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Aging and Spin-glass Dynamics

Gérard Ben Arous®

Abstract

We survey the recent mathematical results about aging in certain simple
disordered models. We start by the Bouchaud trap model. We then survey the
results obtained for simple models of spin-glass dynamics, like the REM (the
Random Energy Model, which is well approximated by the Bouchaud model
on the complete graph), then the spherical Sherrington-Kirkpatrick model.
‘We will insist on the differences in phenomenology for different types of aging
in different time scales and different models. This talk is based on joint works
with A.Bovier, J.Cerny, A.Dembo, V.Gayrard, A.Guionnet, as well as works
by C.Newman, R.Fontes, M.Isopi, D.Stein.

2000 Mathematics Subject Classification: 60H10, 60K35, 82C44, 82C31,
20J05.

Keywords and Phrases: Aging, Spin Glass, Random Media, Trapping mod-
els, Statistical mechanics.

1. Introduction

Aging is an interesting long-time property of dynamics in complex disordered
media, and in particular in certain random media. A system ages when its decor-
relation properties are age-dependent: the older the system the longer it takes to
forget its past. Aging has been heavily studied both experimentally, numerically
and theoretically by physicists, in particular in the context of spin-glass dynam-
ics, but the mathematical litterature is still rather sparse. Our interest in aging
stemmed from the study of dynamics of mean field spin glasses models, and more
precisely of Langevin dynamics for the Sherrington Kirkpatrick model. This re-
mains the ultimate goal, far from being achievable. But we will survey some of the
partial progress which has been made both in short time scales (for the spherical
SK model, see section 4) or much longer time scales (for the REM dynamics, see
section 3). We begin with aging the Bouchaud trap model on various graphs (see

*Department of Mathematics, Ecole Polytechnique Federale de Lausanne, 1005 Lausanne,
Switzerland. E-mail: gerard.benarous@epfl.ch
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section 2)even though it is not directly related to Spin Glasses, because the mech-
anism of aging there is close to the one for the REM. This talk is based on joint
works with A.Bovier, J.Cerny, A.Dembo, V.Gayrard, A.Guionnet, as well as works
by C.Newman, R.Fontes, M.Isopi.

2. Bouchaud’s random trap model

This model is simple model of a random walk trapped (or rather slowed down)
by random wells. It is nevertheless quite rich. It has been introduced by Bouchaud
and coworkers (see [9] for a beautiful general survey) as an ansatz to understand
“activated” dynamics of spin glasses.

2.1. The random energy landscape

Consider G = (V, B) a graph where V' is the set of vertices and B the set
of bonds. We introduce a “random energy landscape” on V', a collection (E,),ev
of i.i.d non-negative random variables, indexed by the vertices of the graph and
exponentially distributed (with mean one) , i.e

PE, >a)=e""
From these random variables, we define a random measure 7 on V by:

T(r) =€

Here 8 > 0 is an inverse temperature parameter. We will denote by a = % and

concentrate on the low temperature phase, i.e o < 1.

The physicists would see the set of vertices V' as a set of “ favourable valleys”
for the configurations of a much more complex system (for instance a spin-glass),
—F, as the energy of the bottom of the valley x. Since these energies are usually
the extreme values of some other random landscape (see below the discussion about
the REM), the hypothesis that they are exponential random variables is reasonable.
The sites x where E, is large are seen as “ very favourable valleys”, or equivalently
as very deep traps, where the system should stay for a long time, in any sensible
definition of the dynamics.

2.2. Bouchaud’s random walk

We consider the continuous-time Markov Chain X (¢) on the set V' of vertices,
whose jump rates are given, when z and y are neighbours on the graph, by:

Wy y = ve B(1—a) Bz —aky)
and w, y = 0 if 2 and y are not neighbours.
Here v > 0 is a time-scale parameter, often set to 1, and a € [0,1] is a symmetry
index.
One can also write
Wyy = vr(z)~ D (y)e.
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These jump rates satisfy the detailed balance equation:

Z Wa yT(T) = Z Wy o T(Y)-

yeV yeVv

So that the measure 7 is reversible for the Markov Chain X, whatever the
value of the parameter a.

Notice nevertheless that the case where a = 0 is simpler. Then the jump rate
Wy y = ﬁ depends only on the random landscape at site z. The Markov Chain X
is simply obtained by a random time-change from the simple random walk on the
graph. This case is always easier to handle, and will be called the Random Hopping
Times dynamics (RHT dynamics). In this case, 7(z) is simply the mean time spent
at x.
Remark The important feature of the random variables 7(z) is the fact that they
are heavy-tailed:

1
P(r(z) >a)= prs

in particular their expectation is infinite, when « < 1. The whole model could in
fact be directly defined in terms of the 7(z) rather than from the energies (—E,),
and then one could assume that the 7(z) are i.i.d and in the domain of attraction
of an a-stable law.

2.3. Aging and two-point functions

The natural question about Bouchaud’s Markov Chain is to study its long-time
behaviour, either in the “quenched” regime, i.e almost surely in the randomness
of the energy landscape, or in the “annealed” regime, i.e after averaging in this
randomness. One would expect a dynamical phase transition, between the high
temperature phase where o > 1 and the low temperature phase where o < 1. A
general idea about the low temperature phase is that the system spends most of
its time in very deep traps: more precisely, that by time t, the chain has explored
a large part of the space and has found traps of depth depending on t. So that .,
at age t, with high probability the system sits waiting in a deep trap, whose depth
is t-dependent, for a time thus depending on t, before being able to get out and
find another deep trap. The beautiful idea put forward by the physics litterature
is “to think in the two-times plane”, i.e to consider the evolution of the system
between two large times, generally denoted t,, (like waiting time, ¢,, is the age of
the system) and #,, -+ ¢ (t is then the duration of the observation of the system),
and to let both t,, and t tend to infinity. The next step proposed by physicists is to
choose appropriate two-point functions, i.e functions of the evolution of the system
in the time interval (., t,, + t), in order to measure how much the system forgets
its past in this time interval. The simplest such two-point function is the quenched
probability that the system is in the same state at times t,, and t,, -+ t:

R (b, t + ) = P*(X (t) = X (ty + 1))
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Here the probability is quenched, i.e conditioned on the random medium, and the
superscript w denotes this randomness of medium, i.e the i.i.d collection of energies.
One will also consider the annealed version of this two-point function:

R(tw.tw + 1) = (R (tw, tw + 1))

where (, ) denotes the expectation w.r.t the medium. One also considers often
another two-point function, i.e the quenched probability that the system has not
jumped at all in the time interval (¢, £, + t):

¥ty bty + 1) = PY(X () = Xty + 5), Vs < t)
or its annealed conterpart
(t, tw + 1) = (I (ty, ty + 1))

Finding an “agime regime” is then proving that when t is too small as a
function of ¢,, (typically t = o(t])) for some “aging exponent” ), then such a two-
point function is close to one, and when it is large enough (typically ¢ >> ¢7)) it is
close to zero. Naturally it is even more desirable to find the limit of these two-point
functions for the critical regime (typically t = Ct7,).

This program is now understood rigorously for a few important graphs, which
we will now review. We will review the case of Z¢, first for d = 1 after the work of
Fontes-Isopi-Newman ([16],[17])and more recently Cerny (see [4],[14]), then the case
of d = 2 (see [5]) (for d > 2 see [14]). Then we treat the case of the complete graph
on M points when M tends to infinity. This is in fact the original Bouchaud model,
which was introduced as an ansatz for the dynamics of the Random Energy Model.
We will then survey the recent results on these dynamics of the REM ([1],[2],[3])
which will be the first results really pertaining to the topic of spin glass dynamics.

2.4. Two aging regimes for Bouchaud’s model on Z

Bouchaud’s model on Z has been first studied by Fontes-Isopi-Newman, when
a = 0, i.e for the Random Hopping Times dynamics. To understand aging in
dimension d = 1, it is important to introduce a limiting object which will play the
role of the random medium:

Definition 1 The random speed measure p.
Let (x;,v;) be a Poisson Point Process on R x (0, 00), with intensity measure
av~ Y drdv. We define o random measure p on R by

p= Zvi&;i.
2

Definition 2 The FIN (Fontes-Isopi-Newman) singular diffusion Z(s).
Let W(t) be a standard one-dimensional Brownian Motion, and l(t,y) its local
time at y. Define the random time-change:

(1) = [ 1(t,y)pldy)
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and its inverse
Pr(t) =inf(s,¢’(s) =1).
Then the FIN singular diffusion is Z(s) = W (WP (1)).
Notice that the Random speed measure and the FIN singular diffusion are
entirely independent of the symmetry parameter a, but depend only on the tem-
perature parameter a.

Then the following (annealed) aging result has been proved in [16] for a = 0,
and in [4] for general a’s.

Theorem 1 For any o < 1 and any a € [0, 1], the following limit exists
lim R(ty, (14 8)ty,) = f(8).
Ly —+00
Moreover the function f can be computed using the singular diffusion Z:
f(0) =(P(Z(1+6) = Z(1))).

This result shows that the two-point function R exhibits an aging regime,
t = 6ty independently of a. To be able to feel the influence of a, one should use
the other (annealed) two-point function II, which exhibits another aging regime
(see [4]). Let us introduce some notation: Denote by F the annealed distribution
function of the important r.v p(Z(1)

Fu) = {P(p(Z(1) < u)).

Here the brackets denote the average w.r.t the environment i.e the randomness of
the measure p. Let g, be the Laplace transform of the r.v 7(0)*

ga(A) = E[e77("]
and C the constant given by C = 2471[E(r(0)~22)]~a,
Theorem 2 For any o < 1 and any a € [0, 1], the following limit exists
tl}i_r}nooﬂ(tw,tw + 6t7)) = q,(0)

l1—a
1+4+a

where v = and this limit can be computed explicitly

gu(8) = /0 " 2 (COun ) dF (u).

In particular, when a = 0,

40 (6) = /:Oe—i dF(u).

These two results show that the Markov Chain essentially succeeds in leaving
the site it has reached at age t,, only after a time ¢ of the order of ¢],, but that for
time scales between ¢, and ¢,, it will jump out of the site reached at age ¢,, but
will not find an other trap deep enough and so will be attracted back to the trap it
reached at age t,,.
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2.5. Aging for Bouchaud’s model on Z2, the RHT case

In dimension 2, i.e on Z2, the only case studied is the case where a=0, the RHT
case. An aging regime is exibited (in [5])for both quenched two-point functions

Theorem 3 The following limits exists almost surely in the environment w,

lim R (ty, tw + Otw) = h(6),

£ —00O

t
1- @ ws vw - M
Jim 0% (ty, t +9lmw)—k(9)

The functions h and k satisfy

li =1 =1
lim h(9) = lim k(8)
and
lim h(f) = lim k(#) = 0.
B 00 B 00
In fact the functions h and k can be computed explicitly easily using arcsine laws
for stable processes. For instance

sin

h(8) = /01+9 w1 —u) " du.

™

Here again there is a difference between the subaging regime (i.e t = 6 mﬁ’;w)for
II))and aging regime(i.e ¢ = 8¢, for R), but much slighter than in dimension 1.
Indeed it is naturally much more difficult to visit a trap again after leaving it.

There is another important difference between d=1 and d=2, noticed by [16],
namely there is localisation in dimension 1 and not in dimension 2. More precisely,
in d=1

lim sup sup{P* (X (¢t) = 2)) > 0.
t—oo x€Z

And this property is wrong in dimension 2.

2.6. Aging for Bouchaud’s model on a large complete graph

Consider now the case where G is the complete graph on M points. We will
also study here only the case the RHT case, where a=0. We consider Bouchaud’s
Markov Chain X on @, started from the uniform measure. Then it is easy to see
that the times of jump form a renewal process and that the two-point function I1Y,
is the solution of a renewal equation. This renewal process converges, when M
tends to oo, to a heavy-tailed renewal process we now introduce.

Let

(oo}
Fo(t)y=1- a/ e~ (1) gy,
1
Consider Tl (¢, ty + t) the unique solution of the renewal equation

t
T (fans b + ) = 1 — o (fur + 1) +/ T (t — 1t — 1+ £) dF (1).
0
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Theorem 4 (see [10], [3]) Almost surely in the environment, for all t, and t,
114, (fuss oy + £) converges to Moo (toy, ty + 1).

It is easy to see that the limiting two-point function I (ty,t, + t) shows
aging. Let

1 oo 1
() = mcosec(Z) /9 (1+x)x>dx’

Obviously H(8) ~ 1 — C,0'~* when 6 tends to 0, and H(8) ~ C/,6~* when 6 tends
to oo .

Theorem 5
lim o (tw,tw + 0ty,) = H(H).

Loy —ro0

So that
. . w _
tulvlinoo A}l_r)nm 5 (t, o + ty) = H(G).
We will see in the next section how this simple result gives an approximation (in
a weak sense) for the much more complex problem of aging for the RHT dynamics
for the REM.

3. Aging for the Random Energy Model

We report here on the joint work with Anton Bovier and Veronique Gayrard,
see [1],[2], [3]. This work uses heavily the general analysis of metastability for
disordered mean-field models in [11], [12]. Let us first, following Derrida, define the
REM, often called the simplest model of a spin glass. A spin configuration o is a
vertex of the hypercube Sy = {—1,1}¥. As in Bouchaud model on the graph Sy
we consider a collection of 1.i.d random variables (E,),cs, indexed by the vertices
of Sy. But we will here assume that the distribution of the E, ’s is standard
Gaussian. We then define the Gibbs measure pig v on Sy by setting:

eBVNE;

Ha,N\O) =
5.~ () Zom
where Zg n is the normalizing partition function. The statics of this model are well
understood (see[15], and [13]). It is well known that the REM exhibits a static phase
transition at 8, = v21In 2. For 8 > f. the Gibbs measure gives ,asymptotically when
N tends to oo, positive mass to the configurations ¢ where the extreme values of
the order statistics of the i.i.d N(0,1) sample (E,),¢cs, are reached, i.e if we order
the spin configurations according to the magnitude of their (-) energies:
Eg(n > Eg(m >z EU(QN).

Then for any fixed k, the mass pig, ~(o'®) will converge to some positive random
variable. In fact the whole collection of masses s v (0¥)) will converge to a point
process, called Ruelle’s point process. Consider for any E, the set (which we have
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called the top in [2] and [3], and should really be called the bottom) of configurations
with energies below a certain threshold un(E).

Tn(E) = {0 € Sn, Eys > un(E)}.

We will choose here the natural threshold for extreme of standard Gaussian i.i.d
rv’s, i.e

E In(N In2) + In(47)
un(E) = V2NIn2 + - .
~(E) V2N1n2 2v2N In 2

Now we define discrete-time dynamics on Sy by the transition probabilities

%e‘ﬁﬁEi ,  if o and 7 differ by a spin-flip;
pr(o,n) =1 — e PYNED if g = (3.1)
0, otherwise.

Notice we have here truncated the negative values of the E,’s , this truncation
is technical and irrelevant. We could truncate much less drastically. Anyway the
states with very negative E’s wont be seen on the time scales we are interested in.

Then the idea defended by Bouchaud is that the motion of these REM dy-
namics when seen only on the deepest traps T (E) should be close to the dynamics
of the Bouchaud model on the complete graph for large A/. This is true only to
some extent. It is true that, if one conditions on the size of the top Tx(E) to be M,
then the sequence of visited points in Tx(E) has asymptotically, when N tends to
00, to the standard random walk on the complete graph with M points. Neverthe-
less Bouchaud’s picture would be completely correct if the process observed on the
top would really be Markovian, which is not the case, due to a lack of time scales
separation between the top and its complement. Nevertheless it is remarkable that
in a weak asymptotic form Bouchaud’s prediction about aging is correct. Let us
consider the following natural two-point function:

1
HN(N, m) = m Ueg(E) Hcr (”am)

where I, (n,m) is the quenched probability that the process starting at time 0 in
state o does not jump during the time interval (n, n +m) from one state in the top
Tn(E) to another such state.

Theorem 6 Let 3 > (. Then there is o sequence cy g ~ eﬁ\/ﬁ“N(E), such that for
any € >0

I n(en Btw, en, g(Ey + 1))
7

T

lim lim lim P(
ty—+00 E——00 N— 00 H(

)=1]> ) =0.
Remark 1 The rescaling of the time by the factor ¢y g shows that Bouchaud’s
trap model is a good approximation of the REM dynamics for the very large time
asymptotics, on the last time scale before equilibrium is reached. This is to be
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contrasted with the other model of glassy dynamics for spin glasses, as advocated
by Parisi, Mezard or Cugliandolo-Kurchan where the infinite volume limit is taken
before the large time limit. We will see in the next section an example of such a
very different aging phenomenon in a much shorter time-scale.

Remark 2 The REM is the first model on which this study of aging on very long
times scales (activated dynamics)has been rigorously achieved. This phenomenon
should be present in many more models, like the Generalized Random Energy
Model, which is the next achievable goal, or even in much harder problems like
the p-spin models for large enough p’s. The tools developped in [11][12] should be
of prime relevance.

4. Aging for the spherical Sherrington-Kirkpatrick
model

Studying spin glass dynamics for the Sherrington Kirkpatrick model might
seem premature, since statics are notoriously far from fully understood, as opposed
to the REM. Nevertheless, following Sompolinski and Zippelius, a mathematical
study of the Langevin dynamics has been undertaken in the recent years jointly with
A.Guionnet (see [7],[8],[19]). The output of this line of research has been to prove
convergence and large deviation results for the empirical measure on path space as
well as averaged and quenched propagation of chaos. The same problem has been
solved by M. Grunwald for discrete spins and Glauber dynamics, see [18]. The law
of the limiting dynamics (the self consistent single spin dynamics) is characterized
in various equivalent ways, from a variational problem to a non-Markovian implicit
stochastic differential equation, none of which being yet amenable, for the moment,
to a serious understanding.

The Sherrington-Kirkpatrick Hamiltonian is given by

N
1
H'IJV(;L') = ﬁ Z szjxi:b'j

1j=1

with a N x N random matrix J = (J3;)1<; j<n of centered i.i.d standard Gaussian
random variables. The Langevin dynamics for this model are described by the
stochastic differential system :

dal = dB] — U'(z])dt — \/—% > Juaidt, (4.2)
1<i<N

where B is a N-dimensional Brownian motion, and U a smooth potential growing
fast enough to infinity. It was proved in [8],[19] that, for any time T > 0, the
empirical measure on path space

1 N
Ll DI
g
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converges almost surely towards a non Markovian limit law QZO, when the initial
condition is a “deep quench”, i.e when zg = {xé,l < j < N} are iid. QZO is
called the self consistent single spin dynamics in the physics litterature. It is the
law of a self-consistent non Markovian process, which is very hard to study. One
expects that the long time behaviour of this process shows an interesting dynamical
phase transition, and in particular exhibits aging. A consequence of the convergence
stated above is that the limit of the empirical covariance exists, and is simply the
autocovariance of the law QZO :

N
o o
Cltw,tw +1) = lim_ N S oapat = /$tw$tw+t dQ} (z).

i=1

Unfortunately it is not possible to find a simple, autonomous equation satisfied
by C, or even by C and the so-called response function R. This is a very hard open
problem. But in the physics litterature (mainly in the work of Cugliandolo and
Kurchan) one find that the same program is tractable and gives a very rich picture
of aging for a large class of models, i.e the spherical p-spin models.

We report here on the joint work with A.Dembo and A.Guionnet [6], on the
simplest of such models, i.e the Spherical SK, or spherical p-spin model with p=2.
The general case of p > 2 is harder and will be our next step in the near future. In
this work, we study the Langevin dynamics for a spherical version of the Sherrington
Kirkpatrick (SSK) spin glass model.

More precisely, we shall consider the following stochastic differential system

N ‘ 1N
duf = 8% Jijuldt — (5 > (u])?)updt + dW} (4.3)

j=1 j=1

where f' is a uniformly Lipschitz, bounded below function on R™ such that f(x)/z —
oo as & — 0o and (W')1<;<n is an N-dimensional Brownian motion, independent
of {J;;} and of the initial data {u}}.

The term containing f is a Lagrange multiplier used to implement a “soft”
spherical constraint.

Here again the empirical covariance admits a limit

1

N
Cltu,ty +1) = lim > ai, e
g=1

But now, as opposed to the true SK model, this limiting two point function is
easily computable from an autonomous renewal equation. Indeed the induced ro-
tational symmetry of the spherical model reduces the dynamics in question to an
N-dimensional coupled system of Ornstein-Uhlenbeck processes whose random drift
parameters are the eigenvalues of a GOE random matrices.

Theorem 7 There exists a critical 3. such that: When starting from i.i.d initial
conditions: If 3 < (3., then

Clty, ty + 1) < Cgexp(—dgft — s})
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for some 65 > 0, Cg < oo and all (ty,1t).
If B = 8., then C(ty, ty+1t) — 0 as t — o0o. If t,,/t is bounded, then the decay

—1/2 ty/*
Fwtl”

18 polynomial t , and otherwise it behaves like
If B > B. then the following limit exists

lim Oty tw + 0tw) = F(6).

Loy —+00
Moreover if t > ty, > 1, then C(ty,t, + t)%3/4 is bounded away from zero
and infinity. In particular, the convergence of C(ty,ty + t) to zero occurs if and
only if £~ — oc.

In these much shorter time scales than for the former sections, the aging phe-
nomenon we exhibit here is quite different than the one shown in the REM. Here the
system has no time to cross any barrier, or to explore and find deep wells,it simply
goes down one well, in very high dimension. In some of these very many directions
(corresponding to the top eigenvectors of the random matrix J), the curvature of
the well is so weak that the corresponding coordinates of the system are not tightly
bound and are very slow to equilibrate. These very slow components are responsible
for the aging phenomenon here.
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Some Aspects of Additive Coalescents
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Abstract

We present some aspects of the so-called additive coalescence, with a focus
on its connections with random trees, Brownian excursion, certain bridges
with exchangeable increments, Lévy processes, and sticky particle systems.
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1. Additive coalescence in the finite setting

The additive coalescence is a simple Markovian model for random aggregation
that arises for instance in the study of droplet formation in clouds [13, 11], gravita-
tional clustering in the universe [19], phase transition for parking [10], ... As long
as only finitely many clusters are involved, it can be described as follows. A typical
configuration is a finite sequence 21 > ... > x, > 0 with Y.} z; = 1, which may be
thought of as the ranked sequence of masses of clusters in a universe with unit total
mass. Each pair of clusters, say with masses = and y, merges as a single cluster with
mass x +y at rate K(z,y) = = + y, independently of the other pairs in the system.
This means that to each pair (z,7) of indices with 1 < i < j < n, we associate
an exponential variable e(é, j) with parameter x; + «;, such that to different pairs
correspond independent variables. If the minimum ~; := min; <;« <, e(i, j) of these
variables is reached, say for the pair (ig, jo), i.e. 71 = elio,jo), then at time ;, we
replace the clusters with labels i¢ and jo by a single cluster with mass x;, + zj,.
Then the system keeps evolving with the same dynamics until it is reduced to a
single cluster.

An additive coalescent (X (¢),¢ > 0) started from a finite number n of masses
is a Markov chain in continuous times for which the sequence of jump times ~; <
... < -1 has a simple structure. Specifically, the increments between consecutive
coalescence times, v1,%2 =~ M1,- .-, Yn—-1 — ¥n-2, are independent exponential vari-
ables with parameters n — 1,n — 2,...,1, and are independent of the state chain

*Laboratoire de Probabilités et Modeéles Aléatoires and Institut universitaire de France, Uni-
versité Paris 6, 175, rue du Chevaleret, F-75013 Paris, France. E-mail: jbe@ccr.jussieu.fr
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(X(v),k=0,...,n ~1). This elementary observation enables one to focus on the
chain of states, and to derive simple relations with other random processes, as we
shall now see.

Pitman [17] pointed at the following connection with random trees. Pick a tree
7" at random, uniformly amongst the n”~2 trees on n labelled vertices. Enumerate
its n — 1 edges at random and decide that they are all closed at the initial time.
At time k = 1,...,n — 1, open the k-th edge, and say that two vertices belong
to the same sub-tree if all the edges of the path connecting those two vertices are
open at time k. If we denote by nY (") (k) the ranked sizes of sub-trees at time k,
then the chain Y™ = (Y™ (k),k = 0,...n — 1) has the same law as the chain of
states (X" (), k =0,...n — 1) of the additive coalescent started from the initial
configuration (1/n,...,1/n).

\V I (o
O s T S— ) S —

Forest derived at time 10 from a tree with 14 vertices

Second, we lift from [8] a different construction which is closely related to hash-
ing with linear probing, cf. [10]. We view the initial configuration z; > ... > z, >0
as the ranked jumps of some bridge b = (b(u),0 < u < 1) with exchangeable incre-

ments. That is we introduce Uy, ...,U,, n independent and uniformly distributed
variables and define
n
bu) = > 2 Loy —u),  0<u<l. (1.1)
i=1
0 Us B 7'|2 1
[ l
T3
bridge b

Next, we consider a path transformation (see the picture below) that has been
introduced by Takécs [21] and used by Vervaat [23] to change a Brownian bridge
into a normalized Brownian excursion. Specifically, we set

ew) = blu+ pmod 1) ~b(u-), 0<u<l, (1.2)
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where p stands for the location of the infimum of the bridge b.

excursion €

Finally, for every ¢ > 0, call t-interval any maximal interval [a,b[C [0,1] on
which

tu —e(u) < max{(tv —e(v))",0 <v <u}, for all u € [a,b].

graph of v — tv - €(v) and t-intervals (hatched)

It is easy to see that the t-intervals get finer as ¢ increases and tend to reduce
to the jump times of € when ¢ — 0o. Denote by F(t) the ranked sequence of the
sums of the jumps made by € on each t-interval, and by 0 < § < ... < 4,1 the
jump times of F'(-). Then the chain (F(d,—g-1),k =0,...n — 1) has the same law
as the chain of states (X(vg),k = 0,...n — 1) of the additive coalescent started
from the initial configuration (x1,...,2,).

2. Standard and other eternal coalescents

Dealing with a finite number of clusters may be useful to give a simple descrip-
tion of the dynamics, however it is a rather inconvenient restriction in practice. In
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fact, it is much more natural to work with the infinite simplex

S = {:v: (z1,22,...) s 2; > 0 and in: 1}

i=1

endowed with the uniform distance. In this direction, Evans and Pitman [12] have
shown that the semigroup of the additive coalescence enjoys the Feller property on
S*. Approximating a general configuration z € S* by configurations with a finite
number of clusters then enables us to view the additive coalescence as a Markovian
evolution on &*. It is interesting in this setting to consider asymptotics when the
coalescent starts with a large number of small clusters, which we shall now discuss.

Evans and Pitman [12] have first observed that the so-called standard additive
coalescent (X()(t), —o00 < t < o0) arises at the limit as n — oo of the additive
coalescent process (X () (t),—1logn < t < o) started at time —3logn with n
clusters, each with mass 1/n. This limit theorem is perhaps better understood if
we recall the connection with the uniform random tree 7() on n vertices that was
presented in the previous section. Indeed, if one puts a mass 1/n at each vertex
and let each edge have length n=/2, then 7(" converges weakly as n — oo to the
so-called continuum random tree 7(°9); see Aldous [1]. More precisely, () jg a
compact metric space endowed with a probability measure (arising as the limit of
the masses on vertices) which is concentrated on the leaves of the tree, and a skeleton
equipped with a length measure which is used to define the distance between leaves.
This suggests that the standard additive coalescent might be constructed as follows:
as time passes, one creates a continuum random forest by logging the continuum
random tree along its skeleton and consider the ranked sequence of masses of the
subtrees. This yields a fragmentation process, and the standard additive coalescent
is finally obtained by time-reversing this fragmentation process. Aldous and Pitman
[3] have made this construction rigorous; more precisely they showed that the tree
7(%) has to be cut at points that appear according to a Poisson point process on
the skeleton with intensity given by the length measure. This representation yields
a number of explicit statistics for the standard additive coalescent. For instance, for
every t € R, the distribution of Xt(oo) is given by that of the ranked sequence & >
& > ... of the atoms of a Poisson measure on 0, co[ with intensity e~*(272®)~'/2dx
and conditioned by & + - = 1.

The continuum random tree bears remarkable connections with the Brownian
excursion (cf. for instance Le Gall [14]), and one naturally expects that the stan-
dard additive coalescent could also be constructed from the latter. This is indeed
feasible (see [7] and also [10]) although its does not seem obvious to relate the fol-
lowing construction with that based on the continuum random tree. Specifically, let
(e(s),0 < s < 1) be a Brownian excursion with unit duration, and for every ¢ > 0,
consider the random open set

Gty = {S €[0,1] : ts —e(s) < max (tu — e(u))} . (2.1)

0<u<ls

Then G(t) decreases as t increases, and if we denote by F'(t) the ranked sequence of
the lengths of its intervals components (which of course are related to the so-called
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t-intervals of the preceding section), then (F(e™!),~oc < t < 00) is a standard
additive coalescent.

More generally, Aldous and Pitman [4] have characterized all the processes that
may arise as the limit of additive coalescents started with a large number of small
clusters. They are referred to as eternal additive coalescents as these processes are
indexed by times in | —~ o0, 00[. They can be constructed by the same procedure as
in [3] after replacing the continuum random tree 7(%) by a so-called inhomogeneous
continuum random tree.

An alternative construction was proposed in [8] and [15]. Specifically, one may
replace the standard Brownian excursion € by that obtained by the Takacs-Vervaat
transformation (1.2) where (b(s),0 < s < 1) is now a bridge with exchangeable
increments, no positive jumps and infinite variation (which arises as the limit of
elementary bridges of the type (1.1), see Kallenberg [16]). The ranked sequence
F(t) of the lengths of the interval components of G(t) defined by (2.1) then yields
a fragmentation process, and by time-reversal, (F'(e™?), —o0 < t < 00) is an eternal
additive coalescent.

Roughly, this construction can be viewed as the limit of that presented in
Section 1 when the additive coalescent starts from a finite number of clusters.

3. Eternal coagulation and certain Lévy processes

A long time before the notion of stochastic coalescence was introduced, Smolu-
chowski [20] considered a family of differential equations to model the evolution in
the hydrodynamic limit of a particle system in which particles coagulate pairwise
as time passes. It bears natural connections with the stochastic coalescence; we
refer to the survey by Aldous [2] for detailed explanations, physical motivations,
references ... Typically, we are given a symmetric kernel K :]0, oo[x]0, oo[~+ [0, oo
that specifies the rate at which two particles coagulate as a function of their masses.
Here, we take of course K(x,y) = z + y. I we represent the density of particles
with mass dz at time ¢ by a measure p,(dz) on ]0, co[, then

d 1

gl f) =5 /1o,oo[><1o,oo{ (f@+y) = f(x) = F) (@ + y)p(de)p(dy),  (3.1)

where f a test function and {(p, f) = [ f(2)pe(dx). Motivated by the preceding
section, we are interested in the eternal solutions of (3.1}, in the sense that the time
parameter ¢ is real (possibly negative). It is proven in [9] that every eternal solution
(1)ter subject to the normalizing condition [z, (da) =1 (i.e. the total mass of
the system is 1), can be constructed as follows.

First, define the function

1 ,
T,z 4(q) = 502(12—%/]0 [(e_qu —1+gqz)Adz), ¢>0, (3.2)

where 02 > 0 and A is a measure on 0, oo[ with [(2 A 2?)A(dz) < oo. We further
impose that either 0? > 0 or [zA(dz) = co. Next, let (-, s) be the inverse of the
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bijection ¢ — ¥,2 4 (sq) + ¢. One can check that ®(g,e") can be expressed in the
form

B(q,!) = [ (e i), 420, (3.3)

where (p;)rer 18 then an eternal solution to Smoluchowski’s coagulation equation.
For instance, when ¢ = 1 and A = 0, £ is a standard Brownian motion and we
recover the well-known solution

—t —2
p(dx) = ° exp (_me >d;r, teR,z>0.
2w ad 2

This invites a probabilistic interpretation. Indeed, (3.2) is a special kind of
Lévy-Khintchine formula; see section VIL1 in [3]. More precisely, there exists a
Léuvy process with no positive jumps, & = (£.,7 > 0), such that

E (exp (¢&)) = exp (r¥,24(q)) , ¢ >0.

It is then well-known (e.g. Theorem VIL1 in [5]) that the first passage process
T = inf{r>0:s6 +r >}, x>0
is a subordinator with

E (eXp (-ngES))) = exp(—2®(q,5)), g >0,

where the Laplace exponent ®(-,s) is the inverse bijection of ¢ = ¥,z 5 (sq) + q.
Thus (3.3) can be interpreted as the Lévy-Khintchine formula for ®(-,s), and we
conclude that the eternal solution p; can be identified as the Lévy measure of the
subordinator T for s = et.

This probabilistic interpretation also points at a simple random model for

cl
aggregation of intervals. Indeed, the closed range 7(¥) = {ngs),:v > O} of T()

induces a partition of [0, oo into a family of random disjoint open intervals, namely
the interval components of G(s) = [0,00[\7*). We now make the key observation
that

76 TG for 0 < s' < s, (3.4)

because an instant at which r — s&,. + r reaches a new maximum is always also
an instant at which r - §'&,. + r reaches a new maximum. Roughly, (3.4) means
that the random partitions get coarser as the parameter s increases; and therefore
they induce a process in which intervals aggregate. The latter is closely related to
a special class of eternal additive coalescents, and has been studied in [7, 18] in the
Brownian case, and in [15] in the general case.

4. Sticky particle systems

Sticky particle systems evolve according to the dynamics of completely inelastic
collisions with conservation of mass and momentum, which are also known as the
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dynamics of ballistic aggregation. This means that the velocity of particles only
changes in case of collision, and in that case, a heavier cluster merges at the location
of the shock with mass and momentum given by the sum of the masses and momenta
of the clusters involved. This has been proposed as a model for the formation of large
scale structures in the universe; see the survey article [22]. We now have two quite
different dynamics for clustering: on the one hand the ballistic aggregation which
is deterministic, and on the other hand the additive coalescence which is random
and may appear much more elementary as it does not take into account significant
physical parameters such as distances between clusters and the relative velocities.
Nonetheless, there is a striking connection between the two when randomness is
introduced in the deterministic model, as we shall now see.

We henceforth focus on dimension one and assume that at the initial time,
particles are infinitesimal (i.e. fluid) and uniformly distributed on the line. The
evolution of the sticky particle system can then be completely analyzed in terms of
the entropy solution to a single PDE, the transport equation

Ou + udyu = 0. (4.1)

Here u(z,t) represents the velocity of the particle located at z at time ¢, and the
entropy condition imposes that for every fixed ¢ > 0, the function u(-,¢) has only
discontinuities of the first kind and no positive jumps (the latter restriction accounts
for the total inelasticity of collisions). Provided that the initial velocity u(-,0)
satisfies some very mild hypothesis on its rate of growth, there is a unique weak
solution to the equation (4.1) which fulfills the entropy condition, and which can
be given explicitly in terms of u(-,0).

We assume that the initial velocities in the particle system are random, and
more precisely

w(r,0)=0forr <0 and (u(r,0),r >0) £ (&,r >0y,

where £ denotes the Lévy process with no positive jumps which was used in the
preceding section.

Roughly, the dynamics of sticky particles are not only deterministic, but also
induce a loss of information as time goes by, in the sense that the initial state of
the system entirely determines the state at time ¢ > 0, but cannot be completely
recovered from the latter. In this direction, let us observe the system at some fixed
time ¢ > 0, i.e. we know the locations, masses and velocities of the clusters at this
time. Let us pick a cluster located in [0, oo[, using for this only the information
available at time ¢ (for instance, we may choose the heaviest cluster located at
time ¢ in [0, 1]). We shall work conditionally on the mass of this cluster, and for
simplicity, let us assume it has unit mass. For every r €]0,¢[, denote by M(r) =
(mq(r),ma(r),...) the ranked sequence of masses of clusters at time r which, by
time ¢ have aggregated to form the cluster we picked, so M(r) can be viewed as a
random variable with values in S*. Then the time-changed processes

t
]W(t(l- >>, —-00 < 8§ < 0
tef




22 Jean Bertoin

is an eternal additive coalescent. This was established in [6] in the case of Brownian
initial velocity; and the recent developments on eternal additive coalescents made
in [4, 8, 15] show that the arguments also applies for Lévy type initial velocities.
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Localization-Delocalization Phenomena
for Random Interfaces

Erwin Bolthausen®

Abstract

We consider d-dimensional random surface models which for d = 1 are
the standard (tied-down) random walks (considered as a random “string”).
In higher dimensions, the one-dimensional (discrete) time parameter of the
random walk is replaced by the d-dimensional lattice Z¢, or a finite subset
of it. The random surface is represented by real-valued random variables ¢;,
where i € Z%. A class of natural generalizations of the standard random walk
are gradient models whose laws are (formally) expressed as

Ps) = gow =X V6~ [Tas.

V :R - RT, convex, and with some growth conditions.

Such surfaces have been introduced in theoretical physics as (simplified)
models for random interfaces separating different phases. Of particular inter-
est are localization-delocalization phenomena, for instance for a surface inter-
acting with a wall by attracting or repulsive interactions, or both together.
Another example are so-called heteropolymers which have a noise-induced
interaction.

Recently, there had been developments of new probabilistic tools for such
problems. Among them are:

e Random walk representations of Helffer-Sjdstrand type,
e Multiscale analysis,
e Connections with random trapping problems and large deviations.

We give a survey of some of these developments.

2000 Mathematics Subject Classification: 60.
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Gradient models are an important class of random interfaces and random
surfaces. In the mathematical physics literature they are often called “effective
interface models”. The (discrete) random surface is described by random variables
(¢2)zev » where V is Z4 or a subset of it. The ¢, itself are either Z-valued or K-
valued. We will mainly concentrate on the latter situation which is easier in some
respects. If V' is a finite subset of Z%, the law Py of ¢ = (A2) yey is described via a
Hamiltonian

1

Hy(9) € 5 3 pu-0U(—d)+ Y plu-oU(d). (1)
z,yeV eV, y¢v

N

where U : R — R is symmetric and convex, and p : Z? — [0,1] is a symmetric
probability distribution on Z<%. The above choice of the Hamiltonian corresponds
to 0 boundary conditions. Of course, one can consider more general ones, where
the second summand is replaced by er‘ yav ply—x)U (¢ —1by), ¢ being a
configuration outside V. We will be mainly interested in the nearest neighbor case

p(x) =1/2d, for jz] = 1, and p(z) = 0 otherwise, but more general conditions can
also be considered. We always assume that the matrix Q@ = (g;;) given by
def
5 = Z%%‘p (z) (2)
€

is positive definite, and that p has exponentially decaying tails. Furthermore, the
random walk (7;),cy with transition probabilities p is assumed to be irreducible.
The Hamiltonian defines a probability distribution on RY by

1
Py (dp) = ——exp[~Hy (¢)] [] do., (3)
‘ reV
where d¢, denotes the Lebesgue measure. Zy is the norming constant
ZV d:ef/ eXp H ddb: (4)
RY reV

In the one-dimensional case d = 1, Py is the law of a tied down random
walk: Let &, ¢ > 1, be i.i.d. random variables with the density const xe~U(®) If

V ={1,...,n}, then Py is the law of the sequence (Z;zl (Sj)1<‘< , conditioned
<i<n

on Z"H & =0.

A special case is the harmonic one with U (z) = 2?/2. Then Py is a Gaussian
measure on RV which is centered for 0-boundary conditions. We usually write
Pharm in this case. The law is therefore given by its covariances

f rm
v () f b0, dPB™,

These covariances have a random walk representation: If V' is a finite set then

v (2,y) = B (210—1 L (m)) : (5)
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where (1;),.., under P, is a discrete time random walk on 74 starting at = and with
transition probabilities P, (1 = y) = p(y — 2) . 7v is the first exit time from V. As
a consequence of this representation one sees that the thermodynamic limit

harm def . ha r def d
pram = nh_{gOPVnrm’ Voo = {-n,-n+1,...,n} (6)

exists for d > 3. P1¥™ is the centered Gaussian measure on R%" whose covariances
are given by the Green’s function of the random walk. It is important to notice
that this random field has slowly decaying correlations:

const

Yoo (T,Y) R ————, |z —y| = .
lz -yl

For d = 2, the thermodynamic limit does not exist, and in fact
EV™ (¢g) = const x logn, n — oo.

For d = 1, the variance grows of course like n in the bulk. The harmonic surface is
therefore localized for d > 3, but not for d = 1, 2.

Many of these properties carry over to non-harmonic cases with a convex and
symmetric interaction function U in (1). Of particular importance is that there is
a generalization of the representation (5), the Helffer-Sjostrand representation, see
[26]. The random walk (ny) has to be replaced by a random walk in a dynamically
changing random environment. Using this representation, many of the results for
the harmonic case can be generalized to the case of a convex U, although often
not in a quantitatively as precise form as in the harmonic case. For a probabilistic
description of the Helffer-SjGstrand representation, see [20].

The main topic of this paper are effects arising from interactions of the random
surface (¢,) with a “wall”. The simplest case of such a wall is the configuration

= 0. There are many type of interactions which had been considered in the
literature, both in physics and in mathematics. The simplest one is a local attraction
of the surface to this wall. It turns out that an arbitrary weak attraction localizes
the random field in a strong sense, and in all dimensions. This will be discussed
in a precise way in Section 2.. Interesting localization-delocalization phenomena
may occur when mixed attractive and repulsive interactions are present, with phase
transitions depending on the parameters regulating the strength of the interactions.
Naturally, these phenomena are best understood for the one-dimensional case. A
simple example is the following one, which is discussed in details in [25]: Let ¢¢ =
0,01,...,02n-1, 02, = 0be a discrete time Z-valued, and tied-down, simple random
walk, i.e. P, is simply the uniform distribution on all such paths which satisfy
lpg — dpp—1] = 1. Introducing an arbitrary pinning to the wall in the form

Pus )= 5o [3377 To (00| Pule), 530

strongly localizes the “random string”, i.e. sup, , En g (¢2) < oo holds for all
B > 0. Furthermore, the correlations Enﬁ (¢apy) are exponentially decaying in

|z — y|, uniformly in n. These facts are easily checked.
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On the other hand, if the string is confined to be on one side of the wall,

the situation is completely different. Let QF def {p:¢, 20, 1 << 2n~1},
and P, () L P s (-1 94,) - Then there is a critical 3. > 0 such that the above
localization property holds for 8 > 3., but not for 3 < 8., where the path measure
converges, after Brownian rescaling, to the Brownian excursion. For a proof of this
so called “wetting transition”, see [25]. More precise information has been obtained
recently in this one-dimensional situation in [28].

There are similar phase transitions for more complicated models. Some of
them will be discussed in Section 3. and Section 4.. We begin in the next section
by discussing the pinning effect alone mainly in the difficult two-dimensional case.

2. Pinning of two-dimensional gradient fields

We consider now a gradient field (3), but we modify it by introducing an
attractive local pinning to the wall {¢ = 0}. This is often done by modifying the
Hamiltonian in the following way: Let « : R — R™ be symmetric and with compact
support. Then we put

Hyy (¢) = Hv () + D ¥ (¢a) - (7)

reV

Evidently, the corresponding finite volume Gibbs measure favours surfaces which
have the tendency to stick close to the wall. It should be emphasized that this is a
much weaker attraction than in a so-called massive field, where one takes 1 to be
convex, for instance ¢ (2) = 2?. A formally slightly easier model can be obtained by
not changing the Hamiltonian, but replacing the Lebesgue measure as the reference
measure by a mixture of the Lebesgue measure and a Dirac measure at 0. This
corresponds to the following probability measure on RY :

Py (dg) Zl exp[~Hy (8)] [] (db + 200 (d6)) , £ > 0. (8)

Ve zeV

This measure can be obtained from measures defined by the Hamiltonian (7) via
an appropriate limiting procedure. The nice feature of (8) is that Py . can trivially
be expanded into a mixture of “free” measures: We just have to expand out the
product:

Protd) = 3 e ZA L om0 [[ doe T oo(dée)  (9)

ACV A Za z€A zEV\A
Al L
= Z e\ Z4 podg),
ACV Ve

where P4 is the measure defined by (3), extended by 0 outside A. Remark that

Ve (A) d:ef E[V\A[ZAZ—A
Ve

’
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defines a probability distribution on the set of subsets of V. Therefore, we have
represented I?’vﬁ as a mixture of free measures P4. It should be remarked that
similar but technically more involved expansions are possible also in the case of the
Hamiltonian (7). The case of ¢ (x) = —alj_y4 (2) is discussed in [10]. Probably,
more general cases could be handled with the help of the Brydges-Frohlich-Spencer
random walk representation (see [15]), but the results presented here have not been
derived in this more general case. For the sake of simplicity, we stick here to the
J-pinning case (8).

The above representation easily leads to a representation of the covariances
of the pinned field. This is particularly simple in the harmonic case U (z) = 22/2,
where one gets

A harm 74—1
J oo, pm o = 3 v e (£, 1,00)
ACv
The problem is therefore reduced to a problem of a random walk among random

traps: The distribution vv,. defines a random trapping configuration, let’s denote

it by A, i.e. Prrap(A=VU(V\A4)) def vve (A}, and the covariances of our pinned

measure are given in terms of the discrete Green’s function among these random
traps which are killing the random walk when it enters one of these traps. A
difficult point is a precise analysis of the distribution of A4, and a crucial step is a
comparison with Bernoulli measures. The two-dimensional case is the most difficult
one. In three and more dimensions, a comparison of the distribution of A with a
Bernoulli measure is quite easy.

It turns out that the pinning localizes the field in a strong sense. First of all,
the variance of the variables stay bounded as V 1 Z?. Secondly, there is exponential
decay of the covariances, uniformly in V. Results of this type have a long history.
For d > 3, and for the harmonic case with pinning of the type (7), the localization
has been obtained in [15]. In [24], boundedness of the absolute first moment has
been proved for d = 2, but no exponential decay of the correlations. The first proof
of exponential decay of correlations in the two-dimensional case has been obtained
in [7] for the harmonic case. One drawback of the method used there was that it
uses reflection positivity, which holds only under restrictive assumptions on p. Also,
periodic boundary conditions are required, and so the results are not directly valid
for the O-boundary case. A satisfactory approach had then been obtained in [21]
and [27]. The quantitatively precise results presented here are from [10], where the
critical exponents for the depinning transition £ — 0 have been derived, including
the correct log-corrections for d = 2.

We define the mass m. (x), z € S, by

def

.1 . oA
me (z) = — Jim % log ‘/1,1&10[ Ev. (doPkay) -

The most precise results we have are for the harmonic case:

Theorem 1 ) If d =2, then for small enough ¢ :

: f~harm 2 “OgEi
lim EPA™ (¢5) — DYy

/ < t % log |1
tim By < const x log [log ]
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b) If d = 2, then for all x € S*' and small enough ¢ :

\/E harm

< mM" () < const X
lloge|

372 = %
¢) If d > 3, then for all x € S?! and small enough ¢ :

VE

loge[*/*

const x

const x /2 < mI™ (z) < const x/E.
The constants depend on the dimension d and p only.

The proof of the results depends on a comparison of the laws of the trapping
configurations with Bernoulli measures. This is particularly delicate in d = 2. The
following result is the key comparison of the distribution of traps with Bernoulli
measures. We formulate it only in the harmonic case. Somewhat weaker results are
proved in [10] also for the anharmonic situation.

Theorem 2 Let A. v be o random subset of V with P (A. v = V\A) = vy (4).
Assume d =2, and U (z) = 2%/2.

a) Let a > 0. There exists g > 0 and C («) > 0 such that for € < g, any finite
set V. C Z9 and any B CV with dist (B,V°) > ™%, one has the estimate

|B|
PUyvnB=0)>(1-Ca) —— | .
log |
b) There exist C > 0 and g9 > 0 such that for ¢ < ¢, any finite set V C Z9, and
all B CV, one has

IB
PA.vNB=0)< (1 - C#)
Hlogei

The case of dimension d > 3 is simpler and somewhat better estimates can
be obtained. With the help of the above theorem and the random walk repre-
sentation (5), a comparison can be made, relating the quantities in Theorem 1 to
random trapping problems for Bernoulli traps. For instance, when investigating the
variance, we get

T—1

B (42) = EurapsEo (Z 1 (m)) = Eiraps 3 1t (0) P4y (Ao = 0),
t=0 t=0

where A is the random set of points with traps, as introduced above, 7 is the first
entrance time into this trapping set and mjp, is the set of points visited by the
random walk between time 0 and t. Pg;)o refers to a random walk bridge from 0 to
0 in time ¢, and p; (z), = € Z? are the transition probabilities of the random walk.
With the help of Theorem 2, the right hand side can be estimated in terms of a
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Bernoulli trapping problem. If the traps are Bernoulli on Z9, with probability p
that a trap is present at a given site, then (in the V' 1 Z9 limit)

E’crapszpt b (Ao =0) = i (0) B! exp [|njo.| log (1 - p)]

There are classical results about the right hand side, due to Donsker and Varadhan
[23], Sznitman [30], and most recently in [1] investigating such questions. The clas-
sical Donsker-Varadhan result is not sharp enough to prove the results of Theorem
1, but a modification of the arguments in [1] is exactly what is needed. The follow-
ing result is a discrete but somewhat weaker version of one of the main results in

1.

Proposition 3 Assume d = 2. There exists a function BT 3 a — r(a) € RT,
satisfying lim, o 7 (a) = 00, such that

t t —r a
Foy (|’7[M| “m> .

for large enough t.

(In [1], a variational formula for r (a} is given, in the continuous Wiener sausage
case.) This proposition and Theorem 2 lead to the appropriate variance estimates
in Theorem 1 a).

For the anharmonic case, the results are less precise, but we still get the correct
leading order dependence of the variance on the pinning parameter . Assume that
there is a C' > 0 such that

1/C <U" (2) < C, Va.
Under this condition we have the following result:

Theorem 4 Assume d = 2. There exists a constant D, depending on p, such that

1 .
o lloge| < sup Ev,. (¢5) < D |loge].

The upper bound is in [21] and [27], and the lower bound is in [10].

3. Entropic repulsion and the wetting transition

In view of the example of Fisher discussed shortly in Section 1. it is natural to
ask similar question for higher-dimensional interfaces. The first task is to investigate
the effect of a wall on the random surface without the presence of a pinning effect.
There are different ways to take the presence of a wall into account. We have
mainly worked with a “hard wall”, i.e. where the measure is simply conditioned on

the event QF; def {¢: ¢ > 0Vz € V}. There are other possibilities, for instance by



32 Erwin Bolthausen

introducing a “soft wall”. This means that the Hamiltonian (1) is changed by adding
Yowev [ (92), where f: R — R satisfies lim, o f () = 0, lim, o f (2) = 00. We
will only work with a hard wall here, and consider the conditional law for the random
field P (iQQL)

What is the effect of the presence of the wall on the surface? The crucial
point is that the surface has local fluctuations, which push the interface away from
the wall. On the other hand, the long-range correlations give the surface a certain
global stiffness. In order to understand what is going on, consider first the case
where there are no such long-range correlations, in the extreme case, where the
¢, are just ii.d. random variables. In that case, evidently nothing interesting
happens: The variables are individually conditioned to stay positive. In particular,
E ((MQ;*) stays bounded for V' 1 Z% This picture remains the same for fields with
rapidly decaying correlations. However, gradient fields behave differently, and so
do interfaces in more realistic statistical physics models. As the surface has some
global stiffness, the energetically best way for the surface to leave some room for the
local fluctuations is to move away from the wall in some global sense. This effect is
called “entropic repulsion” and is well known in the physics literature.

The first mathematically rigorous treatment of entropic repulsion appeared in
the paper by Bricmont, Frohlich and El Mellouki [14]. In a series of papers [4], [17],
[18], and [6], sharp quantitative results have been derived, the most accurate ones
for the harmonic case.

In most of these and related questions, the two-dimensional case is the most
difficult but also the most interesting one. In fact, interfaces in the “real world” are
mostly two-dimensional.

We first present the results for d > 3. For gradient non-Gaussian models, some
results in the same spirit have been obtained in [18], but they are not as precise as
the ones obtained in the Gaussian model. The case where one starts with the field
P, (which exists for d > 3) is somewhat easier than the field on the finite box V,,
with zero boundary condition. In the latter case, there are some boundary effects
complicating the situation without changing it substantially. This is investigated
in [17]. Despite the fact that we consider Py, we consider the wall only on a finite
box, i.e., we consider P, (iﬂfn) , and we are interested in what happens as n — oc.
We usually write ;) for an Our first task is to get information about Ps, (£4}).
The following results are proved only for the case of nearest neighbor interactions,
i.e. when p(z) =1/2d for jz| = 1.

Theorem 5 Let d > 3. Then

a)
PR () = exp [—2T(0)cap (V) n?~2logn (1 + o(1))]

where V = [~1, l]d, cap(A) denotes the Newtonian capacity of A

cap(4) L inf { VI : £ > 1a},

and T(0) = 70 (0,0) is the variance of ¢o under P1™,
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b)
ER2™ (o]2F) = 24/T(0)log n(1 + o(1)).

‘CP(E‘OMMQ[Qj) ((d)x - Eoo(d)a:iﬂ;t))wezd) - Péloarm weakly,

as 1. — 00, where Lpyam(.qxy denotes the low of the field under the condi-
tioned measure.

Part b) gives the exact rate at which the random surface escapes to infinity,
while part ¢) states that the effect of the entropic repulsion essentially is only this
shifting: after subtraction of the shift by the expectation, the surface looks as it does
without the wall. However, there is some subtlety in this picture. From the theorem
in particular part ¢), one might conclude that lim,, Péloaer—l Q) =1,

24/T(0)logn * ™
where 6, : RZ* — RZ” is the shift mapping 6, ((B2)peza) = (¢2+ @) cpa. But
this is not the case. In fact Pharmg—! (€4F) converges rapidly to 0. As part

24/ (0) logn

¢) states only the weak convergence, this is no contradiction. Parts a) and b) of
Theorem 5 had been proved in [4], part c) in [18].

We come now to the two-dimensional case which is considerably more deli-
cate than the higher dimensional one. We again consider only the harmonic case.
We write P, for Py, . If the lattice is two-dimensional, a thermodynamic limit of
the measures P, does not exist as the variance blows up. P2 (Qt) is of or-
der exp[~cn], as has been shown in [17]. As remarked above, this is mainly a
boundary effect and is not really relevant for the phenomenon of the entropic re-
pulsion. To copy somehow the procedure of the case d > 3, we consider a subset
D c V = [~1,1]® which has a nice boundary and a positive distance from the

boundary of V. To be specific, just think of taking D 4F AV for some A < 1. Then

let D, 4f . DNZ? and Q%n def {¢. > 0,2 € D,}. In contrast to P, (%)), P, (Q%n)
decays much slower, but still faster than any polynomial rate. In [6] we proved the
following result:

Theorem 6 Assume d=2 and let g def 1/2m7.

a)

. harm (y+ — R
5 Tlogmy 08 T (0] = =2acap (D).

where capy (D) is the relative capacity of D with respect to V':
capy (D) % inf{HV‘foj CfeHYV), f > 1onD}.

Here, H} (V') is the Sobolev space of (weakly) differentiable functions f with
square integrable gradient and flav = 0.
b) For any e >0
lim sup Pp*™ (|¢, — 2/glogn| > elogn|Q}, ) =0

N—r OO il?EDn
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This corresponds to parts a) and b) of Theorem 5. Part ¢) does not make sense
here as PI2™ does not exist. Remark that under the unconditional law Pharm |4, |
is typically of order y/logn in the bulk.

Roughly speaking, the delicacy in the two-dimensional case is coming from the
fact that the relevant “spikes” responsible for the repulsion are thicker than in the
higher dimensional case, where essentially just very local spikes are responsible for
the effect. This makes necessary to apply a multiscale analysis separating the scales
of the spikes.

It is well-known that the two-dimensional harmonic field has much similarity
with a hierarchical field defined in the following way: We call a sequence a =
s ...y, o € {0,1} a binary string. £(a) = m is the length. @ is the empty
string of length 0. We write T for the set of all such strings of finite length, and
Ty C T for the set of strings of length m. If « € Ty, 0 < k < m, we write [a]; for
the truncation at level k :

def
[C!leg P Ckm]k = Qs ...0.

If a, B € T;;, we define the hierarchical distance

drr (0, 8) % m — max {k < m : [a]e = 8]} -
We consider the following family (X, )aer,, of centered Gaussian random variables
by
COV(X&?Xﬁ) :7(m_dH(aa/3))a (10)

with a parameter v > 0. We argue now that there is much similarity between the
two dimension harmonic field (¢;)zep, and the field (X)o7, - To see this, we
first match the number of variables, i.e. put 2™ = |D,|. As |D,| is of order n?,
this just means that m ~ 2logn/log2. Then we should also match the variances,
i.e. take v = g/2log2. For the free field (¢,), it is known that cov(¢,, ¢, ) behaves
like g (logn)/loglx — y|, if z,y are not too close to the boundary. This follows
from the random walk representation. Comparing this with (10), we see that for
any number s € (0, g)

#1{y € Dy : cov (dy, ¢y) < slogn} ~ F#{B € Tpn : cov (Xa, Xg) < slogn} (11)

in first order, for any =z € D,, o € T,,. Therefore, the two fields have roughly
the same covariance structure. The hierarchical field is much simpler and is very
well investigated (see e.g. [2], [12], [22]), and the entropic repulsion is much easier
to discuss than for the harmonic field. The approach to prove Theorem 6 consist
in introducing a hierarchical structure in the (¢, )-field with the help of successive
conditionings on a hierarchy of scales, and then adapt the methods from the purely
hierarchical case.

We come now back to the question of a wetting transition, as discussed in
the one-dimensional case by Michel Fisher [25]. One is interested in the behavior
of Py, (-] Q) for large V, where Py, is the pinned measure introduced in (8).
Unfortunately, we are not able to describe this path measure. The simplest way to
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discuss the wetting transition is in terms of free energy considerations. For this we
expand Py (QF) (see (9)):

. , Z
VA A
Pre (2) = D e [Z—PA () -
ACV Vie
It is plausible, that pinning “wins” over entropic repulsion, if this sum is much

larger than the contribution to the sum coming from subsets A having essentially
no pinning sites, i.e. A = V. It is therefore natural to consider the quantity

w1 ZvePeo () 1 Zv,.Py. (OF)
lef | log 25~ LE AV log —————=.
P+ (e) Vlfrgd Vi o8 Zv Py (Qi) VIT%”’ Vi o8 Zy

The limit is easily seen to exist. It is also not difficult to see that py (¢) > 0 for
large enough € > 0, and in any dimension (see [9]). Similar to the discrete random
walk case in [25], the Gaussian model has a wetting transition, too, for d = 1: There
exists an ¢ > 0, such that py (6) = 0 for & < £cri¢. This is easy to see for d = 1.
For the harmonic model, there is remarkably no such transition for d > 3, but for
d = 2 there is a wetting transition.

Theorem 7 [5] For d > 3, p*™ (¢) > 0 for all € > 0.

Theorem 8 [16] For d = 2, there exists e23™™ > 0, such that pt*™ (e) = 0 for
£ < Eharm.

crit

Remarkably, too, Caputo and Velenik have proved that such a wetting transi-
tion exists for d > 3 for some non-harmonic models, e.g. for U (x) = |z|.

There are many open questions concerning this wetting transition, which is
very poorly understood (mathematically). For instance, the methods discussed in
Section 2. do not apply, and we are not able to prove that in the pinning dominated
region py (e) > 0, the measure is pathwise localized, i.e. that

sup sup Py . (62 | ) < oo,
vV ozeVv

which certainly should be expected. To discuss the nature of the transition (first
order or second order?) is probably even much more delicate.

4. Localization-delocalization transitions for one-
dimensional copolymers

We stick here to the standard simple random walk case where F,, simply is
the uniform distribution on the set of paths ¢g = 0,¢1,...,¢, € Z, satisfying
lp; — di—1] = 1, 1 < ¢ < n. There is not much difference when considering more
general random walks, or the tied-down situation, but most of the published results
are for the simple random walk. An interesting case of a mixed attractive-repulsive
interaction is given in the following way. Regard the above random walk as a (very
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simplified) model of a polymer chain imbedded in two liquids, say water and oil.
The water is at the bottom, say at points (i,j) € N x Z, j < 0, and the oil above at
j > 0. The polymer chain is attached with one end at the interface between the two
liquids, and interacts with them in the following way: To each “node” (i, ¢;) of the
polymer chain, we attach a value o; € R which is < 0 if the node is water-repellent,
and > 0 if it is oil-repellent. The overall effect is described by the Hamiltonian

Huo () €S oysign (¢1)

i=1

where we put sign (0) 4f ). With this Hamiltonian, we define the o-dependant path

measure

Pro (6) % 5 —exp [, (0]

where 8 > 0 is a parameter governing the strength of the interaction. We assume
that the o; change sign either in a periodic way or randomly. There may be two
competing effects. The polymer chain may try to follow the preferences described
by the o’s as closely as possible in which case the path evidently would have to
stay close to the oil-water-interface and gets localized. On the other hand, this
strategy may be entropically too costly, in particular if there is no balance between
oil-repellence and water-repellence. We will always assume that

n
def . 1
h= lim — E oy,
n—rco T}
=1

exists, and we assume it to be > 0. (The case h < 0 can be treated symmetrically).
It turns out that typically, there is a non-trivial curve in the (8, h)-plane which
separates the localized from the delocalized region. This phase separation line is
quite model dependent, but the behavior near (0,0) appears to be much more
universal but it is completely different depending whether the ¢; are random or
periodic.

The first rigorous results in this direction had been obtained by Sinai [29] who
proved the following result in the balanced case (i.e. h = 0). Let P be the symmetric
Bernoulli-measure on {—1,1}".

Theorem 9 Let 8 > 0. There exist constants C and p(8) > 0, and for P-almost
all ¢ = (04);4 , there exists a sequence (R, (7)), cy of natural numbers such that

Prgo([6n] 2 1) < Cexp[-p(B)7]

forr > R, (o). The sequence (Ry,) is stochastically bounded, i.e.

lim supP (R, > m) =0.
m-—00 g
In a paper with Frank den Hollander [8] we proved that there is a localization-
delocalization transition in the random non-balanced case. This transition is dis-
cussed in this paper in terms of the free energy. To describe the results, let
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o; = £1 + h with probabilities 1/2, and independently, h > 0. One strategy of
the path could be just to stay on the negative side all the time, i.e. ¢; < 0 for all
i < n. This leads to a trivial lower bound of the free energy

def . 1
F(B,h) = lim —logZn5.q
which is easily seen to exist, and is non-random:

Zn,ﬁ,cr > E, (eXp [-/3Hn,cr (d))] 1{¢i<0, ViSn})
= exp [6 ZZ; ai] P(d; <0,Vi<n).

From this we get

f(B,h) = Bh.

It is quite plausible that localization dominates in the case where there is a strict
inequality, and that delocalization holds if f (3,h) = Sh.

Theorem 10 There exists o positive, continuous, and increasing function 5 —
h*(B3) such that

f(B,h) > Bhfor 0 <h <h™(8), (12)
f(B,h) = Bhfor h>h"(B). (13)

The function 8 - h* (8) has a positive tangent at 3 = 0.

The phase separating function h* is certainly very much model dependent, but
we expect that the tangent at 0 is model independent, and would be the same for
any random law of the o-sequence which has variance 1 and a expectation h, and has
exponentially decaying tails, but this is not proved in [8]. In physics literature, there
are non-rigorous arguments claiming that the tangent is 1, but we neither have been
able to prove or disprove it, yet. We prove that the tangent at 0 can be described
in terms of a phase separation line for a continuous model, where the random walk
is replaced by a Brownian motion, and the random environment o is replaced by
(biased) white noise. In this case, the phase separation line is a straight line, and
we prove that this line is the tangent at 0 of our model. It should be remarked that
the (8,h) = (0,0) situation, cannot be handled by simple perturbation techniques.

A natural question is if in the localized region f (8,h) > Bh the path measure
is really localized in the sense described in the paper of Sinai. This is indeed the
case and has been proved by Biskup and den Hollander [3]. One might also wonder
if in the localized region f(8,h) = Bh or at least in the interior of it, the path
measure is really delocalized, which should mean, that it converges, after Brownian
rescaling, to the limit of a random walk conditioned to stay negative, which is the
negative of the Brownian meander. This seems to be a rather difficult question and
has not been answered, yet.

The positive tangent is essentially tied to the randomness of the sequence. For
the periodic case, the situation is different, as has recently been proved in [11]:
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Theorem 11 Let 0; = w; + h, where w; € {—1,1} is periodic, i.e. such that there
exists T with w;yor = w; for oll i, and Zf; w; = 0. Then there is a function h*
such that (12) and (13) hold. In this case

()
=T

exists and is positive.

In this paper an expression for C' in terms of a variational problem is derived,
where the exact nature of the periodic sequence enters.

References

[1] van den Berg, M., Bolthausen, E. and den Hollander, F.: Moderate deviations
for the Wiener sausage. Annals of Mathematics 153(2001), 355-406.

[2] Biggins, J.D.: Chernoff’s theorem in the branching random walk. J. Appl. Prob.
14(1977), 630-636.

[3] Biskup, M. and den Hollander, ¥.: A heteropolymer near o linear interface.
Ann. Appl. Probab. 9(1999), 668-687.

[4] Bolthausen, E., Deuschel, J. D., and Zeitouni, O.: Entropic repulsion for the
lattice free field, Comm. Math. Phys. 170(1995), 417-443.

[5] Bolthausen, E., Deuschel, J.D., and Zeitouni, O. Absence of o wetting transition
for lattice free fields in dimensions three and larger. J. Math. Phys. 41(2000),
1211-1223.

[6] Bolthausen, E., Deuschel, J.D., and Giacomin, G.: Entropic repulsion for the
two-dimensional lattice free field. Annals of Probability 29(2001), 1670-1692.

[7] Bolthausen, E., and Brydges, D.: Gaussian surface pinned by o weak potential.
IMS Lecture Notes Vol. 36(2001), 134-149.

[8] Bolthausen, E. and den Hollander, F.: Localization transition for o polymer
near an interface. Ann. Probability 25(1997), 1334-1365.

[9] Bolthausen, E. and Ioffe, D.: Harmonic crystal on the wall: o microscopic
approach, Comm. Math. Phys. 187(1997), 523-566.

[10] Bolthausen, E. and Velenik, Y.: Critical behavior of the massless free field ot
the depinning transition. Comm. Math. Phys. 233(2001), 161-203.

[11] Bolthausen, E. and Giacomin, G.: On the ecritical delocalization-locelization
line for periodic copolymers at interfaces. Preprint.

[12] Bramson, M.: Mazimal displacement of branching Brownian motion. Comm.
Pure Appl. Math. 31(1978), 531-581.

[13] Brezin, E., Halperin, and Leibler, S.: Critical wetting in three dimensions.
Phys. Rev. Lett. 50(1983), 1387.

[14] Bricmont, J., Fréhlich, J., and El Mellouki, A.: Random surfaces in statistical
mechanics: Roughening, rounding, wetting. J. Stat. Phys. 42(1986), 743.

[15] Brydges, D.C., Frohlich, J., and Spencer, T.: The random walk representation
of classical spin systems and correlation inequalities. Commun. Math. Phys.,
83(1982), 123-150.



Localization-Delocalization Phenomena for Random Interfaces 39

[16] Caputo, P., and Velenik, I.: A note on weiting transition for gradient fields.
Stoch. Proc. Appl. 87(2000), 107-113.

[17] Deuschel, J.D.: Entropic repulsion of the lattice free field. II. The 0-boundary
case. Comm. Math. Phys. 181(1996), 647-665.

[18] Deuschel, J. D., and Giacomin G.: Entropic repulsion for the free field: path-
wise characterization in d > 3, Comm. Math. Phys. 206(1999), 447-462.

[19] Deuschel, J.D., and Giacomin, G.: Entropic repulsion for massless fields, Stoch.
Process. Appl. 89(2000), 333-354.

[20] Deuschel, J.D., Giacomin, G., and Ioffe, D.: Large deviations and concentration
properties for V¢ interface models. Prob. Theory Rel. Fields 117(2000), 49—
111.

[21] Deuschel, J.D., and Velenik, Y.: Non-Gaussion surface pinned by o weak po-
tential. Prob. Theory Rel. Fields 116(2000), 359-377.

[22] Derrida, B. and Spohn, H.: Polymers on disordered trees, spin glasses, and
travelling waves, J. Stat. Phys. 51(1988), 817-840.

[23] Donsker, M. and Varadhan, S.R.S.: On the number of distinct sites visited by
a random walk. Comm. Pure Appl. Math. 32(1979), 721-747.

[24] Dunlop, F., Magnen, J., Rivasseau, V., and Roche, Ph.: Pinning of an interface
by o weak potential. J. Statist. Phys. 66(1992), 71-98.

[25] Fisher, M.: Walks, walls, wetting and melting. J. Stat. Phys. 34(1984), 667
729.

[26] Helffer, B., and Sjostrand, J.: On the correlation for Kac-like models in the
convex case. J. Statist. Phys. 74(1994), 349-409.

[27] Ioffe, D., and Velenik, I.: A note on the decay of correlations under d-pinning.
Prob. Theory Rel. Fields 116(2000), 379-389.

[28] Isozaki, Y. and Yoshida, N.: Weakly pinned random walk on the wall: pathwise
descriptions of the phase transition. Stoch. Proc. Appl. 96(2001), 261-284.

[29] Sinai, Ya. G.: A random walk with a random potential. Theory Probab. Appl.
38(1993), 382-385.

[30] Sznitman, A.-S.: Brownian Motion, Obstacles, and Random Media. Springer,
Heidelberg 1998.



ICM 2002 - Vol. IIT - 41-52

Ergodic Convergence Rates of
Markov Processes—Eigenvalues,
Inequalities and Ergodic Theory

Mu-Fa Chen*

Abstract

This paper consists of four parts. In the first part, we explain what
eigenvalues we are interested in and show the difficulties of the study on the
first (non-trivial) eigenvalue through examples. In the second part, we present
some {dual) variational formulas and explicit bounds for the first eigenvalue
of Laplacian on Riemannian manifolds or Jacobi matrices (Markov chains).
Here, a probabilistic approach—the coupling methods is adopted. In the third
part, we introduce recent lower bounds of several basic inequalities; these are
based on a generalization of Cheeger’s approach which comes from Riemannian
geometry. In the last part, a diagram of nine different types of ergodicity and
a table of explicit criteria for them are presented. These criteria are motivated
by the weighted Hardy inequality which comes from Harmonic analysis.
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I. Introduction

We will start by explaining what eigenvalues we are interested in.

1.1 Definition. Consider a birth-death process with a state space E={0,1,2,---,
n} (n € o0) and an intensity matriz Q@ = (¢i;): qrp-1 = ar > 0(1 < k < n),
g1 =by >00<k<n—1), qpp = —(ar +br), and ¢;; = 0 for other i # j.
Since the sum of each row equals 0, we have Q1 = 0 = 0 1. This means that
the @-matrix has an eigenvalue 0 with an eigenvector 1. Next, consider the finite
case of n < 0o. Then, the eigenvalues of —@) are discrete: 0= g < Ay < -+ < Ay
We are interested in the first (non-trivial) eigenvalue Ay = Ay — Ap (also called
spectral gap of @). In the infinite case (n = o0), A1 can be 0. Certainly, one can
consider a self-adjoint elliptic operator in R?, the Laplacian A on manifolds, or an
infinite-dimensional operator as in the study of interacting particle systems.

*Department of Mathematics, Beijing Normal University, Beijing 100875, China. E-mail:
mfchen@bnu.edu.cn, Home page: http://www.bnu.edu.cn/ “chenmf/main_eng.htm
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1.2 Difficulties. To get a concrete feeling about the difficulties of this topic, let
us first look at the following examples with a finite state space. When E = {0, 1},
it is trivial that A = a1 + bg. The result is nice because when either a; or by
increases, so does A;. When E = {0, 1,2}, we have four parameters bg, by, a1, a2 and
)\1 = 2—1 [(ll -+ a9 +b0 +b1 - \/((ll - a9 -+ b@ - b1)2 -+ 4(11[)1]. When E = {0, 1, 2,3},
we have six parameters: by, by, ba, a1, a9, a3. In this case, the expression for A is
too lengthy to write. The roles of the parameters are inter-related in a complicated
manner. Clearly, it is impossible to compute A; explicitly when the size of the
matrix is greater than five.

Next, consider the infinite state space E = {0, 1,2, ---}. Denote the eigenfunc-
tion of A; by g and the degree of g by D(g) when g is polynomial. Three examples
of the perturbation of Ay and D(g) are listed in Table 1.1.

bi(i = 0) a;(i 2 1) A D(g)
i+ c(e > 0) 24 1 1
i+1 2i+3 2 [2
i+1 20+ (4+v2) [3 |3

Table 1.1 Three examples of the perturbation of A\; and D(g)

The first line is the well known linear model for which Ay = 1, independent of the
constant ¢ > 0, and g is linear. Keeping the same birth rate, b; = ¢ + 1, changes
the death rate a; from 2i to 2i + 3 (resp. 2i +4 4 v/2), which leads to the change of
A1 from one to two (resp. three). More surprisingly, the eigenfunction g is changed
from linear to quadratic (resp. triple}. For the other values of a; between 2i, 2i + 3
and 2i + 4 4+ /2, \; is unknown since ¢ is non-polynomial. As seen from these
examples, the first eigenvalue is very sensitive. Hence, in general, it is very hard to
estimate Aq.

In the next section, we find that this topic is studied extensively in Riemannian
geometry.

II. New variational formula for the first eigenvalue

2.1 Story of estimating \; in geometry. At first, we recall the study of A; in
geometry.

Consider Laplacian A on a compact Riemannian manifold (M, g), where g
is the Riemannian metric. The spectrum of A is discrete: -+ € ~Xy € ~A <
—Xp = 0 (may be repeated). Estimating these eigenvalues A;, (especially Aq) is very
important in modern geometry. As far as we know, five books, excluding those
books on general spectral theory, have been devoted to this topic: Chavel (1984),
Bérard (1986), Schoen and Yau (1988), Li (1993) and Ma (1993). For a manifold
M, denote its dimension, diameter and the lower bound of Ricci curvature by d, D,
and K (Ricciy > Kg), respectively. We are interested in estimating A; in terms of
these three geometric quantities. It is relatively easy to obtain an upper bound by
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applying a test function f € C1(M) to the classical variational formula:

AL :inf{/MHVngdx: fectnM), /fd;n:(), /fgd:v: 1}, (2.0)

where “d2” is the Riemannian volume element. To obtain the lower bound, however,
is much harder. In Table 2.1, we list eight of the strongest lower bounds that have
been derived in the past, using various sophisticated methods.

Author(s) Lower bound
d
A. Lichnerowicz (1958) -1 K, K=>o0. (2.1)
P. H. Bérard, G. Besson d{ o % cosd 1 tdt }2/d K=d—1>0 (22)
& S. Gallot (1985) fD/2 cosd—1 tdt ’ B
2
P. Li & S. T. Yau (1980) 2”02, K >0, (2.3)
J. Q. Zhong & 2
H. C. Yang (1984) pz K20 (24)
|
P.Li & S. T. Yau (1980 , K<0. (25
(1980) D;(d — Dexp [1+ V1 + 16a? h (2:3)
K. R. Cai (1991) % +K, K<O. (2.6)
H. C. Yang (1989) & ™ .
F. Jiagzl(991)) pz¢ v Hd=2s K<O (2.7)
H. C. Yang (1989) & ™ .
F. Jiagzl(991) : oot 0 H2sdsd K<0, (2.8)

Table 2.1 Eight lower bounds of Ay

In Table 2.1, the two parameters « and o' are defined as « = D+/|K|(d — 1)/2 and
o' = D\iK{((d— 1) Vv 2)/2. Among these estimates, five ((2.1), (2.2), (2.4), (2.6)
and (2.7)) are sharp. The first two are sharp for the unit sphere in two or higher
dimensions but fail for the unit circle; the fourth, the sixth, and the seventh are all
sharp for the unit circle. As seen from this table, the picture is now very complete,
due to the efforts of many geometers in the past 40 years. Our original starting
point is to learn from the geometers and to study their methods, especially the
recent new developments. In the next section, we will show that one can go in the
opposite direction, i.e., studying the first eigenvalue by using probabilistic methods.
Exceeding our expectations, we find a general formula for the lower bound.

2.2 New variational formula. Before stating our new variational formula, we
introduce two notations:

C(r) = cosh?™! [g\/ d_—-KJ’ r € (0,D). F={feC[0,D]: f>00n(0,D)}.

Here, we have used all the three quantities: the dimension d, the diameter D, and
the lower bound K of Ricci curvature.



44 Mu-Fa Chen

Theorem 2.1[General formula] (Chen & Wang (1997a)).
sup inf — 4f(£) =&
rerre®.D) [FC(s)~tds [ Cu) f(u)du

The new variational formula has its essential value in estimating the lower
bound. It is a dual of the classical variational formula in the sense that “inf” in
(2.0) is replaced by “sup” in (2.9). The classical formula can be traced to Lord S.
J. W. Rayleigh (1877) and E. Fischer (1905). Noticing that these two formulas (2.0)
and (2.9) look very different, which explains that why such a formula (2.9) has never
appeared before. This formula can produce many new lower bounds. For instance,
the one corresponding to the trivial function f = 1 is non-trivial in geometry.
Applying the general formula to the test functions sin(ar) and cosh?™! (ar) sin(8r)
with o = D\/|K|(d — 1)/2 and g = #n/(2D), we obtain the following:
Corollary 2.2 (Chen & Wang (1997a)).

Az

(2.9)

dK D [ K 1\
>—J1—cos? | =4/ —— 1, K3 2.1
Al/d_l{ Cos ]:2 d—l}} ’ d> ’ /Oa ( 0)
2 2
T 1 K

2D D [-K
2 T —— cosh' ™ [5 /m}, d>1, K <0. (2.11)

Az

Applying this formula to some very complicated test functions, we can prove
the following result:

Corollary 2.3 (Chen, Scacciatelli and Yao (2002)).
M 2ri/DP+ K2, KeR (2.12)

The corollaries improve all the estimates (2.1)—(2.8). Especially, (2.10) im-
proves (2.1) and (2.2), (2.11) improves (2.7) and (2.8}, and (2.12) improves (2.3)
and (2.6). Moreover, the linear approximation in (2.12) is optimal in the sense that
the coefficient 1/2 of K is exact.

A test function is indeed a mimic of the eigenfunction, so it should be chosen
appropriately in order to obtain good estimates. A question arises naturally: does
there exist a single representative test function such that we can avoid the task
of choosing a different test function each time? The answer is seemingly negative
since we have already seen that the eigenvalue and the eigenfunction are both very
sensitive. Surprisingly, the answer is affirmative. The representative test function,

though very tricky to find, has a rather simple form: f(r) = \/for C(s)~'ds. This
is motivated from the study of the weighted Hardy inequality, a powerful tool in
harmonic analysis (cf. Muckenhoupt (1972), Opic and Kufner (1990)).

Corollary 2.4 (Chen (2000)). For the lower bound & of Ay given in Theorem 2.1,
we have

4571 2 €6 2670, where (2.13)
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Theorem 2.1 and its corollaries are also valid for manifolds with a convex
boundary endowed with the Neumann boundary condition. In this case, the esti-
mates (2.1)—(2.8) are conjectured by the geometers to be correct. However, only
the Lichnerowicz’s estimate (2.1) was proven by J. F. Escobar in 1990. The others
in (2.2)—(2.8) and furthermore in (2.10)—(2.13) are all new in geometry.

On the one hand, the proof of this theorem is quite straightforward, based
on the coupling introduced by Kendall (1986) and Cranston (1991). On the other
hand, the derivation of this general formula requires much effort. The key point is
to find a way to mimic the eigenfunctions. For more details, refer to Chen (1997).

Applying similar proof techniques to general Markov processes, we also obtain
variational formulas for non-compact manifolds, elliptic operators in R? (Chen and
Wang (1997b)), and Markov chains (Chen (1996)). It is more difficult to derive the
variational formulas for the elliptic operators and Markov chains due to the presence
of infinite parameters in these cases. In contrast, there are only three parameters
(d, D, and K) in the geometric case. In fact, formula (2.9) is a particular example
of our general formula (which is complete in dimensional one) for elliptic operators.

To conclude this part, we return to the matrix case introduced at the beginning
of the paper.

2.3 Birth-death processes. Let b; > 0(¢ = 0) and a; > 0(¢ > 1) be the birth and
death rates, respectively. Define po = 1, gy = bp---bj—1/a1---a; (i = 1). Assume
that the process is non-explosive:

S olbrpr) ™t Zf:o pi =00  and moreover g =3 ju; < 00. (2.14)
The corresponding Dirichlet form is D(f)=3", mibi(fix1 — f:)?, D(D)={f € L*(x) :
D(f) < oo}. Here and in what follows, only the diagonal elements D(f) are written,
but the non-diagonal elements can be computed from the diagonal ones by using
the quadrilateral role. We then have the classical formula Ay = {D(f) : n(f) =
0,7(f?) = 1}. Define ' = {f : fo = 0, there exists k: 1 <k <00 so that f; = finx
and f is strictly increasing in [0, K]}, T = {f : fo = 0, f is strictly increasing},
and 1i(f) = [mbi(firr — fi)] 7 Xjpiqa 1 fi- Let f = f —x(f). Then we have the
following results:
Theorem 2.5 (Chen (1996, 2000, 2001))t. Under (2.14), we have

(1) Dual variational formula. inf sup I;(f)~" = M = sup inf L;(f)~".

fe¥ i1 fegFr 20
(2) Eazplicit estimate. pd™ > X\ = (46)™', where § =sup >, (uib;))™ " Y py.
izl jlict izi

(3) Approzimation procedure. There exist explicit sequences n,, and n, such that
M T > (40) 7L
Here the word “dual” means that the upper and lower bounds are interchange-
able if one exchanges “sup” and “inf”. With slight modifications, this result is also
valid for finite matrices, refer to Chen (1999).

Due to the limitation of the space, the most of the author’s papers during 1993-2001 are
not listed in References, the readers are urged to refer to [11].
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Ill. Basic inequalities and new forms of Cheeger’s
constants

3.1 Basic inequalities. We now go to a more general setup. Let (E,&,#) be a
probability space satisfying {(z,z) : * € E} € £ x £. Denote by L¥(w) the usual
real LP-space with norm || - ||,. Write || - || =1 - ||2.

For a given Dirichlet form (D, D(D)), the classical variational formula for the
first eigenvalue A; can be rewritten in the form of (3.1) below with an optimal
constant C' = AT 1. From this point of view, it is natural to study other inequalities.
Two additional basic inequalities appear in (3.2) and (3.3) below.

Poincaré inequality : Var(f) < CD(f), f e L), (3.1)
2

Logarithmic Sobolev inequality:/fglogH;HgdﬂgCD(f), feL*(n), (3.2)

Nash inequality : Var(f) < CD(H)Y2|F1YY, f € L2 (n), (3.3)

where Var(f) = n(f?) — n(f)%, #(f) = [ fd=, p € (1,00) and 1/p+ 1/q = 1. The
last two inequalities are due to Gross (1976) and Nath (1958), respectively.

Our main object is a symmetric (not necessarily Dirichlet) form (D, D(D)) on
L?(r), corresponding to an integral operator (or symmetric kernel) on (E, £):

1

D(f)=§/E EJ(d:v,dy)[f(y) —f@)]?, DD)={f€ L) :D(f) <oo}, (34)

where J is a non-negative, symmetric measure having no charge on the diagonal
set {(z,z) : x € E}. A typical example is the reversible jump process with a g-pair
(¢(x), g(x,dy)) and a reversible measure 7. Then J(dz,dy) = #n(dz)gq(x,dy).

For the remainder of this part, we restrict our discussions to the symmetric
form of (3.4).

3.2 Status of the research. An important topic in this research area is to study
under what conditions on the symmetric measure J do the above inequalities hold.
In contrast with the probabilistic method used in Part (@), here we adopt a ge-
neralization of Cheeger’s method (1970), which comes from Riemannian geometry.
Naturally, we define A; = inf{D(f) : #(f) = 0, |f]] = 1}. For bounded jump

processes, the fundamental known result is the following;:
2

Theorem 3.1 (Lawler & Sokal (1988)). Ay > %, where
[y w(da)g(z, A°) o
(A)e0,1)  7(A) A m(A°) and M = sup g(z).

In the past years, the theorem has been collected into six books: Chen (1992},
Sinclair (1993), Chung (1997), Saloff-Coste (1997), Colin de Verdiere (1998), Al-
dous, D. G. & Fill, J. A. (1994-). From the titles of the books, one can see a wide
range of the applications. However, this result fails for the unbounded operator.

k=
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Thus, it has been a challenging open problem in the past ten years to handle the
unbounded case.

As for the logarithmic Sobolev inequality, there have been a large number of
publications in the past twenty years for differential operators. (For a survey, see
Bakry (1992) or Gross (1993)). Still, there are very limited results for integral
operators.

3.3 New results. Since the symmetric measure can be unbounded, we choose a
symmetric, non-negative function r(z,y) such that
J(dz,dy) JV(dz, E)
J@(dz, dy) = Iy yyaso) ———at Ly
( 3 y) {T(I,y) >0} r(x’y)a W(de')
For convenience, we use the convention J® = J. Corresponding to the three
inequalities above, we introduce the following new forms of Cheeger’s constants.

(a > 0) satisfies < 1, 7-as.

Inequality Constant k(¥
JI(A x A°)

inf ———~ h « 1

n(Al)ré(o,n (&) A 7(A°) (Chen & Wang(1998))

(o) c
Log. Sobolev | lim inf T4 x A% (Wang (2001a))
r=0m(A)e(0,7] m(A)+/logle + w(A)~1]
(a) c

Log. Sobolev lim in JOA X A7) + om(4)

d—oon(A)>0 w(A)\/1 —logm(A4)
inf J@(A x A°)

~(A)e(0,0) [1(A) A 7 (A)]2a=H/2a=2)

Poincaré

(Chen (2000))

Nash (Chen (1999))

Table 3.1 New forms of Cheeger’s constants
Our main result can be easily stated as follows.
Theorem 3.2. k(Y/?) > 0 = the corresponding inequality holds.
In other words, we use J(1/2) and JV to handle the unbounded J. The first
two kernels come from the use of Schwarz inequality. This result is proven in four

papers quoted in Table (3.1). In these papers, some estimates which are sharp or
qualitatively sharp for the upper or lower bounds are also presented.

IV. New picture of ergodic theory and explicit
criteria

4.1 Importance of the inequalities. Let ()30 be the semigroup determined
by a Dirichlet form (D, D(D)). Then, various applications of the inequalities are
based on the following results:
Theorem 4.1 (Liggett (1989), Gross (1976) and Chen (1999)).
(1) Poincaré inequality <= ||P,f — n(f)||? = Var(P.f) < Var(f) exp[—2\1t].
(2) Logarithmic Sobolev inequality = exponential convergence in entropy:

Ent(F;f) < Ent(f) exp[—20t], where Ent(f) = «(flog f) —7(f)log||f]1.
(3) Nash inequality < Var(P.f) < C||fll1/t' 1.
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In the context of diffusions, one can replace “=" by “<=" in part (2). There-
fore, the above inequalities describe some type of L2-ergodicity for the semigroup
(Pt)tzo. These inequalities have become powerful tools in the study on infinite-
dimensional mathematics (phase transitions, for instance) and the effectiveness of
random algorithms.

4.2 Three traditional types of ergodicity. The following three types of ergo-
dicity are well known for Markov processes.

Ordinary ergodicity : lim {|pi(x, ) = 7llvar =0

t—roc0o
Ezxponential ergodicity : lpe(, ) = 7l|var € C(x)e™ for some a >0
Strong ergodicity lim sup ||pe(z,-) = 7i|var =0

oo 4

< lim e’ sup ||p(x, ) — 7||var = 0 for some 3 > 0
t—rco z

where py(x, dy) is the transition function of the Markov process and || - ||var is the
total variation norm. They obey the following implications:

Strong ergodicity = Exponential ergodicity = Ordinary ergodicity.

It is natural to ask the following question. does there exist any relation between
the above inequalities and the three traditional types of ergodicity?

4.3 New picture of ergodic theory.

Theorem 4.2 (Chen (1999), ...). For reversible Markov processes with densities,
we have the diagram shown in Figure 4.1.

Nash inequality

v A
Logarithmic Sobolev inequality L -exponential convergence
4
Ezponential convergence in entropy Strong ergodicity
4 4
Poincaré inequality = Ezxponential ergodicity
4
L2 -glgebraic ergodicity

4

Ordinary ergodicity

Figure 4.1 Diagram of nine types of ergodicity
In Figure 4.1, L*-algebraic ergodicity means that Var(Pif) < CV(f)tt=7(t > 0)
holds for some V' having the properties (cf. Liggett (1991)): V is homogeneous of
degree two (in the sense that V(cf + d) = 2V (f) for any constants ¢ and d) and
V(f) < oo for all functions f with finite support.
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The diagram is complete in the following sense: each single-side implication can
not be replaced by double-sides one. Moreover, strong ergodicity and logarithmic
Sobolev inequality (resp. exponential convergence in entropy) are not comparable.
With exception of the equivalences, all the implications in the diagram are suitable
for more general Markov processes. Clearly, the diagram extends the ergodic theory
of Markov processes.

The diagram was presented in Chen (1999), originally for Markov chains only.
Recently, the equivalence of L'-exponential convergence and strong ergodicity was
mainly proven by Y. H. Mao. A counter-example of diffusion was constructed by
Wang (2001b) to show that strong ergodicity does not imply exponential conver-
gence in entropy. For other references and a detailed proof of the diagram, refer to
Chen (1999).

4.4 Explicit criteria for several types of ergodicity. As an application of
the diagram in Figure 4.1, we obtain a criterion for the exponential ergodicity of
birth-death processes, as listed in Table 4.2. To achieve this, we use the equivalence
of exponential ergodicity and Poincaré inequality, as well as the explicit criterion for
Poincaré inequality given in part (3) of Theorem 2.5. This solves a long standing
open problem in the study of Markov chains (cf. Anderson (1991), §6.6 and Chen
(1992), 54.4).

Next, it is natural to look for some criteria for other types of ergodicity. To
do so, we consider only the one-dimensional case. Here we focus on the birth-death
processes since the one-dimensional diffusion processes are in parallel. The crite-
rion for strong ergodicity was obtained recently by Zhang, Lin and Hou (2000), and
extended by Zhang (2001), using a different approach, to a larger class of Markov
chains. The criteria for logarithmic Sobolev, Nash inequalities, and the discrete
spectrum (no continuous spectrum and all eigenvalues have finite multiplicity) were
obtained by Bobkov and Gétze (1999) and Mao (2000, 2002a,b), respectively, based
on the weighted Hardy inequality (see also Miclo (1999), Wang (2000), Gong and
Wang (2002)). It is understood now the results can also be deduced from gener-
alizations of the variational formulas discussed in this paper (cf. Chen (2001b)).
Finally, we summarize these results in Theorem 4.3 and Table 4.2. The table is
arranged in such an order that the property in the latter line is stronger than the
property in the former line. The only exception is that even though the strong
ergodicity is often stronger than the logarithmic Sobolev inequality, they are not
comparable in general, as mentioned in Part II.

Theorem 4.3 (Chen (2001a)). For birth-death processes with birth rates b;(i = 0)
and death rates a;(i = 1), ten criteria are listed in Table 4.2. Recall the sequence (11;)
defined in Part II and set p[i, k] = 3, ;) pj- The notion “(x) & --- 7 appeared in
Table 4.2 means that one requires the uniqueness condition in the first line plus the
condition “-- 7. The notion “(e)” in the last line means that there is still a small
room (1 < q < 2) left from completeness.
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Property Criterion
Uniqueness Z 2 p0,n) =00 (%)
nzo Hntn
1
Recurrence =
Z Hnbn, >
nz0
Ergodicity () & pl0,00) < 0
a —— T
Ezcgonentlal eTgodlclty (%) & sup p[n, o0) Z < %
-eXp. convergence nl et 1ib;
1
Discrete spectrum (*) & lim sup plk,o0) — =0
N0 kznt nggﬂ_l b
1
Log. Sobolev inequality (*) & sup p[n, oo)log[u[n, o) ™] Z —<
n>1 jgn—lujbj
Strong ergodicity 1 T
1_ . (*) & Z N[”+1aOO)ZZMnZ f<OO
L*-exp. convergence nzounb” S ah oy
1
Nash inequality (x) & sup u[n,oo)(q—g)/(q—l) Z — <00 (g)
nzl ety Ml

Table 4.2  Ten criteria for birth-death processes
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Abstract

We summarize some of the recent developments which link certain prob-
lems in combinatorial theory related to random growth to random matrix
theory.
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1. Introduction

Let ¢ be a permutation from Sy. We say that o(i1),...,0(im), i1 <+ <im,
is an inecreasing subsequence of o if o(i1) < -+ < o(iy). The number m is the
length of the subsequence. The length of the longest increasing subsequence in o
is denoted by £y (o). If we pick ¢ from Sy uniformly at random £x (o) becomes a
random variable. Ulam’s problem, [29], is the study of the asymptotic properties
as N — oo of this random variable in particular its mean. It turns out that
there is a surprisingly rich mathematical structure around this problem as we hope
will be clear from the presentation below. It has been known for some time that
Efn] ~ 2V/N as N — oo, [30], [16]. We refer to [2] for some background to the
problem. A Poissonized version of the problem can be obtained by letting N be an
independent Poisson random variable with mean «. This gives a random variable
L{«) with distribution

0 e—aaN
P[L(a) <n]= ) —7—Plly <nl. (1.1)
N=0 ’

Since P[€y < n] is a decreasing function of N, [9], asymptotics of the left hand side
of (1.1) can be used to obtain asymptotics of P[{x < n] (de-Poissonization).

*Department of Mathematics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
E-mail: kurtj@math.kth.se
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The random variable L{a) can be realized geometrically using Hammersley’s
picture, [8]. Consider a Poisson process with intensity 1 in the square [0,7]?, v =
va. An up/right path is a sequence of Poisson points (z1,41),..., (Xm,¥m) In
the square such that z; < ;41 and y; < ys1, ¢ = 1,...,m — 1. The maximal
number of points in an up/right path has the same distribution as L{c). A sequence
of points realizing this maximum is called a mazimal path. It is expected from
heuristic arguments, see below, that the standard deviation of L{«) should be of
order v%/3 = a'/%. The proof that this is true, [3], and that we can also understand
the law of the fluctuations is the main recent result that will be discussed below.
Also, the deviations of a maximal path from the diagonal # = y should be of order
72/3. This last statement is proved in [11].

A generalization of the random variable L(a) can be defined in the following
way. Let w(i,j), (i,j) € Z3%, be independent geometric random variables with
parameter ¢q. An up/right path = from (1,1) to (M, N) is a sequence (1,1) =
(t1,01), (22, d2)s - - o, (i, Jm) = (M, N), m = M+ N ~1, such that either ¢, 11 —i, = 1
and jyir1 = Jp, OF Gppq1 = 4 and jrpq1 — jr = 1. Set

G(M,N) = max > wli,g), (1.2)

where the maximum is taken over all up/right paths = from (1,1) to (M, N). Al-
ternatively, we can define G(M, N) recursively by

G(M,N) = max(G(M —1,N),G(M, N — 1)) + w(M, N). (1.3)

Some thought shows that if we let ¢ = «/N? then G(N,N) converges in distri-
bution to L{a) as N — oo, [12], so we can view G(N,N) as a generalization of
L{a). We can think of (1.2) as a directed last-passage site percolation problem.
Since all paths 7 have the same length, if w(i, j) were a bounded random variable
we could relate (1.2) to the corresponding first-passage site percolation problem,
with a min instead of a max. in (1.2). The random variable G(M, N) connects
with many different problems, a corner growth model, zero-temperature directed
polymers, totally asymmetric simple exclusion processes and domino tilings of the
Aztec diamond, see [10], [12] and references therein. It is also related to another
growth model, the (diserete) polynuclear growth (PNG) model, [15], [21] defined as
follows. Let h(z,t) € N denote the height above z € Z at time ¢ € N. The growth
model is defined by the recursion

hiz,t + 1) = max(h(x — 1,¢), h{x, t), bz + 1,t)) + alz, 1), (1.4)

where a(x,t), (x,t) € Z x N, are independent random variables. If we assume
that a(x,t) = 0 whenever x — ¢ is even, and that the distribution of a(z,t) is
geometric with parameter ¢, then setting w(i,j) = a(i — j,i -+ j — 1), we obtain
G(i,j) = h{i = j,i + j — 1). The growth model (1.4) has some relation to the so
called Kardar-Parisi-Zhang (KPZ) equation, [15], and is expected to fall within the
so called KPZ-universality class. The exponents 1/3 and 2/3 discussed above are
the conjectured exponents for 1 -+ 1-dimensional growth models in this class.
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2. Orthogonal polynomial ensembles

Consider a probability (density) on Q¥, @ =R, Z, N or {0,1,..., M} of the
form

M
ux(a) = - An (@ [ wie,), (2.5)

where Ay (2) =[] <, j«n (@ — ;) is the Vandermonde determinant, w(z) is some
non-negative weight function on €2 and Zy is a normalization constant. We call
such a probability an orthogonal polynomial ensemble. We can think of this as a
finite point process on ). Let du be Lebesgue or counting measure on {2 and let
pnlz) = Kpx™ 4+ ... be the normalized orthogonal polynomials with respect to the
measure w(x)dp(x) on . The correlation functions py, n(21,...,2n) of the point
process are given by determinants, we have a so called determinantal point process,
[24]. In fact,

JE) = (N#'m)' /sz_m un(@)dp(tmi1) .. dulzn) (2.6)

= det(Kn (24, 25))1<i,j<ms

pm (21, ..

where the kernel Ky is given by

K(r.y) = Pt P O ey 2. (2

A computation shows that for bounded f: Q - C,
N
E[]]¢(

J=1

N 1 k
L+ fa) =3 5 [Q I @) detEn (w2 hcssand nlz) - (28)
k=0 =1

=det(I + fKEN)12(0,dp)5

where the last determinant is the Fredholm determinant of the integral operator
on L%(§), dp) with kernel f(2)Ky(z,y). In particular, we can compute hole or gap
probabilities, e.g. the probability of having no particle in an interval I C ) by taking
f = —xr, minus the characteristic function of the interval I. If zn.x = maxa;
denotes the position of the rightmost particle it follows that

P[Z’max < (l] = det([ - KN)L2((a,oo),du)' (29)

As N -» 0o we can obtain limiting determinantal processes on R or Z with
kernel K, i.e. the probability (density) of finding particles at x1,..., &, is given
by det(K (s, 2m))1<ij<m. We will be interested in the limit process around the
rightmost particle. This is typically given by the Airy kernel, x,y € R,

Ai(2)Ai'(y) — Ai'(2)Ai (y)

Alz,y) = pr—y

(2.10)
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This limit, the Aéiry point process has a rightmost particle almost surely and its
position has the distribution function

Fy(&) = det(I — A) (e, (2.11)

known as the Tracy-Widom distribution, [26]. Hole probabilities as functions of
the endpoints of the intervals satisfy systems of differential equations, [27], [1]. For
example, we have

Fo(&) = exp(~ [£ " (@ - Ou(e)2da), (2.12)

where u solves the Painlevé-II equation u" = zu + 2u® with boundary condition
u(x) ~ Ai(x) as & - 0.

An example of a measure of the form (2.5) comes from the Gaussian Unitary
Ensemble (GUE) of random matrices. The GUE is a Gaussian measure on the
space Hy = RY * of all N x N Hermitian matrices. It is defined by dpaue,n (M) =
Z;,l exp(—tr M?)dM, where dM is the Lebesgue measure on Hy and Zy is a
normalization constant. The corresponding eigenvalue measure has the form (2.5)
with w(z) = exp(—2?) and Q@ = R, [17]. Hence the p,:s are multiples of the
ordinary Hermite polynomials. The largest eigenvalue 2., will lie around v/2N.
This is related to the fact that the largest zero of py lies around V2N. The local
asymptotics of py(z) exp(—x2/2) around this point, 2 = V2N +¢/N1/6,/2, is given
by the Airy function, Ai (£). This asymptotics, some estimates, (2.9) and (2.11) give
the following result,

V2NZmax — 2N

Ni/3 <= B(©) (2.13)

Paur,~|(

as N — oc.

3. Some theorems

The previous section may seem unrelated to the first but as the next theorems
will show the problem of understanding the distribution of L{a) and G(M, N) fits
nicely into the machinery of sect. 2.

Theorem 3.1. [10]. Take @ =N, M > N and w(z) = (¥~ XT%) in (2.5).
Then G(M,N) is distributed exactly as Tmax-

The corresponding orthogonal polynomials are the Meixner polynomials, a
classical family of discrete orthogonal polynomials, and we refer to the measure
obtained as the Meizner ensemble. It is an example of a discrete orthogonal polyno-
mial ensemble, [12]. By computing the appropriate Airy asymptotics of the Meixner
polynomials we can use (2.9) to prove the next theorem.

Theorem 3.2. [10]. Let~y > 1 be fized and set w(y,q) = (1—q) " (1+/q7)* -1

and (v, q) = (1 —q) g/ (7 + VO¥? (1 + /a7)*/®. Then,

L GNLN) — (N
e TR

< & = Fa(9). (3.14)
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Thus G([yN], N) fluctuates like the largest eigenvalue of a GUE matrix.

As discussed above by setting ¢ = a/N? we can obtain L(a) as a limit of
G(N,N) as N — oo. By taking this limit in theorem 3.1, and using the fact that
the measure has determinantal correlation functions, we see that L{a) behaves like
the rightmost particle in a determinantal point process on Z given by the discrete
Bessel kernel, [12], [4],

Br(ay) = vl YD D)

z,y € Z. This gives
P[L(CE) S n] = det([ - Ba)g2({n7n+17_'_}). (316)

Once we have this formula we see that all we need is the classical asymptotic formula

o/t Jo satearse(2¢/a — Ai(§) as a — oo uniformly in compact intervals, and some

estimates of the Bessel functions in order to get a limit theorem for L{a):
Theorem 3.3. [3]. As a — o0,

PO =2V e, (3.17)
/6

Note the similarity with (2.13), just replace N by /a. This result was first
proved in [3] by another method, see below. De-poissonizing we get a limit theorem
for £nx (), see [3].

4. Rewriting Toeplitz determinants

The Toeplitz determinant of order n with generating function f € LY(T) is
defined by

D, (f) = det(fi—j)lgi,jgm (4.18)

where fr = (2m)7" [T f(e?)e~*?df are the complex Fourier coefficients of f. Con-
sider the generating function

M
f(z) = gu i %)(1 + be2), (4.19)

where ag, by are complex numbers. The elementary symmetric polynomial e, (a),
a = (a1,...,ap) is defined by Hj]\il(l + aj2) = X jmjcoo em(@)z™. A straightfor-
ward computation shows that when f is given by (4.19) then

fimj = Z €m—j(a)em—5(b).
m=0
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Insert this into the definition (4.18) and use the Heine identity,

% o det (i (25))1<i j<n det(Pi(25))1<i j<nd” p(z) (4.21)
= det( | 61(a)0(2)du) <oy
Q
to see that
D,(f) = > det(em,; —j(a))1<ij<n det(em,—j(0))1<ijan.  (4.22)

M1>Ma> > My 0

Here we have removed the n! by ordering the variables. These determinants are
again symmetric polynomials, the so called Schur polynomials. Let A = (A1, Ae,...)
be a partition and let X' = (A{, A}, ...) be the conjugate partition, [23]. Set m; =
AN4+n-—i,i=1,....,nand X, = 0if ¢ > n, so that A’ has at most n parts, £(\') < n,
which means that Ay < n. Then the Schur polynomial s (a) is given by

sx(a) = det(ex,—i1j(a))1<i,j<n = det(em, —j(a))1<ij<n, (4.23)

the Jacobi-Trudi identity. Hence,

Dn(f): Z S/\((l)S/\(b), (424)

A <€n

and we have derived Gessel’s formula, [7]. If we let n — oo in the right hand side
we obtain Hﬁ.:l(l — a;b;)7! by the Cauchy identity, [23]. In the case when all
a:,b; € 0,1], saa)sx(b) > 0, and we can think of

M

11 (1 = aidj)sa(@)sa(b) (4.25)

1j=1

as a probability measure on all partitions A with at most n parts, the Schur mea-
sure, [19]. In this formula we can insert the combinatorial definition of the Schur
polynomial, [23],
sa(a) = Z am D gD (4.26)
T:sh(T)=XA

where the sum is over all semi-standard Young tableaux T, [23], with shape A, and
m;(T') is the number of i:sin T'.

A connection with the random variables in section 1 is now provided by the
Robinson-Schensted-Knuth (RSK) correspondence, [23]. This correspondence maps
an M x M integer matrix to a pair of semi-standard Young tableaux (7, 5) with
entries from {1,2,...,M}. If we let the random variables w(i, j) be independent
geometric with parameter a;b; then the RSK-correspondence maps the measure we
get on the integer matrix (w(i,))1<i j<am to the Schur measure (4.25). Also, the
RSK-correspondence is such that G(M, M) = Ay, the length of the first row. If we
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put aj = 0for N < j < M and a; = b; = \/q for 1 <¢ < N in the Schur measure
and set x; = Aj + N —j, 1 < j < N, we obtain the result in Theorem 3.1.

In the limit M = N — 00, ¢ = a/N?, in which case G(N, N) converges to
L{«), the Schur measure converges to the so called Plancherel measure on partitions,
[30], [12]. In the variables A; — ¢ this measure is a determinantal point process on
Z given by the kernel B®, (3.15). This result was obtained independently in [4],
which also gives a descrption in terms of different coordinates. See also [18] for a
more direct geometric relation between GUE and the Plancherel measure. In this
limit the Toeplitz determinant formula (4.24) gives

P[L(a) < n] = e~“D,, (e?Va0s?), (4.27)

This variant of Gessel’s formula was the starting point for the original proof of
Theorem 3.3 in [3]. The right hand side of (4.27) can be expressed in terms of the
leading coefficients of the orthogonal polynomials on T with respect to the weight
exp(2y/acosf). These orthogonal polynomials in turn can be obtained as a solution
to a matrix-valued Riemann-Hilbert problem (RHP), and the asymptotics of this
RHP as a — 0o can be analyzes using the powerful asymptotic techniques developed
by Deift and Zhou, [6]. This approach leads to the formula (2.12) for the limiting
distribution.

Write f = exp(g) and insert the definition of the Fourier coefficients into
the definition (4.18). By the Heine identity we obtain an integral formula for the
Toeplitz determinant,

Dn(f) = #/[ ] H et — et |? H e gng (4.28)

!
(2,”)"”' 1<p<v<n =1

= / et W .
U(n)

In the last integral dU denotes normalized Haar measure on the unitary group U(n)
and the identity is the Weyl integration formula. The limit of (4.27) as a — o0 is
then a so called double scaling limit in a unitary matrix model, [20]. The formula
(4.27) can also be obtained by considering the integral over the unitary group, see
[22].

Another way to obtain the Schur measure is via families of non-intersecting
paths which result from a multi-layer PNG model, [13]. The determinants in the
measure then come from the Karlin-McGregor theorem or the Lindstrom-Gessel-
Viennot method.

5. A curiosity

Non-intersecting paths can also be used to describe certain tilings, e.g. domino
tilings and tilings of a hexagon by rhombi. By looking at intersections with appro-
priate lines one can obtain discrete orthogonal polynomial ensembles. In the case
of tilings of a hexagon by rhombi, which correspond to boxed planar partitions, [5],
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the Hahn ensemble, i.e. (2.5) with @ =0,..., M} and a weight giving the Hahn
polynomials, is obtained, [13]. The computation leading to this result also gives
a proof of the classical MacMahon formula, [25], for the number of boxed planar
partitions in an abe cube, i.e. the number of rhombus tilings of an abe-hexagon. In
terms of Schur polynomials the result is

i+j+k—1
s (5.29)
u;%gc” ZH“HMle~+—3+k-2

where the right hand side is MacMahon’s formula. (Here 1% means (1,...,1) with
a components.) Comparing this formula with the formula (4.24) we find

a b

(—) D, ([ - e [T - e HH H Ziji: S (5:30)
i=1

=1 i=1 j=1 k=1

It has been conjectured by Keating and Snaith, [14], that the following result should
hold for the moments of Riemann’s {-function on the critical line,

1 1

T
Jim o [l 0P = feus(al), (53D

where a(k) is a constant depending on the primes,

k—1 i
geontt) = iy 5z [ o =Tl gy 6)

and Z(U,#) = det(I — Ue™%) is the characteristic polynomial of the unitary matrix
U. If we take a = b=k in (5.30) and use (4.28) we find

n—1 .

g el o
/U(n)i (U,0)]°*dU = HHHZ—}—j—}—(Z 9 H G+ k)2 (5.33)

i=1 j=14=1 j=0

as computed in [14] by different methods. Letting n — oo we obtain the last expres-
sion in (5.32). Hence, we see that the formula (5.33) has a curious combinatorial
interpretation via MacMahon’s formula.
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Conformal Invariance, Universality, and
the Dimension of the Brownian Frontier

G. Lawler*

Abstract

This paper describes joint work with Oded Schramm and Wendelin Werner
establishing the values of the planar Brownian intersection expomnents from
which one derives the Hausdorff dimension of certain exceptional sets of pla-
nar Brownian motion. In particular, we proof a conjecture of Mandelbrot that
the dimension of the frontier is 4/3. The proof uses a universality principle
for conformally invariant measures and a new process, the stochastic Loewner
evolution (SLE), introduced by Schramm. These ideas can be used to study
other planar lattice models from statistical physics at criticality. I discuss ap-
plications to critical percolation on the triangular lattice, loop-erased random
walk, and self-avoiding walk.
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1. Exceptional sets for planar Brownian motion

Let B, be a standard Brownian motion taking values in k2 = C and let B[s, ¢]
denote the random set B[s,t] = {B, : s <r <t}. For 0 <t <1, we say that B, is a
e cut point for B[0,1] if B[0,t) N B(t,1] = 0;
o frontier point for B[O, 1] if B, is on the boundary of the unbounded component
of C\ B[O, 1];
» pioneer point for B[O, 1]if B, is on the boundary of the unbounded component
of C\ B[0,¢], i.e., if B, is a frontier point for B[O, ¢].

I will discuss the following result proved by Oded Schramm, Wendelin Werner, and
myself.
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Theorem 1. [17, 18, 20] If B; is a standard Brownian motion in R? = C,
then with probability one,

dimy, [ cut points for B[0,1] ] = 3/4,

dimy, [ frontier points for B[0,1]] =4/3,
dimy, [ pioneer points for B[0,1]] = 7/4,
where dimy, denotes Hausdorff dimension.

Mandelbrot [27] first gave the conjecture for the Brownian frontier, basing his
conjecture on numerical simulation and then noting that simulations of the frontier
resembled simulations of self-avoiding walks. It is conjectured that the scaling limit
of planar self-avoiding walks has paths of dimension 4/3. Duplantier and Kwon [5]
used nonrigorous conformal field theory techniques to make the above conjectures
for the cut points and pioneer points. More precisely, they made conjectures about
certain exponents called the Brownian or simple random walk intersection expo-
nents. More recently, Duplaniter [6] has given other nonrigorous arguments for the
conjectures using quantum gravity.

To prove Theorem 1, it suffices to find the values of the Brownian intersection
exponents. In fact, before Theorem 1 had been proved, it had been established
[11, 12, 13] that the Hausdorfl dimensions of the set of cut points, frontier points,
and pioneer points were 2 — 11,2 — 12, and 2 — 13, respectively, where 11,192, 13 are
defined by saying that as € — 0+,

1 1
P{B[O,§ _62] OB[E *Jr‘€2, 1] = @} %6”1,

1 1
P{B[0, 3~ €U B[§ + €,1] does not disconnect By /> from infinity} & €™,

P{B[e?, 1] does not disconnect 0 from infinity} = €.

It had also been established [3, 16] that the analogous exponents for simple random
walk are the same as for Brownian motion.

There are two main ideas in the proof. The first is a one parameter family of
conformally invariant processes developed by Oded Schramm [30] which he named
the Stochastic Loewner evolution (SLE). The second is the idea of “universality”
which states roughly that all conformally invariant measures that satisfy a certain
“locality” or “restriction” property must have the same exponents as Brownian
motion (see [26]). In this paper, I will define SLE and give some of its properties;
describe how analysis of SLE leads to finding the Brownian intersection exponents;
and finally describe some other planar lattice models in statistical physics at criti-
cality that can be understood using SLE.

2. Stochastic Loewner evolution

I will give a brief introduction to the stochastic Loewner evolution (SLE); for
more details, see [29, 17, 18, 15, 28]. Let W, denote a standard one dimensional
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Brownian motion. If £ > 0 and z is in the upper half plane H = {w € C: $(w) > 0},
let g;(z) be the solution to the Loewner differential equation

2

Ohgi(z) = PP ST go(2) = z.

(2.1)
For each z € H, the solution ¢;(z) is defined up to a time T, € (0,00]. Let Hy, =
{z : T, > t}. Then g, is the unique conformal transformation of H, onto H with
gi(z) — 2z = o(1) as z -+ oo. In fact,

g(2) = 2 + % +O(¥zli

5), = o0

It is easy to show that the maps g, are well defined. It has been shown [28, 22)
that there is a (random) continuous path v : [0,00) — H such that H; is the
unbounded component of H\ v[0,t] and ¢:(v(¢)) = /& W;. The conformal maps g,
or the corresponding paths ~(t) are called the chordal stochastic Loewner evolution
with parameter k (chordal SLE,). It is easy to check that the distribution of
SLE,, is invariant (modulo time change) under dilations z = rz. Using this, we
can use conformal transformations to define chordal SLE, connecting two distinct
boundary points of any simply connected domain. This gives a family of probability
measures on curves (modulo reparametrization) on such domains that is invariant
under conformal transformation.

Chordal SLE, can also be considered as the only probability distributions on
continuous curves (modulo reparametrization) v : [0,00) — H with the following
properties.

o v(0) = 0,7(t) — o0 as t — oo, and v(t) € OH, for all t € [0,00), where Hy is
the unbounded component of H \ ¥[0,¢].

o Let hy : Hy — H be the unique conformal transformation with h.(v(¢)) =
0, hi(c0) = oo,hj(c0) = 1. Then the conditional distribution of 4(s) :=
hyovy(s+1),0 < s < oo, given [0, is the same as the original distribution.

e The measure is invariant under z + iy — —z + iy.

There is a similar process called radial SLE,, on the unit disk. Let W; be as
above, and for z in the unit disk I, consider the equation

VIV 4 g, (2)

ei\/EWt - gt(z)a go(Z) =z

Oege(z) = gi(2)
Let U, be the set of z € I for which g,(z) is defined. It can be shown that there
is a random path v : [0,00) — D, such that U; is the component of D \ ~[0,1]
containing the origin; g;(y(t)) = eV*W: and g, is a conformal transformation of
U, onto D with g,(0) = 0,g;(0) = e’. We can define radial SLE, connecting any
boundary point to any interior point of a simply connected domain by conformal
transformation.
The qualitative behavior of the paths ~ varies considerably as s varies, al-
though chordal and radial SLE, for the same s are qualitatively similar. The
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Hausdorff dimension of ~+[0,¢] for chordal or radial SLE, is conjectured to be
min{l + (x/8),2}. This has been proved for x = 8/3,6, see [2], and for other »
it is a rigorous upper bound [28]. For 0 < & < 4, the paths v are simple (no self-
intersections) and (0, 00) is a subset of H or I. For & > 4, the paths have double
points and hit OH or 0D infinitely often. If £ > 8, the paths are space filling,.

Investigation of SLE, requires studying the behavior of SLE, under confor-
mal maps. Suppose A is a compact subset of H not containing the origin such that
ANH = A and H\ A is simply connected. Let ¢ denote the conformal transforma-
tion of H'\ A onto H with ®(0) = 0, ®(c0) = o0, ®'(00) = 1. Let v denote a chordal
SLE, starting at the origin, and let 7" be the first time ¢ that ANH ¢ H,. For
t < T,let #(t) = ®ovy(t). Let g be the conformal transformation of the unbounded
component of H \ 4[0,¢] onto H with §.(2) — 2z = o(1) as z — oo; define a(f) by
3(z) — z ~ a(t) 271, Then §(t) satisfies the modified Loewner equation

" at(l -
Qi) = — % _ .
1 g(t) W) T, go(z) = 2

for some W;. In fact Wy = §; o ® o g; ' (/& W;). Using the Loewner differential
equation and Itd’s formula, we can write W, as a local semimartingale, dw, =
b(t) dt + /& Opa/2 dWy; here b(t) and a(t) are random depending on W;,0 < s < ¢t.
For £ = 6, and only k = 6, the drift term b(¢) disappears and hence W, is a time
change of Brownian motion.

Locality property for SLEg. [17] If s = 6, 5(1),0 < ¢t < T, has the same
distribution as o time change of SLEs.

For other values of k, the image 4(t),t < T', has a distribution that is absolutely
continuous with respect to that of (a time change of) SLE,. This follows from
Girsanov’s theorem (see, e..g, [1, Theorem 1.6.4]) that states roughly that Brownian
motions with the same variance but different drifts give rise to absolutely continuous
measures on paths. Similarly, radial SLE, can be obtained from chordal SLE,
by considering its image under a map taking H to I. For all values of xk we get
absolutely continuous measures (which is why radial SLE, is qualitatively the same
as chordal SLE), but for £ = 6 we get a special relationship [18, Theorem 4.1].

One of the reasons that SLE, is useful is that “crossing probabilities” and
“critical exponents” for the process can be calculated. The basic idea is to relate
an event about the planar path ~ to an event about the driving process /W,
and then to use standard methods of stochastic calculus to relate this to solutions
of partial differential equations. As an example, consider chordal SLEg in the
upper half plane H going from = € (0, 1) to infinity. Let T be the first time ¢ that
v(t) € (—o0,0] N [1,00); since 5 > 4, T < oo with probability one. Let £ be the
event that v(T') € (~00,0], and let Hr be the unbounded component of H\ v[0,T].
Let 91, y2 be the minimum and maximum of v[0, T]NR; on the event £, y1 < 0 and
x < y2 < 1. Let £ denote the w-extremal distance between (—o0,y1] and [y, 1] in
Hr, ie., the number £ such that Hr can be mapped conformally onto [0, £] x [0, 7]
in a way that (~oo,y1] and [y2, 1] are mapped onto the vertical boundaries. In
order to relate SLEg to intersection exponents for Brownian motion one needs to
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understand the behavior of E*[1¢ exp{~AL}] as  — 1— for A > 0. It is not hard
to show that this quantity is closely related to E?[1¢ g5 (1)*]. If we differentiate
(2.1) with respect to z we get an equation for d,¢,(1), and standard techniques of
stochastic calculus can be applied to give a differential equation for the function
r(z,\) = E*[lg g5(1))]. We get an exact solution in terms of hypergeometric
functions [17, Theorem 3.2]. If A = 0, so that r(a) = P?[£], we get the formula
given by Cardy [4] for crossing probabilities of percolation clusters (see §3.2.).

3. Applications

3.1. Brownian motion

As already mentioned, computation of dimensions for many exceptional sets for
Brownian motion reduces to finding the Brownian intersection exponents. These ex-
ponents, which can be defined in terms of crossing probabilities for non-intersecting
paths, were studied in [25, 26]. In these papers, relations were given between differ-
ent exponents and a “universality” principle was shown for conformally invariant
processes satisfying an additional hypothesis (the term completely conformally in-
variant was used there). Heuristic arguments indicated that self-avoiding walks
and percolation should also satisfy this hypothesis. Unfortunately, from a rigorous
standpoint, we had only reduced a hard problem, computing the Brownian inter-
section exponents, to the even harder problem of showing conformal invariance and
computing the exponents for self-avoiding walks or critical percolation.

At the same time Schramm [29] was completing his beautiful construction
of SLE,, and conjecturing that SLEg gave the boundaries of critical percolation
clusters. While he was unable to prove that critical percolation has a conformally
invariant limit, he was able to conclude that if the limit was conformally invariant
then it must be SLFEg. The identification £ = 6 was determined from rigorous
“crossing probabilities” for SLE,; only k = 6 was consistent with Cardy’s formula
(see §3.2.) or even the simple fact that a square should have crossing probability
1/2.

Since both Brownian motion and SLFg were conjectured to be related to the
scaling limit of critical percolation, it was natural to try to use SLEg to prove
results about Brownian motion (and, as mentioned before, the Hausdorff dimension
of exceptional sets on the path); see [17, 18, 20, 19]. There were two major parts
of the proof. First, the locality property for SLEg was formulated and proved; this
allowed ideas as in [26] to show that the exponents of SLEs can be used to find
the exponents for Brownian motion. Second, the exponents for SLEg had to be
computed. The basic idea is discussed at the end of the last section. What makes
SLE so powerful is that it reduces problems about a two-dimensional process to
analysis of a one-dimensional stochastic differential equation (and hence a partial
differential equation in one space variable).

The universality in these papers was in terms of exponents. We now know
that the paths of planar Brownian motion and SLEg are even more closely related.
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The “hull” generated by an SLEg is the same as the hull generated by a Brownian
motion with oblique reflection (see [33]). In particular, the frontiers (outer bound-
aries) of the two processes have the same dimension. There are now direct proofs
that the Hausdorff dimension of the frontier of SLEg is 4/3 ([2]) and this stronger
universality principle implies the same holds for Brownian paths.

3.2. Critical percolation

Suppose each vertex of the planar triangular lattice is colored independently
white or black, with the probability of a white being 1/2. This is called critical
percolation (on the triangular lattice). Let D be a simply connected domain in
C = R? and let A;, Ay be disjoint nontrivial connected arcs on dD. Consider the
limit as § — 0 of the probability that in critical percolation on a lattice with mesh
size & that there is a connected set of white vertices in D connecting Ay, Ao, It
has long been believed that this limit, p(A;, A9; D), exists and is strictly between
0 and 1. (Note: if the probability of a white vertex is p, then p(A4,, A2; D) is 0 for
p < 1/2 and 1 for p > 1/2. One of the features of critical percolation is the fact that
this quantity is strictly between 0 and 1.) Moreover, it has been conjectured that
p(A1, Aa; D) is a conformal invariant [4, 10] . It is also believed that this limit does
not depend on the nature of the lattice; for example, critical bond percolation in
Z? (each bond is colored white or black independently with probability 1/2) should
give the same limit.

Cardy [4] used nonrigorous methods from conformal field theory to find an
exact formula for p(A4y, A2; D); his calculations were done for D = H and the
formula involves hypergeometric functions. Carleson noted that the formula was
much nicer if one chooses D to be an equilateral triangle of side length 1; Ay, one
of the sides; and As, a line segment of length » with one endpoint on the vertex
opposite A;. In this case, Cardy’s formula is p(A1, A2; D) = 2. Schramm [29] went
further and, assuming existence and conformal invariance of the limit, showed that
the limiting boundary between black and white clusters can be given in terms of
SLEs. If Az denotes the third side of the triangle (so that A3 N As is a single point),
we can consider the limiting cluster formed by taking all the white vertices that are
connected by a path of white vertices to Az. In the limit, the outer boundary of
this “hull” has the same distribution as the outer boundary of the hull of chordal
SLEg going from the vertex A3 N A; to the vertex A3 N As. The identification with
SLE comes from the conformal invariance assumption; Schramm determined the
value k = 6 from a particular crossing probability, but we now understand this in
terms of the locality property which scaling limits of these boundary curves can be
seen to satisfy. Cardy’s formula (and generalizations) were computed for SLE, in
[17].

Recently Smirnov [31] made a major breakthrough by proving conformal in-
variance and Cardy’s formula for the limit of critical percolation in the triangular
lattice. As a corollary, the identification of the limit with SLFEg has become a the-
orem. This has also led to rigorous proofs of a number of critical exponents for the
lattice model [21, 30, 32]. The basic strategy is to compute the exponent for SLEg
and to then to use Smirnov’s result to relate this exponent to lattice percolation.
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It is an open problem to show that critical percolation on other planar lattices,
e.g., bond percolation on the square lattice, has the same limiting behavior.

3.3. Loop-erased random walk

Loop-erased random walk (LERW) in a finite set A C Z? starting at 0 € A is the
measure on self-avoiding paths obtained from starting a simple random walk at the
origin, stopping at the first time that it leaves A, and erasing loops chronologically
from the path. It can also be defined as a nonMarkov chain which at each time
n chooses a new step using probabilities weighted by the probability that simple
random walk starting at the new point avoids the path up to that point (see, e.g.,
[14]). It is also related to uniform spanning trees; if one choose a spanning tree
uniformly among all spanning trees of A, considered as a graph with appropriate
boundary conditions, then the distribution of the unique self-avoiding path from the
origin to the boundary is the same as LERW. Wilson gave a beautiful algorithm to
generate uniform spanning trees using LERW [34].

One can hope to define a scaling limit of planar LERW on a domain connecting
an interior point to a boundary point by taking LERW on finer and finer grids
and taking the limit. There are a number of reasons to believe that this limit is
conformally invariant. For example. the limit of simple random walk (Brownian
motion) is conformally invariant and the ordering of points used in the loop-erasing
procedure is not changed under conformal maps. Also, certain crossing probabilities
for LERW can be given by determinants of probabilities for simple random walk
(see [7]), and hence these quantities are conformally invariant. Kenyon [9] used a
conformal invariance argument (using a determinant relation from a related domino
tiling model) to prove that the growth exponent for LERW is 5/4; roughly, this says
it takes about r%/* steps for a LERW to travel distance r.

Schramm [29] showed that under the assumption of conformal invariance, the
scaling limit of LERW must be radial SLE;. He used conformal invariance and a
natural Markovian-type property of LERW to conclude that it must be an SLE,,
and then he used Kenyon’s result to determine k. Recently, Schramm, Werner, and
I [22] proved that the scaling limit of loop-erased random walk is SLEs.

There is another path obtained from the uniform spanning tree that has been
called the uniform spanning tree Peano curve. This path, which lies on the dual
lattice, encodes the entire tree (not just the path from the origin to the boundary).
A similar, although somewhat more involved, argument can be used to show that
this process converges to the space-filling curve SLE3 [22].

3.4. Self-avoiding walk

A self-avoiding walk (SAW) in the lattice Z? is a nearest neighbor walk with no
self-intersections. The problem of the SAW is to understand the uniform measure
on all such walks of a given length (or sometimes the measure that assigns weight
a” to all walks of length n). It is still an open problem to prove there is a limiting
distribution; it is believed that such a limit in conformally invariant (see [23] for
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precise statements). However, if the conjectures hold there is only one possible
limit, SLEg/3.

The conformal invariance property leads one to conclude that the limit must
be an SLE, and k < 4 is needed in order to have a measure on simple paths. The
property that SLEg,3 has that is not held by SLE, for other £ < 4 is the restriction
property. The restriction property is similar to, but not the same, as the locality
property. Let A be a compact subset and @ the transformation as in §2. Then [24]
if [0,00) is an SLEg/3 path from 0 to oo, the distribution of ® o given the event
{710, 00)N A = B} is the same as (a time change of) SLEg/3. In fact, the probability
that {7[0,00) N A = 0} is ®'(0)5/5.

If the scaling limit of SAW has a conformally invariant limit then one can
show easily that the limit satisfies the restriction property. Hence, the only candi-
date for the limit (assuming a conformally invariant scaling limit) is SLEg,3. The
conjectures for critical exponents for SAW can be interpreted in terms of rigorous
properties of SLEg ;3 (see [23]). For example, the Hausdorff dimension of SLEg;
paths is 4/3 [2, 24]; this gives strong evidence that the limit of SAWs should give
paths of dimension 4/3. Monte Carlo simulations [8] support the conjecture that
the limit of SAW is SLEg 3.
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Brownian Intersections, Cover Times
and Thick Points via Trees

Yuval Peres®

Abstract

There is a close connection between intersections of Brownian motion paths
and percolation on trees. Recently, ideas from probability on trees were an
important compounent of the multifractal analysis of Brownian occupation
measure, in joint work with A. Dembo, J. Rosen and O. Zeitouni. As a
consequence, we proved two conjectures about simple random walk in two
dimensions: The first, due to Erd8s and Taylor (1960), involves the number
of visits to the most visited lattice site in the first n steps of the walk. The
second, due to Aldous (1989), concerns the number of steps it takes a simple
random walk to cover all points of the n by n lattice torus. The goal of the
lecture is to relate how methods from probability on trees can be applied to
random walks and Brownian motion in Euclidean space.
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Keywords and Phrases: Random walk, Cover time, Thick point, Lattice,
Brownian motion, Percolation, Tree.

1. Introduction

In [18], the author showed that long-range intersection probabilities for random
walks, Brownian motion paths and Wiener sausages in Euclidean space, can be
estimated up to constant factors by survival probabilities of percolation processes
on trees.

More recently, several long-standing problems involving cover times and “thick
points” for random walks in two dimensions were solved in joint works [9, 10] of
A. Dembo, J. Rosen, O. Zeitouni and the author. These solutions were motivated
by powerful analogies with corresponding problems on trees, but these analogies
were not discussed explicitly in the research papers cited. The goal of the present
note is to describe the tree problems and solutions, that correspond to the problems
studied in [9, 10].
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The cover time for a random walk on a finite graph is the number of steps
it takes the random walk to visit all vertices. The cover time has been studied
intensively by probabilists, combinatorialists, statistical physicists and computer
scientists, with a variety of motivations; see, e.g., [7, 16, 2, &, 17]. The problem of
determining the expected cover time 7, for the n by n lattice torus Z;‘;, was posed
by Wilf [22] and Aldous [1]. In [9] we proved the following conjecture of Aldous [1].

Theorem 1 If 7,, denotes the time it takes for the simple random walk in Zi to
completely cover Z;‘;, then

Jim (nl(f)r#)? = % in probability. (1.1)

The first step toward proving Theorem 1, was to find a sufficiently robust proof
for the asymptotics of the cover time of finite b-ary trees. These asymptotics were
originally determined by Aldous in [4], but his elegant recursive method was quite
sensitive and did not adapt to the approximate tree structure that can be found in
Fuclidean space. Cover times on trees are discussed in the next section.

Turning to a different but related topic, Erdés and Taylor (1960) posed a
problem about simple random walks in Z%: How many times does the walk revisit
the most frequently visited site in the first n steps?

Theorem 2 ([10]) Denote by T,,(x) the number of visits of planar simple random
walk to x € Z* by time n, and let T} := max g Ty(z). Then
T 1

. S
nh_}rrgo logn? = a.s. . (1.2)

This was conjectured by Erdés and Taylor [11, (3.11)]. After D. Aldous heard
one of us describing this result, he pointed us to his cover time conjecture, and this
eventually led to Theorem 1. Although the proofs of that theorem and of Theorem
2 differ in important technical points, they follow the same basic pattern:

(i) Formulate a suitable tree-analog and find a “robust” proof.
(i) Establish a Brownian version using excursion counts.
(iii) Deduce the lattice result via strong approximation a-la [12].

2. Cover times for trees

Let T';, denote the balanced b-ary tree of height &, which has
ny = (BFT1 — 1)/(b — 1) vertices, and ny, — 1 edges.

Theorem 3 (Aldous [4]) Denote by Cy, the time it takes for simple random walk
in Ty, started at the root, to cover T'y,. Then

. ko
kll)ngo kT 2log(b) . (2.1)
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Remark The expected hitting time from one vertex to another is bounded by the
commute time, which equals the effective resistance times twice the number of edges
(see, e.g., [5]). Therefore the expected hitting time between two vertices in I'y is at
most 4kny. From a general result in [3], it follows that also

lim Gk
11m
k— oo nkk2

= 2log(b) in probability. (2.2)

Proof of theorem 3 Denote by C,j the time it takes the walk to cover and return
to the root, and by Ry the number of returns to the root until time C,j. By the
remark preceding the proof, EC,'; —ECy; < 4kny, so to prove the theorem it suffices
to establish that

lim ECJ: = 2log(b). (2.3)

The expected time to return to the root is the reciprocal of the root’s stationary

probability b/(2ns — 2), so by Wald’s lemma

2nk -2
b

E(C)) = E(R,). (2.4)

Thus the theorem reduces to showing

lim ER,
koo k2

= blog(b). (2.5)

We start by reproducing the straightforward proof of the upper bound. Denote
by R, the number of returns to the root of 'y until the first visit to v, and observe
that Ry is the maximum of R,, over all leaves v at level k. At each visit to the root,
the chance to hit a specific leaf v before returning to the root is 1/bk, whence

PR, > bk < (1 — %)rbk? <ok

Summing over all leaves, we infer that
P[Ry, > rbk*] < min{1,bFe"*} . (2.6)
Integrating over r > 0,
E[R;] < bk*(logh + 1/k). (2.7)

This yields the upper bound in (2.5). To prove a lower bound, Aldous [4] uses
a delicate recursion, and an embedded branching process argument. Here we will
give the shortest argument we know, which only involves an embedded branching
process. Given X < logb, our next goal is to show that

P[RRy > Mbk*] = las k — oo. (2.8)

Let T be the number of steps until the root is visited \bk? times.
Fix r € (A logb), and choose £ large, depending on . Let v be a vertex at
level k — (j + 1)£ of T}, and suppose that w is a descendant of v at level k — j£.
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Observe that the expected number of visits to v by time Ty is A(b+ 1)k?, and
the expected number of excursions between v and w by time T} is Ak?/£.

Say that w is “special” if the number of excursions from v to w by time T

is at most 7¢j2. Note that vertices close to the root (i.e., at level k& — j¢ where
r€?52 > Ak?) are special with high probability, because r > \. If & > (j + 2)¢, then
every visit to v is equally likely to start an excursion to w as to the ancestor of
v at distance £ from ». Thus, if v is special then w is special with probability at
least P[X < rfj?], where X has binomial law with parameters r£(j% + (5 + 1)?) and
1/2. By the central limit theorem, as j grows, P[X < r€j?] — P(Z > (2r()'/?),
where Z is standard normal. Since r < logb, we find that P(Z > (2r£)'/?] > b,
if £ is large enough. Therefore, special vertices considered at jumps of 2£ levels (to
ensure the required independence) dominate a supercritical branching process; the
survival probability tends to 1 as k& — oo, because vertices near the root are almost
guaranteed to be special. This establishes (2.8). It follows that E(Ry) > Abk? for
large k, and since A < logb is arbitrary, this completes the proof of (2.5) and the
theorem.
Remark The argument above is quite robust: it readily extends to family trees of
Galton watson trees with mean offspring b > 1. With a little more work, using the
notion of quasi-Bernoulli percolation (see [13] or [19]), it can be extended to the
first k levels of any tree T" that has growth and branching number both equal to
b > 1. The most robust argument, the truncated second moment method used in
[9], is too technical to include here.

3. From trees to Euclidean space

The following “dictionary” was offered in [18] to illustrate the reduction of
certain intersection problems from Euclidean space to trees:

Problem in Euclidean space Corresponding problem on trees
o How many (independent) Brownian #Which branching processes can
paths in R can intersect? have an infinite line of descent?
o What is the probability that several o What is the probability that a
random walk paths, started at random branching process survives

in a cube of side-length 2%, will intersect? for at least k generations?

® Which sets in R® contain o Which trees percolate at
double points of Brownian motion? a fixed threshold p?

o What is the Hausdorff dimension o What is the dimension

of the intersection of a fixed set in of a percolation cluster

R? with one or two Brownian paths? on a general tree?

The Brownian analogs of Theorems 1 and 2, respectively, are given below.
Throughout, denote by D(x,¢) the disk of radius e centered at x.

Theorem 4 ([9]) For Brownian motion wr(:) in the two-dimensional torus T?,
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consider the hitting time of o disk,
T(x,e) =inf{t > 0| X, € D(z,¢)},

and the e-covering time,
C. = sup T(x,¢)

zeT2

which is the amount of time needed for the Wiener sausage of radius € to completely

cover T?. Then c )
im f == a.s. . (3.1
<0 (loge)” 7

Theorem 5 ([10]) Denote by p., the occupation measure for o planar Brownian
motion w(-) run for unit time. Then

w(D(x,
lim sup L(x@,)) =2, a.s. . (3.2)

6—>0w€R2 62 (log %)_,

(This was conjectured by Perkins and Taylor [20].)

The basic approach used to prove these results, which goes back to Ray, [21],
is to control occupation times using excursions between concentric discs. The ap-
proximate tree structure that is (implicitly) used arises by considering discs of the
same radius r around different centers and varying r; for fixed centers x,y, and
“most” radii r (on a logarithmic scale) the discs D(x,r) and D(y,r) are either
well-separated (if r << |z — y]) or almost coincide (if r >> jz — yi).
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Renormalization, Large Deviations
and Phase Separation in Ising
and Percolation Models*
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Abstract

Phase separation is a fairly common physical phenomenon with examples
including the formation of water droplets from humid air (fog, rain), the
separation of a crystalline structure from an isotropic material such as a liquid
or even the formation of the sizzling gas bubbles when a soda can is opened.

It was recognized long ago (at least on a phenomenological level) that sys-
tems exhibiting several phases in equilibrium can be described with an appro-
priate variational principle: the phases arrange themselves in such a way that
the energy associated with the phase boundaries is minimal. Typically this
leads to an almost deterministic behavior and the phase boundaries are fairly
regular. However, when looked at from a microscopic point of view, the sys-
tem consists of a bunch of erratically moving molecules with relatively strong
short-range interaction and the simplicity of the above macroscopic descrip-
tion looks more than miraculous. Indeed, when starting from the molecular
level, there are many more questions to be asked and understood: which are
the phases which we will see? why do only those occur? why are the phase
boundaries sharp? how should we find (define) the energy associated with the
interfaces? Only then can we ask the question: why does the system minimize
this energy?

It is only in the last decade that a mathematically satisfactory understand-
ing of this phenomenon has been achieved. The main goal of the talk is to
present the current state of affairs focusing thereby on results obtained in
joint works with Raphael Cerf. The connection to fields of mathematics other
than probability theory or statistical mechanics will be highlighted; namely,
to geometric measure theory and to the calculus of variations.

2000 Mathematics Subject Classification: 60K35, 82B, 60F10.
Keywords and Phrases: Ising model, Potts model, Random cluster model,
FK percolation, Phase separation, Phase coexistence, Large deviations, Dou-
ble bubble, Minimal surfaces.

*The author thanks the following institutions for their hospitality and/or financial support:
Center for Nonlinear Analysis at CMU, Forschungsinstitut at ETHZ, Université Paris Sud and
IMPA, Brazil. The author has been supported by NSF Grant DMS-0072217.

tDepartment of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213,
USA. E-mail: pisztora@andrew.cmu.edu


mailto:pisztora@andrew.cmu.edu

80 Agoston Pisztora
1. Introduction

Although phase separation is a fairly common physical phenomenon (exam-
ples will be given further below) its mathematically satisfactory understanding, even
in the simplest models, has not been achieved until the last decade. In order to
uncover the mechanism leading to the separation of various phases in an initially
homogeneous material, in particular to explain why and what kind of phases will
occur and which shapes they take, one has to work with a microscopic description
of the system, often at a molecular scale. Materials on such scales however tend
to behave ‘chaotic’ and this strongly motivates (if not compels) the use of a prob-
abilistic approach. In this approach, the system is modeled by randomly moving
(in equilibrium theory randomly located) particles which interact with each other
according to some simple, typically short range, mechanism. The goal is then to
derive the large scale behavior of the system based only on the specification of the
local interaction.

The difficulty of the analysis stems from the fact that the interaction, although
local, might be strong enough (depending on some parameter such as the temper-
ature) to cause a subtile spatial propagation of stochastic dependence across the
entire system. As a consequence, one has to leave the familiar realm of classical
probability theory whose focus has been laid on the large scale effects of randomness
arising from independent (or weakly dependent) sources. Instead, we have to deal
with a strongly dependent system and it is exactly this strong dependence which
causes a highly interesting cooperative behavior of the particles on the macroscopic
level which can, in certain cases, be observed as phase separation.

The problem of phase separation and related issues have been a driving force
behind developing, and a benchmark for testing various new techniques. Postponing
historical remarks until section 2.1, let me highlight here only those ones which play
an essential role in our approach [10, 11] achieved in collaboration with Raphael
Cerf. The basic framework is (abstract) large deviation theory, see e.g. [37], whose
power contributed substantially (admittedly rather to my own surprize) to the suc-
cess of this approach. To have sufficient control of the underlying model, in our case
the Ising-Potts model, we employ spatial renormalization techniques, as developed
in [34], in conjunction with the Fortuin-Kasteleyn percolation representation of the
Potts model, [21]. Finally, tools from geometric measure theory a la Cacciopoli
and De Giorgi will be employed to handle the geometric difficulties associated with
three or higher dimensions, in a similar fashion as was done in [9].

The goal of this article is to present some recent developments in the equilib-
rium theory of coexisting phases in the framework of the Ising-Potts model. The
presentation will be based mainly on the results contained in [34, 10, 11]. It will
include a description of the underlying physical phenomenon, of the corresponding
mathematical model and its motivation and, following the statement of the main
results, comments on the proofs will be included. In order to address an audience
broader than usual, I will try to use as little formalism as possible.

1.1. Phase separation: examples and phenomenology
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Perhaps the most common and well known example of phase separation is
the development of fog and later rain from humid air. When warm humid air
is cooled down so much that its relative humidity at the new cooler temperature
would exceed 100% (i.e. it would become over-saturated) the excess amount of
water precipitates first in the form of very small droplets which we might observe as
fog. The system at this time is not in equilibrium, rather in a so called metastable
state. After waiting very long time or simply dropping the temperature further
down, the droplets grow bigger and ultimately fall to the ground due to gravitation
in the form of common rain droplets. In this example phase separation occurred
since from a single homogeneous phase (warm humid air) two new phases have
been formed: a cooler mixture of water and air (note: with 100% relative humidity
(saturated) at the new lower temperature) plus a certain amount of water, more
precisely a saturated solution of air in water, in the form of macroscopic droplets.
In fact, in the absence of gravitation and after very long time, only a huge droplet
of fluid would levitate in a gas (both saturated solutions of air in water and water
in air, respectively). The opposite situation (water majority, air minority) may also
occur. Consider the following familiar example; think of a bottle of champagne
when opened. Here the change of temperature is replaced by a change of pressure
but the phenomenon is similar with the roles exchanged; at the new lower pressure
the liquid is not able to dissolve the same amonunt of carbon dioxide, hence this
latter precipitates in the form of small bubbles (droplets), etc.

The phenomenological theory explains this type of phenomenon as follows. At
any temperature there are saturation densities of air/water and water/air mixtures
and only saturated solutions will coexist in equilibrium. They also determine the
volumes of the two coexisting phases. Moreover the phases arrange themselves in a
way 8o as to minimize the so-called surface energy, associated with the interface be-
tween the phases. In fact, it is supposed to exist a (in general direction-dependent)
scalar quantity 7, called the surface tension, whose surface integral along the inter-
face gives the surface energy. The surface tension, as well as the saturation densities,
have to be measured experimentally. It is implicitly assumed that the interface is
‘surfacelike’ and regular enough so that the integral along the surface makes sense.
The prediction which can be made is that the shape of the phases in equilibrium is
just a solution of the variational principle. By the classical isoperimetric theorem, in
the isotropic case the solution is just a sphere, hence the occurrence of bubbles and
droplets. In the non isotropic case the corresponding variational problem is called
the Wulff problem. The solution is known to be explicitly given [38, 13, 19, 20, 36]
by rescaling appropriately the so called Wulff crystal:

W, ={z € R?; 2 v < 7(v) for all unit vectors v}.

It is worth noting that the same arguments are used to describe macroscopic crystal
shapes as well.

1.2. The mathematical model and the goals of the analysis

The next step is to find a model which is simple enough to be analyzed by
rigorous methods yet rich enough to exhibit the phenomenon we want to study.
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In order to accommodate a multitude of phases we consider a finite number (g)
possible types of particles (called colors or spins). Physics suggests to choose a
short range interaction of “ferromagnetic” character which means that particles of
identical type prefer to stay together and/or they repel particles of different types.
For simplicity we assume that the interaction distinguishes only between identical
and different types, otherwise it is invariant under permutation of colors. There is
a standard model of statistical mechanics, called the (ferromagnetic) g-states Potts
model, which corresponds exactly to these specifications. We consider the closed unit
cube 2 € R?, d > 3 (modeling the container of the mixture of particles) overlapped
by the rescaled integer lattice Z% = Z/n. We define Q,, = QN Z%, and denote
by 0, the internal vertex boundary of €),,. At each lattice point x there is a
unique particle ¢, of one of the types 1,2, ...,q. The energy H(o) of a configuration
o = (0, )zeq, can be chosen to be the number of nearest neighbor pairs of different
types of particles corresponding to nearest neighbor repulsion. According to the
Gibbs formula, the probability of observing a configuration ¢ is proportional to
e PH(@)  where 3 =1 /T is the ‘inverse temperature’ which adjusts the interaction
strength. (High T' = large disorder = relatively small interaction, etc.) Note that
we use a static description of the equilibrium system. It corresponds to a snap-shot
of the system at a given time and the task is to understand the ‘typical’ picture we
will see.

A restricted ensemble is a collection of certain feasible configurations. For
instance, in the situation of the water/air mixture every configuration with a fixed
number of water and air particles is possible, and this collection forms our restricted
ensemble. It turns out that the direct study of this particular ensemble is extremely
difficult and it is a crucial idea (discovered long ago) to go over to a larger, more
natural ensemble, namely to that without any restrictions on the particle numbers.
Then, the restricted system can be regarded as a very rare event =: (7, in the
large ensemble and conditional probabilities can be used to describe the restricted
system. The events (G, are often in the large deviations regime, and it is from here
that large deviations theory enters the analysis in an essential way.

The unrestricted system is usually referred to as the Potts model with free
boundary conditions. In the case ¢ = 2, it is equivalent to the classical Ising model.
The Gibbs formula and the energy uniquely determines the probability measure
in this (and in every) ensemble. We can introduce mixed boundary conditions as
follows. Divide the boundary I' = 952 of the 'container’ into ¢ + 1 parts indexed by
911, ...T'9. The parts can be fairly general but the (d — 1)-dimensional Hausdorff
measure of their relative boundaries has to be zero. We set for n € N and ¢ =

Oa"'aQa
It = {zel,; de (2,1 <1/n and Vj < i, de (x,1Y) > 1/n} i=0,...,q

where d, denotes the distance corresponding to the max-norm. We use the se-
quence of ¢ + 1-tuples of sets y(n) = (I'V,...,T'%) to specify boundary conditions
by imagining that all particles in T'J, are of type j for j = 1,...,q and none occupies
I'0. This defines a restricted ensemble and the corresponding probability measure

M%(n)ﬁ,q

is denoted by p, = . The choice of b.c.s y(n) is understood to be fixed.
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Let’s consider the Ising-Potts model in an n x n lattice box B(n) with boundary
conditions j € {1,2,...,q} at a fixed inverse temperature 8 with the corresponding
probability measure p g&f . It is well known that, as n — 00, a unique, translation
invariant infinite volume measure uo(g)’ﬁ emerges as the weak limit of the sequence
(Nj(gj()ﬁ?)nzl- We can define the order parameter 8 = 6(3, q,d) as the excess density
of the dominant color, the excess is measured from the symmetric value 1/¢. The
model exhibits phase transition in the sense that in dimensions d > 2 there exists a
critical value 0 < B.(d) < oo such that for 8 < 8., 0(8) := pd” [o0 =4]—1/g=0
but for 8 > 8., 6(8) > 0, i.e., when the interaction becomes strong enough, the
influence of the (arbitrarily) far away boundary still propagates all the way through
the inside of the volume and creates a majority of j-type particles. (Note that in
the Ising model (¢ = 2), the spontaneous magnetization m™* is equal to 6.} The
probability measures uo(g)’ﬁ , 7 = 1,2,...,q, describe in mathematical terms what
we call "pure’ phases and which correspond to the saturated solutions in the initial
example.

Having chosen our model, let us formulate the goals of the analysis. Clearly,
the main goal is to verify the predictions of the phenomenological theory, namely,
that on the macroscopic scale the phases will be arranged according to some solution
of the variational principle corresponding to minimal surface energy. First, however,
the participating phases have to be found and identified. Moreover, as pointed out
earlier, the previous statement contains a couple of implicit assumptions, such as the
existence of the surface tension, the absence of transitional states (where one phase
would smoothly go over into another one) the regularity of the interface boundaries,
etc., all of which have to be justified from a microscopic point of view.

1.3. Connection to minimal surfaces

In this section a partially informal discussion of some examples will be pre-
sented with the aim to make the close relation to minimal surfaces transparent.

4V v,
i N

/A

Consider the Potts model with ¢ = 6 colors (states) in a three dimensional box
with boundary condition ¢ on the i-th face of the box. Naively, one might expect
that all phases will try to occupy the region closest to the corresponding piece of
the boundary, which would lead to a phase partition consisting of symmetric and

figure 1
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pyramid-like regions, as can be seen in figure 1, left. However, at least in the case
when the surface tension is isotropic (which is presumably the case in the limit
T 1 T.), there exists a better configuration with lower total surface free energy.
Recall that in this case our desired interface is simply a minimal surface spanned by
the edges of the box. A picture of the well known solution to this problem can be
seen in figure 1, right. In order to be able to discuss this example at temperatures
0 < T < T., we have to make certain assumptions about the surface tension 7. We
assume that the sharp simplex inequality holds, that the value of 7 is minimal in
axis directions and that 7 increases as the normal vector moves from say (0,0,1)
to (1,1,1). (Although these assumptions are very plausible, none of them has been
proved in dimensions d > 3}. Under these hypotheses, we conjecture that the phase
partition at moderate subcritical temperatures looks like in figure 2, left. In the
limit 7" | 0, only two phases survive, as shown in figure 2, right. At 7' = 0, there
is no reason for the middle plane to stay centered, in fact, any horizontal plane is
equally likely.

figure 2

In the next example we consider the three dimensional Ising model with free
boundary conditions below T, conditioned on the event that the average magneti-
zation is positive and does not exceed m* — ¢, where ¢ is a sufficiently small positive
number and m™ denotes the spontaneous magnetization. It is natural to conjecture
that a minimizer of the corresponding variational problem is a droplet attached
symmetrically to one of the corners of the box.

The single bubble sitting in one of the corners is filled with the minus phase
and in the rest of the box we see the plus phase. The size of the bubble is determined
by & and its internal boundary coincides with the corresponding piece of the surface
of the Wulff crystal.

Another Wulff-type problem arises by conditioning the g¢-states Potts model
(with say ¢ > 4) to have a moderate excess of colors 2 and 3 while imposing 1-
boundary conditions on the entire box. In this case it is conceivable that a so-called
“double bubble” is created, consisting of two adjacent macroscopic droplets filled
with the (pure) phases 2 and 3, respectively. The double bubble is swimming in
the phase 1 which fills the rest of the box. Of course, we might have an excess of
color 4 as well; in this case a further bubble will presumably appear which will be
attached to the previous two bubbles.

For related variational questions concerning soap films and immiscible fluids,
see [30].
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In fact, by studying questions concerning phase boundaries we are very quickly
confronted with the theory of minimal surfaces, such as the Plateau problem, cor-
responding to anisotropic surface measures. Let Q be a bounded open set in R?
with smooth boundary and let v be a Jordan curve drawn on 9} which separates
01 into two disjoint relatively open sets I't and I'". Typical configurations in the
Ising model on a fine grid in { with plus b.c.s on I't and minus b.c.s on I'™ will
exhibit two phases separated with an interface close to a minimal surface which is
a global solution of the following Plateau type problem:

minimize / T(vs(x)) dH* ' (x) : S is a surface in Q spanned by v
5

where vg(z) is the normal vector to S at . We remark that it is conjectured that,
as the temperature approaches T, from below, the surface tension 7 becomes more
and more isotropic and it is conceivable that the solution of the above minimization
problem approaches the solution of the classical (isotropic) Plateau problem.

1.4. Further background

There is a beautiful and extremely useful way to decompose the Ising-Potts
model into a certain bond percolation model, called FK-percolation and some simple
"coloring’ procedure discovered by Fortuin and Kasteleyn [21]. Consider the g-state
Potts model with mixed boundary conditions v in a finite lattice box B at inverse
temperature 3 and set p = 1 —e~?. Consider a bond percolation model (called FK
percolation) specified by the following formula:

S 0] = Py #1723

where 7 is a bond configuration with the property that there is no open connec-
tion between differently colored boundary parts, P, is the usual Bernoulli measure
with parameter p, #(n) denotes the number of clusters (conn. components) in the
configuration n with the rule that identically colored boundary parts (and their con-
nected components) count as one single cluster. Finally Zg’ﬁ 7 is the appropriate
normalizing constant.

In the second step we assign colors to every cluster (and their sites) as follows:
the boundary pieces inherit the color of the boundary condition, the remaining
clusters will get one of the colors 1,2, ..., ¢ with probability 1/¢ each independently
from each other. The distribution of the coloring of the sites corresponds exactly
to the Potts model. Note that in the case of free or constant b.c.s. there is no
constraint prohibiting open connections, and indeed these measures, denoted by
@é’ﬁ’q (free b.c.s.) and @g’ﬁ’q (“wired” b.c.s.) behave very similar to regular
Bernoulli percolation. Their thermodynamic limits ®£;%7 and ®2%9 exist as the
box size tends to infinity and we can define the percolation probability as usual
0*(p) = ®%P[0 + oo], for * free or wired. It is easy to check that the order
parameter #(3) of the Ising-Potts model agrees with 8¥(3), and correspondingly
the FK model exhibits a percolation phase transition. Further it is known [23], that
6" (3) = () for all but at most countably many values of 8 and it is conjectured
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that the equality is valid for all values except possibly the critical point 8. = 8.(q).
Moreover this condition is equivalent to the equality of the thermodynamical limits:
QW81 = 1,59 We define the set of “regular” inverse temperatures by

Ulg) = {8>0;69(8) =6/(3)}.

Although the status of the bonds are dependent, their correlation tends fast to
zero as the distance between them becomes large and this holds for both the sub
and supercritical phase of FK percolation. This property is of crucial importance
in our large deviation analysis since in the original Potts model there exists no
corresponding asymptotic independence when 8 > .. L

Our results are valid above the so called slab-threshold 3. = 8.(q,d), introduced
in [34]. This threshold is conjectured to agree with the critical point and at least in
the case of percolation (¢ = 1) this have been proved by Grimmett and Marstrand
[24]. It is possible to characterize this threshold as the smallest value such that
when [ exceeds it, it is possible to find « > 0 and L > 1 such that at least in the
center of the of slabs S(L,n) = [~L, L] x [-n,n]?"! N Z¢ there is “uniform long
range order”, i.e.,

. . 1.8

%Iéf; w,yelsrifl:,an) (I)S(L’n) [:1’ H y] > 0.
It has been proved in [34] that above Ec, « always can be chosen to be one, guar-
anteeing a strictly positive probability (uniformly in n) for connections within a
sufficiently (depending on 3) thick slab. This property is crucial for establishing
the basic properties of supercritical FK percolation; the existence of a unique cross-
ing cluster in a box, its omnipresence, the concentration of its density around the
percolation probability, the exponential tail decay of the diameter of other clus-
ters in the box, etc. These properties are then used to establish a renormalization
scheme which is essential for the large deviation analysis of this and the Ising-Potts
model.

2. The results

2.1. Historical remarks

Before we start with the presentation of our results we give a brief summary of
the previous work on this subject. As we have already mentioned, large deviations
theory plays an important role in this context and not surprisingly the first efforts
were devoted to the study of large deviations of the empirical magnetization in the
Ising model, i.e., the average value of the spins in a large box. A wolume order
large deviation principle (LDP) has been established for the Ising model by various
authors: Comets, Ellis, Follmer, Orey, Olla [12, 15, 17, 32]. The corresponding rate
function has been found to vanish in [~m*, m*] where m* denotes the spontaneous
magnetization. In fact, it was suspected that the correct order of decay is expo-
nential to surface order. Indeed, Schonmann [35] found a proof of this conjecture,
valid for any dimensions and low enough temperatures and Chayes, Chayes and
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Schonmann extended the result for the supercritical g > 3. regime in the two di-
mensional case. Follmer and Ort [18] investigated this phenomenon on the level of
empirical measures. Finally, inspired by the work of Kesten and Zhang [29] on re-
lated questions in percolation, Pisztora [34] established surface order upper bounds
for the remaining dimensions d > 3 above the slab-threshold Ec, introduced in the
same work, which is conjectured to agree with the critical point 5.. In that work
a renormalization scheme has been developed for supercritical Fortuin-Kasteleyn
percolation (or random cluster model) in conjunction with a stochastic domination
argument (generalized and improved in [31]) which allows to control the renormal-
ized process, and so, the original one.

The monograph of Dobrushin, Kotecky and Shlosman [14] opened the way to
the rigorous study of the phase separation phenomenon creating thereby an immense
interest and activity which lasts up to the present time. Their analysis, which
provided the first mathematical proof of phase separation, had been performed in
the context of the Ising model. The main tool of their work is the cluster expansion,
which, on the one hand allowed the derivation of results much finer than necessary
to verify the Wulff construction, on the other hand it restricted the validity of the
results to two dimensions and low temperatures. Significant improvements of these
results in two dimensions have been derived by Pfister [33], Alexander, Chayes and
Chayes [4] (treating percolation), Alexander [3], Ioffe [26, 27]. Finally Ioffe and
Schonmann [28] extended the results of [14] up to 7.

The next challenge was to analyze phase separation for short range models in
higher dimensions. The additional difficulties came mainly from two sources. First,
new techniques have to be developed to avoid the use of perturbative methods (such
as the cluster expansion) which severely limit the applicability of the arguments and
methods which are specific to two dimensions only (duality). Second, the emerging
geometry is far more complex than in two dimensions and this requires the use of
new tools and ideas. The complexity of the geometry causes problems also within
the probabilistic analysis (for instance the lack of the skeleton technique for surfaces)
and even the correct formulation of the results is far from obvious (“hairs”).

The first issue has been resolved by the application of the aforementioned
renormalization technology from [34]. Renormalization arguments lie at the heart
of the proof of much of the intermediate steps (for instance exponential tightness,
decoupling) and even in the remaining parts they play an important role usually in
combination with geometric arguments (interface lemma, etc.).

To handle the geometric difficulties, the use of appropriate tools from geometric
measure theory has been introduced in the works of Alberti, Bellettini, Bodineau,
Butta, Cassandro, Presutti [2, 5, 6] and by Cerf [9]. In these works also a novel and
very general large deviation framework have been proposed to tackle the problem. In
fact, this framework turned out to be crucial for the success of the entire approach.
It is the work of Cerf [9] in which the first complete analysis of phase separation in
a three dimensional model have been achieved, namely the asymptotic analysis of
the shape of a large finite cluster (Wulff problem) in percolation.

The results presented in this article have been derived in the works [34, 9, 10,
11]. It should be mentioned that in an independent work [7] Bodineau carried out
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an analysis of the Wulff problem in the Ising model with conclusions slightly weaker
than the results appearing in [10].

Finally, for current developments in the field we refer the reader to the preprint
[8] and the references therein.

2.2. Statement of the results

Range of validity of the results. Our results for the Ising-Potts models hold in
the region: d > 3, ¢ € N\ {0,1}, 8> Be(q,d), 8 € U(q, d).

At this point it is natural to comment on the case of two dimensions. Although
most of our results should hold for d = 2, there are several points in the proofs which
would require a significant change, making the proofs even longer. The main reason,
however, for not to treat the two dimensional case is that the natural topology for
the LDP-s in d = 2 is not the one we use (which is based on the distance disty1)
but a topology based on the Hausdorff distance.

Surface tension. From FK percolation we can extract a direction dependent
surface tension 7(v) = 7(p,q,d,v), cf [10]. For a unit vector v, let A be a unit
hypersquare orthogonal to v, let cyl A be the cylinder A + Ry, then 7(v) is equal
to the limit

inside ncyl A there exists a finite set of closed edges E
cutting ncyl A in at least 2 unbounded components and
the edges of E at distance less than 2d from the boundary
of ncyl A are at distance less than 2d from nA

lim -
N—rCO nd—l

log ®%:¢

The function 7 satisfies the weak simplex inequality, is continuous, uniformly bounded
away from zero and infinity and invariant under the isometries which leave Z? in-
variant (see section 4 in [10] for details).

Identification of the phases. The typical picture which emerges from the Potts
model with mixed b.c.s. at the macroscopic level is a partition of {1 in maximal ¢
phases corresponding to the dominant color in that phase. The individual phases
need not be connected. In order to identify the phases we choose first a sequence
of test events which we regard as characteristic for that phase. More specificly,
for j = 1,2,...,q we select events Ey(zj ) defined on a n x n lattice box such that
8 [Egj)] — 1 asn — 00. We may also assume that EY) 0 ES) = § for j # i.
For instance, one natural choice is to require that the densities of the different colors
in the box do not deviate more than some small fraction from their expected value.
This will guarantee that the right mixture of colors occurs which is typical for that
particular pure phase. Alternately, we may request that the empirical measure
defined by the given configuration is close to the restriction of ug)’ﬁ " to A(n) with
respect some appropriate distance between probability measures, etc.

For z € R? and r > 0 we define the box A(z,r) by

Alz,r) = {yERd; ~r[2 <y~ <T)2, 0= 1,...,d}

and we introduce an intermediate length scale represented by a fixed function f :
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N -+ N satisfying

lim n/f(n)?™1 = lim f(n)/logn = cc. (1)
N OO N CO

Given a configuration in €),,, we say that the point z € Q) belongs to the phase j, if

the event Egj) occurs in the box Az, f(n)/n). For j = 1,2, ..,q, we denote by A%j)

the set of points in € belonging to the phase j and set A = \Uj A9 (indefinite

phase).

The random partition of Q, A, = (A%, AL ... A%), is called the empirical
phase partition. Our first result shows that up to super-surface order large devia-
tions, the region of indefinite phase A% has negligible density, i.e., the pure phases
fill out the entire volume.

Theorem 2.1 Letd > 3, ¢ €« N\ {0,1}, 8 > B, B € U(gq,d). Ford >0,

hrrisolép # log i, [ vol (4%) > 6] = —o0.

Although Theorem 2.1 guarantees that the pure phases fill out the entire vol-
ume (up to negligible density) but it does not exclude the possibility that the
connected components of the pure phases are very small. For instance, they could
have a diameter not much larger than our fixed intermediate scale (in which case
they would be invisible on a macroscopic scale.) If this happened, the total area
of the phase boundaries would be exceedingly high. Before stating our next result,
which will exclude this possibility, we introduce some geometric tools.

We define a (pseudo) metric, denoted by disty:, on the set B(£2) of the Borel
subsets of by setting

VAl,Ag S B(Q) diStLl (441,442) = vol (141&142). (2)

We consider then the space of phase partitions P(£),q) consisting of g + 1-tuples
(A%, AL, ..., A9) of Borel subsets of Q forming a partition of 2. We endow P(£2, q)
with the following metric:

distp<(AO,...,Aq),(BO,...,Bq)): 3 distyi (4% BY).

i=0,...,9

In order to define the surface energy 7 of a phase partition A;, we recall some
notions and facts from the theory of sets of finite perimeter, introduced initially
by Caccioppoli and subsequently developed by De Giorgi, see for instance [22, 16].
The perimeter of a Borel set E of R? is defined as

P(E) = sup { /Edivf(:v) dz : f € CSO(Rd,B(l))}

where C§°(R?, B(1)) is the set of the compactly supported C* vector functions
from R to the unit ball B(1) and div is the usual divergence operator. The set E is
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of finite perimeter if P(E) is finite. A unit vector v is called the measure theoretic
exterior normal to E at x if

lim =% vol (B_(z,r,v) \ E) = 0, limr % vol (B (z,r,v)NE) = 0.

r—0 r—0
Let E be a set of finite perimeter. Then there exists a certain subset of the topo-
logical boundary of E, called the reduced boundary, denoted by *E, with the same
d — 1 dimensional Hausdorff measure as 0F, such that at each 2 € 8*E there is a
measure theoretic exterior normal to E at z. For practical (measure theoretic) pur-
poses, the reduced boundary represents the boundary of any set of finite perimeter,

for instance, the following generalization of Gauss Theorem holds: For any vector
function f in C3 (R4, RY),

/ div f(x)dx = f(@) - vg(x) H (de) .
B
(For more on this see e.g. the appendix in [10] and the references there.)
The surface energy T of a phase partition (A2AL,..., A%) € P(£, q) is defined
as follows:

- for any (A°, Al,..., A%) such that either A° # () or one set among A!,..., A?
has not finite perimeter, we set Z(A°,..., A7) = oo,

- for any (A% A,... A7) with A® = () and A%,..., A7 having finite perimeter,
we set

ZA%. AT = ; Z %/{;\*Ainﬂ T @) AU )

Py . () dH* ().
ey Al mra
i

Note that Z depends on 7 and the boundary conditions v = (I'*,...,T9). The
first term in the above formula corresponds to the interfaces present in €, while
the second term corresponds to the interfaces between the elements of the phase
partition and the boundary I'. It is natural to define the perimeter of the phase
partition by using the same formula with 7 replaced by constant one. Since 7 is
uniformly bounded away from zero and infinity at any temperature, the surface
energy can be bounded by a multiple of the perimeter and vice versa. It is known
that the surface energy 7 and the perimeter P are lower semi continuous and their
level sets of the form Z71[0, K] are compact on the space (B(R?), disty1).

The next result states that up to surface order large deviations (and the con-
stant can be made arbitrarily large by adjusting the bound K below) the empirical
phase partition will be (arbitrarily) close to the set of phase partitions with perime-
ter not exceeding K.

Theorem 2.2 Letd > 3, ¢ € N\ {0,1}, 8 > B, B € U(gq,d). Ford >0,

1
lim sup ——— i log un[d1stp(4n, 77'0,K)) > (5] < —cK.

N CO
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Our fundamental result is a large deviation principle (LDP) for the empirical
phase partition (A2, AL, ..., A%).

Theorem 2.3 The sequence (A,")neN = ((A%,A}L,...,A%))%N of the empirical
phase partitions of 0 satisfies a LDP in (P(Q,q), distp) with respect to p, with

speed n?™1 and rate function T—minpq,q) Z, i.e., for any Borel subset E of P(§), q),
. . . 1 o
- 1£1f 7+ P%,I;)I < hnrr_lgoréf e log i, [An € E]

. 1 -
< limsup povr log i, [An € E]

N CO
< —inf 74 min Z.
E P(,q)

Note that the constant minp(q ¢ Z is always finite. Every large deviation re-
sult includes a (weak) law of large numbers; here the corresponding statement is
as follows: Asymptotically, the empirical phase partition will be concentrated in
an (arbitrarily) small neighborhood of the set of partitions minimizing the surface
energy. In other words, on the macroscopic level, the typical phase partition will
coincide with some of the minimizers of the variational problem, in agreement with
the phenomenological prediction. Of course, the LDP states much more than this,
in particular we will be able to extract similar statements for restricted ensembles.
Recall that imposing mixed boundary conditions is not the only way to force the sys-
tem to exhibit coexisting phases. In the Wulff problem in the Ising model context,
for instance, a restricted ensemble is studied which is characterized by an artifi-
cial excess of say minus spins in the plus phase. Technically this can be achieved
by conditioning the system to have a magnetization larger than the spontaneous
magnetization while imposing plus b.c.s.

The next result describes the large deviation behavior of the phase partition
in a large class of restricted ensembles. Although it is a rather straightforward gen-
eralization of Theorem 2.3, we state it separately because of its physical relevance.

Let (Gy)nz1 be a sequence of events, i.e., sets of spin configurations, satisfying
the following two conditions: first there exists a Borel subset G of P(£2, ¢) such that
the sequence of events (G,)nen and ({Xn € G})nen are exponentially equivalent,
ie.,

. 1 -
117rln_>solip prry log piy, [Gn AA, € G}] = —00, (3)

where A denotes the symmetric difference. Second, the following limit exists and
is finite:

Ta = Jl}ngo i log pn[ Gy > —c. (4)
The sequence of events (G,),»1 determines a restricted (conditional) ensemble.

Note that if

inf Z=inf 7 > ~o0, (5)
% G
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then Theorem 2.3 implies that (4) is satisfied, with Zg = i%f 7.

Theorem 2.4 Assume that the sequence (Gy,)n>1 satisfies (3) and (4) and define
for each n > 1 the conditional measures

Ng = Nn( : iGn)

of the empirical phase partitions of ) satisfies a LDP
d—1

Then the sequence ("I")n>1

in (P(S,q), distp) with respect to p& with speed n
i.e., for any Borel subset E of P(Q,q),

and rate function T — Tq,

1
—inofI—}—IG < liminf

n—oo pd—1 log /1/763 [:An € E]
ENG

< limsup —— log u,cf [/Xn € E]
n—soo 17

< —inf 7+ Zg.
ENG

Theorem 2.4 gives a rigorous verification of the basic assumption underlying
the phenomenological theory, namely, that in a given ensemble, the typical con-
figurations are those minimizing the surface free energy. A general compactness
argument implies the existence of at least one such minimizer. However, in most
examples one cannot say much about the minimizers themselves. (One notable ex-
ception is the Wulff problem.) The difficulty stems from the fact that the surface
tension 7 is anisotropic and almost no quantitative information about its magnitude
is available. Moreover, the corresponding variational problems are extremely hard
even in the isotropic case and the (few) resolved questions represent the state of
the art in the calculus of variations. For instance, a famous conjecture related to
the symmetric double-bubble in the three dimensional case with isotropic surface
energy (perimeter) has only been resolved recently [25] and the asymmetric case
remains unresolved (even in the isotropic case).

We show next how Theorem 2.4 can be applied to the Wulff and multiple
bubble problem. We take pure boundary conditions with color 1, that is, I'* = T,
' =...=T9=1. Let 82, -+ ,8, be ¢ — 1 real numbers larger than or equal to
(1—-8)/q. We set

Vied{2,...,q} v; = vol ()0 (s; — (1 —6)/q).
We define next the events
Vn €N Gp, ={Vie{2,...,q} S.() > s}
and the collection of phase partitions
G(v,...,v) = { A= (Ao, A1,...,Ay) € P(Q,q) : vol (A2) > va,..., vol (4,) > v, }.
It can be shown that the sequences of events

-

(Gn)nen and (Ap, € Glva,...,04))nen
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are exponentially equivalent, i.e., they satisfy the condition (3). In order to en-
sure condition (5), we suppose that the minimum of the surface energy 7 over
G(va,...,vq) is reached with a phase partition having no interfaces on the bound-
ary I'. More precisely, we suppose that the following assumption is fulfilled.

Assumption. The region {1 and the real numbers v, ..., v, are such that there

exists A" = (A3, A],..., A%) in G(vs,...,v,) such that
Z(A*) = min {Z(A); A € G(va,...,vq) }
Vie{2,...,q}  do(A7,T) >0.

We expect that this assumption is fulfilled provided the real numbers vo,..., v,
are sufficiently small (or equivalently, so, ..., s, are sufficiently close to (1 —8}/q),
depending on the region £). This is for instance the case when ¢ = 2. Indeed, let
W, be the Wulff crystal associated to 7. We know that W, is, up to dilatations and
translations, the unique solution to the anisotropic isoperimetric problem associated
to 7. For ve sufficiently small, a dilated Wulff crystal z¢+aoW, of volume vy fits into
Q without touching I', and the phase partition A = (B, Q\ (zo+ oW, ), 2o + W)
answers the problem. In the case ¢ > 2, we expect that a minimizing phase partition
corresponds to a multiple bubble having ¢ — 1 components.

Under the above assumption, we claim that the collection of phase partitions
G(va,...,vq) satisfies (5). For A > 1, we define

A’*(A):(@,Q\ U AA;‘,AA;,...,AA;).

2<i<q

Since by hypothesis the sets A3, ..., A7 are at positive distance from I, for A larger
than 1 and sufficiently close to 1, the phase partition A*(\) satisfies

[¢]

A*(\) € G\ v, ..., M\ v,) C Gloa,. .., vy

and moreover Z(A*(\)) = A-1Z(A*). Sending A to 1, and remarking that
G(va,...,vq) is closed, we see that G(va,...,v,) satisfies (5). Thus we can ap-
ply Theorem 2.4 with the sequence of events (G,)nen, thereby obtaining a LDP
and a weak law of large numbers for the conditional measures p§ = p,(+|Gp).
In the particular case ¢ = 2, we obtain again the main result (Wulff problem) of
our previous paper [10]. In the more challenging situations ¢ > 2, the unresolved
questions concerning the macroscopic behavior of such systems belong to the realm
of the calculus of variations.
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Biological Sequence Analysis

T. P. Speed*

Abstract

This talk will review a little over a decade’s research on applying certain
stochastic models to biological sequence analysis. The models themselves have
a longer history, going back over 30 years, although many novel variants have
arisen since that time. The function of the models in biological sequence
analysis is to summarize the information concerning what is known as a motif
or a domain in bioinformatics, and to provide a tool for discovering instances
of that motif or domain in a separate sequence segment. We will introduce the
motif models in stages, beginning from very simple, non-stochastic versions,
progressively becoming more complex, until we reach modern profile HMMs
for motifs. A second example will come from gene finding using sequence data
from one or two species, where generalized HMMs or generalized pair HMMs
have proved to be very effective.

2000 Mathematics Subject Classification: 60J20, 92C40.
Keywords and Phrases: Motif, Regular expression, Profile, Hidden Markov
model.

1. Introduction

DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and proteins are macro-
molecules which are unbranched polymers built up from smaller units. In the case
of DNA these units are the 4 nucleotide residues A (adenine), C (cytosine), G (gua-
nine) and T (thymine) while for RNA the units are the 4 nucleotide residues A, C,
G and U (uracil). For proteins the units are the 20 amino acid residues A (alanine),
C (cysteine) D (aspartic acid), E (glutamic acid), F (phenylalanine), G (glycine), H
(histidine), I (isoleucine), K (lysine), L (leucine), M (methionine), N (asparagine},
P (proline), Q (glutamine), R (arginine), S (serine), T (threonine), V (valine), W
(tryptophan) and Y (tyrosine). To a considerable extent, the chemical properties
of DNA, RNA and protein molecules are encoded in the linear sequence of these
basic units: their primary structure.

*Department of Statistics, University of California, Berkeley, CA 94720, USA; Division of
Genetics and Bioinformatics, Walter and Eliza. Hall Institute of Medical Research, VIC 3050,
Australia. E-mail: terry@stat.berkeley.edu
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The use of statistics to study linear sequences of biomolecular units can be
descriptive or it can be predictive. A very wide range of statistical techniques has
been used in this context, and while statistical models can be extremely useful,
the underlying stochastic mechanisms should never be taken literally. A model or
method can break down at any time without notice. Further, biological confirmation
of predictions is almost always necessary.

The statistics of biological sequences can be global or it can be local. For
example, we might consider the global base composition of genomes: E. coli has
25% A, 25% C, 25% G, 25% T, while P. falciparum has 82%A+T. At the very
local, the triple ATG is the near universal motif indicating the start of translation
in DNA coding sequence. A major role of statistics in this context is to characterize
individual sequences or classes of biological sequences using probability models,
and to make use of these models to identify them against a background of other
sequences. Needless to say, the models and the tools vary greatly in complexity.

Extensive use is made in biological sequence analysis of the notions of motif or
domain in proteins, and site in DNA. We shall use these terms interchangeably to
describe the recurring elements of interest to us. It is important to note that while
we focus on the sequence characteristics of motifs, domains or sites, in practice they
also embody (biochemical) structural significance.

2. Deterministic models

The C2H2 (cysteine-cysteine histidine-histidine) zinc-finger DNA binding do-
main is composed of 25-30 amino acid residues including two conserved cysteines
and two conserved histidines spaced in a particular way, with some restrictions on
the residues in between and nearby. Of course the arrangement reflects the three-
dimensional molecular structure into which the amino-acid sequence folds, for it is
the structure which has the real biochemical significance, see Figure 1, which was
obtained from http://www.rcsb.org/pdb/. An example of this motif is the 27-

Figure 1: A C2H2 zinc finger DNA binding domain
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letter sequence known as 1ZNF, this being a Protein Data Bank identifier for the
structure XFIN-31 of X. lgevis. Its amino acid sequence is

1ZNF: XYKCGLCERSFVEKSALSRHORVHKNX

Note the presence of the two Cs separated by 2 other residues, and the two Hs
separated by 3 other residues. Here and elsewhere, X denotes an arbitrary amino
acid residue. A popular and useful summary description of C2H2 zinc fingers which
clearly includes our example, is the regular expression

C-X(2,4)-C-X3)—[LIVMFYWC] - X(@8) - H—X(3,5) - H

where X (m) denotes a sequence of n unspecified amino acids, while X (m, n) denotes
from m to n such, and the brackets enclose mutually exclusive alternatives. There is
a richer set of notation for regular expressions of this kind, but for our purposes it is
enough to note that this representation is essentially deterministic, with uncertainty
included only through mutually exclusive possibilities (e.g. length or residue) which
are not otherwise distinguished.

Simple and eflicient algorithms exist for searching query sequences of residues
to find every instance of the regular expression above. In so doing with sequence
in which all instances of the motif are known, we may identify some sub-sequences
of the query sequence which are not C2H2 zinc finger DNA binding domains, i.e.
which are false positives, and we may miss some sub-sequences which are C2H2
zinc fingers, i.e. which are false negatives. Thus we have essentially deterministic
descriptions and search algorithms for the C2H2 motifs using regular expressions.
Their performance can be described by the frequency of false positives and false
negatives, equivalently, their complements, the specificity and sensitivity of the
regular expression. We do not have space for an extensive bibliography, so for more
on regular expressions and on most of the other concepts we introduce below, see

[2].

3. Regular expressions can be limiting

Most protein binding sites are characterized by some degree of sequence speci-
ficity, but seeking a consensus DNA sequence is often an inadequate way to rec-
ognize their motifs. Simply listing the alternatives seen at a position may not be
very informative, but keeping track of the frequencies with which the different al-
ternatives appear can be very valuable. Thus position-specific nucleotide or amino
acid distributions came to represent the variability in DNA or protein motif com-
position. This is just the set of marginal distribution of letters at each position.
Rather than present an extensive tabulation of frequencies for our C2H2 zinc fin-
ger example, we present a pictorial representation: a sequence logo coming from
http://blocks.fherc.org.

Sequence logos are scaled representation of position-specific nucleotide or amino
acid distributions. The overall height at a given position is proportional to infor-
mation content, which is a constant minus the entropy of the distribution at that
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Figure 2: Sequence logo for C2H2 zinc finger

position. The proportions of each nucleotide or amino acid at a position are in re-
lation to their observed frequency at that position, with the most frequent on top,
the next most frequent below, etc.

4. Profiles

It is convenient for our present purposes to define a profile as a set of position-
specific distributions describing a motif. (Traditionally the term has been used for
the derived scores.) How would we use a set of such distributions to search a query
sequence for instances of the motif? The answer from bioinformatics is that we
score the query sequence, and for suitably large scores, declare that a candidate
subsequence is an instance of our motif.

There are a number of approaches for deriving profile scores, but the easiest to
explain here is this: scores are log-likelihood ratio test statistics, for discriminating
between a probability model M for the motif and a model B for the background.
The model M will be the direct product of the position-specific distributions, (i.e.
the independent but not identical distribution model), while the background model
B will be the direct product of a set of relevant background frequencies (i.e. the
independent and identical distribution model). Thus, if f,; is the frequency of
residue a at position I of the motif, and f, background frequency of the same
residue, then the profile score assigned to residue a at position [ in a possible
instance of the motif will be s, = log fa/ fa. These scores are then summed across
the positions in the motif, and compared to a suitably defined threshold. Note
that proper setting of the threshold requires a set of data in which all instances
of the motif are known. The false positive and false negative rate could then be
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determined for various thresholds, and a suitable choice made.

We briefly discuss variants of the log-likelihood ratio scores. In many contexts,
it will matter little whether a position is occupied by a leucine (L) rather than an
isoleucine (I), as each can evolve in time to or from the other rather more readily
than from other residues. Thus it might make sense to modify the scores to take
this and similar evolutionary patterns into account. Indeed the first use of profiles
involved scores of this kind, using the position specific amino acid distribution
of an alignment of instances of the motif and entries from what are known as
PAM matrices, which embody patterns of molecular evolution. In addition, the
background distribution of residues may be modelled more detailed manner, e.g.
using the so-called Dirichlet mixture models.

It is also possible to include position-specific scores for insertion and deletion
of residues, relative to a consensus pattern. When these are used, the scoring
becomes a little more subtle, as the problem is then quite analogous to pairwise
sequence alignment, but with position dependent scoring parameters for matches,
mismatches, insertions and deletions.

We summarise this section by noting that probability has entered into our
description through the use of frequencies, and scores based on them, but so far we
do not have global statistical models, at least not ones embodying insertions and
deletions, on which we base our estimation and testing. These are all part of the
use of profile HMMs, but first we introduce HMMs.

5. Hidden Markov models

Hidden Markov models (HMMs) are processes (Sy, O;),t = 1,...,T, where S,
is the hidden state and O, the observation at time ¢. Their probabilistic evolution
is constrained by the equations

pr(Stist—l,Ot—l,St—z,Ot—z,~-~) = pT(St§St—1),
pr(OdSt—l,Ot—last—z,ot—z,---) = pr(otist,st—ﬁ-

The definitions and basic facts concerning HMMs were laid out in a series of beauti-
ful papers by L. E. Baum and colleagues around 1970, see [2] for references. Much
of their formulation has been used almost unchanged to this day. Many variants
are now used. For example, the distribution of O may not depend on previous 5,
or it may also depend on previous O values,

pr(OtiSt,St_l,Ot_l,...) = pr(OtiSt), or
pr(O¢|St, St-1,01-1,...) = pr(OS;,S1-1,01-1).

Most importantly for us below, the times of S and O may be decoupled, permit-
ting the observation corresponding to state time ¢ to be a string whose length and
composition depends on S; (and possibly Sy and part or all of the previous ob-
servations). This is called a hidden semi-Markov or generalized hidden Markov
model.
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Early applications of HMMs were to finance, but these were never published,
to speech recognition, and to modelling ion channels. In the mid-late 1980s HMMs
entered genetics and molecular biology, where they are now firmly entrenched. One
of the major reasons for the success of HMMSs as stochastic models is the fact that
although they are substantial generalizations of Markov chains, there are elegant
dynamic programming algorithms which permit full likelihood calculations in many
cases of interest. Specifically, there are algorithms which permit the efficient calcu-
lation of a) pr(sequence] M), where sequence is a sequence of observations and M
is an HMM; b) the maximum over states of pr(states|sequence, M), where states is
the unobserved state sequence underlying the observation sequence; and ¢) the max-
imum likelihood estimates of parameters in M based on the observation sequence.
Step c) is carried out by an iterative procedure which in the case of independent
states was later termed the EM algorithm.

6. Profile HMMs

In a landmark paper A. Krogh, D. Haussler and co-workers introduced profile
HMMs into bioinformatics. An illustrative form of their profile HMM architecture
is given in Figure 3. There we depict the underlying state space of the hidden
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Figure 3: State space of a simple profile HMM

Markov chain of a profile HMM of length 4, with M denoting match states, I insert
states and D delete states, while B and E are begin and end states, respectively.
Encircled states (D, B and E) do not emit observations, while each of the match
and insert states will have position-specific observation or emission distributions.
Finally, each arrow will have associated transition probabilities, with the expecta-
tion being that the horizontal transition probabilities are typically near unity. This
the chain proceeds from left to right, and if it remains within match states, its
output will be an amino acid sequence of length 4. Deviation to the insert or delete
states will modify the output accordingly. The similarity with a direct product of
a sequence of position-specific distributions should be unmistakeable. The profile
HMMs in use now have considerably more features, while sharing the basic M, T
and D architecture.
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Why was the introduction of the HMM formalism such an advance? The
answer is simple: it permitted the construction and application of profiles to be
conducted entirely within a formal statistical framework, and that really helped.
Instances of the motif embodied in an HMM could be identified by calculating
pr{sequence|M ) /pr(sequence]B) as was done with profiles, using the algorithm for
problem a) in X above. Instances of the motif could be aligned to the HMM by
calculating the most probable state sequence giving rise to the motif sequence, in
essence finding the most probable sequence of matches, insertions, deletions which
align the given sequence to the others which gave rise to the HMM, cf. problem b)
above. And finally, the parameters in the HMMs could be estimated from data com-
prising known instances of the motif by using maximum likelihood, an important
step for many reasons, one being that it put insert and delete scores on precisely the
same footing as match and mismatch scores. Although the estimation of HMM pa-
rameters is easiest if the example sequences are properly aligned, the EM algorithm
(problem c) above) does not require aligned sequences.

In the years since the introduction of profile HMMs, they have been become
the standard approach to representing motifs and protein domains. The database
Pfam (http://pfam.wustl.edu) now has 3,849 hidden Markov models (May 2002)
representing recognized protein or DNA domains or motifs. Profile HMMs have es-
sentially replaced the use of regular expressions and the original profiles for searching
other databases to find novel instances of a motif, for finding a motif or domain
match to an input sequence, and for aligning a motif or domain to a an existing
family. There is considerable evidence that the HMM-based searches are more pow-
erful than the older profile based ones, though they are slower computationally, and
at times that is an important consideration.

7. Finding genes in DNA sequence

Identifying genes in DNA sequence is one of the most challenging, interesting
and important problems in bioinformatics today. With so many genomes being
sequenced so rapidly, and the experimental verification of genes lagging far behind,
it is necessary to rely on computationally derived genes in order to make immediate
use of the sequence.

What is a gene? Most readers will have heard of the famous central dogma
of molecular biology, in which the hereditary material of an organism resides in its
genome, usually DNA, and where genes are expressed in a two-stage process: first
DNA is transcribed into a messenger RNA (mRNA) sequence, and later a processed
form of this sequence is translated into an amino acid sequence, i.e. a protein. In
general the transcribed sequence is longer than the translated portion: parts called
introns (intervening sequence) are removed, leaving exons (expressed sequence), of
which only some are expressed, while the rest remain untranslated. The translated
sequence comes in triples called codons, beginning and ending with a unique start
(ATG) and one of three stop (TAA, TAG, TGA) codons. There are also character-
istic intron-exon boundaries called splice donor and acceptor sites, and a variety of
other motifs: promoters, transcription start sites, polyA sites, branching sites, and
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S0 or11.

All of the foregoing have statistical characterizations, and in principle they
can all help identify genes in long otherwise unannotated DNA sequence segments.
To get an idea of the magnitude of the task with the human genome, consider the
following facts about human gene sequences [3]: the coding regions comprise about
1.5% of the entire genome; the average gene length is about 27,000 bp (base pair);
the average total coding region is 1,340 bp; and the average intron length is about
3,300 bp. Further, only about 8% of genes have a single exon. We see that the
information in human genes is very dispersed along the genome, and that in general
the parts of primary interest, the coding exons, are a relatively small fraction of the
gene, on average about 21—0.

8. Generalized HMMs for finding genes

The HMMs which are effective in finding genes are the generalized HMMs
(GHMMs) described in section 5. above. Space does not permit our giving an ad-
equate description here, so we simply outline the architecture of Genscan [1] one
of the most widely used human genefinders. States represent the gene features
we mentioned above: exon, intron, and of course intergenic region, and a variety of
other features (promotor, untranslated region, polyA site, and so on. Output obser-
vations embody state-dependent nucleotide composition, dependence, and specific
signal features (such as stop codons). In a GHMM the state duration needs to be
modelled, as well as two other important features of genes in DNA: the reading
frame, which corresponds to the triples along the mRNA sequence which are se-
quentially translated, and the strand, as DNA is double stranded, and genes can be
on either strand, i.e. they can point in either direction. These features can be seen
in Figure 4, which was kindly supplied by Lior Pachter.

The output of a GHMM genefinder after processing a genomic segment is
broadly similar to that from a profile HMM after processing an amino acid sequence:
the most probable state sequence given an observation sequence is a best gene
annotation of that sequence, and a variety of probabilities can be calculated to
indicate the support in the observation sequence for various specific gene features.

9. Comparative sequence analysis using HMMs

The large number of sequenced genomes now available, and the observation
that functionally important regions are evolutionarily conserved, has led to efforts to
incorporate conservation into the models and methods of biological sequence anal-
ysis. Pair HMMs were introduced in [2] as a way of including alignment problems
under the HMM framework, and recently [4] they were combined with GHMMs
(forming GPHMMs) to carry out alignment and genefinding with homologous seg-
ments of the mouse and human genomes. Use of the program SLAM on the whole



Biological Sequence Analysis 105

DEE _MHOH_ 06 ®
\J \ I/

Figure 4: Forward half of the Genscan GHMM state space

mouse genome (http://bic.math.berkeley.edu/slam/mouse/) demonstrated the
value of GPHMMs in this context.

10. Challenges in biological sequence analysis

The first challenge is to understand the biology well enough to begin biclogical
sequence analysis. This part will frequently involve collaborations with biologists.
With HMMs, GHMMs and GPHMMs, designing the underlying architecture, and
carrying out the modelling for the components parts, e.g. for splice sites in genefind-
ing GHMM is perhaps the next major challenge. Undoubtedly the hardest and most
important task of all is the implementation: coding up the algorithms and making
it all work with error-prone and incomplete sequence data. Finally, it is usually a
real challenge to find good data sets for calibrating and evaluating the algorithms,
and for carrying out studies of competing algorithms.

For a recent example of this process, which is a model of its kind, see [3]. There
an HMM is presented for the so-called ¢ recognition sites, which involve two DNA
motifs separated by a variable number of base pairs. In addition to the examples
mentioned so far, there are many more HMMs in the bioinformatics literature, see
p. 79 of [2] for ones published before 1998.

11. Closing remarks
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In this short survey of biological sequence analysis, I have simply touched on
some of the major ideas. A much more comprehensive treatment of material covered
here can be found in the book [2], whose title not coincidentally is the same as
that of this paper. Many important ideas from biological sequence analysis have
not been mentioned here, including molecular evolution and phylogenetic inference,
and the use of stochastic context-free grammars, a form of generalization of HMMs
suited to the analysis of RNA sequence data.

At this Congress I have talked (and am now writing) on the research of others,
in an area in which my own contributions have been negligible. I chose to do so
upon being honoured by the invitation to speak at this Congress because 1 believe
this topic — HMMs — to be one of the great success stories of applying mathematics
to bioinformatics. In my view it is the one most worthy of a wider mathematical
audience. I hope that the fact that there are many others better suited than me to
speak on this topic will not prevent readers from appreciating it and following it up
through the bibliography.

I owe what understanding I have of this field to collaborations and discussions
with a number of people, and I would like to acknowledge them here. Firstly, Tony
Wirth, Simon Cawley and Mauro Delorenzi, with whom I have worked on HHMMs.
Next, it has been an honour and pleasure to observe from close by the development
of SLAM, by Simon Cawley, Lior Pachter and Marina Alexandersson. Finally I'd
like to thank Xiaoyue Zhou and Ken Simpson for their kind help to me when I was
preparing my talk and this paper.
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Estimates for the Strong Approximation
in Multidimensional Central
Limit Theorem*

A. Yu. Zaitsev'

Abstract

In a recent paper the author obtained optimal bounds for the strong Gaus-
sian approximation of sums of independent R?-valued random vectors with
finite exponential moments. The results may be considered as generalizations
of well-known results of Komlés—Major-Tusnady and Sakhanenko. The de-
pendence of constants on the dimension d and on distributions of summands
is given explicitly. Some related problems are discussed.
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1. Introduction

Let Xi,...,X,,... be mean zero independent R%valued random vectors and
D, = covS, the covariance operator of the sum S, = 37" | X;. By the Central
Limit Theorem, under some simple moment conditions the distribution of nor-
malized sums I, 1/2 S, is close to the standard Gaussian distribution. The in-
variance principle states that, in a sense, the distribution of the whole sequence
Dﬁl/g St,. .. ,}D);l/g Sh,...1s close to the distribution of the sequence Dﬁl/ng, e,

—1/2 . .
Dy, / T,,..., where T, = Z?:l Y; and Y1,...,Y,,... is a corresponding sequence
of independent Gaussian random vectors (this means that Y; has the same mean
and the same covariance operator as X;, i =1,...,n,...).

We consider here the problem of strong approximation which is more delicate
than that of estimating the closeness of distributions. It is required to construct on
a probability space a sequence of independent random vectors Xi,..., X, (with
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00265, and by RFBR-DFG Grant 99-01-04027.

st Petersburg Branch of the Steklov Mathematical Institute, Fontanka 27, St. Petersburg
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given distributions) and a corresponding sequence of independent Gaussian random
vectors Y1, ...,Y, so that the quantity

A(X,Y) = max
1<k<n

k k
Y XY
=1

i=1

would be so small as possible with large probability. Here || - || is the Euclidean
norm. It is clear that the vectors even with the same distributions can be very far
one from another.

In some sense this problem is one of the most important in probability ap-
proximations because many well-known probability theorems can be considered as
consequences of results about strong approximation of sequences of sums by corre-
sponding Gaussian sequences. This is related to the law of iterated logarithm, to
several theorems about large deviations, to the estimates for the rate of convergence
of the Prokhorov distance in the invariance principles (Prokhorov [19], Skorokhod
[26], Borovkov [4]), as well as to the Strassen-type approximations (Strassen [28],
see, for example, Csorgé and Hall [8]).

The rate for strong approximation in the one-dimensional invariance prin-
ciple was studied by many authors (see, e.g., Prokhorov [19], Skorokhod [26],
Borovkov [4], Csorgd and Révész [6] and the bibliography in Cstrgd and Révész [7],
Csorgd and Hall [8], Shao [20]). Skorokhod [26] developed a method of construction
of close sequences of sequential sums of independent random variables on the same
probability space. For a long time the best rates of approximation were obtained
by this method, known now as the Skorokhod embedding. However, Komlds, Ma-
jor and Tusnady (KMT) [17] elaborated a new, more powerful method of dyadic
approximation. With the help of this method they obtained optimal rates of Gaus-
sian approximation for sequences of independent identically distributed random
variables.

We restrict ourselves on the most important case, where the summands have
finite exponential moments. Sakhanenko [24] generalized and essentially sharpened
KMT results in the case of non-identically distributed random variables. He con-
sidered the following class of one-dimensional distributions:

Si(r) ={L(9): E£=0, Ef¢] exp (r7[¢]) < TE[¢]*}

(the distribution of a random vector £ will be denoted by £(£)). His main result is
formulated as follows.

Theorem 1 (Sakhanenko [24]). Suppose that T > 0, and &1,...,&, are in-

dependent random variables with L(&;) € Si(1), j=1,...,n. Then one can con-
struct on a probability space a sequence of independent random variables X4,..., X,
and a sequence of independent Gaussian random variables Y1,...,Y, so that L(X;)
=L(;), EY; =0, EY,j2 = EX;, j=1,...,n, and

E exp (cAX,Y)/T)< 1+ B/7, (1.1

where ¢ is an absolute constant and B* =E& + .-+ EE2.
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KMT [17] supposed that £, &1, ..., &, are identically distributed and E et*€) <
oo, for h € V, where V C RY is some neighborhood of zero. The KMT (1975-76)
result follows from Theorem 1. It is easy to see that there exists 7(F') such that
F = L(&) € Si(7(F)). Applying the Chebyshev inequality, we observe that (1.1)
imply that

P (c A(X,Y)/7(F) > z) < exp <log (1 + \/TLE(SQ/T(F)) - :L’) , >0, (L2)

Inequality (1.2) provides more information than the original KMT formulation
which contains unspecified constants depending on F. In (1.2) the dependence
of constants on the distribution F' is written out in an explicit form. The quantity
T(F) can be easily calculated or estimated for any concrete distribution F.

The first attempts to extend the KMT and Sakhanenko approximations to
the multidimensional case (see Berkes and Philipp [3], Philipp [18], Berger [2],
Einmahl [10, 11]) had a partial success only. Comparatively recently U. Einmahl
[12] obtained multidimensional analogs of KMT results which are close to optimal.
Zaitsev [33, 34] removed an unnecessary logarithmic factor from the result of Ein-
mahl [12] and obtained multidimensional analogs of KMT results (see Theorem 2 be-
low). In Theorem 2 the random vectors are, generally speaking, non-identically dis-
tributed. However, they have the same identity covariance operator I. Therefore,
the problem of obtaining an adequate multidimensional generalization of the main
result of Sakhanenko [24] remained open. This generalization is given in Theorem 3
below.

2. Main results

For formulations of results we need some notations. Let A4(7), 7 > 0,d € N,
denote classes of d-dimensional distributions, introduced in Zaitsev [29], see as well
Zaitsev [33-35]. The class A4(7) (with a fixed 7 > 0) consists of d-dimensional dis-
tributions F* for which the function ¢ (2) = @(F, z) = log [g. el F{dz} (p(0) = 0)
is defined and analytic for ||z||7 < 1,z € C?, and |dud% ga(z)| < Hful|r (Dv,v) for all
u,v € R? and ||z||7 < 1, where D = cov F, the covariance operator corresponding
to F, and d,y is the derivative of the function ¢ in direction u.

Theorem 2 (Zaitsev, [33, 34]). Suppose that 7 > 1, o >0 and &,....&,
are random vectors with distributions L(&) € Aa(T), E& = 0, cové, =1, k =

1,...,n. Then one can construct on a probability space a sequence of independent
random vectors X1, ..., X,, and o sequence of independent Gaussian random vectors
1y..., Yy so that

L(Xk) = L&), EYy=0, covl(Yy)=1, E=1,...,n,

and

c1(a) A(X,Y) 9/4+a * 2
E exp (m < exp (cz(a)d log" (n/7 )) ,

where ¢1(a), ca(a) are positive quantities depending on « only and log* b = max{1,
logb}, for b > 0.
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Corollary 1. In the conditions of Theorem 2 for all © > 0 the following
inequality is valid

d?/**log™ d log” (n/7?
P { AXY) > e2(a) T og” d log" (n/7?) +$} < exp (_ ci(a)x > .

e (@) Td"/2log” d

It is easy to see that if V' C R is some neighborhood of zero and E e{"£) < oo,
for h € V, then F = L(£) € Ay(c(F)). Below we list some simple and useful
properties of classes A4(7) which are essential in the proof of Theorem 2. Theorem 2
implies in one-dimensional case Sakhanenko’s Theorem 1 for identically distributed
random variables with finite exponential moments as well as the result of KMT [17].

Corollary 2. Suppose that o random vector £ has finite exponential mo-
ments Ee™€, for h € V, where V C R is some neighborhood of zero. Then
one can construct on o probability space a sequence of independent random vectors
X1, Xs, ... and a sequence of independent Gaussian random vectors Y1,Ys, ... so
that

LX) = L), EY,=0, covYy = covt, k=1,2,...,

and
n

ZXk - iY = O(logn) a.s..
k=1

k=1

As it is noted in KMT [17], from the results of Bartfai [1] that the rate of
approximation in Corollary 2 is the best possible for non-Gaussian vectors £. An
analog of Corollary 2 was obtained by Einmahl [12] under additional smoothness-
type restrictions on the distribution £(£). The following statement is a sharpening
of Corollary 2.

Corollary 3 (Zaitsev [36]). Suppose that a random vector & has the distri-
bution such that L(DY/2&) € Ay(7), where D = cov L(£) is a reversible operator.
Let 0%, 0 > 0, be the mazimal eigenvalue of . Then for any o > 0 there exists a
construction from Corollary 2 such that

n n
D Xi=> Vi
k=1 k=1

with c3(a) depending on « only.

1
P {lim sup
n—co lOgN

< ez(a) o TdB/4 Y Jog” d} =1 (2.1)

In Theorems 2 and Corollary 3 we consider the case 7 > 1. The case of small
T was investigated by Gotze and Zaitsev [16]. It is shown that under additional
smoothness-type restrictions on the distribution £(£) the expression in the right-
hand side of the inequality in (2.1) can be arbitrarily small if the parameter 7 is
small enough. It is clear that the statements of Theorem 2 and Corollary 3 becomes
stronger for small 7. In Gotze and Zaitsev [16] one can find simple examples in



Estimates for the Strong Approximation 111

which the sufficiently complicated smoothness condition is satisfied. The approxi-
mation is better in the case when summands have smooth distributions which are
close to Gaussian ones (see inequalities (3.1) and (3.2) below).

The following Theorem 3 is a generalization of Theorem 2 to the case of mul-
tivariate random variables. In one-dimensional situation, Theorem 3 implies Theo-
rem 1.

Theorem 3 (Zaitsev [35]). Suppose that o« > 0, 7 > 1, and &,...,&, are
independent random vectors with E&; =0, j=1,...,n. Assume that there exists
a strictly increasing sequence of non-negative integers mg = 0, my,....,m; = n
satisfying the following conditions. Write

G =Emprt1+ -+ &y k=1,....s,

and suppose that (for oll k = 1,...,8) L(() € Au(7), cov(y = By and, for all
u € RY,
2 2
callull” < (Bru,u) < ¢ [full (2.2)

with some constants ¢q4 and c5. Then one can construct on o probability spoce o
sequence of independent random vectors Xq,..., X, and a corresponding sequence
of independent Gaussian random vectors Y1,...,Y, so that L(X;) = L(&;), EY; =
0, covL(Y;) =covL(X;),j=1,...,n, and

AXY
E ex (%) < exp (az P log*(s/T’Z)) ’

where a1, ao are positive quantities depending only on «, ¢4, C5.

3. Properties of classes Aq(T)

Let us consider elementary properties of classes Ay(7) which are essentially
used in the proof of Theorems 2 and 3, see Zaitsev [29, 31, 33-35]. It is easy
to see that 7 < 7o implies Ay (m) C Ag(7m2). Moreover, the class A4 (7) is
closed with respect to convolution: if Fy,Fp € Ay(7), then FiFo= F| x Fy €
Ay (7). Products of measures are understood in the convolution sense. Note that the
condition £(¢x) € Aq(7) in Theorem 3 is satisfied if £(&;) € Aq(7), for j=1,...,n.

Let 7> 0, F = L(§) € Ag(7), y € R™, and A : R? — R™ is a linear operator.
Then

L(A+y) € Am (|l 7),  where [|Al = sup [lAz].
z€RY, |lz]|<1

Suppose that 7 > 0, F, = £ (£#)) € Aqg, (1), and the vectors £, k = 1,2, are
independent. Let ¢ € R7% be the vector with the first d; coordinates coinciding
with those of £(1) and with the last d coordinates coinciding with those of £(2).
Then F' = L(§) € Ag,4a.(T).

The classes A4(7) are closely connected with other naturally defined classes
of multidimensional distributions. From the definition of Aq(7) it follows that if
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L(€) € Ay(7) then the vector ¢ has finite exponential moments E e{f4) < oo, for
h € R%, ||h||7 < 1. This leads to exponential estimates for the tails of distributions.

The condition £(£) € A;i(r) is equivalent to Statulevicius’ [27] conditions on
the rate of increasing of cumulants -, of the random variable &:

1
[Ym| < §m!7m—272, m=3,4,....

This equivalence means that if one of these conditions is satisfied with parameter 7,

then the second is valid with parameter ¢, where ¢ denotes an absolute constant.

However, the condition £(£) € A4(7) differs essentially from other multidimensional

analogs of Statulevitius’ conditions, considered by Rudzkis [23] and Saulis [25].
Zaitsev [30] considered classes of distributions

Bar) = {F=£:Ec=0, [E(0) Eu"
1

< Em!rm—2 lul™ 2 E (¢,0)* for all u,v € RY, m =3,4,.. }

satisfying multidimensional analogs of the Bernstein inequality condition. Sakha-
nenko’s condition L£(£) € S;(7) is equivalent to the condition £(£) € Bi(r). Note
that if F{{z € R?: |jz|]| < 7}} =1 then F € By(r).

Let us formulate a relation between classes A4(7) and By(7). Denote by o2 (F)
the maximal eigenvalue of the covariance operator of a distribution F. Then

a) If ' = L(£) € By(r), then ¢*(F) <1272, E€ =0 and F € Ay(cr).
b) If F = L(&) € Ag(1), 0*(F) < 72 and E£ =0, then F € By(er).

If F is an infinitely divisible distributions with spectral measure concentrated
on the ball {z € R?: ||z]] <7} then F € Ay(cr), where ¢ is an absolute constant.
It is obvious that the class A4, (0) coincides with the class of all d-dimensional
Gaussian distributions. The following inequality was proved in Zaitsev [29] and can
be considered as an estimate of stability of this characterization:

if F' € Ayq(7), then 7 (F, ®(F)) < cd’7 log*(r71); (3.1)

where 7(-,-) is the Prokhorov distance and ®(F') denotes the Gaussian distribution
whose mean and covariance operator coincide with those of F. The Prokhorov
distance between distributions F,G may be defined by means of the formula

a(F,G) =inf {x: 7 (F,G,\) < A},
where

7(F,G,\) = sup max {F{X} - G{X*},G{X} - F{X*}}, A>0,

and X* = {y € R?:

Moreover, in Zaitsev [29] it was established that

%1% llx — ]| < A} is the A-neighborhood of the Borel set X.
T

7(F,®(F),\) < ¢d®exp ( - (3.2)

cdgr)'
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It is very essential (and important) that the inequality (3.2) is proved for all 7 > 0
and for arbitrary covF, in contrast to Theorems 2 and 3, where 7 > 1 and co-
variance operators satisfy condition (2.2). The question about the necessity of
condition (2.2) in Theorems 2 and 3 remains open. In Zaitsev [30] inequalities
(3.1) and (3.2) were proved for convolutions of distributions from By(7)

By the Strassen—Dudley theorem (see Dudley [9]} coupled with inequality (3.2},
one can construct on a probability space the random vectors £ and 5 with £(§) = F
and L(n) = ®(F) so that

2 A
P {Jlg —nll > A} < ed?exp (- —5). (3.3)
For convolutions of bounded measures, this fact was used by Rio [21], Einmahl and
Mason [13], Bovier and Mason [5], Gentz and Lowe [15], Einmahl and Kuelbs [14].
The scheme of the proof of Theorems 2 and 3 is very close to that of the main
results of Sakhanenko [24] and Einmahl [12]. We suppose that the Gaussian vec-
tors Y1,...,Y,, n = 2V, are already constructed and construct the independent
vectors which are bounded with probability one, have sufficiently smooth distribu-
tions and the same moments of the first, second and third orders as the needed
independent random vectors Xi,...,X,,. For the construction we use the dyadic
scheme proposed by KMT [17]. Firstly we construct the sum of 2V summands
using the Rosenblatt [22] quantile transform for conditional distributions (see Ein-
mahl [12]). Then we construct blocks of 2¥~1,2¥=2 /1 summands. The rate of
approximation is estimated using the fact that, for smooth summands distributions,
the corresponding conditional distribution are smooth and close to Gaussian ones.
Then we construct the vectors Xi,...,X, in several steps. After each step the
number of X; which are not constructed becomes smaller in 27 times, where p
is a suitably chosen positive integer. In each step we begin with already constructed
vectors which are bounded with probability one and have sufficiently smooth dis-
tributions and the needed moments up to the third order. Then we construct the
vectors such that, in each block of 27 summands, only the first vector has the
initial bounded smooth distribution. The rest 27 — 1 vectors have the needed
distributions £(&;). These 2F — 1 vectors from each block will be chosen as Xj
and will be not involved in the next steps of the procedure. The coincidence of third
moments will allow us to use more precise estimates of the closeness of quantiles of
conditional distributions contained in Zaitsev [32]. In the estimation of closeness
of random vectors in the steps of the procedure described above, we use essentially
properties of classes Agz(7).

4. Infinitely divisible approximation

Let us finally mention a result about strong approximation of sums of indepen-
dent random vectors by infinitely divisible distributions. Theorem 4 below follows
from the main result of Zaitsev [32] coupled with the Strassen-Dudley theorem. In-
equality (4.1) can be considered as a generalization of inequality (3.3) to convolution
of distribution with unbounded supports.



114 A. Yu. Zaitsev

Theorem 4. Let d-dimensional probability distributions F;, i = 1,...,n, be
represented as miztures of d-dimensional probability distributions U; and V;:

Fy = (1 =p)U; + pi Vi,
where

0< <1, /in{dx} —0, U{{eeR%:|all<r))l =1,

and V; are arbitrary distributions. Then for any fixred X > 0 one can construct on
the same probability space the random vectors & and n so that

Pl =il > A} < etd) s pivexw (-5 ) ) + Z:Ip (a1)

and

where ¢(d) depends on only and e(F;) denotes the compound Poisson infinitely
divisible distribution with characteristic function exp(ﬁi(t) — 1), where l?}(t) =
[ e F{dx}. If the distributions V; are identical, the term Y. | p; in (4.1) can
be omitted.
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Random Walks in Random Environments

Ofer Zeitouni*

Abstract

Random walks in random environments (RWRE’s) have been a source of
surprising phenomena and challenging problems since they began to be studied
in the 70’s. Hitting times and, more recently, certain regeneration structures,
have played a major role in our understanding of RWRE'’s. We review these
and provide some hints on current research directions and challenges.

2000 Mathematics Subject Classification: 60K37, 82C44.
Keywords and Phrases: Random walks, Random environment, Regenera-
tion.

1. Introduction

Let S denote the 2d-dimensional simplex, set 1 = SZd, and let w(z,:) =
{w(z,2 + €)}eez,|e|=1 denote the coordinate of w € Q corresponding to z € VASRY
is an “environment” for an inhomogeneous nearest neighbor random walk (RWRE)
started at = with quenched transition probabilities P,(Xp11 = 2+ €]|X,, = 2) =
w(z,z +e) (e € Z% |e| = 1), whose law is denoted P?. In the RWRE model, the
environment is random, of law P, which is always assumed stationary and ergodic.
We also assume here that the environment is elliptic, that is there exists an € > 0
such that P-a.s., w(z,z +e) > ¢ for all z,e € Z% |e| = 1. Finally, we denote by
P the annealed law of the RWRE started at 0, that is the law of {X,} under the
measure P x PJ.

The RWRE model has a natural physical motivation and interpretation in
terms of transport in random media. Mathematically, and especially for d > 1,
it leads to the analysis of irreverservible, inhomogeneous Markov chains, to which
standard tools of homogenization theory do not apply well. Further, unusual phe-
nomena, such as sub-diffusive behavior, polynomial decay of probabilities of large
deviations, and trapping effects, arise, already in the one dimensional model.

When d = 1, we write w, = w(x,z + 1), pr = w, /(1 —w;), and v = Eplog po.
The following reveals some of the surprising phenomena associated with the RWRE:

*Departments of Electrical Engineering and of Mathematics, Technion, Haifa 32000, Israel.
E-mail: zeitouni@ee.technion.ac.il
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Theorem 1.1 (Transience, recurrence, limit speed, d = 1) (o) Withsign(0)
=1, it holds that P-a.s.,

limsup £ X,, = sign(su)oo, &==%1.
B+ CO

Fyrther, there is a v such that

X
lim — =v, P-as., (1.2)

n—co 1

v >0 SF Ep([Tgp—j) <00, v <0 if 2, Ep(}—[;:0 p=j) < 00, and v =0
if both these conditions do not hold.
(b) If P is a product measure then

M EP(pO) < 1?

1+EP((00)1’

— _1-Ep(pg ) -1 )

V= iR Brleh) <L 03
0, else.

Theorem 1.1 is essentially due to [25], see [29] for a proof in the general er-
godic setup. The surprising features of the RWRE model alluded to above can be
appreciated if one notes, already for a product measure P, that the RWRE can be
transient with zero speed v. Further, if P is a product measure and vg(w) denotes
the speed of a (biased) simple random walk with probability of jump to the right
equal, at any site, to wg, then Jensen’s inequality reveals that v} < [Ep(vo(w))l,
with examples of strict inequality readily available.

The reason for this behavior is that the RWRE spends a large time in small
traps. This is very well understood in the case d = 1, to which the next section
is devoted. We introduce there certain hitting times, show how they yield precise
information on the RWRE, and describe the analysis of these hitting times. Under-
standing the behavior of the RWRE when d > 1 is a major challenging problem,
on which much progress has been done in recent years, but for which many embar-
rassing open questions remain. We give a glimpse of what is involved in Section
3., where we introduce certain regeneration times, and show their usefulness in a
variety of situations. Here is a particularly simple setup where law of large numbers
(and CLT’s, although we do not emphasize that here) are available:

Theorem 1.4 Assume P is o product measure, d > 6, and w(z,x +¢) =5 > 0
for e = teg i = 1,...,5. Then there exists a deterministic constant v such that
Xn/n v, P-a.s..

2. The one-dimensional case

Recursions
Let us begin with a sketch of the proof of Theorem 1.1. The transience and
recurrence criterion is proved by noting that conditioned on the environment w, the
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Markov chain X, is reversible. More explicitly, fix an interval [~m_, m4] encircling
the origin and for z in that interval, define

Vin_ my w(2) := P;({Xy} hits —m_ before hitting m ).

Then,

m4 i—1
S IT e

i=z+1 j=z4+1

Vi myw(z) = : , (2.1)
Mt i—1 z z
> Il e+ >0 (1
=241 j=z-41 i=—m_+1 \ j=t

from which the conclusion follows. The proof of the LLN is more instructive: define
the hitting times T), = min{t > 0 : X, = T,,}, and set 7, = T;.1 — T;. Suppose
that limsup,,_,., Xn/n = co. One checks that 7; is an ergodic sequence, hence
T, /n — E(7o) P-a.s., which in turns implies that X,,/n — 1/E(7g), P-a.s.. But,

7o =1(x,=13 + Lx, =3 (L+ 71, +75),

where 7', (7)) denote the first hitting time of 0 (1) for the random walk X,, after
it hits —1. Hence, taking PJ expectations, and noting that {Ep: (1:)}: are, P-a.s.,
either all finite or all infinite,

1
EPB (TO) = w—o -+ pOE ,—1 (’7'_1) . (22)

When P is a product measure, pp and Ep-1(7-1) are P-independent, and taking
expectations results with E(ro) = (1 + Ep(po))/(1 — Ep(po)) if the right hand side
is positive and oo otherwise, from which (1.3) follows. The ergodic case is obtained
by iterating the relation (2.2).

The hitting times T, are also the beginning of the study of limit laws for X,,.
To appreciate this in the case of product measures P with Ep(logpo) < 0 (i.e., when
the RWRE is transient to +00), one first observes that from the above recursions,

E(rf) < oo <= Ep(pp) < 1.

Defining s = max{r : Ep(p§) < 1}, one then expects that (X,, — vn), suitably
rescaled, possesses a limit law, with s-dependent scaling. This is indeed the case:
for s > 2, it is not hard to check that one obtains a central limit theorem with
scaling +/n (this holds true in fact for ergodic environments under appropriate
mixing assumptions and with a suitable definition of the parameter s, see [29]).
For s € (0,1) U (1,2), one obtains in the i.i.d. environment case a Stable(s) limit
law with scaling n'/® (the cases s = 1 or s = 2 can also be handled but involve
logarithmic factors in the scaling and the deterministic shift). In particular, for
s < 2 the walk is sub-diffusive. We omit the details, referring to [16] for the proof,
except to say that the extension to ergodic environments of many of these results
has recently been carried out, see [23].



120 Ofer Zeitouni

Traps

The unusual behavior of one dimensional RWRE is due to the existence of
traps in the environment. This is exhibited most dramatically when one tries to
evaluate the probability of slowdown of the RWRE. Assume that P is a product
measure, X,, is transient to oo with positive speed v (this means that s > 1 by
Theorem 1.1), and that s < oo (which means that P(we < 1/2) > 0). One then
has:

Theorem 2.3 ({8, 11]) For any w € [0,v), n > 0, and 6 > 0 small enough,

Xn
-~ logP (22 € (w — &, w + )
n—co logn

=1-s, (2.4)

>

B 1 o (Xn —
I%Hi}tréfmloglj (Te(w—d,w—kd))—o, P —a.s., (2.5)

and

>

X
lim sup log P° (T" € (w—d,w+ 5)> =-x0, P-as. (2.6)

n—soo METL/8TN

(Extensions of Theorem 2.3 to the mixing environment setup are presented in [29].
There are also precise asymptotics available in the case s = oo and P(wg = 1/2) > 0,
see [20, 21]).

One immediately notes the difference in scaling between the annealed and
quenched slowdown estimates in Theorem 2.3. These are due to the fact that,
under the quenched measure, traps are almost surely of a maximal given size, de-
termined by P, whereas under the annealed measure PP one can create, at some cost
in probability, larger traps.

To demonstrate the role of traps in the RWRE model, let us exhibit, for w = 0,
a lower bound that captures the correct behavior in the annealed setup, and that
forms the basis for the proof of the more general statement. Indeed, {X,, < §} C
{Tys > n}. Fixing Ry = Ry(w) := k1 Zle log p;, it holds that Ry satisfies a large
deviation principle with rate function J(y) = sup,(\y — log Ep(p})), and it is not
hard to check that s = miny»oy~*J(y). Fixing a y such that J(y)/y < s+, and
k = logn/y, one checks that the probability that there exists in [0,dn] a point z
with Ry, 067w > vy is at least n' 57", But, the probability that the RWRE does not
cross such a segment by time n is, due to (2.1), bounded away from 0 uniformly
in n. This yields the claimed lower bound in the annealed case. In the quenched
case, one has to work with traps of size almost k& = logn/sy for which kR, > vy,
which occur with probability 1 eventually, and use (2.1) to compute the probability
of an atypical slowdown inside such a trap. The fluctuations in the length of these
typical traps is the reason why the slowdown probability is believed, for P-a.e. w,
to fluctuate with n, in the sense that

>

1 X
lim inf —— log P" (T" € (~0, 5)> =~00, P-—a.s.,

n—oo pl—l/s
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while it is known that

>

_ 1 o [ Xn
hmsupmlogljw (T € (—5,5)> =0, P-—uas.

B+ CO

This has been demonstrated rigorously in some particular cases, see [10].

The role of traps, and the difference they produce between the quenched and
annealed regimes, is dramatic also in the scale of large deviations. Roughly, the
exponential (in n) rate of decay of the probability of atypical events differ between
the quenched and annealed regime:

Theorem 2.7 The random variables X, /n satisfy, for P-a.e. realization of the
environment w, a large deviations principle (LDP) under PO with a deterministic
rate function Ip(-). Under the annealed measure P, they satisfy a LDP with rate
function

I(w) = inf (h(Q|P)+1I , 2.8

(w) QlenMi( (Q[P) + Ig(w)) (2.8)

where h(Q|P) is the specific entropy of Q with respect to P and M5 denotes the
space of stationary ergodic measures on Q.

Theorem 2.7 means that to create an annealed large deviation, one may
first “modify” the environment (at a certain exponential cost) and then apply the
quenched LDP in the new environment. We refer to [13] (quenched) and [3, 7] for
proofs and generalizations to non i.i.d. environments. We also note that Theorem
2.7 stands in sharp contrast to what happens for random walks on Galton-Watson
trees, where the growth of the tree creates enough variability in the (quenched)
environment to make the annealed and quenched LDP’s identical, see [6].

Sinai’s recurrent walk and aging

When Ep(logps) = 0, traps stop being local, and the whole environment
becomes a diffused trap. The walk spends most of its time “at the bottom of the
trap”, and as time evolves it is harder and harder for the RWRE to move. This is
the phenomenum of aging, captured in the following theorem:

Theorem 2.9 There exists o random variable B™, depending on the environment

only, such that
P Xn B"
(logn)?

>n> - 0.
N CO

Further, for h > 1,

- | X = X _ L5 2
%1—>mOnll>H;oP< (logn)? <1 Tn2 |3 3¢ ' (2.10)

The first part of Theorem 2.9 is due to Sinai [24], with Kesten [15] providing
the evaluation of the limiting law of B"™. The second part is implicit in [12], we
refer to [5] and [29] for the proof and references.
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3. Multi-dimensional RWRE

Homogenization

Two special features simplify the analysis of the RWRE in the one-dimensional
case: first, for every realization of the environment, the RWRE is a reversible
Markov chain. This gave transience and recurrence criteria. Then, the location
of the walk at the hitting times 7,, is deterministic, leading to stationarity and
mixing properties of the sequence {7;} and to a relatively simple analysis of their
tail properties. Both these features are lost for d > 1.

A (by now standard) approach to homogenization problems is to consider the
environment viewed from the particle. More precisely, with #* denoting the Z¢ shift
by z, the process w,, = 8%"w is a Markov chain with state-space (2. Whenever the
invariant measure of this chain is absolutely continuous with respect to P, law of
large numbers and CLT’s can be deduced, see [17]. For reversible situations, e.g. in
the “random conductance model” [19], the invariant measure of the chain {w,} is
known explicitly. In the non-reversible RWRE model, this approach has had limited
consequences: one needs to establish absolute continuity of the invariant measure
without knowing it explicitly. This was done in [18] for balanced environments, i.e.
whenever w(z, z+e) = w(x, z—e) P-as. for alle € Z9, |e| = 1, by developing a-priori
estimates on the invariant measure., valid for every realization of the environment.
Apart from that (and the very recent [22]), this approach has not been very useful
in the study of RWRE’s.

Regeneration

We focus here on another approach based on analogs of hitting times. Through-
out, fix a direction ¢ € Z? and consider the process Z, = X, - £. Define the
events Apy = {7, —n—oo £00}. Then, with P a product measure, one shows that
P(AUA_¢) € {0,1}, [14]. We sketch a proof: Call a time ¢ freshif Z, > Z,,,V¥n < t,
and for any fresh time ¢, define the return time D, = min{n > ¢t : Z, < Z;},
calling ¢ a regeneration time if D, = oo. Then, P(Ay) > 0 implies by the Markov
property that P(4, N {Dy = o0}) > 0. Similarly, on A, each fresh time has a
bounded away from zero probability to be a regeneration time. One deduces that
P(Ja regeneration time|4,;) = 1. In particular, on Ai,, Z, changes signs only
finitely many times. If P(A4, U A_;) < 1 then with positive probability, Z,, visits
a finite centered interval infinitely often, and hence it must change signs infinitely
many times. But this implies that P(4, U A_,) = 0.

The proof above can be extended to non-product P-s having good mixing prop-
erties using, due to the uniform ellipticity, a coupling with simple nearest neighbor
random walk. This is done as follows: Set W = {0}U{%e;}¢ ;. Define the measure

P=P2Q ®P,, on (Q x W (29")

in the following way: Q. is a product measure, such that with ¢ = (e1,¢€9,...)
denoting an element of WN, Q.(e; = £e;) = ¢/2,i=1,-++ ,d, Q.(e1 =0) = 1 — ed.
For each fixed w, e, P, . is the law of the Markov chain {X,,} with state space Z¢,

W,
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such that Xg = 0 and, for each e € W, e #0,

-0

1 =
P“?‘E(X"'H =z+ ean =z)= 1{en+1:e} -+ ZAen41=0}

10z, 2+ ) — /7).

It is not hard to check that the law of {X,,} under P coincides with its law under P,
. =0 . S .
while its law under Q. ® P, , coincides with its law under PJ. Now, one introduces

modified regeneration times DéL) by requiring that after the fresh time ¢, the “¢”
coin was used for L steps in the direction £: more precisely, requiring that €.; =
ug,i = 1,..., L for some fixed sequence u; € Z% |u;| = 1,u; - £ > 0 such that
Zle u;-€ > L/2. This, for large L, introduces enough decoupling to carry through
the proof, see [29, Section 3.1]. We can now state the:

Embarrassing Problem 1 Prove that P(4,) € {0,1}.

For d = 2, and P i.i.d., this was shown in [31], where counter examples using
non uniformly elliptic, ergodic P’s are also provided. The case d > 2, even for P
ii.d., remains open.

Embarrassing Problem 2 Find transience and recurrence criteria for the RWRE
under P.

The most promising approach so far toward Problem 2 uses regeneration times.
Write 0 < dy < dg < ... for the ordered sequence of regeneration times, assuming
that P(A4,) = 1. The name regeneration time is justified by the following property,
which for simplicity we state in the case £ = ey:

Theorem 3.1 ([28]) For P a product measure, the sequence

{{WZ}Z‘KG[ZUIWZ(Q_H—M)’ {Xt}te[divdi-kl) }i:273v"'
is t.4.d..

From this statement, it is then not hard to deduce that once E(ds ~dy) < 00, a
law of large numbers results, with a non-zero limiting velocity. Sufficient conditions
for transience put forward in [14] turn out to fall in this class, see [28]. More recently,
Sznitman has introduced a condition that ensures both a LLN and a CLT:
Sznitman’s T condition: P(A;) =1 and , for some ¢ > 0 and all v < 1,

Elexp(c sup [X,|")) < o0.
0<n<d;

A remarkable fact about Sznitman’s T’ condition is that he was able to derive,
using renormalization techniques, a (rather complicated) criterion, depending on
the restriction of P to finite boxes, to check it. Further, Sznitman’s T’ condition
implies a good control on dy, and in particular that d; possesses all moments, which
is the key to the LLN and CLT statements:

E(exp (10gd1)5) < 00,V < 2d/(d +1).

For these, and related, facts see [27]. This leads one to the
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Challenging Problem 3 Do there exist non-ballistic RWRE’s for d > 1 satisfying
that P(A4,) = 1 for some £7

For d = 1, the answer is affirmative, as we saw, as soon as Eplogpg < 0 but
s < 1. For d > 1, one suspects that the answer is negative, and in fact one may
suspect that P(A,) = 1 implies Sznitman’s condition T’. The reason for the striking
difference is that for d > 1, it is much harder to force the walk to visit large traps.

It is worthwhile to note that the modified regeneration times {DEL)} can be
used to deduce the LLN for a class of mixing environments. We refer to [4] for
details. At present, the question of CLT’s in such a general set up remains open.
Cut points

Regeneration times are less useful if the walk is not ballistic. Special cases
of non-ballistic models have been analyzed in the above mentioned [18], and using
a heavy renormalization analysis, in [2] for the case of symmetric, low disorder,
iid. P. In both cases, LLN’s with zero speed and CLT’s are provided. We now
introduce, for another special class of models, a different class of times that are not
regeneration times but provide enough decoupling to lead to useful consequences.

The setup is similar to that in Theorem 1.4, that is we assume that d > 6 and
that the RWRE, in its first 5 coordinate, performs a deterministic random walk:
Fori=1,...,5, w(x,zte)=qx;, forsome deterministic g+;, P - a.s..
Set S = Z?zl (@ + q—1), let {Rp}nez denote a (biased) simple random walk in
Z° with transition probabilities g4;/5, and fix a sequence of independent Bernoulli
random variable with P(Iy = 1) = 8, letting U, = .77 I;. Denote by X}
the first 5 components of X,, and by X2 the remaining components. Then, for
every realization w, the RWRE X,, can be constructed as the Markov chain with
X! = Ry, and transition probabilities

)_{1, X2=121,=1,

" w(X,, (X),2)/(1-8), I,=0.

Introduce now, for the walk R,,, cut times ¢; as those times where the past and
future of the path R,, do not intersect. More precisely, with Pr = {X,, }ner,

Cc1 = min{t Z 0: P(—oo,t) N fP[t:OO) = @} s Ci41 = min{t > ¢ P(—oo,t) N fP[t:OO) = @} .

=0, 2 .
P (X2, = 2IX

The cut-points sequence depends on the ordinary random walk R,, only. In partic-
ular, because that walk evolves in Z5, it follows, as in [9], that there are infinitely
many cut points, and moreover that they have a positive density. Further, the
increments X2 A, G 2 depend on disjoint parts of the environment. Therefore,
conditioned on {R,, I, } they are independent if P is a product measure, and they
possess good mixing properties if P has good mixing properties. From here, the
statement of Theorem 1.4 is not too far. We refer the reader to [1], where this
and CLT statements (with 5 replaced by a larger integer) are proved. An amusing
consequence of [1] is that for d > 5, one may construct ballistic RWRE’s with, in
the notations of Section 2., Ep(vp(w)) = 0!
Challenging Problem 4 Construct cut points for “true” non-ballistic RWRE’s.
The challenge here is to construct cut points and prove that their density
is positive, without imposing a-priori that certain components of the walk evolve
independently of the environment.
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Large deviations

We conclude the discussion of multi-dimensional RWRE’s by mentioning large
deviations for this model. Call a RWRE nestling if cosupp@, where @) denotes the
law of 3 czaej=1 €w(0,€). In words, an RWRE is nestling if by combining local
drifts one can arrange for zero drift. One has then:

Theorem 3.2 ([30]) Assume P is o product nestling measure. Then, for P-almost
every w, X /n satisfies a LDP under P2 with deterministic rate function.

The proof of Theorem 3.2 involves hitting times: let T, denote the first hitting
time of y € Z% One then checks, using the subaddititve ergodic theorem, that

A(ya )\) = nll—>n<;lo n~t log Eg (eXp(_)\Tny)l{Tny<oo})

exists and is deterministic, for A > 0. In the nestling regime, where slowdown has
sub-exponential decay rate due to the existence of traps much as for d = 1, this and
concentration of measure estimates are enough to yield the LDP. But:
Embarrassing Problem 5 Prove the quenched LDP for non-nestling RWRE’s.

A priori, non nestling walks should have been easier to handle than nestling
walks due to good control on the tail of regeneration times!

Challenging Problem 6 Derive an annealed LDP for the RWRE, and relate the
rate function to the quenched one.

One does not expect a relation as simple as in Theorem 2.7, because the RWRE
can avoid traps by contouring them, and to change the environment in a way that
surely modifies the behavior of the walk by time n has probability which seems
to decay at an exponential rate faster than n. This puts the muti-dimensional
RWRE in an intermediate position between the one-dimensional RWRE and walks
on Galton-Watson trees [6]. We also note that certain estimates on large deviations
for RWRE’s, without matching constants, appear in [26].
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Optimal Transport Maps in
Monge-Kantorovich Problem

L. Ambrosio*

Abstract

In the first part of the paper we briefly decribe the classical problem,
raised by Monge in 1781, of optimal transportation of mass. We discuss also
Kantorovich’s weak solution of the problem, which leads to general existence
results, to a dual formulation, and to necessary and sufficient optimality con-
ditions.

In the second part we describe some recent progress on the problem of the
existence of optimal transport maps. We show that in several cases optimal
transport maps can be obtained by a singular perturbation technique based
on the theory of I'-convergence, which yields as a byproduct existence and
stability results for classical Monge solutions.

2000 Mathematics Subject Classification: 49K, 49J, 49Q20.
Keywords and Phrases: Optimal transport maps, Optimal plans, Wasser-
stein distance, c-monotonicity, ['-convergence, Transport density.

1. The optimal transport problem and its weak for-
mulation

In 1781, G.Monge raised in [26] the problem of transporting a given distribu-
tion of matter (a pile of sand for instance) into another (an excavation for instance)
in such a way that the work done is minimal. Denoting by ho, hi : R? — [0, +00)
the Borel functions describing the initial and final distribution of matter, there is
obviously a compatibility condition, that the total mass is the same:

ho(z)dz = | hi(y)dy. (L.1)
n2 n2

Assuming with no loss of generality that the total mass is 1, we say that a Borel
map 1 : R? = R? is a transport if a local version of the balance of mass condition
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holds, namely
/ ho(z) da = / hi(y)dy  for any E C R? Borel. (1.2)
YH(E) £

Then, the Monge problem consists in minimizing the work of transportation in the
class of transports, i.e.

inf {/R? W(z) —zlho(z) dx : transport} . (1.3)

The Monge transport problem can be easily generalized in many directions,
and all these generalizations have proved to be quite useful:
» General measurable spaces X, Y, with measurable maps ¢ : X — Y;
o General probability measures p in X and v in Y. In this case the local balance
of mass condition (1.2) reads as follows:

v(E) = p(yy " HE)) for any E C Y measurable. (1.4)

This means that the push-forward operator 14 induced by ¢, mapping probability
measures in X into probability measures in Y, maps p into v.

o General cost functions: a measurable map ¢: X x Y — [0, 4+o0]. In this case the
cost to be minimized is

W) = [X ¢ (2, 9(x)) dpz).

Even in Euclidean spaces, the problem of existence of optimal transport maps
is far from being trivial, mainly due to the non-linearity with respect to # of the
condition ¢4 p = v. In particular the class of transports is not closed with respect to
any reasonable weak topology. Furthermore, it is easy to build examples where the
Monge problem is ill-posed simply because there is no transport map: this happens
for instance when p is a Dirac mass and » is not a Dirac mass.

In order to overcome these difficulties, in 1942 L.V.Kantorovich proposed in
[21] a notion of weak solution of the transport problem. He suggested to lock for
plans instead of transports, i.e. probability measures v in X x Y whose marginals
are p and v. Formally this means that 7xgvy = p and myyy = v, where mx :
XxY — X and 7y : X xY — Y are the canonical projections. Denoting by
I(p, v) the class of plans, he wrote the following minimization problem

min {/XXY clx,y)dy . v € {p, 1/)} . (1.5)

Notice that II{y, v) is not empty, as the product p®v has p and v as marginals. Due
to the convexity of the new constraint v € (g, ») it turns out that weak topologies
can be effectively used to provide existence of solutions to (1.5): this happens for
instance whenever X and Y™ are Polish spaces and c¢ is lower semicontinuous (see for
instance [28]). Notice also that, by convexity of the energy, the infimum is attained
on a extremol element of TI(p, v).
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The connection between the Kantorovich formulation of the transport problem
and Monge’s original one can be seen noticing that any transport map v induces
a planning v, defined by (I'd x ¢)xp. This planning is concentrated on the graph
of 1 in X x Y and it is easy to show that the converse holds, i.e. whenever v is
concentrated on a graph, then ~ is induced by a transport map. Since any transport
induces a planning with the same cost, it turns out that

inf (1.3) > min (1.5).

Moreover, by approximating any plan by plans induced by transports, it can be
shown that equality holds under fairly general assumptions (see for instance [3]).
Therefore we can really consider the Kantorovich formulation of the transport prob-
lem as a weak formulation of the original problem.

If all extremal points of H{u,r) were induced by transports one would get
existence of transport maps directly from the Kantorovich formulation. It is not
difficult to show that plannings ~ induced by transports are extremal in II{ju, v).
The converse holds in some very particular cases, but unfortunately it is not true
in general. It turns out that the existence of optimal transport maps depends not
only on the geometry of II{y, v), but also (in a quite sensible way) on the choice of
the cost function c.

2. Existence of optimal transport maps

In this section we focus on the problem of the existence of optimal transport
maps in the sense of Monge. Before discussing in detail in the next sections the two
model cases in which the cost function is the square of a distance or a distance (we
refer to [19] for the case of concave functions of the distance, not discussed here),
it is better to give an informal description of the tools by now available for proving
the existence of optimal transport maps.

Strategy A (Dual formulation). This strategy is based on the duality formula

min (MK) = sup {/X hdp + L kdz/} , (2.6)

where the supremum runs among all pairs (h, k) € L' (u) x L*(v) such that h(z) +
k(y) < c¢(z,y). The duality approach to the (MK) problem was developed by
Kantorovich, and then extended to more general cost functions (see [22]). The
transport map is obtained from an optimal pair (h, k) in the dual formulation by
making a first variation. This strategy for proving the existence of an optimal
transport map goes back to the papers [18] and [11].

Strategy B (Cyclical monotonicity). In some situations the necessary (and suf-
ficient) minimality conditions for the primal problem, based upon the so-called
c-cyclical monotonicity ([32], [28], [29]) yield that any optimal Kantorovich solu-
tion +y is concentrated on a graph T' (i.e. for p-a.e. x there exists a unique y such
that (z,y) € T') and therefore is induced by a transport .
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This happens for instance when ¢(z,y) = H(z —y), with H strictly convex in
R"™. This approach is pursued in the papers [19], [30].

Strategy C (Singular perturbation with strictly convex costs). One can try to get
an optimal transport map by making the cost strictly convex through a perturbation
and then passing to the limit (see [12] and Theorem 4.1, Theorem 4.2 below). The
main difficulty is to show (strong) convergence at the level of the transport maps
and not only at the level of transport plans.

Strategy D (Reduction to a lower dimensional problem). This strategy has been
initiated by V.N.Sudakov in [33]. It consists in writing (typically through a disinte-
gration) p and v as the superposition of measures concentrated on lower dimensional
sets and in solving the lower dimensional transport problems, trying in the end to
“eglue” all the partial transport maps into a single transport map. This strategy is
discussed in detail in [3] and used, together with a “variational” decomposition, in
[5]. The simplest case is when the lower dimensional problems are 1-dimensional,
since the solution of the 1-dimensional transport problem is simply given by an in-
creasing rearrangement, at least for convex functions of the distance (see for instance
2], [28], [35)).

Strategies A and B are basically equivalent and yield existence and uniqueness
at the same time: the first one could be preferable for someone, as a very small
measure-theoretic apparatus is involved. On the other hand, it strongly depends on
the existence of maximizing pairs in the dual formulation, and this existence issue
can be more subtle than the existence issue for the primal problem (see [28] and
the discussion in [3]). For this reason it seems that the second strategy can work
for more general classes of cost functions.

Strategies C and D have been devised to deal with situations where the cost
function is convex but not strictly convex. Also these two strategies are closely
related, as the strictly convex perturbation often leads to an effective dimension
reduction of the problem (see for instance [5]).

3. cost=distance?

In this section we consider the case when X = Y and the cost function ¢
is proportional to the square of a distance d. For convenience we normalize ¢ so
that ¢ = d*/2. The first result in the Euclidean space R™ has been discovered
independently by many authors Y.Brenier [8], [9], S.T.Rachev and L.R.iischendorf
[27], [29], and C.Smith and M.Knott [31].

Theorem 3.1 Assume that pu is absolutely continuous with respect to L™ and that
b oand v have finite second order moments. Then there exists o unique optimal
transport map 1. Moreover 1) is the gradient of a convex function.

In this case the proof comes from the fact that both strategies A and B yield
that the displacement x —1/(x) is the gradient of a c-concave function, i.e. a function
representable as

hiz) = inf elz,y)+t VYreR”
(yt)el
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for a suitable non-empty set 7 CY x R. The concept of c-concavity [29] has been
extensively used to develop a very general duality theory for the (MK) problem,
based on (2.6). In this special Euclidean situation it is immediate to realize that
c-concavity of h is equivalent to concavity (in the classical sense) of h — £|z|?, hence

$(a) =2 = Vhia) = ¥ | el? = Al
is the gradient of a convex function. Finally, notice that the assumption on p can
be sharpened (see [19]), assuming for instance that p(B) = 0 whenever B has finite
‘H™l-measure. This is due to the fact that the non-differentiability set of a concave
function is o-finite with respect to H™ ™! (see for instance [1]). Also the assumption
about second order moments can be relaxed, assuming only that the infimum of the
(MK) problem with data p, v is finite.
The following result, due to R.Mc¢ Cann [25], is much more recent.

Theorem 3.2 Assume that M is a C3, complete Riemannian manifold with no
boundary and d is the Riemannian distance. If p, v have finite second order mo-
ments and p is absolutely continuous with respect to voly, there exists a unique
optimal transport map 1.

Moreover there exists a c-concave potential h : M — R, such that

P(z) = exp, (~Vh(z)) voly-a.e.

This Riemannian extension of Theorem 3.1 is non trivial, due to the fact that
d? is not smooth in the large. The proof uses some semiconcavity estimates for d>
and the fact that d? is C? for x close to y (this is where the C® assumption on
M is needed). It is interesting to notice that the results of [24] (where the eikonal
equation is read in local coordinates), based on the theory of viscosity solutions —
see in particular Theorem 5.3 of [23] — allow to push Mc Cann’s technique up to
C? manifolds.

Can we go beyond Riemannian manifolds in the existence theory? A model
case is given by stratified Carnot groups endowed with the Carnot-Carathéodory
metric doo, as these spaces arise in a very natural way as limits of Riemannian
manifolds with respect to the Gromov-Hausdorfl convergence (see [20]). At this
moment a general strategy is still missing, but some preliminary investigations in
the Heisenberg group H,, show that positive results analogous to the Riemannian
ones can be expected. The following result is proved in [6]:

Theorem 3.3 If n =1, 2 and p is o probability measure in H,, absolutely contin-
uous with respect to L2+, then:

(a) there exists a unique optimal transport map 1, deriving from a c-concave poten-
tial h;

(b) If dy, T dec are Riemannian left invariant metrics then Me Cann’s optimal
transport maps 1, relative to cp, = d;); /2 converge in measure to 1 as p — 00.

The restriction to H,,, n < 2, arises from the fact that so far we have been able
to carry on some explicit computations only for n < 2. We expect that this restric-
tion could be removed. The proof of (b) is not direct, as Mc Cann’s exponential



136 L. Ambrosio

representation ¢, = exph (—V7h,) “degenerates” as p — oo, because the injectivity
radius of the approximating manifolds tends to 0. This is due to the fact that in
CC metric spaces geodesics exist but are not unique, not even in the small.

Finally, if we replace ¢ by the square of the Koranyi norm (related to the
fundamental solution of the Kohn sub-Laplacian), namely

ay) = glyal? with (0] =TT P

(here we identify H,, with C™ x R} then we are still able to prove existence in any
Heisenberg group H,,. The proof uses some fine properties of BV functions on sub-
Riemannian groups [4]. However, we can’t hope for a Riemannian approximation
result, as the Koranyi norm induces a metric dg which is not geodesic. It turns out
that the geodesic metric associated to dg is a constant multiple of do¢.

4. cost=distance

In this section we consider the case when X = Y and the cost function ¢ is
a distance. In this case both strategies A and B give only a partial information
about the location of y, for given x. In particular it is not true that any optimal
Kantorovich plan ~ is induced by a transport map. Indeed, if the first order moments
of p and v are finite, the dual formulation provides us with a maximizing pair
(h,k) = (u,~u), with v : X -+ R 1-Lipschitz. If X = R” and the distance is
induced by a norm || - ||, this provides the implication

(x,9) € spty = ye {x—s&: € (du(x)”, s>0} (4.7)

at any differentiability point of u. Here we consider the natural duality map between
covectors and vectors given by

L*:={¢ € R": L(€) = ||L|l. and ||¢]| = 1}.

The most favourable case is when the norm is strictly convex (e.g. the Euclidean
norm): in this situation the x operator is single-valued and we recover from (4.7)
an information on the direction of transportation, i.e. (du(z))*, but not on the
length of transportation. If the norm is not strictly convex (e.g. the Iy or I, norm)
then even the information on the direction of transportation, encoded in (du(z))",
is partial.

The first attempt to bypass these difficulties came with the work of V.N.Sudakov
[33], who claimed to have a solution for any distance cost function induced by a
norm. Sudakov’s approach is based on a clever decomposition of the space R™ in
affine regions with variable dimension where the Kantorovich dual potential u as-
sociated to the transport problem is an affine function. His strategy is to solve the
transport problem in any of these regions, eventually getting an optimal transport
map just by gluing all these transport maps. An essential ingredient in his proof is
Proposition 78, where he states that, if p << £, then the conditional measures in-
duced by the decomposition are absolutely continuous with respect to the Lebesgue
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measure (of the correct dimension). However, it turns out that this property is not
true in general even for the simplest decomposition, i.e. the decomposition in seg-
ments: G.Alberti, B.Kirchheim and D.Preiss found an example of a compact faily
of pairwise disjoint open segments in R? such that the family M of their midpoints
has strictly positive Lebesgue measure (the construction is a variant of previous
examples due to A.S.Besicovitch and D.G.Larman, see also [2] and [5]). In this
case, choosing 1 = £3|_ M, the conditional measures induced by the decomposition
are Dirac masses. Therefore it is clear that this kind of counterexamples should be
ruled out by some kind of additional “regularity” property of the decomposition.
In this way the Sudakov strategy would be fully rigorous. As noticed in [5], this
regularity comes for free only in the case n = 2, using the fact that transport rays
do not cross in their interior.

Several years later, L.C.Evans and W.Gangbo made a remarkable progress in
[15], showing by differential methods the existence of a transport map, under the
assumption that spt pNspt v = @, that the two measures are absolutely continuous
with respect to £™ and that their densities are Lipschitz functions with compact
support. The missing piece of information about the length of transportation is
recovered by a p-laplacian approximation

—div (|Vu|'?Vu) = p — v, u € H}(Bg), R>»1

obtaining in the limit as p — 400 a nonnegative function ¢ € L*®(R") and a
1-Lipschitz function u solving

—div(aVu) = p — v, [Vul =1 L"a.e. on {a > 0}.

The diffusion coefficient a in the PDE above plays a special role in the theory.
Indeed, one can show (see [2]) that the measure o := aL"”, the so-called transport
density, can be represented in several different way, and in particular as

o(B) = /7{1 (BN [z,y]) dy(z,y) VB C R" Borel (4.8)

for some optimal planning . Notice that the total mass of o is [ |z — y|dy, the
total work done and the meaning of ¢(B) is the work done within B during the
transport process. This representation of the transport density has been introduced
by G.Bouchitté and G.Buttazzo in 7], who showed that the a constant multiple of
the transport density is a solution of their so-called mass optimization problem.
Later, in [2], it was shown that there is actually a 1-1 correspondence between
solutions of the mass optimization problem and transport densities, defined as in
(4.8).

One can also show ([2], [13], [16], [14]) that ¢ is unique (unlike ~y) if either p
or v are absolutely continuous. Moreover, the nonlinear operator mapping (u,v) €
L' % L' into a € L' maps L? x L? into L for 1 < p < oc.

Coming back to the problem of the existence of optimal transport maps with
Euclidean distance |z — y| (or, more generally, with a distance induced by a C?
and uniformly convex norm), the first existence results for general absolutely con-
tinuous measures u, ¥ with compact support have been independently obtained by
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L.Caffarelli, M.Feldman and R.Mc Cann in [12] and by N.Trudinger and L.Wang
in [34]. Afterwards, the author estabilished in [2] the existence of an optimal trans-
port map assuming only that the initial measure p is absolutely continuous, and
the results of [12] and [34] have been extended to a Riemannian setting in [17]. All
these proofs involve basically a Sudakov decomposition in transport rays, but the
technical implementation of the idea is different from paper to paper: for instance
in [12] a local change of variable is made, so that transport rays become parallel
and Fubini theorem, in place of abstract disintegration theorems for measures, can
be used. The proof in [3], instead, uses the co-area formula to show that absolute
continuity with respect to Lebesgue measure is stable under disintegration.

The following result [3] is a slight improvement of [12], where existence of an
optimal transport map was estabilished but not the stability property. The result
holds under regularity and uniform convexity assumptions for the norm || - {|.

Theorem 4.1 Let p,v be with compact support, with p << L™, and let 1. be the
unique optimal transport maps relative to the costs c.(x,y) := ||z — y||*T¢. Then 1),
converge as € . 0 to an optimal transport map ¥ for c(x,y) = ||z — y||.

The proof is based only the fact that any plan g, limit of some sequence
of plans (Id x 1,}, is not only optimal for the (MK) problem, but also for the
secondary one

min [ e = yllin(le ~ yl) d, (19)

yelli(n,v) JR» xR”

where II; (11, v) denotes the class of all optimal plannings for the Kantorovich prob-
lem (the entropy function in (4.9) comes from the Taylor expansion of ¢. around
e = 0). It turns out that this additional minimality property selects a unique plan
induced by a transport ¥ and, a posteriori,  is the same map built in [12]. A class
of counterexamples built in [3] shows that the absolute continuity assumption on
cannot be weakened, unlike the strictly convex case.

This “variational” procedure seems to select extremal elements of II{y,») in
a very effective way. This phenomenon is apparent in view of the following result
[5], which holds for all “crystalline” norms || - || (i.e. norms whose unit sphere is
contained in finitely many hyperplanes).

Theorem 4.2 Let p,v be as in Theorem 4.1 and let 1. be the unique optimal
transport maps relative to the costs

ce(x,y) =l — yll + €|z —y| + €]z —y|In|z — y|.
Then 1), converge as € | 0 to an optimal transport map ¥ for c(x,y) = ||z — yil.

In this case a secondary and a ternary variational problem are involved, and
we show that the latter has a unique solution which is also induced by a transport.

Some borderline cases between “crystalline” norms and “Euclidean” norms
apparently can’t be attacked by any of the existing techniques. In particular the
existence of optimal transport maps for the cost induced by a general norm in R”™,
n > 3, is still open.
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Quasilinear Wave Equations and
Microlocal Analysis

Hajer Bahouri* Jean-Yves Chemin'

Abstract

In this text, we shall give an outline of some recent results (see [3] [4] and
[5]) of local wellposedness for two types of quasilinear wave equations for initial
data less regular than what is required by the energy method. To go below the
regularity prescribed by the classical theory of strictly hyperbolic equations,
we have to use the particular properties of the wave equation. The result
concerning the first kind of equations must be understood as a Strichartz
estimate for wave operators whose coeflicients are only Lipschitz while the
result concerning the second type of equations is reduced to the proof of a
bilinear estimate for the product of two solutions for wave operators whose
coeflicients are not very regular. The purpose of this talk is to emphasise the
importance of ideas coming from microlocal analysis to prove such results.

The method known to prove Strichartz estimates uses a representation
eventually approximate of the solution. In the case of the wave equation, the
approximation used is the one coming from the Lax method, namely the one
connected to the geometrical optics. But it seems impossible, in the framework
of the quasilinear wave equations, to construct a suitable approximation of the
solution on some interval [0, T, since the associate Hamilton-Jacobi equation
develop singularities (it is the caustic phenomenon) at a time connected with
the frequency size. We have then to microlocalize, which means to localize
in frequencies, and then to work on time interval whose size depend on the
frequency counsidered. It is the alliance of geometric optics and harmonic
analysis which allow to establish a quasilinear Strichartz estimate and to go
below this minimal regularity in the case of the first kind of equations.

To study the second kind of equations, we are confronted to an additional
problem: Contrary to the constant case, the support of the Fourier transform
is not preserved by the flow of the variable coefficient wave equation. To
overcome this difficulty, we show that the relevant information in the variable
case is the concept of microlocalized function due to J.M.Bony {11]. The proof
that for solutions of variable coefficient operators, microlocalization properties
propagate nicely along the Hamiltonian flows related to the wave operator is
the key point in the proof of the result in the second case.
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1. Introduction

In this paper, our interest is to prove local solvability for quasilinear wave
equations of the type

Zu—Au—g(u) - Vu = Q(du,0u)
(E) { t (u, atu)[tzo = (up,u1)

where g is a smooth function vanishing at 0 with value in K such that Id + K
is a convex compact subset of the set of positive symmetric matrices and @ is
a quadratic form on R?*+'. Our interest proceeds also for cubic quasilinear wave
equations of the type

Fu—~Du— Y gFdu = > Qix(dg"",0u)
1<7,k<d 1<j,k<d
(EC) AghF = Qia(0u,0u)
(u, Opu)p=0 = (uo,u1)

where @ 1 and Q ;& are quadratic forms on R¥*! and where all the quadratic forms
are supposed to be smooth functions of .

The basic tool to prove local solvability for such equations is the following
energy estimate, also valid for the symmetric systems

[0ut, Ml ge—r < [[00(0, )| groreCJo 1090 lroodr. (1)

So thanks to classical arguments, local solvability derives easily from the control of
the quantity

T
[ 18g(r, |-
0

In the framework of the equation (E), the control of this key quantity requires
initial data (up,u1) in H® x H*"! for s > 4 + 1 while in the framework of (EC)
(with small data, which makes sense in this case) it only requires initial data (ug,u1)
in H5t3 x H2 ™3,

The goal of this paper is to go below this regularity for the initial data. Let
us first have a look at the scaling properties of equations (E) and (EC). If u is
a solution of (E) or (EC), then uy(t,x) def u(At, Ax) is also a solution of the same
equation. The space which is invariant under this scaling for the couple (ug,u1) is
H% x H%1. So the results given by the classical energy estimate appear to require
more regularity than the scaling in the two cases.
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In fact, the energy methods despise the particular properties of the wave equa-
tion. It is on the impulse of the pioneer work of S. Klainerman (see [19]) that a vast
series of works have been attached to improve the span life time of regular solutions
of quasilinear wave equations using the Lorentz invariance. Let us notice the results
of S. Alinhac (see [1] and [2]), of L. Hormander (see [14]), of F. John (see [15]}, of
F. John and 8. Klainerman (see [16]), of S. Klainerman (see [20]) and of J-M.Delort
( [12]) concerning the Klein-Gordon equation.

In this talk, we shall limit our self to the question of minimal regularity. Con-
cerning this subject, the only case studied is the semilinear case, which means the
case of the equation (E) with ¢ = 0. As it has been shown by S. Klainerman
and M.Machedon (see [21] and [22]) we can, when the quadratic form @) verifies a
structure condition known by “null condition”, nearly reach the space invariant by
scaling. For any quadratic form (), we have the following theorem, proved by G.
Ponce and T. Sideris in [27]

Theorem 1.1 Let us define s; by

1
de:efgl+_ if d>3 and §2:;

Let (ug,u1) be a Cauchy data in H® x H*™" with s > s, then there exists a time T
such that there exists o unique solution u of the equation (E) such that

ue L*([0,T); H*) N Lip([0, T); H*™")  and 9u € L*([0,T]; L™).

The proof of this result lies on specific properties of the wave equation, namely
the following Strichartz estimate

e + DUl - )
ford>3and s >4+ 1. (2)

lullzg o=y < € (I9u(0,.)]

Indeed, if we couple it with the standard energy estimate

10ull 3 o1y < € (J10u(0, )]

et + 10Ul ey
we obtain, owing to the tame estimates and the Cauchy-Schwarz inequality
Oull Lz (L) + [|Oul| Lge(rra—1)
< € (10u(0, s + TENBut, M 3 o |9ull 1101 )

which ensures by the theory of evolution equations the local solvability for T <

e

In other respects, in [26], H. Linblad shows that for d = 3 the above result is
optimum, which means that the problem (E) with g = 0 is not wellposed in H?.
Let us also notice that the same kind of result is also true on the Heisenberg group
(see [9]).

The authors (see [3] and [4]) adjust a method followed by D. Tataru (see [32])
based on microlocal analysis to improve the minimal regularity for the equation (E)
in the quasilinear case. Let us recall this result
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d 1 1
Theorem 1.2 Ifd > 3, let (up,u1) be in H* x H*7! for s > sq with sq = stote:

6
Then, a positive time T exists such that a unique solution u of the equation (E)
exists such that
du € C([0,T); H*Y) n L*([0, T); L™).

Remarks

o This theorem has been proved with 1/4 instead than 1/6 in [3] and then
improved a little bit in [4] and proved with 1/6 by D. Tataru in [32]. Strichartz
estimates for quasilinear equations are the key point of the proofs.

o Let us notice that the improvement with 1/6 of D. Tataru in [32] is due to
a different manner of counting the intervals where microlocal estimates are
true.

» Recently, S. Klainerman and I. Rodnianski in [24] have obtained a better index
in dimension 3. Their proof is based on very different methods.

e Let us notice that we have also improved the minimal regularity in dimension
2, but the gain is only of % derivative, this is explained by the mean dispersif
effect in this dimension already known for the constant case.

The analogous theorem in the case of equation (EC) is the following

Theorem 1.3 If d > 4, let (uop,u1) be in H® x H*™! with s > £ + & such
that [|7[|H%_1 is small enough. Then, o positive times T exists such that o unique
solution u of (EC) exists such that

due C(0,T; H ™) N L3(Biy %), for d>5,
and
due C([0,T; B> ) NLHBE,) and dge LL(L™) for d=4.

Remarks
e The case when d > 5 can be treated only with Strichartz estimates simply
L4 1

because if du belongs to L7.(B,, ?) then dg is in Li,(L*°).

e The case when d = 4 requires bilinear estimates. This fact appears in
the statement of Theorem 1.3 through the following phenomenon: The fact

1

that Ju is in L%}(Bgvg) does not imply that the time derivative of g belongs
to LL(L*>). Of course this condition is crucial in particular to get the basic
energy estimate. But we have been unable to exhibit a Banach space B which
contains the solution u and such that if a function a is in B, then 9A™!(a?)
belongs to Li(L>).

o For technical obstructions, this theorem is limited to the dimensions d > 4.

2. Quasilinear Strichartz estimates

Following the process of G. Ponce and T. Sideris in [27], we reduce the proof
of the theorem 1.2 to the following a priori estimate
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Theorem 2.1 Ifd > 3, a constant C exists such that, for any regular solution u of
the equation (E), if

TiH—5a) (1|71|H%_%+(5_5d1 n T%Hynm_l) <O, with s> sq
then we have
10ullz sy < © (Il + 1Q@u, 00y are-1))

The estimate in hand must be understood as a Strichartz estimate for wave
equations with variable coefficients and not very regular. The Strichartz estimates
have a long history begining with Segal’s work [28] for the wave equation with
constant coefficients. After the fundamental work of Strichartz [30], it was devel-
oped by diverse authors, we refer to the synthesis article of Ginibre and Velo [13]
to which it is advisable to add the recents works of Keel-Tao [18] consecrated to
some limited cases and of Bahouri, Gérard and Xu [8] for the wave equation on the
Heisenberg group. For Strichartz estimates with C° coefficients, we refer to the
result of L. Kapitanski (see [17]). The article of H. Smith (see [29]) constitutes an
important step in the study of Strichartz estimates for operators with coefficients
not very regular since it proves Strichartz estimates with coefficients only C%:1.

We shall now explain how to establish this quasilinear Strichartz estimate,
showing where are the difficulties and what are the essential ideas which allow to
overcome them. The method known to prove these estimates uses a representation,
eventually approximate, but always explicit of the solution. In the case of the
wave equation, the approximation used is the one coming from the Lax method,
namely the one connected to the geometrical optics. To make such a method work
in the framework of quasilinear wave equations requires a “regularization” of the
coefficients also in time. This leads to the following iterative scheme introduced
in [4]. Let us define the sequence (u{™),en by the first term u(®) satisfying

{ Zul® — Au® = 0
(

U(O),atu(o))[t:o = (Souo, Sou1),
and by the following induction
" (u™), gu™ )2y = (Snyrtio, Sny1ur)

where ¢, 7 def 0(T—1)g, with g, def g(u™) and 8 a function of D(]—1, 1[) whose value
is 1 near 0 and where S, is a frequencies truncated operator which only conserves
the frequencies lower than €2~ !. Let us introduce some notations which will be
used all along this section. If s = s4+ a where « is a small positive number, let us

define
def

1
Ni() = Il g -3 + o[l

The assertion we have to prove by induction, for T%““C‘N:% () small enough,
is the following: If d > 3,

(P { Hau(n)HL%(LOO) < CT*NE(7)
YN0 e ey < Cllyllae-,
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For this, we shall transform the equation (E,,) into a paradifferential equation,
more precisely an equation of the type

(Ey) afug"+1> - Au(g"“m = (Sygn.T) Vgugn“ﬂ) = R,(n)

where the term ﬁq(n) is a remainder term estimated as agreed and where u, denotes
the part of v which is relative to the frequencies of size 29.

This transformation of the equation, which is the classical paralinearization
defined by J.-M. Bony in [10] is here not sufficient, since it is well known that the
paradifferential operators defined in [10] belong to a bad class of pseudodifferential
operators ( class Sy, of Hormander), class in particular devoid of any asymptotic
calculus, which forbids of course to envisage any approximate method of type “Lax
method”.

The idea is as in [25] to truncate more in the frequencies of the metric g and
to transform the equation (Ej) on the following equation (EPM,)

(EPM,)  Ofu{™™) — Aul™™) — (S5.00,7) VZul"T) = Ry(n);

where 0 <0 <1 and S, is a frequencies truncated operator which conserves only
the frequencies smaller than CT (192071 We can interpret it as a localization
in the pseudodifferential calculus sense (1,4) of Hormander.

This localization allows us to construct an approximation of the solution but
engenders a loss in the remainder R,(n). This approximation is on the form

[ et 0. g€ e

where @, is a solution of the Hamilton-Jacobi equation and o4 is a symbol calculated
by resolving a sequence of transport equations; it is about a classical method. But,
on account of the the caustic phenomenon, this approximation is microlocal, which
means valid only a time interval whose length depends on the size of the frequencies
we work with.

Nevertheless, following the classical method, we prove microlocal Strichartz
estimates

19013 (1) < T2 (Ipgllee + 1By )y o)) (3)
for any positive 3, where -, def (V(up)g, (u1)q) and I, satisfies
VG s (e < € (4)
where Gg") def Sse9(u™) and

1] < T(20T)' 207 ()

The condition (4) is imposed by the Hamilton-Jacobi equation while the condi-
tion (5) is required by the asymptotic calculus to turn out the “Lax method”.
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Finally to prove the complete estimate, the method we used consists in a
decomposition of the interval [0, 7] on subintervals I, on which the above microlo-
calized estimates are true. The key point is a careful counting of the number of such
intervals, for this we shall use here D. Tataru’s version of the method we introduced
in [3].

The idea consists to seize at the opportunity of this decomposition to com-
pensate the loss on the remainder. To do so, we impose on the interval I, the
supplementary condition

1Bq()llLy 22y < MlBq(n)l]Ly, (22) (6)
where the parameter X is to be determined in the interval [0,1]. This constraint
joint to the conditions (4) and (5) leads by optimization to the best choice

2
A=(2T)"%, 4= 37

and allows to conclude that the number N of such intervals is less than C/(2¢T)3 ¢,
If we denote by (I4.¢)1<¢<n the partition of the interval [0, 7] on such intervals, we
can write thanks to (3),

d—1

)20 (Iylle + IRyl m))

] =

II3U§"+1)IIi2T(Lm) < Cs

by
Il
A

d—1

(297)?P2a(*3 )<[|%[|L2+(QQT)—%HRQ(N)HUT(H))Q

< Cp

] =

by
Il
A

As N is less than C(QQT)%+6, we obtain
IIQUS"“)IIL%(LOO) < C@(QQT)‘RQQ(%)(QQT)%W“%
(ballee + @D 3B i) - (D)

Now as the loss in the remainder R,(n) is of order 2¢(1=9) and more precisely,
for N%(v) small enough, we have

d_ 38

IRyl 2y < eC2 005 (207) (=5 =3+ T9=5 =51y ||
(1 T g g ) (8)

where (¢;) € €2. We deduce, owed to the choice of § that

d_

1|3u((1n+1)”L2T(LOO) < ¢, 0(21T)(e=5=A =% Yl

o (14 THI0u" |13 1) )

which implies the result by summation.
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3. Quasilinear bilinear estimates

The method used here is not without any interaction with the one used to
prove the theorem 1.2. As in the case of equation (E), the basic fact is the control
of

T
| 1096, N,
0
and the proof of the theorem 1.3 follows from the following a priori estimate

Theorem 3.1 Ifd > 4, a constant C exists such that, for any regular solution u of
the equation (EC), if ||Vl|.4_. is small enough and

Hz2™
1 1 1
Tet6= 53 ||y|| gor < C, with s> g—f— 5
then we have
- 2
10ATQ(Bu, Bu)|| 11 (1) < CllylIFra-1.

This is the quasilinear version of the following bilinear estimate owed to D.
Tataru and S. Klainerman (see [23])

Proposition 3.1 Let u be a solution of 07u — Au = 0 and (Ou)jt=0 = 7. Then,
ifd >4,
10A™1Q(8u, du)|| L1 (1) < Cerlln]

2
|g_1+e~

Remark We find a gain of one derivative from the regularity of the initial data
compared with the product laws and a gain of half a derivative about the regularity
of the initial data compared with purely Strichartz methods.

To explain the basic ideas of bilinear estimates, let us first consider the case of
constant coefficients.  As AT (Ojult, )du(t,))) = ATH(80;udrult, )+
AT (8;ud,0kult,+)), we have to control expression of the type

T
/{|A—1(8t8ju8ku(t,-))HLoodt.
0
For this we introduce Bony’s decomposition which consists in writing

ab=Y" S, 1alb+ > S, 1bAga+ D> Agad, b,
q q

—1<j<1
q
When d > 4, we have [|8kuq[|L%(Loo) < CQq(g—%“*k—l)lthLz, then it is easy to
prove that
Ha—l (3 8y-10%u0u,) ‘
q

The symmetric term can be treated exactly along the same lines. The remainder

term
AT(YD 0Pugdugy) 9)

—1<i<1
q

< ClivE ..
Lo S Ilvllg_l
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is much more difficult to treat in particular in dimension 4. The idea introduced by
D. Tataru and S. Klainerman (see [23]) consists to treat this term using precised
Strichartz estimates and interaction lemma.

The precised Strichartz estimates are described by the following proposition.

Proposition 3.2 Let C be a ring of R*. Ifd > 3, a constant C exists such that
for any T and any h <1, if Supp U; are included in o ball of radius h and in the
ring C, we have

l[ell 2y < C (R log(e + T))%(HUOHL2 + [l =),

where u denotes the solution of 07u — Au =0 and 6§u[t:0 = uy.

As usual it is deduced with the TT* argument from the following dispersive
inequality.

Lemma 3.1 A constant C exists such that if up and uy are functions in L*(R?)
such that

Supp (@;) CC  and max{d(Supp (7)), 5(Supp (41))} < h,
then, for any d between 0 and d — 1, we hove

Chi—?

5

llu(t e <

(lluollzr + Il 1),

where u denotes the solution of O}u — Au=0 and ag’u[tzo = uj.

This inequality is proved in [23] in the case d=d-1. The general case is
obtained by interpolation with the classical Sobolev embedding.

Let us now show how to take account the interactions of the solutions to control
the accumulation of frequencies at the origin in the study of the remainder term.

Lemma 3.2 “Interaction Lemma 7 There exists a constant C such that if v1 and vg
are two solutions of Bjv; — Av; = 0 satisfying (Ov;)ji=0 = v; with Supp (F;) C C
we have for, 0 < h <1

X (h™*D)(8%018v2) ||y, (po=y < Ch**log(e + T)lInllzzllvell 22, (10)

where x is a radial function in D which is equal to 1 near the origin.

Let us define (¢, )1<y<n, a partition of unity of the ring C such that Supp ¢, C
B(&,,h). Then, using the fact that the support of the Fourier transform of the
product of two functions is included in the sum of the support of their Fourier
transform, a family of functions (¢, )1<,<n, exists such that Supp ¢, C B(-¢&,,2h)
and

x(h~'D)(8%v18v,) = ZX D) (8?¢y(D)v10¢,(D)vs). (11)
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Applying Proposition 3.2 gives

Np
X (B D)(@010s) || 3 1=y < Ch*log(e +T) Y |6 (D)7 || 22l b (D)2l -

v=1
The Cauchy Schwarz inequality implies that

Ix(h™D)(8%01002) || 11 (1)

N T /N, 3
< Ch'Ploge+T) (Z II%(D)%IIiz) (Z II%(D)%IIiz) :
v=1 y=1
The almost orthogonality of (¢, (D)v1)1<v<n, and (¢, (D)y2)1<v<n, implies (11)
and leads then to the estimate of the remainder term (10) by rescaling.

To establish the theorem 3.1, we shall follow the steps of the proof of the
theorem 2.1 which consists owed to the gluing method to reduce the problem to
the proof of “microlocal” bilinear estimates. The generalization of the precised
Strichartz estimates to the framework of the equation (EC) doesn’t cost more than
the generalization of the Strichartz estimates to the framework of the equation (E),
the supplementary difficulty to study the equation (EC) lies in the generalization
of the interaction lemma. The preservation of the support of the Fourier transform
by the flow of the wave equation is the crucial point in the proof of this lemma.
The defect of this property in the case of the variable coeflicients constitutes the
additional major problem in the proof of the theorem 3.1.

To palliate this difficulty, we have used a finer localization in phase space. This
localization is given by the concept of microlocalized function near a point X =
(z, &) of the cotangent space T*R? (the cotangent space of R?). More precisely, if
we consider the positive quadratic form g on T*R? defined by

d 2 d 2
g(dy?, di?) & l?(J? + }:7,) with A% Kp>1

a function v in L%(R?) is said to be microlocalized in Xo = (0, &) a point of T*R4
if
c def 5 I
MEN S s X =XYool
_ o eeED(By(X,r
9(X = Xo)R2Cor ol <1
are finite, where B,(X,r) denotes the g-ball of center X and radius r, the opera-

tor ¢P is defined by

(Puw) = e [ O, uty)dyde,

and

def h
lellse = sup sup |DEo(X)(Ty, -, Th))-

<i o (Toi<e<n
XeT*R? g(T)<1
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This notion due to J.-M.Bony ([11]) means that the function u is concentrated
in space near the point xp and in frequency near the point £ and behaves well
against the product, namely, we show that if

g(Y1 = Y2)% > Cor,

where v 9 (y,—n) if Y = (y,n) then for any N, we have

Ix(A D) (pPurpBus)|| N
< Onllerllin gll@allin.g (1 + Xg(Y = Y2))  [luall2|luzll 2

where ; € D(B,(Y;,1)).

This study of the interaction between two typical examples of microlocalized
functions allows as in (11) to concentrate the bilinear estimate on real interaction.

Anyway, the choice of the localization metric ¢ is essential and it is crucial
to impose that the size of the g-balls is preserved by Hamiltonian flow which leads
to the only choice K = C|271,|h thanks to the properties of the solution of the
associate Hamilton Jacobi equation.

The key point in the generalization of the bilinear estimate is the proof that
for solutions of a variable coefficients wave equation, microlocalization properties
propagate nicely along the Hamiltonian flows related to the wave operator; this
point follows from the choice of the metric used to localize in the cotangent space
of R?.

Finally to end the proof of the microlocal bilinear estimate, the strategy con-
sists to decompose the Cauchy data using unity partition whose elements are sup-
ported in g-balls and then to apply the product and the propagation theorems to
concentrate on real interaction (see the proof in the constant coefficient case). Be-
cause of the fact that interaction in the product and propagation of microlocalization
are badly related, we need at this step to recourse to a second microlocalization,
which means that we have to decompose again the interval on which we work on
sub intervals where the Hamiltonian flow is nearly constant .
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Some New Developments of
Realization of Surfaces into R3

Jiaxing Hong™*
Abstract

This paper intends to give a brief survey of the developments on real-
ization of surfaces into R® in the last decade. As far as the local isometric
embedding is concerned, some results related to the Schlaffli-Yau conjecture
are reviewed. As for the realization of surfaces in the large, some developments
on Weyl problem for positive curvature and an existence result for realization of
complete negatively curved surfaces into R®, closely related to Hilbert-Efimov
theorem, are mentioned. Besides, a few results for two kind of boundary value
problems for realization of positive disks into R® are introduced.
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Given a smooth n-dimensional Riemannian manifold (M™,g), can we find a
map
¢: M"™ — RF such that ¢*"h =g

where h is the standard metric in RP? This is a long standing problem in Differ-
ential Geometry. The map ¢ is called isometric embedding or isometric immersion
if ¢ is embedding or immersion. There are several very nice surveys. For example,
for known results before 1970, particularly obtained by Russian mathematicians,
see [GR], [G] and for results of n = 2, see [Y3] [Y4]. Whereas, what development
has been made during the passed decades? In higher dimensional cases, the most
important one is to improve the Nash’s theorem so that (M™, g) has isometric em-
bedding in a Euclidean space of much lower dimension than that given by Nash
and meanwhile, to use the contraction mapping principle in place of the theorem
of the complicated hard implicit functions, see [H] or [GUN]. In contrast to higher
dimensional cases it seems that problems of two dimensional Riemannian man-
ifolds embedded into R® has attracted much more attention of mathematicians,
particularly in the last decade. The present paper is devoted to a survey on the
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developments of isometric embedding (or immersion) of surfaces into R? in the last
decade. Of course the results mentioned in this survey are by no means exhaustive
and depend a lot on the author’s taste.

Smoothly and isometrically immersing a surface (M, g) into R® is equivalent
to finding three smooth (C?,s > 1) functions z, : M — R, a = 1,2, 3 such that

g = da? + das + daj. (1)

Although as far as the formulation of (1) be concerned, C! regularity is enough and
[K] gives a very nice result in this category. In order to see the role of the curvature
of surfaces in the problem considered here we prefer to assume s > 2 throughout
the present paper. In the sequel, sometimes we use z,y, z to denote 1,22, 23. In
a local coordinates near a point p € M, the metric g is of the form g = g;;du’du’.
Then (1) can be written as follows

O%a O%a
Out Oul

= Gij Za] = 1aQa (2)

(2) is a system composed of three differential equations of first order and hence, this
is a determine system. We say that ¥ = (21,22, %3) is a local smooth (C?) isometric
embedding in R? of the given surface if ¥ = (1,22, 73) is a smooth (C?) solution to
(2) in a neighbourhood of the point p and that 7 is a global smooth (C#) isometric
embedding (immersion) in R? if 7 = (21,2, 73) is a smooth (C?) solution to (1) on
M and, meanwhile, is an embedding (immersion) into R®. This survey consists of
three parts. The first and the second part include some recent developments in local
isometric embedding and global isometric embedding respectively. The third part
contains some developments on boundary value problems for realization of positive
disks into R®.

Local isometric embedding. With the aid of the Cauchy-Kowalevsky theo-
rem Cartan and Janet proved that any n-dimensional analytic metric always admits
a local analytic isometric embedding in R** with s, = n(n + 1}/2. In the smooth
category Gromov in [GR] proved that any n-dimensional C* metric always admits
a local smooth isometric embedding in R#%". Asn = 2, s, = 5 and from (2)
the present result looks far away from the optimal in the smooth category. On the
other hand, [P] proves that any smooth surface always has a local smooth isometric
embedding in R?. In [Y2, No.22] and also in [Y1, No. 54] Yau posed to prove that
any smooth surface always has a local smooth isometric embedding in R®. In this
direction, it is Lin who first made important breakthrough and his results in [LC1]
and [LC2] state

Theorem 1. (C. S. Lin) (1) Any C?, s > 10 nonnegatively curved metric always
admits a local C*~% isometric embedding in R>.
(2) If g is a C*, s > 6 metric and if its curvature K satisfies

K(p) =0 and dK(p) # 0
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then it admits a C°~? isometric embedding in R® near p.

By means of Lin’s technique the problem for local isometric embedding related
to nonpositive curvature metric are also solvable in the following cases.

(3) In [IW], K nonpositive in a neighbourhood of a point p and d*K (p) # 0,

(4) In [HO1], K = h*K; where Kj, h are smooth functions, K;(p) < 0,
dh{(p) # 0 and ¢ is an integer.

In what follows let us simply explain what the technique ones use while at-
tacking the problem of local isometric embedding. Suppose that ¥ = (z,y,2) is a
smooth solution to (2) in a neighbourhood of the point in question previously. By
the Gauss equations we have, in a local coordinate system,

f’}j = Ffjf"k -+ szjﬁ or ngf"z Qijﬁ,i,j =1,2 (3)

where subscripts i,j and V;; denote Euclidean and covariant derivatives respectively
and €2;; the coeflicients of the second fundamental form, Ffj the Christoffel symbols
with respect to the metric and # the unit normal to #. For each unit constant
vector, for instance, the unit vector k of the z axis, taking the scale product of k
and (3) and using the Gauss equations one can get

-

det(V;2) = K det(giy)(7, )2, (1)

Notice that

Inserting the last expression into (4) we deduce the Darboux equation
F(2) = det(V;2) — K det(giy)(1 - [V2[?) = 0. (5)

Obviously each component of ¥ does satisfy the Darboux equation. Conversely,
for each smooth solution z to (5) satisfying |Vz| < 1, § = g — d2? is a smooth
flat metric. Therefore in simply connected domain  we can always find a smooth
mapping (z,y): © ~ R? such that dz?+ dy? = g — dz>. So the realization of a given
metric into R? is equivalent to finding a smooth (or C#) solution to the Darboux
equation with a subsidiary condition {Vz| < 1. If K is positive or negative at the
point considered, then (5) is elliptic or hyperbolic Monge-Ampere equation and the
local solvability is well known for both of them. But if K vanishes at this point,
the situation is very complicated and so far there has been no standard way to deal
with such kind of Monge-Ampere equation. Indeed, its linearized operator

L.¢= tl_ir_r}lo F(z—}—t{t) - F(z)

= FUV ;€ + 2K (Vz,VE) (6)
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where F¥ = 9det(V;,2)/0V ;2. It is easy to see that the type of this linear differ-
ential operator completely depends on K. When K vanishes at the point considered,
(6) may be degenerate elliptic, hyperbolic or mixed type and its local solvability is
not clear. Using a regularized operator instead of (6) and the Nash-Moser proce-
dure Lin succeeded in proving Theorem 1. But it is still not clear whether there
is obstruction for the local isometric embedding in smooth category even for the
nonpositive curvature metric. Some results [EG] on linear degenerate hyperbolic
operators of second order which have no local solvability should be noticed. Any-
way, to author’s knowledge the problem for local isometric embedding of surfaces
into R? is still open !!

Global isometric embedding. The first result on global isometric embed-
ding of complete surfaces in R? is due to Weyl and Lewy for analytic metric and to
Nirenberg and Pogorelov for smooth metric.

Theorem. (Weyl-Lewy Nirenberg-Pogorelov) Any analytic (smooth ) positive cur-
vature metric defined on S* always admits an analytic ( a smooth ) isometric em-
bedding in R>.

For noncompact case, for example, a complete smooth positive curvature met-
ric defined on R?, this problem was solved by two Russian mathematicians. Olov-
janisnikov first found the weak isometric embedding based on the Aleksandrov’s
theory on convex surfaces and Pogorelov proved the weak solution smooth if the
metric smooth.

Theorem. (Olovjanisnikov-Pogorelov) Any smooth complete positive curvature met-
ric defined on R? admits a smooth isometric embedding in R>.

The next natural development is to consider the realization in RB® of nonnega-
tively curved surfaces. Recently [GL] and [HZ] independently obtained the following
result

Theorem 2. (Guan-Li, Hong-Zuily) Any C*nonnegative curvature metric defined
on S? always admits a C*' isometric embedding in R>.

Olovjanisnikov-Pogorelov’s result on complete positively curved plane is also
extended to the nonngegatively curved case, see [HO3].

Theorem 3. Any complete C*nonnegative curvature metric defined on R? always
admits o C*1 isometric embedding in R®. Moreover it is smooth where the metric
s smooth and the curvature positive.

In this direction a special case is also obtained in [AM].

As far as the regularity of isometric embedding be concerned, ones are inter-
ested in the following question. Can we improve the regularity of the isometric
embedding obtained in Theorem 2 and Theorem 3 if the metric is smooth 7 It is
very interesting that [[A] gives a C*! convex surface which is not C?® continuous
but realizes analytic metric on S? with positive curvature except one point. On
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the other hand, Pogorelov gave a C%! geodesic disk with nonnegative curvature
not even admitting a C? local isometric embedding in R® at the center of this disk.
Therefore a natural open question is : Does there exist a C* (0 < o < 1) isometric
embedding in R® for any sufficiently smooth (even analytic) nonnegatively curved
sphere or plane?

The Hilbert theorem is one of the most important theorems in 3- Euclidean
space. This theorem as well as Efimov’s generalization in [EF1] provide a negative
answer for the problem of realization of complete negatively curved surfaces into
R3.

Theorem. (Hilbert-Efimov) Any complete surface with negative constant curva-
ture (with curvature bounded above by a negative constant) has no C? isometric
immersion in R3.

Another result [EF2] also due to Efimov should be mentioned.

Theorem. (Efimov) Let M be a smooth complete negatively curved surface with
curvature K subject to

sup | K|, sup grad (7)
M

1
(=) <C
M VIK]
for some constant C'. Then M has no C? isometric immersion in R®

Evidently, Efimov’s second result yields a necessary condition for a complete
negatively curved surface to embed isometrically in R?,

S}\l/[p Wﬁ§ = o0 if Sjl\l/lp K| < o0. (8)

Yau posed the following question [Y1, No.57].
Find a nontrivial sufficient condition for a complete negatively
curved surface to embed isometrically in R3.

He also pointed out that such a nontrivial condition might be the rate of decay of the
curvature at infinity. Recently some development in this direction has been made
in [HO2]. Let M be a simply connected noncompact complete surface of negative
curvature K. By the Hadamard theorem exp.T,(M) — M is a global diffeomor-
phism for each point p € M which induces a global geodesic polar coordinates (p, #)
on M centered at p.

Theorem 4. Suppose that
(a) for some & > 0, p*tO|K| is decreasing in p outside a compact set and that
(b) OiIn|K|, i = 1,2 and pd,0y In|K| bounded on M.

Then M admits a smooth isometric immersion in R>.

Remark 1. If M € C*!(s > 4) and other assumptions in Theorem 4 are fulfilled,
then it admits a C*~ 1! isometric immersion in R3.



160 Jiaxing Hong

Remark 2. The assumption (a) implies the rate of decay of the curvature at the
infinity

for a positive constant A. (9)
Such a condition on the decay of the curvature at the infinity is nearly sharp for the
existence since if § = 0, there might be no existence. Consider a radius symmetric
surface (R?,g) with the Gaussian curvature

K= _?pg for some positive constant A (10)

where p is the distance function from some point. Evidently

su ivLi—L<OO
w K] VA

Therefore Efimov’s second theorem tells us that such a complete negatively curved
surface (R?,g) has no any C? isometric immersion in R® for arbitrary positive
constant A. The arguments of [EF1] and [EF2] are very genuine but ones expect a
more analysis proof for Efimov’s results in [EF1]. Anyway, a result in [EF3] also by
Efimov which is much easier understood, shows that the negatively curved surface
mentioned above has no C? isometric immersion if A > 3 in (10).

Boundary value problems for isometric embedding in R®. Recently,
the study on boundary value problems for isometric embedding of surface in R® has
attracted much attention of mathematicians. Various formulations of such questions
can be found in [Y4]. To author’s knowledge this field has not been extensively
studied. Let g be a smooth positive curvature metric defined on the closed unit
disk D. Throughout the present paper we always call such surfaces (D, g) positive
disk. According to the classification in [Y4] there are two kinds of boundary value
problems: one is Dirichlet problem and another is Neumann problem. Let us first
consider the Dirichlet problem.

Given a smooth positive disk (D, g) and a complete
smooth surface ¥ C R?, can we find an isometric embedding 7
of (D, g) in R® such that #(0D) C 7
This problem is also raised in [PO1]. As a first step, one can consider a simple case.
Assume that ¥ is a plane. Give a complete description of all
isometric embedding of (D, g) satisfying #(0D) C .
Assume that ¥ : {z = 0}. Then we are faced with the following boundary value
problem.
D: To find an isometric embedding ¥ = (x,y, 2) of the given
positive disk (D, g) such that z(dD) = 0.
It is easy to see that there is some obstruction for the existence of solutions to the
above boundary value problem. Suppose that 7 = (z,y,z) € C%(D) is a solution to
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the above boundary value problem. Obviously the intersection #(0D) of 7" and the
plane {z = 0} is a C? planar convex curve. Denoting its curvature by k we have

K=k + k) (11)

where k, and k,, are respectively the geodesic curvature and normal curvature of
F(OD). k, is positive everywhere since (D, g) has positive curvature. Notice that
the total curvature of #F(OD), as a planar curve, equals 27. Hence

/F o Folds <2 (12)

This is a necessary condition in order that the above boundary value problem D
can be solvable. Indeed, this necessary condition is not sufficient for the solvability.
In [HO4] there is a smooth positive disk satisfying (12) but not admitting any C?
solution to the problem D. Furthermore this counter example also shows that too
many changes of the sign of the geodesic curvature of the boundary will make the
problem D unsolvable. So we distinguish two cases

Case a: k, > 0 on 8D and Case b: ky <0 on 0D. (13)

It should be pointed out that Pogorelov gave the first solution to the problem
D in [PO1] which states that

Theorem. (Pogorelov) Let (D,g) be a smooth positive disk. Then the boundary
value problem admits a solution ¥ € C>(D) N C%Y(D) provided that the geodesic
curvature of 0D with respect to the metric g is nonnegative.

Pogorelov only obtained a local smooth solution, namely, a solution smooth
inside. One wonder that under what conditions the problem D always admits
a global smooth solution, namely, a solution smooth up to the boundary. Such
global smooth solutions are obtained by [DE] for Case a if there exists a global C?
subsolution 1 for the Darboux equation (5) in the unit disk D, vanishing on 8D
and with |V1| strictly less than 1 on D. Recently, [HO5] removes this technique
requirement.

Theorem 5. For Case a the problem D always admits a unique solution in C°°(D)
if any one of the following assumptions is satisfied (1) K >0 on D, (2) K >0 in
D and K =0# |{dK| on 0D.

Obviously, the necessary condition (12) is always satisfied for Case a. As for
Case b it looks rather complicated since there are some smooth convex surfaces
in R3 which are of no infinitesimal rigidity. The presence of such convex surfaces
makes us fail to prove the existence of the problem D of Case b by means of the
standard method of continuity. Thus the solvability of the problem D for Case b is
still open !
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Let us consider a spherical crown, in the spherical coordinates,
¥y, = {(sinfcos ¢, sinfsin g, —cos )]0 < ¢ < 27,0 < 0 < 6, }

and # = 0 stands for the South pole. ¥y, is the isometric embedding of the metric
g = db? +sin” 0dp?,0 < 6 < 0,. If 6, > Z, then Ty, contains the below hemisphere
and the geodesic curvature of its boundary is negative. We have in [HO4]

Theorem 6. There is a countable set A = {61,6,..0,,...} C(7/2,7) with a limit
point /2 such that g, is not infinitesimally rigid if 6, € A.

In what follows we proceed to discuss the Neumann problem for realization
of surfaces into R®. The formulation is as follows. Give a smooth positive disk
(D, g) and a positive function h € C*(dD), The Neumann problem (later, called
the problem N) is as follows.

N : Find a surface ¥ : D + R? such that di® = ¢

with the prescribed mean curvature h on #(0D). (14)

Let us first introduce an invariant related to umbilical points of surfaces in R3.
Suppose that the given metric is of the form

g = Edz® + 2Fdxdy + Gdy®, (z,y) € D. (15)
Let 7 be a smooth isometric immersion of (D, g) with the second fundamental form
II = Ld2* + 2Mdaxdy + Ndy® for (x,y) € D. (16)
Definition. If ¥ is of no umbilical points on 0D, with
o= (EM — FL) +v~1(GL - EN)

the winding number of ¢ on 0D is called the index of the umbilical points of the
surface ¥ and denoted by Index(F).

Obviously, this definition makes sense since p is an umbilical point if and
only if o(p) = 0. Moreover, the definition of the index of the umbilical points is
coordinate-free and hence, an invariant of describing umbilical points of surfaces.
Such invariance comes from that of a differential form. Indeed, assume that in some
orthonomal frame, the induced metric and the second fundamental form of a given
surface 7 in R® are of the form

g=w! +wi and IT = hjjww;
respectively. As is well known,

[(h11 = haz) + 2ih1a] (W] + w3)
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is an invariant differential form. So the index of umbilical points is nothing else but
Index(F) = Index {2hia + i(h11 — haa)}

if no umbilical point on 0D occurs.

The boundary value problem for realization of positive disks into R? seems to
have some obstruction. Indeed, even if no imposing any restriction on the boundary
the problem of realization of positive disks into R® is not always solvable. For details,
refer to Gromov’s counter example [GR] which contains an analytic positive disk not
admitting any C? isometric immersion in R®. Therefore for the Neumann boundary
value problem the following hypothesis is natural. Assume that

(D,g) admits a C? isometric immersion 7 in R, (17)
We have in [HO6]

Theorem 7. If (D, g) is a smooth positive disk satisfying (17) then for any non-
negative integer n. and arbitrary (n+ 1) distinet points po € 0D, p1, ..., pn, € D, the
problem N admits two and only two solutions 7 in C* (D, R®) with prescribed mean
curvature h on 0D and moreover,

one principal direction at pg is tangent to 0D,
Index(7¥) = n and H(py) = Ho(pr), k=1,...,n

where H and Hg are respectively the mean curvature of ¥ and 7o provided that

h H,

It is worth pointing out two extreme cases. The first one involves the existence.
Suppose that the given positive disk (D, g) is of positive constant curvature. Then
it is easy to see that this positive disk admits a priori smooth isometric embedding
fo in R*® which is a simply connected region of the sphere. Under the present
circumstance 7p i totally umbilical and hence, the right hand side of (18) vanishes.
Therefore if (D,g) is of constant curvature and VK < h € C®(8D), then the
problem N is always solvable for each nonnegative integer n and arbitrary (n + 1)
distinct points pg € dD, p1,,..,pn € D.

The second extreme case involves the nonexistence. If the given positive disk
is radius symmetric, i.e., g = dr? + G%(r)d#? 0 < r < 1 where G € C*°([0,1]) and
G(0)=0,G'(0) =1, G > 0asr > 0. Then if G, > —1, (D,g) has such a priori
smooth isometric embedding in R?,

1
7o :x=G(rjcosf,y = G(r)sinf,z = —/ V11— GZdr. (19)

With its mean curvature Hy = Ho(r), if Ho(1) > /K(1) , then [HOG] proves that
for arbitrary h € C°(9D) satisfying /K (1) < h < Hp(l) the problem N has no
any C? solution. Of course, if h > 4Hp(1) — 3,/K (1), by Theorem 7 the problem
N always admits two and only two smooth solutions for any nonnegative integer n
and arbitrary n 4+ 1 points po € 0D, p1,...,p; € D.
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p-Laplacian Type Equations
Involving Measures

T. Kilpeldinen*

Abstract

This is a survey on problems involving equations —div A(z,Vu) = g,
where ;1 is a Radon measure and A: R™ x R® — R”™ verifies Leray-Lions type
conditions. We shall discuss a potential theoretic approach when the measure
is nonnegative. Existence and uniqueness, and different concepts of solutions
are discussed for general signed measures.
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1. Introduction

Throughout this paper we let £2 be an open set in R and 1 < p < 0o a fixed
number. We shall consider equations

—div A(z,Vu) = p, (L.1)

where p is a Radon measure. We suppose that the mapping A4: R” x R™ - R,
(z,8) = A(x,£), is measurable in z and continuous in £ and that it verifies the
structural conditions:

Az, €) € Z A", A, 9] < AJgP™",  and

(A, &) = A(.Q) - (6 =€) > 0, (1.2)

for a.e. 2 € R” and all £ # ¢ € R”. A prime example of the operators is the
p-Laplacian
—Apu = —div(|Vul[P 2 Vu).

In Section 2 we discuss how nonlinear potential theory is related to equations
like (1.1); it corresponds to nonnegative measures. Then in Section 3 we discuss
the existence and uniqueness for (1.1) with general measures.
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2. Potential theoretic approach

A continuous solution u € W&)CP(Q) of — div A(x, Vu) = 0 is called A-harmonic
in . An A-superharmonic function in Q is a lower semicontinuous function u: € —
R U {oo} that is not identically oo in any component of £ and that obeys the
following comparison property: for each open D CC § and each h € C(D), A-
harmonic in D, the inequality u > h on 0D implies u > h in D.

For k>0 and s € R, let
Ti(s) = max ( — k,min(s, k))

be the truncation operator. Then we have
2.1. Theorem. [12, 26, 15] If u is A-superharmonic in ), then

Ti(u) € Wi () for allk > 0.

loc

This enables us to show that A-superharmonic functions have a “gradient”:
Suppose that a function v that is finite a.e. has the property that Ty (u) € Wécp(ﬂ)
for all k& > 0. Then we define the (weak) gradient of u as

Vu(z) = DTp(u)  if julx)] < k.

Here DT} (u) is the distributional gradient of the Sobolev function Ty (u) € W'li’f Q).
Then Vu is well defined. Observe that if Vu is locally integrable, then it is the
distributional derivative of u. However, it may happen that u or Vu fails to be
locally integrable and so Vu is not always distributional derivative, see [15], [8];
this is a real issue only for p < 2 — 1/n.

2.2. Theorem. [26, 12, 15, 10, 1] Suppose that u is A-superharmonic in .
1) If 1 <p < n, then

u € weak —Ll’f)(f—l)/("—p)(ﬂ) and  Vu € weak —Ll’f)(f—l)/("—l)(ﬂ),

ii) If p = n, then u is locally in BMO and hence v € L (Q) for all ¢ > 0;
moreover
Vu € weak —Li; ().

iii) If p > n, then
we WhP(Q)

loc

and hence u is (Hélder) continuous.

If p > n A-superharmonic functions are continuous and locally in WP, more-
over Radon measures then are in the dual of Sobolev space W12, This makes the
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cases p > n very special and quite simple by the classical results of Leray and Lions.
Henceforth we shall be concerned mainly with cases 1 < p < n.

For A-superharmonic u we have by Theorem 2.2 that |Vu[P~! is locally inte-
grable. So the distribution

—div A(z, Vu)(p) := / A(z,Vu)-Veodr, ¢eCi°(Q),
0

is well defined. A-superharmonic functions give rise to equation (1.1).

2.3. Theorem. [18] If u is A-superharmonic in ), then —div A(z,Vu) is
represented by a nonnegative Radon measure p.

As to the existence we have:

2.4. Theorem. [18, 3] Given a finite nonnegative Radon measure 1 on
bounded 1, there is an A-superharmonic function u in Q such that

{ —div A(z,Vu) = p (2.5)
Ti(u) € Wy () for all k> 0. '
If Q is undounded, then there also is an A-superharmonic solution to (1.1).
This is rather easily seen if 1 < p < n. The case p > n requires a more careful
analysis, see [9, 17].
In light of Theorem 2.2 we have that a solution u to (2.5) satisfies

-1
we Wyl (Q) forall g < %

(for p > 2 — 1/n). One naturally asks if such a solution is unique. Unfortunately
this is not the case in general (except for p > n). To see this consider the function

() = lejz-1 -1 if 1 <p<n,
—log x| ifp=mn.

In the p-Laplacian cases, v is then a p-superharmonic solution to (2.5) with =0 in
the punctured ball @ = B(0,1) \ {0}, but v = 0 is another solution. This is rather
artificial example but there are more severe ones. The question of uniqueness is a
real issue to which we shall return in Section 3 below.

Regularity and estimates

In the classical potential theory the uniqueness can be solved by the aid of
the Riesz decomposition theorem which states that superharmonic functions are
sums of a potential and a harmonic function. No such decomposition is available
in the nonlinear world. However, this lack can be compensated for to an extent by
estimating in terms of the Wolff potential of the measure p,

Wirtar = [ (M)

(A [4
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2.6. Theorem. [19] Let u be a nonnegative A-superharmonic function in
B(xo, 3r) with p= ~div A(x,Vu). Then

clVV};p(:vo, r) < ulxp) < CQWi’p(aﬁo, 2r) + c3 (i?fr) o,
Zo,

where ¢; = ¢j(n,p, A, A} > 0.

Theorem 2.6 was discovered by the author with Maly [18, 19] and later gener-
alized for equations depending also on u by Maly and Ziemer [30]. Mikkonen [32]
worked out the argument for weighted operators, this was later written up in a met-
ric space setup in [2]. Recently a totally different proof that works for quasilinear
subelliptic operators was found by Trudinger and Wang [39]. Labutin [22] gave a
generalization for k-Hessian operators.

As the first major application of the potential estimate in 2.6 the author and
Maly established the necessity of the Wiener test for the regularity for the Dirichlet
problem: We say that g € 91} is an A-regular boundary point of bounded 2 if

Jm (@) = p(ao)
whenever ¢ € C°°(R”) and u is A-harmonic in © with v — ¢ € W, "(92). Then it
turns out that regularity is independent of the particular operator and it depends
only on its type p. More precisely, define the p-capacity of the set E as

cap,(E) := inf olf + Vol dex,
Rn

where the infimum is taken over all v € W1#(R") such that v > 1 on an open
neighborhood of E. Then
2.7. Theorem. [31, 19] A boundary point xo € OO is reqular if and only if

/1 (capp([}Q N B(;ro,t))) - dt =
0

(A [4

Maz’ya [31] introduced the Wiener type test in 2.7 and proved its sufficiency.
Gariepy and Ziemer [11] generalized the result by a different argument. Lindgvist
and Martio [27] proved the necessity for p > n — 1; the general case was treated in
[19]. For generalizations see [30, 32, 39, 22].

Theorem 2.6 can also be used to characterize singular solutions and (Holder)
continuity of A-superharmonic functions (see [17, 19, 21]). Recall that A-harmonic
functions are locally Holder continuous: there is a constant s € (0, 1] depending
only on the structure such that

osc(u, B(z,r)) < c(%)”osc(u,B(:r, R)) (2.8)
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whenever v is A-harmonic in B(z, R}, r < R [37, 15]. For the p-Laplacian sz = 1.
We have
2.9. Theorem. [21] Suppose that u € W F(Q) is A-superharmonic with

p = —div Alx, Vu). If u is a-Hélder continuous, then
1(B(z,r)) <cr"PTe=D whenever  B(z,2r) C Q.

The converse holds if o < »¢.

The case a = » is quite different and it is not yet well understood.

Rakotoson and Ziemer [36] proved that the condition of Theorem 2.9 for the
measure gives the Holder continuity of the solution with some exponent. Lieber-
man [25] showed that for smooth operators like the p-Laplacian the condition
p(B(z,r)) < er™ '+ for some £ > 0 implies that the solution is in C9.

Theorem 2.9 can be employed to establish the following removability result
which is due to Carleson [5] in the Laplacian case.

2.10. Theorem. [21] Suppose that u € C%*(Q) is A-harmonic in Q\ E. If
E is of n —p+ a(p — 1) Hausdorff measure zero, then u is A-harmonic in .

If E is of positive n — p + a(p — 1) Hausdorff measure and o < 3z, then there
is u € C%%(Q) that is A-harmonic in Q\ E but not in the whole Q.

3. General Radon measures

In this section we let p be any signed Radon measure and consider equation
(1.1). More specifically, we shall discuss the problem
{ —div A(z,Vu) = p

u = 0 on O}

where € is a bounded domain in R". Here the equation is understood in the
distributional sense, i.e.

/A(x,w)-wdx:fwdu, v € G5 (1),
Q Q

(3.1)

where we, of course, assume that z — A(x, Vu) is locally integrable. The boundary
values u = 0 are assumed in a weak Sobolev space sense. The existence of the
solution to this problem is known:

3.2. Theorem. [3, 8, 9, 10] For each Radon measure p of finite total varia-
tion, there is o solution u to (3.1) such that

i) the truncotions
Ty (u) € Wy (Q) for all k>0,
i)
u € weak —L"PV/("7PN(Q) f 1 <p<n  end u€BMO ifp=n,
iif)
Vu € weak — LM~ 1/(n=1) (),
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We next discuss the uniqueness of such a solution. There are examples of
mappings A for which there is a solution u of equation A(z, Vu) = 0 such that
u satisfies ii) and iii) of Theorem 3.2, but fails to be A-harmonic, see [33, 38, 16,
29]. See also the nonuniqueness example in an irregular domain after Theorem 2.4
above.

There are various approaches trying to treat the uniqueness problem by at-
taching additional attributes to the solution. To formulate these we need to recall
a decomposition of measures. The p-capacity, defined in Section 2, is an outer mea-
sure. Hence the usual proof of the Lebesgue decomposition theorem gives us that
any Radon measure p can be decomposed as

B= o+ ps,

where pp and p, are Radon measures such that pg is absolutely continuous with
respect to the p-capacity (i.e., po(E) = 0 whenever cap,(E) = 0) and p; is singular
with respect to the p-capacity (i.e., there is a Borel set B such that cap,(B) = 0
and ps(E\ B) =0 for all E).

Let u be a solution to (3.1) described in Theorem 3.2. We say that

- u is an entropy solution of (3.1} if u is Borel measurable and
[ A vu) VI - o < [ T - )
Q Q

for all p € C§°()) and k& > 0.
- u is a renormalized solution of (3.1) if for all h € W°°(R) such that h' has
compact support we have

/A(:r, V) - Vuh'(u)p dr + / Az, Vu) - h(u)Ve dr
Q Q
= /Qh(u)<ﬂdﬂo+h(00)/ﬂ<ﬂdﬂj -h(-OO)/deu;

whenever ¢ € W17 (Q) N L(Q) with r > n is such that h(u)p € W, ¥ (0);
here
hioo) = lim h(t), h(~o0)= lim h(t),

t—r oo t— —co

and p} and p; are the positive and negative parts of the singular measure
Hs-

Observe that we assume here that v satisfies equation (3.1) in the distributional
sense. The entropy condition in this context was first used in [1]; the renormalized
solution was introduced by Lions and Murat [28] and in the refined form in [7,
8]. The artificial function we had as a counterexample for the uniqueness (after
Theorem 2.4) is not entropy nor renormalized solution. Existence is known; most
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existence proofs follow a similar idea to that in [3]. The uniqueness can be estab-
lished for certain measures since one can use truncated solutions as test functions.

3.3. Theorem. [4, 20, 8, 40] Suppose that p is a finite Radon measure. Then
there is a renormalized and an entropy solution of (3.1). Moreover such a solution
is unique if p is absolutely continuous with respect to the p-capacity.

The uniqueness with p € L' was proved in [1] and [28] see also [33], [34]. For
measures absolutely continuous wrt p-capacity, the uniqueness is established e.g. in
[4, 20, 8, 40].

A renormalized solution is always an entropy solution, whence the concepts
coincide at least if p is absolutely continuous wrt p-capacity; see [8, 6].

In case of a general measure the uniqueness of renormalized solution appears
to be an open problem. There are some partial results: Assume that the following
strong monotoneity assumption holds. For all 0 # &, € R™

B¢ — it p> 2,
(A(z,8) — A(z,m) - (£ =n) > € —n? : (3.4)
G

Assume also the Holder continuity:

y(b() + [l + )" Cle—nl? ifp>2,

3.5
€ =nPt if p<2, (35)

Az, &) — Az, m)| < {

where b € LF is nonnegative. For instance, the p-Laplacian satisfies these assump-
tions. Then we have:

3.6. Theorem. [7, 8, 14] Suppose the additional assumptions (3.4) and (3.5)
hold. If v and v are two renormalized solutions of (3.1) with measure p such that
either Vu — Vv € LP(Q) or u — v is bounded from one side, then u = v.

Rakotoson [35] proved that a continuous renormalized solution is unique in
smooth domains; continuity requires the measure be rather special.

Borderline case p = n

We close this paper by considering the special case when p = n. Then the
uniqueness can be reached:

3.7. Theorem. [41, 13, 10] Suppose that A verifies additional assumption
(8.4) with p=n and that Q is bounded and regular. For each Radon measure p of
finite total variation, there is a unique solution u to (3.1) such that

i) the truncations
Ti(u) € Wy (Q) for all k>0,

ii) u is in BMO, and
Vu € weak —L™()).
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The regularity of Q refers to the fact that the complement of Q needs to be
thick enough to exclude counterexamples we had in Section 2. Zhong [41] formulated
a weak condition for this by requiring that the complement of Q is uniformly p-
thick, i.e., cap,(CQ N B(x,r)) &~ r"% for all small r > 0; see [23, 15, 32] for more
information about uniform thickness.

In fact stronger uniqueness properties than in Theorem 3.7 hold: by using a
Hodge decomposition argument Greco, Iwaniec, and Sbordone [13] proved that for
p-Laplacian the solution is unique in the grand Sobolev space W™ (Q), i.e.

we N W) and supe/ [Vul"de < .
g<n g0 Q
The regularity Vu € weak —L"(f) in Theorem 3.7 (proved in [10]) is better
than u € WH™)(Q).
By using a maximal function argument similar to that introduced by Lewis
[24], Zhong [41] proved a stronger uniqueness result: the solution is unique in

we Wyl (Q).

q<n

Even stronger result appeared in [10]: there is a € > 0 depending on the structural
agsumptions and on ) such that any solution in W'Ol TTE(Q)) is actually the unique
solution declared in Theorem 3.7. A similar result follows from the estimates in

[13].
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On Some Conformally Invariant Fully
Nonlinear Equations

YanYan Li*

Abstract

‘We will report some results concerning the Yamabe problem and the Niren-
berg problem. Related topics will also be discussed. Such studies have led
to new results on some conformally invariant fully nonlinear equations arising
from geometry. We will also present these results which include some Liou-
ville type theorems, Harnack type inequalities, existence and compactness of
solutions to some nonlinear version of the Yamabe problem.
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In this talk, we present some recent joint work with Aobing Li [15] on some
conformally invariant fully nonlinear equations.
For n > 3, consider

—Au = un—z, on R". (1)

The celebrated Liouville type theorem of Caffarelli, Gidas and Spruck ([3])

asserts that positive C? solutions of (1) are of the form

u(@) = (2n)*7 (ﬁ) -

where a > 0 and # € R". Under an additional decay hypothesis u(z) = O(|z|*™"),
the result was proved by Obata ([20]) and Gidas, Ni and Nirenberg ([8]).
Let 9 be a Mdbius transformation.

__n'!"g _n+42
Uy " Auy | = (u n—?Au) o1, on R”,
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where uy := |Jy|" (wo)) and J,, denotes the Jacobian of 9. In particular, if u is
a positive solution of (1}, so is uy.

We call a fully nonlinear operator H(x,u, Vu, V?u) conformally invariant on
R™ if for any Mdbius transformation 1 and any positive function u € C?(R"™)

H(-suy, Vg, Viuyg) = H(-,u, Vu, Vi) o 4. (2)
We showed in [15] that H(z,u, Vu, V2u) is conformally invariant if and only if
H(x,u, Vu, Viu) = F(AY),

where

2 n 2n n
A% = —n — 2U njgvgu%— mu—%VU@)VU —_

2n

u” =2 |Vul'l, (3)

2

and F' is invariant under orthogonal conjugations.

Let U be an open subset of n x n symmetric matrices which is invariant under
orthogonal conjugations (i.e. O~1UO = U for all orthogonal matrices Q) and has
the property that U N{M +tN | 0 < t < oo} is convex for any n x n symmetric
matrix M and any n X n positive definite symmetric matrix N.

Let F € C*(U) be invariant under orthogonal conjugation and be elliptic, i.e.

(Fi;(M)) > 0, VY MelU,
where Fj; (M) := BBTIZJ-(Af)'
The following theorem extends the result of Obata and Gidas, Ni and Niren-
berg to all conformally invariant operators of elliptic type.

Theorem 1 ([15]) For n > 3, let U and F be as above, and let v € C?*(R™) be a
positive solution of

F(AY) =1, on R".
Assume that u is reqular at infinity, i.e., |z|>""u(z/|x|?) can be extended to a pos-
itive C* function near the origin. Then for some & € R™ and for some positive
constants a and b,

n—2

u(m)z<m> Y Vaern

Remark 1 In fact, as established in [15], the conclusion of the above theorem still
holds when replacing the assumption u € C?(R™) by a weaker assumption that
u € C?(R"\ {0}), u can be extended to a positive continuous function near the
origin, and lim,_,o(jz]|Vu(z)]) = 0.

Theorem 1 indicates that behavior of solutions to conformally invariant equa-
tions is very rigid. Thus we expect some good theories for conformally invariant
uniformly elliptic fully nonlinear equations. Let F be C°° functions defined on nxn
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real symmetric matrices, and let F' be invariant under orthogonal conjugations. We
assume that for some constants 0 < A < A < o0,

Al < (Fy(M)) < AT for all n x n real symmetric matrices.
We raise the following

Question 1 Let F be as above, and let By be a unit ball in R™ and a > 0 be some
constant. Are there some positive constants « and C, depending only on F, a and
n such that for any positive C'* solution u of

F(A")=0, inB

satisfying

. 1
minu >a,  ||lullexs,) < -,
By @
we have

lulles.ags,) < C?

Other interesting questions include to understand behavior near an isolated
singularities of a solution in a punctured disc of this subclass of uniformly elliptic
equations and to establish some removable singularity results.

Let (M, g) be an n—dimensional smooth Riemannian manifold without bound-
ary, consider the Schouten tensor

_ 1 ; iy
Ay = p— (chg— 2(n_1)g>,

where Ric, and R, denote respectively the Ricci tensor and the scalar curvature
associated with g.
For 1 <k <n,let

N = D A, A= (A1, An) € RY,

1<y << <n

denote the k—th symmetric function, and let 'y denote the connected component
of {A € R | ox(\) > 0} containing the positive cone {A € R™ | Ay,---, Ay > 0}.
It is known (see, e.g., [2]) that ' is a convex cone with its vertex at the origin,

FnCCFQCF13

adk
O\

>0 inTy, 1<¢<n,

and
1

oy is concave in I'y.
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Fully nonlinear elliptic equations involving o3 (D?u) have been investigated
in the classical and pioneering paper of Caffarelli, Gidas and Nirenberg [2]. For
extensive studies and outstanding results on such equations, see, e.g., Guan and
Spruck [10], Trudinger [25], Trudinger and Wang [26], and the references therein.
On Riemannian manifolds of nonnegative curvature, Li studied in [17] equations

05 (A(Viu+g)) = ¢(z,u), (4)

where )\(Vgu + g) denotes eigenvalues of Vgu + g with respect to g. On general
Riemannian manifolds, Viaclovsky introduced and systematically studied in [28§]
and [27] equations

of (MA,) = bz, u), 5)

where A(A,) denotes the eigenvalues of A, with respect to g. On 4-—dimensional
general Riemannian manifolds, remarkable results on (5) for k = 2 were obtained
by Chang, Gursky and Yang in [4] and [5], which include Liouville type theorems,
existence and compactness of solutions, as well as applications to topology. On the
other hand, works on the Yamabe equation by Caffarelli, Gidas and Spruck ([3]),
Schoen ([22] and [23]}, Li and Zhu ([19]}, and Li and Zhang ([18]), have played an
important role in our approach to the study of (5) as developed in [15].
Consider

o (M(4y)) = 1, (6)

together with
AAy) € Ty, (7)

Let g1 = uﬁgg be a conformal change of metrics, then (see, e.g., [28]),

2 —1¢s2
Agl:—n_Qu Vi ut

2n
SU T Vg, ® Vg,u —

-2 Vo590 + Agy-

Let g = wes Jriat, Where gr1oy denotes the Euclidean metric on R”. Then by
the above transformation formula,

4 . .
— =3 AL et A
Ay =ur—2 Afyda’da?

where A" is given by (3).
Equations (6) and (7) take the form

or(MAY)) =1, on R", (8)

and
A(AY) € Ty, on R". (9)

Our next result extends the Liouville type theorem of Caffarelli, Gidas and
Spruck to all o5, 1 <k <n. For k = 1, equation (8) is (1).
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Theorem 2 ([15]) Forn > 3 and 1 < k <n, let u € C*(R™) be a positive solution
of (8) satisfying (9). Then for some a >0 and T € R",

n—2

a

U(SIL’) = C(n,k) (m) i s Yaoe Rn, (10)

where ¢(n, k) = 200=2/4 (2) (n—2)/4k

The case k = 2 and n = 4 was obtained by Chang, Gursky and Yang ([5]).
More recently, they ([6]) have independently established the result for & = 2 and
n = 5, and they also established the result for k = 2 and n > 6 under an additional
hypothesis |, 4" < 00. Under an additional hypothesis that M%u(#) can
be extended to a C? positive function near x = 0, the case 2 < k < n was obtained
by Viaclovsky ([28], [29]). As mentioned above, the case k = 1 was obtained by
Caffarelli, Gidas and Spruck, while under an additional hypothesis that M%u(#)
is bounded near x = 0, the case k = 1 was obtained by Obata, and by Gidas, Ni
and Nirenberg,

The methods of Chang, Gursky and Yang in [5] and [6] include an ingenious
way of using the Obata technique which, as they pointed out, allows the possibility
to be generalized to establish the uniqueness of solutions on general Einstein man-
ifolds. Our proof of Theorem 2 is very different from that of [5] and [6]. A crucial
ingredient in our proof is the following Harnack type inequality.

Theorem 3 ([15]) Forn > 3, 1 <k <n, and R > 0, let Bsp C R™ be o ball of
radius 3R and let u € C?(Bsg) be a positive solution of

op(A") =1, in Bsp, (11)
satisfying
A(AY) € Tg, in Bsp. (12)
Then
(max u)(minu) < C(n)R*™. (13)
Br Bzr

The above Harnack type inequality for & = 1 was obtained by Schoen ([23])
based on the Liouville type theorem of Caffarelli, Gidas and Spruck. An important
step toward our proof of Theorem 3 was taken in an earlier work of Li and Zhang
([18]), where they gave a different proof of Schoen's Harnack type inequality without
using the Liouville type theorem.

Our next result concerns existence and compactness of solutions.

Theorem 4 ([15]) Forn > 3 and 1 < k < n, let (M,g) be an n—dimensional
smooth compact locally conformally flat Riemannian manifold without boundary sat-
isfying

)\(Ag) €Ty, on M.
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Then there exists some smooth positive function w on M such that § = uﬁg
satisfies
)\(Ag) ey, o ()\(Ag)) =1, on M. (14)

Moreover, if (M, g) is not conformally diffeomorphic to the standard n—sphere, all
solutions of the above satisfy, for all m > 0, that
g

lullem(ar,gy + lu™ Hlemar,gy < C,

where C depends only on (M, g) and m.

For k = 1, it is the Yamabe problem for locally conformally flat manifolds with
positive Yamabe invariants, and the result is due to Schoen ([21]-[22]). The Yamabe
problem was solved through the work of Yamabe [30], Trudinger [24], Aubin [1],
and Schoen [21]. For k = 2 and n = 4, the result was proved without the locally
conformally flatness hypothesis by Chang, Gursky and Yang [5]. For k = n, the
existence result was established by Viaclovsky [27] for a class of manifolds which
are not necessarily locally conformally flat. For k& # %, the result is independently
obtained by Guan and Wang in [12] using a heat flow method. More recently, Guan,
Viaclovsky and Wang [9] have proved that A(A4,) € I'y for k£ > § implies the posi-
tivity of the Ricei tensor, and therefore, by classical results, (M, g) is conformally
covered by 5" and the existence and compactness results in this case follow easily.

Our proof of Theorem 1, different from the ones in [20], [8], [3], [28] and [29],
is in the spirit of the new proof of the Liouville type theorem of Caffarelli, Gidas
and Spruck given by Li and Zhu in [19]. We also make use of the substantial
simplifications of Li and Zhang in [18] to the proof in [19]. The proof is along the
line of the pioneering work of Gidas, Ni and Nirenberg [8], which in particular does
not need the kind of divergence structure needed for the method of Obata [20] and
therefore can be applied in much more generality.

In our proofs blow up arguments are used, which require local derivative es-
timates of solutions. For oy (the Yamabe equation), such estimates follow from
standard elliptic theories. Guan and Wang [11] established local gradient and sec-
ond derivative estimates for a5, k > 2. Global gradient and second derivative
estimates for o were obtained by Viaclovsky [27]. For the related equation (4)
on manifolds of nonnegative curvature, global gradient and second derivative esti-

mates were obtained by Li in [17]. By the concavity of of , C%% estimates hold
due to the classical work of Evans [7] and Krylov [14]. For the proof of the exis-
tence part of Theorem 4, we introduce a homotopy o5 (tA + (1 — t)o1(\)), defined
on Tp)y = {A € R | tA+ (1 — t)o1(N) € T'y}, which establishes a natural link
between (14) and the Yamabe problem. We extend the local estimates in [11] for
o to o (tA + (1 —~t)o1(N)), with estimates uniform in 0 < ¢ < 1. The compactness
results as stated in Theorem 4 were established in [15] along the homotopy. The
compactness results for the Yamabe problem was established by Schoen [22]. We
gave a different proof which does not rely on the Liouville type theorem, which al-
lows us to establish existence results for more general f than oy for which Liouville
type theorems are not available. The existence results follow from the compactness
results with the help of the degree theory for second order fully nonlinear elliptic
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operators ([16]) as well as the degree counting formula for the Yamabe problem
([22]).

The first step in our proof of the Liouville type Theorem 2 is to establish
the Harnack type inequality (Theorem 3), from which we obtain sharp asymptotic
behavior at infinity of an entire solution. Then we establish Theorem 2 by distin-
guishing into two cases. In the case k > 3, Theorem 2 is proved by using the sharp
asymptotic behavior of an entire solution and Theorem 1-Remark 1, together with
a result of Trudinger and Wang ([26]). In the case 1 < k < §, Theorem 2 is proved
by the sharp asymptotic behavior of an entire solution together with the Obata type
integral formula of Viaclovsky ([28]). For the second case, divergence structure of
the equation is used.

Theorem 2, Theorem 3 and Theorem 4 are established for more general nonlin-
ear f than oy in [15], including those for which no divergence structure is available.
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Shock Waves

Tai-Ping Liu*

Abstract

Shock wave theory was first studied for gas dynamics, for which shocks
appear as compression waves. A shock wave is characterized as a sharp tran-
sition, even discontinuity in the flow. In fact, shocks appear in many different
physical situation and represent strong nonlinearity of the physical processes.
Important progresses have been made on shock wave theory in recent years.
We will survey the topics for which much more remain to be made. These
include the effects of reactions, dissipations and relaxation, shock waves for in-
teracting particles and Boltzmann equation, and multi-dimensional gas flows.

2000 Mathematics Subject Classification: 35.

1. Introduction

The most basic equations for shock wave theory are the systems of hyperbolic
conservation laws

up+ V- flu) =0,

where © € R™ is the space variables and u € R" is the basic dependence variables.
Such a system represents basic physical model for which v = u(z,t) is the density
of conserved physical quantities and the flux f(u) is assumed to be a function of u.
More complete system of partial differential equations takes the form

with B(u,¢) the viscosity matrix and ¢ the viscosity parameters, and g(u,z,t)
the sources. Other evolutionary equations which carry shock waves include the
interacting particles system, Boltzmann equation, and discrete systems. Discrete
systems can appear as difference approximations to hyperbolic conservation laws.
In all these systems, shock waves yield rich phenomena and also present serious
mathematical difficulties due to their strong nonlinear character.
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2. Hyperbolic conservation laws

Much has been done for hyperbolic conservation laws in one space dimension
ut+f(u)£203 T € Rla

see [16], [4], [11], and the article by Bressan in this volume. Because the solutions
in general contain discontinuous shock waves, the system provides impetus for the
introduction of new ideas, such as the Glimm functional, and is a good testing
ground for new techniques, such as the theory of compensated compactness, in
nonlinear analysis.

3. Viscous conservation laws

Physical models of the form of viscous conservation laws are not uniformly
parabolic, but hyperbolic-parabolic. Basic study of the dissipation of solutions for
such a system has been done using the energy method, see [6]. Study of nonlinear
waves for these systems has been initiated, [9], [14], however, much more remains to
be done. The difficulty lies in the nonlinear couplings due to both the nonlinearity
of the flux f(u), which is the topic of consideration for hyperbolic conservation
laws, as well as that of the viscosity matrix B(u,e). For instance, the study of zero
dissipation limit £ — 0, see Bressan’s article, has been done only for the artificial
viscosity matrix B(u,e) = l.

4. Conservation laws with sources

Sources added to conservation laws may represents geometric effects, chemical
reactions, or relaxation effects. Thus there should be no unified theory for it. When
the source represents the geometric effects, such the multi-dimensional spherical
waves , hyperbolic conservation laws takes the form

m

w+ F)e = 2 Lh), 12 = Y (@),

r :
i=1

There has stablizing and destablizing effects, such as in the nozzle flows, [8]. The
chemical effects occur in the combustions. There is complicated, still mostly not
understood, phenomena on the rich behaviour of combustions. One interesting
problem is the transition from the detonations to deflagrations, where the com-
bined effects of dissipation, compression and chemical energy gives rise to new wave
behaviour. Viscous effects are important on the qualitative behaviour of nonlinear
waves when the hyperbolic system is not strictly hyperbolic, see [10]. Relaxation,
such as for the kinetic models and thermal non-equilibrium in general, is interesting
because of the rich coupling of dissipation, dispersion and hyperbolicity, [2].

5. Discrete conservation laws



Shock Waves 187

Conservative finite differences to the hyperbolic conservation laws, in one space
dimension, take the form:

A A A
u (@) — (@) = To(Flm) + S0 - Flutl(e - S0).
It has been shown for a class of two conservation laws and dissipative schemes, such
as Lax-Friedrichs and Godunov scheme that the numerical solutions converge to the
exact solutions of the conservation laws, [5]. On the other hand, qualitative studies
on the nonlinear waves for difference schemes indicate rich behaviour. In particular,
the shock waves depend sensitively on the its C-F-L speeds, [15], [12].

6. Multi-dimensional gas flows

Shock wave theory originated from the study of the Euler equations in gas
dynamics. The classical book [3] is still important and mostly updated on multi-
dimensional gas flows. Because of its great difficulty, the study of multi-dimensional
shocks concentrate on flows with certain self-similarity property. One such problem
is the Riemann problem, with initial value consisting of finite many constant states.
In that case, the solutions are function of x/¢, not general function of (z,t), see
[7]. See also [18] for other self-similar solutions. However, unlike single space case,
multi-dimensional Riemann solutions do not represent general scattering data, and
are quite difficult to study. It is more feasible to consider flows with shocks and
solid boundary, e.g. [1] [8].

7. Boltzmann equation

The Boltzmann equation

e+ &V f=Q(f, )

containg much more information than the gas dynamics equations. Nevertheless,
the shock waves for all these equations have the same Rankine-Hugoniot relation at
the far states. The difference is on the transition layer. There is beginning an effort
to make use of the techniques for the conservation laws to study the Boltzmann
shocks, [13]. This is a line of research quite different from the intensive current
efforts on the incompressible limits of the Boltzmann equation.

8. Interacting particle systems

Interacting particle systems is even closer to the first physical principles than
the Boltzmann equation. There is the long-standing problem, the Zermelo paradox,
in passing from the reversible particle systems to the irreversible systems such as the
Boltzmann equation, and the Euler equations with shocks. This is fine for particle
system with random noises. However, except for scalar models, so far the derivation
of Euler equations from the particle systems has been done only for solutions with
no shocks, [17].
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The Wiener Test for Higher Order
Elliptic Equations

Vladimir Maz’ya*

1. Introduction. Wiener’s criterion for the regularity of a boundary point
with respect to the Dirichlet problem for the Laplace equation [W] has been ex-
tended to various classes of elliptic and parabolic partial differential equations.
They include linear divergence and nondivergence equations with discontinuous
coefficients, equations with degenerate quadratic form, quasilinear and fully nonlin-
ear equations, as well as equations on Riemannian manifolds, graphs, groups, and
metric spaces (see [LSW], [FJK], [DMM], [LM], [KM], [MZ], [AH], [Lab], [TW] to
mention only a few). A common feature of these equations is that all of them are
of second order, and Wiener type characterizations for higher order equations have
been unknown so far. Indeed, the increase of the order results in the loss of the
maximum principle, Harnack’s inequality, barrier techniques, and level truncation
arguments, which are ingredients in different proofs related to the Wiener test for
the second order equations.

In the present work we extend Wiener’s result to elliptic differential operators
L(9) of order 2m in the Euclidean space R"™ with constant real coefficients

L) =(=D" Y aapd*.

la|=|8l=m

We assume without loss of generality that an,s = agq and (—1)™L(£) > 0 for all
nonzero £ € R”. In fact, the results can be extended to equations with variable (for
example, Holder continuous) coefficients in divergence form but we leave aside this
generalization to make exposition more lucid.

We use the notation 9 for the gradient (8,,,...,0,,), where 8,, is the partial
derivative with respect to z;. By {1 we denote an open set in R” and by B,(y) the
ball {x € R” : [z — y| < p}, where y € R”. We write B, instead of B,(O).

Consider the Dirichlet problem

L@u=f, [eCr®), ue H™Q), (1)

where we use the standard notation Cg°(f?) for the space of infinitely differentiable
functions in R™ with compact support in £ as well as H™({2) for the completion of
C§(£)) in the energy norm.
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We call the point O € 01} regular with respect to L(9) if for any f € C§°(12)
the solution of (1) satisfies

li =0. 2
ol 5 (™) ®
Forn =2,3,...,2m — 1 the regularity is a consequence of the Sobolev imbed-

ding theorem. Therefore, we suppose that n > 2m. In the case m = 1 the above
definition of regularity is equivalent to that given by Wiener.

The following result coincides with Wiener’s criterion in the case n = 2 and
m = 1.

Theorem 1 Let 2m = n. Then O is regular with respect to L(0) if and only if

/0 Cgm(Bp\Q)p—ldp = oc. (3)

Here and elsewhere (s, is the potential-theoretic Bessel capacity of order 2m
(see [AHed]). If n = 2m and O belongs to a continuum contained in the complement
of £, condition (3) holds.

The case n > 2m is more delicate because no result of Wiener’s type is valid
for all operators L(9) (see [MN]). To be more precise, even the vertex of a cone can
be irregular with respect to L(9) if the fundamental solution of L(9):

F(z) = F(z/|z)]2"""", = € R"\O, (4)

changes sign. Examples of operators L(9) with this property were given in [MN] and
[D]. For instance, according to [MN] the vertex of a sufficiently thin 8-dimensional
cone K is irregular with respect to the operator

L(d)u := 109} u+ A%u, u € H*(RP\K).

In the sequel, Wiener’s type characterization of regularity for n > 2m is given
for a subclass of the operators L(9) called positive with the weight F'. This means
that for all real-valued u € C§°(R™\O),

| 1@uta)-uta) dx>c2 [ Veul)P e dz,  (5)

where Vj, is the gradient of order k, i.e. Vi = {0%} with |a| = k.
The positivity of the left-hand side in (5) is equivalent to the inequality

// f(&)f(n)dédn >0

for all non-zero f € C§°(R").

Theorem 2 Let n > 2m and let L(9) be positive with weight F'. Then O is regular
with respect to L(D) if and only if

[0 Com (B dp = 0. (6)
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Note that in direct analogy with the case of the Laplacian we could say, in
Theorems 1 and 2, that O is irregular with respect to L(9) if and only if the set
R™\{) is 2m-~thin in the sense of linear potential theory [L], [AHed].

Let, for example, the exterior of € contain the region

{z:0 <2, <1, (:rf%—...%—xi_l)l/g < flzn) 1,

where f is an increasing function such that f(0) = f'(0) = 0. Then the point O
satisfies (6) if and only if

1
/ilogf(r)i—lr—ldrzoo for n=2m+1
0

and

1
/ FO)m?m"dr = for n > 2m + 2.
0

Since, obviously, the operator L(J) of the second order is positive with the
weight F', Wiener’s result for n > 2 is contained in Theorem 2.

We note that the pointwise positivity of F follows from (5), but the converse
is not true. In particular, the m-harmonic operator with 2m < n satisfies (5) if and
only if n = 5,6,7 for m =2 and n = 2m + 1, 2m+ 2 for m > 2 (see [M2], where the
proof of sufficiency of (6) is given for (—A)™ with m and n as above, and also [E]
dealing with the sufficiency for noninteger powers of the Laplacian in the intervals
(0,1) and [n/2 — 1,n/2)).

We state some auxiliary assertions of independent interest which concern the
so called L-capacitary potential Uk of the compact set K C R™, n > 2m, i.e. the
solution of the variational problem

inf{ Ly -ude: ue CgP(R"),u=1in vicinity of K}.
Rn
These assertions are used in the proof of necessity in Theorem 2.
By the m-harmonic capacity cap,, (K) of a compact set K we mean
. m! C
mf{ Z Jiiao‘uiiimn) :ow e Cg°(), w=1 in vicinity of K}. (7)
lal=m

Lemma 1 Let Q@ =R”, 2m < n. For all y €« R"\K

Uk(y) =27 Uk(y)?
+/Rn Z Z MUk (2)-0"Uk (x) P (0)F (x — y) dz, (8)

mzizl |pl=|vi=j

where P, (C) are homogeneous polynomials of degree 2(m — j}, Pu, = P, and

Pas(0) = das for |a] = 3] = m.
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Corollary 1 Let Q@ = R” and 2m < n. For all y € R™"\ K there holds the estimate
[ViUk ()] < ¢ dist(y, K)*™ "7 cap,, K, (9)
where j = 0,1,2,... and ¢; does not depend on K and y.
By M we denote the Hardy-Littlewood maximal operator.

Corollary 2 Let 2m < n and let 0 < 8§ < 1. Also let K be a compact subset of
B,\By,. Then the L-capacitary potential Ur satisfies

MV UK(0) < ¢y prm—ien cap,, K, (10)
where | =0,1,...,m and ¢y does not depend on K and p.

Let L(0) be positive with the weight F. Then identity (8) implies that the L-
capacitary potential of a compact set K with positive m~-harmonic capacity satisfies

0 <Ugk(z) <2 on R"\K. (11)
In general, the bound 2 in (11) cannot be replaced by 1.
Proposition 1 If L = A?™, then there exists a compact set K such that
Uk - 1)|R”\K
changes sign in any neighbourhood of a point of K.

We give a lower pointwise estimate for Uk stated in terms of capacity (compare
with the upper estimate (9)).

Proposition 2 Let n > 2m and let L(O) be positive with the weight F. If K is a
compact subset of By and y € R™"\ K, then

Uk (y) > ¢ (ly| + d)*™ " cap,, K.

Sufficiency in Theorem 2 follows from the next assertion which is of interest
in itself.

Lemma 2 Let 2m < n and let L() be positive with the weight F. Also let u €
H™(Q) satisfy L(O)u =0 on QN Bag. Then, for all p € (0, R),

m

2, ivku(x)ig
sup{lu(p)|":p € QN B,} + /§2me ; 7§$§n_2k dx
R
< e1Mp(u) exp(—@/ cap,,(B: \ Q)ﬁ), (12)

where ¢1 and ¢y are positive constants, and

Mg(u)=R"" Ju(2) | da.
QO(BQR\BR)
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The present work gives answers to some questions posed in [M2]. I present
several simply formulated unsolved problems.

1. Is it possible to replace the positivity of L(D) with the weight F(x) by the
positivity of F(x) in Theorem 27

A particular case of this problem is the following one.

2. Does Theorem 2 hold for the operator (—A)™, where

n>8 m=2 and n>2m+3, m>27 (13)

The next problem concerns Green’s function G, of the Dirichlet problem for
(—A)™ in an arbitrary domain €.
3. Prove or disprove the estimate

c(m,n)

; (14)

where c(m,n) is independent of Q and m and n are the same as in (13).
Forn = 5,6,7,m = 2and n = 2m + 1, 2m + 2, m > 2 estimate (13) was
proved in [M3]. In the sequel, by u we denote a solution in H™(€) of the equation

(-=A)Tu=f in fL (15)
Clearly, (14) leads to the following estimate of the maximum modulus of «

lullpo < e(m,n, mes, )| fllL, @)

where p > n/2m. However, the validity of this estimate for the same n and m as
in (13) is an open problem. Moreover, the following questions arise.

4. Let m = 2,n > &, and let Q) be an arbitrary bounded domain. Is u uniformly
bounded in Q for any f € C§°(Q)?

5 Letm > 2 andn > 2m + 3. Also, let 000 have a conic singularity. Is u
uniformly bounded in ) for any f € C(Q)7

For m = 2, the affirmative answer to the last question is given in [MP].

I formulate two related open problems.

6. Let m = 2 and n = 2. Is wu Lipschitz up to the boundary of an arbitrary
bounded domain, for any f € C§°(€1) ?

7. Let m = 2and n > 3. Doesu belong to the class C*1(Q) for any f € CF ()
if Q0 is conver?

According to [KoM], the last is true in the two-dimensional case.

I conclude with the following variant of the Phragmén-Lindeldf principle (see
[M3]).

Proposition 3 Let either n = 5,6,7, m =2 orn =2m+ 1, 2m+2, m > 2.
Further, let nu € H™(Q) for all n € C*(R"), n =0 near O. If

Ay =0 on N By,
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then either u € H™(Q) and

or

1
. d
lim sup sup iu(m)iexp(c/ capm(Bp\Q)—p) < 0
p—0  B,N0 p p

> ! 5\ o3P
11rpn_}10nfp My(u) exp(-c/p cap,,(B, \ 9)7) > 0.

It would be interesting to extend this assertion to other values of n and m.
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Bubbling and Regularity Issues
in Geometric Non-linear Analysis

T. Riviere*

Abstract

Numerous elliptic and parabolic variational problems arising in physics
and geometry (Ginzburg-Landau equations, harmonic maps, Yang-Mills fields,
Omega-instantons, Yamabe equations, geometric flows in general...) pos-
sess a critical dimension in which an invariance group (similitudes, conformal
groups) acts. This common feature generates, in all these different situations,
the same non-linear effect. One observes a strict splitting in space between an
almost linear regime and a dominantly non-linear regime which has two ma-
jor characteristics : it requires a quantized amount of energy and arises along
rectifiable objects of special geometric interest (geodesics, minimal surfaces,
J-holomorphic curves, special lagrangian manifolds, mean-curvature flows...).

2000 Mathematics Subject Classification: 35D10, 35J20, 35160, 49Q20,
58E15, 58E20.

Keywords and Phrases: Harmonic maps, Yang-Mills fields, Ginzburg-
Landau vortices.

1. Energy quantization phenomena for harmonic
maps and Yang-Mills Fields

1.1. The archetype of energy quantization: the e-regularity

Let B™ be the flat m~dimensional ball and N be a compact, without bound-
ary Riemannian manifold. By the Nash embedding Theorem, we may assume
N c R*. Let W2(B™ N™) be the maps in WH2(B™,IR* that take values al-
most everywhere in N™. A map u € W12(B™, N") is called stationary harmonic if
it is a critical point for the Dirichlet energy

E(u) = /m |Vu|? do

*D-Math., ETH-Zentrum, CH-8092 Ziirich, Switzerland. E-mail: riviere@math.ethz.ch
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for both perturbations in the target (of the form 7y (u+te) for any ¢ in C$°(B™,IRF)
where 7 (y) is the nearest neighbor of ¥ in N) and in the domain (of the form
wo (id + tX) for any vector field X in C§°(B™,R™)). There are relations be-
tween these two conditions, in particular a smooth weakly harmonic map u (i.e.
critical for perturbations in the target) is automatically stationary (i.e. critical for
perturbations in the domain). This is not true in the general case : there exists
weakly harmonic maps which are not stationary (see [HLP]) and that can even be
nowhere continuous (see [Ril]). On the one hand, as a consequence of being weakly
harmounic, one has the Euler Lagrange equation (harmonic map equation)

Au+ A(w)(Vu,Vu)y =0 (1.1

where A(u) is the second fundamental form of N embedded in IR¥. Stationarity, on
the other hand, implies the monotonicity formula saying that for any point xy in
B™ the density of energy r2=™ fBr(a:o) |[Vau|? is an increasing function of 7. Among
stationary harmonic maps are the minimizing harmonic maps (minimizing E for
their boundary datas). In [ScU] R. Schoen and K. Uhlenbeck proved that there
exists £(m, N') > 0 such that, for any minimizing harmonic map, u in W12(B™ 6 N™)
and any ball B, (x¢) C B™ the following holds

1

rn-

C

- / Vul? de <eo = |[Vullue(s, s < —
B,.(x9) "

where C only depends on m and N”. In other words, there exists a number £ > 0,
depending only m and N, making a strict splitting between the almost linear regime
for minimizing harmonic maps in which derivatives of the maps are under control
and the totally non-linear regime where the map may be singular. Since this theorem
in the early eighties, e—regularity results has been found in various problems of
geometric analysis (minimal surfaces, geometric flows, Yang-Mills Fields...etc). In
particular it was a natural question whether the above result was true for arbitrary
stationary harmonic maps. This was done 10 years later by L.C. Evans ([Ev]) in
the case where N” is a standard sphere. Evans’ result was extended to general
target by F. Bethuel in [Be]. Evans benefitted from a deeper understanding of the
non-linearity in (1.1) developed in Hélein’s proof that any weakly harmonic map
from a two dimensional domain is C® ( see [He] and [CLMS]). This fact will be
discussed in the next subsection.

Combining the e ~regularity result with a classical Federer-Ziemer covering ar-
gument yields the following upper-bound on the size of the singular set of stationary
harmonic maps. For a stationary harmonic map u let Sing u be the complement of
the largest open subset where u is C*°. Then

H™%(Singu) =0 (1.2)

where H™~2 denotes the m — 2—dimensional Hausdorff measure. For stationary
maps and general targets, this is the best estimate available. For minimizing har-
mounic maps Schoen and Uhlenbeck proved the optimal result : dim(Singwu) < m—3.
The reason for this improvement is the striking fact that weakly converging mini-
mizing harmonic mapsin W1:2(B™, N) are in fact strongly converging in this space.
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This feature is very specific to the minimizing map case. When we blow up the map
at a singular point strong convergence then implies roughly that the “singular set
of the limit is not smaller than the limit of the singular set”. The Federer dimension
reduction argument from the theory of minimal surfaces then gives by induction the
result. Here one sees the strong connection between understanding the singular set
and compactness properties of sequences of solutions and bubblings as presented in
the next subsection.

1.2. Bubblings of harmonic maps

The following result of J.Sacks and K.Uhlenbeck [SaU] is perhaps the earliest
example of energy quantization in non-linear analysis. Their aim was to extend
the work of Eells and Sampson [ES] to targets of not necessarily negative sectional
curvatures, that is : find in a given 2-homotopy class of an arbitrary riemannian
manifold N” a more “natural” representant that would minimize the area and
the Dirichlet energy E in the given homotopy class . This raises the question of
compactness and the possible reasons for the lack of compactness for harmonic
maps from a 2-sphere (or even more generally a Riemann surface) into N™. We
should mention not only the original contribution of J.Sacks and K.Uhlenbeck that
focused on minimizing sequences but also the later works by J.Jost [Jo] for critical
points in general, by M. Struwe [St] for it’s heat flow version and the more recent
contributions by T.Parker [Pa], W. Ding and G. Tian [DiT] and F.H.Lin and C.
Wang [LW]. The following result has influenced deeply the non-linear analysis of
the eighties, from the concentration-compactness of P.L.Lions to the compactness
of J-holomorphic curves by M.Gromov and the analysis of self-dual instantons on
4-manifolds by S.K. Donaldson and K.Uhlenbeck.

Theorem 1. [SaU], [Jo] Let u,, be a sequence of weakly harmonic maps from
a surface ¥ into a closed manifold N™ having o uniformly bounded energy. Then
a subsequence u, weakly converges in WH2(X, N™) to a harmonic map u into N™.
Moreover, there exist finitely many points {a1 - - - ap} in ¥ such that the convergence
is strong in X\ {a1 - - ar} ond the following holds

k
Vit 2 dvoly, = |Vu|? dvols; + 1m0, in Radon measure
Jva;
j=1

where mj = S5 E(¢]) and ¢! are nonconstant harmonic 2-spheres of N™ (har-
monic maps from S? into N™).

The loss of energy during the weak convergence is not only concentrated at
points but is also quantized : the amount is given by a sum of energies of harmonic
2-spheres of N, the bubbles, that might sometimes be even explicitly known (for
instance if N = S?, E(¢]) € 8rZ). The striking fact in this result is that it
excludes the possibility of losing energy in the neck between u and the bubbles or
between the bubbles themselves. This no-neck property is quite surprising. It is
a-priori conceivable, for instance, that, in a tiny annulus surrounding a blow-up
point, an axially symmetric harmonic map into N, that is a portion of geodesic
of arbitrarily small length in N, breaking the quantization of the energy, would
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appear. The no-neck property disappears if instead of exact solutions we consider
in general Palais-Smale sequences for E in general (see [Pal).

Only relatively recently a first breakthrough was made by F.H. Lin in the
attempt of extending Sacks Uhlenbeck result beyond the conformal dimension.

Theorem 2. [Li] Let u,, be o sequence of stationary harmonic maps from B™
into a closed manifold N™ having o uniformly bounded energy, then there exists a
subsequence u, weakly converging in WH2(B™, N™) to a map u and there exists a
m - 2 rectifiable subset K of B™ such that the convergence is strong in B™\ K and
moreover

|V [? dvols, — |Vul? dvols + f(z) H" 2| K in Radon measure

where f is a measurable positive function of K.

This result, establishing the regularity of the blow-up set of weakly converg-
ing stationary harmonic map, is related to the resolution by D.Preiss [Pr] of the
Besicovitch conjecture on measures admitting densities. Given a positive Borel reg-
ular measure p such that there exists an integer k for which p-a.e. the density
lim, o j2(B,)/r* exists and is positive, it is proved in [Pr] that there is a rectifiable
k—dimensional rectifiable set K such that p(B™ \ K) = 0. In the present situation
calling p,, = |Vu,|? dvols converging to the Radon measure p = [Vu|? dvols + v,
from the monotonicity formula one deduces easily that the defect measure v fulfills
the assumptions of Preiss theorem for k& = m — 2 and the rectifiability follows at
once. It has to be noted that the original proof of Theorem 2 in [Li] is self-contained
and avoids D. Preiss above result.

Beyond the regularity of the defect measure v, the question remained whether
the whole picture established in the conformal dimension could be extended to
higher dimensions and if the no neck property still holds. F.H. Lin and the author
brought the following answer to that question.

Theorem 3. [LR2] Let f be the function in the previous theorem, if N =
(8™, gstana) or if there is a uniform bound on |[uy/||w=1(pmy, then, for H™2 g.e.
x of K, there exists o finite family of harmonic 2-spheres in N™ (¢))j=1...p, such

that
P,

flx) = E(4]).

i=1

The proof of this no neck property in higher dimension is of different nature
from the one provided previously in dimension 2 where the use of objects relevant
to the conformal dimension only, such as the Hopf differential, was essential. The
idea in higher dimension was to develop a technique of slicing, averaging method
combined with estimates in Lorentz spaces L>* — L%, This technique seems to
be quite general as it have some genericity and permitted to solve problems of
apparently different nature as we shall expose in the next section. The requirement
of the W2 bound for the case of a general target seems to be technical and should
be removed. In the particular case when the target is the round sphere it was proved
in [He] and [CLMS] that the non-linearity A(u)(Vu, Vu) in equation (1.1) is in the
Hardy space Hj,, which immediately implies the desired W?2:* bound for the maps
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u. Whether this fact and this W%! bound can be extended to general targets is
still unknown.

The 2 previous results suggest to view the loss of compactness in higher di-
mension as being exactly the one happening in the conformal 2-dimensional case in
the plane normal to K, locally invariant in the remaining m — 2 dimensions tangent
to K. This understanding of the loss of compactness through creation of 2-bubbles
for stationary harmonic maps has consequences in regularity theory. Indeed, in
the case where N™ admits no harmonic 2-spheres (take for instance N a surface of
positive genus), no blow-up can arise ; weakly converging stationary harmonic maps
are strongly converging and the Federer dimension reduction argument discussed at
the end of the previous subsection combined with the analysis in [Si] may be applied
to improve the bound of the size of the singular set to dim Singu < m —4 (see [Li]}.

1.3. High dimensional gauge theory

The work of S.K. Donaldson and R. Thomas [DoT] has given a new boost
in the motivation for developing the non-linear analysis of high dimensional gauge
theory.

Bubbling of Yang-Mills Fields

Theorems 1,2,3 and their proofs are transposable to many others geometric
variational problems (such has Yang-Mills fields, Yamabe metrics...) having a given
conformal invariant dimension p (p=2 for harmonic maps, 4 for YM...etc). For
instance in [Ti], G.Tian established the result corresponding to theorem 2 for Yang-
Mills fields.

Consider a vector bundle E over a Riemannian manifold (M™, g) and assume
E is issued from a principal bundle whose structure group is a compact Lie group
(. Yang-Mills fields are connections A on E whose curvature F4 solves

d4Fa=0 (1.3)

where d% is the adjoint to the operator da, acting on A*M & End E, with respect
to the metric g on M and the Killing form of G on the fibers (recall that the
Bianchi identity reads instead d4F4 = 0). Yang-Mills fields are the critical points
of the Yang-Mills functional [ |Fa4|? dvol, for perturbations of the form A+ ta where
a € T(A'M®ad Q). It is proved in [Ti] that, taking a sequence of smooth Yang Mills
connections Fs, having a uniformly bounded Yang-Mills energy, one may extract
a subsequence (still denoted A,,) such that for some m — 4 rectifiable closed subset
K of M the following holds : in a neighborhood of any point of M \ K there exist
good choices of gauges such that A,, expressed in these gauges, converges in C*
topology (for any k) to a limiting form A that defines globally a smooth Yang-Mills
connection on " E, where 7 is the canonical embedding of M \ K in M. Moreover,
one has the following convergence in Radon measure :

[Fa,|? dvolpyr — |Fal? dvolar + f(x) H™ 4K (1.4)

where f is some non-negative measurable function on K. For m = 4, or under the
assumption that the measures |V 4,V 4, Fa, | dvolps remain uniformly bounded it is
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proved by the author in [Ri4] that f(z) is, H™~* almost everywhere on K, quantized
and equal to a sum of energies of Yang-Mills connections over S* : the no neck
property holds. The proof use again the Lorentz space duality L2 — L% applied
this time to the curvature. These estimates are consequences of L*? estimates on
the connections A for m = 4. It is interresting to observe that such an L*? estimate
of the connection plays a crucial role in the resolution by J.Shatah and M. Struwe of
the wave map Cauchy problem in 4 dimension for small initial datas in the “natural”
space H? x H* (see [ShS]).

To complete the description of the blow-up phenomena, several open questions
remain both for harmonic maps and Yang-Mills fields. First, what are the exact
nature of the limiting map u and connection A 7 Is w still a stationary harmonic
map on the whole ball B™ 7 Is A still a smooth Yang-Mills connection of some
new bundle Ey over (M, g) ? Can one expect in both cases more regularity than
the rectifiability for K 7 What is the exact nature of the concentration set K 7

It happens that these two questions are strongly related to eachother : For
instance, in the context of harmonic maps, if the weak limiting map u was also a
stationary harmonic map, then one would deduce from the monotonicity formula
that K is a stationary varifold and therefore inherits nice regularity properties.
There is a similar notion of stationary Yang-Mills field (see [Ti]). The limiting A
being stationary, as expected, likewise would imply the stationarity of K. These
questions in both cases are still widely open and seem to be difficult. It is even
unknown, in the general case, whether the limiting map w is weakly harmonic on
the whole of B™. Nevertheless in the case of Yang-Mills, in a work in preparation,
T. Tao and G. Tian are proving a singularity removability result saying that the
weak limit A of smooth Yang-Mills A4, can be extended to a smooth Yang-Mills
connection aside from a H™* measure zero set.

An important case where these questions have been solved is :

The case of Q-anti-self~-dual Instantons

This notion extends the 4-dimensional notion of instantons to higher dimen-
sion. Assuming m > 4, and given a closed m — 4-form Q, we say that a connection
A is an —anti-self-dual connection when the following equation holds

= (FaAQl) = Fa. (1.5)

In view of the Bianchi identity d4 ¥4 = 0 and the closedness of it follows that
dwFa = 0 that is A is a particular solution to Yang-Mills equations. It is then
shown in [Ti] that, if we further assume that the co-mass of  is less than 1, then
K in (1.4) is a minimizing current in (M, g) calibrated by © (i.e. ) restricted to
K coincides with the volume form on K induced by g) and therefore minimizes the
area in it’s homology class.

A special case of interest arises when (M, g,w) is a Calabi-Yau 4-fold with a
global “holomorphic volume form” € (i.e. € is a holomorphic (4,0)—form satisfying
6 A8 = dvolyr). Let Q be the form generating the SU(4) holonomy on M (i.e.
Q) is a unit holomorphic section of the canonical bundle A(*?)T*M) and assume
M is the product T x V? of a 2-torus T' with a Calabi Yau 3-fold V3, for a given
SU(2)~bundle E, T —invariant solutions to (1.5) are pairs of connections B on E
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over V¥ and sections ¢ of End E that solve a vortex equations (see 6.2.2 in [Ti]).
The moduli space of these solutions should be related to the so-called holomorphic
Casson invariants (see also R.Thomas work [Th]). The loss of compactness of these
solutions arises along T times holomorphic curves in V3. To relate this moduli space
with the holomorphic Casson invariants it is necessary to perturb, in a generic way,
the complex structure into a not necessarily integrable one. This generates several
non-linear analysis questions related to bubbling and regularity which have to be
solved :

i) Show that the weak limits of the vortex equations in the almost complex
setting in V® have only isolated point singularities located on the pseudo-
holomorphic blow-up set (see the extended conjectures on the singular sets of
solutions to (1.5) in [Ti]).

ii) Construct solutions to the vortex equations which concentrate on some given
choice of pseudo-holomorphic curves.

iii) Show that an arbitrary 1-1 rectifiable cycle (i.e. a 2 dimensional cycle whose
tangent plane is invariant under the almost complex structure action) in an
almost complex manifold (that may arise as a blow-up set in the above case)
is a smooth surface aside from eventually isolated branched points.

Question ii) is studied in a work in progress with F. Pacard. In collaboration
with G.Tian, in the direction of iii), the following result was established.

Theorem [RT] Let (M*,J) be a smooth almost complez 4-real manifold. Then
any I1-1 rectifiable cycle is a smooth pseudo-holomorphic curve aside from isolated
branched points.

2. Ginzburg-Landau line vortices

2.1. The strongly repulsive asymptotic
The free Ginzburg-Landau energy on the 3-dimensional ball reads

GL(u, A) = /BB |du —iAul® + %2(1 — |u?)? + |dA? (2.1)

where u is a complex function satisfying |u| < 1 and A is a 1-form on B3. The
study of the above variational problem was initiated by A. Jaffe and C. Taubes in 2
dimensions and by J. Fréhlich and M. Struwe in [F'S] in 3 dimensions. The connected
components of the zero set of the order parameter u are the so called vortices that
must generically be lines (for 0 being a regular value of u}. The parameter £ plays a
crucial role in the theory. Depending on the value of k, one expects different types of
“behaviors” of vortices for minimizing configurations relative to various constraints
(boundary datas, topological constraints...) (see [JT] and [Ri3] for a survey on these
questions). In particular for large k, in the so called strongly repulsive limit, the
vortices of minimizing configurations tend to minimize their length (the first order
of the energy is 2z log k times the length of the vortices) and repel one another,
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which is not the case for small k. The magnetic field dA plays no role in this
mechanism ; to simplify the presentation we henforth simply impose that A = 0.
We are then looking at the functional

B = [ VP -l = [ e (2.2)

in the strongly repulsive limit € — 0 whose critical points satisfy the non longer
gauge invariant Ginzburg-Landau equation

u

Au+ —(1—|ul*)=0 in D'(R?). (2.3)
22

Because we are interested in observing finite length vortices, in view of the above

remark, we have to restrict to critical points satisfying E. (u.) = O(log 1). Equation

(2.3) gives, in particular, that Aw is parallel to u. Therefore, assuming that |u| > %

in a ball B,(xo) and writing u = |ule!?, we deduce the nice scalar elliptic equation

div(juf> Vo) = 0 in D'(B,(x0)). (2.4)

Assuming |u.| > 1/2 on the whole B?, the compactness of solutions to (2.3), in
W12 gay, is reduced to the compactness of the boundary data. It is then clear that,
in general, the study of the compactness of solutions u. to (2.3), in the limit ¢ -~ 0,
involves the study of the compactness of the sets Ve = {x ; Ju-(2)] < 1/2 } as well
as a control of the degree of u/}u| on arbitrary closed curves in the complement of
V. approximating the vortices. (The number 1/2 may be of course replaced by an
arbitrary number between 0 and 1).

The approximate vortices T,

In their study of the 2-dimensional version of the present problem (B? replaced
by B?), F. Bethuel, H. Brezis and F. Hélein in [BBH], established that for solutions
to (2.3) satisfying a fixed boundary condition from dB? into S of non-zero degree,
V. can be covered by a uniformly bounded number of balls of radius O(e) around
which u/}u] has a uniformly bounded topological degree. Taking then the distribu-
tion T, given by the sum of the Dirac masses at the center of the balls with the
multiplicity given by the surrounding degrees of u/]ul, because of the uniform bound
of the mass of 7., we may extract a converging subsequence of atomic measures 7T...
The compactness of the maps u. is a consequence of the convergence of 7./ via a
classical elliptic argument.

Going back to 3 dimensions, the idea remains the same : we introduce an
approximation of the vortices and try to prove compactness. More precisely, we con-
sider a minimal 1-dimensional integer current 7% in the homology class of Hy (V., B3,
Z) given by the pre-image by u. of a regular point in B2. Then, as in 2-dimensions,
the key to the compactness of the critical points of E; is now the compactness of
the familly of 1-dimensional rectifiable current T, constructed above.

The energy quantization result exposed in the following subsection shows the
compactness of the T.
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2.2. Quantization for G-L vortices : the n-compactness

The following energy quantization result introduced by the author in [Ri2]
says that there exists an absolute constant 1 > 0 such that if the Ginzburg-Landau
energy of a critical point in a given ball, suitabely renormalized, lies below this
number, then there is no vortex passing through the ball of half radius. Precisely
we have.

Theorem 5. [LR1] There exists a positive number n, such that for ¢ small
enough and for any critical point of E. in B} satisfying |u| < 1, the following holds.
Let B,.(xp) € B?%, r > ¢ then

1

r 1
— e:(us) <n log— = |u|> < in Bz(xo)
r /Br(a:o) € ful 2 2

The above result is optimal in the following sense : there are critical points
and arbitrary r > ¢ such that %fBr(wO) ec(u:) < 2m logZ and u(xp) = 0. Such a
result is reminiscent of the £-—regularity result, although one difference here is that
one has to handle blowing up energy E. which is not a-priori bounded as ¢ tends
to 0.

The n-—compactness was introduced first for minimizers in 3-D in [Ri2] and
then obtained for any critical points, still in 3-D, in [LR1]. Regarding dimension 2,
the idea of the n—compactness is implicit in the works before [Ri2]. Making this
idea explicit in [Ri5] helped to substantialy simplify the existing proofs in the 2-D
case.

It is a striking fact, whose explanation is beyond the scope of this lecture, that
the original proof of theorem in [LR1] is based on the same techniques used by the
authors to prove the no neck property (theorem 3) for harmonic maps. The key of the
proof is to obtain a bound independent of £ for the density of energy % / B, (20) e:(u)
(for some p between ¢ and r). The main obstacle in establishing such a bound is
to control, independently of e, the part of the energy in B,(xo) \ V. coming from
the vortices T, in B,(x). This is obtained by controlling, on a generic good slice
OB, (o) \ V= (p/2 < p1 < p), the L?* and the L?' norms of Vi), where 1 is the
vortez potential 1) := A™'T.. Recently in [BBO] F.Bethuel, H.Brezis and G.Orlandi
made a nice observation by deriving, from the monotonicity formula associated to
the elliptic variational problem E., an L* bound in terms of the local density of
energy % pr(wO) e (u) for the vortex potential ¢ in B,(xo)\ Ve. This bound enabled

them to replace in our original proof the use of the L*>® — L% duality for V¢ - Vi)
on a slice by a more standard, in calculus of variation, L>® — L' duality for ¢ - Ay
on B,(xp) itself. As explained in [BBO], this modification is a real improvement
in the high dimensional case since it allows to end the proof of the n-—compactness
without having to go through an argument based on a good slice extraction that
would have been certainly more painful for n > 4. This modification of the duality
used to control the energy of the vortex potential also allowed C. Wang recently to
extend the n—compactness result from [LR3] for the Ginzburg-Landau heat flow
equation from 3 to 4 dimensions.

The n-compactness is a compactness result
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Considering, as mentioned above, critical points u. to E, satisfying ju] < 1 and
whose energy are of the order of log 1 (E.(u:) = O(log 1)), a Besicovitch covering
argument (see [LR1]) combined with the p—compactness above gives

1
V. C U Be(zy) with N, =0 (g)

This estimate, combined with the L® bound of Vu. deduced from the equation
and the assumption ju] < 1, yields the following fact: M (T.) = O(1), (i.e. the mass
of the approximated vortices is uniformly bounded). Combining this estimate with
the fact that, by definition, 97| B® = 0, as a direct application of Federer-Fleming
compactness theorem, we deduce the compactness of the approximated vortices T
in the space of integer rectifiable 1-dimensional currents.

Thus, the n—compactness is the compactness of the approximated vortices 7.,
which are rectifiable currents rather than a compactness of maps u.. The latter
compactness, in W1 for p < 3/2, nevertheless automatically follows from the
previous one by the means of classical elliptic arguments for a suitable class of
boundary conditions for u, (see [LR1] page 219). This class has been recently
extended to arbitrary Hz(9B?, S) conditions independent of £ in [BBBO]. This
idea of getting convergence of maps going through convergence of currents is in the
spirit of the theory of cartesian currents developed by M. Giaquinta, G. Modica and
J. Soucek in [GMS].
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Nonlinear Wave Equations

Daniel Tataru*

Abstract

The analysis of nonlinear wave equations has experienced a dramatic growth
in the last ten years or so. The key factor in this has been the transition from
linear analysis, first to the study of bilinear and multilinear wave interactions,
useful in the analysis of semilinear equations, and next to the study of non-
linear wave interactions, arising in fully nonlinear equations. The dispersion
phenomena plays a crucial role in these problems. The purpose of this article
is to highlight a few recent ideas and results, as well as to present some open
problems and possible future directions in this field.

2000 Mathematics Subject Classification: 35L15, 35L70.
Keywords and Phrases: Wave equations, Phase space, Dispersive esti-
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1. Introduction

Consider the constant and variable coeflicient wave operators in R x R,
O=0} - A,, 0, = g¥(t,)0,0;.

In the variable coefficient case the summation occurs from 0 to n where the index
0 stands for the time variable. To insure that the equation is hyperbolic in time
we assume that the matrix ¢¥ has signature (1,n) and that the time level sets
t = const are space-like, i.e. g°° > 0. We consider semilinear wave equations,

Ou = N(u) (SLW), Ou = N(u,Vu) (GSLW)
and quasilinear wave equations,
Oyt = N(u)(Vu)*  (NLW), Og(u,vuyte = N(u,Vu)  (GNLW).
To each of these equations we associate initial data in Sobolev spaces
u(0) = up € H*(R"), Ou(0) = uy € H*H(R").

There are two natural questions to ask: (i) Are the equations locally well-posed in
H?® x H*~'7 (ii) Are the solutions global, or is there blow-up in finite time?

*Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720, USA.
E-mail: tataru@math.berkeley.edu


mailto:tataru@math.berkeley.edu

210 Daniel Tataru
Local well-posedness. In a first approximation we define it as follows:

Definition 1. A nonlinear wave equation is well-posed in H® x H*™' if for each
(vo,v1) € H*x H*7! there is T > 0 and a neighborhood V of (vo,v1) in H*x H*™! s0
that for each initial data (ug,u1) € V' there is an unique solution v € C(~T,T; H*),
Oyu € C(~=T,T; H*~Y) which depends continuously on the initial data.

In practice in order to prove uniqueness one often has to further restrict the
class of admissible solutions. In most problems, the bound T from below for the
life-span of the solutions can be chosen to depend only on the size of the data.

It is not very difficult to prove that all of the above problems are locally
well-posed in H?® x H* ' for large s. The interesting question is what happens
when s is small. One indication in this regard is given by scaling. At least in
the case when the nonlinear term has some homogeneity, for instance N{u) = u?
or N(u) = v#(Vu)?, one looks for an index « so that all transformations of the
form u(x,t) — A*u(Ax, At), A > 0 leave the equation unchanged. Correspondingly
one finds an index sp = § — a so that the norm of the initial data (uo,u) in the
homogeneous Sobolev spaces H® x H s—1 g preserved by the above transformations.

Below scaling (s < sp) a small data small time result rescales into a large data
large time result. Heuristically one concludes that local well-posedness should not
hold. Still, to the author’s knowledge there is no proof of this yet.

Conjecture 2. Semilinear wave equations are ill-posed below scaling.

This becomes much easier to prove if one strengthens the definition of well-
posedness, e.g. by asking for uniformly continuous or ! dependence of the solution
on the initial data.

If s = 3¢ then for small initial data local well-posedness is equivalent to global
well-posedness. The same would happen for large data if we were to strengthen the
definition of well-posedness and ask for a lifespan bound which depends only on the
size of the data. This is the only case where this distinction makes a difference.

If s > sg then a local well-posedness result gives bounds for life-span 7}, of
the solutions in terms of the size of the data,

H(UO,Ul)HstHs—l <M = Thas z M?®T8,

The better localization in time makes the problems somewhat easier to study. How-
ever, besides scaling there are also other obstructions to well-posedness. These are
related to various concentration phenomena which can occur depending on the pre-
cise structure of the equation.

Global well-posedness. We briefly mention that there is a special case in which
the global well-posedness is well understood, namely when the initial data is small,
smooth, and decays at infinity. This is not discussed at all in what follows.
Consider first the case when s is above scaling, s > sg, and local well-posedness
holds in H® x H*!. Then any solution can be continued as long as its size does
not blow-up. Hence the goal of any global argument should be to establish a-priori
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bounds on the H?® x H* ! norm of the solution. All known results of this type
are for problems for which there are either conserved or quasi-conserved positive
definite quantities. Such conserved quantities can often be found for equations which
are physically motivated or which have some variational structure. For simplicity
suppose that there is some index s, and an energy functional E in H®: x H®~!
which is preserved along the flow. The index s, needs not be equal to the scaling
index sg. There are three cases to consider:

(i) The subcritical case s, > s5. Then a local well-posedness result at s = s,
implies the global result for s > s.. Furthermore, in recent years there has been
considerable interest in establishing global well-posedness also for sg < 8 < s.. This
is based on an idea first introduced by Bourgain [5] in a related problem for the
Schroedinger equation, and followed up by a number of authors.

(ii) The critical case s, = sp. Here the energy is not needed for small data,
when local and global well-posedness are equivalent. For large data, however, the
energy conservation is not sufficient in order to establish the existence of global
solutions. In addition, one needs a non-concentration argument, which should say
that the energy cannot concentrate inside a characteristic cone.

(iii) The supercritical case, s, < sp. No global results are known:

Open Problem 3. Are supercritical problems globally well-posed for s > s¢7

A simple example is the equation (NLW) with N(u) = |u["~1u. The energy is

1
Blu) = 2 12 P
() = [l + Vol + =l
Then s, = 1, while sp = 2 — pil' In 3 + 1 dimensions, for instance, p = 3

is subcritical, therefore one has global well-posedness in H' x L2. The exponent
p = 5 is critical and in this case the problem is known to be globally well-posed
in H' x L?; the non-concentration argument is due to Grillakis [7]. The exponent
p = 7 is supercritical.

Blow-up. Not all nonlinear wave equations are expected to have global solutions.
Quite the contrary, generic equations are expected to blow up in finite time; only for
problems with some special structure it seems plausible that global well-posedness
may hold. A simple way to produce blow-up is to look for self-similar solutions,
u(x,t) = t"u(F). If they exist, self-similar solutions disprove global well-posedness.
Because they must respect the scaling of the problem, they are not so useful when
trying to disprove local well-posedness.

Another way to produce blow-up solutions is the so-called ode blow-up. In the
simplest setting this means looking at one dimensional solutions (say u(z,t) = u(t))
which solve an ode and blow up in finite time. Then one can truncate the initial
data spatially and still retain the blow-up because of the finite speed of propagation.
This is still not very useful for the local problem.

A better idea is to constructs blow-up solutions which are concentrated essen-
tially along a light ray, see Lindblad [10],[11] and Alihnac [1]. In this setup the actual
blow-up occurs either because of the increase in the amplitude, in the semilinear
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case, or because of the focusing of the light rays, in the quasilinear case. As it turns
out, the counterexamples of this type are often sharp for the local well-posedness
problem.

2. Semilinear wave equations

Usually, a fixed point argument is used to obtain local results for semilinear
equations. We first explain this for the case when s = s5. We define the homoge-
neous and inhomogeneous solution operators, S and 7! by

S(ug,u1) =u<= {Ou=0, u(0)=ug, Ou(0)=u},

O'f=u+e {Ou=f, u(0)=0, 0Ju(0)=0}.

Then the equation (NLW) for instance can be recast as
u = S(ug,u) + 07 N (u).

To solve this using a fixed point argument one needs two Banach spaces X and YV
with the correct scaling and the following mapping properties:

S:H'xH ™' X, 0ol:Y—-X, N: XY

The first two are linear, but the last one is nonlinear. The small Lipschitz constant
is always easy to obtain provided the initial data is small and that N decays faster
than linear at 0. The solutions given by the fixed point argument are global.

In the case s > s the scaling is lost, and with this method one can only hope
to get results which are local in time. To localize in time one chooses a smooth
compactly supported cutoff function y which equals 1 near the origin. The fixed
point argument is now used for the equation

w = xS(uo,u1) + xO ' N(u).

A solution to this solves the original equation only in an interval near the origin
where y = 1. The modified mapping properties are

YS H*xH" '35 X, x0O':Y 5 X, N:X-VY

How does one choose the spaces X, Y7 One approach is to use the energy estimates
for the wave equation and set

X ={ueL>®H*),Vuec L®H)), Y=L (T

The first two mapping properties are trivial. However, if the third holds then we
must also have N : X — L (H?®"1). The one unit difference in scaling between L!
and L implies that this can only work for s > sg -+ 1.

What is neglected in the above setup is the dispersive properties of the wave
equation. Solutions to the linear wave equation cannot stay concentrated for long
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time intervals. Instead, they will disperse and decay in time {even though the energy
is preserved). In harmonic analysis terms, this is related to the restriction theorem
(see [17]) and is a consequence of the nonvanishing curvature of the characteristic
set for the wave operator, namely the cone & = & + .-+ + £2. Here £ stands for
the Fourier variable. One way of quantifying the dispersive effects is through the
Strichartz estimates. They apply both to the homogeneous and the inhomogeneous
equation (see [8] and references therein):

S:H’ x H*~' - LPLI,  |D|'~m—rO~' LM L% — [PLY
where (p,p,q) and (p1,p1,q1) are subject to

lyn_z =P 2,0l < 1, 2<pq<, (ppq #(1,2,00).

P g 2 P q 2
The worst case in these estimates occurs for certain highly localized approximate
solutions to the wave equation, which are called wave packets. A frequency A wave
packet on the unit time scale is essentially a bump function in a parallelepiped of
size 1 x A1 x (A=2)"~! which is obtained from a A™! x (A=2)"~! parallelepiped
at time zero which travels with speed 1 in the normal direction. Because of the
uncertainty principle, this is the best possible spatial localization which remains
coherent up to time 1. Of course one can rescale and produce wave packets on all
time scales.

In low dimension n = 2,3 the Strichartz estimates provide a complete set

of results for generic equations of both (NLW) and (GNLW) type. Counsider the
following two examples, of which the second is wrong but almost right:

1
Ou=u®, n=3, 828025,

X=1I% Y=1L3,

1
Ou=uVu, n=3, 5= 73 s=1 X=|D|7'L*L*nL’L™ Y =17

For n > 4, however, the Strichartz estimates no longer provide all the results.
The reason is as follows. The worst nonlinear interaction in both (NLW) and
(GNLW) occurs for wave packets which travel in the same direction. One can use
the Strichartz estimates to accurately describe the interaction of same frequency
wave packets. But in the interaction of two wave packets at different frequencies,
the low frequency packet is more spread, and only a small portion of it will interact
with the high frequency packet. However, unlike in low dimension, the Strichartz
estimates do not provide sharp bounds for this smaller part of a wave packet.

A more robust idea due to Bourgain [4] and Klainerman-Machedon [12] is to