
and the weak factorization theorem ([1], [31]). Another idea, coming from minimal 
model theory, is to insist on the special importance of crêpant resolutions, and more 
generally to emphasize the role of the canonical bundle. Recently the interplay 
between these two approaches has been very successful, as I will describe. 

The recent methods tend to be more roundabout than the direct topological 
definition of intersection homology groups. It is tempting to t ry to define suitable 
generalizations of intersection homology groups in order to "explain" various results 
below (3.2, 3.4, 4 .1 , 5.2). 
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2. The weight filtration 
Deligne discovered a remarkable structure on the rational cohomology of any-

complex algebraic variety, not necessarily smooth or compact: the weight filtration 
[9]. This filtration expresses the way in which the cohomology of any variety is 
related to the cohomology of smooth compact varieties. It is a deep fact that the 
resulting filtration is well-defined. For example, an immediate consequence of the 
well-definedness of the weight filtration on cohomology with compact support is the 
following fact, originally conjectured by Serre ([11], [6], [12], p. 92). 

Theo rem 2.1 . For any complex algebraic variety X, not necessarily smooth 
or compact, one can define "virtual Betti numbers" a,X £ Z for i > 0 such that 

(1) if X is smooth and compact, then the numbers a,X are the Betti numbers 
hX = dimQ H* (X,Q); 

(2) for any Zariski-closed subset Y c X, a,X = a ,F + afiX — Y). 
Using resolution of singularities, it is clear that the numbers a,X are uniquely-

characterized by these properties. What is less clear is the existence of such num­
bers. It follows, for example, that if two smooth compact varieties X and Y can be 
written as finite disjoint unions of locally closed subsets, X = JJ Xj and Y = JJ Yt, 
with isomorphisms Xj = Yt for all i, then X and Y have the same Betti numbers. 
This is a topological property of algebraic varieties which has no obvious analogue 
in a purely topological context. 

The existence of the weight filtration, and consequently of the virtual Betti 
numbers OjX, was originally suggested by Grothendieck's approach to the Weil 
conjectures on counting rational points on varieties over finite fields. Indeed, the 
number of Fg-points of a variety clearly has an additive property analogous to 
property (2) above. One proof of the existence of the weight filtration for complex 
varieties reduces the problem to the full Weil conjecture for varieties over finite 
fields, proved by Deligne [8]. Around the same time, Deligne gave a more direct 
proof of the existence of the weight filtration for complex varieties, using Hodge 
theory [7]. This is a classic example of the philosophy that the deepest properties 
of algebraic varieties can often be proved using either number theory or analysis, 
while they have no "purely geometric" proof. 

In 1995, however, Gillet and Soulé gave a new proof of the existence of the 
weight filtration [13]. They used "only" resolution of singularities and algebraic 
if-theory, specifically the Gersten resolution. As a result of their more geometric 
proof, they were able to define the weight filtration on the integral cohomology or 
Fj-cohomology of a complex algebraic variety, not only on rational cohomology. 

To understand what this means, let me describe the weight filtration for a 
smooth complex variety U, not necessarily compact. Using resolution of singular­
ities, we can write U as the complement of a divisor with normal crossings D in 
some smooth compact variety X. For i > 0, let XW be the disjoint union of the 
i-fold intersections of divisors. Then there is a spectral sequence 

Ei = Hj(X{i),k) => Hl+j(U,k) 

for any coefficient ring fc. The weight filtration on the compactly supported coho­
mology of U is defined as the filtration associated to this spectral sequence. Gillet 
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and Soulé show that for any coefficient ring fc, this filtration is an invariant of U, 
independent of the choice of compactification U. This is not at all clear from the 
known invariance of this filtration for fc = Q. 

In fact, Gillet and Soulé proved more: for any coefficient ring fc, the spectral 
sequence is an invariant of U from the E2 term on. For fc = Q, the spectral sequence 
degenerates at E2, but this is not true with coefficients in Z or Fj. As a result, for 
general coefficients fc, the groups in the E2 term are interesting new invariants of U 
which are not simply the associated graded groups to the weight filtration. They 
satisfy Mayer-Vietoris sequences, and so can be considered as a cohomology theory 
on algebraic varieties. 

I can now explain a new application of the geometric proof that the weight 
filtration is well-defined. Namely, one can try to define the weight filtration not 
only for algebraic varieties. The point is that resolution of singularities holds more 
generally, for complex analytic spaces, and even for real analytic spaces. Gillet 
and Soulé 's construction of the weight filtration uses algebraic if-theory as well 
as resolution of singularities, and it is not clear how to adapt the argument to 
an analytic setting. But Guillen and Navarro Aznar improved Gillet and Soulé's 
argument so as to construct the weight filtration using only resolution of singularities 
[17]. The details of their argument use their idea of "cubical hyperresolutions" [18]. 

Using the method of Guillen and Navarro Aznar, I have been able to define 
the weight filtration for complex and real analytic spaces. In more detail, let us 
define a compactification of a complex analytic space X to be a compact complex 
analytic space X containing X as the complement of a closed analytic subset. Of 
course, not every complex analytic space has a compactification in this sense. We 
say that two compactifications of X are equivalent if there is a third which lies over 
both of them. 

Theorem 2.2. Let k be any commutative ring. Then the compactly supported 
cohomology H*(X,k) has a well-defined weight filtration for every complex analytic 
space X with an equivalence class of compactifications. 

Any algebraic variety comes with a natural equivalence class of compactifi­
cations, but in the analytic setting this has to be considered as an extra piece of 
structure. On the other hand, the theorem says that the weight filtration is well-
defined on all compact complex analytic spaces, with no extra structure needed. 

For real analytic spaces, one has the difficulty that there is no natural ori­
entation, unlike the complex analytic situation. This is not a problem if one uses 
F2-coefficients, and therefore one can prove: 

Theorem 2.3. For every real analytic space X with an equivalence class of 
compactifications, the compactly supported cohomology of the space X(R) of real 
points with F 2 coefficients has a well-defined weight filtration. 

In particular, one can define virtual Betti numbers OjX for a real analytic 
space X with an equivalence class of compactifications, the integers OjX being the 
usual F2-Betti numbers in the case of a closed real analytic manifold. 

Example. Let X be the compact real analytic space obtained by identifying 
two copies at the circle at a point, and let Y be the compact real analytic space 
obtained by identifying two points on a single circle (the figure eight). It is imme-
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diate to compute that aoX = 1 and aiX = 2, whereas OQY = 0 and ai = Y. The 
interesting point here is that the spaces X(R) and Y(R) of real points are homeo­
morphic. Thus the numbers a» for a compact real analytic space are not topological 
invariants of the space of real points. In a similar vein, Steenbrink showed that the 
weight filtration on the rational cohomology of complex algebraic varieties is not a 
topological invariant, using 3-folds [27]. 

Nonetheless, it seems fair to say that extending the weight filtration and the 
virtual Betti numbers to complex and real analytic spaces helps to bring out more 
of the topological meaning of these invariants of algebraic varieties. A real analytic 
space has in some ways a weak structure; for example, the classification of closed 
real analytic manifolds up to isomorphism is the same as the classification of closed 
differentiable manifolds up to diffeomorphism. From this point of view, it is sur­
prising that compactified real analytic spaces have the extra structure of the weight 
filtration on their F2-cohomology. It seems natural to ask for an F2-linear abelian 
category of "mixed motives" associated to compactified real analytic spaces X, such 
that the F2-cohomology groups of X with their weight filtration are determined by 
the mixed motive of X. On Beilinson's conjectured abelian category of mixed mo­
tives in algebraic geometry, see for example Jannsen [21], 11.3, and [22]; on various 
approximations to this category, see the triangulated categories defined by Hana-
mura [19], Levine [26], and Voevodsky [29], and the abelian category defined by 
Nori. 

It should be much easier to define mixed motives for real analytic spaces than 
to do so for algebraic varieties. In particular, one might speculate that the mixed 
motive of a real analytic space should not involve much more information than the 
weight spectral sequence converging to its F2-cohomology (starting at E2), perhaps 
considered together with an action of the Steenrod algebra. In low dimensions, one 
could hope for precise classifications of mixed motives along these lines. 

3. Stringy Betti numbers 
The following result of Batyrev's [4] is related to his famous result that two 

birational Calabi-Yau manifolds have the same Betti numbers. The proof uses 
Kontsevich's idea of motivic integration [24], as developed by Denef and Loeser 
[10]. To be precise, Batyrev's statement involves Hodge numbers, but I will only-
state what it gives about Betti numbers. 

Theo rem 3.1. Let Y be a complex projective variety with log-terminal sin­
gularities. Then one can define the "stringy Poincaré function" pstr(Y), which is a 
rational function, such that for any crêpant resolution of singularities n : X —t Y, 
the stringy Poincaré function of Y is the usual Poincaré polynomial of X. 

We recall Reid's important definitions which are used here. First, let Y be 
any normal complex variety such that the canonical divisor Ky is Q-Cartier. By 
Hironaka, Y has a resolution of singularities n : X —t Y such that the exceptional 
divisors Ei, i £ I, are smooth with normal crossings. The discrepancies a» of Et are 
defined by 

Kx = n*KY + ^2 aiEi-
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The variety Y is defined to have log-terminal singularities if and only if a» > — 1 for 
all z. A resolution X —t Y is said to be crêpant if Kx = n*KY. 

Batyrev defines the stringy Poincaré function of Y by the formula: 

JWW=5>(£$) n 
JCI j€J 

g - 1 
qaj+1 _ fi 

Here Ej is the open stratum of Ej := CijejEj, and p(Ej) denotes the virtual 
Poincaré polynomial of Ej, written as a polynomial in q1/2. Thus Pst*{Y) is a 
rational function in q1/2 for Y Gorenstein, and in qxln for some n in general. 

Batyrev's proof that the stringy Poincaré function of Y is independent of the 
choice of resolution, using motivic integration, rests on the additivity properties of 
the virtual Poincaré polynomial. Using our extension of virtual Betti numbers to 
complex analytic spaces, we find: 

Theorem 3.2. The stringy Poincaré function can be defined as a rational 
function for any compactified complex analytic space with log-terminal singularities. 
For any crêpant resolution X —t Y with Y compact, the stringy Poincaré function 
of Y is the usual Poincaré polynomial of X. 

Likewise for real analytic spaces: 
Theorem 3.3. An F2-analogue of the stringy Poincaré function can be defined 

as a rational function for compactified real analytic spaces with log-terminal singu­
larities. For any crêpant resolution X —t Y with Y compact, the stringy Poincaré 
function of Y is the usual Poincaré polynomial of the F 2-cohomology of X. 

In particular, this answers part of Goresky and MacPherson's Problem 7 in 
[15]: 

Corollary 3.4. Given a compact real algebraic variety Y, the ~F2-Betti num­
bers of any two projective IH-small resolutions of Y are the same. 

This uses the relation between IH-small resolutions and crêpant resolutions, 
which I worked out in [28] using results of Kawamata [23] and Wisniewski [30]. 
In the complex situation, the corollary (for Betti numbers with any coefficients) 
has a more direct proof, since the Betti numbers of any small resolution of Y are 
equal to the dimensions of the intersection homology groups of Y. It is not yet 
known whether one can define a new version of intersection homology groups with 
F2-coefficients which would be self-dual for all compact real analytic spaces. A 
possible framework for defining such a theory has been set up by Banagl [2]. 

4. The elliptic genus of a singular variety 
I found that any characteristic number which can be extended from smooth 

compact complex varieties to singular varieties, compatibly with small resolutions, 
must be a specialization of the elliptic genus [28]. It was then an important problem 
to define the elliptic genus for singular varieties. This was solved in a completely-
satisfying way by Borisov and Libgober [5]: 

Theorem 4.1. Let Y be a projective variety with log-terminal singularities. 
Then one can define the elliptic genus ofY, ip(Y), such that for any crêpant reso­
lution X —t Y, we have ip(Y) = ip(X). 
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Here is Borisov and Libgober's definition of ip(Y). Yet n : X —t Y be a 
resolution whose exceptional divisors Ek have simple normal crossings, and let a^ 
be the discrepancies as in section 3. Formally, let yi denote the Chern roots of X so 
that c(TX) = Y\i(l + yi), and let e^ be the cohomology classes on X of the divisors 
Ek. Then ip(Y) is the analytic function of variables z and r defined by 

W ) - y y dl 9(-z)9(ii-) } ( 1 1 9(^ - z)9(-(ak + l)z)h 

where 0(Z,T) is the Jacobi theta function. The proof that ip(Y) is independent of 
the choice of resolution for log-terminal Y uses the weak factorization theorem of 
Abramovich, Karu, Matsuki, and Wlodarczyk ([1], [31]). 

In the spirit of earlier sections, the singular elliptic genus extends to compact 
complex analytic spaces with log-terminal singularities. But it remains a mystery-
how to define the elliptic genus for some topologically defined class of singular spaces 
that would include singular analytic spaces with log-terminal singularities. 

5. Possible characteristic numbers for real analytic 
spaces 

In my paper [28], in trying to define characteristic numbers for singular com­
plex varieties, it was very helpful to require that these numbers are compatible with 
IH-small resolutions, as Goresky and MacPherson had suggested ([15], Problem 10). 
The problem thereby becomes more precise: it may be possible to show that some 
characteristic numbers extend to singular varieties and some do not. This can help 
to suggest valuable invariants for singular varieties, such as Borisov and Libgober's 
elliptic genus for singular varieties, even if one is not a priori interested in IH-small 
resolutions. (The same comments apply to crêpant resolutions.) 

With this in mind, we here begin to analyze which characteristic numbers 
can be defined for real analytic spaces, or for topological spaces with similar sin­
gularities, compatibly with IH-small resolutions. In the complex situation, the 
fundamental example of a singularity with two different IH-small resolutions is the 
3-fold node; one says that the two IH-small resolutions are related by the simplest 
type of "flop." Likewise, in the real situation, the real 3-fold node has two different 
IH-small resolutions. For convenience, let us say that two closed n-manifolds are 
related by a "real flop" if they are the two different IH-small resolutions Xi and X2 

of a singular space with singular set of real codimension 3 that is locally isomorphic 
to the product of the 3-fold node with an (n — 3)-manifold. 

Let us first consider characteristic numbers for unoriented spaces. By Thom, 
the bordism ring MO* for unoriented manifolds is detected by Stiefel-Whitney-
numbers. Therefore we can ask which Stiefel-Whitney numbers (meaning F2-linear 
combinations of Stiefel-Whitney monomials) are unchanged under real flops. Or, 
more or less equivalently: what is the quotient of the bordism ring MO* by the 
ideal of real flops Xi — X2 , for Xi and X2 as above? There is a good answer: 
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Theorem 5.1. The F2-vector space of Stiefel-Whitney numbers which are 
invariant under real flops of n-manifolds is spanned by the numbers w\wn-i for 
0 < i < n, or equivalently by the numbers wy^^v2 for 0 < i < n/2, modulo those 
Stiefel-Whitney numbers which vanish for all n-manifolds. Here Wj = Wj(wi,w2,...) 
denotes the Wu class. The dimension of this space of invariant Stiefel-Whitney 
numbers, modulo those which vanish for all n-manifolds, is Oforn odd and [n/2j + l 
for n even. The quotient ring of MO* by the ideal of real flops is isomorphic to: 

F 2 [ R P 2 , R P 4 , R P 8 , . . .] /((RP2")2 = (RP2)2" for all a > 2). 

This class of Stiefel-Whitney numbers has occurred before, in Goresky and 
Pardon's calculation of the bordism ring of locally orientable F2-Witt spaces [16]. 
To be precise, the latter ring coincides with the above ring in even dimensions but 
is also nonzero in odd dimensions. Goresky defined a Wu class Wj in intersection 
homology for F2-Witt spaces [14], so that the square v2 lives in ordinary homology, 
and the characteristic numbers for locally orientable F2-Witt spaces Y are obtained 
by multiplying these homology classes by powers of the cohomology class Wi. 

This does not explain the invariance of these Stiefel-Whitney numbers for 
real flops, however. The problem is that the 3-fold node is not an F2-Witt space. 
(Topologically, it is the cone over S1 x S1, whereas the cone over an even-dimensional 
manifold is a Witt space if and only if the homology in the middle dimension is 
zero.) That is, the standard definition of intersection homology is not self-dual on a 
space with 3-fold node singularities. This again points to the problem of defining a 
new version of intersection homology with F 2 coefficients which is self-dual on real 
analytic spaces. That should yield an L-class in the F2-homology of such a space, 
which we can also identify with the square of the Wu class, and which therefore 
should allow the above characteristic numbers to be defined for a large class of real 
analytic spaces. There are related results by Ban agi [3], for spaces which admit an 
extra "Lagrangian" structure. 

We now ask the analogous question for oriented singular spaces: what charac­
teristic numbers can be defined, compatibly with IH-small resolutions? We could 
begin by asking for the quotient ring of the oriented bordism ring M SO* by oriented 
real flops Xi — X2 , defined exactly as in the unoriented case (Xi and X2 are the 
two small resolutions of a family of real 3-fold nodes), except that we require Xi 
and X2 to be compatibly oriented. It turns out that this is not enough: all Pon-
trjagin numbers are invariant under oriented real flops, whereas they can change 
under other changes from one IH-small resolution to another, such as complex flops 
(between the two small resolutions of a complex family of complex 3-fold nodes). 
By considering both real and complex flops, we get a reasonable answer: 

Theorem 5.2. The quotient ring of M SO* by the ideal generated by oriented 
real flops and complex flops is: 

Z[(5,27 ,272 ,27
4 , . . .], 

where C P 2 maps to ö and C P 4 maps to 2 7 + o"2. This quotient ring is exactly the 
image of M SO* under the Ochanine elliptic genus ([25], p. 63). 
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This result suggests that it should be possible to define the Ochanine genus for 
a large class of compact oriented real analytic spaces, or even more general singular 
spaces. 
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Harmonic Analysis on Real Reductive 
Symmetric Spaces 

Patrick Delorme* 

Abstract 

Let G be a reductive group in the Harish-Chandra class e.g. a connected 
seniisiniple Lie group with finite center, or the group of real points of a con­
nected reductive algebraic group defined over R. Let a be an involution of the 
Lie group G, H an open subgroup of the subgroup of fixed points of a. One 
decomposes the elements of L2(G/H) with the help of joint eigenfunctions 
under the algebra of left invariant differential operators under G on G/H. 

2000 Mathematics subject classification: 22E46, 22F30, 22E30, 22E50, 
33C67. 
Keywords and Phrases: Reductive symmetric space, Fiancherei formula, 
Meromorphic continuation of Eisenstein integrals, Temperedness, Truncation, 
Maass-Selberg relations. 

1. Introduction 
Let G be a real reductive group in the Harish-Chandra class [H-Cl], e.g. a 

connected semisimple Lie group with finite center, or the group of real points of a 
connected reductive algebraic group defined over R. Let a be an involution of the 
Lie group G, H an open subgroup of the subgroup of fixed points of a. 

Important problems of harmonic analysis on the so-called reductive symmetric 
space G/H are : 

(a) to make the simultaneous spectral decomposition of the elements of the 
algebra B(G/H) of left invariant differential operators under G on G/H. In other 
words, one wants to write the elements of L2(G/H) with the help of joint eigen­
functions under B(G/H). 

(b) to decompose the left regular representation of G in L2(G/H) into an 
Hilbert integral of irreducible unitary representations of G : this is essentially the 
Plancherel formula. 
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(e) to decompose the Dirac measure at eH, where e is the neutral element of 
G, into an integral of ff-fixed distribution vectors : this is essentially the Fourier 
inversion formula. 

These problems were solved for the "group case" (i.e. the group viewed as a 
symmetric space : G = Gi x Gi, a(x,y) = (y,x), H is the diagonal of Gi x Gi 
) by Harish-Chandra in 1970s (see [H-C1,2, 3]), the Riemannian case (H maximal 
compact) had been treated before (see [He]). Later, there were deep results by T. 
Oshima [01]. When G is a complex group and H is a real form, the Problems (a), 
(b), (c) were solved by P. Harinck, together with an inversion formula for orbital 
integrals ([Ha], see also [D3] for the link of her work with the work of A. Bouaziz 
on real reductive groups). 

Then, E. van den Ban and H. Schlichtkrull, on the one hand, and I, on the other 
hand, obtained different solutions to problems (a), (b), (c). Moreover, they obtained 
a Paley-Wiener theorem (see [BS3] for a presentation of their work). I present here 
my point of view, with an emphasize on problem (a), because it simplifies the 
formulations of the results (nevertherless, the important aspect of representation 
theory is hidden). It includes several joint works, mainly with J. Carmona , and 
also with E. van den Ban and J.L. Brylinski. Severals works of T. Oshima, linked 
to the the Flensted-Jensen duality, alone and with T. Matsuki are very important 
in my proof, as well as earlier results of E. van den Ban and H. Schlichtkrull. 

I have to acknowledge the deep influence of Harish-Chandra 's work. The 
crucial role played by the work [Be] of J. Bernstein on the support of the Plancherel 
measure, and some part of Arthur's article on the local trace formula [A] will be 
appearant in the main body of the article. 

2. Temperedness of the spectrum 

Let 9 be a Cartan involution of G commuting with a, let K be the fixed point 
set of 9. Let g be the Lie algebra of G, etc. Let s (resp. q) be the space of elements in 
g which are antiinvariant under the differential of 9 (resp. a). Yet a$ be a maximal 
abelian subspace of s n q. If F is a a9-stable parabolic subgroup of G, containing 
A$ := exp <xa, we denote by P = MpApNp its Langlands ^-decomposition. More 
precisely Ap is the subgroup of the elements a of the split component of the Levi 
factor Lp = P n 9(P) such that a (a) = a - 1 . Here Mp is larger than that for the 
usual Langlands decomposition. 

In order to simplify the exposition we will make the following simplifying 
assumption: 
Hypothesis: For any P as above, HP is the unique open (H,P)-double coset. 

When a = 9 (the case of a riemannian symmetric space ) or the "group case", 
this hypothesis is satisfied. 

To get the Plancherel formula, it is useful to use if-finite functions. They are 
often replaced by r-spherical functions. Here (r, VT) is a finite dimensional unitary-
representation of K and a r-spherical function on G/H is a function / : G/H —t VT 

such that f(kx) = r(k)f(x), k £ K, x £ G/H. 
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Some spaces of r-spherical functions on G/H play a crucial role in the theory, 
namely: 

(a) G(G/H, T) : the Schwartz space of r-spherical functions on G/H which are 
rapidly decreasing as well as their derivatives by elements of the enveloping algebra 
U(g) of g (see [B2]). 

(b) A(G/H, T): the space of smooth r-spherical functions on G/H which are 
B(G/H) finite. Here A is used to evoke automorphic forms. 

(c) Atem,p(G/H, T): the space of elements of A(G/H, r) which have tem­
pered growth as well as their derivatives by elements of U(g) ([D2]). Integration of 
functions on G/H defines a pairing between Atemp(G/H, r ) and G(G/H, r ) . 

(d) A2(G/H, T): the space of square integrable elements of A(G/H, r ) . This 
is a subspace of the three proceeding spaces. 

One has: 
Theo rem 1 ( [D2] ): The space ./^(G/ff, r) is finite dimensional. 

This is deduced from the theory of discrete series for G/H initiated by M. 
Flensted-Jensen [F-J] and achieved by T. Oshima and T. Matsuki, using the Flensted-
Jensen duality [OM]. One has also to use the behaviour of the discrete series under 
certain translation functors, studied by D. Vogan [V] and a result of H. Schlichtkrull 
[S] on the minimal if-types of certain discrete series. 

The next result follows from the work of J. Bernstein [Be] on the support of 
the Plancherel measure. 
Theo rem 2 ([CD1], Appendice C): Every function in G(G/H, r ) can be canonically 
desintegrated as an integral of elements of Atemp(G/H, r ) . 

This information appeared to be crucial at the end of our proof. 

3. The continuous spectrum: Eisenstein integrals 
Let P = MAN the Langlands ^-decomposition of a <r#-stable parabolic sub­

group P of G. Let pp be the half sum of the roots of o in n and À £ o j be such that 
the real part of À — pp is strictly dominant with respect to the roots of o in n. Let 
TM be the restriction of r to Mf\K. Then, if a: € G/H and fi £ A2(M/MC\H,TM), 

the following integral is convergent: 

E(P,fi,X)(x):= [ T(k-1)<Yx(kx)dk, 
J K 

where ^\(x) = 0 if x $ PH, and ^\(x) = a^x+ppfi(m) if x = namH with n £ N, 
a £ A, m £ M. Moreover E(P,fi,X) is an element of A(G/H, r ) . Eisenstein 
integrals are the r-spherical versions of if-finite functions of the form: g H H>< 
n'(9)Çiv >, where n' is the contragredient of a generalized principal series n, £ is a 
certain ff-fixed distribution vector of n, v is a if-finite vector of n. 
Theorem 3 ([BrD]): The function X >-¥ E(P,fi,X) admits a meromorphic con­
tinuation in X £ o£- This meromorphic continuation, denoted in the same way, 
multiplied by a suitable product, pv, of functions of type X H> (a, A) + c, where a is 
a root of a and c £ C, is holomorphic around ia*. 
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This meromorphic continuation is an interesting feature of the theory. For the 
the "group case", it comes down to the meromorphic continuation of Knapp-Stein 
intertwining integrals. My proof with Brylinski uses D-modules arguments. 

The case where P is minimal had been treated separately by E. van den Ban 
[BI] and G. Olafsson [01]. One has also to mention the earlier work of T. Oshima 
and J. Sekiguchi [OSe] on the spaces of type G/Ke. 

The proof which gives the best results uses a method of tensoring by finite 
dimensional representations. It is a joint work with J. Carmona. It was initiated by 
D. Vogan and N. Wallach (see [W], chapter 10) for the meromorphic continuation 
of the Knapp-Stein intertwining integrals. For symmetric spaces and the most 
continuous spectrum, the proof is due to E. van den Ban [B2]. This proof uses 
Bruhat's thesis and tensoring by finite dimensional modules. This implies rough 
estimates for Eisenstein integrals, which generalize those obtained by E. van den 
Ban when P is minimal [B2]. 
Theo rem 4 ([Dl]): If X £ ia* is such that E(P,fi,X) is well defined, then it is 
tempered, i.e. is an element of Atemp(G/H,T). 

This is a natural result but the proof is quite long. It uses the behaviour 
under translation functors of ff-fixed distribution vectors of discrete series and of 
generalized principal series, and also of the Poisson transform. Moreover the duality 
of M. Flensted-Jensen, [F-J], and a criteria of temperedness due to Oshima [02] play 
a crucial role (apparently, J. Carmona has a way to avoid boundary values). 

With the help of this theorem and by using techniques due to E. van den Ban 
[B2], the rough estimates for Eisenstein integrals can be improved to get uniform 
sharp estimates for pv(X)E(P,fi,X), X £ ia* (cf. [Dl]). 

4. C-funetions 
Let P be as above and let L be equal to MA. The theory of the constant 

term, due to J. Carmona [CI] (Harish-Chandra for the group case, [H-Cl]), gives a 
linear map from Atemp(G/H, r ) into Atemp(L/L n H, rfi), *fi >-*• *pp, characterized 
by : 

1/2 

linit^+oo o~p•((exptX)l)ip((exptX)l) — (pp((exptX)l) = 0, 
where I £ L/L n H, X £ ap is F-dominant and öp is the modular function of P. 

Yet Q be a a9-stable parabolic subgroup of G with the same 0-stable Levi 
subgroup L other than P. Yet W(a) be the group of automorphisms of o induced 
by an element of Ad(G). One defines meromorphic functions on oj , A H> CQ^P(S, X) 
with values in End(A2(M/M n H,TM)) such that : 

E(P,fi,X)Q(ma) = Y^ (CQ\p(s,Xj(p)(m)a^sX, m£ M, a£ A, X£ia*, 
seW(a) 

or rather for A in an open dense subset of ia*. 
The G-functions allow to normalize Eisenstein integrals as folllows: 

E°(P,fi,X) := E(P,Cplp(l,X)-1fi,X). 
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5. Truncation, Maass-Selberg relations and the reg­
ularity of normalized Eisenstein integrals 

Let P be as above and let P' = M'A'N' be the Langlands ^-decomposition 
of another a9-stable parabolic subgroup of G. Let fi (resp. ip') be an element of 
A2(M/M fl H,TM) (resp. A2(M'/M' C\H,TM'))- One chooses pv as in Theorem 3, 
such that the product of pv with the G-functions are holomorphic in a neighbour­
hood of ia* which is a product of ia* with a neighbourhood of 0 in o* . We do the 
same for ip'. One defines F(X) := pv(X)E(P,fi,X). One defines similarly F'. 

One assumes, for the rest of the article, that G is semisimple. This is just to 
simplify the exposition. One chooses T £ a$, regular with respect to the roots of 
00 in g. Yet C\. be the convex hull of W(a$)T and let Cj be equal to the subset 
K(exp C^)H of G/H. 
Theorem 5 ([D2]): 

(i) One gets an explicit expression OJT(X, X), involving the C-functions (see an 
example below) and vanishing when A and A' are not conjugate under K, which is 
asymptotic to 

0T(A,A'):= / (F(X)(x),F'(X')(x))dx, 

when T goes to infinity and X £ ia*, X £ ia'*. More precisely for ö > 0 there exists 
C > 0, k £ N and e > 0, such that for all T satisfying | a(T) |> Ö || T || for every 
root a of 00 in g, one has: 

nT(X,X)-ojT(X,X) |< G( l+ || A ||)*(1+ || A' ||) k — ^ [ [Tl l 

(ii) Moreover OJT is analytic in (A, A') £ ia* x ia'*. 
This generalizes a result of J. Arthur for the group case [A], Theorem 8.1. My proof 
is quite similar, but I was able to avoid his use of the Plancherel formula. 

(ii) is an easy consequence of (i). In fact, the explicit form of OJT implies that 
it is meromorphic around ia* x ia'*. Moreover QT is holomorphic, hence locally-
bounded, around ia* x ia'*. From the inequality in (i), one deduces that OJT is 
locally bounded, hence holomorphic, around ia* x ia'*. 

We will now show, by an example, how the explicit form of OJT and its analyt-
icity in (A, A') £ ia* x ia'* imply the Maass-Selberg relations. 

Let a be equal to 9, H = K, and r be the trivial representation. Let P,P' 
be minimal parabolic subgroups of G. Then dimA2(M/M C\H,T) = 1 and the C-
functions are scalar valued. One assumes g to be semisimple and that the dimension 
of A is one. Then W(a) has 2 elements, ± 1 , and one has the following explicit 
expression of OJT: 

ojT(X,X)=pv(X)pvi(X) YI esXT-s'x'TCPip(s,X)CPlp(s',X')(sX - s'A')"1. 
s=±l,s '=±l 

Thus OJT(X, A') is the sum of a product of (A — A') - 1 by an analytic function with 
a product of (A + A') - 1 by an analytic function. The analyticity at (A, A) implies 
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easily that the factor in front of (A — A') - 1 vanishes for A = A'. Hence we get 
| Gp[p(l,A) |2 = | Cp|p( —1,A) |2, A £ ia*. This is one of the Maass-Selberg rela­
t i o n s ^ . [D2], Theorem 2, and the work with J. Carmona [CD2], Theorem 2 for the 
general case, see [BI], [B2] for the case where P is minimal). These relations imply-
that the G-functions attached to normalized Eisenstein integrals are unitary, when 
defined, for A purely imaginary. Hence they are locally bounded . This implies that 
they are holomorphic around the imaginary axis. This implies in particular some 
holomorphy property of the constant term of normalized Eisentein integrals. From 
this, with the help of [BCD], one deduces: 
Theo rem 6 (Regularity theorem for normalized Eisenstein integrals, [CD2], [BS1] 
for P minimal): The normalized Eisenstein integrals are holomorphic in a neigh­
bourhood of the imaginary axis. 

6. Fourier transform and wave packets 
Theorem 7 ([CD2], [BS1] for F minimal): For f £ e(G/H,r), one has $Pf £ 
§(ia*) ®A2(M/M fl H,TM), where Ipf is characterized by: 

((3%fi)(X),fi)= [ (f(x),E°(P,fi,X)(xj)dx, X£ia*, fi £ A2(M/M n H,TM), 
JG/H 

here S (io*) is the usual Schwartz space. 
This theorem follows from the sharp estimates of Eisenstein integrals. 

Theorem 8 ([BCD]): If ^ is an element of$(ia*) <g> A2(M/M n H,TM), one has 
3°P£e(G/H,T), where : 

fp(x) :-- f E°(P,<Y(X),X)dX, x£G/H. 
J ia* 

This theorem follows from the regularity theorem and from the joint work with 
E. van den Ban and J. Carmona, [BCD]. 

Now we want to compute lp,3P. For this purpose one has to study the integral: 

I:= [ ([ a(X)E0(P,ip,X)(x)dX,E0(P',ip',X)(x))dx. 
JG/H Jia* 

One truncates the integral on G/H to Cj and let T goes to infinity (far from 
the walls). Let us denote the truncated inner product of the normalized Eisenstein 
integrals by °0T(A, A'). Using Fubini's theorem one has: 

I = limT^oo[ a(X)0nT(X,X)dX 

As for unnormalized Eisentein integrals, one has an asymptotic evaluation of 
°0T(A, A') by an explicit expression °u;T(A, A'). One can replace ° 0 T by °OJT in 
the previous formula. By using an expression of °u;T(A, A'), viewed as a distribu­
tion in A, for fixed A' , involving Fourier transforms of cones ( [D2], Theorem 3) one 
gets: 



Harmonie Analysis on Real Reductive Symmetric Spaces 551 

Theorem 9 ([CD2]): Let ¥ be a set of representative of a-association classes of 
a9-stable parabolic subgroups. Here a-association means that the a are conjugated 
under K. Define: 

•j>T = Y((w(^)r1^°p-
Per 

Then TT is an orthogonal projection operator in G(G/H,T) endowed with the L2 

scalar product. 

7. The Plancherel formula 
Essentially, the solution to problem (a) is contained in the following: 

Theorem 10 ([D4]): The projection TT is the identity operator on G(G/H,T). 

Actually, this gives an expression of every element in G(G/H,T) as a wave 
packet of normalized Eisenstein integrals. The proof goes as follows. If TT was not 
the identity, using Theorem 1 on the temperedness of the spectrum, one could find 
a non zero element of Atemp(G/H, r ) which is orthogonal to the image of TT. Then, 
generalizing Theorem 5 to the truncated inner product of an Eisenstein integral with 
a general element of Atemp(G/H,r), this orthogonality can be explicitely described 
(cf. the evaluation of I before Theorem 9). As a result, this function has to be zero, 
a contradiction which proves the theorem. 

The theorem translates to if-finite functions, involving representations and 
F-fixed distribution vectors. 

The theorem can also be expressed with the unnormalized Eisenstein integrals. 
Then there are certain Plancherel factors involved. They are linked, as in the 
group case , to the intertwining integrals. Following the approach of A.Knapp and 
G.Zuckerman, [KZ], their computation is reduced to find an embedding of discrete 
series into principal series attached to minimal parabolic subgroups. For connected 
groups, this has been done by J. Carmona [C2]. 

8. Applications and open problems 
Schwartz space for the hypergeometric Fourier transform 

The image of a natural Schwartz space by the hypergeometric Fourier trans­
form is characterized [D5]. The work uses the Plancherel formula of E. Opdam [Op], 
and the techniques mentioned above : theory of the constant term, G-functions, 
truncation ... 
Generalized Schur orthogonality relations 

Using the Plancherel formula for reductive symmetric spaces groups, K. Ank-
about, [An], has proved generalized Schur orthogonality relations for generalized 
coefficients related to real reductive symmetric spaces. In particular, at least if we 
assume multiplicity one in the Plancherel formula, it implies the following: 

There exists an explicit positive function d on G/H, such that, for almost all 
representations n occuring in the Plancherel formula, for £ an F-fixed distribution 
vector of n occuring in the decomposition of the Dirac measure, there exists an 
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explicit non zero constant C* such that, for all v,v', FJ-finite vectors in the space 
of n: 

lim e"" f e-ed(x) < n'(g)Ç,v ><n'(g)Ç,v' >dx = C*(v,v'). 
6^0+ JG/H 

Here n* is the dimension of the support of the Plancherel decomposition, 
around n. This refines and generalizes a work of Mirodikawa. It suggests to look 
for such type of relations in other situations. 

D(G/ i î ) - f in i te r -spher ica l functions on reductive symmetr ic spaces 
S. Souaifi [So] showed how these functions appear as linear combinations of 

derivatives along the complex parameter A, of Eisenstein integrals. For if-finite 
functions, filtrations are introduced, whose subquotients are described in terms of 
induced representations. The starting point is an adaptation of ideas used by J. 
Franke to study spaces of automorphic forms. The use of the spectral decomposition 
by Langlands is replaced here by the use of the Plancherel formula. For reductive 
p-adic groups, and for the group case, I got similar results. 
Invariant harmonic analysis on real reductive symmetr ic spaces 

The goal is to study the F-invariant eigendistributions under B(G/H) on G/H 
and to express invariant measures on certain F-orbits in terms of these distributions 
( cf [D3] for the work of A.Bouaziz and P.Harinck for the group case and G(C)/G(R), 
see also [OSe]). 
Harmonic analysis on p-adic reductive symmetr ic spaces 

For the group case, the Problems (b) and (c) of the Introduction have been 
solved by Harish-Chandra, up to the explicit description of the discrete series. In 
general, the problems are open (see [HH] for interesting structural results). 
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On the Dynamical Yang-Baxter Equation 

Pavel EtingoP 

( To Mira) 

A b s t r a c t 

This talk is inspired by two previous ICM talks, by V. Drinfeld (1986), 
and G.Felder (1994). Namely, one of the main ideas of Drinfeld's talk is that 
the quantum Yang-Baxter equation, which is an important equation arising 
in quantum field theory and statistical mechanics, is best understood within 
the framework of Hopf algebras, or quantum groups. On the other hand, in 
Felder's talk, it is explained that another important equation of mathematical 
physics, the star-triangle relation, may (and should) be viewed as a gener­
alization of the quantum Yang-Baxter equation, in which solutions depend 
on additional "dynamical" parameters. It is also explained there that to a 
solution of the quantum dynamical Yang-Baxter equation one may associate 
a kind of quantum group. These ideas gave rise to a vibrant new branch of 
"quantum algebra", which may be called the theory of dynamical quantum 
groups. My goal in this talk is to give a bird's eye review of this theory and 
its applications. 

The quantum dynamical Yang-Baxter equation (QDYBE) is an equation 
with respect to a function R : I)* —• Endf,(V ® V), where I) is a commutative 
finite dimensional Lie algebra, and V is a semisimple t)-module. It reads 

Ä12(A - h3)R13(X)R23(X - h1) = R23(X)R13(X - h2)R12(X) 

on V ® V ® V, where for instance R12(X — h3) is defined by the formula 
Ä12(A — h3)(vi ® v-2 ® Vî) := f Ä12(A — ß)(vi ® V2)) ® Vì if Vì is of weight ß 

under I). If I) = 0, this equation turns into the usual quantum Yang-Baxter 
equation. 

I will start with explaining how rational solutions of QDYBE arise already 
in the classical representation theory of finite dimensional simple Lie algebras, 
via the so called fusion construction ((the role of I) will be played by a Cartan 
subalgebra of the simple Lie algebra). Then I will explain generalizations 
of this construction to quantum groups, affine Lie algebras, quantum affine 
algebras, which yields trigonometric and elliptic solutions of QDYBE. I will 
then define Felder's elliptic quantum group, and formulate a q-analog of the 
Kazhdan-Lusztig equivalence between representations of affine Lie algebras 
and quantum groups. 
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USA. E-mail: etingof@math.mit.edu 

mailto:etingof@math.mit.edu


556 Pavel Etingof 

After this I will define the classical dynamical Yang-Baxter equation (the 
classical limit of QDYBE), and discuss the classification result (joint with 
Varchenko), that says, roughly, that all solutions are of the above three types 
- rational, trigonometric, and elliptic. This is a dynamical version of a result 
of Belavin and Drinfeld. 

In the second part of the talk I will consider applications of the theory 
of QDYBE to integrable systems. Namely, I will use the dynamical trans­
fer matrix construction to define generalized Macdonald operators, and then 
construct their common eigenfunctions as (renormalized) traces of the form 
Tr(<3>Mg2A), where <3?M : MM —¥ MM ® V is an intertwining operator between a 
Verma module MM over a quantum group tensor product with a finite dimen­
sional module V, and with a finite dimensional module V, and A € I)* = I). 
In a special case, this yields a representation theoretic construction of type A 
Macdonald functions. 

2000 Mathematics Subject Classification: 17B37, 20G42, 81R50. 

1. Introduction 
This talk is inspired by two previous ICM talks, [Dr] and [Fe]. Namely, one of 

the main ideas of [Dr] is tha t the quantum Yang-Baxter equation (QYBE), which is 
an important equation arising in quantum field theory and statistical mechanics, is 
best understood within the framework of Hopf algebras, or quantum groups. On the 
other hand, in [Fe], it is explained tha t another important equation of mathematical 
physics, the star-triangle relation, may (and should) be viewed as a generalization of 
QYBE, in which solutions depend on additional "dynamical" parameters . It is also 
explained there tha t to a solution of the quantum dynamical Yang-Baxter equation 
one may associate a kind of quantum group. These ideas gave rise to a vibrant 
new branch of "quantum algebra", which may be called the theory of dynamical 
quantum groups. My goal in this talk is to give a bird's eye review of some aspects 
of this theory and its applications. 

R e m a r k Because of size restrictions, the list of references below is not com­
plete. The reader is referred to original papers and review [ES2] for more references. 

A c k n o w l e d g e m e n t s I am indebted to G. Felder for creating this subject, 
and deeply grateful to I. Frenkel, A. Kirillov Jr., A. Moura, O.Schiffmann, and 
A.Varchenko for collaboration tha t led to this work. This work was partially sup­
ported by the NSF grant DMS-9988796, and was done in part for the Clay Mathe­
matics Inst i tute. I am grateful to the Max Planck Insti tute for hospitality. 

2. The quantum dynamical Yang-Baxter equation 

2.1. The equation 
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The quantum dynamical Yang-Baxter equation (QDYBE), proposed by Ger­
vais, Neveu, and Felder, is an equation with respect to a (meromorphic) function 
R : Ì)* —¥ End[j(F <g> V), where h is a commutative finite dimensional Lie algebra 
over C, and V is a semisimple h-module. It reads 

F12(A - h3)R13(X)R23(X - h1) = R23(X)R13(X - h2)R12(X) 

on V ® V ® V. Here h% is the dynamical notation, to be extensively used below: 
for instance, R12(X — h3) is defined by the formula R12(X — h3)(vi ® v2 ® W3) := 
(F12(A — p)(vi ® v2)) ® W3 if W3 is of weight p under h. 

It is also useful to consider QDYBE with spectral parameter. In this case the 
unknown function R depends meromorphically on an additional complex variable 
u. Yet Uij = Ui — Uj. Then the equation reads 

F12(«i2,A^/i3)F13(«i3,A)F23(«23,A^/i1) = F23(«23,A)F13(«i3,A^/i2)F12(«i2,A). 

Sometimes it is necessary to consider QDYBE with step 7 £ C*, which differs 
from the usual QDYBE by the replacement h% —¥ 7/1*. Clearly, R(X) satisfies 
QDYBE iff F(A/7) satisfies QDYBE with step 7. 

Invertible solutions of QDYBE are called quantum dynamical R-matrices (with 
or without spectral parameter, and with step 7 if needed). If h = 0, QDYBE turns 
into the usual quantum Yang-Baxter equation R12R13R23 = R23R13R12. 

2.2. Examples of solutions of QDYBE 
Let V be the vector representation of sl(n), and h the Lie algebra of traceless 

diagonal matrices. In this case A £ h* can be written as A = (Ai,...,A„), where 
A, £ C. Let va, a = 1, ...,n be the standard basis of V. Yet Eab be the matrix units 
given by Eabvc = öbcva. 

We will now give a few examples of quantum dynamical R-matrices. The 
general form of the R-matrices will be 

R=Y Eaa ® Eaa + YI aabEaa ®Ebb + Y ßabEab ® Eba, (1) 
a a=£b a=£b 

where aab, ßab are functions which will be given explicitly in each example. 
Example 1 The basic rational solution. Let ßab = x ^A , aab = 1 + ßab. 

Then R(X) is a dynamical R-matrix (with step 1). 
Example 2 The basic trigonometric solution. Let ßab = xi,l"x!_1) O-ab = 

q + ßab. Then R(X) is a dynamical R-matrix (also with step 1). 
Example 3 The basic elliptic solution with spectral parameter (Felder's so­

lution). Let 9(U,T) = ^^2j€z+i/2e7'%^ T+2At*+1/2)) be the standard theta-function 
(for brevity will write it as 9(uj). Let ßab = g l ^ + ^ L ^ j , aab = g g ^ I ^ g ^ -
These functions can be viewed as functions of z = e27!tu. Then R(u, X) is a quantum 
dynamical R-matrix with spectral parameter and step 7. One may also define the 
basic trigonmetric and basic rational solution with spectral parameter, which differ 
from the elliptic solution by replacement of 9(x) by sin(x) and x, respectively. 



558 Pavel Etingof 

Remark 1 In examples 1 and 2, the dynamical R-matrix satisfies the Hecke 
condition (PR — 1)(PR + q) = 0, with q = 1 in example 1 (where P is the permu­
tation on V ® V), and in example 3 the unitarity condition R(u, X)R21(—u, A) = 1. 

Remark 2 The basic trigonometric solution degenerates into the basic ra­
tional solution as q —¥ 1. Also, the basic elliptic solution with spectral parameter 
can be degenerated into the basic trigonometric and rational solutions with spectral 
parameter by renormalizing variables and sending one, respectively both periods of 
theta functions to infinity (see [EV2]). Furthermore, the basic trigonometric and 
rational solutions with spectral parameter can, in turn, be degenerated into the 
solutions of Examples 1,2, by sending the spectral parameter to infinity. Thus, in 
essense, all the examples we gave are obtained from Felder's solution. 

2.3. The tensor category of representations associated to a 
quantum dynamical R-matrix 

Let R be a quantum dynamical R-matrix with spectral parameter. Accord­
ing to [Fe], a representation of R is a semisimple h-module W and an invertible 
meromorphic function L = Lyy : C x h* —̂  Endf,(V ® W), such that 

R12(ui2,X-h3)L13(ui3,X)L23(u23,X-h1) = L23(u23,X)L13(ui3,X-h2)R12(ui2,X). 
(2) 

(In the case of step 7, h% should be replaced by 7/1*). 

For example: (C, 1) (trivial representation) and (V,R) (vector representation). 
A morphism / : (W,Lw) —¥ (W',Lwi) is a meromorphic function f : Ì)* —¥ 

End(,(IA~) such that (1 ® f(Xj)Lw(u,X) = Lw(u,X)(l ® /(A - 7ft1)). With this 
definition, representations form an (additive) category Rep(72). Moreover, it is a 
tensor category [Fe]: given (W,Lw) and (U,Ljj), one can form the tensor product 
representation (W ® U,Lw®u), where L\v^u(u, X) = L\^(u, X — ,yh3)Lj3(u, A); 
tensor product of morphisms is defined by (/ ® g)(X) = /(A — 7ft2) ® g(X). 

In absence of spectral parameter, one should use the same definitions without 

2.4. Gauge transformations and classification 
There exists a group of rather trivial transformations acting on quantum dy­

namical R-matrices with step 7. They are called gauge transformations. If f) and V 
are as in the previous section, then gauge transformations (for dynamical R-matrices 
without spectral parameter) are: 

1. Twist by a closed multiplicative 2-form <j>: aab —¥ aab<pab, where <pab = <p^, 
and <j>ab(X)<j>bc(X)<i>ca.(X) = <i>ab(X-'yu)c)<i>1)C(\-'yu)a)<i>ca(X-'yu)1)) (0Ji = weight(wj)). 

2. Permutation of indices a = 1,..., n; X —¥ X — v; R —¥ cR. 
In presence of the spectral parameter u, the constant in c in 2 may depend on 

u, and there are the following additional gauge transformations: 
3. Given meromorphic ip : h* - • C, aab -> eu(vW-m*-'r«>«)+v(*-'r«>«-'r«»>))aab, 

ß b —Ï e«('?(A)-'?(A-7Wa)-¥'(A-7Wi,)+¥)(A-7Wa-7Wi,)) a 

4. Multiplication of u by a constant. 
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Theorem 2.1 [EV2] Any quantum dynamical R-matrix for h, V satisfying the Hecke 
condition with q = 1 (respectively, q ^ 1) is a gauge transformation of the basic 
rational (respectively, trigonometric) solution, or a limit of such R-matrices. 

In the spectral parameter case, a similar result is known only under rather 
serious restrictions (see [EV2], Theorem 2.5). For more complicated configurations 
(h, V), classification is not available. 

Remark Gauge transformations 2-4 do not affect the representation category 
of the R-matrix. Gauge transformation 1 does not affect the category if the closed 
form 4> is exact: <j> = d£, i.e. <j>ab(X) = £o(A)£&(A - 7wa)£a(A - 7W{,)_1£{,(A)_1, 
where Ca (A) is a collection of meromorphic functions. We note that this is a very-
mild condition: for example, if 7 is a formal paremeter and we work with analytic 
functions of A in a simply connected domain, then a multiplicative 2-form is closed 
iff it is exact ("multiplicative Poincaré lemma"). 

2.5. Dynamical quantum groups 
Equation 2 may be regarded as a set of defining relations for an associative 

algebra An (see [EV2] for precise definitions). This algebra is a dynamical analogue 
of the quantum group attached to an R-matrix defined in [FRT], and representations 
of 12 are an appropriate class of representations of this algebra. The algebra An is 
called the dynamical quantum group attached to 12. If 12 is the basic elliptic solution 
then An is the elliptic quantum group of [Fe]. The structure and representations of 
An are studied in many papers (e.g. [Fe, EV2, FV1, TV]). 

To keep this paper within bounds, we will not discuss An in detail. However, 
let us mention ([EV2]) that An is a bialgebroid with base h*. This corresponds to 
the fact that the category Rep(12) is a tensor category. Moreover, if 12 satisfies an 
additional rigidity assumption (valid for example for the basic rational and trigono­
metric solutions) then the category Rep(72) has duality, and An is a Hopf algebroid, 
or a quantum groupoid (i.e. it has an antipode). 

Remark For a general theory of bialgebroids and Hopf algebroids the reader 
is referred to [Lu]. However, let us mention that bialgebroids with base X cor­
respond to pairs (tensor category, tensor functor to O(X)-bimodules), similarly to 
how bialgebras correspond to pairs (tensor category, tensor functor to vector spaces) 
(i.e. via Tannakian formalism). 

2.6. The classical dynamical Yang-Baxter equation 
Recall that if 72 = 1 — hr + 0(h2) is a solution QYBE, then r satisfies the 

classical Yang-Baxter equation (CYBE), [r
12,r13] + [r

12,r23] + [r
13,r23] = 0, and 

that r is called the classical limit of 72, while 72 is called a quantization of r. Similarly, 
let 72(A, h) be a family of solutions of QDYBE with step h given by a series 1 — 
hr(X) + 0(h2). Then it is easy to show that r(X) satisfies the following differential 
equation, called the classical dynamical Yang-Baxter equation (CDYBE): 

E X' (1 )7£- - ^ S r " + X ' ( 8 ) S - 1 + [rl2'rl3] + [rl2'r23] + [rl3'r23] = °' (3) 
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(where xi is a basis of fi). The function r(X) is called the classical limit of R(X,h), 
and 72(A, h) is called a quantization of r(A). 

Define a classical dynamical r-matrix to be a meromorphic function r : \)* —t 
End(,(F ® V) satisfying CDYBE. 

Conjecture 2.2 Any classical dynamical r-matrix can be quantized. 

This conjecture is known in the non-dynamical case ([EK]), and was proved 
in [Xu] in the dynamical case for skew-symmetric solutions (r21 = —r) satisfying 
additional technical assumptions. A general proof for the skew-symmetric case is 
recently proposed in a preprint by T.Mochizuki. However, the most interesting 
non-skew-symmetric case is still open. 

Similarly, the classical limit of QDYBE with spectral parameter is CDYBE 
with spectral parameter. It is an equation with respect to r(u,X) and differs from 
the usual CDYBE by insertion of «y as an additional argument of r y . 

Remark 1 Similarly to CYBE, CDYBE makes sense for functions with values 
in g ® g, where g is a Lie algebra containing h. 

Remark 2 The classical limit of the notion of a quantum groupoid is the 
notion of a Poisson groupoid, due to Weinstein. By definition, a Poisson groupoid 
is a groupoid G which is also a Poisson manifold, such that the graph of the mul­
tiplication is coisotropic in G x G x G (where G is G with reversed sign of Poisson 
bracket). Such a groupoid can be attached ([EVI]) to a classical dynamical r-matrix 
r : h* —̂  g ® g, such that r21 + r is constant and invariant (i.e. r is a "dynamical 
quasitriangular structure" on g). This is the classical limit of the assignment of a 
quantum groupoid to a quantum dynamical R-matrix ([EV2]). 

2.7. Examples of solutions of CDYBE 
We will give examples of solutions of CDYBE in the case when g is a finite 

dimensional simple Lie algebra, and f) is its Cartan subalgebra. We fix an invariant 
inner product on g, It restricts to a nondegenerate inner product on h. Using this 
inner product, we identify h* with f) (A € I)* 4 Ä 6 I)), which yields an inner 
product on h*. The normalization of the inner product is chosen so that short roots 
have squared length 2. Let xi be an orthonormal basis of h,and let ea, e_Q denote 
positive (respectively, negative) root elements of g, such that (eQ,e_Q) = 1. 

Example 1 The basic rational solution r(X) = £ Q > 0
 e?A a")° • 

Example 2 The basic trigonometric solution r(X) = ^ + T ^ a > 0 9 c ° t a i m ( C ) , 
where 0 £ S2g is the inverse element to the inner product on g. 

Example 3 The basic elliptic solution with spectral parameter (Felder's 

solution) r(u, X) = j $ £ * xt ® xt + £ Q ^ f p ^ f y ^ p e Q ® e_Q. 
Remark 1 One says that a classical dynamical r-matrix r has coupling con­

stant e if r + r21 = eii. If r is with spectral parameter, one says that it has coupling 
constant e if r(u, X) + r21(—u, X) = 0, and r(u, X) has a simple pole at u = 0 with 
residue eO (these are analogs of the Hecke and unitarity conditions in the quantum 
case). With these definitions, the basic rational solution has coupling constant 0, 
while the trigonometric and elliptic solutions have coupling constant 1. 
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Remark 2 As in the quantum case, Example 3 can be degenerated into 
its trigonometric and rational versions where 9(x) is replaced by sin(x) and x, 
respectively, and Examples 1 and 2 can be obtained from Example 3 by a limit. 

Remark 3 The classical limit of the basic rational and trigonometric solutions 
of QDYBE (modified by A —¥ X/K) is the basic rational, respectively trigoinometric, 
solutions of CDYBE for g = sin (in the trigonometric case we should set q = e^hl2). 
The same is true for the basic elliptic solution (with 7 = h). 

Remark 4 These examples make sense for any reductive Lie algebra g. 

2.8. Gauge transformations and classification of solutions for 
CDYBE 

It is clear from the above that it is interesting to classify solutions of CDYBE. 
As in the quantum case, it should be done up to gauge transformations. These 
transformations are classical analogs of the gauge transformations in the quantum 
case, and look as follows. 

1. r —¥ r + oj, where OJ = VA • CìJ(X)XìAXJ is a meromorphic closed differential 
2-form on if*. 

2. r(u, X) —¥ ar(aX — v); Weyl group action. 
In the case of spectral parameter, there are additional transformations: 
3. u —¥ bu. 
4. Yet r = £ . . Syar, ® Xj + £ Q (paea ® e_Q. The transformation is S'y —¥ 

Sij + u()X.QX. , <Pa —̂  4>ae
u9aV, where tp is a function on h* with meromorphic dtp. 

Theorem 2.3 [EVI] (i) Any classical dynamical r-matrix with zero coupling con­
stant is a gauge transformation of the basic rational solution for a reductive subal­
gebra of g containing if, or its limiting case. 

(ii) Any classical dynamical r-matrix with nonzero coupling constant is a gauge 
transformation of the basic trigonometric solution for g, or its limiting case. 

(iii) Any classical dynamical r-matrix with spectral parameter and nonzero 
coupling constant is a gauge transformation of the basic elliptic solution for g, or 
its limiting case. 

Remark One may also classify dynamical r-matrices with nonzero coupling 
constant (without spectral parameter) defined on I* for a Lie subalgebra I C h, on 
which the inner product is nondegenerate ([Sch]). Up to gauge transformations they 
are classified by generalized Belavin-Drinfeld triples, i.e. triples (Fi ,F 2 ,T) , where 
Fj are subdiagrams of the Dynkin diagram F of g, and T : Y\ —t F2 is a bijection 
perserving the inner product of simple roots (so this classification is a dynamical 
analog of the Belavin-Drinfeld classification of r-matrices on simple Lie algebras, 
and the classification of [EVI] is the special case Y\ =Y2 = Y,T = 1). The formula 
for a classical dynamical r-matrix corresponding to such a triple given in [Sch] works 
for any Kac-Moody algebra, and in the case of affine Lie algebras yields classical 
dynamical r-matrices with spectral parameter (however, the classification is this 
case has not been worked out). Explicit quantization of the dynamical r-matrices 
from [Sch] (for any Kac-Moody algebra) is given in [ESS]. 
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3. The fusion and exchange construction 

Unlike QYBE, interesting solutions of QDYBE may be obtained already from 
classical representation theory of Lie algebras. This can be done through the fusion 
and exchange construction, see [Fa, EV3]. 

3.1. Intertwining operators 
Let g be a simple finite dimensional Lie algebra over C, with polar decompo­

sition g = n+ ® fi ® n_. For any g-module V, we write V[v] for the weight subspace 
of V of weight v £ if. Let M\ denote the Verma module over g with highest weight 
A G if*, x\ its highest weight vector, and x*x the lowest weight vector of the dual 
module. Let V be a finite dimensional representation of g. Consider an intertwin­
ing operator $ : M\ —¥ Mß ® V. The vector x*ß(§x\) £ V[A — p] is called the 
expectation value of $, and denoted ($). 

Lemma 3.1 7/ Mß is irreducible (i.e. for generic p), the map $ —¥ ($) is an 
isomorphism Eoms(Mß+l/, Mß ® V) —¥ V[v\. 

Lemma 3.1 allows one to define for any v £ V[v] (and generic A) the inter­
twining operator $v

x : M\ —¥ M\-v ® V, such that ($x) = v. 

3.2. The fusion and exchange operators 
Now let V, W be finite dimensional g-modules, and v £ V, tv £ W homogeneous 

vectors, of weights wt(w),wt(w). Consider the composition of two intertwining 
operators 

*£ ' " := (1>t-wt(v) ® mi • Mx -+ AfA_wt(w)_wt(œ) <g> W ® V. 

The expectation value of this composition, ($x'
v), is a bilinear function of tv and 

v. Therefore, there exists a linear operator Jwy(X) £ End(W<8> V) (of weight zero, 
i.e. commuting with h), such that (&x'

v) = Jwv(X)(w ® v). In other words, we 
have (^_wt{v) ® 1)*X = $^^(AH»®«). T h e operator JWV(X) is called the fusion 
operator (because it tells us how to "fuse" two intertwining operators). 

The fusion operator has a number of interesting properties, which we discuss 
below. In particular, it is lower triangular, i.e. has the form J = 1 + N, where 
N is a sum of terms which have strictly positive weights in the second component. 
Consequently, N is nilpotent, and J is invertible. 

Define also the exchange operator Rvw(X) := JvwW^wvW '• V ® W ~* 
V ® W. This operator tells us how to exchange the order of two intertwining 
operators, in the sense that if Rwv(X)(w ® v) = £ jWj ® w» (where w,,w, are 
homogeneous), then $x'

v = 7 3 £ i $ ^ ' u ' i (where P permutes V and W). 

Theorem 3.2 [EV3] RVv(X) is a solution of QDYBE. 
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3.3. Fusion and exchange operators for quantum groups 
The fusion and exchange constructions generalize without significant changes 

to the case when the Lie algebra g is replaced by the quantum group Uq(g), where 
q is not zero or a root of unity. The only change that needs to be made is in the 
definition of the exchange operator: namely, one sets 72(A) = Jy\v(X)TZ21 J2yV(X), 
where R is the universal 72-matrix of Uq(g). This is because when changing the 
order of intertwining operators, we must change the order of tensor product of 
representations V ® W, which in the quantum case is done by means of the R-
matrix. 

Example 3.3 Let g = sln, and V be the -vector representation of Uq(g). Then the 
exchange operator has the form 72 = g1_1//"72, where 72 is given by (1), with ßab = 

„2(\a-\h-a+b)_i ! &ab — Q jor a < u, anaaab — , 2(\h-\a+a-b)_^\2 
if a > b. The exchange operator for the vector representation of g is obtained by 
passing to the limit q —¥ 1; i.e. it is given by (1), with ßab = x _x

1_b+a, aab = 1 
for a <b, and aab = (^ -^+°- f t j 1 j^ -^ 2 +°- t '+ 1 ) if a > b. It is easy to see that 
these exchange operators are gauge equivalent to the basic rational and trigonometric 
solutions of QDYBE, respectively. 

3.4. The ABRR equation 
The fusion operator is not only a tool to define the exchange operator satisfying 

QDYBE, but is an interesting object by itself, which deserves a separate study; so 
we will briefly discuss its properties. 

Let p the half-sum of positive roots. Let 0(A) £ U(if) be given by 0(A) = 
X + p — \^x2. Then 0(A) defines an operator in any Uq(g)-module with weight 
decomposition. Let 1Zo = Tlq^^7Xi®Xi be the unipotent part of the universal 72-
matrix. 

Theorem 3.4 (ABRR equation, [ABRR, JKOS]) For q ^ 1, the fusion operator 
is a unique lower triangular zero weight operator, which satisfies the equation: 

J(X)(l®q2e{x))=n21(l®q2e{x))J(X). (4) 

For q = 1, the fusion operator satisfies the classical limit of this equation: 

[J(X),l®Q(X)] = (Ye-a®ea)J(X), (5) 

(Here for brevity we have dropped the subscripts W and V, with the understanding 
that both sides are operators on W ® V). 

3.5. The universal fusion operator 
Using the ABRR equation, we can define the universal fusion operator, living 

in a completion of Uq(g)®2, which becomes Jw\/(X) after evaluating in W ® V. 
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Namely, the universal fusion operator J(X) is the unique lower triangular solution 
of the ABRR equation in a completion of Uq(g)®2. This solution can be found in 
the form of a series J = ^n>Q Jn, Jo = 1, where Jn £ Uq(g)®Uq(g) has zero weight 
and its second component has degree n in principal gradation; so Jn are computed 
recursively. 

This allows one to compute the universal fusion operator quite explicitly. For 
example, if q = 1 and g = sl2, then the universal fusion operator is given by the 
formula J(X) = ]T„>0

 (~f-fn ®(X-h + n+ l)-1 ...(X-h + 2n)-1en. 

3.6. The dynamical twist equation 
Another important property of the fusion operator is the dynamical twist 

equation (which is a dynamical analog of the equation for a Drinfeld twist in a Hopf 
algebra). 

Theo rem 3.5 The universal fusion operator J(X) satisfies the dynamical twist 
equation J12'3(X)J1'2(X - h^) = J1'23(X)J2'3(X). 

Here the superscripts of J stand for components where the first and second 
component of J acts; for example J1 '23 means (1 ® A)(J), and J1 '2 means J ®1. 

3.7. The fusion operator for affine algebras 
The fusion and exchange construction can be generalized to the case when the 

simple Lie algebra g is replaced by any Kac-Moody Lie algebra. This generalization 
is especially interesting if g is replaced with the affine Lie algebra g, and V, W are 
finite dimensional representations of Uq(g) (where q is allowed to be 1). In this 
case, for each z £ C* we have an outer automorphism Dz : Uq(g) —¥ Uq(g), which 
preserves the Chevalley generators qh and e, , / , , i > 0, of Uq(g), while multiplying 
eo by z and fi by z^1. Define the shifted representation V(z) by ny(z)(a) = 
n\/(Dz(aj). Yet A = (A,fc) be a weight for g (fc is the level). Then similarly 
to the finite dimensional case one can define the intertwining operator $Xk(z) : 
Mx —t Mx_wt,v)®\~(z) (to a completed tensor product); it can be written as an 
infinite series X^ez^A.fcN 0 - " ' where 3> f̂c[n] : M~x -t Mx_wt,-. ® V are linear 
operators. Furthermore, the expectation value of the composition ((^x_wt,v^ k(zi)® 
l)$x k(Z2)) '1S defined as a Taylor series in z2/zi. Thus, one can define the fusion 
operator Jwv(z) £ Endf,(W ® V)[[z]] such that this expectation value is equal to 
Jwv(z)(w ®v). 

3.8. Fusion operator and correlators in the W Z W model 
One may show (see [FR, EFK]) that the series Jwv(z) is convergent in some 

neighborhood of 0 to a holomorphic function. This function has a physical inter­
pretation. Namely, if q = 1, the operators $x k(z) are, essentially, vertex operators 
(primary fields) for the Wess-Zumino-Witten conformai field theory, and the func­
tion Jw\/(z)(w ® v) is a 2-point correlation function of vertex operators. If q ^ 1, 
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this function is a 2-point correlation function of q-vertex operators, and has a similar 
interpretation in terms of statistical mechanics. 

3.9. The A B R R equation in the affine case as the KZ (q-KZ) 
equation 

The ABRR equation has a straightforward generalization to the affine case, 
which also has a physical interpretation. Namely, in the case q = 1 it coincides 
with the (trigonometric) Knizhnik-Zamolodchikov (KZ) equation for the 2-point 
correlation function, while for q ^ 1 it coincides with the quantized KZ equation 
for the 2-point function of q-vertex operators, derived in [FR] (see also [EFK]). 

One may also define (for any Kac-Moody algebra) the multicomponent uni­
versal fusion operator J1-N(X) = J1>2-N(X)...J2>3-N(X)JN-1>N(X). It satisfies 
a multicomponent version of the ABRR equation. In the affine case, J1'"JV(A) is 
interpreted as the N-point correlation function for vertex (respectively, q-vertex) 
operators, while the multicomponent ABRR equation is interpreted as the KZ (re­
spectively, qKZ) equation for this function. See [EV5] for details. 

3.10. The exchange operator for affine algebras and mon-
odromy of KZ (q-KZ) equations 

The generalization of the exchange operator to the affine case is rather tricky, 
and there is a serious difference between the classical (q = 1), and quantum 
(q ^ 1) case. The naive definition would be Rvw(u,X) = Jvw(z,X)~1/R?1\v<g)w{z) 
J2yV(z~1,X) (where z = e27!tu). However, this definition does not immediately 
make sense, since we are multiplying infinite Taylor series in z by infinite Taylor 
series in z™1. To make sense of such product, consider the cases q = 1 and qfi^ 1 
separately. 

If q = 1, the functions Jvw(z,X) and J2yV(z~1,X) are both solutions of the 
Knizhnik-Zamolodchikov differential equation, one regular near 0 and the other near 
oo. The equation is nonsingular outside 0, oo, and 1. Thus, the series Jvw(z,X) 
is convergent for \z\ < 1. On the other hand, for 0 < z < 1 define the function 
A±(J2yV(z~1,X)) to be the analytic continuation of J2yV(z~1,X) from the region 
z > 1 along a curve passing 1 from above (for +) and below (for -). Then the 
function Rvw(u, X) := Jvw(z, A)_ 1A±( J2yV(z~1, A)) is of zero weight, and satisfies 
the QDYBE with spectral parameter (for V = W). The operator Rvw(u,X) is the 
appropriate analog of the exchange operator (depending on a choice of sign). 

If q ^ 1, the functions Jvw(z,X) and R21\v®w(z)J'wv(z^1 ,^) a r e both so­
lutions of the quantized Knizhnik-Zamolodchikov equation, which is a difference 
equation with multiplicative step p = q^2n%(k+s) ; where m is the ratio of squared 
norms of long and short roots, fc the level of A, and g the dual Coxeter number of 
g. Therefore, if \p\ ^ 1, these functions admit a meromorphic continuation to the 
whole C* (unlike the q = 1 case, they are now single-valued), and the naive formula 
for Ryw(u, A) makes sense. As in the q = 1 case, this function is of zero weight and 
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satisfies the QDYBE with spectral parameter (for V = W); it is the appropriate 
generalization of the exchange operator (see [EFK] for details). 

The operators Rvw(z,X), essentially, represent the monodromy of the KZ dif­
ferential equation. In particular, Rvw is "almost constant" in u: its matrix elements 
in a homogeneous basis under h are powers of e2nm (in fact, RyV(u,X) is gauge 
equivalent, in an appropriate sense, to a solution of QDYBE without spectral pa­
rameter). Similarly, the operator Ry\y(z, A) for q ^ 1 represents the q-monodromy 
(Birkhoff's connection matrix) of the q-KZ equation. In particular, the matrix el­
ements of Rvw(u,X) are quasiperiodic in u with period r = \ogp/2ni. Since they 
are also periodic with period 1 and meromorphic, they can be expressed rationally 
via elliptic theta-functions. 

Example 3.6 Let g = sln, and V the -vector representation of Uq(g). If q ^ 1, 
the exchange operator Ryy(u,X) is a solution of QDYBE, gauge equivalent to the 
basic elliptic solution with spectral parameter (see [Mo] and references therein, and 
also [FR, EFK]). The gauge transformation involves an exact multiplicative 2-
form, which expresses via q-Gamma functions with q = p. Similarly, if q = 1, 
the exchange operators Rvv(u,X) are gauge equivalent to the basic trigonometric 
solution without spectral parameter, with q = e^/">-(k+g). the gauge transformation 
involves an exact multiplicative 2-form expressing via classical Gamma-functions. 
This is obtained by sending q to 1 in the result of [Mo]. 

Remark Note that the limit q —¥ 1 in this setting is rather subtle. Indeed, 
for q ^ 1 the function Jy\y(u,X) has an infinite sequence of poles in the z-plane, 
which becomes denser as q approaches 1 and eventually degenerates into a branch 
cut; i.e. this single valued meromorphic function becomes multivalued in the limit. 

3.11. The quantum Kazhdan-Lusztig functor 
Let g = sln, q ^ 1. Example 3.6 allows one to construct a tensor functor 

from the category fiepf(Uq(gj) of finite dimensional C/g(g)-modules, to the cat­
egory Repj(72) of finite dimensional representations of the basic elliptic solution 
72 of QDYBE with spectral parameter (i.e. to the category of finite dimensional 
representations of Felder's elliptic quantum group). Namely, let V be the vec­
tor representation, and for any finite dimensional representation W of Uq(g), set 
Lw = Rvw- Then (W,Lw) is a representation of the dynamical R-matrix Ryy. 
This defines a functor F : Repf(Uq(g)) —¥ Repf(Ryy). Moreover, this functor is 
a tensor functor: the tensor structure F(W) ® F(U) —¥ F(W ® U) is given by the 
fusion operator Jwu(X) (the axiom of a tensor structure follows from the dynamical 
twist equation for J ) . On the other hand, since Ryy and 72 are gauge equivalent 
by an exact form, their representation categories are equivalent, so one may assume 
that F lands in Rep^(72). 

If the scalars for Repf(Uq(g)) are taken to be the field of periodic functions 

of A (in particular, fc is regarded as a variable), then F is fully faithful; it can be 
regarded as a q-analogue of the Kazhdan-Lusztig functor (see [EM] and references 
therein). It generalizes to infinite dimensional representations, and allows one to 
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construct elliptic deformations of all evaluation representations of Uq(gj) (which was 
done for finite dimensional representations in [TV]). The versions of this functor 
without spectral parameter, from representations of g (Uq(gj) to representations of 
the basic rational (trigonometric) solution of QDYBE can be found in [EV3]. 

4. Traces of intertwining operators and Macdonald 
functions 

In this section we discuss a connection between dynamical R-matrices and cer­
tain integrable systems and special functions (in particular, Macdonald functions). 

4.1. Trace functions 

Let V be a finite dimensional representation of Uq(g) (q ^ 1), such that 
V[0] 7̂  0. Recall that for any v £ V[0] and generic p, one can define an in­
tertwining operator $ß such that ($ß) = v. Following [EV4] set ^v(X,p) = 

Tr|Mf,(
<£Jlg2A)- This is an infinite series in the variables q^(x>aii (where a, are the 

simple roots) whose coefficients are rational functions of qbÀ>aiï (times a common 
factor g2 (A^). For generic p this series converges near 0, and its matrix elements 
belong to q2(x^(C(q(x'a^) ® C(q(^ai^)). 

Yet \Py(A, p) be the End(V[0])-valued function, such that ^y(X, pjv = ^V(X, p). 
The function \Py has remarkable properties and in a special case is closely related 
to Macdonald functions. To formulate the properties of vPy, we will consider a 
renormalized version of this function. Namely, let 5q(X) be the Weyl denominator 
ria>o(<3'(A'a)^<3'_(A'a))- Let also Q(p) = Y,s^ (hì)aì, where ]T at® bi = J (fi) is the 
universal fusion operator (this is an infinite expression, but it makes sense as a lin­
ear operator on finite dimensional representations; moreover it is of zero weight and 
invertible). Define the trace function Fy(X,p) = öq(X)^y(X, —p — p)Q(—p — p)^1 • 

4.2. Commuting difference operators 

For any finite dimensional Uq (g)-module W, we define a difference operator 
T>w acting on functions on h* with values in V[0]. Namely, we set (T>\yfi)(X) = 
Si/eb* Tr|i4/(72i4/y(^A — pj)f(X + v). These operators are dynamical analogs of 
transfer matrices, and were introduced in [FV2]. It can be shown that ÎVi®w2

 = 

T>W1'D\Y2; in particular, V\y commute with each other, and the algebra generated 
by them is the polynomial algebra in V\yi, where W, are the fundamental represen­
tations of Uq(g). 

4.3. Difference equations for the t race functions 

It turns out that trace functions Fy(X,p), regarded as functions of A, are 
common eigenfunctions of T>\y. 
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Theo rem 4.1 [EV4] One has 

V$ Fv (X, p) = Xw(q-2ß)Fv (X, p), (1) 

where Xw(x) = Tr|i4/(a:) is the character ofW. 

In fact, it is easy to deduce from this theorem that if w, is a basis of V[0] 
then Fy(X,p)vi is a basis of solutions of (1) in the power series space. Thus, 
trace functions allow us to integrate the quantum integrable system defined by the 
commuting operators V\yi. 

Theorem 4.2 [EV4] The function Fy is symmetric in X and p in the following 
sense: Fy*(p,X) = Fy(X,p)*. 

This symmetry property implies that Fy also satisfies "dual" difference equa­
tions with respect to p: T>\£ Fy(X,p)* = xw((l^2X)Fy(X,p)*. 

4.4. Macdonald functions 

An important special case, worked out in [EKi], is g = sln, and V = L^nwi, 
where OJI is the first fundamental weight, and fc a nonnegative integer. In this 
case, dimF[0] = 1, and thus trace functions can be regarded as scalar functions. 
Furthermore, it turns out ([FV2]) that the operators V\y can be conjugated (by a 
certain explicit product) to Macdonald's difference operators of type A, and thus the 
functions Fy(X,p) are Macdonald functions (up to multiplication by this product). 
One can also obtain Macdonald's polynomials by replacing Verma modules Af̂  
with irreducible finite dimensional modules Ly, see [EV4] for details. In this case, 
Theorem 4.2 is the well known Macdonald's symmetry identity, and the "dual" 
difference equations are the recurrence relations for Macdonald's functions. 

Remark 1 The dynamical transfer matrices V\y can be constructed not only 
for the trigonometric but also for the elliptc dynamical R-matrix; in the case g = sln, 
V = Lknu! this yields the Ruijsenaars system, which is an elliptic deformation of 
the Macdonald system. 

Remark 2 If q = 1, the difference equations of Theorem 4.1 become differ­
ential equations, which in the case g = sln, V = L\,nwi reduce to the trigonometric 
Calogero-Moser system. In this limit, the symmetry property is destroyed, but 
the "dual" difference equations remain valid, now with the exchange operator for 
g rather than Uq(g). Thus, both for q = 1 and g / 1, common eigenfunctions 
satisfy additional difference equations with respect to eigenvalues - the so called 
bispectrality property. 

Remark 3 Apart from trace \P" of a single intertwining operator multiplied 
by q2X, it is useful to consider the trace of a product of several such operators. 
After an appropriate renormalization, such multicomponent trace function (taking 
values in End((Vi ®...® VJV)[0]) satisfies multicomponent analogs of (1) and its dual 
version, as well as the symmetry. Furthermore, it satisfies an additional quantum 
Knizhnik-Zamolodchikov-Bernard equation, and its dual version (see [EV4]). 
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Remark 4 The theory of trace functions can be generalized to the case of 
affine Lie algebras, with V being a finite dimensional representation of Uq(g). In 
this case, trace functions will be interesting transcendental functions. In the case 
g = sln, V = Lkniü!, they are analogs of Macdonald functions for affine root systems. 
It is expected that for g = sl2 they are the elliptic hypergeometric functions studied 
in [FV3]. This is known in the trigonometric limit ([EV4]) and for q = 1. 

Remark 5 The theory of trace functions, both finite dimensional and affine, 
can be generalized to the case of any generalized Belavin-Drinfeld triple; see [ESI]. 

Remark 6 Trace functions Fy(X,p) are not Weyl group invariant. Rather, 
the diagonal action of the Weyl group multiplies them by certain operators, called 
the dynamical Weyl group operators (see [EV5]). These operators play an important 
role in the theory of dynamical R-matrices and trace functions, but are beyond the 
scope of this paper. 
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Geometrie Langlands 
Correspondence for GLn 

D. Gaitsgory* 

Abstract 

We will review the geometric Langlands theory (mainly for the group 
GLn), whose development was initiated in the works of V. Drinfeld and G. 
Laumon. 

Let A be a (smooth, complete) algebraic curve over a ground field fc, and 
let E be an ^-adic n-dimensional irreducible local system on X. 

The geometric Langlands conjecture (for GL„) says that to E one can 
associate an automorphic sheaf SE, which is a perverse sheaf on the moduli 
stack Bunn(A) classifying vector bundles of rank n o n i . 

We will explain the motivation for this conjecture in terms of the classical 
theory of automorphic forms, and the methods involved in the construction 
of SE-

2000 Mathematics Subject Classification: 14H60. 

Introduction 
0 . 1 . Let X be a (smooth, complete) curve over a ground field fc, and G a (split) 
reductive group. In the main body of the paper we will assume tha t G = GLn, 
but now we would like to make a general overview of the theory, in which G can be 
arbitrary. Let B u n c denote the moduli stack of G-bundles on X. 

Our object of s tudy is the category D ( B u n c ) - t h e derived category of sheaves 
on B u n c with constructible cohomology. By "sheaves" we will mean either Q r a d i c 
sheaves, which can be done over any fc, or D-modules, when char(fc) = 0. 

Finally, let G be the Langlands dual of G (thought of as an algebraic group 
over Q f or fc, depending on the sheaf-theoretic context). 
0 .2 . It is believed tha t if o is a G-local system on X (i.e., a homomorphism from 
the appropriate version of ni(X) to G), which is sufficiently generic, then to o one 
can at tach an automotphic sheaf 3> £ D ( B u n c ) , which is a Hecke eigen-sheaf with 
respect to a. (See [BD], Section 5 for the definition of the Hecke eigen-property for 
an arbi trary G, or Section 2 below for the GLn case.) 
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Unfortunately, the geometric Langlands conjecture, i.e., the conjecture pre­
dicting the existence of 3>, is not well formulated, because it is not known (at least 
to the author) what "sufficiently generic" is for an arbitrary group G. 

The exception is the case when G = GLn, and "sufficiently generic" is under­
stood as "irreducible". In this situation, the geometric Langlands conjecture in the 
above form was formulated by G. Laumon in [Lai], following the pioneering work 
of V. Drinfeld, [Dr], where the corresponding statement was proved for GL2. 
0.3. Although it is still not clear under what circumstances 3> should exist, at least 
three different constructions have been suggested by A. Beilinson and V. Drinfeld, 
in addition to the original Drinfeld's construction (the latter is, however, specific 
to the case G = GLn). To the best of my knowledge, there are no theorems that 
establish the equivalence between any two of the four constructions described below. 

The first construction works in the D-module context (in particular, we have to 
assume that char(fc) = 0), under an additional assumption on a: one assumes that 
a is an oper, cf. [BD]. In this case, the corresponding 3> is a D-module (and not 
just an object of the derived category). Moreover, 3> is holonomic. (Unfortunately, 
it is not clear from the construction whether 3> has regular singularities.) 

The second construction, via the so-called chiral Hecke algebra, also takes place 
in the D-module context. Here a can be arbitrary, but it is not clear under what 
assumptions on a the object 3> thus constructed is non-zero, or when it is a single 
D-module. It is not clear either whether the corresponding complex always has 
holonomic (or even finitely generated) cohomologies. 

In the above two constructions, the fact that we work with D-modules is used 
very essentially, as the corresponding 3> is constructed by generators and relations. 
The other two constructions are more geometric in the sense that 3> is produced 
starting from a, viewed as a sheaf on X, using the 6 functors. 

The third construction, uses the "spectral projector", and makes sense over 
any fc and for any a. It is again not clear under what assumption on a, the resulting 
3> is non-zero or when it lies in the bounded derived category. 
0.4. Finally, the fourth approach which, as was mentioned above, works for GLn 

only and goes back to the original work of Drinfeld, is the subject of the present 
paper. In this case it can actually be shown that for an irreducible representation a, 
which can be thought of as an n-dimensional local system E on X, the corresponding 
automorphic sheaf 3> (or JE) indeed exists and has all the desired properties. 

Let us add a few words about the history of this approach. After [Dr], where 
the case of n = 2 was solved, the (conjectural) generalization of the construction of 
JE was suggested by G. Laumon in [Lai] and [La2]. Laumon's approach was further 
developed by E. Frenkel, D. Kazhdan, K. Vilonen and the author (cf. [FGKV] and 
[FGV1]). The present paper can be regarded as a summary of these works. Finally, 
a certain vanishing result that was missing in order to complete the proof of the 
conjecture has been established in [Ga]. 

Let us now briefly explain how the paper is organized. In Section 1 we review 
the classical (i.e., function-theoretic) Langlands correspondence for GLn. In Section 
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2 we define Hecke eigen-sheaves and state the main theorem about the existence of 
the Hecke eigen-sheaf JE corresponding to an irreducible local system E. In Section 
3 we describe the construction of JE via a geometric analog of the Whittaker model. 
In Section 4 we explain how the main theorem about the existence of JE follows 
from a certain vanishing result. Finally, in Section 5 we indicate the steps involved 
in the proof of the vanishing theorem. 

1. The classical theory 
In this section we will review the formulation of the classical Langlands con­

jecture for function fields, and the technique of construction of automorphic forms 
via Whittaker models. 
1.1. Let X be the global field corresponding to a (smooth, complete) curve X over 
a finite field ¥q. We will denote by Â (resp., O) the corresponding ring of adeles 
(resp., the subring of integral adeles). 

Consider the quotient GLn(X)\GLn(K). The space Funct(GLn(X)\GLn(Âj) 
of (smooth) functions (with values in an arbitrary algebraically closed field of char. 
0, which we will take to be Qf) is naturally a representation of the group GLn(A). 

Consider the subspace of functions that are invariant with respect to GLn(Q), 
i.e. the space of functions on the double quotient GLn(X)\GLn(K)/GLn(&). This 
is a module over the Hecke algebra GLn(K) with respect to GLn(<0). By definition, 
this Hecke algebra, denoted E(GLn(Â.),GLn(

<Oj), consists of compactly supported 
G7/„(Q)-biinvariant functions on GL„(Â). The action of h £ E(GLn(Â.),GLn(

<Oj) 
on f £ Funct(GLn(X)\GLn(A)/GLn(0)) is given by the formula 

h-f(x)= j f(x-y-1)-h(y). (1.1) 
y£GLn{K) 

By the definition of the adele group GLn(K), the Hecke algebra E(GLn(K), 
GLn(<Oj) is the (restricted) tensor product of local Hecke algebras ®'E(GLn(Xx), 

X 

GLn(Oxj), where the index x runs over the set of all places of X, and Xx (resp., 
Ox) is the corresponding local field (resp., local ring). 

The structure of each local Hecke algebra E(GLn(Xx), GLn(Oxj) is well under­
stood. It is commutative an is freely generated by the elements TfiT2,..., TL1, (T™)-1, 
where each is TJ the characteristic function of the GL„(Oœ)-double coset in GLn(Xx) 
corresponding to the diagonal matrix (wx,...,wx,l,...,l), where wx is the uni-

ì times 
formizer at x. (It is convenient to normalize Tl

x so that its value is not 1 but rather 
( _ g - l / 2 ) « ( " - « ) . ) 

1.2. Let a be an n-dimensional representation of the unramified quotient of the Ga­
lois group of DC. To a we can attach a canonical character x„ of H(GL„(Â), GLn (O)). 
Namely, the value of x<r o n Tx, Va;, i is Tr(A* Frobœ). 

Here is the formulation of the Galois =̂> Automorphic part of the Langlands 
correspondence, established by Lafforgue in [Lai]: 
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1.3. Theorem. To every irreducible a as above there corresponds a (non-zero) 
function fa £ Yunct(GLn(X)\GLn(A)/GLn(G)), such that 

h-U = xAh) • U, Vft e H(GL„(A),GL„(O)). 

Moreover, such f„ is unique up to a scalar, and is cuspidal (see below). 

1.4. We will now sketch the construction oi /„• using the method oi Piatetski-
Shapiro and Shalika, ci. [PS],[Sha]. 

First, let us recall the notion oi cuspidality oi a iunction on GL„(A). Let / £ 
Funct(G7/„(A)) be left-invariant with respect to a subgroup F (DC), where F c GLn 

is a subgroup that contains the unipotent radical N of the standard Borei subgroup. 
In particular, F contains also the unipotent radical N(Q) of any standard parabolic 
0 C GLn. The function / is called cuspidal if for every such parabolic 

f(y -x) = 0,Vx£ GLn(A). (1.2) 

y€N(Q)(X)\N(Q)(A) 

For fc = 1,..., n let Pu C GLn be the group of matrices, for which the ay entry-
is 8ij if i > n — k,i > j . Note that P := Pi is the so-called mirabolic subgroup, i.e. 
the subgroup of matrices whose last row is (0, ...,0,1), and for any fc, Pj. D N. 

Yet N/, c GLn be the subgroup of (strictly) upper-triangular matrices, in 
which only the last fc — 1 columns may be non-zero. We shall fix a non-trivial 
character tp : DC\A —t Q(. It gives rise to a character \Pj. : Arj!(A) —t Q(, but taking 
the sum of values of tp on the supdiagonal matrix entries. 

We define the space W* to consist of all functions 

/ G Funct(7*(DC)\GL„(A)/GL„(Q)), 

that satisfy f(n • x) = \Pfc(n) • f(x), Vn £ N/,. We define Wcuspk as the subspace 
of W* that corresponds to cuspidal functions. It is easy to see that for fc = n, 
W — W 
*v cusp n — *v n-

1.5. Proposition. There are isomorphisms Wcusp u — W c u s p u+i f°r k = 1,..., n — 
1, which respect the H(GL„(A),GLn(<&))-action. 

The isomorphisms in the proposition are given by taking Fourier transforms 
along the (compact abelian) group (Arj!+i/Arj!)(DC)\(Arj!+i/Arj!)(A). 
1.6. The construction of the sought-for automorphic function /„. corresponding 
to a Galois representation a goes as follows. One first constructs (using an ex­
plicit formula due to Shintani, [Shi], and Casselman-Shalika, [CS]) the correspond­
ing Whittaker function, i.e., a function /J4 £ W n , on which the Hecke algebra 
H(G7/„(A),G7/„(Q)) acts via the character x„. 

Then we use the sequence if isomorphisms of Proposition 1.5. for fc = n — 
1,...,2,1 and obtain a cuspidal function fa on P(X)\GLn(K). The crux of the 
matter is to show that f'a comes in fact from a GLn (DC)-invariant function, which 
would be the function /„. we were looking for. In his work, Lafforgue deduces the 
existence of such /„. from the functional equation satisfied by the Rankin-Selberg 
L-functions corresponding to a and automorphic forms on GLn> with n' < n. 
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2. The geometric setting 
In this section we will give a formulation of the geometric Langlands corre­

spondence. 
We will assume that the ground field fc is of positive characteristic and is 

algebraically closed. (The case of D-modules over a ground field of char. 0 is 
completely analogous.) We will denote by Bun„ be the moduli stack of rank n 
vector bundles on our curve X; D(Bun„) will denote the corresponding derived 
category of sheaves on Bun„. 
2 .1 . First, we will introduce the Hecke functors that act on the category D(Bun„). 
For a point x £ X consider the stack JCX classifying the data of (M,M',ß), where 
At, At' are vector bundles on X, and ß is an embedding of coherent sheaves At' <L-¥ At, 
such that the quotient At/At' is isomorphic to the residue field kx, viewed as a 
coherent sheaf on X. 

We have two projections: Bun„ <— JCX —y Bun„, that send the data of 
(At,At',/3) to At and At', respectively. 

The (local) Hecke functor E,x : D(Bun„) —t D(Bun„) is defined by the formula 

J^h,(%*(Jj)[n-l]. (2.1) 

The above definition can be generalized by letting the point i b e a parameter. 
We introduce the stack Df fibered over X, whose fiber over each i e I is JCX. We 
will denote the map Df —¥ X by s. Thus, we have a diagram: 

Bun„ <— JCX —• X x Bun„, 

and we introduce the Hecke functor H : D(Bun„) —t D(X x Bun„) by J >-¥ (s x 

hj(%*(Jj)[n]. 

2.2. For an integer d, let us denote by H d the corresponding iteration of H, i.e. 

(idXi-i M E) o ...(idx M E) o H : D(Bun„) - • D(Xd x Bun„). (2.2) 

This functor has the following basic property: 
2.3. Proposition. The functor Em : D(Bun„) -r- D(Xd x Bun„) lifts in a natural 
way to a functor into the equivariant derived category D(Bun„) —̂  DS d(X r fxBun„), 
where S^ is the symmetric group that acts naturally on Xd. 

2.4. We are now ready to define what a Hecke eigen-sheaf is. Let E be an n-
dimensional local system on X. 

An object JE £ D(Bun„) is called a Hecke eigen-sheaf with respect to E, if 
we are given an isomorphism 

E(JE) ~ E[l] M JE, 

such that the induced map 

Em(JE)^ Em[d] M JE 
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respects the S^-equivariant structure for any d. 1 

Few remarks are in order: 

Remark 1. In addition to the "basic" Hecke functor H, one can introduce the 
functors H* : D(Bun„) —t D(X x Bun„) for i = 1, ...,n (classically, they correspond 
to the generators TJ of the Hecke algebra of E(GLn(Xx),GLn(Oxjj). We have 
H ~ H1, and H" is the pull-back functor with respect to the multiplication map 
(x, M) —¥ M(x). One can show (cf. [FGV1], Sect. 2) that if JE is a Hecke eigen-
sheaf with respect to E, then ïV(7E) ~ Ai(E) M JE-

Remark 2. Note, that formally in the definition of eigen-sheaves, we did not use 
the fact that the local system E was n-dimensional. However, one can show (using 
Remark 1 above) that if JE £ D(Bun„) is a Hecke eigen-sheaf with respect to E 
and the rank of E is different from n, then JE = 0. 
2.5. The following is the statement of the (unramified) geometric Langlands corre­
spondence for GLn, conjectured by G. Laumon in [Lai] and proved in [FGV1] and 
[Ga]: 

2.6. Theorem. Suppose that the local system E is irreducible. Then there ex­
ists a Hecke eigen-sheaf JE £ D(Bun„) with respect to E, which is, moreover, an 
irreducible perverse sheaf over every connected component of Bun„, and cuspidal. 2 

Remark 3. Of course, if JE is a Hecke eigen-sheaf, then so is JE ® K, where 
K is any complex of vector spaces. An additional conjecture, which has not been 
fully established yet, is that any Hecke eigen-sheaf with respect to E has this form, 
where JE is the eigen-sheaf constructed in [FGV1]. 

3. Geometric Whittaker models 
From now on our goal will be to sketch the steps involved in the construction 

3.1. Let BunJ, be the stack classifying the data of (M,K), where M is a rank n 
vector bundle, and K is a non-zero map Q" _ 1 —t M. 3 Yet n denote the natural 
projection Bun^ —t Bun„. 

We will construct an object J'E £ D(Bun^), and then show that it descends 
to the sought-for perverse sheaf JE on Bun„. 

For us, the category D(Bun^) is the geometric analog of the space of functions 
on the quotient P(K)\GLn(K)/GLn(<ß), and the construction of J'E will be an 
analog of the construction of the corresponding automorphic function fa (cf. Section 
1) from its Whittaker model, i.e. / J 4 . Thus, we must find stacks and certain 
subcategories of sheaves on them, that will be analogs of the "Whittaker" spaces 
Wk of Section 1. 

1 The latter condition makes sense, since the forgetful functor from the equivariant derived 
category with respect to a finite group to the usual derived category is faithful, because the 
coefficients of our sheaves are in char. 0. 

2See [FGV1], Section 9 for the notion of cuspidality. 
3Here and in the sequel, O* denotes the fe-th tensor power of the canonical line bundle O. 
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3.2. For an integer fc, 1 < fc < n, let Q„:k be the stack classifying the data 
of (M,Ki,...,Kk), where M is a rank n vector bundle, K,'S are non-zero maps 
Qra-i+...+ra-« _^ A*(M), satisfying the Pliicker relations. The latter means that 
at the generic point of X, the collection of maps KI,...,K,U defines a flag of subbun-
dles 

0 = At0 C Mi C ... C Mk C At, 

with identifications M»/Mj_i ~ Q"-* (cf. [BG], Sect. 1.3 for details). This flag 
would be defined over the entire X if the maps K, were bundle maps, and not just 
injective maps of sheaves. 

In addition, let Qn,k,ex be a slightly larger stack, where the last map Ku is 
allowed to vanish. Let us denote by jk the open embedding jk : Qn^ —t Qn,k,ex-
In addition, we have the natural maps nk+i,k '• Q»,fc+i —̂  Qn,k (resp., nk+i,k,ex '• 
Qn,k+i,ex —* Q»,fc)j which "forget" the data of Kk+i-
3.3. Next, we claim that for each fc = 1, ...,n there exist a certain full subcategory 
DH (Q»,fc) C D(Qnifc), which is a geometric analog of the space W*. 

The definition of DH' (Qn,k) involves an action on Qnij. of a certain natural 
groupoid, which comes from the same unipotent group Nk as the one used in the 
definition of Whittaker functions on Pk(X)\GLn(A.)/GLn(

<0). We refer the reader 
to [FGV] or [Ga], Sections 4 and 5 for a detailed discussion. Note that for fc = 1, 
Qn i is nothing but the stack Bun^ introduced above, and in this case DH' (Qn i) = 
D(Qnil) = D(Bm4). 

The relation between the categories DH' (Qn,k) for different fc's is given by 
the next proposition. Before stating it, we should mention that in addition to 
DH (Q»,fc)j we have the corresponding full subcategory DH' (Qn,k,ex) € D(Qn,k,ex) 
and the functors jki,jk*,jk m a P the categories DH' (Qnijiex) a n d DH' (Qn,k) to one-
an other. 

3.4. Proposi t ion . The direct image functor nk+i,k,ex< '• D(Qn,fc+i,ex) —* D(Q»,fc) 
maps the subcategory D ' (Qn,k+i,ex) to D ' (Qn,k) and induces an equivalence be­
tween the latter categories. Moreover, nk+i,k,exi restricted to D ' (Qn,«+i,ex) coin­
cides with nk+i,k,ex*! hence it preserves the subcategory of perverse sheaves and 
commutes with the Verdier duality. 

We introduce the Whittaker functor Wk,k+i '• DH (Q»,fc) —̂  DH' (Qn,fc+i) as a 
composition of the quasi-inverse of nk+i,k,ex< followed by the restriction j%. The 
left (resp., right) adjoint of Wk,k+i, is nothing but ^ + 1 ^ ! (resp., 7^+1^»). 
3.5. The object J'E £ D(Bun^), that we promised to construct in this section is 
obtained as follows: J'E is by definition 

7T2,1! °ÎT3,2! ° - 7 r n , „ _ l ! ( ^ ) , (3.1) 

where JE is a certain canonical perverse sheaf in DH' (Qn,n), that we will presently 
describe. 

R e m a r k 4. The above definition of J'E can be rewritten as J'E ~ ft (7^), where 
f is the natural map Q„:„ —¥ Bun^. However, we had to break fi into the above 
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elementary steps (i.e. nk+i,k<) in order to control perversity and irreducibility, which 
is crucially important, as we will see in the next section. 

Let Q„:„ C Qn,n be the open substack corresponding to the condition that the 
o 

maps Ki,..., K„_I are bundle maps. Let j denote the open embedding of Q„:„ into 
Q„:„. There are two natural maps defined on Q„,„. 

One is the map, denoted r : Qn n —̂  U X^d\ where X ^ denoted the d-th 
d>0 

symmetric power of X. This map sends the data of (At,Ki,...,Kn) to the divisor of 
zeroes of the map K„, which, we recall, is a map between line bundles. 

The second map is denoted by ev : Q„:„ —t Ga, and it is defined as follows. By 
the definition of Qn,n, a point of this stack defines a complete flag of vector bundles 
0 = Mo C Mi C ... C M n = M, and identifications Mj/Mj_i ~ ftn-i for i < n, and 
a map G —¥ M n / M n _ i for i = n. Therefore, we have n — 1 short exact sequences 
0 —¥ iV+1 —¥ MJ —¥ iV —t 0, where MJ is the corresponding rank 2 subquotient of 
M, and each such extension defines a class in 771(X, Q) ~ Ga. The value of ev on 
the above point of Q„:„ is the sum of the above extension n — 1 classes in Ga. 

o 

We define the perverse sheaf JE on Qn^n as a tensor product of r* (U E^ ) (here 
d 

E^ denotes the symmetric power of E which lives on X ^ ) and ev*(A-Sch), where 
A-Sch is the Artin-Schreier sheaf on Ga . We apply an appropriate cohomological 
shift to the above tensor product to make it a perverse sheaf. 

o 

Finally, we define JE £ D(Q„:j) a s Goresky-MacPherson extension of Jl
E , i.e. 

o o r 

JE := j\*(Jx
E). The fact that JE belongs to the Whittaker category D (Q„,„) 

follows from the construction. 
3.6. In the next section we will explain how the irreducibility assumption on E 
implies that the complex J'E on Bun^, constructed in this way, descends to Bun„. 
Here we will comment on the action of the Hecke functors. 

In [Ga], Section 6, it was shown that one can lift the Hecke functors E,x and 
H from Bun„ on the stacks Qn,k-

More precisely, for every fc we have the functors H^"'* : D(Qnifc) —̂  D(Qnifc), 

which preserve the subcategory DH' (Qn,k)- Moreover, for fc = 2, ...,n, the func­

tors Wk-i,k>^k,k-iW^k,k-i* intertwine in the natural sense the functors Ex
n-k and 

jj^n.fc-i_ p o r n — i ; tVje pull-back functor (with an appropriate cohomological shift) 

n* intertwines H^"'1 acting on D(Bun^) and Ex acting on D(Bun„). 

Analogusly, we have the global Hecke functors H n-k : D(Qnifc) —̂  D(X x Qn,k), 
where the assertions similar to the above ones hold. 

The basic fact about the perverse sheaf JE is its eigen-property, cf. [FGV1], 
Appendix: 

3.7. Proposition. There is a canonical isomorphism E n'n(JE) ~ E[l] M JE, 
compatible with iterations (cf. Section 2). 
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From this proposition it follows that J'E satisfies the Hecke eigen-property 

with respect to H "•1. This implies that the complex JE £ D(Bun„), to which J'E 

descends, has the required Hecke eigen-property with respect to H. 

4. Irreducibility and descent 
The main step in the proof of Theorem 2.6. is the following theorem: 
Recall that J'E was obtained from the perverse sheaf JE by applying to it the 

functor 7T2,i! o 7r3j2! ° ...7r„:„_i!. Set JE := JE and JE := nk+i,ki ° --^n,n-v.(^E)-
Yet also Bun^* c Bun„ be the open substack corresponding to vector bundles 

M, for which Hom(£°,M) = 0 for some fixed line bundle £. For every fc we then 

obtain an open substack Qn k := Bun^* x Qn^ c Qn,k-
Bun„ 

4.1. Theorem. Assume that E is irreducible. Then for fc = n, ...,2 the natural 
maP Jkt(-?E) —* Jì*(-?E) *S an isomorphism over Qn k. 

From this theorem, we obtain that (over Qn k) JE is a perverse sheaf, which 
is irreducible on every connected component. Indeed, this is true for fc = n by-
construction, and by induction we can assume that this is true also for fc' > fc. But 
then we obtain that JE ~ Trk+i,k,exi(jki*(^E+1))' an^ w e know from Proposition 3.4. 
that the functor nk+i,k,ext preserves perversity and irreducibility on the Whittaker 
subcategory. In particular, we obtain that J'E is a perverse sheaf, irreducible on 
every connected component of Bun^* '. 
4.2. Theorem 4.1. has been established in [FGV1], in a slightly different form. The 
main ingredient in the proof of Theorem 4.1. is the following vanishing result: 

For any local system E', and positive integers n' and d, let us consider the 
following functor Av^, E, : D(Bun„/) —̂  D(Bun„/): 

Let Modn; be the stack of "upper modifications of length d", i.e. Modn; 
classifies the data of triples (M,M',/3), where M and M' are rank-n' vector bundles 

on X, and ß is an embedding M' <-¥ M as coherent sheaves. Let h and h be the 
two projections from Mod^/ to Bunn/. In addition, there is a natural map s from 
Modn; to the stack Coh0 classifying torsion sheaves of length d on X. The map s 
sends (M,M',/3) to the quotient M/M'. 

Following Laumon [Lai] (see also [FGV1] and [Ga]), starting from E' one 
defines Laumon's perverse sheaf £JE, on Cohg. Set 

Avd
n,tE,(J) := l(B*(Ld

E,) ® h*(J)). (4.1) 

4.3. Theorem. Suppose that E' is irreducible and that rk(E') > n'. Suppose 
also that d > (2g — 2) • rk(E') • n', where g is the genus of X. Then the functor 
Av^, E' '• D(Bun„/) —̂  D(Bun„/) vanishes identically. 

The idea of the proof of Theorem 4.1. is that the cone of the map jk\ (JE) —* 
j*!*(3r^) can be expressed in terms of the functors Av^ E for various d applied to 
various sheaves on Bunn_fc+i. 
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4.4. The next step is to show that perversity and irreducibility of J'E on Bun^* ' 
implies that J'E descends to a perverse sheaf on Bun„, cf. [FGV1], Section 5. 

First, one shows that ^ Ißun»" descends to a perverse sheaf on Bun^*. This 
is done using a trick with Euler characteristics. It turns out, that since we already 
know that ^Ißun»* ' is perverse and irreducible, it is sufficient to show that the 
Euler-Poincaré characteristics of the stalks of J'E are constant along the fibers of 
the map n : Bun^ —t Bun„. Secondly, one observes that the above Euler-Poincaré 
characteristics are actually independent of the local system E (and depend only on 
its rank). 

Thus, it is sufficient to find just one local system of a given rank n, for which 
the above constancy of Euler-Poincaré characteristics takes place, and one easily 
finds one like that. 

Finally, using the Hecke eigen-property of J'E, one shows that there exists a 
perverse sheaf JE defined on the entire Bun„, whose (cohomologically normalized) 
pull-back to Bun^ is isomorphic to J'E- The fact that the resulting sheaf JE is 
cuspidal follows from the construction. 

5. The vanishing result 
In this section we will indicate the main ideas involved in the proof of Theo­

rem 4.3., following [Ga]. We will change the notation slightly, and replace n' by n 
and E' by E. 
5.1. First, let us rewrite the definition of the functor Avn E. Consider first the 
functor A\-n>E : D(Bun„) —t D(Bun„) given by 

J^p,(q*(El)®H(Jj), 

where p,q are the two projections from X x Bun„ to Bun„ and X, respectively. 
From Proposition 2.3. it follows that the d-fold iteration ItAv^ E := Av„^ 0...0 

k\'n}E' : D(Bun„) —̂  D(Bun„) maps to the equivariant derived category DSd(Bun„), 
where the E^-action on the base Bun„ is, of course, trivial. 

Moreover, it follows from the definition of Laumon's sheaf HE, that there is a 
functorial isomorphism 

AVIE(J) CZ (ltAvlE(Jjffi (5.1) 

where the superscript E^ designates the functor of Ed-invariants. 
5.2. The first step in the proof of Theorem 4.3. is the observation that instead of 
proving that the functor AY„:E vanishes, it is in fact enough to show that it is exact 
in the sense of the perverse i-structure. 

The fact that the seemingly weaker exactness assertion is equivalent to van­
ishing is proved using the Euler characteristics trick, similar to what we did in the 
previous section. 

Since, as we have seen above, the functor Av^ E can be expressed through 
more elementary functors Avn:E, we will analyze the exactness properties of the 
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latter. Unfortunately, it is not true that the "elementary" functor Av„^ is exact. 
However, it will be exact when regarded as a functor acting on a certain quotient 
category. 
5.3. We introduce the category D(Bun„) as the quotient of D(Bun„) by a triangu­
lated subcategory Ddegen(Bunn). (An object J £ D(Bun„) belongs to Drfese„(Bun„) 
essentially when it is degenerate, i.e., when it vanishes in the Whittaker model.) 

The quotient D(Bun„) possesses the following three crucial properties: 

1) The perverse i-structure on D(Bun„) induces a well-defined i-structure on D(Bun^ 

2) The Hecke functors E,x : D(Bun„) —t D(Bun„) gives rise to well-defined functors 
D(Bun„) —t D(Bun„), and the latter functors are exact in the sense of the t-
structure on D(Bun„). 

3) The subcategory Drfese„(Bun„) is orthogonal to the subcategory of cuspidal 
sheaves. I.e., if 3̂ 1,3̂ 2 £ D(Bun„) are such that 7i is cuspidal and the image 
of 3^ in D(Bun„) vanishes, then HomD(Bun„)(3ri) 3^) — HomD(Bun„)(3r2)3

ri) = 0. 
5.4. The main step in the proof that the functor Avn E is the following: 

5.5. Theorem. The functor AY„:E : D(Bun„) —t D(Bun„) descends to a well-
defined functor D(Bun„) —t D(Bun„), and the latter functor is exact. 

The main idea behind the proof of Theorem 5.5. is the same phenomenon as 
the one that forbids the existence of Hecke eigen-sheaves on Bun„ with respect to 
local systems of a wrong rank. Namely, if J is a perverse sheaf on Bun„ such that 
the corresponding object of D(Bun„) violates Theorem 5.5., then by looking at the 
behavior of H d(J) £ Y)(Xd x Bun„) around the various diagonals in Xd, we arrive 
to a contradiction. 

Using Theorem 5.5. the proof of the exactness of Av^ E proceeds as follows: 
From (5.1) (and using the fact that taking invariants is an exact functor), we obtain 
that the functor Av^ E is well-defined and exact on the quotient category D(Bun„). 
Moreover, by induction on n we can assume that for any J £ D(Bun„), Avn E(J) 
is cuspidal. 

Hence, if J is a perverse sheaf on Bun„, in the cohomological truncations 
arrows 

A<^(3- ) -+ r>°(Av^(3-) ) and r<°(Av^(3- ) ) -+ Avd
n,E(J), (5.2) 

we have maps between a degenerate and a cuspidal object. However, by property 3 
above, both these arrows must be 0. Hence, Av^ E(J) is a perverse sheaf. 
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On the Local Langlands Correspondence 

Michael Harris* 

A b s t r a c t 

The local Langlands correspondence for GL{n) of a non-Archimedean lo­
cal field F parametrizes irreducible admissible representations of GL(n, F) in 
terms of representations of the Weil-Deligne group WDF of F. The correspon­
dence, whose existence for p-adic fields was proved in joint work of the author 
with R. Taylor, and then more simply by G. Henniart, is characterized by its 
preservation of salient properties of the two classes of representations. 

The article reviews the strategies of the two proofs. Both the author's 
proof with Taylor and Henniart's proof are global and rely ultimately on an 
understanding of the i?-adic cohomology of a family of Shimura varieties closely 
related to GL(n). The author's proof with Taylor provides models of the cor­
respondence in the cohomology of deformation spaces, introduced by Drinfeld, 
of certain p-divisible groups with level structure. 

The general local Langlands correspondence replaces GL(n, F) by an ar­
bitrary reductive group G over F, whose representations are conjecturally 
grouped in packets parametrized by homomorphisms from WDp to the Lang-
lands dual group LG. The article describes partial results in this direction for 
certain classical groups G, due to Jiang-Soudry and Fargues. 

The bulk of the article is devoted to motivating problems that remain 
open even for GL{n). Foremost among them is the search for a purely lo­
cal proof of the correspondence, especially the relation between the Galois-
theoretic parametrization of representations of GL(n, F) and the group-theoretic 
parametrization in terms of Bushnell-Kutzko types. Other open questions in­
clude the fine structure of the cohomological realization of the local Langlands 
correspondence: does the modular local Langlands correspondence of Vigneras 
admit a cohomological realization? 

2000 Mathematics Subject Classification: 11, 14, 22. 

Introduction 
Compared to the absolute Galois group of a number field, e.g. Gal(Q/Q), 

the Galois group Yp of a non-archimedean local field F has a ridiculously simple 

structure. Modulo the inertia group IF, there is a natural isomorphism 

Yp/Ip -^r Gal(kp/kp), 
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where kp is the residue field of F. Then Gal(kp/kp) is topologically generated by 
the geometric Frobenius Frob(x) = x~i, where q = \kp\ = pf for p prime. The 
inertia group has a two step filtration, 

1 -^ Pp -+ IF -+ J J Z . ^ 1 , 

where the wild ramification group Pp is a pro-p group. 
Thus if a : Yp^yGL(n,C) is a continuous homomorphism, n > 1, then the 

image of a is solvable, and a(Pp) is nilpotent. This is still true when a is a finite-
dimensional complex representation of the Weil group, the subgroup Wp C Yp 
of elements whose image in Gal(kp/kp) is an integral power of Frob. Despite 
this simplicity, our understanding of the set of equivalence classes of n-dimensional 
representations of Wp is far from complete, at least when p divides n. 

The reciprocity map of local class field theory: 

Fx -^rW rab 
F , 

identifies the set Q(1,F) of one-dimensional representations of Wp with the set 
A(1,F) of irreducible representations of Fx = GL(1,F). More than a simple 
bijection, this identification respects a number of salient structures, and its behavior 
with respect to field extensions F'/F is well understood. Moreover, it is compatible, 
in a straightforward way, with global class field theory, and was historically first 
derived as a consequence of the latter. 

A simple special case of Langlands' functoriality principle is the so-called 
strong Artin conjecture, which identifies the Artin L-function attached to an ir­
reducible n-dimensional representation of Gal(Q/K), for a number field K, as the 
L-function of a cuspidal automorphic representation of GL(U)K- AS a local coun­
terpart, Langlands proposed a parametrization of irreducible admissible represen­
tations of reductive groups over the local field F in terms of representations of Wp. 
The prototypical example is the local Langlands conjecture for GL(n). By analogy 
with the case n = 1, the set of equivalence classes of irreducible admissible repre­
sentations of Gn = GL(n, F) is denoted A(n, F). By Q(n, F) we denote the set of 
equivalence classes of n-dimensional representations, not of Wp but rather of the 
Weil-Deligne group WDp, and only consider representations for which any lifting 
of Frob acts semisimply. Then the general local Langlands conjecture for GL(n), 
in its crudest form, asserts the existence of a family of bijections, as F and n vary: 

a = an,p : A(n, F) -^ Ç(n,F). (0.1) 

A normalization condition is that the central character ^ of n £ A(n, F) correspond 
to det a(n) via local class field theory. 

The first general result of this type was proved by Henniart [Hel]. Early work 
of Bernstein and Zelevinsky reduced (0.1) to the existence of bijections 

a = an,F : A0(n,F) ^A- £„(n,F), (0.2) 
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where QQ(n,F) are the irreducible representations of Wp and Ao(n,F) is the su-
percuspidal subset of A(n,F). Both sides of (0.2) are homogeneous spaces under 
A(1,F), and thus under its subset Aunr(l, F) of unramified characters x of Fx : if 
n £ Ao(n,F) (resp. a £ Go(n,Fj), we denote by n ® x (resp. a ® x) the tensor 
product of n (resp. a) with the one-dimensional representation x ° det of Gn (resp. 
with the character <7I:F(X) °f WF)- Each Aunr(l, F)-orbit on either side of (0.2) has 
a discrete invariant, the Artin conductor a(n), resp. a(a), and the sets Ao(n,F)[a], 
resp. Qo(n, F)[a] of orbits with given Artin conductor a are known to be finite. The 
main theorem of [Hel] is the numerical local Langlands correspondence 

\A0(n,F)[a]\ = \g0(n,F)[a]\, (0.3) 

established by painstakingly counting both sides. 
It has been known for some time that a family of bijections (0.2), compatible 

with Artin conductors and twists by A(1,F), is not unique. Henniart showed (the 
Uniqueness Theorem, [He2]) that at most one normalized bijection is compatible 
with contragredients and twists and satisfies the condition: 

L(s,n®n') = L(s,a(n) ®a(n'j); e(s,n ® n',fi) = e(s,a(n) ® a(n'),tp) (0.4) 

for n £ Ao(n, F),n' £ Afi(n', F),n' < n. Here tp : F^yCx is a non-trivial character. 
The L- and e-factors are defined on the automorphic side in [JPS, Sh]; on the Galois 
side by Langlands and Deligne (cf. [D]). It is in this version that the local Langlands 
conjecture for GL(n) has finally been established: for fields of positive characteristic 
in [LRS], and for p-adic fields in [HT], followed shortly thereafter by [He3] (see also 
[He5]). 

1. Compatibility with global correspondences 
As in the first proofs of local class field theory, the bijections (0.2) are con­

structed in [LRS,HT,He3] by local specialization of maps for certain global fields 
E: 

(J = (jn,E:A900d(n,E)^Ç(n,E). (1.1) 

Here E is supposed to have a place tv such that Ew ^A- F, Agood(n, E) is a class 
of cuspidal automorphic representations of GL(n)E chosen to fit the circumstances, 
and Q(n, E) can be taken to be the set of equivalence classes of compatible families 
of n-dimensional semi-simple A-adic representations of Gal(E/E). In particular, 
both sides of (1.1) as well as (0.2) are taken with £-adic, rather than complex, 
coefficients; this does not change the problem in an essential way. 

The map a of (0.1) is particularly simple for unramified representations. An 
unramified r £ Q(n, F) is given by an unordered n-tuple (xi, • • •, X») °f unramified 
characters of WF

b -^-¥ Fx. Ordering the x« arbitrarily, we obtain a character x 
of the Levi subgroup G" of a Borei subgroup 73 c Gn. The element of A(n,F) 
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corresponding to r is then the unique subquotient n(r) = <T - 1(T) of the normalized 
induced representation IndB

 n' x containing a vector fixed by GL(n, OF), OF the 
integer ring of F. This defines a bijection, a special case of the Satake parametriza­
tion, between the unramified subset Qunr(n,F) and the unramified (spherical) rep­
resentations Aunr(n,F) of Gn. 

Fix an automorphic representation II = ®„II„ of GL(n)E• The representation 
&n,E(Yf), when it exists, should have the property that 

O-H,E(YY) I wEv = o-n,Ev(flv) (1-2) 

for almost all v such that n^ £ Aunr(n,Ev); i.e., all but finitely many v. By 
Chebotarev density, this determines an,E(ff) uniquely. One can then hope that 

Hope 1.3. an^E(Yf)wEv depends only on F and Ev for all v, 

including v = tv, the place of interest. Setting an:p(Ev) = an^E(Yf)wEv,
 o n e then 

needs to show that 

1.4. 7<br any n £ Ao(n, F) there exists E £ Asood(n, E), for some E, with Ew ~ n; 

1.5. For E £ AS00d(n,E), E' £ Asood(n',E), the completed L-function 
A(s,an:E(ff) ® OV,-E(IÏ ' )) satisfies the functional equation 

A(s,an}E(fl)®(Tn\E(fl'j) = e(s,an}E(fl)®(Tn\E(fl'j)A(l-s,än}E(fl)®ön>,E(fl')); 

£(s,0-n,E(n) ®0-n',E(fl'j) = J J £v (s, (Tn>E(YY) ® CT„',£;(II'), tpv) 
V 

is the product of local Deligne-Langlands e factors. 

Here " denotes contragredient. The local additive characters tpv are assumed 
to be the local components of a continuous character of AE/E. 

1.6. The map a = an:F'• Ao(n,F)^-Q(n,F) 

(i) takes values in Qo(n,F); 
(ii) defines a bijection Ao(n,F) ^> Qo(n,F); 

(iii) satisfies the remaining requirements of a local Langlands correspondence, 
especially (0.4)-

The main burden of [LRS] is the construction of a class Asood(n, E) large 
enough to satisfy (1.4): now a moot point, since Lafforgue has proved that all cus­
pidal automorphic representations of GL(n) of a function field are "good" in this 
sense. The Asood(n, E) in [LRS] are the automorphic representations that con­
tribute to the cohomology of an appropriate Drinfeld modular variety, constructed 
from scratch for the occasion, attached to the multiplicative group of a division 
algebra of dimension n2 over E, unramified at the chosen tv. Property (1.5) in this 
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case follows from general results of Deligne in [D], valid only in equal characteristic. 
Now by (1.2), for a sufficiently large set S of places of E we have 

J J L(s,Ev x n ; ) = J J L(s,on,Ev(Ylv) ®an^Ev(K)); (1-7) 
v<£S v<£S 

where the left-hand side is the Rankin-Selberg L-function. Completing the latter 
to A(s, II ® E') and applying [JPS] or [Sh], we find the functional equation 

A(s,E® II') = l[ev(s,E ® n ' , ^ ) A ( l - s,E ® fl'). (1.8) 
V 

In other words, the partial L-functions, identified via (1.8), satisfy two functional 
equations (1.5) and (1.8). An argument first used by Henniart then yields (0.4), 
and then (1.3) and the full local Langlands conjecture follow from the Uniqueness 
Theorem of [He2]. 

When F is p-adic a class ACK (n, E) satisfying (1.2) is implicitly defined by-
work of Clozel and Kottwitz [K,C11], provided E is a CM field. For ACK(n, E) one 
can take cuspidal automorphic representations n , cohomological at all archimedean 
primes, square integrable at several finite primes other than tv, and such that 
fl ~ Ec, where c denotes conjugation of E over its maximal totally real subfield. 
However, the Galois-theoretic functional equation (1.5) is only available a priori 
when a„:E(ff) is associated to a global complex representation of the Weil group 
of E; i.e. when CTn,£;(II) becomes abelian over a finite extension of E. The article 
[H2] showed that there were enough II of this type in ACK(n, E). Denoting by 
Asood(n, E) the set of such II, we find that (1.4) is impossible as soon as p divides 
n; however, an argument in [H2], based on Brauer's theorem on induced characters 
and (0.3), shows that (1.4) is true "virtually," in the set of formal sums with integral 
coefficients of elements of Asood(n, E) for varying n. It then suffices to prove the 
following weak form of (1.3), which occupies the bulk of [HT]: 

Theo rem 1.9 [HT]. For all E £ ACK(n,E), the semisimplification 

o~n,E(TY)wEv,88 of CFn,E(ff)wEv depends only on F andEv for all v. 

More precisely, [HT] proves that o-n^E(Yf)wF,ss can be calculated explicitly in 
the vanishing cycles of certain formal deformation spaces Mh

LT F defined by Drinfeld 
(see §2). Following [K,C11], the representations an,E(ff) are initially realized in the 
cohomology of certain Shimura varieties with canonical models over E, and (1.9) 
is proved by a study of their bad reduction at tv. Henniart soon realized that, for 
II £ Asood(n,E), the purely local nature of on,E(Yf)wEv,ss, and hence the definition 
of a map a„:p, could be derived directly from (1.5) and from the results of [Hel,He2]. 
Though [He3] dispenses with the geometry, it is still a global argument inasmuch 
as it relies on [H2], which in turn depends on [K,CU] and [CL].the conditional base 
change results of [CL]. 

A global consequence of Theorem 1.9 is the Generalized Ramanujan Conjecture 
for the automorphic representations in ACK(n, E): if n £ ACK(n, E) and is unitary 
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then its local component n^ is tempered at every finite prime v. Clozel in [Cll] 
already showed this to be true for almost all unramified v. Generalizing a method 
developed by Lubotzky, Phillips, and Sarnak for the 2-sphere, Clozel [C12] uses the 
version of the Generalized Ramanujan Conjecture proved in [HT] to obtain effective 
constructions of families of equidistributed points on odd-dimensional spheres. 

With (0.1) out of the way, we can propose the following improvement of (1.3): 

Problem 1. Show that 

0-TI,E(YY)WEV —+ On,Ev(Ylv). (1-10) 

For n = 2 this was established by Carayol assuming standard conjectures on 
the semisimplicity of Frobenius. Theorem 1.9 shows that it holds up to semisim-
plification. The techniques of [HT], like the earlier work of Kottwitz treating un­
ramified places, is based on a comparison of trace formulas, and cannot detect the 
difference between two representations with the same semisimplification. Assuming 
semisimplicity of Frobenius, the equality (1.10) follows easily from Theorem 1.9 
and Deligne's conjecture, apparently inaccessible, on the purity of the monodromy 
weight filtration. 

Compatibility with functoriality. Given cuspidal automorphic representations 
uj of GL(Hì)E, for i = 1,2, . . . , r , and a homomorphism p : GL(n{) x ••• x 
GL(nr)—¥GL(N) of algebraic groups, Langlands functoriality predicts the exis­
tence of an automorphic representation p»(IIi ®... Er), not necessarily cuspidal, of 
GL(N)E, such that, for almost all unramified places v of E, 

ON,EV(P*(Y1I <g>...nr)„) = po (®l=iani:Ev(flì,vj)- (1A1) 

In recent years this has been proved for general number fields E in several impor­
tant special cases: the tensor products GL(2) x GL(2)^GL(4) (Ramakrishnan) 
and GL(2) x GL(3)^GL(6) (Kim-Shahidi), and the symmetric powers Sym3 : 
GL(2)^GL(4) (Kim-Shahidi) and Sym4 : GL(2)^GL(5) (Kim). It has been veri­
fied in all four cases that (1.11) holds for all v. 

Construction of supercuspidal representations by "backwards lifting". 
The unitary representation n £ Ao(n,F) is isomorphic to its contragredient 

if and only if the local factor L(s,n x n) has a pole at s = 0, which is necessarily-
simple. The local factor can be decomposed as a product: 

L(s,n x n) = L(s,n,Sym2)L(s,n, A2), (1A2) 

where the two terms on the right are defined for unramified n by Langlands and in 
general by Shahidi. Only one of the factors on the right has a pole. Using the class 
Agood(n,E) of automorphic representations, Henniart has shown that it is the first 
factor (resp. the second factor) if and only if a(n) is orthogonal (resp. symplectic); 
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the symplectic case only arises for n even. One thus expects that n is obtained by 
functorial transfer from an L-packet of a classical group G over F, via the map of 
L-groups LG^yGL(n,C), where LG = SO(n,C), resp. Sp(n,C), if the first, resp. 
the second factor in (1.12) has a pole at s = 0. 

In particular, when n = 2m and L(s, n, A2) has a pole at s = 0, n should come 
from an L-packet on the split group SO(2m + 1, F). Using a local analogue of the 
method of "backwards lifting," or automorphic descent, due to Ginzburg, Rallis, and 
Soudry, Jiang and Soudry have constructed a generic supercuspidal representation 
n' of SO(2m +1, F) for every n £ Ao(n, F) with the indicated pole. More generally, 
they have obtained a complete parametrization of generic representations of split 
G = SO(2m+l, F) in terms of Langlands parameters WDp^yLG [JS]. These results 
should certainly extend to other classical groups. 

2. Cohomological realizations of the local 
correspondence 

The theory of the new vector implies easily that any irreducible admissible 
representation n £ A(n, F) has a rational model over the field of definition of its 
isomorphism class: the Brauer obstruction is trivial for Gn. The analogous assertion 
fails for representations in G(n, F). Thus one cannot expect the existence of a space 
M, with a natural action of Gn x Wp, whose cohomology of whatever sort realizes 
the local Langlands correspondence, as an identity of virtual representations 

O » , F M = ±[77oroG„(77c(Af),7r)] := ±^2(-l)z HomGn(H
t
c(M),n). (2.1) 

ì 

We add a third group to the picture by taking J to be an inner form of Gn, 
the multiplicative group of a central simple algebra D over F of dimension n2 , 
with Hasse invariant r^-. The set A(n,F) contains a subset A>2) (n, F) of discrete 
series representations, character twists of those realized in the regular representation 
on L2(Gn) (modulo center). The set A(J) of equivalence classes of irreducible 
admissible representations contains an analogous subset A(2) (J), equal to A(J) if D 
is a division algebra. The J acquêt-Langlands correspondence [R,DKV] is a bijection 
JL : A(2)(Gn) -^-¥ „4(2) (J) determined by the identity of distribution characters 

xAg) = e(J)xjL(*)(j), K e A<2)(G) (2.2) 

if e (J) = ±1 is the Kottwitz sign and g and j are elliptic regular elements with the 
same eigenvalues. When rp, = 1 there are two spaces 0 F and MLTF with natural 
Gn x J-actions. The former is a countable union, indexed by Z, of copies of the 
profinite étale cover QF' of the rigid-analytic upper half space 0 F = P"_1(Cj,) — 
Wn^1(F), defined by Drinfeld in [D2]. The latter is the rigid generic fiber of the 
formal deformation space MFT F of the one-dimensional height n formal o^-module 
with Drinfeld level structures of all degrees [DI]. A relation analogous to (2.1) was 
conjectured by Carayol in [CI], with ± = (^1)" _ 1 : 
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Theo rem 2.3. For n supercuspidal 

a*(n) ® JL(n) = ±[HomGn(Hc(ÛF),n)] 

a*(n) ® n = ±[Hom,j(Hc(MlT:p),JL(n))]. 

The notation a#(n) indicates that a(n) has been twisted by an elementary fac­
tor. We use the rigid-analytic étale cohomology introduced by Berkovich [B] with 
coefficients in Q f , tfi^p. For MLT F this can be interpreted as a space of vanishing 
cycles for the formal deformation space, viewed as a formal scheme over Spf(Op). 
The case of 0 F was proved in [HI], using the existence of Shimura varieties ad­
mitting rigid-analytic uniformizations by 0 F . This has recently been extended to 
F of equal characteristic by Hausberger [Hau]. The case of MLTF, again for n 
supercuspidal, was initially treated by Boyer [Bo] in the equal-characteristic case. 
The analogous statement for F p-adic, and for any n, is the logical starting point 
of the proof of Theorem 1.9 in [HT]. 

Theorem 2.3 is extended in [HT] to general n £ „4(2) (G). The explicit formula 
for the alternating sum of the Homj(Hl

c(MLT F), JL(nj) is awkward but yields a 
simple expression for 

J2(^y+JExfiG(Hom,j(Hl(Mn
LT:p),JL(n)),n) 

= ^(-l)i+J+kExtUExtk
J(HUMlT,p),JL(K)),K) (2-4) 

«JA 

in terms of the semisimplification of a(n). An analogous conjectural expression for 
individual 77*(OF) has been circulating for several years and should appear in a 
forthcoming joint paper with Labesse. Faltings has proved [F2] that the spaces O F 
and MLT F become isomorphic after p-adic completion of the latter. Thus the two 
questions in the following problem reduce to a single question: 

P rob l em 2. Determine the individual representations Hl
c(M.), and the spaces 

ExtJ
Gn(Hi(Üp),n) and Hom,j(Hi(MLTF), JL(nj) for all i,j, all n £ A(n,F). In 

particular, show that ExtJ
G (77*(OF) , n) vanishes unless there exists n' £ „4(2) (n, F) 

such that n and n' induce the same character of the Bernstein center. 

The results of [HT] imply that, for any n £ A>2)(n,F), with Bernstein char­
acter ßx, the Bernstein center acts on ^i( — Y)%Homj(Hl(MLTF), JL(nj) via ß„. 

For n supercuspidal it is known in all cases that the spaces in Problem 2 
vanish for i ^ n — 1 (and for j ^ 0). This vanishing property should characterize 
supercuspidal n among representations in A(2)(n,F). When n is the Steinberg 
representation, the 77*(OF) , as well as the corresponding Ext groups, are calculated 
explicitly in [SS]. The calculation in [SS] is purely local, whereas the vanishing 
outside the middle degree for n £ Ao(n,F) is based on properties of automorphic 
forms. 
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Problem 3. Find a purely local proof of the vanishing property for n £ Ao(n, F). 

The covering group of Ö F over 0 F can be identified with the maximal com­
pact subgroup J° C J. Thus 77*(OF) can be written as a sum ® T 77*(OF)[T] of 
its r-isotypic components, where r runs over irreducible representations of J° or, 
equivalently, over inertial equivalence classes of representations of J. Closely related 
to Problem 3 is the following 

Problem 4. Characterize r £ A(J) such that JL-1^) £ Ao(n,F). Equivalently, 
calculate the Jacquet functors of the G„-spaces 77*(OF)[T] geometrically, in terms 
of r. 

When n is prime JL-1^) £ Ao(n, F) if and only if dim r > 1; when dimr = 1 
JL-1^) is a twist of the Steinberg representation. For general n practically nothing 
is known. 

Results of L. Fargues [Fa]. For certain classical F-groups G, Rapoport and Zink, 
using the deformation theory of p-divisible (Barsotti-Tate) groups, have defined 
pro-rigid analytic spaces M admitting continuous G x J x WE actions on their 
£-adic cohomology, where J is an inner form of G and E, the reflex field of M, 
is a finite extension of F [RZ]. In [R] Rapoport proposes a conjectural formula, 
which he attributes to Kottwitz, for the discrete series contribution to the virtual 
G x J x IA~F-module [H(Mj] = Yrii-lYH^M^fi). T n e pairs (G,J) considered 
in [RZ] include (Gn,D

x) with general Hasse invariant ^fi, G = J = GU(n), the 
quasi-split unitary similitude group attached to the unramified quadratic extension 
of F, and the symplectic similitude group G = GSp(2n,F). 

Theorem 2.5 (Fargues). Suppose F/Qp unramified, (G,J) = (Gn,D
x), with 

(rpi,n) = 1. For any n £ Ao(n,F) we have 

^(^l)*77omj(77*(,M,Q f), JL(nj)0 = ±n ® AV(TT) 

up to a simple twist. Here the subscript o denotes the G-supercuspidal part and A? is 
a certain tensor product of exterior powers of a(n) with total weight rp,, depending 
on auxiliary data defining M. 

This confirms the Kottwitz-Rapoport conjectures in the case in question. For 
G = J = GU(3) Rogawski has defined a local Langlands correspondence via base 
change to GL (3). In that case the supercuspidal representations of G are grouped 
into L-packets. Fargues's techniques apply to this case as well, and he obtains a 
version of the Kottwitz-Rapoport conjectures, more difficult to state than Theorem 
2.5 (higher Ext's are involved, and the formula is averaged over L-packets).1 More 

1 The statement of the general Kottwitz-Rapoport conjectures in [H3] for general discrete 
series representations is based on a misreading of Rapoport's use of the term "discrete L parame­
ter" . The correct conjecture should involve the analogue of the alternating sum on the right-hand 
side of (2.4), with JL(%) replaced by %' in the L-packet associated to %. 
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generally, Fargues' methods apply to classical groups attached to Shimura varieties, 
whenever the trace formula is known to be stable and functorial transfer from G to 
GL(n) has been established. 

In contrast to [HT], Fargues' methods are essentially rigid-analytic, and make 
no use of equivariant regular integral models of Shimura varieties in wildly ramified 
level - fortunately so, since such models are not known to exist. Heuristically, 
the characters of the representations of G and J on [77(M)] can be related by-
applying a Lefschetz trace formula to £-adic cohomology of the rigid space M. This 
approach, which in principle provides no information about the Wp action, has been 
successfully applied to 0 F by Faltings in [Fl], and to Af£T F by Strauch [S] when 
n = 2. For higher MFTF, and for the Rapoport-Zink spaces studied by Fargues, 
one does not yet know how to deal with wild boundary terms in Huber's Lefschetz 
formula [Hu] and its higher-dimensional generalizations. 

Using work of Oort and Zink on stratification of families of abelian varieties 
and the slope filtration for p-divisible groups, Mantovan [M] has developed another 
approach to the cohomology of Shimura varieties of PEL type. Closer in spirit to 
[HT] than to [F], [M] obtains finer results on the geometry of the special fiber and 
a description of the cohomology in ramified level similar to that of [F]. 

Cohomological realizations with torsion coefficients. 
It would be convenient if the following question had an affirmative answer: 

Question 5. Is 77*(0F,Zf) a torsion-free Zf-module? 

The global trace formula methods used in [HI] and [HT] to derive Theorem 
2.3 from an analysis of the cohomology of the "simple" Shimura varieties of the title 
of [K] are insensitive to torsion in cohomology. When £ > n it may be possible, as 
in recent work of Mokrane and Tilouine, to combine £-adic Hodge theory with the 
generalized Eichler-Shimura congruence formula, for the same "simple" Shimura 
varieties, to answer Question 5. For £ < n completely new ideas are needed. 

When fc is an algebraically closed field of characteristic £ ^ p, Vignéras has 
defined a class of smooth supercuspidal representations Ao,k(n, F) of Gn with co­
efficients in fc, and has proved that they are in bijection with the set Go,k(n,F) of 
irreducible n-dimensional representations of Wp over fc (see article in these Pro­
ceedings). It is natural to expect that this modular local Langlands correspondence 
is realized on the spaces H*(M,k), with M = 0 F or MLTF. 

Problem 6. Define a modular Jacquet-Langlands map n H> JL(n) from Ao,k(n, F) 
to fc-representations of J, and formulate the last sentence precisely. Does the virtual 
lA'F-module 

(^l)n-1^2(^l)i+i+kExi{}(Extkj(Hl(M,k),JL(nj),n) 

realize the modular local Langlands correspondence? 
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Implicit in the second question is the assumption that the modular Jacquet-
Langlands map can be extended to a wider class of fc-representations of Gn, perhaps 
including reduction (mod £) of supercuspidal representations in characteristic zero. 
One can of course ask the same questions when £ = p. In this case we can consider 
rigid (de Rham) cohomology, in the sense of Berthelot, as well as p-adic étale co­
homology. All three groups Gn, J, and Wp have large analytic families of p-adic 
representations. It is not at all clear whether the p-adic cohomology of 0 F is suffi­
ciently rich to account for all p-adic deformations - in categories yet to be defined 
- of a given representation occurring in cohomology with coefficients in Fp . 

3. Explicit parametrization of supercuspidal 
representations 
Distribution characters. 

The distribution character X-K, a locally integrable function on the set of regular 
semisimple elements of Gn = GL(n, F), is the fundamental analytic invariant of n £ 
A(n,F). For n £ A(2)(n,F), XJL(-K), related to XT by (2.2), extends continuously 
to an invariant function on J = Dx provided (rp,,n) = 1, which we assume. Under 
this hypothesis every element of J is elliptic and every elliptic regular element 
j is contained in a unique maximal torus T(j), isomorphic to the multiplicative 
group of an extension K of F of degree n. Since JL(n) is finite-dimensional, its 
restriction to T(j) equals J2e a^(C)C where £ runs over characters of Kx and the 
coefficients a^(£) = an(K, £) are non-negative integers, almost all zero. In this way 
n £ A'2)(n,F) is determined by the integer-valued function aT(Ä",£) where K runs 
over degree n extensions of F and £ over characters of Kx. Invariance entails the 
symmetry condition a^(7i"','T£) = an(K,£) where a : K ^fi K' is an isomorphism 
over F; in particular, if a € Autp(K). 

Problem 7. Express aT(Ä",£) in terms of numerical invariants of a(n). 

Of course aT(Ä",£) = 0 unless £ | F * coincides with the central character £„ 
of n. When n = 2 an(K, £) £ {0,1}, and a theorem of Tunnell, completed by H. 
Saito, relates the nonvanishing of an(K, £) to the local constant £(|,<7(7r)®£_1,^>). 
For n prime to p a conjecture of Reimann, following an earlier conjecture of Moy, 
expresses x-n m terms of a(n); work in progress of Bushnell and Henniart shows that 
this conjecture is almost right (probably up to an unramified character of degree at 
two). 

Parametrization via types. 
A fundamental theorem of Bushnell and Kutzko asserts that every supercusp­

idal n can be obtained by compactly supported induction from a finite-dimensional 
representation r of a subgroup 77 c Gn which is compact modulo the center Zn of 
Gn. The pair (77,p), called an extended type, is unique up to conjugation by Gn. 
The character x* c a n be obtained from (77, p) by a simple integral formula [BH, 
(A.14)]. 
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The outstanding open problem concerning the local Langlands correspondence 

is undoubtedly-

P rob l em 8. (a) Define a(n) directly in terms of (77,p) (and vice versa). 
(b) Show directly that the definition of a in (a) has the properties of a local 

Langlands correspondence. 

Note that (b) presupposes a direct construction of the local Galois constants. 
Problem 8 formulates the hope, often expressed, for a purely local construction 

of the local Langlands correspondence. Bushnell, Henniart, and Kutzko have made 
considerable progress toward this goal. Among other results, they have obtained: 

• A formula for the conductor a(n x n'), n £ Ao(n, F), n' £ Ao(n', F) [BHK]; 
• A purely local candidate for the base change map A(n, F)—¥A(n, K) when 

K/F is a tame, not necessarily Galois extension [BH, I], agreeing with 
Arthur-Clozel base change for K/F cyclic; 

• A bijection between wildly ramified supercuspidal representations of Gpm 
and wildly ramified2 representations in Go(pm, F), preserving local constants 
[BH, II]. 

In each instance, the constructions and proofs are based primarily on the theory of 
types. A complete solution of Problem 8 remains elusive, however, absent a better 
understanding of the local Galois constants. 

Quest ion 9. Can the types (77, p) be realized in the cohomology (£-adic or p-adic) 
of appropriate analytic subspaces of 0 F or MLT F ? 

Positive results for certain (77, p) have been announced by Genestier and 
Strauch, at least when n = 2. 
Acknowledgments . I thank R. Taylor, G. Henniart, and L. Fargues for their 
comments on earlier versions of this report. 
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Abstract 

This paper is based on my talk at ICM on recent progress in a number of 
classical problems of linear algebra and representation theory, based on new approach, 
originated from geometry of stable bundles and geometric invariant theory. 
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1. Introduction 
Theory of vector bundles brings a new meaning and adds a delicate geometric 

flavour to classical spectral problems of linear algebra, relating them to geometric 
invariant theory, representation theory, Schubert calculus, quantum cohomology, 
and various moduli spaces. The talk may be considered as a supplement to that of 
Hermann Weyl [35] from which I borrow the following quotation 

"In preparing this lecture, the speaker has assumed that he is expected to talk 
on a subject in which he had some first-hand experience through his own work. And 
glancing back over the years he found that the one topic to which he has returned 
again and again is the problem of eigenvalues and eigenfunctions in its various 
ramifications. " 

2. Spectra and representations 
Let's start with two classical and apparently independent problems. 

Hermitian spectral problem. Find all possible spectra X(A + B) of sum 
of Hermitian operators A, B with given spectra 

X(A): Xi(A)>X2(A)>--->Xn(A), 

X(B) : Xi(B) >X2(B)>---> Xn(B). 
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Among commonly known restrictions on spectra are trace identity 

Y^Xi(A + B) = Y^Xj(A) + Yl^(B) 
ì j k 

and a number of classical inequalities, like that of Weyl [34] 

A i+ i_!(A + B)< Xi(A) + Xj(B). (2.0) 

Tensor product problem. Find all components \fi C Va ® Vß of tensor 
product of two irreducible representations of GL„ with highest weights (=Young 
diagrams) 

a : cti > 02 > • • • > an 

ß: h > b2 > • • • > bn. 

In contrast to the spectral problem (2.1) the coefficients of tensor product 
decomposition 

Va®Vß=^2clßV7 (2.1) 
7 

can be evaluated algorithmically by Littlewood Richardson rule, which may be de­
scribed as follows. Fill z-th row of diagram ß by symbol i. Then ĉ A is equal to 
number of ways to produce diagram 7 by adding cells from ß to a in such a way 
that the symbols 

i) weakly increase in rows, 
ii) strictly increase in columns, 

iii) reading all the symbols from right to left, and from top to bottom produces 
a lattice permutation, i.e. in every initial interval symbol i appears at least 
as many times as i + 1. 

It turns out that these two problems are essentially equivalent and have the 
same answer. To give it, let's associate with a subset Id {1 ,2 , . . . , n} of cardinality 
p = \I\ Young diagram 07 in a rectangular of format p x q, p+ q = n, cut out by-
polygonal line Y1, connecting SW and NE corners of the rectangular, with i-th 
unit edge running to the North, for i £ I, and to the East otherwise. One can 
formally multiply the diagrams by L-R rule 

oi(Jj = Y,cfjOK (2.2) 
k 

where afj := c^'fij are L-R coefficients. Geometrically (2.2) is decomposition of 
product of two Schubert cycles in cohomology ring of Grassmannian G^ of linear 
subspaces of dimension p and codimension q. 
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Theo rem 2.1 . The following conditions are equivalent 
i) There exist Hermitian operators A, B, C = A + B with spectra X(A), X(B), 

X(C). 
ii) Inequality 

XK(C)<X!(A) + XJ(B), (UK) 

holds each time L-R coefficient cfj ^ 0. Here I,J,Kc {1 ,2 , . . . ,n} are subsets of 
the same cardinality p < n, and Xi(A) = ^2i€l A»(A). 

iii) For integer spectra a = X(A), ß = X(B), 7 = A(G) the above conditions 
are equivalent to 

VfcVa®Vß. (2.3) 

Remarks 2.2. (1) The last claim iii) implies a recurrence procedure to generate 
all a, ß, 7 with ĉ A ^ 0: 

clg # 0 -<=>- \fi C Va ® Vß -<=>- JK < oti + ßj each time cfj ^ 0. 
^ LR Th 

Here cLj are Littlewood-Richardson coefficients for group GL„, while cfj are L-R 
coefficient for group GLP of smaller rank p < n. An explicit form of this recur­
rence has been conjectured by A. Horn [13] in the framework of Hermitian spectral 
problem. 

(2) Inequalities (UK) for cfj ^ 0 define a cone in the space of triplets of 
spectra, and the facets of this cone correspond to cfj = 1. P. Belkale [3] was first 
to note that all inequalities (UK) follows from those with cfj = 1, and in recent 
preprint A. Knutson, T. Tao, and Ch. Woodward [23] proved their independence. 
In my original paper [19] condition (2.3) appears in a weaker form 

VJV7 C VjvQ ® Yfiß for some N > 0, (2-3') 

and its equivalence to (2.3), known as saturation conjecture, was later proved by 
A. Knutson and T. Tao [22], and in more general quiver context by H. Derksen and 
J. Weyman [6]. 

Note that inequalities (UK), although complete, are too numerous to be prac­
tical for large n. That is why L-R rule, in its different incarnations [22, 11], often 
provides a more intuitive way to see possible spectra for sum of Hermitian operators. 

Example 2.3. Let A be Hermitian matrix with integer spectrum A(A) : cti > 
a2 > . . . > an and B > 0 be a nonnegative matrix of rank one with spectrum 
X(B) : b > 0 > • • • > 0. Viewing the spectra as Young diagrams, and applying L-R 
rule we find out that A(A) ® X(B) is a sum of diagrams 7 : ci > C2 > • • • > cn 

satisfying the following intrlacing inequalities 

ci > ai > C2 > a2 • • • > cn > aTl 
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By Theorem 2.3 this implies Cauchy interlacing theorem for spectra 

Xi(A) < Xi(A + B)< Xi-i(A), rkB=l, B>0, 

known in mechanics as Rayleigh-Courant-Fisher principle: Let mechanical system 
S" is obtained from another one S, by imposing a linear constraint, e.g. by fixing a 
point of a drum. Then spectrum of S separates spectrum of S". 

3. Toric bundles 
Historically Theorem 2.3 first appears as a byproduct of theory of toric vector 

bundles and sheaves, originated in [15, 17]. See other expositions of the theory in 
[21, 30], and further applications in [16, 33]. Vector bundles form a cross point at 
which the diverse subjects of this paper meet together. 

3.1. Filtrations 

To avoid technicalities let's consider the simplest case of projective plane 

P2 = {(xa : xß : xr)\x £ C} 

on which diagonal torus 

acts by the formula 

T={(ta:tß:t1)\t£C*} (3.1) 

4- , ry ! 4- ry1-*- • 4~ -, ryh^ - -4- ry Ï \ 

Orbits of this action are vertices, sides and complement of the coordinate triangle. In 
particular there is unique dense orbit, consisting of points with nonzero coordinates. 

The objects of our interest are T-equivariant (or toric for short) vector bundles 
£ over P2. This means that £ is endowed with an action T : £ which is linear on 
fibers and makes the following diagram commutative 

£ —i-^r £ 

t 

Let us fix a generic point po £ P2 not in a coordinate line, and denote by 

E := £(po) 

the corresponding generic fiber. There is no action of torus T on the fiber E. 
Instead the equivariant structure produces some distinguished subspaces in E by 
the following construction. Let us choose a generic point pQ £ Xa in coordinate 
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line Xa : xa = 0. Since T-orbit of po is dense in P2 , we can vary t £ T so that tpo 
tends to pa. Then for any vector e £ E = £(p0), we have te £ £(tpo) and can try 
the limit 

lim (te) 

which either exists or not. Let us denote by Ea(0) the set of vectors e £ E for 
which the limit exists: 

L;a(0) := {e G E\ lim (te) exists}. 

Evidently Ea (0) is a vector subspace of E, independent of po and pQ . 
An easy modification of the previous construction allows to define for integer 

m £ Z, the subspace 

Ea(m):=\e£E\ lim ( — ) -(te) exists > . 
(̂  tpo^pa \tß) J 

Roughly speaking Ea (m) consists of vectors e £ E for which te vanishes up to order 
m as tpo tends to coordinate line Xa. The subspaces Ea(m) form a non-increasing 
exhaustive Z-filtration: 

Ea :••• D Ea(m - 1) D B a(m) D Ea(m + 1) D • • • , 

E a (m) = 0, for ro>0, (3.2) 

Ea(m) = E, for m « 0 . 

Applying this construction to other coordinate lines, we get a triple of filtrations 
Ea, Eß, E1 in generic fiber E = £(po), associated with toric bundle £. 

Theorem 3.1. The correspondence 

£^(Ea,Eß,Er) (3.3) 

establishes an equivalence between category of toric vector bundles on P2 and cate­
gory of triply filtered vector spaces. 

We'll use notation £(Ea,Eß ,E~>) for toric bundle corresponding to triplet of 
filtrations Ea,Eß,E~>. 

3.2. Stability 

The previous theorem tells that every property or invariant of a vector bundle 
has its counterpart on the level of filtrations. For application to spectral problems 
the notion of stability of a vector bundle £ is crucial. Recall that £ —¥ P2 is said to 
be Alumford-Takemoto stable iff 

Çi(T)_ ci(£)_ ( , 
r k ^ < rk£ (àA) 

for every proper subsheaf T C £, and semistable if weak inequalities hold. Here 
ci(£) = deg det £ is the first Chern class. Donaldson theorem [7] brings a deep 
geometrical meaning to this seemingly artificial definition: Every stable bundle 
carries unique Hermit-Einstein metric (with Ricci curvature proportional to metric). 
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Theorem 3.2. Toric bundle £ = £(Ea,Eß,E~>) is stable iff for every proper sub-
space F e E the following inequality holds 

—l— Y i dim pM(i) <—l— V i dim E^(i) (3.5) 
dim F ^ w dim E ^ w K ' 

«ez «ez 

wftere F"(z) = F n E"(i) is induces filtration with composition factors F^(i) = 
Fv(i)/Fv(i+1). 

There is nothing surprising in this theorem since the sums in (3.5) are just 
Chern classes of the corresponding toric bundles and sheaves. 

Remark 3.3. Inequality (3.5) depends only on relative positions of subspace F c 
E with respect to filtrations Ea,Eß,E~>, which are given by three Schubert cells 
sa,Sß,Sj. Hence we have one inequality each time. 

sa n sß n s7 # 0. (3.6) 

For filtrations in general position (3.6) is equivalent to nonvanishing of the product 
of Schubert cycles aa • aß • u1 ^ 0 in cohomolgy ring of Grassmannian, and in this 
case stability inequalities (3.5) amount to inequalities (UK) of Theorem 2.1. 

3.3. Back to Hermitian operators 

Let now E be Hermitian space and H : E —t E be Hermitian operator with 
spectral filtration 

H, . _ /sum of eigenspaces of H\ , . 
y with eigenvalues at least x 

The operator can be recovered from the filtration using spectral decomposition 

/

oo 
xdPH(x) 

-oo 

where PH(X) is orthogonal projector with kernel EH(x). So in Hermitian space we 
have equivalence 

Hermitian operators = R-filtrations. 

Yet Ha be Hermitian operator with spectral filtration Ea. Its spectrum depends 
only on filtration Ea, and we define Spec J?" := SpeciJ". 

Theorem 3.3. Indecomposable triplet of R-filtrations Ea,Eß,E~> is stable iff there 
exists a Hermitian metric in E such that the sum of the corresponding Hermitian 
operators is a scalar 

Ha + Hß + H~f = scalar. (3.8) 

This is a toric version of Donaldson theorem on existence of Hermit-Einstein 
metric in stable bundles. Together with Theorem 3.2 it reduces solution of Hermit­
ian spectral problem to stability inequalities (3.5), which by remark 3.3 amounts to 
inequalities (UK) of Theorem 2.1. 

See also Faltings talk [9] on arithmetical applications of stable filtrations. 
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3.4. Components of tensor product 

In the previous section we explain that stability inequalities (3.5) (44> (UK)) 
via toric Donaldson-Yau theorem solve Hermitian spectral problem. To relate this 
with tensor product part of Theorem 2.1 we need another interpretation of the 
stability inequalities via Geometric Invariant Theory [26]. 

Recall, that point x £ P(V) is said to be GIT stable with respect to linear 
action G : V if G-orbit of the corresponding vector x £ V is closed and its stabilizer 
is finite. Let 

X = Ta xTß x T1 

be product of three flag varieties of the same types as flags of the filtrations 
Ea,Eß,E~>, and £a be line bundle on the flag variety Ta induced by character 

iva : d i a g l i , x 2 , . . . ,xn) >-¥ x^1 x^2 • • • x\n, 

where a : cti > 02 > • • • > an is the spectrum of filtration Ea, i.e. spectrum of the 
corresponding operator Ha. 

Observation 3.4. Vector bundle £ = £(Ea,Eß, E1) is stable iff the corresponding 
triplet of flags 

i = F a x P 3 x F 1 É F x f ' î x P = l 4 P(F(X, Cj) 

is a GIT stable point w.r. to group SY(E) and polarization £ = £a M £ß M C1. 

This observation is essentially due to Alumford [25]. Notice that by Borei-Weil-
Bott theorem [5] the space of global sections F ( J 7 a , £ a ) = Va is just an irreducible 
representation of SL(£') with highest weight a. Hence Y(X,£j) = Va ® \fi ® \fi. 
Every stable vector x can be separated from zero by a G-invariant section of £N. 
Therefore triplet of flags in generic position is stable iff [VJVQ ® Yfiß ® V J V 7 ] S L ( ^ 7̂  0 
for some N > 1. This proves the last part of Theorem 2.1, modulo the saturation 
conjecture. 

4. Unitary operators and parabolic bundles 
We have seen in the previous section that solution of the Hermitian spectral 

problem amounts to stability condition for toric bundles. A remarkable ramification 
of this idea was discovered by S. Angihotri and Ch. Woodward [2] for unitary-
spectral problem. 

Let U £ SU(n) be unitary matrix with unitary spectrum 

e(U) = ( e 2 " A l , e 2 " A V - - , e 2 " A " ) . 

Let's normalize exponents A, as follows 

' Ai > A2 > • • 

Ai + A2 + • • 

Ai — A„ < 1, 

• ^ Xn, 

+ xn = X(U) := t Ai + A2 + --- + A„ = 0, (4.1) 
^ Ai — A„ < 1, 

and, admitting an abuse of language, call X(U) spectrum of U. 
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Unitary spectral problem. Find possible spectra of product X(UV), when spec­
tra of the factors X(U), X(V) are given. 

To state the result we need in quantum cohomology H*(Gp of Grassmannian 
Gp of linear subspaces of dimension p and codimension r. This is an algebra over 
polynomial ring C[q] generated by Schubert cycles 07, J C {1,2 , . . . , n } , |J| = p, 
n = p + r with multiplication given by the formula 

O-I * O-J = ^2 Cfj(d)(Ìd(TK 
K,d 

where structure constants cfj(d) are defined as follows. Let G | <L-¥ W(f\pCn) be 
Pliicker imbedding and 

tp : P1 - • Gr
p 

be a rational curve of degree d in Gressmanian G | C W(f\pCn). One can check 
that Lp depends on d imG| + nd parameters. For fixed point x £ P1 the condition 
ifi(x) £ a 1 imposes codim 07 constraints on ip. Hence for 

codim a 1 + codim a j + codim OK = dim Gr
p + nd 

the numbers 

(a 1, a j , aK)d = #{<P : P1 -^ Gr
p | f(x) £ 01, ip(x) £ oj, ip(x) £ aK, deg (p = d} 

supposed to be finite. They are known as Gromov -Witten invariants and related 
to the structure constants by the formula 

c?j(d) = (o-i,<Tj,aK*)d 

where K* = {n+ 1 — k \ k £ K}. For d = 0 they are just conventional Littlewood-
Richardson coefficients cfj. 

Theorem 4 .1 . The following conditions are equivalent 
i) There exist unitary matrices W = UV with given spectra X(U), X(V), X(W). 
ii) The inequality 

Xi(U) + Xj(V) <d+ XK(W) (UK)rf 

holds each time cfj(d) ^ 0. 

4.1. Parabolic bundles 

As in the Hermitian case solution of the unitary problem comes from its holo­
morphic interpretation in terms of vector bundles. To explain the idea let's start 
with vector bundle £ over compact Riemann surface X of genus g > 2. It has unique 
topological invariant ci(£) = deg det £, which for simplicity we suppose to be zero, 
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i.e. £ be topologically trivial. Narasimhan-Seshadri theorem [27] claims that ev­
ery stable bundle carries unique flat metric, and hence defines unitary monodromy 
representation 

pe : m(X,x0) -^SY(E), E = £(x0). 

This gives rise to equivalence 

_ /stable bundles A _ /irreducible uitary represent 
9 ' \of degree zero J Stations p : ni ^-SY(E) J 

This theorem is an ancestor of the Donaldson-Yau generalization [7] to higher di­
mensions, and may be seen as a geometric version of Langlands correspondence. 

In algebraic terms the theorem describes stable bundles in terms of solution 
of equation 

[Ui,V1][U2,V2]---[Ug,Vg] = l 

in unitary matrices Ui,Vj £ SU(£'). This is not the matrix problem we are 
currently interested in. To modify it let's consider punctured Riemann surface 
X = X\{pi,p2,... ,pi). It has distinguished classes 

7Q = (small circle around pQ) 

in fundamental group m(X), and we can readily define an analogue of RHS of (4.2): 

Mg(\W,\W,--- ,XW) = {P •• MX) -+ SUCE) | A(p(7a)) = \(a)}, (4.3) 

where A^a^ is a given spectrum of monodromy around puncture pQ . C. S. Seshadri 
[31] manages to find an analogue of more subtle holomorphic LHS of (4.2) in terms 
of so called parabolic bundles. 

Parabolic bundle £ on X is actually a bundle on compactification X together 
with R-filtration in every special fiber Ea = £(pa) with support in an interval of 
length < 1. The filtration is a substitution for spectral decomposition of p(-ya), cf. 
(4.1). Seshadri also defines (semi)stability of parabolic bundle £ by inequalities 

Par deg T Par deg £ 
^ k ^ - ^ ^ k ^ ' V ^ C £ ' ( 4 4 ) 

where the parabolic degree is given by equation Par deg £ = deg£ + ^2aiX\a . 
Aletha-Seshadri theorem [24] claims that every stable parabolic bundle £ on X 
carries unique flat metric with given spectra of monodromies A(7Q) = A^a .̂ This 
gives a holomorphic interpretation of the space (4.3) 

M r\(!) \(2) \W\ — fiable parabolic bundles of degree zeroA , . 
9 ' ' ' y with given types of the filtrations J ' 

In the simplest case of projective line with three punctures (4.3) amounts to space 
of solutions of equation UVW = 1 in unitary matrices U, V, W £ SU(n) with given 
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spectra. By Metha-Seshadry theorem solvability of this equation is equivalent to 
stability inequalities (4.4). In the case under consideration holomorphic vector 
bundle £ on P1 is trivial, £ = E x P1 , and hence its subbundle T C £ of rank p 
is nothing but a rational curve ip : P1 —¥ GP(E) in Grassmannian. This allows to 
write down stability condition (4.4) in terms of quantum cohomology, and eventually 
arrive at Theorem 4.1. 

5. Further ramifications 
The progress in Hermitian and unitary spectral problems open way for solu­

tion of a variety of others classical, and not so classical, problems. Alost of them, 
however, have no holomorphic interpretation, and require different methods, bor­
rowed from harmonic analysis on homogeneous spaces, symplectic geometry, and 
geometric invariant theory. 

5.1. Multiplicative singular value problem 

The problem in question is about possible singular spectrum a (AB) of product 
of complex matrices with given singular spectra a (A) and a(B). Recall, that singu­
lar spectrum of complex matrix A is spectrum of its radial part a (A) := A(v/A*A). 

For a long time it was observed that every inequality for Hermitian problem has 
a multiplicative counterpart for the singular one. For example multiplicative version 
of Weyl's inequality A i + i_i(A + B) < A,(A) + Xj(B) is ai+j-i(AB) < afiA)aj(B). 
The equivalence between these two problems was conjectured by R. C. Thompson, 
and first proved by the author [20] using harmonic analysis on symmetric spaces. 
Later on A. Alekseev, E. Alenreken, and Ch. Woodward [1] gave an elegant concep­
tual solution based on Drinfeld's Poisson-Lie groups [8]. Here is a precise statement 
for classical groups. 

Theo rem 5.1. LetG be one of the classical groups SY(n,C), SO(n,C), orSp(2n,C) 
and L be the corresponding compact Lie algebra of traceless skew Hermitian com­
plex, real, or quaternionic nxn matrices respectively. Then the following conditions 
are equivalent 

(1) There exist At £ G with given singular spectra a (Ai) = ai and 

AiA2 • • • Apf = 1. 

(2) There exist Hi £ L with spectra A(ffj) = y^ldogCTJ and 

Hi + H2 + --- + HN = 0. 

Note, however, that neither of the above approaches solve the singular problem 
per se, but reduces it to Hermitian one. Both of them suggest that all three problems 
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must be treated in one package. Alore precisely, every compact simply connected 
group G give birth to three symmetric spaces 

• The group G itself, 
• Its Lie algebra LQ, 
• The dual symmetric space Hg = Gc/G, 

of positive, zero, and negative curvature, and to three "spectral problems" concerned 
with support of convolution of G orbits in these spaces, see [20] for details. For 
G = SU(n) we return to the package of unitary, Hermitian, and singular problems. 

The first two problems may be effectively treated in framework of vector bun­
dles with structure group G, as explained in sections 2-4. Many flat, i.e. additive 
"spectral problem" has been solved by A. Berenstein and R. Sjammar in a very-
general setting [4]. 

5.2. Other symmetric spaces 

As an example of unresolved problem let's consider symmetric spaces associ­
ated with different incarnations of Grassmannian 

• Compact U(p + q)/U(p) x U(q), 
• Flat Mat(p,q) = coomplex px q matrices, 
• Hyperbolic U(p,q)/U(p) x U(q). 

In compact case the corresponding spectral problem is about possible angles between 
three p-subspaces U, V, W C I P in Hermitian space I P of dimension n = p + q, 
p < q. The Jordan angles 

UV = (ip>i,ip>2,-.. ,tpP), 0 < ( ^ < -

between subspaces U, V are defined via spectrum of product of orthogonal projectors 
njjv : U —¥ V and nvu : V —¥ U 

X(y/nuVKVu) '• COSt̂ i > COS(̂ 2 > • • • > COS ipp > 0. 

Yu. Neretin [28] proved Lidskii type inequalities1 for angles UV, VW, WU, and 
conjectured that other inequalities are the same as in the Hermitian case. Note, 
however, that the unitary triplet suggests existence of nonhomogeneous "quantum" 
inequalities, e.g. sum of angles of a spherical triangle is < n. 

In flat case the problem is about relation between singular spectra of p x q 
matrices a(A-B), a(B-C), a(C — A). This additive singular problem was resolved 
by O'Shea and Sjamaar [29]. 

In hyperbolic case the question is about angles between maximal positive sub-
spaces U,V,W C I P ' in Hermitian space of signature (p,q). They are defined by-
equation 

X(^njjvn\/jj) : cos i ly > cosh<p2 > • • • > cosh<pp > 1. 

He actually deals with real Grassamnnian. 



610 A. Klyachko 

Again our experience with the unitary triplet suggests that the exponential map 
establishes a Thompson's type correspondence between O'Shea-Sjamaar inequalities 
for additive singular problem and that of for hyperbolic angles. 

5.3 . P-adic spectra l p r o b l e m s 

There is also a nonarchimedian counterpart of this theory, which deals with 
classical Chevalley groups Gp = SL(n,Qp), SO(n,Qp), or Sp(2n,Qp) over p-adic 
field Qp and their maximal compact subgroups Kp = SL(n,Zp), SO(n,Zp), or 
Sp(2n, Zp) respectively. Double coset Kp#Kp may be treated as a complete invariant 
of lattice L = gL0, L0 = Z®" with respect to Kp. We call lattice L = gL0 

unimodular, orthogonal or symplectic if respectively g £ SL(n,Qp), g £ SO(n,Qp) 
or g £ Sp(2n,Qp). 

It is commonly known that in the unimodular case there exists a basis e, of 
L0 such that ê, = pQie, form a basis of L for some a, £ Z. We define index (L : L0) 
by 

( L : L 0 ) = ( p a \ p a V . . , p a » ) , a i > a 2 > •••><*„. (5.1) 

Notice that unimodularity g £ SL(n,Qp) implies ai + a2 + • • • + an = 0. 
The index (L : L0) of an orthogonal or a symplectic lattices has extra symme­

tries. In orthogonal case we may choose the above basis e, of L0 to be neutral, in 
which case the quadratic form becomes 

ra-l 

y j XiX-i, i = n — 1 mod 2. 
l - r a 

Then the index takes the form 

(L:L0) = ( p ° » - \ p ° » - V . . ,pQ 3-»,p a i-»), (5.2) 

where an_i > a„_3 > . . . > az-n > Gi-n> a n d a~i = —a«. 
Similarly, for symplectic lattice L we can choose symplectic basis e,, fj of L0 

such that è, = pQie, and fj = p^aj fj form a basis of L. In this case we have 
( L : L 0 ) = ( p a » , p a » - 1 , . . . , p a i , p - Q l , . . . , p - a » - 1 , p - a » ) , (5.3) 

with an > an-i >,... , > cti > 0. 
Notice that the spectra (5.1)-(5.3) have the same symmetry, as singular spec­

trum a (A) of a matrix A e G in the corresponding classical complex group. 

Theo rem 5.2. The following conditions are equivalent 

(1) There exists a sequence of (unimodular, orthogonal, symplectic) lattices 

LQ, LI, ... , Ljv-i, LM = LQ 

of given indices ai = (Lt : L,_i). 
(2) The indices ai satisfy the equivalent conditions of Theorem 5.1 for the cor­

responding complex group G. 

We'll give proof elsewhere. The theorem is known for the unimodular lattices, 
see [10]. 
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5.4. Final remarks 

In the talk I try to trace the flaw of ideas from the theory of vector bundles 
to spectral problems. It seems C. Simpson [32] was the first to note that vector 
bundles technic has nontrivial implications in linear algebra. He proved that product 
CiC2--- CM of conjugacy classes G, C SL(n, C) is dense in SL(n, C) iff 

dim Gi + dimG2 + • • • + dimGjv > (n + l)(n — 2), 
(5.4) 

ri +r2 + h rN > n, 

where rt is maximal codimension of root space of a matrix At £ Ci. This problem 
was suggested by P. Deligne, who noted that under condition 

dim Gi + dim G2 + h dim CN = 2n2 — 2 

an irreducible solution of equation AiA2 • • • AM = 1, a» £ Ci is unique up to conju­
gacy, see book of N. Katz [14] on this rigidity phenomenon. 

I think that inverse applications to moduli spaces of vector bundles are sill 
ahead. One may consider polygon spaces [18, 12] as a toy example of this feedback, 
corresponding to toric 2-bundles. A similar space of spherical polygons in S3 with 
given sides is a model for moduli space of flat connections in punctured Riemann 
sphere. Its description is a challenge problem. 

There are many interesting results, e.g. infinite dimensional spectral problems, 
which fall out of this survey. I refer to Fulton's paper [10] for missing details. 
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Branching Problems of 
Unitary Representations 

Toshiyuki Kobayashi* 

Abstract 

The irreducible decomposition of a unitary representation often contains con­
tinuous spectrum when restricted to a non-compact subgroup. The author singles out 
a nice class of branching problems where each irreducible summand occurs discretely 
with finite multiplicity (admissible restrictions). Basic theory and new perspectives 
of admissible restrictions are presented from both analytic and algebraic view points. 
We also discuss some applications of admissible restrictions to modular varieties and 
Lp-harmonic analysis. 

2000 Mathemat i c s Subject Classification: 22E46, 43A85, 11F67, 53C50, 53D20. 
Keywords and Phrases: Unitary representation, Branching law, Reductive Lie 
group. 

1. Introduction 
Let n be an irreducible unitary representation of a group G. A branching 

law is the irreducible decomposition of n when restricted to a subgroup G': 

r® 
TT\QI ~ / mn(T)T dp(r) (a direct integral). (1.1) 

JCÎ' 

Such a decomposition is unique, for example, if G' is a reductive Lie group, and 
the multiplicity m* : G' —¥ N U {oo} makes sense as a measurable function on the 
unitary dual G'. 

Special cases of branching problems include (or reduce to) the fallowings: 
Clebsch-Gordan coefficients, Littlewood-Richardson rules, decomposition of tensor 
product representations, character formulas, Blattner formulas, Plancherel theorems 
for homogeneous spaces, description of breaking symmetries in quantum mechanics, 
theta-lifting in automorphic forms, etc. The restriction of unitary representations 
serves also as a method to study discontinuous groups for non-Riemannian homo­
geneous spaces (e.g. [Alg, Oh]). 
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Our interest is in the branching problems for (non-compact) reductive Lie 
groups G D G'. In this generality, there is no known algorithm to find branching 
laws. Even worse, branching laws usually contain both discrete and continuous spec­
trum with possibly infinite multiplicities (the multiplicity is infinite, for example, 
in the decomposition of the tensor product of two principal series representations 
of SL(n,C) for n > 3, [Ge-Gr]). 

The author introduced the notion of admissible restrictions and infini­
tesimal discrete decomposability in [K05] and [K09], respectively, seeking for 
a good framework of branching problems, in which we could expect especially a 
simple and detailed study of branching laws, which in turn might become powerful 
methods in other fields as well where restrictions of representations naturally arise. 

The criterion in Theorem B indicates that there is a fairly rich examples of 
admissible restrictions; some are known and the others are new. In this framework, a 
number of explicit branching laws have been newly found (e.g. [D-Vs, Gr-Wi^, Hu-
P-S, Koi^^g, Ko-01,2, Li2, Loi^, X]). The point here is that branching problems 
become accessible by algebraic techniques if there is no continuous spectrum. 

The first half of this article surveys briefly a general theory of admissible 
restrictions both from analytic and algebraic view points (§2, §3). For the simplicity 
of exposition, we restrict ourselves to unitary representations, although a part of the 
theory can be generalized to non-unitary representations. The second half discusses 
some applications of discretely decomposable restrictions. The topics range from 
representation theory itself (§4) to some other fields such as Lp-analysis on non-
symmetric homogeneous spaces (§5) and topology of modular varieties (§6). 

2. Admissible restrictions to subgroups 
Let G' be a subgroup of G, and n £ G. In light of (1.1), we introduce: 

Definition 2.1. We say the restriction 7r|c is G'-admissible if it decomposes 
discretely and the multiplicity ro^r) is finite for any r £ G'. 

One can easily prove the following assertion: 

Theorem A ([K05, Theorem 1.2]). Let G D G' D G" be a chain of groups, and 
n £ G. If the restriction n\a" is G"-admissible, then n\a' is G'-admissible. 

Throughout this article, we shall treat the setting as below: 

Definition 2.2. We say (G,Gr) is a pair of reductive Lie groups if 
1) G is a real reductive linear Lie group or its finite cover, and 
2) G' is a closed subgroup, and is reductive in G. 

Then, we shall fix maximal compact subgroups K D K' of G D G', respectively. 

A typical example is a reductive symmetric pai (G, G'), by which we mean 
that G is as above and that G' is an open subgroup of the set G" of the fixed points of 
an involutive automorphism a of G. For example, (G,Gr) = (GL(n,C),GL(n,Rj), 
(SL(n,R), SO(p, n — pj) are the cases. 
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Let (G,Gr) be a pair of reductive Lie groups. Here are previously known 
examples of admissible restrictions: 

Example 2.3. The restriction 7r|c is G'-admissible in the following cases: 
1) (Harish-Chandra's admissibility theorem) n £ G is arbitrary and G' = K. 
2) (Howe, [Hoi]) n is the Segal-Shale-Weil representation of the metaplectic group 

G, and its subgroup G' = G'iG2 forms a dual pair with Gi compact. 

In these examples, either the subgroup G' or the representation n is very-
special, namely, G' is compact or n has a highest weight. Surprisingly, without such 
assumptions, it can happen that the restriction n\a' is G'-admissible. The following 
criterion asserts that the "balance" of G' and n is crucial to the G'-admissibility. 

Theorem B (criterion for admissible restrictions, [K07]). Let G D G' be a 
pair of reductive Lie groups, and n £ G. If 

Cone(G')nASif(7r) = {0}, (2.1) 

then the restriction n\K> is K'-admissible. In particular, the restriction 7r|c is 
G'-admissible, namely, decomposes discretely with finite multiplicity. 

A main tool of the proof of Theorem B is the microlocal study of characters 
by using the singularity spectrum of hyperfunctions. The idea goes back to Atiyah, 
Howe, Kashiwara and Vergne [A, H02, Ks-Vr] in the late '70s. The novelty of 
Theorem B is to establish a framework of admissible restrictions with a number 
of new examples of interest, which rely on a deeper understanding of the unitary-
dual developed largely in the '80s (see [Kn-Vo] and references therein). 

Let us briefly explain the notation used in Theorem B. We write i'0 C 60 for 
the Lie algebras of K' c K, respectively. Take a Cartan subalgebra t0 of 6o- Then, 
ASif(7r) is the asymptotic if-support of n ([Ks-Vr]), and Cone(G') is defined as 

Cone(G') := V^ì(t*0 n Ad*(if)(e^)). (2.2) 

By definition, both ASK(TT) and Cone(G') are closed cones in ^/^Ttg. 

Example 2.4. If G' = K, then the assumption (2.1) is automatically fulfilled 
because Cone(G') = {0}. The conclusion of Theorem B in this special case is 
nothing but Harish-Chandra's admissibility theorem (Example 2.3 (1)). 

To apply Theorem B for non-compact G', we rewrite the assumption (2.1) 
more explicitly in specific settings. On the part Cone(G'), we mention: 

Example 2.5. Cone(G') is a linear subspace ^/^T(tg)-<:r (modulo the Weyl group) 
if (G,Gr) is a reductive symmetric pair given by an involution a. Here, we have 
chosen a Cartan subalgebra t0 to be maximally a-split. 

On the part ASK (TT), let us consider a unitary representation n\ which is "at­
tached to" an elliptic coadjoint orbit ö\ := Ad*(G)A, in the orbit philosophy due 
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to Kirillov-Kostant. This representation is a unitarization of a Zuckerman-Vogan 
module Aq(A) after some p-shift, and can be realized in the Dolbeault cohomol­
ogy group on Ox by the results of Schmid and Wong. (Here, we adopt the same 
polarization and normalization as in a survey [K04, §2], for the geometric quan­
tization Ox =$• n\.) We note that nx £ G for "most" A. Let g = 6 + p be the 
complexification of a Cartan decomposition of the Lie algebra go of G. We set 

A+(p) — {a £ A(p,t) : (A, a) > 0}, for A G V^ïl*0-

The original proof (see [K05]) of the next theorem was based on an algebraic method 
without using microlocal analysis. Theorem B gives a simple and alternative proof. 

Theorem C ([K05]). Letnx £ G be attached to an elliptic coadjoint orbit Ox. If 

R-span A+(p) n Cone(G') = {0}, (2.2) 

then the restriction nx\a' is G'-admissible. 

Let us illustrate Theorem C in Examples 2.6 and 2.7 for non-compact G'. 
For this, we note that a maximal compact subgroup K is sometimes of the form 
Ki x K2 (locally). This is the case if G/K is a Hermitian symmetric space (e.g. 
G = Sp(n,R),SO* (2n), SU(p, qj). It is also the case if G = 0(p,q), Sp(p,q), etc. 

Example 2.6 (K ~ Ki x K2). Suppose K is (locally) isomorphic to the direct 
product group Ki x K2. Then, t ie restriction nx\a' is G'-admissible if A|tne2 = 0 
and G' D Ki. So does the restriction n\a' if n is any subquotient of a coherent 
continuation of nx- This case was a prototype of G'-admissible restrictions n\a' 
(where G' is non-compact and n is a non-highest weight module) proved in 1989 by 
the author ([K01; K02, Proposition 4.1.3]), and was later generalized to Theorems B 
and C. Special cases include: 

(1) Ki ~ T, then n is a unitary highest weight module. The admissibility of 
the restrictions n\a' in this case had been already known in '70s (see Alartens 
[Alt], Jakobson-Vergne [J-Vr]). 

(2) Ki ~ SU(2), then nx is a quaternionic discrete series. Admissible restrictions 
n\(}i in this case are especially studied by Gross and Wallach [Gr-Wi] in '90s. 

(3) Ki ~ 0(q),U(q),Sp(q). Explicit branching laws of the restriction nx\a' for 
singular A are given in [K03, Part I] with respect to the vertical inclusions of 
the diagram below (see also [Koi,Kos] for those to horizontal inclusions). 

0(4p,4q) D U(2p,2q) D Sp(p,q) 

U U U 

0(4r) x 0(4p - Ar, Aq) D U(2r) x U(2p - 2r, 2q) D Sp(r) x Sp(p - r, q) 
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Example 2.7 (conformai group). There are 18 series of irreducible unitary rep­
resentations of G := U(2, 2) with regular integral infinitesimal characters. Among 
them, 12 series (about "67% " !) are G'-admissible when restricted to G' := Sp(l, 1). 

The assumption in Theorem B is in fact necessary. By using the technique of 
symplectic geometry, the author proved the converse statement of Theorem B: 

Theorem D ([K013]). Let G D G' be a pair of reductive Lie groups, and n £ G. 
If the restriction n\K> is K'-admissible, then Cone(G') n ASK(TT) = {0}. 

3. Infinitesimal discrete decomposability 
The definition of admissible restrictions (Definition 2.1) is "analytic", namely, 

based on the direct integral decomposition (1.1) of unitary representations. Next, 
we consider discrete decomposable restrictions by a purely algebraic approach. 

Definition 3.1 ([K09, Definition 1.1]). Let g be a Lie algebra. We say a g-module 
X is discretely decomposable if there is an increasing sequence of g-submodules 
of finite length: 

00 

X = [J Xm, X0 c Xi c X2 C • • • . (3.1) 
ro=0 

We note that dim Xm = 00 in most cases below. 

Next, consider the restriction of group representations. 

Definition 3.2. Let G D G' be a pair of reductive Lie groups, and n £ G. We 
say that the restriction n\a> is inflnitesimally discretely decomposable if the 
underlying (g,K)-module nK is discretely decomposable as a g'-module. 

The terminology "discretely decomposable" is named after the following fact: 

Theorem E ([K09]). Let (G,Gr) be a pair of reductive Lie groups, and nK the 
underlying (g,K)-module ofn£G. Then (i) and (ii) are equivalent: 

i) The restriction 7r|c is inflnitesimally discretely decomposable. 
ii) The (g,K)-module nK has a discrete branching law in the sense that nK 

is isomorphic to an algebraic direct sum of irreducible (g',Kr)-modules. 

Aloreover, the following theorem holds: 

Theorem F (infinitesimal =̂> Hilbert space decomposition; [Kon]). Let 
n £ G. If the restriction 7r|c is inflnitesimally discretely decomposable, then the 
restriction 7r|c decomposes without continuous spectrum: 

TT\QI ~ y j mn(T)T (a discrete direct sum of Hilbert spaces). (3.2) 

T G G 7 

At this stage, the multiplicity ro^r) := dim Home (r, 7T|G') can be infinite. 
However, for a reductive symmetric pair (G,Gr), it is likely that the multiplic­

ity of discrete spectrum is finite under the following assumptions, respectively. 
(3.3) n is a discrete series representation for G. 
(3.4) The restriction 7r|c is inflnitesimally discretely decomposable. 
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Conjecture 3.3 (Wallach, [X]). ro^r) < oo for any T £ G' if (3.3) holds. 

Conjecture 3.4 ([Kon, Conjecture C]). ro^r) < oo for any T £ G' if (3.4) holds. 

We note that Conjecture 3.4 for compact G' corresponds to Harish-Chandra's 
admissibility theorem. A first affirmative result for general non-compact G' was 
given in [K09], which asserts that Conjecture 3.4 holds if n is attached to an elliptic 
coadjoint orbit. A special case of this assertion is: 

Theorem G ([Ko9]). mn(r) < 00 for any r £& if both (3.3) and (3.fi) hold. 

In particular, Wallach's Conjecture 3.3 holds in the discretely decomposable 
case. We note that an analogous finite-multiplicity statement fails if continuous 
spectrum occurs in the restriction n\a' for a reductive symmetric pair (G,Gr): 

Counter Example 3.5 ([Kon]). ro^r) can be 00 if neither (3.3) nor (3.4) holds. 

Recently, I was informed by Huang and Vogan that they proved Conjecture 3.4 
for any n [Hu-Vo]. 

A key step of Theorem G is to deduce the if'-admissibility of the restriction 
n\K> from the discreteness assumption (3.4), for which we employ Theorem H be­
low. Let us explain it briefly. We write VB(îT) for the associated variety of the 
underlying (g, K)-module of n (see [Vo]), which is an algebraic variety contained in 
the nilpotent cone of g*. Yet prB_j,B/ : g* —¥ (g')* be the projection corresponding 
to g' C g. Here is a necessary condition for infinitesimal discrete decomposability: 

Theorem H (criterion for discrete decomposability [K09, Corollary 3.4]). Let 
n £ G. If the restriction 7r|c is inflnitesimally discretely decomposable, then 
prB_j,B/(Vs(nj) is contained in the nilpotent cone of (g')*• 

We end this section with a useful information on irreducible summands. 

Theorem I (size of irreducible summands, [K09]). Let n £ G. If the restric­
tion n\(}i is inflnitesimally discretely decomposable, then any irreducible summand 
has the same associated variety, especially, the same G elf and-Kirillov dimension. 

Here is a special case of Theorem I: 

Example 3.6 (highest weight modules, [N-Oc-T]). Let G be the metaplectic group, 
and G' = G'iG'2 is a dual pair with Gi compact. Let 9(a) be an irreducible unitary-
highest weight module of G2 obtained as the theta-correspondence of a £ G[. 
Then the associated variety of 9(a) does not depend on a, but only on G\. 

An analogous statement to Theorem I fails if there exists continuous spectrum 
in the branching law 7r|c (see [Kon] for counter examples). 

4. Applications to representation theory 
So far, we have explained basic theory of discretely decomposable restrictions 

of unitary representations for reductive Lie groups G D G'. Now, we ask what 
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discrete decomposability can do for representation theory. Let us clarify advantages 
of admissible restrictions, from which the following applications (and some more) 
have been brought out and seem to be promising furthermore. 

1) Study of G' as irreducible summands of n\a'-
2) Study of G by means of the restrictions to subgroups G'. 
3) Branching laws of their own right. 

4 .1 . From the view point of the study of G' (smaller group), one of advantages of 
admissible restrictions is that each irreducible summand of the branching law n\a' 
gives an explicit construction of an element of G'. 

Historically, an early success of this idea (in '70s and '80s) was the construction 
of irreducible highest weight modules (Howe, Kashiwara-Vergne, Adams, • •• ) . A 
large part of these modules can be constructed as irreducible summands of discrete 
branching laws of the Weil representation (see Examples 2.3 (2) and 3.6). 

This idea works also for non-highest weight modules. As one can observe from 
the criterion in Theorem B, the restriction n\a' tends to be discretely decomposable, 
if ASK(T) is "small". In particular, if n is a minimal representation in the sense 
that its annihilator is the Joseph ideal, then a result of Vogan implies that ASK (TT) is 
one dimensional. Thus, there is a good possibility of finding subgroups G' such that 
n\(}i is G'-admissible. This idea was used to construct "small" representations of 
subgroups G' by Gross-Wallach [Gr-Wi]. In the same line, discretely decomposable 
branching laws for non-compact G' are used also in the theory of automorphic forms 
for exceptional groups by J-S. Li [Li2]. 

4.2. From the view point of the study of G (larger group), one of advantages of 
admissible restrictions is to give a clue to a detailed study of representations of G 
by means of discrete branching laws. 

Needless to say, an early success in this direction is the theory of (g,K)-
modules (Lepowsky, Harish-Chandra, • • • ) . The theory relies heavily on Harish-
Chandra's admissibility theorem (Example 2.3 (1)) on the restriction of n to K. 

Instead of a maximal compact subgroup K, this idea applied to a non-compact 
subgroup G' still works, especially in the study of "small" representations of G. In 
particular, this approach makes sense if the if-type structure is complicated but the 
G'-type structure is less complicated. Successful examples in this direction include: 

1) To determine an explicit condition on A such that a Zuckerman-Vogan mod­
ule Aq(A) is non-zero, where we concern with the parameter A outside the 
good range. In the setting of Example 2.6 (3), the author found in [K02] a 
combinatorial formula on Ki -types of Aq(A) and determined explicitly when 
Aq(A) 7̂  0. The point here is that the computation of if-types of Aq(A) is 
too complicated to carry out because a lot of cancellation occurs in the gener­
alized Blattner formula, while ifi-type formula (or G'-type formula for some 
non-compact subgroup G') behaves much simpler in this case. 

2) To study a fine structure of standard representations. For example, Lee 
and Loke [Le-Lo] determined the Jordan-Holder series and the unitarizability 
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of subquotients of certain degenerate non-unitary principal series representa­
tions n, by using G'-admissible restrictions for some non-compact reductive 
subgroup G'. Their method works successfully even in the case where if-type 
multiplicity of n is not one. 

4 .3 . From the view point of finding explicit branching law, an advantage of admis­
sible restrictions is that one can employ algebraic techniques because of the lack of 
continuous spectrum. A number of explicit branching laws are newly found (e.g. 
[D-Vs, Gr-Wi^, Hu-P-S, Ko i^^s , Ko-01,2, Li2, Loi^, X]) in the context of ad­
missible restrictions to non-compact reductive subgroups. A mysterious feature is 
that "different series" of irreducible representations may appear in discretely deco-
mopsable branching laws (see [K05, p. 184] for a precise meaning), although all of 
them have the same Gelfand-Kirillov dimensions (Theorem I). 

5. New discrete series for homogeneous spaces 
Let G D H be a pair of reductive Lie groups. Then, there is a G-invariant 

Borei measure on the homogeneous space G/H, and one can define naturally a 
unitary representation of G on the Hilbert space L2(G/H). 

Definition 5.1. We say n is a discrete series representation for G/H, ifn£G 
is realized as a subrepresentation of L2(G/H). 

A discrete series representation corresponds to a discrete spectrum in the 
Plancherel formula for the homogeneous space G/H. One of basic problems in 
non-commutative harmonic analysis is: 

Problem 5.2. 1) Find a condition on the pair of groups (G,H) such that there 
exists a discrete series representation for the homogeneous space G/H. 

2) If exist, construct discrete series representations. 

Even the first question has not found a final answer in the generality that 
(G, H) is a pair of reductive Lie groups. Here are some known cases: 

Example 5.3. Flensted-Jensen, Alatsuki and Oshima proved in '80s that discrete 
series representations for a reductive symmetric space G/H exist if and only if 

rankG/H = rankK/(HnK). (5.1) 

This is a generalization of Harish-Chandra's condition, rank G = rank if, for a 
group manifold G x G/diag(G) ~ G ([FJ, Alk-Os]). 

Our strategy to attack Problem 5.2 for more general (non-symmetric) homo­
geneous spaces G/H consists of two steps: 

1) To embed G/H into a larger homogeneous space G/H, on which harmonic 
analysis is well-understood (e.g. symmetric spaces). 

2) To take functions belonging to a discrete series representation % (^y L2(G/Hj), 
and to restrict them with respect to a submanifold G/H (^y G/H). 
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If G/H is "generic", namely, a principal orbit in G/H in the sense of Richard­
son, then it is readily seen that discrete spectrum of the branching law n\a gives a 
discrete series for G/H ([Koio, §8]; see also [Hu, Ko^s, Lii] for concrete examples). 

However, some other interesting homogeneous spaces G/H occur as non-
principal orbits on G/H, where the above strategy does not work in general. A 
remedy for this is to impose the admissibili ty of the restr ic t ion of n, which 
justifies the restriction of Lp-functions to submanifolds, and then gives rise to many 
non-symmetric homogeneous spaces that admit discrete series representations. For 
example, let us consider the case where G = GT and H = G" for commuting invo­
lutive automorphisms r and a of G such that G/H satisfies (5.1). Then by using 
Theorem C and an asymptotic estimate of invariant measures [Kog], we have: 

Theo rem J (discrete series for non-symmetr ic spaces, [Koio]). Assume that 
there is tv £ W„ such that 

R+ -spanA+(p)frjt t,n y/-l($)~T = {0}. (5.2) 

Then there exist infinitely many discrete series representations for any homogeneous 
space of G that goes through xH £ G/H for any x £ K. 

We refer to [Koio, Theorem 5.1] for definitions of a finite group W„ and 
A+(p)rr,w- The point here is that the condition (5.2) can be easily checked. 

For instance, if G ~ Sp(2n,R) ~ G/H (a group manifold), then Theorem J 
implies that there exist discrete series on all homogeneous spaces of the form: 

G/H = Sp(2n,R)/(Sp(nQ,C) x GL(m,C) x • • • x GL(nk,Gj), ( 5 ^ n 4 = n). 

The choice of x in Theorem J corresponds to the partition (no, n i , . . . , nu)- We note 
that the above G/H is a symmetric space if and only if m = n2 = ••• = nk = 0. 

The restriction of unitary representations gives new methods even for sym­
metric spaces where harmonic analysis has a long history of research. Let us state 
two results that are proved by the theory of discretely decomposable restrictions. 

Theo rem K (holomorphic discrete series for symmetr ic spaces). Suppose 
G/H is a non-compact irreducible symmetric space. Then (i) and (ii) are equivalent: 

i) There exist unitary highest weight representations of G that can be realized as 
subrepresentations of L2(G/H). 

ii) G/K is Hermitian symmetric and H/(H n K) is its totally real submanifold. 

This theorem in the group manifold case is a restatement of Harish-Chandra's 
well-known result. The implication (ii) =$• (i) was previously obtained by a different 
geometric approach ('Olafsson-Orsted [01-0]). Our proof uses a general theory of 
discretely decomposable restrictions, especially, Theorems B, H and J. 
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Theorem L (exclusive law of discrete spectrum for restriction and induc­
tion). Let G/G' be a non-compact irreducible symmetric space, and n £ G. Then 
both (1) and (2) cannot occur simultaneously. 

1) The restriction n\a' is inflnitesimally discretely decomposable. 
2) n is a discrete series representation for the homogeneous space G/G'. 

We illustrate Theorems K and L by G = SL(2,R). The examples below are 
well-known results on harmonic analysis, however, the point is that they can be 
proved by a simple idea coming from restrictions of unitary representations. 

Example 5.4. 1) Holomorphic discrete series exist for G/H = SL(2,R)/SO(l, 1) 
(a hyperboloid of one sheet). This is explained by Theorem K because the geodesic 
H/(H n K) is obviously totally real in the Poincaré disk G/K = SL(2,R)/SO(2). 
2) There is no discrete series for the Poincaré disk G/K = SL(2,R)/SO(2). This 
fact is explained by Theorem L because any representation of G is obviously dis­
cretely decomposable when restricted to a compact K. 

6. Modular varieties, vanishing theorem 
Retain the setting as in Definition 2.2. Let F' c F be cocompact torsion-free 

discrete subgroups of G' C G, respectively. For simplicity, let G' be a semisim-
ple Lie group without compact factors. Then, both of the double cosets X := 
Y\G/K and Y := Y'\G'/K' are compact, orientable, locally Riemannian symmet­
ric spaces. Then, the inclusion G' <L-¥ G induces a natural map i : Y —¥ X. The 
image i(Y) defines a totally geodesic submanifold in X. Consider the induced ho­
momorphism of the homology groups of degree m := dim F , 

i.:Hm(Y;Z)->Hm(X;Z). 

The modular symbol is defined to be the image i*[Y] £ Hm(X;Z) of the funda­
mental class [Y] £ Hm(Y;Z). Though its definition is simple, the understanding of 
modular symbols is highly non-trivial. 

Let us first recall some results of Matsushima-Murakami and Borei-Wallach 
on the de Rham cohomology group H*(X; C) summarized as: 

H*(X;C) = ($H*(X)7r, H*(Xfi :=EomG(n,L2(Y\Gj)®H*(g,K;nK). (6.1) 
Tree 

The above result describes the topology of a single X by means of representation 
theory. For the topology of the pair (Y,X), we need restrictions of representations: 

Theorem M (vanishing theorem for modular symbols, [Ko-Od]). If 

ASK(TT) n Cone(G') = {0}, n # 1, 
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then the modular symbol i*[Y] is annihilated by the n-component Hm(X)7r in the 
perfect paring Hm(X;C) x Hm(X;C) - • C. 

Theorem M determines, for example, the middle Hodge components of totally-
real modular symbols of compact Clifford-Klein forms of type IV domains. 

The discreteness of irreducible decompositions plays a crucial role both in 
Matsushima-Murakami's formula (6.1) and in a vanishing theorem for modular va­
rieties (Theorem Al). In the former L2(F\G) is G-admissible (Gelfand and Piateski-
Shapiro), while the restriction 7r|c is G'-admissible (cf. Theorem B) in the latter. 
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Representations of Algebraic Groups and 
Principal Bundles on Algebraic Varieties 

Vikram Bhagvandas Mehta* 

Abstract 

In this talk we discuss the relations between representations of algebraic 
groups and principal bundles on algebraic varieties, especially in characteristic 
p. We quickly review the notions of stable and semistable vector bundles and 
principal G-bundles , where G is any semisimple group. We define the notion 
of a low height representation in characteristic p and outline a proof of the 
theorem that a bundle induced from a semistable bundle by a low height 
representation is again semistable. We include applications of this result to 
the following questions in characteristic p: 

1) Existence of the moduli spaces of semistable G-bundles on curves. 
2) Rationality of the canonical parabolic for nonsemistable principal bun­

dles on curves. 
3) Luna's etale slice theorem. 
We outline an application of a recent result of Hashimoto to study the 

singularities of the moduli spaces in (1) above, as well as when these spaces 
specialize correctly from characteristic 0 to characteristic p. We also discuss 
the results of Laszlo-Beauville-Sorger and Kumar-Narasimhan on the Picard 
group of these spaces. This is combined with the work of Hara and Srinivas-
Mehta to show that these moduli spaces are F-split for p very large. We 
conclude by listing some open problems, in particular the problem of refining 
the bounds on the primes involved. 

2000 Mathematics Subject Classification: 22E46, 14D20. 
Keywords and Phrases: Semistable bundles, Low-height representations. 

1. Some Definitions 
We begin with some basic definitions: 

Let V be a vector bundle on a smooth projective curve X of genus g over an 
algebraically closed field (in any characteristic). 
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Definition 1.1: V is stable ( respectively semi-stable J if for all subbundles W of 
V, we have 

p(W) fef deg W/rk W < (<) 

P(v) def d e S vlrk v-

For integers r and d with r > 0, one constructs the moduli spaces Us(r, d)(U(r, dj) of 
stable (semistable) vector bundles of rank r and degree d, using Geometric Invariant 
Theory (G.I.T.). 

If the ground field is C, the complex numbers, one has the basic (genus X > 2): 
Theorem 1.2: Let V have degree 0. Then V is stable 44> V ~ V„, for some 
irreducible representation a : ni(X) —¥ U(n). 

This is due to Narasimhan-Seshadri. Note that H —¥ X is a principal m (X) 
fibration, where H is the upper-half plane. Any a : m (X) —t GL(n, C) gives a 
vector bundle of rank n on X, Va = H x^ 1 ^ ) C". 
Remark 1.3: It follows from Theorem 1.2 that if V is a semistable bundle on a 
curve X over C, then ®n(V),Sn(V), in fact any bundle induced from V is again 
semistable. By Lefschetz, this holds for any algebraically closed field of character­
istic 0. 
Remark 1.4: In general, a subbundle W of a vector bundle V is a reduction 
of the structure group of the principal bundle of V to a maximal parabolic of 
GL(n),n = rank V. This is in turn equivalent to a section a of the associated fibre 
space: 

ExGUn) G £ , ( n ) / p . 

Now let X be a smooth curve and E —¥ X a principal G-bundle on X, where G is 
a semisimple (or even a reductive) group in any characteristic. 
Definition 1.5: E is stable (semistable) 44> V maximal parabolics P of G, V sections 
a of E(G/P), we have degree CT#T^ > 0(> 0), where TV is the relative tangent 
bundle of E(G/P) 4 X. 

Over C, we have the following [18]: 
Theorem 1.6: E —¥ X is stable 44> E ~ E„ for some irreducible representation 
a : m (X) —t K, the maximal compact of G. 

The analogue of Remark 1.3 is valid in this general situation. 
Remark 1.7: One can analogously define stable and semistable vector bundles 
and principal bundles on normal projective varieties of dimension > 1. Again, in 
characteristic 0, bundles induced from semistable bundles continue to be semistable. 
Remark 1.8: In characteristic p, bundles induced from semistable bundles need 
not be semistable, in general[7]. In this lecture we shall examine some conditions 
when this does hold, and also discuss some applications to the moduli spaces of 
principal G-bundles on curves. 

2. Low height representations 
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Here we introduce the basic notion of a low height representation in charac­
teristic p. Yet f : G —¥ SL(n) = SL(V) be a representation of G in char p, G 
being reductive. Fix a Borei B and a Torus T in G. Let L(A»), 1 < i < m, be 
the simple G-modules occurring in the Jordan-Holder filtration of V. Write each 
A, as yjgyOij, where {aj} is the system of simple roots corresponding to B and 

j 

qij £ Q Vi, j . Define htXi = / J f t j . Then one has the basic [9,20]: 
j 

Definition 2.1: f is a low-height representation ofG, or V is a low-height module 
over G, if 2ht(Xi) < p Vi. 
Remark 2.2: If 2ht(Xi) < p Vi, then it easily follows that V is a completely-
reducible G-module. In fact for any subgroup F of G, V is completely reducible 
over F 44> F itself is completely reducible in G. By definition, an abstract subgroup 
F of G is completely reducible in G 44> for any parabolic P of G, if F is contained 
in P then F is contained in a Levi component L of P. These results were proved 
by Serre[20] using the notion of a saturated subgroup of G. 

In general, denote sup (2ht A,) by htaV. If V is the standard SL(n) module, 
then htsL(n)^l(V) = i(n — i),l < i < n — 1. Aloregenerally, hta(Vi®V2) = ht(}Yi + 
ht(}V2- The following theorem is the key link between low-height representations 
and semistability of induced bundles [9]: 
Theo rem 2.3: Let E —t X be a semistable G-bundle, where G is semisimple and 
the base X is a normal projective variety. Let f : G —¥ SL(n) be a low-height 
representation. Then the induced bundle E(SL(nj) is again semistable. 

The proof is an interplay between the results of Bogomolov, Kempf, Rousseau 
and Kirwan in G.I.T. on one hand and the results of Serre mentioned earlier on the 
other. The group scheme E(G) over X acts on E(SL(n)/P) and assume that a is 
a section of the latter. Consider the generic point if of X and its algebraic closure 
K. Then E(G)-% acts on E(SL(n)/P)-^-, and a is a if-rational point of the latter. 
There are 2 possibilities: 

1) a is G.I.T semistable. In this case, one can easily prove that deg CT#T^ > 0. 
2) a is G.I.T. unstable, i.e., not semistable. Let P(a) be the Kempf-Rousseau 

parabolic for a, which is defined over K. For deg CT#T^ to be > 0 it is sufficient 
that P(a) is defined over K. Note that since V is a low-height representation 
of G, one has p> h. One then has ([20]). 

Proposition 2.4: If p > h, there is a unique G-invariant isomorphism log: 
Gu —¥ g , where Gu is the unipotent variety of G and g is the nilpotent variety 
of g = Lie G. 

Proposition 2.4 is used in 
Proposition 2.5: Let H be any semisimple group and W a low-height representa­
tion of H. Let Wi C W and assume that 3X £ Lie H, X nilpotent such that X £ 
Lie (Stab (Wij). Then in fact one has X £ Lie [Stab (Wi)red]-

Along with some facts from G.I.T, Proposition 2.5 enables us to prove that 
P(a) is in fact defined over K, thus finishing the sketch of the proof of Theorem 2.3. 
See also Ramanathan-Ramanan [19]. One application of low-height representations 
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is in the proof of a conjecture of Behrend on the rationality of the canonical parabolic 
or the instability parabolic. If V is a nonsemistable bundle on a variety X, then 
one can show that there exists a flag V", 

0 = Vo C Vi C V2 • • • C Vn = V 

of subbundles of V with the properties: 

(1) Each Vi/Vi-i is semistable and p (Vj/Vj_i) > p (Vj+i/V»), 1 < i < n — 1. 
(2) The flag V" as in (1) is unique and inflnitesimally unique, i.e., V" is defined 

over any field of definition of X and V. Such a flag corresponds to a reduction 
to a parabolic P of GL(n) and properties (1) and (2) may be expressed as 
follows: the elementary vector bundles on X associated to P all have positive 
degree and H°(X, E(g)/E(pj) = 0, where g = Lie GL(n) and p = Lie P. 

One may ask whether there is a such a canonical reduction for a nonsemistable 
principal G bundle E —¥ X. Such a reduction was first asserted first by Ramanathan 
[18], and then by Atiyah-Bott[l] ,both over C and both without proofs. It was 
Behrend [ 5 ], who first proved the existence and uniqueness of the canonical reduc­
tion to the instability parabolic in all characteristics. Further, Behrend conjectured 
that H°(X,E(g)/E(p)) = 0. 

In characteristic zero, one can check that all three definitions of the instability-
parabolic coincide and that Behrend's conjecture is valid. In characteristic p, one 
uses low-height representations to show the equality of the three definitions and 
prove Behrend's conjecture [14]. 
Theorem 2.6: Let E —t X be a nonsemistable principal G-bundle in char p. As­
sume that p > 2dimG. Then all the 3 definitions coincide and further we have 
H°(X,E(g)/E(pj) = 0, where p = Lie P and P is the instability parabolic. 

Theorem 2.6 is useful, among other things, for classifying principal G-bundles 
on P1 and P2 in characteristic p. 

If V is a finite-dimensional representation of a semisimple group G (in any-
characteristic), then the G.I.T. quotient V//G parametrizes the closed orbits in V. 
Now, let the characteristic be zero and let VQ £ V have a closed orbit. Then Luna's 
étale slice theorem says that 3 a locally closed non-singular subvariety S of V such 
that VQ £ S and S//GVg is isomorphic to V//G, locally at VQ, in the étale topology. 
Here GVo is the stabilizer of VQ- The proof uses the fact that GVo is a reductive 
subgroup of G (not necessarily connected!), hence V is a completely reducible G 
module. In characteristic p, one has to assume that V is a low-ht representation 
of G. Then the conclusion of Luna's étale slice theorem is still valid: to be more 
precise, let V be a low-ht representation of G and let VQ £ V have a closed orbit. 
Put H = Stab (vo)- The essential point, as in characteristic 0, is to prove the 
complete reducibility of V over H. Using the low-ht assumption, one shows that 
every X £ Lie H with X nilpotent can be integrated to a homomorphism Ga —¥ H 
with tangent vector X. Now, under the hypothesis of low-ht, one shows that -ffrec[ 
is a saturated subgroup of G and (-ffrec[ : -ff0 J ) is prime to p. This shows that V 
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is a completely reducible -ffrec[ module. Further, one shows that # r e ( j is a normal 
subgroup of H with H/Hïe(^ a finite group of multiplicative type, i.e. a finite 
subgroup of a torus. Now the complete reducibility of V over H follows easily [11]. 
Just as in characteristic zero, one deduces the existence of a smooth ff-invariant 
subvariety S of V such that VQ £ S and S//H is locally isomorphic to V//G at VQ-
This result is used in the construction of the moduli space MQ to be described in 
the next section. 

3. Construction of the moduli spaces 
The moduli spaces of semistable G-bundles on curves were first constructed by 

Ramanathan over C [16,17], then by Faltings and Balaji-Seshadri in characteristic 
0 [3,6]. There are 3 main points in Ramanathan's construction: 

1. If E —t X is semistable, then the adjoint bundle E(g) is semistable. 
2. If E —¥ X is polystable, then E(g) is also polystable. 
3. A semisimple Lie Algebra in char 0 is rigid. 

The construction of MQ in char p was carried out in [2,15]. We describe 
the method of [15] first : points (1) and (2) are handled by Theorem 2.3 and the 
following [11] : 
Theorem 3.1: Let E —t X be a polystable G-bundle over a curve in char p. Let 
a : G —¥ SL(n) = SL(V) be a representation such that all the exterior powers 
A*V, 1 < i < n — 1, are low-height representations. Then the induced bundle E(V) 
is also polystable. 

The proof uses Luna's étale slice theorem in char p and Theorem 2.3. 
Now one takes a total family T of semistable G bundle on X and takes the 

good quotient of T to obtain MQ in char p. Theorem 3.1 is used to identify the 
closed points of MQ as the isomorphism classes of polystable G-bundles, just as in 
char 0. The semistable reduction theorem is proved by lifting to characteristic 0 
and then applying Ramanathan's proof (in which (3) above plays a crucial role). 
This construction follows Ramanathan very closely and, as is clear, one has to make 
low-height assumptions as in Theorem 3.1. 

The method of [2] follows the one in [3] with some technical and conceptual 
changes. One chooses an embedding G —¥ SL(n) and a representation W for SL(n) 
such that (1) G is the stabilizer of some WQ £ W. (2) W is a "low separable index 
representation" of SL(n), i.e., all stabilizers are reduced and W is low-height over 
SL(n). The semistable reduction theorem is proved using the theory of Bruhat-Tits. 
Here also suitable low-height assumptions have to be made. 

4. Singularities and specialization of the moduli 
spaces 

We first discuss the singularities of MQ, assuming throughout that G is simply-
connected. In char 0, MQ has rational singularities, this follows from Boutot's 
theorem. In char p, the following theorem due to Hashimoto [8] is relevant: 
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Theorem 4 .1 : Let V be a representation of G such that all the symmetric powers 
Sn(Yr) have a good filtration. Then the ring of invariant [S'(V)]G is strongly F-
regular. 

Strongly F-regularity is a notion in the theory of tight closure in commutative 
algebra. We just note that if a geometric domain is strongly F-regular then it 
is normal,Cohen-Alacaulay, F-split and has "rational-like" singularities. Now let 
t £ MQ be the "worst point", i.e., the trivial G-bundle on X. 

The local ring ( O M G , * ) A is isomorphic to (S'(W)//G)A, where W = direct 
sum of g copies of g, with G acting diagonally. If p is a good prime for G , then 
Hashimoto's theorem implies that OMG ,t is strongly F-regular. The other points of 
MQ are not so well understood. This would require a detailed study of the automor­
phism groups of polystable bundles, both in char 0 and p, and of their invariants 
of the slice representations. This is necessary also to study the specialization prob­
lem, i.e., when MQ in char 0 specializes to MQ in char p. One has to show that 
the invariants of the slice representations in char 0 specialize to the invariants in 
char p. However for G=SL(n),the situation is much simpler. One can write down 
the automorphism group of a polystable bundle and its representation on the local 
moduli space. Consequently, one expects the moduli spaces to specialize correctly 
and that the local rings of MQ are strongly F-regular in all positive characteristics. 

We briefly discuss Pic MQ in char 0. It follows from [4,10] that MQ has the 
following properties in char 0: 

1. Pic MQ ~ Z . 
2. MQ is a normal projective, Gorenstein variety with rational singularities and 

with K negative ample. 

Now let X be a normal,Cohen-Alacaulay variety in char 0. It is proved in 
[13],in response to a conjecture of Karen Smith, that if X has rational singularities, 
then the reduction of X mod p is F-rational for all large p. This result together 
with 1 and 2 above imply that MQ reduced mod p is F-split for all large p. We 
cannot give effective bounds on the primes involved. One partial result is known in 
this direction [12]. 
Acknowledgement: I would like to thank my colleagues S. Ilangovan, A.J. Parame-
swaran and S. Subramanian for their help in preparing this report and T.T. Nayya 
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Clifford Algebras and the 
Duflo Isomorphism 

E. Meinrenken* 

Abstract 

This article summarizes joint work with A. Alekseev (Geneva) on the Duflo 
isomorphism for quadratic Lie algebras. We describe a certain quantization 
map for Weil algebras, generalizing both the Duflo map and the quantization 
map for Clifford algebras. In this context, Duflo's theorem generalizes to a 
statement in equivariant cohomology. 
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1. Introduction 
The universal enveloping algebra U(g) of a Lie algebra (g, [-, -]0) is the quotient 

of the tensor algebra T(g) by the relations, ££' — £'£ = [£,£']0 . The inclusion of 
the symmetric algebra S(g) into T(g) as totally symmetric tensors, followed by the 
quotient map, gives an isomorphism of {(-modules 

sym : S(g) -> U(g) (1.1) 

called the symmetrization map. The restriction of sym to {(-invariants is a vector 
space isomorphism, but not an algebra isomorphism, from invariant polynomials to 
the center of the enveloping algebra. Let J £ C°° (g) be the function 

J(C) = de t ( j (ad c ) ) , j(z)=
S^M^, 

and J 1 / 2 its square root (defined in a neighborhood of £ = 0). Denote by J 1 / 2 

the infinite order differential operator on S g C C°°(g*), obtained by replacing the 
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variable £ £ g with a directional derivative -g-, where p is the dual variable on g*. 
Duflo's celebrated theorem says that the composition 

symojVà . Sg^U(g) 

restricts to an algebra isomorphism, (Sg)e —¥ Cent(U(gj). In more geometric lan­
guage, Duflo's theorem gives an isomorphism between the algebra of invariant con­
stant coefficient differential operators on g and bi-invariant differential operators on 
the corresponding Lie group G. 

The purpose of this note is to give a quick overview of joint work with A. 
Alekseev [1, 2], in which we obtained a new proof and a generalization of Duflo's 
theorem for the special case of a quadratic Lie algebra. That is, we assume that 
g comes equipped with an invariant, non-degenerate, symmetric bilinear form B. 
Examples of quadratic Lie algebras include semi-simple Lie algebras, or the semi-
direct product g = s x s* of a Lie algebra s with its dual. Using B we can define 
the Clifford algebra 01(g). Duflo's factor J1//2(£) arises as the Berezin integral 
of exp(g(A(£))) £ Cl({(), where q : A(g) —¥ Cl(g) is the quantization map, and 
À : g —¥ A2g is the map dual to the Lie bracket. 

2. Clifford algebras 
Let V be a finite-dimensional real vector space, equipped with a non-degenerate 

symmetric bilinear form B. Fix a basis ea £ V and let ea £ V be the dual basis. 
We denote by o(V) C End(V) the space of endomorphisms A of V that are skew-
symmetric with respect to B. For any A £ o(V) we denote its components by 
Aab = B(ea,Aeb). Consider the function S : o(V) —¥ A(V) given by 

S(A) = det1/2 (j(A)) expA(l / ) ßf(A)abe
a A e 

(using summation convention), where 

f(z) = (liij)'(z) = lcoth(^)-l (2.1) 

In turns out that, despite the singularities of the exponential, S is a global analytic 
function on all of o(V). It has the following nice property. Let C1(V) denote the 
Clifford algebra of V, defined as a quotient of the tensor algebra T(V) by the 
relations vv' + v'v = B(v,v'). The inclusion of A(V) into T(V) as totally anti­
symmetric tensors, followed by the quotient map to C1(V), gives a vector space 
isomorphism 

q: /\(V)->Cl(V) 

known as the quantization map. Then S (A) relates the exponentials of quadratic 
elements l/2Aa{,ea A eb in the exterior algebra with the exponentials of the corre­
sponding elements l/2Aai,e

aeb in the Clifford algebra: 

expc l ( l / )(l/2AQ 6eae6) = q (i(S(A)) expA ( l / )(l /2A a 6e a A e6)) . (2.2) 
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Here i : A(V) —¥ End(V) is the contraction operator. In fact, one may add linear 
terms to the exponent: Let E be some vector space of "parameters", and <j)a £ E. 
Then the following identity holds in the Z2-graded tensor product C1(V) ® A(E): 

exp(l/2Aabe
aeb + ea ® <j)a) = q(i(S(A)) exp(l/2Aa6eQ A eb + ea ® 0°) ) . 

3. Quadratic Lie algebras 
Let us now consider the case V = g of a quadratic Lie algebra. Invariance of 

the bilinear form B means that the the adjoint representation ad : g —¥ End (g) takes 
values in o(g), or equivalently that the structure constants /a(,c = B(ea, [e(,,ec]) are 
invariant under cyclic permutations of the indices a,b,c. We specialize (2.2) to 
A = adç for £ £ g, so that Xe : g —¥ A2g, 

A0(C) = l /2(ad c)Q 6e aAe6 

is the map dual to the Lie bracket. Also, take E = T?g and <j>a = —d(,a, where 
£a = B(Ç,ea) are the coordinate functions. Then our formula become the following 
identity in Cl(g) ® 0(g) 

exp(q(X°)-eadÇt) = <?(i(<SB)exp(ÀB - e a d £ ° ) ) , (3.1) 

where Se = S o ad : g —¥ Ag. Consider now the following cubic element in the 
Clifford algebra, 

C=lfabceaebec£Cl(g). 
6 

A beautiful observation of Kostant-Sternberg [8] says that C squares to a constant: 

ni _ _ _ f tabe 
~ AoJa-bcJ 

It follows that the graded commutator d B := [C, •] defines a differential on Cl(g). 
This Clifford differential is compatible with the filtration of Cl(g), and the induced 
differential dAB on the associated graded algebra gr(Cl(g)) = Ag is nothing but the 
Lie algebra differential. Let dRh denote the exterior differential on the deRham 
complex 0(g). 

It is easily verified that Xe — ea d£a £ Ag ® 0(g) is closed for the differential 
d A 0 + d R h , while q(X*)-ead£,a £ Cl(g)®0(g) is closed under dc i (0 ) + d R h . Together 
with (3.1), this leads to a number of consistency conditions for the function Se. One 
of these conditions gives a solution of the classical dynamical Yang-Baxter equation 
(CDYBE): Let r : g —¥ o(g) be the meromorphic function rB(£) = f(ad^) appearing 
in the exponential factor of Se. Then 

Ö r o6 _ M„ \ l 
C y c l o 6 c \-Q^ - *akfb*lc) = - 1 / a f t e (3-2) 

where cycla6c denotes the sum over cyclic permutations of a, b, c. This solution of 
the CDYBE was obtained by Etingof-Varchenko [5] and in [1] by different methods. 
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In Etingof-Schiffmann [6], it is shown that ta(, is in fact the unique solution of 
this particular CDYBE, up to gauge transformation. Alore general CDYBE's are 
associated to a pair h c ß of Lie algebras, here h = g. The proof sketched above 
can be modified to produce some of these more general solutions. 

4. The non-commutative Weil algebra 
Using B to identify the Lie algebra g with its dual g*, the Weil algebra of g is 

the Z -graded g-module given as a tensor product 

Wg = Sg® Ag, 

where generators of S g are assigned degree 2. Let L™ for £ £ g denote the generators 
for the g-action on Wg, and if' = 1 ® i$ the contraction operators. The Weil 
differential d ' is a derivation of degree 1, uniquely characterized by its properties 
d H / od H / = 0 and dH /(l ® £) = £ ® 1 for £ £ g. The Weil algebra Wg with 
these three types of derivations is an example of a g-differential algebra: That is, 
Lf', i)fi, d14 satisfy relations similar to contraction operators, Lie derivatives, and 
de Rham differential for a manifold with group action. 

In [1], we introduced the following non-commutative version of the Weil alge­
bra, 

YVg = Ug®Cl(g). 

It carries a Z-filtration, where generators of U(g) are assigned filtration degree 2, 
with associated graded algebra gr(Wg) = Wg. Moreover, it carries a Z2-grading, 
compatible with the Z-filtration in the sense of [8]. Define contraction operators as 
Z2-graded commutators iY^ = [1 ® £, •], let fi^fi be the generators for the natural 
g-module structure, and set d w = [D, •] where 

V = e0. ® ea - 1 ® C £ Wg 

is the cubic Dirac operator [7]. Its square 

V2 = \eae
a ® 1 - ^fabefabc 

is in the center of Wg, hence d is a differential. As it turns out, Wg is again 
a g-differential algebra. The derivations d ,t^,L^ respect the Z-filtration, and 
the induced derivations on the associated graded algebra are just the standard 
derivations for the Weil algebra Wg. 

The vector space isomorphism sym ®q : Wg —¥ Wg intertwines the contraction 
operators and Lie derivatives, but not the differentials. There does exist, however, 
a better "quantization map" Q : Wg —¥ Wg that is also a chain map. Using our 
function Se £ C°°(g) ® Ag, let i(Ss) denote the operator on Wg, where the Ag-
factor acts by contraction on Ag and the G°° (g)-factor as an infinite order differential 
operator. 
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Theorem. [1] The quantization map 

Q := (sym®q) o i(Si) : Wg - • Wg 

intertwines the contraction operators, Lie derivatives, and differentials on Wg and 
on Wg. 

The fact that Q intertwines the two differentials d14 , d w relies on a number 
of special properties of the function Se, including the CDYBE. 

Put differently, the quantization map Q defines a new, graded non-commutative 
ring structure on the Weil algebra Wg, in such a way that the derivations i)fi, Lf , d 
are still derivations for the new ring structure, and in fact become inner derivations. 
Notice that Q restricts to the quantization map for Clifford algebras q : Ag —¥ Cl(g) 
on the second factor and to the Duflo map on the first factor, but is not just the 
product of these two maps. 

5. Equivariant cohomology 
H. Cartan in [3] introduced the Weil algebra Wg as an algebraic model for the 

algebra of differential forms on the classifying bundle EG, at least in the case G 
compact. 

In particular, it can be used to compute the equivariant cohomology HQ(M) 
(with real coefficients) for any G-manifold M. Yet ifh,Lfh,dRh denote the con­
traction operators, Lie derivatives, and differential on the de Rham complex 0(Af ) 
of differential forms. Let 

HB(M) = H((Wg ® tt(M))basic, dw + dm) 

where (Wg ® 0(Af ))t>asic is the subspace annihilated by all Lie derivatives Lf' + 
LRh and all contraction operators if' + iRh. Cartan's result says that HS(M) = 
HQ(M,R) provided G is compact. 

Alore generally, we can define HB(A) for any g-differential algebra A. Yet 
RS(A) be defined by replacing Wg with Wg. The quantization map Q : Wg —¥ Wg 
induces a map Q : HS(A) —¥ RS(A). 
Theorem. [1] For any g-differential algebra A, the vector space isomorphism Q : 
Hs (Â) —¥ Rs (A) is in fact an algebra isomorphism. 

Our proof is by construction of an explicit chain homotopy between the two 
maps Wg ® Wg —¥ Wg given by "quantization followed by multiplication" and 
"multiplication followed by quantization", respectively. Taking A to be the trivial g-
differential algebra (i.e. A = Q(point)), the statement specializes to Duflo's theorem 
for quadratic g. 
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Representations of Yangians 
Associated with Skew Young Diagrams 

Maxim Nazarov* 

Abstract 

The Yangian of the Lie algebra glN has a distinguished family of irreducible 
finite-dimensional representations, called elementary representations. They 
are parametrized by pairs, consisting of a skew Young diagram and a complex 
number. Each of these representations has an explicit realization, it extends 
the classical realization of the irreducible polynomial representations of glN by 
means of the Young symmetrizers. We explicitly construct analogues of these 
elementary representations for the twisted Yangian, which corresponds to the 
Lie algebra SON • Our construction provides solutions to several open problems 
in the classical representation theory. In particular, we obtain analogues of 
the Young symmetrizers for the Brauer centralizer algebra. 
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Intertwining operators, Reflection equation, Yangians, Young symmetrizers. 

1. Yangian of the general linear Lie algebra 
1.1. For each simple finite-dimensional Lie algebra g over the field C, Drinfeld 
[4] introduced a canonical deformation of the universal enveloping algebra of the 
polynomial current Lie algebra g[x]. This deformation is a certain Hopf algebra 
over C, denoted by Y(g) and called the Yangian of the simple Lie algebra g. Now 
consider the general linear Lie algebra glN, it contains the special linear Lie algebra 
sljv as a subalgebra. The Hopf algebra which is called the Yangian of the reductive 
Lie algebra gl^r and is denoted by Y(glN), was considered in the earlier works of 
mathematical physicists from St.-Petersburg, see for instance [6]. The Hopf algebra 
Y (g IN ) is a deformation of the universal enveloping algebra of the Lie algebra g IN [x], 
and the Yangian Y(sljv) of the simple Lie algebra sljv is a Hopf subalgebra of Y(glN). 
Throughout this article, we assume tha t N is a positive integer. 
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The unital associative algebra Y(glJV) over C has a family of generators Ty 
where a = 1,2,.. . and i, j = 1, . . . , N. The defining relations for these generators 
can be written in terms of the formal power series 

Tij(x) = öij • 1 + T^x-1 + T^x-2 + ... £ Y(glN) [[x'1]]. (1.1) 

Here x is the formal parameter. Let y be another formal parameter, then the 
defining relations in the associative algebra Y(glJV) can be written as 

(x-y)-[Tij(x),Tkl(y)]= Tkj(x)Ta(y)-Tkj(y)Ta(x), (1.2) 

where i,j,k,l = 1, . . . ,N. The square brackets in (1.2) denote usual commutator. 
In terms of the formal series (1.1), the coproduct A : Y(glJV) —t Y(gtN) ® Y(gtN) 
is defined by 

A(Tij(x)) = J2 Ti*(x) ® Tkj(x) ; (1.3) 
k=i 

the tensor product on the right hand side of the equality (1.3) is taken over the 
subalgebra C[[a:_1]] C Y(glJV) [[i - 1]]- The counit homomorphism e : Y(glJV) —t C 
is determined by the assignment e : Tj(u) >-¥ % • 1. 

For each i and j one can determine a formal power series Tj(x) in x^1 with 
the coefficients in Y(glJV) and the leading term o"y, by the system of equations 

JV 

Y^ Tik (x) Tkj (x) = öij where i, j = 1, . . . , N. 
k=i 

The antipode S on Y(glJV) is the anti-automorphism of the algebra Y(glN), defined 
by the assignment S : Ty (x) >-¥ Tj (x). We also use the involutive automorphism 
£iv of the algebra Y(gtN), defined by the assignment £JV : Tij(x) >-¥ Tij(-x). 

Take any formal power series f(x) £ C[[a:_1]] with the leading term 1. The 
assignment 

Tj(x)^ f(x)-Tj(x) (1.4) 

defines an automorphism of the algebra Y(glN), this follows from (1.1) and (1.2). 
The Yangian Y(sljv) is the subalgebra in Y(glJV) consisting of all elements, which 
are invariant under every automorphism (1.4). 

It also follows from (1.1) and (1.2) that for any z £ C, the assignment 

TZ : Tij(x) H> Tj(x -z) 

defines an automorphism TZ of the algebra Y(glN). Here the formal power series 
in (x — z)^1 should be re-expanded in x _ 1 . Regard the matrix units Etj £ glN as 
generators of the universal enveloping algebra U(glJV). The assignment 

«iv : Tij(x) >-¥ öij • 1 — Eji x^1 

defines a homomorphism ctN '• Y(glN) —¥ U(glJV). By definition, the homomorphism 
«iv is surjective. For more details and references on the definition of the Yangian 
Y(glN), see [7]. 
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1.2. Let v = (vi,v2, ...) be any partition. As usual, the parts of v are arranged 
in the non-increasing order: vi ^ v2 ^ . . . ^ 0. Let v' = (v[,v2, •••) be the 
partition conjugate to v. In particular, v[ is the number of non-zero parts of the 
partition v. An irreducible module over the Lie algebra gl^r is called polynomial, 
if it is equivalent to a submodule in the tensor product of n copies of the defining 
glN -module C^, for some integer n ^ 0. The irreducible polynomial gl^r -modules 
are parametrized by partitions v such that v[ ^ N. Here n = vi + v2 + ... . Let Vv 

be the irreducible module corresponding to v. This gl^r -module is of highest weight 
(vi, ..., VM). Here we choose the Borei subalgebra in gl^r consisting of the upper 
triangular matrices, and fix the basis of the diagonal matrix units En , ..., ENN in 
the corresponding Cartan subalgebra of glN. 

Take any non-negative integer M. Yet the indices i and j range over the set 
{1, . . . , N + M}. Fix the basis of the matrix units Etj in the Lie algebra gijv+M • 
We suppose that the subalgebras glN and gtM in gljv+M a r e spanned by elements 
Eij where respectively i,j = 1, ... ,N and i,j = N + 1, . . . , N + M. Yet X and p 
be two partitions, such that A{ ^ N + M and p[ ^ M. Consider the irreducible 
modules Y\ and Vß over the Lie algebras gijv+M a n d B'M- The vector space 

H o m 0 [ M ( ^ > V \ ) ( L 5 ) 

comes with a natural action of the Lie algebra gl^r • This action of glN may be 
reducible. The vector space (1.5) is non-zero, if and only if Xk ^ Pk and X'k —p'k ^ N 
for each k = 1,2, . . . ; see for instance [8]. 

Denote by Ajv(Af) the centralizer of the subalgebra U(glM) C U(gljv+M)- The 
centralizer Ajv(Af ) c U(gljv+Af) contains U(glJV) as a subalgebra, and acts naturally 
in the vector space (1.5). This action is irreducible. For every AT, Olshanski [16] 
defined a homomorphism of associative algebras Y(glJV) —t Ajv(Af). Along with 
the centre of the algebra U(gljv+M)) the image of this homomorphism generates the 
algebra Ajv(Af). We use a version of this homomorphism, it is denoted by UMM-

The subalgebra in Y(glJV+M) generated by Ty where i,j = 1, ...,N, by-
definition coincides with the Yangian Y(glN). Denote by </?M this natural embedding 
Y(gljv) —̂  Y(gl JV+M). Consider also the involutive automorphism ÇN+M of the 
algebra Y(glN+M). The image of the homomorphism 

Oijv+M ° ÇN+M ° <PM : Y(glJV) -^ U(glJV+M) 

belongs to the subalgebra Ajv(Af) c U(gljv+M)- Moreover, this image along with 
the centre of the algebra U(gljv+M)) generates the subalgebra Ajv(Af). For the 
proofs of these claims, see [9]. We use the homomorphism Y(glJV) —t Y(glN+M) 

aNM = (XN+M ° ÇN+M ° V>M ° £N- (1-6) 

When M = 0, the homomorphism (1.6) coincides with ctN • The intersection of the 
kernels of all homomorphisms a M a, ot JVI , a JV2 , • • • is zero [16]. 

1.3. The Ajv(Af)-module (1.5) depends on the partitions À and p via the skew 
Young diagram 

UJ = { (i, j) £ Z2 | i > 1, Xi > j > Pi} . 
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When p = ( 0 , 0 , . . . ) , this is the usual Young diagram of the partition A. Consider 
the Y(glJV)-module obtained from the Ajv(Af )-module (1.5) by pulling back through 
the homomorphism O.NM ° TZ : Y(glN) —t Ajv(Af). Since the central elements of 
U(glJV+M) act in (1.5) as scalar operators, this Y(glJV)-module is irreducible. It is 
denoted by Vu(z), and is called an elementary module. Its equivalence class does 
not depend on the choice of the integer M, such that A{ ^ N + M and p[ ^ M. 

The elementary modules are distinguished amongst all irreducible Y(glN)-
modules by the following theorem. Consider the chain of algebras 

Y ( g l 1 ) c Y ( g l 2 ) c . . . c Y ( g l J V ) . (1.7) 

Here for every k = 1, ... ,N — 1 we use the embedding (pi : Y(gtk) —¥ Y(glfc+1). 
Consider the subalgebra of Y(glJV) generated by the centres of all algebras in the 
chain (1.7), it is called the Gelfand-Zetlin subalgebra. This subalgebra is maximal 
commutative in Y(glN); see [3] and [13]. Take any finite-dimensional module W 
over the Yangian Y(glN). 

Theorem 1. Two conditions on the Y(glN)-module W are equivalent: 
a) W is irreducible, and the action of the Gelfand-Zetlin subalgebra of Y(glN) 

in W is semi-simple; 
b) W is obtained by pulling back through some automorphism (1.4) from the 

tensor product 
VU!l(zi)®...®VU!m(zm) (1.8) 

of elementary Y (gl N)-modules, for some skew Young diagrams OJI, . . . ,ojm and for 
some complex numbers zi, ...,zm such that Zk — z% $. Z for all k fi^l. 

This characterization of irreducible finite-dimensional Y(glJV)-modules with 
semi-simple action of the Gelfand-Zetlin subalgebra was conjectured by Cherednik, 
and was proved by him [3] under certain extra conditions on the module W. In full 
generality, Theorem 1 was proved in [14]. An irreducibility criterion for the Y(glJV)-
module (1.8) with arbitrary parameters Zi, ... ,zm was given in [15]. 

The classification of all irreducible finite-dimensional Y(glJV)-modules has been 
given by Drinfeld [5]. However, the general structure of these modules needs a better 
understanding. For instance, the dimensions of these modules are not explicitly-
known in general. The tensor products (1.8) provide a wide class of irreducible 
Y(gljv)~modules, which can be constructed explicitly. 

1.4. The Y(glJV)-module Vu(z) has an explicit realization. It extends the classical 
realization of irreducible g IN -module Vv by means of the Young symmetrizers [20]. 

Let us use the standard graphic representation of Young diagrams on the plane 
R2 with two matrix style coordinates. The first coordinate increases from top to 
bottom, the second coordinate increases from left to right. The element (i,j) £ UJ 
is represented by the unit box with the bottom right corner at the point (i,j) £ R2• 

Suppose the set UJ consists of n elements. Consider the column tableau of shape 
UJ. It is obtained by filling the boxes of UJ with numbers 1, . . . , n consecutively by-
columns from left to right, downwards in every column. Denote this tableau by 0. 
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8 9 3 4 

1 
2 

3 
4 

5 
6 
7 

-3 
-4 

-2 
-3 

0 
-1 
-2 

For each k = 1, . . . , n put Ck = j — i if the box (i, j) e a; is filled with the 
number k in the tableau 0. The difference j — i is called the content of the box 
(i,j) of the diagram UJ. Our choice of the tableau 0 provides an ordering of the 
collection of all contents of UJ. In the above figure, on the left we show the column 
tableau 0 for the partitions À = (5,3,3,3,3,0,0,...) and p = (3,3,2,0,0,...). On 
the right we indicate the contents of all boxes of UJ. 

Introduce n complex variables ti, ... ,tn with the constraints tk = U for all 
k and I occuring in the same column of 0 . The number of independent variables 
among ti, ... ,tn equals the number of non-empty columns in the diagram UJ. Order 
lexicographically the set of all pairs (k,l) with 1 ^ k < I ^ n. Take the ordered 
product over this set, 

n ( i - . PM\ , ) (1.9) 
l<k<l<n ^ 

Ck^Ci+tk- ti 

where Pki denotes the operator in the space (CN)®n exchanging the fcth and Ith 
tensor factors. Consider (1.9) as a function of the constrained variables ti, • • • ,tn. 

Proposition 1. The rational function (1.9) is regular at ti In 

The rational function (1.9) depends only on the differences tk — U. Denote 
the value of (1.9) at ti = ... = tn by EQ. . Note that for any À and p, the linear 
operator EQ in the vector space (CN)®n does not depend on M. For the proof of 
Proposition 1, see [15]. It provides an explicit expression for the operator EQ. 

Suppose that p = (0,0, ... ) . In this special case, there is another expression 
for the operator EQ . Consider the action of the symmetric group Sn on (CN)®n by-
permutations of the tensor factors. For any s £ Sn, denote by Ps the corresponding 
operator in (CN)®n. Yet Sx (respectively Sx) be the subgroup in Sn preserving, 
as sets, the collections of numbers appearing in every row (every column) of the 
tableau 0. Put 

X\ = ^2 Ps and FA = JZ Ps ' sSn s 

seS\ SGSÂ 

where sgn s = ±1 is the sign of the permutation s. The product X\Y\ is the Young 
symmetrizer in (CN)®n corresponding to the tableau 0 . We have the equality 

YXXXYX/X[\X^\ (1.10) 

see [10]. In this case, the image of the operator EQ in (<C )®n is equivalent to Y\ as 
gljY-module, see [20]. Here the action of the Lie algebra gl^r in (CN)®n is standard. 
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1.5. By pulling the standard action of U(glJV) in the space C^ back through the 
homomorphism 

aN o TZ : Y(glN) -+ V(glN), 

we obtain a module over the algebra Y(glN), which is denoted by V(z) and called 
an evaluation module. We have V(z) = Vu(z) for À = (1,0, . . . ) and p = ( 0 , 0 , . . . ) . 
For any partitions À and p, the operator EQ has the following interpretation, in 
terms of the tensor products of evaluation modules over the Hopf algebra Y(glN). 
Yet PQ be the operator in (CN)®n reversing the order of the tensor factors. 

Propos i t ion 2. The operator EQ P0 is an intertwiner of the Y (gl N)-modules 

V(cn + z)®...® V(ci +z) —y V(ci +z)®...® V(cn + z). 

By Proposition 2, the image of the operator EQ is a submodule in the tensor 
product of evaluation Y(glJV)-modules V(ci + z) ® ... ® V(cn + z). Denote this 
Y(glJV)-submodule by VQ(Z). For any À and p, we have the following theorem. Put 

-rj (x-pk + k)(x + k-l) 

~ M (x-fMk + k-l)(x + k) • (iAi) 

This rational function of x expands as a power series in x^1 with the leading term 1. 

Theo rem 2. The Y(glN)-module VQ(Z) is equivalent to the elementary module 
Vu(z), pulled back through the automorphism of the algebra Y(glN) defined by (1.4), 
where f(x) = fß(x — z). 

This theorem is due to Cherednik [3], see also [12]. It provides an explicit 
realization of the elementary Y(glJV)-module Vu(z) as a subspace in (CN)®n. It 
also shows that the Y(glJV)-module Vn(z) is irreducible, cf. [15]. The isomorphism 
between the Y(glJV)-module VQ(Z), and the pull-back of the Y(glJV)-module Vu(z) 
as in Theorem 1, is unique up to a scalar multiplier. 

In Section 2 we give an analogue of Theorem 2 for the orthogonal Lie algebra 
SON, instead of glN. The case of the symplectic Lie algebra spN is similar to that 
of SON, and is considered in the detailed version [12] of the present article. 

For any simple Lie algebra g the Yangian Y(g) as defined in [4], contains the 
universal enveloping algebra U(g) as a subalgebra. An embedding U(glJV) —¥ Y(gtN) 
can be defined by j ^ . . ,_. ^ y W Q 12) 

The image of U(sljv) C U(glJV) under this emdedding belongs to Y(sljv) C Y(glN). 
The homomorphism O.N '• Y(glN) —¥ U(glJV) is identical on the subalgebra U(glJV). 
The restriction of O.N to Y(sljv) provides a homomorphism Y(sljv) —¥ U(sljv), which 
is identical on the subalgebra U(sljv). For g ^ SIN a homomorphism Y(g) —t U(g) 
identical on the subalgebra U(g) C Y(g), does not exist [4]. For this reason, instead 
of the Yangian Y(sojv) from [4], we will consider the twisted Yangian Y(glN, a) from 
[17]. Here a is the involutive automorphism of the Lie algebra glN, such that —a is 
the matrix transposition. Then SON is the subalgebra of a-fixed points in gl^r. 
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2. Twisted Yangian of the orthogonal Lie algebra 
2.1 . The associative algebra Y(glN,a) is a deformation of the universal enveloping 
algebra of the twisted polynomial current Lie algebra 

{A(x) £ glN[x] : a(A(xj) = A(-x)} . 

The deformation Y(glN,a) is not a Hopf algebra, but a coideai subalgebra in the 
Hopf algebra Y(gljy). The definition of the twisted Yangian Y(glN, a) was motivated 
by the works of Cherednik [2] and Sklyanin [19] on quantum integrable systems with 
boundary conditions. This definition was given by Olshanski in [17]. 

As in Subsection 1.1, let the indices i and j range over the set {1, . . . , N}. By-
definition, Y(glN, a) is the subalgebra in Y(glJV) generated by the coefficients of all 
formal power series N 

J2Tki(-x)Tkj(x) (2.1) 
k=i 

in x _ 1 . Due to (1.3), the subalgebra Y(glN,a) in Y(glJV) is a right coideal: 

A(Y(gl J V , a ) )cY(gl J V , a )®Y(gl J V ) . 

To give the defining relations for the generators of Y(glN,a), introduce the 
extended twisted Yangian X(glN,a). The unital associative algebra X(glN,a) has 
a family of generators Sy where a = 1,2,... . and i, j = 1, . . . , N. Put 

Sij(x) = öij • 1 + S^x-1 + S^x-2 + ... £ X(glN,a) [[x'1]]. (2.2) 

Defining relations for the generators Sy of the algebra X (gljy, a) can be written as 

(x2 - y2) • [Sij(x),SM(y)] = (x + y)- (Skj(x)Sa(y) - Skj(y)Sa(x)) 

- (x - y) • (Sik(x)Sji(y) - Ski(y)Sij(x)) + Ski(x)Sji(y) - Ski(y)Sji(x) -

All these relations can be written as a single reflection equation, see [7]. One can 
define a homomorphism TTN '• X(glN,a) —¥ Y(glN,a) by mapping the series Sij(x) 
to (2.1). The homomorpism TTN is surjective. As a two-sided ideal of X (glN, a), the 
kernel of the homomorphism TTN is generated by the coefficients of all series 

Sij(x) + (2x - l)Sij(-x) - 2xSji(x) (2.3) 

in x^1. This ideal is also generated by certain central elements of X (glN, a), see [7]. 
The algebra X(glN,a) admits an analogue of the automorphism £JV of Y(glN). 

Determine a formal power series S'y (x) in x^1 with the coefficients in X (glN, a) and 
the leading term o"y, by the system of equations 

JV 

Y^ sik (x) Skj (x) = öij where i, j = 1, . . . , N. 
k=i 
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Then one can define an involutive automorphism TJN of the algebra X(glN,a) by 
the assignment _ 

nN : Sij(x) ^ Sij(-x - f ). 

However, TJN does not determine an automorphism of Y(glN,a), because TJN does 
not preserve the ideal ofX(glN,a) generated by the coefficients of all series (2.3). 

For any formal power series f(x) £ C[[x-1]] with the leading term 1, the 
assignment Sy(x) H> f(x) • Sy(x) (2.4) 

defines an automorphism of the algebra X(glN,a). The defining relations of the 
algebra X(glN,a) imply that the assignment 

ßN : Sy (x) H> öij • 1 + 
Eij - EJi 

defines a homomorphism of associative algebras /3JV : X(glN,a) —¥ U(sojv). By-
definition, the homomorphism /3JV is surjective. Moreover, /3JV factors through TTN • 
Note that the homomorphism Y(glN,a) —¥ U(sojv) corresponding to /3JV , cannot be 
obtained from O.N '• Y(glN) —¥ U(glJV) by restricting to the subalgebra Y(glN,a), 
because the image ofY(glN,a) relative to O.N is not contained in the subalgebra 
U(SOJV) C U(glJV); see [11]. An embedding U(sojv) —t Y(glN,a) can be defined by 

Etj-Ejt^T^-T^, 

cf. (1.12). The homomorphism Y(glN,a) —¥ U(sojv) corresponding to /3JV, is then 
identical on the subalgebra U(sojv) C Y(glN,a). 

2.2. For any partition v with v[ ^ N, the irreducible polynomial gl^-module Vv can 
also be regarded as a representation of the complex general linear Lie group GLN-
Consider the subgroup ON C GLN preserving the standard symmetric bilinear form 
( , ) on C^ . The subalgebra SON C gljv corresponds to this subgroup. Note that 
the complex Lie group ON has two connected components. In [20] the irreducible 
finite-dimensional representations of the group ON are labeled by the partitions v of 
n = 0,1,2, . . . such that v[ + v2' ^ N. Denote by Wv the irreducible representation 
of ON corresponding to v. As sojv-module, Wv is irreducible unless 2v[ = N, in 
which case Wv is a direct sum of two irreducible sojv-modules. 

Choose any embedding of the irreducible representation Vv of the group GLN 
into the space (CN)®n. Take any two distinct numbers k,l £ {1, ...,n). By-
applying the bilinear form ( , ) to a tensor w £ (CN)®n in the fcth and Ith tensor 
factors, we obtain a certain tensor w £ (CN )® ("_2^. The tensor w is called traceless, 
if w = 0 for all distinct k and I. Denote by (CN)fn the subspace in (CN)®n 

consisting of all traceless tensors, this subspace is ON -invariant. Then Wv can be 
embedded into (CN)®n as the intersection Vv n (CN)®.n, see [20]. 

Let the indices i and j range over {1, . . . , N + M}. Choose the embedding 
of the Lie algebras gl^r and glM into gijv+M as in Subsection 1.2. It determines 
embeddings of groups GLN X GL M —̂  GLN+M and ON X OM —̂  OJV+M- Take any 
two partitions À and p such that A{ + X'2 ^ N + M and p[ + p'2 ^ M. Consider the 
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irreducible representations W\ and Wß of the groups OJV+M and OM respectively. 
The vector space Horn0M ( Wß , W\ ) (2.5) 

comes with a natural action of the group ON • This action of ON may be reducible. 
The vector space (2.5) is non-zero, if and only if Xk ^ Pk and X'k — p'k ^ N for 
each k = 1,2, . . . ; see [18]. Thus for a given N, the vector spaces (1.5) and (2.5) 
are zero or non-zero simultaneously. Further, for a given N, the dimension of (2.5) 
does not exceed that of (1.5). Our results provide an embedding of (2.5) into (1.5), 
compatible with the action of the orthogonal group ON in these two vector spaces. 

Denote by BJV(AT) the subalgebra of OM -invariants in the universal enveloping 
algebra Y(SON+M)- Then Bjv(Af) contains the subalgebra U(sojv) C Y(SON+M), 

and is contained in the centralizer of the subalgebra U(SOM) C Y(SON+M)- The 
algebra Bjv(Af) naturally acts in the vector space (2.5). The Bjv(Af)-module (2.5) 
is either irreducible, or splits into a direct sum of two irreducible Bjv(Af)-modules. 
In the latter case, (2.5) is irreducible under the joint action of the algebra Bjv(M) 
and the subgroup ON C OJV+M-

For every non-negative integer M, Olshanski [17] defined a homomorphism 
Y(gljvj<7) —¥ Bjv(AT). Along with the subalgebraof OJV+M-invariants in U(SOJV+M)J 

the image of this homomorphism generates the algebra Bjv(M). We use a version 
of this homomorphism for the algebra X(glN,a), this version is denoted by /3JVM-

Consider the extended twisted Yangian X(glN+M,a), where —a is the matrix 

transposition in gljv+M- The subalgebra in X(glN+M,a) generated by Sy where 
i,j = 1, ... ,N, by definition coincides with X(glN,a). Denote by -ipM this natural 
embedding X(glN,a) —¥ X(glN+M,a). Consider also the involutive automorphism 
r]N+M of the algebra X(glN+M,a). The image of the homomorphism 

ßN+M ° I]N+M ° fiu : X(glN,a) - • U(sojv+M) 

belongs to the subalgebra Bjv(Af) c Y(SON+M)- Moreover, this image along with 
the subalgebra of OJV+M-invariants in Y(SON+M), generates Bjv(Af); see [9]. We 
use the homomorphism X(glN,a) —¥ Y(SON+M) 

ßNM = ßN+M ° 1]N+M ° 1pM° VN- (2.6) 

When M = 0, the homomorphism (2.6) coincides with /3JV . The intersection of the 
kernels of all homomorphisms ß NO , ß NI , ß N2, ••• is contained in the kernel of 7TJV-

2.3. The Bjv(AT)-module (2.5) depends on the partitions À and p via the skew 
Young diagram UJ. Using the homomorphism /3JVM : X(glN,a) —¥ Bjv(Af), regard 
(2.5) as X(glJV,o-)-module. Unlike the Y(glJV)-module Vu(z), this X(glJV,o-)-module 
may depend on the choice of the integer M, such that À{ + À2 ^ N + M and 
M1 + M2 ̂  M. Denote this X(glJV,o-)-module by WU(M). Note that when z fi^O, the 
automorphism TZ of Y(glJV) does not preserve the subalgebra Y(glN,a) C Y(glN). 
There is no analogue of the automorphism TZ with z ^ 0 for the algebra X (glN, a). 

The Ojv+M-invariant elements of U(SOJV+M) act in (2.5) as scalar operators. 
Thus the X(glJV,o-)-module WU(M) is either irreducible, or splits into a direct 
sum of two irreducible X (glN, o-)-modules. In the latter case, it becomes irreducible 
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under the joint action of the algebra X (glN, a) and the subgroup Ojv C OJV+M- Our 
main result is an explicit realization of the X(glJV,o-)-module WU(M), similar to 
the realization of the elementary Y(gl JV)-module given by Theorem 2. Our explicit 
realization is compatible with the action of the group OJV in WU(M). 

Take the s tandard orthonormal basis e i , . . . , ejv in C ^ , so tha t (e, ,ej ) = o"y. 
The linear operator N 

u®v^r (u,v) • ^2 et ® eì (2-7) 
«=i 

in CN ® CN commutes with the action of OJV- Take the complex variables ti, • • • ,tn 

with the same constraints as in Proposition 1. Consider the ordered product over 
the pairs (k,l), —• , „ v 

TT M <iM ) (2 8) 
i J ^ V ck + ci + tk + ti + N + MJ 

where Qki is the linear operator in (CN)®n, acting as (2.7) in the fcth and Ith tensor 
factors, and acting as the identity in the remaining n — 2 tensor factors. Here the 
pairs (k,l) are ordered lexicographically, as in (1.9). Let us now multiply (2.8) by 
(1.9) on the right, and consider the result as an operator-valued rational function 
of the constrained variables ti, • • • ,tn. 

P r o p o s i t i o n 3 . At ti = ... = tn = —\ the ordered product of (2.8) and (1.9) 
has the value 

Qkl 
IT i 
(M) 

Ck + ci + N + M -1 

En-T\ ( 1 Q?T » , , ) ; (2-9) 
1 1 1 r.4.r,4.N4-M-\ì, X ' (M) 

ck + ci + N + M - 1 

the ordered products in (2.9) are taken over all pairs (k,l) such that the numbers k 
and I appear in different columns of the tableau 0 . 

Denote the operator (2.9) by FQ(M). If k and I appear in different columns 
of 0 , then 

Ck + ci > 3 - Ai - À2 > 3 - N - M. 

Hence each of the denominators in (2.9) is non-zero for any choice of p. The algebra 
of operators in (CN)®n generated by all Pu and Qki with 1 ^ k < I ^ n, is called 
the Brauer centralizer algebra; see [1]. The operator FQ(M) belongs to this algebra. 
Note tha t the image of the operator FQ(M) is contained in the image of EQ . 

Suppose tha t M = 0, then p = ( 0 , 0 , . . . ) . In this special case, the image of 
the operator EQ in (CN)®n is equivalent to Y\ as a representation of the group 
GLN, see (1.10). It tu rns out tha t the image of the operator FQ(0) consists of all 
traceless tensors from the image of EQ . In particular, the image of Fn (0) in (CN)®n 

is equivalent to W\ as a representation of the group OJV- Even in the special case 
M = 0, the formulas (2.9) for the operator FQ(M) seem to be new; cf. [20]. 
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2.4. Let us extend a to an automorphism of the associative algebra \J(gtN). For 
any z £ C, define the twisted evaluation module V(z) over the algebra Y(glJV) by-
pulling the standard action of the algebra \J(gtN) in the vector space C^ back 
through the composition of homomorphisms 

a o aN ° T-z : Y(glN) -+ Y(glN). 

The evaluation module V(z) and the twisted evaluation module V(z) over Y(glN), 
have the same restriction to the subalgebra Y(glN,a) C Y(glN); see (2.1). 

For any A and p, the operator FQ(M) has the following interpretation in terms 
of the restrictions to Y(glN,a) of tensor products of evaluation modules over the 
Hopf algebra Y(glN); cf. Proposition 2. For each k = 1, . . . , n put dk = Ck + ^ -\-
We assume that A{ + X'2 ^ N + M and p[ + p'2 ^ M. 

Proposition 4. The operator FQ(M) is an intertwiner of Y(glN,a)-modules 

V(di) ®...® V(dn) —y V(di) ®...® V(dn). 

By Proposition 4, the image of FQ(M) is a submodule in the restriction of the 
tensor product of evaluation Y(glJV)-modules V(di)®... ® V(dn) to the subalgebra 
Y(gljvj<7) C Y(glN). Denote this Y(glJV,o-)-submodule by WQ(M). It is also a 
submodule in the restriction of the Y(glJV)-module Vn(4f — | ) to Y(glN,a). 

Theorem 3. a) By pulling the X (glN, a) -module WU(M) back through the 
automorphism of X(glN,a) defined by (2.4) where f(x) = fß(x — ^- + \), we get an 
X(glN,a)-module that factors through homomorphism n : X(glN,a) —¥ Y(glN,a). 

b) This Y (gl N, a)-module, corresponding to Wl0(M), is equivalent to WQ(M). 

The vector space (2.5) of the X(glJV,o-)-module WU(M) comes with a natural 
action of the group OJV- The action of the group OJV in (CN)®n preserves the 
image of the operator FQ(M), because FQ(M) commutes with this action. Thus 
the vector space of the Y(glJV,o-)-module WQ(M) also comes with an action of OJV-
The proof of Theorem 3 is given in [12]. It provides an Ojv-equivariant isomorphism 
between the Y(glJV, o-)-module corresponding to WU(M), and the Y(glN, o-)-module 
WQ(M). This isomorphism is unique, up to a scalar multiplier. The image of the 
operator FQ(M) is irreducible under the joint action of Y(glN,a) and OJV-

Thus we can identify the vector space (2.5) with the image of the operator 
FQ(M) uniquely, up to multiplication in (2.5) by a non-zero complex number. Using 
Theorem 2, we can identify the vector space (1.5) with the image of EQ, again 
uniquely up to rescaling. Since the image of FQ(M) is contained in that of EQ , we 
then obtain a distinguished embedding of the vector space (2.5) into (1.5). 

Theorem 3 provides an explicit realization of the X(glJV,o-)-module WU(M) 
as a subspace in (CN)®n. This theorem also turns the vector space (2.5) into a 
module over the twisted Yangian Y(glN, a), equivalent to WQ(M). The limited size 
of the present article does not allow us to discuss here the analogues of the results 
of [14] and [15] for the Y(glJV,o-)-modules, obtained in this particular way; cf. [13]. 
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This is a report on the global aspects of the Langlands-Shahidi method 
which in conjunction with converse theorems of Cogdell and Piatetski-Shapiro 
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1. Preliminaries 
Let F be a number field. For each place v of F, let Fv be its completion at 

v. Assume v is a finite place and let Ov denote the ring of integers of Fv. Denote 
by Pv its maximal ideal and fix a uniformizing parameter wv generating Pv. Yet 
[Ov : Pv] = qv and fix and absolute value | |„ for which \wv\v = q^1. 

Yet G be a quasisplit connected reductive algebraic group over F. Fix an F-
Borel subgroup B = T U , where T is a maximal torus of B and U is its unipotent 
radical. Let A 0 C T be the maximal split subtorus of T . Throughout this article, 
P is a maximal parabolic subgroup of G , defined over F, with a Levi decomposition 
P = M N , where M is a Levi subgroup of P and N is its unipotent radical. We will 
assume P is s tandard in the sense tha t N c U . We fix M by assuming T c M . 
We finally use W to denote the Weyl group of A 0 in G. 

Let Ap denote the ring of adeles of F and for every algebraic group H over F, 
let H = H(Ap). Considering H as a group over each Fv, we then set Hv = H(FV). 

Yet A denote the split component of M , i.e., the maximal split subtorus of 
the connected component of the center of M . For every group H defined over F, let 
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X(H)p be the group of F-rational characters of H. We set o = Hom(X(M)F,R). 
Then o* = X(M)p®zR = X(A)p®zR and oj = o* ®R C is the complex dual of o. 

When G is unramified over a place v, we let Kv = G(0„) . Otherwise, we shall 
fix a special maximal compact subgroup Kv C Gu for which Gv = PVKV = BVKV. 
Yet K = ®VKV Then G = PK = BK. Yet KM = K n M. 

For each v, the embedding X(M.)p ^y X(M.)pv induces a map 

av = Hom(X(M)Fi,,R) - • o. 

There exists a homomorphism HM : M —¥ a defined by 

exp(x,HM(m)) = JJ_\x(mv)\v 
V 

for every \ € X(M.)p and m = (mv). We extend H M to Hp on G by making it 
trivial on N and K. 

Yet a denote the unique simple root of A in N. It can be identified by a 
unique simple root of A 0 in U. If pp is half the sum of F-roots in N, we set 
5 = (pp,ct)^1pp £ a*, where for each pair of non-restricted roots a and ß of T, 
(a,ß) = 2(a,ß)/(ß,ß) is the Killing form. 

Given a connected reductive algebraic group H over F , let LH be its L-group. 
Considering H as a group over Fv, we then denote by LHV its L-group over Fv. 
Yet LH° = LH® be the corresponding connected component of 1. We then have a 
natural homomorphism from LHV into LH. We let r)v : LMV —t LM be this map 
for M (cf. [4]). 

Let LN be the L-group of N defined naturally in [4]. Let Ln be its ( complex ) 
m 

Lie algebra, and let r denote the adjoint action of LM on Ln. Decompose r = 0 rt 
~ i=1 

to its irreducible subrepresentations, indexed according to the values (a, ß) = i as 
ß ranges among the positive roots of T. Alore precisely, Xßy £ Ln lies in the space 
of i'i if and only if (a,ß) = i. Here Xßy is a root vector attached to the coroot ßv, 
considered as a root of the L-group. The integer m is equal to the nilpotence class 
of Ln. We let ri:V = rt • r/v for each i (cf. [34,40,41]). 

If A denotes the set of simple roots of A0 in U, we use 9 C A to denote the 
subset generating Al. Then A = 6 U {a}. There exists a unique element WQ £ W 
such that WQ(9) C A, while wo(ct) < 0. We will always choose a representative WQ 
for wo in G(F) and use WQ to denote each of its components. 

2. Eisenstein series and .L-funetions 

Let n = ®vnv be a cusp form on M. Given a F^M-finite function ip in the 
space of ir, we extend (p to a function fi> on G as in Section 2 of [39] as well as in 
[17], and for s £ C, set 

</>s(9) = tp(g)exp{sà + pp,Hp(g)). (2.1) 
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The corresponding Eisenstein series is then defined by 

E(s,^,g,P)= J2 <M^) (2-2) 
7GP(F)\G(F) 

(cf. [17,33,34,35]). 
Let I(s,ir) = ®vI(s,nv) be the representation parabolically induced from n® 

exp(sa,HP0). 
Yet M ' be the Levi subgroup of G generated by w(9). There exists a parabolic 

subgroup P ' D B which has M ' as a Levi factor. Let N ' be its unipotent radical. 
Given / in the space of I(s,n) and Re(s) > > 0, define the global intertwining 
operator M(s,ir) by 

M(s,n)f(g)= f f(ufi1n'g)dn' (g£G). (2.3) 
JN' 

Observe that if / = ®vfv, then for almost all v, fv is the unique Kv-fixed functions 
normalized by fv(ev) = 1. Finally, if at each v we define a local intertwining 
operator by 

A(s,nv, w0) fv(g) = / fv(wô1n'g)dn', (2.4) 

then 
M(S,TT) = ®VA(S,TTV,WQ). (2.5) 

It follows form the general theory of Eisenstein series that the poles of 
E(s,ip,g,P), as fi> and g vary, are the same as those of M(s,ir), and for Re(s) > 0, 
they are all simple and finite in number, with none on the line Re(s) = 0 (cf. 
[17,33,35]). 

By construction each <j)s belongs to the space of I(s,n). Consequently, one 
can consider M(s,n)<j>s which is a member of I(—s, wo(irj). The Eisenstein series 
E(s,ip,g,P) then satisfies the functional equation 

E(s,cj,s,g,P) = E(-s,M(s,7T)cj,s,g,P'). (2.6) 

Suppose that G splits over L, where L is a finite Galois extension of F . For 
every unramified v, there exists a unique Frobenius conjugacy class in Gal(Lw/Fv), 
w\v which we denote by TV. Moreover, if v is such that nv and G are both unramified, 
then there exists and LM semisimple conjugacy class in LM° x TV which determines 
nv uniquely ([4,40]). We may identify, as we in fact do, this conjugacy class with 
an element Av £ LT° which may be assumed to be fixed by TV (cf. §6.3 and 6.5 of 
[4]). The local Langlands L-function defined by nv and rv,rv = r • r/v, where r is a 
complex analytic representation of LM, is then defined to be (cf. [4,34,40]), 

L(s,7Tv,rv) = det(I -rv(Av X T , ) ? ; 1 ) " 1 . (2.7) 

Let S be a finite set of places of F , including all the archimedean ones, such 
that for every v $ S, nv and G are both unramified. Set 

Ls(s,n,r) = J J L(s,nv,rv). (2.8) 
v<£S 
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The main result of [34, also see 40] is that 

M(s,n)f = ®vesA(s,nv,w0)fv®®v(sfv 
m 

x J J Ls(is, n, n)/Ls(l + is, n, n), (2.9) 
«=i 

where / = ®vfv is such that for each v $ S, fv is the unique Kv-fixed function 
in I(s,nv) normalized by fv(ev) = 1 and for each i, rt denotes the contragredient 
of ì'ì,ìJ= 1, • • • ,m, the irreducible components of the adjoint action of LM or LN. 
Here /„ is the F^-fixed function in the space of I(-s,wo(irvj), normalized the same 
way. Moreover /„ and /„ are identified as elements in spherical principal series. 

3. Generic representations and the non-eonstant 
term 

Suppose F is a field, either local or global, and G is as before, with a Borei 
subgroup B = T U over F . Fix an F-splitting {Xa>}, i.e., a collection of root 
vectors as a' ranges over simple roots of T in U which is invariant under the action 
of F F = Gal(F/F) . This then determines a map <j> form U to EGa, ip(u) = (xai)ai, 
where xai is the «'-coordinate of« with respect to {Xa>}. Yet {KQ /} be a collection 
of elements in F such that <T(KQ/) = K1<rai for every a £ Yp. Set / («) = J2 Ka'Xa'-

a' 
Observe that / is F-rational. If F is global, we extend / to a map on TJ(Ap). 
Yet fip be a non-trivial character of F (F \ Ap if F is global). A character \ 
of U(F)(U(F) \ TJ(Ap) if F is global) is called non — degenerate or generic if 
x(u) = tp(f(u)),u£ U(F)(« G U(F) \ U ( A F ) if F is global). 

We now continue to assume F is a number field. Let \ = ®vXv be a generic 
character of U(F) \U. 

Yet U° = U n M and let \ d^so denote the restriction of \ to U°. Choose a 
function ip in the space of n = ® „ 7r„, a cuspidal representation of M, and U° ( F) \ U° 
being compact, set 

Wv(m,) = / (p(vm)x(u)du. (3.1) 
Jv°(F)\u° 

We shall say n is (globally) x -g e n e r i c if Wv ^ 0 for some ip. The representation 
n is (globally) generic if it is x-generic with respect to some generic \- Then each 
nv will be Xn-generic in the sense that there exists a non-zero Whittaker functional 
A„ i.e., a continuous (in the semi-norm topology if v = oo) functional satisfying 
(nv(u)x,Xv) = Xv(u)(x,Xv),x £ 1ï(irv),u £ U®. Choosing ip appropriately, i.e., if 
ip = ®vipv,ipv £ H(nv), then Wv(m) = Hv(nv(mv)ipv,Xv), for m = (mv). 

Given /„ £ V(s,nv), the space of I(s,nv), define 

Xxfis,nv)(fv)= (fv(w^n'),Xv)x(n')dn', (3.2) 
J N'„ 
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a canonical Whittaker functional for I(s, nv). Changing the splitting we now assume 
Kai = 1. It now follows from Rodier's theorem that there exists a complex function 
(of«), CXv(s,irv), depending on nv,Xv a n d wo such that (cf. [41,42,43]) 

XxA
s^v) = CXv(s,nv)XXv(s,w0(nv)) • A(s,nv,w0). (3.3) 

This is what we call the Local Coefficient attached to s,nv,Xv a n d wo- The choice 
of wo is now specified by our fixed splitting as in [43]. 

Finally, if 

Ex(s,<j>s,g,P) = E(s,<j>s,ug,P)x(u)du (3.4) 
J\J(F)\U 

is the x-nonconstant term of the Eisenstein series, then ([7,41,42]) 

m 

Ex(s,<j>„e,P)= YlW^JlLsil + is^ri)-1, (3.5) 
ves ì=i 

where now S is assumed to have the property that if v $ S, then Xv is also unram­
ified. 

Applying Definition (3.4) to both sides of (2.6), using (3.5) now implies the 
crude functional equation ([40,41]) 

m m 

JJ_Ls(is,ir,ri) = J J CXv(s,nv) J J Ls(l -is,n,ri). (3.6) 

4. The main induction, functional equations and 
multiplicativity 

To prove the functional equation for each rt with precise root numbers and 
L-function, we use (cf. [42]): 

Propos i t ion 4 .1 . Given 1 < i < m, there exists a quasisplit guoup G, over 
F, a maximal F-parabolic subgroup P , = MjNj, both unramified for every v $ S, 
and a cuspidal automorphic form n' of Mt = M.i(Ap), unramified for every v ^ S, 

m' 
such that if the adjoint action r' of LMt on Ln, decomposes as r' = Q) r'-, then 

3=1 

Ls(s,n,ri) = Ls(s,n',r[). 

Moreover m' < m. 
Remark 4.2. As was observed by Arthur [1], each Mj can be taken equal 

to M and n' = n. In fact each G, can be taken to be an endoscopic group for G, 
sharing M as a Levi subgroup. We shall record this as 

Propos i t ion 4.3. Given i, 1 < i < m, there exist a quasisplit connected 
reductive F-group with M as a Levi subgroup and m' < m for which r[ = rt. 
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Using this induction and local-global arguments (cf. Proposition 5.1 of [42]), 
it was proved in [42] that 

Theo rem 4.4. (Theorems 3.5 and 7.7 of [42]) a) For each i, 1 < i < m, 
and each v, there exist a local L-function L(s,irv,ri:V), which is the inverse of a 
polynomial in q^s whose constant term is 1, if v < oo, and is the Artin L-function 
attached to rt • ip'v, where tp'v : W'F —¥ LMV is the homomorphism of the Deligne-
Weil group into LMV parametrizing nv, if either v = oo or nv has an Iwahori-fixed 
vector; and a root number e(s,/Kv,ri v,ipv) satisfying the same provisions, such that 

if 
L(s,n,ri) = JJ_L(s,Trv,ri:V) (4.1) 

and 
e(s,n,ri) = JJ_e(s,Trv,ri:V,fiv), (4.2) 

V 

L(s,/K,ri) = e(s,/K,ri)L(l — s, 7r,Fj). (4.3) 

6) Let 

-y(s,irv,ri:V,fiv) = e(s,Trv,ri:V,fiv)L(l - s,nv,riiV)/L(s,nv,riiV). (4.4) 

Then each /y(s,irv,riV,fiv) is multiplicative in the sense of equation (3.13) in Theo­
rem 3.5 of [42]. (See below.) Ifnv is tempered, then-f(s,irv,ri:V,fiv) determines the 
corresponding root number and L-function uniquely and in fact that is how they are 
defined. Suppose nv is non-tempered, then each L(s, Trv,ri:V) is determined by means 
of the analytic continuation of its quasi-tempered Langlands parameter and multi­
plicativity of corresponding 7 -functions. More precisely, if av is the quasitempered 
Langlands parameter that gives nv as a subrepresentation, then 

L(s,TTv,ri}V) = J J L(s,Wj(av),r'i{jhv), (4.5) 

where the notation is as in part 3) of Theorem 3.5 of [42], provided that every 
L-function on the right hand side is holomorphic for Re(s) > 0, whenever av is 
(unitary) tempered (Conjecture 7.1 of [42], proved in many cases [3.6.42]). The 
set Si,Wj and ifi.-. are defined as follows in which we drop the index v. Assume 
n C LradMe)(jve)nM)tM(T® 1J where M§(N^nM) is a parabolic subgroup o /M defined 
by a subset 9 C A, the set of simple roots of A 0 . Let 9' = WQ(9) C A and fix a 
reduced decomposition WQ = w„-i • • • wi of WQ (Lemma 2.1.1 of [41])- For each j , 
there exists a unique root aj £ A such that Wj(ctj) < 0. For each j , 2 < j < n — 1, 
let Wj = Wj-i • • • wi- Set wi = 1. Let iij = 9j U {aj}, where 9i =9, 9n = 9', 
and 9j+i = Wj(9j), 1 < j < n — 1. Then Mf̂ . contains M^.(N^. n M Q . ) as a 
maximal parabolic subgroup andwj(a) is a representation of M$i. The L-group LM$ 
acts on the space of ri, but no longer necessarily irreducibly. Given an irreducible 
constituent of this action, there exists a unique j , 1 < j < n — 1, which under Wj 
is equivalent to an irreducible constituent of the action of LM$j on the Lie algebra 
of the L-group of N^. n M n r Let i(j) be the index of this subspace and denote by 
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ìfi,-. the action of LM$j on it. Finally, let Si denote the set of all such j's for a 
given i. (See Theorem 3.5 and Section 7 of [42]. Also see the discussion just before 
Proposition 5.2 of [2.8].) 

Remark 4.5. If G = G L t + „ , M = GLt x GLn and IT = ®vnv and n' = 
®VTT'V are cuspidal representations of GLt(Ap and GLn(Ap), then m = 1 and 
L(s,n ® n',ri) is precisely the Rankin-Selberg product L-function L(s,n x n') at­
tached to (7T, 7r') (cf. [21,43,44]). In this case each of the local L-functions and 
root numbers are precisely those of Artin through parametrization which is now 
available for GLN(FV) for any N due to the work Harris-Taylor [18] and Henniart 
[19]. As we explain later, this will also be the case for many of our local factors as 
a result of our new cases of functoriality which we shall soon explain. This is quite 
remarkable, since our factors are defined using harmonic analysis, as opposed to the 
very arithmetic nature of the definition given for Artin factors. This is a perfect 
example of how deep Langlands' conjectures are. 

Remark 4.6. The multiplicativity of local factors, in the sense of Theorem 
3.4, are absolutely crucial in establishing our new cases of functoriality throughout 
our proofs [12,23,28]. In fact, not only do we need them to prove our strong transfers, 
they are also absolutely necessary in establishing our weak ones. 

5. Twists by highly ramified characters, holomor-
phy and boundedness 

While the functional equations developed from our method are in perfect shape 
and completely general, nothing that general can be said about the holomorphy 
and possible poles of these L-functions. On the other hand, there has recently been 
some remarkable new progress on the question of holomorphy of these L-function, 
mainly due to Kim [24,25,31]. They rely on reducing the existence of the poles 
to that of existence of certain unitary automorphic forms, which in turn points to 
the existence of certain local unitary representations. One then disposes of these 
representations, and therefore the pole, by checking the corresponding unitary dual 
of the local group. In view of the functional equation, this needs to be checked only 
for Re(s) > 1/2. In fact, to carry this out, one needs to verify that: 

Certain local normalized (as in [41]) intertwining operators 

are holomorphic and non-zero for Re(s) > 1/2, (5.1) 

in each case [24,25,31]. The main issue is that one cannot always get such a con­
tradiction and rule out the pole. In fact, there are many unitary duals whose 
complementary series extend all the way to Re(s)=l. 

On the other hand, if one considers a highly ramified twist -nn (see Theorem 
5.1 below) of ir, then it can be shown quite generally that every L(s,irrj,ri) is entire 
(cf. [45] for its local analogue). In fact, if n is highly ramified, then wo(7r^) ^ -nn, 
whose negation is a necessary condition for M(s,irrj) to have a pole, a basic fact 
from Langlands spectral theory of Eisenstein series (Lemma 7.5 of [33]). This was 
used by Kim [24], and in view of the present powerful converse theorems [8,9], that 
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is all one needs to prove our cases of functoriality [12,23,28,30]. To formalize this, 
we borrow the following proposition (Proposition 2.1) from [28], in order to state 
the result. It is a consequence of our general induction (Propositions 4.1 and 4.3) 
and [24]. 

Theorem 5.1. Assume (5.1) is valid. Then there exists a rational character 
£ £ X(M.p) with the following property: Let S be a non-empty finite set of finite 
places of F. For every globally generic cuspidal representation n of M = M.(Ap), 
there exist non-negative integers fv, v £ S, depending only on the local central 
characters of nv for all v £ S, such that for every grössencharacter n = ®vr/v of F 
for which conductor of r)v, v £ S, is larger than or equal to fv, every L-function 
L(s,TT„,i'i), i = 1, • • • ,rn, is entire, where -nn = n® (n • £). The rational character £ 
can be simply taken to be £(m) = det(Ad(ro)|n), m £ M, where n is the Lie algebra 
o/N. 

The last ingredient in applying converse theorems is that of boundedness of 
each L(s,/K,ri) in every vertical strip of finite width, away from its poles, which 
are finite in number, again using the functional equation and under Assumption 
(5.1). This was proved in full generality by Gelbart-Shahidi [15], using the theory 
of Eisenstein series via [33] and [36]. The main theorem of [15] (Theorem 4.1) is in 
full generality, allowing poles for L-functions. Here we will state the version which 
applies to our -nn. 

Theorem 5.2. Under Assumption (5.1), let £ and n be as in Theorem 5.1. 
Assume n is ramified enough so that each L(s,irrj,ri) is entire. Then, given a finite 
real interval I, each L(s,irrj,ri) remains bounded for all s with Re(s) £ I. 

The main difficulty in proving Theorem 5.2 is having to deal with reciprocals 
of each L(s,/K,ri), 2 < i < m, near and on the line Re(s)=l, the edge of the critical 
strip, whenever m > 2, which is unfortunately the case for each of our cases of 
functoriality. We handle this by appealing to equations (3.5) and estimating the 
non-constant term (3.4) by means of [33,36]. 

6. New cases of functoriality 
Langlands functoriality predicts that every homomorphism between L-groups 

of two reductive groups over a number field, leads to a canonical correspondence 
between automorphic representations of the two groups. The following instances of 
functoriality are quite striking and are consequences of applying recent ingenious 
converse theorems of Cogdell and Piatetski-Shapiro [8,9] to certain classes of L-
functions whose necessary properties are obtained mainly from our method. (See 
[20] for an insightful survey.) We refer to [11] for more discussion of these results and 
the transfer from GL2(Ap)xGL2(Ap) to G L 4 ( A F ) , using Rankin-Selberg method 
by Ramakrishnan [37]. (See [23] for a proof using our method.) 

6.a. Let ni = ®VTTIV and 7T2 = ®vn2v be cuspidal representations of GL2(Ap) 
and GLs(Ap), respectively. For each v, let piv be the homomorphism of Deligne-
Weil group into GLj+i(C), parametrizing mv, i = 1,2. Let Trit, M TT2V be the 
irreducible admissible representation of GL6(FV) attached to piv ® p2V via [18,19]. 
Set 7Ti M 7T2 = ®V(TTIV M n2v), an irreducible admissible representation of GL6(Ap). 
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Next, let n = m, nv = mv and pv = piv. Yet Sym3(iTv) be the irreducible 
admissible representation of GLfiFv) attached to Sym3(pv) and set Sym3(7r) = 
®vSym3(TTV), an irreducible admissible representation of GLfiAp). We have: 

Theorem 6.1 [28,30]. a) The representations ni M 7r2 and Sym3(n) are 
automorphic. 

b) Sym3 (n) is cuspidal, unless n is either of dihedral or of tetrahedral type. 
In view of [9], one needs to show that L(s, (ni M n2) x (a ® nj) is nice in the 

sense that it satisfies the contentions of Theorems 4.4.a, 5.1 and 5.2 for a highly-
ramified grössencharacter n, where a is a cuspidal representation of GLn(Ap), n = 
1,2,3,4, which is unramified in every place v where either niv or n2v is ramified. 
In particular for each v, one of TTiv,ir2V or av is in the principal series. It then 
follows from multiplicativity (cf. Theorem 4.4) and the main results of [43,44], 
that these L-functions are equal to certain L-functions defined from our method. 
Alore precisely, we can take (G,M) to be: a) G = SL5, M ^ = SL2 x SL3; b) 
G = Spin(lO), MD = SL3 x SL2 x SL2; c) G = ES

6
C, MD = SL3 x SL2 x SL3; 

d) G = Ffc, M ß = SL3 x SL2 x SL4, according as n = 1,2,3,4, respectively. 
This leads to a proof that ni M 7r2 is weakly automorphic. The strong transfer 
requires a lot more work, involving base change, both normal [2] and non-normal 
[22], and finally a local result [5]. Automorphy of Sym3(7r) is a consequence of 
applying the first part to (7r,Ad(7r)), where Ad(7r) is the adjoint of n, established 
by Gelbart-Jacquet [14]. It does not require the use of [5]. 

Observe that we have in fact proved that the homomorphisms GL2(C) ® 
GLfiC) C GL6(C) and Sym3: GL2(C) —¥ GLfiC) are functorial. Neither are 
endoscopic. 

6.b. Let II = <8>„n„ be a cuspidal representation of GLfiAp) and let A2 : 
GL4(C) —¥ GL6(C) be the exterior square map. Also with n as in 6.a, let Sym4(7r) = 
®vSym4(TTV), where Sym4 (7^) is attached to Sym4(pv). Then 

Theorem 6.2 (cf. [23]). a) The map A2 is weakly functorial, in the sense 
that there exists an automorphic form on GL6(Ap) whose local components are 
equal to A^n^) for all v, except if v\2 or v\3. Here A^n^) is defined by the local 
Langlands conjecture [18,19]. 

b) Sym (TT) is an automorphic representation ofGL5( i F , 

We point out that b) is obtained by applying a) to Sym (TT). a) is proved by-
applying our method to Spin groups (Case Dn — 1 of [40], n = k + A, k = 0,1,2,3). 

Proposition 6.3 (cf. [29]). Sym4(Tr) is cuspidal unless TT is either of dihe­
dral, tetrahedral or octahedral type. 

Let n = ®vnv be a cusp form on GL2(Ap). For each unramified v, let av and 
ßv be the Hecke eigenvalues of nv. Then as corollary to Proposition 6.3 we have 
the following striking improvements towards Ramanujan and Selberg conjectures. 

Corollary 6.4. a) (cf. [29]) Assume F is an arbitrary number field. Then 
qv1/9 < K | and \ßv\ < ql/9. b) (cf. [27]). Assume F = Q. Then p-7/M < \ap\ 
and \ßp\ < p 7 / 6 4 . Similar estimates are valid for the Selberg conjecture. More 
precisely, the smallest positive eigenvalue Ai (F) of the Laplace operator on L2 (F n) 

975 
for every congruence subgroup Y satisfies Xi(Y) > = 0.2380 • • • 

4096 
6.C. Let i : Sp2n(C) ^ GL2„(C) be the natural embedding. Let TT = ®VTTV 
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be a generic cuspidal representation of S02n+i(Ap). For each unramified v, let 
{Av} C Sp2n(C) be the Hecke-Frobenius conjugacy class parametrizing TTV. Yet 
ì(TTV) be the unramified representation of GL2n(Fv) attached to {i(Av)}. Then the 
main theorem of [12] proves: 

Theorem 6.5 [12]. The embedding i is weakly functorial, i.e., there exist an 
automorphic representation of GL2n(Ap) whose components are equal to ì(TTV) for 
almost all v. 

This is proved by applying our method to maximal parabolics of appropriate 
odd special orthogonal groups (Case Bn of [40]). The strong transfer is now also 
established by Ginzburg-Rallis-Soudry [16] as well as Kim [26] by building upon 
Theorem 6.5. 

Final Comments. Many other cases are in progress. Among them are a proof 
of the existence of Asai transfer [32] using our method, which was originally proved 
by Ramakrishnan [38], using the Rankin-Selberg method. This is the first case where 
one needs to use quasisplit groups. Since the issue of stability of root numbers [10] 
(cf. [11]) seems to be close to being settled by means of our method [46], many others 
transfers should now be available. A similar approach for nongeneric representations 
was initiated in [13]. 
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Abstract 

I will survey some results in the theory of modular representations of a 
reductive p-adic group, in positive characteristic tfip and I = p. 
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Introduction The congruences between automorphic forms and their appli­
cations to number theory are a motivation to study the smooth representations of a 
reductive p-adic group G over an algebraically closed field R of any characteristic. 
The purpose of the talk is to give a survey of some aspects of the theory of R-
representations of G. In positive characteristic, most results are due to the author; 
when proofs are available in the littérature (some of them are not !), references will 
be given. 

A prominent role is played by the unipotent block which contains the trivial 
representation. There is a finite list of types, such that the irreducible representa­
tions of the unipotent block are characterized by the property that they contain a 
unique type of the list. The types define functors from the ^-representations of G 
to the right modules over generalized affine Hecke algebras over R with different 
parameters; in positive characteristic £, the parameters are 0 when £ = p, and roots 
of unity when tfip. 

In characteristic 0 or tfip, for a p-adic linear group, there is a Deligne-Langlands 
correspondence for irreducible representations; the irreducible in the unipotent block 
are annihilated by a canonical ideal J; the category of representations annihilated 
by J is Alorita equivalent to the affine Schur algebra, and the unipotent block is 
annihilated by a finite power Jk. 

* Institut de Mathématiques de Jussieu, Université de Paris 7, France. E-mail: 
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New phenomena appear when £ = p, as the supersingular representations dis­
covered by Barthel-Livne and classified by Ch. Breuil for GL(2,QP). The modules 
for the affine Hecke algebras of parameter 0 and over R of characteristic p, are 
more tractable than the ^-representations of the group, using that the center Z of 
a Z[q]-affine Hecke algebra H of parameter q is a finitely algebra and H is a gener­
ated ^-module. The classification of the simple modules of the pro-p-Iwahori Hecke 
algebra of GL(2, F) suggests the possibility of a Deligne-Langlands correspondence 
in characteristic p. 

Complex case 
Notation. C is the field of complex numbers, G = G (F) is the group of rational 

points of a reductive connected group G over a local non archimedean field F with 
residual field of characteristic p and of finite order q, and Mode G is the category 
of complex smooth representations of G. All representations of G will be smooth, 
the stabilizer of any vector is open in G. An abelian category C is right (left) 
Alorita equivalent to a ring A when C is equivalent to the category of right (left) 
A-modules. 

The modules over complex affine Hecke algebras with parameter q are related 
by the Borei theorem to the complex representations of reductive p-adic groups. 

Borei Theorem The unipotent block of Mode G is (left and right) Morita 
equivalent to the complex Hecke algebra of the affine Weyl group of G with param­
eter q. 

The proof has three main steps, in reverse chronological order, Bernstein a) 
[B] [BK], Borei b) [Bo], [C], Iwahori-Alatusmoto c) [IM], [Al]. 

a) ( l . a . l ) Mode G is a product of indecomposable abelian subcategories "the 
blocks". 

The unipotent block contains the trivial representation. The representations 
in the unipotent block will be called unipotent, although this term is already used 
by Lusztig in a different sense. 

( l .a .2) The irreducible unipotent representations are the irreducible subquo­
tients of the representations parabolically induced from the unramifìed characters 
of a minimal parabolic subgroup ofG. 

b) Let J be an Iwahori subgroup of G (unique modulo conjugation). 

( l . b . l ) The category of complex representations of G generated by their I-
invaxiant vectors is abelian, equivalent by the functor 

V ^ V1 = HomcG(C[J\G],F) 

to the category Alod He (G, I) of right modules of the Iwahori Hecke algebra 

Hc(G,I) = EndCGC[I\G]. 
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( l .b .2) This abelian category is the unipotent block. 

c) ( l .c) The Iwahori Hecke algebra HQ(G, I) is the complex Hecke algebra of 
the affine Weyl group of G with parameter q. 

The algebra has a very useful description called the Bernstein decomposition 
[LI] [BK], basic for the geometric description of Kazhdan-Lusztig [KL]. 

From (l.b.l), the irreducible unipotent complex representations of G are in 
natural bijection with the simple modules of the complex Hecke algebra HQ(G,I). 

By the "unipotent" Deligne-Langlands correspondence, the simple HQ(G, J)-modules 
"correspond" to the G'-conjugacy classes of pairs (s,N), where s £ G' is semisim­
ple, N £ Lie G' and Ad(s)N = qN, where G' is the complex dual group of G with 
Lie algebra LieG'. This is known to be a bijection when G = GL(n,F) [Z] [R]. 
When G is adjoint and unramified (quasi-split and split over a finite unramified 
extension), it is also known to be a bijection if one adds a third ingredient, a certain 
irreducible geometric representation p of the component group of the simultaneous 
centralizer of both s and N in G'; this is was done by Chriss [C], starting from the 
basic case where G is split of connected center treated by Kazhdan Lusztig [KL] 
and by Ginsburg [CG] *. The adjoint and unramified case is sufficient for many-
applications to automorphic forms; to my knowledge the general case has not been 
done. 

According to R. Howe, the complex blocks should be parametrized by types. 
The basic type, the trivial representation of an Iwahori subgroup, is the type of 
the unipotent block. An arbitrary block should be right Alorita equivalent to the 
Hecke algebra of the corresponding type. The Hecke algebra of the type should 
be a generalized affine Hecke complex algebra with different parameters equal to 
positive powers of p. This long program started in 1976 is expected to be completed 
soon. The most important results are those of Bushnell-Kutzko for GL(n, F) [BK], 
of Alorris for the description of the Hecke algebra of a type [Al], of Moy and Prasad 
for the definition of unrefined types [MP]. 

Conjecturally, the classification of simple modules over complex generalized 
affine Hecke algebras and the theory of types will give the classification of the 
complex irreducible representations of the reductive p-adic groups. 

We consider now the basic example, the general linear p-adic group GL(n, F). 
The the complex irreducible representations of GL(n,F) over R are related by the 
"semi-simple" Deligne-Langlands correspondence (proved by Harris-Taylor [HT1] 

Introduction page 18. Complex representations of the absolute Weil-Deligne group with 

semi-simple part trivial on the inertia subgroup (6.1) are in natural bijection with the £-adic 

representations of the absolute Weil group trivial on the wild ramifìcation subgroup for any 

prime number ifip [T] [D]. In the Deligne-Langlands correspondence, one considers only the 

representations which are Frobenius semi-simple. 
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and Henniart [He]), to the representations of the Galois group Gal(F/F) of a sep­
arable algebraic closure F of F. 

Deligne-Langlands correspondence 
( l .d ) The blocks of Mode GL(n, F) are parametrized by the conjugacy classes 

of the semi-simple n-dimensional complex representations r of the inertia group 
I(F/F) which extend to the Galois group Gal(F/F). 

( l .e) The block parametrized by r is equivalent to the unipotent block of 
a product of linear groups GT = GL(di,F{) x . . . x GL(dr,Fr) over unramifìed 
extensions Ft of F where ^d»[.Fj : F] = n. 

( l . f) The irreducible unipotent representations ofGL(n, F) are parametrized 
by the G'L(n,R)-conjugacy classes of pairs (s,N) where s £ GL(n,C) is semi-
simple, N £ M(n, C) is nilpotent, and sN = qNs. 

Modular case Let R be an algebraically closed field of any characteristic. 
When the characteristic of R is 0, the theory of representations of G is essentially-
like the complex theory, and the above results remain true although some proofs 
need to be modified and this is not always in the littérature. From now on, we 
will consider "modular or modi" representations, i.e. representations over R of 
characteristic £ > 0. 

Banal primes Although a reductive p-adic group G is infinite, it behaves 
often as a finite group. Given a property of complex representations of G which 
has formally a meaning for mod £ representations of G, one can usually prove that 
outside a finite set of primes £, the property remains valid. This set of primes is 
called "banal" for the given property. 

For mod £ representations the Borei theorem is false, because the mod £ unipo­
tent block of GL(2, F) contains representations without Iwahori invariant vectors 
when q = — l m o d l [VI]. 

(2) The Borei theorem is valid for modi representations when £ does not 
divide the pro-order of any open compact subgroup ofG. 

These primes are banal for the three main steps in the proof of the complex 
theorem. 

a) (2.a) Any prime is banal for the decomposition of Modp G in blocks. 
The complex proof of (l.a.l) does not extend. There is a new proof relying of 

the theory of unrefined types [V5 III.6] when £fip. 

b) (l.a.2), (l .b.l), (l.b.2) remain true because £ does not does not divide the 
pro-order of the Iwahori subgroup J and [V2] [V4]: 

(2.b) Any irreducible cuspidal mod ^representation of G is injective and pro­
jective in the category of mod ^representations of G with a given central character 
when £ is as in theorem 2. 
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e) Any prime £ is banal for the Iwahori-Alatsumoto step because the proofs of 
Iwahori-Alatusmoto and of Alorris are valid over Z, and for any commutative ring 
A, the Iwahori Hecke A-algebra 

HA(G, I) = EndAG A[I\G] ~ HZ(G, I) ®z A 

is isomorphic to the Hecke A-algebra of the affine Weyl group of G with parameter 
qA where qA is the natural image of q in A. 

The primes £ of theorem 2 are often called t ie banal primes of G because 
such primes are banal for many properties. For example, the category of mod £-
representations of G with a given central character has finite cohomological dimen­
sion [V4]. In the basic example GL(n, F), £ is banal when £fip and the multiplicative 
order of q modulo £ is > n. 

Limit primes The set of primes banal for (l.a.2), (l.b.l) is usually larger 
than the set of banal primes of G. The primes of this set which are not banal will 
be called, following Harris, the limit primes of G. In the basic example GL(n, F), 
the limit primes £ satisfy q = 1 mod £ and £ > n [V3]. For number theoretic reasons, 
the limit primes are quite important [DT] [Be] [HT2]. They satisfy almost all the 
properties of the banal primes. For linear groups, the limit primes are banal for the 
property that no cuspidal representation is a subquotient of a proper parabolically 
induced representation. This is may be true for G general. 

Let Qf be an algebraic closure of the field Q( of l-adic numbers, Z,( its ring of 
integers and F,( its residue field. The following statements follow from the theory of 
types, or from the description of the center of the category of mod £ representations 
(the Bernstein center). 

(3.1) The reduction gives a surjective map from the isomorphism classes of 
the irreducible cuspidal integral Qf-representations of G to the irreducible cuspidal 
F (-representations of G, when £ is a banal or a limit prime for G. 

Natural characteristic The interesting case where the characteristic of R 
is p is not yet understood. There is a simplification: ^-representations of G have 
non zero vectors invariant by the pro-p-radical Ip of I. The irreducible are quotients 
of R[IP\G]. 

Some calculations have been made for GL(2,F) [BY] [Br] [V9]. A direct clas­
sification of the irreducible ^-representations of G = GL(2, Qp) [BL] [Br] and of 
the pro-p-Iwahori Hecke A-algebra Hp(G,Ip) = Endp(} R[IP\G] (called a modp 
pro-p-Iwahori Hecke algebra) shows: 

(4.1) Suppose R of characteristic p. The pro-p-Iwahori functor gives a bijec­
tion between the irreducible R-representations of GL(2,QP) and the simple right 
Hp(G, Ip)- modules. 

This is the "modp simple Borei theorem" for the pro-p-Iwahori group of 
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GL(2,QP). In particular p is banal for the simple version of (l.b.l) when G = 
GL(2,QP). Irreducible modp representations of GL(2, F) which are non subquo­
tients of parabolically induced representations from a character of the diagonal torus 
are called supersingular [BL]. There is a similar definition for the modp simple su-
persingular modules of the pro-p-Iwahori Hecke algebra of GL(2, F). 

(4.2) There is a natural bijection between the modp simple supersingu­
lar modules of the modp pro-p-Iwahori Hecke algebra of GL(2, F) and the modp 
irreducible dimension 2 representations of the absolute Weil group of F. 

This suggests the existence of a modp Deligne-Langlands correspondence. 
Some computations are beeing made by R. Ollivier for GL(3, F). 

We end this section with a new result on affine Hecke algebras as in [L3], which 
is important for the theory of representations modulo p. 

(4.3) Let H be an affine Hecke Z [q]-algebra of parameter q associated to a 
generalized affine Weyl group W. Then the center Z of H is a finitely generated 
Z[q]-algebra and H is a finitely generated Z-module. 

The key is to prove that H has a Z[g]-basis (qk^Ew)wew where (Ew) is a 
Bernstein Z[g_1]-basis of H[q^]. The assertion (4.3) was known when the param­
eter q is invertible. 

Non natural characteristic R an algebraically closed field of positive char­
acteristic £fip. Any prime £fip is banal for the "simple Borei theorem". The "simple 
Borei theorem" is true mod £fip. 

(5.1) Suppose £fip. The Iwahori-invariant functor gives a bijection between 
the irreducible R-representations of G with YrIfiO and the simple right Hp(G,I)-
modules. 

The existence of an Haar measure on G with values in R implies that Alod/j G is 
left Alorita equivalent to the convolution algebra Hp(G) of locally constant, compact 
distributions on G with values in R. When the pro-order of J is invertible in R, the 
Haar measure on G over R normalized by J is an idempotent of Hp(G), and (5.1) 
could have been already proved by I. Schur [V3]. In general (5.1) follows from the 
fact that R[I\G] is "almost projective" [V5]. 

Alore generally, one expects that the Howe philosophy of types remains true 
for modular irreducible representations. Their classification should reduce to the 
classification of the simple modules for generalized affine Hecke iï-algebras of pa­
rameters equal to 0 if £ = p, and to roots of unity if £fip. This is known for linear 
groups if £fip [V5] or in characteristic £ = p for GL(2, F) [V9]. 

The unipotent block is described by a finite set S of modular types, the "unipo­
tent types" [V7]. The set S contains the class of the basic type (J, id). In the banal 
or limit case, this is the only element of S. A unipotent type (P,T) is the G-
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conjugacy class of an irreducible ^-representation of a parahoric subgroup P of G, 
trivial on the pro-p-radical Pp, cuspidal as a representation of P/Pp (the group of 
rational points of a finite reductive group over the residual field of F). The isomor­
phism class of the compactly induced representation indP r of G determines the 
G-conjugacy class of r, and conversely. We have ind7 id = R[I\G]. 

(5.2) Theorem Suppose £fip. There exists a unite set S of types, such 
that 

- indp T is unipotent for any (P, r) £ S, 
- an irreducible unipotent R-representation V of G is a quotient of indPT for 

a unique (P,T) £ S, called the type ofYr, 
- the map V H> HonißG(indp r, V) between the irreducible quotients of indP r 

and the right HR(G,T) = Endpo indP r modules is a bijection. 

The set S has been explicitely described only when G is a linear group [V5]. 
In the example of GL(2, F) and q = —1 modulo £, the set S has two elements, the 
basic class and the class of (GL(2, Op), r) where r is the cuspidal representation of 
dimension q — 1 contained in the reduction modulo £ of the Steinberg representation 
of the finite group GL(2,Fg). 

The Hecke algebra Hp(G,r) of the type (P,T) could probably be described 
a generalized affine Hecke li-algebra with different parameters (complex case [Al] 
[L2], modular case for a finite group [GHM]). 

The linear group in the non natural characteristic We consider the 
basic example G = GL(n, F) and R an algebraically closed field of positive charac­
teristic £fip. 

(6.1) Any prime £fip is banal for the Deligne-Langlands correspondence. 

This means that (l.d) (l.e) (l.f) remain true when C is replaced by R. The 
proof is done by constructing congruences between automorphic representations for 
unitary groups of compact type [V6]. 

The unipotent block is partially described by the affine Schur algebra 

SR(G, I) = EndfiG V, V = ®pDi indp id, 

which is the ring of endomorphisms of the direct sum of the representations of 
G compactly induced from the trivial representation of the parahoric subgroups P 
containing the Iwahori subgroup J. The functor of /-invariants gives an isomorphism 
from the endomorphism ring of the i?G-module V to the endomorphism ring of the 
right Hft(G,I)-module V1 and the (Sp(G,L),Hp(G,Lj) module V1 satisfies the 
double centralizer property [V8]. 

(6.2) Endfl-H(Gj/) V =SR(G,I), EndsR(G,i)V =HR(G,I). 

In the complex case, the affine Schur algebra Sc(G,I) is isomorphic to an 
algebra already defined R.M. Green [Gr]: A complex affine quantum linear group 
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U(gl(n,qj) has a remarkable representation W of countable dimension such that 
the tensor space W®n satisfies the double centralizer property 

E n d 5(n, 9 ) W0n = #("> ?)' EndH(n,q) W®n = S(n, q) 

where S(n, q) is the image of the action of U(gl(n, qj) in W®n. The algebras S(n, q) 
and H(n,q) are respectively isomorphic to Sc(G,I) and HQ(G,I); the bimodules 
W®n and V1 are isomorphic. 

Yet J be the annihilator of R[I\G] in the global Hecke algebra Hp(G). 

(6.3) Theorem Suppose £fip. 
There exists an integer k > 0 such that the unipotent block of Mod« G is the 

set of R-representations of G annihilated by Jk. 
An irreducible representation of G is unipotent if and only if it is a subquotient 

of R[I\G], if and only if it is annihilated by J. 
The abelian subcategory of representations of G annihilated by J is Morita 

equivalent to the affine Schur algebra Sp(G,I). 

This generalizes the Borei theorem to mod £ representations when G is a linear 
group. The affine Schur algebra exists and the double centralizer property (6.2) is 
true for a general reductive p-adic group G; in the banal case, the affine Schur 
algebra is Alorita equivalent to the affine Hecke algebra. 

Integral structures Let £ be any prime number. There are two notions 
of integrality for an admissible (^-representation V of G, dim VK < oo for all 
open compact subgroups K of G, which coincide when £fip [V3]. One says that 
V is integral if V contains a G-stable Z,(-submodule generated by a Q(-basis of V, 
and V is locally integral if the HQ (G, JQ-module VK is integral, i.e. contains a 
i î^ (G, JQ-submodule Z,i-generated by a Q rbasis of VK, for all K. 

When V is irreducible and integral, the action of the center Z of G on V, the 
central character, is integral, i.e. takes values in Zf. The situation is similar for 
a simple integral HQ (G, J)-module W. The central character is integral, i.e. its 
restriction to the center of H% (G, I) takes values in Z,(. 

(7.1) Théorème 
a) An irreducible cuspidal Q(-representation V of G is integral if and only if 

its central character is integral. 
b) A simple HQ- (G, I)-module is integral if and only if its central character is 

integral. 
c) An irreducible representation V of G with YrIfiO is locally integral if and 

only ifV1 is an integral HQ (G,I)-module. 

The assertion b) results from (4.3). For a) [V3]. For £ = p, c) is due to J.-F. 
Dat, using its theory of l-adic analysis [D]. 
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A general irreducible (^-representation V of G is contained in a parabolically 
induced representation of an irreducible cuspidal representation W of a Levi sub­
group of G. If W is integral then V is integral, but the converse is false when 
£ = p. When £fip, the converse is proved for classical groups by Dat using results 
of Moeglin (there is a gap in the "proof" of the converse in [V3]). 

(7.2) Brauer-Nesbitt principle [V3][V11] When £fip, the integral struc­
tures L of an irreducible Q(-representation of G are T^G-finitely generated (hence 
commensurable) and their reduction L ® F( are unite length F (-representations of 
G with the same semi-simplication (modulo isomorphism). 

When £ = p, this is false. An integral cuspidal irreducible Qp-representation 
V of G embeds in Qp[F\G], for any discrete co-compact-mod-center subgroup F of 
G, and has a natural integral structure with an admissible reduction [V10]. When 
the theory of types is known, V is induced from an open compact-mod-center sub­
group, hence has an integral structure with a non admissible reduction, which is 
not commensurable with the first one. 
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Value Distribution and Potential Theory* 

A. Eremenko^ 

Abstract 

We describe some results of value distribution theory of holomorphic curves 
and quasiregular maps, which are obtained using potential theory. Among the 
results discussed are: extensions of Picard's theorems to quasiregular maps 
between Riemannian manifolds, a version of the Second Main Theorem of 
Nevanlinna for curves in projective space and non-linear divisors, description 
of extremal functions in Nevanlinna theory and results related to Cartan's 
1928 conjecture on holomorphic curves in the unit disc omitting hyperplanes. 

2000 Mathematics Subject Classification: 30D35, 30C65. 
Keywords and Phrases: Holomorphic curves, Quasiregular maps, Mero­
morphic functions. 

1. Introduction 
Classical value distribution theory studies the following question: Let / be 

a meromorphic function in the plane. Wha t can one say about solutions of the 
equation f(z) = a as a varies? The subject was originated in 1880-s with two 
theorems of Picard (Theorems 1 and 4 below). An important contribution was 
made by E. Borei in 1897, who gave an "elementary proof" of Theorem 1, which 
opened a way to many generalizations. Borel's result (Theorem 12 below) also 
gives an extension of Picard 's theorem to holomorphic curves C —¥ P " . In 1925, R. 
Nevanlinna (partially in cooperation with F . Nevanlinna) created what is called now 
the Nevanlinna Theory of meromorphic functions, which was subject of intensive 
research [5]. A good elementary introduction to the subject is [18]. Griffiths and 
King [16] extended Nevanlinna theory to non-degenerate holomorphic maps / : 
C " —¥ Y, where Y is a compact complex manifold of dimension n. In modern times 
the emphasis has shifted to two multi-dimensional generalizations: holomorphic 
curves in complex manifolds and quasiregular mappings between real Riemannian 
manifolds. This survey is restricted to a rather narrow topic: generalizations of 

* Supported by NSF grant DMS 0100512 and by the Humboldt Foundation. 
1 Department of Mathematics, Purdue University, West Lafayette IN 47907, USA. E-mail: 
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Picard's theorem that are obtained with potential-theoretic methods. Some other 
applications of potential theory to value distribution can be found in [14, 20, 27]. 
Recent accounts of other methods in the theory of holomorphic curves are [21, 29]. 

We begin with Picard's Little Theorem: 

Theo rem 1 Every entire function which omits two values in C is constant. 

To prove this by contradiction, we suppose that / is a non-constant entire 
function which omits 0 and 1. Then «0 = log | / | and «i = log | / — 1| are non-
constant harmonic functions in the plane satisfying 

\UQ—U{\<C, UoVUi>—C, (1.1) 

where V stands for the pointwise sup, u+ = u V 0, and c is a constant. There 
are several ways to obtain a contradiction from (1.1). They are based on rescaling 
arguments that permit to remove the c terms in (1.1). To be specific, one can find 
sequences z^ £ C, rj, > 0 and Aj, —̂  +oo such that A^1v,j(zk + rj,z) —̂  vfiz), k —̂  
oo, | z | < l , j = 0, l , where Vj are harmonic functions satisfying 

v+=v+, w 0 V W l > 0 , Vj(0) = 0, (1.2) 

and Vj ^ 0. This gives a contradiction with the uniqueness theorem for harmonic 
functions. The idea to base a proof of Picard's theorem on (1.2) comes from the 
paper [13] (the main result of this paper is described in Section 3 below). Two 
versions of the rescaling argument (existence of appropriate z%,r^ and A\A are given 
in [7, 12] and [19], respectively. The second version has an advantage that it uses 
only one result from potential theory, Harnack's inequality. Thus Picard's theorem 
can be derived from two facts: Harnack's inequality and the uniqueness theorem 
for harmonic functions. This makes the argument suitable for generalizations. 

2. Quasiregular maps of Riemannian manifolds 
We recall that a non-constant continuous map / between regions in R n is called 

if-quasiregular if it belongs to the Sobolev class Wlo'c
n (first generalized derivatives 

are locally L"-summable), and in addition 

ll/'IP < KJf almost everywhere, (2.1) 

where J is the Jacobian determinant and K > 1 is a constant. The standard 
references are [24, 25]. If n = 2, every quasiregular map can be factored as g o <f>, 
where g is analytic and <j> a quasiconformal homeomorphism. It follows that Picard's 
Theorems 1 and 4 (below) extend without any changes to quasiregular maps of 
surfaces. For the rest of this section we assume that n > 3, and that all manifolds 
are connected. The weak smoothness assumption / £ Wfi" is important: if we 
require more smoothness, the maps satisfying (2.1) will be local homeomorphisms 
(and even global homeomorphisms if the domain is R n ) . A fundamental theorem 
of Reshetnyak says that all quasiregular maps are open and discrete, that is they 
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have topological properties similar to those of analytic functions of one complex 
variable. Several other results about analytic functions have non-trivial extension 
to quasiregular mappings. One of the striking results in this area is Rickman's 
generalization of Picard's theorem [25]: 

Theorem 2 A K-quasiregular map R n —¥ R n can omit only a finite set of points 
whose cardinality has an upper bound in terms on n and K. 

Even more surprising is that when n = 3, the number of omitted values can 
indeed be arbitrarily large, as Rickman's example in [26] shows. 

It turns out that the method of proving Picard's theorem outlined in Section 1, 
extends to the case of quasiregular maps. One has to use a non-linear version of 
potential theory in R n which is related to quasiregular maps in the same way as 
logarithmic potential theory to analytic functions. This relation between quasiregu­
lar maps and potential theory was discovered by Reshetnyak. He singled out a class 
of functions (which are called now A-harmonic functions), that share many basic 
properties (such as the maximum principle and Harnack's inequality) with ordinary-
harmonic functions, and such that u o / is A-harmonic whenever u is A-harmonic 
and / quasiregular. In particular, log \x — a\ is A-harmonic on R " \ { a } , so if / omits 
the value a, then log | / —ct| satisfies Harnack's inequality (with constants depending 
on K and n). If m values are omitted by / we can obtain relations, similar to (1.2), 

vt = ... = v+, ViVVj>0, « i ( 0 ) = 0 , (2.2) 

for certain A-harmonic functions Vj ^ 0, j = l , . . . , r o . Rickman's example men­
tioned above shows that such relations (2.2) are indeed possible with any given 
m > 1, which is consistent with the known fact that A-harmonic functions do not 
have the uniqueness property. However, an upper bound for m can be deduced 
from (2.2) using Harnack's inequality. This gives a pure potential-theoretic proof 
of Rickman's theorem [12, 19]. Notice that this proof does not depend on the deep 
result that quasiregular maps are open and discrete. Lewis's paper [19] which uses 
nothing but Harnack's inequality opened a path for further generalizations of Rick­
man's theorem. The strongest result in this direction was obtained by Holopainen 
and Rickman [17]. For simplicity, we state it only in the special case of quasiregular 
maps whose domain is R n . 

Theorem 3 Let Y be an orientable Riemannian manifold of dimension n. If there 
exists a K-quasiregular map R n —¥ Y, then the number of ends of Y has an upper 
bound that depends only on K and n. 

A more general result, with R n replaced by a Riemannian manifold subject to 
certain conditions, is contained in [17]. 

Notice that there are no restrictions on Y in this theorem. Conditions of 
Theorem 3 will be satisfied if Y is a compact manifold with finitely many points 
removed, so a if-quasiregular map from R n to a compact n-dimensional manifold 
can omit at most N(K,n) points. 

Now we turn to the second theorem of Picard mentioned in the Introduction: 
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Theo rem 4 If there exists a non-constant holomorphic map f : C —¥ S from the 
complex plane to a compact Riemann surface S, then the genus of S is at most 1. 

First extensions of this result to quasiregular maps in dimension n > 2 were 
obtained by Gromov in 1981 [6, Ch. 6] who proved that the fundamental group 
of a compact manifold of dimension n which receives a quasiregular map from R n 

cannot be too large. Gromov applied a geometric method, based on isoperimetric 
inequalities, which goes back to Ahlfors's approach in dimension 2. The strongest 
result in this direction is the following theorem from [31]: If a compact manifold 
Y of dimension n > 2 receives a quasiregular map from R", then the fundamental 
group of Y is virtually nilpotent and has polynomial growth of degree at most n. 

We notice that unlike this last result, Theorem 3 has nothing to do with the 
fundamental group of Y: removing a finite set from a compact manifold does not 
change its fundamental group. Recently, Bonk and Heinonen [2] applied potential-
theoretic arguments, somewhat similar to those outlined above, to obtain new topo­
logical obstructions to the existence of quasiregular maps: 

Theo rem 5 If Y is a compact manifold of dimension n which receives a K-quasi-
regular map from R", then the dimension of the de Rham cohomology ring of Y is 
bounded by a constant that depends only on n and K. 

This result implies that for every K > 1 there exist simply connected compact 
manifolds Y such that there are no if-quasiregular maps R n —¥ Y. The question 
whether there exists a compact simply connected manifold Y such that there are 
no quasiregular maps R n —¥ Y (with any K) remains open. 

For a compact manifold Y, the natural objects to pull back via / are differential 
forms rather then functions. According to the "non-linear Hodge theory" [28], each 
cohomology class of Y can be represented by a p-harmonic form, which satisfies a 
non-linear elliptic PDE. Such forms and their pullbacks to R n play a similar role 
to the A-harmonic functions above. 

It is natural to conjecture that the theorem of Bonk-Heinonen remains valid 
if the requirement that Y is compact is dropped. Such a generalization would also 
imply Theorem 3. 

3. Holomorphic curves in projective varieties 
Here we return to the classical logarithmic potential theory, which allows more 

precise quantitative estimates. 
Points in the complex projective space P " are represented by their homoge­

neous coordinates z = (ZQ : ... : zn). Let Y C P " be an arbitrary projective 
variety. We consider divisors D on Y which are the zero sets of homogeneous forms 
P(ZQ,- • • ,zn) restricted to Y. The degree of D is defined as the homogeneous degree 
of P. Suppose that q of such divisors Dj of degrees dj are given, and they satisfy 
the condition that for some integer m < q — 1 every m + 1 of these divisors on Y 
have empty intersection. We are going to study the distribution of preimages of 
divisors Dj under a holomorphic map / : C —¥ Y whose image is not contained 
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in UDj. To such a map correspond n + 1 entire functions without common ze­
ros: / = (/o,. . •, fn)- Thus we are interested in the distribution of zeros of entire 
functions Pj o / = Pj(f0, ••-, /„ ) . 

We introduce the subharmonic functions 

u = 11/11 = \ / | / o | 2 + •••+ \fn? and Uj = log \Pj o f\/dj. 

The assumption on intersections of Dj easily implies that 

\\l Uj — u\ < c for every J C { 1 , . . . , q}, such that card I = m + 1. (3.1) 
j e / 

This relation is a generalization of (1.1). The rescaling procedure mentioned in Sec­
tion 1 permits to remove the constant c in (3.1) and obtain subharmonic functions 
wi , . . . , Vq and v in a disc which satisfy 

\J Vj = v, I C {1,.. .,q}, cardi = m + 1, (3.2) 
j e / 

and such that v is not harmonic. 
If / omits q = 2m+1 divisors in Y, then all Vj in (3.2) will be harmonic (while v 

is not!) and it is easy to obtain a contradiction. Indeed, let Ej = {z : Vj(z) = v(z)}. 
Then (3.2) with q = 2m + 1 implies that for some J of cardinality m + 1, the 
intersection CijeiEj has positive area. It follows by the uniqueness theorem that 
all Vj for j £ I are equal. Applying (3.2) with this J we obtain that v = Vj 
for j £ I, so v is harmonic, which gives a contradiction. Thus we obtain the 
following generalization of Picard's theorem proved by V. Babets in 1983 for the 
case Y = P " , m = n, and under a stronger restriction on the intersection of divisors 
[7]-

Theo rem 6 Let Y be a projective variety. If a holomorphic map C —¥ Y omits 
2m + 1 divisors, such that the intersection of any m + 1 of them is empty, then f 
is constant. 

Notice that dimension of Y is not mentioned in this theorem. A more careful 
analysis of (3.2) and more sophisticated rescaling techniques yield a quantitative 
result of the type of the Nevanlinna's Second Alain Theorem. To state it, we recall 
the definitions of Nevanlinna theory. If p is the Riesz measure of u, then the 
Nevanlinna characteristic can be defined as 

r dt 
T(r,f)= / M i > : M < * } T ^ l o g | | / ( 0 ) | | . 

Jo l 

Let n(r,Dj) be the number of zeros (counting multiplicity) of the entire function 
Pj(fo,... ,fn) in the disc {z : \z\ < r}, and 

Ir dt 
N(r,Dj,f) = Jn(t,Dj)j, (3.3) 

supposing for simplicity that #j(0) ^ 0,j = l,...,q. The following version of the 
Second Alain Theorem was conjectured by Shiffmann in 1978 and proved in [13]: 
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Theo rem 7 Let Y be a projective variety, and q divisors Dj of degrees dj in Y 
satisfy the intersection condition of Theorem 6. Let f : G —¥ Y be a holomorphic 
map whose image is not contained in UjDj. Then 

Q j 

(q - 2m)T(r, / ) < £ ~^N(r, Dj, f) + o(T(r, / ) ) , 
j = i 3 

when r —t oo avoiding a set of finite logarithmic measure. 

This theorem is stated in [13] only for the case Y = P " , m = n but the same 
proof applies to the more general statement. When m = n = 1 we obtain a rough 
form of the Second Alain Theorem of Nevanlinna; with worse error term, and more 
importantly, without the ramification term. A corollary from Theorem 7 is the 
defect relation: 

2_,ô(Dj,f) < 2m, where ô(Dj,f) = 1 — lim sup ' J ' . (3.4) 
r-s-oo djl (r, f) 

The key result of potential theory used in the proof of Theorem 7 is of inde­
pendent interest [11]: 

Theo rem 8 Suppose that a finite set of subharmonic functions {WJ} in a region in 
the plane has the property that the pointwise minima w, A Wj are subharmonic for 
every pair. Then the pointwise minimum of all these functions is subharmonic 

This is derived in turn from the following: 

Theo rem 9 Let Gi,G2,Gz be three pair-wise disjoint regions, and pi,p2,Pz their 
harmonic measures. Then there exist Borei sets Ej c dGj such that Pj(Ej) = 
1, j = 1,2,3, and Ei^E2^Ez = 0. 

For regions in R2 (the only case needed for theorems 7 and 8) this is easy 
to prove: just take Ej to be the set of accessible points from Gj and notice that 
at most two points can be accessible from all three regions [11]. It is interesting 
that Theorem 9 holds for regions in R" for all n, but the proof of this (based on 
advanced stochastic analysis rather then potential theory) is very hard [30]. 

We notice that the number 2 in Picard's Theorem 1, as well as in Theorem 
7, thus admits an interpretation which seems to be completely different from the 
common one: with our approach it has nothing to do with the Euler characteristic 
of the sphere or its canonical class, but comes from Theorem 9. Recently, Siu 
[29] gave a proof of a result similar to Theorem 7 (with Y = P " , m = n) using 
different arguments which are inspired by "Vojta's analogy" between Nevanlinna 
theory and Diophantine approximation. However Siu's proof gives a weaker estimate 
em « 2.718m instead of 2m in (3.4), and his assumptions on the intersection of 
divisors are stronger than those in Theorem 7. 

The constant 2m in (3.4) is best possible. Aloreover, one can give a rather 
complete characterization of extremal holomorphic curves of finite lower order. We 
recall that the lower order of a holomorphic curve is 

A = l i m i n f ^ A > i / ) . 
r-s-oo logr 
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Theorem 10 [8] Let Di,...,Dq be divisors and f a curve satisfying all the hy­
potheses of Theorem 7. Suppose in addition that f has finite lower order and that 
equality holds in the defect relation (3.4). Then 
(i) 2X is an integer, and X > 1, 
(ii) T(r,f) = rx£(r), where £(r) is a slowly varying function in the sense of Kara­
mata: £(cr)/£(r) —¥ 1, r —t oo uniformly with respect to c £ [1,2], 
(iii) All defects are rational: ö(Dj,f) = Pj/X, where pj are integers whose sum is 
2mX. 

When m = n = 1, this result was conjectured by F. Nevanlinna [23]. After 
long efforts, mainly by A. Pfluger, A. Edrei, W. Fuchs and A. Weitsman, D. Drasin 
finally proved F. Nevanlinna's conjecture in [4]. The potential-theoretic method 
presented here permitted to give a simpler proof of Drasin's theorem, and then to 
generalize the result to arbitrary dimension, as well as to obtain a stronger result 
in dimension 1 which is discussed in the next section. The proof of Theorem 10, is 
based on the following result about subharmonic functions: 

Theorem 11 Suppose that v,vi,...,vq, q> 2m + 1 are subharmonic functions in 
the plane, which satisfy (3.2), and in addition v(z) < \z\x, z £ G, and v(0) = 0. 
Then the function 

i 

h = 2_, vj — 2TOW 

j = i 

is subharmonic. If h is harmonic, then 2X is an integer and 

v(re%t) = c|r|A|cosA(r. — a)\, 

where c > 0 and a is a real constant. 

4. Functions with small ramification 
We recall the definition of the ramification term in Nevanlinna theory. Suppose 

that the image / (C) of a holomorphic curve / : C —¥ P " is not contained in 
any hyperplane. This means that / 0 , . . . , / „ in the homogeneous representation 
of / are linearly independent. Let rii (r, / ) be the number of zeros in the disc 
{z : \z\ < r} of the Wronski determinant W(fo, • • •, f n ) , and Ni(r, / ) the averaged 
counting function of these zeros as in (3.3). If n = 1, then m counts the number of 
critical points of / . The Second Alain Theorem of Cartan [18] says that for every 
holomorphic curve / whose image does not belong to a hyperplane, and every finite 
set of hyperplanes {a i , . . . ,aq} in general position, we have 

(q^n-l + o(lj)T(r,f) + Ni(r,f)<J2N(r,f,aj), (4.1) 
j = i 

when r —t oo avoiding a set of finite measure. This implies the defect relation 

Q Ni(r,f) 

j=1 . - T(r,f) ' 
y jo"(aj , / ) + 0(f) < n + 1, where 6(f) = lim sup 
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and ö(a,fi) was defined in (3.4). So, if n = 1, and the sum of deficiencies equals 
2, then 9(f) = 0. The work of F. Nevanlinna [23] mentioned in Section 3 actu­
ally suggests something stronger than he conjectured: that the weaker assumption 
9(f) = 0 for functions of finite lower order implies all conclusions (i)—(iii) of Theo­
rem 10. This stronger result was proved in [9]. It follows that for functions of finite 
lower order the conditions 9(f) = 0 and ^ 8(a, fi) = 2 are in fact equivalent. There 
is some evidence that this result might have the following extension to holomorphic 
curves in P " : 
Conjecture Let f be a holomorphic curve of finite lower order, whose image is not 
contained in any hyperplane. If Ni(r) = o(T(r,f)),r —¥ oo, then X is a rational 
number and assertion (ii) of Theorem 10 holds. 

This is not known even under a stronger assumption that the sum of deficien­
cies is n + 1. 

5. Cartan's conjecture 
According to a philosophical principle of Bloch and Valiron [1], to theorems 

about entire functions should correspond theorems about families of functions in the 
unit disc, in the same way as Landau's theorem corresponds to Picard's theorem. 
One can supplement Theorem 6 with an explicit estimate of derivative of a holo­
morphic map from the unit disc to projective space that omits 2m +1 hypersurfaces 
satisfying the intersection condition of Theorem 6. To prove such generalization of 
Landau's theorem, one replaces the use of the uniqueness theorem for harmonic 
functions by the corresponding quantitative result as in [22]. 

In 1887 Borei proved an extension of Picard's theorem, from which Theorem 
6 and many other similar results (see, for example, [15]) can be derived: 

Theo rem 12 (Borei) If fi, • • •, fp are entire functions without zeros, that satisfy 

fi + f2 + ... + fP = 0, (5.1) 

then there is a partition of the set J = {fi,---,fp} into classes I, such that for 
every I, all functions in I are proportional and their sum is zero. 

When p = 3 it is equivalent to the Picard's Little Theorem. The question is 
what kind of normality criterion corresponds to Theorem 12 in the same way as 
Montel's criterion corresponds to Picard's theorem. The following conjecture was 
stated by H. Cartan in his thesis [3] (see also [18] for a comprehensive discussion of 
this conjecture). 
Conjecture A Let F be an infinite sequence of p-tuples / = (fi,- •• ,fp) of holo­
morphic functions in the unit disc, such that each fj has no zeros, and (5.1) is 
satisfied. 

Then there exists an infinite subsequence F' of F and a partition of the set 
J = { 1 , . . . ,p} into classes I, such that for / in F' and every class I we have: 
(*) there exists j £ I such that for every i £ I the ratios fi/fj are uniformly 
bounded on compact subsets of the unit disc, and ^ i € / fi/fj —t 0 uniformly on 
compact subsets of the unit disc. 
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One obtains this statement by replacing "proportional" by "have bounded 
ratio" and "equals zero" by "tends to zero" in the conclusions of Borel's theorem. 
When p = 3, Conjecture A is equivalent to Montel's theorem. 

Let us call a subset J C J = { l , . . . , p } having the property (*) a C-class of 
the sequence F'. Cartan proved in [3] that under the hypotheses of Conjecture A 
there exists an infinite subsequence F', such that either the whole set J constitutes 
a single C-class, or there are at least 2 disjoint C-classes in J. This result implies 
that Conjecture A is true for p = 4, which corresponds to holomorphic curves in 
P 2 omitting four lines. Indeed, it follows from (*) that each C-class contains at 
least two elements, so if there are two disjoint C-classes they have to be a partition 
of the set J of four elements. For p > 5, Cartan's result falls short of proving his 
conjecture because the union of the two C-classes whose existence is asserted might 
not coincide with the whole set { 1 , . . . ,p}. 

It turns out that Conjecture A is wrong as originally stated, beginning from 
p = 5 (that is in dimensions > 3). A simple counterexample was constructed in 
[10]). Nevertheless a small modification of the statement is valid in dimension 3: 
Conjecture B Under the assumptions of Conjecture A its conclusions hold is the 
disc {z : \z\ < rp}, where rp < 1 is a constant that depends only on p. 

This was proved in [10] when p = 5, that is for holomorphic curves in P 3 

omitting 5 planes. 
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Abstract 

We discuss the issue of branching in quasiregular mapping, and in par­
ticular the relation between branching and the problem of finding geometric 
parametrizations for topological manifolds. Other recent progress and open 
problems of a more function theoretic nature are also presented. 
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1. Branched coverings 
A continuous mapping f : X —¥ Y between topological spaces is said to be 

a branched covering if / is an open mapping and if for each y £ Y the preimage 
f^1(y) is a discrete subset of X. The branch set Bf of / is the closed set of points 
in X where / does not define a local homeomorphism. 

Nonconstant holomorphic functions between connected Riemann surfaces are 
examples of branched coverings. From the Weierstrassian (power series) point of 
view this property of holomorphic functions is almost immediate. It is a deeper fact, 
due to Riemann, tha t the same conclusion can be drawn from the mere definition 
of complex differentiability, or, equivalently, from the Cauchy-Riemann equations. 
Alost of this article discusses the repercussions of this fact. 

2. Quasiregular mappings 
In a 1966 paper [27], Reshetnyak penned a definition for mappings of bounded 

distortion or, as they are more commonly called today, quasiregular mappings. 

* Supported by NSF grant DMS 9970427. 1 thank Mario Bonk and Alex Eremenko for their 
criticism on earlier versions of this article. My warmest thanks go to Mario Bonk, Seppo Rickman, 
and Dennis Sullivan for collaboration, mentoring, and friendship. 

^Department of Mathematics, University of Michigan, MI 48109, USA. E-mail: 
juha@math.lsa.umich.edu 

mailto:juha@math.lsa.umich.edu


692 Juha Heinonen 

These are nonconstant mappings / : 0 —t R n in the Sobolev space Wjo '"(0;R"), 
where O c R n is a domain and n > 2, satisfying the following requirement: there 
exists a constant K > 1 such that 

\f'(x)\n < KJf(x) (2.1) 

for almost every x £ ii, where | / ' (x) | denotes the operator norm of the (formal) 
differential matrix f'(x) with J /(x)=det / ' (x) its Jacobian determinant. One also 
speaks about K-quasiregular mappings if the constant in (2.1) is to be emphasized.1 

Requirement (2.1) had been used as the analytic definition for quasiconfor-
mal mappings since the 1930s, with varying degrees of smoothness conditions on 
/ . Quasiconformal mappings are by definition quasiregular homeomorphisms, and 
Reshetnyak was the first to ask what information inequality (2.1) harbours per se. 
In a series of papers in 1966-69, Reshetnyak laid the analytic foundations for the 
theory of quasiregular mappings. The single deepest fact he discovered was that 
quasiregular mappings are branched coverings (as defined above). It is instructive 
to outline the main steps in the proof for this remarkable assertion, which akin 
to Riemann's result exerts significant topological information from purely analytic 
data. For the details, see, e.g., [28], [29], [18]. 

To wit, let / : 0 —t R n be K^quasiregular. Fix y £ R n and consider the 
preimage Z = f^1(y). One first shows that the function u(x) = log \f(x) —y\ solves 
a quasilinear elliptic partial differential equation 

-divA(x,Vu(xj)=0, A(x,Ç)-Ç~\Ç\n, (2.2) 

in the open set 0 \ Z in the weak (distributional) sense. In general, A in (2.2) 
depends on / , but its ellipticity only on K and n. For holomorphic functions, i.e., 
for n = 2 and K =1, equation (2.2) reduces to the Laplace equation —divVu = 0. 

Now u(x) tends to ^oo continuously as x tends to Z. Reshetnyak develops 
sufficient nonlinear potential theory to conclude that such polar sets, associated 
with equation (2.2), have Hausdorff dimension zero. It follows that Z is totally-
disconnected, i.e., the mapping / is light. This is the purely analytic part of the 
proof. The next step is to show that nonconstant quasiregular mappings are sense-
preserving. This part of the proof mixes analysis and topology. What remains is a 
purely topological fact that sense-preserving and light mappings between connected 
oriented manifolds are branched coverings. 

Initially, Reshetnyak's theorem served as the basis for a higher dimensional 
function theory. In the 1980's, it was discovered by researchers in nonlinear elastic­
ity. In the following, we shall discuss more recent, different types of applications. 

3. The branch set 
Branched coverings between surfaces behave locally like analytic functions ac­

cording to a classical theorem of Stoïlow. By a theorem of Chernavskiï, for every 

1 The definition readily extends for mappings between connected oriented Riemannian n-
manifolds. 
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n > 2, the branch set of a discrete and open mapping between n-manifolds has 
topological dimension at most n — 2. For branched coverings between 3-manifolds, 
the branch set is either empty or has topological dimension 1 [24], but in dimen­
sions n > 5 there are branched coverings between n-manifolds with branch set of 
dimension n — 4, cf. Section 7.2 

The branch set of a quasiregular mapping is a somewhat enigmatic object in 
dimensions n > 3. It can be very complicated, containing for example many wild 
Cantor sets of classical geometric topology [14], [15]. There is currently no theory-
available that would explain or describe the geometry of allowable branch sets, cf. 
Problems 2 and 4 in Section 7. 

In the next three sections, we shall discuss the problem of finding bi-Lipschitz 
parametrizations for metric spaces. It will become clear only later how this problem 
is related to the branch set. 

4. Bi-Lipschitz parametrization of spaces 
A homeomorphism f : X —¥ Y between metric spaces is bi-Lipschitz if there 

exists a constant L > 1 such that 

L-1dx(a,b) <dY(f(a),f(bj) < Ldx(a,b) 

for each pair of points a,b £ X. It appears to be a difficult problem to decide when 
a given a metric space X can be covered by open sets each of which is bi-Lipschitz 
homeomorphic to an open set in R n , n > 2. If this is the case, let us say, for brevity 
and with a slight abuse of language, that X is locally bi-Lipschitz equivalent to R n . 

Now a separable metrizable space is a Lipschitz manifold (in the sense of 
charts) if and only if it admits a metric, compatible with the given topology, that 
makes the space locally bi-Lipschitz equivalent to R n [22]. The problem here is 
different from characterizing Lipschitz manifolds among topological spaces, for the 
metric is given first, cf. [8], [39], [40], [41]. 

To get a grasp of the difficulty of the problem, consider the following example: 
There exist finite 5-dimensional polyhedra that are homeomorphic to the standard 5-
sphere S5 , but not locally bi-Lipschitz equivalent to R5 . This observation of Sieben­
mann and Sullivan [38] is based on a deep result of Edwards [9], which asserts that 
the double suspension £2ff3 of a 3-dimensional homology sphere H3, with nontriv-
ial fundamental group, is homeomorphic to the standard sphere S5. (See also [6].) 
One can think of X = T,2H3 as a join X = S1 * H3, and it is easy to check that the 
complement of the suspension circle S1 in X is not simply connected. Consequently, 
every homeomorphism / : X —t S5 must transfer S1 to a closed curve F = / (S 1 ) 
whose complement in S5 is not simply connected. A general position argument and 
Fubini's theorem imply that, in this case, the Hausdorff dimension of F must be at 
least 3. Hence / cannot be Lipschitz. In fact, / cannot be Holder continuous with 
any exponent greater than 1/3. It is not known what other obstructions there are 
for a homeomorphism X —t S5, cf. [16, Questions 12-14]. 

See [33] and [37] for surveys on parametrization and related topics. 
2 See [23] for a recent survey on dimension theory and branched coverings. 
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5. Necessary conditions 
What are the obvious necessary conditions that a given metric space X must 

satisfy, if it were to be locally bi-Lipschitz equivalent to R n , n > 2? Clearly, X 
must be an n-manifold. Next, bi-Lipschitz mappings preserve Hausdorff measure 
in a quantitative manner, so in particular X must be n-rectifiable in the sense 
of geometric measure theory; moreover, locally the Hausdorff n-measure should 
assign to each ball of radius r > 0 in X a mass comparable to rn. Yet us say-
that X is metrically n-dimensional if it satisfies these geometric measure theoretic 
requirements. 

It is not difficult to find examples of metrically n-dimensional manifolds that 
are not locally bi-Lipschitz equivalent to R n . The measure theory allows for cusps 
and folds that are not tolerated by bi-Lipschitz parametrizations. Further geometric 
constraints are necessary; but, unlike in the case of the measure theoretic conditions, 
it is not obvious what these constraints should be. A convenient choice is that of 
local linear contractibility: locally each metric ball in X can be contracted to a point 
inside a ball with the same center but radius multiplied by a fixed factor. 3 

Still, a metrically n-dimensional and locally linearly contractible metric n-
manifold need not be locally bi-Lipschitz equivalent to R n . The double suspension 
of a homology 3-sphere with nontrivial fundamental group as described in the pre­
vious section serves as a counterexample. In 1996, Semmes [34], [35] exhibited ex­
amples to the same effect in all dimensions n > 3, and recently Laakso [21] crushed 
the last hope that the above conditions might characterize at least 2-dimensional 
metric manifolds that are locally bi-Lipschitz equivalent to R2 . However, unlike the 
examples of Edwards and Semmes, Laakso's metric space cannot be embedded bi-
Lipschitzly in any finite dimensional Euclidean space. Thus the following problem 
remains open: 

P rob l em 1 Let X be a topological surface inside some R * with the inherited 
metric. Assume that X is metrically 2-dimensional and locally linearly contractible. 
Is X then locally by-Lipschitz equivalent to R 2? 

In conclusion, perhaps excepting the dimension n = 2, more necessary con­
ditions are needed in order to characterize the spaces that are locally bi-Lipschitz 
equivalent to R".4 The idea to use Reshetnyak's theorem in this connection origi­
nates in two papers by Sullivan [40], [41], and is later developed in [17]. Recall that 
in this theorem topological conclusions are drawn from purely analytic data. Now 
imagine that such data would make sense in a space that is not a priori Euclidean. 
Then, if one could obtain a branched covering mapping into R", manifold points 
would appear, at least outside the branch set. We discuss the possibility to develop 
this idea in the next section. 

6. Cartan-Whitney presentations 
3See [36] for analytic implications of this condition. 
4There are interesting and nontrivial sufficient conditions known, but these are far from being 

necessary [42], [43], [2], [3], [5]. 
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Let X be a metrically n-dimensional, linearly locally contractible n-manifold 
that is also a metric subspace of some R ^ . Suppose that there exists a bi-Lipschitz 
homeomorphism / : X —t f(X) c R". Then / pulls back to X the standard 
coframe of R", providing almost everywhere defined (essentially) bounded differ­
ential 1-forms pi = f*dxi, i = 1 , . . . ,n. To be more precise here, by Kirzsbraun's 
theorem, / can be extended to a Lipschitz mapping / : HN —t R", and the 1-forms 

Pi = f*dxi = dfi, i=l,...,n, (6.1) 

are well defined in HN as flat 1-forms of Whitney. Flat forms are forms with L°°-
coefficients such that the distributional exterior differential of the form also has 
L°°-coefficients. The forms in (6.1) are closed, because the fundamental relation 
df* = f*d holds true for Lipschitz maps. 

According to a theorem of Whitney [45, Chapter IX], flat forms (p,) have a 
well defined trace on X, and on the measurable tangent bundle of X, essentially 
because of the rectifiability.5 Because / = / | X has a Lipschitz inverse, there exists 
a constant c > 0 such that 

* ( p i A - - - A p „ ) > c > 0 (6.2) 

almost everywhere on X, where the Hodge star operator * is determined by the 
chosen orientation on X. 

Condition (6.2) was turned into a definition in [17]. We say that X admits local 
Cartan- Whitney presentations if for each point p £ X one can find an n-tuple of flat 
1-forms p = ( p i , . . . , pn) defined in an R^-neighborhood of p such that condition 
(6.2) is satisfied on X near the point p. 

Theo rem 1 [17] Let X c HN be a metrically n-dimensional, linearly locally con­
tractible n-manifold admitting local Cartan-Whitney presentations. Then X is lo­
cally bi-Lipschitz equivalent to R" outside a closed set of measure zero and of topo­
logical dimension at most n — 2. 

To prove Theorem 1, fix a point p £ X, and let p = (p i , . . . ,pn) be a Cartan-
Whitney presentation near p. The requirement that p be flat together with in­
equality (6.2) can be seen as a quasiregularity condition for forms.6 We define a 
mapping 

f(x) = / p (6.3) 

for x sufficiently near p, where [p, x] is the line segment in HN from p to x, and 
claim that Reshetnyak's program can be run under the stipulated conditions on X. 
In particular, we show that for a sufficiently small neighborhood U of p in X, the 
map / : U —¥ R" given in (6.3) is a branched covering which is locally bi-Lipschitz 
outside its branch set Bf, which furthermore is of measure zero and of topological 
dimension at most n — 2. It is important to note that p is not assumed to be closed, 
so that df ^ p in general. 

5There is a technical point about orientation which we ignore here [17, 3.26]. 
6In fact, (6.2) resembles a stronger, Lipschitz version of (2.1) ' (2.1) studied in [26], [40], [15] 
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In executing Reshetnyak's proof, we use recent advances of differential analysis 
on nonsmooth spaces [13], [20], [36], as well as the theory developed simultaneously 
in [15]. Incidentally, we avoid the use of the Harnack inequality for solutions, and 
therefore a deeper use of equation (2.2); this small improvement to Reshetnyak's 
argument was found earlier in a different context in [12]. 

Theorem 1 provides bi-Lipschitz coordinates for X only on a dense open set. 
In general, one cannot have more than that. The double suspension of a homology 
3-sphere, as discussed in Section 4, can be mapped to the standard 5-sphere by a 
finite-to-one, piecewise linear sense-preserving map. By pulling back the standard 
coframe by such map, we obtain a global Cartan-Whitney presentation on a space 
that is not locally bi-Lipschitz equivalent to R5 . Similar examples in dimension 
n = 3 were constructed in [14], [15], by using Semmes's spaces [34], [35]. On the 
other hand, we have the following result: 

Theo rem 2 Let X c HN be a metrically 2-dimensional, linearly locally con­
tractible 2-manifold admitting local Cartan-Whitney presentations. Then X is lo­
cally bi-Lipschitz equivalent to R 2 . 

Theorem 2 is an observation of Al. Bonk and myself. We use Theorem 1 
together with the observation that, in dimension n = 2, the branch set consists of 
isolated points, which can be resolved. The resolution follows from the measurable 
Riemann mapping theorem together with the recent work by Bonk and Kleiner [4]. 
While Theorem 2 presents a characterization of surfaces in Euclidean space that 
admit local bi-Lipschitz coordinates, we do not know whether the stipulation about 
the existence of local Cartan-Whitney presentations is really necessary (compare 
Problem 1 and the discussion preceding it). 

For dimensions n > 3, it would be interesting to know when there is no branch­
ing in the map (6.3). In [17], we ask if this be the case when the flat forms (p,) 
of the Cartan-Whitney presentation belong to a Sobolev space H^ on X. The 
relevant example here is the map (r, 9, z) >-¥ (r, 29, z), in the cylindrical coordinates 
of R", which pulls back the standard coframe to a frame that lies in the Sobolev 
space Ht^

e for each e > 0. Indeed, it was shown in [11] that in R" every (Cartan-
Whitney) pullback frame in Hfi0"c must come from a locally injective mapping. 

7. Other recent progress and open problems 
In his 1978 ICA1 address, Väisälä [44] asked whether the branch set of a C1-

smooth quasiregular mapping is empty if n > 3. It was known that Cn/ ,(n_2)-smooth 
quasiregular mappings have no branching when n > 3. The proof in [Ri, p. 12] of 
this fact uses quasiregularity in a rather minimal way. In this light, the following 
recent result may appear surprising: 

Theo rem 3 [1] For every e > 0 there exists a degree two C3^e -smooth quasiregular 
mapping / : S3 —¥ S3 with branch set homeomorphic to S1 . 

We are also able to improve the previous results as follows: 
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Theorem 4 [1] Given n > 3 and K > 1, there exist e = e(n,K) > 0 and e' = 
e'(n, K) > 0 such that the branch set of every K-quasiregular mapping in a domain 
in R" has Hausdorff dimension at most n — e, and that every (7«/(«-2)-e smooth 
K-quasiregular mapping in a domain in R" is a local homeomorphism. 

The second assertion in Theorem 4 follows from the first, by way of Sard-type 
techniques. The first assertion was known earlier in a local form where e > 0 was 
dependent on the local degree [31]. Our improvement uses [31] together with the 
work [30] by Rickman and Srebro. 

The methods in [1] fall short in showing the sharpness of Theorem 4 in di­
mensions n > 4 in two technical aspects. First, we would need to construct a 
quasiconformal homeomorphism of R" to itself that is uniformly expanding on a 
codimension two affine subspace; moreover, such a map needs to be smooth outside 
this subspace. In R3 , it is easier to construct a mapping with expanding behavior 
on a line; moreover, every quasiconformal homeomorphism in dimension three can 
be smoothened (with bounds) outside a given closed set [19]. 

We finish with some open problems related to branching and quasiregular 
mappings. The problems are neither new nor due to the author. 

Problem 2 What are the possible values for the topological dimension of the 
branch set of a quasiregular mapping? 

By suspending a covering map H3 —t S3, where H3 is as in Section 4, and using 
Edwards's theorem, one finds that there exists a branched covering S5 —¥ S5 that 
branches exactly on S1 C S5. It is not known whether there exists a quasiregular 
mapping S5 —¥ S5 with similar branch set. If no such map existed, we would 
have an interesting implication to a seemingly unrelated parametrization problem; 
it would follow that no double suspension of a homology 3-sphere with nontrivial 
fundamental group admits a quasisymmetric homeomorphism onto the standard 
5-sphere, cf. [38], [16, Question 12]. 

By work of Bonk and Kleiner [4], the bi-Lipschitz parametrization problem 
in dimension n = 2 is equivalent to an analytic problem of characterizing, up to a 
bounded factor, the Jacobian determinants of quasiconformal mappings in R2 . An 
affirmative answer to Problem 1 in Section 5 would give an affirmative answer to 
the following problem. 

Problem 3 (Compare [16, Question 2]) Is every Ai-weight in R2 locally compara­
ble to the Jacobian determinant of a quasiconformal mapping? 

An Ai-weight is a nonnegative locally integrable function whose mean-value 
over each ball is comparable to its essential infimum over the ball. See [7], [32], [3], 
[16] for further discussion of this and related problems. 

Problem 4 [16, Question 28] Is there a branched covering / : S" —¥ Sn, for some 
n > 3, such that for every pair of homeomorphisms <j>, fi : S" —¥ S", the mapping 
4> o / o fi fails to be quasiregular? 
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Branched coverings constructed by using the double suspension are obvious 
candidates for such mappings. In [15, 9.1], we give an example of a branched 
covering / : S3 —¥ S3 such that for every homeomorphism fi : S3 —¥ S3, / o fi 
fails to be quasiregular. The example is based on a geometric decomposition space 
arising from Bing's double [34]. 

We close this article by commenting on the lack of direct proofs for some 
fundamental properties of quasiregular mappings related to branching. For example, 
it is known that for each n > 3 there exists K(n) > 1 such that every K(n)-
quasiregular mapping is a local homeomorphism [25], [28, p. 232]. All known 
proofs for this fact are indirect, exploiting the Liouville theorem, and in particular 
there is no numerical estimate for K(n). It has been conjectured that the winding 
mapping (r,9,z) >-¥ (r,29,z) is the extremal here (cf. Section 6). Thus, if one uses 
the inner dilatation Ki(fi) of a quasiregular mapping, then conjecturally Ki(fi) < 2 
implies that Bf = 0 for a quasiregular mapping / in R" for n > 3 [29, p. 76]. 

Ostensibly different, but obviously a related issue, arises in search of Bloch's 
constant for quasiregular mappings. Namely, by exploiting normal families, Ere­
menko [10] recently proved that for given n > 3 and K > 1, there exists bo = 
bo(n, K) > 0 such that every if-quasiregular mapping / : R" —t Sn has an inverse 
branch in some ball in S n of radius bo- No numerical estimate for 60 is known. Alore 
generally, despite the deep results on value distribution of quasiregular mappings, 
uncovered by Rickman over the past quarter century, the affect of branching on 
value distribution is unknown, cf. [29, p. 96]. 
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Abstract 

We will review work with Tatiana Toro yielding a characterization of those 
domains for which the harmonic measure has a density whose logarithm has 
vanishing mean oscillation. 
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In this lecture, I will describe a series of joint works with Tatiana Toro on 
the relationship between regularity properties of harmonic measure and Poisson 
kernels, and regularity properties of the underlying domains. Thus, consider a 
domain Q C R"+1 and the solution to the classical Dirichlet problem: 

{Au = 0 in Q 

u\dQ = f£ cb(dfi), ( } 

u £ C{,(0), where Cj is the class of bounded continuous functions. The maximum 
principle and the Riesz representation theorem yield the formula 

u(X,)= [ f(Q)dwx*(Q), X , GO, 
Jan 

and the family of positive Borei probability measures {dujx*} is called harmonic 
measure. We sometimes fix X» £ Q and write du = dojx*. Note that, if 0 is 
a smooth domain, then dux*(Q) = -^-(Q,X„)da(Q), where G is the Green's 

function for Q, da is surface measure, and -pM— denotes differentiation along the 
outward unit normal. When Q is unbounded and v is a minimal harmonic function 
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in Q with u| = 0, we define doj°°, harmonic measure with pole at infinity, to be 
the measure satisfying 

pdw00 = [ vAip, for p £ C0°°(O). 
an Jn 

The existence and uniqueness of v and OJ00 (modulo multiplicative constants) can 
be established, for instance, when Q is an unbounded NTA (non-tangentially acces­
sible) domain abbreviation is clarified later, it might as well be here, (see [16] for 
details). For example, if 0 = R"+1 = {(x,t) : t > 0}, then v(x,t) = t and du>°° = dx 
on R". The work I will describe originated from trying to understand, as a --I 0, 
the classical theorem of Kellogg, which shows that, if 0 is of class C1,a, 0 < a < 1, 
then dw = kda with log k £ Ca; and its "converse", the free boundary regularity of 
Alt-Caffarelli [1], which states that, if 0 satisfies certain necessary weak conditions 
(to be more fully explained later) and du = kda with logfc £ Ca, then Q must be 
of class C1,a. 

To motivate our results, we recall real variable characterizations of C1,a and 
Ca: 

p £ C1'a(Wl) ( 0 < a < l ) o V r > 0 , i 0 e K n , there exists an affine function 

Lr,X0 on R" such that M g ) ~ ^ o f r ) ! < Cra for \x_Xo\<r. (T)Q 

When a = 0, this condition is equivalent to the Zygmund class condition Lp £ A», 
i.e., 

\ip(x + h) + Lp(x — h) — 2(p(x)\ 

\h\ 
<C. 

For us, when a = 0, the X„ class will also be relevant, where tp £ X„ if tp £ A» and, 
in addition, the ratio described above tends to 0 as a - I 0. 

h £ Ca 44> sup —a\'BR \h — hßr | < C, (II)Q 

r>o ra 

where ay A denotes the average over the set A and Br any ball of radius r. When 
a = 0, this becomes the BAIO space of John-Nirenberg [11], but we will be more 

interested in VAIO, where h £ VAIO if h £ BAIO and in addition av^J/i —/ißj y 
0. Note that VAIO plays the role vis-à-vis BAIO that continuous functions play vis-
à-vis L°°. 

We start out by giving our geometric analogue of (I)o: We say that 0 C R"+1 

is oJ-Reifenberg flat if it has the separation property (a quantitative connectivity-
property) (see [16] for details), and, for all compact K CC R"+1 , there exists 
RK > 0, such that, for 0 < r < Rf. and Q £ 9 0 n K, there exists an n-dimensional 
plane L(r, Q) passing through Q such that 

-D[B(r, Q) n dû, B(r, Q) n L(r, Qj] < Ö, 
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where D denotes Hausdorff distance. Note that this is a significant condition only 
for 5 < 1. We will always assume Ö < -fi^. We say that 0 is Reifenberg vanishing 
if, as r —t 0, we can take Ö —¥ 0. For instance, the domain above the graph of a A» 
function is Reifenberg vanishing. In general, Reifenberg vanishing domains are not 
local graphs; they do not have tangent planes or a "surface measure". This class of 
domains was introduced by Reifenberg [20] in his study of the Plateau problem for 
minimal surfaces in higher dimensions. 

In order to state our analogue of Kellogg's theorem in this setting, we need 
to introduce "multiplicative" analogues of (I)o- A measure p, supported on 90 , is 
doubling if, Vif ÇC R"+1, there exists RK > 0 such that, if 0 < r < RK, then 

p(B(2r, Q) n 90) < C p(B(r, Q) n 90). 

Such a p is called asymptotically optimal doubling (see [], []) for details) if it is 
doubling and 

U m .n f p(B(rr,Q)ndn)_i]m p(B(rr, Q) n 90) _ ^ 
r^oQGOfinif p(B(r,Q)ndü) r^oQe9nnK p(B(r,Q)ndü) 

for 0 < r < 1, K CC R". For example, if 0 is of class C1,a and da denotes 
surface measure, then a(B(r, Q) n 90) = anr

n + 0(rn+a), Q £ 90 , and hence a is 
asymptotically optimal doubling. If logfc £ Ca, then the same is true for du = kda. 
Our analog of Kellog's theorem is: 

Theorem 1. ([15]) If ii is a Reifenberg vanishing domain, then u (OJ°°) is asymp­
totically optimal doubling. 

The proof uses the fact that oJ-Reifenberg flat domains are NTA domains ([9], 
[15]). One then uses the theory of the boundary behavior of harmonic functions on 
NTA domains ([9]) and comparisons to half-planes, using the Reifenberg vanishing 
condition and the maximum principle. 

To understand a possible converse to Theorem 1, we recall a geometric mea­
sure theory (GAIT) problem, first posed by Besicovitch: let p be a positive Radon 
measure on R"+1 such that, for each Q £ S (S the support of p) and each r > 0, 
we have 

p(B(r, Q)) = arn, a>0 fixed. (B) 

Then, what can be said about pi Clearly, if dp = dx on R" C R"+1 , then (B) 
holds. Nevertheless, in 1987, D. Preiss found the following interesting example: let 
S c be the light cone x\ = x\ + x\ + x\, and dp = daj:c its surface measure. Then p 
satisfies (B). Aloreover, the general case of (B) is settled by the following remarkable 
theorem of Kowalski-Preiss [17]. 

Theorem. ([17]) Let p be a non-zero measure with property (B), and put S = 
suppM Ç Kn + 1 . If n = 1,2, then S = R". If n > 3, then either S = R" or 
S = S c ® R" - 3 , modulo rigid motions. 

The connection of the Preiss example to our problem comes from the fact 
([16]) that, if 0 = {x\ < x\ + x\ + x\}, O C R 4 , then dui00 = daj:c (separation of 
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variables) and, by Preiss's result, OJ°° is asymptotically optimal doubling, but, of 
course, 0 is not Reifenberg vanishing, since it is -A^-Reifenberg flat, and no better. 
Our converse to Theorem 1 is now: 

Theo rem 2. ([16]) Assume that O C R"+1 is an NTA, and thatoj (OJ°°) is asymp­
totically optimal doubling. Ifn= 1,2, then 0 is Reifenberg vanishing. Ifn>3 and 
0 is ö-Reifenberg flat, ö < -fi^, then 0 is Reifenberg vanishing. 

This is in fact a GAIT result. It remains valid if OJ (OJ°°) is replaced by any 
asymptotically optimal doubling measure p with support 90 . The idea of the proof 
is to use a "blow-up" argument to reduce matters to the Kowalski-Preiss theorem. 
Further GAIT results along these lines, also in the higher codimension case, were 
obtained by David-Kenig-Toro [4]. 

We now turn to the results motivated by (II)o- Note that the unit normal 
n satisfies \n\ = 1, and so the BAIO condition on it is automatic, but the VAIO 
condition is not. To put our work in perspective, we recall some of the history of 
the subject. 

A domain 0 C R1+1 = R2 is called a chord-arc domain is 9 0 is locally recti-
fiable, and, whenever Qi,Q2 £ 90 , we have £(s(Qi,Q2)) < C\Qi — Q2I, where £ 
denotes length and s(Qi,Qfi) is the shortest arc between Qi and Q2- 0 is called 
vanishing chord-arc if, in addition, as Qi —̂  Q2, the ratio ,A AA tends to 1, uni-

\W 1 W2 [ 

formly on compact sets. The first person to study harmonic measure on chord-arc 
domains in the plane was Lavrentiev ([18]), who proved: 

Theorem. ([18]) / / O C R1+1 is chord-arc, then doj = kda with logfc £ BAlO(da). 
(In fact, OJ £ A00(da), the Muckenhoupt class [7].) 

For vanishing chord-arc domains in the plane, Pommerenke [19] proved: 

Theorem. ([19]) Suppose that ii is a chord-arc domain in R1 + 1 . Then 0 is van­
ishing chord-arc if and only if doj = kda with logfc £ VAlO(da). 

These results were obtained using function theory, so their proofs don't gener­
alize to higher dimensions. In higher dimensions, the first breakthrough came in the 
celebrated theorem of B. Dahlberg [2], who showed that, if 0 C R"+1 is a Lipschitz 
domain, then doj = kda with logfc £ BAIO (in fact, OJ £ A00(daj). One direction 
of Pommerenke's result was extended to higher dimensions by Jerison-Kenig [10], 
who showed that, if 0 is a C1 domain, then log k £ VAIO. (In general, note that 
0 is of class C1 need not imply that log k is continuous.) In order to explain our 
results and to clarify the connection with condition (II)o, we need to introduce some 
terminology. A domain 0 C R"+1 will be calld a chord-arc domain if it is an NTA 
domain (see [9]) of locally finite perimeter (see [6]) and its boundary is Ahlfors reg­
ular, i.e., the surface measure a (which is Radon measure on 90 , by the assumption 
of locally finite perimeter) satisfies the inequalities 

C-Xrn < a(B(r, Q) n 90) < Crn 

(for Q ë A n 90 , K CC R"+1 and small r; or, if 0 is an unbounded NTA, for 
all Q £ 90 and r > 0). A fundamental result of David-Jerison [3] and Semmes 
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[21] is that Dahlberg's theorem extends to this case, i.e., that doj = kda with 
logfc £ BAIO, and, in fact, OJ £ A00(da). 

We say that O C R"+1 is a "o"-chord-arc domain" if 0 if oJ-Reifenberg flat, 0 is 
of locally finite perimeter, the boundary of 0 is Ahlfors regular and the BAIO norm 
of the unit normal n is bounded by Ö. We say that 0 is "vanishing chord-arc" if, in 
addition, it is Reifenberg vanishing and n £ VMO(da). 

Remark. S. Semmes [22] has proved that, if 0 is a ^-chord-arc domain (under 
the definition used above), then 

(1 + ^ r W " < a(B(r, Q) n 90) < (1 + y/S)anr
n, 

where an is the volume of the unit ball in R" and Ö < 8n. Moreover, a combination 
of the results in [22] and [16] shows that, if 0 is a oJ-Reifenberg flat domain which 
is of locally finite perimeter, and for which a(B(r,Q) n 90) < (1 + 8)anr

n, then 
the BAIO norm of n is bounded by CVô for Ô < b~n. Thus, the two notions intro­
duced of "vanishing chord-arc" domains in the plane are the same, and a domain 
is vanishing chord-arc exactly when it is of locally finite perimeter, has an Ahlfors 
regular boundary, it is Reifenberg vanishing and satisfies n £ VAIO. 

Our potential-theoretic result, which extends the work of Jerison-Kenig [10], 
is 

Theorem 3. ([15]) If ii is a vanishing chord-arc domain, then OJ (OJ°°) has the 
property that doj = kda (doj°° = h da) with logfc £ VAIO (log h £ VAIOJ. 

This was proved by a combination of real variable arguments, potential-theoretic 
arguments, and the estimates in [10]. 

In order to understand possible converses of this, extending the work of Pom-
merenke to higher dimensions, we will recall precisely the Alt-Caffarelli [1] result 
which we alluded to earlier. In the language that we have introduced, their local 
regularity theorem can be stated as follows: 

Theorem. ([1]) Let ii be a set of locally finite perimeter whose boundary is Ahlfors 
regular. Assume that 0 is ô-Reifenberg flat, Ö < ó~n. Suppose that doj = kda with 
logfc G C a (90) (0<a< 1). Then ii is a C1^ domain. 

The reason for this being a free boundary regularity result is that, in the case 
when O is unbounded and doj = doj°°, doj°° = h da, then u > 0 in O, u| = 0, 
Au = 0 in O and h = | | . Thus, knowledge of the regularity of the Cauchy data of 
v (v\dQ, § § | ö Q ) yields regularity of 90 (or of n, the normal). 

The first connection between the above Theorem and the work of Pommerenke 
was made by Jerison [8], who was also the first to formulate the higher-dimensional 
analogues of Pommerenke's theorem as end-point estimates as a —¥ 0 in the Alt-
Caffarelli theorem. Jerison's theorem in [8] states that, if O is a Lipschitz domain 
and doj = kda with logfc continuous, then n £ VAIO. There is an error in Lemma 
4 of Jerison's paper. Nonetheless, in [16] we made strong use of the ideas in [8]. In 
the more recent version of our results [14], we bypass this approach. 
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Before stating our result, it is useful to classify the assumptions in the Alt-
Caffarelli theorem. For this, we recall some examples: 

Examples . When n = 1, Keldysh-Lavrentiev [12] (see also [5]) constructed do­
mains in R1+1 with locally rectifiable boundaries which ([5]) can be taken to be 
Reifenberg vanishing and for which doj = da, i.e., k = 1, but which are not very-
smooth. For instance, they fail to be chord-arc. These domains do not, of course, 
have Ahlfors regular boundaries. When n = 2, Alt-Caffarelli constructed a double 
cone F in R3 such that, for 0 the domain outside the cone, doj°° = da, i.e., k = 1. 
This is of course not smooth near the origin, the problem being that, while 0 is 
NTA and 9 0 is Ahlfors regular, 0 is not oJ-Reifenberg flat for small 8. When n = 3, 
the Preiss cone we saw before exhibits the same behavior. 

Our first result was: 

Theorem 4. ([16]) Assume that 0 Ç R"+1 is ô-chord-arc, 8 < 8n, that OJ (OJ°°) 

is asymptotically optimal doubling and that logfc £ VAIO (log h £ VAIOJ. Then 
n £ VAIO and 0 is vanishing chord-arc 

Notice, however, that, when comparing the hypothesis of Theorem 4 to the 
Alt-Caffarelli theorem two things are apparent : first, we are making the addi­
tional assumption that OJ is asymptotically optimal doubling, and hence, in light 
of Theorem 2, 0 is Reifenberg vanishing. Next, the "flatness" assumption in the 
Alt-Caffarelli theorem is $-Reifenberg flatness, while in Theorem 4 we make the a 
priori assumption that, in addition, the BAIO norm of n is smaller than 8. R...". 
This does not make much sense, ecently we have developed a new approach which 
has removed these objections. We have: 

Theorem 5. ([14]) Let ii be a set of locally finite perimeter whose boundary is 
Ahlfors regular. Assume that 0 is 8-Reifenberg flat, 8 < 8n. Suppose that doj = kda 
(doj°° = h da) with logfc G VMO(da) flog h £ VMO(da)). Then ft £ VMO(da) 
and ii is a vanishing chord-arc domain. 

Note that Theorems 3 and 5 together give a complete characterization of the 
vanishing chord-arc domains in terms of their harmonic measure, in analogy with 
Pommerenke's 2-dimensional result, thus answering a question posed by Semmes 
[21]. 

Our technique for the proof of Theorem 5 is to use a suitable "blow-up" to 
reduce matters to the following version of the "Liouville theorem" of Alt-Caffarelli 
(W, [13]): 

Theorem 6. ([1], [13]) Let ii be a set of locally finite perimeter whose boundary 
is (unboundedly) Ahlfors regular. Assume that 0 is an unbounded 8-Reifenberg flat 
domain, 8 < 8n. Suppose that u and h satisfy: 

I A« = 0 in 0 

and 

u > 0 inii u\ar,=0 . \au 

uAp = ph da, for p £ C0°° (R"+1 ). 
n Jan 
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Suppose that supx € f i |Vu(x)| < 1 and h(Q) > 1 for (da-)a.c Q on dil. Then 0 is 
a half-space and u(x,xn+i) = xn+i. 

This allows us to prove the crucial blow-up result, which we now describe. 
Let 0 be as in Theorem 5, and assume in addition that 0 is unbounded. Suppose 
doj°° = h da with log h £ VMO(da), and let u be the associated harmonic function. 
Let Qi £ 90 and assume that Qi —¥ Qoo £ 90 as i —¥ oo (without loss of generality, 
Qoo = 0). Let { r , } ^ 1 be a sequence of positive numbers tending to 0, and put 

iii 
1 

(0 - Qi düi 
1 (90 - Qi 

UifiX) 
1 

u(rtX + Qi) and doj°° = hi(Q)dai(Q), 

where ht(Q) = aVB(r. ^ f t ^ M ^ Q + Qi)- Then: 

Theorem 7. There exists a subsequence of {Oj} (which we will call again {Hi}) 
satisfying: 

Oj —t OQO in the Hausdorff distance sense, uniformly on compact sets; (7.1) 

90j —t diioo in the Hausdorff distance sense, uniformly on compact sets; (7.2) 

«« —̂  «oo uniformly on compact sets (7.3) 

and 

AUQO = 0 in OQO 

«no = 0 in diirx 

«oo > 0 in iir 

(7.4) 

Furthermore 

and 

(7.5) 

o-i ->• CT«», (7.6) 

weakly as Radon measures. Here, CTQO = /rin [dii^ and WQO denotes the harmonic 
measure of iloo with pole at oo (corresponding to «ooj- Moreover, 

SUp |V«oo(^) | < 1 
2Gfioo 

(7.7) 

and 

hoo(Q) 
dojr, 

dar. 
'-(Q)>1 forHn-a.c Q £ 9 0 œ . (7.8) 
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Since log/i G VA10(90), the average avB^.^hda is close to the value of log/i 
in a proportionally large subset of B(r, Q) n 90 . This remark allows us to conclude 
that (7.6) holds, which is crucial to the application and which fails in general under 
just (7.1) and (7.2). 

As an immediate application of Theorems 6 and 7, we obtain that Ooo is a 
half-plane. This already establishes that 0 is Reifenberg vanishing in Theorem 5. 
To establish that n is in VAIO, we assume otherwise, and obtain Qt —t Q œ , rt —t 0, 
such that avB(ri,Qi)\n — nB(ri,Qi)\2da > £2, £ > 0. We consider the corresponding 
blow-up sequence, and let en+i be the direction perpendicular to 9 0 ^ . By the 
divergence theorem and (7.1) and (7.2), we have for p £ Cg°(Wn+1) that 

2—»OO 
lim / p(Hi,en+i)dai = / pdx 

'Ofi; Jll"x{0} 

and hence 

lim -j / pdai - - j Lp\rti — en+i\2dai > = / pdx, 
l—»oo Ofi; 2 JdQ. J jR»x{0} 

so that (7.6) yields 

2—»OO 
lim / p\n,i — en+iYdai = 0. 

Taking p > XB(I,Q) yields the corresponding bound for the integral on 90j C\B(1,0). 
But 

avB(l,0)nOfiiln* — e»+l | aai — ayB(ri,Qi)\n — en+i | OCT, 

and hence 

, x l / 2 , x l / 2 

£< lim (avB ( r Q i ) | n ^ n B ( r Q;)! 2^) < 2 lim (avB ( r ̂ cfin - e„+i|2do-) , 
i—»oo \ / i—»oo \ / 

a contradiction. This concludes the proof. 
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Solving Pseudo-Differential Equations 

Nicolas Lerner* 

Abstract 

In 1957, Hans Lewy constructed a counterexample showing that very 
simple and natural differential equations can fail to have local solutions. A geo­
metric interpretation and a generalization of this counterexample were given 
in 1960 by L.Hörmander. In the early seventies, L.Nirenberg and F.Treves pro­
posed a geometric condition on the principal symbol, the so-called condition 
(ip), and provided strong arguments suggesting that it should be equivalent 
to local solvability. The necessity of condition (ip) for solvability of pseudo-
differential equations was proved by L.Hörmander in 1981. The sufficiency of 
condition (ip) for solvability of differential equations was proved by R.Beals 
and C.Fefferman in 1973. For differential equations in any dimension and for 
pseudo-differential equations in two dimensions, it was shown more precisely 
that (ip) implies solvability with a loss of one derivative with respect to the 
elliptic case: for instance, for a complex vector field X satisfying (ip), f e Lfoc, 
the equation Xu = f has a solution u e L'foc. 

In 1994, it was proved by N.L. that condition (ip) does not imply solvabil­
ity with loss of one derivative for pseudo-differential equations, contradicting 
repeated claims by several authors. However in 1996, N.Dencker proved that 
these counterexamples were indeed solvable, but with a loss of two derivatives. 
We shall explore the structure of this phenomenon from both sides: on the 
one hand, there are first-order pseudo-differential equations satisfying condi­
tion (ip) such that no Lfoc solution can be found with some source in Lfoc. On 
the other hand, we shall see that, for these examples, there exists a solution 
in the Sobolev space #,"*. 

The sufficiency of condition (ip) for solvability of pseudo-differential equa­
tions in three or more dimensions is still an open problem. In 2001, N.Dencker 
announced that he has proved that condition (ip) implies solvability (with a 
loss of two derivatives), settling the Nirenberg-Treves conjecture. Although 
his paper contains several bright and new ideas, it is the opinion of the author 
of these lines that a number of points in his article need clarification. 
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1. From Hans Lewy to Nirenberg-Treves' 
condition (^) 

Year 1957. 
The Hans Lewy operator L0, introduced in [20], is the following complex vector 

field in R3 

d d d 
LQ = - Vi- \-i(xi+ix2)^—• (1.1) 

OXi OX2 OX3 
There exists / £ C°° such that the equation 

L0u = f (1.2) 

has no distribution solution, even locally. This discovery came as a great shock for 
several reasons. First of all, L0 has a very simple expression and is natural as the 
Cauchy-Riemann operator on the boundary of the pseudo-convex domain 

{(zi,z2) £ C2 , |zi |2 + 2Im02 < 0}. 

Moreover L0 is a non-vanishing vector field so that no pathological behaviour related 
to multiple characteristics is to be expected. In the fifties, it was certainly the 
conventional wisdom that any "reasonable" operator should be locally solvable, and 
obviously (1.1) was indeed very reasonable so the conclusion was that, once more, 
the CW should be revisited. One of the questions posed by such a counterexample 
was to find some geometric explanation for this phenomenon. 

1960. 
This was done in 1960 by L.Hörmander in [7] who proved that if p is the 

symbol of a differential operator such that, at some point (x, £) in the cotangent 
bundle, 

p(x.fi) = 0 and {Rep,lmp}(x.fi) > 0, (1.3) 

then the operator P with principal symbol p is not locally solvable at x; in fact, 
there exists / £ C°° such that, for any neighborhood V of x the equation Pu = f 
has no solution u £ V(V). Of course, in the case of differential operators, the 
sign > 0 in (1.3) can be replaced by ^ 0 since the Poisson bracket {Rep, Imp} is 
then an homogeneous polynomial with odd degree in the variable £. Nevertheless, 
it appeared later (in [8]) that the same statement is true for pseudo-differential 
operators, so we keep it that way. Since the symbol of -iL0 is £1 —X2^3+i(^2+xi^), 
and the Poisson bracket {£1 —X2Ç3, £2 + Ï1C3} = 2£3, the assumption (1.3) is fulfilled 
for L0 at any point x in the base and the nonsolvability property follows. This gives 
a necessary condition for local solvability of pseudo-differential equations: a locally-
solvable operator P with principal symbol p should satisfy 

{Rep, lmp}(x, £) < 0 at p(x.fi) = 0. (1.4) 

Naturally, condition (1.4) is far from being sufficient for solvability (see e.g. the 
nonsolvable Af3 below in (1.5)). After the papers [20], [7], the curiosity of the 
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mathematical community was aroused in search of a geometric condition on the 
principal symbol, characterizing local solvability of principal type operators. It is 
important to note that for principal type operators with a real principal symbol, 
such as a non-vanishing real vector field, or the wave equation, local solvability was 
known after the 1955 paper of L.Hörmander in [6]. In fact these results extend quite 
easily to the pseudo-differential real principal type case. As shown by the Hans Lewy 
counterexample and the necessary condition (1.4), the matters are quite different 
for complex-valued symbols. 

1963. 
It is certainly helpful to look now at some simple models. For t, x £ R, with 

the usual notations 
Dt = -Wt, (\Dfi\u)(0 = |£|«(£), 

where « is the ar-Fourier transform of u, I £ N, let us consider the operators defined 
by 

M, = Dt + itlDx, Ni = Dt + itl\Dx\. (1.5) 

It is indeed rather easy to prove that, for k £ N, M2k, N2k, Ar
2*fc+1 are solvable 

whereas M2k+i, N2k+i are nonsolvable. In particular, the operators Afi, Ari satisfy 
(1.3). On the other hand, the operator Ar

1* = Dt — it\Dx\ is indeed solvable since 
its adjoint operator Ari verifies the a priori estimate 

r||Ari«||L2(R2 ) > ||«||L2(R2), 

for a smooth compactly supported u vanishing for \t\ > T/2. No such estimate is 
satisfied by N£u since its a:-Fourier transform is 

-idf.v — it\Ç\v = (—i)(dt.v + t\Ç\v), 

where v is the ar-Fourier transform of u. A solution of Nfu = 0 is thus given by 
the inverse Fourier transform of e -* ^/2, ruining solvability for the operator Ari. 
A complete study of solvability properties of the models M/ was done in [23] by 
L.Nirenberg and F.Treves, who also provided a sufficient condition of solvability 
for vector fields; the analytic-hypoellipticity properties of these operators were also 
studied in a paper by S.Alizohata [21]. 

1971. 
The ODE-like examples (1.5) led L.Nirenberg and F.Treves in [24-25-26] to 

formulate a conjecture and to prove it in a number of cases, providing strong grounds 
in its favour. To explain this, let us look simply at the operator 

L = Dt + iq(t,x,Dx), (1.6) 

where q is a real-valued first-order symbol. The symbol of L is thus r + iq(t,x.fi). 
The bicharacteristic curves of the real part are oriented straight lines with direction 
d/dt; now we examine the variations of the imaginary part q(t, x, £) along these 
lines. It amounts only to check the functions t >-¥ q(t,x,Ç) for fixed (#,£). The 
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good cases in (1.5) (when solvability holds) are t2kÇ, —t2k+1\Ç\: when t increases 
these functions do not change sign from — to +. The bad cases are t2k+1\Ç\: when t 
increases these functions do change sign from — to +; in particular, the nonsolvable 
case (1.3), tackled in [8], corresponds to a change of sign of Imp from — to + at a 
simple zero. The general formulation of condition (ip) for a principal type operator 
with principal symbol p is as follows: for all z £ C, lm(zp) does not change sign 
from — to + along the oriented bicharacteristic curves of Re(zp). It is a remarkable 
and non-trivial fact that this condition is invariant by multiplication by an elliptic 
factor as well as by composition with an homogeneous canonical transformation. 
The Nirenberg-Treves conjecture, proved in several cases in [24-25-26], such as for 
differential operators with analytic coefficients, states that, for a principal type 
pseudo-differential equation, condition (ip) is equivalent to local solvability. 

The paper [25] introduced a radically new method of proof of energy estimates 
for the adjoint operator L* based on a factorization of q in (1.6): whenever 

<l(t, x, £) = a(t, x, £)6(x, £) (1.7) 

with a < 0 of order 0 and 6 of order 1, then the operator L in (1.6) is locally solvable. 
Looking simply at the ODE 

Dt + ia(t, x, Ob(x, £) = (-*) (dt - a(t, x, £)6(ar, £)), (1.8) 

it is clear that in the region {&(#,£) > 0}, the forward Cauchy problem for (1.8) is 
well posed, whereas in {&(#,£) < 0}, well-posedness holds for the backward Cauchy 
problem. This remark led L.Nirenberg and F.Treves to use as a multiplier in the 
energy method the sign of the operator with symbol 6. They were also able to 
provide the proper commutator estimates to handle the remainder terms generated 
by this operator-theoretic method. Although a factorization (1.7) can be obtained 
for differential operators with analytic regularity satisfying condition (rp), such a 
factorization is not true in the C°° case. Incidentally, one should note that for 
differential operators, condition (ip) is equivalent to ruling out any change of sign of 
Imp along the bicharacteristics of Rep (the latter condition is called condition (Pj); 
this fact is due to the identity p(x, —£) = ( — l)mp(x, £), valid for an homogeneous 
polynomial of degree m in the variable £. 

Using the Malgrange-Weierstrass theorem on normal forms of complex-valued 
non-degenerate C°° functions and the Egorov theorem on quantization of homoge­
neous canonical transformations, there is no loss of generality considering only first 
order operators of type (1.6). The expression of condition (ip) for L is then very-
simple since it reads 

q(t, x, £) < 0 and s > t =^> q(s,x.fi) < 0. (1.9) 

Note that the expression of condition (P) for L is simply q(t,x.fi)q(s,x.fi) > 0. 
Aluch later in 1988, N.Lerner [14] proved the sufficiency of condition (ip) for lo­
cal solvability of pseudo-differential equations in two dimensions and as well for 
the classical oblique-derivative problem [15]. The method of proof of these results 
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is based upon a factorization analogous to (1.7) but where b(x.fi) is replaced by 
ß(t,x)|£| and ß is a smooth function such that t >-¥ ß(t,x) does not change sign 
from + to — when t increases. Then a properly defined sign of ß(t, x) appears as a 
non-decreasing operator and the Nirenberg-Treves energy method can be adapted 
to this situation. 

1973. 
At this date, R.Beals and C.Fefferman [1] took as a starting point the previous 

results of L.Nirenberg and F.Treves and, removing the analyticity assumption, they 
were able to prove the sufficiency of condition (P) for local solvability, obtaining 
thus the sufficiency of condition (ip) for local solvability of differential equations. 
The key ingredient was a drastically new vision of the pseudo-differential calculus, 
defined to obtain the factorization (1.7) in regions of the phase space much smaller 
than cones or semi-classical "boxes" {(#,£), |x| < 1,|£| < h^1}. Considering the 
family {q(t,x.fi)}f ,_ 1 1 , of classical homogeneous symbols of order 1, they define, 
via a Calderón-Zygmund decomposition, a pseudo-differential calculus depending 
on the family {q(t, •)}, in which all these symbols are first order but also such that, 
at some level to, some ellipticity property of q(to, •) or Vx^q(to, •) is satisfied. Con­
dition (P) then implies easily a factorization of type (1.7) and the Nirenberg-Treves 
energy method can be used. It is interesting to notice that some versions of these 
new pseudo-differential calculi were used later on for the proof of the Fefferman-
Phong inequality [5]. In fact, the proof of R.Beals and C.Fefferman marked the day 
when microlocal analysis stopped being only homogeneous or semi-classical, thanks 
to methods of harmonic analysis such as Calderón-Zygmund decomposition made 
compatible with the Heisenberg uncertainty principle. 

1978. 
Going back to solvability problems, the existence of C°° solutions for C°° 

sources was proved by L.Hörmander in [9] for pseudo-differential equations satisfying 
condition (P). For such an operator P of order m, satisfying also a non-trapping 
condition, a semi-global existence theorem was proved, with a loss of 1+e derivatives, 
with e > 0. Following an idea given by R.D.Aloyer [22] for a result in two dimensions, 
L.Hörmander proved in [10] that condition (ip) is necessary for local solvability: 
assuming that condition (ip) is not satisfied for a principal type operator P, he was 
able to construct approximate non-trivial solutions u for the adjoint equation P*u = 
0, which implies that P is not solvable. Although the construction is elementary for 
the model operators N2k+i in (1.5) (as sketched above for Ari in our 1963 section), 
the multidimensional proof is rather involved and based upon a geometrical optics 
method adapted to the complex case. The details can be found in the proof of 
theorem 26.4.7' of [11]. 

We refer the reader to the paper [13] for a more detailed historical overview of 
this problem. On the other hand, it is clear that our interest is focused on solvability 
in the C°° category. Let us nevertheless recall that the sufficiency of condition (ip) 
in the analytic category (for microdifferential operators acting on microfunctions) 
was proved by J.-M.Trépreau [27] (see also [12], chapter vu). 
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2. Counting the loss of derivatives 
Condition (tp) does not imply solvability with loss of one derivative. 

Let us consider a principal-type pseudo-differential operator L of order m. 
We shall say that L is locally solvable with a loss of p derivatives whenever the 
equation Lu = f has a local solution u in the Sobolev space Hs+m^'i for a source 
/ in Hs. Note that the loss is zero if and only if L is elliptic. Since for the simplest 
principal type equation d/dxi, the loss of derivatives is 1, we shall consider that 1 
is the "ordinary" loss of derivatives. When L satisfies condition (P) (e.g. if L is a 
differential operator satisfying condition (ip)), or when L satisfies condition (ip) in 
two dimensions, the estimates 

C\\L*u\\H->\\u\\H,+m-i, (2.1) 

valid for smooth compactly supported u with a small enough support, imply local 
solvability with loss of 1 derivative, the ordinary loss referred to above. For many-
years, repeated claims were made that condition (ip) for L implies (2.1), that is 
solvability with loss of 1 derivative. It turned out that these claims were wrong, as 
shown in [16] by the following result (see also section 6 in the survey [13]). 

Theorem 2.1. There exists a principal type first-order pseudo-differential operator 
L in three dimensions, satisfying condition (fi), a sequence Uk of Cfi" functions with 
suppig C {x £ R3, |x| < 1/k} such that 

IKIIL2(R3) = 1, um \\L*Uk\\L2(m) = 0- (2-2) 

As a consequence, for this L, there exists / £ L2 such that the equation 
Lu = f has no local solution u in L2. We shall now briefly examine some of the 
main features of this counterexample, leaving aside the technicalities which can be 
found in the papers quoted above. Let us try, with (t, x, y) £ R3, 

L = Dt- ia(t)(Dx + H(t)V(x)\Dy\), (2.3) 

with H = 1 R + , C°°(R) 9 V > 0, C°°(R) 9 a > 0 flat at 0. Since the function 
q(t,x,y.fi,n) = —a(£)(£ + H (t)V (x)\n\) satisfies (1.9) as the product of the non-
positive function —a(t) by the non-decreasing function t >-¥ £ + H(t)Yr(x)\r]\, the 
operator L satisfies condition (ip). To simplify the exposition, let us assume that 
a = 1, which introduces a rather unimportant singularity in the t-variable, let us 
replace \Dy\ by a positive (large) parameter A, which allows us to work now only 
with the two real variables t,x and let us set W = AV. We are looking for a 
non-trivial solution u(t,x) of L*u = 0, which means then 

du-{ BxU' for * < °' 
*" ~ 1 (Dx + W(x))u, for t > 0. 

The operator D,x + W is unitarily equivalent to D,x: with A'(x) = W(x), we have 
Dx -V W(x) = e^tA^Dxe

%A^x\ so that the negative eigenspace of the operator 
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D,x + W(x) is {v £ L2(R),supp eiAv C R_}. Since we want u to decay when 
t —¥ ±00, we need to choose vi,v2 £ L2(M), such that 

{ etD"Vi, suppwTcR+ for t < 0, 
(2.4) 

et-(D*+w)V2_ suppeMv2 CK_ fort>0. 

We shall not be able to choose vi = 1)2 in (2.4), so we could only hope for L*u to 
be small if \\v2 — WI||L2(R) is small. Thus this counterexample is likely to work if the 
unit spheres of the vector spaces 

E+ = {v £ L2(R), supp v C R+ } and Efi = {v £ L2(R), supp tßv C L } 

are close. Note that since W > 0, we get Eff\Efi = {0}: in fact, with L2(R) scalar 
products, we have 

v£E+ 0<W v£E~ 
v £ E+ n Efi = ^ 0 < (Dv, v) < ((D + W)v, v) < 0 = ^ (Dv, v) = 0 

which gives v = 0 since v £ Ef. Nevertheless, the "angle" between Ef and E^ 
could be small for a careful choice of a positive W. It turns out that Wo(x) = TT8O(X) 

is such a choice. Of course, several problems remain such as regularize Wo in such a 
way that it becomes a first-order semi-classical symbol, redo the same construction 
with a smooth function a flat at 0 and various other things. 

Anyhow, these difficulties eventually turn out to be only technical, and in fine, 
the actual reason for which theorem 2.1 is true is simply that the positive eigenspace 
of D,x (i.e. L2(R) functions whose Fourier transform is supported in R+) could be 
arbitrarily close to the negative eigenspace of D,x + W(x) for some non-negative W, 
triggering nonsolvability in L2 for the three-dimensional model operator 

Dt - ia(t)(Dx + lR+(t)W(x)\Dy\), (2.5) 

where a is some non-negative function, flat at 0. This phenomenon is called the 
"drift" in [16] and could not occur for differential operators or for pseudo-differential 
operators in two dimensions. A more geometric point of view is that for a principal 
type symbol p, satisfying condition (ip), one may have bicharacteristics of Rep which 
stay in the set {Imp = 0}. This can even occur for operators satisfying condition 
(P). However condition (P) ensures that the nearby bicharacteristics of Rep stay-
either in {Imp > 0} or in {Imp < 0}. This is no longer the case when condition 
(ip) holds, although the bicharacteristics are not allowed to pass from {Imp < 0} to 
{Imp > 0}. The situation of having a bicharacteristic of Rep staying in {Imp = 0} 
will generically trigger the drift phenomenon mentioned above when condition (P) 
does not hold. So the counterexamples to solvability with loss of one derivative are 
in fact very close to operators satisfying condition (P). 

A related remark is that the ODE-like solvable models in (1.5) do not catch the 
generality allowed by condition (ip). Even for subelliptic operators, whose tranposed 
are of course locally solvable, it is known that other model operators than M2k, Arj 
can occur. In particular the three-dimensional models Dt + it2k(Dx+t2l+1x2m\Dy\), 
where k, l, m are non-negative integers are indeed subelliptic and are not reducible 
to (1.5) (see chapter 27 in [11] and the remark before corollary 27.2.4 there). 
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Solvability with loss of two derivatives. 
Although theorem 2.1 demonstrates that condition (ip) does not imply solv­

ability with loss of one derivative, the counterexamples constructed in this theorem 
are indeed solvable, but with a loss of two derivatives, as proven by N.Dencker in 
1996 [2]. The same author gave a generalization of his results in [3] and later on, 
analogous results were given in [17]. 

A measurable function p(t, x, £) defined on 1 x I " x I " will be called in the 
next theorem a symbol of order m whenever, for all (a, ß) £ N" x N" 

sup \(d^dflp)(t,x,0\(l + ̂ \rm+m <+oo. (2.6) 
(M,Ç)eRxR»xRn 

Theorem 2.2. Let a(t,x.fi) be a non-positive symbol of order 0, b(t,x,Ç) be a real-
valued symbol of order 1 such that df.b > 0, and r(t,x,£) be a (complex-valued) 
symbol of order 0. Then the operator 

L=Dt + ia(t, x, Dx)b(t, x, Dx) + r(t, x, Dx) (2.7) 

is locally solvable with a loss of two derivatives. Since the counterexamples con­
structed in theorem 2.1 are in fact of type (2.7), they are locally solvable with a loss 
of two derivatives. 

In fact, for all points in R"+1 , there exists a neighborhood V, a positive con­
stant C such that, for all u £ C£°(V) 

C\\L*u\\Ho>\\u\\H-i. (2.8) 

This estimate actually represents a loss of two derivatives for the first-order L; the 
estimate with loss of 0 derivative would be ||L*U||ìJO > ||«||ffi, the estimate with 
loss of one derivative would be ||L*U||ìJO > ||w||if°> and both are false, the first 
because L* is not elliptic, the second from theorem 2.1. The proof of theorem 2.2 
is essentially based upon the energy method which boils down to compute for all 
T £ R 

Re(L*u, iBu + iH(t — T)u)L2(R„+i) 

where B = b(t,x,Dx). Some complications occur in the proof from the rather weak 
assumption df.b > 0 and also from the lower order terms. Anyhow, the correct 
multiplier is essentially given by b(t,x,Dx). Theorem 2.2 can be proved for much 
more general classes of pseudo-differential operators than those given by (2.6). As 
a consequence, it can be extended naturally to contain the solvability result under 
condition (P) (but with a loss of two derivatives, see e.g. theorem 3.4 in [17]). 

Miscellaneous results. 
Let us mention that the operator (1.6) is solvable with a loss of one derivative 

(the ordinary loss) if condition (ip) is satisfied (i.e. (1.9)) as well as the extra 
condition 

I d x ^ ^ O I 2 ! ^ - 1 + l % ( M , £ ) | 2 | £ | < C\dtq(t,x,Ç)\ when q(t,x,Ç) = 0. 
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This result is proved in [18] and shows that "transversal" changes of sign do not 
generate difficulties. Solvability with loss of one derivative is also true for operators 
satisfying condition (ip) such that the changes of sign take place on a Lagrangean 
manifold, e.g. operators (1.6) such that the sign of q(t,x,Ç) does not depend on 
£, i.e. q(t,x,Ç)q(t,x,n) > 0 for all (t,x,Ç,n). This result is proved in section 8 of 
[13] which provides a generalization of [15] where the standard oblique-derivative 
problem was tackled. On the other hand, it was proved in [19] that for a first-order 
pseudo-differential operator L satisfying condition (ip), there exists a L2 bounded 
perturbation R such that L + R is locally solvable with loss of two derivatives. 

3. Conclusion and perspectives 
The following facts are known for principal type pseudo-differential operators. 

F l . Local solvability implies (ip). 
F2. For differential operators and in two dimensions, (ip) implies local solvability. 
F3. (ip) does not imply local solvability with loss of one derivative. 
F4. The known counterexamples in (F3) are solvable with loss of two derivatives. 

The following questions are open. 

QI. Is (ip) sufficient for local solvability in three or more dimensions? 
Q2. If the answer to QI is yes, what is the loss of derivatives? 
Q3. In addition to (ip), which condition should be required to get local solvability 

with loss of one derivative? 
Q4. Is analyticity of the principal symbol and condition (ip) sufficient for local 

solvability? 

The most important question is with no doubt QI, since, with F l , it would settle 
the Nirenberg-Treves conjecture. From F3, it appears that the possible loss in Q2 
should be > 1. In 2001, N.Dencker announced in [4] a positive answer to QI, with 
answer 2 in Q2. His paper contains several new and interesting ideas; however, the 
author of this report was not able to understand thoroughly his article. 

The Nirenberg-Treves conjecture is an important question of analysis, connect­
ing a geometric (classical) property of symbols (Hamiltonians) to a priori inequalities 
for the quantized operators. The conventional wisdom on this problem turned out 
to be painfully wrong in the past, requiring the most careful examination of future 
claims. 
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Singular Integrals Meet Modulation 
Invariance 

C. Thiele* 

Abstract 

Many concepts of Fourier analysis on Euclidean spaces rely on the speci­
fication of a frequency point. For example classical Littlewood Paley theory 
decomposes the spectrum of functions into annuii centered at the origin. In 
the presence of structures which are invariant under translation of the spec­
trum (modulation) these concepts need to be refined. This was first done by 
L. Carleson in his proof of almost everywhere convergence of Fourier series 
in 1966. The work of M. Lacey and the author in the 1990's on the bilinear 
Hilbert transform, a prototype of a modulation invariant singular integral, 
has revitalized the theme. It is now subject of active research which will be 
surveyed in the lecture. Most of the recent related work by the author is joint 
with C. Muscalu and T. Tao. 

2000 Mathematics Subject Classification: 42B20, 47H60. 
Keywords and Phrases: Fourier analysis, Singular integrals, Multilinear. 

1. Multilinear singular integrals 
A basic example for the notion of singular integral is a convolution operator 

Tf(x) = K*f(x) = J K(x-y)f(y)dy (1.1) 

whose convolution kernel K is not absolutely integrable. If K was absolutely inte­
grable then we had trivially an a priori estimate 

l|tf*/llp<i™i/llp (1-2) 

for 1 < p < oo. This follows by s tandard interpolation techniques from the two 
endpoints p = 1, oo, which are t rue by trivial manipulations. 
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A basic point of singular integral theory is that an estimate of the form (1.2) 
may prevail for 1 < p < oo with a constant CP:K instead of ||if||i on the right 
hand side, if K is not absolutely integrable and the integral (1.1) is only defined in 
a distributional (principal value) sense. The most prominent example on the real 
line (indeed, all operators in this article will act on functions on the real line) is the 
Hilbert transform with K(x) = 1/x. 

Taking formally Fourier transforms, one can write (1.1) as multiplier operator: 

37(0 = K(Of(0 =: m(£)/(£). (1.3) 

For the purpose of this survey a sufficiently interesting class of singular integrals is 
described in terms of the multiplier m by imposing the symbol estimates 

(d/dOam(0 < C|£|-° (1.4) 

for a = 0,1,2. We define the dual bilinear form 

A(fi,f2)= (Tfi(xj)f2(x)dx= fitti) M&mfo) da (1.5) 
J -'Ci+C2=o 

where da is the properly normalized Lebesgue measure on the hyperplane £i+£2 = 0. 
The natural generalization of estimate (1.2) using duality of Lp spaces then takes 
the form 

|A( / i , / 2 ) |<C P l | | / i | | P l | | / 2 | | P 2 (1.6) 

with 1/pi + l /p 2 = 1. 
Estimate (1.6) can be related to square function estimates which are fun­

damental in singular integral theory. Let (̂ >j),-GZ ^ e a f a m u y °f functions such 
that rrij := ipj is supported in the ball B(0,2J) of radius 2J around 0, vanishes 
on B(0, 2 J _ 2 ) , and satisfies the symbol estimates (1.4) uniformly in j . By square 
function estimate we mean the inequality 

i i ( £ i / *^ i 2 ) 1 / 2 i i i><^[ i / [ | p (!-7) 
j 

which holds for 1 < p < oo. Now let m be any multiplier satisfying (1.4). It is easy 
to split it as m(£i) = V . i/>i,j(£i)i/>2,j(^£i) for two families ipij and ip2,j as in the 
square function estimate. Then we have 

A( / i , / 2 ) I YI / (Ä * '<Kj)(x)(h * ip2,j)(x)dx\. 

Aloving the sum inside the integral and applying Cauchy-Schwarz, Holder, and (1.7) 
we obtain (1.6). 

A natural generalization (see [14]) of (1.5) to multilinear forms is 

„ n 

A(fi,...,fn)= mtti,...,^i)Hffit fida (1.8) 
Jii+-+i„=o j=i 
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with multipliers m satisfying 

Öam(£') <C |£T | Q | . (1-9) 

Here £' = (£1 , . . . , £n_i) and a runs through all multi- indices up to some order 
N. Note that the special role of the index n in the above is purely notational. The 
natural estimates to ask for are 

n 

\Hfl,---,fn)\<Cpu...,Pn_1H\\fj\\Pj (1.10) 
i = i 

for 1 < pj < oo with V . 1/pj = 1. In the special case that m is constant, 
A ( / i , . . . , /„) is a multiple of the integral of the pointwise product of the functions 
fj and estimate (1.10) is simply Holder's inequality. 

We sketch a proof of (1.10). Without destroying the symbol estimates, we can 
split m into a finite sum of multipliers, each supported on a narrow cone with tip 
at the origin. Thus assume m is supported on such a cone consisting of rays having 
small angle with a vector r\'. 

We may assume by symmetry that n'i = 1 is the maximal component of n'. 
Then we can split m into pieces rrij satisfying (1.9) uniformly and supported in 

(B(0,2j) \B(0,2j-2)) x B(0,2j+n)n-2. 

Introduce r\n such that X^-%' = 0- By symmetry among the indices larger than 
1 we may assume n2 > 1/n. Then it is easy to arrange (see Figure "Cone") the 
support of rrij to be in 

(B(0,2j) \ B(0,2j-2j) x (B(0,2j+n) \ B(0,2j-nj) x B(0,2i+n)n-3. 

Using smoothness of the multiplier rrij we may use Fourier expansion to write 
it as rapidly converging sum of multipliers of elementary tensor form 

n 

Ä,i(£i)Ä,i(£2)n^i(eo 
1=3 

with £„ = — Y^j=i C»-i- The symbol estimates prevail for these elementary tensors, 
and thus we observe 

(d/d0a(fiu)(0<C2-^ (1.11) 

for all derivatives up to order N. Observe that ipij are essentially as in (1.7), 
and (pij are similar but fail to be supported away form the origin. Applying the 
elementary tensor multiplier form to fi,---,f2 is the same as applying a constant 
multiplier to ipij * fi,..., <j>nj * / „ . Estimate (1.10) then follows from 

2 

E / ri(^i * /<)(*) IT tu * /«wda 

, 4 ^ 1 — 1 l — o 1=1 1=3 
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Figure 1: "Cone" 

< e n I K E i/» * ikA2)i/2\\Pl n II SUP m/« * ^.;iiip. ^ c u n/'iiif • 
J = l i J=3 J J = l 

Here we have used for I = 1,2 the square function estimate (1.7) and for I > 2 the 
equally fundamental Hardy Littlewood maximal inequality 

I |SUP | /*<&,J | | |L* < Cp\\f\\p 
3 

which is valid due to (1.11). 

2. Modulation invariance 
Modulation Mn with parameter n £ R is defined to be multiplication by a 

character: 
Mvf(x) := f(x)e27!iriX. 

This amounts to a translation of the Fourier transform of / . 
We shall be interested in multilinear forms A which have modulation symme­

tries in the sense 
A(h,..., /„) = A(Mm fi,... M„„ /„) (2.1) 

for all vectors n = (ni, • • •, nn) in a subspace F of the hyperplane given by ^ r\j = 0. 
If A is given in multiplier form (1.8), then (2.1) is equivalent to a translation 

symmetry of the multiplier rn: 

m(Çi,-..,Çn) = m(£i + % , . . . , £ „ + »]„). (2.2) 

Such a symmetry with nontrivial n is inconsistent with the symbol estimates 
(1.9) unless m is constant. Namely, by iterating (2.2), any point with nonvanishing 
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Figure 2: "Circles" 

derivative of m can by translated to a point far away from the origin, until the value 
of the derivative, which remains constant at the translated points, contradicts (1.9). 

A natural replacement for (1.9) in the presence of modulation symmetry along 
vectors in F has been introduced by Gilbert/Nahmod [6]: 

<9am(£') <Cdist(£ ' ,F ' (2.3) 

Here F' is the projection of F onto the first n — 1 coordinates. Figure "Circles" 
indicates the regions in which multipliers of the form (2.3) can be thought of as 
being essentially constant. 

The following theorem is due to [6] in the case n = 3 and to [16] in general: 

Theorem 2.1 Assume k := dim(F) < n/2, and assume that Y is non-degenerate 
in the sense that for any 1 < ii < • • • < -1% < n the space Y is the graph of a function 
in the variables £ j 1 5 . . . ,£jfe. Assume m satisfies (2.3). Then A as in (1.8) satisfies 
(1.10) whenever J2 1/Pj = 1 and 1 < Pj < °° for °>ll Pj-

We remark that it is unknown whether the condition dim(F) < n/2 can be 
relaxed in this theorem. 

The forms A have dual multilinear operators. Theorem 2.1 implies a priori 
estimates for these multilinear operators. Aloreover, these multilinear operators 
satisfy estimates which cannot be formulated in terms of IP estimates for A. Let 
(p i , . . . , pn) b e a tuple of real numbers or oo such that at most one of these numbers 
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is negative. If all of them are nonnegative, we say A is of type (p i , . . . ,pn) If (1-10) 
holds. If one of them, say pj, is negative, then we define the dual operator T by 

A ( / i , . . . , / „ ) = / T(fi,..., fj^i, fj+i,..., fn)(x)fj(x) dx. 

We then say that A is of type (p i , . . . ,pn) if 

\\T(fl,-- -,fj-l,fj+l,.. -,fn)\\p>. < C | | WfiWpi 

where p'j = Pj/(pj — 1)- Observe 0 < p'j < 1. The following theorem is again due 
to [6] (n = 3) and [16]: 

Theo rem 2.2 Let Y and A be as in Theorem 2.1. Then A is of type (p i , . . . ,pn) 
if J2j Ì/Pj = 1; °'t most one of the pj is negative, none of the pj is in [0,1], and 

n — 2dim(F) + r 
1/p^ + • • • + l/pir < ^ 

for all 1 < ii < • • • < ir < n and 1 < r < n. 

A basic example of a modulation invariant form A is when n = 3 and m(£i, £2) 
is constant on both sides of a line F but not globally constant. With proper choice 
of constants this form can be written as 

A a ( / i , / 2 , / 3 ) = / Ba(fi,f2)(x)fi(x)dx 

with the bilinear Hilbert transform 

Ba = p.v. / fi(x - t)f2(x - at)- dt 

and a (projective) parameter a determining the direction of the line F. Theorems 
2.1 and 2.2 in this special case are due to [10] and [11]. 

For the bilinear Hilbert transform nondegeneracy specializes to the condition 
a $ {0,1,00}, and the conclusion of both theorems can be summarized to 

\\Ba(fi,f2)\\P<CPl,P2\\fi\\Pl\\f2\\P2 (2.4) 

provided 1 < pi,P2 < 00 and 2/3 < p < 00. The set of types of such AQ is the 
convex hull of the open triangles a, b, d in Figure "Hexagon" which depicts the plane 
of (1/pi, I/P2,1/Ps) with V . 1/pj = 1. It is unknown whether the type-region of 
AQ extends to the open triangle e and its symmetric counterparts. 

We point out a related result by Al. Lacey [9]: 

Theo rem 2.3 The maximal truncations of the bilinear Hilbert transform, 

B^(f,g)(x):= sup 
e>0 

f(x — t)g(x — at)- dt 
M\{-e,e] t 

also satisfy (2.4) provided a is not degenerate. 
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(0,0,1) 

\ e / 

V 
Figure 3: "Hexagon" 

This is stronger than the bounds for the bilinear Hilbert transform itself. 
The main difference in proving the theorems in this section compared to the 

discussion in Section is that it is not sufficient to split the functions fu into frequency-
parts supported in B(0,2J) \ B(0,2J_2). The special role that is attributed to the 
zero frequency by this splitting is obsolete in the modulation invariant setting. 
Instead one has to consider frequency bands of fu away from the origin and very-
narrow, such as intervals [N — e, N + e] for large N and small e. Geometrically 
these bands can be viewed as the projections of the circles in Figure "Circles" onto 
the projected coordinate axes. Handling thin frequency bands requires a new set of 
techniques. Prior to the work [10] and [11] these techniques have been pioneered in 
[2] and [5] where the Carleson operator 

Cf(x) = sup\p.v. I e%y(-f(x — y) — dy\ 
z J y 

has been estimated. Note that this operator is modulation invariant, C(fi) = 
C(M„fi). See also [12]. Alost theorems discussed in this survey have a simpler 
but significant model theorem in the dyadic setting, see for example [17], [22], 

3. Uniform estimates 
Theorem 2.1 excludes certain degenerate subspaces F. For some degenerate F 

the multilinear forms split into simpler objects and one can provide Lp estimates 
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also in these degenerate cases; we will give examples below. This raises the question 
whether one can prove bounds on A uniformly in the choice of F, as F approaches 
one of these degenerate cases. 

Substantial progress on this question has only been made in the case dim(F) = 
1. 

Theo rem 3.1 Let n > 3 and (ni, • • • ,nn) be a unit vector spanning the space Y, 
and assume r\j ^ 0 for all j . Define the metric 

d(x,y) := sup 
i<i<» Vìi] 

and write d(x,Y) := infyeYd(x,y). Suppose m satisfies the estimate 

n 

ô^ro(n') <J[(rijd(ri,T))-a> (3.1) 
i=i 

for all partial derivatives d^, up to order N. Then (1.10) holds for all 2 < pj < oo 
with V . 1/pj = 1 with the bounds uniform in the choice ofY. 

We discuss uniform estimates for the special case of the bilinear Hilbert trans­
form. The degenerate directions for F occur when the vector n is perpendicular 
to one of the three projected coordinate axes (see Figure "Circles"). One of the 
degenerate cases (a = 1) gives rise to the operator 

Bi(fi,f2) = H(fi-f2) 

(Hilbert transform of the pointwise product) or its dual operators 

f2-H(f3), fi-H(fi). 

Besides the usual homogeneity V . 1/pj = 1, the only constraint for these operators 
to be of type (pi,P2,P3) is 1 < P3 < oo. In Figure "Hexagon" this region is the 
strip bounded by the horizontal lines through (0,0,1) and (1,0,0). 

Thus one expects the constants in the Lp estimates to be uniform as a ap­
proaches 1 in the intersection of this strip and the convex hull of triangles a, b, d. 
The above theorem provides uniform estimates in the inner triangle c. This special 
case of Theorem 3.1 was previously shown by Grafakos/Li [7], and Li [13] has shown 
uniform estimates in triangles a and 6. These results together give uniform bounds 
in the convex hull of a, b,c. Uniform estimates near the points (1,0,0) and (0,1,0) 
remain an open question. Prior to the work of Grafakos/Li [7], weak type uniform 
bounds were shown [23], [24] in the common boundary point of triangles a and c 
(and by symmetry also 6 and c). 

The multiplier condition (3.1) gives essentially constant multipliers on regions 
adapted to the slope of F, see Figure "Ellipses". Observe that all ellipses at a given 
scale project essentially onto disjoint regions when projected to any one one of the 
coordinate axes. Handling these adapted regions uniformly requires considerable 
refinements of the arguments in [10] and [11]. 
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Ci 

Figure 4: "Ellipses" 

We mention that closely related to the topic of uniform estimates for the 
bilinear Hilbert transform is that of bilinear multiplier estimates for multipliers 
which are singular along a curve rather than a line, provided the curve is tangent 
to a degenerate direction. Results for such multipliers have been found by Muscalu 
[15] and Grafakos/Li [8]. 

We conclude this section with a remark on the history of the bilinear Hilbert 
transform. Calderon is said to have considered the bilinear Hilbert transform in the 
1960's while studying what has been named Calderon's first commutator. This is 
the bilinear operator 

C(A, fi)(x) = p.v. J A{^Z^y)f(y) ay-

It can be viewed as a bilinear operator in the derivative A' of A and the function 
/ , and as such has a multplier form as in (1.8). To see this, we can write C(A,fi) 
in terms of A' as a superposition of bilinear Hilbert transforms: 

C(A,f)(x) =p.v. / A'(x-V a(y - xj) f(y)dady 
lo x-y 

Ba(f,A')(x)da. 

The estimate Calderon was looking for was 

l |C(A, / ) [ |2<[ |A ' [U| / [ (3.2) 
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Thus he needed good control over the constant Ca as a approaches 0 or 1. However, 
even finiteness of Ca was not known to Calderon. Sufficiently good control over Ca 

was first established in [23]. 
The multiplier of C(A',fi) is more regular than that of the bilinear Hilbert 

transform, and Calderon, quitting his attempts to estimate the bilinear Hilbert 
transform, proved estimate (3.2) by refinements of the methods in Section (see [1]). 

4. More multilinear operators 
Theorem 2.1 discusses multipliers singular at a single subspace F'. Cut and 

paste arguments easily allow to generalize the theorem to the case of multipliers 
singular at finitely many subspaces I V , . . . , IV , provided each subspace satisfies 
the dimension and non-degeneracy conditions of Theorem 2.1. 

Interesting phenomena occur for multipliers singular at several subspaces IY, 
. . . , Y'k' which do not satisfy the conditions of Theorem 2.1. Some operators corre­
sponding to multipliers singular at degenerate subspaces can be written in terms of 
pointwise products and lower degree operators and thus can be trivially shown to 
satisfy IP estimates. If m is singular at several such subspaces, the trivial splitting 
may no longer be possible, and one has to do a much more subtle analysis. 

We consider the special case when the spaces I Y , . . . , I Y are hyperplanes and 
the multiplier is the characteristic function of one of the infinite simplices been 
cut out of R n by these hyperplanes, see Figure "Wedge". A basic example is the 
trilinear operator 

T(h,h, hm = f n fi&y™*' <*& 
^ a i Ç i < a 2 Ç 2 < a 3 Ç 3 . = 1 

and its associated fourlinear form 

A ( / I , / 2 , / 3 , / 4 ) = / n / i f ô ) ^ - (4i) 
, ' S * = i Ci=0iaiCi<a2C2<a3C3 j = 1 

Here ai,a2,ct3 are real parameters. If we had only one of the two constraints 
QiiCi < ct2& or UÌ2C2 < ctsÇs, then these operators would decompose trivially. 

There is a Zariski open set of values of (an ,a2,ct3) for which A and T are well 
behaved. The following theorem proved in [18] states such estimates for the generic 
point (1,1,1). 

Theorem 4.1 For ai,a2,ct3 = 1 the form A as in (fil) satisfies estimates 
4 

A(/i,/2,/3,/4)<cP1,...,P4 nii/iii« 
i=i 

if 1 < Pj < 00 and V . 1/pj = 1. The trilinear form T satisfies in addition estimates 
mapping into Lp with p < 1, in particular 

3 
l|r(/l,/2,/3)||2/3<Cnil/ill2-

i= i 
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C2 = C3 

Ci = C2 

Figure 5: "Wedge" 

An example for a degenerate choice of (0:1,0:2,0:3) is (1 , -1 ,1) . In this case 
there is a negative result [19]: 

Theorem 4.2 For cti = l,a2 = —1,0:3 = 1 the a priori estimate 

3 
|r(/l,/2,/3)l|2/3<Cnil/ill2 

i=i 

does not hold. 

Theorem 4.2 is proved by applying T to functions fi,f2, fs which are suitable 
truncations of imaginary Gaussians (chirps) e%l3x . The operator of Theorem 4.2 
appears naturally in eigenfunction expansions of one dimensional Sehrödinger op­
erators, see the work of Christ/Kiselev [3],[4]. A positive result on discrete models 
of these expansions using the modulation invariant theory can be found in [20]. 
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Asymptoties of Polynomials and 
Eigenfunctions 

S. Zelditch* 

Abstract 

We review some recent results on asymptotic properties of polynomials of 
large degree, of general holomorphic sections of high powers of positive line 
bundles over Kahler manifolds, and of Laplace eigenfunctions of large eigen­
value on compact Riemannian manifolds. We describe statistical patterns in 
the zeros, critical points and Lp norms of random polynomials and holomor­
phic sections, and the influence of the Newton polytope on these patterns. 
For eigenfunctions, we discuss Lp norms and mass concentration of individual 
eigenfunctions and their relation to dynamics of the geodesic flow. 
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itive line bundle, Distribution of zeros, Correlation between zeros, Bergman-
Szego kernels, Newton polytope, Laplace eigenfunction, Spectral projections, 
I/p-norms, Quantum ergodicity. 

1. Introduction 
In many measures of 'complexity', eigenfunctions ^/Ä(p\ = \(p\ of first order 

elliptic operators behave like polynomials p(x) = X^|Q|<œ caXa of degree N ~ À [6]. 
The basic example we have in mind is the Laplacian Ä on a compact Riemannian 
manifold (M,g), but the same is t rue of Schroedinger operators. The comparison 
is more than an analogy, since polynomials of degree N are eigenfunctions of a first 
order elliptic system. 

The comparison between eigenfunctions and polynomials is an essentially local 
one, most accurate on small balls B(xo,j). Globally, eigenfunctions reflect the 
dynamics of the geodesic flow G* on the unit (co-)tangent bundle S*M. This is one 
of the principal themes of quantum chaos. 
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In this article, we review some recent results on the asymptotics of polynomials 
and eigenfunctions, concentrating on our work in collaboration with P. Bleher, A. 
Hassell, B. Shiffman, C. Sogge, J. Toth and Al. Zworski. A unifying feature is the 
asymptotic properties of reproducing kernels, namely Szegö kernels HN(Z, tv) in the 
case of polynomials, and spectral projections E\(x,y) for intervals [A, À+ 1] in the 
case of eigenfunctions of sJ~K. For other recent expository articles, see [9, 26]. 

2. Polynomials 
There are several sources of interest in random polynomials. One is the desire 

to understand typical properties of real and complex algebraic varieties, and how 
they depend on the coefficients of the defining equations. Another is their use as a 
model for the local behavior of more general eigenfunctions. A third is that they 
may be viewed as the eigenvectors of random matrices. Just as random matrices 
model the spectra of 'quantum chaotic' systems, so random polynomials model their 
eigenfunctions. 

2.1. SU(m + 1) polynomials on CPm and holomorphic sec­
tions 

Complex polynomials of degree < p in m variables form the vector space 

I p : — \ J ( Z i , . . . , Z m ) — / J C Q - Z ^ • • • z m , c a £ ( L - j - . 

aGNm : |a |<p 

To put a probability measure on V™ is to regard the coefficients ca as random 
variables. The simplest measures are Gaussian measures corresponding to inner 
products on V™'. By homogenizing / to F(zo,zi,- • • ,zm) of degree p, we may-
identify V™ with the space H° (CP™, 0(pj) of holomorphic sections of the pth power 
of the hyperplane bundle. It carries the standard SU(ro + l)-invariant Fubini-
Study inner product (FI,F2)FS = Js2™*1 ^l^da , where da is Haar measure on 
the (2m + l)-sphere S2m+1. An orthonormal basis of H0(CWm,O(pj) is given by 
{Tü#TI—}• The corresponding SU(ro + l)-invariant Gaussian measure 75 is defined 
by" 

d7«(«) = ^e-lA l2dA, s = J2 XaÜ^\T^-
|a|<2> 

Thus, the coefficients AQ are independent complex Gaussian random variables with 
mean zero and variance one. 

Alore generally, we can define Gaussian ensembles of holomorphic sections 
H°(M,LN) of powers of a positive line bundle over any Kahler manifold (M,oj). 
Endowing L with the unique hermitian metric h of curvature form OJ, we induce 
an inner product (, ) on H°(M,LN) and a Gaussian measure -JN- We denote the 
unit sphere in H°(M, LN) relative to this inner product by SH°(M, LN). The Haar 
measure on SH°(M,LN) will be denoted ^jv- It is closely related to the Gaussian 
measure. 
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2.2. Zeros 
The problems we discuss in this section involve the geometry of zeros of sections 

s £ H°(M, LN) of general positive line bundles. There is a similar story for critical 
points. 

• Problem 1 How are the simultaneous zeros Zs = {z : Si(z) = • • • = Sk(z) = 
0} of a k-tuple s = (si,..., Sk) of typical holomorphic sections distributed? 

• Problem 2 How are the zeros correlated? When k = m, the simultaneous 
zeros form a discrete set. Do zeros repel each other like charged particles? Or 
behave independently like particles of an ideal gas? Or attract like gravitating 
particles? 

By the distribution of zeros we mean either the current of integration over Zs or 
more simply the Riemannian (2m—2fc)-volume measure (\Zs\,ip) = Jz ipdVol2m-2k • 
By the n-point zero correlation functions, we mean the generalized functions 

K^k(z1,...,zn)dz =E\Zs\
n, 

where \Zs\
n denotes the product of the measures \ZS\ on the punctured product 

Mn = {(z1,..., zn) £ M x • • • x M : zp ^ zq for p ^ q} and where dz denotes the 
product volume form on Mn. 

The answer to Problem 1 is that zeros almost surely become uniformly dis­
tributed relative to the curvature OJ of the line bundle [18]. Curvature causes sec­
tions to oscillate more rapidly and hence to vanish more often. Alore precisely, we 
consider the space S = Y\'^=1SH0(M,LN) of random sequences, equipped with 
the product measure measure p = Iljv-i ßN- An element in S will be denoted 
s = {SM}- Then, j^Zs —t OJ, as N -t oo for almost every s. 

The answer to Problem 2 is more subtle: it depends on the dimension. We 
assume fc = m so that almost surely the simultaneous zeros of the fc-tuple of sections 
form a discrete set. We find that these zeros behave almost independently if they 
are of distance > -4= apart for D >• 1. So they only interact on distance scales 

of size -j=. Since also the density of zeros in a unit ball Bi(zo) around zo grows 

like Nm, we rescale the zeros in the l/-\/ÏV-ball B1 i^(zo) by a factor of v'ÏV to 
get configurations of zeros with a constant density as N -t oo. We thus rescale the 
correlation functions and take the scaling limits 

K^m(z\...,zn)= lim K1
N

k(zo)-nK*k(zo + ^=,...,zo+ ^=). (2.1) 
JV-S-OO y/N VN 

In [1], we proved that the scaling limits of these correlation functions were univer­
sal, i.e. independent of M, L, OJ, h. They depend only on the dimension m of the 
manifold and the codimension fc of the zero set. 

In [2], we found explicit formulae for these universal scaling limits. In the case 
n = 2, K^^z1 ,z2), depends only on the distance between the points z1 ,z2, since 
it is universal and hence invariant under rigid motions. Hence it may be written as: 

K-2km\z ,Z") = K-kn%(\Z — Z"\) . (2-2) 

We refer to [1] for details. 
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Theo rem 1 [2] The pair correlation functions of zeros when k = m are given by 

f ™±i r4-2m + 0(r8-2m) ; 8 S r -) 0 

Kmm(r) = { „ 2 (2.3) 
[ 1 + 0 ( e - C r ), (C > 0) as r - • oo. 

When m = l,Kmm(r) —¥ 0 as r —̂  0 and one has "zero repulsion." When 
m = 2, Kmm(r) —¥ 3/4 as r —̂  0 and one has a kind of neutrality. With m > 3, 
K-mrn (r) / oo as r - I 0 and there is some kind of attraction between zeros. Alore 
precisely, in dimensions greater than 2, one is more likely to find a zero at a small 
distance r from another zero than at a small distance r from a given point; i.e., 
zeros tend to clump together in high dimensions. 

One can understand this dimensional dependence heuristically in terms of 
the geometry of the discriminant varieties V^ C H°(M,LN)m of systems S = 
(si,... ,sm) of m sections with a 'double zero'. The 'separation number' sep(F) 
of a system is the minimal distance between a pair of its zeros. Since the nearest 
element of V1^ to F is likely to have a simple double zero, one expects: sep(F) ~ 
^Jdist(F,T>1ff). Now,the degree ofD^ is approximately Nm. Hence, the tube (T>^)t 

of radius e contains a volume ~ e2Nm. When e ~ N~ml2, the tube should cover 
PH°(M,LN). Hence, any section should have a pair of zeros whose separation is 
~ Ar_TO/4 apart. It is clear that this separation is larger than, equal to or less than 
N^1/2 accordingly as m = l ,m = 2,m > 3. 

2.3. Bergman-Szegö kernels 
A key object in the proof of these results is the Bergman-Szegö kernel Y1M(X, y), 

i.e. the kernel of the orthogonal projection onto H°(M,LN) with respect to the 
Kahler form OJ. For instance, the expected distribution of zeros is given by E J V ( ^ / ) = 
^fi^-ddlogYl]y(z,z) + OJ. Of even greater use is the joint probability distribu­
tion (JPD) DM(X1, ... ,a;";^1 , . . . .fi""-^1,... ,zn) of the random variables x3'(s) = 
s(zJ), ÇJ(s) = Vs(z3), which may be expressed in terms of njv and its deriva­
tives. In turn, the correlation functions may be expressed in terms of the JPD by 
KN(z\...,zn) = f DN(0,t,z)Y%=1(Mm2d^)dC[l]. 

The scaling asymptotics of the correlation functions then reduce to scaling 
asymptotics of the Bergman-Szegö kernel: In normal coordinates {ZJ} at Po £ M 
and in a 'preferred' local frame for L, we have [1]: 

7 r ™ T T / n U ® r> V V \ ——11 jv ( rn -\ ; = , — : rn H ; = , — ) 
Nm "^ u y/N N \/N NJ 

ei(»-<p)+«-v-fiM2+\v\2) \l + bi(u,v)N-i + •••] . 

To be precise, njv is the natural lift of the kernel as an equivariant kernel on the 
boundary dD* of the unit (co-) disc bundle of L*. Note that ei(»-v)+»-v-fi\u\2+\v\2) 
is the Bergman-Szegö kernel of the Heisenberg group. These asymptotics use the 
Boutet de Alonvel -Sjostrand parametrix for the Bergman-Szegö kernel [4], as ap­
plied in [29] to the Fourier coefficients of the kernel on powers of positive line 
bundles. 
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2.4. Polynomials with fixed Newton polytope 
The well-known Bernstein-Kouchnirenko theorem states that the number of 

simultaneous zeros of (a generic family of) m polynomials with Newton polytope 
P equals m\Vol(P). Recall that the Newton polytope Pf of a polynomial is the 
convex hull of its support Sf = {a £ ZTO : ca ^ 0}. Using the homogenization map 
f —¥ F, the space of polynomials / whose Newton polytope Pf contained in P may­
be identified with a subspace 

H0(CVm,O(p),P) = {F£ H0(CVm,O(pj) :Pf CP} (2.4) 

ofH
0(CVm,O(pj). 

The problem we address in this section is: 

• Problem 3 How does the Newton polytope influence on the distribution of 
zeros of polynomials? 

Again, one could ask the same question about L2 mass, critical points and so 
on and obtain a similar story. In [19] we explore this influence in a statistical and 
asymptotic sense. The main theme is that for each property of polynomials under 
study, P gives rise to classically allowed regions where the behavior is the same as 
if no condition were placed on the polynomials, and classically forbidden regions 
where the behavior is exotic. 

Let us define these terms. If P C R™ is a convex integral polytope, then the 
classically allowed region for polynomials in H°(CWm,ö(p),P) is the set 

. - i ' ' 1 

A P • • = M E 1 [ - P ° ) C C m 

(where P° denotes the interior of P), and the classically forbidden region is its 

( I I 2 i i2 \ 

-,finln2, • • •, -IYTJ[|2 I is the moment map of 
CP™. 

The result alluded to above is statistical. Since we view the polytope P of 
degree p as placing a condition on the Gaussian ensemble of SU(P) polynomials 
of degree p, we endow H°(CWm,ö(p),P) with the conditional probability measure 
1S\P-

dj6\p(s) = -^e-^dX, « = ^ A Q ^ , (2.5) 
a£P " " 

where the coefficients AQ are again independent complex Gaussian random variables 
with mean zero and variance one. 

Our simplest result concerns the the expected density E|p(Z/ l i... i/m) of the 
simultaneous zeros of (fi, • • •, fm) chosen independently from H°(CWm,ö(p),P). 
It is the measure on C*TO given by 

V\p(Zfu...,fJ(U) 

d%\p(fi)--- I'd%\P(fm) [#{z £ U : fi(z) = • • • = fm(z) = 0}] , (2.6) 
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for U C <C*TO, where the integrals are over H°(CWm,ö(p),P). We will determine 
the asymptotics of the expected density as the polytope is dilated P —¥ NP, N £ N. 

Theo rem 2 [19] Suppose that P is a simple polytope in RTO. Then, as P is dilated 
to NP, 

1 f WFS
 o n -4-P 

———-E|JVP(% i... i /m) - • < 
^ d ) [ 0 on C*ro \ AP 

in the distribution sense; i.e., for any open U C C*m, we have 

1 ;ElNP(#{z £U:fi(z) = --- = fm(z) = 0}) -+ m!Volopm(C7 n AP) . 
(my 
There are also results for fc < m polynomials. The distribution of zeros is ojpS 

in Ap as if there were no constraint, while there is an exotic distribution in C*TO \ 
Ap which depends on the exponentially decaying asymptotics of the conditional 
Bergman- Szegö kernel 

n—n—n n— , 
\\za\\Fs\\wa\\FS 

aeNP >' " " I I N " 

i.e. the orthogonal projection onto the subspace (2.4). It is obtained by sifting 
out terms in the (elementary) Szegö projector of H° (CWm, ö(pNj) using the poly-
tope character XNp(etAp) = Y^a^NP61^^• ^ ° °btam asymptotics in the forbidden 
region, we write XNp(el'p) = JM Y1N

F(e%vw,w)d\r(w), where YlMp is Bergman-
Szegö kernel of the toric variety Afp associated to P. We then make an explicit 
construction of Yl^p as a complex oscillatory integral. An alternative is to express 
XJVP as a Todd derivative of an exponential integral over P (following works of 
Khovanskii-Pukhlikov, Brion-Vergne and Guillemin). We thus obtain a complex 
oscillatory integral formula for Yl\Np(z,w). To obtain asymptotics in the forbid­
den region we carefully deform the contour into the complex and apply a complex 
stationary phase method. 

Although we only discuss expected behavior of zeros here, the distribution of 
zeros is self-averaging: i.e., almost all polynomials exhibit the expected behavior in 
an asymptotic sense. We also expect similar results for critical points. 

3. Eigenfunctions 
We now turn to the eigenvalue problem AgLpv = \2

vtpv, (<Pv,<fiv') = <W on a 
compact Riemannian manifold (M,g). We denote the A-eigenspace by Y\. The role 
of the Szegö kernel is now played by the kernel E\(x,y) = ^ A <x

iPv(x)ip„(y) of 
the spectral projections. 

3.1. Lp bounds 
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Our first concern is with Lp norms of L2-normalized eigenfunctions. We mea­
sure the growth rate of Lp norms by Lp(X,g) = s u p ^ ^ n ^ i i 2 = 1 ||<p||i>. By the local 
Weyl law, Ex(x,x) = E A „ < A \<PAX)\2 = (2?r)-n fm<xd£+0(Xn-r), it follows that 

n — 1 

L°°(X,g) = O ( A T ^ ) on any compact Riemannian manifold. This bound, which is 
based entirely on a local analysis, is sharp in the case of the standard round sphere, 
Sn or on any rotationally invariant metric on S2, but is far off in the case of flat 
tori. This motivates: 

• Problem 5 For which (M,g) is this estimate sharp? Which (M,g) are ex­
tremal for growth rates of HVAIIP» both maximal and minimal? What if M 
has a boundary? What is the expected IP norm of a 'random' L2-normalized 
polynomial or eigenfunction? 

In [20], we give a necessary condition for maximal eigenfunction growth: there 
must exist a point x £ M for which the set £x = {£ £ S*M : 3T : expx TÇ = x} of 
directions of geodesic loops at x has positive surface measure. 

Theorem 3 [20] If Cx has measure 0 in S*M for every x £ M then 

Lp(X,g) = o(X^), p>^±ìì m=t^]:)\J^J"A 
(3.1) 

pj, * 22 P 22 n _ i ^MIM), 2<p<^±±l 

The Lp-bounds 0(XS^) were proved by Sogge to hold for all (M,g). 
We further prove: 

Theorem 4 [20] (see also [17]) Suppose that (M,g) is: 

• Real analytic and that Loc(X,g) = Q(A("-1)/2). Then (M,g) is a Y(
m -

manifold, i.e. 3m such that all geodesies issuing from the point m return to 
m at time I. In particular, if dim M = 2, then M is topologically a 2-sphere 
S2 or a real projective plane RF 2 . 

• Generic. Then L°°(X,g) = o(X(n-1^2). 

n — l n —1 n — 1 

Here, 0 (A^~) means 0 (A^~) but not o(\~s~). The generic result holds because 
£x has measure 0 in S*M for all x £ M for a residual set of metrics. 

In the case of random polynomials, or random combinations of eigenfunctions 
in short spectral intervals, the almost sure growth of L°° norms is 0(\/log N) while 
the IP norms for p < oo are bounded. This was proved by J. Vanderkam [24] for 
Sm, Nonnenmacher-Voros [14] for elliptic curves and Shiffman-Zelditch (to appear) 
for the general case using Levy concentration of measure estimates. 

3.2. Integrable case 
Results on minimal growth have been obtained by J. A. Toth and the author 

in the quantum completely integrable case, where s/~K = Pi commutes with n — l 
first order pseudodifferential operators P2,...,Pn £ \I/1(Af ) (n = dim M) satisfying 
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[Pi,Pj] = 0 and whose symbols define a moment map V := (p i , . . . ,pn) satisfying 
dpi A dp2 A • • • A dpn ^ O o n a dense open set Q c T * M - 0 . Since {Pi,Pj} = 0, the 
functions pi,---,pn generate a homogeneous Hamiltonian R"-action whose orbits 
foliate T*M — 0. We refer to this foliation as the Liouville foliation. 

We consider the IP norms of the L2-normalized joint eigenfunctions Pj*fix = 
Xjipx- The spectrum of A often has bounded multiplicity, so the behaviour of joint 
eigenfunctions has implications for all eigenfunctions. 

Theo rem 5 [22, 23] Suppose that the Laplacian Ag of(M,g) is quantum completely 
integrable and that the joint eigenfunctions have uniformly bounded L°° norms. 
Then (AT, g) is a flat torus. 

This is a kind of quantum analogue of the 'Hopf conjecture' (proved by Burago-
Ivanov) that metrics on tori without conjugate points are flat. In [23], a quantitative 
improvement is given under a further non-degeneracy assumption. Unless (M,g) is 
a flat torus, the Liouville foliation must possess a singular leaf of dimension < n. 
Yet £ denote the minimum dimension of the leaves. We then construct a sequence 
of eigenfunctions satisfying: 

n - l , (n-»(p-2) , 

\\Vk\\L~>C(e)Xk* ', \\v>k\\LP > C(e)Xk
 4* , (2 < p) 

for any e > 0. It is easy to construct examples were £ = n — l, but it seems plausible 
that in 'many' cases £ = 1. To investigate this, one would study the boundary faces 
of the image V(T*M — 0) of T * M — 0 under a homogeneous moment map. For a 
related study in the case of torus actions, see Lerman-Shirokova [12]. 

3.3. Quantum ergodicity 
Quantum ergodicity is concerned with the sums (A £ \P0(Af)): 

SP(X)= J2 \(A<pv,<pv)-w(A)\', w(A) = —±— / aAdp. (3.2) 
voC<\ V Ol,{b M) JS*M 

In work of A.I. Schnirelman [11], Colin de Verdiere and the author [27], it is 
shown that SP(X) = o(N(Xj) if G* is ergodic. In the author's view [27], this is best 
viewed as a convexity theorem. We mention briefly some new results. 

In work of Gerard-Leichtnam [7] and Zelditch-Zworski [30], the ergodicity re­
sult was extended to domains 9 0 with piecewise smooth boundary and ergodic 
billiard flow. Since the billiard map on B*dii is ergodic whenever the billiard flow 
is, suitable boundary values of ergodic eigenfunctions (e.g. *fik\an m the Neumann 
case or dv(pk\dQ in the Dirichlet case) should also have the ergodic property. This 
was conjectured by S. Ozawa in 1993. A proof is given in our work with A. Has-
sell [8] for convex piecewise smooth domains with ergodic billiards (in the case of 
domains with Lipschitz normal and with Dirichlet boundary conditions, this had 
earlier been proved in [7] by a different method). 

Little is known about the rate of decay. For sufficiently chaotic systems 
(satisfying the central limit theorem) one can get the tiny improvement SP(X) = 
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0(N(X)/(logX)pj) [28]. The asymptotics S2(X) ~ B(A)X have recently been ob­
tained by Luo-Sarnak [13] for Hecke eigenfunctions of the modular group, exploiting 
the connections with L-functions. These asymptotics (though not the coefficient) 
are predicted by the random polynomial model. Other strong bounds in the arith­
metic case were obtained by Kurlberg-Rudnick for eigenfunctions of certain quan­
tized torus automorphisms [10]. Bourgain-Lindenstrauss [3] and Wolpert [25] have 
developed the 'non-scarring' result of [16] to give entropy estimates of possible 
quantum limit measures in arithmetic cases. 

A natural problem is the converse: 

• Problem 6 What can be said of the dynamics if SP(X) = o(N(X)ji Does 
quantum ergodicity imply classical ergodicity? 

It is known that classical ergodicity is equivalent to this bound plus estimates 
on off-diagonal terms [21]. The existence of KAA1 quasimodes (due to Lazutkin 
[11], Colin de Verdiere [5], and Popov [15]) makes it very likely that KAA1 systems 
are not quantum ergodic, nor are (M,g) which have stable elliptic orbits. 

A further problem which may be accessible is: 

• Problem 7 How are the nodal sets {(pv = 0} distributed in the limit v —t oo? 

In [14] (for elliptic curves) and [19] (general Kahler manifolds) it is proved that 
the complex zeros of quantum ergodic eigenfunctions become uniformly distributed 
relative to the volume form. Can one prove an analogue for the real zeros? 
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Some Results Related to Group Actions 
in Several Complex Variables 

Xiangyu Zhou* 

Abstract 

In this talk, we'll present some recent results related to group actions in 
several complex variables. We'll not aim at giving a complete survey about 
the topic but giving some our own results and related ones. 

We'll divide the results into two cases: compact and noncompact trans­
formation groups. We emphasize some essential differences between the two 
cases. In the compact case, we'll mention some results about schlichtness of 
envelopes of holomorphy and compactness of automorphism groups of some 
invariant domains. In the noncompact case, we'll present our solution of the 
longstanding problem --- the so-called extended future tube conjecture which 
asserts that the extended future tube is a domain of holomorphy. Invariant 
version of Cartan's lemma about extension of holomorphic functions from the 
subvarities in the sense of group actions will be also mentioned. 

2000 Mathematics Subject Classification: 32. 
Key words and phrases: Domain of holomorphy, Plurisubharmonic func­
tion, Group actions. 

1. Fundamentals of several complex variables 
About one century ago, Hartogs discovered tha t there exist some domains 

in several complex variables on which any holomorphic functions can be extended 
to larger domains, being different with one complex variable. This causes a basic 
concept - domain of holomorphy. 

Def in i t ion . A domain of holomorphy in Cn is a domain on which there 
exists a holomorphic function which can't be extended holomorphically across any 
boundary points. 

A domain in C" is called holomorphically convex, if given any infinite discrete 
point sequence Zk there exists a holomorphic function / s.t. f(zk) is unbounded (or 
\f(xv)\ —¥ +oo) . Consequently, there exists a holomorphic function which tends to 
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+00 at the boundary. By Cartan-Thullen's theorem, a domain in C" is a domain 
of holomorphy if and only if the domain is Stein, i.e., holomorphically convex. 

Definition. A function ip with value in [—00, +00) on the domain D in Cn 

is called plurisubharmonic (p.s.h.): if (i) ip is upper semicontinuous (i.e., {ip < c} 
is open for each e e l , or equivalently limz^Zoip(z) < ip(zo) for z0 £ D); (ii) for 
each complex line L := {zo + tr : z0 £ D},ip\iJn£l is subharmonic w.r.t. one complex 
variable t. 

An equivalent definition in the sense of distributions is that iddip is a positive 

current; in particular, when tp> is C2, this means Levi form f A A- ) > 0 every­

where. In other words, dJdip > 0, where J is the complex structure. (If iddip > 0, 

then (p is called strictly p.s.h.) 
Example. For a bounded domain or a domain biholomorphic to a bounded 

domain, the Bergman kernel K(z,z) is strictly p.s.h.. 
A pseudoconvex domain in C" is a domain on which there exists a p.s.h. 

function which tends to +00 at the boundary. It's easy to see that a holomorphical 
convex domain is pseudoconvex, since | / | 2 is plurisubharmonic function where / is 
given in the consequence of the definition of a Stein domain. 

A deep characterization of a domain of holomorphy is given by a solution to 
Levi problem which is the converse of the above statement. 

Fact. A domain D in C" is a domain of holomorphy if and only if the domain 
is pseudoconvex. 

A natural corresponding concept of the domain of holomorphy in the setting 
of complex manifolds (complex spaces) is the so-called Stein manifold (Stein space), 
which is defined as a holomorphically convex and holomorphically separable complex 
manifold (space) . A complex manifold (or space with finite embedding dimension) 
is Stein if and only if it is a closed complex submanifold (or subvariety) in some C", 
and if and only if there exists a strictly p.s.h. exhaustion function which is R-valued 
(i.e., the value —00 is not allowed). A complex reductive Lie group, in particular a 
complex semisimple Lie group, is a Stein manifold. 

We know that a domain of holomorphy or a Stein manifold are defined by-
special holomorphic functions which are usually hard to construct in several complex 
variables. However, a pseudoconvex domain is defined by a special p.s.h. function 
which is a real function and then relatively easy to construct. Construction of 
various holomorphic objects in several complex variables and complex geometry is 
a fundamental and difficult problem. An important philosophy here is reducing 
the construction of holomorphic functions to the construction of plurisubharmonic 
functions, because of the solution of Levi problem and Hörmander's L2 estimates 
for 3 and other results. 

2. Group actions in several complex variables 
Definition. A group action of the group G on a set X is given by a mapping 

ip : G x X —t X satisfying the following: 1) e • x = x, 2) (ab) • x) = a • (b • x), where 
e is the identity of the group, a,b, £ G,x £ X, a • x := ip(a,x). 
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A group action on a set can be restricted on various cases. When the set is 
a topological space and the group is a topological group, the action is continuous, 
then one gets a topological transformation group; when the space is a metric space, 
the transformation preserves the metric, then one gets a motion group; when the 
set is a differentiable manifold and the group is a Lie group, the action is differen­
tiable, then one gets a Lie transformation group; when the set is a vector space, the 
transformation preserves the vector space structure, then one gets a linear trans­
formation group; when the set is an algebraic variety (or a scheme), the group is an 
algebraic group, and the action is algebraic, one gets an algebraic transformation 
group; when the set is a complex space, the transformation is holomorphic, and 
the action is real analytic, then one gets a (real) holomorphic transformation group 
(note that in this case, if the action is continuous then it is also real analytic); if 
the set is a complex space, the group is a complex Lie group, and the the action is 
holomorphic, then one gets a complex (holomorphic) transformation group. 

In this talk, we're mainly concerned with the last case. We consider a complex 
Lie group Gc with a real form GR acting holomorphically on a complex manifold 
(also called holomorphic Gc- manifold) and a G^-invariant domain. It's known 
that a complex reductive Lie group has a unique maximal compact subgroup up to 
conjugate as its real form, but it also has many noncompact real forms. 

A group action on a set can be regarded as a representation of the group on the 
whole group of transformations. An effective group action means the representation 
is faithful, so it corresponds to a (closed) subgroup of the whole transformation 
group. 

Actually, many domains in several complex variables such as Hartogs, circular, 
Reinhardt and tube domains can be formulated in the setting of group actions. 

Examples , a) Hartogs and circular domains: consider the Hartogs action 
of C* with the real form S1 on C : C x C" - ) Cn given by (t, (zt,-- -,znj) - • 
(tzi, z2, • • •, zn), then Hartogs domain is ^-invariant domain; consider the circular 
action of C* with the real form S1 on C": C ' x C - I C" given by (t, (zi, • • •, znj) -t 
(tzi,tz2, • • • ,tzn), then circular domain is SMnvariant domain. 

b) Reinhardt domains: consider the Reinhardt action of (C*)n on C" given by 

vv^i, ' ' ' , in), \Zi, - - -, zn)) y \%iZi, - - -, tnzn), 

then Reinhardt domain is (S'1)"-invariant domain. One can similarly defines matrix 
Reinhardt domains 

c) tube domains: consider the action of R" on C" given by (r, z) —¥ r + z, then 
R"-invariant domain is tube domain. 

d) future tube: let AT4 be the Alinkowski space with the Lorentz metric: 
x-y = xnyn-xiyi-x2y2-X3y3, where a; = (xo,xi,x2,xz),y = (yo,yi,y2,yz) £ -R4; 
let V+ and V~ = —Yr+ be the future and past light cones in R4 respectively, i.e. 
Yr± = {y £ M : y2 > 0, ±yn > 0}, the corresponding tube domains r1*1 = Tv = 
R4 + iYr± in C4 are called future and past tubes; let L be the Lorentz group, i.e. 
L = 0(1,3), L has four connected components, denote the identity component of 
L by Lfi, which is called the restricted Lorentz group, i.e. Lfi = 30+(1,3); let 
L(C) be the complex Lorentz group, i.e.L = 0(1,3,C) = 0(4, C),L(C) has two 



746 Xiangyu Zhou 

connected components, denote the identity component of L(C) by L+(C), called 
the proper complex Lorentz group which has the restricted Lorentz group as its 
real form. Considering the linear action of L+ (C) on C4, the future (or past) tube 
is ^- invariant . 

Denote the Appoint future tube by TN = T^1 X • • • x T^1 Ar-times, let L+(£) 
act diagonally on C4JV, i.e. for z = (z{1\- • • , z W ) £C4N,Az= (Az{1\ • • •, AzW) 
where A £ L+(£), then TN is L'+,-invariant. 

e) matrix Reinhardt domains: let Cn[m x rn] = {(Zi, • • • ,Zn): Zj £ C[m x 
rn]} be the space of n-tuples of ro x ro matrices. A domain Da Cn[m x ro] is 
called matrix Reinhardt if it is invariant under the diagonal U(m) x U(m) action 
(U, V)(Zi, •• •, Zn) H> (UZiV, • • •, UZ„y). These domains are the usual Reinhardt 
domains in the case TO = 1. Diag(£>) is defined as the intersection of D with the 
diagonal matrices (Zi, • • •, Zn) £ Cn [TO x rn] 

Slice theory 
When G is a Lie transformation group properly acting on a smooth manifold 

X (e.g. when G is compact), one has a satisfactory slice theory about the structure 
of a neighborhood of an orbit. This theory was extended to the case of an affine 
reductive group action regularly on an affine variety by D. Luna ([20]) and the case 
of a complex reductive Lie group G action holomorphically on a Stein space X by-
Snow ([27]). In these cases, the structure of a neighborhood of a closed orbit is finely-
determined. We state the result for reduced Stein spaces. Let G-a; be a closed orbit, 
then there exists a locally closed Gx-invariant Stein subspace B containing x s.t. 
the natural map from the homogeneous fiber bundle G Xa* B over G/Gx = G • x is 
biholomorphic onto a 7r-saturated open Stein subset of X, where TT : X —t X / / G is 
the categorical quotient (or GIT quotient) which exists as a Stein space. Here B is 
called a slice at x. The slice B is transversal to the closed orbit G • x. When X is 
regular at x, then B can be chosen to be regular. 

As a consequence of the slice theorem, one has a stratification of the categorical 
quotient X / / G at least when X is a Stein manifold. The stratum with maximal 
dimension is Zariski open in X / / G and is contained in the regular part of X / /G . 
This is called principal stratum. The inverse of the principal stratum under n : X —t 
X / / G consists of all G-closed orbits satisfying that they are of maximal dimension 
k among the dimensions of all G-closed orbits and their corresponding isotropy 
groups are of minimum number of components. Such orbits are called principal 
closed orbits, and the corresponding isotropy groups are called principal. When 
k = dim G, then X is called having FPIG. 

3. Some results on compact holomorphic transfor­
mation groups 

The relationship between orbit connectedness, orbit convexity, and holomor-
phical convexity goes back to the beginning of this century, when several complex 
variables was born. Due to Hartogs, Reinhardt, H.Cartan and others, one already 
knew some classical relations between completeness, logarithmic convexity and holo-
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morphical convexity for circular domains, Hartogs domains, and Reinhardt domains. 
The orbit connectedness and orbit convexity are defined in a general setting (for 
arbitrary compact connected Lie group), which correspond to completeness and 
logarithmic convexity when one restricts to the above domains. 

There are some fundamental relationships between orbit connectedness and 
orbit convexity with holomorphically convexity and envelope of holomorphy for 
invariant domains. 

Definition. Let Gc be a connected complex Lie group, GR be a connected 
closed real form ofGc- Let X be a holomorphic Gc-space, D c X be a Gu-invariant 
set, we call D orbit connected, if for bz : Gc -^ X,g H> g- z,b~1(D) is connected for 
each z £ D. When ( G C , G R ) is a geodesic convex pair/i.e. the map LìO(GR) X GR 9 
(v, g) —t exp(iv)g £ Gc is a homeomorphism, cf. [3]), D is called orbit convex if 
for each z £ D, and v £ ìL ì6(GR) s.t. exp(u) £ bz

1(D) it follows exp(to) £ bz
1(D) 

for all t£ [0,1]. 
Roughly speaking, orbit connectedness means that Gcx n I? is connected for 

every x £ D. 
One has known for a long time that the envelope of holomorphy of a domain 

in C" (or more general a Riemann domain over C") exists uniquely as a Riemann 
domain over C". There is a difficult problem of univalence: When is the envelope of 
holomorphy of a domain in C" itself a domain in C" ? We have the following criteria 
for the univalence of the envelope of holomorphy for certain invariant domains: 

Theorem 1 ([36]). Let X be a Stein manifold, Kc be a complex reductive Lie 
group holomorphically acting on X, where K is a connected compact Lie group and 
Kc be its universal compiexification. Let D c X be a K-invariant orbit connected 
domain. Then the envelope of holomorphy E(D) of D is schlicht and orbit convex if 
and only if the envelope of holomorphy E(KC-D) of Kc-D is schlicht. Furthermore, 
in this case, E(KC • D) = Kc • E(D). 

When K = S1 and the action is circular (or a-circular) and Hartogs, the 
corresponding concepts of orbit connectedness for such domains were introduced 
separately and the above results were obtained and stated separately by Casadio 
Tarabushi and Trapani in [1,2]. 

When K = (S1)"" and the action is Reinhardt, the result is well known as a 
classical result about Reinhardt domain which asserts that any Reinhardt domain 
in (C*)n has schlicht envelope of holomorphy. 

Some other results were also included in the above theorem. So our result can 
also be regarded as an extension of their results and the classical result on Reinhardt 
domains in a unified way. 

In the proof, a theorem due to Harish-Chandra on the infinite dimensional 
representation of Lie groups plays an important role. 

We also give some examples of orbit connected domains. Let X = Kc/Lc, 
the action of Kc on X be given by the left translations. When L is connected or 
(K, L) is a symmetric pair, then any if-invariant domain is orbit connected. The 
simplest example is Reinhardt domains in (C*)n. 

The origin of orbit connectedness could at least go back to [28]. 
Example. A theorem of V.Bargmann, D. Hall and A.S. Wightman (cf. 
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Wightman [32], Jost [12], Streater-Wightman [28]) asserts that r ^ is orbit con­
nected. 

We also consider the homogeneous embeddings of Kc/Lc. Yet X be a smooth 
homogeneous space embedding of Kc/Lc, D c X be a if-domain. Assume that L 
is connected or (K, L) is a symmetric pair. Then E(D) is schlicht and orbit convex. 
In particular, every matrix Reinhardt domain of holomorphy D is orbit convex. 
Since an orbit convex matrix Reinhardt domain has a path connected Diag(D), so 
a matrix Reinhardt domain of holomorphy has a connected Diag(D). 

Theo rem 2 ([37]). Let K be a connected compact Lie group, L be a closed 
(not necessarily connected) subgroup of K. Let Kc and Lc be respectively universal 
complexification of K and L. Suppose that D is K-invariant relatively compact 
domain in Kc/Lc (Here the action of Kc is given by left translations). Then (i) 
Aut(D) is a compact Lie group; (ii) Any proper holomorphic self-mapping of D is 
biholomorphic if K is semisimple or a direct product of a semisimple compact Lie 
group and a compact torus. 

By a result of Alatsushima, Kc/Lc is a Stein manifold which is a holomorphic 
Kc - manifold w.r.t. left translation action. 

The motivations of the present work are two-folds: the result (i) is to extend a 
main result of [4], where the same result was obtained by requiring a restrictive con­
dition that (K, L) is a symmetric pair,i.e., K/L is a compact Riemannian symmetric 
space; the result (ii) is to extend a classical result which asserts that proper self 
mapping of the relatively compact Reinhardt domains in (C*)n is biholomorphic. 

The proof is involved with many famous results such as Alostow decomposi­
tion theorem, H. Cartan's theorem about compactness of automorphism groups, 
Andreotti-Frankel's theorem on homology group of a Stein manifold, the holomor­
phic version of de Rham's theorem on a Stein manifold, a result of Milnor's about 
CW complex, a result from iteration theory, Poincaré duality theorem, degree the­
ory for proper mappings, covering lifting existence theorem, and a result about 
compact semisimple Lie groups et al. 

4. Extended future tube conjecture 
Let's keep the notation in Example d of the section 2. The set T'N := {Az : 

z £ T^,A £ L+(C)} is called the extended future tube. 
The extended future tube conjecture, which arose naturally from axiomatic 

quantum field theory at the end of 1950's, asserts that the extended future tube T'N 

is a domain of holomorphy for N > 3. This conjecture turns out to be very beautiful 
and natural. In their papers, Vladimirov and Sergeev said that the importance of 
the conjecture is also due to the fact that there are some assertions in QFT, such 
as the finite covariance theorem of Bogoliubov-Vladimirov, proved only assuming 
that this conjecture is true. 

According to the axiomatic quantum field theory (cf. [12,13,28]), one may-
describe physical properties of a quantum system using the Wightman functions 
which correspond to holomorphic functions in r ^ invariant w.r.t. the diagonal 
action of EX. This sort of functions have the following extension property. 
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BHW Theorem (due to Bargman, Hall, and Wightman 1957). An Zq_-invariant 
holomorphic function on r ^ can be extended to an L+ (C)-invariant holomorphic 
function on T'N (cf. [12,13,28]). 

In the proof, the orbit connectedness of r ^ play a key role. With this and 
Identity Theorem, one can easily define the invariant holomorphic extension. 

So, a natural question arises, i.e., can these holomorphic functions be extended 
further? Or, is T'N holomorphic convex w.r.t. L+ (C)-invariant holomorphic func­
tion? After some argument, this is equivalent to ask if T'N is a domain of holomorphy. 

Streater's theorem. A holomorphic function on the Dyson domain T J U % U J 

(where J := T'N n M4N is the set of Jost points which was proved to exist and 
characterized by R. Jost) can be extended to a holomorphic function on T'N (cf. 
[12,28]). 

So, a natural question is to construct the envelope of holomorphy of the Dyson 
domain r | U % U J (This question is mentioned in the article "Quantum field 
theory" of the Russian's great dictionary "Encyclopedia of Alathematics"). That 
the extended future tube conjecture holds is equivalent to that this envelope of 
holomorphy is exactly the extended future tube T'N. 

The conjecture have been mentioned as an open problem in many classical 
([12,28]) and recent references ([11,21-24,28-31]) and references therein. In [38,39], 
we found a route to solve the conjecture via Kiselman-Loeb's minimum principle 
and Luna's slice theory. Let's recall the minimum principle. 

Minimum principle 
Let X be a complex manifold, Gc a connected complex Lie group, GR a 

connected closed real form of Gc- Denote ip : Gc —t G C / G R , and p : X x Gc —t X 
the natural projections. 

Gc acts on X x Gc on the right by: 

(X" x Gc) x Gc —y X x Gc 
((x,g),h) i—• (x,gh) 

Yet 0 c X x Gc be a right GR-invariant domain and have connected fibres of 
p; and u £ C°°(ii) be a right GR-invariant function, u naturally induces a smooth 
function ù(x,ip(gj) on Q := (idx,ip)(ty-

Suppose that (1) u is p.s.h on Q, (2) Va; £ p(ii),u(x,-) is strictly p.s.h. on 
iix = 0 C\p^1(x), and (3) u(x, •) is exhaustive on Ùx = ip(iìx), then the minimum 
principle asserts that v(x) = inf u(x,g) is C°° and p.s.h. on p(ii). 

Remark. C O . Kiselman in [14] first obtained the minimum principle when 
X = C",Gc = C T O , G R = JTOC™ , J.J. Loeb in [18] generalized Kiselman's result to 
the present general case. 

It's easy to construct invariant p.s.h. functions w.r.t. compact Lie group 
via "averaging technique". However, such a technique doesn't hold again for non 
compact Lie group. 

Observation. Let G be a real Lie group which acts on C" linearly. Let D 
be a Bergman hyperbolic domain which is G-invariant. Then the Bergman kernel 
KD(Z,W) satisfies KD(Z,Z) = Kp,(g • z,~g~rz) for g £ G, when G is compact; when 
G is semisimple, we have KD(Z,W) = Kp,(g • z,g • tv). 
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Brief proof is as follows. Since G linearly act on C", one has a representation 
G —¥ GL(n,C); if G is semisimple, then the image of G must be in SL(n,C); if 
G is compact, the image of G is in U(n). Using the transformation formula for 
the Bergman kernels and noting that the determinant of the Jacobian of the map 
z —¥ g • z is 1 for semisimple case, and is in S1 for compact case, then we can get 
the result. 

We consider the following question: Let X be a Stein manifold, Gc be a 
connected complex reductive Lie group acting on X s.t. the action is holomorphic, 
GR a connected real form of Gc- Let D c X be a GR-invariant orbit connected 
Stein domain, is Gc • D also Stein? 

When GR is compact, the answer is positive (cf. [22]). This is a special case 
of Theorem 1 in the section 3. 

The extended future tube conjecture is a special case of the question, where 
X = C4N,Gc = L + ( C ) , G R = L\,D = T+,GC-D = T'N 

Consider X x Gc —> X, p(x, g) = g^1 • x. Suppose that there is a suitable GR-
invariant s.p.s.h. function ip on D. We have a p.s.h. function u(x,g) = ip(g^1 • x) 
on Q = p^1(D). Define ip(x) = inf u(x,g) for x £ p(ii), where p : X x Gc —t X is 

g&l,, 
given by p(x,g) = x, and flx := {g £ G c : (X,g) £ fl}. 

In order to prove ip(x) is p.s.h. on p(Q) = Gc • D, we can use the minimum 
principle due to Kiselman-Loeb. 

Observation. iix is connected if and only if D is orbit connected. 
In order to use the minimum principle, we still need to check two assumptions: 

(i) u(x, •) is s. p.s.h. on iix; (ii) «(a;,-) is exhaustion on Ùx, where u(x, ip(gj) is defined 
on Q = (id,ip)(ii) c X x G C / G R and is induced by u,ip : Gc —ï G C / G R , ÙX = 
ip(iìx). Usually speaking, assumption (i) fails on the whole 0. However, when X 
has FPIG, then the assumption (i) is fulfilled on a Zariski open subset of 0. Let 
X' := {x £ X : Gear is closed, (Gc)x is principal and finite }, then, by the slice 
theory, A = X\A' is a Gc-invariant analytic subset of X. Let D' = D n X' , Q' := 
p~1(D'), then the assumption (i) is satisfied on Q'. If the assumption (ii) is also 
satisfied on Q', then we can use the minimum principle on Q' and get that ip(x) is 
p.s.h. on p(iY) = Gc • D\A since ip(x) is upper semicontinuous on Gc • D, by the 
extension theorem for p.s.h. functions, ip(x) can be extended to a p.s.h. function 
on Gc • D. 

If we can prove that the extended p.s.h. function is weak exhaustion, then 
Gc • D is Stein. 

As a consequence of our observations, we deduce that the general question is 
true for pseudoconvex pair ( G C , G R ) (i.e., there exists a GR-invariant p.s.h. func­
tion on Gc which is exhaustion on Gc/GR(cf.[17]), which include the case when 
GR is compact and nilpotent (cf. [17]). However it's pity that (L+(C),Zq_) is not a 
pseudoconvex pair. 

In the case of the extended future tube conjecture, we proved that the as­
sumption (ii) in the minimum principle is satisfied and the constructed function 
is weak exhaustion. These are the main technical difficulties. We overcome them 
and finished our proof via a consideration of the matrix form of the conjecture and 
explicit calculations based on Hua's work and matrix techniques ([9,19]). 
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Theorem [38,39]. The extended future tube conjecture is true. 

A.G. Sergeev posed an interesting idea to attack the mentioned question. He 
assumed an invariant version of Cartan's lemma: if A C D is a GR-invariant analytic 
subset, / £ 0(A)G-:-, then there exists an F G 0(D)G: s.t. F\A = f. If this is the 
case, we can prove that n(D) is Stein in X/ /Gc- In order to prove it, it's sufficient 
to prove n(D) is holomorphically convex. Let {yn} C n(D) be an arbitrary discrete 
set. Then {ir^1(yn)}riD is a GR-invariant analytic subset in D. By the assumption, 
then there exists a GR-invariant holomorhic function F on D s.t. F\n-i (yn) = n. 
Since 0(n(Dj) = Ö(D)G'•-, then we get a holomorphic function on n(D) which is 
unbounded on {yn}. This means that n(D) is holomorphically convex, and then 
ir^1(ir(Dj) is also Stein. When 7r_1(7r(I?)) = Gc • D, i.e., Gc • D is 7r-saturated, 
then Gc • D is Stein. 

It seems to be hard to prove directly the invariant version of Cartan's lemma 
for a noncompact Lie group GR, although it's trivially the case for a compact Lie 
group. Actually, we have the following: 

Proposition ([41]). Suppose, furthermore, Gc • D is n-saturated. Then the 
invariant version of Cartan's lemma holds if and only if Gc • D is Stein. 

However, we recently observed that it should be possible to directly give an 
answer to the above question based on L2-methods and group actions. 
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Algebraic Structures on Valuations, 
Their Properties and Applications 

Semyon Alesker* 

Abstract 

We describe various structures of algebraic nature on the space of con­
tinuous valuations on convex sets, their properties (like versions of Poincaré 
duality and hard Lefschetz theorem), and their relations and applications to 
integral geometry. 

2000 Mathematics Subject Classification: 46, 47. 
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ductive Lie group. 

0. Introduction 
The theory of continuous valuations on convex sets generalizes, in a sense, both 

the measure theory and the theory of the Euler characteristic. Roughly speaking one 
should think of a continuous valuation <j> on a real linear space V as a finite additive 
measure on a class of compact nice subsets of V (say piecewise smooth submanifolds 
with corners) which satisfy the following additional property (instead of the usual 
sigma-additivity): the restriction of <j> to the subclass of convex compact domains 
with smooth boundary extends by continuity to the class /C(V) of all convex compact 
subsets of V. Here the continuity is understood in the sense of the Hausdorff metric 
on /C(V). Remind that the Hausdorff metric dn on /C(V) depends on the choice 
of the Euclidean metric on V and it is defined as follows: dn(A,B) := infje > 
0|A c (B)e and B C (A)e}, where (U)e denotes the e-neighborhood of a set U. 
This condition of continuity turns out to be very strong restriction and has a lot of 
consequences on purely algebraic level. These properties will be discussed in this 
paper. The simplest examples of such valuations are any smooth measure on V and 
the Euler characteristic. Also it turns out that one of the main tools used recently 
in investigations of valuations is the representation theory of real reductive groups 
and the Beilinson-Bernstein theory of D-modules. 

Now let us give the formal definition of valuation. 
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0.1.1 Definition, a) A function <p : IC(V) —y C is called a valuation if for any 
Ki, K2 £ IC(V) such that their union is also convex one has 

<p(Ki U K2) = <j)(Ki) + <j)(K2) - <j)(Ki n K2). 

b) A valuation <p is called continuous if it is continuous with respect the Haus­
dorff metric on /C(V). 

The linear space of all continuous valuations on V will be denoted by CYral(Yr). 
It is a Fréchet space with the topology of uniform convergence on compact subsets 
of /C(V). In Section 1 we discuss its dense subspace of polynomial smooth valu­
ations (PYral(Yrj)sm (it has the topology of inductive limit of Fréchet spaces). It 
turns out that this space has a natural structure of associative commutative unital 
algebra (when the unity is the Euler characteristic). In Section 2 we discuss the 
space Val(V) of translation invariant continuous valuations. Its dense subspace 
(Val(V))sm of so called smooth valuations is a subalgebra of (PVal(V))sm. It has 
a natural grading and satisfies a version of Poincaré duality. This property follows 
from the Irreducibility Theorem 2.1.3 which is by itself key result in the investiga­
tion of valuations (see Subsection 2.1). Moreover even smooth translation invariant 
continuous valuations form a graded subalgebra of (Val(V))sm and satisfy a ver­
sion of the hard Lefschetz theorem (Subsection 2.2). This property turns out to 
be closely related to the cosine transform problem in the (Gelfand style) integral 
geometry solved recently in [6]. These properties of valuations turn out to be useful 
to obtain new explicit classification results on valuations with additional invari­
ance properties. The classical Hadwiger theorem describes explicitly SO(n)- and 
0(n)-invariant translation invariant continuous valuations on the Euclidean space 
Rn . The new result is the classification of unitarily invariant translation invariant 
continuous valuations on the Hermitian space C" (Subsection 2.3). The main ap­
plication of the classification results on valuations is integral geometric formulas. 
Using our classification we obtain new results in (Chern style) integral geometry of 
real submanifolds of complex spaces (Section 3). 

1. General continuous valuations 
In order to study general continuous valuations let us remind the definition of 

polynomial valuation introduced by Khovanskii and Pukhlikov [14], [15]. 

1.1.1 Definition. A valuation <p is called polynomial of degree d if for every K £ 
1C(V) the function x >-¥ <p(K + x) is a polynomial on V of degree at most d. 

Note that valuations polynomial of degree 0 are called translation invariant 
valuations. Polynomial valuations have many nice combinatorial-algebraic proper­
ties ([14], [15]). Also in [1] the author have classified explicitly rotation invariant 
polynomial continuous valuations on a Euclidean space. 

Let us denote the space of polynomial continuous valuations on V by PVal(V). 
One has 
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1.1.2 Propos i t ion ([5]). The space PVal(V) of polynomial continuous valuations 
is dense in the space of all continuous valuations CVal(V). 

The proof of this proposition is rather simple; it is a tricky use of a form 
of the Peter-Weyl theorem (for the orthogonal group 0(nj), and in particular the 
convexity is not used in any essential way. 

Let us remind the basic definition of a smooth vector for a representation of 
a Lie group. Let p be a continuous representation of a Lie group G in a Fréchet 
space F. A vector £ £ F is called G-smooth if the map g H> p(g)Ç is infinitely 
differentiable map from G to F. It is well known the the subset Fsm of smooth 
vectors is a G-invariant linear subspace dense in F. Moreover it has a natural 
topology of a Fréchet space (which is stronger than that induced from F), and the 
representation of G is Fsm is continuous. 

We will especially be interested in polynomial valuations which are GL(V)-
smooth. This space will be denoted by (PVal(V))sm. 

Example . Let p be a measure on V with a polynomial density with respect 
to the Lebesgue measure. Let A £ IC(V) be a strictly convex compact subset with 
smooth boundary. Then 

<j)(K) := p(K + A) 

is a continuous polynomial smooth valuation (here K + A := {k + a\k £ K, a £ A}). 
Yet us denote by Q(V) the linear space of valuations on V which are finite 

linear combinations of valuations from the previous example. It can be shown (using 
Irreducibility Theorem 2.1.3) that Q(V) is dense in (PVal(V))sm. Yet W be another 
linear real vector space. Let us define the exterior product (f>Mip £ Q(fi~ x W) of two 
valuations <f> £ Q(V), fi £ Q(W). Let <p(K) = ^pfiK+Ai), fi(L) = £ \ Vj(L+Aj). 
Define 

(<P M -,p)(M) := J2(ßi H VJ)(M + (Ai x {0}) + ({0} x Bj)), 
ì,j 

where pi M Vj denotes the usual product measure. 

1.1.3 Proposi t ion ([5]). For <p £ Q(V), ip £ Q(W) their exterior product (f>Mip £ 
Q(fi~ x W) is well defined; it is bilinear with respect to each argument. Moreover 

(4> S fi) S r/ = 4> S (fi S n). 

Now let us define a product on Q(V). Yet A : V <L-¥ V x V denote the diagonal 
imbedding. For <j>, ip £ Q(V) let 

<p--tp:= A*(<pm-tp), 

where A* denotes the restriction of a valuation on V x V to the diagonal. 

1.1.4 Propos i t ion ([5]). The above defined multiplication uniquely extends by con­
tinuity to (PYral(Yrj)sm. Then (PYral(Yrj)sm becomes an associative commutative 
unital algebra where the unit is the Euler characteristic \-
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2. Translation invariant continuous valuations 
For a linear finite dimensional real vector space V let us denote by Val(V) the 

space of translation invariant continuous valuations on V. This is a Fréchet space 
with respect to the topology of uniform convergence on compact subsets of /C(V). 
In this section we will discuss properties of this space. 

2.1. Irreducibility theorem and Poincaré duality 
It was shown by P. McMullen [17] that the space Val(V) of translation in­

variant continuous valuations on V has a natural grading given by the degree of 
homogeneity of valuations. Let us formulate this more precisely. 

2.1.1 Definition. A valuation <p is called homogeneous of degree k if for every 
convex compact set K and for every scalar X > 0 

<p(XK) = Xk<p(K). 

Yet us denote by Valk(V) the space of translation invariant continuous valu­
ations homogeneous of degree k. 

2.1.2 T h e o r e m (McMullen [17]). 

n 

Val(V) = ($Valk(V), 
k=0 

where n = dim V. 

Note in particular that the degree of homogeneity is an integer between 0 and 
n = dimV. It is known that V'alo (V) is one-dimensional and is spanned by the 
Euler characteristic \, a n d Valn(y) is also one-dimensional and is spanned by a 
Lebesgue measure [10]. The space Valn(V) is also denoted by Dens(V) (the space 
of densities on V). One has further decomposition with respect to parity: 

Vah(V) = Vallv(V)®Val°kdd(V), 

where Val^v(V) is the subspace of even valuations (<j> is called even if <j>(—K) = <j>(K) 
for every K £ ]C(V)), and Val%dd(V) is the subspace of odd valuations (<j> is called 
odd if 4>(—K) = —<p(K) for every K £ ]C(V)). The Irreducibility Theorem is as 
follows. 

2.1.3 Theo rem ([3],[2]). The natural representation of the group GL(V) on each 
space Vallv(V) and Val%dd(V) is irreducible. 

This theorem is the main tool in further investigations of valuations and classi­
fication of them (see Subsection 2.3). This immediately implies so called McMullen's 
conjecture [18]. Its proof is heavily based on the use of the representation theory 
of real reductive groups and the Beilinson-Bernstein theory of D-modules. Another 
key tool in the proof of this result is the Klain-Schneider characterization of simple 
translation invariant continuous valuations [12], [20]. 
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By the results of Section 1 (Val(V))sm is a subalgebra of (PVal(V))sm. It is 
easy to see that the algebra structure is compatible with the grading, namely 

(Vali(V))sm CS) (Valj(V))sm —• (Valì+j(Vj)sm. 

In particular we have 

(Vali(Vj)sm ® (Valn-i(Vj)sm —• Dens(V). 

A version of the Poincaré duality theorem says that this is a perfect pairing. Alore 
precisely 

2.1.4 Theo rem ([5]). The induced map 

(Vali(Vj)sm —• (Valn-i(V)*)sm ® Dens(V) 

is an isomorphism. 

2.2. Even translation invariant continuous valuations 
Let us denote by Valev(V) the subspace of even translation invariant continu­

ous valuations. Then clearly (Valev(V))sm is a subalgebra of (Val(V))sm. It turns 
out that it satisfies a version of the hard Lefschetz theorem which we are going to 
describe. 

Let us fix on V a scalar product. Let D denote the unit ball with respect to 
this product. Let us define an operator A : Val(V) —y Val(V). For a valuation 
<j> £ Val(V) set 

(AcP)(K):=^\e=QcP(K + eD). 

(Note that by a result of P. McMullen [17] <j>(K + sD) is a polynomial in e > 0 of 
degree at most n.) It is easy to see that A preserves the parity of valuations and 
decreases the degree of homogeneity by 1. In particular 

A:Vair(V)^Val^Li(V). 

The following result is a version of the hard Lefschetz theorem. 

2.2.1 Theo rem ([4]). Let k > n/2. Then 

A2k-n . (Vallv(V)ym —• (Valefi_k(Vj)sm 

is an isomorphism. In particular for 1 < i < 2k — n the map 

A* : (ValekV(V))sm —• (VallfifiV))8"1 

is injective. 

Note that the proof of this result is based on the solution of the cosine trans­
form problem due to J. Bernstein and the author [6], which is the problem from 
(Gelfand style) integral geometry motivated by stochastic geometry and going back 
to G. Alatheron [16]. 



762 Semyon Alesker 

2.3. Valuations invariant under a group 
Let G be a subgroup of GL(V). Yet us denote by ValG(V) the space of G-

invariant translations invariant continuous valuations. From the results of [2] and 
[4] follows the following result. 

2.3.1 Theorem. Let G be a compact subgroup ofGL(V) acting transitively on the 
unit sphere. Then ValG(V) is a finite dimensional graded subalgebra of (Val(V))sm. 
It satisfies the Poincaré duality, and if —Id £ G it satisfies the hard Lefschetz 
theorem. 

It turns out that ValG(V) can be described explicitly (as a vector space) for 
G = SO(n), 0(n), and U(n). In the first two cases it is the classical theorem of 
Hadwiger [10], the last case is new (see [4]). In order to state these results we have 
to introduce first sufficiently many examples. 

Let 0 be a compact domain in a Euclidean space V with a smooth boundary 
90 . Yet n = dim V. For any point s £ 90 let ki(s),..., fcn_i (s) denote the principal 
curvatures at s. For 0 < i < n — 1 define 

Vi(Q) := - ( n T 1 ) f {kh,..., *,•„_!_, }da, 
n\n-l-ij JdQ 

where {kjx,..., kjn_1_i} denotes the (n — l — z)-th elementary symmetric polynomial 
in the principal curvatures, da is the measure induced on 9 0 by the Euclidean 
structure. It is well known that V» (uniquely) extends by continuity in the Hausdorff 
metric to /C(V). Define also F„(0) := vol (Si). Note that Vo is proportional to the 
Euler characteristic x- It '1S w e u known that Vo, Vi,..., Vn belong to Val°^(V). 
It is easy to see that \fi is homogeneous of degree k. The famous result of Hadwiger 
says 

2.3.2 Theo rem (Hadwiger, [10]). LetV be n-dimensional Euclidean space. The 
valuations Vn,Vi,.. .,Vn form a basis of Vals°(nfiV)(= Val°(nfiVj). 

Now let us describe unitarily invariant valuations on a Hermitian space. Let 
W be a Hermitian space, i.e. a complex vector space equipped with a Hermitian 
scalar product. Let m := dim^W (thus dim^W = 2m). For every non-negative 
integers p and k such that 2p < k < 2m let us introduce the following valuations: 

Uk,p(K)= / Vk-2p(KC\E)-dE. 
JE^AGrm-p 

ThenUk,P£ Val"{m)(W). 

2.3.3 Theo rem ([4]). Let W be a Hermitian vector space of complex dimension 

m. The valuations Uk,p with 0 < p < """ ' %m~ ' form a basis of the space 

Val?m\W). 

It turns out that the proof of this theorem is highly indirect, and it uses 
everything known about even translation invariant continuous valuations including 
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the solution of McMullen's conjecture, cosine transform, hard Lefschetz theorem for 
valuations, and also results of Howe and Lee [11] on the structure of certain GLn(H)-
modules. Namely in order to describe explicitly the (finite dimensional) space of 
unitarily invariant valuations it is necessary to study the (infinite dimensional) 
GLR(IA")-module Valev(W). 

Note that as algebra Vals°(nfiV) is isomorphic to <C[x]/(xn+1. The algebra 
structure of Valfi^ (W) is not yet computed. 

3. Applications to integral geometry 
In this section we state new results from (Chern style) integral geometry of 

Hermitian spaces. They are obtained by the author in [4] using the classification of 
unitarily invariant valuations described in Subsection 2.3 of this paper. They can 
be considered as a generalization of the classical kinematic formulas due to Chern, 
Crofton, Santaló, and others (see e.g. [7], [8],[9],[13], [19]). 

Let us remind first the principal kinematic formula following Chern [7]. Let 
ISO(n) denote the group of affine isometries of the Euclidean space R". Let Oi, 0 2 

be compact domains with smooth boundary in R". Assume also that Oi n U(ii2) 
has finitely many components for all U £ ISO(n). 

3.1.1 Theorem ([7]). 

» n 

/ x(iìinu(iì2))du = YiKkvk(iì1)vn-k(iì2), 
Jueiso(n) k=Q 

where Kk are constants depending on k and n only which can be written down ex­
plicitly. 

For the explicit form of the constants Kk we refer to [7] or [19], Ch.15 §4. 
Let us return back to the Hermitian situation. Let IU(m) denote the group 

of affine isometries of the Hermitian space Cm preserving the complex structure 
(then IU(m) is isomorphic to €m x U(mj). Yet ifi, 0 2 be compact domains with 
smooth boundary in CTO such that Oi fi U(ii2) has finitely many components for 
all U £ IU(m). The new result is 

3.1.2 Theorem ([4]). 

f x(ttiriU(n2))dU= YI YI <ki,k2,Pi,P2)Uk1,P1(üiWk^Pfiü2), 
JUelU(m) k1+k2=2mpi,P2 

where the inner sum runs over 0 < Pi < fcj/2, i = 1,2, and K,(ki,k2,pi,p2) are 
certain constants depending on m,ki,k2,pi,p2 only. 

Remark. We could compute explicitly the constants K(ki,k2,pi,p2) only in 
C2. 

For more integral geometric formulas of this and other type for real domains 
in CTO we refer to [4]. 
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P. Biane* 

Abstract 

A combinatorial approach to free probability theory has been developped 
by Roland Speicher, based on the notion of noncrossing cumulants, a free 
analogue of the classical theory of cumulants in probability theory. We review 
this theory, and explain the connections between free probability theory and 
random matrices. We relate noncrossing cumulants to classical cumulants and 
also to characters of large symmetric groups. Finally we give applications to 
the asymptotics of representations of symmetric groups, specifically to the 
Littlewood-Richardson rule. 
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1. Introduction 
Free probability has been introduced by D. Voiculescu [21] as a means of study­

ing the group von Neumann algebras of free groups, using probabilistic techniques. 
His theory has become very successful when he discovered a deep relation with 
the theory of random matrices, and solved some old questions in operator algebra, 
see [4], [7], [24] for an overview. A purely combinatorial approach to Voiculescu's 
definition of freeness has been given by R. Speicher [19], [20], building on G. C. 
Rota 's [16] approach to classical probability. It is based on the notion of non-
crossing parti t ions, also known as "planar diagrams" in quantum field theory, and 
provides unifying concepts for many computations in free probability. Noncrossing 
partit ions turn out to be connected with the geometry of the symmetric group, and 
this leads to some new understanding of the asymptotic behaviour of the characters 
and representations of large symmetric groups. Our aim is to survey these results, 
we shall s tar t with the basic definition of freeness, then explain its connection to 
random matr ix theory. In the third section we review Speicher's theory. In the 
fourth section we show how noncrossing cumulants arise naturally in connection 
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with classical cumulants associated with random matrices, and with characters of 
symmetric groups. Finally in section 5 we explain the asymptotic behaviour of 
representations of symmetric groups in terms of free probability concepts. 

2. Freeness and random matrices 
The usual framework for free probability is a von Neumann algebra A, equipped 

with a faithful, tracial, normal state r. To any self-adjoint element X £ A one can 
associate its distribution, the probability measure on the real line, uniquely deter­
mined by the identity r(Xn) = f-Rxnp(dx) for all n > 1. This makes it natural to 
think of the elements of A as noneommutative random variables, and of r as an ex­
pectation map, and one usually calls noneommutative probability space such a pair 
(A,T). Although a great deal of the theory, especially the combinatorial side, can 
be developped in a purely algebraic way, assuming only that A is a complex algebra 
with unit, and r a complex linear functional, we shall stick to the von Neumann 
framework in the present exposition. 

Given (A, T), one considers a family {AJ; i £ 1} of von Neumann subalgebras. 
This family is called a free family if the following holds: for any k > 1 and fc-tuple 
c t i , . . . , ak £ A such that 

• each aj belongs to some algebra Atj, with ii ^ i2,i2 ^ h, • • •, iu-i ^ ik, 
• T(OJ) = 0 for all j , 

one has r(ai... ak) = 0. 
Moreover, a family of elements of A is called free if the von Neumann al­

gebras each of them generates form a free family. Freeness is a noneommutative 
notion analogous to the independence of a-fields in probability theory, but which 
incorporates also the notion of algebraic independence. 

Observe that if cti and a2 are free elements in (A,T), and one defines the 
centered elements ô, = a, — r(a , ) l then one can conpute 

r(aia2) = r(âiâ2) -V r(ai)r(a2) = r(ai)r(a2) 

where the freeness condition has been used to get r(âiÔ2) = 0. Actually, if {Affi £ 
1} is a free family, it is not dificult to see that one can compute the value of r on 
any product of the form cti . . . ak, where each aj belongs to some of the At 's, in 
terms of the quantities r(ajt ... a-jl ) where all the elements aj1,..., a-jl belong to 
the same subalgebra. This implies that the value of r on the algebra generated 
by the family {Affi £ 1} is completely determined by the restrictions of r to 
each of these subalgebras. However the problem of finding an explicit formula is 
nontrivial, and this is where combinatorics comes in. We shall describe Speicher's 
theory of noncrossing cumulants, which solves this problem, in the next section, but 
before that we explain how free probability is relevant to understand large random 
matrices. 

Consider n random N x N matrices X} , . . . , Xn , of the form 

Xf] = UjDf]U* (2.1) 
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where D- ';j = l,...,n are diagonal, hermitian, nonrandom matrices and Uj are 
independent unitary random matrices, each distributed with the Haar measure on 
the unitary group YJ(N). In other words we have fixed the spectra of the X> 
but their eigenvectors are chosen at random. The n-tuple Xf , . . . , Xn can 
be recovered, up to a global unitary conjugation X> H> UXt 'U*, (where U 
does not depend on i), from its mixed moments, i.e. the set of complex numbers 
jjTr(Xh .. .Xik ) where ii,...ik are arbitrary sequences of indices in {l,...,n}. 

In particular the spectrum of any noneommutative polynomial of the X> can be 
recovered from these data. A most remarkable fact is that if we assume that the 
individual moments j^Tr((Xl )k) converge as N tends to infinity, then the mixed 

moments -^Tr(X>i .. .Xik ) converge in probability, and their limit is obtained 
by the prescriptions of free probability. 

Theo rem 1. Let (A,T) be a noneommutative probability space with free self-

adjoint elements Xi,...,Xn, satisfying r(Xf) = limjv-s.00 ^Tr((Xt )k), for all 

i and k, then, in probability, j^Tr(Xii ' ...Xik ') ^JV-S-OO T(Xì1 ...Xik), for all 

ii,--.,ik-

This striking result was first proved by D. Voiculescu [23], and has lead to the 
resolution of many open problems about von Neumann algebras, upon which we 
shall not touch here. 

3. Noncrossing partitions and cumulants 
A partition of the set { 1 , . . . ,n} is said to have a crossing if there exists a 

quadruple (i,j, k,l), with 1 < i < j < k < I < n, such that i and k belong to some 
class of the partition and j and I belong to another class. If a partition has no 
crossing, it is called noncrossing. The set of all noncrossing partitions of { 1 , . . . ,n} 
is denoted by NC(n). It is a lattice for the refinement order, which seems to have 
been first systematically investigated in [10]. 

Let (A,T) be a non-commutative probability space, then we shall define a 
family RS") of n-multilinear forms on A, for n > 1, by the following formula 

r(ai...an)= ^ R[n](ai,.. .,an). (3.1) 
TreNC(n) 

Here, for n £ NC(n), one has defined 

R[n](ai,...,an)= J J R,UvV(av) 
V67T 

where ay = (a,j1,. • • ,ajk) if V = {ji,-- -,jk} is a elass of the partition n, with 
ji < J2 < • • • < jk and |F | = fc is the number of elements of V. In particular 
R[ln] = R^ if ln is the partition with only one class. Thus one has, for n = 3, 

T(aia2a3) = R^ (oi ,a2,a3) + R^ (oi, a2)R^ (o3) + R{2) (ai,a3)R^ (a2) 
+RW (a2, a3)R^ (oi) + R^ (ai)R^ (oa)^1) (a3). 
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Observe that 

r(ai ... an) = R^(cti,..., an) + terms involving R^ for fc < n 

so that the R^ are well defined by (3.1) and can be computed by induction on n. 
They are called the noncrossing (or sometimes free) cumulant functionals on A. 

The formula (3.1) can be inverted to yield 

R(n)(ai,...,an)= Y Moeb([n,ln])T[n](ai,...,an). 
TreNC(n) 

Here T[TT] (cti , . . . , an) = YlV€n T~(ajx ... ajk ) where V = {ji,..., jk} are the classes 
of IT, and Moeb is the Möbius function of the lattice NC(n), see [20]. 

For example, one has 

fiW(ai) = r(ai) ; R^(ai,a2) = r(aia2) - r (a i ) r (a 2 ) ; 
R^(ai,a2,a3) = r (a ia 2a 3 ) - r(ai)r(a2az) - r(a2)r(aiaz) 

-r(az)r(aia2) + 2r(ai)T(a2)r(az). 

Note that when the lattice of all partitions is used instead of noncrossing partitions, 
then one gets the usual family of cumulants (see Rota [16]), with another Alöbius 
function. 

The connection between noncrossing cumulants and freeness is the following 
result from section 4 of [19]. 

Theorem 2. Let {Afi £ 1} be a free family of subalgebras of (A,T), and 
ai,...,an £ A be such that aj belongs to some Atj for each j £ {1 ,2 , . . . , n} . Then 
one has R^ (ai,..., an) = 0 if there exists some j and k with ij ^ ik • 

This result leads to an explicit expression for r(ai.. .an), where ai,...,an 

is an arbitrary sequence in A, such that each aj belongs to one of the algebras 
Afi £ I. By Theorem 2, in the right hand side of (3.1), the terms corresponding 
to partitions n having a class containing two elements j , k such that aj and a^ 
belong to distinct algebras give a zero contribution. Thus we have to sum over 
partitions in which all j's belonging to a certain block of the partition are such 
that aj belongs to the same algebra. Since we can express noncrossing cumulants 
in terms of moments we get the formula for r(ai ... an) in terms of the restrictions 
of r to each of the subalgebras At. Noncrossing cumulants are a powerful tool 
for making computations in free probability, see [11], [12], [13], [14], [18], for some 
applications. We give a simple illustration below. 

Let Xi and X2 be two self-adjoint elements which are free, then the distri­
bution of Xi + X2, depends only on the distributions of Xi and X2 and can be 
computed as follows. Let R^(Xi,... ,Xi) and R^(X2,... ,X2), for n > 1, be the 
noncrossing cumulants of Xi and X2 , then one can expand R^ (Xi + X2,...,Xi + 
X2) by multilinearity as ^ . • R^ (Xtl,..., Xin ) where the sum is over all se­
quences of 1 and 2. By Theorem 2, all terms vanish except R^nfiXi,... ,Xi) and 
RW ( X 2 , . . . , X2). It follows that 

R(n)(Xi + X 2 , . . . ,Xi + X2) = R(n)(Xi,.. .,Xi) + R(n)(X2,... ,X2) 
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allowing the computation of the moments of Xi + X2 , hence its distribution, in 
terms of the distributions of Xi and X2 . It remains to give a compact form to the 
relation between moments and noncrossing cumulants. For any self-adjoint element 
X with distribution p, let 

1 °° r 1 
Gx(z)=- + Yz-k-1T(Xk)= / p(dx) 

z iti Jnz-x 
be its Cauchy transform, and let 

K(z) = - + YRkZk 

k=0 

be the inverse series for composition. 
Theorem 3. [19] 

One has Rk = R(k) (X,..., X) for all fc. 

The operation which associates to the two distributions of Xi and X2 the 
distribution of their sum is called the free convolution of measures on the real line, 
and was introduced by D. Voiculescu, who first considered the coefficients Rk and 
proved the formula for the free convolution of two measures, using very different 
methods [22]. 

Combining theorems 1 and 2, given two large random matrices of known spec­
tra one can predict the spectral distribution of their sum, with a good accuracy 
and probability close to 1. It is illuminating to look at the following example. The 
histogram below is made of the 800 eigenvalues of a random matrix of the form 
Hi + n 2 where Hi and n 2 are two orthogonal projections onto some random sub-
paces of dimension 400 in C8 0 0 , chosen independently. The curve y = — ,4 0 

T\JX(2-x) 
which corresponds to the large N limit predicted by free probability has been drawn. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
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4. Noncrossing cumulants, random matrices and 
characters of symmetric groups 

Besides free probability theory, noncrossing partitions appear in several areas 
of mathematics. We indicate some relevant connections. The first is with the 
theory of map enumeration initiated by investigations of theoretical physicists in 
two-dimensional quantum field theory. The noncrossing partitions appear there 
under the guise of planar diagrams, the Feynman diagrams which dominate the 
matrix integrals in the large N limit. This is of course related to the fact that large 
matrices model free probability. We shall not discuss this further here, but refer to 
[26] for an accessible introduction. Another place where noncrossing partitions play 
a role, which is closely related to the preceding, is the geometry of the symmetric 
group, more precisely of its Cayley graph. Consider the (unoriented) graph whose 
vertex set is the symmetric group £„ , and such that {01,02} is an edge if and only 
if a~ 1 0 2 is a transposition, i.e. this is the Cayley graph of £„ with respect to the 
generating set of all transpositions. The distance on the graph is given by 

d(ai,a2) = n — number of orbits of aTxa2 := |07"102|. 

The lattice of noncrossing partitions can be imbedded in £„ in the following way 
[10], given a noncrossing partition of { 1 , . . . , n}, its image is the permutation a such 
that a(i) is the element in the same class as i, which follows i in the cyclic order 
12...n. One can check [1] that the image of NC(n) is the set of all permutations 
satisfying |cr| + |0 _ 1 c | = \c\ where c is the cyclic permutation c(i) = i+ 1 mod(n), in 
other words, this set consists of all permutations which lie on a geodesic from the 
identity to c in the Cayley graph. These facts are at the heart of the connections 
between free probability, random matrices and symmetric groups. As an illustration 
we shall see how free cumulants arise from asymptotics of both random matrix 
theory and symmetric group representation theory. 

Recall that cumulants (also called semi-invariants, see e.g. [17]) of a random 
variable X with moments of all orders, are the coefficients in the Taylor expansion 
of the logarithm of its characteristic function, i.e. 

logE[eitx] = J2(ity 
,Cn(X) 

n=0 

We shall consider random variables of the following form y W = NX[ -fi where 

X(N) = UD^U* is a random matrix chosen as in (2.1) and X} 1 ' is its upper left 

coefficient. Assume now that the moments of X ^ converge 

±-Tr((X^)k) - ^ ^ [ xkp(dx) 

for some probability measure p on R, with noncrossing cumulants Rn(p), then one 
has 

hm -^-Cn(YW) = -Rn(p). 
iv-s-oo Nz n 
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This was first observed by P. Zinn-Justin [25], a proof using representation theory-
has been found by B. Collins [6]. 

We have related noncrossing cumulants to usual cumulants via random matrix 
theory, we shall see that that noncrossing cumulants are also useful in evaluating 
characters of symmetric groups. The precise relation however is not obvious at first 
sight. 

Let us recall a few facts about irreducible representations of symmetric groups. 
It is well known that they can be parametrized by Young diagrams. In the following 
it will be convenient to represent a Young diagram by a function u : R —¥ R such 
that (jj(x) = \x\ for |x| large enough, and a; is a piecewise affine function, with slopes 
± 1 , see the following picture which shows the Young diagram corresponding to the 
partition 8 = 3 + 2 + 2 + 1 . 

Xl J/1 X2 y2 x3 t/3 Xi 

Alternatively we can encode the Young diagram using the local minima and 
local maxima of the function OJ, denoted by xi,..., Xk and 2/1, • • •, 2/fc-i respectively, 
which form two interlacing sequences of integers. These are (-3,-1,2,4) and (-2,1,3) 
respectively in the above picture. Associated with the Young diagram there is a 
unique probability measure mw on the real line, such that 

1 
,(dx) 

R 
for all z £ C \ R. 

This probability measure is supported by the set {xi,...,Xk} and is called the 
transition measure of the diagram, see [8]. Let a denote the conjugacy class in £„ 
of a permutation with fc2 cycles of length 2, fc3 of length 3, etc.. Here fc2,fc3,... 
are fixed while we let n —¥ 00. Denote by Xw the normalized character of £„ 
associated with the Young diagram OJ, then the following asymptotic evaluation 
holds uniformly on the set of A-balanced Young diagrams, i.e. those whose longest 
row and longest column are less that Ay/n (where A is some constant > 0), 

xAo-) = f[n-jk>Rf+1(ou) + 0(r -i-\*\ß\ (4.1) 

Note that Rk is scaled by A* if we scale the diagram u by a factor A, therefore the 
first term in the right hand side is of order 0(n^-,i^+1'kj'2~^-,':'kj) = 0(n~^^2), 
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this gives the order of magnitude of the character of a fixed conjugacy group for an 
A-balanced diagram. 

In [2] a proof of (4.1) has been given, using in an essential way the Jucys-
Murphy operators. Another proof, leading to an exact formula for characters of 
cycles due to S. Kerov [9], was shown to me later by A. Okounkov [15], see [5]. 

5. Representations of large symmetric groups 

The asymptotic formula (4.1) shows in particular that irreducible characters of 
symmetric groups become asymptotically multiplicative i.e. for permutations with 
disjoint supports 01 and 02 , one has 

xAwz) = X^iJX^2) + Ofa-1-!™!/2) (5.1) 

uniformly on A-balanced diagrams. Conversely, given a central, normalized, positive 
definite function on £„ , a factorization property such as (5.1) implies that the 
positive function is essentially an irreducible character [3]. Alore precisely, recall 
that a central normalized positive definite function ip on £„ is a convex combination 
of normalized characters, and as such it defines a probability measure on the set 
of Young diagrams. For any e, 5 > 0, for all n large enough, if an approximate 
factorization such as (5.1) holds for ip, then there exists a curve OJ, such that the 
measure on Young diagrams associated with ip puts a mass larger than 1 — 5 on 
Young diagrams which lie in a neighbourhood of this curve, of width e\/n. Therefore 
one can say that condition (5.1) on a positive definite function implies that the 
representation associated with this function is approximately isotypical, i.e. almost 
all Young diagrams occuring in the decomposition have a shape close to a certain 
definite curve. 

Using this fact it is possible to understand the asymptotic behaviour of several 
operations in representation theory. Consider for example the operation of induc­
tion. One starts with two irreducible representations of symmetric groups S n i , £„ 2 , 
corresponding to two Young diagrams OJI and OJ2. One can then induce the product 
representation u;i®u;2 of S n i x £„2 to £„ 1 + „ 2 . This new representation is reducible 
and the multiplicities of irreducible representations can be computed using a com­
binatorial device, the Littlewood-Richardson rule. This rule however gives little 
light on the asymptotic behaviour of the multiplicities. Using the factorization-
concentration result, one can prove that when rii and n2 are very large, but of 
the same order of magnitude, then there exists a curve, which depends on ui and 
OJ2, and such that the typical Young diagram occuring in the decomposition of the 
induced representation, is close to this curve. As we saw in section 4, one can asso­
ciate a probability measure on the real line to any Young diagram. The description 
of the typical shape of Young diagram which occurs in the decomposition of the 
induced representation is easier if we use this correspondance between probability-
measures and Young diagrams, indeed the probability measure associated with the 
shape of the typical Young diagram corresponds to the free convolution of the two 
probability measures [2]. 
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There are analogous results for the restriction of representations from large 
symmetric groups to smaller ones. There the corresponding operation on probability-
measure is called the free compression, it corresponds at the level of the large matrix 
approximation, to taking a random matrix with prescribed eigenvalue distribution, 
as in section 2, and extracting a square submatrix. Finally there are also results for 
Kronecker tensor products of representations. Here a central role is played by the 
well known Kerov-Vershik limit shape, whose associated probability measure is the 
semi-circle distribution with density 7y-\j4 — x2 on the interval [—2,2], see [2]. 
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Subfactors and Planar Algebras 

D. Bisch* 

Abstract 

An inclusion of Hi factors N c M with finite Jones index gives rise to a powerful 
set of invariants that can be approached successfully in a number of different ways. 
We describe Jones' pictorial description of the standard invariant of a subfactor as 
a so-called planar algebra and show how this point of view leads to new structure 
results for subfactors. 

2000 Mathemat ic s Subject Classification: 46L37, 46L60, 82B20, 81T05. 
Keywords and Phrases: Von Neumann algebras, Subfactors, Planar algebras. 

1. Introduction 
Abelian von Neumann algebras are simply algebras of bounded, measurable 

functions on a measure space. A general (non-abelian) von Neumann algebra can 
be viewed as an algebra of "functions" (operators) on a non-commutative measure 
space. The building blocks of what one might call non-commutative probability 
spaces are the so-called Hi factors M, that is those von Neumann algebras with 
trivial center that are infinite dimensional and possess a distinguished tracial state 
(the analogue of a non-commutative integral). The "smallest" Hi factor is the 
hyperfinite Hi factor which is obtained as the closure in the weak operator topology 
of the canonical anti-commutation relations (CAR) algebra of quantum field theory. 
A Hi factor comes always with a natural left representation on L2(M), the non-
commutative L2-space associated to M. See for instance [13]. 

Vaughan Jones initiated in the early 80's the theory of subfactors as a "Galois 
theory" for inclusions of Hi factors. A subfactor is an inclusion of Hi factors N C M 
such that the dimension of M as left Ar-Hilbert module is finite. This dimension 
is called the Jones index [M : N] ([19]) and one would expect by classical results 
of Murray and von Neumann that it takes on any real number > 1. One of the 
early results in the theory of subfactors was Jones' spectacular rigidity theorem 
which says that this index is in fact quantized [19]: if [M : N] < 4, then it has 
to be of the form 4 cos2 5-, for some n > 3. Since Jones' early work the theory of 
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subfactors has developed into one of the most exciting and rapidly evolving areas 
of operator algebras with numerous applications to different areas of mathematics 
(e.g. knot theory with the discovery of the Jones polynomial [20]), quantum physics 
and statistical mechanics. Subfactors with finite Jones index have an amazingly-
rich mathematical structure and an interplay of analytical, algebraic-combinatorial 
and topological techniques is intrinsic to the theory. 

2. Subfactors 
A subfactor can be viewed as a group-like object that encodes what one might 

call generalized symmetries of the data that went into its construction. To decode 
this information one needs to compute the higher relative commutants, a system 
of inclusions of certain finite dimensional C*-algebras naturally associated to the 
subfactor. This system is an invariant of the subfactor, the so-called standard 
invariant, which contains in many natural situations precisely the same information 
as the subfactor itself ([30], [32], [33]). Here is one way to construct the standard 
invariant: If N c M denotes an inclusion of Hi factors with finite Jones index, 
and ei is the orthogonal projection L2(M) —t L2(N), then we define Mi to be the 
von Neumann algebra generated by M and ei on L2(M). Mi is again a Hi factor 
and M c Mi has finite Jones index as well so that the previous construction can 
be repeated and iterated [19]. One obtains a tower of Hi factors A c M c Mi C 
Af2 c . . . associated to N c M, together with a remarkable sequence of projections 
(ej)j>i, the so-called Jones projections, which satisfy the Temperley-Lieb relations 
and give rise to Jones' braid group representation [19], [20]. The (trace preserving) 
isomorphism class of the system of inclusions of (automatically finite dimensional) 
centralizer algebras or higher relative commutants 

C = N' n N c N' n M c AT n Mi c N' n M2 c 
u u u 

C = M ' n M c M ' n Mi c M ' n M2 c 

is then the standard invariant GN,M of the subfactor N c M. Each row of inclusions 
is given by a sequence of Bratteli diagrams, which can in fact be reconstructed from 
a single, possibly infinite, bipartite graph. Hence one obtains two graphs (one for 
each row), the so-called principal graphs of N c M, which capture the inclusion 
structure of the above double-tower of higher relative commutants. It turns out that 
if M is hyperfinite and N c M has finite depth (i.e. the principal graphs are finite 
graphs) [30], [32] or more generally if N c M is amenable [33], then the standard 
invariant determines the subfactor. In this case the subfactor can be reconstructed 
from the finite dimensional data given by GN,M- In particular, subfactors of the 
hyperfinite Hi factor R with index < 4 are completely classified by their standard 
invariant and an explicit list can be given (see for instance [14], [16] or [33]). If the 
Jones index becomes > 6 such an explicit list is out of reach as the work in [6], [11] 
and [12] shows: there are uncountably many non-isomorphic, irreducible infinite 



Subfactors and Planar Algebras 777 

depth subfactors of R with Jones index 6 and the same standard invariant! Partial 
lists of irreducbile subfactors with index between 4 and 6 have been obtained by-
different methods (see for instance [1], [5], [6], [17], [35], [36], [37], [38]), but much 
work remains to be done. 

There are several distinct ways to analyze the standard invariant of a subfactor 
(see [2], [4], [14], [22], [30], [33]). For instance, in the bimodule approach ([13], [30], 
see also [4], [14], [18]) GN,M is described as a graded tensor category of natural 
bimodules associated to the subfactor. GN,M can thus be viewed as an abstract 
system of (quantum) symmetries of the mathematical or physical situation from 
which the subfactor was constructed. It is in fact a mathematical object which 
generalizes for instance discrete groups and representation categories of quantum 
groups ([37], [38]). A variety of powerful and novel techniques have been developed 
over the last years that make it possible to compute and understand the standard 
invariant of a subfactor. A key result is Popa's abstract characterization of the 
standard invariant [34]. Popa gives a set of axioms that an abstract system of 
inclusions of finite dimensional C*-algebras needs to satisfy in order to arise as the 
standard invariant of some (not necessarily hyperfinite) subfactor. This result makes 
it possible to analyze the structure of subfactors, which are infinite dimensional, 
highly non-commutative objects, by investigating the finite dimensional structures 
encoded in their standard invariants. 

3. Planar algebras 
Jones found in [22] a powerful formalism to handle complex computations with 

GN,M- He showed that the standard invariant of a subfactor has an intrinsic planar 
structure (this will be made precise below) and that certain topological arguments 
can be used to manipulate the operators living in the higher relative commutants of 
the subfactor. The standard invariant is a so-called planar algebra. To explain this 
notion let us first define the planar "operad" following [22]. Elements of the planar 
operad are certain classes of planar k-tangles which determine multilinear operations 
on the vector spaces underlying the higher relative commutants associated to a finite 
index subfactor. 

A planar fc-tangle consists of the unit disk D in the complex plane together 
with several interior disks Di, D2,..., Dn. The boundary of D is marked with 2k 
points and each Dj has 2kj marked points on its boundary. These marked points 
are connected by strings in D, which meet the boundary of each disk transversally. 
We also allow (finitely many) strings which are closed curves in the interior of D. 
The main point is that all strings are required to be disjoint (hence planarity) and 
to lie in the complement of the interiors of the Dfis. Additional data of a planar 

o 

fc-tangle is a checkerboard shading of the connected components of £>\Uj=i Dj, 
and a choice of a white region at every Dj (which corresponds to a choice of the 
first marked point on the boundary of each Dj). The planar operad V is defined 
to consist of all orientation-preserving diffeomorphism classes of planar fc-tangles 
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(for all k > 0), where the diffeomorphisms leave the boundary of D fixed but are 
allowed to move the interior disks. V becomes a colored operad [22] (see [28]). An 
example of a 4-tangle is depicted in the next figure: 

Note that there are two classes of planar 0-tangles according to the shading of 
the tangle near the boundary of D. 

Two planar tangles T and S can be composed in a natural way if the number of 
boundary points of S matches the number of boundary points of one of the interior 
disks Dj of T: To obtain the composed tangle T °j S shrink S and paste it inside 
Dj so that the shadings and marked white regions match up. Join the strings at the 
boundary of Dj, smooth them and erase the boundary of Dj. It is clear that this 
operation is well-defined (the checkerboard shading and choice of a white region 
at each disk avoid rotational ambiguity) and that it depends only on the isotopy 
class of each tangle. Note that there may be several different ways of composing 
two given tangles, each composition yielding potentially distinct planar tangles. An 
example of such a composition is given in the next figure (insert S in the disk D2 

ofT): 

T = T o 2 S = 

An abstract planar algebra is then defined to be an algebra over this planar 
operad ([28]). Alore concretely, an abstract planar algebra V is the disjoint union 
of vector spaces V = P™htte JJ pbiack Y[n>Q Pn plus a morphism from the planar 
operad to the (colored) operad of multilinear maps between these vector spaces. In 
other words a planar algebra structure on V is a procedure that assigns to each 
planar fc-tangle T (with interior disks Dj having 2kj boundary points, 1 < j < n) 
a multilinear map Z(T) : i \ x • • • x Pkn —¥ Pk in such a way that composition 
of tangles is compatible with the usual composition of maps (naturality of compo­
sition). Note that the F^'s are automatically associative algebras since the tangle 
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in the next figure (drawn in the case k = 5) defines an associative multiplication 
Pk x Pk —t Pk (associativity follows from naturality of the composition). 

Observe that this is a purely algebraic structure - the definition can be made 
for (possibly infinite dimensional) vector spaces over an arbitrary field. The key-
point is of course that this structure appears naturally in the theory of subfactors. 
In order to connect with subfactors several additional conditions will be required 
in the definition of a planar algebra. A planar algebra (or subfactor planar algebra 
to emphasize the operator algebra context) will be an abstract planar algebra such 
that dim Pk < oo for all k, dim p™htte = dim p^lack = l and such that the partition 
function Z associated to the planar algebra is positive and non-degenerate. The 
partition function is roughly obtained as follows: If T is a 0-tangle, then Z(T) 
is a scalar since it is an element in the 1-dimensional space P™htte resp. P^lack. 
Note that every planar algebra comes with two parameters Oi = Z((Q)) and ô2 = 
Z(®), which we require to be fi^ 0 (the inner circles are strings, not boundaries 

of disks!). In the case of a subfactor planar algebra we have ô = ôi = ô2 (which 
is equivalent to extremality of the subfactor [31]). In fact ó = [M : Ar]1/2 in this 
case. There is an intrinsic way to define an involution on the planar algebra arising 
from a subfactor which makes the partition function into a sesquilinear form on 
the standard invariant. Positivity of the partition function Z means then positivity 
of this form. Note that Z gives in particular the natural trace on the standard 
invariant of the subfactor. The main result of [22] is then the following theorem. 

Theo rem 3.1. The standard invariant GN,M of an extremal subfactor N c M 
is a subfactor planar algebra V = (Pn)n>o with Pn = N' n M n _i . 

This theorem says in particular that planar tangles always induce multilinear 
maps ("planar operations") on the standard invariant of a subfactor. As a conse­
quence one obtains a diagrammatic formalism that can be employed to manipulate 
the operators in N' n Mn_i and intricate calculations with these operators can be 
carried out using simple topological arguments. This point of view has been turned 
in [9], [10] into a powerful tool to prove general structure theorems for subfactors, 
and to analyze the rather complex combinatorial structure of the standard invariant 
of a subfactor. It has led to a generators and relations approach to subfactors. See 
also [23], [24] for more on this. 

The two most fundamental examples of subfactor planar algebras are the 
Temperley-Lieb systems of [19] (see also [22]) and the Fuss-Catalan systems of [7] 
(see section 4). 
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Observe that by construction planar algebras are closely related to invariants 
for graphs, knots and links and to the pictorial formalism commonly used in the 
theory of integrable lattice models in statistical mechanics. 

4. Fuss-Catalan algebras 
Jones and I discovered in [7] a new hierarchy of finite dimensional algebras, 

which arise as the higher relative commutants of subfactors when intermediate sub-
factors are present. These algebras have a number of interesting combinatorial 
properties and they have recently been used to construct new integrable lattice 
models and new solutions of the Yang-Baxter equation ([15], [29]). 

We show in [7] that a chain of fc — 1 intermediate subfactors N c Pi C 
-P2 C ...Pk-i C M leads to a tower of algebras (FCn(ai,... ,ak))n>Q, which 
depend on fc complex parameters ai,...,ak- The dimensions of these algebras are 
given by the generalized Catalan numbers or Fuss-Catalan numbers j^+ìi « ") 
and we therefore call these algebras the Fuss-Catalan algebras. If no intermediate 
subfactor is present, i.e. F = N or Fj = M for all i, then one finds the well-
known Temperley-Lieb algebras (case fc = 1) [19]. The additional symmetry coming 
from the intermediate subfactor is captured completely by these new algebras and 
it is proved in [7] (see also [8]) that they constitute the minimal symmetry present 
whenever an intermediate subfactor occurs. See also [26]. 

Let us explain in more detail what happens in the case of just one intermediate 
subfactor. We consider N c F c M, an inclusion of Hi factors with finite Jones 
index, and construct the associated tower of of Hi factors as in section 2. One ob-

Pi e\ P'2 62 

tains an inclusion of Hi factors N c P C M c Pi C Mi C F2 c M2 c . . . , where 
the Pi's are the orthogonal projections from L2(Afj_i) onto L2(Fj_i) (P0 = P, 
M0 = M) and the intermediate subfactors F are the von Neumann algebras gener­
ated by Mj_i and p,. The algebra IAn(a, ß) = Alg( l ,e i , . . . , e n _ i , p i , . . . ,p n _i ) , 
generated by the e,'s and the p,'s, is a subalgebra of N' n M n _i . It can be shown 
to depend only on the two indices a = [P : N] and ß = [M : P], and not on the 
particular position of F in N c M. The projections e, and pj satisfy again some 
rather nice commutation relations (see [7] for details). In order to describe the 
structure of these algebras let us for the moment consider the complex vector space 
FCn(a, b), spanned by labelled, planar diagrams of the form 

2n marked points 
a b b a a b b a 

b a a b b a 

where a, b £ C\{0} are fixed. There is a natural multiplication of these diagrams, 
which makes FCn(a, 6) into an associative algebra (see [25]). To obtain Di • D2 put 
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the basis diagram Di on top of D2 so that the labelling matches, remove the middle 
bar and all closed loops. Multiply the resulting diagram with factors of a resp. 6 
according to the number of removed a-loops resp. 6-loops. An example is depicted 
in the next figure. 

a b b a a b b a 

= ab 

b b a a b ba 

-Ü-

-Û-
b b a a b ba 

Counting diagrams shows that dim FC„ (a, 6) (3n\ 
2n+l \ n >•• 

the n-th Fuss-
Catalan number [7]. Clearly FCn(a,i>) embeds as a subalgebra of FCn+i(a,6) by-
adding two vertical through strings to the right of each basis diagram of FCn(a, 6). 
A diagrammatic technique, called the middle pattern analysis in [7], can be used to 
compute the structure of these algebras completely in the semi-simple case. One 
obtains that the structure of the tower FCi (a, 6) C FC 2 (a, 6) C . . . of Fuss-Catalan 
algebras is given by the Fibonacci graph [7]. 

K 

The algebras lAn(a,ß) that we are interested in can then be shown to be 
isomorphic to FCn(a,b), where a ß = b", if the indices a and ß are generic, 
i.e. > 4. In the non-generic case lAn(a,ß) is a certain quotient of FCn(a,b) (see 
[7] for the details). 

There is a natural 2-parameter Markov trace on the Fuss-Catalan algebras 
and the trace weights are calculated explicitly in [7]. In the special case of the 
Temperley-Lieb algebras this Alarkov trace is the one discovered by Jones in [19]. 
The Fuss-Catalan tower together with this Alarkov trace satisfies Popa's axioms in 
[34] and hence, one can conclude from [34] that for every pair (a, ß) of possible 
Jones indices, there is a subfactor whose standard invariant is given precisely by 
the corresponding Fuss-Catalan system (FCn(\/ä, Vß))n>0- One obtains in this 
way uncountably many new subfactors. A complete set of generators and relations 
for the Fuss-Catalan algebras is also determined in [7]. 
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It should be evident that the Fuss-Catalan algebras can be viewed as planar 
algebras generated by a single element in F2 = N' n Mi, namely by the Jones 
projection pi onto the intermediate subfactor. This projection can be characterized 
abstractly [3] and it satisfies a remarkable exchange relation ([9], [27]), which plays 
an important role in the work described in the next section. 

5. Singly generated planar algebras 
Any subset S of a planar algebra V generates a planar subalgebra as the 

smallest graded vector space containing S and closed under planar operations. From 
this point of view the simplest subfactors will be those whose planar algebra is 
generated by the fewest elements satisfying the simplest relations, while the index 
may be arbitrarily large. If S is empty we obtain the Temperley-Lieb algebra. 
The next most complicated planar algebras after Temperley-Lieb should be those 
generated by a single element R which is in the fc-graded subspace Pk for some 
fc > 0. We call such an element a k-box. In [22] the planar algebra generated by a 
single 1-box was completely analyzed so the next case is that of a planar algebra 
generated by a single 2-box. This means that the dimension of F2 is at least 3 so 
the first case to try to understand is when dim F3 = 3. This dimension condition 
by itself imposes many relations on V but probably not enough to make a complete 
enumeration a realistic goal. However, if one imposes dimF3 < 15, then apart from 
a degenerate case, this forces enough relations to reduce the number of variables 
governing the planar algebra structure to be finite in number ([22], see also [9]). It 
seems therefore reasonable to try to find all subfactor planar algebras V generated 
by a single element in F2 subject to the two restrictions dim F2 = 3 and dim F3 = d 
with d < 15. 

In [9] we solved this problem when d < 12. In fact, using planar algebra 
techniques we prove a much more general structure theorem for subfactors. 

Theo rem 5.1. Let N c M be an inclusion of Hi factors with 3 < [M : N] < 
oo. Suppose that dim N' n Mi = 3 and that N' n M2 is abelian modulo the basic 
construction ideal (N' n Mi)e2(N' n Mi). Then there is an intermediate subfactor 
P of N c M, P # N, M. In particular Jx* J = x for all i g J V ' n M i . 

The proof uses in a crucial way the abstract characterization of the intermedi­
ate subfactor projection in [3] and planar algebra techniques developed in [22] and 
[9]. It implies the following classification result. 

Theo rem 5.2. IfiP is a subfactor planar algebra generated by a 3-dimensional 
P2, subject to the condition dimF3 < 12, then it must be one of the following: 

a) If dim F3 = 9, then it is the planar algebra associated to the index 3 subfactor 
MZs c M. 

b) If dim F3 = 10, then it is the D^, planar algebra (a special FC planar 
algebra). 

c) If dim F3 = 11 or 12, then it is one of the FC planar algebras. 
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The dimension conditions imply that a subfactor whose standard invariant is 
a planar algebra of the form b) or c) satisfies the hypothesis of Theorem 5.1 and 
hence must have an intermediate subfactor. Since the Fuss-Catalan planar algebra 
is the minimal symmetry associated to an intermediate subfactor it then follows 
easily that the planar algebra has to be one of these. 

It is quite natural to expect that increasing the dimension of F3 should result 
in a larger number of examples of planar algebras since there are more a priori 
undetermined structure constants in the action of planar tangles on V. Thus the 
result in [10] that there is a single subfactor planar algebra satisfying the above 
restrictions with d = 13 is a complete surprise. The planar algebra which arises 
is that of a subfactor obtained as follows. Take an outer action of the dihedral 
group D5 on a type Hi factor R and let M be the crossed product R x D5 and 
N be the subfactor R x Z2. This particular subfactor has played a significant role 
in the development of subfactors and relations with knot theory and statistical 
mechanics. In [21] it was noted that there is a solvable statisitical mechanical 
model associated with it and that it corresponds to an evaluation of the Kauffman 
polynomial invariant of a link. We prove in [10] the following 

Theo rem 5.3. Let V = (Pk)k>o be a subfactor planar algebra generated by 
a non-trivial element in F2 (i.e. an element not contained in the Temperley-Lieb 
subalgebra of F2J subject to the conditions dimF2 = 3 and dimF3 = 13. Then V 
is the standard invariant of the crossed product subfactor R x Z2 c R x D5. Thus 
there is precisely one subfactor planar algebra V subject to the above conditions. 

Note that this subfactor can be viewed as a Birman-Alurakami-Wenzl subfactor 
(associated to the quantum group of Sp(4,M.) at a 5-th root of unity, see [36]). We 
note here that the standard invariants V = (Pk)k>o of all BA1W subfactors are 
generated by a single non-trivial operator in F2 and that they satisfy the condition 
dimF3 < 15. 

The proof of this theorem uses in a crucial way theorem 5.1 and the tight 
restrictions imposed by compatibility of the rotation of period 3 on F3 and the 
algebra structure. 

The next phase of this enumeration project will be to tackle the case d = 14. 
Here we know that the quantum Sp(4, R) specialization of the BA1W algebra will 
give examples with a free parameter. We do expect however, that the general ideas 
of [9] and [10] will enable us to enumerate all such subfactor planar algebras. 

References 
[1] Al. Asaeda & U. Haagerup, Exotic subfactors of finite depth with Jones indices 

(5 + >/Ï3)/2 and (5 + vTf)/2, Comm. Alath. Phys. 202 (1999), 1-63. 
[2] T. Banica, Representations of compact quantum groups and subfactors, J. 

Reine Angew. Math. 509 (1999), 167^198. 
[3] D. Bisch, A note on intermediate subfactors, Pacific Journal of Math. 163 

(1994), 201-216. 



784 D. Bisch 

[4] D. Bisch, Bimodules, higher relative commutants and the fusion algebra as­
sociated to a subfactor, The Fields Institute for Research in Math. Sciences 
Commun. Series, vol. 13, AAIS, Providence, Rhode Island, 1997, 13-63. 

[5] D. Bisch, An example of an irreducible subfactor of the hyperfinite Hi factor 
with rational, noninteger index, J. Reine Angew. Math. 455 (1994), 21-34. 

[6] D. Bisch & U. Haagerup, Composition of subfactors: new examples of infinite 
depth subfactors, Ann. scient. Ec Norm. Sup. 29 (1996), 329-383. 

[7] D. Bisch & V.F.R. Jones, Algebras associated to intermediate subfactors, 
Invent. Math. 128 (1997), 89-157. 

[8] D. Bisch & V.F.R. Jones, A note on free composition of subfactors, "Geometry 
and Physics", vol. 184, Alarcel Dekker, Lecture Notes in Pure and Applied 
Alathematics, 1997, 339-361. 

[9] D. Bisch & V.F.R. Jones, Singly generated planar algebras of small dimension, 
Duke Math. Journal 101 (2000), 41-75. 

[10] D. Bisch & V.F.R. Jones, Singly generated planar algebras of small dimension, 
Part II, Advances in Math, (to appear). 

[11] D. Bisch & S. Popa, Examples of subfactors with property T standard in­
variant, Geom. Funct. Anal. 9 (1999), 215-225. 

[12] D. Bisch & S. Popa, A continuous family of non-isomorphic irreducible hy­
perfinite subfactors with the same standard invariant, in preparation.. 

[13] A. Connes, Noneommutative geometry, Academic Press, 1994. 
[14] D. Evans & Y. Kawahigashi, Quantum symmetries on operator algebras, Ox­

ford University Press, 1998. 
[15] P. Di Francesco, New integrable lattice models from Fuss-Catalan algebras, 

Nuclear Phys. B 532 (1998), 609-634. 
[16] F. Goodman & P. de la Harpe & V.F.R. Jones, Coxeter graphs and towers 

of algebras, Springer Verlag, A1SRI publications, 1989. 
[17] U. Haagerup, Principal graphs of subfactors in the index range 4 < [M : N] < 

3 + \/2, Subfactors (Kyuzeso, 1993), World Sci. Publishing, River Edge, NJ, 
1994, 1-38. 

[18] Al. Izumi, Applications of fusion rules to classification of subfactors, Pubi. 
RIMS, Kyoto Univ. 27 (1991), 953-994. 

[19] V.F.R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25. 
[20] V.F.R. Jones, Hecke algebra representations of braid groups and link poly­

nomials, Ann. of Math. 126, 335-388. 
[21] V.F.R. Jones, On a certain value of the Kauffman polynomial, Comm. Math. 

Phys. 125 (1989), 459-167. 
[22] V.F.R. Jones, Planar algebras I, preprint. 
[23] V.F.R. Jones, The planar algebra of a bipartite graph, Knots in Hellas '98 

(Delphi), World Sci. Publishing, 2000, 94-117. 
[24] V.F.R. Jones, The annular structure of subfactors, Enseign. Math, (to ap­

pear). 



Subfactors and Planar Algebras 785 

[25] L. Kauffman, State models and the Jones polynomial, Topology 26 (1987), 
395-407. 

[26] Z. Landau, Fuss-Catalan algebras and chains of intermediate subfactors, Pa­
cific J. Math. 197 (2001), 325-36. 

[27] Z. Landau, Exchange relation planar algebras, preprint (2000). 
[28] J.P. May, Definitions: operads, algebras and modules, Contemporary Math­

ematics 202 (1997), 1-7. 
[29] Al. J. Alartins & B. Nienhuis, Applications of Temperley-Lieb algebras to 

Lorentz lattice gases, J. Phys. A 31 (1998), L723^L729. 
[30] A. Ocneanu, Quantized group string algebras and Galois theory for operator 

algebras, in Operator Algebras and Applications 2, London Math. Soc. Lect. 
Notes Series 136 (1988), 119-172. 

[31] Al. Pimsner & S. Popa, Entropy and index for subfactors, Ann. scient. Ec 
Norm. Sup. 19 (1986), 57-106. 

[32] S. Popa, Classification of subfactors: reduction to commuting squares, Invent. 
Math. 101 (1990), 19-43. 

[33] S. Popa, Classification of amenable subfactors of type II, Acta Math. 172 
(1994), 352-445. 

[34] S. Popa, An axiomatizaton of the lattice of higher relative commutants, In­
vent. Math. 120 (1995), 427-445. 

[35] A. Wassermann, Operator algebras and conformai field theory III, Invent. 
Math. 92 (1998), 467-538. 

[36] H. Wenzl, Quantum groups and subfactors of type B, C and D, Comm. 
Math. Phys 133, 383-432. 

[37] H. Wenzl, C* tensor categories from quantum groups, J. Amer. Math. Soc. 
11 (1998), 261-282. 

[38] F. Xu, Standard A-lattices from quantum groups, Invent. Math. 134 (1998), 
455-187. 



ICAl 2002 • Vol. II • 787^794 

Free Probability, Free Entropy and 
Applications to von Neumann Algebras 

Liming Ge* 

This talk is organized as follows: First we explain some basic concepts in non-
commutative probability theory in the frame of operator algebras. In Section 2, we 
discuss related topics in von Neumann algebras. Sections 3 and 4 contain some of 
the key ideas and results in free probability theory. Last section states some of the 
important applications of free probability theory. 

1. Non-commutative probability spaces 
In general, a non-commutative probability space is a pair (A,T), where A is 

a unital algebra (over the field of complex numbers C) and r a linear functional 
with T(I) = 1, where J is the identity of A. Elements of A are called random 
variables. Since positivity is a key concept in (classical) probability theory, this 
can be captured by assuming that A is a * algebra and r is positive (i.e., a state). 
Elements of the form A* A are called positive (random variables). 

A state r is a trace if T(AB) = T(BA). We often require that r be a faithful 
trace (r corresponds to the classical probability measure, or the integral given by 
the measure). In this talk, we always assume that A is a unital * algebra over C and 
r a faithful state on A. Subalgebras of A are always assumed unital * subalgebras. 

Examples of noneommutative probability spaces often come from operator 
algebras on a Hilbert space and the states used here are usually vector states. 

A C*-probability space is a pair (A,T), where A is a unital C*-algebra (norm 
closed subalgebra of B(H)) and r is a state on A. 

A W*-probability space is a pair (M,T) consisting of a von Neumann algebra 
M (strong-operator closed C*-subalgebra of B(lfij) and a normal (i.e., countably 
additive) state r on ;M. 

The following are some more basic concepts: 
Independence: In a noneommutative probability space (A,T), a family {Aj} of 
subalgebras Aj of A is independent if the subalgebras commute with each other and, 
for n £ N, T(AI • • • An) = T(A{) • • • r(An) for all Ak in Ajk and jk fi1 ji whenever 
fc#l. 

* Academy of Mathematics and System Science, CAS, Beijing 100080, China. Department of 
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This independence gives a "tensor-product" relation among subalgebras Aj : if 
A is generated by Aj, then A — ®jAj (in the case of C*- or W*-probability spaces, 
the tensor-product shall reflect the corresponding topological structures on A and 
Afi. _ 
Distributions and moments: Given (A, T), for A in A, we define a map PA '• 
C[x] —¥ C by PA(P(X)) = r(p(Aj). Then PA is the distribution of A. For Ai,..., An 

in A, the joint distribution pA1:...,An '• C ( # i , . . . , xn) —¥ C is given by 

PAu...,An (p(xi,- • -,xnj) = r(p(Ai,.. .,A„fi). 

Ifp is a monomial, r(p(Ai,... ,Anj) is called a (p-)moment. When random variables 
are non self-adjoint, one also considers (joint) * distributions of random variables, 
that can be defined in a similar way. In this case, there is a natural identification 
of C ( # i , . . . ,xn,x*,... ,x*n) with the semigroup algebra CS2n, where S2n is the free 
semigroup on 2n generators. Alonomials are given by words in S2n. 
Conditional Expectations: Suppose B is a subalgebra of A. A conditional expectation 
from A onto B is a B-bimodule map (a projection of norm one in the case of C*-
algebras) of A onto B so that the restriction on B is the identity map. 

Alany other concepts in probability theory and measure theory can be general­
ized to operator algebras, especially von Neumann algebras which can be regarded 
as non-commutative measure spaces. For basic operator algebra theory, we refer to 
[KR] and [T]. 

2. GNS representation and von Neumann algebras 
Given a C*-probability space (A,T), one defines an inner product (A,B) = 

T(B*A) on A. Yet L2(A,T) be the Hilbert space obtained by the completion of 
A under the L2-norm given by this inner product. Then A acts on L2(A,T) by-
left multiplication. This representation of A on the Hilbert space L2(A,T) is called 
the GNS representation. In a similar way, one can define LP(A,T), where ||A||P = 
r( |A| p) 1 / p = T((A*A)p/2)1/p. The von Neumann algebra generated by A (or the 
strong-operator closure of Â) is sometimes denoted by L°°(A, T) ( C LP(A,T), p > 
1). All von Neumann algebras admit such a form. Any von Neumann algebra is a 
(possibly, continuous) direct sum of "simple" algebras, or factors (algebras with a 
trivial center). Von Neumann algebras that admit a faithful (finite) trace are said 
to be finite. The classification of (infinite-dimensional) finite factors has become 
the central problem in von Neumann algebras. 

Alurray and von Neumann [A1N] also separate factors into three types: 
Type I: Factors contain a minimal projection. They are isomorphic to full 

matrix algebras Mn(C) or B(7fi). 
Type II: Factors contain a "finite" projection but without minimal projections: 

it is said to be of type Hi when the identity J is a finite projection; of type J/QO 
when J is infinite. Every type IIQO is the tensor product of B(fii) with a factor of 
type Hi. 
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Type III: Every (non zero) projection is infinite. 
Examples of von N e u m a n n algebras: 1) Let A = CG for some discrete group 
G, % be l2(G) and r be the vector state given by the vector that takes value 1 at 
g and 0 elsewhere. Then r is a trace, l2(G) = L2(A,T) and the weak (or strong) 
operator closure of A is called the group von Neumann algebra, denoted by CG-
We have that CQ is a factor if and only if each conjugacy class of G other than the 
identity is infinite (i.e.a). For example, the free group Fn (n > 2, on n generators) 
is such an i.c.c. group. 

2) Suppose (ii,p) is a measure space with a a-finite measure p, G is a group 
and a is a measurability preserving action of G on Q. Formally, we have an alge­
bra L°°(Q,p)G (= Â) similar to the group algebra definition: (ip(x)g)(ip(x)fi) = 
(fi(x)ip(g^1 (xj)gh, for >p,ip £ L°°(Q,p) and g,h £ G. Assume that G acts freely 
(i.e., for any g in G with j / e , the set {x £ 0 : g(x) = x} has measure zero). 
Define an action of A on the Hilbert space © „ G G L2(Q,p)g by left multiplication 
( which is induced by the multiplication in A), where L2(Q,p)g is an isomorphic 
copy of L2(Q, p). Then the von Neumann algebra generated by A is called the cross 
product von Neumann algebra, denoted by L°°(Q,p) xQ G. This cross product is 
a factor if and only if a is ergodic. If a is ergodic and not a measure preserving 
action, then L°° (ii, p) x a G is a factor of type III. Type II factors are obtained from 
measure preserving actions (with Q a non atomic measure space) and the finiteness 
of p gives rise to type Hi factors. 

The above 1) and 2) are the two basic constructions of von Neumann alge­
bras (given by Alurray and von Neumann [MN]). A. Connes [C] shows that there 
are finite factors that cannot be constructed by 1). It was a longstanding open 
problem whether every (finite) von Neumann algebra can be obtained by using the 
construction in 2). Using free probability theory, especially the notion of free en­
tropy, Voiculescu [V2] gives a negative answer to this question. We shall discuss 
some details later in the talk. 

In recent years, the focus of studies of von Neumann algebras is centered on 
factors of type Hi • Many of the unsolved problems in operator algebras are also 
reduced to this class. We end this section with two of the (still) open problems from 
the list of 20 questions asked by Kadison in 1967. 
1. The weak-operator closure of the left regular representation of the free (non­
abelian) group on two or more generators is a factor of type Hi • Are these factors 
isomorphic for different numbers of generators? 
2. Is each factor generated by two self-adjoint operators? —each von Neumann 
algebra? —the factor arising from the free group on three generators? —is each 
von Neumann algebra finitely generated? 

Three of those 20 problems were answered in the last ten years by using free 
probability and free entropy. We explain some of the theory involved in the following 
two sections. 

3. Free independence 
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Suppose (A,T) is a C*-probability space. We assume that r is a trace. A 
family A,,, i £ I, of unital * subalgebras of A are called free with respect to r if 
T(AIA2 • • • An) = 0 whenever Aj £ Ah, ti fi1 • • • fi1 tn (*i and t3 may be the same) 
and T(AJ) = 0 for 1 < j < n and every n in N. A family of subsets (or elements) 
of A are said to be free if the unital * subalgebras they generate are free. 

Note that freeness is a highly noneommutative notion, the non-commutativity 
(or algebraic freeness) of free random variables is encoded in the definition. Recall 
some basic concepts in free probability theory. 
Semicircular elements: The Gaussian laws in classical theory is replaced by 
the semicircular laws. The semicircular law centered at a and of radius r is the 
distribution pa>r : C[x] —¥ C such that 

o i-a+r 

ßa,r(v>(xj) = —2 / <^W\/r2 - (t-a)2dt, 
^r Ja—r 

for each (p(x) in C[x]. A self-adjoint random variable A in (A,T) is said to be 
(standard) semicircular if its distribution is po:i- An element X = A + iB is 
circular if A and B are free semicircular. The following theorem is proved by D. 
Voiculescu (see [VDN]). 

Free Central Limit Theorem: Let {Aj}j±1 be a free family of identically dis­

tributed random variables in (A,T) withr(Aj) = 0 andr(A2) = ^- for some positive 

number r. Then the distribution of j 4 l + ' /A
j 4" converges to the semicircular law po}T-

Classical independence corresponds to tensor products; while the above free 
independence introduced by Voiculescu is given by certain free products. Recall 
some examples of such freeness. 
Free products: If G = Gi *G2, then Cax and Ca2 are free in CG, here the trace 
is the one given by the unit vector associated with any group element. 

Let („4-1,Ti) and (v42,r2) be two W*-probability spaces. Suppose Ao is the 
(amalgamated algebraic) free product of Ai and A2 (over the scalars). Then there is 
a unique r on Ao such that Ai and A2 are free with respect to r and the restrictions 
of r on Ai and A2 equal to n and r2, respectively. Let A be the weak operator 
closure of Ao acting on L2(AQ,T). Then A is called the (reduced von Neumann 
algebra) free product of „4i and „42 (with respect to r ) , denoted by „4i * *42 (and 
r = n * T2). For example, Cp2 =* L°°[0,1] * L°°[0,1]. 
Full Fock space construction: Let Ho be a real Hilbert space and % be Ho ® C. 
Its full Fock space is 

T(W) = C l ® 0 W e /0n 

For h £ Ho, let the left creation operator 1(h) £ B(T(Hj) be given by l(h)Ç = /i<8>£. 
Then l(h)*l = 0 and 1(h)* Ci « £ 2 ® • • •«£« = (£i,/i)£2 ® " • ® £n, so l(hi)*l(h2) = 
(h2,hi)I. Yet C*(l(%o)) (or W*(l(Ho))) be the C*- (or W*-) algebra generated by 
{l(h)\h £ Ho}- Yet UJ-H be the vector state given by the vector 1 £ T(H). Here 1 is 
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called the vacuum vector and UJ-H the vacuum state. If Hi and H2 are orthogonal 
subspaces of Ho, then C*(l(Hij) and C*(l(H2j) are free (with respect to OJ-H)- If h 
is a unit vector in Ho, then (1(h) + 1(h)*)/2 is semicircular with distribution p0:i-

Gaussian Random Matrices: Let X(s,n) = (fij(s,n)) in Mn(L°°[0,1]) be real 
random matrices, where n £ N and « G S for some index set S. Assume that 
fij(s,n) = fji(s,n) and {/y(«,n) : i, j,s} (given each n) is a family of indepen­
dent Gaussian (0,1/n) random variables. Let Dn be a constant diagonal matrix in 
M n(R) having a limit distribution (as n —¥ oo). Then {X(s,n)} U {Dn} is asymp­
totically free as n —¥ oo and {X(s,n) : s £ S} converges in distribution to a free 
semicircular family. As a corollary, Voiculescu shows that Cp5 ® Af2(C) = Cp2. 
Moreover Cpr ® Mn(C) = Cp r_1, for any real number r, and Cpr * Cp, — Cpr+B • 

Now we know that either Cpr, r > 1, are all isomorphic to each other or they are 
all non isomorphic factors (see [D] and [R]). 

Further studies of free probability theory have been pursued by many people 
in several directions, such as infinitely divisible laws, free brownian motion, etc. (we 
refer to [B], [VDN] and [HP] for details). 

4. Free entropy 
Free entropy is a non commutative analogue of classical Shannon entropy. First 

we recall the definition of entropy and its basic properties. 
Classical Entropy: Yet (0 ,S ,p ) be a probability space with probability measure p 
and fi, . . . , / „ : Q —t R be random variables. Suppose (p is the density function on 
R" corresponding to the joint distribution of fi,..., / „ . Then the entropy: 

H(fi,---,fn) = - (p(h,... ,tn)log(p(ti,... ,tn)dti •••dtn. 

Here are two important properties of entropy: H (fi,..., /„) = H(fi)-\ V H(fn) 
if and only if fi,...,fn are independent; when assuming that E(f2) = 1, H is 
maximal if and only if fi,..., fn are Gaussian independent (0,1) random variables. 
Free entropy: Yet Xi,...,Xn be self-adjoint random variables in (A,T). For any 
e > 0, when fc large, there may be self-adjoint matrices Ai,..., An in Mk(C) such 
that "the algebra generated by Xj 's looks like the algebra generated by Aj 's within 
e. " Alore precisely, for any e > 0, large m £ N and any monomial p in C ( # i , . . . , xn) 
with degree less than or equal to ro, choose fc large enough so that 

(*) | r(_p(Xi, . . . ,X„))-r f c(_p(Ai, . . . ,A„)) | < £ . 

Let YR(XI ,..., Xn; TO, fc, e) be the set of all self-adjoint matrices (Ai,..., An) 
in Mfc(C), with ||Aj|| < R, such that (*) holds. The limit of the "normalized" 
measurement of YR(XI,. .. ,Xn;m,k,e) is called the free entropy of Xi,...,Xn. 
Voiculescu [VI] shows that this limit is independent of R when it is larger than 
max{||Xj|| : j = l,...,n}. Here we will fix such a constant R and use F ( X i , . . . ,Xn; 
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m,k,e) to denote YR(XI,. .. ,Xn;m,k,e). Yet vol be the euclidean volume in real 
euclidean space (Mfc(C)s-a-)n (here "s.a." denote the self-adjoint part and the 
euclidean norm ||A||2 = Tr(A2)). Now we define, successively, 

x ( X i , . . .,Xn;m,k,e) = log vol (Y(Xi,... ,Xn; TO, k,ej), 

X(Xi ,...,Xn; TO, e) = lim sup(fc_ 2x(Xi, . . . , Xn; TO, k,e)-V - log fc), 

X(Xi,...,X„) =inf{x(Xi,...,Xn;m,e) : m £ N ,e > 0}. 

We call x(Xi,- • •, Xn) the free entropy of (Xi,..., Xn). 
The following are some basic properties of free entropy (proved in [VI]): 
( i )x(AA, . . . ,X„)<f log(27reC 2 n- 1 ) ; 
(ii) x(-^i) = JJ l°g Is — t\dpi (s)dpi (£) + § + 1 l°g 2TT, where pi is the (measure 

on the spectrum of Xi corresponding to the) distribution of Xi ; 
(iii) x(Xi,- • • ,Xn) = x(-^i) + • • • + x(Xn) when Xi,... ,Xn are free random 

variables. 
Voiculescu also introduces a notion of free entropy dimension 5(Xi,... ,Xn) 

which is given by 

. . x(Xi + eSi,... ,Xn + eSn : Si,... ,Sn) o(Xi,... ,Xn) = n + hmsup -. 
e^O | log £ | 

where {Si,... ,Sn} is a standard semicircular family and {Xi,..., Xn} and {Si,..., 
Sn} are free. 

5. Applications 
In this section, we review some of the applications of free entropy in von 

Neumann algebras. 
Theo rem 1. ([VI]) Let Si,..., Sn be a standard (0,1) free semicircular family. 
Then 

x(Si, ...,Sn) = n(--V log — ^ - ) ; 

ö(Si,...,Sn) = n. 

Note that Si,... ,Sn generate Cpn as a von Neumann algebra. 
Theo rem 2. ([V2]) If a finite von Neumann algebra M (with a trace) has a Cartan 
subalgebra, then, for any self-adjoint generators Xi,..., Xn of M, 5(Xi,..., Xn) < 
1. 

This implies that free group factors do not contain any Cartan subalgebras 
which answers a longstanding question in the subject. 

The following result generalizes Voiculescu's result and answers Problem 11 
on Kadison's 1967 problem list (unpublished). 
Theo rem 3. ([Gl]) If a finite von Neumann algebra M (with a trace) has a simple 
maximal abelian subalgebra, then, for any self-adjoint generators Xi,..., Xn of M, 
ö(Xi,...,Xn)<2. 
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Furthermore, we prove the following result which shows the existence of a 

separable prime factor (the one tha t is not the tensor product of two factors of the 

same type). 

T h e o r e m 4. ([G2]) If M = Mi®M2 for some infinite dimensional finite von 

Neumann algebras Mi and M2, then, for any self-adjoint generators Xi,...,Xn 

ofM,ö(Xi,...,Xn)<l. 

It is an outstanding open question whether the free entropy dimension is an 

invariant for von Neumann algebras. Following Voiculescu's result in [V3], we prove 

the following: 

T h e o r e m 5. ([GS]) For any self-adjoint generators Xi,..., Xn ofCsLm(z), TO > 3, 

ö(Xi,...,Xn)<l. 

The above theorem is not t rue for SL2(Z). 
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Abstract 

The report below describes the applications of Banach KK-theory to a con­
jecture of P. Baum and A. Connes about the K-theory of group C*-algebras, 
and a new proof of the classification by Harish-Chandra, the construction by 
Parthasarathy and the exhaustion by Atiyah and Schmid of the discrete series 
representations of connected semi-simple Lie groups. 
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This report is intended to be very elementary. In the first part we outline the 
main results in Banach KK-theory and the applications to the Baum-Connes con­
jecture. In the second part we show how the Baum-Connes conjecture for connected 
semi-simple Lie groups can be applied to recover the classification of the discrete 
series representations. 

1. Banach KK-theory and the Baum-Connes con­
jecture 

There are many surveys on Kasparov's KK-theory and the Baum-Connes 
conjecture (see [4, 48, 49, 21, 27, 13, 54]) and on Banach KK-theory ([49, 38]). 

1.1. Generalized Fredholm modules 

We wish to define A-linear Fredholm operators (where A is a Banach algebra), 
with an index in K0(A). If A = C, this index should be the usual index of C-linear 
Fredholm operators in K0(C) = Z . 
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We define a Banach algebra as a (non necessarily unital) C-algebra A that 
is complete for a norm ||.|| satisfying ||aò|| < ||a||||b|| for any a,b £ A. If A and 
B are Banach algebras a morphism 6 : A —t B is an algebra morphism such that 
P(a)[| < IMI f°r a ny a € A. 

K0 and Ki are two covariant functors from the category of Banach algebras 
to the category of abelian groups. If X is a locally compact space and Co(X) the 
algebra of continuous functions vanishing at infinity, Kn(Cn(X)) and Ki(Cn(X)) 
are the Atiyah-Hirzebruch K-theory groups. For technical reasons we shall restrict 
ourselves to unital Banach algebras in this subsection. 

Let A be a unital Banach algebra. 
A right A-module E is finitely generated projective if and only if it is a direct 

summand in An for some integer n. The set of isomorphism classes of right finitely-
generated projective A-modules is a semigroup because the direct sum of two right 
finitely generated projective A-modules is a right finitely generated projective A-
module. Then Kn(A) is the universal group associated to this semigroup (i.e. the 
group of formal differences of elements of the semigroup). If 9 : A —t B is a 
morphism of unital Banach algebras, and E is a right finitely generated projective 
A-module then E (E)A B is a right finitely generated projective B-module and this 
defines 0» : K0(A) - • K0(B). 

There is another definition of Kn(A) for which the functoriality is even more 
obvious : Kn(A) is the quotient of the free abelian group generated by all idem-

(p 0^ 

VO fi 
any idempotents p £ Mk(A) and q £ MfiA) and [p] = [q] if p, q are idempotents of 
Mk(A) and are connected by a path of idempotents in Mk(A) and [0] = 0 where 0 
is the idempotent 0 in Mk(A). The link with the former definition is that any idem-
potent p £ Mk(A) acts on the left on Ak as a projector P and ImP is a right finitely-
generated projective A-module (it is a direct summand in the right A-module Ak). 

The following construction was performed for C*-algebras by Alischenko and 
Kasparov, in connection with the Novikov conjecture ([43, 28]). We adapt it to 
Banach algebras. 

A right Banach A-module is a Banach space (with a given norm \\.\\E) equipped 
with a right action of A such that 1 G A acts by identity and ||a;a||^ < Hx^HaH^ 
for any x £ E and a £ A. Let E and F be right Banach A-modules. A morphism 
u : E —t F of right Banach A-modules is a continuous C-linear map such that 
u(xa) = u(x)a for any x £ E and a £ A. The space CA(E, F) of such morphisms is a 
Banach space with norm ||«|| = supx€£;, | |X||E=I IIWMIIF- A morphism u £ CA(E, F) 
is said to be "A-rank one" if u = w o v with v £ CA(E, A) and w £ CA(A, F). The 
space KA(E,F) of A-compact morphisms is the closed vector span of A-rank one 
morphisms in CA(E,F). If E = F, CA(E) = CA(E,E) is a Banach algebra and 
KA(E) = KA(E,E) is a closed ideal in it. 

Definition 1.1.1 A Fredholm module over A is the data of a Z/2 graded right 
Banach A-module E and an odd morphismT £ CA(E) such thatT2 —Id# £ KA(E). 

In other words E = E0 ® Ei, T = ( J and u £ CA(EQ,EI) and v £ 

potents p in Mk(A) for some integer k, by the relations [p] + [q] for 
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CA(EI,E0) satisfy vu — Id#0 £ ICA(EQ) and uv — I d ^ £ KA(EI). 

If (E, T) is a Fredholm module over A and 9 : A —t B a unital morphism then 
(E (E)A B,T ® 1) is a Fredholm module over B (here E (E)A B is the completion of 
E ®^ s B for the maximal Banach norm such that ||x ® b\\ < ||X||E:||&||B for x £ E 
and 6 £ B). 

Yet A[0,1] be the Banach algebra of continuous functions from [0,1] to A with 
the norm | |/ | | = suptGr01n | | /(i) |U and 9n,9i : A[0,1] —t A the evaluations at 0 and 
1. Two Fredholm modules on A are said to be homotopic if they are the images by 
9o and 9i of a Fredholm module over A[0,1]. 

Theo rem 1.1.2 There is a functorial bijection between Kn(A) and the set of ho­
motopy classes of Fredholm modules over A, for any unital Banach algebra A. 

Let (En,Ei,u,v) be a Fredholm module over A. Its index, i.e. the correspond­
ing element in K0(A), is constructed as follows. It is possible to find n £ N and 
w £ K,A(AU, EI) such that (u, w) £ CA(EQ ® An, E{) is surjective. Its kernel is then 
finitely generated projective and the index is the formal difference of Ker((u,wj) 
and An. 

An ungraded Fredholm module over A is the data of a (ungraded) right Banach 
module E over A, and T £ CA(E) such that T2 — Id# £ KA(E). There is afunctorial 
bijection between KfiA) and the set of homotopy classes of ungraded Fredholm 
modules. 

For a non-unital algebra A, K0(A) = Ker(K0(Ä) -+ K0(C) = Z) and KfiA) = 
Ki(A) where A = A © CI. In particular every idempotent in Mk(A) gives a class 
in Kn(A) but in general not all classes in Kn(A) are obtained in this way. The 
definition of a Fredholm module should be slightly modified for non-unital Banach 
algebras, but the theorem 1.1.2 remains true. 

1.2. Statement of the Baum-Connes conjecture 

Let G be a second countable, locally compact group. We fix a left-invariant 
Haar measure dg on G. Denote by Cc (G) the convolution algebra of complex-valued 
continuous compactly supported functions on G. The convolution of / , / ' £ CC(G) 
is given by / * f'(g) = JG f(h)f'(hr1g)dh for any g £ G. 

When G is discrete and dg is the counting measure, Cc (G) is also denoted by 
CC? and if eg denotes the delta function at g £ G (equal to 1 at g and 0 elsewhere), 
(eg)geG is a basis of CG and the convolution product is given by egegi = eggi. 

The completion of CC(G) for the norm | | / | | L I = JG \f(g)\dg is a Banach algebra 
and is denoted by L1(G). 

For any / £ CC(G) let A(/) be the operator / ' H> / * / ' on L2(G). The 
completion of CC(G) by the operator norm ||/||red = \\Hf)\\c(L2(G)) '1S ealled the 
reduced G*-algebra of G and denoted by C*ed(G). If G is discrete (eg')gieG is an 
orthonormal basis of L2(G) and X(eg) : egi >-¥ eggi. 

For any / £ CC(G), ||/||j,i > ||/||red and L1(G) is a dense subalgebra of 
C*ed(G). We denote by i : L1(G) —¥ C*ed(G) the inclusion. 
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Assume now that M is a smooth compact manifold, and M a Galois covering 
of M with group G (if M is simply connected, G = 7Ti(M)). Let En and Ei be two 
smooth hermitian finite-dimensional vector bundles over M and u an order 0 elliptic 
pseudo-differential operator from L2(M, En) to L2(M, E{). Since u is elliptic there 
is an order 0 pseudo-differential operator v : L2(M,E{) —t L2(M,E0) such that 
Wi2(M,E(]) — vu a n c l Wj,2(M]El) — uv have order < —1 and therefore are compact. 
Let £ be the quotient of M x C*ed(G) by the diagonal action of G (G acting on 
C*ed(G) by left translations) : £ is a flat bundle of right C*ed(G)-modules over AT, 
whose fibers are isomorphic to C*ed(G). Then L2(M,E0 ® £) and L2(M,Ei ® £) 
are right Banach (in fact Hilbert) modules over C*ed(G) and it is possible to lift u 
and v to ü and w so that (L2(M, EQ®£),L2(M, Ei ®£),ü,v) is a Fredholm module 
over C*ed(G), whose index lies in K0(C*ed(Gj) and the index does not depend on 
the choice of the liftings. 

The operator u represents a "if-homology class" in K0(M), and using the 
classifying map M —t BG, it defines an element of K0:C(BG), the K-homology with 
compact support of the classifying space BG. For any discrete group G we can 
define a morphism of abelian groups K*^C(BG) —¥ K„,(C*ed(Gj) (* = 0,1). This 
morphism is the Baum-Connes assembly map when G is discrete and torsion free. 
When G is not discrete or has torsion, the index construction can be performed 
starting from a proper action of G (instead of the free and proper action of G 
on M in the last paragraph), and therefore we have to introduce the space EG 
that classifies the proper actions of G. Using Kasparov equivariant KK-theory, the 
G-equivariant K-homology Kcfi(E_G) with G-compact support (* = 0,1) may be 
defined, and there is an assembly map 

Mred : K^(EG) -+ KfiC;ed(Gj). 

In the same way we can define p,p\ : Kcfi(E_G) —t K^(L1(Gj) and pred = i* ° pp1-

Baum-Connes conjecture [3, 4] : If G is a second countable, locally compact 
group then the assembly map pred : Kcfi(E_G) —t K*(C*ed(Gj) is an isomorphism. 

Bost conjectured : If G is a second countable, locally compact group (and 
has reasonable geometric properties) then the assembly map p,p\ : Kcfi(E_G) —t 
K^(L1(Gj) is an isomorphism. 

In many cases Kcfi(E_G) can be computed. For instance if G is a discrete 
torsion free subgroup of a reductive Lie group 17 and if is a maximal compact 
subgroup of 17, then a possible EG is H/K and Kcfi(E_G) is the K-homology with 
compact support of G\H/K. This group may be computed thanks to Mayer Vietoris 
sequences. See part 2 for the case where G is a Lie group. 

1.3. ÜTÜT-theory 

For any G*-algebras A and B, Kasparov [28, 31] defined an abelian group 
KK(A, B), covariant in B and contravariant in A. There is a product KK(A, B) ® 
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KK(B,C) - • KK(A,C). Moreover KK(C,A) = KQ(A) and therefore the product 
gives a morphism KK(A, B) -+ Hom(i\o(A), K0(Bj). The definition of KK(A, B) 
is like definition 1.3.1 below, but with Hilbert modules instead of Banach modules. 

For any Banach algebras A and B, we define [37, 49] an abelian group 
KKbAn(A,B), covariant in B and contravariant in A. There is no product, but 
a morphism KKbAn(A,B) —t Hom(Kn(A),Kn(B)). Assume that B is unital (oth­
erwise the definition has to be slightly modified). 

Definition 1.3.1 EbAn(A,B) is the set of isomorphism classes of data (E,n,T), 
where E is a 7L/27L-graded right Banach module, n : A —¥ Cp(E) is a morphism 
of Banach algebras and takes values in even operators, and T £ Cp(E) is odd and 
satisfies a(T2 - ldE) £ KB(E) and aT -Ta£ KB(E) for any a £ A. 

Then KKbAn(A,B) is the set of homotopy classes in EbAn(A,B), where the 
homotopy relation is defined using EbAn(A, B[0,1]). 
Remark : EbAn(C, B) is the set of isomorphism classes of Fredholm modules over 
B and KKbAn(C,B) = K0(B). 

If p is an idempotent in A, and (E,n,T) £ EbAn(A,B), the image of [p] £ 
Ko(A) by the image of [(E, TT, T)] £ KKbAn(A, B) in Hom(K0(A), K0(B)) is defined 
to be the index of the Fredholm module over B equal to (lmn(p), irfifiTirfi))). When 
p is an idempotent in Mk(A), we use the image of p by Mk(A) —¥ Cp(Ek). This is 
enough to define the morphism KKbAn(A,B) —t Hom(Kn(A),Kn(B)), when A is 
unital. 

The same definition with ungraded modules gives KKbAn(A, B), and, with the 
notation KK = KKn, we have a morphism KKbAn(A, B) —t Hom(Kj (A), Ki+j (Bj), 
where all the indices are modulo 2. 

1.4. Status of injectivity and the element 7 
The injectivity of the Baum-Connes map pred (and therefore of ppi) is known 

for the following very large classes of groups : 

a) groups acting continuously properly isometrically on a complete simply con­
nected riemannian manifold with controlled non-positive sectional curvature, and 
in particular closed subgroups of reductive Lie groups ([29, 31]), 

b) groups acting continuously properly isometrically on an affine building and in 
particular closed subgroups of reductive p-adic groups ([32]), 

c) groups acting continuously properly isometrically on a discrete metric space with 
good properies at infinity (weakly geodesic, uniformly locally finite, and "bolic" 
[33, 34]), and in particular hyperbolic groups (i.e. word-hyperbolic in the sense of 
Gromov), 

d) groups acting continuously amenably on a compact space ([22]). 

In the cases a),b),c) above, the proof of injectivity provides an explicit idem-
potent endomorphism on K*(C*ed(Gj) whose image is the image of pred (and the 
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same for ppi). In case d), J.-L. Tu has also constructed such an endomorphism, 
but in a less explicit way. 

To state this we need to understand a baby case of Kasparov's equivariant 
KK-groups. Let G be a second countable, locally compact group. We denote by 
EG (C, C) the set of isomorphism classes of triples (H,n,T) where 17 is a Z /2-graded 
Hilbert space, n a unitary representation of G on 17 (such that for any x £ H, 
g H> gx is continuous from G to 17) and T an odd operator on 17 such T2 — Id H 
is compact and •K(g)T/ïï(g^1) — T is compact and depends norm continuously on 
g £ G. Then KKQ (C, C) is the quotient of EG(C,C) by homotopy. Kasparov-
proved that KKG(C, C) has a ring structure (using direct sum for the addition and 
tensor products together with a quite difficult construction for the multiplication). 

If 7T is a unitary representation of G on a Hilbert space Hn and Hi = 0 then 
(17, n, 0) £ EG(C, C) if and only if H0 has finite dimension. If moreover Hn = C and 
7T is the trivial representation of G, the class of (H,n,Ö) is the unit of KKG(C,C) 

and is denoted by 1. If G is compact the classes of (H,n,Ö) with Hi = 0 (and 
dimifo < +oo) generate KKG(C,C) and KKG(C,C) is equal to the representation 
ring of G. 

The important fact is that there is a "descent morphism" 

j r e d : KKG(C,C) -+ End(KfiC;ed(Gjj). 

In fact it is a ring homomorphism and j r ed(l) = 1&K,(C* (G))- It is defined as the 
composite of two maps KKG (C, C) -¥ KK(C*ed(G),C*ed(Gj) -t End(Kr.(C*ed(G)j). 
The construction of j red is due to Kasparov. The construction of jpi to be explained 
below is an adaptation of it. 

The following extremely important theorem also contains earlier works of 
Alishchenko and Solovjev. 

Theorem 1.4.1 (Kasparov, Kasparov-Skandalis [31, 32, 33, 34]) If G belongs to 
one of the classes a),b),c) above, the geometric conditions in a),b) or c) allow to 
construct an idempotent element 7 £ KKG(C,C) such that pred is injective and its 
image is equal to the image of the idempotent jred(7) € End(K„,(C*ed(Gjj). 

1.5. Homotopies between 7 and 1 

We assume that G belongs to one of the classes a),b),c). Then the injectivity 
of pied is known and the surjectivity is equivalent to the equality jred(7) = Id G 
End(KfiC;ed(G)j). 

Theorem 1.5.1 We have 7 = 1 in KKG(C,C) if 

1. G is a free group (Cuntz, [14]) or a closed subgroup of SO(n, 1) (Kasparov, 
[30]) or of SU(n, 1) (Julg-Kasparov, [25]) or of SL2(V) with F a local non-
archimedian field (Julg- Valette, [24]), 

2. G acts isometrically and properly on a Hilbert space (Higson-Kasparov [20, 
27]). 
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In fact the second case contains the first one. 
If G has property (T) and is not compact, 7 7̂  1 in KKG(C, C) : it is impossible 

to deform 1 to 7 in EG (C, C) because the trivial representation is isolated among 
unitary representations of G if G has property (T) and 7 can be represented by 
(17, n, T) such that 17 has no invariant vector (and even 17 is tempered). All simple 
real or p-adic groups of rank > 2, and Sp(n, 1) and F^_20^, and all their lattices, 
have property (T) (see [19]). 

It is then natural to broaden the class of representations in order to break 
the isolation of the trivial one. In [26] Julg proposed to use uniformly bounded 
representations on Hilbert spaces (to solve the case of Sp(n, 1)). 

For any non compact group G the trivial representation is not isolated among 
isometric representations in Banach spaces (think of the left regular representation 
on LP(G), p going to infinity). 

Definition 1.5.2 Let EG
An(C,C) be the set of isomorphism classes of triples 

(E,n,T) with E a Z/2-graded Banach space endowed with an isometric representa­
tion of G (such that g H> gx is continuous from G to E for any x £ E), T £ Cc(E) 
an odd operator such that T2 — Id E belongs to Kc(E) and ir(g)TiT(g^1) — T belongs 
to K-c(E) and depends norm continuously on g £ G. 

Then KKG
An(C,C) is defined as the quotient of EG

An(C,C) by homotopy. 
Since any unitary representation of G on a Hilbert space 17 is an isometric 

representation on the Banach space 17, there is a natural morphism of abelian 
groups KKG(C,C) - • KKbAn(C,C). 

To state our main theorem, we need to look at slightly smaller classes than a) 
and c) above. We call these new classes a') and c'). They are morally the same, 
and in particular they respectively contain all closed subgroups of reductive Lie 
groups, and all hyperbolic groups (for general hyperbolic groups see [42], and [37] 
for a slightly different approach). 

Theorem 1.5.3 [37, 49] For any group G in the classes a'), b), or c'), we have 
7 = 1 in KKbAn(CC). 

In fact the statement is slightly incorrect, we should allow representations 
with a slow growth, but this adds no real difficulty. The proof of this theorem is 
quite technical. Let me just indicate some ingredients involved. If G is in class a') 
then G acts continuously isometrically properly on a complete simply connected 
riemmannian manifold X with controlled non-positive sectional curvature, and X 
is contractible (through geodesies) and the de Rham cohomology of X (without 
support) is C in degree 0 and 0 in other degrees. It is possible to put norms on the 
spaces of differential forms (on which G acts) and to build a parametrix for the de 
Rham operator (in the spirit of the Poincaré lemma) in order to obtain a resolution 
of the trivial representation, and in our language an element of EbAn (C, C) equal to 
1 in KKbAn(C, C). The norms we use are essentially Sobolev L°° norms. Then it 
is possible to conjugate the operators by an exponential of the distance to a fixed 
point in X and then to deform these norms to Hilbert norms (through Lp norms, 
p £ [2, +00]) and to reach 7. 
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If G belongs to class b) the de Rham complex is replaced by the simplicial 
homology complex (with L1 norms) on the building. If G belongs to class c') a Rips 
complex plays the same role as the building in b). 

It is not possible to apply directly this theorem to the Baum-Connes conjecture 
because there is no obvious descent map KKbAn(C,C) —¥ End(K„,(C*ed(Gjj), and 
in the next subsection we shall see the difficulties encountered and the way one 
bypasses them in a few cases. 

On the other hand, we may apply this theorem to Bost conjecture, because 
there is descent map jLi : KKbAn(C,C) - • KKbAn(L1(G),L1(G)). 

We explain it when G is discrete. Let (E,TT,T) £ EG
An(C,C). We de­

note by L1(G,E) the completion of E ® CG for the norm || ^2geG
xÌ9) ® esll = 

12geG\\x(s)\\E- Then L1(G,E) is a right Banach L1 (G)-module by the formula 
(x ® eg)egi = x ® eggi and there is a Banach algebra morphism n : L1(G) —¥ 
Cpi(G)(L1(G,Ej) by the formulan(egi)(x®eg) = ir(g')(x)®egig. Then (L1(G,£'),7r, 
T ® 1) € EbAn(L1(G),L1(Gj) gives the desired class in KKbAn(L1(G),L1(G)). 

This and section 1.3 imply the Bost conjecture in many cases. 

Theo rem 1.5.4 For any group G in the classes a'), b) or c'), pLi : Kcfi(E_G) —t 
K^(L1(Gj) is an isomorphism. 

1.6. Unconditional completions 
Let G be a second countable, locally compact group. Let A(G) be a Banach 

algebra containing Cc (G) as a dense subalgebra. We write -4(G) instead of A for 
notational convenience. We ask for a necessary and sufficient condition such that 
there is a "natural" descent map j A : KKbAn(C,C) - • KKbAn(A(G),A(Gj). 

In order to simplify the argument below, we will assume G to be discrete. 
Let E be a Banach space with an isometric representation of G. Then E ® CG 

has a right CG-module structure given by (x ® eg)egi = x ® eggi and there is 
a morphism n : CG —¥ Endos (E ® CG) given by the formula n(eg')(x ® eg) = 
ir(g')(x) ® eg'g. We look for a completion A(G,E) of E ® CG by a Banach norm 
such that A(G, E) is a right Banach „4(G)-module and n extends to a morphism of 
Banach algebras n : A(G) —¥ C^G)(A(G,Ej). 

In order to have enough „4(G)-rank one operators, it is quite natural to assume 
that the norm on A(G, E) satisfies : for any x £ E and £ £ Cc(E, C), if we denote 
by Rx : CG - • E ® CG the map eg H> x ® eg and by S(_ : E ® CG -^ CG the 
map y ® eg >-+ Ç(y)eg, we have \\Rx(f)\\A(G,E) < IMbll/IU(G) for any f £ CG 
and IIScMIU^) < ||C||£::(iî,c)||a;m(Giiï) for any u £ E®CG. Now fix x £ E 
and £ £ Cc(E,C) and denote by 1 the unit in G. For any / = X ^ G G fÌ9)ea e 

CG, S^(n(fi)(Rx(eijj) is X^oGG^(7r(5)(-c))/(5)es m <^r- ^ o r a n y function c on G, 
we define the Schur multiplication by c to be the pointwise product CG —¥ CG, 

E s G G f(9>g ^ E s G G c(g)f(g)eg. 
In this way we obtain the following necessary condition : for any x £ E and 

£ £ Cc(E,C) the Schur multiplication by the matrix coefficient g H- Ç(n(g)(x)) is 
bounded from A(G) to itself and its norm (in Cc(A(Gjj) is less than ||x||s||C||£ .-{E,Q • 
But for any L°°-function c on G we can find an isometric representation n of G on 
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a Banach space E and x £ E and £ £ Cc(E,C) such that ||X||E:||£||£.-{E,Q = llcIU°° 
and c(g) = Ç(n(g)x) for any g £ G (take E = L1(G), x = ó~i, Ç = c). Therefore 
a necessary condition is that A(G) is an unconditional completion in the following 
sense. 

Definition 1.6.1 A Banach algebra A(G) (with a given norm \\-\\A(G)) contain­
ing CC(G) as a dense subalgebra is called an unconditional completion if the norm 
ll/IU(G) of f £ CC(G) only depends on g ^ \f(g)\, G - • K+. 

Remark that L1(G) is an unconditional completion of CC(G) but C*ed(G) is 
not. 

In fact this condition is also sufficient to construct the descent map. For the 
sake of simplicity, we still assume that G is discrete. If A(G) is an unconditional 
completion of CG, and (E,n,T) is in EbAn(C,C), we define A(G,E) as the com­
pletion of E ® CG for the norm || E S G G X ( # ) ® esll = II E S G G IkG?)!!^ eslU(G) a n d 
A(G, E) is a right Banach module over A(G) and there is a morphism n : A(G) —¥ 
£A(G)(A(G,E)), and (A(G,E),n,T®1) £ EbAn(A(G),A(G)). 

In this way, for any unconditional completion A(G) of CG, we have a descent 
map jfn : KKG

An(C,C) - • KKbAn(A(G),A(G)) - • End(KfiA(G))). We can 
also define an assembly map PA '• K^(EG) —¥ K*(A(G)). If A(G) is an involutive 
subalgebra of C*ed(G), and i : A(G) —¥ C*ed(G) denotes the inclusion, pied = ì*°PA-

Theorem 1.6.2 ([37]) For any group G in the classes a'), b) or c'), and for any 
unconditional completion A(G) of CC(G), PA '• Kcfi(E_G) —t K*(A(G)) is an iso­
morphism. 

Yet A, B be Banach algebras and i : A —¥ B an injective morphism of Banach 
algebras. We say that A is stable under holomorphic functional calculus in B if any 
element of A has the same spectrum in A and in B. If A is dense and stable under 
holomorphic functional calculus in B then z» : KfiA) —t K*(B) is an isomorphism 
(see the appendix of [6]). 

Corollary 1.6.3 For any group G in the classes a'), b) or c'), if CC(G) admits an 
unconditional completion A(G) which is an involutive subalgebra of C*ed(G) and is 
stable under holomorphic functional calculus in C*ed(G), then pred '• K^(EG) —¥ 
Kx(C*ed(Gj) is an isomorphism. 

This condition is fulfilled for 

a) hyperbolic groups, 

b) cocompact lattices in a product of a finite number of groups among Lie or p-adic 
groups of rank one, SL3(¥) with F a local field (even M) and E6^_26^, 

c) reductive Lie groups and reductive groups over non-archimedian local fields. 

In case c), A(G) is a variant of the Schwartz algebra of the group ([37]). In this 
case the Baum-Connes conjecture was already known for linear connected reductive 
groups (Wassermann [55]) and for the p-adic GLn (Baum, Higson, Plymen [5]). In 
case a),b) this result is based on a property first introduced by Haagerup for the 
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free group and called (RD) (for rapid decay) by Jolissaint ([23]). In case a),b) G 
has property (RD) : this is due to Haagerup for free groups ([16]), Jolissant for 
"geometric hyperbolic groups", de la Harpe for general hyperbolic groups ([18]), 
Ramagge, Robertson and Steger for SL% of a non-archimedian local field ([47]), the 
author for SL3(R) and SL3(C) ([39]), Chatterji for SL3(M) and E6{_26) ([10]), and 
the remark that it holds for products is due to Ramagge, Robertson and Steger 
([47]) in a particular case, and independantly to Chatterji ([10]) and Talbi ([50]) 
in general. A discrete group G has property (RD) if there is a lenght function 
£ : G —¥ R+ (i.e. a function satisfying i(g^v) = 1(g) and £(gh) < 1(g) + 1(h) for 
any g,h £ G) such that for s £ R+ big enough, the completion HS(G) of CG for 
the norm || E f(g)eg\\H*(G) = II EC 1 + % ) ) s / ( ^ K I I L ^ G ) is contained in Gr*ed(G). 
Then, for s big enough, HS(G) is a Banach algebra and an involutive subalgebra of 
C*ed(G) and is dense and stable under holomorphic functional calculus ([23, 39]); it 
is obvious that HS(G) is an unconditional completion of CG. 

As a consequence of this result the Baum-Connes conjecture has been proven 
for all almost connected groups by Chabert, Echterhoff and Nest ([9]). 

1.7. Trying to push the method further 
In order to prove new cases of the surjectivity of the Baum-Connes map (when 

the injectivity is proven and the 7 element exists) we should look for a dense 
subalgebra -4(G) of C*ed(G) that is stable under holomorphic functional calcu­
lus and a homotopy between 7 and 1 through (perhaps special kind of) elements of 
EbAn(C, C) which all give a map K„,(A(Gj) —¥ K*(C*ed(Gj) by the descent construc­
tion. Thanks to the discussion in subsection 1. a necessary condition for this is that 
for any (E, n, T) in the homotopy between 7 and 1, for any x £ E and £ £ Cc(E, C), 
the Schur multiplication by the matrix coefficient g H> Ç(ir(g)(xj) is bounded from 
A(G) to C*ed(G) and has norm < ||X||E:||£||£r{E,Q- So we should first look for a 
homotopy between 7 and 1 such that the fewest possible matrix coefficients appear. 
For groups acting properly on buildings, this homotopy can be shown to exist. The 
problem for general discrete groups properly acting on buildings is to find a sub-
algebra v4(G) of C*ed(G) that is stable under holomorphic functional calculus and 
satisfies the condition with respect to these matrix coefficients. The first step (the 
crucial one I think) should be to find a subalgebra -4(G) of C*ed(G) that is stable 
under holomorphic functional calculus and satisfies the following condition : there 
is a integer n, a distance d on the building and a point xo on the building such that 
the Schur product by the characteristic function of {g £ G,d(xo,gxo) < r} from 
A(G) to C*ed(G) has norm less than (1 + r)n, for any r £ R+. 

1.8. The Baum-Connes conjecture with coefficients 
Let G be a second countable, locally compact group and A a G-Banach algebra 

(i.e. a Banach algebra on which G acts continuously by isometric automorphisms 
g : a >-¥ g (a)). The space CC(G,A) of A-valued continuous compactly supported 
functions on G is endowed with the following convolution product : f * f'(g) = 
JG fWh(f'(h^19J)dh and the completion L1(G, A) of CC(G, A) for the norm | |/ | | = 
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J G 11/(5) I ÌAdg is a Banach algebra. Alore generally for any unconditional completion 
„4(G), we define A(G,A) tobe the completion of CC(G, A) for the norm | | / | U ( G , / 1 ) = 
\\9^\\f(g)\\A\\A{Gr 

For any G-Banach algebras A and B, we define in [37] an abelian group 
KKbAn(A, B). This is a contravariant functor in A and a covariant functor in B. 
When G = 1 this is equal to KKbAn(A, B). For any unconditional completion „4(G) 
of CC(G), there is descent morphism KKbAn(A,B) - • KKbAn(A(G,A),A(G,Bj). 

These constructions are adaptations of the classical constructions for C*-
algebras : for any G-G*-algebra A (i.e. G acts continuously by G*-algebras au­
tomorphisms on A) we have a natural G*-algebra C*ed(G,A) containing L1(G,A) 
as a dense subalgebra. If B is another G-G*-algebra, Kasparov defined an abelian 
group KKG(A,B). This is a contravariant functor in A and a covariant functor in 
B. When G = 1 this is equal to KK(A,B). There is an associative and distribu­
tive product KKQ(A,B) ® KKQ(B,C) —¥ KKQ(A,C) and a descent morphism 
KKG(A,B) -+ KK(C;ed(G,A),C;ed(G,Bj). 

Let Kcfi(E_G,A), * = 0,1, be the inductive limit over G-invariant G-compact 
subsets Z of EG of KKa,*(Cn(Z),A). Then the assembly map 

Pred,A '• K* (EG, A) -t K*(C*ed(G, A)) 

is defined in [4] and similar maps ppi}A, and more generally PA,A for any uncondi­
tional completion A(G), can be defined. 

The Baum-Connes conjecture "with coefficients" claims that preA,A is an iso­
morphism and the Bost conjecture "with coefficients" claims that ppi^i is an iso­
morphism. Theorems 1.4.1, 1.5.4, 1.6.2 are still true with arbitrary coefficients. 

The surjectivity of the Baum-Connes conjecture with coefficients has been 
counter-exampled recently (Higson, Lafforgue, Ozawa, Skandalis, Yu) using a ran­
dom group constructed by Gromov ([15]) but Bost conjecture with coefficients still 
stands. If the Baum-Connes conjecture with coefficients is true for a group, it is 
true also for all its closed subgroups; the Baum-Connes conjecture with coefficients 
is also stable under various kinds of extensions (Chabert [7], Chabert-Echterhoff [8], 
Oyono [44], and Tu [51]). 

Kasparov's equivariant KK-theory was generalized to groupoids by Le Gall 
[31, 40, 41] and this generalized KK-theory was applied by Tu in [52, 53] to the 
bijectivity of the Baum-Connes map for amenable groupoids and the injectivity for 
(the holonomy groupoids of) hyperbolic foliations. It is possible to generalize also 
Banach KK-theory and unconditional completions. In this way we obtain the Baum-
Connes conjecture for any hyperbolic group, with coefficients in any commutative 
G*-algebra, and also for foliations with compact basis, admitting a (strictly) nega­
tively curved longitudinal riemannian metric, and such that the holonomy groupoid 
is Hausdorff and has simply connected fibers (not yet published). 

2. Discrete series representations of connected 
semi-simple Lie groups 
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In this part we examine how the Baum-Connes conjecture for a connected 
semi-simple Lie group with finite center can be used to establish the construction of 
the discrete series by Dirac induction ([17, 45, 1]). That this is morally true is known 
from the beginning of the conjecture (see for instance [12]). In the proof we shall 
introduce 3 ingredients : these are classical facts stated here without proof. Parts 
of the argument apply to more general groups (not connected, not semi-simple). 

This work owes its existence to Paul Baum. He asked me to study the problem 
and we discussed a lot. 

2.1. Dirac operators 
Let G be a Lie group, with a finite number of connected components, and K a 

maximal compact subgroup. We assume that there exists a G-invariant orientation 
on G/K. For the sake of simplicity, we assume that G/K admits a G-invariant spin 
structure (it is true anyway for a two fold covering of G). Alore precisely let p be a 
complementary subspace for the Lie algebra 6 of If in the Lie algebra g of G. We 
choose p such that it is invariant for the adjoint action of K and we endow it with a 
lf-invariant euclidian metric. The above assumption means that the homomorphism 
K —t SO(p) lifts to Spin(p). We denote by S the associated spin representation of 
K. If dim(G/K) is even, S is Z/2Z-graded. We write i = dim(G/K) [2]. 

We denote by R(K) the (complex) representation ring of K and for any finite 
dimensional representation V of K we denote by [V] its class in R(K). 

Yet V be a finite dimensional representation of K. Yet Ey be the right Banach 
(in fact Hilbert) module over C*ed(G) (Z/2Z-graded if i = 0 [2]) whose elements are 
the ÜT-invariant elements in V* ® S* ® C*ed(G), where K acts by left translations 
on C*ed(G). Yet Dy be the unbounded C*ed(G)-linear operator on Ey equal to 
E l ® c(pi) ® pi, where the sum is over i, (pt) is an orthonormal basis of p, pi 
denotes also the associated right invariant vector field on G, and c(p») is the Clifford 
multiplication by p». Let Ty = Py

 2 . Then we define [dy] £ Ki(C*ed(Gj) to be 

the class of the Fredholm module (Ey,Ty) over C*ed(G). 
In other words, Ey is the completion of the space of smooth compactly sup­

ported sections of the bundle on K\G associated to the representation V* ® S* of 
K, for the norm ||w|| = sup /GL2 (G),||/| | i2(G)=i \\w* f\\L*{{v*®s*)xKG), and Dy is the 
Dirac operator, twisted by V*. 

Connes-Kasparov conjecture. The group morphism pred '• R(K) —¥ Ki(C*ed(Gj) 
defined by [V] H> [dy] is an isomomorphism, and Ki+i(C*ed(Gj) = 0. 

This is a special case of the Baum-Connes conjecture because we may take 
EG = G/K and thus Kf(EG) = R(K) and Kf+l(EG) = 0. It was checked for G 
connected reductive linear in [55] and the Baum-Connes conjecture was proved for 
any reductive group in [37] (see c) of the corollary 1.6.3 above). 

The following lemma has been suggested to me by Francois Pierrot. Assume 
that i is even. Let moreover 17 be a unitary tempered admissible representation 
of G. This implies that we have a G*-homomorphism C*ed(G) —¥ K.(H). For any 
element x £ K0(C*ed(Gj) we denote by (H,x) £ Z the image of x by K0(C*ed(Gj) —¥ 
Kn(K,(H)) = Z. If x is the class of an idempotent p £ C*ed(G), the image of p in 
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K,(H) is a finite rank projector, whose rank is (H,x). 

Lemma 2.1.1 We have (H, [dy]) = dim(F* ® S* ® H)K. 

2.2. Dual-Dirac operators 
From now on we assume that G is a connected semi-simple Lie group with finite 

center and we still assume that G/K has a G-invariant spin structure. Kasparov-
has constructed an element n £ Hom(Ki(C*ed(Gj),R(Kj) (coming from an element 
of KKi(C*ed(G), C*ed(Kj), itself coming from an element of KKQ,ì(C, CO (G/K))). 
Kasparov has shown that n o pied = Id#(jq [29, 31]. 

Here is the detail of the construction. The G-invariant riemannian structure 
on G/K given by the chosen If-invariant euclidian metric on p has non-positive cur­
vature. Let p be the distance to the origin and £ = d ( \ / l + p2)- Yet V be a finite 
dimensional complex representation of If, endowed with an invariant hermitian met­
ric. Let Hy be the space of L2 sections of the hermitian G-equivariant fibre bundle 
on G/K associated to the representation of K on S ® V and let c^y be the Clifford 
multiplication by £. In other words Hy is the subspace of If-invariant vectors in 
L2(G) ® S® V, where K acts by right translations L2(G), and c^y is the restriction 
to this subspace of the tensor product of the Clifford multiplication by £ on L2(G)®S 
with Id y. Left translation by G on G/K or on L2(G) gives rise to a (G*-)morphism 
nv : C*ed(G) - • Cc(Hy) and (Hv,ny,c^v) defines nv £ KKbAn(C*ed(G),C) (in 
fact in KKi(C*ed(G),Cj). We denote by [ny] £ Hom(lfj(G*ed(G)),Z) the associ­
ated map, and n = EvbAAp7] € Hom(Ki(C*ed(Gj),R(Kj), where the sum is over 
the irreducible representations of K. 

Since the Connes-Kasparov conjecture is true, pred '• R(K) —¥ Ki(C*ed(Gj) 
and n : Ki(C*ed(Gj) —¥ R(K) are inverse of each other and Ki+i(C*ed(Gj) = 0. 

Let 17 be a discrete series representation of G, i.e. an irreducible unitary-
representation with a positive mass in the Plancherel measure. We recall that this 
is equivalent to the fact that some (whence all) matrix coefficient cx (g) = (x, n(g)x), 
x £ H, ||x|| = 1, is square-integrable. Then ||cœ||^2(G) is indépendant of x, and its 
inverse is the formal degree dn of 17, which is also the mass of 17 in the Plancherel 
measure. We introduce a first ingredient. 

Ingredient 1. All discrete series representations of G are isolated in the 
tempered dual. 

In other words, all matrix coefficients belong to C*ed(G). In fact a standard 
asymptotic expansion argument shows that for any lf-finite vector x £ H, cx be­
longs to the Schwartz algebra ([17], II, corollary 1 page 77). 

Therefore there exists an idempotent p £ C*ed(G) such that the image in 
L2 (G) of the image of p by the left regular representation is H* as a representation 
of G on the right. In fact we can take p = dnci for any x £ H, \\x\\ = 1, where 
c^(g) = cx(g). The class of p in K0(C*ed(Gj) only depends on 17 and we denote it 
by [H]. It is easy to see that i : (DH^ —t K0(C*ed(Gj), (UH)H ^ E if ïIH[H], where 
the sums are over the discrete series representations of G, is an injection. Indeed, 
if 17 and H' are discrete series representations of G, (H', [H]) = 1 if 17 = 17' and 0 
otherwise. 
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As a corollary we see that if i = 1 [2], G has no discrete series representations. 
From now on we assume i = 0 [2]. 

The first part of the following lemma was suggested to me by Georges Skan-
dalis. Let 17 be a discrete series representation of G. We write r]([H]) = E v ^v[V] 
in R(K) where the sum is finite and over the irreducible representations of K (in 
the notation above, ny = [ny]([H]j). 

Lemma 2.2.1 IfV is an irreducible representation of K, ny = dim(H*®S®Yr)K 

and therefore ny = (H, [dy]). 

We have 1 = (17, [17]) = (H, pred o n([H])) = Zvnv(H,[dv]) = E v « v -
Therefore one of the ny is ±1 and the others are 0. 

Alternatively we can consider the morphisms 

®yZ[F] = R(K) ^ K0(C:ed(G)) 4 J j z where TT(X) = ({H,x))H 

H 

and ®ff Z 4 Ko(C*ed(Gj) 4 R(K) = @VZ[V\ 

where the sums are over the irreducible representations V of K and the discrete 
series representations 17 of G. Their product TT O pied or]oi = noiis equal to the 
inclusion of ®#Z in f\HZ and their matrices in the base ([V])y and the canonical 
base of ®#Z are transpose of each other. Therefore each column of the matrix of 
n o i contains exactly one non-zero coefficient, which is equal to ± 1 . A posteriori, n 
takes its values in ®#Z. 

Corollary 2.2.2 The discrete series representations of G are in bijection with a 
subset of the set of isomorphism classes of irreducible representations of K. The 
irreducible representation V of K associated to a discrete series representation H 
is such that V = ±(H ® S*) as a formal combination of irreducible representations 
of K, and H occurs in the kernel of the twisted Dirac operator Dy. 

Corollary 2.2.3 7/rankG ^ ranklf, G has no discrete series. 

In this case S* is 0 in R(K) (Barbasch and Moscovici [2] (1.2.5) page 156) : 
this was indicated to me by Henri Moscovici. 

2.3. A trace formula 
From now on we assume that rank G = rank K. Yet T a maximal torus in K 

(therefore also in G). Choose a Weyl chamber for the root system of g and choose 
the Weyl chamber of the root system of 6 containing it. Let V be an irreducible 
representation of K, p its highest wheight, and À = p + PK where PK is the half 
sum of the positive roots of 6. 

We recall that the unbounded trace Tr : C*ed(G) —¥ R, / H> / ( l ) gives rise to 
a group morphism Ko(C*ed(Gj) —¥ R. When 17 is a discrete series representation 
of G, Tr([17]) is the value at 1 of p = dnc^ for some x £ H, \\x\\ = 1, and therefore 
it is the formal degree dn of 17 and is > 0. 
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Ingredient 2. Tr([dy]) = ELe* (pod' w r i e r e * is the set of simple roots of 
the chosen positive root system in g, and p is the half sum of the positive roots of 
this system. 

In this formula is used a right normalization of the Haar measure (if G is linear 
it is the one for which the maximal compact subgroup of the complexification of 
G has measure 1). This formula is proven in [11] by a heat equation method, and 
in [1] by Atiyah's L2-index theorem. 

Corollary 2.3.1 If X is singular for g, [V] does not correspond to a discrete series 
representation ofG. 

Ingredient 3. For any x £ K0(C*ed(Gj) such that Tr(x) ^ 0, there is a 
discrete series representation 17 such that (H, x) fi^ 0. 

By the Plancherel formula, if G is the tempered spectrum of G, Tr(x) = 
JG(H,x) dH. We have to prove that, for almost all 17 outside the discrete series, 
(17, x) = 0. There are several possible arguments : 

• almost all 17 outside the discrete series are induced from a parabolic subgroup 
and belong to a family of representations indexed by some W, but (17', x) is 
constant when H' varies in this family and goes to 0 when H' goes to infinity, 

• write x = [dy] for some V, then the 17 outside the discrete series with (H, x) fi^ 
0 have measure 0 by [1] pl5 (3.19), p50 (9.8) and p51 (9.12) or by [11] p318-
320. 

Corollary 2.3.2 If X is not singular for g, [V] does correspond to a discrete series 

representation, whose formal degree is ihji 
l l a € * (p,a) 

We have recovered some results proved in [17], [45] and [1]. 
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Abstract 

We review several inequalities concerning Gaussian measures - isoperi­
metric inequality, Ehrhard's inequality, Bobkov's inequality, S-inequality and 
correlation conjecture. 
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1. Introduction 
Gaussian random variables and processes always played a central role in the 

probability theory and statistics. The modern theory of Gaussian measures com­
bines methods from probability theory, analysis, geometry and topology and is 
closely connected with diverse applications in functional analysis, statistical physics, 
quantum field theory, financial mathematics and other areas. Some examples of ap­
plications of Gaussian measures can be found in monographs [4, 18, 20] and [23]. 

In this note we present several inequalities of geometric nature for Gaussian 
measures. All of them have elementary formulations, but nevertheless yield many-
important and nontrivial consequences. We begin in section 2 with the already-
classical Gaussian isoperimetric inequality that inspired in the 70's and 80's the 
vigorous development of concentration inequalities and their applications in the 
geometry and local theory of Banach spaces (cf. [19, 24, 32]). In the sequel we 
review several more recent results and finish in section 6 with the discussion of the 
Gaussian correlation conjecture that remains unsolved more than 30 years. 

A probability measure p on a real separable Banach space F is called Gaussian 
if for every functional x* £ F* the induced measure po (x*)^1 is a one-dimensional 
Gaussian measureM(a, a2) for some a = a(x*) £ R and a = a(x*) > 0. Throughout 
this note we only consider centered Gaussian measures that is the measures such 
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that a(x*) = 0 for ail x* £ F*. A random vector with values in F is said to be 
Gaussian if its distribution is Gaussian. Every centered Gaussian measure on R" 
is a linear image of the canonical Gaussian measure -yn, that is the measure on 
R" with the density djn(x) = (27r)-"/2 exp(^|x|2/2)dx, where |x| = \/Y^i=i xì-
Infinite dimensional Gaussian measures can be effectively approximated by finite 
dimensional ones using the following series representation (cf. [18, Proposition 4.2]): 
If p is a centered Gaussian measure on F and gi,g2, • • • are independent A'(0,1) 
random variables then there exist vectors xi, x2,... in F such that the series X = 
S i - i xì9ì '1S convergent almost surely and in every IP, 0 < p < oo, and is distributed 
as p. 

We will denote by $ the distribution function of the standard normal A'(0,1) 
r.v., that is 

1 f'x 

$(x) = 7i(—oo,x) = / ery '2dy, ^oo < x < oo. 
V 2-ÏÏ i-oo 

For two sets A,B in a Banach space F and t £ M. we will write tA = {tx : x £ A} 
and A + B = {x + y : x £ A,y £ B}. A set A in F is said to be symmetric if 
-A = A. 

Alany results presented in this note can be generalized to the more general 
case of Radon Gaussian measures on locally convex spaces. For precise definitions 
see [4] or [7]. 

2. Gaussian isoperimetry 
For a Borei set A in R" and t > 0 let At = A + tB% = {x £ R" : |x - a\ < 

t for some a £ A} be the open t-enlargement of A, where UJ denotes the open 
unit Euclidean ball in R". The classical isoperimetric inequality for the Lebesgue 
measure states that if vol„(A) = volfirBfi) then vol„(At) > vol„((r + i)Bfi) for 
t > 0. In the early 70's C. Borell [6] and V.N. Sudakov and B.S. Tsirel'son [29] 
proved independently the isoperimetric property of Gaussian measures. 

Theorem 2.1 Let A be a Borei set in R" and let H be an affine half space 
such that 7»(A) = -yn(H) = $(<x) for some a £ R. Then 

ln(At) > -jn(Ht) = *(a + *) for all t > 0. (2.1) 

Theorem 2.1 has an equivalent differential analog. To state it let us define 
for a measure p on R" and any Borei set A the boundary p-measure of A by the 
formula 

M + ( A ) = l i m i n f M ( - 4 t ) ^ ( - 4 ) . 

Aloreover let ip(x) = $'(x) = (27T) - 1 / 2 exp(^x2/2) and let 

I(t) = V>°$-1(t), t£[0,l] 

be the Gaussian isoperimetric function. 
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The equivalent form of Theorem 2.1 is that for all Borei sets A in R" 

7+(-4)>l(7»(-4)). (2.2) 

The equality in (2.2) holds for any affine halfspace. 
For a probability measure p on R" we may define the isoperimetric function 

of p by 
ls(p)(p) = inf{p+(A) : p(A) =p}, 0 < p < 1. 

Only few cases are known when one can determine exactly ls(p). For Gaussian 
measures (2.2) states that Is(7„) = 1. 

Let us finish section 2 by an example of application of (2.1) (see [20, Lemma 
3.1]). 

Corollary 2.2 Let X be a centered Gaussian random vector in a separable 
Banach space (F,\\ • ||). Then for any t > 0 

P(|[|X[| - Aled([|X[|)| >t)< 2(1 - * ( - ) ) < e-*2/2-7', 
a 

where 
a = sup{VE(x*(X))2 : x* G F*, \\x*\\ < 1}. 

3. Ehrhard's inequality 
It is well known that the classical isoperimetric inequality for the Lebesgue 

measure in R" follows by the Brunn-Alinkowski inequality (cf. [25]), which states 
that for any Borei sets A and B in R" 

vol„(AA + (1 - X)Bj) > (Yoln(Aj)x(voln(Bj)1-x for A G [0,1]. 

Gaussian measures satisfy the similar log-concavity property, that is the inequality 

ln(p(XA + (1 - X)Bj) > Xln(p(Aj) + (1 - A) ln(p(Bj), X £ [0,1] (3.1) 

holds for any Gaussian measure p on a separable Banach space F and any Borei 
sets A and B in F (cf. [5]). However the log-concavity of the measure does not 
imply the Gaussian isoperimetry. 

In the early 80's A. Ehrhard [9] gave a different proof of the isoperimetric 
inequality (2.1) using a Gaussian symmetrization procedure similar to the Steiner 
symmetrization. With the same symmetrization tool Ehrhard established a new 
Brunn-Alinkowski type inequality, stronger than (3.1), however only for convex sets. 

Theorem 3.1(Ehrhard's inequality) If p is a centered Gaussian measure on 
a separable Banach space F and A, B are Borei sets in F, with at least one of them 
convex, then 

^QfiXA + (1- X)Bj) > A # - 1 ( M ( A ) ) + (1 - A ) # - 1 ( M ( B ) ) for X £ [0,1]. (3.2) 

For both sets A and B convex Ehrhard's inequality was proved in [9]. The 
generalization to the case when only one of the sets is convex was established in 
[16]. 
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It is not hard to see that Theorem 3.1 implies the isoperimetric inequality 
(2.1). Indeed we have for any Borei set A in R" 

Q-H-YniAt)) = #-1(7„(A(A-1A) + (1 - A)((l - A)"1*^"))) 

> A#-1(7„(A-1A)) + (1 - A)#- 1( 7„(( l - A ) - 1 ^ " ) ) A ^ T ^(^(A)) + t. 

Conjecture 3.1 Inequality (3.2) holds for any Borei sets in F. 
Ehrhard's symmetrization procedure enables us to reduce Conjecture 3.1 to 

the case F = R and p = 71. We may also assume that A and B are finite unions of 
intervals. At the moment the conjecture is known to hold when A is a union of at 
most 3 intervals. 

Ehrhard's inequality has the following Prekopa-Leindler type functional ver­
sion. Suppose that A G (0,1) and f,g,h:Rn —¥ [0,1] are such that 

Vœ,,GRn ^ ( M A x + (1 - X)yj) > A#- 1( / (x)) + (1 - A ) * - 1 ^ ) ) 

then 

* _ 1 ( / hchJiXQ-HÏ /d7„) + ( l^A)#-1( / ' gdln). (3.3) 

We use here the convention $ _ 1 (0) = —oo,^1(Y) = 00 and ^00 + 00 = ^00. At 
the moment the above functional inequality is known to hold under the additional 
assumption that at least one of the functions $_ 1( /) ,$_ 1(<7) is convex. When one 
takes / = 1,4, g = lp and h = 1\A+(I-\)B the inequality (3.3) immediately implies 
(3.2). On the other hand if we put A = {(x,y) £ R" x R : y < $ _ 1 ( / (x ) )} and 
B = {(x,y) £ R" x R : y < ^~1(g(x))} then AA + (1 - X)B c {(x,y) £ R" x R : 
y < ^^1(h(xj)}, so Ehrhard's inequality in R"+1 implies (3.3) in R". It is easy to 
show the inductive step in the proof of (3.3). Unfortunately the case n = 1 in the 
functional inequality seems to be much more complicated than the case p = 71 in 
Ehrhard's inequality. 

4. Bobkov's inequality 
Isoperimetric inequality for the Lebesgue measure has an equivalent analytic 

form - the Sobolev inequality (cf. [25]). L. Gross [10] showed that the Gaussian 
measures -yn satisfy the logarithmic Sobolev inequality 

g2logg2d~fn- g2d~/nlog( g2d^/n)<2 \Vg\2d^/n (4.1) 
JR» i l » i l » 

for all smooth functions g : R" —¥ R. Using the so-called Herbst argument one can 
show (cf. [19, Sect. 5.1]) that (4.1) implies the concentration inequality 

ln({h> I hd-/n + t})<e-t2/2, t>0 

valid for all Lipschitz functions h : R" —¥ R with the Lipschitz seminorm | | /I | |LìP = 
sup{\h(x) — h(y)\ : x,y £ W1} < 1. However the logarithmic Sobolev inequality-
does not imply the isoperimetric inequality. 
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The formulation of the functional form of Gaussian isoperimetry was given by 
S.G. Bobkov [2]. 

Theorem 4.1 For any locally Lipschitz function f : R" —¥ [0,1] and p = -yn 

we have 

H I fdp) < f VHf)2 + |V/|2dM. (4.2) 
i i » JR» 

Theorem 4.1 easily implies the isoperimetric inequality (2.2) by approximating 
the indicator function I A by Lipschitz functions. On the other hand if we apply 
(2.2) to the set A = {(x,y) £ R" x R : $(y) < f(x)} in R"+1 we get (4.2). It is 
also not hard to derive the logarithmic Sobolev inequality (4.1) as a limit case of 
Bobkov's inequality (cf. [1]): one should use (4.2) for / = eg2 (with g bounded) 
and let e tend to 0 (I(t) ~ ty?2log(l/t) as t -t 0+). 

The crucial point of the inequality (4.2) is its tensorization property. To state 
it precisely let us say that a measure p on R" satisfies Bobkov 's inequality if the 
inequality (4.2) holds for all locally Lipschitz functions / : R" —¥ [0,1]. Easy-
argument shows that if pi are measures on Rm, i = 1,2, that satisfy Bobkov's 
inequality then the measure pi ® p2 also satisfies Bobkov's inequality. 

The inequality (4.2) was proved by Bobkov in an elementary way, based on 
the following "two-point" inequality: 

i(a-^) < y nap+(a-^)2+y m2+( V ) 2 (43) 

valid for all a,b £ [0,1]. In fact the inequality (4.3) is equivalent to Bobkov's 
inequality for p = |óAi + ^öi and the discrete gradient instead of Vf. Using the 
tensorization property and the central limit theorem Bobkov deduces (in the similar 
way as Gross in his proof of (4.1)) (4.2) from (4.3). 

Using the co-area formula and Theorem 4.1 F. Barthe and Al. Alaurey [1] 
gave interesting characterization of all absolutely continuous measures that satisfy 
Bobkov's inequality. 

Theorem 4.2 Let c > 0 and p be a Borei probability measure on the Rieman­
nian manifold M, absolutely continuous with respect to the Riemannian volume. 
Then the following properties are equivalent 
(i) For every measurable A c M, pfi(A) > cI(p(Aj); 
(ii) For every locally Lipschitz function f : M —¥ [0,1] 

H I fdp) < f J 1(f)2 + \\Vf\2dp. 
JM JM V c-

Theorem 4.2 together with the tensorization property shows that if ls(pi) > ci, 
i = 1,2..., then also Is(^i ® ... ® pn) > ci. In general it is not known how to 
estimate Is(^i ®...® pn) in terms of ls(pi) even in the case when all pi's are equal 
(another important special case of this problem was solved in [3]) . 

5. S-inequality 
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In many problems arising in probability in Banach spaces one needs to estimate 
the measure of balls in some Banach space F. In particular one may ask what is 
the slowest possible grow of the Gaussian measure of balls in F or more general of 
some fixed convex symmetric closed set under dilations. The next theorem, proved 
by R. Latala and K. Oleszkiewicz [17], gives the positive answer to the conjecture 
posed in an unpublished manuscript of L. A. Shepp (1969). 

Theorem 5.1(S-inequality) Let p be a centered Gaussian measure on a sepa­
rable Banach space F. If A is a symmetric, convex, closed subset of F and P C F 
is a symmetric strip, that is P = {x £ F : |x*| < 1} for some x* £ F*, such that 
p(A) = p(P) then 

p(tA) > p(tP) fort>l 

and 
p(tA) < p(tP) forO<t<l. 

A simple approximation argument shows that it is enough to prove Theorem 
5.1 for F = R" and p = -yn. The case n < 3 was solved by V.N. Sudakov and 
V.A. Zalgaller [30]. Under the additional assumptions of symmetry of A in R" with 
respect to each coordinate, Theorem 5.1 was proved by S. Kwapiefi and J. Sawa 
[15]. 

S-inequality can be equivalently expressed as 

*_1(iu(ti4)) > t^-1(p(Aj) for t > 1, 

where \P_ 1 denotes the inverse of 

*(x) = >yi(-x,x) = —= j e^y2/2dy. 
V 2-K J-x 

The crucial tool in the proof of S-inequality is the new modified isoperimetric 
inequality. Let us first define for a convex symmetric set A in R" 

w(A) = 2sup{r : B(0,r) C A}. 

It is easy to see that for a symmetric strip P, w(P) is equal to the width of P and 
for a symmetric convex set A 

w(A) = inf{w(F) : A C P, P is a symmetric strip in R"}. (5.1) 

Thus w(A) can be considered as the width of the set A. The following isoperimetric-
type theorem holds true. 

Theorem 5.2 If -yn(A) = 7„(F), where P is a symmetric strip and A is a 
convex symmetric set in R", then 

w(A)1+(A)>w(P)1+(P). (5.2) 

The main advantage of the inequality (5.2) is that one may apply here the 
symmetrization procedure and reduce Theorem 5.2 to the similar statement for 
2-dimensional convex sets symmetric with respect to some axis. 
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It is not hard to see that Theorem 5.2 implies Theorem 5.1. Indeed, let us 
define for any measurable set B in R", 7#(t) = -fn(tB) for t > 0. Taking the 
derivatives of both sides of the inequalities in Theorem 5.1 one can see that it is 
enough to show 

7„(A) =ln(P)^ iA(ì) > ÌP(Ì) (5.3) 

for any symmetric convex closed set A and a symmetric strip P = {\xi\ < p}. Yet 
w = w(A), so B(0,w) C A. Then for t > 1 and x G A we have B(t^x, (t—Yjw/i) = 
*_ 1x + (1 - t^1)B(0, w) C A, so B(x, (t - l)w) C tA. Hence A(t_1)ttJ c tA and 

iA(i)>unt(A) = w(Ayft(A). 

However for the strip P 

fiP(l) = \ßpe-p2/2 = w(Pht(P) 
V TT 

and the inequality (5.3) follows by Theorem 5.2. 
It is not clear if the convexity assumption for the set A in Theorem 5.2 is 

necessary (obviously w(A) for nonconvex symmetric sets A should be defined by 
(5.1)). One may also ask if the symmetry assumption can be released (with the 
suitable modification of the definition of the width for nonsymmetric sets). Also 
functional versions of Theorems 5.1 and 5.2 are not known. 

As was noticed by S. Szarek S-inequality implies the best constants in com­
parison of moments of Gaussian vectors (cf. [17]). 

Corollary 5.3 If X is a centered Gaussian vector in a separable Banach space 
(F, || • ||) then 

(EHXIH 1^ < ^(EIIXII«)1/« for anyp>q>0, 
cq 

where 

cp = (E\gif)1/P = 7 2 ( ^ F ( ^ ) ) 1 / P . 
-fin 2 

Another interesting problem connected with the S-inequality was recently-
posed by W. Banaszczyk (private communication): Is it true that under the as­
sumptions of Theorem 5.1 

p(sxt1-xA) > p(sA)xp(tAfi-x, X £ [0,1] (5.4) 

for any closed convex symmetric set A in F and s, t > 0? Combining the facts that 
the function $ _ 1 (p(tAj) is concave (Theorem 3.1) and the function ^^1(p(tAj) 
is nondecreasing (Theorem 5.1) one can show that (5.4) holds if p(sA),p(tA) > c, 
where c < 0.85 is some absolute constant. 

It is of interest if Theorem 5.1 can be extended to the more general class of 
measures. The following conjecture seems reasonable. 

Conjecture 5.1 Let v be a rotationally invariant measure on W1, absolutely 
continuous with respect to the Lebesgue measure with the density of the form f(\x\) 
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for some nondecreasing function f : R+ —¥ [0, oo). Then for any convex symmetric 
set A in R" and any symmetric strip P in R" such that v(A) = v(P) the inequality 
v(\A) > v(XP) is satisfied for A > 1. 

To show Conjecture 5.1 it is enough to establish the following conjecture con­
cerning the volumes of the convex hulls of symmetric sets on the n — 1-dimensional 
unit sphere S""^1. 

Conjecture 5.2 Let an-i be a Haar measure on S™^1, A be a symmetric 
subset of S""^1 and P = {x £ S""^1 : \xi\ < t} be a symmetric strip on S""^1 such 
that an-i(A) = an-i(P), then vol„(conv(A)) > voln(conv(P)). 

It is known that both conjectures hold for n < 3 (cf. [30]). 

6. Correlation conjecture 
The following conjecture is an object of intensive efforts of many probabilists 

since more then 30 years. 
Conjecture 6.1 If p is a centered Gaussian measure on a separable Banach 

space F then 
p(A(lB)>p(A)p(B) (6.1) 

for all convex symmetric sets A, B in F. 
Various equivalent formulations of Conjecture 6.1 and history of the problem 

can be found in [27]. Standard approximation argument shows that it is enough 
to show (6.1) for F = R" and p = -yn. For n = 2 the solution was given by 
L. Pitt [26], for n > 3 the conjecture remains unsettled, but a variety of special 
results are known. Borell [8] established (6.1) for sets A,B in a certain class of 
(not necessary convex) sets in R", which for n = 2 includes all symmetric sets. A 
special case of (6.1), when one of the sets A,B is a symmetric strip of the form 
{x £ F : |x*(x)| < 1} for some x* G F*, was proved independently by C. G. Khatri 
[14] and Z. Sidâk [28] (see [11] for an extension to elliptically contoured distributions 
and [31] for the case when one of the sets is a nonsymmetric strip). Recently, the 
Khatri-Sidâk result has been generalized by G. Hargé [12] to the case when one of 
the sets is a symmetric ellipsoid. 

Theorem 6.1 If p is a centered Gaussian measure on W1, A is a symmetric 
convex set in R" and B is a symmetric ellipsoid, that is the set of the form B = 
{x G R" : (Cx, x) < 1} for some symmetric nonnegative matrix C, then 

p(AnB) > p(A)p(B). 

The following weaker form of (6.1) 

p(A HB)> p(XA)p(y/l-X2B), 0 < A < 1 

was established for A = -fi in [27] and for general A in [21]. The Khatri-Sidâk result 
and the above inequality turn out to be very useful in the study of the so-called 
small ball probabilities for Gaussian processes (see [22] for a survey of results in this 
direction). 
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The correlation conjecture has the following functional form: 

fgdp > / fdp / gdp (6.2) 

for all nonnegative even functions f,g such that the sets {/ > t} and {g > t} are 
convex for all t > 0. Y. Hu [13] showed that the inequality (6.2) (that we would like 
to have for log-concave functions) is valid for even convex functions / , g £ L2 (F, p). 
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