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Algorithmic randomness and computability

Rod Downey

Abstract. We examine some recent work which has made significant progress in out under-
standing of algorithmic randomness, relative algorithmic randomness and their relationship with
algorithmic computability and relative algorithmic computability.

Mathematics Subject Classification (2000). Primary 68Q30, 68Q15, 03D15, 03D25, 03D28,
03D30.

Keywords. Kolmogorov complexity, computability, degrees of unsolvability, prefix-free com-
plexity, lowness, incompressibility, martingales, computably enumerable.

1. Introduction

In the last few years we have seen some very exciting progress in our understanding
of algorithmic randomness and its relationship with computability and complexity.
These results have centered around a programme which attempts to answer questions
of the following form: when is one real more random than another? How should
this be measured? How would such measures of calibration relate to other measures
of complexity of reals, such as the traditional measures of relative complexity like
Turing degrees, which measure relative computability? These investigations have
revealed deep and hitherto unexpected properties of randomness, anti-randomness and
algorithmic complexity, as well as pointing at analogs in other areas, and answering
questions from apparently completely unrelated areas.

In this paper I will attempt to give a brief (and biased) overview of some of the more
recent highlights. I apologize for ignoring important work relating the collection of
random strings with complexity theory such as [1], [2], and work on randomness for
computably enumerable sets such as Kummer [48], [49], and Muchnik and Positelsky
[71], purely for space reasons. This overview will be too short to give a complete
account of the all of the progress. For a fuller picture, I refer the reader to the long sur-
veys of Downey, Hirschfeldt, Nies and Terwijn [28], Downey [16], [15], [17], Terwijn
[96] and the upcoming monographs Downey and Hirschfeldt [22] ! and Nies [77].

We will look at various methods of calibration by initial segment complexity such
as those introduced by Solovay [89], Downey, Hirschfeldt, and Nies [26], Downey,

I Available in prelimininary form at www.mcs.vuw.ac.nz/~downey.
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2 Rod Downey

Hirschfeldt, and LaForte [23], Downey [16], as well as other methods such as low-
ness notions of Kucera and Terwijn [47], Terwijn and Zambella [97], Nies [75], [76],
Downey, Griffiths and Reid [21], and methods such as higher level randomness no-
tions going back to the work of Kurtz [50], Kautz [38], and Solovay [89], and other
calibrations of randomness based on changing definitions along the lines of Schnorr,
computable, s-randomness, etc. Particularly fascinating is the recent work on low-
ness, which began with Downey, Hirschfeldt, Nies and Stephan, and developed in a
series of deep papers by Nies [75], [76] and his co-authors.

2. Preliminaries

Since most of our results are concerned with effectiveness/computability, we as-
sume that the reader is familiar with the basic facts concerning computability the-
ory/recursion theory. Thus, we will regard countable sets as effectively coded in the
natural numbers and consider effective processes on them as computable ones. For
example, an effective prediction function would be classified according to it com-
putability. We assume that the reader is also familiar with semi-computable (com-
putably enumerable) processes such as the computably enumerable set coding the
halting problem ¢ = {(e, x) : the e-th program halts on input x}. Such computable
enumerable problems can be represented by sets W defined as x € W iff Iy R(x, y),
where R is a computable relation. We will call a set in the form Iy R(x, y), Z?. If
N—Ais E?, then we say that A is l'I(l). If A is both Z(l) and 1'[(1) we say that A is A(l) (and
this is the same as being computable). This process can be extended to the arithmetical
hierarchy. We will say that A is X0 iff there is a 1'[2_1 relation R such that x € A iff
dyR(x,y). (Equivalently, x is in A iff 3yVz... (with n alternations)Q(x, y, z,...)
and Q computable.) Analogously, we can define 1'[2 and AB. We will also assume
that the reader is familiar with the process of relativization which means that we put
oracles (allowing for “read only memory”’) on our machines. These oracles allow for
computations in which a finite number of effectively generated membership queries
of the oracle set are allowed. Thus, for instance, A" = {(e, x) : the e-th program halts
on input x when given oracle A}. This is the halting problem relativized to A, usually
pronounced “A-jump”. If we classify sets under the preordering <r we will write
A <7 B to mean that membership of A can be computed by a program with access
to B as an oracle. (Here we identify sets with their characteristic functions, and hence
as reals: members of Cantor space 2%.) The equivalence classes of <7, which cal-
ibrate countable sets into classes of “equi-computability” are called Turing degrees,
after the famous Alan Turing. We remark that the simplest kind of Turing reduction is
called an m-reduction (for many-one) and is defined as follows: A <,, B means that
there is a computable function f such that x € A iff f(x) € B. Thus to figure out
if x is in A from B, the algorithm simply says : compute f(x) and ask B if f(x) is
in B. It is easy to show that for any computably enumerable set A, A <,, @, so that
the halting problem @' if m-complete, in that it is the most complicated computably
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enumerable set as measured by m-reducibility?. We remark that the relativization
of the halting problem be algorithmically unsolvable is that A" £7 A for any set A.
The relativization of the halting problem is intrinsically tied with the halting problem.
Namely, #”, which is defined as the halting problem gained with the halting problem
as an oracle is a natural Eg set and it can compute any Hg set and any 2(2) set, and
similarly for g*+1),

Any other notions from computability needed are introduced in context. We also
refer the reader to Soare [86] for further background material in computability, and
to Li—Vitanyi [56] or Calude [6] for general background in algorithmic randomness.

In this paper “real” will be interpreted as a member of Cantor space 2“ with sub-
basic clopen sets [0] = {ow : o € 2“}, for o € 2=“. This space is equipped with the
standard Lebesgue measure, where, for o € 2=“, u([o]) = 2-lol There have been
investigations on other measures than the uniform one, and on other spaces (the latter
notably by Gécs [34]), but space precludes a thorough discussion here. For Cantor
space up to degree things, speaking loosely, it does not matter measure is used, so
long as it is not atomic. Finally, the initial segment of a real « (or a string) of length n
will be denoted by « | n.

3. Three approaches to randomness

Interms of measure a any two reals occur with probability zero, yet we would argue that
areal « = 01010101 ... would not seem random. How should we understand this?

3.1. Martin-Lof randomness. The first author to attempt to grapple with trying to
“define” randomness was von Mises [101]. Von Mises was a statistician and attempted
to define randomness in terms of statistical laws. For instance, he argued that arandom
real should pass all statistical tests. Thus, he argued, if one “selected” from a real
{iai, =1A1<j<n}|

—————— should

be % Naturally, von Mises lacked the language needed to suggest which selection
rules should be considered. That awaited the development of computable function
theory in the 1930s by Church and others, which then allowed us to argue that a
random real should be “computably stochastic” in the sense of von Mises.

o = apay ... some subsequence a;,, a;,, . .., then lim,_,

Unfortunately, Wald and others showed that there are some significant problems
(see van Lambalgen [99] for a discussion) with this approach, known as computable
stochasticity. Here I refer the reader to Ambos-Spies [3], Merkle [62], [63], and
Uspensky, Semenov and Shen [98]. The first really acceptable version of von Mises
idea was developed by Per Martin-Lof in [60]. He argued that any effective statistical

2Additi0nally, it might seem that there might be various versions of the halting problem depending of which
programming language, or which encoding, is used. It can be shown that that are all of the same m-degree, and
hence are basically all the same. More on this in the context of randomness later.
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test was an effective null set and a random real should be one that simply avoids any
effective null set.

The notion of an effective collection of reals is are called effective classes. As a
direct analog of the arithmetical hierarchy. A E? class U is a “c.e. set of reals” in
the sense that there is a computable relation R such that for each real o, o € U iff
dx R*(x), where R* denotes R with oracle @. An equivalent definition is that U is
a E? class iff there is a c.e. set of intervals W such that U = U{[o] : 0 € W}. Now
we can make our intuition of avoiding all effective statistical tests more precise, as
follows.

Definition 3.1 (Martin-Lof [60]). A set of reals A C 2% is Martin-Lof null (or
Y1 -null) if there is a uniformly c.e. sequence {U;}; <, of E?—classes (called a Martin-
Lof test) such that u(U;) < 27"and A C (; Ui. « € 2 is Martin-Lo6f random, or
1-random, if {«} is not X-null.

This definition and variations form common bases for the theory of algorithmic
randomness. There are also two other approaches aside from the measure-theoretical.
These include the incompressibility paradigm and the unpredictability paradigm.

Itis possible to calibrate randomness in a method similar to the arithmetical hierar-
chy, by defining n-randomness exactly as above, except that E? null sets are replaced
by 22 null sets. It can be shown (Kurtz [50]) that n + 1-randomness is 1-randomness
relative to @, Stuart Kurtz [50] was the first meaning that if ' is given as an oracle,
what is the analog of Martin-L6f randomness. to systematically examine the rela-
tionship between n-randomness and the computability, although some unpublished
work was to be found in Solovay [89], and 2-randomness was already to be found in
Gaifman and Snir [35], in implicit form.

There has been quite some work clarifying the relationship between Turing re-
ducibility and n-randomness. For example, it has long been known that if a is n + 1-
random then a is GL,, meaning that a U 0" = (a U 0)", and that the “almost all”
theory of degrees is decidable (Stillwell [93]). Recently some lovely new work has
emerged. As an illustration, we mention the following unexpected result.

Theorem 3.2 (Miller and Yu [69]). Suppose that A <t B and B is n-random and A
is 1-random. Then A is n-random.

3.2. Kolmogorov complexity. The key idea here is that a random string (as gener-
ated by a coin toss, say) should not be easily described by a short program. Thus,
109 is easily described by a description much shorter than its length. This incom-
pressibility idea was the famous approach pioneered by Kolmogorov [41] (also cf.
Solomonoff [88]). For our programming language (which we take as Turing ma-
chines) we consider the lengths of strings o producing a string . Think of ¢ as a
description of 7 under the action of the machine N. Then the N-complexity of the T
is the length of the shortest o from which N produces 7. Since we can enumer-
ate the machines M, M1, ..., we can make a universal machine M which acts as
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M(1°t'00) = M,(0).Thus, there is canonical choice for the choice of machine up
to a constant, and we define the (plain) Kolmogorov complexity of t as

C(t) = min{oo, |o| : M(0) = t}.

The we would say that 7 is C-random iff C(7) > |t|. We will also need conditional
versions of this (and other) measures. We will write C (o |v) as the conditional plain
complexity of o given v as an oracle. (We will use analogous notation for K below.)

Plain Kolmogorov complexity produces a nice theory of randomness for strings,
but as Martin-Lof argued, plain complexity fails to capture the intentional meaning of
“the bits of ¢ producing the bits of t”. This is the length of ¢ itself can be used in the
program, giving T 4 |t| many bits of information. Thus, it is easily shown that if «
is sufficiently long then there is some » such that C(« | n) < n, meaning that there
are no random reals if we take randomness to mean that all initial segments should
be random?.

This problem was overcome by Levin [51], [54], Schnorr [84], and Chaitin [10],
using monotone, process and prefix-free complexities. Here we focus on the prefix-
free complexity. Recall that A of intervals is called prefix-free iff forall o, 7,if o0 < T,
then [o] € A implies [t] ¢ A. Note that for such a set A,

w(A) = 2{2*"" :[o] € A).

Levin and then Chaitin defined prefix-free Kolmogorov complexity using ma-
chines whose domains were prefix free. Again there is a universal one U (same
argument) and we define

K(t) =min{|o]| : U(o) = t}.
Finally we can define a real to be K -random iff for all n, K (@ [ n) > n — O(1). The
concepts of Martin-L.6f randomness and K -randomness are tied together as follows.

Theorem 3.3 (Schnorr, see Chaitin [10], [12]). A € 2% is Martin-Lof random if and
only ifit is K-random.

Given Schnorr’s Theorem, Solovay had asked if lim infy K (2 | n)—n — oo. This
was solved affirmatively by Chaitin. However, there is a very attractive generalization
of this due to Miller and Yu who show that the complexity of a random real must be
above n eventually by “quite a bit.”

Theorem 3.4 (Ample Excess Lemma, Miller and Yu [69]). A real « is random iff
S K@in o

neN

3Speciﬁcally, every string v corresponds to some number (string) in the length/lexicographic ordering of 2<%
Given a long string o, take any initial segment « | n. This corresponds to a number m in this way. Now consider
the programme which, on input p interprets p’s length as a string y and outputs yp. If this programme is enacted
on o {Zi’f’ the segment of « of length m beginning after «, it will output o | n 4 m, allowing for compression

of arbitrary segments.
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Corollary 3.5 (Miller and Yu [70]). Suppose that f is an arbitrary function with
Y meN 27/ = oo, Suppose that o is 1-random. Then there are infinitely many m
with K(a | m) > m + f(m).

The reader might wonder whether plain complexity could be used to characterize
1-randomness. There had been some natural “C-conditions” which had been shown
to guarantee randomness. Martin-Lof showed that if a real had infinitely often max-
imal C -complexity then it would be random. That is, Kolmogorov observed that
the greatest plain complexity a string o can have is |o|. We will say that a real is
Kolmogorov random iff 3%°n[C(a [ n) = n — O(1). If A is Kolmogorov random
it is 1-random. But recently more has been shown. Chaitin showed that the high-
est prefix-free complexity a string can have is |o| + K (Jo|), and we define « to be
strongly Chaitin random iff 3%°n[(K (« [ n) > n+ K(n) — O(1)]. Solovay [89] (see
Yu, Ding, Downey [107]) showed that each 3-random is strongly Chaitin random,
and every strongly Chaitin random real is Kolmogorov random and hence 1-random.
It is not known if every Kolmogorov random real is strongly Chaitin random. The
following remarkable result shows that Kolmogorov randomness can be characterized
in terms of the randomness hierarchy.

Theorem 3.6 (Nies, Stephan and Terwijn [78]). Suppose that o is Kolmogorov ran-
dom. Then o is 2-random.

Theorem 3.7 (Miller [66], Nies, Stephan and Terwijn [78]). A real « is 2-random
iff « is Kolmogorov random.

We remark that there seems no prima facie reason for 2-randomness to be the same
as Kolmogorov randomness! The question of whether there was a natural condition
in terms of plain complexity which characterized 1-randomness was finally solved by
Miller and Yu, having been open for 40 years.

Definition 3.8 (Miller and Yu [69]). Define a computable function G: w — w by

G = [K1 O i =200 and Koa) # K, )
n) =
n, otherwise.

Theorem 3.9 (Miller and Yu [69]). For x € 2%, the following are equivalent:

(1) x is 1-random.
(i) (One direction of this is in Gacs [32]) (Vn) C(x [ n) > n— K(n) £ O(1).

(i) (Vn) C(x | n) = n—g(n) £ OQ), for every computable g: w — w such that
> new 278M is finite.

@iv) (Vn) C(x [ n) > n—G(n) £ O0(1).
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While it is not hard to show that almost all reals are random (as one would hope),
Schnorr’s Theorem allows us to easily show that there are explicit random reals. The
halting probabilities of prefix-free Turing machines occupy the same place in algorith-
mic randomness as computably enumerable sets (the domains of partial computable
functions) do in classical computability theory. They are called left-computably enu-
merable reals (left-c.e.) and are defined as the limits of increasing computable se-
quences of rationals. A special left-c.e. real is Q = ZU(U) . 271o1 where U is a
universal prefix free machine.

Theorem 3.10 (Chaitin [10], [12]). 2 is Martin-Lof random.

Chaitin’s €2 has had a lot of popular attention. It allows us to prove Godel’s
incompleteness theorem and the like using Kolmogorov complexity. Solovay [89]
was the first to look at basic computability-theoretical aspects of €2. For instance,
consider D, = {x : |x| < n A U(x) |}. Solovay proved that K(D,) = n + O(1),
where K (D,) is the K-complexity for an index for D,. Solovay also proved the
following basic relationships between D,, and Q [ n.

Theorem 3.11 (Solovay [89]).
(i) K(Da| [ n)=0(D*
(i) K( [ n|Dpykm) = O(1).
The reader should note that in classical computability theory, we usually talk of
the halting problem, whereas here the definition of €2 seems thoroughly machine de-

pendent. To try to address this issue, Solovay [89] introduced the following definition,
which is a kind of analytic version of m-reducibility.

Definition 3.12 (Solovay [89]). We say that a real « is Solovay reducible to B (or
dominates o), o <g B, iff there is a constant ¢ and a partial computable function f,
so that for all ¢ € Q, withg < 8,

c(B—q)>a— f(q).

The intuition here is a sequence converging to 8 can generate one converging
to « at the same rate, as clarified by Calude, Hertling, Khoussainov, Wang [9]. It is
easy to see that <g implies <7 for reals. Since there are only O(2°?) many reals
within a radius of 2714 of a string representing a rational whose dyadic expansion
has length n, it follows that <g has the Solovay Property of the lemma below.

Lemma 3.13 (Solovay [89]). If « <g B then there is a ¢ such that, for all n,
K@ n) <K@ In)+ec

The same also holds for C in place of K.

4Indeed, Dy <y 2 | n via a weak truth table reduction with identity use, where a Turing reduction is a
weak truth table one if there is a computable bound on the size of the queries used.
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This lemma shows that, if Q <g 8, then 8 is Martin-L6f random. The next result
says the being Q2-like means that a left-c.e. real look like €2.

Theorem 3.14 (Calude, Hertling, Khoussainov, Wang [9]). Suppose that B is a left-
c.e. real and that 2 <g B.  Then B is a halting probability. That is, there is a
universal machine U such that u(dom(U)) = B.

The final piece of the puzzle was provided by the following lovely result of Kucera
and Slaman.

Theorem 3.15 (Kucera and Slaman [46]). Suppose that « is random and a left-c.e.
real. Then for all left-c.e. reals B, B <s «, and hence « is a halting probability.

‘We know that all reals have complexity oscillations. The Kuéera—Slaman Theorem
says that for left-c.e. random reals, they all happen in the same places. Downey,
Hirschfeldt and Nies [26], and Downey, Hirschfeldt and LaForte [24] were motivated
to look at the structure of computably enumerable reals under Solovay reducibility.
The structure remains largely unexplored.

Theorem 3.16 (Downey, Hirschfeldt and Nies [26]).

(i) The Solovay degrees of left-c.e. reals forms a distributive upper semilattice,
where the operation of join is induced by +, arithmetic addition (or multipli-
cation) (namely [x] V [y] =s [x + y]).

(il) This structure is dense.® In fact if a < b < [Q] then there exist incomparable
by, by witha < by vVby =b.

(iii)) However, if [2] = a V b then either [2] = a or [2] = b.

Theorem 3.17 (Downey and Hirschfeldt [22]). There exist left-c.e. sets A and B such
that the Solovay degrees of A and B have no infimum in the (global) Solovay degrees.

Theorem 3.18 (Downey, Hirschfeldt, and LaForte [24]). The first order theory of the
uppersemilattice of the Solovay degrees of left-c.e. reals is undecidable.

We can view Q2 as a fundamental operator on reals in the same way as we do for
the jump operator. However, we need real care when dealing with relativizing €.
We will take the notion of universal machine to mean that the machine U should be
universal (and hence prefix-free) for all oracles, and if M, is any machine, then M,
should be effectively coded in U, meaning that for some t, M,(c) = U(ro). This
definition avoids pathological machines.

The properties of omega operators acting on Cantor space and their relationship
with, for instance, Turing reducibility was really initiated by Downey, Hirschfeldt,
Miller and Nies [25]. It had been hoped, for instance, that these might be degree
invariant operators on 2“. This hope failed about as badly as it could.

SIn fact, Downey and Hirschfeldt [22] have sown the Density Theorem holds for the left-c.e. reals for any
measure of relative randomness which has a Eg definition, has a top degree of [S2], + is a join, and where the
computable sets are in the zero degree.
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Theorem 3.19 (Downey, Hirschfeldt, Miller, Nies [25]). For any omega operator 2,
there are reals A =* B (meaning that they differ only by a finite amount) such that
QA and QF are relatively random (and hence QA1 QB).

One the other hand, omega operators do have some fascinating properties.

Theorem 3.20 (Downey, Hirschfeldt, Miller, Nies [25]). Omega operators are lower
semicontinuous but not continuous, and moreover, that they are continuous exactly at
the 1-generic reals®.

In some sense 2 is kind of a red herring amongst random reals. It gives the impres-
sion that random reals have high computational power. Also results such as the famous
Kucera—Gidcs Theorem below say that some random reals have high computational
power.

Theorem 3.21 (Kucera [42], Gacs [33]). Every set is Turing (wtt-)reducible to a
Martin-Lof random set.

We remark that it is by no means clear this result should be true. After all, the
very first result connecting measure and computability was the following:

Theorem 3.22 (de Leeuw, Moore, Shannon, and Shapiro [14]). Define the enumera-
tion probability of A as

P(A) = u({X €2”:UX = A)),

where U is some universal machine. Thenif P(A) > 0, A is a computably enumerable
set.

An immediate corollary is the result first stated by Sacks [81] that A is computable
iff uY : A <r Y}) > 0.

The question is : “How do we reconcile the notions of high computational power
and high randomness?”’. Frank Stephan gave a clarification to this dichotomy. We
say that a function f is fixed point free iff for all partial computable functions ¢,
fle) # @.(e). We will say a set A has PA if it has the computational power to
compute {0, 1} valued fixed point free function’. Whilst Ku&era [44], [45] had shown
that random reals can always compute fixed point free functions®, Stephan showed
that the randoms above the degree of the halting problem are the only ones with
sufficient computational power to be able to compute a {0, 1}-valued one”.

Theorem 3.23 (Stephan [91]). Suppose that a is PA and 1-random. Then 0/ <t a.

SHere recall that x is 1-generic means that it is Cohen generic for 1 quantifier arithmetic.
7They are called PA degrees since the coincide with the degrees bounding complete extensions of Peano
Arithmetic. (Scott [85], Solovay.)

8Additionally, Kucera proved that if A is n-random, then A bounds an n-FPF function. We refer the reader to
[45] or [22] for definitions and details.

9Also, Kjos-Hanssen, Merkle, and Stephan [39] give a variant of in terms of Kolmogorov complexity and is
in some sense an explanation why it is true.
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All of this might leads the reader to guess that 2, and hence all halting probabilities,
have little to do with algorithmic randomness in general. Again this is not the case.

Theorem 3.24 (Downey, Hirschfeldt, Miller, Nies [25]). Suppose that A is 2-random.
Then there is a universal machine U and set B such that A = Qg.

That is, almost all randoms are halting probabilities. Notice that € is random, but
cannot be a halting probability relative to any oracle.

By analyzing the “majority vote” proof of Sacks Theorem, it is easy to show that
if Ais2-random and B <7 A, then A is not random relative to B. Thus Theorem 3.24
stands in contrast the classical theorem from Kurtz’ regrettably unpublished Thesis.
(Proofs of this result and others from Kurtz’s Thesis, and from Solovay’s notes can
be found in Downey and Hirschfeldt [22].)

Theorem 3.25 (Kurtz [50]). Suppose that A is 2-random. Then thereisaset B <t A
such that A is computably enumerable relative to B.

3.3. Martingales and the prediction paradigm. The last major approach to the
concept of algorithmic randomness uses the intuition that random reals should be
hard to predict. This can be formalized by imagining you had some “effective”
betting strategy which worked on the bits of a real . At each stage you get to try to
predict the next bit of o, knowing the previous n bits. This idea leads to the following
concept.

Definition 3.26 (Levy [55]). A martingale (supermartingale)is afunction f: 2=
RT U {0} such that for all o,

f(a0) %2- flol) (resp. f(0) > f(@0) er flol) ).

We say that the (super-)martingale succeeds on a real «, if lim sup,, F(« [ n) — oo.

flo) =

Martingales were introduced by Levy [55], and Ville [102] proved that null sets
correspond to success sets for martingales. They were used extensively by Doob
in the study of stochastic processes. Schnorr [82], [83] effectivized the notion of a
(super-)martingale.

Definition 3.27. We will define a (super-)martingale f as being effective or com-
putably enumerable if f(o) is a c.e. real, and at every stage we have effective ap-
proximations to f in the sense that f (o) = limg fs(o), with fs(o) a computable
increasing sequence of rationals.

We remark that the reader might have expected that an effective martingale would
be one with f a computable function rather than one with computable approximations.
This is an important point and we return to it later.

Theorem 3.28 (Schnorr [82]). A real o is Martin-Ldf random iff no effective (super-)
martingale succeeds on a.
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Thus, we have nice evidence that we have captured a reasonable notion of algo-
rithmic randomness in that the three approaches, measure-theoretical, compressional,
and predictability, all give the same class.

3.4. Schnorr’s critique. In [82], [83], Schnorr argued that Theorem 3.28 demon-
strated a clear failure of the intuition behind the definition of algorithmic randomness
in that it we had computable enumerable betting strategies corresponding to Martin-
Lof randomness rather than computable ones. Schnorr proposed the two variations
below, and these have had attracted considerable interest recently. The first is to re-
place computably enumerable martingales by computable martingales and obtain the
concept of computably random meaning that no computable martingale can succeed
on the real. The second is to take the definition of Martin-Lof randomness (Defi-
nition 3.1) and replace u(U;) < 271 by u(U;) = 271 so that we know exactly the
measure of the test sets, and hence can decide if [o] € U; by waiting until we know
the measure of U; to within 271°I. Some clarification of the relationships between
these two concepts was obtained by Schnorr.

Definition 3.29. We say that a computable martingale strongly succeeds on a real x
iff there is a computable unbounded nondecreasing function z: N +— N such that
F(x | n) > h(n) infinitely often.

Theorem 3.30 (Schnorr [82]). A real x is Schnorr random iff no computable martin-
gale strongly succeeds on x.

Thus Martin-L6f randomness implies computable randomness which implies
Schnorr randomness. None of the implications can be reversed (van Lambalgen [99]).
These concepts were somewhat ignored for maybe 20 years after Schnorr defined
them, possibly because Martin-L6f randomness sufficed for many tasks, and because
they were rather more difficult to handle. There are no universal tests, for instance,
for Schnorr randomness. Recently, Downey and Griffiths [19] gave a nice characteri-
zation of Schnorr randomness in terms of computable machines. Here prefix-free M
is called computable iff the measure of its domain is a computable real.

Theorem 3.31 (Downey and Griffiths [19]). A real « is Schnorr random iff for all
computable machines M, there is a constant ¢ such that, foralln, Ky (@ | n) > n—c.

Related here is yet another notion of randomness called Kurtz or weak randomness.
We define a Kurtz test (resp. Kurtz n-test) to be a E? (resp. 22—) class of measure 1.
Then a real A is called weakly (n-)random or Kurtz n-random' if it passes all Kurtz
(n-)tests, meaning that A € U for all such U. There is a null test version.

10Now it could be argued that weak randomness is not really a randomness notion at all, but rather a genericity
notion. However, for n > 2 it is certainly a randomness notion, and n = 2 corresponds to “Martin-L6f tests with
no effective rate of convergence.”
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Definition 3.32 (Wang [103]). A Kurtz null test is a collection {V,, : n € N} of c.e.
open sets, such that

(i) n(Vy) <27", and

(ii) there is a computable function f: N — (X such that f(n) is a canonical
index for a finite set of o’s, say, o1, ..., 0, and V,, = {[o1], ..., [oa]}.

*)<(1)

Theorem 3.33 (Wang [103], after Kurtz [50]). A real « is Kurtz random iff it passes
all Kurtz null tests.

Wang also gave a martingale version of Kurtz randomness.

Theorem 3.34 (Wang [103]). A real « is Kurtz random iff there is no computable
martingale F and nondecreasing computable function h, such that for almost all n,

F(x [ n) > h(n).

This should be directly compared with Schnorr’s characterization of Schnorr
randomness in terms of martingales and computable orders. Downey, Griffith and
Reid [21] gave a machine characterization of Kurtz randomness, and showed that
each computably enumerable non-zero degree contained a Kurtz random left-c.e.
real. This contrasted with the theorem of Downey, Griffiths and LaForte [20] who
showed that if a left-c.e. real was Kurtz random, then its Turing degree must resemble
the halting problem in that it must be high (i.e. A’ =7 @). The definitive (and rather
difficult) result here is the following which builds on all of this work.

Theorem 3.35 (Nies, Stephan and Terwijn [78]). For every set A, the following are
equivalent.

(I) A ishigh (i.e. A’ >1 @").

(Il) There exists B =7 A, such that B is computably random but not Martin-Lof
random.

(IIT) There exists C =7 A, such that C is Schnorr random but not computably
random.

Moreover, the examples can be chosen as left-c.e. reals if the degrees are computably
enumerable.

Remarkably, outside of the high degrees the notions coincide.

Theorem 3.36 (Nies, Stephan and Terwijn [78]). Suppose that a set A is Schnorr
random and does not have high degree. Then A is Martin-Lof random.

An even more unexpected collapse occurs for the special class of degrees called
hyperimmune-free degrees. Following Miller and Martin [73], we say that A is
hyperimmune-free iff for all functions f <r A, there is a computable function g such
that for all x, f(x) < g(x).
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Theorem 3.37 (Nies, Stephan, Terwijn [78]). Suppose that A is of hyperimmune-free
degree. Then A is Kurtz random iff A is Martin-Lof random.

Space precludes me for discussing a very attractive possible refutation of Schnorr’s
critique proposed by Muchnik, Semenov, and Uspensky [72] who looked at nonmono-
tonic betting strategies, where now we no longer pick the bits of the real in order.
The open question is whether using computable nonmonotonic supermartingales, we
might capture the notion of Martin-Lof randomness. We refer the reader to the paper
of Merkle, Miller, Nies, Reimann and Stephan [65] and [72].

3.5. Hausdorff dimension. Whilst I do not really have enough space to do justice to
the area, there has been a lot of very interesting work concerning effective Hausdorff
dimension of even single reals and strings. For instance, we would expect that if
Q = wowj ... then somehow wo00w;00w,00... should be “3 random.” We can
address this issue using a refinement of the class of measure zero sets is given by
the theory of Hausdorff Dimension. In 1919 Hausdorff [36] generalized earlier work
of Carathéodory to define a notion of an s-dimensional measure to include non-
integer values. The basic idea is that you replace measure by a kind of generalized
measure, where p([o]) is replaced by 27519l where 0 < s < 1. Withs = 1 we
get normal Lebesgue measure. For s < 1 we get a refinement of measure zero.
We can translate this cover version into a s-gale (a version of martingales, namely
f(o) =27°(f(00) + f(o1))) definition in the same way that it is possible to frame
Lebesgue measure in terms of martingales.

Here we are viewing betting strategies in a hostile environment (a model of
Jack Lutz), where “inflation” is acting so not winning means that we automatically
lose money. (For normal martingales, we are to choose not to bet on some bit saving
our funds for later bits and this has no effect. Here failing to bet means that our
capital shrinks. The most hostile environment where we can win will be the effective
Hausdorff dimension.) That is, roughly speaking, it can be shown that there is some
limsup where the s-measure is not zero, and this is called the Hausdorff dimension of
the set.

The study of effective dimension was pioneered through the work of Jack Lutz
though as with much of the area of randomness there is a lot of history. In any case,
for the effective version through the work of Lutz, Mayordomo, Hitchcock, Staiger
and others we find that the notion corresponds to lim inf, %ﬁl), and can take that as
a working definition of effective Hausdorff dimension. (Here I must refer the reader
to Lutz [58], [59] for more details and history.)

With this definition, it can easily be shown that the “00” version of 2 above really
has Hausdorff dimension % and in fact is % random as in Tadaki [94].

Terwijn [95], [96] and Reimann [80] have very nice results here relating Hausdorff
dimension to degree structures. The latter as well and Lutz and Mayordomo have
also looked at other dimensions, such as effective packing dimension, which can be

characterized as lim sup,, %["). Again it is possible to examine these concepts for
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stronger and weaker randomness notions such as Schnorr dimension. For instance,
Downey, Merkle and Reimann [30] have shown that it is possible to have computably
enumerable sets with nonzero Schnorr packing dimension, whereas their Schnorr
Hausdorff dimension is 0. Much work remains to be done here with a plethora of
open questions.

We finish this section by remarking that Lutz [58], [59] has even developed a
notion of dimension for individual strings. The approach is to replace s-gales by
“termgales” which are the analogues of s-gales for terminated strings. In essence he
has characterized dimension for individual strings exactly in terms of prefix-free
Kolmogorov complexity. Space does not allow for the development of this theory and
we refer the reader to Lutz [58], [59] or Downey and Hirschfeldt [22] for further details.

4. Calibrating randomness

We have seen that we can classify randomness in terms of initial segment complexity.
Thus it seems reasonable to think that we should also be able to classify relative ran-
domness in terms of relative initial segment complexity. This motivates the following
definition.

Definition 4.1 (Downey, Hirschfeldt, and LaForte [23]). We say a pre-ordering < is
am Q-initial segment measure of relative randomness iff it obeys the Solovay property
met earlier: A < B means that foralln, Q(A [ n) < Q(B [ n) + O(1).

Here we are thinking of Q as C or K. We have already seen that Solovay re-
ducibility is a measure of relative randomness and can be used to characterize the
left-c.e. random reals. However, Solovay reducibility has a number of limitations
such as being too fine and only really relating to left-c.e. reals.

There are a number of other interesting measures of relative randomness. They
include segment ones <¢ and <k which are defined in the obvious way. Others
include the following introduced by Downey, Hirschfeldt and LaForte [23]:

(i) A <, B iff there is a ¢ and a wtt procedure I" with use y(n) = n + ¢, and
'8 = A. If ¢ = 0, then this is called ibT-reducibility and is the one used by
Soare and Csima in differential geometry, such as Soare [87].

(il)) A <,x B means that there is a ¢ such that for all n,

K({(An)|(B|n+c)=0().

The reducibility (i) is also called effective Lipschitz reducibility and This reducibil-
ity has been analyzed by Yu and Ding [105], Barmpalias and Lewis (e.g. [4]), and
Raichev and Stephan (e.g. [79]). While I do not really have space to discuss these
reducibilities in detail, I would like to point out that they do give nice insight into
relative computability. We briefly consider sw. The idea of this reducibility is that if
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A <, B, then there is an efficient way to convert the bits of B into those of A. The
Kucera—Slaman Theorem says that all versions of €2 are the same in terms of their
S-degrees. But we may ask whether there is a “bit” version of this result? Yu and
Ding [105] established the following.

Theorem 4.2 (Yu and Ding [105]).
(i) There is no sw-complete c.e. real.

(i) There are two c.e. reals By and B so that there is no c.e. real o with o <5, o
and By <gy .

There are other assorted results and reducibilities. However, things are still in
their infancy here. We will simply refer the reader to Downey [17], or Downey and
Hirschfeldt [22] for the current situation.

We return to looking at the basic measures <¢ and <g. The reader should note
that these are not really reducibilities but simply transitive pre-orderings. (Though
following tradition we will continue to refer to them as reducibilities.)

Theorem 4.3 (Yu, Ding, Downey [107]). For Q € {K,C}, {X : X <o Y} has
size 2%0 and has members of each degree, whenever Y is random.

The replacement for this theorem is a measure-theoretical one:

Theorem 4.4 (Yu, Ding, Downey [107]). For any real A, u({B : B <x A}) = 0.
Hence there are uncountably many K degrees.

We had hoped that there might be nice hierarchies related to levels of randomness.
We will denote by Q"+ to be € relative to ). We might have hoped that Q)
was K -above €2, but that hope turns out to be forlorn.

Theorem 4.5 (Yu, Ding, Downey [107]). For all c and n < m,
A®[KQ™ k) < KQ™ | k) —c].

Forn = 0, m = 1 Theorem 4.5 was proven by Solovay [89], using totally different
methods.

Miller and Yu have made really significant progress in our understanding here
by introducing yet more measures of relative randomness. They are based around
van Lambalgen’s Theorem which states that for all A, B, B n-random and A is
B-n-random iff A @ B is n-random.

Definition 4.6 (Miller and Yu [69]). We say that « <,; B, « is van Lambalgen'!
reducible to 8 if for all x € 2, o @ x is random implies 8 @ x is random.

Miller and Yu’s basic result were as follows.

Hhis is closely related to a relation introduced by Nies: He defined A <; r B if forall Z, Z is 1-B-random
implies Z is 1-A-random. If A and B are both random then A <; g Biff B <; g A.
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Theorem 4.7 (Miller and Yu [69]). For all random «, 83,

(i) «a n-random and o <, B implies B is n-random.
@i1) If o @ B is random then a and B have no upper bound in the vL-degrees.
(i) Ifo <t B and « is 1-random, then B <,1 «.
(iv) There are random o =, B of different Turing degrees.
(v) There are no maximal or minimal random v L-degrees, and no join.
(vi) Ifa @ B is random then @ ® B <y «, B.
(vii) The E? theory of the vL-degrees is decidable.

Miller and Yu show that Q7 and Q™ have no upper bound in the v L degrees for
n # m. This improves the Yu, Ding, Downey (Theorem 4.5) result above. All of this
is filters through an interesting relationship between <,y and <¢, <g.

Lemma 4.8 (Miller and Yu [69]). For random «, §3,

(i) Suppose that o <k B. Then o <, B.
(i) Suppose that a <c B. Then o <,1 B.

We state the following for <y but they hold equally for <c, as has been shown
by Miller and Yu.

Corollary 4.9 (Miller and Yu [69]).
(i) Supposethata <k B, and « is n-random and B is random. Then B is n-random.
(i) Ifa @ B is 1-random, then o|x B and have no upper bound in the K-degrees.
(iii) For all n # m, the K -degrees of Q™ and QU™ have no upper bound.

Miller and Yu have many other very interesting results on the K degrees of c.e.
reals. For instance, they show that if « @ $ is 1-random, then «|g o @ B. Miller has
proven the following.

Theorem 4.10 (Miller [67]).

(1) If a, B are random, and a =g B, then o' =, B’. As a consequence, every
K -degree of a random real is countable.

(ii) Ifa <k B, and o is 3-random, then B <7 a ® .

Notice that (ii) implies that the cone of K -degrees above a 3-random is countable.
On the other hand, Miller and Yu have constructed a 1-random whose K -upper cone is
uncountable. The construction of an uncountable random K -degree uses their method
of constructing K-comparable reals. Its proof uses the following clever lemma. The
current proof of Theorem 4.11 is quite difficult.
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Theorem 4.11 (Miller and Yu [70]). Suppose that )", 27/ < oo, then there is a
1-random Y with

KY [n) <n+ f(n),
for almost all n.

To finish this section, we mention further evidence that randomness is a “lowness”
notion. Miller has shown that if « is 3-random then its often useless as an oracle. We
will call & weakly-low for K if (3°n)[K(n) < K*(n) + O(1)]. Thus in a weakly-
low real, the information in « is so useless that it cannot help to compress n. The
following result echoes the theme articulated by Stephan that most random reals have
little usable information in them.

Theorem 4.12 (Miller [67]).

(1) Ifa is 3-random it is weakly-low for K.

(1) If o is weakly-low for K, and random, then « is strongly Chaitin random in
that

@%n) [K(@ | n) =n+ K@n) — 0)].

5. Lowness and triviality

There have been some truly dramatic results in what has now become known as
lowness and triviality. If Q is a measure of relative randomness then we can say
that A is Q-trivial iff A <p 1“. Thus using Q we cannot distinguish A from a
computable set. We will say that A is Q-low if 04(0) = Qo) + O(1), for all o.
Thus, for instance A is K -low would mean that K4(0) = K (o) + O(1) forall o.

We say thata set A is low for arandomness notion V iff the V-randoms relative to A
remain the same. (One would usually expect that fewer sets would be random.) An
apparently weaker notion is that of being low for V tests. Thatis, every if {U; : i € N}
isa VA test, then there is a V -test {Ui :i € N}suchthatN;U; € N; 01‘ . We remark that
since there are universal Martin-Lof tests the test set notion and the lowness notion
are the same.

5.1. The remarkable Martin-Lof case. There have been a series of amazing results
in the case of 1-randomness. Historically, these results began with triviality. An old
result of Loveland [57] shows that Q(« [ n|n) = O(1) foralln, (Q € {C, K})iffa is
computable. This result was generalized by Chaitin [11], who proved the following.

Theorem 5.1 (Chaitin [11]). « is computable iffo <c¢ 1. (That is, iff a is C-trivial.)

I think this squares with our intuition that should « be indistinguishable from
a computable string in terms of its initial segment complexity it should itself be
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computable. Chaitin also noted that essentially the same proof shows that if « is K -
trivial, the o is Ag and hence computable from the halting problem. The breakthrough
was again by Solovay.

Theorem 5.2 (Solovay [89]). There are noncomputable o which are K -trivial.

Solovay’s argument was complex and mysterious. It turned out that the example o
could even be chosen as a computably enumerable sef (Calude and Coles [7], Downey,
Hirschfeldt, Nies and Stephan [27], Kummer (unpubl.), An. A. Muchnik (unpubl.)).
The paper [27] gave a very simple construction of a computably enumerable K -trivial
set along the lines of the Dekker deficiency set. What is remarkable is that such
K -trivial sets solve Post’s problem.

Theorem 5.3 (Downey, Hirschfeldt, Nies and Stephan [27]). Suppose that « is
K-trivial. Thena <7 .

The method of proof of Theorem 5.3 uses what has become known as the “decanter
method”(terminology of Nies) and is unfortunately very complicated, though it does
not use the priority method. No easy proof of Theorem 5.3 is known.

It was noted that the short [27] proof constructing a K -trivial set strongly resembled
and earlier construction of a computably enumerable set A which was low for Martin-
Lof randomness by Kucera and Terwijn [47]. It was conjectured that perhaps these
classes might have something to do with each other. In a ground breaking series of
papers, Nies (and Hirschfeldt) proved some completely unexpected facts.

Theorem 5.4 (Nies (and Hirschfeldt for some), [75], [76]).

(a) The following classes of reals coincide.

1) K-low.
(i) K-trivial.
(iii) Low for Martin-Lof randomness.

(b) All the members A of this class C are superlow in that A’ =, ¥'.

(c) The class C forms a natural Zg ideal in the Turing degrees. There is a low,
computably enumerable degree a such that if ¢c € C, the ¢ < a.

(d) If A is a K-trivial real, then there is a computably enumerable set A with
A<r A.

The K -trivials form the only known natural nontrivial Eg ideal in the (computably
enumerable) Turing degrees. Item (c) in the above is a special case of a general
unpublished Theorem of Nies that every 22 ideal in the computably enumerable
degrees is bounded by a low, computably enumerable degree. (A proof can be found
in Downey and Hirschfeldt [22].) It is possible that there is a low (non-computably
enumerable) degree a which bounds €, and even possible that such a degree could be
random. This problem seems hard.
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Subsequently, other quite deep results have been proven. For instance, we have
seen that if A is noncomputable then u({X : A <r X}) = 0, but since there are
K -low reals, there must be reals A and randoms X such that X is A-random and
A <7 X. In that case, we say that A is a base of Martin-Lof randomness.

Theorem 5.5 (Hirschfeldt, Nies, Stephan [37]). A is K-trivial iff it is a base of
Martin-Lof randomness.

We remark that Slaman has used the class of K-trivials to solve a longstanding
problem in computable model theory. As a final result in this area we mention some in-
teresting results of Csima and Montalbdn. These results are related to the enumeration
of the K -trivials.

Theorem 5.6 (Chaitin [11], Zambella [108]). There are only 0 (2% members of
KT(d). They are all Ag.

The reader might wonder with the nice computable bound how many K -trivial
reals there are. Let G(d) = [{X : X € KT(d)}. Then there is a crude estimate that
G(d) <7 ¥. This is the best upper bound known. In unpublished work, Downey,
Miller and Yu have shown that G (d) £r @', using the fact that ), % is convergent.
This is all related to the Csima—Montalbdn functions. We say that f is a Csima—
Montalbdn function if f is nondecreasing and

K(An)<Km+ f(n)+ 0(1)

implies that A | n is K-trivial. Such functions can be constructed from ¢ & G.
We define f to be weakly Csima—Montalban, if we weaken the hypothesis to be
that liminf,, f(n) — oo. Little is known here. It is not known if the arithmetical
complexity of f depends upon the universal machine chosen. We remark that the
original use of Csima—Montalbdn functions was to construct a minimal pair of K-
degrees: K-degrees a, b such thata Ab = 0.

In other more recent work, Downey, Nies, Weber and Yu [29] have also looked at
lowness for weak 2-randomness. Here it has been shown that such degrees do exist,
and are all K -trivial. It is not known if the converse holds.

5.2. Other lowness and triviality. One thing which this work has brought (back) to
the fore is the use of domination properties in classical computability. This was first
recognized in the study of lowness for Schnorr randomness. Terwijn and Zambella
[97] defined a degree a to be computably traceable iff there is a single computable
function f such that for all functions g <7 a, there is a computable collection of
canonical finite sets {Dp(y) : x € N}, such that

(1) 1Dpyl < f(x), and
(ii) g(x) € Dy(y) for almost all x.
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Being computably traceable is a strong form of being hyperimmune-free. Terwijn
and Zambella showed that there are 280 many degrees that are hyperimmune-free yet
not computably traceable. There are also 280 degrees that are computably traceable.
The following theorem completely classifies the low for Schnorr random reals. Its
proof is far from easy.

Theorem 5.7 (Terwijn and Zambella [97]). A is low for Schnorr random null sets
iff A is computably traceable.

It is clear that if A is low for tests then A is low for Schnorr randoms. But the
converse is not at all clear and had been an open question of Ambos-Spies and Kucera
[3]. The question was finally solved by Kjos-Hanssen, Stephan, and Nies [40], using
Bedregal and Nies [5]. Summarizing the results proven there, we have:

Theorem 5.8 (Kjos-Hanssen, Stephan, and Nies [40]). a is low for Schnorr null sets
iff a is low for Schnorr randomness.

I remark in passing that I am not aware of any lowness notion that differs for
null sets and for the randomness notion. In other work, Nies has examined low-
ness for polynomial time randomness, and lowness for computable randomness. For
computable randomness, the answer is rather surprising.

Theorem 5.9 (Nies [76]). Suppose that A is low for computable randomness. Then A
is computable.

Finally there has been a little work on triviality notions here. Recall that Downey
and Griffiths [19] proved that A is Schnorr trivial iff for all computable machines M,
Ky(A | n) > n— O(1). This definition naturally allows us to define a reducibility
notion.

Definition 5.10 (Downey and Griffiths [19]). We say that « is Schnorr reducible to 8,
o <scn B, iff for all computable machines M, there is a computable machine M such
that Ky (B [ n) — O(1) > Ky;(a [ n), for all n.

This definition allows us to say that a real « is Schnorr trivial iff @ <gqp 1.
Schnorr trivial reals behave quite differently than do Schnorr low reals and the K-
trivials. Downey and Griffiths constructed a Schnorr trivial real and Downey, Griffiths
and LaForte [20] showed that they can even be Turing complete, though they do not
occur in every computably enumerable Turing degree. Subsequently, they have been
investigated by Johanna Franklin [31]. Her results are summarized below.

Theorem 5.11 (Franklin [31]).
(1) There is a perfect set of Schnorr trivials (and thus some are not Ag).

(ii) Every degree above 0' contains a Schnorr trivial.
(iii)) Every Schnorr low is Schnorr trivial.

(iv) The Schnorr lows are not closed under join.
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Finally, we mention that other lowness notions both in randomness and in other
contexts have been analyzed. Yu [104] (also Miller and Greenberg (unpublished))
proved that there are no sets low for 1-genericity. Sets low for Kurtz randomness
were first constructed by Downey, Griffiths and Reid [21]. They were shown there
to be all hyperimmune-free and were implied by Schnorr lowness. Stephan and Yu
[92] have shown that lowness for Kurtz randomness differs from lowness for Schnorr
randomness and lowness for weak genericity. To wit, they have shown the following.

Theorem 5.12 (Stephan and Yu [92]).

@

(i)

(iii)
(iv)

Low for weakly generic is the same hyperimmune-free plus not of diagonally
noncomputable degree.

There is a set of hyperimmune-free degree which is neither computably trace-
able nor diagonally noncomputable.

Low for weakly generic implies low for Kurtz random.

In particular, low for weakly generic and hence low for Kurtz randomness is
not the same as Schnorr low.

The topic of lowness for such concepts remains in its infancy, and promises fas-
cinating results.
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Determinacy and large cardinals

Itay Neeman™

Abstract. The principle of determinacy has been crucial to the study of definable sets of real
numbers. This paper surveys some of the uses of determinacy, concentrating specifically on the
connection between determinacy and large cardinals, and takes this connection further, to the
level of games of length w;.
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1. Determinacy

Let w® denote the set of infinite sequences of natural numbers. For A C »? let
G (A) denote the length @ game with payoff A. The format of G, (A) is displayed in
Diagram 1. Two players, denoted I and II, alternate playing natural numbers forming
together a sequence x = (x(n) | n < w) in w® called a run of the game. The run is
won by player I if x € A, and otherwise the run is won by player II.

I | x(0) X2
1T | x(1) x3)

Diagram 1. The game G, (A).

A game is determined if one of the players has a winning strategy. The set A is
determined if G, (A) is determined. For ' C £ (w®), det(I") denotes the statement
that all sets in I are determined.

Using the axiom of choice, or more specifically using a wellordering of the reals,
it is easy to construct a non-determined set A. det(P (w®)) is therefore false. On the
other hand it has become clear through research over the years that det(I") is true if
all the sets in I are definable by some concrete means. Moreover det(I"), taken as an
axiom, gives rise to a rich structure theory that establishes a hierarchy of complexity
on the sets in I', and completely answers all natural questions about the sets in each
level of the hierarchy. Determinacy is therefore accepted as the natural hypothesis in
the study of definable subsets of w®.

*This material is based upon work supported by the National Science Foundation under Grant No. DMS-
0094174.
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Definability takes increasingly liberal meanings as one progresses higher in the
hierarchy of complexity. Atthe lower levels it is very concrete. Let w=® denote the set
of finite sequences of natural numbers. Fors € =% let Ny = {x € o® | x extends s}.
The sets N (s € @=?) are the basic open neighborhoods in w®”. A C w® is open if it
is a union of basic open neighborhoods.

o® with the topology defined above is isomorphic to the irrational numbers. Fol-
lowing standard abuse of notation in descriptive set theory we use R to denote w®,
and refer to its elements as reals.

A set is Borel if it can be obtained from open sets using repeated applications
of complementations and countable unions. The projection of a set B C R x R
is the set {x € R | (Fy){x,y) € B}. A setis analytic if it is the projection of
the complement of an open set. A set is projective if it can be obtained from open
sets using repeated applications of complementations and projections. Analyzing the
logical complexity of these definitions and using diagonal arguments one can establish
that {Borel sets} C {analytic sets} C {projective sets}, so that these classes form a
proper hierarchy.

Theorem 1.1 (Gale—Stewart [4], 1953). All open sets are determined.
Theorem 1.2 (Martin [20], 1975). All Borel sets are determined.

Theorem 1.3 (Martin [19], 1970). All analytic sets are determined.
Theorem 1.4 (Martin—Steel [22], 1985). All projective sets are determined.

Theorems 1.1 and 1.2 are theorems of ZFC, the basic system of axioms for set
theory and mathematics. Theorems 1.3, 1.4, and 1.5 (below) have additional stronger
assumptions known as large cardinal axioms, which are not listed here but will be
discussed in Section 2.!

Recall that L(R) is the smallest model of set theory which contains all the reals
and all the ordinals. It is obtained as the union | J,, .oy L« (R) of the hierarchy defined
by the conditions: Lo(R) = R; for limit ordinals A, L, (R) = |, _; Lo (R); and for
each ordinal o, Ly+1(R) consists of the sets in L, (R), and of all subsets of L, (R)
which are definable over Ly (R) by first order formulae with parameters. The third
condition is the crucial one, placing a definability requirement on the sets that make it
into L(R). L(R) is constructed through a transfinite sequence of applications of this
condition. Notice that the projective sets are subsumed already into L (R), the first
stage of this transfinite sequence.

Theorem 1.5 (Woodin [40], 1985). All sets of reals in L(R) are determined.

Theorems 1.1 through 1.5 establish determinacy for sets of varying levels of defin-
ability, starting from open sets which are very directly definable from real numbers,

IThe determinacy of Borel sets of course follows from the determinacy of analytic sets. The new element in
Theorem 1.2 is a proof of Borel determinacy from the axioms of ZFC, without using large cardinals.
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continuing with the projective sets, which are definable from open sets using existen-
tial quantifications and negations, and ending with all sets in L(R). More is possible,
as we shall see in Section 3. The remainder of this section is devoted to consequences
of determinacy.

Let " be an adequate pointclass (that is a collection of subsets of w®, closed
under some basic operations, see Moschovakis [27]). The first results derived from
determinacy concerned regularity properties, such as Lebesgue measurability, the
Baire property, and the perfect set property. All these properties fail outside the realm
of determinacy; counterexamples to each of them can be constructed easily using a
wellordering of the reals. Determinacy serves as an intermediary in establishing these
properties for definable sets.

Theorem 1.6 (Banach, Oxtoby [37], 1957). Assume det(I"). Let A € I'. Then A has
the property of Baire (meaning that A is either meager, or comeager on a basic open
neighborhood).

Theorem 1.7 (Mycielski-Swierczkowski [29], 1964). Assume det(I"). Then all sets
in I' are Lebesgue measurable.

Theorem 1.8 (Davis [3], 1964). Assume det(I'). Let A € TI'. Then either A is
countable, or else A contains a perfect set.

More importantly, determinacy was seen to imply various structural properties
of classes of sets within its realm. For a pointclass I" let —I" denote the pointclass
consisting of complements of sets in I', and let 3I" denote the pointclass consisting of
projections of sets in I'. Recall that E% is the pointclass of analytic sets, l'[,11 = —03,1“
and X! = an.. Al is the pointclass consisting of sets which are both ! and
II ’11 Each X ,ll set A (similarly 1'[,1!) is definable through a string of quantifiers from
an open set. The open set itself, call it D, is definable from a real number, coding the
set {s € w=“ | Ny C D}. Ais lightface E,% (similarly 1'[,1,) if the underlying real that
defines it is recursive, that is computable by a Turing machine.

The boldface pointclasses were studied by analysts in the early 20th century.
Recall for example the following theorem of Kuratowski [16]: the intersection of any
two Z} (analytic) sets A, B C R can be presented as the intersection of two E} sets
A" D> A and B’ D B, such that A’ U B’ = R. This is today recast as a theorem
about the pointclass H}. A pointclass I is said to have the reduction property if for
any two sets A, B C R in I there are sets A’ C A and B’ C B, both in T, so that
A'UB’ = AUB and A'N B’ = . Kuratowski’s theorem establishes that I has the
reduction property. Kuratowski also showed that E% has the reduction property. This
was as far up along the projective hierarchy as one could get in those days. The basic
axioms of set theory, without the addition of determinacy or large cardinals, do not
decide questions such as the reduction property for projective pointclasses above Z%.

In 1967 Blackwell [2] used the determinacy of open games, Theorem 1.1, to give
a new proof of Kuratowski’s reduction theorem. Inspired by his proof, Martin [18]



30 Itay Neeman

and Addison—-Moschovakis [1] proved that Hé has the reduction property, assum-
ing det(A}).

The reduction property is a consequence of a stronger property known as the
prewellordering property. Martin and Addison—Moschovakis obtained this stronger
property, and in fact propagated it along the odd levels of the projective hierarchy,
using determinacy.

A prewellorder on A C R is a relation < on A which is transitive, reflexive, and
wellfounded. The prewellorder < induces an equivalence relation ~on A (x ~ y
iff x <y Ay <X x), and gives rise to a wellorder of A/~. < is said to belongs to a
pointclass T if there are two relations Y and N, in I and —I" respectively, so that
forevery y € A, {x | x <y} ={x| {(x,y) € Y} = {x | (x,y) € N}. T has the
prewellordering property just in case that every set A € I" admits a prewellorder in I'.

Theorem 1.9 (Martin [18], Addison—Moschovakis [1], 1968). Assume projective
determinacy. Then the projective pointclasses with the prewellordering (similarly
reduction) property are l'[l, Z%, H%, Z}L, Hé, e

Remark 1.10. For B C R x R and x € R let By denote {y | (x, y) € B}. Recall
that O B is the set {x € R | player I has a winning strategy in G, (By)}. It is common
to write (©y)B(x, ), or (Oy){x, y) € B, for the statement x € 0 B. This notation is
similar to the notation used for the quantifiers (Vy) and (3y), and (©y) too is viewed
as a quantifier, giving precise meaning to the chain (Iy(0))(Vy(1))3(y(2))------ of
quantifiers over w. For a pointclass I' let OI' = {OB | B € I'}. It is easy to check
that Dl'[,11 = Z‘,lz 41 and (using determinacy) DZ,{ = H,11 41~ Theorem 1.9 therefore
states that the pointclasses OV TI {, n < w, all have the reduction and prewellordering
properties.

Theorem 1.9 helped establish the use of determinacy as a hypothesis in the study
of definable sets of reals. In particular it became standard to study L(R) using the
relativization to L(RR) of the assumption that all sets of reals are determined, known as
the axiom of determinacy (AD) and initially advanced by Mycielski—Steinhaus [28].
The use of this assumption in L(R) is justified in retrospect by Theorem 1.5.

There has been a wealth of results on sets of reals, on structural properties of
pointclasses, and on L(RR), assuming determinacy. Only a couple of results, the ones
which are directly relevant to this paper, are listed below. A more complete account
can be found in Moschovakis [27] and in the Cabal volumes [13], [10], [11], [12].

Recall that the symbol § is used to denote the supremum of the ordertypes of A
prewellorders on A sets.

Theorem 1.11. Assume AD. Then 6% is equal to w1, 3% is equal to wy (Martin), and 6%
is equal to wyy1 (Martin). Much more is known, see Kechris [9] and Jackson [7].

The values of the ordinals 8}, 85, etc. are absolute between L(R) and the true
universe V. Theorem 1.11 therefore implies that 6} = (w))®), 6% = (wp)-®),
and 8% = (a)w+1)L(R). w) is absolute between L(R) and V, so 8! = w;. But other
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cardinals need not be absolute. Theorem 1.11 by itself therefore does not provide
information on the cardinalities of §} and §3.

Theorem 1.12 (Steel-Van Wesep [38], Woodin [39]). Assume ADLE®) - Then it is
consistent (with AD*® and the axiom of choice) that (@2)*®) = @, and hence that
8; = wy.

Note that the statement that 8% = wy implies a strong failure of the continuum
hypothesis: not only must the continuum have size at least wy, but this must be
witnessed by Aé prewellorders.

2. Large cardinals

An embedding 7 : P — M is elementary just in case that it preserves truth, meaning
that ¢[x1, ..., xx] holds in P iff ¢[7w(x1), ..., w(xx)] holds in M, for all formulae
¢ and all xq, ..., x; € P. Large cardinal axioms state the existence of elementary
embeddings of the universe. For example, a cardinal « is measurable if it is the
critical point of an elementary embedding 7: V — M C V. The axiom “there
exists a measurable cardinal” thus asserts the existence of a non-trivial elementary
embedding acting on the entire universe.

An elementary embedding w: V — M is A-strong if M and V agree to A, that
is if M and V have the same bounded subsets of A, and superstrong if M and V
agree to w(crit(mw)). w: V — M is A-strong with respect to H if it is A-strong and
w(H) N A= HNA. kis A-strong if it is the critical point of a A-strong embedding,
and similarly for superstrength and strength with respect to H. « is <§-strong with
respect to H if it is A-strong with respect to H for each A < §. Finally, and most
importantly, § is a Woodin cardinal if for every H C & there is k < § which is <§-
strong with respect to H. In the hierarchy of large cardinal axioms, the existence of
Woodin cardinals lies above the existence of measurable cardinals, but well below the
existence of superstrong cardinals.

Let m: V — M be elementary. Let k = crit(;r) and let A < 7 (x). The («, X)-
extender induced by 7 is the function E : P ([x]=%) — P ([1]=“) defined by E(A) =
w(A) N [A]=®. The extender E codes enough of the embedding 7 to reconstruct an
embedding o : V — N with the property that o (A) N [A]=? = w(A) N [A]=® for all
A C [k]=. For sufficiently closed A this is enough that the A-strength of & implies
the A-strength of o, and similarly for strength with respect to H. Thus, the existence of
strong embeddings is equivalent to the existence of strong extenders, and the property
of being a Woodin cardinal can be recast as a statement about the existence of certain
extenders. (The point here is that extenders are sets, while embeddings are classes.)

The embedding o: V — N is obtained from the extender E using an ultrapower
construction. Very briefly, N is the model (H/~; R) where H = {(f,a) | a €
(A= and f: [k]™@ — V}, (f.a) ~ (g.b) iff a™b € E({x"y | f(x) = g},
and [f,a] R [g,b]iffa”™b € E({x"y | f(x) € g(y)}). The embedding o is defined
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by the conditions o (x) = [cy, @] where ¢, : [x]° — V is the function taking constant
value x. The model N is called the ultrapower of V by E, denoted Ult(V, E), and o
is the ultrapower embedding.

An extender E can also be derived from an embedding 7: Q — M for Q # V.
The resultis an extender over Q. In the other direction, the ultrapower of amodel Q by
an extender E with critical point k can be defined so long as (P ([k]<?))¢ = dom(E),
simply by adding the restriction f € Q to the definition of H above. The resulting
ultrapower is denoted Ult(Q, E).

The process of taking ultrapowers can be iterated, and such iterations are crucial
to the study of large cardinals. Their first use appeared in Kunen [15]. Kunen worked
with measurable cardinals. The associated extenders can only give rise to linear
iteration, and this has become the norm until the work of Martin—Steel [23], who
introduced the general format of an iteration tree. This general format, which allows
non-linearity, is both necessary to the study of Woodin cardinals, and non-trivial in
their presence.

A tree order on an ordinal « is an order 7 so that: T is a suborder of < | «;
for each n < «, the set {§ | & T n} is linearly ordered by T'; for each £ so that
&+ 1 < «a, the ordinal £ + 1 is a successor in T'; and for each limit ordinal y < «, the
set{£ | £ T y}iscofinal in y. An iteration tree T of length « on a model M consists
of a tree order T on o, and sequences (Mg, jrs | ¢ T & <a)and (E¢ | § +1 < a)
satisfying the following conditions:

1. My =M.
2. Foreach & sothaté + 1 < «, E¢ is an extender of M.

3. Mgy = Ult(My, E¢) and jr g11: My — Mg is the ultrapower embedding,
where ¢ is the T-predecessor of & 4+ 1. It is implicit in this condition that
P ([crit(Eg)]=*) must be the same in M, and Mg, so that the ultrapower makes
sense.

4. For limit A < «, M, is the direct limit of the system (M¢, jr e | ¢ T £ T 1),
and j¢;: My — M, for ¢ T X are the direct limit embeddings.

5. The remaining embeddings j; ¢ for ¢ T & < « are obtained through composi-
tion.

An iteration tree is linear if for every &, the T-predecessor of £ + 1 is &.

A branch through an iteration tree 7~ is a set » which is linearly ordered by 7. The
branch is cofinal if sup(b) = 1h(7"). The branch is maximal if either sup(b) = 1h(7")
orelse b # {£ | & T sup(b)}. The direct limit along b, denoted Ml;f or simply Mj,
is the direct limit of the system (Mg, jo s | ¢ T & € b). ig: M — My is the direct
limit embedding of this system. The branch b is called wellfounded just in case that
the model M), is wellfounded.

Theorem 2.1 (Martin—Steel [23]). Let M be a countable elementary substructure of
a rank initial segment of V, and lett: M — V,, be elementary. Let T be a countable
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iteration tree on M. Then there is a maximal branch b through T, and an embedding
o: My, —> V,,sothatm =0 o ig. (A branch b whose direct limit can be embedded
into V, in this way is called realizable.)

Let M be a model of ZFC. In the (full, length w; + 1) iteration game on M players
“good” and “bad” collaborate to construct an iteration tree 7 of length “’1 +lonM.
“bad” plays all the extenders, and determines the T -predecessor of & + 1 for each &.
“good” plays the branches {¢ | ¢ T A} for limit A, thereby determining the direct
limit model M,. Note that “good” is also responsible for the final move, which
determines M v.

If ever a model along the tree is reached which is illfounded then “bad” wins.
Otherwise “good” wins. M is (fully) iterable if “good” has a winning strategy in this
game. An iteration strategy for M is a winning strategy for the good player in the
iteration game on M.

Notice that if Theorem 2.1 could be strengthened to state that the realizable branch
is unique, then repeated applications of the theorem (including a final application
over Veol@.@1) {5 obtain a branch through a tree of length oN V) would demonstrate
that countable elementary substructures of rank initial segments of V are iterable.
This observation is the key to many of the known iterability proofs, but unfortunately
uniqueness fails beyond certain large cardinals. A general proof of iterability would
be a great step forward in the study of large cardinals.

A (fine structural) inner model is a model of the form M = L, (E ), that is the
smallest model of set theory containing the ordinals below « and closed under com-
prehension relative to E,where E isa sequence of extenders, over M or over initial
segments of M, satisfying certain coherence requirements. (There are various ways
to structure the sequences. For precise definitions see Mitchell-Steel [26] or Zeman
[42]) M =L, (E) is an mmal segment of N = L,g(F) justin case that < 8 and E
is an initial segment of F. Since the extenders in E may be extenders not over M
but over strict initial segments of M, an iteration tree on M may involve dropping to
initial segments, that is applying an extender in M¢ to an initial segment of M;. In
such cases the embedding j; 41 acts on an initial segment of M.

The following fact is the key to the use of iteration trees in the study of inner
models:

Fact 2.2 (Comparison). Let M and N be countable inner models. Suppose that M
and N are both iterable. Then there are iteration trees 7 and U of countable lengths
on M and N respectively, leading to final models M* and N*, so that at least one of
the following conditions holds:

1. M* is an initial segment of N* and there are no drops on the branch of 7
leading from M to M*.

2. N* is an initial segment of M™* and there are no drops on the branch of U
leading from N to N*.
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The iteration trees 7~ and U witnessing Fact 2.2 are constructed inductively. Sup-
pose the construction reached models Mz on 7 and Ng on U. If the extender sequences
of Mg and N agree, meaning that they are equal or that one is a strict initial segment
of the other, then the construction is over and one of conditions (1) and (2) in Fact 2.2
holds. If the sequences do not agree, let p be least so that the extender sequences of Mg
and N¢ disagree on the pth extender. Set E¢ to be the pth extender on the sequence
of M¢, and use this assignment to continue the construction of 7, applying E¢ to M,
for the smallest possible ¢, to give rise to Mg 1. Continue U similarly using the pth
extender on the sequence of Ng. These assignments determine the parts of 7 and U
corresponding to the bad player’s moves in the iteration game. Using the assumption
that M and N are iterable, fix iteration strategies % and A for the two models, and let
these strategies determine the remaining elements of 7 and U, namely the branches
to be used at limit stages.

It is one of the great discoveries of inner model theory that the process described
above, of repeatedly forming ultrapowers by disagreeing extenders, terminates, lead-
ing therefore to models which are lined-up with their extender sequences in complete
agreement. The discovery was first made by Kunen [15] in the context of a single
measurable cardinal, where linear iterations suffice. Mitchell [24], [25] developed the
framework for models with many measurable cardinals, still using linear iterations.
Martin—Steel [22], [23] discovered that in the context of Woodin cardinals the more
general (non-linear) iteration trees are both needed and sufficient. Mitchell-Steel
[26] used iteration trees, fine structure (see Jensen [8]), and several additional ideas
to develop inner models for Woodin cardinals, and reach Fact 2.2 as stated above.

The following folklore claim illustrates a simple application of the comparison
process. An inner model M is called a minimal model for a sentence 6 if M satisfies 6
and no strict initial segment of M satisfies 6.

Claim 2.3. Let M and N be minimal countable inner models for the same sentence 6.
Suppose that both M and N are iterable. Then M and N have the same theory.

Proof sketch. Compare M and N, thatis form 7 and U leading to models M* and N*
which are in complete agreement, using Fact 2.2. Neither one of M* and N* can be
a strict initial segment of the other, since otherwise the longer of the two will have
a strict initial segment satisfying 6. M™* and N* must therefore be equal. Similar
reasoning shows that there can be drops on either side of the comparison. Using the
elementarity of the iteration embeddings (from M to M* along 7, and from N to N*
along U) it follows that M has the same theory as M* and N has the same theory

as N*. Since M* = N*, M and N have the same theory. O
An inner model M is a sharp if its extender sequence has a final element, Et]gp,

and EmMp is an extender over M. For a sharp M let M™* be the result of iterating Et](‘)”p

through the countable ordinals, that is set M’ equal to the final model of the iteration

tree 7 defined by the condition E¢ = jo ¢ (Et’(‘)’lp) and the T-predecessor of & 4+ 1 is &

for all £ < wi, and let M* = M’'||w;. The set I = {jo,g(crit(E{‘(;’p)) | &€ < w1}
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is club in w;. The ordinals in / are indiscernibles for M*, in the sense that for

any formula ¢, and any increasing sequences {«q, ..., o} and {81, ..., Bk} in (7%,
M* = glay, ..., a] ifft M* = @[B1, ..., Bxl. The theory of k indiscernibles for M,
denoted Thy (M), is the set of formulae ¢ so that M* = @[y, ..., o] for some
(equivalently all) {or1, ..., k) € (17

An argument similar to that of Claim 2.3 shows that if M and N are both min-
imal iterable sharps for the same sentence 6, then Thy (M) = Thi(N). The join
Dy -, Thi (M) is called the sharp for 8. The sharp for the sentence “there are n
Woodin cardinals” is called the sharp for n Woodin cardinals. The sharp for a tautol-
ogy is denoted 0%, It codes a club of indiscernibles for L.

The existence of 0¢ follows from the existence of a measurable cardinal. But in
general the existence of the sharp for 6 does not follow directly from the existence of
large cardinals in V. The sharp also requires iterability, which is used in an essential
way through the appeal to the comparison process in the proof of Claim 2.3. At the
level of finitely many Woodin cardinals iterability can be obtained using Theorem 2.1
and additional arguments on the uniqueness of realizable branches, so that the exis-
tence of the sharp for n Woodin cardinals follows from the existence in V of n Woodin
cardinals and a measurable cardinal above them.

It was noted in Section 1 that proofs of determinacy for pointclasses from 1'[}
onward require large cardinal axioms. To be specific, a proof of determinacy for the
pointclass H% (Theorem 1.3) requires roughly the existence of a measurable cardinal,
a proof of determinacy for the pointclass H,ll 41 (Theorem 1.4) requires roughly the
existence of n Woodin cardinals and a measurable cardinal above them, and a proof
of determinacy for the pointclass of all sets in L(R) (Theorem 1.5) requires roughly
the existence of @ Woodin cardinals and a measurable cardinal above them. But
this is only the beginning of the connection between these pointclasses and Woodin
cardinals.

Recall that a set A is a—H% if there is a sequence (Ag | § < o) of H% sets so that
x € Aiff the least £ so that x & Ag V& = « is odd. (The hierarchy generated by this
definition is the difference hierarchy on H} sets. Note for example that for « = 2
the condition states simply that A = Ag — A1.) The set A is (lightface) oz—l'l% if the
underlying code for the sequence (Ag | § < «) is recursive. A is <a)2—l'I} if it is
a-l'[i for some o < w?.

Theorem 2.4 (Martin [21]). Let B; (i < w) be a recursive enumeration of the
<a)2—1'I% sets. Then each of 0% and {i | player I has a winning strategy in G ,,(B;)} is
recursive in the other.

Theorem 2.4 provides a very tight connection between a large cardinal object, 0F,
and infinite games. For every formula ¢ there is a <w2—1'[} set B so that ¢ belongs
to 0% iff I wins G, (B), and conversely (for every B there is ¢).

Theorem 2.5. Let B; (i < w) be a recursive enumeration of the D(")(<a)2-l'li) sets.
Then the sharp for n Woodin cardinals and {i | player 1 has a winning strategy in
G (Bj)} are each recursive in the other.
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Theorem 2.5 generalizes Theorem 2.4 to n > 0. It has two directions. The
first states that membership in the sharp for n Woodin cardinals is equivalent to
winning a E)(”)(<a)2—l"[}) game. This follows from the results of Martin—Steel [23].
Essentially they show that iterability (or more precisely the ability to survive through
the comparison process) for minimal sharps for » Woodin cardinals, can be expressed
asao® (<w2—1'l%) statement. The other direction of Theorem 2.5 states that sharps
for n Woodin cardinals can discern which player wins a D(")(<a)2—l'[%) game. This
direction follows from the determinacy proof in Neeman [30], [32]. The proof reduces
the quantifiers involved in the O ( <a)2-1'[}) set to an iteration game on any model
which has a sharp for n Woodin cardinals. The reduction takes place inside the
model, and the model can tell which player in the O (<a)2—l'l%) game is matched to
the good player in the iteration game. Since the sharp is iterable, this player wins the
D(")(<a)2—l'[}) game.

Theorem 2.5 is an indication of the close connections between the study of inner
models for Woodin cardinals and the study of projective pointclasses. The connections
are tight enough that inner models can be used directly in the study of projective
pointclasses, and further up in the study of L(R) under determinacy.

Theorem 2.6 (Neeman—Woodin, see [30]). Determinacy for all l'[,ll 41 sets implies
determinacy for all sets in the larger pointclass O™ (<a)2-l'l{).

Theorem 2.7 (Hjorth [6]). Work in L(R) assuming AD. Let < be a E)(oz-l'[{) prewell-
order with o < w - k. Then the ordertype of < is smaller than wjy1.

Theorem 2.8 (Neeman, Woodin, see [36]). Assume ADY®). Then it is consistent
(with ADY®) and the axiom of choice) that 3% = wy.

Theorem 2.6 for n = 0 is a combination of the work of Harrington [5], who
obtained 07 and its relativized versions for all reals from l'[% determinacy, and Martin,
who obtained <a)2-l'Ii determinacy from the sharps. Athigher levels Woodin obtained
sharps for n Woodin cardinals from 1'[}1 41 determinacy and Neeman [30] obtained
DM (<’ %) determinacy from these sharps. Theorem 2.6 had already been proved
for odd n by Kechris—Woodin [14], using methods which are purely descriptive set
theoretic. For even n the only known proofs involve large cardinals.

Hjorth [6] proved Theorem 2.7 by embedding a given o(<w - k—l'I%) prewellorder
into a directed system of iterates of a sharp for one Woodin cardinal, and proving that
the rank of the directed system is smaller than wy41. Again, the proof is closely tied
up with large cardinals and iteration trees, even though the result is purely descriptive
set theoretic.

Theorem 2.8 is proved by collapsing w,, to w; over L(R), so that (w,41)*®,
which is equal to 6% by Theorem 1.11, becomes w, of the generic extension. The
forcing to collapse w,, involves an ultrafilter on [, (w,,)]=*!, and the construction
of this ultrafilter uses a directed system of iterates of fine structural inner models with
Woodin cardinals.
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3. Larger cardinals, longer games

For o < w; and B C R let G.o(B) denote the length w - « game with payoff B.
Players I and II alternate playing natural numbers in the format of Diagram 2, taking
w - o moves to produce together a sequence r = (r(§) | £ < w - «) in @*%. The
sequence r may be viewed as an element of (w®”)* = R*. If r belongs to B then
player I wins, and otherwise player II wins.

1| r(0) r(2) oo
II | r(1) rE+1) L.

Diagram 2. General format of a transfinite game.

Determinacy for all length & games with payoff in O™ (<w?-I1 }) is easily seen to
be the same as determinacy for all games of length @ - (n + 1) with payoff in <w?-II %
Theorem 2.5 and the part of Theorem 2.6 dealing with a proof of determinacy from
sharps can therefore be rephrased as follows:

Theorem 3.1. Let B; (i < w) be a recursive enumeration of all the <a)2—1'[% sets.
Suppose that there is an iterable sharp for n Woodin cardinals. Then all length
w - (n + 1) games with payoff in <a)2—1'[1 are determined. Moreover, the sharp for n
Woodin cardinals and {i | player 1 wins G .(n+1)(B;)} are each recursive in the other.

The same precise connection between large cardinals and determinacy can be
obtained higher up. Theorems 3.2, 3.3, and 3.4 below give several markers along the
hierarchies of large cardinals and determinacy, progressively moving upward on both.

Theorem 3.2 (Neeman, Woodin, see [33, Chapter 2]). Let o be a countable ordinal.
Let B; (i < ) be a recursive* enumeration of all the <a)2-1'l% subsets of R1T%.
Suppose that there is an iterable sharp for a Woodin cardinals. Then all length
w - (1 + ) games with payoff in <a)2-1'l% are determined. Moreover, the sharp for o
Woodin cardinals and {i | player 1 wins G,.(1+«)(B;)} are each recursive in the other.

For B C w=“! let Gagm(B) be the following game: Players I and II alternate
natural numbers as in Diagram 2, continuing until they reach the first ordinal o so
that L,[r(§) | £ < «] is admissible. At that point the game ends. Player I wins if
(r(¢) | ¢ < a) € B, and otherwise player II wins.

The run (r(§) | & < a) has the property that for every B < o, Lg[r(§) | § < B]
is not admissible. Using this property the run can be coded by a real in a canonical,
uniform manner. The payoff set B is said to be I" in the codes just in case that the set
of real codes for sequences in B belongs to I'.

Gadm(B) is a game of variable countable length. Its runs are countable, but the
length of a particular run depends on the moves made during the run. Each of the

2Recursiveness here is relative to a code for a.
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players can force the length of the run to be greater than any fixed countable ordinal «,
and the determinacy of G,gm(B) for all B in <a)2—1'I} implies the determinacy of
Gy (B) for all B in <w?-I1!, for each countable .

The Mitchell order on extenders is the order E « F iff E € Ult(V, F). The
Mitchell order of a cardinal « is the ordertype of the restriction of < to extenders with
critical point .

Theorem 3.3 (Neeman [34]). Let B; (i < w) be a recursive enumeration of the
subsets of w=“! which are <a)2—1'11 in the codes. Suppose that there is an iterable
sharp for the statement “there is a cardinal k which is a limit of Woodin cardinals
and has Mitchell order k7. Then the games G yam(B) are determined for all B
which are <a)2-l'[i in the codes. Moreover the sharp and the real {i | player 1 wins
Gadm (B;j)} are each recursive in the other.

For B C w=®! let Giocal (L, B) be the following game: Players I and II alternate
natural numbers as in Diagram 2, continuing until they reach the first ¢ > w so that «
is a cardinal in L[r(§) | £ < «]. At that point the game ends. Player I wins if
(r(¢) | € < a) € B. Otherwise player Il wins. Gioca1 (L, B) is a game ending at w
in L of the play. It too is a game of variable countable length.

A code for arun (r(§) | £ < a) of Giocal(L, B) is simply a pair (w, x) where
w is a wellorder of w of ordertype o, x € w®, and for each n, x(n) is equal to r(§)
where £ is the ordertype of n in w. These codes belong to P (w X w) X w®, which is
isomorphic to w®. As before, B is said to be I in the codes just in case that the set of
codes for sequences in B belongs to I".

Theorem 3.4 (Neeman [33, Chapter 7]). Let B; (i < w) be a recursive enumeration
of the subsets of w=®' which are D(<w2-1'[%) in the codes. Suppose that there is
an iterable sharp for the statement “there is a Woodin cardinal which is also a limit
of Woodin cardinals”. Then the games Giocqal (L, B) are determined for all B which
are E)(<a)2—l"[}) in the codes. Moreover the sharp and the real {i | player 1 wins
Giocal (L, Bj)} are each recursive in the other.

Remark 3.5. Theorem 3.4 has an interesting corollary, due to Woodin: Suppose
that there is an iterable sharp for a Woodin limit of Woodin cardinals. Then it is
consistent that all ordinal definable games of length w; are determined. The model
witnessing thisisof theform M = L[x(§) | £ < y]wherey = a){” , and the strategies
witnessing determinacy in this model are obtained through uses of Theorem 3.4 on
games ending at w1 in L of the play. For a complete proof of the corollary see Neeman
[33, 7F.13-15].

Remark 3.6. There is another interesting game that comes up in the proof of The-
orem 3.4. For a partial function f: R — w and a set B C o=*! let Gont(f, B) be
the following game: Players I and II alternate natural numbers as in Diagram 2. In
addition, after each block of w moves they write a natural numbers on a “side board”.
Let xy = (r(w-a +1) | i < w) be the ath block of moves. The natural number
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they write following this block is ny, = f(xq). They continue playing until reaching
the first « so that x, ¢ dom(f) or ny, € {ng | B < a} (meaning that the natural
number written after block « is a repetition of a number written previously). At that
point the game ends, player I wins if (r(£) | £ < w - ¢ + w) € B, and player II wins
otherwise. The large cardinal strength of determinacy for these games is roughly a
cardinal ¥ which is § + 1-strong for some Woodin cardinal § > «k (see Neeman [33,
Chapter 3]), and the determinacy proof for these games is a precursor to the use of
extenders overlapping Woodin cardinals in the proof of Theorem 3.4.

Determinacy in Theorems 3.2, 3.3, and 3.4 is proved by reducing the long game to
an iteration game on the given model. The reduction, which uses the large cardinals
of the model, matches one of the players in the long game to the good player in the
iteration game. In effect it converts the iteration strategy for the model into a winning
strategy for this player in the long game. Determinacy therefore rests on the existence
of iterable models; the existence of large cardinals by itself is not directly sufficient.

In the case of Theorems 3.2 and 3.3, the long game is reduced to an iteration game
of a specific format, involving only linear compositions of iteration trees of length .
The fact that the good player can win games of this format, on countable models
which embed into rank initial segments of V, follows directly from Theorem 2.1.
The determinacy proved in Theorems 3.2 and 3.3 therefore follows from just the
assumptions of large cardinals in V: « Woodin cardinals and a measurable cardinal
above them in the case of Theorem 3.2, and a measurable cardinal above a cardinal «
so that o(k) = k™ and « is a limit of Woodin cardinals in the case of Theorem 3.3.

The iteration game generated by the proof of Theorem 3.4 is as complicated as
the full iteration game, and Theorem 2.1 by itself is not enough to produce a winning
strategy for the good player in this game. Still, by Neeman [31], the existence of
an iterable model satisfying the large cardinal assumptions of Theorem 3.4 follows
from the existence of the large cardinals, a Woodin limit of Woodin cardinals and a
measurable cardinal above it, in V.

Theorems 3.2, 3.3, and 3.4 extend the precise connection between determinacy
and inner models to levels of games of variable countable lengths, and Woodin limits
of Woodin cardinals. It is generally believed that the large cardinal hierarchy is rich
enough to calibrate the strength of all natural statements. Could determinacy provide
arich enough hierarchy to match the full extent of the large cardinal hierarchy? If not,
how far does determinacy reach? How far does the hierarchy of long games reach?
We are very far from answers to these questions.

Let 6 be a large cardinal assumption at or below the existence of a superstrong
cardinal. (Beyond the level of superstrong cardinals there are problems with the
comparison process and Claim 2.3.) The comparison process provides the best clues
in the search for long games strong enough to match 6 in the sense of Theorems 3.2, 3.3,
and 3.4: If a particular format of long games subsumes the iteration games appearing
in the comparison of minimal models of 6, then the associated game quantifier is
strong enough to define the sharp for 6.
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The following format is strong enough to subsume the full iteration game, and
therefore all iteration games appearing in all comparisons of all inner models up to
superstrong cardinals. Let £* denote the language of set theory with an added unary
relation symbol 7, and let ¢(«, B8) be a formula in £*. Define Gy, 2(¢) to be the
following game: Players I and II alternate playing w; natural numbers in the manner
of Diagram 2, producing together a sequence (r(§) | £ < wi) in w®'. If there is a
club C C wy sothat (L, [r], r) = ¢la, B] forall« < B bothin C then player I wins,
and otherwise player II wins. (A quick word on notation: r formally is a set of pairs
inw; X w. (Ly,[r], r) = ¢ iff ¢ holds in L, [r] with appearances of the predicate
in ¢ interpreted by r.)

The number 2 in G¢up 2(¢) refers to the number of free variables in ¢. Games
Gclub.k (¢), fork # 2 in w and ¢ a formula with & free variables, can defined similarly.
All the definitions can be relativized to a real x by replacing L, [r] with Ly, [r, x]
and letting ¢ take x as a parameter. They can be relativized to a set of reals A by
replacing L with L4 and allowing ¢ to take an additional predicate interpreted by
ANLY [r].

The full iteration game on a countable model M can be recast as a game of the
form Gup,2 (@) relativized to areal coding M. Woodin [41] connects the determinacy
of the games G,k (¢) and their relativizations to E% absoluteness under the com-
binatorial principle generic diamond (& ). Determinacy for the games Gpup 2(¢) is
not provable from large cardinals, by Larson [17], but it may be provable from large
cardinals and <. Unfortunately the games are too strong to be handled by current
methods in proofs of determinacy, precisely because they are strong enough to sub-
sume the full iteration game. If there were a match for G¢jyp 2 similar to the matches
in Theorems 2.4, 2.5, 3.2, 3.3, and 3.4, then the large cardinal involved would have
to be stronger than a superstrong, far beyond the level of Woodin cardinals.

The following format produces a weaker game. Let k < w. Let S = (Sq | a €
[w;]<k ) be a collection of mutually disjoint statiogary subsets of w1, with a stationary
set S, associated to each tuple a € [w]<¥. Let [S] denote the set {(a, ..., k1) €
[w1]F | (Vi <k)oj € Siao,...a;_1)}- Let @(xo, ..., xg—1) be a formula in £L*. Define
Go, k(S’ , ¢) to be the following game: Players I and II alternate playing w; natural
numbers in the manner of Diagram 2, producing together a sequence r € w®!. If there
1s aclub C C wj so that (Ly,[r], r) E ¢lao, ..., ar—1] for all (xp, ..., ax—1) €
[S] N[CIF then player I wins therunr. If there isa club C C wg so that (Lw1 [rl,r) =
—plag, ..., ar—1] forall {(ag, ..., 0r_1) € [S] N[C]¥ then player I wins r. If neither
condition holds then both players lose. _

Note that the two winning conditions in the definition of G, «(S, ¢) cannot both
hold. This uses the fact that each of the sets S, is stationary in w;, and the demand
in the conditions that C must be club in w;. Thus at most one player wins each run
of Gy, k(S ¢). For k > 0 it may well be that neither one of the winning conditions
holds. So there may well be runs of G, k(S @) which are won by neither player.
Determinacy for G, k(S @) is defined in the stronger of the two possible senses.
The game is determined if one of the players has a winning strategy; a strategy which
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merely avoids losing is not enough.
Recall that a sharp for 6 is an inner model M with a final extender E

Et’g’p is an extender over M and M = 6. Let 6 be the sentence “crit(Et’(‘fp
cardinal”. The minimal iterable sharp for 6, if it exists, is denoted 0%. Recall that
iterating out the top extender of a sharp M produces a model M* and a club I C w;

of indiscernibles for M*, consisting of the images of crit(EtAO”p) under the iteration
embeddings. In the case of M = 0" the ordinals in I are Woodin cardinals of M*.
The existence of 0V thus implies the existence of an iterable model with a club of

indiscernible Woodin cardinals, and in fact the two are equivalent.

M
top> SO that

) is a Woodin

Remark 3.7. Iterability for countable elementary substructures of V is not known at
the level of 0% — the strongest results in this direction are the ones of Neeman [31],
reaching to the level of Woodin limits of Woodin cardinals — and the existence of 0%
is not known to follow from large cardinals in V.

Theorem 3.8 (Neemanl35]). Suppose that 0% exists. Then the games Gwl,k(§ , Q)
are determined, for all S, k, and .

There are two parameters determining the payoff of the game G, « (5‘ ,9). Oneis
the formula ¢ and the number £ of its free variables. The other is the sequence S. The
formula ¢, or the formula ¢ and the real x in the case of games relativized to a real,
is the definable part of the payoff condition, analogous to the <a)2—l'l% set, or more
precisely to its recursive definition, in Theorems 3.2, 3.3, and 3.4. The sequence S
consists of disjoint stationary sets, and this makes it highly non-definable. It has no
parallel in TheorerPs 3.2,3.3, and 3.4. Itis necessary in Theorem 3.8, and the winning
strategy in G, x(S, ¢) depends on S. But which of the players has a winning strategy
is determined independently of S:

Thegrem 3.9 (Neeman [35]). Suppose that OV exists. Let S = (Sq | a € [w1]<k)
and S* = (S¥ | a € [w11=K) be two sequences of mutually disjoint stationary subsets
of w1. Then player 1 (respectively I1) has a winning strategy in Gwl,k(§ , @) iff she
has a winning strategy in G, i (S*, ¢).

Define O, (k, ¢) to be 1 if player I has a winrling strategy in Gwl’k(S’, @) for
some, and using Theorem 3.9 equivalently for all, S. Define O, (k, ¢) to be equal
to O otherwise.

Theorem 3.10 (Neeman [35]). Suppose that 0% exists. Then {(k, ¢) | Do, (k, @) =1}
and 0% are each recursive in the other.

Theorems 3.8 and 3.10 establish the same precise connection between 0" and
games of length w; that exists between 0¢ and <w2—1'l% games of length w. They
provide another step, the first to reach games of length w1, in the project of matching
the hierarchy of large cardinals with the hierarchy of long games.
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The art of ordinal analysis

Michael Rathjen

Abstract. Ordinal analysis of theories is a core area of proof theory whose origins can be traced
back to Hilbert’s programme — the aim of which was to lay to rest all worries about the foundations
of mathematics once and for all by securing mathematics via an absolute proof of consistency.
Ordinal-theoretic proof theory came into existence in 1936, springing forth from Gentzen’s head
in the course of his consistency proof of arithmetic. The central theme of ordinal analysis is the
classification of theories by means of transfinite ordinals that measure their ‘consistency strength’
and ‘computational power’. The so-called proof-theoretic ordinal of a theory also serves to
characterize its provably recursive functions and can yield both conservation and combinatorial
independence results.

This paper intends to survey the development of “ordinally informative” proof theory from
the work of Gentzen up to more recent advances in determining the proof-theoretic ordinals of
strong subsystems of second order arithmetic.
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1. Introduction

Ordinal analysis of theories is a core area of proof theory. The origins of proof
theory can be traced back to the second problem on Hilbert’s famous list of problems
(presented at the Second International Congress in Paris on August 8, 1900), which
called for a proof of consistency of the arithmetical axioms of the reals. Hilbert’s
work on axiomatic geometry marked the beginning of his live-long interest in the
axiomatic method. For geometry, he solved the problem of consistency by furnishing
arithmetical-analytical interpretations of the axioms, thereby reducing the question
of consistency to the consistency of the axioms for real numbers. The consistency of
the latter system of axioms is therefore the ultimate problem for the foundations of
mathematics.

Which axioms for real numbers Hilbert had in mind in his problem was made
precise only when he took up logic full scale in the 1920s and proposed a research
programme with the aim of providing mathematics with a secure foundation. This
was to be accomplished by first formalizing logic and mathematics in their entirety,
and then showing that these formalizations are consistent, that is to say free of contra-
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dictions. Strong restrictions were placed on the methods to be applied in consistency
proofs of axiom systems for mathematics: namely, these methods were to be com-
pletely finitistic in character. The proposal to obtain finitistic consistency proofs of
axiom systems for mathematics came to be called Hilbert’s Programme.

Hilbert’s Programme is a reductive enterprise with the aim of showing that when-
ever a ‘real’ proposition can be proved by ‘ideal’ means, it can also be proved by ‘real’,
finitistic means. However, Hilbert’s so-called formalism was not intended to elimi-
nate nonconstructive existence proofs in the practice of mathematics, but to vindicate
them.

In the 1920s, Ackermann and von Neumann, in pursuit of Hilbert’s Programme,
were working on consistency proofs for arithmetical systems. Ackermann’s 1924
dissertation gives a consistency proof for a second-order version of primitive recur-
sive arithmetic which explicitly uses a finitistic version of transfinite induction up to
the ordinal w®”. The employment of transfinite induction on ordinals in consistency
proofs came explicitly to the fore in Gentzen’s 1936 consistency proof for Peano arith-
metic, PA. This proof led to the assignment of a proof-theoretic ordinal to a theory.
This so-called ordinal analysis of theories allows one to classify theories by means
of transfinite ordinals that measure their ‘consistency strength’ and ‘computational
power’.

The subject of this paper is the development of ordinal analysis from the work
of Gentzen up to very recent advances in determining the proof-theoretic ordinals of
strong subsystems of second order arithmetic.

1.1. Gentzen’s result. The most important structure in mathematics is arguably
the structure of the natural numbers 91 = (N; 0%, 19 4 M N <m), where 0%
denotes zero, 17 denotes the number one, +7F, x™, E? denote the successor, addition,
multiplication, and exponentiation function, respectively, and <M stands for the less-
than relation on the natural numbers. In particular, E m(n, m) =n".

Many of the famous theorems and problems of mathematics such as Fermat’s and
Goldbach’s conjecture, the Twin Prime conjecture, and Riemann’s hypothesis can be
formalized as sentences of the language of 91 and thus concern questions about the
structure 1.

Definition 1.1. A theory designed with the intent of axiomatizing the structure 91
is Peano arithmetic, PA. The language of PA has the predicate symbols =, <,
the function symbols +, x, E (for addition, multiplication, exponentiation) and the
constant symbols 0 and 1. The Axioms of PA comprise the usual equations and laws
for addition, multiplication, exponentiation, and the less-than relation. In addition,
PA has the Induction Scheme

(IND)  ¢(0) AVx[p(x) = ¢(x + 1)] — Vxe(x)

for all formulae ¢ of the language of PA.
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Gentzen showed that transfinite induction up to the ordinal
g0 = sup{w, 0®, o®’, . l=leasta. 0¥ =«

suffices to prove the consistency of PA. To appreciate Gentzen’s result it is pivotal
to note that he applied transfinite induction up to &g solely to elementary computable
predicates and besides that his proof used only finitistically justified means. Hence,
a more precise rendering of Gentzen’s result is

F 4+ EC-TI(gg) - Con(PA); (1)

here F signifies a theory that embodies only finitistically acceptable means, EC-TI(gq)
stands for transfinite induction up to &y for elementary computable predicates, and
Con(PA) expresses the consistency of PA. Gentzen also showed that his result was the
best possible in that PA proves transfinite induction up to « for arithmetic predicates
for any o < gp. The compelling picture conjured up by the above is that the non-
finitist part of PA is encapsulated in EC-TI(gp) and therefore “measured” by ¢,
thereby tempting one to adopt the following definition of proof-theoretic ordinal of a
theory T

T |con = least a. F + EC-TI() - Con(T). 2)

In the above, many notions were left unexplained. We will now consider them one
by one. The elementary computable functions are exactly the Kalmar elementary
functions, i.e. the class of functions which contains the successor, projection, zero,
addition, multiplication, and modified subtraction functions and is closed under com-
position and bounded sums and products. A predicate is elementary computable if its
characteristic function is elementary computable.

According to an influential analysis of finitism due to W.W. Tait, finististic reason-
ing coincides with a system known as primitive recursive arithmetic. For the purposes
of ordinal analysis, however, it suffices to identify F with an even more restricted the-
ory known as Elementary Recursive Arithmetic, ERA. ERA is a weak subsystem of
PA having the same defining axioms for +, x, E, < but with induction restricted to
elementary computable predicates.

In order to formalize EC-TI(«) in the language of arithmetic we should first discuss
ordinals and the representation of particular ordinals « as relations on N.

Definition 1.2. A set A equipped with a total ordering < (i.e. < is transitive, irreflexive,

and Vx,y € A[x <y Vx =y V y < x])is awellordering if every non-empty

subset X of A contains a <-least element, i.e. Ju € X)(Vy € X)[u <y V u = y].
An ordinal is a transitive set wellordered by the elementhood relation €.

Fact 1.3. Every wellordering (A, <) is order isomorphic to an ordinal («, €).

Ordinals are traditionally denoted by lower case Greek letters «, 8, y, 8, ... and
the relation € on ordinals is notated simply by <. The operations of addition, mul-
tiplication, and exponentiation can be defined on all ordinals, however, addition and
multiplication are in general not commutative.
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We are interested in representing specific ordinals « as relations on N. In essence
Cantor [10] defined the first ordinal representation system in 1897. Natural ordinal
representation systems are frequently derived from structures of the form

Ql:(“vflﬂ"'?fnv<ol> (3)

where « is an ordinal, <, is the ordering of ordinals restricted to elements of o and
the f; are functions
fitax - Xxa— «
~—————

k; times

for some natural number k;.
A=(A g1 ..., 8 <) “4)
is a computable (or recursive) representation of 2 if the following conditions hold:
1. A € Nand A is a computable set.
2. <is a computable total ordering on A and the functions g; are computable.
3. A = A, i.e. the two structures are isomorphic.

Theorem 1.4 (Cantor, 1897). For every ordinal B > 0 there exist unique ordinals
Bo > B1 > --- > B such that

B=ao . . 4o (5)

The representation of § in (5) is called the Cantor normal form. We shall write
B =cnr Pl 4+ - + wPr to convey that By > B1 > - - > Br.

&o denotes the least ordinal « > 0 such that (V8 < «) wP < a. gy can also be
described as the least ordinal « such that w® = «.

Ordinals B < &g have a Cantor normal form with exponents 8; < f and these
exponents have Cantor normal forms with yet again smaller exponents. As this process
must terminate, ordinals < &g can be coded by natural numbers. For instance a coding
function

m.7:¢0—N

could be defined as follows:

., O lfOt = O’
o =
(ral—la-‘-,ran—l> lfa =CNF wOl] +...+wan
where (ki, ..., ky) = 2k+1 p 1 \ith p; being the ith prime number (or any

other coding of tuples). Further define:
Ap:=rangeof 7., Ta'<"87 & a<§p

o _?_ TBl:=Ta+B7, o ~ B :="a- B, d)roﬂ T ¥
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Then
(g0, +, -, 8 > @, <) = (Ao, +.°, x > &, <).

Ao, +,° x > @F, < are computable (recursive), in point of fact, they are all elemen-
tary computable.
Finally, we can spell out the scheme EC-TI(gg) in the language of PA:

Vx [Vy y <x = P(y)) > P(x)] = Vx P(x)

for all elementary computable predicates P.

1.2. Cut Elimination: Gentzen’s Hauptsatz. In the consistency proof, Gentzen
used his sequent calculus and employed the technique of cut elimination. As this is a
tool of utmost importance in proof theory and ordinal analysis, a rough outline of the
underlying ideas will be discussed next.

The most common logical calculi are Hilbert-style systems. They are specified by
delineating a collection of schematic logical axioms and some inference rules. The
choice of axioms and rules is more or less arbitrary, only subject to the desire to obtain
a complete system (in the sense of Godel’s completeness theorem). In model theory
it is usually enough to know that there is a complete calculus for first order logic as
this already entails the compactness theorem.

There are, however, proof calculi without this arbitrariness of axioms and rules.
The natural deduction calculus and the sequent calculus were both invented by
Gentzen. Both calculi are pretty illustrations of the symmetries of logic. The se-
quent calculus since is a central tool in ordinal analysis and allows for generalizations
to so-called infinitary logics. Gentzen’s main theorem about the sequent calculus is
the Hauptsatz, i.e. the cut elimination theorem.

A sequentisanexpression” = A where I" and A are finite sequences of formulae
A1, ..., A, and By, ..., By, respectively. We also allow for the possibility that I" or
A (or both) are empty. The empty sequence will be denoted by #. I' = A is read,
informally, as I" yields A or, rather, the conjunction of the A; yields the disjunction
of the B;. In particular, we have:

 If I is empty, the sequent asserts the disjunction of the B;.
» If A is empty, it asserts the negation of the conjunction of the A;.
e if I and A are both empty, it asserts the impossible, i.e. a contradiction.

We use upper case Greek letters I', A, A, ®, E ... torange over finite sequences
of formulae. ' € A means that every formula of I" is also a formula of A.
Next we list the axioms and rules of the sequent calculus.

* Identity Axiom:
A=A

where A is any formula. In point of fact, one could limit this axiom to the case
of atomic formulae A.
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e Cut Rule:

' = A A

Michael Rathjen

AN = O

A= A0

Cut

The formula A is called the cut formula of the inference.

e Structural Rules:
' = A

I = A’

ifrCcI’/, ACA

A special case of the structural rule, known as contraction, occurs when the
lower sequent has fewer occurrences of a formula than the upper sequent. For
instance, A, I’ = A, B follows structurally from A, A,I’ = A, B, B.

* Rules for Logical Operations:

Left

' = A A
-A ' = A

' = A A B,A = 0O

Right

B, ' = A
I' = A,—-B

AT = A,B

A—- B, I'A = A0

' = AA— B

AT = A B, ' = A ' = A,A ' = A,B
AANB, T = A AAB,I' = A ' = AAAB
AT = A B, = A ' = A,A ' = A,B

AVBT = A

F().T = A
VxF().T = A "L

F(a),I' = A
IL

IxF(x), = A

I' = AAVB ' = A,AVB

I = A, Fa)
I = AVxF(x) 'R

I' = A,F(t)
I' = A,3x F(x)

iR

In VL and 3R, ¢ is an arbitrary term. The variable a in VR and 3L is an eigenvariable
of the respective inference, i.e. a is not to occur in the lower sequent.

In the rules for logical operations, the formulae highlighted in the premisses are
called the minor formulae of that inference, while the formula highlighted in the
conclusion is the principal formula of that inference. The other formulae of an

inference are called side formulae.

A proof (also known as deduction or derivation) D is a tree of sequents satisfying

the following conditions:

* The topmost sequents of & are identity axioms.
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* Every sequent in & except the lowest one is an upper sequent of an inference
whose lower sequent is also in D.

A sequent I' = A is deducible if there is a proof having I' = A as its the bottom
sequent.

The Cut rule differs from the other rules in an important respect. With the rules
for introduction of a connective on the left or the right, one sees that every formula
that occurs above the line occurs below the line either directly, or as a subformula of
a formula below the line, and that is also true for the structural rules. (Here A(¢) is
counted as a subformula, in a slightly extended sense, of both 3x A(x) and Vx A(x).)
But in the case of the Cut rule, the cut formula A vanishes. Gentzen showed that such
“vanishing rules” can be eliminated.

Theorem 1.5 (Gentzen’s Hauptsatz). If a sequent ' = A is provable, then it is
provable without use of the Cut Rule (called a cut-free proof’).

The secret to Gentzen’s Hauptsatz is the symmetry of left and right rules for the
logical connectives. The proof of the cut elimination theorem is rather intricate as
the process of removing cuts interferes with the structural rules. The possibility of
contraction accounts for the high cost of eliminating cuts. Let || be the height of
the deduction D. Also, let rank(D) be supremum of the lengths of cut formulae
occurring in . Turning D into a cut-free deduction of the same end sequent results,
in the worst case, in a deduction of height # (rank (D), |D|) where # (0, n) = n and
H(k 4 1,n) = 47&" yielding hyper-exponential growth.

The Hauptsatz has an important corollary which explains its crucial role in ob-
taining consistency proofs.

Corollary 1.6 (The Subformula Property). If a sequent I' = A is provable, then it
has a deduction all of whose formulae are subformulae of the formulae of T and A.

Corollary 1.7. A contradiction, i.e. the empty sequent = 0, is not deducible.

Proof. According to the Hauptsatz, if the empty sequent were deducible it would have
a deduction without cuts. In a cut-free deduction of the empty sequent only empty
sequents can occur. But such a deduction does not exist. O

While mathematics is based on logic, it cannot be developed solely on the basis
of pure logic. What is needed in addition are axioms that assert the existence of
mathematical objects and their properties. Logic plus axioms gives rise to (formal)
theories such as Peano arithmetic or the axioms of Zermelo—Fraenkel set theory.
What happens when we try to apply the procedure of cut elimination to theories?
Well, axioms are poisonous to this procedure. It breaks down because the symmetry
of the sequent calculus is lost. In general, we cannot remove cuts from deductions
in a theory 7 when the cut formula is an axiom of 7. However, sometimes the
axioms of a theory are of bounded syntactic complexity. Then the procedure applies
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partially in that one can remove all cuts that exceed the complexity of the axioms
of T. This gives rise to partial cut elimination. It is a very important tool in proof
theory. For example, it works very well if the axioms of a theory can be presented as
atomic intuitionistic sequents (also called Horn clauses), yielding the completeness
of Robinsons resolution method. Partial cut elimination also pays off in the case of
fragments of PA and set theory with restricted induction schemes, be it induction on
natural numbers or sets. This method can be used to extract bounds from proofs of
Hg statements in such fragments.

Full arithmetic (i.e. PA), though, does not even allow for partial cut elimination
since the induction axioms have unbounded complexity. However, one can remove
the obstacle to cut elimination in a drastic way by going infinite. The so-called w-rule
consists of the two types of infinitary inferences:

[ = A,FO); T = A,F(l); ... :T = A, F(n); °
T = A,Vx F(x) @

FO),I = A; F),T = A; ... ;F(n), [ = A; .
.

x F(x), [ = A
The price to pay will be that deductions become infinite objects, i.e. infinite well-
founded trees.

The sequent-style version of Peano arithmetic with the w-rule will be termed PA,,.
PA, has no use for free variables. Thus free variables are discarded and all terms
will be closed. All formulae of this system are therefore closed, too. The numerals
are the terms 77, where 0 = 0 and n + 1 = Si. We shall identify n with the natural
number n. All terms ¢ of PA,, evaluate to a numeral 7.

PA,, has all the inference rules of the sequent calculus except for VR and 3L. In
their stead, PA, has the wR and wL inferences. The Axioms of PA,, are the following:
(i) ¥ = Aif Aisatrue atomic sentence; (ii)) B = @ if B is a false atomic sentence;
(1) F(sy,...,8n) = F(t1,...,t,) if F(sy,...,s,) is an atomic sentence and s;
and ¢; evaluate to the same numeral.

With the aid of the w-rule, each instance of the induction scheme becomes logically
deducible, albeit the price to pay will be that the proof tree becomes infinite. To
describe the cost of cut elimination for PA,, we introduce the measures of height and
cut rank of a PA,, deduction £. We will notate this by

JD}%F:>A.

The above relation is defined inductively following the buildup of the deduction D.
For the cut rank we need the definition of the length, |A| of a formula: |[A| = 0if A
is atomic; |—Ag| = |Ag| + 1; |[AgUA | = max(|Ag, A1|) + 1 where O = A, Vv, —;
|[3x F(x)| = |Vx F(x)| = |F(O)| + 1.

Now suppose the last inference of D is of the form

Do Dy
o= Ay "~ Ty = Ay
' = A




The art of ordinal analysis 53

where T = 1, 2, w and the D,, are the immediate subdeductions of D. If
Dy [ Th = A,
and o, < « for all n < 1 then
DET = A

providing thatin the case of / being a cut with cut formula A we alsohave |[A| < k. We
will write PA, }% ' = A toconvey that there exists aPA ,-deduction }% ' = A.
The ordinal analysis of PA proceeds by first unfolding any PA-deduction into a PA,-
deduction:

IfPAI—F:>A,thenPAw}:)—+mF:>A 6)

for some m, k < w. The next step is to get rid of the cuts. It turns out that the cost of
lowering the cut rank from k + 1 to k is an exponential with base w.

Theorem 1.8 (Cut Elimination for PA,,).

IFPA, BT = A, then PA, ST = AL

As a result, if PA, }% I' = A, we may apply the previous theorem n times to

arrive at a cut-free deduction PA, }f I = A with p = @ , where the stack
has height n. Combining this with the result from (6), it follows that every sequent
' = A deducible in PA has a cut-free deduction in PA,, of length < &9. Ruminating
on the details of how this result was achieved yields a consistency proof for PA from
transfinite induction up to gy for elementary decidable predicates on the basis of
finitistic reasoning (as described in (1)).

Deductions in PA, being well-founded infinite trees, they have a natural associated
ordinal length, namely: the height of the tree as an ordinal. Thus the passage from
finite deductions in PA to infinite cut-free deductions in PA,, provides an explanation
of how the ordinal &g is connected with PA.

Gentzen, however, did not consider infinite proof trees. The infinitary version of
PA with the w-rule was introduced by Schiitte in [35]. Incidentally, the w-rule had
already been proposed by Hilbert [18]. Gentzen worked with finite deductions in the
sequent calculus version of PA, devising an ingenious method of assigning ordinals
to purported derivations of the empty sequent (inconsistency). It turns out in recent
work by Buchholz [9] that in fact there is a much closer intrinsic connection between
the way Gentzen assigned ordinals to deductions in PA and the way that ordinals are
assigned to infinite deductions in PA,,.

In the 1950s infinitary proof theory flourished in the hands of Schiitte. He extended
his approach to PA to systems of ramified analysis and brought this technique to per-
fection in his monograph “Beweistheorie” [36]. The ordinal representation systems
necessary for Schiitte’s work will be reviewed in the next subsection.
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1.3. A brief history of ordinal representation systems: 1904—-1950. Ordinals as-
signed as lengths to deductions to keep track of the cost of operations such as cut
elimination render ordinal analyses of theories particularly transparent. In the case
of PA, Gentzen could rely on Cantor’s normal form for a supply of ordinal represen-
tations. For stronger theories, though, segments larger than ¢p have to be employed.
Ordinal representation systems utilized by proof theorists in the 1960s arose in a
purely set-theoretic context. This subsection will present some of the underlying
ideas as progress in ordinal-theoretic proof theory also hinges on the development of
sufficiently strong and transparent ordinal representation systems.

In 1904, Hardy [17] wanted to “construct” a subset of R of size 8. His method was
to represent countable ordinals via increasing sequence of natural numbers and then
to correlate a decimal expansion with each such sequence. Hardy used two processes
on sequences: (i) Removing the first element to represent the successor; (ii) Diag-
onalizing at limits. E.g., if the sequence 1,2, 3, ... represents the ordinal 1, then
2, 3,4, ... represents the ordinal 2 and 3, 4, 5, . .. represents the ordinal 3 etc., while
the ‘diagonal’ 1, 3, 5, ... provides a representation of w. In general, if A = lim, N Ay
is a limit ordinal with b, 1, b,2, by3, ... representing A, < A, then b1y, by, b33, ...
represents A. This representation, however, depends on the sequence chosen with
limit A. A sequence (A,)nen With A, < A and limuen A, = A is called a funda-
mental sequence for .. Hardy’s two operations give explicit representations for all
ordinals < w?.

Veblen [44] extended the initial segment of the countable for which fundamental
sequences can be given effectively. The new tools he devised were the operations
of derivation and transfinite iteration applied to continuous increasing functions on
ordinals.

Definition 1.9. Let ON be the class of ordinals. A (class) function f: ON — ON
is said to be increasing if o« < g implies f(«) < f(B) and continuous (in the order
topology on ON) if

f(limag) = lim £ (@)

holds for every limit ordinal A and increasing sequence (cg)s <. f is called normal
if it is increasing and continuous.

The function 8 +— w + B is normal while 8 — B + w is not continuous at w since
limg ., (§ + @) = wbut (limg, &) + 0 = 0 + .

Definition 1.10. The derivative f’ of a function f: ON — ON is the function which
enumerates in increasing order the solutions of the equation f(«) = «, also called
the fixed points of f.

If f is a normal function, {« : f(a) = «} is a proper class and f” will be a normal
function, too.
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Definition 1.11. Now, given a normal function f: ON — ON, define a hierarchy of
normal functions as follows:

f():fv fa-i-l:fo/m
L&) = gfh element of ﬂ (Range of f,) for A a limit ordinal.

a<A

In this way, from the normal function f we get a two-place function, ¢r(c, B) :=
fo(B). Veblen then discusses the hierarchy when f = ¢, where £(o) = 1 + «.

The least ordinal y > 0 closed under ¢, i.e. the least ordinal > O satisfying
Vo, B < y) @e(a, B) < y is the famous ordinal I'g which Feferman [13] and
Schiitte [37], [38] determined to be the least ordinal ‘unreachable’ by predicative
means.

Veblen extended this idea first to arbitrary finite numbers of arguments, but then
also to transfinite numbers of arguments, with the proviso that in, for example
®r(ap, ay, ..., ap), only a finite number of the arguments «, may be non-zero.
Finally, Veblen singled out the ordinal E(0), where E(0) is the least ordinal 6 > 0
which cannot be named in terms of functions ®,(ap, 1, ..., ay) with n < §, and
each ), < 4.

Though the “great Veblen number” (as E(0) is sometimes called) is quite an
impressive ordinal it does not furnish an ordinal representation sufficient for the task
of analyzing a theory as strong as I'I} comprehension. Of course, it is possible to
go beyond E(0) and initiate a new hierarchy based on the function £ — E (&) or
even consider hierarchies utilizing finite type functionals over the ordinals. Still all
these further steps amount to rather mundane progress over Veblen’s methods. In
1950 Bachmann [3] presented a new kind of operation on ordinals which dwarfs all
hierarchies obtained by iterating Veblen’s methods. Bachmann builds on Veblen’s
work but his novel idea was the systematic use of uncountable ordinals to keep track
of the functions defined by diagonalization. Let Q be the first uncountable ordinal.
Bachmann defines a set of ordinals B closed under successor such that with each limit
A € B is associated an increasing sequence (A[£] : & < 7;) of ordinals A[£] € B
of length 1) € ‘B and limg ., A[§] = A. A hierarchy of functions ((p:‘xB)ae% is then
obtained as follows:

B =148 =)
‘/’x% enumerates ﬂ (Range of <pﬁs]) if A is a limit with 7, < , %

§<n

¢y enumerates {# < Q2 : @)g(0) =B} if Ais alimit with 7, = Q.

After the work of Bachmann, the story of ordinal representations becomes very com-
plicated. Significant papers (by Isles, Bridge, Pfeiffer, Schiitte, Gerber to mention
a few) involve quite horrendous computations to keep track of the fundamental se-
quences. Also Bachmann’s approach was combined with uses of higher type func-
tionals by Aczel and Weyhrauch. Feferman proposed an entirely different method for
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generating a Bachmann-type hierarchy of normal functions which does not involve
fundamental sequences. Buchholz further simplified the systems and proved their
recursivity. For details we recommend the preface to [7].

2. Ordinal analyses of systems of second order arithmetic and set
theory

Ordinal analysis is concerned with theories serving as frameworks for formalising
significant parts of mathematics. Itis known that virtually all of ordinary mathematics
can be formalized in Zermelo—Fraenkel set theory with the axiom of choice, ZFC.
Hilbert and Bernays [19] showed that large chunks of mathematics can already be
formalized in second order arithmetic. Owing to these observations, proof theory has
been focusing on set theories and subsystems of second order arithmetic. Further
scrutiny revealed that a small fragment is sufficient. Under the rubric of Reverse
Mathematics a research programme has been initiated by Harvey Friedman some
thirty years ago. The idea is to ask whether, given a theorem, one can prove its
equivalence to some axiomatic system, with the aim of determining what proof-
theoretical resources are necessary for the theorems of mathematics. More precisely,
the objective of reverse mathematics is to investigate the role of set existence axioms
in ordinary mathematics. The main question can be stated as follows:

Given a specific theorem T of ordinary mathematics, which set existence
axioms are needed in order to prove t?

Central to the above is the reference to what is called ‘ordinary mathematics’. This
concept, of course, doesn’t have a precise definition. Roughly speaking, by ordinary
mathematics we mean main-stream, non-set-theoretic mathematics, i.e. the core areas
of mathematics which make no essential use of the concepts and methods of set theory
and do not essentially depend on the theory of uncountable cardinal numbers.

2.1. Subsystems of second order arithmetic. The framework chosen for studying
set existence in reverse mathematics, though, is second order arithmetic rather than
set theory. Second order arithmetic, Z,, is a two-sorted formal system with one sort
of variables x, y, z, ... ranging over natural numbers and the other sort X, Y, Z, ...
ranging over sets of natural numbers. The language £, of second-order arithmetic
also contains the symbols of PA, and in addition has a binary relation symbol € for
elementhood. Formulae are built from the prime formulae s = ¢, s < f,and s € X
(where s, t are numerical terms, i.e. terms of PA) by closing off under the connectives
A, V, =, =, numerical quantifiers Vx, 3x, and set quantifiers VX, 3X.

The basic arithmetical axioms in all theories of second-order arithmetic are the
defining axioms for 0, 1, 4+, X, E, < (as for PA) and the induction axiom

VXO0eXAVx(xeX —>x+1€X)— Vx(x € X)).
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We consider the axiom schema of C-comprehension for formula classes € which is
given by
C-CA 3IXVu(u € X < F(u))

for all formulae F' € C in which X does not occur. Natural formula classes are the
arithmetical formulae, consisting of all formulae without second order quantifiers
VX and 3X, and the I1}-formulae, where a I1}-formula is a formula of the form
VX1...0X, A(Xq, ..., Xp) with VX1 ... QX, being a string of n alternating set
quantifiers, commencing with a universal one, followed by an arithmetical formula
AXy, ..., Xn).

For each axiom scheme Ax we denote by (Ax)( the theory consisting of the basic
arithmetical axioms plus the scheme Ax. By contrast, (Ax) stands for the theory
(Ax)( augmented by the scheme of induction for all L£;-formulae.

An example for these notations is the theory (I1 } -CA)¢ which has the comprehen-
sion schema for H%-formulae.

In PA one can define an elementary injective pairing function on numbers, e.g
(n,m) := 2" x 3™. With the help of this function an infinite sequence of sets of
natural numbers can be coded as a single set of natural numbers. The n'”* section of
set of natural numbers U is defined by U,, := {m : (n, m) € U}. Using this coding,
we can formulate the axiom of choice for formulae F in C by

C-AC VxIAYF(x,Y) — AYVxF(x,Yy).

For many mathematical theorems t, there is a weakest natural subsystem S(t) of Z
such that S(t) proves t. Very often, if a theorem of ordinary mathematics is proved
from the weakest possible set existence axioms, the statement of that theorem will
turn out to be provably equivalent to those axioms over a still weaker base theory.
This theme is referred to as Reverse Mathematics. Moreover, it has turned out that
S(7) often belongs to a small list of specific subsystems of Z, dubbed RCA(, WKLy,
ACAy, ATR( and (H}—CA)O, respectively. The systems are enumerated in increas-
ing strength. The main set existence axioms of RCAg, WKLy, ACAy, ATR, and
(H}—CA)O are recursive comprehension, weak Konig’s lemma, arithmetical com-
prehension, arithmetical transfinite recursion, and H{-comprehension, respectively.
For exact definitions of all these systems and their role in reverse mathematics see
[40]. The proof-theoretic strength of RCAy is weaker than that of PA while ACA
has the same strength as PA. Let |T| = |T|con. To get a sense of scale, the
strengths of the first four theories are best expressed via their proof-theoretic or-
dinals: |RCAg| = |WKLg| = %, |ACAg| = &9, |ATRg| = T. |(H%—CA)0|,
however, eludes expression in the ordinal representations introduced so far. H%—CA
involves a so-called impredicative definition. An impredicative definition of an object
refers to a presumed totality of which the object being defined is itself to be a member.
For example, to define a set of natural numbers X as X = {neN: VY C N F(n, Y)}
is impredicative since it involves the quantified variable ‘Y’ ranging over arbitrary
subsets of the natural numbers N, of which the set X being defined is one member.
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Determining whether VY € N F(n, Y) holds involves an apparent circle since we
shall have to know in particular whether F(n, X) holds — but that cannot be set-
tled until X itself is determined. Impredicative set definitions permeate the fabric of
Zermelo—Fraenkel set theory in the guise of the separation and replacement axioms
as well as the powerset axiom.

A major breakthrough was made by Takeuti in 1967, who for the first time obtained
an ordinal analysis of an impredicative theory. In [41] he gave an ordinal analysis of
(IT}-CA), extended in 1973 to (IT}-AC) in [43] jointly with Yasugi. For this Takeuti
returned to Gentzen’s method of assigning ordinals (ordinal diagrams, to be precise)
to purported derivations of the empty sequent (inconsistency).

The next wave of results, which concerned theories of iterated inductive defi-
nitions, were obtained by Buchholz, Pohlers, and Sieg in the late 1970s (see [7]).
Takeuti’s methods of reducing derivations of the empty sequent (“the inconsistency’)
were extremely difficult to follow, and therefore a more perspicuous treatment was
to be hoped for. Since the use of the infinitary w-rule had greatly facilitated the or-
dinal analysis of number theory, new infinitary rules were sought. In 1977 (see [5])
Buchholz introduced such rules, dubbed 2-rules to stress the analogy. They led to a
proof-theoretic treatment of a wide variety of systems, as exemplified in the mono-
graph [8] by Buchholz and Schiitte. Yet simpler infinitary rules were put forward a
few years later by Pohlers, leading to the method of local predicativity, which proved
to be a very versatile tool (see [23]).

2.2. Set theories. With the work of Jager and Pohlers (see [20], [21]) the forum of
ordinal analysis then switched from the realm of second-order arithmetic to set theory,
shaping what is now called admissible proof theory, after the models of Kripke—Platek
set theory, KP. Their work culminated in the analysis of the system H%—AC plus an
induction principle called Bar Induction BI which is a scheme asserting that transfinite
induction along well-founded relations holds for arbitrary formulae (see [21]).

By and large, ordinal analyses for set theories are more uniform and transparent
than for subsystems of Z». The axiom systems for set theories considered in this paper
are formulated in the usual language of set theory (called £ ¢ hereafter) containing € as
the only non-logical symbol besides =. Formulae are built from prime formulaea € b
and a = b by use of propositional connectives and quantifiers Vx, 3x. Quantifiers
of the forms Vx € a, 3x € a are called bounded. Bounded or Ag-formulae are
the formulae wherein all quantifiers are bounded; X;-formulae are those of the form
Ixe(x) where ¢(a) is a Ag-formula. For n > 0, IT,-formulae (X, -formulae) are the
formulae with a prefix of n alternating unbounded quantifiers starting with a universal
(existential) one followed by a Ag-formula. The class of X-formulae is the smallest
class of formulae containing the Ag-formulae which is closed under A, Vv, bounded
quantification and unbounded existential quantification.

One of the set theories which is amenable to ordinal analysis is Kripke—Platek
set theory, KP. Its standard models are called admissible sets. One of the reasons
that this is an important theory is that a great deal of set theory requires only the
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axioms of KP. An even more important reason is that admissible sets have been a
major source of interaction between model theory, recursion theory and set theory (cf.
[4]). KP arises from ZF by completely omitting the power set axiom and restricting
separation and collection to bounded formulae. These alterations are suggested by
the informal notion of ‘predicative’. To be more precise, the axioms of KP consist of
Extensionality, Pair, Union, Infinity, Bounded Separation

IxVuluex < wuea N F(u))]
for all bounded formulae F (1), Bounded Collection
Vx€adyG(x,y) - zVx eady e zG(x,y)
for all bounded formulae G (x, y), and Set Induction
Vx [(Vy e x H(y)) > H(x)] — Vx H(x)

for all formulae H (x).

A transitive set A such that (A, €) is a model of KP is called an admissible
set. Of particular interest are the models of KP formed by segments of Godel’s
constructible hierarchy L. The constructible hierarchy is obtained by iterating the
definable powerset operation through the ordinals

Lo =4,
L, = J{Lp : B < 2} A limit
Lgi = {X: X C Lg; X definable over (Lg, e)}.

So any element of L of level « is definable from elements of L with levels < « and the
parameter L. An ordinal « is admissible if the structure (L, €) is a model of KP.

Formulae of £, can be easily translated into the language of set theory. Some of
the subtheories of Z; considered above have set-theoretic counterparts, characterized
by extensions of KP. KPi is an extension of KP via the axiom

(Lim) Vx3y[xey A y is an admissible set].

KPI denotes the system KPi without Bounded Collection. It turns out that (IT } -AC)+
BI proves the same J£;-formulae as KPi, while (H}—CA) proves the same £>-
formulae as KPL.

2.3. Sketches of an ordinal analysis of KP. Serving as a miniature example of
an ordinal analysis of an impredicative system, the ordinal analysis of KP (see [20],
[6]) we will sketched in broad strokes. Bachmann’s system can be recast without
fundamental sequences as follows: Let 2 be a “big” ordinal, e.g. Q@ = Rj. By
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recursion on o we define sets C$*(«, 8) and the ordinal Yo («) as follows:

closure of g U {0, 2} under:

C%a, B) = { +, (¢ — o) (8)
& — Ya)e<a
Vo(@) ~min{p < Q: C¥a,p)NQ=p}. 9)

It can be shown that ¥q(«) is always defined and that {¥q(e) < 2. Moreover,
[Vo(@),2) N C (a, Ya(a)) = @; thus the order-type of the ordinals below €2
which belong to the set C 2(a, Ya(w)) is Yo(a). Yq(a) is also a countable ordinal.
In more pictorial terms, ¥q(c) is the o' collapse of Q.

Let eqy1 be the least ordinal @ > 2 such that ®* = «. The set of ordinals
C%(eq+1,0) gives rise to an elementary computable ordinal representation system.
In what follows, C Q(SQ+], 0) will be abbreviated to 7 (£2).

In the case of PA the addition of an infinitary rule restored the possibility of cut
elimination. In order to obtain a similar result for set theories like KP, one has to
work a bit harder. A peculiarity of PA is that every object n of the intended model has
a canonical name in the language, namely, the n'” numeral. It is not clear, though,
how to bestow a canonical name to each element of the set-theoretic universe. This
is where Godel’s constructible universe L. comes in handy. As L is “made” from the
ordinals it is pretty obvious how to “name” sets in L. once one has names for ordinals.
These will be taken from 7 (£2). Henceforth, we shall restrict ourselves to ordinals
from 7 (€2). The set terms and their ordinal levels are defined inductively. First,
for each o € 7(2) N €2, there will be a set term L. Its ordinal level is declared
to be «. If F(a, b) is a set-theoretic formula (whose free variables are among the
indicated) and s = s, ..., s, are set terms with levels < «, then the formal expression
{xely : F(x,5)} is a set term of level . Here F(x, 5)% results from F(x, 5) by
restricting all unbounded quantifiers to L.

The collection of set terms will serve as a formal universe for a theory KP, with
infinitary rules. The infinitary rule for the universal quantifier on the right takes the
form: From I' = A, F(¢) for all RSq-terms f conclude I' = A, Vx F(x). There
are also rules for bounded universal quantifiers: From I' = A, F(¢) for all RSq-
terms ¢ with levels < « conclude I' = A, (Vx € Ly) F(x). The corresponding
rule for introducing a universal quantifier bounded by a term of the form {xelL,, :
F(x, 5)k} is slightly more complicated. With the help of these infinitary rules it
now possible to give logical deductions of all axioms of KP with the exception of
Bounded Collection. The latter can be deduced from the rule of X-Reflection: From
I' = A,C conclude I' = A, 3zC*? for every X-formula C. The class of X-
formulae is the smallest class of formulae containing the bounded formulae which is
closed under A, Vv, bounded quantification and unbounded existential quantification.
C* is obtained from C by replacing all unbounded quantifiers 3x in C by 3x € z.
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The length and cut ranks of KPy,-deductions will be measured by ordinals from
T(R). If
KPF F(uy,...,u;)
then KP }g—fn B(s1,...,s) holds for some m, n and all set terms sy, ..., 5,; m
and n depend only on the KP-derivation of B(i).
The usual cut elimination procedure works unless the cut formulae have been

introduced by X-reflection rules. The obstacle to pushing cut elimination further is
exemplified by the following scenario:

%r = A.C

EEc s A s« i
B NN %

(3D

(Z-Ref)

%E,ElzCZ = A
« =
}Q—HF,u = AA

In general, it won’t be possible to remove such an instance of the Cut Rule. However,
if the complexity of the side formulae is just right, the cut can be removed by a
technique called collapsing of deductions. This method applies when the formulae
in I" and E are [1-formulae and the formulae in A and A are X-formulae. The class of
[1-formulae is the smallest class of formulae containing the bounded formulae which
is closed under A, Vv, bounded quantification and unbounded universal quantification.

For the technique of collapsing one needs the function « — ¥ q () and, moreover,
it is necessary to ensure that the infinite deductions are of a very uniform character.
The details are rather finicky and took several years to work out. The upshot is that
every X sentence C deducible in KP has a cut-free deduction in KPy, of length
Ya(eq+1), which entails that Ly o, ) = C. Moreover, the proof-theoretic ordinal
of KP is ¥q(eq+1), also known as the Bachmann—Howard ordinal.

(Cut)

2.4. Admissible proof theory. KP is the weakest in a line of theories that were
analyzed by proof theorists of the Munich school in the late 1970s and 1980s. In
many respects, KP is a very special case. Several fascinating aspects of ordinal
analysis do not yet exhibit themselves at the level of KP.

Recall that KPI is the set-theoretic version of (H{—AC) + BI, while KPi is the
set-theoretic counterpart to (H{—AC) + BI . The main axiom of KPI says that every
set is contained in an admissible set (one also says that the admissible sets are cofinal
in the universe) without requiring that the universe is also admissible, too. To get a
sense of scale for comparing KP, KPI, and KPi it is perhaps best to relate the large
cardinal assumptions that give rise to the pertaining ordinal representation systems.
In the case of KPI the assumptions is that there are infinitely many large ordinals
Q1, Q2, Q3,... (where Q, can be taken to be X,) each equipped with their own
‘collapsing’ function o — Vg, (). The ordinal system sufficient for KPi is built
using the much bolder assumption that there is an inaccessible cardinal /.

As the above set theories are based on the notion of admissible set it is suitable
to call the proof theory concerned with them ‘admissible proof theory’. The salient
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feature of admissible sets is that they are models of Bounded Collection and that that
principle is equivalent to ¥ Reflection on the basis of the other axioms of KP (see
[4]). Furthermore, admissible sets of the form L, also satisfy IT; reflection, i.e., if
L, = Vx3yC(x, y,a) with C(x, y) bounded and a € L,, then there exists p < k
suchthatd € L, and L, = Vx 3y C(x, y, d).

In essence, admissible proof theory is a gathering of cut-elimination and collapsing
techniques that can handle infinitary calculi of set theory with ¥ and/or I1; reflection
rules, and thus lends itself to ordinal analyses of theories of the form KP+ “there are
x many admissibles” or KP+ “there are many admissibles” .

A theory on the verge of admissible proof theory is KPM, designed to axiomatize
essential features of a recursively Mahlo universe of sets. An admissible ordinal «
is said to be recursively Mahlo if it satisfies [1o-reflection in the above sense but
with the extra condition that the reflecting set L, be admissible as well. The ordinal
representation [25] for KPM is built on the assumption that there exists a Mahlo
cardinal. The novel feature of over previous work is that there are two layers of
collapsing functions. The ordinal analysis for KPM was carried out in [26]. A
different approach to KPM using ordinal diagrams is due to Arai [1].

The means of admissible proof theory are too weak to deal with the next level of
reflection having three alternations of quantifiers, i.e. [13-reflection.

2.5. Rewards of ordinal analysis Results that have been achieved through ordi-
nal analysis mainly fall into four groups: (1) Consistency of subsystems of classical
second order arithmetic and set theory relative to constructive theories, (2) reductions
of theories formulated as conservation theorems, (3) combinatorial independence re-
sults, and (4) classifications of provable functions and ordinals. A detailed account
of these results has been given in [31], section 3. An example where ordinal rep-
resentation systems led to a new combinatorial result was Friedman’s extension of
Kruskal’s Theorem, EKT, which asserts that finite trees are well-quasi-ordered un-
der gap embeddability (see [39]). The gap condition imposed on the embeddings is
directly related to an ordinal notation system that was used for the analysis of l'I}
comprehension. The principle EKT played a crucial role in the proof of the graph
minor theorem of Robertson and Seymour (see [16]).

Theorem 2.1 (Robertson, Seymour). For any infinite sequence Gy, G1, Ga, ... of
finite graphs there exist i < j so that G; is isomorphic to a minor of G ;.

3. Beyond admissible proof theory

Gentzen fostered hopes that with sufficiently large constructive ordinals one could
establish the consistency of analysis, i.e., Z,. The purpose of this section is to report
on the next major step in analyzing fragments of Z3. This is obviously the ordinal
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analysis of the system (l'I;—CA).1 The strength of (H;—CA) dwarfs that of (H}—AC).
The treatment of H% comprehension posed formidable technical challenges (see [30],
[32], [33]). Other approaches to ordinal analysis of systems above H%-AC are due to
Arai (see [1], [2]) who uses ordinal diagrams and finite deductions, and Carlson [11]
who employs patterns of resemblance.

In the following, we will gradually slice H% comprehension into degrees of re-
flection to achieve a sense of scale. There is no way to describe this comprehension
simply in terms of admissibility except that on the set-theoretic side, 1'[% comprehen-
sion corresponds to X separation, i.e. the scheme of axioms

Fz(z={xea: ¢}
for all ¥1 formulas ¢. The precise relationship is as follows:

Theorem 3.1. KP + X; separation and (H;—CA) + BI prove the same sentences of
second order arithmetic.

The ordinals « such that L, = KP + X-Separation are familiar from ordinal
recursion theory.

Definition 3.2. An admissible ordinal « is said to be nonprojectible if there is no
total k-recursive function mapping « one-one into some 8 < «, where a function
g: Ly — L, is called «-recursive if it is X definable in L.

The key to the ‘largeness’ properties of nonprojectible ordinals is that for any
nonprojectible ordinal «, L, is a limit of ¥-elementary substructures, i.e. for every
B < K there exists a B < p < « such that L, is a ¥-elementary substructure of L,
written L, <1 L.

Such ordinals satisfying L, <; L, have strong reflecting properties. For instance,
if L, = C for some set-theoretic sentence C (containing parameters from L),
then there exists a y < p such that L, = C. This is because L, = C implies
L, =3y CY hence L, = 3y C using L, < L.

The last result makes it clear that an ordinal analysis of Hé comprehension would
necessarily involve a proof-theoretic treatment of reflections beyond those surfacing
in admissible proof theory. The notion of stability will be instrumental.

Definition 3.3. « is §-stable if Ly <1 Lyys.

For our purposes we need refinements of this notion, the simplest being pro-
vided by:

Definition 3.4. o > 0 is said to be I1,-reflecting if L, = I1,-reflection. By IT,-
reflection we mean the scheme C — 3z[ Tran(z) A z # @ A C?], where C is I1,, and
Tran(z) expresses that z is a transitive set.

IFor more background information see [42], p. 259, [15], p. 362, [24], p. 374.
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I1,,-reflection for all n suffices to express one step in the < relation.
Lemma 3.5 (cf. [34], 1.18). L, <1 L4 iff « is IT,-reflecting for all n.

The step of analyzing Kripke—Platek set theory augmented by IT,,-reflection rules
was taken in [29]; the ordinal representation system for I13-reflection employed a
weakly compact cardinal.

A further refinement of the notion of §-stability will be addressed next.

Definition 3.6. « is said to be §-IT,,-reflecting if whenever C (u, X) is a set-theoretic IT,,
formula, ay, ..., a,€L, and Lys &= Cl«, a1, ..., a,], then there exists kg, 5o < k
such thatay, ..., ar€Ly, and Ly 45, = Clxo, a1, ..., anl.

Putting the previous definition to work, one gets:
Corollary 3.7. If « is 6 4+ 1-X;-reflecting, then, for all n, « is 6-%,-reflecting.

At this point let us return to proof theory to explain the need for even further
refinements of the preceding notions. Recall that the first nonprojectible ordinal p
is a limit of smaller ordinals p, such that L,, <; L,. In the ordinal representation
system O R for l'[é—CA, there will be symbols &, and &, for p, and p, respectively.
The associated infinitary proof system will have rules

I = A, CGE)Vens
I = A, (3zelg,)(3X €Lg,)[Tran(z) A C(X)°]

(Refs(Lg,45))

where C(X) is a ¥ formula, s are set terms of levels < &, 4§, and § < &,,. These
rules suffice to bring about the embedding KP 4 X;-Separation into the infinitary
proof system, but reflection rules galore will be needed to carry out cut-elimination.
For example, there will be “many” ordinals i, § € O R that play the role of 6-I1,4-
reflecting ordinals by virtue of corresponding reflection rules in the infinitary calculus.

4. A large cardinal notion

An important part of ordinal analysis is the development of ordinal representation
systems. Extensive ordinal representation systems are difficult to understand from a
purely syntactical point of view, often to such an extent that it makes no sense to present
an ordinal representation system without giving some kind of semantic interpretation.
Large cardinals have been used quite frequently in the definition procedure of strong
ordinal representation systems, and large cardinal notions have been an important
source of inspiration. In the end, they can be dispensed with, but they add an intriguing
twist to the relation between set theory and proof theory. The advantage of working
in a strong set-theoretic context is that we can build models without getting buried
under complexity considerations.
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Such systems are usually generated from collapsing functions. However, from
now on we prefer to call them projection functions since they will no longer bear any
resemblance to Mostowski’s collapsing function. In [33], the projection functions
needed for the ordinal analysis of H% have been construed as inverses to certain
partial elementary embeddings. In this final section we shall indicate a model for the
projection functions, employing rather sweeping large cardinal axioms, in that we shall
presume the existence of certain cardinals, featuring a strong form of indescribability,
dubbed shrewdness.

To be able to eliminate reflections of the type described in Definition 3.6 requires
projection functions which can project intervals [«, k¥ + 8] of ordinals down below «.

Definition 4.1. Let V = |,y Vo be the cumulative hierarchy of sets, i.e.

Vo=0, Var1={X:XCS Vs, Vi=]J Ve forlimit ordinals 1.
E<h

Let n > 0. A cardinal « is n-shrewd if for all P C V, and every set-theoretic
formula F (vg, v1), whenever

VK+17 = F[P, k],
then there exist 0 < kg, ng < « such that
VK0+270 EF[PN VK()a Ko].

Kk is shrewd if « is n-shrewd for every n > 0.
Let ¥ be a collection of formulae. A cardinal « is n-F -shrewd if for all P C V.
and every ¥ -formula H (vg, v1), whenever

VK+T] |= H[Pv K]a
then there exist 0 < kg, 79 < k such that
Vico+no E H[P N Vi, kol

We will also consider a notion of shrewdness with regard to a given class.

Let U be a fresh unary predicate symbol. Given a language £ let .£(U) denote its
extension by U. If # is a class we denote by (V,,; 4) the structure (Vy; €; A N V).

For an L (U)-sentence ¢, let the meaning of “(V,; A) = ¢ be determined by
interpreting U(¢) ast € AN V,.

Definition 4.2. Assume that +4 is a class. Let n > 0. A cardinal « is A-n-shrewd if
for all P C V, and every formula F (vg, v1) of Lt (U), whenever

(Viens A) = FLP, k],
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then there exist 0 < kg, 79 < k such that
(Vig+nos A) = FIP N Vi, kol.

Kk is A-shrewd if k is A-n-shrewd for every n > 0.
Likewise, for £ a collection of formulae in a language £ (U), we say that a cardinal
Kk is A-n-F -shrewd if for all P C V, and every ¥ -formula H (v, v1), whenever

(Vietn: A) = H[P, k],
then there exist 0 < kg, 79 < k such that
(Vio+no: #) = H[P N Vi, kol.
Corollary 4.3. If « is A-5-shrewd and 0 < n < §, then « is A-n-shrewd.

There are similarities between the notions of n-shrewdness and n-indescribability
(see [12], Ch. 9, §4). However, it should be noted that if « is n-indescribable and
p < 1, it does not necessarily follow that « is also p-indescribable (see [12], 9.4.6).

A reason for calling the above cardinals shrewd is that if there is a shrewd cardinal «
in the universe, then, loosely speaking, for any notion of large cardinal N which does
not make reference to the totality of all ordinals, if there exists an N-cardinal then the
least such cardinal is below k. So for instance, if there are measurable and shrewd
cardinals in the universe, then the least measurable is smaller than the least shrewd
cardinal.

To situate the notion of shrewdness with regard to consistency strength in the usual
hierarchy of large cardinals, we recall the notion of a subtle cardinal.

Definition 4.4. A cardinal « is said to be subtle if for any sequence (S, : o« < k) such
that S, € o and C closed and unbounded in «, there are § < § both in C satisfying

Ss N B = Sg.

Since subtle cardinals are not covered in many of the standard texts dealing with
large cardinals, we mention the following facts (see [22], §20):

Remark 4.5. Let k(w) denote the first w-Erdos cardinal.
(i) {7 < «(w) : 7 is subtle} is stationary in k (w).
(i) ‘Subtlety’ relativises to L, i.e. if 7 is subtle, then L = “x is subtle”.

Lemma 4.6. Assume that 7 is a subtle cardinal and that 4 C V. Then for every
B C 7 closed and unbounded in 7v there exists k¥ € B such that

(Vs A) = “k is A-shrewd ”.

Corollary 4.7. Assume that 7 is a subtle cardinal. Then there exists a cardinal k < 7
such that « is n-shrewd for all n < 7.
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Abstract. Generalizing and synthesizing earlier work on the model theory of valued difference
fields and on the model theory of valued fields with analytic structure, we prove Ax—Kochen—
Ersov style relative completeness and relative quantifier elimination theorems for a theory of
valuation rings with analytic and difference structure. Specializing our results to the case of

W[]leg], the ring of Witt vectors of the algebraic closure of the field with p elements, given
together with the relative Frobenius and the Tate algebras as analytic structure, we develop a
model theoretic account of Buium’s p-differential functions. In so doing, we derive a uniform
p-adic version of the Manin—-Mumford conjecture.
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1. Introduction

If (K, v) is a complete valued field and f(x1, ..., x,) = >_aex® € K[[x1, ..., x,]]
is a formal power series over K for which v(ay) — o0 as |¢| — oo, then f defines a
function % — K. Considering a formal first-order language rich enough to express
the field structure, the binary relation v(x) < v(y) and the functions coming from such
convergent power series, one has a natural logical setting for studying nonarchimedian
analysis. If one includes in addition a unary function symbol o to denote a field auto-
morphism which respects the valuation in the sense that v(x) = v(o (x)) universally
and respects the analytic structure in the sense that o (f(x)) = f° (o (x)) where f°
denotes the effect of applying o to the coefficients of f, then one has a strong enough
language to study analytic difference rings, the central object of consideration in this
paper.

While we have several motivations to study these structures, two stand out most
prominently. First, following the seminal work of Ax and Kochen [1], [2], [3] and
Ersov on the model theory of valued fields, a great many results showing that valued
fields considered in ever more complicated languages have very elegant theories have
been proven. With this work we amalgamate two different strands of the model theory
of enriched valued fields. Namely, we show that the theories of valued fields with
analytic structure and of valued difference fields may be unified. Further unification is
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certainly possible. Routine modifications of the proofs presented here should suffice
to combine analytic and differential structure, or more generally D-structure, while
other extensions will require the development of genuinely new methods. Secondly,
we wish to give a model theoretic account of Buium’s theory of p-differential geometry
and thereby deduce uniformities in Diophantine geometry through applications of the
compactness theorem and appropriate quantifier elimination theorems.

Let us recall a little of the theory of p-differential operators. For p a prime number
a p-derivation § on a commutative ring R is a function § : R — R satisfying

* §(1) =0,

¢ the functional equation 6 (x +y) = 6(x) +3(y) + P, (x, y) where ®,(X,Y) €
Z[X, Y] is the integral polynomial %(X” +Y? — (X +Y)P),and

« the functional equation § (xy) = y?8(x) + xP5(y) + pd(x)S(y).

Given a p-derivation §: R — R one can define a ring endomorphismo: R — R
by the equation o (x) := x? + pé(x). Conversely, if p is not a zero divisor in R and
7: R — R is an endomorphism lifting the Frobenius in the sense that t(x) = x?
(mod p) for all x € R, then §: R — R defined by t(x) = xP + pg(x) is a p-
derivation.

As with differential algebra, there is a p-differential geometry associated to the cat-
egory of rings with p-derivations. At the naive level, one can consider sets defined by
the vanishing of p-differential polynomials, expressions of the form P(x, ..., §"(x))
where P is a polynomial, as the basic affine sets. In the case that the underlying rings
are domains, this p-differential geometry is essentially the same as the correspond-
ing difference algebraic geometry coming from difference equations involving o and
there is already a well developed model theoretic approach to this subject [7], [8].
However, a richer geometry more in line with that of Kolchin’s differential alge-
braic geometry may be obtained by p-adically completing the rings of p-differential
polynomials. Indeed, Buium notes that to globalize p-differential geometry one
must consider these p-adically complete rings of operators. The fundamental func-
tions in this theory, the p-differential functions, locally have the form F(x, ..., §"x)
where x = (x1,...,x,) and F is given by p-adically convergent power series in
(n 4+ 1)m variables. Buium shows that many arithmetically interesting functions on
the R := W[F;lg]—rational points of schemes over R may be expressed locally as
p-differential functions where one takes & := %(xp —o(x)) witho: R — R the
Witt—Frobenius, the unique lifting of the Frobenius automorphism to an automorphism
of the Witt vectors.

One sees from the above local description of p-differential functions, that every p-
differential function over R may be expressed as a term in the language with function
symbols for p-adically convergent power series over R, the Witt—Frobenius, and
the restricted division function D,: R — R defined by D, (x) := % if x € pR
and D,(x) := 0 otherwise. Conversely, if one were to regard all p-differential
functions as definable, then all of the above basic functions would be definable as
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well. Consequently, the logic of Buium’s p-differential functions is that of the first-
order structure of the Witt vectors of the algebraic closure of the field of p elements
with a function symbol for the Witt—Frobenius and for all p-adic analytic functions.

Even though the goal of understanding p-differential functions guides our work,
we must consider structures of a more abstract nature in order to prove our results
sufficiently uniformly in order to derive any useful information about p-differential
geometry. We achieve these results by axiomatizing the notion of an analytic differ-
ence structure on a valued field and then proving relative completeness and relative
quantifier elimination theorems for analytic difference rings in the style of the Ax—
Kochen—-Ersov theorems for pure valued fields.

The essential tool in our analysis is a uniform version of the Weierstraf3 division
theorem. Fortunately for us, this theorem is already known in the case of most interest
to us [20]. Using the uniform Weierstral} division theorem we are able to assign an
order-degree to an analytic difference equation with respect to which we may carry
out inductive proofs.

The present author previously considered the ring W[F?,lg] simply as a difference
ring in [17], [5] where a simple axiomatization was presented and a quantifier simpli-
fication theorem was proven. However, since difference polynomials are intrinsically
finitistic objects, we were able to consider more complicated degree relations and
worked with a version of Hensel’s lemma unavailable in the analytic difference con-
text. The restrictions imposed by considering simultaneously analytic and difference
structure have forced us to employ an ostensibly weaker form of Hensel’s lemma
which miraculously suffices.

This paper is organized as follows. In Section 2 we introduce our basic axioms
for analytic difference rings and establish some of the fundamental results about
these structures. In Section 3 we state and prove our Ax—Kochen—-ErSov theorems
for analytically difference henselian rings. In Section 4 we recall the theory of p-
differential functions in detail and apply our results of Section 3 to prove a uniform
version of the Manin—Mumford conjecture.

2. Foundations of analytic and difference structure

We begin this section by recalling that a difference ring (R, o) is acommutative (unital)
ring R given together with a distinguished ring endomorphism o : R — R. While we
shall usually consider rings for which ¢ is an automorphism, we do not insist upon this
condition in our definition of the term difference ring. The model theory of difference
fields, namely fields given together with a distinguished endomorphism, and, hence,
also of difference domains, has been described by Chatzidakis and Hrushovski [7]
and in all characteristics by Chatzidakis, Hrushovski, and Peterzil [8].

For us, a valued difference field is a valued field (K, v) given together with a
distinguished automorphism o : K — K which respects the valuation in the sense
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that the equality v(o(x)) = v(x) holds universally. The model theory of valued
difference fields has been developed by Bélair, Macintyre and Scanlon [17], [5].

As mentioned in the introduction, an analytic difference ring is simply the ring
of integers of a valued difference field given together with analytic functions for
which the distinguished automorphism respects the analytic structure. For a fixed
complete valuation ring it is easy enough to say what one means by analytic structure.
However, if one wishes to express the axioms for the theory of such a ring in a
first-order language, it is necessary to formulate “analytic structure” more abstractly.
Moreover, even if one is only interested in complete rings, to compare the theories of
these rings as analytic structures one requires a uniform language.

We adapt van den Dries’ treatment of analytic Ax—Kochen—ErSov theorems [19]
and its refinements by van den Dries, Haskell, Macpherson, Lipshitz and Robin-
son [20], [15] to the valued difference field setting. While we could restrict our atten-
tion to such rings of analytic functions as Z[[¢]](X1, ..., X,) or W[F?,lg] (X1,...,Xn)
without sacrificing the examples of greatest interest, we work with potentially more
general rings in order to separate the work on the model theory of analytic functions
from difference algebra.

Definition 2.1. A pre-notion of analyticity, 4, is given by the data of a commutative
ring R and a doubly-indexed sequence of subrings «4,, , € R[X][[Y]] of the ring of

formal power series in the n variables Y = (Y, ..., Y};) over the polynomial ring in
the m variables X = (X1, ..., X;;) over R for which
1. A0 =R,
2. ifm < m’andn < n’,then A, , is a subring of A, , via the natural inclusion,
and

3. A is closed under compositions as far as this makes sense.

Definition 2.2. Given a pre-notion of analyticity +, an #A-analytic structure on a
valuation ring ¢ with maximal ideal m is given by a sequence of homomorphisms
Inn: Amn — Functions(O™ x m”, @) which respect the compositional identities
in oA, the identities coming from the inclusions A, , <> A’ /., and send the vari-
ables X; and Y; to the obvious projection maps.

Remark 2.3. If R itself is a complete valuation ring and A, , = R[X][[Y]], then
the usual interpretation of the elements of #4,, , gives R an #A-analytic structure.

Remark 2.4. In the definition of #-analytic structure, it is not really necessary that @
be a valuation ring and m its maximal ideal. However, this is the only case we consider
in our applications.

Remark 2.5. Given a pre-notion of analyticity 4 and £ a first-order language for
valued fields containing (at least) a sort symbol @ for the valuation ring and a sort
symbol m for the maximal ideal of the valuation ring we may naturally expand £
to L(4A) by new function symbols where for each f € #A, , we have a function
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symbol, also denoted f, of domain sort @™ x m" and range sort @. The condition
that a particular interpretation of 4 on a valuation ring defines an +-analytic structure
may be expressed as a first-order theory in £ (+4).

Before we can give our conditions on when a pre-notion of analyticity is actually a
notion of analyticity, we must recall some of the basic formalism of quotient operators
on valuation rings and leading term structures. In what follows, we use the symbol @
for our quotient operators even though “D” is more common in the literature.

Definition 2.6. Let (K, v) be a valued field with valuation ring @ := Ok , having
the maximal ideal m := mg ,. We define two operators @ and @; on 2 by
Qp(x, y) = %ifv(x) > v(y) # ooand Qy(x, y) = O otherwise while @ (x, y) := ’;C
if v(x) > v(y) and is zero otherwise.

Remark 2.7. As shown in the work of Denef and van den Dries [9] and Lipshitz
and Robinson [15], for example, quantifier elimination for certain valuation rings
considered with analytic structure may be obtained in languages possessing Qg and @
as primitives, but not without these operators.

Definition 2.8. Given a pre-notion of analyticity + and a first-order language of valu-
ation rings £ as in Remark 2.5, the language £ () is the expansion of £ () by the
function symbol Q¢ and @ of domain sort @2 and range sorts (9 and m, respectively.
Given a valuation ring with «#-analytic structure there is a natural expansion of the
structure to an £ (4)-structure.

We recall now the formalism of leading terms and angular components.

Definition 2.9. Let (K, v) be a valued field and t € @ = O, be a fixed nonzero
element of the ring integers of K. For each natural number n, we define the n'" leading
terms of K relative to K to be the multiplicative monoid ¢, ;(K) := K /(1 + t"m).
We write £, ;(K)* := £, ;(K) ~. {0}. We write r, ;(K) := @/t"m. If ¢ is understood
we write simply £, (K) for ¢, ;(K) and r, (K ) for r, ;(K) We write £,: K — £,(K)
for the natural quotient map and m;,: @ — r,(K) for the reduction map.

Remark 2.10. While ¢,,(K)* is naturally a group, it carries additional structure.
For instance, the valuation map v: K — 'k U {oo} descends to a map on £,(K)
which we continue to denote by v. More importantly, addition leaves a trace on
£,(K) in the form of a ternary predicate 4+, := {(x,y,z) € £,(K)3 | 3%, y,Z €
Kx+y=2z4£,x)=x,£,(y) =y, and £,(Z) = z}. In the sequel we shall require
that £, (K) remember more structure from K. In particular, we insist that the leading
terms remember analytic identities. That is, for each £ (A)-term f(x1, ..., X,,) the
image of {(x1,..., X, y) € K™t | f(x) = y} under ¢, is to be described by an
m-ary predicate on £,,.

Remark 2.11. The image of ©O* in ¢,(K) may be identified with r,(K)* and

v

the valuation exact sequence 1 o* K> Ik 0 descends to

1—>7, (K)* — £ (K)*—>T g —0.

v
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Remark 2.12. If t € O™ is a unit, then the leading term structures £, ,(K) are all
identical.

Remark 2.13. In our intended applications we take t = p, the residue characteris-
tic, or t+ = 1 when the residue characteristic is zero. In fact, we shall impose this
requirement with our axioms.

Remark 2.14. One can consider leading term structures relative to other ideals in O g
and we shall use £oo (K) := K/(14+t*m) where t*m :={x € O | (Vn € Z;)v(x) >
v(#™)}. One cannot access £, (K) directly in first-order logic, but when the field K is
Ri-compact, £ (K) = 1(&1 £, (K) so that it may be approached from first-order data.

Note that the ring O (K) [%] is a valuation ring whose residue field is 75, (K) [@]
We refer to the corresponding coarsened valuation as v.

Remark 2.15. Inthe work of Basarab and Kuhlmann [4], [14], leading term structures
are called “additive-multiplicative congruences” or ““amc structures.”

Leading term structures already live definably in valued fields, but the way in which
they nontrivially combine the value group and certain residue rings can complicate
their analysis. By working with angular component functions one can treat these parts
separately.

Definition 2.16. Anangular component function of levelnisasectionac, : £,(K)* —
r,(K)™ of the valuation sequence. A system of angular component functions is a se-
quence {ac,}>>, where ac, is an angular component function of level n and these
functions commute with the obvious quotient maps between the leading term and
residue sorts.

Remark 2.17. As with the leading terms, we shall require that the angular component
functions preserve more than just the multiplicative structure.

Remark 2.18. While angular components need not exist in general, they do if (K, v)
is sufficiently saturated. Thus, possibly at the cost of replacing (K, v) with an el-
ementarily equivalent structure, we may assume that we have angular component
functions.

Let us now fix once and for all a background language £ and theory of valued
fields, Tyr. We take £ to be a many sorted language having sort symbols VF for the
valued field itself, @ for the valuation ring, m for the maximal ideal of the valuation
ring, T" for the value group, r, for the residue rings of Definition 2.9 and r,* for the
units in the residue ring, and ¢, for the leading terms. The sorts are connected by
the inclusion maps m < O — VF, r* < r, and r,* < ¢{,, the valuation maps
v: VF — I'and v: ¢, — T, the reduction maps n,: O — ry and 7y 50 ¥ — ¥n,
and the leading term maps £,: VF — ¢, and ¢, ,: £, — £,. The sorts VF, O,
and r;, come equipped with a copy of the language of rings while I is presented in the
language of ordered abelian groups and the £, sorts each have a binary multiplication
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operation and a ternary predicate for addition as described above. If we wish to
include angular component functions, then expand the language to £ ({ac,}).

We axiomatize the theory of valued fields, Ty, in &£ with the usual axioms assert-
ing thatif M |= T, then VF(M) is a field and that v: VF(M) — I'(M) is a valuation,
and that all of the other sorts are interpreted as expected. That is, the inclusion maps
m(M) — O(M) — VF(M) are really inclusions and identify their images with the
elements of positive valuation and of nonnegative valuation, respectively, the valua-
tion maps are surjective, and the residue ring sorts and leading term sorts really give
the residue rings and leading terms, et cetera. The one nontrivial point here is that we
require £, (M) tobe VE(M) /(1 +m(M)) (r,(M) tobe O(M)/m(M), respectively) if
the residue characteristic is zero and to be VE(M) /(1 + p"m(M)) (O(M)/p"m(M),
respectively) when the residue characteristic is p > 0. This condition may be ex-
pressed by a set of first-order sentences. Of course, if we work in £ ({ac,}), then our
theory Tyr(ac) expresses that the angular component function symbols are interpreted
as angular components.

When we expand to £€ our theory T\% includes axioms expressing the definitions
of Qp and @;. Given a pre-notion of analyticity -+, we require of the expanded
language £(+) not only that there be function symbols for the elements on 4 but
that there be predicates on the leading term sorts corresponding to these functions.
Given any L-theory T O Ty of valued fields, the theory T (#4) is obtained from T
by adjoining the axioms expressing that the valuation ring has «#-analytic structure
and that the new predicates on the leading terms are interpreted correctly.

Remark 2.19. For the main theorems of this paper we require that the valued fields
under consideration have characteristic zero.

We need to say a little about affinoids before finishing the definition of a notion of
analyticity. If M = Tyg(+) is a valuation ring with #A-analytic structure and (K’, v')
is an algebraic extension of VF(M) with an extension of the valuation v, then there
is a unique way to extend the A-analytic structure to K’. Indeed, it is enough to see
this in the case that K’ is a finite extension of VF(M). Fixing a basis for O(K') over
O (M), one can identify @ (K') with O (M)IEVEAD] 1 50 doing, one can expand
the action of the #-analytic functions in terms of this basis as well. In particular, if
K’ = VF(M)™2 is the algebraic closure of VF(M), then (K’, v) |= Typ(s4).

Definition 2.20. Let M = Typ(+A) be a valuation ring with #A-analytic structure and
fix an extension v’ of v to K’ := VF(M)?2. A S subset of ©O(K’) is said to be an
affinoid over M if there are y, ..., y, € '(M)anday, ...,a, € O(M) with y; > y;
fori #1and S ={z€ OK) |vz—a1) >y A N'_,v(iz—a) <y} An
affinoid set in M is the intersection of an affinoid set over M with O (M).

With the background on valued fields in place we are now ready to describe when
a pre-notion of analyticity is actually a notion of analyticity.
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Definition 2.21. Fix some theory T 2 Ty of valued fields. A notion of analyticity
(relative to T) is a pre-notion of analyticity, +, for which Weierstrafl division holds
uniformly in the following sense. If M = T(+A) and #(x) is an L2(A)p-term in
the single -variable x, then there are finitely many affinoid subsets Fi, ..., F, of
O (M) for which O(M) = |J F; and for each i there is a rational function R;(X)
over @ (M) having no poles in F; and £L(A)y-terms E;(x) and Ei_l(x) for which
E; (x)El._1 (x) =1on F; and t(x) = E;(x)R;(x) at all but finitely many points of F;.

Remark 2.22. That the rings of convergent power series over complete DVRs give
a notion of analyticity is proven by van den Dries, Haskell and Macpherson in [20].
(Combine Proposition 4.1 with Corollary 3.4 noting that Proposition 4.1 is still general
even though it is in Section 4 where the authors claim to specialize to the case of the
p-adics.)

Remark 2.23. In our applications, we restrict attention to valued fields of character-
istic zero. Thus, the theory T in Definition 2.21 will be Ty together with the set of
sentences asserting that the valued field itself has characteristic zero.

Remark 2.24. The condition of uniform Weierstraf} division may be expressed more
syntactically in that the parameters for the term #(x) may be given as a tuple of
variables y and then the affinoids, the rational functions, and the units E(x) vary
uniformly with y.

If R is any ring and 0: R — R is an automorphism, then o extends to an auto-
morphism o : R[X][[Y]] — R[X][[Y]] of the power series ring over the polynomial
ring over R. For f € R[X][[Y]] we write the f for the result of applying o to f.

Definition 2.25. A notion of difference analyticity (relative to T as in Definition 2.21),
(+, 0), is given by a notion of analyticity + and an automorphism o : g0 — 0,0
which induces an automorphism on each A, ;.

Definition 2.26. Given a notion of difference analyticity (A, o) (relative to T'), an
A-analytic difference ring is a model M = T (+4A) given together with a distin-
guished automorphism o : M — M which preserves the valuation in the sense that
v(o(x)) = v(x) universally and respects the +A-analytic structure in the sense that
o(f(x)) = f°(o(x)) for any +A-function f.

The condition of being an +-analytic difference ring is clearly axiomatizable in
L (A, o), the expansion of the language of valuation rings with #A-analytic structure
by a symbol for an automorphism.

As in the study of difference algebra, terms in c,C(’Q(,A, o) may be expressed us-
ing terms from L£%(4) applied to prolongations, sequences of the form o (x) =
(x,0(x),...,0"(x)). Thatis, if r = 1(x) = t(x1, ..., %) is an LE(A, o) term,
then we can find an £ (A) term 7 = F(X0.1, ..., X0um} -3 Xn.1» - - - » Xnm) SO that
relative to the theory of ~A-analytic difference rings we have (x) = 7(o(x)). We
define the order of t to be the least m for which such a f exists. It should be noted that
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the order of  when computed in a fixed +A-analytic difference ring may be different
from the order when computed relative to the theory of #-analytic difference rings. In
our applications, when we speak of order we mean order relative to a given structure.

Fix an #A-analytic difference ring M and A € M a substructure for which @ (A)
generates A. If a € O(M) and for some LL(A, o) 4 term 1(x) over A we have
t(a) = 0 but 7(x) # 0 in a neighborhood of a, then we can find such a term of
minimal possible order, n, and define the order of a over A, ord(a/A), to be that
minimal order. By the uniform Weierstraf} division theorem, we may write #(x)
as E(6"(x))R(c"(x)) where R is a rational function over the L& (A)-structure A’
generated by A and «, .. ., 0" (a) having no poles near 6" (a) and E is an L (+A)
term over A’ which is a unit near ¢” (a). Thus, there is actually a nonzero polynomial
over A’ which vanishes at 6" (a). We define the degree of a over A, deg(a/A), to
be the minimal degree, d, of such a polynomial. We combine these data in the pair
(ord, deg)(a/A) := (ord(a/A), deg(a/A)) and order them lexicographically.

As with pure valued fields and some theories of valued fields with additional struc-
ture, the model companions of theories of #-analytic difference rings are obtained by
adjoining variants of Hensel’s lemma (and an axiom about the existence of constants)
to the theory. Unfortunately, the usual proof of Hensel’s lemma breaks down when
applied to L@ (4, o) terms as the quotient operators may introduce discontinuities.
However, these terms do define generically continuous functions and if one stays
within the correct domain of continuity, Newton approximation techniques do work.

Proposition 2.27. Suppose that M is an A-analytic difference ring and let pg, . . ., pa
be a finite sequence of LE(A)y terms with parameters from M and variables
X0 ...y Xn—1. Write P(x) = Z;l:() pi (0 (X)) (0" (x))!. Abusing notation, we write
P'(x) =Y ipi(a(x)) (0" (x))'~\. Assumethata € O(M)withv(P(a)) > 2v(P'(a))
and that for any ¢ € O(M) withv(g) > v(P(a)) —v(P'(a)) one has £o(p;(a+¢)) =
Lo(pi(a)) fori < d. Then there is some b € O(M) with v(b — a) > v(P(a)) —
v(P'(a)) and v(P (b)) > v(P(a)).

Proof. A variant of the usual proof applies. Indeed, letn := o " (Qo(—P(a), P'(a)))
and set b := a + n. From our hypotheses, v(a — b) = v(P(a)) — v(P’'(a)) and
computing P (b) we have

P(b) = pila+mn(c"(@+n)

i

d i
=Y pi@l+&1)Y (J.)o”(a)”o"(n)f where v(§) > 0
i=0 j=0

= P(a) + P'(a)a"(n) (mod P(a)m(M))
=0 (mod P(a)m(M)) O

Corollary 2.28. With the hypotheses as in Proposition 2.27, there is a maximal
pseudoconvergent sequence {by} from O (M) with by = a and v(P (by)) increasing
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with a. If in addition O(M) is maximally complete, then b := lim b, exists and
P(b) =0.

We convert the last part of this corollary into our version of henselianity for A-
analytic difference rings.

Definition 2.29. We say that the ~-analytic difference ring M is A-analytically
difference henselian if the conclusion of Corollary 2.28 holds for M. That is, given a
sequence of L2 (A)y terms po, - - ., pq with variables xg, ..., x,_1 writing P(x) =
3 pi(o(x),a)o”"(x)' if a € O(M) has the property that v(P(a)) > 2v(P'(a))
while for any ¢ € @ (M) with v(e) > v(P(a)) — v(P’'(a)) we have £y(p; (0 (a))) =
Lo(pi(o(a + ¢))) for i < d, then there is some b € O(M) with P(b) = 0 and
v(b—a) > v(P(a)) — v(P'(a)).

Remark 2.30. It should be noted that even when there are no quotient operators, and
even in the case of difference polynomials, the continuity hypothesis is nontrivial.

Visibly, the condition of being +A-analytically difference henselian is first-order
expressible. In axiomatizing the theory of 4-analytically difference henselian rings,
T 4-pH, we impose two additional requirements beyond those of Definition 2.29. First,
we insist that every model of T,4_pg be of characteristic zero. Secondly, we demand
that the valued field have enough constants in the sense that for every element of the
value group there is some element of the field fixed by ¢ and having that valuation.
This last condition can be ostensibly weakened by requiring the existence of o -fixed
elements of each valuation only at the level of the leading terms. For the remainder
of this paper, when we speak of an »-analytically difference henselian ring we mean
a model of T4.pyg where (+4, o) is some notion of difference analyticity.

3. AKE theorems for analytically difference henselian rings

In this section we state and prove our main relative completeness and quantifier
elimination theorems for +-analytically difference henselian rings. As with much
of the earlier work on pure valued fields and on algebraic valued difference and
differential fields (but, remarkably, unlike most previous work on the model theory
of analytic functions on valued fields) we prove our results by employing a model
theoretic test for completeness and quantifier elimination involving extensions of
partial isomorphisms.

Simply put, our theorem is that for a fixed notion of difference analyticity, (A4, o),
the theory T 4.py of #-analytically difference henselian rings is complete and elim-
inates quantifiers relative to the leading term sorts, and even, resplendently so. As
we expect the meaning here of relativity and resplendence may require some expla-
nation, we describe these terms now before announcing our theorem in its official
formulation.
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Given a many sorted language £ and a nonempty set X of J£-sort symbols, the
restriction of /£ to X, (L [ X), is the language having sort symbols ¥ and as basic
function, relation, and constant symbols exactly those from £ which refer only to
sorts in X. That is, a function symbol f of £ is a function symbol of (L [ X) just
in case its domain sort is a sequence of sorts from X and its range sort belongs to X
while a relation symbol of £ belongs to the restricted language if its field sort is a
sequence of elements of ¥ and an £-constant symbol is an (£ [ X)-constant if its
sort belongs to X. If M is an L-structure, then the restriction of M to ¥ is simply the
(L | X)-structure (M | X) consisting of the M-interpretation of the sorts in ¥ and
the nonlogical (£ | ¥)-symbols.

Definition 3.1. Given a many sorted language £ and a nonempty set X of £L-sort
symbols we say that the L-theory T is complete relative to ¥ if for any model M =T
the theory T'U Th¢x)(M [ X) is complete.

To discuss relative quantifier elimination we need to recall Morleyization. Given a
language o£, the Morleyization £MO of .£ is obtained by adjoining to .£ a new relation
symbol Ry (x1, ..., x,) for each L-formula ¢ with the free variables x1, ..., x,. The
LM theory TMO" is defined by

TMOT .= (Wx) - - Vx, (Rg (x) <> ¢(x)) | ¢ an L-formula}
On general grounds, any extension of T}/Ior in LM°T eliminates quantifiers.

Definition 3.2. Given a many sorted language £ and a nonempty set X of L£-sort
symbols we say that the L-theory T eliminates quantifiers relative to X if the theory
TU T(%(Frz) eliminates quantifiers in £ U (£ | Z)Mor,

We mentioned that our theorems hold resplendently. We employ this enhancement
of the theorem when discussing angular components. Essentially, by resplendent rel-
ative completeness (respectively, resplendent relative quantifier elimination) we mean
that relative completeness (respectively, relative quantifier elimination) continues to
hold even after arbitrarily enriching the sorts to which we relativize.

Definition 3.3. Let £ be a many sorted language and ¥ a nonempty set of L£-sort
symbols. We say that the £-theory T is resplendently complete relative to ¥ (re-
spectively, resplendently eliminates quantifiers relative to ¥) if for any expansion
L' D (L | ) having only T as sort symbols and any o£'-theory 7" the theory T U T’
is complete relative to X (respectively, eliminates quantifiers relative to X).

With this general nonsense on many sorted languages in place we may now state
our main theorem.

Theorem 3.4. The theory T4-pu of A-analytically difference henselian rings is re-
splendently complete relative to the leading terms sorts and resplendently eliminates
quantifiers relative to the leading terms.
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Using general results on the existence of angular components, we deduce a stronger
relative completeness theorem from Theorem 3.4.

Theorem 3.5. The theory T4-py of A-analytically difference henselian rings is com-
plete relative to the value group and residue ring sorts.

As a particular application of Theorem 3.5 we see that if k < &’ is an extension
of algebraically closed fields of characteristic p, then the corresponding extension of
rings of Witt vectors, W[k] < W[k'], is elementary in the language £ (A, o) where
Amn = WIK][X][[Y]] and o is interpreted as the Witt—Frobenius. We shall expand
on this observation and exploit it in Section 4.

As is our wont, we shall prove Theorem 3.4 by converting it into a statement
about extending isomorphisms and then actually proving the statement on extensions
by considering the cases of residue field, totally ramified, and immediate extensions
separately. Some of these steps require merely routine modifications to the proofs in
the algebraic setting, but others are considerably trickier.

The reader should consult Section 7 of [17] or Theorem 8.4.1 of [11] for a discus-
sion of why the following technical theorem is equivalent to Theorem 3.4.

Theorem 3.6. Let L' be an expansion of the restriction of L (A, o) to the leading
term sorts, (LE (A, o) | LT), having no new sort symbols. Suppose that My and M»
are two saturated A-analytically difference henselian rings each of the same cardi-
nality > (|L'|¥0)*F considered in the language L2 (A, o) U LMer, Suppose moreover
that (M [ LT) =4 (M | LT) T}/,Ior. Suppose that A1 € My and Ay € M; are
two small (of cardinality at most |L'|) substructures of My and M, for which O (A;)
generates A; and that f: Ay — As is an isomorphism of L& (A, o) U (LHMO-
structures. If a € O (M) is any element, then there is an extension of f to an
isomorphism between the substructure of M| generated by Ay and a, Ay{a), and a
substructure of M».

Throughout the remainder of this section we concentrate on proving Theorem 3.6,
and, hence, also Theorem 3.4. In the course of this proof we shall reduce the problem
to other statements with stronger hypotheses. As these restrictions are established,
we shall display our new hypotheses as boxed statements.

As M1 and M> are saturated of the same cardinality and (M; | LT) and (M> | LT)
are elementarily equivalent, they are actually isomorphic. Sincethemap f: A} — Az
is an isomorphism of L2 (A, o) U (L)M-structures, and, each (M; | LT) elimi-
nates quantifiers, the restrictions of these structures to the leading terms are actually
isomorphic over f. Let us fix such an isomorphism f : (M | LT) > (M, [ LT) and
thereby arrive at our first reduction.

fU f: AU | LT) - A U (M; | LT) is an isomorphism of
LE(A, 0) U (LM _gtructures.
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We fix now Ny < M; and Ny < M, two |£’|T-compact elementary substructures
each of cardinality less than that of M for which Aj{(a) € N; and Ay € N>. Our
hypotheses on the saturation of M| and M> and on their cardinalities ensure that such
structures exists. In the course of our construction of an extension of f we shall
initially extend inside N; taking values in N, until N; is an immediate extension of
A; and then we extend f to a maximal immediate extension of N inside M.

With the next lemma we show that the map f may be extended so as to add new
elements to the residue ring 7o, (A1).

Lemma 3.7. Let a € roo(N1). Suppose that (ord, deg)(a/ro0(A1)) = (m,d). Let
Pos - .., Pa be L2 (A) A, terms in the variables xo, . . ., x,—1 for which the reductions
under oo, Pi = Too(Pi), give well- a’eﬁnedfunctlons at (a,o(a), ...,c" 1 (a)) and
P(a) =) pi (a(a))(am(a))’ =0. Let P = > Di (a(x))(a’”(x))’ Then there are
elements a € (9(N1) and b € O (N3) for which P(a) = 0, Pf(b) =0, meo(a) = a,
f (a) = T (b), and f extends to an isomorphism defined on the structure Ay{a)
which has no new elements in its value group taking a to b.

Proof. Leta’ € O(N) be any lifting of a. By our minimality assumption, P’(a) # 0.
As P(a) = 0in roo(N)), we see that, 2v(P'(a’)) < v(P(a’)). Moreover, because
the terms p,- (0 (x)) are well-defined at a, their leading terms do not depend on the
choice of a’. Hence, as N; is -analytically difference henselian, there is some a
lifting a and satisfying P(a) = 0. Likewise, using Rj-compactness of N we can
find b € O(N») with P/ (b) = 0 and 7700 (b) = f(a).

We argue by inductiononn < m thatif Q is aterm of order n, then f (lo(Q(a))) =
lso(Q7 (b)). By the uniform WeierstraB property, we may express Q near @ as
E(o"(a))R(c"(a)) where E is given by an [L(4) term over the L2 (A)-structure
generated by A; and a, ...,0™ &) and is a unit near ¢"(d) and R is a ratio-
nal function over the same structure having no poles near ¢”(a). In the case that
n = m, we may assume that the degrees of the numerator and denominator of R
are less than d. By induction, the co-leading terms of the parameters for £ and R
are under control. As the quotient operators are not applied to ¢’ (a) in E and E
is a unit near 0" (a), its oo-leading term is determined by that of " (a). Write
R(o"(a)) = S(c"(a))/T(c"(a)) where S and T are polynomials. Write § = cS
where v(c) is equal to the GauB3 valuation of S. Then TooS gives a nonvanishing
polynomial at 6" (a) as either n < ord(a/rec(A1)) or deg nOO(S‘) < deg(a/roo(A1)).
Thus, EOO(S’ (a)) = JTOO(S’ )(a). Applying the same reasoning to 7', we conclude the
induction and, hence, also the proof of this lemma. a

Repeatedly applying Lemma 3.7 we can extend f so that roo(A;) = reo(NV;).
However, we delay doing this until we have achieved I'(A;) = I'(V;).

With the following steps we enlarge the value group of A|. Before actually adding
new elements to the value group, we extend f so that its domain has enough constants.

Lemma 3.8. Ifc € O(A)), then f extends to some A1(e) C Ni where v(e) = v(c),
o(e) =g, and'(A1) =T (Aq{e)).
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Proof. Take ¢ € O(Np) with o (¢) = ¢ and v(¢) = v(c). Such an element exists by
our axiom that +A-analytically difference henselian rings have enough constants. Set
n := Qo(e, c). Then 7 is a nonzero solution to the linear difference equation o (X) —
Q(c,0(c))X = 0, even upon reduction to ro,(N). Thus, there are infinitely many
solutions t0 o (X) — 7o (Q(c, 0(c))X = 0 in roo(N7) and by |£'|"-compactness,
at least |£'|t many solutions. In particular, there some solution a which is not
algebraic over roo(A;). Let @ and b be given by Lemma 3.7 applied to P(X) =
0(X) — oo (@(c,0(c)). Sete :=a-c. O

Iterating this construction so as to consider all the elements of the value group
of A1, we may suppose that A} and A, have enough constants.

’ A1 and A; have enough constants ‘

For purely ramified extensions we consider the cases of algebraic and transcen-
dental extensions separately.

Lemma 3.9. Ife € O(Ny), o(e) = ¢, " =: ¢ € O(Ay), and mv(e) ¢ T'(Ay) for
m < n, then f extends to Ay(g).

Proof. That there is some n € N, fixed by o with n” = f(¢) and that the map
extending f sending ¢ to n preserves the valued difference structure is already known
from the algebraic case. As noted in Section 2, the sA-analytic structure extends
uniquely to algebraic extensions. o

We extend now to transcendental expansions of the value group.

Lemma 3.10. If ¢ € O(Ny) is fixed by o and nv(e) ¢ I'(Ay) for alln € Z, then
there is some n € O(Ny) also fixed by o with f(£oo(€)) = Loo(n) for which f extends
to Ai{e) viae > n.

Proof. Let £ € O(N>) be any element with £,({) = f((foo(s)) and let P(X) =
o(X) — X. Then v(P(¢)) > v(¢) > 0 = v(P'(¢)) as the leading term of ¢ is
a constant. Indeed, we even have voo (P (L)) > vso(¢) Where v is the coarsened
valuation. It follows that if £ € O(N;) with v(§) > v(P(Z)), then oo (—(¢ +
£)) = Lo (—¢). Hence, our version of Hensel’s lemma applies and we can find some
n € O(N2) with £oo(n) = €oo(§) = f(lxo(e)) and o (n) = 1.

Since o (¢) = ¢, every element of O (A1(e)) can be expressed as an QC(’Q(,A)A1
term applied to . Likewise, the same is true of n with A; replaced by Aj. So, it
suffices to show that if 7 (x) is an L (A) 4, term, then f (£oo(1(£))) = Loo (! (1)).

Using uniform Weierstraf} division to express #(x) as E(x)R(x) where E is an
L (A) 4, term which is a unit near ¢ and R(x) is a rational function over O (A1), we
see that £oo(E (¢)) depends just on £og(€) and if R(x) = (Y a;x')/( Y bjx/), then
Loo(R(€)) = Loo(@ig)loo(8) 071085 (bjy) Where v(a;y) + iou(e) = min; v(a;) +iv(e)
and v(bj,) + jov(e) = min; v(b;) + ju(e). O



Analytic difference rings 85

Applying Lemmata 3.9 and 3.10 repeatedly, alternating the roles of Ny and N»,
we may extend f sothat'(A;) = ['(WV;) fori € {0, 1}. Once this has been achieved,
we may apply Lemma 3.7 repeatedly to extend f so that ; is an immediate extension
of A i

Let us state this result as our second reduction.

N; is an immediate extension of A; fori € {0, 1}

Fix NOW N 1 amaximal immediate extension of N| in M 1 and a maximal immediate
extension Nz of N> in M. We shall actually extend f to N 1.

Working by induction in N1 we may assume that a has the least possible (ord, deg)
over A of new elements of N;. That is:

If b € O(Ny) and (ord, deg)(b/A1) < (n,d) := (ord, deg)(a/A1),
then b € O(Ay).

Working by induction further we may assume that whenever we have a pseudo-
convergent solution to a low (ord, deg) +A-analytic difference equation over Ay in Ny,
then we have an actual solution.

IfQ) =5 oqi(x,0(x),...,0"™ 1 (x))(@™(x))' where (m,e) < (n,d) and

each g; is an L (A) A, term and {x,} is a pseudosolution to Q in the sense that

v(Q(xy)) is increasing with o and Hensel’s lemma applies at each «, then there
is some b € Q(ﬁl) with x, pseudoconverging to b and Q(b) = 0.

We fix now a maximal pseudoconvergent approximation {x,} to a from @(A;)
and P(X) = Z?:o pi(0(X))(c"(X))" a minimal equation for a over A;. We shall
show the following.

1. For Q of lower complexity than that of P (thatis, Q is a polynomial in 0" (X)
of degree less than d having coefficients which are L& (A, o) A, terms of order
less than n) we have £ (Q(a)) = £oo(Q(xy)) for a > 0.

2. Indeed, we shall show that v, (Q(a) — OQ(xy)) > v(Q(a)) + v(a — x4) for
o> 0.

3. Possibly replacing P with a refinement, Hensel’s lemma applies along {x,}.

4. Thereis some b € M» for which { f (x,)} is a pseudoconvergent approximation
and P(b) = 0.

It follows that we may extend f by sending a to b and that our inductive stipulations
on f and Np continue to hold.

We work by induction on m = ord(Q) to prove the first of these points.

We observe first that if U is an L2 (4, o) A, term of order less than m, then
for « > 0 we have v(a — x4) > v(6™(a) — U(a)). Indeed, take o large enough
so that the valuation inequality stated in Part 2 above holds for U. Assuming that
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v(e™(a)—U(a)) > via—xy) = v(0™ (x4 —a)), then we have v(0™ (xy) — U (x4)) =
v((c™(a)—U(a))+ (6™ (xy —a))+ (U (xy) —U(a))) > v(a — xy). Hensel’s lemma
then applies to produce some y, with 0™ (yy) = U (yy) and v(yy — Xg) = v(a — xq).
But then by the boxed reduction above, the sequence {y,}, and hence also {x,} has a
pseudolimit in N 1 contradicting its maximality.

The point of this observation is that any affinoid defined over the L2 (A)-structure
generated by A and g, ..., o™ (a) containing o™ (a) also contains points of the
form o™ (xy).

Near 0™ (a) we can write

0(x)=E(a,...,c" Y a);a™x)R(a,...,c" (a); e (x))

where the quotient operators are not applied to ¢”*(x) in E and E is a unit near a
and R is a rational function in ¢ (x) with no poles near o™ (a). By induction, the
parameters in E and R have the same oco-leading termsiif (a, . . ., o™ () is replaced
by (Xa, ..., 0™ 1 (xq)) for o >> 0.

Since £oo(xy) = Lool(a), E is a unit, and the co-leading terms of the coefficients
of E(xg, ..., 0™ (x4); X) and E(a, ..., 0™ ! (a); X) are the same, it follows that
loo(E(a(a))) = Loo(E(a(xy))). Moreover, since the quotient operator is not applied
to the last variable and v(E (0 (xy))) = 0, the usual Taylor series expansion can be used
to see that v(E (0 (xq)) — E(0(a))) = y + Nv(xqg —a) for some fixed y € v(O(A1)).

We can write R as U(xg, ..., xn)/V(xo0,...,xn) where each of U and V is a
polynomial in x,. Let us write U = Y u;(xo, ...,xm_l)x;. By induction we
know, among other things, that €. (#; (0 (a))) = £oo(u; (0 (xy))) for all i and @ > 0.
Replacing U with Q(U, c¢) where ¢ € O(A1) and v(c) = min; v(u; (o (a))) we may
assume that v(u; (o (a))) = O for some i.

Write xo, = a + yq.

Let us expand U (xy).

Uxg) = Y _ui(0(a+ya) (0" (@ + ya))'

=Y uile(@)[1+ &](j.)o%)"‘fom@a)f where v (§1) > 0

i,j

L yrem .
= Z[l + gj]ﬁU P(a)o™ (yo)!  where v (g;) > 0.
- !

For @ > 0, the summands on the righthand side of the equation all have dif-
ferent vy, valuations. Thus, €4 (U (xy)) = Eoo(ﬁU(j)(a)om(ya)j) for the j which
minimizes the valuation of the expression on the right. If this j is zero, then we are
done. As we have reduced to the case that v(u;(0(a))) = 0 for some i, it follows
that the j for which the valuation is minimized must have v (U (a)) = 0. Writing
j = k + 1, we see that Hensel’s lemma applies to U® (X) along x, so that by our
inductive hypothesis the sequence x,, pseudoconverges to a solution to U® (x) = 0
contradicting its maximality. Hence, £ (U (a)) = £oo(U (x4))-
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Repeating this calculation with V in place of U, we finish the proof of points 1.
and 2.

The above calculations apply as well to the case that U = P. This time since
P(a) = 0, necessarily the minimal valuation of a summand on the right is obtained
for some j > 0. If this j is not one and even if voo(P'(a)) # 0, then as above xy
pseudoconverges to a solution of some derivative of P. Thus, Hensel’s lemma applies
to P along x, and we can find the requisite solution to P (X) =0in O(M>).

Conversely, the above calculations show that if we assumed merely that a €
O (M), then there is an immediate extension of N{ in which x, pseudog(\)nverges to
a solution to P(X) = 0. Indeed, arguing by induction on (ord, deg)(a/N;) we may
assume that P is also a minimal equation for a over Nj. With the above calculations
we never invoked the fact that a lives in an immediate extension of A;. Therefore,
loo(Q(a)) = £oo(Q(xy)) € €o(A1) for each lower complexity Q.

With these observations we conclude the proof of Theorem 3.6.

4. Model theory of p-differential geometry

In this section we apply the results from Section 3 to the theory of p-differential
functions obtaining amongst other theorems a uniform version of the Manin—-Mumford
conjecture over W[IF?,lg ].

Before discussing applications to p-differential functions we verify that the Witt
vectors may indeed be regarded as +A-analytic difference henselian rings.

The reader may wish to consult Section 17 of [10] for more details on the Witt
vectors. Recall that there is a functor W taking a perfect field k of characteristic p > 0
and returning a complete valuation ring W[k] whose maximal ideal is generated by p
and whose residue field is naturally isomorphic to k. From the functoriality of the Witt
vector construction it follows that the Frobenius automorphism t: k — k induces
an automorphism W (t): W[k] — W[k] which reduces to 7 modulo p. We refer to
W (t) as the Witt—Frobenius. It follows from the construction of W (7) that it preserves
the p-adic valuation on W{k].

There is more than one reasonable choice for the analytic structure on W[k].
If we fix k, then we may wish to take A, , = WIk][X][[Y]]. In this way we
recover the rings of convergent power series by specializing the variables ranging
over the maximal ideal. If we wish to work uniformly in p, then we may prefer to
use Z[X][[Y]]. In any case, the uniform Weierstral} division property follows from
the main results of [20].

The most natural angular component structure on the Witt vectors is defined by
taking the powers of p as the constant representatives of the value group. Henceforth,
when we consider the Witt vectors with angular components we insist upon this
choice. Fixing a choice of «# as in the previous paragraph, we find now that the theory
of W[k] in L2 (4, o, ac) is determined by the theory of k and admits quantifier
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elimination relative to k and the value group. From Theorem 3.4 we require the
theories of all of the residue rings to determine the full theory of the «A-analytic
difference henselian ring. In the case of the Witt vectors, the intermediate quotients
rn(Wk]) = W[k]/ p"Jrl W k] are uniformly interpretable as the k-rational points of
ring schemes over k. Thus, their theories and questions about quantifier elimination
for these rings are determined by k.

Let us note two consequences of this characterization of the theory of the Witt
vectors as an »-analytic difference ring. First, if k < k' is an elementary extension
of perfect fields, then W[k] < W[k'] is also elementary. Secondly, the residue field
is orthogonal to the value group in the sense that if X C ro(W[k])" x ['(W[k])™ is
any definable set, then X is a finite Boolean combination of sets of the form ¥ x Z
where Y C k" is definable in k and Z C Z™ is definable in (Z, +, 0, <).

Let us turn now to a model theoretic study of p-differential geometry. As we
noted in the introduction, if o : W[k] — W|[k] is the Witt—Frobenius, then the operator
8: W[k] — Wlk]definedbyd(x) := %(o (x)—xP)isa p-derivation and the functions
of the form f(x) = F(x,éx,...,8"x) where x = (x1,...,x,) and F is given by
a convergent power series in n(m + 1) variables are the p-differential functions on
Wk]". We concentrate on one class of p-differential functions constructed by Buium,
namely the p-differential characters on abelian varieties.

As an illustration of the method, we prove a uniform version of the Manin—
Mumford conjecture for abelian varieties over W[k]. Recall that the Manin—Mumford
conjecture (or Raynaud’s theorem [16]) asserts that if A is an abelian variety over an
algebraically closed field K of characteristic zero and X C A is a closed subvariety,
then the intersection of X (K) with the torsion subgroup of A(K) is a finite union of
translates of the torsion subgroups of group subvarieties of A. For the purposes of
giving this theorem a more quantitative form it can help to present it in terms of the
Ueno locus of X.

Recall that the Ueno locus of X, Ueno(X), is the subvariety of X defined by
x € Ueno(X)(K) if and only if there is an abelian subvariety B < A for which
x + B C X. We shall have occasion to use the fact, noted in [13], that if the variety X
varies in an algebraic family, then so does Ueno(X). The Manin—-Mumford conjecture
implies that there are only finitely many torsion points in X (K) which do not lie in
Ueno(X)(K). In fact, if one establishes this finiteness result for the number of torsion
points lying on varieties outside their Ueno loci, then the Manin—-Mumford statement
follows formally.

With our terms defined we can state our uniform version of the Manin—-Mumford
conjecture.

Theorem 4.1. Let k be an algebraically closed field of characteristic p > 2, S a
variety (reduced, integral scheme of finite type) over Wk] and A — S an abelian
scheme over S. Let X C A be a closed subscheme. Then there is a natural number N
such that for any point s € S(W[k]) the number of torsion points in Ag(W[k]) lying
in X5 (W[k]) but outside of Ueno(X,)(W|[k]) is bounded by N.
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Remark 4.2. The restriction to odd p is an artifact of our proof in that this is an
hypothesis for the published theorem of Buium on the existence of p-differential
characters.

Remark 4.3. Theorem 4.1 is similar to the main theorem of [18] but is incomparable
in terms of its strength. The result in [18] is weaker in that one requires A — Stobe a
universal abelian variety over a moduli space and one obtains information only about
fibres which are canonical lifts, but it is stronger in the sense that Zariski closure of
the intersection of X (W[k]) with the set of torsion points on canonical lift fibres is
described with greater precision than is possible under the hypotheses of Theorem 4.1.

As with some of the other model theoretic theorems describing the intersection of
subvarieties of abelian varieties with certain special subgroups, we study intersections
of varieties with certain uniformly definable groups containing the torsion groups in
lieu of directly analyzing the torsion groups themselves. Unlike some of the other
work, rather than offering an alternative proof of the Manin—Mumford conjecture
itself, we use Raynaud’s theorem to derive this uniform version.

Before recalling Buium’s construction of p-differential characters on abelian va-
rieties we highlight the crucial features of the groups obtained as the kernels of his
characters that we shall exploit.

Definition 4.4. Let k be an algebraically closed field of characteristic p > 0. If X
is a scheme over W[k] and n is a natural number, then we write p,: X(W[k]) —
X (W[k]/p"t'W[k]) for the reduction modulo p"+! map. If n < m, then we write
omn: X(WIk]/p"TIW[k]) — X (W[k]/p"T'W[k]) for the intermediate reduction
map. Using the Greenberg transform, p,, , may be regarded as a map of schemes
over k. If Z € X (W[k]) is a closed subset of X (W [k]), then we say that Z is finite
dimensional if for every natural number n the set p,, (Z) is the set of k-rational points on
a subvariety of p, (X (W[k]) with respect to the identification X (W[k]/ p”“W[k])
with the k-rational points of an algebraic variety over k& and lim supdeg p,+1., |
(pn+12) is finite.

At least when the characteristic of & is not two, Buium establishes that in analogy
to the group homomorphisms constructed by Manin using derivations on function
fields that if A is an abelian scheme over W [k] of relative dimension g, then there is a
group homomorphism given by a p-differential function w: A(W[k]) — WI[k]$¢ for
which the kernel, A*(W[k]), is finite dimensional. While the actual A” groups need
not vary uniformly, Buium does observe with Remark (1) on page 327 of [6] that the
data required to produce group homomorphisms with finite dimensional kernels is
bounded uniformly. Let us reformulate his observation as a theorem.

Theorem 4.5 (Buium). Let k be an algebraically closed field of characteristic p > 2.
Suppose that S is a variety (reduced, integral scheme of finite type) over W(k] and
that A — S is an abelian scheme over S of relative dimension g. Then there is a
p-differential function u: A(W[k]) — WI[k]8 such that for each s € S(WIk]) the



90 Thomas Scanlon

map ps: As(Wlk]) — W[k]8 is a group homomorphism for which ker (i) is a finite
dimensional proalgebraic group.

Since the additive group is torsion free, the group ker(us) contains the torsion
group A (W[k])wor- Moreover, since w is a p-differential function, the group ker ()
is definable in £ (4, o). In the notation of Theorem 4.1, one might like to argue that
there are boundedly many points in (X;(W[k]) . Ueno(X;)(W[k])) N ker(u;) and
then conclude a fortiori that the same is true with ker(uy) replaced by the torsion
subgroup of Ag(WI[k]). Unfortunately, this stronger assertion is false in general.
However, we shall establish a weak form of this boundedness statement for finite
dimensional subgroups of abelian varieties from which Theorem 4.1 follows.

Theorem 4.6. Let k be an algebraically closed field of characteristic p. Suppose
that A is an abelian scheme over W[k]. Suppose G < A(W|[k]) is a finite dimensional
L(A, 0)-definable subgroup of A(W[k]). If X C A is a closed subscheme, then
po((X(WIk]) \ Ueno(X)(WI[k])) N G) is finite.

Proof. If there were a counter-example to this theorem, then one could be found
with k = F?,lg. Indeed, by the quantifier elimination part of Theorem 3.4 the set
po((X(WIk]) ~ Ueno(X)(W[k])) N G) is constructible. Hence, if it is infinite it
contains a component of the form Y (k) . F'(k) where Y is an irreducible variety over k
of dimension at least one and F is a proper subvariety. Since the extension W[F?,lg] —
W k] is elementary, the assertion that there exist the appropriate parameters to define

such an A, X, G, Y, and F is true in W[IF;lg]. Likewise, if k" is an algebraically
closed field of characteristic p, then because W[F;lg] < WIKk'] is elementary, we

may transfer the counterexample from W[IFT,I,lg ] to W[k’]. Thus, we may take k to be
any algebraically closed field of characteristic p.

Let Y be as in the previous paragraph. Let Z C Y be a curve with Z(k) N F (k)
finite. Translating, we may assume that Z contains the origin. Let H be the algebraic
group generated by Z and let H := (0y YH(k)) N G. Then H is a definable, finite
dimensional group for which po((X (W[k]) \ Ueno(X)(W[k]))N H ) is infinite. Thus,
we may and do assume that G = H.

We now transpose the proof of Proposition 4.4 of [12] to our unstable situation.
For the moment we make use of our flexibility in the choice of k by taking k to be an
algebraically closed field of characteristic p and cardinality strictly greater than that
of the continuum. For each definable set T C ker(pg | G), let Ry := {x € Z(k) |
(Ag € G) g+ T = (X(W[k]) ~ Ueno(X)(W[k])) N G),}. The set Ry is a definable
subset of the k-rational points of the curve Z and is thus either finite or cofinite. As
Z(k) = Uy Rr and there are at most continuum many such 7 and |Z (k)| > 280,
there must be some T for which Ry is cofinite. Translating T within ker(pg | G),
we may assume that T contains the origin. Let S := {x e ker(pp [ G) | x+T = T}.
If g 4+ T is a fibre of ((X(W[k]) \. Ueno(X)(W[k])) N G), then g +5cXx showing
that g belongs to the Ueno locus of X unless S is finite, but g does not belong to the
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Ueno locus of X. Thus, S must be finite. Thus, the correspondence which associates
tox € Z(k) the g for which g + T = (X (W[k]) ~ Ueno(X)(W[k])) N G)y is one
to finite. Let Z be the i image of this correspondence in G. Note that Z is a subset of
(X (WIk]) ~ Ueno(X)(W[k])) N G).

As the restriction of the map pg to Z is finite to one, for n > 0 the map
Pn+ln’ Pntl (Z) — ,on(Z) isa bljectlve morphlsm Thus, we can find finitely many
definable subsets Z, ..., Z,, of Z for which ,on(Z ) is always irreducible. For each
such “component” if we translate Z; so that it contains the origin and then form the
group L; that it generates, we see that L; is definable. Indeed, by the finite dimen-
sionality of G the constructible sets p, (Zi) generate an algebraic subgroup of p,, (G)
in a bounded number of steps. As the map pg is finite to one on Z;, the same is true
onL;.

Now we use our flexibility in the choice of k to make k small: if k = ]F?,lg, then every
element of pg(L;) is torsion. As the kernel of pp on L; is finite, it follows that every
element of L; is torsion. By Raynaud’s theorem, L; N ((X (W[k]) . Ueno(X)(W[k]))
is finite. As this is true for each i, we conclude that the curve Z in question does not
actually exist and that po (X (W[k]) ~Ueno(X)(W[k])) NG)) is finite after all. O

We are now in a position to complete the proof of Theorem 4.1.

Proof. Let u: A(W[k]) — W/[k]® be the p-differential function given by Theo-
rem 4.5. By Theorem 4.6 each of the sets po((Xs(W[k]) ~ Ueno(X;)(WI[k])) N
ker(uy)) is finite. By the quantifier elimination part of Theorem 3.4, this family of
finite sets which prima facie is uniformly definable only in W[k] is, in fact, uniformly
definable in k. The quantifier “there exists infinitely many” may be eliminated in
algebraically closed fields. Thus, there is a number B for which each of the above
finite sets has cardinality at most B. Thus, the torsion points on X but outside the
Ueno locus are contained in at most B cosets of the kernel of reduction. There is
abound M = M(g, p) on the number of unramified torsion points in the kernel of
reduction on an abelian scheme of relative dimension g depending just on g and p.
Thus, there are at most N := M - B torsion points of A;(W[k]) on X but outside the
Ueno locus. O
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Borel superrigidity and the classification problem for the
torsion-free abelian groups of finite rank

Simon Thomas™*

Abstract. In 1937, Baer solved the classification problem for the torsion-free abelian groups
of rank 1. Since then, despite the efforts of many mathematicians, no satisfactory solution has
been found of the classification problem for the torsion-free abelian groups of rank n > 2. So
it is natural to ask whether the classification problem for the higher rank groups is genuinely
difficult. In this article, I will explain how this question can be partially answered, using ideas
from descriptive set theory and Zimmer’s superrigidity theory.
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Keywords. Borel equivalence relation, superrigidity, torsion-free abelian group.

1. Introduction

In this article, we shall discuss some recent work which partially explains why no
satisfactory system of complete invariants has yet been found for the torsion-free
abelian groups of finite rank n > 2. Recall that, up to isomorphism, the torsion-free
abelian groups A of rank n are exactly the additive subgroups of the n-dimensional
vector space Q" which contain n linearly independent elements. Thus the classifica-
tion problem for the torsion-free abelian groups of rank n can be naturally identified
with the corresponding problem for

R(Q") = {A < Q" | A contains n linearly independent elements}.

In 1937, Baer [3] solved the classification problem for the class R(Q) of torsion-
free abelian groups of rank 1 as follows. Let IP be the set of primes. Suppose that
G € R(Q) and that 0 #= x € G. Then for each p € P, the p-height of x is defined to
be

hy(p) = sup{n € N | There exists y € G such that p"y = x} € NU {oo};
and the characteristic y (x) of x is defined to be the sequence

(hy(p) | p € P) € (NU {oo})".

*Research partially supported by NSF Grants.

Proceedings of the International Congress
of Mathematicians, Madrid, Spain, 2006
© 2006 European Mathematical Society



94 Simon Thomas

Two sequences x1, x2 € (N U {oo})? are said to belong to the same type, written
X1 = x2, iff

(@) x1(p) = x2(p) for almost all primes p; and

(b) if x1(p) # x2(p), then both x1(p) and x2(p) are finite.

Clearly = is an equivalence relation on (NU {oo)F. Furthermore, it is easily checked
that if G € R(Q), then x(x) = x(y) forall 0 # x,y € G. Hence we can define
the type T(G) of G to be the =-equivalence class containing x (x), where x is any
non-zero element of G. In [3], Baer proved that 7(G) is a complete invariant for the
isomorphism problem for the rank 1 groups.

Theorem 1.1 (Baer [3]). If G, H € R(Q), then G = H iff t1(G) = t(H).

However, the situation is much less satisfactory in the case of the torsion-free
abelian groups of rank n > 2. In the late 1930s, Kurosh [22] and Malcev [25]
found complete invariants for these groups consisting of equivalence classes of infinite
sequences (M), | p € P) of matrices, where each M, € GL,(Q,). Unfortunately,
as Fuchs [8] remarks in his classic textbook, the associated equivalence relation is
so complicated that the problem of deciding whether two sequences are equivalent
is as difficult as that of deciding whether the corresponding groups are isomorphic.
It is natural to ask whether the classification problem for the higher rank groups is
genuinely more difficult than that for the rank 1 groups. Of course, if we wish to
show that the classification problem for the groups of rank n > 2 is intractible, it is
not enough merely to prove that there are 2™ such groups up to isomorphism: for
there are 2™ pairwise nonisomorphic groups of rank 1 and we have just seen that
Baer has given a satisfactory classification for this class of groups. In this article,
following Friedman-Stanley [7] and Hjorth—Kechris [14], we shall explain how to
use the more sensitive notions of descriptive set theory to measure the complexity of
the classification problem for the groups of rank n > 2.

The basic idea is quite simple; namely, in order to understand the relative com-
plexity of these and other classification problems, we shall consider the question of
when one classification problem can be “explicitly reduced” to another. For example,
the classification problem for the rank n groups can be explicitly reduced to that for
the rank n 4 1 groups by the map

R(Q") — R(@Q"'h
A~ A®Q

in the sense that
A=B iff AeQ=BaQ.
Of course, this observation is neither surprising nor particularly interesting; and we

shall be more concerned with the question of whether there exists an “explicit map”
in the opposite direction

[ R@Q"H - R@"
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such that
A=B iff f(A)= f(B).

If we drop the requirement that f should be “explicit”, then such a map certainly
exists: since R(Q"*T1) and R(Q") both contain 280 groups up to isomorphism, we
can simply use the Axiom of Choice to match up the isomorphism classes. However,
nobody would regard such a matching as a satisfactory reduction of one classification
problem to another. In order to give a precise formulation of this question, it is first
necessary to discuss some of the basic notions from the theory of Borel equivalence
relations.

Let (X, 4) be a measurable space; i.e. a set X equipped with a o-algebra 4§ of
subsets of X. Then (X, 4) is said to be a standard Borel space iff there exists a
complete separable metric d on X such that 4 is the o-algebra of Borel sets of (X, d).
By a classic result of Kuratowski [21], if (X, &) is an uncountable standard Borel
space, then (X, 4) is measurably isomorphic to the unit interval [ 0, 1] equipped with
its o -algebra of Borel sets. The obvious examples of standard Borel spaces include
R, C and Q,,, as well as the Cantor space

2°={h|h:C — 2},

where C is any countably infinite set. Furthermore, identifying each subset B € C
with its characteristic function xp € 2€ it follows that the power set P (C) is also a
standard Borel space. Less obviously, there is a uniform way to represent classes of
countable structures, such as groups, fields, graphs, etc., by the elements of suitable
standard Borel spaces. For example, in order to define the standard Borel space of
countable graphs, we first restrict our attention to the set C of graphs

['= (N, Er)

with vertex set N. After identifying each such graph I' € € with its edge relation
Er € (N x N), it is easily checked that C is a Borel subset of the standard Borel
space & (N x N); and this implies that C is also a standard Borel space. (For example,
see Kechris [20].) It should be relatively clear how to generalise the method of this
example to deal with other classes of countable structures. However, in this article,
we shall mainly be concerned with the classes of torsion-free abelian groups of rank
n > 1 and the class of finitely generated groups; and these classes can be more
conveniently represented by the following more ad hoc spaces.

Example 1.2. Letn > 1. Then R(Q") is a Borel subset of the standard Borel space
P (Q") and so R(Q") is a standard Borel space. For later use, note that the natural
action of GL,, (Q) on the vector space Q" induces a corresponding action on R(Q");
and that if A, B € R(Q"), then A = B iff there exists an element ¢ € GL,(Q) such
that p[A] = B.
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Example 1.3 (Champetier [4]). The standard Borel space § of finitely generated
groups can be defined as follows. Let F' be the free group on countably many gen-
erators X = {x; | i € N}. Suppose that G is a finitely generated group and that
(g0, - - -, gn) 1s a finite sequence of generators. Then, by considering the homomor-
phism 7 : F — G defined by

) g if0<i<n,
7(x;) =
! 1 otherwise,

we see that G can be realized as a quotient /N, where N is a normal subgroup which
contains all but finitely many elements of the basis X. (Of course, choosing a different
generating sequence usually results in a different realization.) Thus we can identify §
with the set of all such normal subgroups N of F. With this identification, § is a
Borel subset of the standard Borel space & (F') and hence § is a standard Borel space.
As in Example 1.2, the isomorphism relation on the standard Borel space of finitely
generated groups is the orbit equivalence relation of a natural action of a suitable
countable group. More precisely, let Auty(F) be the subgroup of Aut(F) generated
by the elementary Nielsen transformations

loi [T e NYU({Bij [ i #j €N},

where «; is the automorphism sending x; to x;” Uand leaving X \ {x;} fixed; and B;; is
the automorphism sending x; to x; x; and leaving X \ {x;} fixed. Then the natural action
of Auts(F) on F induces a corresponding action on the space ¢ of normal subgroups
of F' which contain all but finitely many elements of the basis X; and if N, M € §
are two such normal subgroups, then F//N = F /M iff there exists ¢ € Auts(F) such
that o[ N] = M. (For example, see Champetier [4] and Lyndon—Schupp [24].)

If X, Y are standard Borel spaces, then f: X — Y is a Borel map iff f~1(B) is
Borel for every Borel subset B C Y. Equivalently, f is Borel iff graph(f) is a Borel
subset of X x Y. Now suppose that E, F are equivalence relations on the standard
Borel spaces X, Y respectively. (For example, X and Y could be spaces of countable
structures and E, F could be the corresponding isomorphism relations.) Then E is
Borel reducible to F, written E <p F, if there exists a Borel map f: X — Y such
that

xEy iff  fO)Ff(y).

E and F are Borel bireducible, written E ~p F,if both E <p F and F <p E.
Finally we write E <p F ifboth E <p Fand F £ E.

Remark 1.4. Of course, the notion of a Borel reduction f: X — Y from E to F isin-
tended to capture the intuitive idea of an “explicit reduction” from the E-classification
problem to the F'-classification problem. For example, with a little practice, itis easily
checked that any given explicit map f: R — R is Borel. On the other hand, many
mathematicians are reluctant to accept that an arbitrary Borel map f: R — R should
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be regarded as explicit. However, it is not necessary for us to address this question,
since we will mainly be concerned with non-reducibility results; and for such results,
it is clearly preferable to work with the broadest possible class of maps. (It is perhaps
worth mentioning that the proofs of our main results actually show that there are no
measurable reductions between the relevant classification problems. By a well-known
theorem of Solovay [30], the existence of a non-measurable map requires an essential
use of the Axiom of Choice and so such maps are certainly not explicit.)

Example 1.5. For each n > 1, let =, be the isomorphism relation on R(Q"). Then
the map

R(Q") — R@Q"h,
A~ ADQ,

is a Borel reduction from =, to =, . Hence
E)<p(=E)=<p---=<pEy <p---

and our earlier question of whether the classification problem for the higher rank
groups is genuinely more difficult than that for the rank 1 groups can be interpreted
as the question of whether (1) <p (=3).

Before discussing the solution of this problem, it will be helpful to give a brief
account of some of the theory of countable Borel equivalence relations. (A detailed
development of this theory can be found in Jackson—Kechris—Louveau [17].) If X
is a standard Borel space, then a Borel equivalence relation on X is an equivalence
relation E C X? which is a Borel subset of X2. The Borel equivalence relation E is
said to be countable iff every E-equivalence class is countable. Most of the Borel
equivalence relations that we shall consider in this article arise from group actions as
follows. Let G be an lcsc group; i.e. a locally compact second countable group. Then
a standard Borel G-space is a standard Borel space X equipped with a Borel action
(g,x) = g-xof Gon X. The corresponding G-orbit equivalence relation on X,
which we shall denote by EX, is a Borel equivalence relation. In fact, by Kechris [19],
E é is Borel bireducible with a countable Borel equivalence relation. Conversely, by
Feldman—-Moore [6], if E is an arbitrary countable Borel equivalence relation on the
standard Borel space X, then there exists a countable group G and a Borel action of G
on X such that £ = Eé

Example 1.6. As we pointed out in Examples 1.2 and 1.3, the isomorphism relations
on the spaces R(Q") of torsion-free abelian groups of rank n and the space § of
finitely generated groups are the orbit equivalence relations of natural actions of
suitable countable groups. These actions are easily seen to be Borel and so each of
these isomorphism relations is a countable Borel equivalence relation.

With respect to Borel reducibility, the least complex countable Borel equivalence
relations are those which are smooth; i.e. those countable Borel equivalence rela-
tions E on a standard Borel space X for which there exists a Borel function f: X — Y
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into a standard Borel space Y suchthatx Ey iff f(x) = f(y). Equivalently, the count-
able Borel equivalence relation E on X is smooth iff the quotient X/E is a standard
Borel space. (Here X/ E denotes the set of E-classes equipped with the quotient Borel
structure.)

Example 1.7. The isomorphism relation on the standard Borel space of countable
divisible abelian groups is smooth. To see this, recall that if A is a countable divisible
abelian group, then A = D@ T, where T is the torsion subgroup and D is torsion-free.
Let ro(A) € N U {oo} be the rank of D; and for each prime p, let r,(A) € N U {00}
be the rank of the p-component T}, of T'. Then the invariant

p(A) = (rO(A)’ rZ(A)v r3(A)7 ] r[)(A)9 . )
determines A up to isomorphism.

Next in complexity come those countable Borel equivalence relations E which are
Borel bireducible with the Vitali equivalence relation Eq defined on 2N by x Eqy iff
x(n) = y(n) for almost all n. More precisely, by Harrington—Kechris—Louveau [12],
if E is a countable Borel equivalence relation, then E is nonsmooth iff Eg <p E.
Furthermore, by Dougherty—Jackson—Kechris [5], if E is a countable Borel equiva-
lence relation on a standard Borel space X, then the following three properties are
equivalent:

(1) E =p Ep.
(2) E is hyperfinite; i.e. there exists an increasing sequence
FhCFhC<C---CFC---

of finite Borel equivalence relations on X such that E = [ J,, . F. (Here an
equivalence relation F is said to be finite iff every F-equivalence class is finite.)

(3) There exists a Borel action of Z on X such that £ = E% .

Example 1.8. As is easily checked, Baer’s classification of the rank 1 groups implies
that (=) ~p Ep.

It turns out that there is also a most complex countable Borel equivalence rela-
tion E, which is universal in the sense that F <p E, for every countable Borel
equivalence relation F; and, furthermore, Eg <p Eo. (Clearly this universality
property uniquely determines E, up to Borel bireducibility.) E~ has a number of
natural realisations in many areas of mathematics, including algebra, topology and
recursion theory. (See Jackson—Kechris—Louveau [17].) For example, E, is Borel
bireducible with both the isomorphism relation for finitely generated groups [36] and
the isomorphism relation for fields of finite transcendence degree [37].

For many years, it was an open problem whether there existed infinitely many
countable Borel equivalence relations E such that Eg <p E <p E. This problem



Borel superrigidity and torsion-free abelian groups of finite rank 99

was finally resolved by Adams—Kechris [2], who used Zimmer’s superrigidity the-
ory [38] to show that there are actually 280 such relations E up to Borel bireducibility.
More recently, Hjorth—Kechris [15] have found an “elementary” proof of this result;
i.e. a proof which requires no more background than the standard measure theory and
functional analysis which should be known by every mathematician.

Returning to our discussion of the complexity of the isomorphism relation =, on
the standard Borel space R(Q") of torsion-free abelian groups of rank n, we now see
that

(E1)<p(=2)<p--=<p(Ey) <B- =B Ex.

In [14], Hjorth—Kechris conjectured that (=;) ~p E; in other words, the classi-
fication problem for the torsion-free abelian groups of rank 2 is already as complex
as that for arbitrary finitely generated groups. Of course, if true, this would have
completely explained the failure to find a satisfactory system of complete invariants
for the torsion-free abelian groups of rank n > 2, since nobody expects such a system
to exist for the class of finitely generated groups. In [13], Hjorth provided some initial
evidence for this conjecture by proving that the classification problem for the higher
rank groups is indeed genuinely more difficult than that for the rank 1 groups.

Theorem 1.9 (Hjorth [13]). (£1) <p (Z2).

However, the conjecture appeared considerably less plausible after Adams—Kechris
[2] used Zimmer’s superrigidity theory [38] to prove that

(=) < (E) <p---<p () <p -

where (£7) is the restriction of the isomorphism relation to the class of rigid torsion-
free abelian groups A € R(Q"). Here an abelian group A is said to be rigid if its
only automorphisms are the obvious ones: a +— a and a — —a. In particular,
it follows that none of the isomorphism relations = is a universal countable Borel
equivalence relation. Soon afterwards, making essential use of the earlier work of
Hjorth [13] and Adams—Kechris [2], Thomas [31] proved the corresponding result for
the isomorphism relation =, on the class R(Q") of all torsion-free abelian groups of
rank 7.

Theorem 1.10 (Thomas [31]). (£,) <p (E,+1) foralln > 2.
Corollary 1.11. (£,) <p (Ex) foralln > 1.

Unfortunately, while Theorem 1.10 shows that the relative complexity of the clas-
sification problem for the torsion-free abelian groups of rank n increases strictly with
the rank n, it says little about the absolute complexity of these problems. In particular,
it fails to answer the following:

Question 1.12. Is the classification problem for the torsion-free abelian groups of
rank 2 “genuinely difficult”?
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While it is difficult to imagine giving a precise formulation of Question 1.12, it
certainly includes the question of whether =; is an immediate successor of = with
respect to Borel reducibility. In other words, does there exist a Borel equivalence
relation E such that

(Z1) < E <p (x2)?

In seeking such an equivalence relation E, it is natural to consider the classification
problem for various restricted classes of torsion-free abelian groups.

Definition 1.13. For each prime p andn > 1, let R” (Q") be the standard Borel space
of all p-local subgroups A < Q" of rank n and let =7 be the isomorphism relation
on R”(Q").

Here an abelian group A is said to be p-local iff A is g-divisible for all primes
q # p. Of course, if an abelian group A is g-divisible for all primes g, then A
is divisible and we have already seen that the divisible abelian groups are easily
classified. Consequently, all of the complexity of the classification problem for the
p-local groups is concentrated in the single prime p. In Thomas [31], it was shown
that if the prime p is fixed, then

(Elp) <B (;g) <B ‘' <B (E’I;) <p---.

But this left open the more natural question of whether the classification problem for
the p-local torsion-free abelian groups of a fixed rank n > 2 was strictly easier than
the classification problem for arbitrary torsion-free abelian groups of rank n. (It is
trivial that (éf ) <p (=1), since there are only two p-local groups of rank 1 up to
isomorphism; namely, Q and Z,) = {a/b € Q | b is relatively prime to p}.) This
question was partially answered in Thomas [33], where it was shown that if n > 3
and p # g are distinct primes, then =7 and = are incomparable with respect to
Borel reducibility. Of course, this implies that if n > 3, then (=) <p (=,) for
each prime p. Unfortunately, the argument in Thomas [33] made essential use of the
fact that if n > 3, then SL,(Z) is a Kazhdan group; and, consequently, the problem
remained open when n = 2. This case was finally dealt with in Hjorth-Thomas
[16], which ultimately depends upon the fact that SL,(Z) satisfies a weak form of
the Kazhdan property; namely, SL2(Z) has Property (r) with respect to its family of

congruence subgroups. (For example, see Lubotzky [23].)

Theorem 1.14 (Hjorth—Thomas [16]). If p # q are distinct primes, then the classifi-
cation problems for the p-local and q-local torsion-free abelian groups of rank 2 are
incomparable with respect to Borel reducibility.

Since it was already known [31] that (Z1) <p (%g ), it follows that
(=1) < (Z)) < =)

for each prime p; and hence there exists an infinite antichain of countable Borel equiv-
alence relations which lie strictly between (=) and (=;). With a little more effort,
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it is possible to show that there are uncountably many countable Borel equivalence
relations E such that

(Z1) < E <p (=2).

(It should be pointed out that the proof of the following result makes essential use
of the work of Kurosh-Malcev [22], [25], which was so unfairly dismissed earlier in
this section.)

Definition 1.15. If P C P is a set of primes, then an abelian group A is said to be
P-local iff A is g-divisible for all primes g ¢ P.

For example, an abelian group A is #J-local iff A is divisible; while, on the other
hand, every abelian group is P-local. Clearly the class of P-local abelian groups is
included in the class of Q-local groups iff P C Q.

Theorem 1.16 (Thomas [35]). Let n > 2. If P, Q are sets of primes, then the
classification problem for the P-local torsion-free abelian groups of rank n is Borel
reducible to that for the Q-local groups of rank n iff P C Q.

In particular, there exists an infinite chain {R,, | m € N} of countable Borel
equivalence relations such that

(Z1) <p Ro<p R1 <p -+ < R <p -+ <p (Z2);

and so =, is very far from being an immediate successor of =; with respect to Borel
reducibility.

Remark 1.17. It should be mentioned that Idg, Eq is the only known example (up
to Borel bireducibility) of a pair of countable Borel equivalence relations E, F' such
that F is an immediate successor of E with respect to <p. On the other hand, there
are currently no countable Borel equivalence relations E with Eg <p E <p E for
which it is known that no such countable Borel equivalence relation F exists.

2. Superrigidity

In this section, we shall discuss the orbit equivalence superrigidity theorems of Zimmer
[38] and Furman [9], together with the corresponding Borel superrigidity theorems
of Adams—Kechris [1], [2] and Thomas [32], [34]. Then, in the next section, we shall
explain how to apply Borel superrigidity to the study of the classification problem for
the torsion-free abelian groups of finite rank.

Recall that, by Feldman—Moore [6], if E is a countable Borel equivalence relation
on the standard Borel space X, then there exists a countable group I and a Borel
action of I' on X such that £ = E ff is the corresponding orbit equivalence relation.
However, it should be pointed out that the group I'" cannot be canonically recovered
from FE; and it is usually very difficult to determine whether two given Borel actions
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of a pair I', A of countable groups give rise to Borel bireducible orbit equivalence
relations. Consequently, the fundamental question in the study of countable Borel
equivalence relations concerns the extent to which the data (X, E? ) determines the
group I and its action on X. In order for there to be any chance of recovering I' from
this data, it is necessary to assume the following extra hypotheses:

(1) T acts freelyon X;ie.y -x #xforalll #y e and x € X.
(i1) There exists a ['-invariant probability measure u on X.

For example, by Dougherty—Jackson—Kechris [5], if (i) holds and (ii) fails, then for
any countable group A D T, there exists a free Borel action of A on X such that
E X = El)f . If T is finite, then E ff is smooth and so we shall suppose throughout this
section that I" is infinite. In this case, w is necessarily nonatomic (i.e. w({x}) = 0 for
every x € X)anditfollows that the probability space (X, 1) is measurably isomorphic
to the unit interval [ 0, 1] equipped with its Lebesgue measure.

It is also natural to assume that the following “indecomposability hypothesis”
holds:

(i) T acts ergodically on (X, u); i.e. every I'-invariant Borel subset of X has
measure O or 1.

Thus, even when working in the purely Borel setting, it is useful to focus our attention
on those orbit equivalence relations which arise from free ergodic actions of countable
groups on probability spaces.

Example 2.1. Let I' be any countable group. Then the shift action of I on 2! is
defined by
(y-m©@) =h(y™'8), ysel, he2

Let 1 be the usual product probability measure on 2F'. Then y is I'-invariant and T
acts ergodically on ", w). (For example, see Hjorth—Kechris [15].) Furthermore,
letting
Q) ={he2t |y -h#hforalll £y €T}

be the free part of the action, it is easily checked that w(@ =1.

Now suppose that I', A are countable groups with free ergodic Borel actions on the
probability spaces (X, ), (Y, v) respectively. Then, by Dougherty—Jackson—Kechris
[5], the corresponding countable Borel equivalence relations E ff and EX are Borel

bireducible iff there exist Borel complete sections A € X, B C Y such that the
restricted equivalence relations are isomorphic via a Borel bijection

f:(A, EXTA)= (B, EY | B).

Here, for example, A C X is said to be a complete section of Eﬁ( iff A intersects
every E? -class. In particular, it follows that £ (A), v(B) > 0. However, there is no
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reason to suppose that f preserves the corresponding “rescaled” probability measures
1A, vp on A, B respectively, defined by ua(Z) = w(Z)/u(A), etc. If we add the
requirement that the map f should also be measure-preserving, then we pass from the
purely Borel setting into the richer measure-theoretic setting, where the fundamental
question now concerns the extent to which the data (X, E ff , ) determines the group I'
and its action on X.

Definition 2.2. With the above hypotheses, the actions of I', A on (X, u), (¥, v) are
said to be weakly orbit equivalent iff there exist Borel subsets A C X, B C Y with
w(A), v(B) > 0 such that the restricted equivalence relations are isomorphic via a
measure-preserving Borel bijection

fi (A, EF 1A, pa) = (B, EX | B, vp).
If ©(A) = v(B) = 1, then the actions are said to be orbit equivalent.

Warning 2.3. At first glance, it might appear that weak orbit equivalence implies
Borel bireducibility. However, this is not the case. In the measure-theoretic setting,
sets and maps are only considered modulo measure zero sets; and, in particular, the
Borel sets A, B in Definition 2.2 are not required to be complete sections.

Definition 2.4. The actions of I, A on (X, u), (Y, v) are said to be isomorphic iff
there exist

e invariant Borel subsets X C X, Yy C Y with u(Xg) = v(Yp) = 1,
¢ a measure-preserving Borel bijection f: Xo — Yy, and
e agroup isomorphism ¢: I' — A

such that f(y -x) = ¢(y) - f(x) forall y € I" and x € Xp.

If the actions of I, A on (X, u), (Y, v) are isomorphic, then they are clearly
orbit equivalent. The strongest conceivable superrigidity theorem would say that,
conversely, if the actions are (weakly) orbit equivalent, then they are necessarily
isomorphic. Of course, in order for anything like this to be true, it is necessary to
impose strong hypotheses on the groups involved. For example, Ornstein—Weiss [27]
have shown that if I and A are amenable groups, then any free ergodic actions of T',
A are orbit equivalent.

Definition 2.5. Let G be an Icsc group and let m be a fixed Haar measure on G. Then
a subgroup I' < G is a lattice iff T is discrete and the covolume m (G/ I') is finite.

Suppose now that I" is a lattice in a connected simple Lie group G such that
R-rank(G) > 2. For example, we can take I' = SL,(Z) and G = SL,(R) for any
n > 3. Then, while the lattice I" is not uniquely determined by (X, E é‘ W), Zimmer’s
orbit equivalence superrigidity theorem says that this data does uniquely determine
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the ambient Lie group G. More precisely, suppose that Go and G| are connected
centerless simple Lie groups of R-rank at least 2 and that I'g, I'y are lattices in Gg, G
respectively. (In order to keep our account as transparent as possible, we shall mainly
focus on the case of lattices in connected centerless simple Lie groups.) Suppose
that I'p, I'1 have free ergodic Borel actions on the probability spaces (X, o) and
(X1, i1). Then, for each 0 < i < 1, there is a naturally associated induced action
of G; on the standard Borel space

X; = X; x (Gi/Ty)

with invariant ergodic probability measure &; = u; x m;, where m; is the Haar
probability measure on G;/ I';.

Theorem 2.6 (Zimmer [38]). With the above hypotheses, if the actions of I'og, I'1 on
(Xo, no), (X1, u1) are weakly orbit equivalent, then the induced actions of Go, G

on ()?0, 0), ()?1, 1) are isomorphic. In particular, Gy = G.

Unfortunately, there are many examples of lattices ['g, '] with free ergodic Borel
actions on probability spaces (Xo, to), (X1, n1) for which there exists a Borel reduc-
tion f: Xo — X; from El)f(? to El)fll such that 11 (f[Xo]) = 0; and hence Zimmer’s
orbit equivalence superrigidity theorem cannot be directly applied in the purely Borel
setting. However, it was an important insight of Adams—Kechris [2] that it is possible
to apply Zimmer’s more fundamental cocycle superrigidity theorem. (The notion of
a cocycle will not be defined in this article. Clear accounts of the theory of cocycles
can be found in Zimmer [38] and Adams—Kechris [2]. In particular, Adams—Kechris
[2] provides a convenient introduction to the basic techniques and results in this area,
written for the non-expert in the ergodic theory of groups.)

Theorem 2.7 (Adams—Kechris [2]). With the above hypotheses, if El}f(? <B El)fll,
then Gq is involved in G1; i.e. there exist Lie subgroups N < H < G| such that
Go = H/N. Consequently, thI)f(? ~p Eli(ll, then Gy = G1.

Corollary 2.8 (Adams—Kechris [2]). There exist infinitely many countable Borel
equivalence relations up to Borel bireducibility.

In fact, by considering Borel actions of suitable S-arithmetic groups for various
(possibly infinite) sets of primes S, Adams—Kechris [2] were able to prove that there
are 280 such relations up to Borel bireducibility.

Corollary 2.9 (Adams—Kechris [2]). There exist countable Borel equivalence rela-
tions which are incomparable with respect to Borel reducibility.

The methods introduced by Adams—Kechris [2] are suitable for distinguishing
between orbit equivalence relations of the form £ 1)“( and £ X ,whereI" and A are lattices
in nonisogeneous higher rank semisimple Lie groups. More generally, they can be
used to show that the countable Borel equivalence relations arising from suitably



Borel superrigidity and torsion-free abelian groups of finite rank 105

chosen actions of “large” linear groups cannot be Borel reducible to those arising
from the actions of “smaller” linear groups. For example, as we shall see in the next
section, a variant of Theorem 2.7 can be used to prove that if n > 2, then the orbit
equivalence relation arising from the action of GL,,+1(Q) on the standard Borel space
R(Q"*!) of torsion-free abelian groups of rank n + 1 is not Borel reducible to that
arising from the action of GL,, (Q) on R(Q"); in other words, (Z,+1) £ (=,). Since
we have already observed that (=) <p (Z,+1), this implies that () <p En+1);
i.e. that the complexity of the classification problem for the torsion-free abelian groups
of rank n increases strictly with the rank n.

However, the methods of Adams—Kechris [2] are not as well-suited for those prob-
lems which involve distinguishing between orbit equivalence relations arising from
different actions of the same countable group; e.g. the isomorphism relations for the
p-local torsion-free abelian groups of rank 2, which arise as the orbit equivalence
relations of the actions of GL;(Q) on the standard Borel spaces R” (Q?). The next
breakthrough occurred when Adams [1], by combining the use of Zimmer’s cocycle
superrigidity theorem with Ratner’s measure classification theorem [29], developed a
method for distinguishing between the orbit equivalence relations arising from suit-
ably chosen actions of (not necessarily distinct) lattices I', A in the same higher
rank semisimple Lie group G. (This idea had already been successfully exploited in
the measure-theoretic setting by Zimmer [39] and Furman [9].) It quickly became
clear that Adams’ techniques were applicable to a wide range of natural problems
concerning countable Borel equivalence relations. For example, combining the ideas
of Adams [1] and Gefter—Golodets [10], it is straightforward to show that if n > 3,
then the orbit equivalence relations arising from the following uncountable family of
SL, (Z)-actions are pairwise incomparable with respect to Borel reducibility.

Example 2.10 (Gefter—Golodets [10]). Fix someintegern > 2 and for each nonempty
set ) # J C P of primes, let

Ko(J) = [ [ SLa(Z,),

peJ

where Z,, is the ring of p-adic integers. Then K, (J) is a compact group and we
can regard SL,, (Z) as a subgroup of K, (J) via the diagonal embedding. Let w; be
the Haar probability measure on K, (J) and let E; be the orbit equivalence relation
arising from the free action of SL, (Z) on K, (J) via left translations. By the Strong
Approximation Theorem [28], SL,,(Z) is a dense subgroup of K, (J) and this implies
that SL,,(Z) acts ergodically on (K, (J), 7).

Theorem 2.11 (Thomas [32]). Fix some integer n > 3. If Jo % Jy are distinct
nonempty subsets of P, then Ej, and Ej, are incomparable with respect to Borel
reducibility.

The measure-theoretic analogue of this result was proved earlier by Gefter—Golo-
dets [10], who showed that for distinct Jy # J1, the actions of SL,, (Z) on (K, (Jo), i jy)
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and (K, (J1), ny,) are not weakly orbit equivalent. More recently, Furman [9] has
shown that for many free ergodic actions of lattices I on probability spaces (X, i),
both the group I and its action on X are “almost uniquely determined” by the orbit
equivalence relation Er)f and the measure p. More precisely, in our particular case,
Furman’s result takes the following form. (It is easily seen that if Jy % Ji, then the
actions of SL,(Z) on (K, (Jo), it j,) and (K, (J1), wy,) are not virtually isomorphic.
Thus the following result is strictly stronger than that of Gefter—Golodets [10].)

Theorem 2.12 (Furman [9]). Letn > 3 and let J be a nonempty subset of P. Suppose
that A is an arbitrary countable group with a free ergodic action on the probability
space (Y, v). If the actions of SL,,(Z), A on the probability spaces (K,,(J), L),
(Y, v) are weakly orbit equivalent, then:

(a) SL,(Z) and A are virtually isomorphic; and

(b) the actions of SL,(Z), A on the probability spaces (K,(J), uy), (Y,v) are
virtually isomorphic.

Here two countable groups Gy, G are said to be virtually isomorphic iff there
exist subgroups H; < G; of finite index and finite normal subgroups N; < H; for
i = 0, 1 such that Hy/Ny = H;/Ni; and the free ergodic actions of Gg, G1 on the
probability spaces (Xo, o), (X1, n1) are said to be virtually isomorphic iff, after
passing to ergodic components, the induced actions of Hy/Ny, H1/N1 on the factor
spaces (Xo, o)/ No, (X1, 1)/ N1 are isomorphic.

No analogues of Furman’s results have yet been proved in the purely Borel setting,
where all of the currently known superrigidity results impose very restrictive condi-
tions on both the domain and the range of the relevant Borel bireduction. However, it
seems reasonable to conjecture that the corresponding strengthening of Theorem 2.11
also holds in this setting.

Conjecture 2.13. The conclusion of Theorem 2.12 remains true if weak orbit equiv-
alence is replaced by Borel bireducibility.

It is not known whether the analogue of Theorem 2.11 also holds when n = 2.
Here the main obstacle is the failure of Zimmer’s cocycle superrigidity theorem for
the low rank Lie group SLy(R). For the same reason, it is also not known whether
or not these SL,(Z)-actions are (weakly) orbit equivalent. Since SL;(Z) contains the
free group F> on two generators as a subgroup of finite index, a positive solution of
the following problem would also provide uncountably many “natural” F,-actions
which are pairwise neither Borel bireducible nor weakly orbit equivalent. Currently
only three nonsmooth F>-actions are known up to Borel bireducibility. On the other
hand, in the measure-theoretic setting, Gaboriau—Popa [11] have recently constructed
uncountably many F,-actions which are pairwise not weakly orbit equivalent.

Conjecture 2.14. If Jy # J; are distinct nonempty sets of primes, then the actions
of SL2(Z) on (K2(Jo), i y,) and (K2(J1), py,) are neither comparable with respect
to Borel bireducibility nor weakly orbit equivalent.
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We obtain a more manageable problem if we replace the lattice SL;(Z) by

I's = SLa(Z[1/p1, ..., 1/ pd),

where § = {p1, ..., p;} is anonempty finite set of primes. Of course, I'g is no longer
a lattice in SL,(R). However, if we identify I's with its image under the diagonal
embedding into

G =SLa(R) x SL2(Qp) x - -+ x SL2(Qp,),

then g is a lattice in G and Zimmer’s cocycle superrigidity theorem holds for G.
Furthermore, by Margulis—Tomanov [26], the analogue of Ratner’s measure classifi-
cation theorem also holds for G. For each nonempty (possibly infinite) set of primes
Jsuchthat SNJ =@, let E g be the orbit equivalence relation arising from the action
of I's on
Ky(J) = [ [ SL2(Zp)
peJ

by left translations, where I'g is regarded as a subgroup of K»(J) via the diagonal
embedding.

Theorem 2.15 (Thomas [34]). Suppose that So, S| are nonempty finite sets of primes
and that Jo, J1 are nonempty (possibly infinite) sets of primes such that So N Jy =
SiNJy =@. If (Jo, So) # (J1, S1), then E;g and E;}' are incomparable with respect
to Borel reducibility.

The proof of Theorem 2.15 easily extends to the more general situation of I'g-
actions on homogeneous K> (J)-spaces. For example, it is well-known that the com-
pact group SL2(Zj,) acts transitively on the projective line Q, U {oo} over the field of
p-adic numbers.

Theorem 2.16 (Thomas [34]). Suppose that p, q are primes and that S, T are finite
nonempty sets of primes such that p ¢ S, q ¢ T. If (p, S) # (q, T), then the orbit
equivalence relations of I''s, I'r on the projective lines Q, U {oc}, Q, U {00} are
incomparable with respect to Borel reducibility.

As we shall see in the next section, a variant of Theorem 2.16 can be used to prove
that if p # ¢ are distinct primes, then the classification problems for the p-local and
g-local torsion-free abelian groups of rank 2 are incomparable with respect to Borel
reducibility.

3. The classification problem for the torsion-free abelian groups of
finite rank

Inthis final section, we shall explain how to apply Borel superrigidity to the study of the
classification problem for the torsion-free abelian groups of finite rank. First we shall
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sketch the proof of Theorem 1.10, which says that the complexity of the isomorphism
relation =,, for the torsion-free abelian groups of rank n increases strictly with the
rank n. This will be followed by a sketch of the proof of Theorem 1.14, which says
that if p # ¢ are distinct primes, then the classification problems for the p-local and
g-local torsion-free abelian groups of rank 2 are incomparable with respect to Borel
reducibility.

Recall that for each m > 1, the isomorphism relation =, is precisely the orbit
equivalence relation arising from the natural action of GL,, (Q) on the standard Borel
space R(Q™) of torsion-free abelian groups of rank m. In the last section, we saw
that if T" is a lattice in a higher rank centerless simple Lie group G and I" has a free
ergodic action on the probability space (X, ), then the orbit equivalence relation
Eff “encodes” the ambient Lie group G. More precisely, suppose that A is also a
lattice in a centerless simple Lie group H and that A has a free ergodic action on the
probability space (Y, v). By Theorem 2.7, if Eff <p EY, then G is involved in H;
and, in particular, it follows that dim G < dim H. This certainly suggests that the
orbit equivalence relation of GL,11(Q) on R(Q™t1) should not be Borel reducible to
the orbit equivalence relation of GL, (Q) on R(Q"). Unfortunately, we cannot apply
Theorem 2.7 directly to our situation, since:

(1) GL,,(Q) is not a lattice.
(ii) There does not exist a GL,, (Q)-invariant probability measure on R(Q™).
(iii) GL,,(Q) does not act freely on R(Q™).

Fortunately, none of these difficulties is insurmountable. Suppose thatn > 2 and that
f: R(Q"t!) - R(Q") is a Borel reduction from =,+1 to =,. First, following the
example of Hjorth [13] and Adams—Kechris [2], we shall use the following result to
deal with points (i) and (ii).

Theorem 3.1 (Hjorth [13]). For each m > 2, there exists a nonatomic SL,(Z)-
invariant ergodic probability measure (1 on R(Q™).

In fact, Hjorth [13] has shown that for each prime p € P, there exists a nonatomic
SL,, (Z)-invariant ergodic probability measure 1, on R(Q™) which concentrates on
the Borel subspace R”(Q™) of p-local groups. Later in this section, we shall sketch
a proof of this result in the special case when m = 2.

Continuing the proof of Theorem 1.10, let E be the orbit equivalence relation
arising from the action of the subgroup SL, . {(Z) of GL,1(Q) on R(Q"*!). Then
we can regard f as a countable-to-one Borel homomorphism from E to =,; and
Theorem 1.10 is an easy consequence of the following result. (As we shall see, most
of our effort during the proof of Theorem 3.3 will go into dealing with point (iii).)

Definition 3.2. If E, F are equivalence relations on the standard Borel spaces X, Y,
then the Borel map f: X — Y is a Borel homomorphism from E to F iff

xEy implies f(x)Ff(y) forallx,y e X.
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Theorem 3.3 (Thomas [32]). Letm > 3 and let X be a standard Borel SL,,(Z)-space
with an invariant ergodic probability measure . Suppose that 1 < n < m and that
f: X — R@Q") is a Borel homomorphism from EéLm @ 1o =,. Then there exists
an SL,,(Z)-invariant Borel subset M with w(M) = 1 such that f maps M into a
single =, -class.

Hence, letting i be a nonatomic SL,4(Z)-invariant ergodic probability mea-
sure on R(Q*t!), there exists an SL,+1(Z)-invariant Borel subset M C R(Q™th
with w(M) = 1 such that f maps M into a single =,-class €. However, this is
impossible, since f~!(€) consists of only countably many SL,, | (Z)-orbits. Hence
(Z,) <p (Ep41) foralln > 2.

Next we shall sketch the proof of Theorem 3.3. Suppose that m > 3 and that X
is a standard Borel SL,, (Z)-space with an invariant ergodic probability measure u.
Suppose further that 1 < n < m and that f: X — R(Q") is a Borel homomorphism
from Eé(Lm @) 10 =,. We shall make use of the following variant of Theorem 2.7,
which is a straightforward consequence of Zimmer’s cocycle superrigidity theorem
[38] and the ideas of Adams—Kechris [2].

Theorem 3.4 (Thomas [31]). Letm > 3 and let X be a standard Borel SL,,(Z)-space
with an invariant ergodic probability measure . Suppose that H < G(Q), where G
is an algebraic Q-group such that dim G < m?* — 1, and that H acts freely on the
standard Borel H-space Y. If f: X — Y is a Borel homomorphism from Eng @

to E}fl, then there exists an SL,, (Z)-invariant Borel subset M C X with u(M) = 1
such that f maps M into a single H-orbit.

As we mentioned earlier, the action of GL,(Q) on R(Q") is not free: in fact, for
each A € R(Q"), the stabilizer of A in GL, (Q) is precisely the automorphism group
Aut(A) of A. Thus we are not yet in a position to apply Theorem 3.4.

Remark 3.5. This is actually a serious problem. The proof of Theorem 3.4 makes
essential use of Zimmer’s cocycle superrigidity theorem; and if H does not act freely
on Y, then it impossible to define the associated cocycle on which the proof depends.

From now on, let Ay = f(x) € R(Q"). Roughly speaking, our strategy will be
as follows. Suppose that there exists a Borel subset Xg € X with u(Xo) = 1 and
a fixed subgroup L < GL,(Q) such that Aut(A,) = L for all x € X¢. Then the
equivalence relation =, | f(X¢) will be induced by a free action of the quotient group
H = NgL,(@)(L)/L on the Borel subset

Y = {A € R@Q") | Aut(A) = L}

of R(Q"). Hence, provided that the quotient group H isisomorphic to a subgroup of an
algebraic Q-group G(Q) with dim G < m? — 1, we can apply Theorem 3.4. But why
should X and L exist? Imagine for the moment that there are only countably many
possibilities for the subgroup Aut(A,) < GL,(Q). Then there exists a Borel subset
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Z C X with u(Z) > 0 and a fixed subgroup L < GL,(Q) such that Aut(Ay) = L
for all x € Z. Since SL,,(Z) acts ergodically on (X, ), it follows that

Xo={y-x|y eSL,(Z)and x € Z}.

has p-measure 1. Let g: X — SL,,(Z) be a Borel function such that g(x) - x € Z
for all x € Xo. Then, replacing f by the Borel homomorphism f’ defined by
f'(x) = f(g(x) - x), we can suppose that Aut(A,) = L for all x € Xj.

Unfortunately, this approach does not work, since there are uncountably many
possibilities for the subgroup Aut(A,) < GL,(Q). In order to get around this dif-
ficulty, we shall shift our attention from the isomorphism relation on R(Q") to the
coarser relation of quasi-isomorphism. This relation was first introduced in Jonsson
[18], where it was shown that the class of torsion-free abelian groups of finite rank has
a better decomposition theory with respect to quasi-isomorphism than with respect to
isomorphism. This decomposition theory will not concern us in this article. Rather
we shall exploit the fact that much of the number-theoretical complexity of finite
rank torsion-free abelian groups is lost when they are only considered up to quasi-
isomorphism; and this turns out to be enough to ensure that there are only countably
many possibilities for the group of quasi-automorphisms of A € R(Q").

Definition 3.6. If A, B € R(Q"), then A and B are said to be quasi-equal, written
A =, B, iff AN B has finite index in both A and B.

Definition 3.7. If A, B € R(Q"), then A and B are said to be quasi-isomorphic iff
there exists ¢ € GL, (Q) such that p[A] =, B.

It is easily checked that ~,, is a countable Borel equivalence relation on R(Q").
For each A € R(Q"), let [A] be the ~,-class containing A. We shall consider the
induced action of GL, (Q) on the set of ~,-classes. In order to describe the setwise
stabilizer in GL,(Q) of a &,-class [A] , it is first necessary to introduce the notions
of a quasi-endomorphism and a quasi-automorphism. If A € R(Q"), then a linear
transformation ¢ € Mat, (Q) is said to be a quasi-endomorphism of A iff there exists
an integer m > 0 such that mg[A] < A. In other words, ¢ is a quasi-endomorphism
of A iff there exists an integer m > 0 such thatmg € End(A). Itis easily checked that
the collection QE(A) of quasi-endomorphisms of A is a Q-subalgebra of Mat, (Q);
and, of course, this implies that there are only countably many possibilities for QE(A).
A linear transformation ¢ € Mat, (Q) is said to be a quasi-automorphism of A iff ¢ is
a unit of the Q-algebra QE(A); and the group of quasi-automorphisms of A is denoted
by QAut(A).

Lemma 3.8 (Thomas [31]). If A € R(Q"), then QAut(A) is the setwise stabilizer
of [A] in GL, (Q).

In particular, there are only countably many possibilities for the setwise stabilizer
of [A] in GL, (Q). Hence, arguing as above, we can suppose that there exists a Borel
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subset Xg € X with u(Xg) = 1 and a fixed subgroup L < GL,(Q) such that L is
the setwise stabilizer of [A,] for all x € Xo; and this implies that the quotient group
H = NgL, @) (L)/L acts freely on the corresponding set ¥ = {[A] | QAut(A) = L}
of ~,,-classes.

Lemma 3.9 (Thomas [31]). There is an algebraic Q-group G with diim G < m?> — 1
such that H < G(Q).

Consequently, we are now positioned to apply Theorem 3.4 ... except for one
last complication. Unfortunately, the equivalence relation =, is not smooth and this
means that Y is not a standard Borel space. However, this turns out not to be a serious
difficulty. As shown in Thomas [31], the equivalence relation &, is hyperfinite (which
is only slightly more complicated than smooth) and Theorem 3.4 is easily extended
to cover induced free actions on quotients of standard Borel spaces by hyperfinite
equivalence relations.

Remark 3.10. The above argument does not go through in the case when n = 1
because of the failure of Zimmer’s cocycle superrigidity theorem for the low rank Lie
group SL>(R). However, as we mentioned earlier, this case had already been dealt
with by Hjorth [13], who gave a completely elementary proof that (1) <p (=2),
based upon the fact that GL;(Q) = Q* is amenable and GL;(Q) is nonamenable.

In the remainder of this section, we shall sketch the proof of Theorem 1.14. This
involves trying to understand the orbit equivalence relation %g of the classical group
GL,(Q) on the highly non-classical space R?(Q?) of p-local torsion-free abelian
groups of rank 2. Fortunately, using the invariants of Kurosh—Malcev [22], [25], it is
possible to replace R”(Q?) by a much more intelligible space.

Definition 3.11. For each prime p, let E), be the orbit equivalence relation arising
from the natural action of GL(Q) on the projective line Q, U {co} over the field of
p-adic numbers.

Theorem 3.12 (Thomas [31]). (=0) ~5 (E)).
Thus Theorem 1.14 is an immediate consequence of the following result.

Theorem 3.13 (Hjorth-Thomas [16]). If p # g are distinct primes, then the orbit
equivalence relations E,, E; of GL2(Q) on the projective lines Q, U {o0}, Q, U {00}
are incomparable with respect to Borel reducibility.

Sketch proof of Theorem 3.12. Following Kurosh-Malcev [22], [25], we shall de-
scribe how to assign points V4 € Q, U {00} to the p-local groups

{AcRP@) |AZQOQ, Z) & Zp)
such that:

¢ A = B iff the corresponding points V4, Vp lie in the same GL, (Q)-orbit;
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» for each point V € Q) U {00}, there exists a corresponding group A such that
Va=V.

The result then follows easily from the fact that there are only countably many groups
A € RP(Q?) suchthat A = Q & Q, Z(p) ® Z(p).-

It is first necessary to discuss the p-adic completion A of each p-local group
A € RP(Q?), which is defined as follows. For the remainder of this proof, we shall
regard Q7 as an additive subgroup of the 2-dimensional vector space Q2 over the field
of p-adic numbers and we shall regard GL,(Q) as a subgroup of GL; (Qp) For each
A € RP(Q?), let A= Zp @ Aj ie. A is the subgroup of QZ consisting of all finite
sums

viai + y2ax + - - - + yray,

where y; € Zp and a; € Afor 1 <i <t. Then, while A usually has a very complex
structure, A always decomposes into a direct sum of copies of Zj, and Q,. In fact,
assuming that A 2 Q & Q, Z(,) ® Zp), there exist elements v4, ws € A such that

Z: QpVA @ ZPWA.

(See Fuchs [8].) Let V4 = Qpva. If A = B, then there exists ¢ € GL2(Q) such
that ¢[A] = B. This implies that g0[1’4\] — B and it follows easily that p[V4] = V3.
Conversely, suppose that there exists ¢ € GL,(Q) such that p[V4] = Vp. Since
the nontrivial proper Z,-submodules of Q, are precisely { pEZ,, | £ € Z}, after
composing ¢ with a suitable transformation v — p‘v if necessary, we can suppose
that (p[;f] — B. Since AN Q? = A and BN Q? = B, it follows that ¢[A] = B.
Thus the GL, (Q)-orbit of the point V4 € Q) U {oc} is a complete invariant for those
A € RP(Q?) suchthat A 2 Q @ Q, Z(p) ® Z(p).- ]

Remark 3.14. It is now easy to prove that for each prime p € P, there exists a
nonatomic SL;(Z)-invariant ergodic probability measure i, on R(Q?) which con-
centrates on the Borel subspace R”(Q?) of p-local groups. We have just seen how
to assign a corresponding point V4 € Q, U {00} to each A € R? (Q?) such that
AZQ®Q, Zp) @ Zp). Conversely, for each point V € Q, U {oo}, there exists a
corresponding group A such that V4 = V. In fact, there exist countably many such
groups. However, if we restrict our attention to the SLy(Z)-invariant Borel subset
X(Q?% consisting of those A € RP (Q?) such that

() AZQ®Q, Zp) ® Zp),
.o 2 2
(i) Z{,) < Aand Z{ ) £ pA,

then we obtain a one-to-one correspondence. In summary, the map

X(@Q") = Qp U {oo},
A VA,
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is a Borel bijection satisfying ¢[Va] = V4] forall ¢ € SLy(Z) and A € X (Q?).
Hence the result follows from the observation that there exists a nonatomic SL, (Z)-
invariant ergodic probability measure v, on Q, U {oo}. To see this, recall that the
compact group K = SL;(Z,) acts transitively on Q, U {oo}. Hence, letting L be the
stabilizer in K of some point of Q, U {oc}, we can identify the K-spaces Q, U {oo}
and K /L. Let v, be the Haar probability measure on K /L. Since SL>(Z) is a dense
subgroup of K, it follows that v, is the unique SL;(Z)-invariant probability measure
on K /L and hence SL(Z) acts ergodically on (K /L, vp).

The above argument easily generalizes to show that for all m > 2, there ex-
ists a nonatomic SL,, (Z)-invariant ergodic probability measure 1, on R(Q™) which
concentrates on the Borel subspace consisting of those A € R”(Q™) such that
dim A/pA = 1. (For example, see Thomas [31].)

Finally we shall sketch the proof of Theorem 3.13. Recall thatif S = {p1, ..., p:}
is a nonempty finite set of primes, then

FS = SLZ(Z[I/pl’ L) 1/pl‘])

Also let I'y = SL2(Z). As we shall see, Theorem 3.13 is an easy consequence of the
following variant of Theorem 2.16, together with a crucial result of Hjorth [16].

Theorem 3.15 (Thomas [34]). Suppose that p # q are distinct primes and that S is
a (possibly empty) finite set of primes. Let

e Ej be the orbit equivalence relation induced by the action of SL(Z[1/q]) on
Qp U {oo}, and

* Ej be the orbit equivalence relation induced by the action of T's on Q4 U {00}.

If f: Qp U {0} — Qy U{oc} is a Borel homomorphism from E| to E», then there
exists a [Lp-measure 1 subset which is mapped to a single E5-class.

Remark 3.16. The basic theme of Borel superigidity theory is that, under suitably
strong hypotheses, every nontrivial Borel homomorphism is a “slight perturbation”
of a virtual homomorphism of the corresponding measure-preserving permutation
groups. In the statement of Theorem 3.15, the group SL»(Z[1/¢q]) was chosen because
its actions on Q, U {oo} and Q, U {oo} are extremely incompatible; namely, while
SL>(Z[1/q]) preserves the p-adic probability measure on Q, U {oo}, there are no
SL;(Z[1/q])-invariant probability measures on Q, U {c0}.

Sketch proof of Theorem 3.13. Suppose that f: Q, U {oo} — Q4 U {oo} is a Borel
reduction between the orbit equivalence relations induced by the GL;(Q)-actions.
Then we can regard f as a countable-to-one Borel homomorphism between the
SL,(Z[1/q])-action on Q, U {oo} and the GL,(Q)-action on Q; U {oo}. Using a
suitable Cocycle Reduction Theorem of Hjorth [16], we can “adjust” f to obtain a
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countable-to-one Borel homomorphism f: Qp U {00} — Q4 U {oo} between the
orbit equivalence relation induced by the SL;(Z[1/g])-action on Q, U {00} and the
orbit equivalence relation induced by the I"g-action on @, U {oo} for some finite set
of primes S, which contradicts Theorem 3.15. O

In view of Remark 1.17, it would be interesting to know whether Eé’ 1S an imme-
diate successor of = with respect to <p. Equivalently:

Question 3.17. Let E, be the orbit equivalence relation arising from the action of
GL>(Q) on the projective line Q, U {oo} over the field of p-adic numbers. Does there
exist a (countable) Borel equivalence relation E such that Eg <p E <p E,?
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Quiver algebras, weighted projective lines,
and the Deligne—Simpson problem

William Crawley-Boevey

Abstract. We describe recent work on preprojective algebras and moduli spaces of their rep-
resentations. We give an analogue of Kac’s Theorem, characterizing the dimension types of
indecomposable coherent sheaves over weighted projective lines in terms of loop algebras of
Kac-Moody Lie algebras, and explain how it is proved using Hall algebras. We discuss ap-
plications to the problem of describing the possible conjugacy classes of sums and products of
matrices in known conjugacy classes.
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Introduction

Preprojective algebras were introduced by Gelfand and Ponomareyv, and in a deformed
version by Crawley-Boevey and Holland. They arose in the theory of representations
of quivers, but have interesting links with Kleinian singularities, Kac-Moody Lie
algebras and noncommutative symplectic geometry. In the first part of this article,
§1, we survey some of the results we have obtained in the last ten years concerning
these algebras, and moduli spaces of their representations.

The Deligne—Simpson problem asks about the existence of matrices in given con-
jugacy classes, with product the identity, and no common invariant subspace. Some
time ago it became clear that our work on preprojective algebras solves an additive
analogue. To solve the original problem, one needs to pass to a new setup, in which
representations of quivers are replaced by coherent sheaves on weighted projective
lines (or parabolic bundles), and representations of the preprojective algebra are re-
placed by logarithmic connections. We discuss all this in §4.

A key ingredient in the theory of preprojective algebras is Kac’s Theorem, describ-
ing the possible dimension vectors of indecomposable representations of quivers. In
the new setup, one needs an analogue of Kac’s Theorem for weighted projective lines.
We discuss it in §2, and outline a proof via Hall algebras in §3.

In the rest of this introduction we recall some basic facts about representations of
quivers. A quiver Q, or more precisely (I, Q, h, t), consists of finite sets / and Q
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of vertices and arrows, and maps &, t: Q — I, assigning to each arrow its head and
tail vertices. We fix a base field K, algebraically closed unless otherwise indicated.
By a representation X of Q, one means the assignment of a vector space X, for each
vertex v, and a linear map X; ) — Xp(q) for each arrow a. There are natural notions
of homomorphisms between representations, sub-representations, etc.

The path algebra K Q has basis the paths ajas . .. a, in Q of length n > 1, with
t(a;) = h(aj+1) for all i, and a trivial path of length O for each vertex v. It is an
associative algebra, with the product of two paths given by their concatenation, if this
makes sense, and otherwise zero, and the sum of the trivial paths is a multiplicative
identity. The category of representations of Q is equivalent to the category of left
K Q-modules, so one can use homological algebra, composition series, the Krull-
Remak—Schmidt Theorem, and so on.

We now assume for simplicity that Q has no oriented cycles, in which case K Q
is finite dimensional, although many results hold without this restriction.

Let g be the Kac—Moody Lie algebra given by the symmetric generalized Cartan
matrix (ayuy)u,ves Which has diagonal entries 2, and off-diagonal entries given by
minus the number of arrows in Q between u and v, in either direction. Thus g is
generated over C by ey, fy, hy (v € I) with relations

[hua hv] = 01 [eu» fv] = Suvhv,
[y, ev] = auvey,  [hu, fol = —au fo, (D
(ad eu)l_a“v (ey) =0, (ad fu)l_auv(fv) =0 (fu#v),

where § is the Kronecker delta function. The root lattice I" of g is the free additive
group on symbols o, (v € I), it grades g, with dege, = oy, deg f, = —«, and
degh, = 0, and the set of roots is A = {0 # « € I' | go # 0}. Recall that
there are real roots, obtained from the simple roots o, by a sequence of reflections
sy(0) = o — (a, ay)ay, where (—, —) is the symmetric bilinear form on I" with
(ovy, 0ty) = ayy, and there may also be imaginary roots. Defining p(«) = 1— %(a, o),
the real roots have p(«) = 0, and the imaginary roots have p(«) > 0.

Gabriel’s Theorem [19] asserts that a quiver Q has only finitely many indecom-
posable representations if and only if g is of finite type, i.e. the underlying graph of Q
is a Dynkin diagram (of type ADE). In this case the map sending a representation to
its dimension vector

dim X =) “(dim X,)o, € T

vel

gives a 1-1 correspondence between indecomposable representations and positive
roots. Kac’s Theorem [26], [27] extends this to g of arbitrary type: the dimension
vectors of indecomposable representations are exactly the positive roots, there is a
unique indecomposable for each real root, infinitely many for each imaginary root.
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1. Preprojective algebras

The preprojective algebra of a quiver Q is the algebra

n(Q) = k0/( Y (aa* —a'a),
aceQ

where the double Q of Q is obtained by adjoining a reverse arrow a* for each arrow
a € Q. In the finite type case it is isomorphic, as a K Q-module, to the direct sum of
one copy of each indecomposable representation of Q. In general, it is isomorphic
to the direct sum of the indecomposable representations of Q that are preprojective,
meaning that some power of the Coxeter functor, or equivalently of the Auslander—
Reiten translation DTr, sends them to a projective K Q-module.

Preprojective algebras first appeared in unpublished work of I. M. Gelfand and
V. A. Ponomarey, in a lecture delivered by A. V. Roiter at the Second International
Conference on Representations of Algebras (Ottawa, 1979). See [45] for a discussion
about variations on this definition. Note also that work by Riedtmann [40] contains
parallel ideas.

Given A = (Ay)yer € K7, Crawley-Boevey and Holland [15] have introduced the
deformed preprojective algebra, TT*(Q), in which the relation is replaced by

Z(aa* —a*a) — A, 2)
aeQ
where A is identified with the corresponding linear combination of trivial paths.

Up to isomorphism, these algebras do not depend on the orientation of Q. They
are related to some elementary symplectic geometry. Choosing bases for the vector
spaces, representations of Q of dimension vectora = ), nya, are given by elements
of the space

Rep(Q, a) = @ Matnh(a)xn,(a) (K),
aeQ
and isomorphism classes correspond to orbits of the group

GL(a) = [ [ GLn, (K)
vel

acting by conjugation. The space of representations of Q can then be identified with
a cotangent bundle

Rep(Q, a) = Rep(Q, o) x Rep(Q, a)* = T*Rep(Q, ).

This has a natural symplectic structure, and associated to the action of GL(«) there
is a moment map

JT Rep(é,a) — gl(), x+— ( Z XqXg* — Z Xa*xa)vel-

aeQ aeQ
h(a)=v t(a)=v
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Identifying A with a central element of gl(«), there is a quotient

No(h, @) = 1y (1) GL(a),

a ‘symplectic quotient’, or ‘Marsden—Weinstein reduction’. Here the double slash
denotes the affine variety that classifies closed orbits of GL(r) on L(%). Now the

elements of this fibre are exactly the representations of Q satisfying (2), so N oA, @)
classifies isomorphism classes of semisimple representations of I1*(Q) of dimension
vector .

Since the trace of uy(x) is always zero, if there is a representation of Q)
of dimension vector « = ) nyoy, then A - @ = ) Ayn, must be zero. If Q is a
Dynkin diagram, then IT*(Q) is finite-dimensional, and this argument shows that for
generic A it is even the zero algebra.

The case when Q is an extended Dynkin diagram, or equivalently when g is
an affine Lie algebra, appeared in work of Kronheimer [29], made more explicit by
Cassens and Slodowy [6]. If § is the minimal positive imaginary root, then N (0, §) is
the corresponding Kleinian surface singularity, and the spaces Ng (A, §), for suitably
varying A, give its semiuniversal deformation. The key idea of [15] is that the deformed
preprojective algebras I1*(Q), for unrestricted A, give a larger family of deformations
of the Kleinian singularity, the general one being noncommutative.

Theorem 1 (Crawley-Boevey and Holland [15]). Suppose Q is an extended Dynkin
diagram, and e is the trivial path corresponding to an extending vertex for Q. Then
O* = elT*(Q)e is a noetherian domain of Gelfand-Kirillov dimension 2, Auslander-
Gorenstein and Cohen—Macaulay. Moreover, it is commutative if and only if A -6 = 0,
and if so, it is isomorphic to the coordinate ring of Ng (A, 6).

For some further work on the ©O*, see [1], [4], [24]. Returning to the general
case, to decide when N (A, «) is nonempty, one needs to know whether or not there
is a representation of [1*(Q) of dimension vector . It is not hard to show that a
representation X of Q is in the image of the projection ,u;l (X)) = Rep(Q, a), sois
the restriction of a representation of I1*(Q), if and only if the dimension vector 8 of
each indecomposable direct summand of X satisfies A - 8 = 0. With Kac’s Theorem,
this gives the following.

Theorem 2 ([7]). The space Ng (A, &) is nonempty, or equivalently there is a repre-
sentation of T1*(Q) of dimension vector «, if and only if a can be written as a sum of
positiverootsoa = +y +--- withh -B=A-y =---=0.

More difficult is the following.

Theorem 3 ([7]). There is a simple representation of TI*(Q) of dimension vector o
if and only if a is a positive root, . - o = 0, and p(a) > p(B) + p(y) + --- for
any nontrivial decomposition of o as a sum of positive roots « = 8+ y + --- with
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We have also shown [8], [9] that if K has characteristic zero and Ng (X, ) is
nonempty, then it is an irreducible normal variety. Bocklandt and Le Bruyn [2], [30]
have obtained further results in this direction. See [14] for more about the link with
noncommutative symplectic geometry.

There are more general moduli spaces Ng (A, or)g, depending on suitable stability
dataf e Z!. Examples of these are the ‘quiver varieties’ used by Nakajima to construct
integrable representations of Lie algebras and quantum groups, see his ICM talk [36]
(and [7]). Note that over C, the moduli spaces are special cases of hyper-Kéhler
quotients, and by a standard trick of changing the complex structure, Ng (0, ot)g is
homeomorphic to Ng (6, a).

We now give an application of these ideas. When working over a finite field,
it is natural to consider representations of Q which are absolutely indecomposable,
meaning that they remain indecomposable over the algebraic closure of the field.
Kac showed that up to isomorphism, the number such representations of dimension
vector « is polynomial in the size g of the field, of the form a (¢) for some a, € Z[¢].
He conjectured that a,, has non-negative coefficients, and that the constant term is the
root multiplicity dim g4. In partial answer we have the following.

Theorem 4 (Crawley-Boevey and Van den Bergh [17]). If ¢ = Zve 7 Moty IS in-
divisible, meaning that the n, have no common divisor, then ay has non-negative
coefficients, and the constant term is the root multiplicity dim gq.

We explain the positivity. Since « is indivisible, one can fix A € Z! withA-a =0
but A - 8 # 0 for all 0 < B < «. The argument of Theorem 2 shows that the
number of points in Ng(A, ), over a field with g elements and sufficiently large
characteristic, is ¢”® ay (g), and then if N o (A, a) had been a projective variety, the
WEeil conjectures would have given positivity. However, Ng(0, a);, is sufficiently
close to being projective for the Weil conjectures to apply to it, and by the hyper-
Kihler trick, the cohomologies of N (0, @), and Ng (X, o) are isomorphic when the
base field is the algebraic closure of a finite field of sufficiently large characteristic.
Moreover, it is possible to ensure that this isomorphism is compatible with Frobenius
maps, so that Np (A, ) is good enough.

2. Weighted projective lines

In this section we give an analogue of Kac’s Theorem for weighted projective lines.
When studying representations of finite-dimensional associative algebras, quivers
tell one about hereditary algebras, i.e. those with global dimension < 1. One of
the breakthroughs in this area was the discovery by Brenner and Butler [5], [23] of
algebras A that are ‘tilted’ from a hereditary algebra H. In Happel’s language [22],
there is a derived equivalence D?(mod A) ~ D?(mod H), which is useful since in
D’ (mod H) any indecomposable object is a shift of a module.
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Geigle and Lenzing [20] realized that there are other algebras, including Ringel’s
‘canonical algebras’ [42], which aren’t necessarily tilted from hereditary algebras, but
are tilted from suitable hereditary abelian categories. See Reiten’s ICM talk [39] for
further progress in this direction.

We concentrate on Geigle and Lenzing’s categories. A weighted projective line Xis
specified by giving a collection of distinct points D = (ay, ..., ax) in the projective
line P! over K, and a weight sequence w = (wy, ..., wg), that is, a sequence of
positive integers. The category, coh X, of coherent sheaves on X, can be defined as
the quotient of the category of finitely generated L(w)-graded S(w, D)-modules by
the Serre subcategory of finite length modules. Here L (w) is the additive group with
generators Xp, ..., X, ¢ and relations wiX| = --- = wiX; = ¢, partially ordered,
with positive cone L(w)y = N¢ + Zle NX;, and

S(w, D) = K[u,v,x1, ..., x1/(x}" — i — piv),

where a; = [A; : ;] € P!, with grading degu = degv = ¢ and deg x; = X;. Geigle
and Lenzing showed that coh X is a hereditary abelian category; the free module gives
a structure sheaf @, and shifting the grading gives twists E(X) for any sheaf E and
X € L(w); also, every sheaf is the direct sum of a ‘torsion-free’ sheaf, with a filtration
by sheaves of the form @ (x), and a finite-length ‘torsion’ sheaf.

Let Qy be the star-shaped quiver whose vertex set I consists of a central vertex s,
and vertices, denoted ij or i, j, for 1 < i < k, 1 < j < w;, and with arrows
% <— il «<—i2 < --. for all i. The appropriate Lie algebra to consider is the loop
algebra Lg = g|[t, +~11, where g is the Kac—Moody algebra associated Qy, or, better,
an extension J£g with generators ey, fur, hyr (V € I, ¥ € Z) and c subject to the
relations

c central, [ey, evs] =0, [for, fos] =0,

[hur, hos] = ray, 5r+s,0 ¢, leur, fvs] = Suv (hv,r+s +r 5r+s,0 C) s
[hur, evs] = A€y, r+s, [Rur, fvs] = _auva,r-i-s,

(ad euO)l_aw (evs) =0, (ad qu)l_a"” (fvs) =0 (ifu #v),

3)

see [35]. The root lattice for either algebra is [' =T ®Zs, with dege,t” = dege,, =
ay + ré, deg fot" = deg fur = —ay + 16, deghyt” = deghy, = ré and degc = 0,
and the set of roots for either algebra is

A={a+rS|laecA,reZ}U{rs|0+£r e Z).

The real roots are o 4 8 with « real. (If g is of finite type, Lg is the corresponding
affine Lie algebra, and if g is of affine type, Lg is a toroidal algebra.)

The Grothendieck group Ko(coh X) was computed by Geigle and Lenzing, and
following Schiffmann [46] it can be identified with I'. Now Ko(cohX) is partially
ordered, with the positive cone being the classes of objects in coh X, and this gives a
partial ordering on r.
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Theorem 5 ([12]). If X is a weighted projective line, there is an indecomposable
coherent sheaf on X of type ¢ € T if and only if ¢ is a positive root. There is a unique
indecomposable for a real root, infinitely many for an imaginary root.

We remark that there is a classification of the indecomposables if g is of finite type
[20], or affine type [32]. The latter is essentially equivalent to the classification for
tubular algebras, see Ringel’s ICM talk [41], [42].

Lenzing [31, §4.2] showed that the category of torsion-free sheaves on X is equiv-
alent to the category of (quasi) parabolic bundles on P! of weight type (D, w), that
is, vector bundles 77 : E — P! equipped with a flag of vector subspaces

~1
w (@) D Ei1 2 D E; -1

for each i. This equivalence is not unique, but it can be chosen so that if E is a
parabolic bundle, then [E] = dim E + (deg E)J, where the dimension vector is

k wi—1

dim F = nyo + Z Z nija;; €T,
i=1 j=1

with n, = rank E and n;; = dim E;;. This is necessarily strict, meaning that n, >
ni1 > njp > -+ > n; -1 > 0. We can now restate Theorem 5 as follows (see [11]).
For each d € Z there is an indecomposable parabolic bundle of dimension vector o
and degree d if and only if « is a strict root for g. There is a unique indecomposable
for a real root, infinitely many for an imaginary root.

3. Hall algebras

In this section we explain the proof of Theorem 5. Let C be an abelian category that is
finitary, meaning that its Hom and Ext spaces are finite sets. The Hall algebra of C,
over a commutative ring A, is the free A-module

Ha (@) = D Auz,

Zeiso C

with basis the symbols u z, where Z runs through iso C, a set of representatives of the
isomorphism classes of C. It is an associative algebra with product

Z
Uxuy = E Fyyuz,
Zeiso C

where F)%Y is the number of subobjects Z’' of Z with Z’ = Y and Z/Z' = X. In
case C is the category of finite abelian groups, or finite abelian p-groups, this notion is
due to Steinitz [47] and Hall [21]. The current interest in Hall algebras stems from the
discovery by Ringel [44] of a relationship between quantum groups and Hall algebras
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for categories of representations of finite-dimensional hereditary algebras over finite
fields. This quickly influenced the development of canonical bases, see Lusztig’s
ICM talk [34].

How to recover the underlying Lie algebra? Ringel [43] realized, for finite type
hereditary algebras over a finite field K, that if one uses a ring A in which |K| = 1,
and ind C is the set of indecomposables in iso C, then the uz with Z € ind C generate
a Lie subalgebra of Hj (C) with bracket

lux, uyl =Y (Ffy — Fix)uz.
VA

To get at something resembling a semisimple Lie algebra, not just its positive part,
there is a construction of Peng and Xiao [25], [38], in which one starts not with an
abelian category, but with a triangulated K -category that is 2-periodic, meaning that
the shift functor T satisfies 72 = 1.

Let X be a weighted projective line over a finite field K, whose marked points
are all defined over K. The category coh X is still defined and well-behaved, and
Schiffmann [46] has studied its Hall algebra. Applying the construction of Peng and
Xiao to the orbit category Rx = D?(coh X) / (T?), one obtains a Lie algebra with
triangular decomposition

LA(Rx) = ( @ Aux) ® AR ® ( @ AMTX),

Xeind coh X Xeind coh X

where A is still a commutative ring in which |K| = 1. We have the following result.

Theorem 6 ([12]). LA (Rx) contains elements ey, for, hyr (v € I, ¥ € Z) and ¢
satisfying the relations (3) for Lg.

The elements are explicitly given: ¢ = —1®36, exr = U©¢¢)> for = —UTO(=r)s
and the e;; - and f;; , are all of the form ux or —urx for suitable indecomposable
torsion sheaves X. See also [33], where elliptic Lie algebra generators are found in
L A (Rx) for g of affine type.

Concerning the proof of Theorem 5, the main problem is to show that the number
of indecomposables of type ¢ = « + 16 is the same as the number of type s, () +76.
By arguments already used in the proof of Kac’s Theorem, one reduces to counting
numbers of indecomposables for weighted projective lines over finite fields, so di-
mensions of root spaces of L (Rx). A standard argument in the theory of complex
Lie algebras, using slp-triples (e, f, h), shows that the root multiplicities for roots
related by a reflection are equal. Now Theorem 6 provides such triples, and although
the argument uses the fact that the base field has characteristic zero, for example it
involves the operator exp(ad e) with ad e acting locally nilpotently, it works if A is a
field of sufficiently large characteristic, and this can be arranged by taking the finite
field K to be sufficiently large.
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4. The Deligne-Simpson problem

Given invertible matrices in known conjugacy (i.e. similarity) classes, what can one
say about the conjugacy class of their product? More symmetrically, given conjugacy
classes Cq, ..., Cx in GL,(C), is there a solution to the equation

AjAy.. A =1 4)
with A; € C;? The additive analogue asks for a solution to the equation
Al+ Ayt ot Ap =0, 5)

where the conjugacy classes may now be in gl, (C). In full generality these problems
seem to be open, but there are partial results, see for example [37]. The former arises
when studying linear ODEs

dnf dnflf
g Ta@ o+t a@f =0 (©)
whose coefficients are rational functions of z. If D = {ay, ..., ar} is the set of

singular points of the coefficients in P!, the monodromy of (6) is a representation in
GL, (C) of the fundamental group of the punctured Riemann sphere P! \. D, and the

presentation of this group as (g1, ..., g | g1&2...8 = 1), where g; is a suitable
loop around a;, shows how equation (4) arises.
To fix the conjugacy classes we choose a weight sequence w = (wy, ..., W),

and a collection of complex numbers & = (§;) (1 <i <k, 1 < j < w;) with
(Ai —&1D(A; — &) ... (A; =& w; 1) =0for A; € C;. Clearly, if one wishes one
can take w; to be the degree of the minimal polynomial of A;, and &;1, ..., & 4, to
be its roots. Let O, be the quiver associated to w as in §2, let I be its vertex set, let g
be the corresponding Kac—Moody Lie algebra, and let I' be its root lattice. The C;
determine an element « = ), nya, € I', with n, = n and

njj = rank(A; — §11)(A; — &21) ... (A; —§;j1)

for A; € C;, and conversely w, &, and o determine the C;. We define

k  w; k

P =TT ]er ™. ex1p1= Z §ij(mi,j—1 —mij),

i=1j=I i=1 j=1

for B = ) my,a,, with the convention that m;o = m, and m; ,,, = 0. Theorem 2,
applied to a deformed preprojective algebra IT*(Qy,), gives the following.

’l;heorem 7 ([11]). There is a solution to Ay + --- + A = 0 with A; in the closure
C; of C; if and only if « can be written as a sum of positive roots« =+ y + - -

with & % [B] = % [y] = --- = 0.
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A solution to equation (4) or (5) is irreducible if the A; have no common invariant
subspace. Theorem 3 gives the following.

Theorem 8 ([10]). There is an irreducible solutionto A1 +---+ A = 0Owith A; € C;
if and only if o is a positive root, & x [a] = 0, and p(a) > p(B) + p(y) + --- for
any nontrivial decomposition of a as a sum of positive roots @« = B+ y + --- with

Ex[fl=§x*[y]l=---=0.

What about the multiplicative equation? By the Riemann—Hilbert correspondence,
any solution arises as the monodromy of the differential equation given by a loga-
rithmic connection on a vector bundle for P'. (Note that a Fuchsian ODE (6), as
hoped for in Hilbert’s 21st problem in his 1900 ICM talk, will not suffice, nor will
a Fuchsian system of linear differential equations, or equivalently a logarithmic con-
nection on a trivial vector bundle, as discussed by Bolibruch in his ICM talk [3].) Now
a theorem of Weil [49] asserts that a vector bundle on a compact Riemann surface
has a holomorphic connection if and only if its indecomposable direct summands
have degree 0. There is an analogous theorem for parabolic bundles and compatible
logarithmic connections, see [11], and, using it, Theorem 5 implies the following.

Theorem 9 ([11]). There is a solutionto Ay ... Ay = 1 with A; € C; if and only if o
can be written as a sum of positive rootsa = B+y +--- witheBl = glvl = ... =1,

The Deligne—Simpson problem, see [28], asks when there is an irreducible solu-
tion to (4) with A; € C;. By considering multiplicative analogues of preprojective
algebras, Crawley-Boevey and Shaw deduce the following from Theorem 9.

Theorem 10 (Crawley-Boevey and Shaw [16]). Forthere to be an irreducible solution
to Ay ... A = 1 with A; € C; it is sufficient that a be a positive root, gl =1, and
p(a) > p(B)+ p(y)+--- forany nontrivial decomposition of a as a sum of positive
rootsa = B+y +--- with&lPl =gVl = ... = 1.

The condition in the theorem has now also been shown to be necessary [13]. For
some recent work related to multiplicative preprojective algebras, see [18] and [48].
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1. Introduction

Whenever a counting problem pertaining to some mathematical object A produces a
sequence of non-negative integers ap (n) (n = 1,2, ...) we can hope to gain infor-
mation by incorporating our sequence into a generating function. There are various
ways of doing this, for example as coefficients of power series, sums representing
automorphic functions and Dirichlet series. Sometimes there is a natural choice of a
generating function dictated by the recursive properties of the sequence ap (n). We
report here on counting problems where the choice of a Dirichlet series seems to be
appropriate.

We consider first two counting problems relating to a finitely generated group G.
Write [G : H] for the index of a subgroup H < G and let

ag(n):={H =G |[G:H]l=n}|, agn):={HLGI|[G:H]=n}| (1)

be the number of subgroups or normal subgroups of index precisely n in G. The
numbers ag; (n) all being finite we call

(o)=Y agmn™ = Y [G:H]™ )

n=1 H=<sG

the subgroup zeta function of G. The symbol H <; G indicates that the summation
is over all subgroups H of finite index in G. Similarly, we define

$5() =) agmn™ = ) [G:H]™ 3)

n=1 HyG
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to be the normal subgroup zeta function of G. When we intend to address both types
of zeta functions simultaneously we write ¢ (s) for {5 (s) or £5(s).

For the second type of counting problem we consider a ring R, which is for our
purposes an abelian group R carrying a biadditive product. Let us write S < R if S
is a subring of R and a < R if a is a left ideal of R. Let

agxm) :={S<R|[R:Sl=n}|, agm):=[{adR|[R:al=n} (4

be the numbers of these subobjects of R which have index n € N in the additive group
of R. The numbers counting subrings are finite if the additive group of R is finitely
generated. The numbers counting ideals are all finite under the weaker hypothesis
that the ring R is finitely generated. Given these circumstances define the subring
zeta function or the ideal zeta function to be respectively

Cr(s) = apmn™, (R(s) =Y apmn". (5)

n=1 n=1

Again we write { (s) for {3 (s) or £ (s).

While the study of the zeta functions of a finitely generated group was only begun
in [27], the ideal zeta function of a ring has the Riemann zeta function (R = Z) or
more generally the Dedekind zeta function of the ring of integers in a number field as
special cases (see [32]).

We wish to consider the Dirichlet series (2), (3), (5) not only as formal sums but
as series converging in a non-empty subset of the complex numbers. By general
theory this subset may be taken to be a right half-plane. In fact, this convergence
condition will be satisfied if and only if the coefficients in the series (2), (3), (5) grow
at most polynomially in n, more precisely if and only if there are ¢, ¢* € R such that
ag,(n) < c*n’ respectively aj(n) < c*n’ holds for all n € N. In this case we will say
that G has polynomial subgroup or normal subgroup growth, the ring R will be said
to have polynomial subring or ideal growth. For finitely generated groups G there
is the following beautiful characterisation of this property by A. Lubotzky, A. Mann
and D. Segal (see [36]).

Theorem 1.1. Let G be a finitely generated residually finite group. Then G has
polynomial subgroup growth if and only if G has a subgroup of finite index which is
soluble and of finite rank.

A group G is called residually finite if for every non-trivial g € G there is a
subgroup H of finite index in G with g ¢ H. Of course, this assumption is natural
for Theorem 1.1 to hold. A group G is said to be of finite rank r € N if every finitely
generated subgroup of G can be generated by at most r elements.

In the following we shall assume that

* either A = G is an infinite finitely generated torsion-free nilpotent group,

* or A = R is aring with additive group isomorphic to Z? for some d € N.
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We shall denote the set of isomorphism classes of such objects by 7.

Finitely generated torsion-free nilpotent groups satisfy the growth condition in
Theorem 1.1. Their classification up to isomorphism is intimately connected with the
reduction theory for arithmetic groups (see [24]). In addition there are connections
between special classes of nilpotent groups and certain diophantine problems includ-
ing the question of equivalence classes of integral quadratic forms ([25]). See [26]
for a panorama of finitely generated torsion-free nilpotent groups. The class of rings
in 7 contains all rings of integers in number fields and also (for example) the integer
versions of the simple Lie algebras over C.

For A € T the zeta functions share a number of features in common with the
Dedekind zeta function of a number field. Before we report the story let us mention
some examples. Considering Z¢ (d € N) as a direct product of infinite cyclic groups
we find ;%‘d(s) =¢(s)¢(s—1)...¢(s —d+ 1) where

c6) =g =i =30 =[]
n=1 p

is the Riemann zeta function. A more elaborate example concerns the discrete Heisen-
berg group H3, thatis the group of strictly upper triangular 3 x 3-matrices with integer
entries. The group Hj is a torsion-free, nilpotent group of class 2 generated by two
elements. The following formulas are proved in [46], see also [27].

§(s)5(s = DE(2s —2)8(2s = 3)
£(3s —3) ’

Cpy () = Chy(8) = £()E (s —1)¢ (3s—2). (6)
For an interesting example of the zeta function of a ring we can consider sl>(Z), the
additive group of integer 2 x 2-matrices of trace 0 with the usual Lie bracket. The
following formula was finally proved in [21] after contributions in [29], [5], [6]

. 53§ —1DE@2s —2)8(2s — 1)
Conzy () = P27 (Gs — D) (7
where P (x) is the rational function P = (1 4+ 6x2 — 8x3)/(1 —x3).
All these examples of zeta functions of members of 7 have three distinctive
properties (evident from the formulas given):

* they converge in some right halfplane of C,

¢ they decompose similarly to the Riemann or Dedekind zeta function as an Euler
product of some rational expression in p~—* taken over all primes p,

* they have a meromorphic continuation to C.
We believe that these three properties already justify the name zeta function for the cor-

responding generating function. A fourth property of the Dedekind zeta function, the
global functional equation (see [32]) is hardly conceivable looking at formulas (6), (7).
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Let us define now what will be the Euler factors of the zeta function of a general
A € T . For a prime p we set:

oo
Gho o)=Y ar(ph)p™. ®)
k=0
This expression can be considered as a function in the variable s € C or equally as a
power series in p~*.
In [27] the following theorem is established.

Theorem 1.2. For A € T the following hold.
(i) The Dirichlet series £ (s) converges in some right half-plane of C.
(ii) The Dirichlet series ¢ (s) decomposes as an Euler product

ch) =[]z, o, ©)
p

where the product is to be taken over all primes p.

(iii) The power series & »(8) are rational functions in p~—S. That is, for each
prime p there are polynomials Z’;, N; € Z[x] suchthat ;‘j{’p (s) = Z; (p’s)/N;‘ (P~
holds. The polynomials Z*, N ;; can be chosen to have bounded degree as p varies.

An explicit determination of the local Euler factors (that is of the polynomials
Z;, N ;) of the zeta functions has been carried out in many cases including infinite
families of examples. The methods range from ingenious elementary arguments to
the use of algebraic geometry (resolving singularities). In several cases computer
assistance was used (see [51]). See Section 6 for a selection of these examples. The
database [52] collects comprehensive information on many examples treated so far.
In very few cases the zeta function could be described by a closed formula in terms
of the Riemann zeta function like in (6) or (7).

Note that, as a consequence of Theorem 1.2, the series (2), (3) and (5) converge
to holomorphic functions in some right half-plane of C. In fact the coefficients in (2),
(3) and (5) are non-negative, hence by a well known theorem of E. Landau there is
a € R U {—o0} such that the series in question converges (absolutely and locally
uniformly) for s € C with Re(s) > « and diverges if Re(s) < «. This « is called the
abscissa of convergence of the series.

We wish to report the following theorem which collects together the main results
of [13].

Theorem 1.3. For A € T the following hold.

(i) The abscissa of convergence oy of £ (s) is a rational number.

(ii) There is a 8 > 0 such that £} (s) can be meromorphically continued to the
region {s € C | Re(s) > a} — 48 }.

(iii) The line {s € C | Re(s) = o} } contains at most one pole of £ (s) (at the
point s = oy ).
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We define b’} to be the order of the pole of ¢ (s) ins = a’y . Using another theorem
of E. Landau we find bf\ > 1. Theorem 1.3 has as an immediate consequence:

Corollary 1.1. Let A bein T. Let

N
Sh(N) =) aj(n) (NeN) (10)

n=1

be the summatory function of the counting function a’. We have
sE(N) ~ ¢ N log(N)?a~! (11)
with ¢y € R.

The formula (11) means that the right hand side divided by the left hand side tends
to 1 as N tends to infinity. The corollary follows from Theorem 1.3 using Tauber
theory (see [38]). Note that the third property of the zeta function is essential for this
application. Note also that ¢} is equal to the lowest coefficient of the Laurent series
representing ¢ 3 near the pole in s = o .

Having defined the new invariants o} € Q, b, € Nand ¢}, € R forevery A in 7
we are lead to

Problem 1.1. Relate oy, b’} , ¢ € R to structural properties of A.

This problem is solved when A is the ring of integers of a number field for the ideal
zeta function. In this case o} = b} = 1 and the value of ¢} is given by Dirichlet’s
class number formula (see [32]). In the general case we have only the very scarce
information reported in later sections. The following asymptotic relations can be read
off from formulas (6) and (7), they reveal the values of our invariants.

£(2)? N2 20¢(2)%¢(3) e
2¢(3) 31¢(5)

The examples above illustrate that oy can often be any natural number. However
examples described in Section 6 show that 5/2 and 7/2 are also possible values
of ;. Considering 7% (d € N)asa ring we have {Zd (s) = ¢(s)¢ and hence bzd =d.
Examples from Section 6 illustrate that %, can take the values 1, 2, 3, 4. In fact, the
Heisenberg group H3 has bj% = 2. This is most of the knowledge we so far have on

i, (V) ~ log(N), 55,2y (N) ~ (12)

Problem 1.2. What is the range of the pairs (a’y, b} ) as A varies over 7 ?

Problem 1.2 has many more concrete variants, let us mention one of them. Define
Seroup = {ag} C R to be the set of abscissas of convergence of the subgroup or
normal subgroup zeta functions as G varies over all finitely generated torsion-free

nilpotent groups. Define S;“ing :={ak } C Rsimilarly as R varies over all rings in 7.

Let us briefly explain the proof of
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Proposition 1.1. The set Sg,

are only finitely many members of S

C R s discrete, that is below any real number there
group:

Let G be a torsion-free nilpotent group and G2 its abelianisation. Let (G ) be the
Hirsch-length of G, that is the maximal number of infinite cyclic factors appearing in
a composition series of G. A simple argument shows h(G™) < ag, < h(G). These
two inequalities have been improved in several directions (see [27] and [42]). An
unpublished result of D. Segal gives the lower bound

(3 -V2)h(G) - % < ag. (13)

The main result of [4] implies that once we fix the Hirsch-length of G there is a
universal denominator which all denominators of local zeta functions of nilpotent
groups of that Hirsch-length have to divide. The results of Sections 2 and 3 together
with (13) prove Proposition 1.1. The results of [4] apply also to the normal subgroup
zeta function and to the zeta functions of rings, but a replacement for (13) has not
been found. So we raise

Problem 1.3. Are the sets S¢ Ss

< : .
. _ group® Sring and S35 discrete? If not, what are their
accumulation points?

ring

Are A1, Ay € T isomorphic if their zeta functions agree? Questions of this
nature are traditionally called isospectrality problems. Examples of non-isomorphic
rings of integers Ry, R> in number fields with ;13‘1 (s) = ;13‘2 (s) are contained in [44].
The two finitely generated nilpotent groups (of class 2) G1, G, described in Exam-
ple 4 of Section 6 are not isomorphic but have isomorphic profinite completions.
Hence 86, (s) = G, (s), {él (s) = ;gz (s) both hold. These examples show that the
isospectrality problem in general has a negative answer. But there remains:

Problem 1.4. Suppose that ;Xl (s) = {Xz (s) holds for both or at least one of the
possibilities * € { <, <} for A1, Ay € 7. Which structural invariants of A| and A;
are the same? For example, are the profinite completions of A| and Aj isomorphic?

For a more extensive discussion of isospectrality problems see [12]. This paper
also contains an example of a group G which satisfies {5 (s) = ¢, but which does

not have the same profinite completion as Z?. The group G is one of the plane
crystallographic groups, it has Z? as a subgroup of index 2 but it is not nilpotent.

In this survey we mainly discuss properties of the zeta functions of groups and
rings. There are many topics not treated here, see [20] and [10] for relations to other
subjects. Connections to the by now vast field of subgroup growth are not treated
here. For this see the surveys [34] and [35].

In Sections 2, 3 we describe the proofs of Theorems 1.2 and 1.3. As a first
step the Euler factors {X’p(s) are described as certain p-adic integrals. These are
evaluated by the methods of p-adic integration. Having obtained explicit formulas
we multiply the (global) Euler product by an Artin L-function to enlarge its region of



Zeta functions of groups and rings 137

convergence. Section 4 discusses the variation with p of the Euler factors. Certain
functional equations of the Euler factors are the subject of Section 5. Section 6
contains examples. In Section 7 we describe variations on the zeta function theme.

2. p-adic formalism

While the proof of the first two items of Theorem 1.2 is elementary, the third requires
an expression for the local Euler factor {;’{, » (s) (p a prime) of the zeta function ¢} (s)
in terms of a certain p-adic integral. We shall briefly explain this procedure in the
case when A = R € T is aring and * = <. For more details see [27] Section 3
or [13].

Let p be a prime. We write Q,, for the field of p-adic numbers and Z,, for its ring
of integers. For x € Q, we define v, (x) to be the p-adic valuation of x and |x|, to
be the normalised p-adic absolute value. We write Try(Z), Try(Z)) (d € N) for the
space of upper triangular d x d-matrices with entries in Z respectively Z,. We think
of Try(Z),) being identified with Zﬁ(d—H) 2,

Let R € 7 be aring (with additive group isomorphic to Z¢) and p a prime. We fix
a Z-basis of R. Analysing the conditions for the rows of an upper triangular matrix
(in Tr4(Z)) to be a triangular basis of an ideal in R, we find polynomials

fi. 81, ... fi, & €Zlxn, ..., X4l (14)

such that

MI(R) == {x € Tra(@) | /LX) | g1(x), ..., fi(x) | g1 (x)} 15)

is exactly the set of upper triangular matrices with entries in Z for which the rows
generate an ideal in R. Here we write a | b if the integer a divides the integer b. We
now use our Z-basis of R also as a Z,-basis of Z, ®z R. We conclude that

MR, p) = {x € Trg(Zp) | vp(fi(x)) < vp(gi(x))fori=1,...,1} (16)

is exactly the set of upper triangular matrices with entries in Z, for which the rows
additively generate an ideal in Z, ®z R.

The map a — a N R sets up a one to one correspondence between the ideals of
index p" (n € N)inZ, ®z R and ideals of the same index in R. An exercise in p-adic
integration shows that

tro)=0—-pH / e 5" a5 el e (1)
P MA(R, p) p p P

holds for every prime p with dx the normalised Haar measure on Try (Z,) = ZZ @+n/z

The same approach applies to the subring zeta function of aring R € 7. See Section 3
of [27] or Section 5 of [13] for more details.
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A similar, slightly more elaborate, analysis yields polynomials (14) in d(d + 1) /2
variables such that formula (17) holds in case A = G is a finitely generated torsion-
free nilpotent group. For more details see Section 2 of [27] and Section 5 of [13].
Here, due to the use of Lie ring methods, finitely many primes have to be excluded.
The natural number d has to be taken to be the Hirsch-length of G.

The proofin [27] of the rationality of these p-adic integrals relied on observing that
M* (A, p) are definable subsets in the language of fields. One can then apply a theorem
of Denef [1] which establishes the rationality of definable p-adic integrals. Denef’s
proof relies on an application of Macintyre’s quantifier elimination for the theory of
Qp which simplifies in a generally mysterious way the description of definable subsets
like M*(A, p). In the next section we shall report on a concrete formula computing
integrals like (17) which replaces the use of the model theoretic black box in the proof
of the rationality.

3. p-adic and adelic cone integrals

We define here certain Euler products with factors given by p-adic integrals which
are generalized versions of the p-adic integrals occurring in formula (17). We then
analyze the analytical properties of these Euler products.

Let m be a natural number. A collection of polynomials

D = (fo, go: f1.815---» f1. 8D (fo, 8o, f1, 815+, f1. 81 €Qlx1, ..., xn])  (18)

is called cone integral data. We associate to D the following closed subset of Zj (p
a prime)

M(D, p):={x € Z;” | vp(fi(x)) S vp(gi(x))fori=1,...,1} (19)

and a p-adic integral with conventions as in Section 2:
ZoG.m = [ 1l lacol, d. (20)
M(D, p)

Note that Section 2 shows that the local zeta functions of the A € T are special cases of
the Zp (s, p). The p-adicintegral (20) is easily seen to exist for s € C with sufficiently
large real part. It can be expressed as a power series Zp(s) = Y o dp.i p~'S with
non-negative integer coefficients and a, o # 0. In fact, a result of Denef [1] says that
the power series in (20) is rational in p~°. Given the cone integral data £ we can
define Z g (s, p) for every prime p. We use this to define an Euler product

Zo(s) =[], Zo(s, p) 1)
p

which we call the global or adelic cone integral. In fact, with appropriate normali-
sation of measures, Z ¢ (s) can be defined as an adelic integral (see [39] for a special
case).
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Special cases of the p-adic integrals (20) appear in [28]. We use an adaptation of
a method to calculate p-adic integrals from [1] and [2] to show:

Proposition 3.1. Let D = (fo, go; f1, &1, ---, f1, &) be cone integral data. Define
the polynomial F (x) := Hﬁ:o fi(x)gi(x). Let (Y, h) be a resolution of singularities
over Q of F. Let E; (i € T) be the irreducible components defined over Q of the
reduced scheme (h™"(D))eq where D = Spec(Q[x]/F). Then the following hold.

(i) There exist rational functions P;(X,Y) € Q(X,Y) for each I C T with the
property that for almost all p:

Zp(s) = cpr Pi(p.p™) (22)
ICT

where cp; = |{a € 17(15‘1,) | a € E; ifandonlyifi € I}| and Y is the reduction
mod p of the scheme Y.

(i1) There is a closed polyhedral cone € C Rt>0 wheret = |T | and a decomposition
of € into open simplicial pieces which we denote by Ry (k € {0,1,...,w}). We

arrange that Ry = (0, ...,0) and Ry, ..., Ry are the one-dimensional pieces. For
eachk € {0,1, ..., w}let M, C {1, ..., g} denote the one-dimensional pieces in the
closure of Ri. Then there are positive integers Aj, B;j for j € {1, ..., q} such that

for almost all primes p:

w / pf(AjHBj)
Zp&) =Y (p=D%p e,y [] (23)
k=0

_ ,—(Ajs+Bj)
e, 1 p J Jj
where I} is the subset of T defined so thati € T\Iy if and only if the i-th coordinate
is zero for all elements of Ry.

The study of p-adic integrals like (20) has been initiated by J. Igusa. His funda-
mental results are documented in [28]. The references in [28] provide access to the
vast literature on this subject. Previous to the results documented here the global or
adelic versions (21) have only received attention in special cases (see [39]). Using
various methods from analytic number theory and arithmetic geometry we show in
[13] that Proposition 3.1 implies:

Corollary 3.1. Let D = (fo, go; f1. &1, ---, fi, &) be cone integral data. Suppose
Z 9 (8) is not the constant function.

(1) The abscissa of convergence &« = ap of Zgp(s) = Z,fi | ann"* is a rational
number.

(i) Z g (s) has a meromorphic continuation to Re(s) > a — § for some § > 0.

(iii) The line { s € C | Re(s) = ap } contains only one pole of Lp(s) at s = ap.

In fact, we multiply Z o (s) by the Artin L-function corresponding to the permuta-
tion representation of the absolute Galois group of Q on the irreducible components
of the E; (i € T) appearing in Proposition 3.1. Using the estimates of Hasse and
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Weil for the number of points on algebraic varieties over finite fields on the ¢, j, in
formula (23) we can analyse the analytic properties of the product of Z g (s) with its
Artin L-function near the abscissa of convergence of Z g (s).

Theorem 1.3 is a consequence of this corollary together with the discussion in
Section 2.

Following classical analytic number theory it is natural to ask how far the adelic
cone integrals Z g (s) can be meromorphically continued to the left. The analysis of
special cases shows that often natural boundaries arise as one continues to the left
(see [11]). That s, in these cases, poles or zeroes of the continued function accumulate
densely to the points of a vertical line in C. Beyond this line no continuation is possible.
The following problems seem to be of interest.

Problem 3.1. Find all cone integral data &£ such that {p(s) has a meromorphic
continuation to C, or at least give sufficient conditions for this to happen.

Problem 3.2. Find all A € 7 such that ¢ (s) has a meromorphic continuation to C,
or at least give sufficient conditions for this to happen.

Problem 3.3. Show that either g (s) has a meromorphic continuation to C or that
there is some rational number B¢ such thatthe line { s € C | Re(s) = B4 } is a natural
boundary.

In [14] and [16] we attempt, partially successfully, to replace the zeta function
by a ghost zeta function which has more amenable analytic properties but which has
Euler factors which are in a specific sense near to those of the original zeta function.

The process of continuation to the left ties up the Dirichlet series {g (s) with the
zeta functions defined by A. Weil and R. Langlands for smooth (Q-defined projective
algebraic varieties. Let us report on a special example. Let y>—x3—ax—b (a, b € Q)
be a polynomial representing an elliptic curve E. Define

ZE p(s) = /zz 2 —x*—ax — bl dx,  Zp(s) =[], Zeps)  (24)
p

D

with appropriate normalisation factors A,. We have shown in [17] that the Dirichlet
series Zg (s) converges for Re(s) > 0. Moreover when attempting to continue Zg (s)
to the left, the symmetric power L-functions attached to E arise. It is conjectured that
these symmetric power L-functions can all be meromorphically continued to C.! If
this is true then Z g (s) can be meromorphically continued to the region Re(s) > —3/2.
Results of J. P. Serre concerning the Sato—Tate conjecture for E then imply that the
line Re(s) = —3/2 is a natural boundary beyond which no continuation is possible.

INote added in proof: these conjectures have recently been proved.
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4. The local factors: variation with p

The behaviour of the local factors as we vary p is one of the other major problems in
the field. If we consider formula (6) we easily see that

—S
Gty p(s) = SPP ) (25)

Wa(p, p™°)
where Wi, Wy can be given without reference to the prime p as polynomials
Wi(X,Y) = (1 —-Y)1 - XY)1 — X?Y>)(1 — X3Y?), Wo(X,Y) = 1 — X373,
Groups with this property are said to have uniform subgroup or normal subgroup
growth. In [27] it is proved that a finitely generated free nilpotent group of class 2
has both uniform subgroup and normal subgroup growth. As revealed in [7] the fol-
lowing problem ties up intimately with classification problems of finite p-groups, in

particular with Higman’s PORC-conjecture.

Problem 4.1. Show that every finitely generated free nilpotent group has both uniform
subgroup and normal subgroup growth.

We can also consider a similar variety of problems for rings. We define uniform
subring or ideal growth as above in the group case and raise

Problem 4.2. Show that the following Lie rings have uniform subring and ideal
growth.

* Free nilpotent Lie rings of finite Z-rank,
* sl,(Z) (n € N) or any other integer version of a simple Lie algebra over C.

Let us now consider the Heisenberg group H3z with entries from the ring of integers
of a quadratic number field. The behaviour of the local factors of its zeta functions
depends on how p behaves in the number field [27]. That is formulas like (25) hold,
but finitely many pairs of polynomials are needed to describe the variation of the local
factor of the zeta function with p. Groups with this property are said to have finitely
uniform subgroup or normal subgroup growth. There is a similar concept in the case
of rings.

For a long time this was the only type of variation with p which was known.
Our explicit formula however takes the subject away from the behaviour of primes
in number fields to the problem of counting points modulo p on a variety, a question
which is in general wild and far from the uniformity predicted by all previous examples
seen in [27]. Two papers [8] and [9] by the first author contain the following example
of a class two nilpotent group of Hirsch length 9 whose zeta function depends on

counting points mod p on the elliptic curve y> = x> — x. Define
[x1, x4] = y3, [x1, x5] = y1, [x1, X6] = y2,
X1, X2, X3, X4, X5, X@,
G= < : 2y1 3y2 4% >0 [, x4l = yo, [%2, X6] = y1, [x3, x4] = y1,> (26)
o [x3, x5] = y3
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with the convention that commutators not mentioned are equal to 1. By [9] there exist
rational functions Pi(X, Y), P2(X,Y) € Q(X, Y) such that for almost all primes p

G.p(8) = Pi(p, p~°) + |[EEp)|P2(p, p), (27)

where E is the elliptic curve y2 = x3 — x. In[9] this formula is used to show that G is

not finitely uniform. To see where the elliptic curve is hidden in the above presentation,
take the determinant of the 3 x 3 matrix (a;;) with entries a;; = [x;, x;+3] and you
will get the projective version of E.

Formula (23) shows that the variation type with p of the Euler factors {gp p(s)
(D cone condition data) is that of functions counting points on a QQ-defined algebraic
variety modulo primes p. But might their be further restrictions once we consider the
Euler factors £ ,(s) for A € 77

Problem 4.3. Let V be a Q-defined algebraic variety. Is there Ay € T such that
there are rational functions P (X, Y), P»(X,Y) € Q(X, Y) such that for almost all
primes p

Eav.p(s) = Pi(p, p~°) + IV(EI Pa(p, p~°) (28)

holds?

The consideration of zeta functions obtained by motivic integration (see [18])
sheds some light on this new dialogue between groups and rings and questions of
arithmetic geometry.

5. Functional equations of the local factors

There is another remarkable feature of many of the rational functions representing the
local zeta function of nilpotent groups: they satisfy a certain palindromic symmetry.
Let us explain this in the case of the normal subgroup zeta function of F; 3, the free
nilpotent group of class two on three generators. The group F> 3 is torsion-free and
has Hirsch-length 6. From [27] we know that

B 1+X3y3 +X4Y3 +X6Y5 +X7Y5+X10Y8
T U —Y)(I—XY)(1 — X2Y)(1 — X3Y5)(1 — X6¥9)
X=p,Y=p—*
(29)

holds for every prime p. Let us replace p by p~! (and p~* by p*) in this expression.

Ry a,p(9)

Indicating this replacement by p — p~!, we find:
Fy s p®pmspmt = pTRCE (). (30)

This phenomenon was found in all examples of all finitely generated nilpotent groups
of class 2 and Lie rings of nilpotency class 2 where explicit computations have been
done. We pose here the
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Problem 5.1. Let G be a nilpotent group of class 2 and Hirsch-length 4. Assume that
the quotient of G modulo its center (which is abelian) has torsion-free rank m. Show
that

< h=D) _pe .

06yt = (DT pT T T (), 31)
hth=1) _ m)s <

Gy o1 = (=D p T TS ea (5) (32)

hold for almost all primes p.

In [48] C. Voll is able to answer Problem 5.1 affirmatively for the special case
of local zeta functions counting normal subgroups of torsion-free class 2 nilpotent
groups which have a centre of Z-rank 2 by giving explicit formulas for the local
zeta functions in this case. C. Voll [49] and P. Paajanen [40], [43] and [41] have
also confirmed the functional equation for the normal subgroup zeta function in more
general settings by analysing the geometry of the Pfaffian hypersurface associated to
presentations of class 2 nilpotent groups. Note however that the functional equation
for zeta functions of nilpotent groups is not a completely general phenomenon. The
Lie ring £y introduced in Example 3 of the next section has nilpotency class 3. The
Euler factors of the ideal counting zeta function do not satisfy a functional equation,
although the Euler factors of the subring zeta function do have such a symmetry.

Problem 5.1 should be seen in connection with a result of Denef and Meuser [2]
who prove that the rational expression (in p~*) corresponding to the Igusa-type p-adic
integral

Zigo. 1).p(8) i= /Zm go(X)[}, dx (33)

satisfy a functional equation if go € Zp[x1, ..., x,] is absolutely irreducible and
defines a smooth projective hypersurface over the finite field F,,. A key role in their
proof is played by the functional equation satisfied by the algebraic geometric zeta
function for this hypersurface proved by A. Weil.

In [48] C. Voll uses the functional equation for the local zeta functions of elliptic
curves to prove that the zeta function (27) of the nilpotent group encoding an elliptic
curve in its presentation has a functional equation of the type predicted by (31).
The paper [31] of B. Klopsch and C. Voll treats interesting new counting problems
related to orthogonal and unitary groups over finite fields which arose in the study of
functional equations.

The only counterexamples to the functional equations for zeta functions of groups
and rings relate to counting normal subgroups in groups or ideals in rings. We therefore
raise the following:

Problem 5.2. Let A be in 7. Show that there are rational numbers a, b and ¢ such
that

Ex Oy ot = (D pPTP L (5) (34)

for almost all primes p.
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In his thesis [51] L. Woodward analyses a general setting in which certain cone
integrals are conjectured to have functional equations which could generalise the
result of Denef and Meuser. The cone integral data has to satisfy what Woodward
calls a homogeneity condition, namely deg(g;) = deg(f;) + 1 fori =1,...,1. The
cone integrals describing zeta functions counting all subgroups or subrings satisfy this
homogeneity condition in contrast to the normal subgroup and ideal zeta functions.
Using results of Stanley on functional equations of polyhedral cones Woodward can
prove the functional equation in the special case that all the polynomials of the cone
integral data are monomials.

6. Examples

This section contains a brief description of the information obtained so far on the zeta
functions of several series of Lie rings. We also describe the pair of finitely generated
nilpotent groups which solves the isospectrality problem negatively.

Example 1. Let (2, n) be the free nilpotent Lie ring of class twoonn € N (n > 2)
generators. This Lie ring has Z-rank h(n) = n+n(n+1)/2. Note that the Lie ring of
the Heisenberg group H3 is isomorphic to §(2, 2). An explicit formula for the Euler
factors of the ideal zeta function is given by C. Voll in [48] (see [40] for special cases).
From these

(=D — Y+ j) +1
h(n) — j

)j:L“”ﬂ%}Q—l (35)

a§(2’n) = max {n,

can be deduced. This formula shows that for n > 5, the abscissa of convergence of
the global ideal zeta function is greater than » and is usually not an integer. However,
sometimes it may just happen to be an integer. The only n in the range 5 < n < 200
for which this happens is n = 26. Furthermore the ideal growth of §(2, n) is uniform
and the Euler factors {3 ), satisfy the functional equation of Problem 5.1 (see
[50D).

Example 2. Let n be a natural number with n > 2. Define &(n) to be the Lie ring

6(”) :=<Zv X1y eoes Xn—1s Yls+ovy Yn—1 | [vai]zyi (l=],,l’l—])) (36)

Our convention again is that all commutators between the generators not mentioned
are equal to 0. Hence &(n) has nilpotency class two and Z-rank 2n — 1. D. Gren-
ham [22] has determined explicit formulas for the ideal zeta functions of &(n) for
n =2, 3,4, 5. Let us report his formula in case n = 4. Define W4(X, Y) to be the
rational function

1+X4Y3+X5Y3+X8Y5+X9Y5+X18Y8

1-Y)1-XY)(1-X2Y)1 - X3Y)(1 — X°Y3)(1 — X10Y523' )
7

Wa(X,Y) :=
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Grenham’s formula reads as

Ca ). p() = Wa(X. V)l x—p ypos (38)

From this it is immediately clear that &(4) has uniform ideal growth. Also ag( H=4
and b @ = 1 can be read off. Further analysis of the numerator in (37) shows that
the global zeta function {;5‘(4) (s) has a natural boundary at Re(s) = 9/5 (see [11]).

Using methods of algebraic geometry C. Voll [49] has developed a closed formula
for g ). p(s) which holds for every n > 2 and every prime p. This formula shows
that &(n) has uniform ideal growth for every n > 2, it also confirms the conjectures
from Section 5 concerning functional equations of the Euler factors. Also, forn > 6
the abscissa of convergence o ) is greater than n, and it is in general not an integer.
Indeed, if 6 < n < 200, the abscissa of convergence is an integer if and only if
n =2N?+ 6N + 5 for some integer N.

D. Grenham [22] has also studied the subring zeta function of &(n). We cite
from [22] the following pole orders:

60 =2 Dewy =2 bgs =3 (39)
The corresponding abscissas of convergence are

0@(3) =3, 0@(4) =4, 0@(5) = 5. 40)

Example 3. The following example of a Lie ring played an important role in the
development of the conjectures from Section 5 concerning functional equations of
the Euler factors. Define

Lw = (z, w1, w2, x1, x2, ¥ | [z, w1l = x1, [z, w2l = x2, [z, x1] =y). (4])

This Lie ring has nilpotency class 3 and Z-rank 6. It was discovered and extensively
studied by L. Woodward in [51]. The Lie ring £ has uniform subring and ideal
growth but only the local subring counting zeta function satisfies a functional equation.
We further report from [51]:

o, =3, by, =4, of, =3, b5, =1 (42)

The global zeta function §5W (s) has a natural boundary at Re(s) = 17/7 whereas
Q‘E‘W (s) has a natural boundary at Re(s) = 7/6.

Example 4. In [23] it is proved that the following two finitely generated nilpotent
groups

] 81,82,83, 84, | [81,8]1=1,[g3, 841 =1, [g1,83] =z1,
G = N B _s), (43)
21, 22 (g1, 84] = 22, [g2, 831 = 22, [82, 841 = 74
9 b 9 9 b = 1’ 9 = 1? 9 = Z 9
G2=< g1, 82, 83, 84 [g1 fz] FE gj] =, 2[gl g3l 2 > 44)
71, 22 (g1, 841 = 22, [82. 831 = 2| 25, [g2. 84l =2, 22
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have the same profinite completion but are not isomorphic. It follows that both their
zeta functions are the same. Both groups have Hirsch-length equal to 6 and are of
nilpotency class 2. These groups come as special cases of an infinite series of /-tuples
(I = 2) of examples of such groups arising from a number theoretic setting.

7. Variation

We have put the emphasis on counting subgroups or normal subgroups in nilpotent
groups and on counting subrings or ideals in rings, however our results extend in a
number of other directions.

(1) Variants of our zeta functions have been considered which count only sub-
groups with some added feature, for example characteristic subgroups or subgroups
of a finitely generated torsion-free nilpotent group G which are isomorphic to G.
Theorems 1.2 and 1.3 hold in this case and for many of these variants. In fact, there
is always a p-adic formalism like in Section 2 which reduces Theorem 1.3 to Corol-
lary 3.1 (see [27]). The paper [19] relates the zeta functions counting subgroups of G
which are isomorphic to G to zeta functions defined by A. Weil for Q-defined linear
algebraic groups.

(2) The rationality result of Theorem 1.2 also holds for finitely generated nilpotent
groups which are not necessarily torsion-free. In fact, the first author proved in [3]
that this result extends to all finitely generated soluble groups of finite rank.

(3) In [12] it is proved that all crystallographic groups or more generally all finitely
generated groups which contain an abelian subgroup of finite index have zeta functions
which have a meromorphic continuation to all of C. This is done by relating these
zeta functions to zeta functions of orders in central simple QQ-algebras.

(4) The local zeta functions of the classical groups (see [14], [13]) can be expressed
as p-adic cone integrals and our results apply to the corresponding Euler product.

(5) Let g(n, ¢, d) be the number of finite nilpotent groups of size n, of nilpotency
class bounded by ¢ and generated by at most d elements. In [7] the zeta function

Inea(s) =) g, c,dn”’ (45)

n=1

is shown to be expressible as the Euler product of p-adic cone integrals. Hence our
results apply and give asymptotic results for the partial sums of the g(n, ¢, d). The
formalism of zeta functions has been applied successfully in [7] to solve conjec-
ture P, which had appeared in connection with periodicity in trees connected with the
classification problem for finite p-groups in terms of coclass.

(6) Thinking of Hilbert’s basis theorem we might expect a connection between the
ideal counting zeta function of a ring R and that of the polynomial ring R[x] over R.
This expectation is confirmed by a beautiful formula of D. Segal [45] which holds for
Dedekind rings R.
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(7) The formalism of zeta functions has been used to count representations of

arithmetic and p-adic analytic groups in the papers [37] of B. Martin and A. Lubotzky,
[30] of A. Jaikin-Zapirain and [33] of M. Larsen and A. Lubotzky.
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On differential graded categories

Bernhard Keller

Abstract. Differential graded categories enhance our understanding of triangulated categories
appearing in algebra and geometry. In this survey, we review their foundations and report on
recent work by Drinfeld, Dugger—Shipley, Toén, Toén—Vaquié, and others.
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Keywords. Homological algebra, derived category, homotopy category, derived functor, Hoch-
schild cohomology, K -theory, Morita theory, non-commutative algebraic geometry.

1. Introduction

1.1. Triangulated categories and dg categories. Derived categories were invented
by Grothendieck—Verdier in the early sixties in order to formulate Grothendieck’s
duality theory for schemes, cf. [69]. Today, they have become an important tool
in many branches of algebraic geometry, in algebraic analysis, non-commutative
algebraic geometry, representation theory, mathematical physics.... In an attempt
to axiomatize the properties of derived categories, Grothendieck—Verdier introduced
the notion of a triangulated category. For a long time, triangulated categories were
considered too poor to allow the development of more than a rudimentary theory.
This vision has changed in recent years [112], [113], but the fact remains that many
important constructions of derived categories cannot be performed with triangulated
categories. Notably, tensor products and functor categories formed from triangulated
categories are no longer triangulated. One approach to overcome these problems has
been the theory of derivators initiated by Heller [63] and Grothendieck [59], cf. also
[75], at the beginning of the nineties. Another, perhaps less formidable one is the
theory of differential graded categories (=dg categories), together with its cousin,
the theory of Aoo-categories.

Dg categories already appear in [86]. In the seventies, they found applications
[130], [35] in the representation theory of finite-dimensional algebras. The idea to
use dg categories to ‘enhance’ triangulated categories goes back at least to Bondal—
Kapranov [21], who were motivated by the study of exceptional collections of coherent
sheaves on projective varieties.

The synthesis of Koszul duality [11], [12] with Morita theory for derived categories
[124] was the aim of the study of the unbounded derived category of a dg category
in [76].
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It is now well-established that invariants like K -theory, Hochschild (co-)homolo-
gy and cyclic homology associated with a ring or a variety ‘only depend’ on its
derived category. However, in most cases, the derived category (even with its trian-
gulated structure) is not enough to compute the invariant, and the datum of a triangle
equivalence between derived categories is not enough to construct an isomorphism be-
tween invariants (cf. Dugger—Shipley’s [38] results results in Section 3.9). Differential
graded categories provide the necessary structure to fill this gap. This idea was applied
to K -theory by Thomason—Trobaugh [152] and to cyclic homology in [78], [80].

The most useful operation which can be performed on triangulated categories is
the passage to a Verdier quotient. It was therefore important to lift this operation
to the world of differential graded categories. This was done implicitly in [80] but
explicitly, by Drinfeld, in [34].

In a certain sense, differential graded categories and differential graded functors
contain too much information and the main problem in working with them consists
in ‘discarding what is irrelevant’. It now appears clearly that the best tool for doing
this are Quillen model categories [121]: They provide a homotopy theoretic frame-
work which allows simple, yet precise statements and rigorous but readable proofs.
Building on the techniques of [34], a suitable model structure on the category of small
differential graded categories was constructed in [146]. Starting from this structure,
Toén has given a new approach to Morita theory for dg categories [155]. In their joint
work [156], Toén and Vaquié have applied this to the construction of moduli stacks
of objects in dg categories, and notably in categories of perfect complexes arising in
geometry and representation theory.

Thanks to [155], [87] and to recent work by Tamarkin [148], we are perhaps getting
closer to answering Drinfeld’s question [34]: What do DG categories form?

1.2. Contents. After introducing notations and basic definitions in Section 2 we
review the derived category of a dg category in Section 3. This is the first opportunity
to practice the language of model categories. We present the structure theorems for
algebraic triangulated categories which are compactly generated or, more generally,
well-generated. We conclude with a survey of recent important work by Dugger
and Shipley on topological Morita equivalence for dg categories. In Section 4, we
present the homotopy categories of dg categories and of ‘triangulated’ dg categories
following Toén’s work [155]. The most important points are the description of the
mapping spaces of the homotopy category via quasi-functors (Theorem 4.3), the
closed monoidal structure (Theorem 4.5) and the characterization of dg categories
of finite type (Theorem 4.12). We conclude with a summary of the applications to
moduli problems. In the final Section 5, we present the most important invariance
results for K -theory, Hochschild (co-)homology and cyclic homology. The derived
Hall algebra presented in Section 5.6 is a new invariant due to Toén [153]. Its further
development might lead to significant applications in representation theory.

Acknowledgments. I thank Bertrand Toén, Henning Krause, Brooke Shipley and
Gongalo Tabuada for helpful comments on previous versions of this article.
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2. Definitions

2.1. Notations. Let k be a commutative ring, for example a field or the ring of
integers Z. We will write ® for the tensor product over k. Recall that a k-algebra
is a k-module A endowed with a k-linear associative multiplication A ®; A — A
admitting a two-sided unit 1 € A. For example, a Z-algebra is just a (possibly non-
commutative) ring. A k-category 4 is a ‘k-algebra with several objects’ in the sense
of Mitchell [106]. Thus, it is the datum of a class of objects obj(A), of a k-module
A (X, Y) for all objects X, Y of +, and of k-linear associative composition maps

AY, Z) @ AX,Y) > AX,Z), (f,8)— fg

admitting units 1y € A(X, X). For example, we can view k-algebras as k-categories
with one object. The category Mod A of right A-modules over a k-algebra A is
an example of a k-category with many objects. It is also an example of a k-linear
category, i.e. a k-category which admits all finite direct sums.

A graded k-module is a k-module V together with a decomposition indexed by
the positive and the negative integers:

V:@VP.

PEL

The shifted module V[1]is defined by V[1]? = VPT! p € Z. A morphism f: V —
V' of graded k-modules of degree n is a k-linear morphism such that f(V?) Cc VPt
for all p € Z. The tensor product V. ® W of two graded k-modules V and W is the
graded k-module with components

Vew) =P views neiz.
ptq=n

The tensor product f ® g of twomaps f: V — V' and g: W — W’ of graded
k-modules is defined using the Koszul sign rule: We have

(f®ew) = (=D f()®gw)

if g is of degree p and v belongs to V9. A graded k-algebra is a graded k-module A
endowed with a multiplication morphism A ® A — A which is graded of degree 0,
associative and admits a unit 1 € A®. We identify ‘ordinary’ k-algebras with graded
k-algebras concentrated in degree 0. We write §(k) for the category of graded k-
modules.

A differential graded (= dg) k-module is a Z-graded k-module V endowed with a
differential dy,i.e. amapdy : V — V of degree 1 such that d‘z, = 0. Equivalently, V
is a complex of k-modules. The shifted dg module V[1] is the shifted graded module
endowed with the differential —dy. The tensor product of two dg k-modules is the
graded module V ® W endowed with the differential dy ® 1y + 1y ® dw .
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2.2. Differential graded categories. A differential graded or dg category is a k-cat-
egory +4 whose morphism spaces are dg k-modules and whose compositions

AY,Z)® AX,Y) = AKX, Z)

are morphisms of dg k-modules.
For example, dg categories with one object may be identified with dg algebras,
i.e. graded k-algebras endowed with a differential d such that the Leibniz rule holds:

d(fg) =d(f)g+(=DPfd(g)

forall f € A? and all g. In particular, each ordinary k-algebra yields a dg category
with one object. A typical example with several objects is obtained as follows: Let B
be a k-algebra and C(B) the category of complexes of right B-modules

dy
"*)Mp*)Mp'H*)"'

, DEZ.

For two complexes L, M and an integer n € Z, we define Flom(L, M)" to be the
k-module formed by the morphisms f: L — M of graded objects of degree n, i.e.
the families f = (f”) of morphisms f?: L? — MP*" p € 7, of B-modules. We
define #Hom (L, M) to be the graded k-module with components FHom (L, M)" and
whose differential is the commutator

d(fy=duo f—(=1)"fodL.

The dg category C4g(B) has as objects all complexes and its morphisms are defined
by
Cyag(B)(L, M) = FHom (L, M).

The composition is the composition of graded maps.
Let 4 be a dg category. The opposite dg category A°P has the same objects as 4
and its morphisms are defined by

APX,Y) = A, X);

the composition of f € A°P(Y, X)? with g € A°P(Z, Y)? is given by (—1)P4gf.
The category Z°(A) has the same objects as + and its morphisms are defined by

(Z°A)(X,Y) = Z°(A(X, Y)),

where ZY is the kernel of d: A(X, Y)? — A(X, Y)!. The category H°(+4) has the
same objects as + and its morphisms are defined by

(HY(A)(X,Y) = HO(AX, Y)),

where H? denotes the Oth homology of the complex #4(X, Y). For example, if B is
a k-algebra, we have an isomorphism of categories

Z%(Cyg(B)) = C(B)
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and an isomorphism of categories
H(C4g(B)) = #(B),

where J#(B) denotes the category of complexes up to homotopy, i.e. the category
whose objects are the complexes and whose morphisms are the morphisms of com-
plexes modulo the morphisms f homotopic to zero, i.e. such that f = d(g) for some
g € Hom(L, M)~'. The homology category H* () is the graded category with the
same objects as 4 and morphisms spaces H*A(X, Y).

2.3. The category of dg categories. Let 4 and A’ be dg categories. A dg functor
F: A — A is given by a map F: obj(4) — obj(+A’) and by morphisms of dg
k-modules

F(X,Y): AX,Y) > A(FX, FY), X,Y € obj(+4),

compatible with the composition and the units. The category of small dg categories
dgcat, has the small dg categories as objects and the dg functors as morphisms. Note
that it has an initial object, the empty dg category ¢, and a final object, the dg category
with one object whose endomorphism ring is the zero ring. The tensor product A Q B
of two dg categories has the class of objects obj(+) x obj(8B) and the morphism spaces

(ARQB)((X,Y), X, Y)=AX,X)QB(Y,Y)

with the natural compositions and units.
Fortwo dg functors F, G : A — B, the complex of graded morphisms Hom (F, G)
has as its nth component the module formed by the families of morphisms

bx € B(FX, GX)"

such that (Gf)(¢x) = (¢y)(Ff) forall f € A(X,Y), X,Y € 4. The differential
is induced by that of B(F X, GX). The set of morphisms F — G is by definition in
bijection with Z° Hom (F, G).

Endowed with the tensor product, the category dgcat; becomes a symmetric tensor
category which admits an internal Hom-functor, i.e.

Hom (A ® 8B, €) = Hom(A, Hom (B, C)),

for A, 8, C € dgcat,, where Hom (B, C) has the dg functors as objects and the
morphism space Hom (F, G) for two dg functors F and G. The unit object is the dg
category associated with the k-algebra k.

A quasi-equivalence is a dg functor F: A — A’ such that

1) F(X,Y) is a quasi-isomorphism for all objects X, Y of +, and
2) the induced functor H(F): HO(A) — HO(A') is an equivalence.

Note that neither the tensor product nor the internal Hom-functor respect the quasi-
equivalences, a source of technical difficulties.
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3. The derived category of a dg category

3.1. Dg modules. Let 4 be a small dg category. A left dg A-module is a dg functor
L: A — Cyg(k)
and a right dg A-module a dg functor
M: AP — Cyq(k).

Equivalently, a right dg A-module M is given by complexes M (X) of k-modules, for
each X € obj(sA), and by morphisms of complexes

MY)® AX,Y) > M(X)

compatible with compositions and units. The homology H*(M) of a dg module M is
the induced functor

H*(A) — §(K), X — H*(M(X))

with values in the category 4 (k) of graded k-modules (¢f. 2.1). For each object X
of 4, we have the right module represented by X

XN = A2, X).

The category of dg modules C (+4) has as objects the dg A-modules and as morphisms
L — M the morphisms of dg functors (cf. 2.3). Note that C(+4) is an abelian category
and that a morphism L — M is an epimorphism (respectively a monomorphism) iff
it induces surjections (respectively injections) in each component of L(X) — M (X)
for each object X of A. A morphism f: L — M is a quasi-isomorphism if it induces
an isomorphism in homology.

We have C(A) = ZO(@dg(A)), where, in the notations of 2.3, the dg category
Cgg () is defined by

Cug(A) = Hom (AP, Cyg(k)).

We write Hom(L, M) for the complex of morphisms from L to M in Cge(+A). For
each X € «4A, we have a natural isomorphism

Hom(X", M) = M(X). (1)
The category up to homotopy of dg A-modules is
H(A) = H'(Cag(A)).
The isomorphism (1) yields isomorphisms
H(A)X", M[n]) — H"(Hom(X", M)) — H"M(X), 2

where n € Z and M[n] is the shifted dg module Y +— M (Y)[n].
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If A is the dg category with one object associated with a k-algebra B, then a
dg A-module is the same as a complex of B-modules. More precisely, we have
C(A) = C(B), Cqg(A) = Cyg(B) and FH(A) = F(B). In this case, if X is the
unique object of #, the dg module X” is the complex formed by the free right B-
module of rank one concentrated in degree 0.

3.2. The derived category, resolutions. The derived category D (+4) is the local-
ization of the category C(-4) with respect to the class of quasi-isomorphisms. Thus,
its objects are the dg modules and its morphisms are obtained from morphisms of dg
modules by formally inverting [53] all quasi-isomorphisms. The projection functor
C(A) — D(A) induces a functor #H(A) — D(+A) and the derived category could
equivalently be defined as the localization of () with respect to the class of all
quasi-isomorphisms. Note that from this definition, it is not clear that the morphism
classes of D (A) are sets or that D(A) is an additive category.

Call a dg module P cofibrant if, for every surjective quasi-isomorphism L — M,
every morphism P — M factors through L. For example, for an object X of A,
the dg module X” is cofibrant. Call a dg module I fibrant if, for every injective
quasi-isomorphism L — M, every morphism L — [ extends to M. For example,
if E is an injective cogenerator of the category of k-modules and X an object of A,
the dg module FHom (A(X, ?), E) is fibrant.

Proposition 3.1. a) For each dg module M, there is a quasi-isomorphism pM — M
with cofibrant pM and a quasi-isomorphism M — iM with fibrant iM.

b) The projection functor FH(A) — D (A) admits a fully faithful left adjoint given
by M +— pM and a fully faithful right adjoint given by M + iM.

One can construct pM and iM explicitly, as first done in [5] (¢f. also [76]). We call
pM — M a cofibrant resolution and M — iM a fibrant resolution of M. According
to b), these resolutions are functorial in the category up to homotopy #€(+4) and we
can compute morphisms in D (A) via

H(A)PL, M) = D(A)(L, M) = H(A)(L,iM).
In particular, for an object X of 4 and a dg module M, the isomorphisms (2) yield
D(A) (X", MIn]) — H(A)X", M[n]) — H"M(X) 3)

since X" is cofibrant. The embedding D (4A) — F(+A) provided by p also shows
that the derived category is additive.

If 4 is associated with a k-algebra B and M is a right B-module considered as a
complex concentrated in degree 0, then pM — M is a projective resolution of M and
M — iM an injective resolution. The proposition is best understood in the language
of Quillen model categories [121]. We refer to [45] for a highly readable introduction
and to [66], [65] for in-depth treatments. The proposition results from the following
theorem, proved using the techniques of [66, 2.3].
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Theorem 3.2. The category C(A) admits two structures of Quillen model category
whose weak equivalences are the quasi-isomorphisms:

1) The projective structure, whose fibrations are the epimorphisms. For this struc-
ture, each object is fibrant and an object is cofibrant iff it is a cofibrant dg
module.

2) The injective structure, whose cofibrations are the monomorphisms. For this
structure, each object is cofibrant and an object is fibrant iff it is a fibrant dg
module.

For both structures, two morphisms are homotopic iff they become equal in the cate-
gory up to homotopy F(A).

3.3. Exact categories, Frobenius categories. Recall that an exact category in the
sense of Quillen [120] is an additive category & endowed with a distinguished class
of sequences

0 A—>p-">cC 0.
where i is akernel of p and p a cokernel of i. We will state the axioms these sequences
have to satisfy using the terminology of [52]: The morphisms p are called deflations,
the morphisms i inflations and the pairs (i, p) conflations. The axioms are:

Ex0 The identity morphism of the zero object is a deflation.
Ex1 The composition of two deflations is a deflation.

Ex2 Deflations are stable under base change.

Ex2’ Inflations are stable under cobase change.

As shown in [74], these axioms are equivalent to Quillen’s and they imply that if &
is small, then there is a fully faithful functor from & into an abelian category & whose
image is an additive subcategory closed under extensions and such that a sequence
of & is a conflation iff its image is a short exact sequence of &’. Conversely, one easily
checks that an extension closed full additive subcategory & of an abelian category &’
endowed with all conflations which become exact sequences in &’ is always exact. The
fundamental notions and constructions of homological algebra, and in particular the
construction of the derived category, naturally extend from abelian to exact categories,
¢f- [107] and [77].

A Frobenius category is an exact category & which has enough injectives and
enough projectives and where the class of projectives coincides with the class of
injectives. In this case, the stable category & obtained by dividing & by the ideal
of morphisms factoring through a projective-injective carries a canonical structure of
triangulated category, cf. [62], [60], [85], [57]. We write f for the image in & of a
morphism f of &. The suspension functor S of € is obtained by choosing a conflation

0—A—IA—SA—0
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for each object A. Each triangle is isomorphic to a standard triangle (7, p, e) obtained
by embedding a conflation (i, p) into a commutative diagram

I

SA 0.
3.4. Triangulated structure. Let A be a small dg category. Define a sequence

i p

Z

1

0 0

0

0—=L—>M-—L~N—s0

of C(A) to be a conflation if there is a morphism r € FHom (M, L)Y such thatri = 17,
or, equivalently, a morphism s € Hom (N, M) such that ps = 1y.

Lemma 3.3. a) Endowed with these conflations, C(A) becomes a Frobenius category.
The resulting stable category is canonically isomorphic to H(A). The suspension
functor is induced by the shift M — M[1].

b) Endowed with the suspension induced by that of #(A) and the triangles iso-
morphic to images of triangles of FH(A) the derived category D(A) becomes a
triangulated category. Each short exact sequence of complexes yields a canonical
triangle.

3.5. Compact objects, Brown representability. Let 7 be a triangulated category
admitting arbitrary coproducts. Since the adjoint of a triangle functor is a triangle
functor [85], the coproduct of triangles is then automatically a triangle. Moreover, 7
is idempotent complete [18], i.e. each idempotent endomorphism of an object of T
is the composition of a section with a retraction. An object C of T is compact if
the functor 7 (C, ?) commutes with arbitrary coproducts, i.e. for each family (X;) of
objects of 77, the canonical morphism

[[7c.x—7(c.[[x)

is invertible. The triangulated category T is compactly generated if there is a set §
of compact objects G such that an object X of 7 vanishes iff we have 7 (G, X) =0
foreach G € §.

Theorem 3.4 (Characterization of compact objects [152], [108]). An object of T is
compact iff it is a direct factor of an iterated extension of copies of objects of 4 shifted
in both directions.

Theorem 3.5 (Brown representability [25], [1], [109]). If T is compactly generated,
a cohomological functor F: T°P — Mod Z is representable iff it takes coproducts
of T to products of Mod Z.
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A set of objects § symmetrically generates T [95] if we have
1) an object X of T vanishes iff 7 (G, X) = 0 foreach G € §, and

2) there is a set of objects §’ such that a morphism f: X — Y of 7 induces
surjections (G, X) — T (G,Y) for all G € § iff it induces injections
TY,G)— T(X,G)forall G’ € §'.

If § compactly generates 7, then we can take for §’ the set of objects G’ defined by
7(?,G)=Homy(T(G,7,E), Ge§

where E is an injective cogenerator of the category of k-modules. Thus, in this case, §
also symmetrically generates 7.

Theorem 3.6 (Brown representability for the dual [111], [95]). If T is symmetrically
generated, a homological functor F: T — Mod Z is corepresentable iff it commutes
with products.

Let 4 be a small dg category. The derived category O () admits arbitrary coprod-
ucts and these are induced by coproducts of modules. Thanks to the isomorphisms

D(A)X"[n], M) — H"M(X) 4

obtained from (3), each dg module X" [n], where X is an object of 4 and n an integer,
is compact. The isomorphism (4) also shows that a dg module M vanishes in D (A) iff
each morphism X”[n] — M vanishes. Thus the set § formed by the X"[n], X € A,
n € Z, is a set of compact generators for D (+). The triangulated category tria(A)
associated with # is the closure in D(4) of the set of representable functors X”,
X € A, under shifts in both directions and extensions. The category of perfect objects
per(+4) the closure of tria(+4) under passage to direct factors in £ (+4). The above
theorems yield the

Corollary 3.7. An object of D(A) is compact iff it lies in per(A). A cohomological
Junctor D(A)°P? — Mod k is representable iff it takes coproducts of D (A) to products
of Mod k. A homological functor D(A) — Mod k is corepresentable iff it commutes
with products.

3.6. Algebraic triangulated categories. Let 7 be a k-linear triangulated category.
We say that 7 is algebraic if it is triangle equivalent to & for some k-linear Frobenius
category 7. It is easy to see that each subcategory of an algebraic triangulated cat-
egory is algebraic. We will see below that each Verdier localization of an algebraic
triangulated category is algebraic (if we neglect a set-theoretic problem). Moreover,
categories of complexes up to homotopy are algebraic, by 3.4. Therefore, ‘all’ trian-
gulated categories occurring in algebra and geometry are algebraic. Non algebraic
triangulated categories appear naturally in topology (cf. also Section 3.9): For in-
stance, in the homotopy category of 2-local spectra, the identity morphism of the
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cone over twice the identity of the sphere spectrum is of order four, but in each alge-
braic triangulated category, the identity of the cone on twice the identity of an object is
of order two at most. A general method to prove that a triangulated category obtained
from a suitable stable Quillen model category is not algebraic is to show that its [123]
Hom-functor enriched in spectra does not factor through the canonical functor from
the derived category of abelian groups to the homotopy category of spectra.

We wish to show that ‘all’ algebraic triangulated categories can be described by
dg categories. Let 7 be a triangulated category and § a full subcategory. We make §
into a graded category G, by defining

9¢r(G.G") =P T(G.S"G").

nez

We obtain a natural functor F from 7 to the category of graded G ¢r-modules by
sending an object Y of T to the §¢,-module

X @T(X, S"Y)

nez

Theorem 3.8 ([76]). Suppose that T is algebraic. Then there is a dg category A
such that H*(A) is isomorphic to ¢, and a triangle functor

F:T — DA

such that the composition H* o F is isomorphic to F. Moreover,

a) F induces an equivalence from T to tria(A) iff T coincides with its smallest
full triangulated subcategory containing G,

b) F induces an equivalence from T to per(A) iff T is idempotent complete
(cf. Section 3.5) and equals the closure of § under shifts in both directions,
extensions and passage to direct factors;

c) F is an equivalence T —> D(A) iff T admits arbitrary coproducts and the
objects of § form a set of compact generators for T .

Examples arise from commutative and non-commutative geometry: A. Bondal
and M. Van den Bergh show in [19] that if X is a quasi-compact quasi-separated
scheme, then the (unbounded) derived category 7 = Dy (X) of complexes of Q-
modules with quasi-coherent homology admits a single compact generator G and that
moreover, Hom(G, G[n]) vanishes except for finitely many n. Thus 7 is equivalent
to the derived category of a dg category with one object whose endomorphism ring
has bounded homology.

R. Rouquier shows in [131] (cf. also [96]) that if X is a quasi-projective scheme
over a perfect field &, then the derived category of coherent sheaves over X admits a
generator as a triangulated category (as in part b) and, surprisingly, that it is even of
‘finite dimension’ as a triangulated category: each object occurs as a direct factor of
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an object which admits a ‘resolution’ of bounded length by finite sums of shifts of the
generator. Thus, the bounded derived category of coherent sheaves is equivalent to
per(+) for a dg category with one object whose endomorphism ring satisfies a strong
regularity condition.

In [17], J. Block describes the bounded derived category of complexes of sheaves
with coherent homology on a complex manifold X as the category H(s4) associated
with a dg category constructed from the Dolbeault dg algebra (A% *(X), ). This can
be seen as an instance of a), where, for §, we can take for example the category of
coherent sheaves (i.e. complexes concentrated in degree 0). Note however that the
term ‘perfect derived category’ is used with a different meaning in [17].

In the independently obtained [40], W. Dwyer and J. Greenlees give elegant de-
scriptions via dg endomorphism rings of categories of complete, respectively torsion,
modules. Their results are applied in a unifying study of duality phenomena in algebra
and topology in [41].

One of the original motivations for the theorem was D. Happel’s description [60],
[61] of the bounded derived category of a finite-dimensional associative algebra of
finite global dimension as the stable category of a certain Frobenius category. This in
turn was inspired by Bernstein—Gelfand—Gelfand’s [16] and Beilinson’s [9] descrip-
tions of the derived category of coherent sheaves on projective space.

A vast generalization of the theorem to non-additive contexts [137] is due to
S. Schwede and B. Shipley [139], c¢f. also Section 3.9 below.

3.7. Well-generated algebraic triangulated categories. A triangulated category 7
is well-generated [112], [94] if it admits arbitrary coproducts and a good set of gen-
erators §, i.e. § is stable under shifts in both directions and satisfies

1) an object X of 7 vanishes iff 7 (G, X) = O for each G € §,

2) there is a cardinal « such that each G € § is «-compact, i.e. for each family of
objects X;,i € I, of 7, each morphism

X - Px

factors through a subsum €, _ ; X; for some subset J of I of cardinality strictly
smaller than «,

3) for each family of morphisms f;: X; — Y;, i € I, of & which induces
surjections
(G, X)) > T(G,Y))

forall G € g and alli € I, the sum of the f; induces surjections

7G.Px)—> TGPV

forall G € §.
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Clearly each compactly generated triangulated category is well-generated. A. Nee-
man proves in [112] that the Brown representability theorem holds for well-generated
triangulated categories. This is one of the main reasons for studying them. Another
important result of [112] is that if T is well-generated and § — 7 is a localization
(i.e. afully faithful triangle functor admitting a left adjoint whose kernel is generated
by a set of objects) then 4 is well-generated. Thus each localization of a compactly
generated triangulated category is well-generated and in particular, so is each local-
ization of the derived category of a small dg category.

Here is another class of examples: Let 8 be a Grothendieck abelian category, e.g.
the category of modules on a ringed space. Then, by the Popescu—Gabriel theorem
[118], [101], B is the localization of the category of Mod A of A-modules over some
ring A. One can deduce from this that the unbounded derived category of the abelian
category B (cf. [51], [151], [71]) is a localization of £ (A) and thus is well-generated.

Theorem 3.9 ([119]). Let T be an algebraic triangulated category. Then T is well-
generated iff it is a localization of D (A) for some small dg category A. Moreover,
if T is well-generated and U C T a full small subcategory such that, foreach X € T,
we have

X=0&TWU,S"X)=0 foralln € Zand U € U,
then there is an associated localization T — D (A) for some small dg category A
with H*(A) = Uy,

3.8. Morita equivalence. Let 4 and 8B be small dg categories. Let X be an A-B-
bimodule, i.e. a dg AP ® B-module X. Thus X is given by complexes X (B, A), for
all A in 4 and B in B, and morphisms of complexes

B(A,AHY® X(B,A) ® A(B’, B) > X(B', A).
For each dg 8-module M, we obtain a dg A-module
GM = Hom(X,M): A+ FHom(X(?, A), M).

The functor G : C(B) — C(A)admitsaleftadjoint F': L — LQ® 4 X. These functors
do not respect quasi-isomorphisms in general, but they form a Quillen adjunction
(¢f. Section 3.9) and their derived functors

LF: L+ F(pL) and RG: M +— G(@{iM)
form an adjoint pair of functors between D (4) and D (B).

Lemma 3.10 ([76]). The functor LF: D(A) — D(B) is an equivalence if and
only if
a) the dg B-module X (?, A) is perfect for all A in A,
b) the morphism
A(A, A — Hom (X (2, A), X(?, A"))

is a quasi-isomorphism for all A, A" in A, and



164 Bernhard Keller

c) the dg B-modules X (1, A), A € A, form a set of (compact) generators for
D(B).

For example, if E£: A — B is adg functor, then X (B, A) = B(B, E(A)) defines
a dg bimodule so that the above functor G is the restriction along E. Then the lemma
shows that RG is an equivalence iff E is a quasi-equivalence. We loosely refer to the
functor L F associated with a dg 4-$B-bimodule as a tensor functor.

Theorem 3.11 ([76]). The following are equivalent:

1) There is an equivalence D(A) — D(B) given by a composition of tensor
functors and their inverses.

2) There is a dg subcategory G of C(B) formed by cofibrant dg modules such that
the objects of § form a set of compact generators for D (B) and there is a chain
of quasi-equivalences

A—A - G0 >g
linking A to §.

We say that 4 and 8B are dg Morita equivalent if the conditions of the theorem are
satisfied. In this case, there is of course a triangle equivalence D (A) — D(B). In
general, the existence of such a triangle equivalence is not sufficient for 4 and 8B to be
dg Morita equivalent, cf. Section 3.9. The following theorem is therefore remarkable:

Theorem 3.12 (Rickard [124]). Suppose that A and B have their homology concen-
trated in degree 0. Then the following are equivalent:

1) A and 8B are dg Morita equivalent.
2) There is a triangle equivalence D(A) — D(B).

3) There is a full subcategory T of D(B) such that

a) the objects of T form a set of compact generators of D(B),
b) we have D(B)(T, T'[n]) =0foralln #0and all T, T' of T,

c) there is an equivalence HO(,A) = 7.

We refer to [76] or [36] for this form of the theorem. A subcategory I~ satisfying a)
and b) in 3) is called a tilting subcategory, a concept which generalizes that of a tilting
module. We refer to [122], [3] for the theory of tilting, from which this theorem
arose and which provides huge classes of examples from the representation theory
of finite-dimensional algebras and finite groups as well as from algebraic geometry,
cf. also the appendix to [113] and [88], [125], [132].
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3.9. Topological Morita equivalence. In recent years, Morita theory has been
vastly generalized from algebraic triangulated categories to stable model categories in
work due to S. Schwede and B. Shipley. This is based on the category of symmetric
spectra as constructed in [67] (c¢f. [46] for a different construction of a symmetric
monoidal model category for the category of spectra). We refer to [136] for an
excellent exposition of these far-reaching results and their surprising applications
in homotopy theory. In work by D. Dugger and B. Shipley [38], c¢f. also [37],
[39], this ‘topological Morita theory’ has been applied to dg categories. We
briefly describe their results and refer to [141] for a highly readable, more detailed
survey.

The main idea is to replace the monoidal base category, the derived category of
abelian groups £ (Z), by a more fundamental category: the ‘derived category of the
category of sets’, i.e. the homotopy category of spectra. To preserve higher homo-
topical information, one must not, of course, work at the level of derived categories
but has to introduce model categories. So instead of considering £ (Z), one considers
its model category C(Z) of complexes of abelian groups and replaces it by a con-
venient model of the category of spectra: the category of symmetric spectra, which
one might imagine as ‘complexes of abelian groups up to homotopy’. We refer to
[67] or [136] for the precise definition. As shown in [67], symmetric spectra form
a symmetric monoidal category which carries a compatible Quillen model structure
and whose homotopy category is equivalent to the homotopy category of spectra of
Bousfield and Friedlander [24]. The tensor product is the smash product A and the
unit object is the sphere spectrum S. The unit object is cofibrant and the smash product
induces a monoidal structure on the homotopy category of symmetric spectra. The
Eilenberg—MacLane functor H is a lax monoidal functor from the category of com-
plexes C (k) to the category of symmetric spectra such that the homology groups of
a complex C become isomorphic to the homotopy groups of HC. Since H is lax
monoidal, if A is a dg Z-algebra, then H A is naturally an algebra in the category
of symmetric spectra and if M is an A-module, then H M becomes an H A-module.
More generally, if #4 is a dg category over Z, then H A becomes a spectral category,
i.e. a category enriched in symmetric spectra, cf. [138], [140]. Each +A-module M
then gives rise to a spectral module HM over HA. The spectral modules over a
spectral category form a Quillen model category [140].

Recall that if £ and M are Quillen model categories, a Quillen adjunction is given
by a pair of adjoint functors L: £ — M and R: M — L such that L preserves cofi-
brations and R fibrations. Such a pair induces an adjoint pair between the homotopy
categories of £ and M. If the induced functors are equivalences, then (L, R) is a
Quillen equivalence. The model categories £ and M are Quillen equivalent if they
are linked by a chain of Quillen equivalences.

It was shown by A. Robinson [129], cf. also [139], that for an ordinary ring R, the
unbounded derived category of R-modules is equivalent to the homotopy category of
spectral modules over H R. This result is generalized and refined as follows:
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Theorem 3.13 (Shipley [140]). If A is a dg category over Z, the model categories of
dg A-modules and of spectral modules over H A are Quillen equivalent.

This allows us to define two small dg categories 4 and B to be topologically
Morita equivalent if their categories of spectral modules are Quillen equivalent.

Proposition 3.14 ([38]). Let A and B be two dg rings. Then statement a) implies b)
and b) implies c):

a) A and B are dg Morita equivalent.
b) A and B are topologically Morita equivalent.
c) D(A) is triangle equivalent to D (B).

Itis remarkable that in general, these implications are strict. Examples which show
this were obtained in recent joint work by D. Dugger and B. Shipley [38], ¢f: also [141].
To show that c¢) does not imply b), they invoke Schlichting’s example [135]: Let p
be an odd prime. The module categories over A’ = Z/p* and B’ = (Z/p)[e]/e>
are Frobenius categories. Their stable categories are triangle equivalent (both are
equivalent to the category of Z/ p-vector spaces with the identical suspension and the
split triangles) but the K-theories associated with the stable module categories are
not isomorphic. Since K -theory is preserved under topological Morita equivalence
(cf. Section 5.2 below), the dg algebras A and B associated (cf. Section 3.6) with the
canonical generators (corresponding to the one-dimensional vector space over Z/p)
of the stable categories of A’ and B’ cannot be topologically Morita equivalent.

To show that b) does not imply a), Dugger and Shipley consider two dg algebras A
and B with homology isomorphic to Z/2 & 7Z/2[2]. The isomorphism classes of
such algebras in the homotopy category of dg Z-algebras are parametrized by the
Hochschild cohomology group H Hg (]2, 7/2). Their isomorphism classes in the
homotopy category of S-algebras are parametrized by the topological Hochschild
cohomology group 7T H Hg (Z/2,7/2) as shown in [97]. The computation of the
Hochschild cohomology group H Hz (Z]2,7/2) is elementary and, thanks to Fran-
jou—Lannes—Schwartz’ work [50], the topological Hochschild cohomology algebra

THHZ(Z/2,7./2)

is known. Dugger—Shipley then conclude by exhibiting a non-trivial element in the
kernel of the canonical map

®: HH;(Z/2,7./2) — THHE(Z/2,Z/2).

The explicit description of the two algebras is given in [140], [36], [38]. The appear-
ance of torsion in these examples is unavoidable: for dg algebras over the rationals,
statements a) and b) above are equivalent [38].
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4. The homotopy category of small dg categories

4.1. Introduction. Invariants like K-theory, Hochschild homology, cyclic homol-
ogy... naturally extend from k-algebras to dg categories (cf. Section 5). In analogy
with the case of ordinary k-algebras, these extended invariants are preserved under
dg Morita equivalence. However, unlike the module category over a k-algebra, the
derived category of a dg category, even with its triangulated structure, does not contain
enough information to compute the invariant (cf. the examples in Section 3.9). Our
aim in this section is to present a category obtained from that of small dg categories
by ‘inverting the dg Morita equivalences’. It could be called the ‘homotopy category
of enhanced (idempotent complete) triangulated categories’ [20] or the ‘Morita ho-
motopy category of small dg categories’ Hmo, as in [145]. Invariants like K -theory
and cyclic homology factor through the Morita homotopy category.

The Morita homotopy category very much resembles the category of small, idem-
potent complete, triangulated categories. In particular, it admits ‘dg quotients’ [34],
which correspond to Verdier localizations. Like these, they are characterized by a
universal property. The great advantages of the Morita homotopy category over that
of small triangulated categories are that moreover, it admits all (homotopy) limits and
colimits (like any homotopy category of a Quillen model category) and is monoidal
and closed.

The Morita homotopy category Hmo is a full subcategory of the localization Hge
of the category of small dg categories with respect to the quasi-equivalences. The first
step is therefore to analyze the larger category Hge. Its morphism spaces are revealed
by Toén’s theorem 4.3 below.

4.2. Inverting quasi-equivalences. Let k be a commutative ring and dgcat; the
category of small dg k-categories as in Section 2.2. An analogue of the following
theorem for simplicial categories is proved in [15].

Theorem 4.1 ([146]). The category dgcat;, admits a structure of cofibrantly gener-
ated model category whose weak equivalences are the quasi-equivalences and whose
fibrations are the dg functors F: A — B which induce componentwise surjections
AX,Y) > B(FX,FY) for all X,Y in A and such that, for each isomorphism
v: F(X) > Z ofHO(JB), there is an isomorphism u ofHO(A) with F(u) = v.

This shows in particular that the localization Hqe of dgcat, with respect to the
quasi-equivalences has small Hom-sets and that we can compute morphisms from 4
to B in the localization as morphisms modulo homotopy from a cofibrant replacement
Acof of A to B (note that all small dg categories are fibrant). In general, the cofibrant
replacement +Acof is not easy to compute with but if A(X, Y) is cofibrant in C(k)
and the unit morphisms k& — (X, X) admit retractions in C (k) for all objects X,
Y of A, for example if £ is a field, then for +4.qf, we can take the category with the
same objects as 4 and whose morphism spaces are given by the ‘reduced cobar-bar
construction’, cf. e.g. [34], [84]. The homotopy relation is then the one of [80, 3.3].
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However, the morphism sets in the localization are much better described as fol-
lows: Consider two dg categories + and 8. If necessary, we replace - by a quasi-
equivalent dg category so as to achieve that + is k-flat, i.e. the functor A(X, Y)®?
preserves quasi-isomorphisms for all X, Y of 4 (for example, we could take a cofibrant
replacement of #4). Let rep(+4, B) be the full subcategory of the derived category
D (AP ® B) of A-B-bimodules formed by the bimodules X such that the tensor
functor

?éu, X: D(A) — D(B)

takes the representable +A-modules to objects which are isomorphic to representable
B-modules. In other words, we require that X (?, A) is quasi-isomorphic to a repre-
sentable B-module for each object A of 4. We call such a bimodule a quasi-functor
since it yields a genuine functor

H(A) > HY(B).
We think of rep(«4, B) as the ‘category of representations up to homotopy of +4 in B’.

Theorem 4.2 (Toén [155]). The morphisms from 4 to B in the localization of dgcat,
with respect to the quasi-equivalences are in natural bijection with the isomorphism
classes of rep(A, B).

The theorem has been in limbo for some time, cf. [78, 2.3], [80], [34]. It is due
to B. Toén, as a corollary of a much more precise statement: Recall from [66, Ch. 5]
that each model category M admits a mapping space bifunctor

Map: Ho(M)°? x Ho(M) — Ho(Sset)
such that we have, for example, the natural isomorphisms
mo(Map(X, Y)) = Ho(M)(X, T).

The spaces Map may also be viewed as the morphism spaces in the Dwyer—Kan
localization [44], [42], [43] of M with respect to the class of weak equivalences, cf.
[43], [65]. Now let R (A, B) be the category with the same objects as rep(4, 8) and
whose morphisms are the quasi-isomorphisms of dg bimodules. Thus, the category
R (A, B) is a non-full subcategory of the category of dg bimodules C (AP @ B).

Theorem 4.3 (Toén [155]). There is a canonical weak equivalence of simplicial sets
between Map(A, B) and the nerve of the category R (A, B).

The theorem allows one to compute the homotopy groups of the classifying space
|dgcat| of dg categories, which is defined as the nerve of the category of quasi-
equivalences between dg categories. Of course, the connected components of this
space are in bijection with the isomorphism classes of Hqe. Now let + be a small dg
category. Then the fundamental group of |dgcat| at + is the group of automorphisms
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of 4 in Hqe (c¢f. [120]). For example, if + is the category of bounded complexes
of projective B-modules over an ordinary k-algebra B, then this group is the derived
Picard group of B as studied in [133], [82], [166]. For the higher homotopy groups,
we have the

Corollary 4.4 ([155]). a) The group my(|dgcat|, A) is the group of invertible elements
of the dg center of A (= its zeroth Hochschild cohomology group).

b) Fori > 2, the group m;(|dgcat|, A) is the (2 — i)-th Hochschild cohomology
of A.

4.3. Closed monoidal structure. As we have observed in Section 2.2, the category
dgcat; admits a tensor product ® and an internal Hom-functor #om. If -4 is cofibrant,
then the functor A®? preserves weak equivalences so that the localization Hge inherits

a tensor product QLZ) However, the tensor product of two cofibrant dg categories is
not cofibrant in general (in analogy with the fact that the tensor product of two non-
commutative free algebras is not non-commutative free in general). By the adjunction
formula

Hom (A, Hom(B, C)) = Hom(A Q B, C),

it follows that even if 4 is cofibrant, the functor #Hom (A, ?) cannot preserve weak
equivalences in general and thus will not induce an internal Hom-functor in Hqe.
Nevertheless, we have the

Theorem 4.5 ([34], [155]). The monoidal category (Hge, (EL@) admits an internal Hom-
Sfunctor RHom. For two dg categories A and B such that A is k-flat, the dg category
RHom (A, B) is isomorphic in Hqe 1o the dg category repy, (A, B), i.e. the full sub-
category of the dg category of A-B-bimodules whose objects are those of rep(A, B)
and which are cofibrant as bimodules.

Thus we have equivalences (we suppose 4 k-flat)
HO(RHtom (A, B)) = H' (repyy(+4, B)) —> rep(s, B).
In terms of the internal Hom-functor #om of dgcat;, we have
HO(RHom (A, B)) = H(Hom (A, B)[Z],

where ¥ is the set of morphisms ¢: FF — G such that ¢ (A) is invertible in H 0(8B)
for all objects A of A, cf. [78].

Yet another description can be given in terms of As-functors: Let 4 be a dg
category such that the morphism spaces 4(A, A") are cofibrant in € (k) and the unit
maps k — A(A, A) admit retractions in C (k) for all objects A, A" of A. Then the
dg category RHom (A, B) is quasi-equivalent to the A ,-category of (strictly unital)
Ao-functors from 4 to B, cf. [91], [98], [104], [84]. Since B is a dg category, this
Ao-category is in fact a dg category.
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An important point of classical Morita theory is that for two rings B, C, there is an
equivalence between the category of B-C-bimodules and the category of coproduct
preserving functors from the category of B-modules to that of C-modules (note that
here and in what follows, we need to consider ‘large’ categories and should introduce
universes to make our statements rigorous...). Similarly, if + is a small k-flat dg
category, we consider the large dg category Dgg(-4): it is the full dg subcategory of
Cgg(#4) whose objects are all the cofibrant dg modules. Thus we have an equivalence
of categories

D(A) = H(Dyg(A)).
This shows that if 8 is another dg category, then each quasi-functor X in
1ep(Dag (A), Dag (B))

gives rise to a functor D(A) — D(B). We say that the quasifunctor X preserves
coproducts if this functor preserves coproducts.

Theorem 4.6 ([155]). There is a canonical isomorphism in Hqe
Dyg (AP @ B) — RHom(Dug(+4), Dag(B)),

where RFHom denotes the full subcategory of RFom formed by the coproduct pre-
serving quasifunctors.

If we apply this theorem to 8 = + and compare the endomorphism algebras of the
identity functors on both sides, we see that the Hochschild cohomology (cf: Section 5.4
below) of the small dg category + coincides with the Hochschild cohomology of
the large dg category Dge (), which is quite surprising. An analogous result for
Grothendieck abelian categories (in particular, module categories) is due to T. Lowen
and M. Van den Bergh [102].

4.4. Dg localizations, dg quotients, dg-derived categories. Let 4 be a small dg
category. Let S be a set of morphisms of H%(4A). Let us say that a morphism
R: A — B of Hqe makes S invertible if the induced functor

H(A) - HY(B)
takes each s € S to an isomorphism.

Theorem 4.7 ([155]). There is a morphism Q: A — A[S™1] of Hqge such that Q
makes S invertible and each morphism R of Hqe which makes S invertible uniquely
factors through Q.

We call A[S™'] the dg localization of A at S. Note that it is unique up to unique
isomorphism in Hqge. It is constructed in [155] as a homotopy pushout

]_[seS 1 A

.

[ses k ——ALS],
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where [ denotes the dg k-category freely generated by one arrow f: 0 — 1 of
degree 0 with df = 0 and left vertical arrow is induced by the morphisms I — k
which sends f to 1. The universal property of Q: A — A[S™!] admits refined
forms, namely, Q induces an equivalence of categories

rep(A[S™'], B) = repg(4, B),
an isomorphism of Hge
repgg (A[S™'], B) = repy, (A, B),
and a weak equivalence of simplicial sets
Map(A[S™'], B) = Mapg(A, B).

Hererepg and repg, ¢ denote the full subcategories of quasi-functors whose associated
functors HO(4) — H(B) make S invertible and Mapy the union of the connected
components containing these quasi-functors.

An important variant is the following: Let V be a set of objects of . Let us say
that a morphism Q: A — B of Hqe annihilates N if the induced functor

H(A) - HY(B)

takes all objects of N to zero objects (i.e. objects whose identity morphism vanishes
in H(B)).

Theorem 4.8 ([80], [34]). There is a morphism Q: A — A/N of Hqe which anni-
hilates N and is universal among the morphisms annihilating N .

We call A/N the dg quotient of A by N. If A is k-flat (¢f. Section 4.2), then
A/ N admits a beautiful simple construction [34]: One adjoins to 4 a contracting
homotopy for each object of . The general case can be reduced to this one or treated
using orthogonal subcategories [80]. The dg quotient has refined universal properties
analogous to those of the dg localization. In particular, the morphism A — A/N
induces an equivalence [34]

rep(A/N, B) — rep (A, B),

where rep ; denotes the full subcategory of quasi-functors whose associated functors
HO(A) — H(B) annihilate .

Dg quotients yield functorial dg versions of Verdier localizations [160]. For ex-
ample, if & is a small abelian (or, more generally, exact) category, we can take for +4
the dg category of bounded complexes @é’g(S) over & and for N the dg category of

bounded acyclic complexes Acgg(g ). Then we obtain the dg-derived category

D3, (8) = C,(6)/Ack,(8)
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so that we have

D"(&) = H (D}, (€)).
More generally, every localization pair [80] (= Frobenius pair [134]) gives rise to a
dg category. After taking the necessary set-theoretic precautions, we also obtain a

dg-derived category
Dyg (&) = Cyg(E)/Acqg(E)

which refines the unbounded derived category of a k-linear Grothendieck abelian
category €. For a quasi-compact quasi-separated scheme X, let us write Dgg(X)
for Dyg (&), where € is the Grothendieck abelian category of quasi-coherent sheaves
on X. The following theorem shows that dg functors between dg derived categories
are much more closely related to geometry than triangle functors between derived
categories, cf. [23], [114].

Theorem 4.9 ([155]). Let X and Y be quasi-compact separated schemes over k such
that X is flat over Spec k. Then we have a canonical isomorphism in Hqe

Dig(X x ¥) —> RHom(Dag(X), Dag(¥)),

where RHom denotes the full subcategory of RHom formed by the coproduct pre-
serving quasi-functors. Moreover, if X and Y are smooth and projective over Speck,
we have a canonical isomorphism in Hge

parg, (X xx ¥) —> RHom(pargy(X), paryy(Y))

where parg, denotes the full dg subcategory of Dyg whose objects are the perfect
complexes.

4.5. Pretriangulated dg categories. Let + be a small dg category. We say that 4
is pretriangulated or exact if the image of the Yoneda functor

Z0%A) > C(A), X X"

is stable under shifts in both directions and extensions (in the sense of the exact
structure of Section 3.4). Equivalently, for all objects X, Y of 4 and all integers n, the
object X\ [n] is isomorphic to X[r]" and the cone over a morphism f*: X — Y/
is isomorphic to C(f)” for unique objects X[n] and C(f) of ZO(A). If A is exact,
then Z%(4) becomes a Frobenius subcategory of C(+4A) and H 0(A) a triangulated
subcategory of # (). If B is an exact dg category and + an arbitrary dg category,
then Fom (A, B) is exact (whereas A ® B is not, in general).
If A is an arbitrary small dg category, there is a universal dg functor

A — pretr(A)
to a pretriangulated dg category pretr(+4), i.e. a functor inducing an equivalence

Hom (A, B) — Hom(pretr(A), B)
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for each exact dg category B. The dg category pretr(+A) is the pretriangulated hull
of A constructed explicitly in [21], ¢f. also [34], [145].

For any dg category -, the category HO(pretr(+4)) is equivalent to the triangu-
lated subcategory of # A generated by the representable dg modules. The functor
pretr preserves quasi-equivalences and induces a left adjoint to the inclusion of the
full subcategory of exact dg categories into the homotopy category Hge. If 8B is
pretriangulated, then so is RFHom (A, B) for each small dg category 4 and we have

RHom (pretr(A), B) — RHom(A, B).

4.6. Morita fibrant dg categories, exact sequences. A dg functor F': A — B
between small dg categories is a Morita morphism if it induces an equivalence
D(B) — D(A). Each quasi-equivalence is a Morita morphism (cf. Section 3.8)
and so is the canonical morphism 4 — pretr(+) from 4 to its pretriangulated hull.

Theorem 4.10 ([145]). The category dgcat;, admits a structure of cofibrantly gener-
ated model category whose weak equivalences are the Morita morphisms and whose

cofibrations are the same as those of the canonical model structure on dgcat; (cf.
Theorem 4.1).

A dg category A is Morita fibrant (or triangulated in the terminology of [156])
iff it is fibrant with respect to this model structure. This is the case iff the canonical
functor HO(A) — per(+A) is an equivalence iff #4 is pretriangulated and H 0(4)
is idempotent complete (cf. Section 3.5). We write A — perdg(,f\)) for a fibrant
replacement of 4 and then have

per(4) = H°(pergy(:A)).

We write Hmo for the localization of dgcat, with respect to the Morita morphisms.
Then the functor + — pery, () yields a right adjoint of the quotient functor Hge —
Hmo and induces an equivalence from Hmo onto the subcategory of Morita fibrant
dg categories in Hqge, cf. [145]. The category Hmo is pointed: The dg category with
one object and one morphism is both initial and terminal. Moreover, Hmo admits all
finite coproducts (they are induced by the disjoint unions) and these are isomorphic
to products.

Let
I P

A—B —C )
be a sequence of Hge such that P/ = 0 in Hmo.

Theorem 4.11. The following are equivalent:
i) In Hmo, I is a kernel of P and P a cokernel of 1.
i1) The morphism I induces an equivalence of per(+4) onto a thick subcategory

of per(B) and P induces an equivalence of the idempotent closure [8] of the
Verdier quotient with per(C).
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iii) The functor I induces an equivalence of D (A) with a thick subcategory of
D(B) and P identifies the Verdier quotient with D(C).

The theorem is proved in [80]. The equivalence of ii) and iii) is a consequence of
Thomason-Trobaugh’s localization theorem [152], [108], [112]. We say that (5) is
an exact sequence of Hmo if the conditions of the theorem hold. For example, if X is
a quasi-compact quasi-separated scheme, U C X a quasi-compact open subscheme
and Z = X \ U, then the sequence

pardg(X onZz) — pardg(X) — pardg(U)

is an exact sequence of Hmo by the results of [152, Sect. 5], where pardg(X ) denotes
the dg quotient of the category of perfect complexes (viewed as a full dg subcategory
of the category of complexes of 0 x-modules) by its subcategory of acyclic perfect
complexes and parg, (X on Z) the full subcategory of perfect complexes supported
onZ.

4.7. Dg categories of finite type. Let M be a cofibrantly generated model category
and 7 a small category. Recall that the category of functors M/ is again a cofibrantly
generated model category (with the componentwise weak equivalences). Thus, the
diagonal functor Ho(M) — Ho(M') admits a left adjoint, the homotopy colimit
Sfunctor, and a right adjoint, the homotopy limit functor. An object X of M is ho-
motopically finitely presented if, for each filtered direct system Y;, i € I, of M, the
canonical morphism

hocolim Map(X, Y;) — Map(X, hocolim Y;)

is a weak equivalence of simplicial sets. The category M is homotopically locally
finitely presented if, in Ho(M), each object is the homotopy colimit of a filtered direct
system (in M) of homotopically finitely presented objects.

For example [64], the category of dg algebras is homotopically locally finitely
presented and a dg algebra is homotopically finitely presented iff, in the homotopy
category, it is a retract of a non-commutative free graded algebra k(x, ..., x,) en-
dowed with a differential such that dx; belongs to k{x1, ..., x;—1) foreach1 <i < n.
A dg category is of finite type if it is dg Morita equivalent to a homotopically finitely
presented dg algebra.

Theorem 4.12 ([156]). The category of small dg categories endowed with the canoni-
cal model structure whose weak equivalences are the Morita morphisms is homotopi-
cally locally finitely presented and a dg category is homotopically finitely presented

iff it is of finite type.
A dg category + is called smooth if the bimodule (X, Y) — A(X,Y) is perfect

L
in D (AP ® ). This property is invariant under dg Morita equivalence. The explicit
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description of the homotopically finitely presented dg algebras shows that a dg cate-
gory of finite type is smooth. Conversely [156], a dg category « is of finite type if
it is smooth and proper, i.e. dg Morita equivalent to a dg algebra whose underlying
complex of k-modules is perfect.

4.8. Moduli of objects in dg categories. Let T be a small dg category. In [156],
B. Toén and M. Vaquié introduce and study the D™ -stack (in the sense of [157]) of
objects in 7. By definition, this D™ -stack is the functor

Mr: Scalg — Sset
which sends a simplicial commutative k-algebra A to the simplicial set
Map (TP, pergy (N A)),

where N A is the commutative dg k-algebra obtained from A by the Dold—Kan equiv-
alence. They show that if T is a dg category of finite type, then this D~ -stack is
locally geometric and locally of finite presentation. Moreover, if E: T — per g, (k)
is a k-point of M, then the tangent complex of M7 at E is given by

Tmy.E — RHom(E, E)[1].
In particular, if E is quasi-isomorphic to a representable x”, then we have
Tmr. e — T(x, x)[1].

It follows that the restriction of M7 to the category of commutative k-algebras is a
locally geometric oo-stack in the sense of C. Simpson [144]. Here are three conse-
quences derived from these results in [156]:

1) If T is a dg category over a field k and is smooth, proper and Morita fibrant,
then the sheaf associated with the presheaf

R — AutheR (T Xk R),

on the category of commutative k-algebras is a group scheme locally of finite type
over k (cf- [166] for the case where T is an algebra).

2) If X is a smooth proper scheme over a commutative ring &, then the oco-stack
of perfect complexes on X is locally geometric.

3) If A is a (non-commutative) k-algebra over a field k, then the oo-stack of
bounded complexes of finite-dimensional A-modules is locally geometric if either A
is the path algebra of a finite quiver or a finite-dimensional algebra of finite global
dimension.
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4.9. Dg orbit categories. Let 4 be adg category and F': A — + an automorphism
of + in Hge. Let us assume for simplicity that F' is given by a dg functor A — .
The dg orbit category 4/ F” has the same objects as » and the morphisms defined by

(A/FEYX,Y) = @colimn A(F'X, FHdy).
de’

The projection functor P: A — #A/F” is endowed with a canonical morphism
¢: PF — P which becomes invertible in H O /FZ%) and the pair (P, ¢) is the solu-
tion of a universal problem, cf. [83]. The category H°(4)/FZ is defined analogously.
It is isomorphic to H%(A/FZ%) and can be thought of as the ‘category of orbits’ of the
functor F acting in H 0(A).

Let us now assume that k is a field. Let Q be a quiver (= oriented graph) whose
underlying graph is a Dynkin graph of type A, D or E. Let mod kQ be the abelian
category of finite-dimensional representations of Q over k (cf. e.g. [52], [4]). Let
A = i)gg(mod Q) and F: A — 4 an automorphism in Hqe. We say that F acts

properly if no indecomposable object of D”(modkQ) is isomorphic to its image
under F. For example, if X is the Serre functor of 4, defined by the bimodule

(X,Y) = Homp(AY, X), k),

then ¥ acts properly and, more generally, if S is the suspension functor, then S~ %
acts properly for each d € N unless Q is reduced to a point.

Theorem 4.13 ([83]). If F acts properly, the orbit category @gg(mode)/FZ is
Morita fibrant and thus D”(mod k Q)/FZ is canonically triangulated.

In the particular case where F = S~ %, the triangulated category H%(A/FZ%) is
Calabi—Yau [91] of CY-dimension d (cf. [83]). Ford = 1, the category H 0(A /F 2y is
equivalent to the category of finite-dimensional projective modules over the prepro-
jective algebra (cf. [56], [31], [128]) associated with the Dynkin graph underlying Q.
For d = 2, one obtains the cluster category associated with the Dynkin graph. This
category was introduced in [27] for type A and in [6] in the general case. It serves in
the representation-theoretic approach (cf. e.g. [6], [26], [55]) to the study of cluster
algebras [47], [48], [13], [49]. It seems likely [2] that if k is algebraically closed, the
theorem yields almost all Morita fibrant dg categories whose associated triangulated
categories have finite-dimensional morphism spaces and only finitely many isoclasses
of indecomposables. In particular, those among these categories which are Calabi—
Yau of fixed CY-dimension d >> 0 are expected to be parametrized by the simply
laced Dynkin diagrams.

5. Invariants

5.1. Additive invariants. Let Hmog be the category with the same objects as Hmo
and where morphisms A — B are given by elements of the Grothendieck group of
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the triangulated category rep(+, 8). The composition is induced from that of Hmo.
The category Hmoy is additive and endowed with a canonical functor Hmo — Hmog
(cf. [22] for a related construction). One can show [145] that a functor F defined on
Hmo with values in an additive category factors through Hmo — Hmoy iff for each
exact dg category 4 endowed with full exact dg subcategories 8 and C which give
rise to a semi-orthogonal decomposition H 0(A) = (HY(B), H°(@)) in the sense
of [21], the inclusions induce an isomorphism F(8B) @& F(C) — F(A). We then
say that F is an additive invariant. The most basic additive invariant is given by
FA = Ko(per 4)). In Hmoo, it becomes a corepresentable functor: Ko(per(+4)) =
Hmog(k, A). As we will see below, the K-theory spectrum and all variants of cyclic
homology are additive invariants. This is of interest since non-isomorphic objects of
Hmo can become isomorphic in Hmog. For example, if k is an algebraically closed
field, each finite-dimensional algebra of finite global dimension becomes isomorphic
to a product of copies of k in Hmog (cf. [78]) but it is isomorphic to such a product in
Hmo only if it is semi-simple.

5.2. K-theory. Let 4 be a small dg k-category. Its K-theory K (+) is defined by
applying Waldhausen’s construction [161] to a suitable category with cofibrations and
weak equivalences: here, the category is that of perfect A-modules, the cofibrations
are the morphisms i: L — M of A-modules which admit retractions as morphisms
of graded A-modules (i.e. the inflations of Section 3.4) and the weak equivalences are
the quasi-isomorphisms. This construction can be improved so as to yield a functor
K from dgcat;, to the homotopy category of spectra. As in [152], from Waldhausen’s
results [161] one then obtains the following

Theorem 5.1. a) [36] The map A — K (A) yields a well-defined functor on Hmo.
b) Applied to the bounded dg-derived category ;Dgg(g) of an exact category &,
the K -theory defined above agrees with Quillen K -theory.
¢) The functor A +— K (A) is an additive invariant. Moreover, each short exact
sequence A — B — C of Hmo (cf. Section 4.6) yields a long exact sequence

o> Ki(A) — Ki(B) — K;(C) —> -+ —> Ko(B) — Ko(A).

Part a) can be improved on: In fact, D. Dugger and B. Shipley show in [36] that
K -theory is even preserved under topological Morita equivalence. Part ¢) can be im-
proved on by defining negative K -groups and showing that the exact sequence extends
indefinitely to the right. We refer to [134] for the most recent results, which include
the case of dg categories. By combining part a) with Rickard’s theorem 3.12, one
obtains the invariance of the K-theory of rings under triangle equivalences between
their derived categories. By combining a) and b), one obtains the invariance of the
K -theory of abelian categories under equivalences between their derived categories
which come from isomorphisms of Hmo (or, more generally, from topological Morita
equivalences). In fact, according to A. Neeman'’s results [110] the K-theory of an
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abelian category is even determined by the underlying triangulated category of its
derived category, c¢f. [113] for a survey of his work.

Of course, any invariant defined for small triangulated categories applied to the
perfect derived category yields an invariant of small dg categories. For example,
Balmer—Witt groups (cf. [7] for a survey), defined for dg categories + endowed with
a suitable involution A —> A°P in Hmo, yield such invariants.

5.3. Hochschild and cyclic homology. Let A be a small k-flat k-category. Fol-
lowing [106] the Hochschild chain complex of 4 is the complex concentrated in
homological degrees p > 0 whose pth component is the sum of the

A(th Xo) ® =>4>(Xp7 Xp—l) ® A(Xp—l’ Xp—2) ® A(X07 X1),

where Xy, ..., X, range through the objects of A, endowed with the differential

p
dfp®. .. ®f))=fm1® @ fofy+ ) (- f,® @ fifir1 ®-® fo.

i=1

Via the cyclic permutations

L(fp-1® - Qf) =D fo® fr-1®---® fi

this complex becomes a precyclic chain complex and thus gives rise [77, Sect. 2]
to a mixed complex C () in the sense of [72], i.e. a dg module over the dg algebra
A= k[B]/(BZ), where B is of degree —1 and d B = 0. As shown in [72], all variants
of cyclic homology [100] only depend on C(+) considered in £ (A). For example,

the cyclic homology of # is the homology of the complex C(A) QL{) A k.

If A is a k-flat differential graded category, its mixed complex is the sum-total
complex of the bicomplex obtained as the natural re-interpretation of the above com-
plex. If «4 is an arbitrary dg k-category, its Hochschild chain complex is defined as
the one of a k-flat (e.g. a cofibrant) resolution of 4.

Theorem 5.2 ([79], [80]). a) The map A +— C(A) yields an additive functor
Hmog — D(A). Moreover, each exact sequence of Hmo (cf. Section 4.6) yields
a canonical triangle of D(A).

b) If A is a k-algebra, there is a natural isomorphism C(A) — C(perdg (A)).

¢) If X is a quasi-compact separated scheme, there is a natural isomorphism
cC(X) = C(pardg(X)), where C(X) is the cyclic homology of X in the sense of
[99], [163] and pardg(X) the dg category defined in Section 4.6.

The second statement in a) may be viewed as an excision theorem analogous
to [164]. We refer to the recent proof [28] of Weibel’s conjecture [ 162] on the vanishing
of negative K-theory for an application of the theorem. The brave new algebra
description of topological Hochschild (co-)homology [142] would suggest that it is
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also preserved under topological Morita equivalence but no reference seems to exist
as yet.
The endomorphism algebra RFHom A (k, k) is quasi-isomorphic to k[u], where u

L
is of degree 2 and d(u) = 0. It acts on C(A) ® k and this action is made visible in
the isomorphism

C(A) ®p k = C(A) ® klu]

where u is of degree 2 and the differential on the right hand complex is given by
dx® ) =d(x) ® f + (=D xB @ uf.

The following ‘Hodge—de Rham conjecture’ is true for the dg category of perfect
complexes on a smooth projective variety or over a finite-dimensional algebra of
finite global dimension. It is wide open in the general case.

Conjecture 5.3 ([33], [90]). If A is a smooth proper dg category over a field k of
characteristic 0, then the homology of C(A) ® k[u]/(u") is a flat k[u]/(u")-module
foralln > 1.

5.4. Hochschild cohomology. Let 4 be a small cofibrant dg category. Its cohomo-
logical Hochschild complex C (A, ) is defined as the product-total complex of the
bicomplex whose Oth column is

HA(XO, Xo),

where X ranges over the objects of #, and whose pth column, for p > 1, is
l_[ Homp(AXp—1, Xp) @ AXp-—2, Xp—1) @ - ® A(Xo, X1), A(Xo, Xp))

where X, ..., X, range over the objects of . The horizontal differential is given
by the Hochschild differential. This complex carries rich additional structure: As
shown in [58], it is a Bso-algebra, i.e. its bar construction carries, in addition to its
canonical differential and comultiplication, a natural multiplication which makes it
into a dg bialgebra. The Boo-structure contains in particular the cup product and the
Gerstenhaber bracket, which both descend to the Hochschild cohomology

HH*(A, A) = H*C (A, A).
The Hochschild cohomology is naturally interpreted as the homology of the complex
Fom (14, 14)

computed in the dg category RFHom (A, A), where 1,4 denotes the identity functor
of A (i.e. the bimodule (X, Y) — A(X, Y)). Then the cup product corresponds to the
composition (whereas the Gerstenhaber bracket has no obvious interpretation). Each
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c € HH" (A, ) gives rise to morphisms cM: M — M|[n] of D(A), functorial in
M € D(A). Another interpretation links the Hochschild cohomology of «4 to the
derived Picard group and to the higher homotopy groups of the category of quasi-
equivalences between dg categories, cf. Section 4.2.

A natural way of obtaining the By,-algebra structure on C (4, ) is to consider the
Ao-category of Aso-functors from #4 toitself [91], [98], [104]. Here, the Boo-algebra
C (A, A) appears as the endomorphism algebra of the identity functor (cf. [84]).

Note that C(+A, 4) is not functorial with respect to dg functors. However, if
F: A — B is a fully faithful dg functor, it clearly induces a restriction map

F*: C(B, B) > C(A, A)

and this map is compatible with the Boo-structure. This can be used to construct [81]
a morphism
¢x: C(B, B) —> C(A, A)

in the homotopy category of B-algebras associated with each dg 4A-8B-bimodule X
such that the functor

L
7®4 X: per(A) > DB

is fully faithful. If moreover the functor X é) 87: per(BP) — D(AP) is fully
faithful, then ¢y is an isomorphism. In particular, the Hochschild complex becomes
a functor

Hmo(f)fp — Ho(B),

where Ho(Byo) is the homotopy category of By,-algebras and Hmog the (non-full)
subcategory of Hmo whose morphisms are the quasi-functors X € rep(+, 8) such
that

L
7®4 X: per(A) — per(B)

is fully faithful. We refer to [102] for the closely related study of the Hochschild
complex of an abelian category.

Let us suppose that k is a field of characteristic 0. Endowed with the Gerstenhaber
bracket the Hochschild complex C (+4, 4) becomes a differential graded Lie algebra
and this Lie algebra ‘controls the deformations of the A.-category A’, cf. e.g. [93].
Here the Ao-structures (m,), n > 0, may have a non-trivial term mg. Some (but not
all) Hochschild cocycles also correspond to deformations of + as an object of Hmo.
To be precise, let k[e] be the algebra of dual numbers and consider the reduction
functor

L
R: Hmoge) —> Hmog, B+ B Q] k.

A first order Morita deformation of A is apair (A, ¢) formed by adg k[¢]-category A’
and an isomorphism ¢p: RA" — A of Hmog. An equivalence between such deforma-
tions is given by an isomorphism v/ : A" — A" such that ¢’ Ry = ¢. Then one can
show [54] that the equivalence classes of first order Morita deformations of 4 are in
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natural bijection with the classes ¢ € H H?(+4, ») such that the induced morphism
cP: P — P[2]isnilpotent in H*FHom (P, P) for each perfect A-module P. If A is
proper or, more generally, if H" A(?, X) vanishes for n >> 0 for all objects X of A,
then this condition holds for all Hochschild 2-cocycles c¢. On the other hand, if A is
given by the dg algebra k[u, u~'], where u is of degree 2 and du = 0, then it does
not hold for the cocycle u € HH?(A, A).

5.5. Fine structure of the Hochschild complexes. The Hochschild cochain com-
plex of a dg category carries a natural homotopy action of the little squares operad.
This is the positive answer to a question by P. Deligne [29] which has been obtained,
for example, in [105], [92], [14].... Hochschild cohomology acts on Hochschild ho-
mology and this action comes from a homotopy action of the Hochschild cochain
complex, viewed as a homotopy algebra over the little squares, on the Hochschild
chain complex. This is the positive answer to a series of conjectures due to B. Tsygan
[158] and Tamarkin—Tsygan [149]. It has recently been obtained by B. Tsygan and
D. Tamarkin [159]. Together, the two Hochschild complexes endowed with these
structures yield a non-commutative calculus [150] analogous to the differential cal-
culus on a smooth manifold. The link with classical calculus on smooth commutative
manifolds is established through M. Kontsevich’s formality theorem [89], [147] for
Hochschild cochains and in [143] (cf. also [32]) for Hochschild chains.

Clearly, these finer structures on the Hochschild complexes are linked to the cat-
egory of dg categories and its simplicial enrichment given by the Dwyer—Kan local-
ization as developed in [155]. At the end of the introduction to [155], the reader will
find a more detailed discussion of these links, cf. also [87]. A precise relationship is
announced in [148].

5.6. Derived Hall algebras. Let 4 be a finitary abelian category, i.e. such that the
underlying sets of A(X, Y) and Ext! (X, Y) are finite for all objects X, Y of 4. The
Ringel-Hall algebra #€(+A) is the free abelian group on the isomorphism classes
of 4 endowed with the multiplication whose structure constants are given by the
Hall numbers f )?y, which count the number of subobjects of Z isomorphic to X and
such that Z/ X is isomorphic to Y, cf. [30] for a survey. Thanks to Ringel’s famous
theorem [126], [127], for each simply laced Dynkin diagram A, the positive part of
the Drinfeld—Jimbo quantum group U, (A) (cf. e.g. [73], [103]) is obtained as the
(generic, twisted) Ringel-Hall algebra of the abelian category of finite-dimensional
representations of a quiver A with underlying graph A. Since Ringel’s discovery, it
was first pointed out by Xiao [165], cf. also [70], that an extension of the construction of
the Ringel-Hall algebra to the derived category of the representations of A might yield
the whole quantum group. However, if one tries to mimic the construction of ¢ (4) for
a triangulated category 7~ by replacing short exact sequences by triangles one obtains
a multiplication which fails to be associative, ¢f. [70], [68]. It is remarkable that
nevertheless, as shown by Peng—Xiao [115], [116], [117], the commutator associated
with this multiplication yields the correct Lie algebra.
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A solution to the problem of constructing an associative multiplication from the
triangles has recently been proposed by B. Toén in [153]. He obtains an explicit
formula for the structure constants ¢ )Z(Y of an associative multiplication on the rational
vector space generated by the isomorphism classes of any triangulated category 7~
which appears as the perfect derived category per(7') of a proper dg category T over
a finite field k. The resulting Q-algebra is the derived Hall algebra D H(T) of T.
The formula for the structure constants reads as follows:

6%y = Y1 Aut(f/2)~ [ 1Bt (X, 2)] Y [ Exe (x, )10
f i>0

where f ranges over the set of orbits of the group Aut(X) in the set of morphisms
f: X — Z whose cone is isomorphic to Y, and Aut(f/Z) denotes the stabilizer of
f under the action of Aut(X). The proof of associativity is inspired by methods from
the study of higher moduli spaces [157], [155], [156] and by the homotopy theoretic
approach to K-theory [120]. From the formula, it is immediate that DFH(T) is
preserved under triangle equivalences per(7) —> per(T’). Another consequence is
that if »4 is the heart of a non-degenerate ¢-structure [10] on per(T'), then the Ringel—-
Hall algebra of A appears as a subalgebra of DF(T). The derived Hall algebra of
the derived category of representations of A over a finite field appears closely related
to the constructions of [70]. Its precise relation to the quantum group U, (A) remains
to be investigated.

Notice that like the K(-group, the derived Hall algebra only depends on the un-
derlying triangulated category of per(7'). One would expect that geometric versions
of the derived Hall algebra, as defined in [154, 3.3] will depend on finer data.
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equivalences of derived categories: local group theory, geometry and categorifications.
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1. Introduction

This paper discusses derived equivalences, their construction and their use, for finite
dimensional algebras, with a special focus on finite group algebras.

In a first part, we discuss Broué’s abelian defect group conjecture and its ramifica-
tions. This is one of the deepest problem in the representation theory of finite groups.
It is part of local representation theory, which aims to relate characteristic p repre-
sentations of a finite group with representations of local subgroups (normalizers of
non-trivial p-subgroups). We have taken a more functorial viewpoint in the definition
of classical concepts (defect groups, subpairs,...).

In § 2.1.4, we present Alperin’s conjecture, which gives a prediction for the number
of simple representations, and Broué’s conjecture, which is a much more precise
prediction for the derived category, but does apply only to certain blocks (those with
abelian defect groups).

We discuss in § 2.2 various types of equivalences that arise and present the crucial
problem of lifting stable equivalences to derived equivalences.

In § 2.3, we present some local methods. We give a stronger version of the abelian
defect group conjecture that can be approached inductively and reduced to the prob-
lem explained above of lifting stable equivalences to derived equivalences. Roughly
speaking, in a minimal counterexample to that refinement of the abelian defect con-
jecture, there is a stable equivalence. Work of Rickard suggested to impose conditions
on the terms of the complexes: they should be direct summands of permutation mod-
ules. We explain that one needs also to put conditions on the maps, that make the
complexes look like complexes of chains of simplicial complexes.

There is no understanding on how to construct candidates complexes who would
provide the derived equivalences expected by the abelian defect group conjecture in
general. For finite groups of Lie type (in non-describing characteristic), we explain
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(§ 2.4) Brou€’s idea that such complexes should arise as complexes of cohomology of
Deligne—Lusztig varieties. We describe (§ 2.4.2) the Jordan decomposition of blocks
(joint work with Bonnaf€), as conjectured by Broué: Morita equivalences between
blocks are constructed from the cohomology of Deligne—Lusztig varieties. For GL,,,
every block is shown to be Morita equivalent to a unipotent block. This provides some
counterpart to the Jordan decomposition of characters (Lusztig). In § 2.4.3 and 2.4.4,
we explain the construction of complexes in the setting of the abelian defect conjecture.
There are some delicate issues related to the choice of the Deligne—Lusztig variety and
the extension of the action of the centralizer of a defect group to that of the normalizer.
This brings braid groups and Hecke algebras of complex reflection groups.

In § 2.5, we explain how to view the problem of lifting stable equivalences to
derived equivalences as a non-commutative version of the birational invariance of
derived categories of Calabi—Yau varieties.

In § 2.6, we describe a class of derived equivalences which are filtered shifted
Morita equivalences (joint work with Chuang). We believe these are the building
bricks for most equivalences and the associated combinatorics should be interesting.

Part § 3 is devoted to some invariants of derived equivalences. In § 3.1, we explain
a functorial approach to outer automorphism groups of finite dimensional algebras
and deduce that their identity component is preserved under various equivalences.
This functorial approach is similar to that of the Picard group of smooth projective
schemes and we obtain also an invariance of the identity component of the product of
the Picard group by the automorphism group, under derived equivalence.

In § 3.2, we explain how to transfer gradings through derived or stable equiva-
lences. As a consequence, there should be very interesting gradings on blocks with
abelian defect. This applies as well to Hecke algebras of type A in characteristic 0,
where we obtain gradings which should be related to geometrical gradings.

Finally, in § 3.3, we explain the notion of dimension for triangulated categories,
in particular for derived categories of algebras and schemes. This applies to answer a
question of Auslander on the representation dimension and a question of Benson on
Loewy length of group algebras.

Part § 4 is devoted to “categorifications”. Such ideas have been advocated by
I. Frenkel and have already shown their relevance in the work of Khovanov [57] on
knotinvariants. Ourideais that “classical” structures have natural higher counterparts.
These act as symmetries of categories of representations or of sheaves.

In § 4.1, we explain the construction with Chuang of a categorification of sl and
we develop the associated “2-representation theory”. There is an action on the sum
of module categories of symmetric groups, and we deduce the existence of derived
equivalences between blocks with isomorphic defect groups, using the general theory
that provides a categorification of the adjoint action of the Weyl group. This applies
as well to general linear groups, and gives a solution to the abelian defect group
conjecture for symmetric and general linear groups.

In § 4.2, we define categorifications of braid groups. This is based on Soergel’s
bimodules.
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I thank Cédric Bonnafé, Joe Chuang and Hyohe Miyachi for useful comments on
a preliminary version of this paper.

2. Broué’s abelian defect group conjecture

2.1. Introduction

2.1.1. Blocks. Let £ be a prime number. Let @ be the ring of integers of a finite
extension K of the field Q of £-adic numbers and k its residue field.

Let G be a finite group. Modular representation theory is the study of the
categories @G-mod and kG-mod (finitely generated modules). The decomposi-
tion of Spec Z(@G) into connected components corresponds to the decomposition
Z(0G) = [, Z(OG)b, where b runs over the set of primitive idempotents of
Z(OG) (the block idempotents). We have corresponding decompositions in blocks
OG =[], 9Gb and OG-mod = P, 9 Gb-mod.

Remark 2.1. One assumes usually that K is big enough so that K G is a product of
matrix algebras over K (this will be the case if K contains the e-th roots of unity,
where e is the exponent of G). Descent methods often allow a reduction to that case.

2.1.2. Defect groups. A defect group of a block @ Gb is a minimal subgroup D of
G such thatRes% = OGb®opgp —: D?(OGb) — DP(OD) is faithful (i.e., injective
on Hom’s). Such a subgroup is an £-subgroup and it is unique up to G-conjugacy.
The principal block OGby is the one through which the trivial representation
factors. Its defect groups are the Sylow £-subgroups of G.
Defect groups measure the representation type of the block:

* kGb is simple if and only if D = 1.

* kGb-mod has finitely many indecomposable objects (up to isomorphism) if
and only if the defect groups are cyclic.

* kGb is tame (i.e., indecomposable modules are classifiable in a reasonable
sense) if and only if the defect groups are cyclic or £ = 2 and defect groups
are dihedral, semi-dihedral or generalized quaternion groups.

2.1.3. Brauer correspondence. Let OGb be a block and D a defect group. There
is a unique block idempotent ¢ of @ Ng (D) such that the restriction functor Resg =
cOGb ®o9Gp —: D*(OGb) — DP(ONg(D)c) is faithful.

This correspondence provides a bijection between blocks of @G with defect
group D and blocks of O Ng (D) with defect group D.
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2.1.4. Conjectures. Wehaveseenin §?2.1.3 that D?(OG) embedsin D?(ONg(D)c).
The abelian defect conjecture asserts that, when D is abelian, the categories are ac-
tually equivalent (via a different functor):

Conjecture 2.2 (Broué). If D is abelian, there is an equivalence D?(OGb) =
Db(ONg(D)c).

A consequence of the conjecture is an isometry Ko(K Gb) = Ko(KNg(D)c)
with good arithmetical properties (a perfect isometry). Note that the conjecture also
carries homological information: if @Gb is the principal block and the equivalence
sends the trivial module to the trivial module, we deduce that the cohomology rings
of G and N¢ (D) are isomorphic, a classical and easy fact. It is unclear whether there
should be some canonical equivalence in Conjecture 2.2.

Local representation theory is the study of the relation between modular repre-
sentations and local structure of G. Alperin’s conjecture asserts that the number of
simple modules in a block can be computed in terms of local structure.

Conjecture 2.3 (Alperin). Assume D # 1. Then,

rank Ko(kGb) = Z(—l)’“‘”‘ rank Ko(kNg(8)cs)
8

where 4 runs over the conjugacy classes of chains of subgroups 1 < Q1 < Q> <
- < Qp <g D,I(8) =n > 1and cg is the sum of the block idempotents of Ng(8)
corresponding to b.

Remark 2.4. We have stated here Knérr—Robinson’s reformulation of the conjecture
[58]. Note that the conjecture is expected to be compatible with ¢-local properties
of character degrees, equivariance, rationality (Dade, Robinson, Isaacs, Navarro).
When D is abelian, Alperin’s conjecture (and its refinements) follows immediately
from Broué’s conjecture. It would be extremely interesting to find a common refine-
ment of Alperin and Broué’s conjectures. For principal blocks, it should contain the
description of the cohomology ring as stable elements in the cohomology ring of a
Sylow subgroup.

2.2. Various equivalences. Let A and B be two symmetric algebras over a noethe-
rian commutative ring O.

2.2.1. Definitions. Let M be a bounded complex of finitely generated (A, B)-
bimodules which are projective as A-modules and as right B-modules. Assume there
is an (A, A)-bimodule R and a (B, B)-bimodule S with

M ®p M* >~ A @ R as complexes of (A, A)-bimodules,
M*®4 M >~ B & S as complexes of (B, B)-bimodules.

We say that M induces a



Derived equivalences and finite dimensional algebras 195

* Morita equivalence if M is concentrated in degree O and R = § = 0;

* Rickard equivalence if R and S are homotopy equivalent to 0 as complexes of
bimodules;

* derived equivalence if R and S are acyclic;

e stable equivalence (of Morita type) if R and S are homotopy equivalent to
bounded complexes of projective bimodules.

Note that Morita = Rickard = stable and Rickard = derived. Note also that if
there is a complex inducing a stable equivalence, then there is a bimodule inducing a
stable equivalence. Finally, Rickard’s theory says that if there is a complex inducing
a derived equivalence, then there is a complex inducing a Rickard equivalence.

The definitions amount to requiring that M ® p — induces an equivalence

¢ (Morita) B-mod —5 A-mod,
* (Rickard) K?(B-mod) — K?(A-mod),
« (derived) D?(B) — D(A),

* (stable) B-mod —> A-mod (assuming © regular)

where K”(A-mod) is the homotopy category of bounded complexes of objects of
A-mod and A-mod is the stable category, additive quotient of A-mod by modules of
the form A ®o9 V with V € @-mod (it is equivalent to DP (A)/A-perf when O is
regular).

2.2.2. Stable equivalences. Stable equivalences arise fairly often in modular rep-
resentation theory. For example, assume the Sylow £-subgroups of G are TI, i.e.,
given P a Sylow ¢£-subgroup, then P N gPg~! = 1forall g € G — Ng(P). Then,
M = @G induces a stable equivalence between O G and O Ng (P), the corresponding
functor is restriction (this is an immediate application of Mackey’s formula). This
restricts to a stable equivalence between principal blocks. Unfortunately, we do not
know how to derive much numerical information from a stable equivalence.

A classical outstanding conjecture in representation theory of finite dimensional
algebras is

Conjecture 2.5 (Alperin—Auslander). Assume O is an algebraically closed field. If A
and B are stably equivalent, then they have the same number of isomorphism classes
of simple non-projective modules.

A very strong generalization of Conjecture 2.5 is

Question 2.6. Let A and B be blocks with abelian defect groups and M a complex
of (A, B)-bimodules inducing a stable equivalence. Assume K is big enough. Does
there exist M a complex of (A, B)-bimodules inducing a Rickard equivalence and
such that M and M are isomorphic in (A ® B°PP)-mod?
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As will be explained in § 2.3.3, this is the key step for an inductive approach to
Broué’s conjecture.

Remark 2.7. There are examples of blocks with non abelian defect for which Ques-
tion 2.6 has a negative answer, for example A the principal block of Suz(8), £ = 2,
and B the principal block of the normalizer of a Sylow 2-subgroup (TI case), cf. [17,
§6]. A major problem with Question 2.6 and with Conjecture 2.2 is to understand
the relevance of the assumption that the defect groups are abelian. Cf. § 3.2.2 for a
possible idea.

2.3. Local theory. In an ideal situation, equivalences would arise from permutation
modules or more generally, from chain complexes of simplicial complexes X acted on
by the groups under consideration. Then, taking fixed points on X by an £-subgroup Q
would give rise to equivalences between blocks of the centralizers of Q. We would
then have a compatible system of equivalences, corresponding to subgroups of the
defect group. At the level of characters, Broué defined a corresponding notion of
“isotypie” [17]: values of characters at £-singular elements are related.

2.3.1. Subpairs. We explain here some classical facts.

A kG-module of the form kQ where 2 is a G-set is a permutation module. An
£-permutation module is a direct summand of a permutation module and we denote
by kG-lperm the corresponding full subcategory of kG-mod.

Suppose that Q is an £-subgroup of G. We define the functor Brg : kG-lperm —
k(NG (Q)/Q)-lperm: Brp (M) is the image of M2 in Mg =M/ erQ(x —DM. If

M = kS, then k(29) = Bro(M): the Brauer construction extends the fixed point
construction on sets to £-permutation modules. Note that this works only because QO
is an £-group and k has characteristic £.

To deal with non principal blocks, we need to use Alperin—Broué’s subpairs. A
subpair of G is a pair (Q, e), where Q is an £-subgroup of G and e a block idempotent
of kC(Q). If we restrict to the case where e is a principal block, we recover theory
of £-subgroups of G.

A maximal subpairis of the form (D, bp), where D is adefect group of ablock kGb
and bp is ablock idempotent of kC (D) suchthatbpc # 0 (wesay that (D, bp) isab-
subpair). Fix such a maximal subpair. The (kG, kNG (D, bp))-bimodule bkGbp has,
up to isomorphism, a unique indecomposable direct summand X with Brap(X) # 0.
Here, we put AD = {(x, x "}iep < D x D°PP. More generally, given ¢: Q — R,
we put Ag(Q) = {(x, p() N}xeg < Q x RPP.

We define the Brauer category Br(D, bp): its objects are subpairs (Q, bp)
with O < D and by Brag(X) # 0, and Hom((Q, bg), (R, bg)) is the set of
f € Hom(Q, R) such that there is g € G with (Q$, bé) € Br(D,bp) and
f(x) =g 'xgforallx € Q.

Let M € kG-lperm indecomposable. A vertex-subpair of M is a subpair (Q, bp)
maximal such that bg Brg (M) # 0 (such a subpair is unique up to conjugacy).
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2.3.2. Splendid equivalences. Let G and H be two finite groups and b and b’ two
block idempotents of kG and kH.

The following Theorem [86], [92] shows that a stable equivalence corresponds to
“local” Rickard equivalences, for complexes of £-permutation modules.

Theorem 2.8. Let M be an indecomposable complex of (-permutation (kGb, kHD')-
bimodules. Then M induces a stable equivalence between kGb and k Hb' if and only
if given (D, bp) a maximal b-subpair, there is a maximal b'-subpair (D', b',,), an
isomorphism ¢: D —> D’ inducing an isomorphism B8r(D, bp) —> Br(D’, b))
such that

e The indecomposable modules occurring in M have vertex-subpairs of the form
(Ap(Q), b ® b;(Q))for some (Q, bg) € Br(D, bp), with (¢(Q), b:p(Q)) =
¢(Q, bo).

e For1 # Q < D, thenbg - Bra,o M - b;&(Q) induces a Rickard equivalence
between kCc(Q)bg and kCH(Q)b:p(Q), where (Q,bp) € Br(D, bp) and
($(Q). by ) = $(Q. b).

Remark 2.9. In[83], Rickard introduced a notion of splendid equivalences for princi-
pal blocks (complexes of £-permutation modules with diagonal vertices), later gener-
alized by Harris [46] and Linckelmann [65]. Such equivalences were shown to induce
equivalences for blocks of centralizers. In these approaches, an isomorphism between
the defect groups of the two blocks involved was fixed a priori and vertex-subpairs
were assumed to be “diagonal” with respect to the isomorphism. Theorem 2.8 shows
it is actually easier and more natural to work with no a priori identification, and the
property on vertex-subpairs is actually automatically satisfied.

The second part of the theorem (local Rickard equivalences = stable equiva-
lence) generalizes results of Alperin and Brou€é and is related to work of Bouc and
Linckelmann.

Finally, a more general theory (terms need not be £-permutation modules) has
been constructed by Puig (“basic equivalences”) [78].

Rickard proposed the following strengthening of Conjecture 2.2:

Conjecture 2.10. If D is abelian, there is a complex of ¢-permutation modules in-
ducing a Rickard equivalence between O Gb and O Ng(D)c.

To the best of my knowledge, in all cases where Conjecture 2.2 is known to hold,
then, Conjecture 2.10 is also known to hold.

Conjecture 2.10 is known to hold when D is cyclic [79], [62], [85]. In that case, one
can construct a complex with length 2, but the longer complex originally constructed
by Rickard might be more natural. The conjecture holds also when D ~ (Z/2)? [82],
[63], [85]. In both cases, the representation type is tame. Note that there is no other
£-group P for which Conjecture 2.10 is known to hold for all D >~ P.
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Conjecture 2.10 holds when G is £-solvable [35], [75], [47], when G is a symmetric
group or a general linear group (cf. § 4.1; the describing characteristic case G =
SL,(£") is solved in [70]) and when G is a finite group of Lie type and £ | (¢ — 1)
(cf. § 2.4.3). There are many additional special groups for which the conjecture is
known to hold (work of Gollan, Hida, Holloway, Koshitani, Kunugi, Linckelmann,
Marcus, Miyachi, Okuyama, Rickard, Turner, Waki), cf. http://www.maths.bris.ac.uk/
~majcr/adgc/adge.html.

2.3.3. Gluing. Theorem 2.8 suggests an inductive approach to Conjecture 2.10: one
should solve the conjecture for local subgroups (say, Cg(Q), 1 # Q < D) and glue
the corresponding Rickard complexes. This would give rise to a complex inducing a
stable equivalence, leaving us with the core problem of lifting a stable equivalence to a
Rickard equivalence. Unfortunately, complexes are not rigid enough to allow gluing.
This problem can be solved by using complexes endowed with some extra structure
[86], [92]. The idea is to use complexes that have the properties of chain complexes
of simplicial complexes: the key point is the existence of compatible splittings of
the Brauer maps M2 — M (Q). One can build an exact category of £-permutation
modules with compatible splittings of the Brauer maps. The subcategory of projective
objects turns out to have a very simple description in terms of sets, and we use only
this category. For simplicity, we restrict here to the case of principal blocks.

Let G be a finite group, £ a prime number, k£ an algebraically closed field of
characteristic £, b the principal block idempotent of kG, D a Sylow £-subgroup of G
and c the principal block idempotent of H = Ng (D). We assume D is abelian. We
denote by Z,(G) the Sylow £-subgroup of Z(G) and put Z = AZ,(G).

Let G’ be a finite group containing G as a normal subgroup, let H' = Ng/ (D)
and F = G'/G —> H'/H. We assume F is an £'-group, we put N = {(g, h) €
G' x HP | (¢G,hH°) € AF}and N = N/Z.

Let & be the category of N-sets whose point stabilizers are contained in AD/Z.
Let € be the Karoubian envelop of the linearization of & (objects are pairs (2, e)
where Q is a N-set and e an idempotent of the monoid algebra of End N(Q))' We
have a faithful functor & — k]V—lperm, (R2,e) — k(R2, e) := kQe.

We are now ready to state a further strengthening of Conjecture 2.2. For the
inductive approach, it is important to take into account central £-subgroups and ¢’'-
automorphism groups.

Conjecture 2.11. There is a complex C of objects of & such that Res]gX oo k(C)
induces a Rickard equivalence between kGb and kH c.

We can also state a version of Question 2.6, for the pair (G’, G):

Question 2.12. Let C be a complex of objects of & such that Res]gX oo k(C)
induces a stable equivalence between kGb and kHc. Is there a bounded complex
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R of finitely generated projective N-modules and a morphism f: R — k(C) such
that Resg + o cONe( f) induces a Rickard equivalence between kGb and kH c?

The following theorem reduces (a suitable version of) the abelian defect conjec-
ture to (a suitable version of) the problem of lifting stable equivalences to Rickard
equivalences.

Theorem 2.13. Assume Question 2.12 has a positive answer for (Ng/(Q), Cg(Q))
for all non trivial subgroups Q of D. Then Conjecture 2.11 holds.

The proof goes by building inductively (on the index of Q in D) a system of
complexes for Ng/(Q) and gluing them together. The key point is that, given a finite
group I, the category of I'-sets whose point stabilizers are non-trivial p-subgroups
is locally determined. This allows us to manipulate objects of & as “sheaves”.

2.4. Chevalley groups. We explain Broué’s idea that complexes of cohomology of
certain varieties should give rise to derived equivalences, for finite groups of Lie type.

2.4.1. Deligne-Lusztig varieties. Let G be a connected reductive algebraic group
defined over a finite field and let F be an endomorphism of G, a power F¢ of which
is a Frobenius endomorphism defining a structure over a finite field F 4 for some

g € Roo. Let G = G' be the associated finite group.

Let ¢ be a prime number with £ t g, K a finite extension of Q;, and O its ring of
integers. We assume K is big enough.

Let L be an F-stable Levi subgroup of G, P be a parabolic subgroup with Levi
complement L, and let U be the unipotentradical of P. We define the Deligne—Lusztig
variety

Yy ={3U €G/U|g ' F(g) €U FU)},

a smooth affine variety with a left action of G and a right action of L¥ by mul-
tiplication. The corresponding complex of cohomology RI'.(Yy, @) induces the
Deligne—Lusztig induction functor Rgc p: DP (OLF) — DP (OGF ).

The effect of these functors on characters (i.e., Kg’s after extension to K) is a
central tool for Deligne-Lusztig and Lusztig’s construction of irreducible characters
of G. It is important to also consider the finer invariant IéFC(YU, ), an object of
K?(O(GT x (LT)°PP)-Iperm) which is quasi-isomorphic to RT'.(Yy, ©) [81], [87].

We put Xy = Yy /L* and denote by 7 : Yy — Xy the quotient map.

Remark 2.14. One could use ordinary cohomology instead of the compact support
version. One can conjecture that the two versions are interchanged by Alvis—Curtis
duality: (RTc(Yy, ©)®% —) oDy and Dg o (RT (Yy, 0)) ®% | » —) should differ
by a shift. This is known in the Harish-Chandra case, i.e., when P is F-stable [24].

Let Ty C By be a pair consisting of an F-stable maximal torus and an F'-stable
Borel subgroup of G. Let U be the unipotent radical of Bg andlet W = Ng(T)/Ty.
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Let BT (resp. B) be the braid monoid (resp. group) of W. The canonical map
BT — W has a unique section w > w that preserves lengths (it is not a group
morphism!). We fix an F-equivariant morphism t: B — Ng(T) that lifts the
canonical map Ng(To) — W [99]. Given w € W, we put w = t(w). Let wg be the
longest element of W and let w7 = w%, a central element of B.

Assume L above is a torus. We give a different model for Yy. Let w € W and
h € G such that k' F(h) =1 and U = hUoh™!. Let

Y(w) = {gUo € G/Uqy | g~ F(g) € UpUyp},

a variety with a left action of G and a right action of T'g F by multiplication. We
have L = hToh~! and conjugation by % induces an isomorphism L* = Ty F,
Right multiplication by % induces an isomorphism Yy = Y(w) compatible with
the actions of G and L¥. We have dim Y (w) = [(w). We write Yr(w) when the

choice of F is important.
Given wy, ..., w, € W, we put

Y(wi, ..., w) ={(g1Uo,...,8Uo) € (G/Up)" |
g '8 € UpinUo, ..., g & € Up,_1Ug and g, ' F(g1) € Ug, Uy}

Up to a transitive system of canonical isomorphisms, Y (w1, ..., w,) depends only
on the product b = w - - - w, € B* and we denote that variety by Y (b) [36], [22].

2.4.2. Jordan decomposition. As a first step in his classification of (complex) irre-
ducible characters of finite groups of Lie type, Lusztig established a Jordan decom-
position of characters.

Let (G*, F*) be Langlands dual to (G, F). Then Lusztig defined a partition of
the set Irr (G) of irreducible characters of G:

Irr(G) = ]_[Irr(G, (s))
(s)

where (s) runs over conjugacy classes of semi-simple elements of (G*)* *. The
elements in Irr (G, 1) are the unipotent characters.
Furthermore, Lusztig constructed a bijection

Irr(G, (s)) — Irr((Cg+ ()", 1) (D

(assuming Cg+(s) is connected). So, an irreducible character corresponds to a pair
consisting of a semi-simple element in the dual and a unipotent character of the dual
of the centralizer of that semi-simple element.

Broué and Michel [21] showed that the union of series corresponding to classes
with a fixed £/-part is a union of blocks: let ¢ be a ¢’-element of (G*)* " and let

Ir(G, ()¢ = [ [ (G, (5))
()
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where (s) runs over conjugacy classes of semi-simple elements of (G*)*" whose
¢'-part is conjugate to ¢. Then Irr(G, (¢))¢ is a union of £-blocks, and we denote by
B(GF, (1)) the corresponding factor of OGF.

Broué [18] conjectured that the decomposition (1) arises from a Morita equivalence
(cf. also [48]). More, precisely, we have the following theorem [11, Theorem B’]
obtained in joint work with C. Bonnaf€ (cf. also [23] for a detailed exposition). This
was conjectured by Broué who gave a proof when ¢ is regular [18].

Theorem 2.15 (Jordan decomposition of blocks). Assume Cg+(t) is contained in an
F*-stable Levi subgroup L* of G* with dual L < G. Let P be a parabolic subgroup
of G with Levi complement L and unipotent radical U. Let d = dim Xy and let
Fi = 1.0 ®ppr B(LE, (1)).

Then Hci Xy, ) =0fori #d and Hcd(XU, F1) induces a Morita equivalence
between B(G, (1)) and B(L", (1)).

The theorem reduces the study of blocks of finite groups of Lie type to the case of
those associated to a quasi-isolated element z. When L* = Cg=(¢) is a Levi subgroup
of G*, then B(L"', (1)) is isomorphic to B(LF', 1).

As shown by Broué, the key point is the statement about the vanishing of cohomol-
ogy. When L is a torus, this is [37, Theorem 9.8]. For the general case, two difficulties
arise: there are no known good smooth compactifications of the varieties X and the
locally constant sheaf #; has wild ramification. We solve these issues as follows. Let
X be the closure of Xy in G/ P. We construct new varieties of Deligne—Lusztig type
and commutative diagrams

Xy,

|

XUC]H')_(

where Y; is smooth, ¥; — X; is a divisor with normal crossings, and f; is proper. We
also construct tamely ramified sheaves #; on X; with the following properties:

* F; is in the thick subcategory of the derived category of constructible sheaves
on Xy generated by the Rf/, F;
° (Rji*%)lffl()?*Xu) =0.
The first property follows from the following generation result of the derived
category of a finite group of Lie type [11, Theorem A]:

Theorem 2.16. The category of perfect complexes for B(G, (t)) is generated, as a
thick subcategory, by the R? c BB(TF , (1)), where T runs over the F-stable maximal
tori of G such thatt € T* and B runs over the Borel subgroups of G containing T.

Remark 2.17. Note that the corresponding result for derived categories is true, under
additional assumptions on G [13]: this is related to Quillen’s Theorem, we need every
elementary abelian £-subgroup of G to be contained in an F-stable torus of G.
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Remark 2.18. Note that the Morita equivalence of Theorem 2.15 is not splendid in
general. This issue is analyzed in [13].

Example 2.19. Let G = GL,(F,) and F: (xij)1<ij<n > ()i j. We have G =
GL,(F,), G = G* and F* = F. Centralizers of semi-simple elements are Levi
subgroups, so Theorem 2.15 gives a Morita equivalence between any block of a
general linear group over @ and a unipotent block.

2.4.3. Abelian defect conjecture. Let b be a block idempotent of OG. Let (D, bp)
be a maximal b-subpair, let H = Ng(D, bp) and let L = Cg (D). We assume D is
abelian and L is a Levi subgroup of G (these are satisfied if £ 1 |W|).

Broué conjectured that the sought-for complex in Conjecture 2.10 should arise
from Deligne—Lusztig varieties ([17, p. 811, [20, §11], [19, §VI]):

Conjecture 2.20 (Broué). There is a parabolic subgroup P of G with Levi comple-
ment L and unipotent radical U, and a complex C inducing a Rickard equivalence
between O Gb and O Hbp such that ResGX(LF)Opp C isisomorphicto R['.(Yy, O)bp.

This conjecture 2.20 is known to hold [76] when there is a choice of an F'-stable
parabolic subgroup P (case £ | (¢ — 1)). Then Yy is O-dimensional and the Deligne—
Lusztig induction is the Harish-Chandra induction. The key steps in the proof are:

* Produce an action of the reflection group H /L’ from a natural action of the
associated Hecke algebra. One needs to show that certain obstructions vanish.

» Identify a 2-cocycle of H/L" with values in 9*.

* Compute the dimension of the K G-endomorphism ring.

2.4.4. Regular elements. As a first step, one should make Conjecture 2.20 more
precise by specifying P and by defining the extension of the action of Cg (D) to an
action of H on RT'.(Yy, ©)bp. These issues are partly solved and I will explain the
best understood case where L = T is atorus and @ Gb is the principal block (cf. [22]).
Assume as well £ 1 (g — 1). To simplify, assume further that F acts trivially on W
(“split” case).

Note that T defines a conjugacy class C of W and the choice of P amounts to the
choice of w € C (defined from P asin § 2.4.1). Since T = Cg (D), it follows that
elements in C are Springer-regular. There is wg € € such that (w;)¢ = 7, where
d > 1 is the order of wy (a “good” regular element).

Given w € W, we have a purely inseparable morphism

1

Y(w, w_lwo, wowwg, wow_l) — Y(w_lwo, wowwg, wow~—, W)

(x1, x2, x3, x4) = (x2, X3, x4, F(x1)).

Via the canonical isomorphisms, this induces an endomorphism of Y (7). This extends
to an action of BT on Y ().
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There is an embedding of Yr(wy) as a closed subvariety of Yra(wy, ..., wg) (d
terms) given by
x> (x, F(x),..., F©71(x)).

The action of Cg+(wy) on Ypa () restricts to an action on Yr(wy). It induces an
action of C(w?) on RT.(Y (wg), O).

The group H/Cg(D) =~ Cw(wy) is a complex reflection group and we denote
by Bj its braid group. There is a morphism B; — Cpg(wg), uniquely defined up to
conjugation by an element of the pure braid group of Cy (wy) (it is expected to be an
isomorphism, and known to be such in a number of cases [8]).

Now, the conjecture is that, up to homotopy, the action of @ (T Ow aF s By) on

I:’I"C(Y(wd), O)bp induces an action of the quotient algebra @ H ¢ and the resulting
object is a splendid Rickard complex:

Conjecture 2.21. There is a complex C € K?((OGb) ® (O Hbp)°PP-Iperm), unique
up to isomorphism, with the following properties:
 There is a surjective morphism f: (9T6” aF B; — OHbp extending the

inclusion 7' 4F — H such that

— f*C and RTc(Y (wg), ©)bp are isomorphic in D?(OT{*" x By) ®
(OH)PP),

— the map kB; — kCw(wg) deduced from f by applying k ® gpraf — is
0

the canonical map.
e C is isomorphic to RT (Y (wq), O)bp in K ((OG) ® (OCg(D))°PP-lperm).

Furthermore, such a complex C induces a Rickard equivalence between O Gb and
OHbp.

The most crucial and difficult part in that conjecture is to show that we have no
non-zero shifted endomorphisms of the complex (“disjunction property”), either for
the action of G or for that H.

Conjecture 2.21 is known to hold when /(wgy) = 1[87] and for GL,, andd = n[12].
In the first case, we use good properties of cohomology of curves and prove disjunction
for the action of G. In the second case, we study the variety D(Uo)¥\Y (wg) and
prove disjunction for the action of H. This works only for GL,,, for we rely on the
fact that induced Gelfand—Graev representations generate the category of projective
modules.

Remark 2.22. When ¢ | (g — 1) (case d = 1), one can formulate a version of
Conjecture 2.21 using the variety Y () [22, Conjectures 2.15].

Remark 2.23. The version “over K of Conjecture 2.21 is open, even after restricting
to unipotent representations (= applying the functor K ® g yw,r —). The action of
KBy on HY(Y(wg), K) should factor through an action of the Hecke algebra of
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Cw (wg), for certain parameters. This is known in some cases: for d = 1 [22], [39],
when d = 2 (work of Lusztig [67] and joint work with Digne and Michel [39]) and in
some other cases [38]. The disjunction property is known for w; a Coxeter element
[66], for GL, and d = n — 1 [38] and in most rank 2 groups [39].

2.5. Local representation theory as non-commutative birational geometry. It
is expected that birational Calabi—Yau varieties should have equivalent derived cat-
egories (cf. [15]). We view Question 2.6 as a non-commutative version: one can
expect that “sufficiently nice” Calabi—Yau triangulated categories are determined by
(not too small) quotients. We explain here how this analogy can be made precise, in
the setting of McKay’s correspondence, via Koszul duality.

2.5.1. 2-elementary abelian defect groups. Let P be an elementary abelian 2-

group. Let k be a field of characteristic 2 and V = P ®p, k. Let E be a group of odd

order of automorphisms of P. The algebras kP x E and A(V) x E are isomorphic.
Koszul duality (cf. eg [53]) gives an equivalence

DP((A(V) x E)-modgr) — D} ¢ (V).

2.5.2. McKay’s correspondence. Let V be a finite-dimensional vector space over
k and E a finite subgroup of GL(V) of order invertible in k. Recall the following
conjecture (independence of the crepant resolution):

Conjecture 2.24 (McKay’s correspondence). If X — V/FE is a crepant resolution,
then D?(X) ~ Db.(V).

The conjecture is known to hold when dim V = 3 [16], [14] (in dimension 3, the
Hilbert scheme of E-clusters on V is a crepant resolution). It is also known when V
is a symplectic vector space and E respects the symplectic structure [9]. See [15,
§2.2] for more details.

Examples in dimension > 3 where E — Hilb V is smooth are rare. An infinite
family of examples is provided by the following theorem of Sebestean [95]:

Theorem 2.25. Let n > 2, let k be a field containing a primitive (2" — 1)-th root of
unity ¢ and let E be the subgroup of SL,, (k) generated by the diagonal matrix with
entries (£, 2, ..., {2%1). Assume 2" — 1 is invertible in k.

Then E — Hilb(A}) is a smooth crepant resolution of Aj/E and there is an

equivalence Dy (A7) — DP(E — Hilb(A})).

The diagonal action of G, on A} induces an action on E —Hilb(A}) and the
equivalence is equivariant for these actions.

Let G = SL,(2"), let P be the subgroup of strict upper triangular matrices (a
Sylow 2-subgroup), and let E be the subgroup of diagonal matrices. The action of E
on P ®r, T, coincides with the one in Theorem 2.25. Combining the solution of
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Conjecture 2.2 for G (Okuyama, [70]) and § 3.2.2, the Koszul duality equivalence,
and Theorem 2.25, we deduce a geometric realization of modular representations of
SL,(2™) in natural characteristic:

Corollary 2.26. There is a grading on the principal 2-block A of F2G and an equiv-
alence D?(A-modgr) —> DY, (E — Hilb A}).

Remark 2.27. It should be interesting to study homotopy categories of sheaves on
singular varieties and their relation to derived categories of crepant resolutions.

2.6. Perverse Morita equivalences. In this part, we shall describe joint work with
J. Chuang [30].

2.6.1. Definitions. Let +, A’ be two abelian categories. We assume every object
has a finite composition series. Let 4 (resp. 4’) be the set of isomorphism classes of
simple objects of A (resp. #A).

Definition 2.28. An equivalence F: D?(A) —> DP(A)) is perverse if there is
e afiltrationy =48, C 8 C---C 4, = 4,
* afiltration ) = 8, C 8] C --- C 8, = 4/,
e and a function p: {1,...,r} - Z,

such that

e F restricts to equivalences DbAi(A) = Db{(A/),

* F[—p(i)] induces equivalences +A;/A;_1 = A;/,A;_l.
where A; (resp. #4);) is the Serre subcategory of # (resp. A’) generated by 8; (resp. §;).

An important point is that A’ is determined, up to equivalence, by #A, 4, and p.

2.6.2. Symmetric algebras. Let A be a symmetric finite dimensional algebra and
A = A-mod.

We explain how to construct a perverse equivalence, given any 4, and p (this
cannot be done in general for a nonsymmetric algebra A).

Let I be a subset of 4. Given V € 4, let Py be a projective cover of V, let
Vi be the largest quotient of Py all of which composition factors are in / and let
Qv — ker(Py — Vi) be a projective cover. We put T4 y(I) = Py if V. € § — I,
TaovI)=0— Qy — Py — 0if V € I (where Qv is in degree 0) and T4(]) =
@Dy Ta,v (1), atilting complex.

Let 7 be the set of isomorphism classes of families (Ty)ycs, where Ty is an
indecomposable bounded complex of finitely generated projective A-modules and
@Dy Tv is a tilting complex.
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We denote by & (8) the set of subsets of §. We define an action of Free(# (8)) x
&(4) on 7. The symmetric group acts by permutation of indices and I C 4§ sends
(Ty)y to (Ty,)v given by Ty, = F~Y(Tp.v(I)), where B = End py(4)(Dy Tv) and
F = RHom® (@, Ty, —): D’(A) — D’(B).

Fix now 4, a filtration of 4 and p: 4 — Z. We put

—1)— H—pQ2
(Ty)y = 870820 D=r0) - gPO=r@((pyy,),

T =@y Tv, A" = Endps(4)(r) and F = RHom (T, —). Then, F is perverse with
respect to 8, and p.

Remark 2.29. One might ask whether all derived equivalences between finite dimen-
sional symmetric algebras are compositions of perverse equivalences, or at least, if
two derived equivalent symmetric algebras can be related by a sequence of perverse
equivalences. Many of the derived equivalences in block theory are known to be
compositions of perverse equivalences and it would be interesting to see if this is also
the case for those of [70].

Remark 2.30. One can expect the equivalences predicted in Conjecture 2.20 will be
perverse. The filtration should be provided by Lusztig’s a-function.

We expect the action of Free(#P (8)) x &(4) on T relates to Bridgeland’s space
of stability conditions [15, §4].

Remark 2.31. The considerations above are interesting for Calabi—Yau algebras of
positive dimension. Given [ a subset of 4, one obtains a torsion theory that needs not
always come from a tilting complex. When r = 2 and |8, — 41| = 1, tilting has been
known in string theory as Seiberg duality.

3. Invariants

Invariants of triangulated categories and dg-categories are discussed in [55, §6]. We
discuss here some more elementary invariants, used to study finite dimensional alge-
bras.

3.1. Automorphisms of triangulated categories

3.1.1. Rings. Letkbeacommutative ring and A be a k-algebra. We denote by Pic(A)
the group of isomorphism classes of invertible (A, A)-bimodules and by DPic(A) the
group of isomorphism classes of invertible objects of the derived category of (A, A)-
bimodules: this is the part of the automorphism group of D(A-Mod) that comes from
standard equivalences. By Rickard’s Theorem, DPic(A) is invariant under derived
equivalences.

The following Proposition has been observed by many people (Rickard, Roggen-
kamp-Zimmermann, [93, Proposition 3.3], [103, Proposition 3.4],...).
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Proposition 3.1. If A is local, then DPic(A) = Pic(A) x (A[1]).

Given R a flat commutative Z-algebra, there is a canonical morphism DPic(A) —
DPic(A ®z R) (joint work with A. Zimmermann [93, §2.4]). If R is faithfully flat
over Z, the kernel of that map is contained in Pic(A). This is the key point for the
following (cf. [103, Proposition 3.5] and [93, Proposition 3.3]):

Theorem 3.2. Assume A is commutative and indecomposable. Then DPic(A) =
Pic(A) x (A[1]).

3.1.2. Invariance of automorphisms. Let A be a finite dimensional algebra over
an algebraically closed field k. We denote by Aut(A) the group of automorphisms
of A. This is an algebraic group and we denote by Inn(A) its closed subgroup of
inner automorphisms. We put Out(A) = Aut(A)/Inn(A). We have a morphism of
groups Aut(A) — Pic(A), o +— [Ay], where Ay, = A as a left A-module and the
right action of a € A is given by right multiplication by «(a). It induces an injective
morphism Out(A) — Pic(A).

The following result [91] gives a functorial interpretation of Out, to be compared
with the functorial interpretation of Pic(X) for a smooth projective variety X.

Theorem 3.3. The functor from the category of affine varieties over k to groups that
sends X to the set of isomorphism classes of (A @ A°PP ® Ox)-modules that are
locally free of rank 1 as (A ® Ox) and as (A°PP @ Ox)-modules is represented by
Out(A).

The following theorem [91] shows the invariance of Out?, the identity component
of Out, under certain equivalences. In the case of Morita equivalences, it goes back to
Brauer, and for derived equivalences, it has been obtained independently by Huisgen-
Zimmermann and Saorin [49]. In these cases, it follows easily from Theorem 3.3
while, for stable equivalences, some work is needed to get rid globally of projective
direct summands.

Theorem 3.4. Let B be a finite dimensional k-algebra and let C be a bounded complex
of finitely generated (A, B)-bimodules inducing a derived equivalence or a stable
equivalence (in which case we assume A and B are self-injective). Then there is a

unique isomorphism of algebraic groups o : Out’(A) = Out®(B) such that Ay ® 4
C >~ C ®p By(q) for all a € Out’(A).

Yekutieli [104] deduces that DPic(A) has a structure of a locally algebraic group,
with connected component Out®(A).

3.1.3. Coherent sheaves. The following result [91] is a variant of Theorem 3.4.

Theorem 3.5. Let X and Y be two smooth projective schemes over an algebraically
closed field k. An equivalence DP(X) ~s pb (Y) induces an isomorphism Pic®(X) %
Aut®(X) = Pic®(Y) x Aut®(Y).
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This implies in particular that if A and B are derived equivalent abelian varieties,

then there is a symplectic isomorphism A x A =5 B x B (and the converse holds
as well [71], [74]).

3.1.4. Automorphisms of stable categories and endo-trivial modules. Let A be a
finite dimensional self-injective algebra over an algebraically closed field k.
We denote by StPic(A) the group of isomorphism classes of invertible objects of
(A ® A°PP)-mod.

Let P be an £-group and k a field of characteristic £. A finitely generated k P-
module L is an endo-trivial module if L ®; L* ~ k in kP-mod or equivalently, if
End, p 5q(L) = k [25]. Note that the classification of endo-trivial modules has been
recently completed [27] (the case where P is abelian goes back to [34]).

Let 7 (k P) be the group of isomorphism classes of indecomposable endo-trivial
modules. We have an injective morphism of groups

T (kP) — StPic(kP), [L] ~ [Ind5 %P L].

This extends to an isomorphism 7 (kP) x Out(kP) = StPic(kP) ([64, §3] and
[26, §2]).

Let O be an £-group. A stable equivalence of Morita type k P-mod —> k Q-mod
induces an isomorphism 7 (k P) = T (kQ). It actually forces the algebras k P and
k Q to be isomorphic ([64, §3], [26, Corollary 2.4]). It is an open question whether
this implies that P and Q are isomorphic.

Theorem 3.6 ([26, Theorem 3.2]). Let P be an abelian £-group and E a cyclic
U'-group acting freely on P. We put G = P x E. Then StPic(kG) = Pic(kG) - ().
In particular, the canonical morphism TrPic(kG) — StPic(kG) is surjective.

Remark 3.7. Let A be a block over k of a finite group, with defect group isomor-
phic to P and Ng(P)/P acting as E on P. From Theorem 3.6, one deduces [26,
Corollary 4.4] via a construction of Puig [77], that a stable equivalence of Morita
type between A and kG lifts to a Rickard equivalence if and only if A and kG are
Rickard equivalent if and only if they are splendidly Rickard equivalent. In particular,
for blocks with abelian defect group D such that Ng(D, bp)/Cg (D) is cyclic, then
Conjecture 2.2 implies Conjecture 2.10.

3.2. Gradings. In this section, we describe results of [91].

3.2.1. Transfer of gradings. We assume we are in the situation of Theorem 3.4.
Assume A is graded, i.e., there is a morphism G,, — Aut(A). The induced morphism
G,, — Out(A) induces a morphism G, — Out’(B). There exists a lift to a
morphism G,, — Aut’(B), and this corresponds to a grading on B. There is a
grading on (an object isomorphic to) C that makes it into a complex of graded (A, B)-
bimodules and it induces an equivalence between the appropriate graded categories.
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Let A be a self-injective indecomposable graded algebra, let n be the largest integer
such that A, # 0, and let C € Z[q, g~'] be the graded Cartan matrix of A.

If A is non-negatively graded and the Cartan matrix of Ag has non-zero deter-
minant, then degdet(C) = nr, where r is the number of simple A-modules. As a
consequence, one gets a positive solution of a “non-negatively graded” version of
Conjecture 2.5:

Proposition 3.8. Let A and B be two indecomposable self-injective non-negatively
graded algebras. Assume Ag has finite global dimension and there is a graded stable
equivalence of Morita type between A and B. Then A and B have the same number
of simple modules.

Remark 3.9. Let A be anon-negatively graded indecomposable self-injective algebra
with Ag of finite global dimension. Let B be a stably equivalent self-injective algebra.
One could hope that there is a compatible grading on B that is non-negative, but this
is not possible in general. It would be still be very interesting to see if this can be
achieved if the grading on A is “tight” in the sense of Cline—Parshall-Scott, i.e., if
@i Aj = (JA)' (cf. the gradings in § 3.2.2).

3.2.2. Blocks with abelian defect. Let P be an abelian £-group and k an alge-
braically closed field of characteristic £. The algebra k P is (non-canonically) isomor-
phic to the graded algebra associated to the radical filtration of kP. Fixing such an
isomorphism provides a grading on k P. Let E be an £’-group of automorphisms of P.
Then the isomorphism above can be made E-equivariant and we obtain a structure
of graded algebra on kP x E extending the grading on k P and with K E in degree O.
Given a central extension of E by k*, this construction applies as well to the twisted
group algebra k, P X E.

Let A be a block of a finite group over k with defect group D. Then there is E and
a central extension as above such that the corresponding block of Ng (D) is Morita
equivalent to k. D x E [60]. So, Conjecture 2.2 predicts there are interesting gradings
on A. In the inductive approach to Conjecture 2.11, there is a stable equivalence of
Morita type between A and k. D x E, and we can provide A with a grading compatible
with the equivalence (but we do not know if the grading can be chosen to be non-
negative).

Remark 3.10. The gradings on blocks with abelian defect should satisfy some
Koszulity properties (cf. [73], as well as work of Chuang). Turner [101] expects
that gradings will even exist for blocks of symmetric groups with non abelian defect.

Remark 3.11. Using the equivalences in § 4.1, we obtain gradings on blocks of
abelian defect of symmetric groups and on blocks of Hecke algebras over C. One can
expect the corresponding graded Cartan matrices to be given in terms of Kazhdan—
Lusztig polynomials. So, the equivalences carry some “geometric meaning”.
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3.3. Dimensions

3.3.1. Definition and bounds. Let us explain how to associate a dimension to a
triangulated category 7 (cf. [88]). For the derived category of a finite dimensional
algebra, this is related to the Loewy length and to the global dimension, none of which
are invariant under derived equivalences.

Given {; and > two subcategories of 7, we denote by 4 * {o the smallest full
subcategory of 7 closed under direct summands and containing the objects M such
that there is a distinguished triangle

M]—)M—)Mzw

with M; € 4;. Given M € T, we denote by (M) the smallest full subcategory of T
containing M and closed under direct summands, direct sums, and shifts. Finally, we
put (M)o = 0 and define inductively (M); = (M);_1 * (M).

The dimension of 7~ is defined to be the smallest integer d > 0 such that there is
M e T with T = (M)g41 (we set dim T = oo if there is no such d). The notion
of finite-dimensionality corresponds to Bondal-Van den Bergh’s property of being
strongly finitely generated [10].

Given a right coherent ring A, then dim D?(A) < gldim A (cf. [59, Proposi-
tion 2.6] and [88, Propositions 7.4 and 7.24]).

Let A be a finite dimensional algebra over a field k. Denote by J (A) the Jacobson
radical of A. The Loewy length of A is the smallestintegerd > 1 suchthat J(A)¢ = 0.
We have dim D?(A) < Loewy length(A).

Let X be a separated scheme of finite type over a perfect field k.

Theorem 3.12. We have dim D?(X) < oo.
e If X is reduced, then dim D (X) > dim X.
o If X is smooth and quasi-projective, then dim D?(X) < 2 dim X.
e If X is smooth and affine, then dim D?(X) = dim X.

There does not seem to be any known example of a smooth projective variety X
with dim D?(X) > dim X, although this is expected to happen, for example when X
is an elliptic curve (note nevertheless that dim D?(P") = n).

Note that a triangulated category with finitely many indecomposable objects up
to isomorphism has dimension 0. This applies to D?(kQ), where Q is a quiver of
type ADE. This applies also to the orbit categories constructed by Keller (cf. [55,
§4.9], [54, §8.4]). They depend on a positive integer d, and they are Calabi—Yau of
dimension d.

When 7 is compactly generated, the property for 7 ¢ to be finite-dimensional can
be viewed as a counterpart of having “finite global dimension”.
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3.3.2. Representation dimension. Auslander [5] introduced a measure for how far
an algebra is from being representation finite. The example of exterior algebras
below shows that this notion is pertinent. Let A be a finite dimensional algebra. The
representation dimension of A is inf{gldim(A & A* ® M)} cA-mod- This is known
to be finite [50].

In [89], we show that this notion is related to the notion of dimension for associated
triangulated categories. For example, dim D”(A) < repdim A.

Let A be a non semi-simple self-injective k-algebra. We have

2 4+ dim A-mod < repdim A < Loewy length(A)

(the second inequality comes from [5, §II1.5, Proposition]).
The following theorem is obtained by computing dim A (k")-mod via Koszul du-
ality. It gives the first examples of algebras with representation dimension > 3.

Theorem 3.13. Let n be a positive integer. We have repdim A (k") = n + 1.

Remark 3.14. One can actually show more quickly [59] that the algebra with quiver

X1 X1
0 e 1 n— 1/xn
\_/ \_:/
Xn+1 Xn+1

and relations x;x; = x;x; has representation dimension > n, using that its derived
category is equivalent to Db (P™) [6].

Using the inequality above, one obtains the following theorem, which solves the
prime 2 case of a conjecture of Benson.

Theorem 3.15. Let G be a finite group and k a field of characteristic 2. If G has a
subgroup isomorphic to (Z/2)", then n < Loewy length(kG).

4. Categorifications

This chapter discusses the categorifications of two structures, which are related to
derived equivalences. We hope these categorifications will eventually lead to the
construction of four-dimensional quantum field theories (as advocated in [33]), via
the construction of appropriate tensor structures.

4.1. sly

4.1.1. Abelian defect conjecture for symmetric and general linear groups. Let G
be a symmetric group and B an £-block of kG with defect group D. Assume D is
abelian and let w = log, |D|. In 1992, a three steps strategy was proposed for
Conjecture 2.10 (inspired by the simpler character-theoretic part [84]):
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¢ Rickard equivalence between k(Z /¢ x Z/(£ — 1)) 1 G, and the principal block

* Morita equivalence between the principal block of kG, : G, and By;
* Rickard equivalence between B, and B.

Here, By, is a certain £-block of symmetric groups (a “good block™). Scopes [94] has
constructed a number of Morita equivalences between blocks of symmetric groups.
For fixed w, there are only finitely many classes of blocks of symmetric groups up
to Scopes equivalence, and By, is defined to be the largest block that is not Scopes
equivalent to a smaller block.

The first equivalence is deduced from an equivalence between the principal blocks
of Gy and Z/¢ x Z/(£ — 1) via Clifford theory [68].

The second equivalence was established by Chuang and Kessar [28], the functor
used is a direct summand of the induction functor.

The third equivalence is part of the general problem, raised by Broué, of construct-
ing Rickard equivalences between two blocks of symmetric groups with isomorphic
defect groups (equivalently, with same local structure). Rickard [80] constructed
complexes of bimodules that he conjectured would solve that problem, generalizing
Scopes construction (case where the complex has only one non-zero term). Rickard
proved the invertibility of his complexes when they have two non-zero terms. The
general case has proven difficult to handle directly.

Remark 4.1. The same strategy applies for general linear groups (in non-describing
characteristic). Theorem 2.15 reduces the study to unipotent blocks. Step 2 above
was handled in [69], [100]. As pointed out by H. Miyachi, this generalizes Puig’s
result [76] (GL,(¢), £ | (g — 1)).

Remark 4.2. “Good” blocks of symmetric groups have “good” properties. After the
Morita equivalence theorem of [28], their properties were first analyzed by Miyachi
[69], in the more complicated case of general linear groups: decomposition matrices
and radical series of Specht modules were determined in the abelian defect case, by a
direct analysis of the wreath product. As a consequence, decomposition matrices were
known for good blocks of Hecke algebras in characteristic zero. For good blocks of
symmetric groups with abelian defect, as well as for Hecke algebras in characteristic
zero, a direct computation of the decomposition numbers is given in [52] (cf. also
[51] for earlier results in that direction) and another approach is the determination of
the relevant part of the canonical/global crystal basis [31], [32], [61].

For blocks of symmetric groups with non abelian defect, the decomposition ma-
trices can be described in terms of decomposition matrices of smaller symmetric
groups and remarkable structural properties are conjectured by Turner [101], [102],
[72]. Good blocks have also been used by Fayers for the classification of irreducible
Specht modules [40] and to show that blocks of weight 3 have decomposition num-
bers 0 or 1 (for £ > 3) [41].
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4.1.2. Fock spaces. Let us recall the Lie algebra setting for symmetric group rep-
resentations (cf. e.g. [4]). Let M = @, Q ®z Ko(CS,-mod). The complex
irreducible representations of the symmetric group &,, are parametrized by partitions
of n and we obtain a basis of M parametrized by all partitions. We view M as a
Fock space, with an action of 5A[g and we recall a construction of this action, for the
generators e, and f, (where a € Fy).

We have a decomposition

]FZGn _
ReSFZ(‘Bn*] - @ Fa’

aEF[

where F, (M) is the generalized a-eigenspace of X,, = (1, n)+(2,n)+---+(n—1, n).
Taking classes in Ky and summing over all n, we obtain endomorphisms f, of

V =P Q®z Ko(FS,-mod).

n>0

Using induction, we obtain similarly endomorphisms e, (adjoint to the f,). The

decomposition lifts to a decomposition of Res%ig” | and we obtain endomorphisms
e

eq and f, of M. The decomposition map M — V and the Cartan map P, Q ®z

Ko(F¢S,-proj) — M are morphisms of g[g—modules. The image of the Cartan map
is the irreducible highest weight submodule L of M generated by [{].

Let us note two important properties relating the module structure of V and the
modular representation theory of symmetric groups:

* The decomposition of V into weight spaces corresponds to the block decom-
position.

* Two blocks have isomorphic defect groups if and only if they are in the same
orbit under the adjoint action of the affine Weyl group Ay_;.

In order to prove that two blocks of symmetric groups with isomorphic defect
groups are derived equivalent, it is enough to consider a block and its image by a
simple reflection s, of A¢_; (this involves only the sl,-subalgebra generated by e,
and f,). This is the situation in which Rickard constructed his complexes ®,,.

Remark 4.3. These constructions extend to Hecke algebras of symmetric groups
over C, at an £-th root of unity (here, £ > 2 can be an arbitrary integer). In that situa-
tion, the classes of the indecomposable projective modules form the canonical/global
crystal basis of L (Lascoux—Leclerc-Thibon’s conjecture, proven by Ariki [3], cf.
also [43]).

4.1.3. slp-categorifications. We describe here joint work with J. Chuang [29] (cf.
also [90] for a survey and [44], [45], [7], [42] for related work). This is the special
case of a more general theory under construction for Kac—-Moody algebras.



214 Raphaél Rouquier

Let k be an algebraically closed field and 4 a k-linear abelian category all of
whose objects have finite composition series.
An slp-categorification on 4 is the data of

e (E, F) apair of adjoint exact functors A — A4,
* X €eEnd(E), T € End(E?),q € k*,and a € k (witha # 0if g # 1)
satisfying the following properties:
e [E] and [F] give rise to a locally finite representation of sl on Ko(+4),
* for § a simple object of 4, [S] is a weight vector,
» F is isomorphic to a left adjoint of E,
(T1g) o AgT) o (T1g) = AT) o (T1g) o (AeT),
(T +1g2) o (T —qlp2) =0,
q(X1g)  ifg #1,
Xlg—T ifg=1,
¢ X — alg is locally nilpotent.

To(lgX)oT =

From that data, we define two truncated powers E %) (non-canonically isomor-
phic), using an affine Hecke algebra action on E”. Following Rickard, we construct
a complex © with terms E¢) FU-1),

The following theorem is proved by reduction to the case of “minimal categorifi-
cations”, which are naturally associated to simple representations of sl;.

Theorem 4.4. © gives rise to self-equivalences of K b(A) and DP(A). This cate-
gorifies the action of ( _01 (1)) on Ko(A).

Remark 4.5. The self-equivalence © is perverse (cf. § 2.6), and this is a crucial point
in the proof.

The construction of § 4.1.2 provides a structure of sly-categorification on A =
D,~0 FeS,-mod (for a given a € F¢). From the previous theorem, we deduce

Corollary 4.6. Two blocks of symmetric groups with isomorphic defect groups are
splendidly Rickard equivalent.
Conjecture 2.10 holds for blocks of symmetric groups.

This corollary has a counterpart for GL, (F;) and £ { g.

Remark 4.7. In general, there is a decomposition A = P, 4, coming from the
weight space decomposition of Ko(#4). There is a categorification of [e, f] = & in

the form of isomorphisms E F| 4, = FE 4, © Id%k (for A > 0).

Remark 4.8. One can give a definition of sl,-categorifications for triangulated cate-
gories and the definition above becomes a theorem that says that there is an induced
categorification on K b(4) (and on D?(A)).
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Remark 4.9. One can also construct sl,-categorifications on category O for gl,(C)
and for rational representations of GL, (Fp). One deduces from Theorem 4.4 that
blocks with the same stabilizers under the affine Weyl groups are derived equivalent
(a conjecture of Rickard).

Remark 4.10. The endomorphism X has different incarnations: Jucys—Murphy ele-
ment, Casimir,....

Remark 4.11. It is expected that the functors ®, constructed for a € F, provide an
action of the affine braid group BAH on P, DY (F,5,).

4.2. Braid groups

4.2.1. Definition. We present here a categorification of braid groups associated to
Coxeter groups, following [90]. This should be useful for the study of categories
of representations of semi-simple Lie algebras, affine Lie algebras, simple algebraic
groups over an algebraically closed field,... On the other hand, work of Khovanov
[56] shows its relevance for invariants of links (type A), cf. also [98].

Let (W, S) be a Coxeter group, with S finite. Let V be its reflection representation
over C and let By be the braid group of W. Let A = C[V]. Given s € S, let

F,=0—> AQu A ﬂ) A — 0, where A is in degree 1. This is an invertible

object of K?(A ® A). Given two decompositions of an element of By in a product of
the generators and their inverses, we construct a canonical isomorphism between the
corresponding products of Fs. The system of isomorphism coming from the various
decompositions of an element b € By is transitive and, taking its limit, we obtain an
element F;, € K”(A ® A). The full subcategory of K”(A ® A) with objects the F},’s
defines a strict monoidal category By .

We expect that there is a simple presentation of By by generator and relations (or
rather of a related 2-category involving subsets of §). This should be related to the
vanishing of certain Hom-spaces, for example Homgsgga)(Fb, F, 1i]) should be
0 when b and b’ are the canonical lifts of distinct elements of W.

Remark 4.12. The bimodules obtained by tensoring the A ® 4s A are Soergel’s bi-
modules. Soergel showed they categorify the Hecke algebra of W. He also conjec-
tured that the indecomposable objects correspond to the Kazhdan—Lusztig basis of W
(961, [97].

Remark 4.13. When W is finite, one can expect that there is a construction of By
that does not depend on the choice of S. Such a construction might then make sense
for complex reflection groups.

4.2.2. Representations and geometry. Let g be a complex semi-simple Lie algebra
with Weyl group W and let O be the principal block of its category (. It has been
widely noticed that there is a weak action of By on D?(©), using wall-crossing
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functors. We show that there is a genuine action of By on D?(0p) and there is a
much more precise statement: there is a monoidal functor from By to the category
of self-equivalences of D”(®p). This has a counterpart for the derived category of
B-equivariant sheaves on the flag variety (in which case the genuine action of the braid
group goes back to [36]). These actions are compatible with Beilinson—Bernstein’s
equivalence. Conversely, a suitable presentation of By by generators and relations
should provide a quick proof of that equivalence (and of affine counterparts), in
the spirit of Soergel’s construction. The representation-theoretic and the geometrical
categories should be viewed as two realizations of the same “2-representation” of Byy.
Also, this approach should give a new proof of the results of [2] comparing quantum
groups at roots of unity and algebraic groups in characteristic p.
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1. Introduction

Although the theory of infinite groups is very rich and full of powerful results, there
are very few results having more influence on group theory and surrounding areas of
mathematics (especially geometry and topology) as the following five.

* The Boone—Novikov theorem about existence of finitely presented groups with
undecidable word problem [8], [35].

* The Higman theorem about embeddability of recursively presented groups into
finitely presented groups [28];

* The Adian—Novikov solution of the Burnside problem [36].
* Gromov’s theorem about groups with polynomial growth [23].

* Olshanskii and his students’ theorems about existence of groups with all proper
subgroups cyclic (Tarski monsters), and other finitely generated groups with
extreme properties [38].

In this paper, I am going to survey the last ten years of my work on the topics
related to these results.
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2. S-machines

Recall that a Turing machine, say, with one tape is a triple (Y, Q, ®) where Y is a
tape alphabet, Q is the set of states, ® is a set of commands (transitions) of the form
0 = [U — V] where U has the form vqu and V has the form v'q’u’. Here u, v,
u’ and v are words in the tape alphabet, ¢, g’ € Q. A configuration of the Turing
machine is a word wgw’ where w, w’ are words in the tape letters, g is a state letter.
To apply the command [U — V] to a configuration, one has to replace U by V.

In order to specify a Turing machine with many tapes, one needs several dis-
joint sets of state letters. A configuration of the machine is a word of the form
uiqiuy ... UNgNUN+1 Where g; are state letters, u; are words in tape letters. Of course
one needs to separate tapes. That can be done by using the special symbols (endmark-
ers) marking the beginning and the end of each tape. But these symbols can be treated
as state letters as well. Every transition has the form [U; — Vi,..., Uy — Vyl,
where [U; — V;] is a transition of a 1-tape machine.

Among all configurations of a machine M, one chooses one accept configura-
tion W. Then a configuration Wi is called accepted if there exists a computation
Wy — Wy — --- — W, = W where each step consists in application of a command
of W.

Recall that the time function of a (non-deterministic) Turing machine is the small-
est function f(n) such that every accepted input w of size at most n requires at most
f (n) steps of the machine to be accepted.

The “common denominator” of the proofs of most of the results I am reviewing
here is the notion of an S-machine that I introduced in [50]. Roughly speaking,
S-machines make building groups with prescribed properties as easy as programming
a Turing machine.

Essentially, an S-machine is simply an HNN-extension of a free group, although
not every HNN-extension of a free group is an S-machine.

Let us start with an example that we shall call the Miller machine. 1t is the famous
group of C. Miller [34]. Let G = (X | R) be a finitely presented group. The Miller
machine is the group M (G) generated by X U {g} U {6, | x € X} U {6, | r € R}
subject to the following relations

Ox =x0, Oixq =qx0, 0,q=qrb,

where 6 is any letter in ® = {6, | x € X} U {6, | r € R}. Clearly, this is an HNN-
extension of the free group (X, ¢g) with free letters & € ®. The main feature of M (G)
discovered by Miller is that M (G) has undecidable conjugacy problem provided G
has undecidable word problem. In fact it is easy to see that gw is conjugated to g in
M(G)ifandonly if w = 1in G.

To see that M(G) can be viewed as a machine, consider any word uqv where
u,v are words in X U X!, If we conjugate ugv by 6,, we get the word ugrv
because 6,q = gr6, and 6, commutes with u and v (here and below we do not
distinguish words that are freely equal). Hence conjugation by 6, amounts to executing
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acommand [q — ¢r]. Similarly, conjugation by 6, amounts to executing a command
g — x"'gx]. If u ends with x, then executing this command means moving ¢ one
letter to the left. Thus conjugating words of the form ugv by 8’s and their inverses,
we can move the “head” g to the left and to the right, and insert relations from R.

The work of the Miller machine M (G) can be drawn in the form of a diagram (see
Figure 1) that we call a trapezium. Itis atessellation of adisc. Each cell corresponds to
one of the relations of the group. The bottom layer of cells in Figure 1 corresponds to
the conjugation by 6, the next layer corresponds to the conjugation by 6,, etc. These
layers are the so-called 6-bands. The bottom side of the boundary of the trapezium is
labeled by the first word in the computation (1qv), the top side is labeled by the last
word in the computation (¢q), the left and the right sides are labeled by the history of
computation, the sequence of 6’s and their inverses corresponding to the commands
used in the computation uqv — --- — q. The words written on the top and bottom
sizes of the #-bands are the intermediate words in the computation. We shall always
assume that they are freely reduced.

qx

-

v o

Figure 1. Trapezium of the Miller machine for a deduction ugv — --- — ¢q. Hereu = y ... x,
vV=...Z2.

The Miller machine has one tape and one state letter. General S-machines can
have many tapes and many state letters. Here is a formal definition.

Let F(Q, Y) be the free group generated by two sets of letters Q = UlN:] Q; and
Y = UlN: _1] Y; where Q; are disjoint and non-empty (below we always assume that
On+1 = Qr,and Yy = Yy = 0).

The set Q is called the set of g-letters, the set Y is called the set of a-letters.

In order to define an HNN-extension, we consider also a collection ® of N-tuples
of f-letters. Elements of ® are called rules. The components of 8 are called brothers

01, ...,0n. We always assume that all brothers are different. We set Oy1 = 6y,
Yo=Yy =0.

With every 6 € ®, we associate two sequences of elements in F(QUY): B(f) =
[Ui,...,Un], T®) = [V1,...,Vy], and a subset Y (f) = UY;(0) of Y, where

Y;(0) €Y.
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The words U;, V; satisfy the following restriction:
(*) Foreveryi =1,..., N, the words U; and V; have the form
Ui = vi_tkiu;, V; =vi_ku.

where k;, k! € Q;, u; and u} are words in the alphabet Yiil, v, and v]_, are
words in the alphabet Yl.jill.

Now we are ready to define an S-machine § by generators and relations. The
generating set X of the S-machine 4 consists of all g-, a- and 6-letters. The relations
are:

U,-@,-+1=0,-\/,~, i=1,...,s, Q_/CZZQQJ'

forall a € Y;(0). The first type of relations will be called (g, 8)-relations, the second
type (a, 6)-relations.

Sometimes we will denote therule 6 by [U; — Vi, ..., Uy — Vy]. Thisnotation
contains all the necessary information about the rule except for the sets ¥; (). In most
cases it will be clear what these sets are: they are usually equal to either ¥; or . By
default Y; (0) = Y;.

Every S-rule 8 = [U; — Vi,...,Us — Vi] has an inverse -l =[v, >
Ui, ..., Vs —> Ugl; weset Y; (071 = Y;(0).

Remark 2.1. Every S-machine is indeed an HNN-extension of the free group F (Y, Q)
with finitely generated associated subgroups. The free letters are 81 for every 6 € ©.
We leave it as an exercise to find the associated subgroups.

Every Turing machine T can be considered as an S-machine S’(7) in the natural
way: the generators of the free group are all tape letters and all state letters. The
commands of the Turing machine are interpreted as rules of the S-machine. The
main problem in that conversion is the following: there is a much bigger freedom
in applying S-rules than in executing the corresponding commands of the Turing
machine. Indeed, the Turing machine is in general not symmetric (i.e. if [U — V]
is a command of the Turing machine then [V — U] is usually not) while every S-
machine is symmetric. Another difference is that Turing machines work only with
positive words, and S-machines work with arbitrary group words. Hence the language
accepted by S'(T) is usually much bigger than the language accepted by T.

Nevertheless, it can be proved that if 7' is symmetric, and a computation w; —
wy — - -- of the S-machine §’(T) involves only positive words, then that is a com-
putation of 7.

This leads to the following idea of converting any Turing machine 7 into an S-
machine S(7). First we construct a symmetric Turing machine T’ that is equivalent
to T (recognizes the same language). That is a fairly standard Computer Science
trick (see [50]): the machine T’ first guesses a computation of T, then executes it,
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then erases all the tapes. Note that the time function and the space function of T are
equivalent to the time function of 7T'.

The second step is to compose the S-machine S’(T”) with a machine that checks
positivity of a word. That machine starts working after every step of S’(7’). That
is if an application of a rule of S'(T”) gives a non-positive (reduced) word then the
checking machine does not allow the machine S’(T") to proceed to the next step.

There are several checking machines. One of them — the adding machine —is very
simple but its time function is exponential (see [42]). Another one is very complicated
but it has a quadratic time function (see [50]).

Here is the definition of the adding machine. We present it here also in order to
show an example of a program of an S-machine. It is not difficult to program an
S-machine, but it does require some practice.

Let A be a finite set of letters. Let the set A| be a copy of A. It will be convenient
to denote A by Ag. For every letter ay € Ag, a; denotes its copy in A;. The set
of state letters of the adding machine Z(A) is P U P, U P3 where P, = {L}, P, =
{p(1), p(2), p(3)}, P3 = {R}. The set of tape letters is Y1 U Y» where Y1 = Ag U A
and Y, = Ap.

The adding machine Z(A) has the following rules (there a is an arbitrary letter
from A) and their inverses. The comments explain the meanings of these rules.

e ri(a)=[L— L, p(l)— al_lp(l)a(), R — R].

Comment. The state letter p(1) moves left searching for a letter from Ag and
replacing letters from A by their copies in Ayp.

e rio(@) = [L — L, p(1) — ay 'a1p(2), R — RI.

Comment. When the first letter ag of Ag is found, it is replaced by aj, and p
turns into p(2).

* rn@=[L—L,pR2)— aop(2)a0_1, R — R].
Comment. The state letter p(2) moves toward R.

1 =[L— L,p2)— p(1), R — R], Y1(r21) = Y1, Ya(r21) = 0.
Comment. p(2) and R meet, the cycle starts again.

er3=[L— L,p(l)— p3),R— R],Yi(r13) =0, Y2(r13) = Ao.

Comment. If p(1) never finds a letter from Ay, the cycle ends, p(1) turns into
p(3); p and L must stay next to each other in order for this rule to be executable.

* r3(@)=[L — L, p(3) = aop(3)a; ', R — R1, Y1(r3(a)) = Y2(r3(a)) = Ao.

Comment. The letter p(3) returns to R.

The underlying algorithm of the adding machine is simple: the machine starts
with a word Lwp(1)R, where w is a word in A U A L L, p(1), R are state letters. It
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considers the sequence of indexes of the letters in w as a binary number. The initial
number is 0. The machine proceeds by adding 1 to this number until it produces 2" — 1
where 7 is the length of the word (each cycle of the machine adds a 1). After that,
the machine returns the word to its initial state (all indexes are 0). If the initial word
contained a negative letter, the state letter of the adding machine never becomes p(3).

To compose a checking machine Z with an S-machine 4 means inserting state
letters of Z between any two consecutive state letters of 4, and changing the rules
of 4 in an appropriate way: every rule of 4 “turns on” the checking machines. After
they finish their work, 4 can apply another rule (provided the word is still positive).
If Z is a checking machine then the composition of 4 and Z is denoted by & o Z.

The following results from [50] are very important for the applications. The
equivalence of S-machines, their time functions, space functions, etc. are defined as
for ordinary Turing machines.

We say that two increasing functions f, g: Zy — Z4 are equivalent if

ig <£)—Cn < f(n) <Cg(Cn)+Cn (1)
c”\C a B

for some constant C. We are not going to distinguish equivalent functions in this note.
Thus n32 is the same as 5132 but different from 32 log n.

Theorem 2.2 (Sapir, [50]). Let T be a Turing machine. Then there exists an
S-machine 8 that is polynomially equivalent to T. Moreover the time function of 8
is equivalent (in the sense of (1)) to the cube of the time function of T, the space
Sfunction of 8 is equivalent to the time function of T.

Moreover, one can use Miller’s machines to simulate any Turing machine.

Theorem 2.3 (Sapir, [45]). Forevery Turing machine T there exists a finitely presented
group G such that the Miller machine M (G) is polynomially equivalent to T.

Thus any Turing machine can be effectively simulated by an S-machine with one
tape and only one state letter.

3. Dehn functions and the word problem

3.1. The definition. Let G = (X | R) be afinitely presented group. We shall always
assume that X = X!, R isa collection of words in the alphabet X closed under taking
inverses and cyclic shifts, i.e. if r € R, r = ab then r~! € R and ba € R.

The word problem in G asks, given a word w in X (i.e. a product of generators
of G), whether w is equal to 1 in G. Clearly, the word problem in all “ordinary”
groups is algorithmically decidable. For example, if the group is linear, then in order
to check if w = 1, one can just multiply matrices representing the generators of G in
the order of their appearance in w.
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About 70 years ago, van Kampen noticed that w = 1 in G if and only if one can
tessellate a disc with boundary labeled by w by tiles (cells) whose boundaries are
labeled by words in R.

That tessellation is called a van Kampen diagram for w. Itis also sometimes called
Dehn or disc diagram of w. For example, the trapezium in Figure 1 is a van Kampen
diagram over the S-machine M (G) with boundary label hugvh~'q~! where h is the
history of the computation.

For every w = 1 in G, the area a(w) is the smallest number of cells in the van
Kampen diagram for w, or the simplicial area of the (null-homotopic) loop labeled
by w in the Cayley complex Cayley(G, X). Combinatorially, that is the smallest
number of factors in any representation of w as a product of conjugates of the words
from R. From the logic point of view, that is the length of the shortest “proof” that
w = 11in G (steps of the “proof” are insertions of relations from R into W).

It is easy to see that the word problem in G is decidable if and only if the area
of a word w representing 1 in G is bounded from above by a recursive function in
the length of w. Madlener and Otto [33] and, independently, Gersten [19] introduced
a very basic characteristic of the algorithmic complexity of a group G, the Dehn
function 8g (n) of G: it is the smallest function d (n) such that the area of a word w of
length < n representing 1 in G does not exceed d(n). Of course 6 (n) depends on the
choice of generating set X. But Dehn functions corresponding to different generating
sets are equivalent in the sense of (1). Similarly, one can introduce the isodiametric
function of G by looking at the diameter of van Kampen diagrams instead of their
areas.

For example, the area of the trapezium in Figure 1 is approximately |/| times the
length of the longest 6-band in that trapezium, that can be interpreted as the product
of the time of the computation by its space. That observation is the key to converting
properties of the S-machine into the properties of the Dehn function.

3.2. The description. Dehn functions reflect in an easy and natural way both geo-
metric and algorithmic properties of a group, so it is natural to ask which functions
appear as Dehn functions of groups.

The first observation is not difficult.

Theorem 3.1 (See [50, Theorem 1.1]). Every Dehn function of a finitely presented
group G is (equivalent to) the time function of a Turing machine solving (non-deter-
ministically) the word problem in G.

The proof of this theorem in [50] is more complicated than it should have been.
An easier proof can be obtained by using [45, Lemma 1].

Not every increasing function can be equivalent to a time function of a Turing
machine. For example, if a time function f(n) does not exceed a recursive function
then it must be recursive. On the other hand, any “natural” function is the time
function of a Turing machine. In particular, if f(n) can be computed in time < f(n)
then f(n) is the time function of a deterministic Turing machine computing f(n).
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By a theorem proved by Gromov and Olshanskii among others, every finitely
presented group with subquadratic Dehn function is in fact hyperbolic, so its Dehn
function is linear. It is possible to deduce from a result of Kapovich and Kleiner [29]
that if the Dehn function is subquadratic even on an infinite subset of natural numbers
then the group is still hyperbolic. Dehn functions of nilpotent groups are bounded
by a polynomial [S]. Another source of groups with polynomial Dehn function is the
class of groups with simply connected asymptotic cones (Gromov, [24]). Moreover
if the asymptotic cones are simply connected then the isodiametric function of the
group is linear.

Recall that the asymptotic cone of a group G (see [24], [16] or [18]) is the ultra-
limit (or Gromov—Hausdorff limit) of a sequence X/d; where X is a Cayley graph
of G, limd; = oo, X/d; is the metric space X with distance function divided by d;
[23]. Asymptotic cones capture “global” geometric properties of the group G.

Of a particular interest are groups with quadratic Dehn function. That class of
groups includes the classes of automatic groups and CAT(0)-groups. Higher dimen-
sional Heisenberg groups [3], [43] and some solvable non-virtually nilpotent groups
[17] also have quadratic Dehn functions. That class contains more complicated groups
as well. The most striking example so far is the R. Thompson group

2 3 2
F = (xg,x1 | x}% = 7", x]0 = x}°"")
where a” = b~'ab. Recall that F is the group of all piecewise linear increasing
self-homeomorphisms of the unit interval with finitely many dyadic singular points
and all slopes powers of 2. Guba showed in [25] that F has a quadratic Dehn function.
One of the most interesting unsolved problems about this class is whether SL, (Z)
belongs to it for n > 4.

A very non-trivial result of Bridson and Groves [11] shows that every cyclic
extension of a finitely generated free group has quadratic Dehn function. On the
other hand, Olshanskii and I proved [42] that HNN extensions of free groups having
undecidable conjugacy problem must have Dehn function at least n2 log n. Together
with the result of Bridson and Groves it gives another proof of decidability of the
conjugacy problem for cyclic extensions of free groups [7].

Itis still unknown whether every group with quadratic Dehn function has decidable
conjugacy problem. Olshanskii and I gave a “quasi-proof™ of that in [42].

I think that it is most probable that the class of Dehn functions > n%logn is as
wide as the class of time functions of Turing machines. The next theorem confirms
that conjecture in the case of Dehn functions > n*.

Theorem 3.2 (See [50]). 1. Let Dy be the set of all Dehn functions d(n) > n* of
finitely presented groups. Let Ty be the set of time functions t(n) > n* of arbitrary
Turing machines. Let T* be the set of superadditive functions which are fourth powers
of time functions. Then

T4C Dy C T
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2. For every time function T (n) of a non-deterministic Turing machine with su-
peradditive T*(n) there exists a finitely presented group G with Dehn function T*(n)
and the isodiametric function T3(n).

Recall that a function f is superadditive if f(n +m) > f(m) + f(n) for any
m, n. The question of whether all Dehn functions are superadditive is one of the
unsolved mysteries of the subject. Together with Victor Guba [26], we proved that
the Dehn function of any non-trivial free product is superadditive. Thus if there are
non-superadditive Dehn functions then there are groups G such that G and G * Z
have different Dehn functions!

Theorem 3.2 has many corollaries. For example, it implies that the isoperimetric
spectrum, i.e. the set of ’s such that [n® | is a Dehn function, contains all numbers
o > 4 whose n-th digit can be computed by a deterministic Turing machine in time
less than 22". All “constructible” numbers (rational numbers, algebraic numbers,
values of elementary functions at rational points, etc.) satisfy this condition. On the
other hand, Theorem 3.1 implies that if « is in the isoperimetric spectrum then the n-th

digit of o can be computed in time < 22" (see [50] for details). The difference in the
number of 2’s in these expressions, is the difference between P and NP in Computer
Science (if P = NP then there should be two 2’s in both expressions).

Note that before [50] has been submitted to Annals of Mathematics (in 1997), only
a discrete set of non-integer numbers in the isoperimetric spectrum was known [10].
By the time the paper appeared in print (2002), that set increased by a dense subset in
[2, 00) [9]. Groupsin [10] with Dehn functions |n* |, @ ¢ N, have easier presentations
than groups based on S-machines having the same Dehn functions, but the construction
in [10], [9] is far from universal, and one cannot expect anything like Theorem 3.2
proved using their methods.

Other applications of Theorem 3.2 are:

* the first example of a finitely presented group with NP-complete word problem,

» examples of finitely presented groups with easy word problem (solvable in
quadratic time) and arbitrary large (recursive) Dehn functions.

3.3. The proof. Here is how our construction from [50] works. Take any Turing
machine M. Let M’ be the symmetric Turing machine described above. Let S(M")
be the S-machine obtained as a composition of §'(M’) with a positivity checking
S-machine from [50] working in quadratic time. The time function of S(M’) is T3
and the space function is T where 7 is the time function of M. We can assume that the
accepting configuration of S(M’) is some fixed word W of the form kjwikows ... ky
where N > 8 (for some small cancellation reasons) and all w; are copies of each other
written in disjoint alphabets and containing no tape letters. That can be achieved
by taking N copies of the initial Turing machine and making all of them work in
parallel. Finally add one hub relation W = 1 to the S-machine S(M’). The resulting
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group G(M) has Dehn function 7# provided T# is superadditive, and isodiametric
function 73.

The main idea of the proof is the following. Take the standard trapezium corre-
sponding to a computation W; — ... — W, = W, identify its left and right sides
(which have the same label). The resulting diagram has one hole with boundary la-
bel W. Insert the cell corresponding to the hub relation W = 1 into the hole. The
result is a van Kampen diagram, called a disc corresponding to the equality Wi = 1.
The area of that diagram is equal to the area of the trapezium (plus 1). So it is equiv-
alent to the product of the time of the computation by its space. The diameter of the
disc with perimeter < n is the time of the computation. Hence the worst area we
can get is 7, and the worst diameter is 7°. That gives the lower bound of the Dehn
function and the isodiametric function. The upper bound is obtained by using certain
surgeries on van Kampen diagrams. It turns out that every van Kampen diagram over
the group G (M) can be decomposed into a few discs and a diagram whose area is at
most cubic (with respect to the perimeter of the original diagram). Thus if the area of
a van Kampen diagram is large then most of the area is concentrated in the discs. It
turns out also that the sum of the perimeters of the discs does not exceed a constant
multiple of the perimeter of the diagram. This gives the desired upper bound of T'*
for the Dehn function (it is in this part of the proof where the superadditivity of T4 is
used) and T3 for the isodiametric function.

3.4. The Dehn functions of S-machines and chord diagrams. It is easy to see
that the Dehn function of an S-machine is at most cubic. Indeed, every van Kampen
diagram with perimeter of length n over the presentation of an S-machine is covered
by 6-bands that start and end on the boundary. There are also g-bands composed
of (g, 0)-cells, and a-bands composed of the commutativity (a, )-cells. It can be
proved that every 6-band intersects a g-band (an a-band) at most once. Hence the
total number of (g, 0)-cells is at most n2. Every other cell is an (a, 6)-cell. Each
a-band starts on the boundary of the diagram or on the boundary of a (g, )-cell, so
the total number of such bands is at most n” and the length of each of them is at
most n. Hence the total area is at most 7>,

It was conjectured by Rips and myself that the Dehn function of an S-machine
should in fact depend on the program of the S-machine. We thought that S-machines
should provide examples of groups with Dehn functions strictly between n? and n>.
It turned out to be the case. In particular, Olshanskii and I proved in [42] that if § is
any S-machine accepting language L, then the composition § o Z(A) of 4 and the
adding machine has Dehn function at most 72 log n and accepts the same language L.
Hence we get the following result.

Theorem 3.3 ([42]). There exists an S-machine with undecidable conjugacy problem
and Dehn function n* logn.

The idea of analyzing van Kampen diagrams over S-machines is to show that if the
area of a diagram is large then “most” of the area is inside large subtrapezia, and then
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analyze trapezia (i.e. computations of the S-machines). Note thatin a trapezium, every
6-band intersects every g-band, thus the band structure of a trapezium is somewhat
regular. In order to analyze irregular diagrams, Olshanskii introduced a measure of
irregularity, the dispersion. In fact, the dispersion is an invariant of the cord diagram
associated with every van Kampen diagram over an S-machine: the role of chords
is played by the 8-bands (7T -chords) and the g-bands (Q-chords). It is similar to a
Vassiliev invariant of knots.

As I mentioned before, n% log n is the smallest Dehn function of an HNN extension
of a free group with undecidable conjugacy problem. If the undecidability condition
is dropped, one can construct Dehn functions strictly between n? and n* log . In par-
ticular, Olshanskii [40] constructed an S-machine with non-quadratic Dehn function
bounded from above by a quadratic function on arbitrary long intervals. This gives
the first example of a finitely presented group with two non-homeomorphic asymp-
totic cones [41]: one of the asymptotic cones of this group is simply connected, and
another one is not.

Non-finitely presented groups with “very many” asymptotic cones are constructed
in [18] using completely different methods.

Theorem 3.4 (Drutu, Sapir [18]). There exist finitely generated groups with continu-
ously many (maximal theoretically possible if the Continuum Hypothesis is true [32])
non-homeomorphic asymptotic cones.

It is very interesting whether one can replace “finitely generated” by “finitely
presented” in Theorem 3.4. One can try to use Higman embeddings from Section 4
to construct such examples.

3.5. Non-simply connected asymptotic cones. Note that Theorem 3.2 gave some of
the first examples of groups with polynomial Dehn function and non-simply connected
asymptotic cones because their Dehn functions can be polynomial (if the original
Turing machine had polynomial time function) while their isodiametric functions are
not linear. The first examples of groups with polynomial (cubic) Dehn functions,
linear isodiametric functions and non-simply connected asymptotic cones were given
in [44]. That answered a question of Drutu from [16].
The groups in [44] are S-machines. The easiest example is this:

G=0,0,akl|a" =akl =ka,i=1,2).

The S-machine has one tape letter, one state letter and two rules [k — ka] (and their
inverses).

There is also an S-machine with Dehn function n? log n satisfying the same asymp-
totic properties. Note that n”logn cannot be lowered to n? because of a result of
Papasoglu [49]: all groups with quadratic Dehn functions have simply connected
asymptotic cones.

If a group has non-simply connected asymptotic cone, it is natural to ask what is its
fundamental group. We do not know what are the fundamental groups of asymptotic
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cones of S-machines. These groups may provide some interesting invariants of S-
machines and Turing machines, so it is worthwhile studying them.

The following theorem gives a partial answer to the question of what kind of
groups can be fundamental groups of asymptotic cones of finitely generated groups.

Theorem 3.5 ([18]). For every countable group C there exists an asymptotic cone
of a finitely generated group G whose fundamental group is isomorphic to the free
product of continuously many copies of C.

The proof does not use S-machines but uses some small cancellation arguments.
It would be interesting to find finitely presented groups with similar “arbitrary” fun-
damental groups of asymptotic cones. Perhaps the Higman embeddings discussed in
the next section will help solving that problem. Another very interesting problem (due
to Gromov [24]) is whether there exists an asymptotic cone of a finitely generated
group with non-trivial but at most countable fundamental group.

4. Higman embeddings

The flexibility of S-machines allowed us to construct several versions of Higman
embeddings (embeddings of recursively presented groups into finitely presented ones)
preserving certain properties of the group.

4.1. An easy construction. The easiest known construction of a Higman embedding
is the following. Let H be a recursively presented group (X | R). Then the set of all
words in X U X! that are equal to 1 in H is recursively enumerable. Hence we can
assume that R consists of all these words. Then there exists an S-machine recogniz-
ing R. More precisely, for every word w in X, it starts with a word q1wg2g3 ... gm
and ends with a word ¢1g> . . . g, if and only if w € R.

Again, as in the proof of Theorem 3.2, we consider N > § copies of this S-machine
and assume that the input of the S-machine 4 has the form

K(w) =kiqiwq . .. qmkaqiw'qs . .. qpks .. knt
and the accepting configuration
W =kiq1q2 .- Gmk2qy - . . k1.

Here w’, w”, ... are copies of w written in disjoint alphabets.

Let G be the group constructed as in the proof of Theorem 3.2 (see Section 3.3)
by imposing the hub relation W = 1 on 4. Then the word K (w) is equal to 1 in G if
and only if w € R.

Consider now another S-machine 4’ with input configuration

K'(w) = k19192 - - - qmkaqiw'qy . . . qks .. kny1.
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That machine works exactly like 4 in the part of the word between k; and k1, and
does nothing in the part between kq and k. Let G’ be the group obtained by imposing
the relation W = 1 on §’. Then K/(w) = 1 in G’ if and only if w € R.

Finally consider the amalgamated product § = G %4 G’ where A is generated by
all state and tape letters that appear in K'(W). In that group, for every w € R, both
K(w) = 1and K'(w) = 1. Hence w = 1. Thus there exists a natural homomorphism
from H into §. It is possible (and not too hard) to prove that this homomorphism is
injective. Hence H is inside a finitely presented group G.

Another version of embedding used in [6] employs the so called Aanderaa trick [1]:
instead of the amalgamated product, we used an HNN extension (see also the sur-
vey [45]).

Ones the embedding is established, it is important to understand which properties
of a group H can be preserved.

4.2. Dehn functions and quasi-isometric Higman embeddings. First results have
been obtained by Clapham [12] and Valiev [53] (see [46] for the history of these
results): they proved that the solvability (even recursively enumerable degree) of
the word problem and the level in the polynomial hierarchy of the word problem is
preserved under some versions of Higman embedding.

In [6], Birget, Olshanskii, Rips and the author of this paper obtained a much
stronger result.

Theorem 4.1 ([6]). Let H be a finitely generated group with word problem solvable
by a non-deterministic Turing machine with time function < T (n) such that T(n)* is
superadditive. Then H can be embedded into a finitely presented group G with Dehn
function < n*T (n®)* in such a way that H has bounded distortion in G.

This theorem immediately implies the following characterization of groups with
word problem in NP.

Theorem 4.2 ([6]). A finitely generated group H has word problem in NP if and only
if H is embedded quasi-isometrically into a finitely presented group with polynomial
Dehn function.

Note that the “if”” part of this theorem is trivial: if a finitely generated group is a
(not necessarily quasi-isometric) subgroup of a group with polynomial Dehn function,
its word problem is in NP. The converse part is highly non-trivial, although one can
prove that the embedding described in Section 4.1 satisfies the desired properties
(in [6], we used the Aanderaa trick).

From the logic point of view, Theorem 4.2 means that for every (arbitrary clever)
algorithm solving the word problem in a finitely generated group, there exists a finitely
presented group G > H such that the word problem in H (and, moreover, in G) can
be solved by the Miller machine M (G) in approximately the same time as the initial
algorithm.
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4.3. Preserving the solvability of the conjugacy problem. The conjugacy problem
turned out to be much harder to preserve under embeddings. Collins and Miller [14]
and Gorjaga and Kirkinskii[20] proved that even subgroups of index 2 of finitely
presented groups do not inherit solvability or unsolvability of the conjugacy problem.

In 1976 D. Collins [31] posed the following question (Problem 5.22): Does there
exist a version of the Higman embedding theorem in which the degree of unsolv-
ability of the conjugacy problem is preserved? In [46], [47] we solved this problem
affirmatively. In particular, we proved the following results.

Theorem 4.3 ([46]). A finitely generated group H has solvable conjugacy problem
if and only if it is Frattini embedded into a finitely presented group G with solvable
conjugacy problem.

Theorem 4.4 ([47]). Every countable recursively presented group with solvable word
and power problems is embeddable into a finitely presented group with solvable
conjugacy and power problem.

Recall that a subgroup H of a group G is Frattini embedded in G if every two
elements of H that are conjugate in G are also conjugate inside H. We say that G
has solvable power problem if there exists an algorithm which, given u, v in G says
if v = u”" for some n # 0.

Theorem 4.4 is a relatively easy application of Theorem 4.3.

The construction in [46] is much more complicated than in [6]. First we embed H
into a finitely presented group H; preserving the solvability of the word problem.
Then we use the Miller S-machine M (Hj) to solve the word problem in H. In order
to overcome technical difficulties, we needed certain parts of words appearing the
computation to be always positive. The standard positivity checkers do not work
because they are S-machines as well, and can insert negative letters! So we used
some ideas from the original Boone-Novikov proofs. That required introducing
new generators, x-letters (in addition to the a-, g-, and 6-letters in S-machines) and
Baumslag—Solitar relations. In addition, to analyze the conjugacy problem in G, we
had to consider annular diagrams which are more complicated than van Kampen disc
diagrams. Different types of annular diagrams (spirals, roles, etc.) required different
treatment.

We do not have any reduction of the complexity of the conjugacy problem in H to
the complexity of the conjugacy problem in G. In particular, solving the conjugacy
problem in G, in some cases required solving systems of equations in free groups (i.e.
the Makanin—Razborov algorithm).

5. Non-amenable finitely presented groups

One of the most important applications of S-machines and Higman embeddings so
far was the construction of a finitely presented counterexample to the von Neumann
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problem, i.e. a finitely presented non-amenable group without non-Abelian free sub-
groups [48].

5.1. Short history of the problem. Hausdorff [27] proved in 1914 that one can
subdivide the 2-sphere minus a countable set of points into 3 parts A, B, C, such
that each of these three parts can be obtained from each of the other two parts by
a rotation, and the union of two of these parts can be obtained by rotating the third
part. This implied that one cannot define a finitely additive measure on the 2-sphere
which is invariant under the group SO(3). In 1924 Banach and Tarski [4] generalized
Hausdorff’s result by proving, in particular, that in R3, every two bounded sets A, B
with non-empty interiors can be decomposed A = |J!_, A;, B = (J;_, Bi such
that A; can be rotated to B;,i = 1, ..., n (the so called Banach—Tarski paradox). Von
Neumann [54] was first who noticed that the cause of the Banach—Tarski paradox is
not the geometry of R? but an algebraic property of the group SO(3). He introduced
the concept of an amenable group (he called such groups “measurable”) as a group G
which has a left invariant finitely additive measure u, £ (G) = 1, noticed that if a group
is amenable then any set it acts upon freely also has an invariant measure and proved
that a group is not amenable provided it contains a free non-Abelian subgroup. He also
showed that groups like PSL(2, Z), SL(2, Z) contain free non-Abelian subgroups. So
analogs of Banach—Tarski paradox can be found in R? and even R (for a suitable group
of “symmetries””). Von Neumann showed that the class of amenable groups contains
Abelian groups, finite groups and is closed under taking subgroups, extensions, and
infinite unions of increasing sequences of groups. Day [15] and Specht [51] showed
that this class is closed under homomorphic images. The class of groups without free
non-Abelian subgroups is also closed under these operations and contains Abelian
and finite groups.

The problem of existence of non-amenable groups without non-Abelian free sub-
groups probably goes back to von Neumann and became known as the “von Neumann
problem” in the fifties. Probably the first paper where this problem was formulated
was the paper by Day [15]. It is also mentioned in the monograph by Greenleaf [21]
based on his lectures given in Berkeley in 1967. Tits [52] proved that every non-
amenable matrix group over a field of characteristic O contains a non-Abelian free
subgroup. In particular every semisimple Lie group over a field of characteristic 0
contains such a subgroup.

First counterexamples to the von Neumann problem were constructed by Olshan-
skii [37]. He proved that the Tarsky monsters, both torsion-free and torsion (see [38]),
are not amenable. Later Adian [2] showed that the non-cyclic free Burnside group
of odd exponent n > 665 with at least two generators (that is the group given by
the presentation {(ay, ..., a, | u" = 1, where u runs over all words in the alphabet
{ai, ..., ay})) is not amenable.

Both Olshanskii’s and Adian’s examples are not finitely presented: in the modern
terminology these groups are inductive limits of word hyperbolic groups, but they
are not hyperbolic themselves. Since many mathematicians are mostly interested
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in groups acting “nicely” on manifolds, it is natural to ask if there exists a finitely
presented non-amenable group without non-Abelian free subgroups. This question
was explicitly formulated, for example, by Grigorchuk in [31] and by Cohen in [13].
This question is one of a series of similar questions about finding finitely presented
“monsters”, i.e. groups with unusual properties. Probably the most famous problem in
that series is the (still open) problem about finding a finitely presented infinite torsion
group. Other similar problems ask for finitely presented divisible group (group where
every element has roots of every degree), finitely presented Tarski monster, etc. In
each case a finitely generated example can be constructed as a limit of hyperbolic
groups (see [38]), and there is no hope to construct finitely presented examples as
such limits.

One difficulty in constructing a finitely presented non-amenable group without
free non-Abelian subgroups is that there are “very few” known finitely presented
groups without free non-Abelian subgroups. Most non-trivial examples are solvable
or “almost” solvable (see [30]), and so they are amenable. The only previously known
example of a finitely presented group without free non-Abelian subgroups for which
the problem of amenability is non-trivial, is R. Thompson’s group F (for the definition
of F look in Section 3.2). The question of whether F is not amenable was formulated
by R. Geoghegan in 1979. A considerable amount of work has been done to answer
this question but it is still open.

5.2. The result. Together with A. Olshanskii, we proved the following theorem.

Theorem 5.1 ([48]). For every sufficiently large odd n, there exists a finitely presented
group G which satisfies the following conditions.

1. G is an ascending HNN extension of a finitely generated infinite group of expo-
nent n.

2. G is an extension of a non-locally finite group of exponent n by an infinite cyclic
group.

3. G contains a subgroup isomorphic to a free Burnside group of exponent n with
2 generators.

4. G isanon-amenable finitely presented group without free non-cyclic subgroups.

Notice that parts 1 and 3 of Theorem 5.1 immediately imply part 2. By a theorem
of Adian [2], part 3 implies that § is not amenable. Thus parts 1 and 3 imply part 4.

Note that the first example of a finitely presented group which is a cyclic extension
of an infinite torsion group was constructed by Grigorchuk [22]. But the torsion
subgroup in Grigorchuk’s group does not have a bounded exponent and his group is
amenable (it was the first example of a finitely presented amenable but not elementary
amenable group).
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5.3. The proof. Letus present the mainideas of our construction. We first embed the
free Burnside group B(m, n) = (B) of odd exponent n > 1 with m > 1 generators
{b1, ..., by} = B into a finitely presented group ¢’ = (€ | R) where B C C. This
is done as in Section 4.1 using an S-machine recognizing all words of the form u".
The advantage of S-machines is that such an S-machine can be easily and explicitly
constructed (see [45]). Then we take a copy A = {ay, ..., a;} of the set B, and a
new generator ¢, and consider the group given by generators C U » and the following
three sets of relations:

(1) the set R of the relations of the finitely presented group ¢’ containing B(m, n);

(2) (u-relations) y = u,, where uy, y € C, is a certain word in -+ these words
satisfy a very strong small cancellation condition; these relations make 4’ (and
B(m, n)) embedded into a finitely presented group generated by 4;

(3) (t-relations) t~la;t = b;,i = 1, ..., m; these relations make (A) a conjugate
of its subgroup of exponent n (of course, the group (#4) gets factorized).

The resulting group § is obviously generated by the set 4 U {¢} and is an ascending
HNN extension of its subgroup (+4) with the stable letter ¢. Every element in ()
is a conjugate of an element of (B), so () is an m-generated group of exponent 7.
This immediately implies that § is an extension of a group of exponent n (the union
of increasing sequence of subgroups £*(A)t~°, s = 1,2, ...) by a cyclic group.

Hence it remains to prove that (#) contains a copy of the free Burnside group
B2, n).

In order to prove that, we construct a list of defining relations of the subgroup (4).
As we have pointed out, the subgroup (AUC) = () of § clearly satisfies all Burnside
relations of the form v = 1. Thus we can add all Burnside relations

(4) v =1 where visawordin AU C

to the presentation of group § without changing the group.

If Burnside relations were the only relations in § among letters from B, the
subgroup of § generated by 8B would be isomorphic to the free Burnside group
B(m, n) and that would be the end of the story. Unfortunately there are many more
relations in the subgroup (8B) of §. Indeed, take any relation r(y1, ..., ys), ¥i € C,
of §. Using u-relations (2), we can rewrite it as r(uy, ..., us) = 1 where u; = u,,.
Then using #-relations, we can substitute each letter a; in each u; by the corresponding
letter b; € B. This gives us a relation ' = 1 which will be called a relation derived
from the relation r = 1, the operator producing derived relations will be called the #-
operator. We can apply the £-operator again and again producing the second, third, ...,
derivatives r” = 1,r"” =1, ... orr = 1. We can add all derived relations

5) ¥=1,r"=1,... forall relations r € R

to the presentation of § without changing §.
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Now consider the group H generated by C subject to the relations (1) from R,
the Burnside relations (4) and the derived relations (5). The structure of the relations
of H immediately implies that H contains subgroups isomorphic to B(2, n). Thus it
is enough to show that the natural map from H to § is an embedding.

The idea is to consider two auxiliary groups. The group $; generated by A U C
subject to the relations (1) from R, u-relations (2), the Burnside relations (4), and the
derived relations (5). Itis clear that G is generated by «+ and is given by relations (1)
and (5) where every letter y € C is replaced by the corresponding word u, in the
alphabet 4 plus all Burnside relations (4) in the alphabet 4. Let L be the normal
subgroup of the free Burnside group B(+,n) (freely generated by ) generated
as a normal subgroup by all relators (1) from R and all derived relators (5) where
letters from C are replaced by the corresponding words uy. Then §; is isomorphic to
B(A,n)/L.

Consider the subgroup U of B(+A, n) generated (as a subgroup) by {u, | y € C}.
The words uy, y € C, are chosen in such a way that the subgroup U is a free Burnside
group freely generatedby uy, y € C, anditsatisfies the congruence extension property,
namely every normal subgroup of U is the intersection of a normal subgroup of
B(4A,n) with U.

All defining relators of ¢ are inside U. Since U satisfies the congruence extension
property, the normal subgroup L of U generated by these relators is equal to L N U.
Hence U/L is a subgroup of B(+,n)/L = 4. But by the choice of U, there exists
a (natural) isomorphism between U and the free Burnside group B(C, n) generated
by @, and this isomorphism takes L to the normal subgroup generated by relators
from R and the derived relations (5). Therefore U/L is isomorphic to H (since, by
construction, H is generated by C subject to the Burnside relations, relations from R
and derived relations)! Hence H is a subgroup of §1. Let §, be the subgroup of H
generated by B.

Therefore we have

G1>H > 4.

Notice that the map a; — b;,i =1, ..., m, can be extended to a homomorphism
¢1.2: $1 — G2. Indeed, as we mentioned above §; is generated by 4 subject to
Burnside relations, all relators from &R and all derived relators (5) where letters from €
are replaced by the corresponding words uy. If we apply ¢ » to these relations, we
get Burnside relations and derived relations which hold in ¢, < H.

The main technical statement of the paper shows that ¢; > is an isomorphism, that
is for every relation w(by, . . ., by,) of > the relation w(ay, . .., a,) holdsin §. This
implies that the HNN extension (G, ¢ | £7'G 1t = ) is isomorphic to §. Indeed,
this HNN extension is generated by §1 and ¢, subject to relations (1), (2), (4), (5) of §1
plus relations (3). So this HNN extension is presented by relations (1)—(5) which is
the presentation of §. Therefore ¢ is a subgroup of ¢, hence H is a subgroup of §
as well.
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The proof of the fact that ¢ 7 is an isomorphism requires a detailed analysis of the
group H. This group can be considered as a factor-group of the group H’ generated
by C subject to the relations (1) from &R and derived relations (5) over the normal
subgroup generated by Burnside relations (4). In other words, H is the Burnside
factor of H'.

Burnside factors of free groups have been studied extensively starting with the
celebrated paper by Adian and Novikov [36]. Later Olshanskii developed a geometric
method of studying these factors in [38]. These methods were extended to arbitrary
hyperbolic groups in [39]

The main problem we face in this paper is that H’ is “very” non-hyperbolic. In
particular, the set of relations &R contains many commutativity relations, so H' con-
tains non-cyclic torsion-free Abelian subgroups which cannot happen in a hyperbolic
group.

We use a weak form of relative hyperbolicity that does hold in H’. In order to
roughly explain this form of relative hyperbolicity used in the proof, consider the
following example. Let P = F4 x Fp be the direct product of two free groups of
rank m. Then the Burnside factor of P is simply B(m, n) x B(m, n). Nevertheless
the theory of [38] cannot be formally applied to P. Indeed, there are arbitrarily thick
rectangles corresponding to relations #~'v"'uv = 1 in the Cayley graph of P so
diagrams over P are not A-maps in the terminology of [38] (i.e. they do not look like
hyperbolic spaces). But one can obtain the Burnside factor of P in two steps. First we
factorize F4 to obtain Q = B(m, n) x Fp. Since Fjy is free, we can simply use [38]
to study this factor.

Now we consider all edges labeled by letters from A in the Cayley graph of Q
as 0-edges, i.e. edges of length 0. As a result the Cayley graph of Q becomes a
hyperbolic space (a tree). This allows us to apply the theory of A-maps from [38] to
obtain the Burnside factor of Q. In fact Q is weakly relatively hyperbolic in the sense
of our paper [48], i.e. it satisfies conditions (Z1), (Z2), (Z3) from the paper. The class
of groups satisfying these conditions is very large and includes groups corresponding
to S-machines considered in [48].

Recall that set C consists of tape letters, state letters, and command letters. In
different stages of the proof some of these letters become 0O-letters.

Trapezia corresponding to computations of the S-machine play central role in our
study of the Burnside factor H of H’'. As in [38], the main idea is to construct a graded
presentation R’ of the Burnside factor H of H' where longer relations have higher
ranks and such that every van Kampen diagram over the presentation of H’ has the
so called property A from [38]. In all diagrams over the graded presentation of H,
cells corresponding to the relations from R and derived relations are considered as
O-cells or cells of rank 1/2, and cells corresponding to Burnside relations from the
graded presentation are considered as cells of ranks 1, 2,.... So in these van Kampen
diagrams “big” Burnside cells are surrounded by “invisible” O-cells and “small” cells.

The main part of property A from [38] is the property that if a diagram over R’
contains two Burnside cells I1y, [T, connected by a rectangular contiguity subdia-
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gram I" of rank O where the sides contained in the contours of the two Burnside cells
are “long enough” then these two cells cancel, that is the union of T, IT, IT' can be
replaced by a smaller subdiagram. This is a “graded substitute” to the classic property
of small cancellation diagrams (where contiguity subdiagrams contain no cells).

In our case, contiguity subdiagrams of rank O turn out to be trapezia (after we clean
them of Burnside O-cells), so properties of contiguity subdiagrams can be translated
into properties of the machine 4.
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A unified approach to computations with permutation
and matrix groups

Akos Seress™

Abstract. We survey algorithms to compute with large finite permutation and matrix groups.
Particular attention will be given to handling both types of groups with similar methods, using
structural properties to answer even basic questions such as the order of the input group.
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1. Introduction

There are two basic methods to input a group into a computer: (a) by a presentation,
using abstract generators and relations, and (b) by a “concrete” representation as a
permutation group or matrix group, defined by a set of generating permutations or
matrices. In this survey, we are concerned with groups given as in (b), and with black-
box groups (see Definition 3.1), which are a common generalization of permutation
and matrix groups. We shall concentrate on the basic questions how to determine the
order of the input group G, how to set up a data structure to test membership in G,
and how to compute a composition series. For readers interested in a broader range
of topics, we recommend our brief survey [47] describing all areas of computational
group theory and the more thorough coverage in the recent book [29]. Two mono-
graphs providing a comprehensive coverage of the subareas finitely presented groups
and permutation groups are [51] and [48], respectively.

Given a set X of permutations or of invertible matrices over a finite field, X
generates a finite group G so the undecidability issues related to generator-relator
presentations and to infinite matrix groups do not arise. However, |G| can be ex-
ponentially large in terms of the input length, so brute-force methods like listing all
elements of G are out of question and we have to design efficient algorithms to deal
with G.

There are two widely accepted notions of efficiency. On one hand, in practice,
it means that we obtain results in reasonable time in the actual computations we
perform. On the other hand, in theory, efficiency means fast asymptotic running
time. Historically, group computations developed on these two tracks separately,
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but in the last fifteen years or so the two approaches have started to converge. This
convergence is not surprising. As we deal with larger and larger inputs, only those
practical methods that are asymptotically efficient survive; conversely, the rigorous
complexity analysis inspires new algorithms that may have practical implementations.
This unification of theory and practice is one of the aspects the title of this paper refers
to. Implementations of asymptotically fast algorithms are finding their way into GAP
[28] and MAGMA [19], the two large computer algebra systems for group computations.

There are two other aspects of unification. One of them is within the matrix
group setting. As we shall discuss in Section 3, there are two approaches to matrix
group computations and we shall mention the recent efforts to combine them. The
other aspect is the uniform treatment of permutation groups and matrix groups, by
breaking them into manageable pieces as the image and kernel of appropriate group
homomorphisms. This approach is the standard one for matrix groups, but a recently
developed data structure enables us to handle both types of groups the same way.

The most recent ICM talk about computational group theory was given eight years
ago, by Bill Kantor [30]. His major emphasis was the use of the classification of finite
simple groups (CFSG) in the topic and the handling of simple groups. We shall also
report the latest developments in simple group management, but this paper is more
focused on the reduction to the simple group case. There are interesting and deep
mathematical problems in both subareas, although the management of simple groups
requires mostly group theoretical arguments while the reduction to the simple group
case uses a mixture of group theoretic, combinatorial and computer science (design
of data structures) methods. Consequences of CFSG are required in the analysis of
many reduction algorithms as well.

2. Permutation groups

The fundamental data structures for computation with permutation groups were in-
troduced by Sims [50]; they are called base and strong generating set (SGS). A base
of G < Sym(€2) is a sequence of points B = (By, ..., B,) from Q such that the
pointwise stabiliser Gp = 1. A base B naturally defines a subgroup chain

G=cM>g?>...>¢ghs gmtll -

where Glil .= Gp,,...p;_1) 1s the pointwise stabilizer of {8y, ..., B;—1}. The base
is called non-redundant if G+ is a proper subgroup of G/l for all i < m. For a
non-redundant base B, we have log |G|/log N < |B| < log|G]|, where |Q2] = N.
(As usual in complexity theory, we write logarithms to base 2.)
A strong generating set (SGS) for G relative to B is a generating set S for G with
the property that
(SNGMYy =G, forl <i<m+1.
Given G = (X) < Sym(€2), Sims’s algorithm constructs a non-redundant base B and
an SGS S relative to B. Once S is known, it is easy to construct (right) transversals 7;
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for Gl mod G+, Crucially, |T;] < N is “small”. For all y in the orbit ﬁl.Gm, the
transversal 7; contains some r,, € Gl with ﬂir ¥ = y. These transversals can be used
to compute |G| = []/L, |7;| and to factor any g € G as a product g = ry, ...rq, for
some r; € T;. This factorization is unique and it can be done by an efficient algorithm
called sifting. First, we take rj € T; such that 8§ = B]'. Then g, := gr; ' € G2,
and we can take rp € 73 such that ﬂzgz = ,352, etc. Sifting can be used to test
membership in G. For details, we refer to [48, Ch. 4].

Sims’s algorithm is based on elementary group theory. The running time of the
asymptotically fastest versions is O (| X|N 2 log® |G|) for some absolute constant c.
A factor N can be shaved off the running time by randomization:

Theorem 2.1 ([7]). Given G = (X) < Sym(S2) with |2| = N, a base B and an SGS
relative to B can be computed in O (|X|N log® |G|) time, by a Monte Carlo algorithm
with an arbitrarily small positive but fixed upper bound on the probability of incorrect
output.

Recall that a randomized algorithm is called Monte Carlo if there is a chance of
an incorrect output but an upper bound for the probability of error can be prescribed
by the user. On the contrary, a Las Vegas algorithm never returns an incorrect answer
but it may report failure with probability bounded by the user.

The algorithm in Theorem 2.1 is still elementary. The quadratic O (N?) bottle-
necks are broken by randomization, and by combinatorial tricks like working with base
images instead of full permutations or to test membership in certain large subsets of G
without listing those subsets. If log |G| is bounded from above by a polylogarithmic,
log® N, function of N then the running time is anearly linear, O ((|X|N) 10g"’ (| X|N)),
function of the input length | X | N. This motivated the following definition. An infinite
family § of permutation groups is called small-base if every group G € § of degree
m satisfies log |G| < log® m for some fixed constant ¢. Important families of groups
are small-base, including all permutation representations of non-alternating simple
groups.

The algorithm in Theorem 2.1 is also practical. In GAP, currently permutation
group computations are based on an implementation of this algorithm. The certainty
of a correct answer, if desired, is obtained by a quadratic algorithm of Sims that checks
the correctness of a base and SGS (see [48, Section 8.2]).

For arbitrary inputs, where log |G| may become comparable to NV, no deterministic
version of Sims’s algorithm is known to run faster than O (N> + |X|N?). Fortunately,
ideas from a purely theoretical development come to the rescue. In [9], an algorithm
is described to handle permutation groups in the parallel computational model NC.
Informally, in NC we can work with polynomially many, n¢, processors, but we have
only polylogarithmic, log® i, time in terms of the input length n. Note that sifting is
inherently sequential (we have to know the coset representatives ry, ..., r; before r; 41
can be computed in a factorization g = ry, . .. r1) so a Sims-based approach may work
in NC only for small-base groups. The algorithm in [9] is based on entirely different
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principles, exploring the structure of the input group G. By the time it computes |G|,
it also obtains a composition series for G. Some of these ideas were also used in the
more realistic domain of sequential computations to break the long-standing O (N>)
barrier:

Theorem 2.2 ([10]). Given G = (X) < Sym(2) with |2| = N, there is a determin-
istic algorithm with O(N* log¢ N + |X|N?) running time to compute |G| and to set
up a data structure for testing membership in G.

The algorithm in Theorem 2.2 detects all large alternating composition factors
of G and handles them by special methods, while the rest of the group is handled
using Sims’s ideas.

How can we detect large alternating sections in a permutation group? Combina-
torial reduction (action on orbits, and then action on blocks of imprimitivity) leads to
primitive permutation groups. At that point, we invoke a consequence of CFSG [20]:
any primitive permutation group H < Sym(A) of degree n is a small-base group,
unless n = (’f)r for some positive integers m, k, r and A can be identified with r-
tuples of k-sets of an m-element set, A, < H < S, S,, and H acts naturally on
these sequences in the so-called product action of wreath products. Such an H is
called a group of Cameron type in [10]. In this very special situation, [10] gives a
combinatorial algorithm to construct a collection X of mr subsets of A so that H acts
on ¥ in the natural imprimitive action of wreath products.

The input group G is handled by a recursive procedure. We define a homomor-
phism ¢: G — Sym(A) for some A, process Im(¢), obtain generators for Ker(yp),
and process Ker(¢). If G is transitive then A is an orbit and Im(¢p) is the restriction
of G to this orbit; and if G is transitive but imprimitive then A is a block system and
Im(¢p) is the action on this block system. When the recursion arrives to a primitive
group then we test whether it is of Cameron type. If not, then Sims’s base-SGS
method is used to process it. If it is of Cameron type then a further homomorphism
is constructed to the natural imprimitive action. The full alternating and symmetric
groups A, and S, encountered in their natural action on m points, are handled by
combinatorial methods, as a special case of the constructive recognition of almost
simple groups (see Section 3.1).

We finish this section by announcing a Las Vegas upgrade of Theorem 2.1.

Theorem 2.3 ([32], [33]). Given G = (X) < Sym(Q) with |2| = N and G having no
composition factors of Lie type G and > Fy, a base and SGS for G can be computed
in O(|X|N log® |G|) time, by a Las Vegas algorithm with an arbitrarily small but fixed
positive upper bound on the probability of incorrect output.

Although the statements of Theorems 2.1 and 2.3 are similar, the proofs are based
on entirely different principles. The algorithm in Theorem 2.3 computes a composition
series for G by a Monte Carlo algorithm, recognizes constructively the composition
factors (see Section 3.1), and then uses the isomorphisms set up by the recognition
algorithms to write a presentation for G. Evaluation of this presentation verifies
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the correctness of the entire computation. The groups 2G> (g) have to be excluded
because currently it is not known that they have short presentations suitable for the
time requirement of this application; the groups 2F4(g) are excluded because the
known constructive recognition algorithm is not fast enough.

There is a large library of Monte Carlo algorithms that run in nearly linear time
for small-base inputs (see [48, Ch. 5 and 6]). The significance of Theorem 2.3 is that
if the initial base-SGS computation is correct for some input group G then all of these
nearly linear-time algorithms are automatically upgraded to Las Vegas.

Summarizing, we saw that the basic tasks of finding the order and setting up
membership testing in permutation groups can be performed by elementary methods
in polynomial time, but randomization and the structural exploration of the input
group provide much faster algorithms.

3. Matrix groups

The basic problems for matrix groups over finite fields, such as membership and
order, seem to be much harder than the corresponding problems for permutation
groups. The fundamental difference is that there is no longer, in general, a decreasing
sequence of subgroups from G to 1 in which all successive indices are small; this
makes an analogue of Sims’ base-SGS approach infeasible. For permutation groups,
the natural divide-and-conquer approach leads to primitive groups, and those groups
can be reduced to symmetric groups or else they are small-base groups. In contrast,
a large variety of primitive irreducible matrix groups has order exp(2(d?)) (here d
is the dimension of the matrices). Finally, even for 1 x 1 matrices, the problems are
closely related to discrete logarithm computations.
For later use, we define two versions of the discrete logarithm problem:

(DL1) Given a, b € GF(g)*, determine whether a € (b).

(DL2) Given a, b € GF(q)*, determine whether a € (b). If the answer is yes then
find an exponent x such that a = b*.

Finding the order of G = (X) < GL(1, gq) is between these two problems in difficulty:
version (DL1) can be reduced to it in polynomial time, while it can be reduced
to version (DL2) in polynomial time. We note that neither version of the discrete
logarithm problem has at present a polynomial-time solution, although subexponential
algorithms exist even for the more difficult version (DL2) [39].

Despite all the difficulties listed above, significant progress has been made recently
on matrix groups and associated data structures, and currently this is the most active
area of computational group theory. However, contrary to the permutation group case,
it seems that randomization and a full structural exploration of the input is not only a
speedup, but an essential and unavoidable tool. This means that we have to set up a
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recursive scheme of homomorphisms, breaking the input into the image and kernel.
This reduction bottoms out at matrix groups H that are almost simple modulo scalars.
At these terminal stages of the recursion, we have to find the name of the isomorphism
type of H, and then set up an identification with a standard permutation or matrix
representation of this isomorphism type.

First, we discuss the methods for handling almost simple groups. For that, we
need two definitions.

Definition 3.1. A black-box group is a group whose elements are encoded as words of
length at most N over some alphabet 7' and some bound N. Not every word represents
a group element and the same group element may be represented by more than one
word. Moreover, an oracle (the “black box”) performs the following three operations:
given (words representing) g, & € G, it can compute (a word representing) gh, g !,

and it can decide whether g = 1.

Our definition is slightly more general than the original one [11], where only
0-1 strings of uniform lengths are allowed. The primary examples of black-box
groups are permutation groups and matrix groups, but there are two other important
examples. One of them is a power-conjugate presentation for a finite solvable group,
where each group element has a canonical formaj' a5’ . . . a," for asuitable generating
sequence (a1, . . . , dy ). More important for our present discussion is that permutation
groups G can be considered as black-box groups where the alphabet is an SGS for G
(see [48, Section 5.3]). In small-base groups, group operations using words in the
strong generators are asymptotically much faster than permutation multiplications.
These special types of black-box groups play an important role, for example, in the
proof of Theorem 2.3. In these black-box groups, we lose all information stored
implicitly in the cycle structure of permutations, and algorithms can utilize only the
three black-box operations defined above.

In some situations, we also consider permutation and matrix groups with their
natural group operations as black-box groups, because permutation group theoretic
notions like orbits or cycle structure, or geometric notions like invariant subspaces or
characteristic polynomials in the matrix group case, do not help. For example, we
have no better methods for generating random elements in a matrix group than creating
new group elements from the given generators by multiplications and inversions, that
is, by black-box operations [4], [22]. Black-box group algorithms, with the natural
permutation operations, are also used in computations of normal closures, derived
series, and related algorithms both in theory [23], [6] and in GAP.

The second definition we require is of a straight-line program (SLP). It is a data
structure to circumvent problems with overly long words in generators.

Definition 3.2. Given G = (X), a straight-line program of length m reaching some
g € G is a sequence of expressions (wi, ..., W) such that for each i one of the
following holds: w; is a symbol for some element of X, w; = (w;, —1) for some
J < i,orw; = (w;, wg) for some j, k < i, such that, if the expressions are evaluated,
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then the value of w,, is g. Here, (wj, —1) is evaluated as the inverse of the evaluated
value of w;, and (wj, wy) is evaluated as the product of the evaluated values of w;
and wy.

3.1. Recognition of almost simple groups. Now we are ready to discuss matrix
groups that are almost simple modulo scalars or, more generally, almost simple black-
box groups. There are two basic tasks: non-constructive recognition and constructive
recognition. Non-constructive recognition of an almost simple group means to name
the isomorphism type. The first such algorithm is in [41], where it is decided whether
a given group G < GL(d, p®) contains SL(d, p¢). A sample of random elements
is taken, and we look for elements whose order is divisible by some primitive prime
divisor (ppd) of p?¢ — 1 and of p@=De _ 1. (Recall that a primitive prime divisor
of p* — 1is a prime r | p" — 1 which does not divide p' — 1 for any i < n.)
If G = SL(d, p°) then elementary estimates show that both kinds of ppd’s occur
frequently enough so that a small sample of random elements detects them; however,
CFSG s invoked to prove that if both kinds of ppd’s occur then indeed G > SL(d, p°).
Subsequently, similar algorithms were designed to recognize the other classical groups
in their natural matrix representations [21], [43]. The culmination of this type of
results is in [8]: given an almost simple black-box group G of Lie type and given the
characteristic p of G, the isomorphism type of G can be computed. This algorithms
still looks for elements whose order is divisible by various ppd’s and pairs of ppd’s.
We note that the ppd property can be checked in the black-box group setting, without
computing element orders. If we know only that a matrix group is simple of Lie type
modulo scalar matrices, its characteristic can be determined by recent algorithms
in [38] and [49]. All algorithms mentioned in this paragraph are Monte Carlo with
polynomial running time, and have efficient implementations.

In applications in recursive schemes breaking down arbitrary matrix groups to
almost simple pieces, non-constructive recognition is not sufficient; we need the
more involved constructive recognition. Given an almost simple black-box group
G = (X)), constructive recognition of G is a Las Vegas algorithm that, besides naming
the isomorphism type of G, computes an isomorphism ¢: G — C with a standard
permutation representation or (projective) matrix representation of this isomorphism
type. The isomorphism ¢ is defined by giving the images of a new generating set
Y < G. Moreover, we require that, given any g € G, a short SLP reaching g from Y
can be computed, and given any i € C, ¢! (h) can be computed.

The first constructive recognition algorithm, for black-box groups GL(n, 2), was
given in [24]. Subsequently, constructive recognition of all classical groups (in [32])
and exceptional groups G (in [31]) was accomplished. These algorithms require the
characteristic p of G as part of the input. The rough idea is the following. Since
in the black-box setting we do not have a vector space to work with, the algorithms
construct a large elementary abelian p-section P of G such that the conjugation action
of a maximal parabolic H < G on P is isomorphic to the natural matrix action of H,
and subsequently extend this matrix action to arbitrary elements of G. Constructive
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recognition of alternating and symmetric groups is much easier [12], [13], [14]. A
recent algorithm [2] recognizes constructively about half of the sporadic groups, using
a generalization of Sims’s sifting through subset chains instead of subgroup chains.

An exciting new method by Ryba toward the constructive recognition of some
Lie-type groups is described in [45] and [46]. Let p be an odd prime, and let G be a
group of untwisted Lie type defined over a field of characteristic p. Suppose further
that the associated Lie algebra of G is simple. Then, given any absolutely irreducible
characteristic p representation G = (X), a polynomial-time Las Vegas algorithm
computes the action of the generator set X on the Chevalley basis of the Lie algebra
of G. Hence the constructive recognition problem is reduced to consideration of the
adjoint representation.

Ryba s currently working on the extension of this algorithm to all Lie-type groups.
Although his methods are still under development, they seem to have the potential to
become the major tool of constructive recognition, reducing the use of the method-
ology of [32], [31] only to the natural and cross-characteristic representations of
Lie-type groups.

The running times of the algorithms in [32], [31] are polynomials in the rank r
and the defining field size g of the Lie-type input group G. However, the length of
the input may be only O (r* log g), so for large ¢ the running time is exponential. An
idea to overcome this difficulty is in [25], where the groups SL(2, ¢) in their standard
2 x 2 matrix setting are recognized in polynomial time of the input length p/us polyno-
mially many calls to an oracle solving version (DL2) of the discrete logarithm problem
in GF(g). Later this algorithm was extended to arbitrary matrix representations of
PSL(2, g) [26]. This motivated the following definition.

Definition 3.3. Let G be an almost simple group of Lie type defined over the field
GF(p). We say that G is constructively recognizable with a discrete logarithm oracle,
in short G is CRDLO, if for any quasisimple representation of G in characteristic p,
G can be constructively recognized in time polynomial in the input length plus the
time of polynomially many calls to a discrete logarithm oracle in GF(p'). (Note that
the field of definition GF( pl) may be different from the field GF(p¢) over which the
input matrices are given. Recall that a group G is called quasisimple it G/Z(G) is
simple and G equals its derived subgroup.)

Theorem 3.4 ([16], [15], [17]). All classical groups are CRDLO.

The algorithms of this theorem are based on [32], using an oracle to handle
SL(2, g) subgroups. In turn, this oracle is based on the methods of [26]. The case
of special linear, symplectic, and unitary groups is a more or less straightforward
modification of [32], but the case of orthogonal groups involves significant additional
technical difficulties.

3.2. The general case. Now we turn to the case of arbitrary matrix groups. There
are two basic methods for the breakup of the input into manageable pieces (which,
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in most cases, amounts to the reduction to almost simple groups). The geometric
approach, summarized in [37], is based on Aschbacher’s classification of matrix
groups [3]. This classification defines eight types of geometric subgroups of GL.(d, ¢q),
and groups G < GL(d, ¢g) belonging to seven of these types have anaturally associated
N < G which enables the recursive handling of G/N and N. These classes consist
of reducible groups, imprimitive groups, normalizers of extraspecial groups, and so
on. For example, in the case of reducible groups we can consider the homomorphism
defined by the restriction to the action on an invariant subspace, and the kernel of this
action. The eighth geometric category contains the classical groups in their natural
representation. The groups not belonging to any of the eight geometric categories
are almost simple modulo scalars. After contributions by many people (see [44] for
an overview), O’Brien has a working implementation of the reduction to the almost
simple case.

By contrast, the black-box group approach, initiated by Babai and Beals [12],
tries to determine the abstract group-theoretic structure of G. Every finite group G
has a series of characteristic subgroups 1 < M; < M, < M3 < G, where M is
solvable, M> /M is isomorphic to a direct product 7 X - - - X Ty of nonabelian simple
groups, M3/ M5 is solvable, and G /M3 is a permutation group, permuting the simple
groups T;. Given G = (X) < GL(d, p°), [5] constructs subgroups Hy, ..., Hy such
that H;/S; = T; for some solvable group S;. Having these H; at hand, it is possible
to construct the permutation group G/M3 < S, which then can be handled by per-
mutation group methods. Moreover, using the results of [1], [8], the simple groups T;
can be non-constructively recognized.

The Babai—Beals algorithm and its extension by [1], [8] are Monte Carlo, and run
in polynomial time in the input length.

Contrary to the geometric approach, [5] does not use the geometry associated
with the matrix group action of G. The fact that G < GL(d, p°) is only used when
appealing to a simple consequence of [35], [27]: if T; is of Lie type in characteristic
different from p, then 7; has a permutation representation of degree polynomial in d.

These results can be extended significantly further.

Theorem 3.5 ([34]). Given G = (X) < GL(d, p°), there is a Las Vegas algorithm
that computes the following.

(1) The order of G.
(i1) A series of subgroups 1 = Nog <INy <---<INy—1 <Ny, = G, where N;/N;_
is a nonabelian simple group or a cyclic group for all i.
(iii) A presentation of G.
(iv) Given any g € GL(d, p°), the decision whether g € G, and if g € G, then a
straight-line program from X, reaching g.

The algorithm uses an oracle to solve version (DL2) of the discrete logarithm
problem in fields of characteristic p and size up to p¢?. In the case when all com-
position factors of Lie type that are in characteristic p are CRDLO, the running time
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is polynomial in the input length | X|d?e log p, plus the time requirement of polyno-
mially many calls to the discrete logarithm oracle. Note that in (ii) the cyclic factors
N;/N;_1 may not be simple of prime order because we do not assume that we can
factor large integers.

The proof proceeds by continuing the Babai—Beals algorithm when that approach
bottoms out. The key idea is that, using the notation introduced in the discussion
before Theorem 3.5, for those simple groups 7; that are of Lie type of characteristic p,
H; can be written in an appropriate basis in an upper triangular 3 x 3 block matrix
form such that 7; acts in a quasisimple representation on the block (2, 2). Hence the
CRLDO constructive recognition algorithms can be applied. Finally, the subgroup M|
is handled using a modification of Luks’s deterministic algorithm [40] for solvable
matrix groups.

The algorithms of [5] and [34] are not practical. However, [5] is a cookie jar of new
ideas, which should be used in implementations. Hence, we recently started a project
of designing new reduction algorithms for those Aschbacher categories where the
current algorithms do not have fast asymptotic running time, combining geometric
and black-box methods. This is the second level of unification mentioned in the
introduction. Although this project is quite new and there is only one paper [18] in
print (about the category of normalizers of extraspecial groups), algorithms for three
other categories (imprimitive, tensor product, and tensor induced) are in the offing.

4. A new data structure

In this section we discuss an implementation aspect of computations with permutation
and matrix groups. As we have seen in the previous sections, the asymptotically most
efficient permutation group algorithms and all existing matrix group algorithms break
up the input into manageable pieces. Hence, in order to implement these algorithms,
we need a data structure for a recursive scheme which facilitates divide-and-conquer
techniques to pass from a group G to a normal subgroup N and the factor group G/ N,
and then to put together the results of those two smaller computations.

In [42] we describe the design and implementation of such a data structure. This
data structure opens up the possibility to handle theoretical algorithms that were
considered too complicated for implementation. The homomorphism mechanism is
on the black-box level, so permutation groups and matrix groups can be treated in a
uniform way. Also, for any group occurring in the recursive scheme, the image of the
homomorphism may be either a permutation, matrix, or black-box group, so we can
switch between the different types as best suited for the particular application. Once
a homomorphism ¢: H — K is defined for some inner node H of the recursion tree,
the computation of Ker(p) and the combination of the results for Im(¢) and Ker(¢)
are done by generic procedures, so in applications we can concentrate on finding
suitable homomorphisms ¢ and the handling of the leaf nodes (which usually means
constructive recognition of that node).
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The first success story is the implementation of a randomized version of the al-
gorithm of Theorem 2.2. All that was needed was the design and implementation of
a randomized speedup for processing groups of Cameron type [36], and an imple-
mentation of constructive recognition of alternating and symmetric groups in their
natural representation, as described in [48, Section 10.2.4]. The rest of the algorithm
of Theorem 2.2 is done automatically by the generic recursive procedure. The fi-
nal result is the first practical treatment of all permutation groups: for small-base
inputs, the algorithm reverts to the base-SGS method with minimal overhead (and
sometimes it runs faster even on small-base inputs), and on larger inputs there are
very substantial savings compared to the straightforward call of the current default
base-SGS computation.

The mathematical idea behind the recursion scheme is simple, but there were
formidable challenges in the design of the data structure. To pull back the results
from N and G/N to G, we need new data types, permutations and matrices with
memory, that “remember” how they were obtained from the generators of G by
storing a straight-line program (SLP). This results in conflicting requirements. On
one hand, these new data types must behave like permutations or matrices, so the
existing and future permutation and matrix group algorithms can be applied to them
without rewriting the library of GAP functions and we can incorporate permutation
and matrix group algorithms by other developers who may not need to know of
our recursive scheme. On the other hand, the steps of the applied permutation and
matrix group algorithms must be recorded in the SLP, although these algorithms
are not even aware that this SLP exists. We also need a new type of homomorphism
template, flexible enough to accommodate the wide variety of methods that can create
factor groups. Exploring an unknown G, we may try a lot of different methods to
pass to a factor group; these methods must be prioritized by an automatic method
selection mechanism, while at the same time this mechanism must be transparent
enough for users to change the order in which applicable methods are called if some
extra information is known or suspected about G.

There is a long list of novel tricks incorporated in the new framework: for example,
how to balance the recursive tree (that the branches are about the same length, speed-
ing up traversing the tree); how to pass information to the children of a node, so each
node can have its own individualized method selection process for a more efficient
way to find a homomorphism from this node; and the introduction of an analogue of
strong generating sets in the matrix group setting, which enables the writing of shorter
straight-line programs to reach group elements. Current work concentrates on adding
new homomorphism methods to the recursive scheme for the geometric subgroups
in Aschbacher’s classification, combining black-box and geometric methods as men-
tioned at the very end of the previous section, and implementing methods for the end
nodes of recursion, to handle almost simple matrix and black-box groups. There will
also be methods to handle solvable groups given by power-conjugate presentations,
thereby including the third large category of black-box groups in the same scheme.
I am quite enthusiastic about this new framework: I think we have found the tool for
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the uniform treatment of permutation, matrix, and solvable groups, at the same time
unifying the theoretical and practical sides of computations with these groups.

Acknowledgement. I am indebted to Bill Kantor for his very helpful comments.
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Abstract. In this paper we survey some results on the structure of noncommutative rings. We
focus particularly on nil rings, Jacobson radical rings and rings with finite Gelfand—Kirillov
dimension.
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1. Introduction

We present here a brief outline of results and examples related mainly to noncommu-
tative nil rings. In this exposition rings are noncommutative and associative. A vector
space R is called an algebra (or a K -algebra) if R is equipped with a binary operation

*:(R,R) —> R,

called multiplication, such that for any a,b,c € R and for any « € K, we have
(a+b)yxc=axc+bxc,ax(b+c)=axb+axc,(axb)*xc=ax*(b*c),
a(a *b) = (xa) *b = a * (ab).

It is known that simple artinian rings, commutative simple rings and simple right
noetherian rings of characteristic zero have unity elements [35]. In this text, rings
are usually without 1. In fact nil rings and Jacobson radical rings cannot have unity
elements.

2. Nil rings

The most important question in this area is the Kéthe Conjecture, first posed in 1930.
Kothe conjectured that a ring R with no nonzero nil (two-sided) ideals would also
have no nonzero nil one-sided ideals, [24], see also [15] and [27]. This conjecture
is still open despite the attention of many noncommutative algebraists. It is a basic
question concerning the structure of rings.
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The truth of the conjecture has been established for many classes of rings: typically,
one proves that for a given class of rings, the sum of all nil one-sided ideals is nil. The
most famous examples of such results are the proof of the conjecture in the case of
algebras over uncountable fields by Amitsur, and the fact that nil ideals are nilpotent
in the class of noetherian rings, proved by Levitski, see [27]. However, as indicated
above, Kothe’s conjecture is still open in the general case.

An element 7 in a ring R is said to be nilpotent if r" = 0 for some n. A ring R
is a nil ring if every element of R is nilpotent, and the ring R is nilpotent if R = 0
for some n. A more appropriate definition in the case of infinitely generated rings is
the following. A ring R is locally nilpotent if every finitely generated subring of R
is nilpotent. A thorough understanding of nil and nilpotent rings is important for an
attempt to understanding general rings.

In addition, nil rings have some applications in group theory. The following
famous theorem was proved in 1964 by Golod and Shafarevich. For every field F
there exists a finitely generated nil F-algebra R which is not nilpotent ([20]). Recall
that a group G is said to be torsion (or periodic) if every g € G has a finite order. Golod
used the group 1 4+ R, when F has positive characteristic, to get a counterexample
to the General Burnside Problem: Let G be a finitely generated torsion group. Is G
necessarily finite?

There are many open questions concerning nil rings. As mentioned before, the
most important is now known as the Kothe Conjecture and was posed by Kéthe in
1930: if a ring R has no nonzero nil ideals, does it follow that R has no nonzero
nil one-sided ideals? Kothe himself conjectured that the answer would be in the
affirmative ([24], [27], [37]).

There are many assertions equivalent to the Kothe Conjecture: For example, the
following are equivalent to Kothe’s conjecture:

1. The sum of two right nil ideals in any ring is nil.
2. (Krempa [26]) For every nil ring R the ring of 2 by 2 matrices over R is nil.

3. (Fisher, Krempa [18]) For every ring R, RC is nil implies R is nil (G is the
group of automorphisms of R, RY the set of G-fixed elements).

4. (Ferrero, Puczylowski [17]) Every ring which is a sum of a nilpotent subring
and a nil subring must be nil.

5. (Krempa [26]) For every nil ring R the polynomial ring R[x] in one indetermi-
nate over R is Jacobson radical.

6. (Smoktunowicz [44]) For every nil ring R the polynomial ring R[x] in one
indeterminate over R is not left primitive.

7. (Xu [49]) The left annihilators of a single element in every complement of a
nil radical in a maximal left nil ideal satisfy a.c.c.
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Recall that a ring R is Jacobson radical if for every r € R there is ¥’ € R such that
r +r" + rr’ = 0. Every nil ring is Jacobson radical. The largest ideal in a ring R,
which is Jacobson radical is called the Jacobson radical of R. The Jacobson radical
of aring R equals the intersection of all (right) primitive ideals of R (/ is a primitive
ideal in R if I/R is primitive). Recall that a ring R is (right) primitive if there is a
maximal right ideal Q such that Q 4+ I = R for every nonzero ideal / in R and there
is b € R such that br —r € Q forevery r € R ([13]).

The Kothe Conjecture is said to hold for a ring R if the ideal generated by the
nil left ideals of R is nil. K6the’s conjecture holds for the class of Noetherian rings
(Levitzki, [27], [32]), Goldie rings (Levitzki, [32]), rings with right Krull dimension
(Lenagan [29], [15]), monomial algebras (Beidar, Fong [6]), PI rings (Rasmyslow—
Kemer—Braun [14], [34], [22], [12] ), algebras over uncountable fields (Amitsur [27],
[36D.

There are many related results, some are indicated in the following.

Theorem 2.1 (Levitzki; [32]). Let R be a right Noetherian ring. Then every nil
one-sided ideal of R is nilpotent.

Theorem 2.2 (Lenagan [29]). If R has right Krull dimension, then nil subrings of R
are nilpotent.

Theorem 2.3 (Gordon, Lenagan and Robson, Gordon and Robson; [15]). If R has
right Krull dimension, then the prime radical of R is nilpotent.

The prime radical of R is a nil ideal and is equal to the intersection of all prime
ideals in R.

Theorem 2.4 (Beidar, Fong [6]). Let X be a nonempty set, Z = (X) the free monoid
on X, Y an ideal of the monoid Z, and F a field. Then the Jacobson radical of the
monomial algebra F[Z /Y] is locally nilpotent.

In the case of characteristic zero the result is due to Jaspers and Puczylowski,
[21]. Earlier, Belov and Gateva-Ivanova [10] showed that the Jacobson radical of a
finitely generated monomial algebra over a field is nil. However, it is not true that the
Jacobson radical of a finitely generated monomial algebra is nilpotent, since it was
shown by Zelmanov [50] that there is a finitely generated prime monomial algebra
with a nonzero locally nilpotent ideal.

Theorem 2.5 (Razmyslov—Kemer—Braun [34], [22], [12]; [14]). If R is a finitely
generated Pl-algebra over a field then the Jacobson radical of R is nilpotent.

Razmyslov [34] proved this for rings satisfying all identities of matrices, Ke-
mer [22] for algebras over fields of characteristic zero. Later Braun [12] proved the
nilpotency of the radical in any finitely generated PI algebra over a commutative
noetherian ring. Amitsur has previously shown that the Jacobson radical of a finitely
generated PI algebra over a field is nil.

Another famous result is the Nagata—Higman Theorem:



262 Agata Smoktunowicz

Theorem 2.6 (Nagata—Higman; [19]). IfA is an associative algebra of characteristic p
such that a" = 0 foralla € A and p > n or p = 0 then A is nilpotent.

For interesting results related to Nagata—Higman’s theorem see [19].

A theorem of Klein [23] asserts that if R is a nil ring of bounded index then R[x]
is a nil ring of bounded index.

In 1956 Amitsur [27] showed that if R is a nil algebra over an uncountable field,
then the polynomial ring R[x] in one indeterminate over R is also nil. The situation
is completely different for countable fields, as was shown by the author in 2000.

Theorem 2.7 (Smoktunowicz [43]). For every countable field K there is a nil K -
algebra N such that the polynomial ring in one indeterminate over N is not nil.

This answers a question of Amitsur. Another important theorem by Amitsur is the
following.

Theorem 2.8 (Amitsur; [27]). Let R be a ring. Then the Jacobson radical of the
polynomial ring R[x] is equal to N|x] for some nil ideal N of R.

In 1956 Amitsur conjectured that if R is a ring, and R[x] has no nil ideals then
it is semiprimitive (i.e. the Jacobson radical of R[x] is zero). This assertion is true
for many important classes of rings, as mentioned above. However, the following
theorem shows that this conjecture does not hold in general: There is a nil ring N
such that the polynomial ring in one indeterminate over N is Jacobson radical but
not nil ([41]). For some generalizations of this theorem see [45]. This theorem is true
in a more general setting: For every natural number n, there is a nil ring N such that
the polynomial ring in n commuting indeterminates over N is Jacobson radical but
not nil.

Recall that, as shown by Krempa in [26], Kothe’s conjecture is equivalent to
the assertion that polynomial rings over nil rings are Jacobson radical. However,
homomorphic images of polynomial rings over nil rings with nonzero kernels are
often Jacobson radical, as is shown by the next result.

Theorem 2.9 (Smoktunowicz [44]). Let R be a nil ring and R[x] the polynomial
ring in one indeterminate over R. Let I be an ideal in R[x] and M the ideal of R
generated by coefficients of polynomials from I. Then R[x]/I is Jacobson radical if
and only if R[x]/M|x] is Jacobson radical.

The following are interesting open questions on nil rings.

Question 1 (Latyshev, [16], pp. 12). Let A be an associative algebra with a finite
number of generators and relations. If A is a nil algebra must it be nilpotent?

Question 2 (Amitsur; [33]). Let A be an associative algebra with a finite number of
generators and relations. Does it follow that the Jacobson radical of A nil?



Some results in noncommutative ring theory 263
3. Algebraic algebras

The most well-known question in this area is the Kurosh Problem ([15], [36]). Let R
be a finitely generated algebra over a field F such that R is algebraic over F. Is R
finite dimensional over F?

This problem has a negative solution in general. The famous construction of
Golod and Shafarevich in the 1960s produced a finitely generated nil algebra which
is not nilpotent ([20]). This was then used to construct a counterexample to the
Burnside Conjecture, one of the biggest outstanding problems in group theory at that
time. Zelmanov was later awarded the Fields Medal for his solution of the Restricted
Burnside Problem [27].

However, the Kurosh Problem is still open for the key special case of a division
ring:

Question 3 (Kurosh’s problem for division rings [16], [36]). Let R be a finitely
generated algebra over a field F such that R is algebraic over F and R is a division
ring. Does it follow that R a finite dimensional vector space over its center?

Again, as with the nil ring problems, there are many partial results. The Kurosh
Problem for division rings is still open in general, but it is answered affirmatively
for F finite and for F having only finite algebraic field extensions, in particular,
for F algebraically closed ([36]). By Levitzki’s and Kaplanski’s theorem, Kurosh’s
conjecture is also true if there is a bound on the degree of elements in R ([15]).
It is unknown whether Kurosh’s problem for division rings has a positive answer
in the case of algebras over uncountable fields. Also the following question is still
open: Is Kurosh’s conjecture true for division rings with finite Gelfand—Kirillov
dimension, and in particular for division rings with quadratic growth? There are
obvious connections with problems in nil rings. A nil element is obviously algebraic,
and, in the converse direction, it is possible to construct an associated graded algebra
connected with an algebraic algebra in such a way that the positive part is graded nil,
i.e., all homogeneous elements are nil. On the other hand, the Kurosh Problem has a
negative solution for rings with finite Gelfand—Kirillov dimension ([30]), for simple
rings ([42]), for primitive rings ([2]), for finitely generated primitive rings ([8]), and
for finitely generated algebraic primitive rings ([9]). However, a natural question
arising from the general Kurosh Problem remains open:

Question 4 (Small’s question). Let R be a finitely generated simple algebra with 1
over a field F such that R is algebraic over F. Is R a finite dimensional vector space
over its center?

Another open question on division rings, which has been around for years, is the
following:

Question 5. Let K be a field and let R be a finitely generated algebra which is a
division ring. Does it follow that R is a finitely generated vector space over K ?
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As far as I know this question is very much open even with various conditions, like
e.g. Gelfand—Kirillov dimension 2. It has been shown by Small ([38]) that a divi-
sion ring which is a homomorphic image of a graded noetherian ring (of course, by
a non graded ideal) must be finite dimensional. There is a similar open question
concerning rings:

Question 6 ([16], p. 20). Does there exist an infinite associative division ring which
is finitely generated as a ring?

4. Algebras with finite Gelfand—Kirillov dimension

The Gelfand—Kirillov dimension measures the rate at which an algebra is generated
by a generating set. The GK dimension is zero for algebras which are finite dimen-
sional and an elementary counting argument shows that the next possible dimension
is one. However, Borho and Kraft showed that any real number value greater than
or equal to two is possible ([25]). Bergman’s famous Gap Theorem establishes that
there is no algebra with GK dimension strictly between one and two ([11], see also
[25]). A theorem of Small and Warfield asserts that an affine prime algebra R over
a field F of GK dimension 1 is a finite module over its center, and that its center is
a finitely generated F-algebra of GK dimension 1 ([40], [25]). In the special case
when R is a finitely generated domain over an algebraically closed field with GK
dimension 1, it follows by Small-Warfield’s and Tsen’s theorem (see [15]) that R is
in fact commutative ([47]). A theorem of Small, Stafford and Warfield shows that a
finitely generated algebra with GK dimension 1 is close to being commutative in that
it must satisfy a polynomial identity ([39], [25]).

The graded case has attracted interest in the last decade or so with the development
of noncommutative algebraic geometry. Here progress is being made by studying al-
gebras with restricted conditions, including conditions on the growth of the algebras.
Low GK dimension examples are obviously of interest. Since the theory is devel-
oping by analogy with the classical projective case, one typically deals with graded
algebras. Thus dimensions should be increased by one compared to the ungraded
case. The first interesting case is to study graded domains of GK dimension two;
that is, noncommutative projective curves. This was done in a famous paper in the
Inventiones Mathematicae by Artin and Stafford about 10 years ago. In fact Artin and
Stafford described in [3] the structure of finitely graded domains in terms of algebras
related to automorphisms of elliptic curves. They were able to tell when such algebras
are noetherian, primitive, PI, etc. In this paper they formulated the analogue of the
Bergman Gap Theorem: there should be no graded (by natural numbers) domain with
GK dimension strictly between two and three, and they were able to exclude the open
interval (2, 11/5). The author has recently established in [46] the truth of the full
conjecture.
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There are several connecting threads between the three areas mentioned above. As
stated earlier, nil elements are algebraic, and graded nil algebras can be constructed
from algebraic algebras as associated graded rings. The Golod—Shafarevich con-
struction yields a nil but not nilpotent algebra which has exponential growth and so
certainly infinite GK dimension.

In recent work with Lenagan, the author has constructed an example of a finitely
generated nil but not nilpotent algebra that has finite GK dimension (< 20). The
precise growth condition dividing nilpotent and nil but not nilpotent is tantalizing.
Certainly, nil algebras with GK dimension 1 are easily seen to be nilpotent. It may
be that the dividing line is of quadratic growth.

In this area the following question remains open and may be considered to be a
test question for new methods. Is there a finitely generated nil algebra with quadratic
growth which is not nilpotent? An F-algebra R has quadratic growth if there is a
constant ¢ and a generating subspace V of R such thatdimz(V +V?+---+V,) < cn?
for all n > 0. In particular GKdim R < 2.

In connection with this problem, a recent result of Bartholdi is pertinent. In 2004
Bartholdi proved the following result.

Theorem 4.1 (Bartholdi [4]). Let K be an algebraic field extension of F». Then there
exist a finitely generated graded K-algebra R such that all homogeneous elements
of R are nil, but the algebra has a transcendental invertible element. In particular, R
is graded nil but not nil. This algebra R has also a subalgebra isomorphic to the ring
of 2 x 2 matrices over R.

In more detail, Bartholdi showed that an affine ‘recurrent transitive’ algebra (with-
out unit) constructed from Grigorchuk’s group of intermediate growth is of quadratic
growth. Moreover, assuming that the base field is an algebraic extension of F», the
algebra is Jacobson radical and not nil. This algebra R was earlier studied by Ana
Christina Vieira in [48], who showed that R is prime and for every non-zero two sided
ideal I of R, R/I is finite-dimensional.

Another way to construct examples of finitely generated algebras was introduced
by Markov and later extended by Beidar ([5]), Bell and Small ([7], [8], [32], [36]).
The effect of Markov’s result is to allow constructions first in infinitely generated
algebras, thus simplifying the problem, and then, by using Markov’s method, to bring
the construction into a finitely generated algebra.

Theorem 4.2 (Markov [31]). Let K be a field, and let R be a prime, countably
generated K-algebra. Then there exists a prime K-algebra A generated by two
elements x, y such that R is isomorphic to a right ideal of A, namely to xR .

Recall that T € R is a corner of an algebra R if T is a subalgebra of R and
TRT < T. Markov’s theorem was extended by Small who showed (around 1982,
unpublished) that if K is a field and T is a prime, countably generated K algebra then
there exists a finitely generated, prime K -algebra A such that 7 is a corner of A.
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It is possible to apply this result in many situations. For example, in [8], Bell and
Small applied the result to show that there is a finitely generated algebraic primitive
algebra which is infinitely dimensional over its center. In 2003 Bell proved the
following extension of Small’s theorem. Let K be a field, and let T be a prime,
countably generated K -algebra of Gelfand—Kirillov dimension o < oo. Then there
exists a finitely generated, prime K -algebra A of Gelfand—Kirillov dimension o + 2
such that T is a corner of A (see [7]).

Bell’s theorem above is related to another question of Small: if R is a noetherian
affine algebra with quadratic growth, does it follow that R is either primitive or PI?
This is true in the graded case, as was shown by Artin and Stafford in 2000. According
to Small, it is also true if every non-zero prime ideal in R is maximal.

An application by Bell of his theorem is the following example which is a coun-
terexample to another question of Small. There is a prime, affine algebra with
Gelfand—Kirillov dimension 2 which is not PI and not primitive. This algebra has a
nonzero Jacobson radical. The following result of Lanski, Resco and Small assures
that usually an affinization of a primitive ring is still primitive:

Theorem 4.3 (Lanski, Resco, Small [28]). Let R be a prime ring. Then the following
is true:

1. LetV bearightideal of R. Then R is a primitive ring exactlywhen V /(VNI(V))
is a primitive ring, where (V) ={r € R : rV = 0}.

2. If R contains an idempotent e, then R is a primitive ring if and only if eRe is
a primitive ring.

5. Simple rings

A ring R (possibly without 1) is called simple if R?> # 0 and R has no proper two-
sided ideals. Levitzki, Jacobson, Kaplansky and others asked if there is a simple nil
ring. An example of a simple ring which is a Jacobson radical ring (thatis, R = J(R)
where J (R) denotes the Jacobson radical of R) was found by Sasiadain 1961, see e.g.
[15]; however, this ring is not nil. Note that the polynomial ring in one indeterminate
over Sasiada’s ring is left and right primitive ([44]). By Nakayama’s lemma a simple
Jacobson radical ring cannot be finitely generated. Since every nil ring is Jacobson
radical, a simple nil ring also cannot be finitely generated. A few years ago examples
of simple nil rings were constructed by the author ([15]).

Theorem 5.1 (Smoktunowicz [42]). For every countable field K there is a simple nil
algebra over K.

Notice that all rings in that paper were graded by integers. The following natural
question remains open.

Question 7. Is there a simple noncommutative nil algebra over an uncountable field?
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Higher composition laws and applications

Manjul Bhargava*

Abstract. In 1801 Gauss laid down a remarkable law of composition on integral binary quadratic
forms. This discovery, known as Gauss composition, not only had a profound influence on
elementary number theory but also laid the foundations for ideal theory and modern algebraic
number theory. Even today, Gauss composition remains one of the best ways of understanding
ideal class groups of quadratic fields.

The question arises as to whether there might exist similar laws of composition on other spaces
of forms that could shed light on the structure of other algebraic number rings and fields. In this
article we present several such higher analogues of Gauss composition, and we describe how
each of these composition laws can be interpreted in terms of ideal classes in appropriate rings of
algebraic integers. We also discuss several applications of these composition laws, including the
resolution of a critical case of the Cohen—Lenstra—Martinet heuristics, and a solution of the long-
standing problem of counting the number of quartic and quintic fields of bounded discriminant.
In addition, we describe the mysterious relationship between these various composition laws
and the exceptional Lie groups. Finally, we discuss prospects for future work and conclude with
several open questions.
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1. Introduction

Gauss published his seminal treatise Disquisitiones Arithmeticae in 1801. One of
the primary subjects of this work was the (integral) binary quadratic form, i.e., any
expression f(x,y) = ax® + bxy + cy® where a, b, ¢ € Z.! The group SL,(Z) acts
naturally on the space of binary quadratic forms by linear substitution of variable: if
y € SLy(Z), then one defines

(- Hx,y) = f(x,»)y).

Gauss studied this action of SL,(Z) on binary quadratic forms f in terms of the
discriminant Disc(f) = b* — 4ac, as it is easily seen that this discriminant remains

*The author was partially supported by a Packard Fellowship. I am extremely grateful to Andrew Wiles and
Peter Sarnak for their encouragement and to Jonathan Hanke, Wei Ho, and Melanie Wood for numerous helpful
comments.

IGauss actually considered only the forms where b is even; however, from the modern point of view it is more
natural to assume a, b, ¢ are arbitrary integers.
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invariant under the action of SL,(Z). In fact, one can show that any polynomial
P(a, b, ¢) invariant under the action of SL,(Z) on the space of binary quadratic forms
ax® + bxy + c¢y? must be a polynomial in the discriminant b> — 4ac (see e.g. [28]).

It follows that the binary quadratic forms of any fixed discriminant D also naturally
break up into orbits under the action of SL;(Z). We say a quadratic form ax? 4 bxy +
cy? is primitive if a, b, ¢ are relatively prime. Then SL,(Z) evidently preserves
primitivity, so that the primitive forms of a given discriminant also break up into
SL;(Z)-orbits. Gauss’s remarkable discovery regarding these primitive SL; (Z)-orbits
was the following:

Theorem 1.1 (Gauss). Let D = 0 or 1 modulo 4. Then the set of SLa(Z)-orbits
of primitive binary quadratic forms having discriminant D naturally possesses the
structure of a finite abelian group.

What is particularly remarkable about this theorem is that Gauss proved this result
before the notion of group formally existed! Theorem 1.1 is quite a deep fact, and
has a number of beautiful interpretations. Classically, the theorem generalizes the
identity of Brahmagupta [12]:

(x} 4+ Dy?)(x3 + Dy?) = x3 + Dy3,

where x3 = x1x2+ Dy1y2 and y3 = x1y2 — y1x2. Gauss’s theorem describes all
identities of the form

(a1x} 4 bix1y + c1y?)(aax3 + baxays + c2y3) = (a3x3 + baxzys +c3y3) (1)

where x3 and y3 are bilinear functions of (x1, y;) and (x2, y2) with integer coeffi-
cients. Because of the bilinearity condition on (x3, ¥3), the existence of an identity
of the type (1) depends only on the SL»(Z)-equivalence classes of the three forms.
Remarkably, the ensemble of all such identities turns the set of SL,(Z)-equivalence
classes of primitive quadratic forms of discriminant D into a group for any eligible
value of D. This is precisely the group described by Gauss in Theorem 1.1, showing
in particular that the theorem is compatible with the multiplicative structure of the
values taken by the forms.

In modern language, the group described in Theorem 1.1 is simply the narrow class
group of the unique quadratic ring S(D) of discriminant D (see Section 2.1). This
connection with ideal class groups was in fact one of the original motivations for
Dedekind to introduce ‘“ideal numbers”, or what are now called ideals. Thus Theo-
rem 1.1 really lies at the foundations of modern algebraic number theory. Moreover,
Gauss composition still remains one of the best methods for understanding narrow
class groups of quadratic fields, and it is certainly still the best way of computing with
them.

Of course, Gauss’s composition law is related in this way only to field extensions
of Q of degree two, and it would be desirable to have similar ways to understand cubic,
quartic, and higher degree fields. The question thus arises: do there exist analogous
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composition laws on other spaces of forms, which could be used to shed light on the
structure of higher degree fields?

2. The parametrization of algebraic structures

2.1. Gauss composition and rings of rank 2. An alternate way of viewing Gauss
composition is as a parametrization result. To describe this, we need some simple
definitions. First, define a ring of rank n to be any commutative ring with identity
whose underlying additive group is isomorphic to Z". For example, an order in a
number field of degree n is a ring of rank n. Rings of rank 2, 3, 4, 5, and 6 are called
quadratic, cubic, quartic, quintic, and sextic rings respectively. In general, a ring R
of rank 7 is said to be an order in a Q-algebra K if R @ Q = K.

Given aring R of rank n, there are two simple functions R — Z called the trace
and the norm, denoted by Tr and N respectively. Given o € R, we define Tr(«)

(resp. N()) as the trace (resp. determinant) of the linear map R LR given by
multiplication by «. The function x, y — Tr(xy) defines an inner product on R. If
(o, ..., 0n—1) is a Z-basis of R, then the discriminant Disc(R) is defined to be the
determinant Det(Tr(et;j)o<i, j<n—1). In basis-free terms, the discriminant of R is
the co-volume of the lattice R with respect to this inner product, and forms the most
important invariant of a ring of rank n. It turns out that the discriminant is always an
integer congruent to 0 or 1 (mod 4).

It is easy to describe what all quadratic rings are in terms of the discriminant.
Namely, for every integer D congruent to O or 1 modulo 4, there is a unique quadratic
ring S(D) having discriminant D (up to isomorphism), given by

Z[x1/(x%) if D=0,
S(D)=1Z-(1,1)+~D-(Z®7Z) if D> 1isasquare, 2)
Z[(D + «/5)/2] otherwise.

Therefore, if we denote by D the set of elements of Z that are congruent to 0 or 1
(mod 4), we may say that isomorphism classes of quadratic rings are parametrized
by D. The case D = 0 is called the degenerate case.

Gauss composition concerns the parametrization of narrow (or oriented) ideal
classes in oriented quadratic rings. An oriented quadratic ring is a quadratic ring in
which one of the two choices for a square root VD of D has been distinguished,
where D denotes the discriminant of the ring.? An oriented ideal of a nondegenerate
quadratic ring S is a pair (I, €), where I is any ideal of S having rank 2 over Z
and ¢ = %1 gives the orientation of I. Multiplication of oriented ideals is defined

2The advantage of this point of view is that any two oriented quadratic rings of the same discriminant are
then canonically isomorphic; to construct this isomorphism, one simply sends the distinguished +/ D in one ring
to that in the other. Note that a choice of v/ D amounts to a choice of generator of AZS, namely 1 A (D+T*FD) -
hence the name oriented quadratic ring.
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componentwise. Similarly, for an element k € K =S ® Q, the product « - (I, ¢)
is defined to be the ideal (k I, sgn(N (k))e). Two oriented ideals (I, 1) and (/2, €3)
are said to be in the same class if (I1, &1) = « - (12, &7) for some invertible ¥k € K.
In practice, we will denote an oriented ideal (7, €) simply by I, with the orientation
& = &(I) on I being understood.

In this language, Gauss composition states:

Theorem 2.1. There is a canonical bijection between the set of SLo(Z)-equivalence
classes of nondegenerate binary quadratic forms and the set of isomorphism classes of
pairs (S, I), where S is a nondegenerate oriented quadratic ring and I is an oriented
ideal class of S.

The map from oriented ideal classes to binary quadratic forms is easily described.
Given an oriented ideal I C S, let (o1, o) be a correctly oriented basis of 7, i.e., a
basis such that the determinant of the change-of-basis matrix from (1, VD) to (ay, a2)
has the same sign as £(/);’ this determinant is called the norm of I and is denoted
N([7). To the oriented ideal I, one then associates the binary quadratic form

N
0(x.y) = %

3)
One readily verifies that Q(x, y) is an integral binary quadratic form and that it is
well-defined up to the action of SL(Z). What is remarkable about Theorem 2.1
is not just that every oriented ideal class of a quadratic ring yields an integral bi-
nary quadratic form, but that every integral binary quadratic form arises in this way!
Another remarkable aspect of the correspondence (3) of Theorem 2.1 is that it is
discriminant-preserving: under the bijection, the discriminant of a binary quadratic
form is equal to the discriminant of the corresponding quadratic ring. That is, oriented
ideal classes in S(D) correspond to SLy(Z)-equivalence classes of binary quadratic
forms having discriminant D.

An oriented ideal I of the oriented quadratic ring S(D) is said to be invertible if
there exists a (fractional) oriented ideal I’ such that the product /1" is (S(D), +1). Itis
known that the set of invertible oriented ideals modulo multiplication by scalars forms
a finite abelian group C1*(S(D)), called the oriented (or narrow) class group.* One
checks that invertible oriented ideals correspond to primitive forms via (3). Gauss’s
group structure on classes of primitive forms of discriminant D arises from the fact
that the invertible oriented ideal classes of a quadratic ring S(D) form a group under
multiplication.

In the statement of the theorem, we have used the word “nondegenerate” to mean
“nonzero discriminant”. Theorem 2.1 could also be extended to zero discriminant,
although this would require a rather more involved notion of “oriented ideal class”,
so in what follows we always restrict ourselves to the nondegenerate case.

3Evidently, for any basis (a1, ap) of I, either (o1, o) or («p, 1) will be correctly oriented.
4The usual class group is a quotient of the oriented class group, and may be obtained by “forgetting” all
orientations.
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2.2. Parametrization and rings of rank n. In terms of Theorem 2.1, it becomes
easier to see what we might mean by “generalizations” of Gauss composition. Namely,
we seek an algebraic group G and a representation V, defined over Z, such that the
set G(Z) \ V (Z) of integral orbits are in canonical bijection with interesting algebraic
objects — such as rings of rank n, modules over these rings, and maps among them.
In Gauss’s case, the group G is SL; and V is the space of binary quadratic forms, and
we have seen that the integral orbits parametrize oriented ideal classes (or oriented
rank 1 modules) in quadratic rings. In general, we have the following question:

Question 2.2. For what pairs (G, V) does G(Z) \ V (Z) parametrize rings, modules,
maps, etc.?

If other such pairs (G, V) do in fact exist, where do we go about looking for
them? One thing to notice about the action of GL;(C) on the vector space of binary
quadratic forms over C is that there is essentially one (Zariski open) orbit —i.e., any
binary quadratic form of nonzero discriminant can be taken to any other such form via
an element of GL,(C). It is also possible to see this from the point of view of Gauss
composition: by “base change” the proof of Theorem 2.1 shows that nondegenerate
orbits over C must be in one-to-one correspondence with quadratic rings over C —
which must take the form C @ C — and ideal classes over such rings — which also must
take the form C @ C (up to isomorphism). So over C, there is essentially just one
object of the form (S, /), namely S =1 =C @ C.

By the same argument, if we are to get a parametrization result of a simple form like
Gauss composition, where objects being parametrized are rings of rank n, ideal classes,
etc. (so that there is only one such nondegenerate object over C), then the pair (G, V)
must also have the property that there is just one open orbit over C. Such representa-
tions having just one open orbit over C have come up for numerous authors in various
contexts, and they are known as “prehomogeneous vector spaces”.

Definition 2.3. A prehomogeneous vector space is a pair (G, V) where G is an
algebraic group and V is a rational vector space representation of G such that the
action of G(C) on V (C) has just one Zariski open orbit.

In a monumental work, Sato and Kimura [33] gave a classification of all “reduced,
irreducible” prehomogeneous vector spaces. Namely, they showed that there are
essentially 36 of them! A few of these 36 are in fact infinite families. In another
beautiful work, Wright and Yukie [41] studied these spaces over fields and found that
the K -orbits for a field K frequently correspond to field extensions of K ; for example,
the nondegenerate Q-orbits on the space of binary quadratic forms are naturally in
bijection with quadratic extensions of Q. So that gives us some hope, and obtaining
the answer to Question 2.2 thus translates into the following goal:

Goal 2.4. Understand G(Z) \ V (Z) for prehomogeneous vector spaces (G, V).

Of course, some of these spaces are quite large — thirty or more dimensions — so to
just go in and analyze the integer orbits is somewhat daunting. Even Gauss’s space,
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which is only three-dimensional, is (as we have seen!) far from trivial. Gauss’s own
treatment of Gauss composition took numerous pages to describe.

To make further progress, we wish to have a different — and perhaps also simpler —
perspective on Gauss composition that might lend itself more naturally to generaliza-
tion to other spaces. Following [4], we give such a perspective in terms of 2 x 2 x 2
cubes of integers. As we will see, the space of 2 x 2 x 2 cubes not only gives an
elementary description of Gauss composition, but also leads to composition laws and
analogues of Theorem 2.1 for numerous other prehomogeneous vector spaces.

3. The story of the cube

Suppose we put integers on the corners of a cube:
‘ 4

Notice that any such cube A of integers may be sliced into two 2 x 2 matrices, and in
essentially three different ways, corresponding to three different planes of symmetry
of a cube. More precisely, the integer cube A given by (4) can be sliced into the
following pairs of 2 x 2 matrices:

My — a b Ni — e f
1__C d ’ 1= g h_
=] ] m=[" 7] s)
2__6 g 9 2= f h_
[a e c g
M3 = = .
=1n 7wl n

Now for any such slicing of the cube A into a pair (M;, N;) of 2 x 2 matrices as
in (5), we may construct a binary quadratic form Q; (x, y) as follows:

Qi(x,y) = —Det(M;x + N;y). (6)

Thus any cube A of integers gives rise to three integral binary quadratic forms. A
simple computation or elementary argument shows that the discriminants of the three
quadratic forms Q1, Q», and Q3 are the same! And the punchline is:



Higher composition laws and applications 277

Theorem 3.1. If a cube A gives rise to three primitive binary quadratic forms Q1,
0>, O3 via (4)—(6), then Q1, Q2, O3 have the same discriminant, and the product
of these three forms is the identity in the group defined by Gauss composition.

Conversely, if Q1, Q2, Q3 are any three primitive binary quadratic forms of the
same discriminant whose product is the identity under Gauss composition, then there
exists a cube A yielding Q1, Q>, Q3 via (4)—(6).

Thus the cube story gives a very simple and complete description of Gauss com-
position of binary quadratic forms. In fact, Theorem 3.1 can be used to define Gauss
composition. The situation is reminiscent of the group law on a plane elliptic curve,
where the most elementary way to define the group law is to declare that three points
sum to zero if and only if they lie on a common line. In the same way, we may define
Gauss composition by declaring that three primitive quadratic forms multiply to the
identity if and only if they arise from a common cube. A proof of Theorem 3.1 may
be found in [4, Appendix].

Theorem 3.1 is useful not only because it leads to Gauss composition, but also
because it leads to various additional laws of composition. First and foremost, it leads
to a law of composition on the cubes themselves!

3.1. Composition of cubes. Let us begin by rephrasing Theorem 3.1 as an orbit
problem. First, we note that the space of cubes may be identified with the representa-
tion Z2 ® Z* ® Z? of the group G = SLy(Z) x SL,(Z) x SL,(7Z); this representation
is a prehomogeneous vector space. The identification is made as follows: if we use
(v1, v2) to denote the standard basis of 72, then the cube described by (4) is simply

avi®ui®u; + b vIQUIRV] + c V®VI®V] + d V1LRVIQV]
+ ev1®@UIRV + fUIQUIAV2 + g 1QVI®V2 + h 1LV,

as an element of Z> ® Z? @ Z>. In terms of the cubical representation (4), the three
factors of SL»(Z) in G act by row operations, column operations, and the “other
direction” operations respectively.

Theorem 3.1 may be viewed as describing the nondegenerate orbits of Z> ® Z> @ Z>
under the action of G in terms of triples of oriented ideal classes whose “product” is
the identity class. To state this description more precisely, we need just two simple
definitions. First, we call a triple (1, I, I3) of oriented fractional ideals in S ® Q
balanced if 111,13 C S and N(I;)N(I»)N(/3) = 1. Also, we define two balanced
triples (I1, I>, I3) and (I{, I3, I3) of oriented ideals of S to be equivalent if I} = k1],
I, = k2l;, and I3 = k315 for some invertible elements «1, k2, k3 € S ® Q. For
example, if S is the full ring of integers in a quadratic field, then an equivalence class
of balanced triples means simply a triple of oriented ideal classes whose product is
the principal class.

Our Theorem 3.1 on cubes may then be stated as the solution to an orbit problem
as follows:
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Theorem 3.2. There is a canonical bijection between the set of nondegenerate
G-orbits on the space 7* @ 7> ® 7> of 2 x 2 x 2 integer cubes and the set of
isomorphism classes of pairs (S, (11, I, I3)), where S is a nondegenerate oriented
quadratic ring and (11, I, I3) is an equivalence class of balanced triples of oriented
ideals of S.

As with Theorem 3.2, we may consider those orbits that correspond solely to
invertible oriented ideal classes. Let us say a cube A is projective if the three oriented
ideal classes associated to A in Theorem 3.2 are invertible (i.e., if they are projective
as modules). Equivalently, A is projective if the associated three binary quadratic
forms Q; are each primitive.

Let us define the discriminant Disc(A) of a cube A to be the discriminant of any
one of the three binary quadratic forms Q; arising from it. Then Theorem 3.2 is
discriminant-preserving: under the bijection, the discriminant of a cube is equal to
the discriminant of the corresponding quadratic ring.

We can now describe composition of cubes. Itis most easily stated in terms of ideal
classes. Recall that Gauss composition can be viewed as multiplication of oriented
ideal classes in a fixed quadratic ring S:

(S, I)o(S, I =(S,1I).

When restricted to invertible ideal classes of a fixed quadratic ring S = S(D)
(i.e., primitive binary quadratic forms having a fixed discriminant D), this yields
the oriented class group C1T(S(D)).

Analogously, composition of cubes can be viewed as multiplication of equivalence
classes of balanced triples of oriented ideals:

(S, (I, I, 13) o (S, (I}, I3, 13)) = (S, (W1}, 113, 313)).

When restricted to invertible ideal classes of a fixed quadratic ring (i.e., projective
cubes having a fixed discriminant), this yields the group CI*(S) x CI*(S), since the
last ideal class is determined by the first two. Thus Gauss composition yields CIT(S),
while composition of cubes gives C1*(S) x C1T(S). A surprising consequence of this
result is that the number of orbits of projective cubes having a given discriminant D
is always a square number.

3.2. Composition of binary cubic forms. The law of composition of cubes now
also leads to a number of further composition laws on various other spaces. First, let
us consider the space of triply-symmetric cubes, which is equivalent to the space of
binary cubic forms px3 +3gx%y + 3rxy? 4 sy3: indeed, just as one often expresses
a binary quadratic form px? 4 2gxy + ry? as the symmetric 2 x 2 matrix

7]
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one may naturally express a binary cubic form px3 + 3gx?y + 3rxy? + sy> via the
triply-symmetric 2 X 2 X 2 matrix

)

If we use Sym3Z? to denote the space of binary cubic forms with triplicate central
coefficients, then the above association of px3 4 3gx?y +3rxy? +sy> with the cube
(7) corresponds to the natural inclusion

i Sym’Z? — 77 ® 7° ® 7*

of the space of triply-symmetric cubes into the space of cubes. The space of binary
cubic forms under the action of SL,(Z) also yields a prehomogeneous vector space.

We call a binary cubic form C(x, y) = px> 4 3gx2y + 3rxy? + sy> projective if
the corresponding triply-symmetric cube ¢(C) given by (7) is projective. It turns out
that the SL; (Z)-orbits on such binary cubic forms having a fixed discriminant D also
then inherit a law of composition from the space of cubes, leading to a group structure
when restricted to projective forms. It is not hard to guess what this group should
be related to. Namely, projective triply-symmetric cubes correspond to a balanced
triple of ideals (Z, I, I) in S(D), where the three ideals are in fact the same. Thus
I -1-1 is the identity ideal class, implying that orbits of binary cubic forms essentially
correspond to 3-torsion elements in the oriented class group C1*(S). (The precise
3-torsion group one obtains is discussed in [4].) Thus the symmetrization procedure
allows us to isolate a certain arithmetic part of the class group.

An interesting consequence of this result is that the number of orbits of projective
binary cubic forms having a given discriminant D is always a power of three!

3.3. Composition of pairs of binary quadratic forms. The group law on binary
cubic forms of discriminant D was obtained by imposing a triple-symmetry condition
on the group of 2 x 2 x 2 cubes of discriminant D. Rather than imposing a threefold
symmetry, one may instead impose only a twofold symmetry. This leads to cubes
taking the form

AN
AN

|

a

b 8)

|
/

c

AN
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That s, these cubes can be sliced (along a certain fixed plane) into two 2 x 2 symmetric
matrices and therefore can naturally be viewed as a pair of binary quadratic forms
(ax? + 2bxy + cy?, dx? + 2exy + fy?).

If we use Z?> ® Sym?Z? to denote the space of pairs of integer-matrix binary
quadratic forms, then the above association of (ax*+2bxy+cy?, dx*>+2exy+ fy?)
with the cube (8) corresponds to the natural inclusion map

J: Zz®SymzZ2 > 77 ® 7.

The lattice Z> ® Sym?Z? under the action of SL(Z) x SL(Z) again yields a preho-
mogeneous vector space.

As in the case of binary cubic forms, we call a pair of binary quadratic forms
projective if the corresponding doubly-symmetric cube j (C) given by (8) is projective.
Again, the projective pairs of binary quadratic forms having a fixed discriminant D
inherit a group structure. Since such elements correspond to balanced triples of ideals
(11, I3, I3) where the last two ideals are the same, one sees that the group thus obtained
is again simply the group CI*(S(D)) since I3 determines /;. That is, not only do
binary quadratic forms of a fixed discriminant D give rise to the oriented class group
of S(D), but so do pairs of binary quadratic forms!

3.4. Further parametrization spaces for quadratic rings. The discussions above
illustrate that once we have a law of composition on the space of cubes, then various
other of its invariant and covariant spaces also inherit a law of composition; Gauss
composition is indeed just one of these.

Symmetrization is one procedure that allows us to generate new prehomogenous
vector spaces with composition; this was the subject of Sections 3.2 and 3.3. The
determinant trick (6) to produce Gauss composition is another. There are several
other operations too that play an important role, such as skew-symmetrization, sym-
plectization, hermitianization, and dualization, and each procedure is found to have
both invariant-theoretic and number-theoretic meaning, yielding numerous further
analogues of Theorem 2.1 involving higher rank rings, higher rank modules, as well
as noncommutative rings such as quaternion and octonion algebras. Further details
may be found in [4] and [8].

4. Cubic analogues of Gauss composition

In the previous section, we discussed various generalizations of Gauss composition
that were found to be closely related to the ideal class groups of quadratic rings. In this
section, we show how similar ideas can be used to obtain genuine “cubic analogues”
of Gauss composition, i.e., composition laws on appropriate spaces of forms so that
the resulting groups are related to the class groups of cubic rings.

The fundamental object in our treatment of quadratic composition was the space
of 2 x 2 x 2 cubes of integers. It turns out that the fundamental object for cubic
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composition is the space of 2 x 3 x 3 boxes of integers, and yields exactly what is needed
for a cubic analogue of Gauss’s theory. The action of GL»(Z) x SL3(Z) x SL3(Z)
on 2 x 3 x 3 integer boxes is again a prehomogeneous vector space, and the orbits
correspond in a natural way to cubic rings and ideal classes in those rings. Before the
resulting cubic analogues of Gauss composition can be described, it is necessary first
to understand how cubic rings are parametrized.

4.1. The parametrization of cubic rings. In Section 2.1, we saw that quadratic
rings are parametrized up to isomorphism by their discriminants. This is not so
for cubic rings; indeed, there may sometimes be several nonisomorphic cubic rings
having the same discriminant. The correct object parametrizing cubic rings — i.e.,
rings free of rank 3 as Z-modules — was first determined by Delone—Faddeev in their
beautiful 1964 treatise on cubic irrationalites [21]. They showed that cubic rings are
in bijective correspondence with GL, (Z)-equivalence classes of integral binary cubic
forms ax3 + bx?y + cxy? + dy3, as follows.

Given a binary cubic form f(x, y) = ax®+bx?y+cxy?>+dy’ witha, b, ¢, d € 7,
we associate to f the ring R(f) having Z-basis (1, w, 8) and multiplication table

wb = —ad

w? = —ac + bw — ab 9

0% = —bd + dw — 0.

One easily verifies that GL;(Z)-equivalent binary cubic forms then yield isomorphic
rings, and conversely, that every isomorphism class of ring R can be represented in the
form R(f) for a unique binary cubic form f, up to such equivalence. Thus we may
say that isomorphism classes of cubic rings are parametrized by GL2(Z)-equivalence
classes of integral binary cubic forms. An easy calculation using (9) shows that the
discriminant Disc(R(f)) is equal to the discriminant Disc(f) of the binary cubic
form f, where Disc(f) = b*c* — 4ac® — 4b3d + 18abcd — 27a%d? is the unique
polynomial invariant for the action of GL,(Z) on binary cubic forms. We thus obtain:

Theorem 4.1 ([21]). There is a canonical bijection between the set of Glo(Z)-
equivalence classes of integral binary cubic forms and the set of isomorphism classes
of cubic rings, by the association

f < R(f).
Moreover, Disc(f) = Disc(R(f)).

We say a cubic ring is nondegenerate if it has nonzero discriminant (equivalently,
if it is an order in an étale cubic algebra over Q). Similarly, a binary cubic form is
nondegenerate if it has nonzero discriminant (equivalently, if it has distinct roots in
P!(Q)). The discriminant equality in Theorem 4.1 implies, in particular, that isomor-
phism classes of nondegenerate cubic rings correspond bijectively with equivalence
classes of nondegenerate integral binary cubic forms.



282 Manjul Bhargava

4.2. Cubic composition and 2 x 3 x 3 boxes. Imitating Section 3.1, for a cubic
ring R let us say a pair (I, I) of fractional R-ideals in K = R ® Q is balanced
if II'’ € R and NI)N(I') = 1. Furthermore, we say two such balanced pairs
(I, 1 { ) and (1, Ié) are equivalent if there exist invertible elements «, k' € K such
that Iy = kI and I{ = «’I}. For example, if R is the full ring of integers in a cubic
field then an equivalence class of balanced pairs of ideals is simply a pair of ideal
classes that are inverse to each other in the ideal class group.

The analogue of Theorem 3.2 in the theory of cubic composition states that
GL3(Z) x SLa(Z) x SL3(Z)-classes of 2 x 3 x 3 integer boxes correspond to equiv-
alence classes of balanced pairs of ideals in cubic rings.

Theorem 4.2. There is a canonical bijection between the set of nondegenerate
GL,(Z) x SL3(Z) x SL3(Z)-orbits on the space 72 @72 @ 73 and the set of isomor-
phism classes of pairs (R, (I, 1')), where R is a nondegenerate cubic ring and (I, 1")
is an equivalence class of balanced pairs of ideals of R.

How does one recover the cubic ring R from a 2 x 3 x 3 box of integers? A
2 x 3 x 3 box may be viewed (by an appropriate slicing) as a pair (A, B) of 3 x 3
matrices. Then f (x, y) = Det(Ax — By) is a binary cubic form. The ring R is simply
the cubic ring R(f) associated to f via Theorem 4.1.

If we define the discriminant Disc(A, B) of (A, B) as Disc(Det(Ax — By)), then
one shows again that this discriminant is the unique polynomial invariant for the action
of GL(Z) x SL3(Z) x SL3(Z) on 2 x 3 x 3 boxes. By the method of recovering R from
(A, B) above, we see again that the bijection of Theorem 4.2 preserves discriminants.

We may now describe composition of 2 x 3 x 3 boxes. Given a binary cubic
form f, let (Z2 7373 ( f) denote the set of all elements (A, B) € 7’ Q73173
such that Det(Ax — By) = f(x, y); all such elements correspond to the same cubic
ring in Theorem 4.2. The group SL3(Z) x SL3(Z) is seen to act naturally on the set
(ZF @ 73 @ 7°3)( f) via simultaneous row and column operations on A and B; this
action evidently does not change the value of Det(Ax — By). Moreover, one finds
that two elements of (Z> ® Z> ® Z3)(f) yield equivalent balanced pairs of ideals in
R(f) if and only if they are equivalent under SL3(Z) x SL3(Z).

As with the quadratic cases of composition in Section 3, composition of 2 x 3 x 3
boxes having a fixed f can now be viewed as multiplication of equivalence classes
of balanced pairs of ideals in the corresponding cubic ring R = R(f):

(R,(I,I")o(R,(J,J))=(R,(J,I'])).

When restricted to invertible ideal classes (i.e., projective 2 x 3 x 3 boxes), this yields
the ideal class group CI(R) of R, since the second ideal class is determined by the
first (as they are inverses to each other). Thus composition of SL3(Z) x SL3(Z)-
equivalence classes of projective 2 x 3 x 3 boxes yields the class groups of cubic
rings, in complete analogy with Gauss composition in the quadratic case.
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To summarize:

* In the case of binary quadratic forms, the unique SL-invariant is the dis-
criminant D, which classifies orders in quadratic fields. The primitive classes
having a fixed value of D form a group under a certain natural composition
law. This group is naturally isomorphic to the narrow class group of the corre-
sponding quadratic order.

* Inthecase of 2 x 3 x 3 integer boxes, the unique SL3 x SL3-invariant is the binary
cubic form f, which classifies orders in cubic fields. The projective classes
having a fixed value of f form a group under a certain natural composition law.
This group is naturally isomorphic to the ideal class group of the corresponding
cubic order.

Thus the composition law on the space of 2 x 3 x 3 integer cubes is really the
cubic analogue of Gauss composition.

4.3. Cubic composition and pairs of ternary quadratic forms. Just as we were
able to impose a symmetry condition on 2 X 2 x 2 matrices to obtain information on
the exponent 3-parts of class groups of quadratic rings, we can impose a symmetry
condition on 2 x 3 x 3 matrices to obtain information on the exponent 2-parts of
class groups of cubic rings. The “symmetric” elements in Z> @ Z> @ Z> are the
elements of Z? ® Sym?Z?, i.e., pairs (A, B) of symmetric 3 x 3 integer matrices,
which may be viewed as pairs (A, B) of integral ternary quadratic forms. The action
of GL(Z) x SL3(Z) on pairs of ternary quadratic forms is again a prehomogeneous
vector space.

The cubic form invariant f and the discriminant Disc(A, B) of (A, B) may be
defined in the identical manner; we have f(x, y) = Det(Ax — By) and Disc(A, B) =
Disc(Det(Ax — By)). We say an element (A, B) € 7* ® SymzZ3 is projective if it
is projective as a2 x 3 x 3 box.

As in the case of binary cubic forms and symmetric cubes (see Section 3.2), the
space of pairs of ternary quadratic forms also inherits a law of composition from the
space of 2 x 3 x 3 boxes. Again, the restriction to symmetric classes isolates a certain
arithmetic part of the class group. Namely, symmetric projective 2 x 3 x 3 boxes
yield pairs of the form (R, (I, I)) where the two ideals are in fact the same. Thus
I - I is the identity ideal class of R, so we see that GLo(Z) x SL3(Z)-orbits of pairs
of integer-matrix ternary quadratic forms essentially parametrize 2-torsion elements
in the class groups of cubic rings (see [5] for further details).

This parametrization has several interesting consequences. For example, it implies
that the number of equivalence classes of projective pairs (A, B) of ternary quadratic
forms having a given binary cubic Det(Ax — By) is always a power of 2!

The parametrization also enables one to prove the first known case of the Cohen—
Martinet heuristics for class groups, namely for the average size of the 2-torsion sub-
group in the class groups of cubic fields. This average number of 2-torsion elements
turns out to be 5/4 for real cubic fields and 3/2 for complex cubic fields. In particular,
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this implies that at least 75% of totally real cubic fields, and at least 50% of complex
cubic fields, have odd class number. Further details may be found in [9]. The case
of narrow class groups can also be handled by generalizations of these arguments (to
appear in future work).

5. The parametrization of quartic and quintic rings

The composition laws and results of the previous two sections depended heavily on the
simple but beautiful parametrizations of quadratic and cubic rings given by (2) and (9)
respectively. Namely, we saw that quadratic rings are parametrized by integers con-
gruent to 0 or 1 (mod 4), while cubic rings are parametrized by GL, (Z)-equivalence
classes of binary cubic forms.

Ithas been along-time open question to determine whether analogous parametriza-
tions exist for rings of rank 4. The ideas of the previous sections, together with a theory
of resolvent rings, lead to a parametrization of quartic rings that is just as complete
as in the quadratic and cubic cases. These “resolvent rings” are so named because
they form natural integral models of the resolvent fields occurring in the classical
literature; see [6] for further details.

This perspective leads one to show that the analogous objects parametrizing quartic
rings are essentially pairs of integer-valued ternary quadratic forms, up to integer
equivalence. To make a precise statement, let (Z> ® Sym?Z3)* denote the space of
pairs of ternary quadratic forms having integer coefficients. Then we have:

Theorem 5.1. There is a canonical bijection between the set of GLy(Z) x SL3(Z)-
orbits on the space (Z* @ Sym2Z3)* of pairs of integer-valued ternary quadratic
forms and the set of isomorphism classes of pairs (Q, R), where Q is a quartic ring
and R is a cubic resolvent ring of Q.

A cubic resolvent ring of a quartic ring Q is a cubic ring R equipped with a
certain natural quadratic mapping Q — R. It turns out that all quartic rings have at
least one cubic resolvent ring; moreover, for “most” quartic rings (e.g., for maximal
quartic rings) this cubic resolvent ring is in fact unique. Thus every quartic ring arises
in Theorem 5.1, and the theorem yields a bijection on the quartic rings of primary
interest to algebraic number theorists, namely the maximal orders in quartic fields.

The theory of resolvent rings used in [6] to prove Theorem 5.1 makes heavy
use of many of the formulae arising in the solution to the quartic equation. The
same ideas also yield a purely ring-theoretic interpretation of the Delone—Faddeev
parametrization of cubic rings, using formulae arising in the classical solution to the
cubic equation.

Since the quintic equation is known to be “unsolvable”, it may then seem that such
parametrization methods could not extend beyond the quartic. However, there has
been a lot of literature on the quintic equation, and some of the formulae that arise
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in these works — although they fail to “solve” the quintic equation — can nevertheless
be adapted to develop a completely analogous theory for parametrizing quintic rings!
It turns out that quintic rings are essentially parametrized by quadruples of quinary
alternating bilinear forms, i.e., quadruples of 5 x 5 skew-symmetric integer matrices.

Let Z* ® A2Z’ denote the space of quadruples of 5 x 5 skew-symmetric integer
matrices. Then the parametrization result for quintic rings is as follows.

Theorem 5.2. There is a canonical bijection between the set of GL4(Z) x SL5(Z)-
orbits on the space 7* @ N> 77 of quadruples of 5 x 5 skew-symmetric integer matrices
and the set of isomorphism classes of pairs (R, S), where R is a quintic ring and S is
a sextic resolvent ring of R.

A sextic resolvent ring of a quintic ring R is a sextic ring S equipped with a certain
natural mapping R — A%S which seems to have been missed in the classical literature
on the quintic equation. The notion of sextic resolvent ring yields a natural integral
model for the sextic resolvent fields studied by Cayley and Klein. As in the quartic
case, one finds that all quintic rings have a sextic resolvent, and maximal quintic
rings have exactly one sextic resolvent ring. Thus Theorem 5.2 yields a bijection on
maximal orders in quintic fields!

These parametrization results have an important application to determining the
density of discriminants of number fields of degree less than or equal to five, which
we discuss in the next section.

Because of the classification of prehomogeneous vector spaces, one can show that
parametrizations of the same type cannot exist for rings of rank n > 5. This is in
agreement with the classification of group stabilizers by Sato—Kimura [33], and with
the classification of orbits over fields by Wright—Yukie [41]. Thus parametrizations
of this type end with the quintic.

6. Counting number fields of low degree

Number fields — i.e., field extensions of the rational numbers of finite degree — are
perhaps the most fundamental objects in algebraic number theory, yet very little is
known about their distribution with respect to basic invariants.

The most fundamental numerical invariant of a degree n number field K is its
discriminant Disc(K). The quantity Disc(K) is defined as Disc(Og), where Og
denotes the unique maximal ring of rank n contained in K (equivalently, Ok is the
ring of algebraic integers in K). A fundamental theorem of Minkowski states that,
up to isomorphism, there can be only finitely many number fields having any given
discriminant D. The question thus arises: how many? The number of number fields
of discriminant D fluctuates with D in a seemingly random manner, so that obtaining
an exact answer would be rather unwieldy. Nevertheless, it is still natural to ask
whether one can understand the answer on average. That is, how many number fields
do we expect having discriminant D?
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It is natural to refine the latter question by considering each degree and each
associated Galois group separately. For the remainder of this section, we fix the degree
to be n and consider the degree n number fields whose Galois closures have Galois
group S,, which is in some sense the “generic” case. We now consider successive
cases of n, starting with the simplest case, namely

n = 1. There is only one degree 1 number field, namely the field Q of rational
numbers, and its discriminant is 1. Thus we expect zero degree 1 number fields per
discriminant as the discriminant tends to infinity. O

n = 2. The case n = 2 is also not difficult to handle. Recall that, for each nonsquare
discriminant D, there is a unique quadratic order having discriminant D. Maximal
orders correspond to discriminants that are not square multiples of other discriminants,
so that maximality essentially amounts to a squarefree condition on D.> It is known
that the probability that a number is squarefree is 6/72; it follows that we expect
about 6/72 &~ .607. . . quadratic fields per discriminant. O

In the 1960s, the cases n = 1 and n = 2 apparently provided enough evidence
for the following bold folk conjecture to come into existence. The origin of this
conjecture seems to be unknown.

Conjecture 6.1. Let N, (X) denote the number of S, -number fields of degree n having
absolute discriminant at most X. Then

N (X)
¢, = lim
X—o00 X

exists, and is positive for n > 2.

Thatis, we expect about ¢, S,-number fields of degree n per discriminant, where ¢,
is some positive constant when n > 1. One question that immediately arose from the
circulation of this conjecture was: what should the value of ¢, be? Evidently ¢y =0
and ¢, = 6/72, but no general formula for the value of ¢, was known.

n = 3. Some further data as to the nature of ¢, was provided in the seminal 1970
work of Davenport and Heilbronn [20], who explicitly determined the value of c3.
A key ingredient in their work was the parametrization of cubic orders by GL>(Z)-
equivalence classes of binary cubic forms (see Section 4.1).

To count the number of GL,(Z)-equivalence classes of binary cubic forms having
absolute discriminant less than X, Davenport constructed a fundamental domain ¥
for the action of GL,(Z) on the four-dimensional real vector space V of binary cubic

5The precise condition is that the number be squarefree and 1 (mod 4) or be four times an integer that is 2 or
3 (mod 4). So it is not quite a squarefree condition at 2. Nevertheless, the density of such numbers is still 6/772!
This is not a coincidence, but is part of a general phenomenon occurring in all degrees and at all primes dividing
the degree, which may be explained via certain “mass formulae” arising in work of Serre. More details may be
found in [11].
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forms over R. The number of cubic orders having absolute discriminant at most X is
then simply the number of integer points in the region ¥, where

Fx = F N{v eV :|Disc(v)| < X}.

This region is seen to have finite volume, namely (72/18)X.

Now given any region R in n-dimensional Euclidean space, it is very natural
to approximate the number of integer lattice points in & by the Euclidean volume
Vol(R). Such an approximation will be particularly good if the region is compact
and somewhat “round-looking” in the sense that its boundaries are smooth, and there
are no serious “‘spikes” or “tentacles” jutting out of the region.

However, if the region is noncompact or it possesses thin, long tentacles or spikes,
then all bets are off. For example, one may have a region with a tentacle thinning
as it runs off to infinity, which has finite volume yet contains an infinite number of
lattice points. Or one could have a region with one infinitely long tentacle, which has
arbitrarily large (finite or infinite) volume yet contains no lattice points! It is easy
to draw pictures even in two-dimensional space that illustrate each of these unruly
scenarios. For such “bad” regions, there may be little correlation between the volume
and the number of lattice points lying within.

Let us consider again Davenport’s domain Fy. If this subset of V were compact
and round, we could then conclude that the number of lattice points within is essentially
(r2/18) X. However, the region F is not compact. Although we do not attempt to
draw this region here — as it is four-dimensional — it is nevertheless easy to visualize
roughly what this region looks like. Namely, F is relatively round-looking, but
there is a single problematic tentacle going off to infinity (arising from the fact that
SLy(Z) \ SL2(R) is noncompact). Thus, to make any conclusions regarding the
number of lattice points in FY, it is necessary to deal with this tentacle.

What Davenport shows is that although this tentacle (or cusp) contains a very large
number of lattice points, nearly all of these lattice points are reducible cubic forms;
i.e., they correspond to cubic rings sitting not in a cubic field, but in the direct sum
of Q and a quadratic field. Only a negligible number of irreducible points are found
to lie in the cusp. Meanwhile, the lattice points in the main body of the region and
away from the cusps correspond almost entirely to irreducible points, i.e., orders in
cubic fields; only a negligible number of points in this main body are reducible.®

It follows that, as X — oo, one may approximate the number of irreducible points
in Fx by the volume of the main body of the region. As the above cusps are found
to have negligible volume, we conclude that the number of irreducible points in Fy
is (712/ 18) X, where the error is o(X). We therefore obtain

Theorem 6.2. The number of cubic orders (in cubic fields) having absolute discrim-
inant at most X is asymptotic to (w%/18)X as X — oo.

5Here, by negligible, we mean “o(X)”.
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To pass from such cubic orders to maximal cubic orders (and thus to cubic fields)
requires a delicate sieve, which was carried out in the remarkable work of Davenport—
Heilbronn. The result of this sieve is:

Theorem 6.3 (Davenport—Heilbronn [20]). The number of cubic fields having abso-
lute discriminant at most X is asymptotic to (1/3¢(3))X as X — 00, where {(s)
denotes the Riemann zeta function.

Thus Davenport and Heilbronn showed, in sum, that ¢3 = ﬁ ~ .277.... That

is, we expect approximately .277 cubic fields per discriminant. ]

It has been a long-time open problem to extend Davenport—Heilbronn’s theorem to
n = 4,1i.e., to gain an understanding of quartic number fields in the same way. Having
now obtained a parametrization of quartic orders, it is natural to try and proceed in a
manner analogous to Davenport—Heilbronn.

n = 4. As discussed in Section 5, quartic orders are parametrized by pairs of integer-
coefficient ternary quadratic forms, modulo the action of the group GL»(Z) x SL3(Z).
In analogy with Davenport—Heilbronn’s work, we construct a fundamental domain ¥
for the action of GL»(Z) x SL3(Z) on the space V of pairs of real-coefficient ternary
quadratic forms. Then ¥ is a certain region in the 12-dimensional real vector space
V., and quartic rings are seen to correspond to lattice points inside the fundamental
domain ¥ .

In order to understand the number of quartic orders (and eventually quartic fields)
having absolute discriminant at most X, we therefore wish to count the number of
integer points inside the region ¥y, where the region Fy is as usual defined by F N{v €
V ¢ |Disc(v)| < X}. However, the region ¥ is not so simple; indeed, the geometry of
this fundamental domain is significantly more complicated than the analogous region
considered by Davenport and Heilbronn. For one thing, the dimension is now twelve
instead of four! Moreover, there are now three major cusps or tentacles rather than
one, and the cross sections of these cusps lie in several dimensions. If these cusps did
not exist, and Fx were compact, it would be an easy matter to estimate the number
of integer points in Fx.

It takes quite a bit of hard work to deal with the cusps, but in the end, what happens
with these cusps is quite beautiful. All three cusps contain many points (i.e., at least on
the order of X in number). However, essentially all the lattice points in the first cusp
are found to be “reducible”: they correspond to quartic rings that lie in the direct sum
of two quadratic fields instead of a single quartic field. The second cusp also consists
almost entirely of “reducible” points! These points correspond to orders lying in the
direct sum of Q and a cubic field (or some other étale cubic algebra) rather than a
quartic field. In the third cusp, another very interesting phenomenon occurs, namely
the lattice points inside almost entirely correspond to orders in quartic fields whose
Galois closure has Galois group D4 (the dihedral group of order 8) rather than Sy!
Meanwhile, the main body of the region away from the cusps is shown to consist
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almost entirely (i.e., up to o(X)) of the lattice points that correspond to orders in
S4-quartic fields.”

As a result, to count orders in Ss-quartic fields (i.e., “Ss-quartic orders”), one
may simply count lattice points in the region Fx with its tentacles cut off. This
region is then compact, and is sufficiently round for one to deduce that the number
of lattice points inside this region is essentially its volume, which is computed to be
(5¢ (2)2{(3) /24)X. It follows (in conjunction with Theorem 5.1) that the number of
pairs (Q, R), where Q is an S4-quartic order of discriminant at most X and R is a
cubic resolvent ring of Q, is asymptotic to (5;(2)25(3) /24X as X — oo.

Finally, one shows that counting quartic rings just once each —i.e., without weight-
ing by the number of cubic resolvents — affects this final answer simply by a factor of
£ (5). We obtain:

Theorem 6.4. The number of S4-quartic orders having absolute discriminant at most

2
X is asymptotic to % Xas X — oo.

To count only the maximal orders in S4-quartic fields again requires a fairly delicate
sieve. The end result of this sieve is:

Theorem 6.5. The number of Sa-quartic fields having absolute discriminant at most
X is asymptotic to 25—4 [1,a+ p2—p3—p ™ - Xas X - oo

Thus ¢4 = 25—4 ]_[p(l +p2—p3 — p™* &~ .253...; that is, we expect about
.253 S4-quartic fields per discriminant. O

Theorem 6.5 has a number of interesting consequences. First, it is related to the
proof of the case of the Cohen—Lenstra—Martinet class group heuristics mentioned
at the end of Section 4.3. Second, in conjunction with the work of Baily [1] and
Cohen-Diaz—Olivier [13] on D4-fields, Theorem 6.5 implies that when all quartic
fields are ordered by the size of their discriminants, a positive proportion of them
do not have Galois group S4! In fact, “only” about 90.644% have Galois group S,
while the remaining correspond to the Galois group D4 (0% have any of the other
possible Galois groups). This is interesting because it is in direct opposition to the
situation for polynomials, where Hilbert’s irreducibility theorem implies that if integer
polynomials of degree n are ordered by the size of their coefficients, then 100% will
have Galois group Sj,.

n = 5. Last but not least, the parametrization results described in the previous section
also allow one to asymptotically determine the number of quintic fields of bounded
discriminant. This represents the first instance where one can count unsolvable ex-
tensions.

"In practice, to simplify the details, we perform all these computations using not one but several fundamental
domains Fy C R!2, but the spirit of the argument remains unchanged. The details of this “averaging” method
may be found in [9] and [10].
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We have shown that quintic rings correspond to the GL4(Z) x SLs(Z)-orbits
on quadruples of 5 x 5 skew-symmetric integer matrices. Following the cases
n =3 and n = 4, we begin by constructing a fundamental domain for the action
of GL4(Z) x SL5(Z) on the corresponding forty-dimensional real vector space V.
We wish to understand the number of integer points in Fx, where as before £x =
F N{v e V:|Disc(v)| < X}. This turns out to be significantly more difficult than
the corresponding problem in the cubic and quartic cases. Besides being highly non-
compact, the forty-dimensional fundamental domain ¥x has an intriguingly complex
system of numerous high-dimensional tentacles and cusps!

But in the end these cusps too exhibit a surprisingly beautiful structure, and can
be handled in much the same way as in the cubic and quartic cases. Namely, we cut
up this system of cusps into a finite number (approximately 160) of sub-cusps, all
of which run off to infinity and thus present a problematic tentacle-type scenario. In
each one of these 160 sub-cusps, one shows either that there are a negligible number
of points within, or that essentially all points in that tentacle are reducible in a certain
way. In this aspect, these cusps are very similar to those occurring in the cases n = 3
and n = 4 — the difference being only that there are many more of them this time!

Lastly, one shows that 100% of the points in the main body of the region correspond
to orders in S5-quintic fields. By computing the volume of this main body, and then
sieving down to the maximal quintic orders (for details on these tasks, see [10]), one
finally obtains the following theorem.

Theorem 6.6. The number of quintic fields having absolute discriminant at most X
is asymptotic to % ]_[p(l +pt—pPt—p)-XasX - .

Therefore c5 = % ]_[p(l +p2—p~*—p7)~ .149. .., and so there are about
.149 quintic fields per discriminant on average. |

n > 6? Given the success in the cases n < 5, the question is only too tempting: what
happens for n > 6? We put forth the following conjecture:

Conjecture 6.7. We have

r2(Sy) " gtk,n—k)—qgtk—1,n—k+1)
=2 U(g . ) (10)

where ¢ (i, j) denotes the number of partitions of i into at most j parts, and r»(S,)
denotes the number of 2-torsion elements in S,,.

That is, we conjecture that the number of S,,-number fields per discriminant will
be ¢, on average, where ¢, is given as in (10).

Conjecture 6.7 was obtained by combining global heuristics with new mass for-
mulae for étale extensions of local fields inspired by work of Serre [36]. It is readily
checked that Conjecture 6.7 agrees with the values of ¢, now proven for n = 1
through 5. For further details on this conjecture and the related mass formulae,
see [11]. The proofs of the conjecture for n = 3, 4, and 5 may be found in [20], [9],
and [10] respectively.
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7. Related and future work

The composition and parametrization laws described in Sections 3-5 all turn out to
be closely related to certain exceptional Lie groups. More precisely, let E be an
exceptional Lie group and let P be a maximal parabolic of E. If we write £ = GU,
where G is the Levi factor and U is the unipotent radical at P, then the group G acts
naturally (by conjugation) on the abelianized unipotent radical V = U/[U, U]. For
appropriate choices of E and P, we find that we obtain precisely the prehomogeneous
vector spaces (G, V) underlying the composition laws and parametrizations described
in Sections 3-5. For example, the first case we considered in Section 3 was the space
of 2 x 2 x 2 cubes, and this representation of SLy(Z) x SL>(Z) x SL,(Z) arises in
this way when E is the exceptional Lie group of type D4 and P is the Heisenberg
parabolic.

This remarkable connection with Lie groups in fact appears to run much further —
see [4, §4] and [5, §4] — and needs exploration, perhaps in connection with auto-
morphic forms on these groups in the sense of Gan—Gross—Savin [26] and in the
subsequent work of Lucianovic [31] and Weissman [38]. The reduction-theoretic
aspect of some of the exceptional representations that arise in this way and their re-
lation to noncommutative rings has been the subject of study in the recent work of
Krutelevich.

The parametrization results described in Sections 3—5 for commutative rings ex-
tend to a large extent also to many noncommutative rings such as quaternions, oc-
tonions, and higher rank division algebras (see [8]). Many of these parametriza-
tions of noncommutative rings and modules were discovered by applying certain
number-theoretic operations (mentioned in Section 3.4) to parametrizations involv-
ing quadratic and cubic rings, indicating that there is a great deal of number theory
lurking behind noncommutative — and even nonassociative! — rings such as the octo-
nions. These number-theoretic connections beg for further investigation.

We note that the spaces underlying these various parametrizations also come
equipped with a theory of zeta functions. Zeta functions associated to prehomo-
geneous vector spaces were first introduced by Sato and Shintani [34], and were fur-
ther developed by Datskovsky, Wright, Yukie, and others. In particular, Datskovsky
and Wright [16] used such zeta functions to give an alternative proof of Davenport—
Heilbronn’s theorem, which applies over an arbitrary number field or function field.
The more difficult quartic analogue of their work was initiated by Yukie [42], and
could eventually lead to an alternative method for counting quartic fields. The prob-
lem of understanding the relationship between the various parametrizations discussed
here and the associated zeta functions is intriguing and deserves further investigation,
both in the commutative and noncommutative cases.

Regarding commutative rings, the problem of finding parametrizations for rings of
rank > 5 is a very interesting one. Although we have already noted that commutative
rings cannot be parametrized by prehomogeneous vector spaces beyond the quintic
case, there may be other ways to accomplish the task, such as through the study of
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integer points on certain special varieties. This is a central problem in the theory,
and of importance not only algebraically but also with respect to understanding the
distribution of algebraic number rings and fields of higher degree.

As to our Conjecture 6.7 on counting S,-number fields having fixed degree n and
absolute discriminant less than X, even the correct order of growth (i.e., O (X)) is
not known. The best general bounds known for n > 6 are due to Ellenberg and
Venkatesh [24], who prove a bound of O (X "e). Conjectures for the density of dis-
criminants of degree n number fields having a specified Galois group G (yielding the
expected orders of growth but not the constants) have been suggested by Malle [32].
These conjectures have been proven for many specific cases of G, including S, for
n <5 (see Section 6), abelian groups (Wright [40]), D4 (Cohen-Diaz—Olivier [13]),
and certain nilpotent groups (Kliiners—Malle [30]). The constants ¢(G) in these con-
jectures for G # S, are unknown in general, even conjecturally, although there has
been some recent progress. If the case G = S, is any indication, the constants c¢(G)
likely contain a great deal of arithmetic information.

One important ingredient in the case G = S, in determining the corresponding
constants ¢, = ¢(S,) was the development of mass formulae that count étale exten-
sions of local fields by appropriate weights (see [11]). How these mass formulae
change with G is an intriguing question, and several interesting cases and families of
finite groups G have been treated by Kedlaya [29] and more recently by Wood. The
manner in which these various local mass formulae glue together globally to give the
global constants ¢(G) is still an open question.

The counting arguments described in Section 6 can be taken much further, leading
e.g. to further information on the distribution of class numbers, narrow class numbers,
units, and regulators of cubic rings and fields. They can also be used to obtain
information on the discriminant density of noncommutative rings such as quaternion
and octonion rings, and modules over these rings. Finally, results analogous to those
described in this survey can be obtained for ring and field extensions not just over Z
and Q but over more general base rings. These directions too must be investigated,
and we hope to treat them further in future work.
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Hecke orbits as Shimura varieties in positive characteristic

Ching-Li Chai*

Abstract. Let p be a prime number, and let M be a modular variety of PEL type over F,
which classifies abelian varieties in characteristic p with extra symmetries of a fixed PEL type.
Consider the p-divisible group with extra symmetries consisting of all p-power torsions of
the universal abelian scheme over M. The locus in M corresponding to a fixed isomorphism
type of a p-divisible group with extra symmetry is called a leaf by F. Oort. Each leaf is a
smooth locally closed subvariety of the modular variety M which is stable under all prime-to-p
Hecke correspondences on M. Oort conjectured that every Hecke orbit is dense in the leaf
containing it. Tools fashioned for this conjecture include (a) rigidity, (b) global monodromy,
and (c) canonical coordinates. The theory of canonical coordinates generalizes the classical
Serre-Tate coordinates; it asserts that locally at the level of jet-spaces, every leaf is built up
from p-divisible formal groups through a finite family of fibrations in a canonical way. The
Hecke orbit conjecture is affirmed when M is a Siegel modular variety classifying principally
polarized abelian varieties of a fixed dimension, and also when M is a Hilbert modular variety
classifying abelian varieties with real multiplications. The proof of the Siegel case, joint with
F. Oort, uses the irreducibility of non-supersingular leaves in Hilbert modular varieties due to
C.-F. Yu. That proof relies heavily on a special property of Siegel modular varieties: The set of
E,—rational points of a Siegel modular variety sy, is filled up by E,—rational points of Hilbert
modular varieties contained in A, ,,. Possible directions for further progress include Tate-linear
subvarieties and p-adic monodromy. The title of this article suggests that each leaf deserves to
be viewed as a Shimura variety in characteristic p in its own right.
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Keywords. Shimura variety, Hecke correspondence, moduli, leaf, Barsotti—Tate group, abelian
variety, monodromy.

1. Introduction

Let p be prime number and letk O [, be an algebraically closed field fixed throughout
this article; the field k will serve as the base field of modular varieties. The reader
may want to take k = Fp.

We are interested in Hecke symmetries on the reduction to k of a Shimura variety.
Because the theory of integral models of Shimura varieties are not fully developed
yet, we will restrict to a small class of Shimura varieties, call modular varieties of PEL
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type. Such a modular variety classifies abelian varieties with prescribed polarization
and endomorphisms of a fixed type.

We will further restrict our attention to the prime-to-p Hecke symmetries. Since
these symmetries come from finite étale isogeny correspondences for the universal
abelian scheme over a modular variety M, they preserve all p-adic invariants of
geometric fibers of the universal Barsotti-Tate group on M. Familiar examples of
p-adic invariants include the p-rank and the Newton polygon. In 1999 F. Oort had the
insight that if one uses “the mother of all p-adic invariants”, namely the isomorphism
class of the geometric fibers of the universal Barsotti—Tate group, then instead of a
stratification of M by a finite number of subvarieties, one gets a decomposition of M
into an infinite number of smooth locally closed subvarieties. In [30] these subvarieties
are called central leaves, which we simplify to leaves here. In general the leaves in a
given modular variety have moduli: They are parametrized by a scheme of finite type
over k. Oort’s Hecke orbit conjecture asserts that the leaves are determined by the
Hecke symmetries: Every prime-to- p Hecke orbit is dense in the leaf containing it.

In this article we explain techniques motivated by the Hecke orbit problem: global
£-adic monodromy (Proposition 3.3), canonical coordinates on leaves (§4), hyper-
symmetric points (§5), local stabilizer principle (Proposition 6.1) and local rigidity
(Theorem 6.2). The first is group-theoretic, while the rest four constitutes an effec-
tive “linearization method” of the Hecke orbit problem, which is illustrated in 6.3.
The techniques developed so far are strong enough to affirm the Hecke orbit conjec-
ture for Siegel modular varieties and Hilbert modular varieties. Advances in p-adic
monodromy may lead to further progress; see §7.

In many ways a leaf in a modular variety M over a field of characteristic p
resembles a Shimura variety in characteristic zero:

* The action of the Hecke symmetries on a leaf is topologically transitive accord-
ing to the Hecke orbit Conjecture 3.2.

* By Proposition 3.3, the £-adic monodromy of a leaf of positive dimension in
M is G(Qy), where G is a semisimple group attached to M.

* Aleaf is homogeneous in the sense that the local structure of a leaf are the same
throughout the leaf, in view of the theory of canonical coordinates in §4.

* It seems plausible that a suitable parabolic subgroup P of an inner twist G’ of
G attached to a leaf C is closely related to the p-adic monodromy of C; see
§7.2. Hints of such a connection already appeared in [21].

* The theory of canonical coordinates suggests that one considers a leaf C as
above to be “uniformized” by G’/ P in a weak sense.

The above analogy depicts a scene in which a Shimura variety spawns an infinitude
of morphed characteristic p replicas while reducing itself modulo p, an image that
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resonates with the mantra of Indra’s Pearls'. We hope that the readers find this
analogy somewhat sound, or perhaps even pleasing.

2. Hecke symmetry on modular varieties

A modular varieties of PEL type classifies abelian varieties with a prescribed type of
polarization, endomorphisms and level structure. To a given PEL type is associated a
tower of modular varieties. A locally compact group, consisting of prime-to-p finite
adelic points of a reductive algebraic group over QQ, operates on this tower; this action
induces Hecke correspondences on a fixed modular variety in the tower.

2.1. PEL data. Let B be a finite dimensional semisimple algebra over Q, let Op
be a maximal order of B maximal at p, and let % be a positive involution on B
preserving Op. Let V be a B-module of finite dimension over Q, let (-, -) be a Q-
valued nondegenerate alternating form on V compatible with (B, *), and leth: C —
Endpgyr(V ®q R) be a x-homomorphism such that

(v, w) = (v, hi(~'=Dw)

defines a positive definite real-valued symmetric form on V ®g R. The 6-tuple
(B, *,0p,V, ("), h)is called a PEL datum unramified at p if B is unramified at p
and there exists a self-dual Z-lattice in V ®q Q, stable under Op.

2.2. Modular varieties of PEL type. Suppose that we are given a PEL datum
(B, *,0p,V, (-, -), h) unramified at p, one associates a tower of modular varieties
(Mgr) indexed by the set of all compact open subgroups K7 of G(A}’), where G
is the unitary group attached to the pair (Endg(V), %), and A? = ]—[2 £p Qy i1s the
ring of prime-to-p finite adeles attached to Q. The modular variety Mg classifies
abelian varieties A with endomorphisms by @p plus prime-to-p polarization and
level-structure, whose H; is modeled on the given PEL datum; see [20, §5] for details.

2.3. Hecke symmetries. The group G(A}’ ) operates on the whole projective sys-
tem (Mgr). If a level subgroup K(f is fixed, then on the corresponding modular
variety M KL the remnant from the action of G(A]’Z ) takes the form of a family of
algebraic finite étale algebraic correspondences on M KD they are known as Hecke
correspondences.

For a given point x € M KL (k), denote by 7 - x the subset of M K7 (k) consisting
of all elements which belongs to the image of x under some prime-to- p Hecke corre-
spondence on M . The countable set 7 - x is called the prime-to-p Hecke orbit
ofxf it is equal to the image of G(AJ[Z) X in 'MKé’ (k), where x € 1<ir_nKp Mgr(k)isa
pre-image of x.

ICf. the preface of [25].
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2.4. Examples

2.4.1. Siegel modular varieties. Let g,n € N, (n, p) = 1, and n > 3. Denote
by g, the modular variety over k which classifies all g-dimensional principally
polarized abelian varieties (A, A) over k with a symplectic level-n structure . Two
k-points [(A1, A1, n1)], [(A2, A2, n2)]in Ay ,, are in the same prime-to- p Hecke orbit
if and only if there exists a prime-to-p quasi-isogeny B (=“B2 o 8, 1)
,32 A1 <ﬂ A3 ﬂ—2> A2

defined by prime-to-p isogenies 81 and B> such that 8 respects the principal polar-
izations A and A; in the sense that B} (A1) = B3 (12). The semisimple algebra B in

the PEL datum is equal to Q. The reductive group G attached to the PEL datum is
the symplectic group Sp,,. The modular variety attached to the principal congruence

subgroup of level-n in Sp,, (A}7 ) i Ag .

2.4.2. Hilbert modular varieties. Let £ = F; x --- x F,, where Fy, ..., F, are
totally real number fields. Consider the PEL datum where B = E, x = Idg, and V
is a free E-module of rank two. Then the reductive group attached to the PEL datum
is the kernel of the composition

d N
[ToL: < ] Gn —25 G,
E/Q E/Q

where [ [ /g denotes Weil’s restriction of scalars functor from E to Q. A typical mem-
ber of the associated tower of modular varieties is Mg ,, withn > 3 and (n, p) =1,
which classifies [E : Q]-dimensional abelian varieties A over k, together with a
ring homomorphism ¢: O = OF x --- x O, — End(A), an Og-linear level-n
structure 7, and an @ g-linear polarization of A.

There are different versions of polarizations; the one in [14] is as follows. It is
a positivity-preserving @ g-linear homomorphism A: £ — Homzzn (A, A") from an
projective rank-one O g-module £ with a notion of positivity, which induces an O -
linear isomorphism A: A ®¢, L 5 A, where A’ is the dual abelian variety of A.
The modular variety Mg , is not smooth over k if any one of the totally real fields F;
is ramified above p; if so then Mg, has moderate singularities — it is a local complete
intersection.

The prime-to-p Hecke orbit of a point [(A, ta, Aa, na)] € ME (k) consists of
all points [(B, tp, Ap, nB)] € ME »(k) such that there exists a prime-to-p O g-linear
quasi-isogeny from A to B which preserves the polarizations.

2.4.3. Picard modular varieties. Let L be an imaginary quadratic field contained
in C such that p is unramified in L. Let a, b be positive integers, and let g =
a + b. For the PEL datum, we take B = L with the involution induced by the
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complex conjugation, a g-dimensional vector space V over L, and an L-linear complex
structure : C — Endgr(V ®gR) on V ®q R satisfying the following condition:
For every element u € L C C, the trace of the action of u on V| is equal to au + bu,
where Vi = {v € V ®q C : h(z)(v) = z-v forall z € C}. We also fix a ring
homomorphism ¢: @ — k,i.e. a O -algebra structure on k.

Let n > 3 be a positive integer, (n, p) = 1. The Picard modular variety Mz, 4 5.1
over k classifies (O -linearg-dimensional abelian varieties (A, ¢) of signature (a, b),
together with a principal polarization A: A — A’ such that A o¢(ir) = ¢(u)" o A for all
u € Or, and a symplectic @y -linear level-n structure. The signature condition above
is that

deto, @k (T -1d —t(u)|Lie(A, 1)) = (T—eu))*(T—e(u))? € k[T] forallu € 9.

As before the prime-to-p Hecke orbit of a point [(A, ta, Aa, na)] € ML 4.p.n(k)
consists of all points [(B, tg, Ap, nB)] € ML 4.p.n(k) such that there exists a prime-
to-p Op-linear quasi-isogeny from A to B which preserves the polarizations.

3. Leaves and the Hecke orbit conjecture

3.1. Leaves in modular varieties in characteristic p

Definition 3.1. Let M = M K? be a modular variety of PEL type over k as in 2.2.
Let xo be a point in M (k). The leaf Cp(xg) in M passing through x is the reduced
locally closed subvariety of M over k such that C 4 (x¢) (k) consists of all points x =
[(A, A, t,n)] € Cu(xp)(k) such that the Barsotti-Tate group (or p-divisible group)
(A[p®°], A[p], ([ p°]) with prescribed polarization and endomorphisms attached
to x is isomorphic to that attached to xg.

Remark. (i) The notion of leaves was introduced in [30]; it was studied later by Vasiu
in [38].

(ii) In addition to being locally closed, every leaf in M is a smooth subvariety
of M and is closed under all prime-to-p Hecke correspondences.

3.2. The Hecke orbit conjectures. The Hecke orbit conjecture HO, due to Oort,
asserts that the decomposition of a modular variety M of PEL type into leaves is
determined by the Hecke symmetries on M. It is equivalent to the conjunction of the
continuous version HO¢; and the discrete version HOq. below.

Conjecture 3.2 (HO). Every prime-to-p Hecke orbit in a modular variety of PEL
type M over k is dense in the leaf in M containing it.

Conjecture (HO,;). The closure of any prime-to- p Hecke orbit in the leaf C contain-
ing it is an open-and-closed subset of C, i.e. it is a union of irreducible components
of the smooth variety C.



300 Ching-Li Chai

Conjecture (HOq.). Every prime-to- p Hecke orbit in a leaf C meets every irreducible
component of C.

3.3. Global ¢-adic monodromy. The discrete Hecke orbit conjecture is essentially
an irreducibility statement, in view of the following result on global monodromy.

Proposition 3.3. Let M be a modular variety of PEL type attached to a reductive
group G over Q as in 2.2. Let G¥, be the simply connected cover of the derived
group of G. Let xo € M(k) be a point of M such that the prime-to-p Hecke orbit
of xo with respect to every simple factor of G¥., is infinite. Let Z(xq) be the Zariski
closure of the prime-to-p Hecke orbit of xo for the group G, in the leaf C(xo)
in M containing xo. Then Z(xo) is irreducible, and the Zariski closure of the {-adic

monodromy group of Z(xg) is Gger(Qy) for every prime number £ # p.

Remark. (i) A stronger version of 3.3 for Siegel modular varieties is proved in [5].
The argument in [5] works for all modular varieties of PEL type.

(i1) The irreducibility statement in Proposition 3.3 is a useful tool for proving
irreducibility of a given subvariety Z of modular varieties of PEL type which are
stable under the prime-to-p Hecke correspondences: It reduces the task to proving
Hecke transitivity on 7y (Z).

3.4. Some known cases of the Hecke orbit conjecture
Theorem 3.4. The Hecke orbit conjecture HO holds for Siegel modular varieties.

Theorem 3.5. The Hecke orbit conjecture HO holds for Hilbert modular varieties
attached to a finite product Fy x - - - X F, of totally real fields. Here the prime p may
be ramified in any or all of the totally real fields Fy, ..., F.

Remark. (i) Theorem 3.4 is joint work with F. Oort. Details of the proof of Theo-
rem 3.4 will appear in a monograph with F. Oort. The proof of the continuous version
HO,; in the Siegel case uses Theorem 3.5.

(i1) The proof of Theorem 3.5 is the result of joint work with C.-F. Yu; the proof
of the discrete version, i.e. the irreducibility of non-supersingular leaves in Hilbert
modular varieties, is the work of C.-F. Yu.

(iii)) Among the methods used in the proof of Theorem 3.4, the action of the local
stabilizer subgroup and the trick of using Hilbert modular subvarieties first appeared
in [2], where the case of Theorem 3.4 for ordinary principally polarized abelian
varieties was proved.

(iv) A detailed sketch of the proof of Theorem 3.4 can be found in [4].

4. Canonical coordinates on leaves

4.1. Classical Serre-Tate coordinates. Recall that an abelian variety A over k is
ordinary if the Barsotti—Tate group A[p°°] is the extension of an étale Barsotti—Tate
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group by a toric Barsotti—Tate group over k. It has been more than forty years when
Serre and Tate discovered that the local deformation space of an ordinary abelian vari-
ety A over k has a natural structure as a formal torus over W (k) of relative dimension
dim(A)2. For Siegel modular varieties, theirresultsays thatif x = [(A, A)] € A , (k)
is a closed point of g , such that A is an ordinary abelian variety, then the formal

completion Aé’fn of g , — Spec(Z) has a natural structure as a formal torus over

W (k) of relative dimension @ where g = dim(A). Notice that the ordinary locus
of A, , over k is equal to the dense open stratum in the Newton polygon stratification
of Ag ,.

The above approach generalizes to modular variety of PEL type, to the effect
that the mixed-characteristic local deformation space for a point in the dense open
Newton polygon stratum of a modular variety M of PEL type can be built up from
Barsotti—Tate groups over W (k) by a system of fibrations; see [23].

There is a long-standing question as to whether one can find a reasonable theory
of canonical coordinates for points outside the generic Newton polygon stratum of a
modular variety of PEL type. It turns out that the answer is yes if one restricts to a
leaf in a modular variety.

4.2. The slope filtration. The starting point is the observation that there exists a
natural slope filtration on the restriction of the universal Barsotti—Tate group to a leaf;
moreover the slope filtration gives the local moduli of a leaf.

Proposition 4.1. Let M be a modular variety of PEL type over k attached to a PEL
datum (B, *,0p,V,{-,-),h) as in 2.2. Let C be a leaf in M. Let X — C be the
restriction to C of the Barsotti—Tate group attached to the universal abelian variety.

(i) There exist rational numbers jL1, ...y With 1 > w1 > --- > Wy, > 0 and
Barsotti-Tate groups

0=XoCXiCXoC--CXp=X

over C such that f’i =X i/ X i—1 is a non-trivial isoclinic Barsotti-Tate group
over C of slope u; foreachi =1, ..., m.

(ii) The filtration 0 = Xo C X, C}?z C--C Xy = X is uniquely determined
by X — C. Each subgroup X; € X is stable under the natural action of
Op ®7, Z[,.

(i) Foreachi = 1,...,r the Barsotti-Tate group Y > Cis geometrically con-
stant, hence Y; is isomorphic to the twist of a constant Barsotti-Tate group by
a smooth étale Zp-sheaf over C.

Remark. (i) That I?,- is isoclinic of slope w; means that the kernel of the N-th iterate
of the relative Frobenius for 17,- is comparable to the kernel of [ pN Hi for all
sufficiently large multiples of the denominator of ;.

(i1) The proof of Proposition 4.1 depends on [42] and [34].

]Xi/f(ifl
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4.3. The cascade structure. Combining Proposition 4.1 with the Serre-Tate theo-
rem, one sees that the local moduli of a leaf € comes from the deformation of the
slope filtration.

Letx =[(A, ¢, A, n)] € M(k) be a closed point of the modular variety M, and let
Filg(pe) = (0= Xo C X1 C --- C X;n = A[p*™]) be the slope filtration of A[p™°].
LetY; = X;/X;_1 fori = 1,...,m. For each pair (i, j) with 1 <i < j < m, let
Def([i, j1, 1) = Def([i, j1, t[p®]) be the deformation functor over k of the filtered
Barsotti—Tate group

0CXi/Xi-1 CXit1/Xi-1 C--- CX;/Xim1

with action by Op ®z Z,. Each Def([i, jI, ) is a smooth formal scheme over &,
and Def([i,i],¢t) = Spec(k) foreachi. For 1 <i < j < m, let DE(, j;1) =
DE(, j; t[p™]) be the deformation functor of the filtered Barsotti—Tate group 0 C
Y; CYi Xspeck) ¥j with action by Op ®z Z; it is a smooth formal scheme over k.
Each ©€(i, j; ¢) has anatural structure as a smooth commutative formal group over k;
the group structure comes from via Baer sum. Notice that Def([i, i + 1], ¢) is a torsor
overDEG, i+ ;D fori=1,...,m—1.
We have a family of forgetful morphisms

Ti+1,j1.00,51 - Def(li, jl, o) — Def(i + 1, jLLo), 1=<i<j=<m,
and

7 -1 ) - Pef(li, j1. ) = Def(li, j — 11,0, 1=<i<j=<m
such that

i1, =101+, 1 © i1 L] = T+ =100 =11 © -1 18 < j =2

Each morphism JT[I'_;_LJ'],[,'J'] is smooth, same for each ﬂ[i,j—l],[i,j]~
For each pair (i, j) with 1 < i < j < m, define a commutative smooth formal
group
T s D€E 41, 10 — Def([i + 1, j1,0)
as follows. For each Artinian local ring R over k and for each R-valued point
f: Spec(R) — Def([i + 1, jI, ) corresponding to a deformation

0cC X[i+1,i+1] c---C 5([1‘+1,j]

of the filtration (0 C X;11/X; C --- C X;/X;) over R, define the set of R-valued
points of D E(i, [i 4+ 1, j], t) over f to be the set of all isomorphism classes of exten-
sions of X[i-ﬁ-l,j] by Y; X Spec(k) Def([i +1, j1, ). Itis easy to see that Ti+1, 71,10, 7] has
a natural structure as a torsor for 77[/1' LT Similarly one can define a commutative
formal group

77[/1',]'_1]7[,',]']: DE([i, j— 11, j; 0 = Def([i, j — 1]
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for 1 < i < j < m so that 7[; j_1),;, ;) has a natural structure as a torsor for

/
i, j= 11061
Consider the natural map

”[i,j]: @ef([l, ]]a L) - @Qf([l + 15 ]]v L) X@Bf([i-‘r],j—]],l) @ef([l, ] - 1]5 L)

defined by the maps 7r[; 11, j1,;, j7 and 7(;, j—11,[;, j1- 1t turns out that in a suitable sense
the map mj; ;) has a natural structure as a torsor for a biextension of

(D€ +1,j =11, j; 0, DEG, [i + 1, j — 115 1))

by (the base extension to Def([i + 1, j — 1], ¢) of) the commutative smooth formal
group DE(, j; 1) if i < j — 2. Notice that for the two factors of the target of the
map 7; 1, the first factor Def([i + 1, j1,0) — Def([i + 1, j — 11, 1) is a torsor for
the group D E([i + 1, j — 1], j; 1) = Def([i + 1, j — 1], v), while the second factor
Def([i, j — 1],1) = Def([i + 1, j — 1], 1) is a torsor for the group D E(, [i + 1,
J—150 = Def(i + 1, j — 11, 0).

The formal structure of a family such as

MDE = (Def(li, j1. 1), Def(li, j1, 1), 741,10, 1
!/ /
i, j =111 1 P41, 71,00, 10 i, j—1000, /1 ”[i,j])

will be called a cascade, following the terminology in [23], although the situation
here is somewhat more complicated than [23].

When x is a point of the generic Newton polygon stratum of M, the maximal sub-
cascade of 91D € fixed by the involution induced by the polarization A coincides with
the formal completion M/* of M at x. So M/* is built up from suitable subgroups of
the commutative formal groups D &(i, j; ([ p°°]) over k through a family of fibrations;
see [23].

4.4. Maximal p-divisible subcascade. Suppose that x lies outside the generic New-
ton polygon stratum. Then when one deforms the slope filtration, the resulting
Barsotti-Tate group may fail to remain geometrically constant. It turns out that
the maximal reduced closed formal subscheme of Def([0, m]; ¢) is in some sense the
maximal p-divisible subcascade of the cascade D € of formal groups attached to x;
the latter is built up from the maximal p-divisible formal subgroups D &(, j; ¢)pdiv
of ®E&(i, j; t), with (i, j) running through all pairs with 1 <i < j < m.

The polarization A of the abelian variety A induces an involution on the formal
scheme ®ef([0, m]; ¢]). and also an involution of the maximal p-divisible subcascade
IND Epqiy of the cascade of formal groups IO € attached to x € M (k). The maximal
closed formal subscheme of the formal scheme underlying 9D €,qiy is equal to the
formal completion C/* of the leaf € in M containing x. In particular G/~ is built up
from p-divisible formal groups over k through a family of fibrations.
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4.5. The two slope case. Let X, Y be isoclinic Barsotti-Tate groups over k with
slopes wxy < py. Let hy and hy be the height of X and Y respectively. Let
DE(X, Y) be the deformation functor over k of the filtration 0 = Y C X Xspec() ¥
it is a commutative smooth formal group over k. Let D (X, Y)pqgiv be the maximal
p-divisible formal subgroup of the commutative smooth formal group D€E(X, Y)
over k.

Let M(X) and M(Y) be the Cartier module of X and Y respectively. We refer
to [43] for the Cartier theory. On Hg := Homwy ) (M(X), M(Y)) ®z Q we have a
o -linear operator F and a o ~!-linear operator V on Hg given by

V- = V(h(V_lu)), (F-h)(u) =F(h(V@w)) forallhe Hg,u € M(X).
Clearly Homy (x) (M (X), M(Y)) is stable under the action of F.
Theorem 4.2. Notation as above.

(i) The p-divisible formal group DE(X, Y)pdiv is isoclinic of slope wy — px; its
height is equal to hx - hy.

(ii) The Cartier module of D E(X, Y)pdiv is naturally isomorphic to the maximal
W (k)-submodule of Homwy (ry (M(X), M(Y)) which is stable under the actions
of FandV.

(iii) Suppose that Y = X' is the Serre dual of X. Then we have a natural in-
volution * on DE(X, X! )pdiv, and the Cartier module of the maximal formal
subgroup of DE(X, X! )pdiv fixed under * is the maximal W (k)-submodule of
HomW(k)(Sz(M(X)), W (k)) which is stable under the actions of F and V.

Remark. (i) See [8] for a proof of Theorem 4.2.
(ii) The set of all p-typical curves in the reduced Cartier ring functor, with three
compatible actions by the reduced Cartier ring over k, plays a major role in the proof.
(iii) The case when we have a maximal order O g ®7Z, in an unramified semisimple
algebra B ®@ Q) over Q,, operating on X and Y is easily deducible from Theorem 4.2.

5. Hypersymmetric points

Over a field of characteristic zero one has the notion of special points in modular
varieties of PEL type, corresponding to abelian varieties of CM-type (or, with suf-
ficiently many complex multiplications). On the other hand, it is well-known that
every abelian variety over E, has sufficiently many complex multiplications, so one

can say that every E,—point of a modular variety M of PEL type is “special”’. But
there are points in M that are more distinguished than others — they correspond to
abelian varieties whose (@ g-endomorphism ring is “as big as allowed by the slope
constraint”.
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Definition 5.1. (i) Let B be a simple algebra over QQ, and let O p be an order of B.
Let A be an abelian variety over k, and let:: @p — End(A) be aring homomorphism.
We say that (A, ¢) is a hypersymmetric O g-linear abelian variety if the canonical map
Endo,(A) ®z Z, — Endg, (A[p*]) is an isomorphism.

(ii) Let M be a modular variety of PEL type as in 2.2. A point x € M (k) is hyper-
symmetric if the underlying @ g-linear abelian variety (Ay, ty) is hypersymmetric.

Remark 5.2. (i) When B = Q, it is easy to see that an abelian variety A over k is
hypersymmetric if and only if it is isogenous to a finite product of abelian varieties
By x- - - x B, defined over a finite field I, such that the action of the Frobenius element
Frp,; r, on the first £-adic cohomology group of B; has at most two eigenvalues for
eachi =1,...,r,and B; and B; share no common slope if i # j. See [9, §2, §3].

(i) One can use the method in [9, §5] to show that there exist hypersymmetric
points on any leaf of a modular variety of PEL type over k. However one has difficulty
showing the existence of hypersymmetric points on every irreducible component of
a given leaf of a modular variety, without knowing or assuming the irreducibility of
the leaf.

(iii) If the semisimple Q-rank of the reductive group G attached to the PEL datum
for the modular variety M is equal to one, then every Fp—point of M is hypersym-

metric. For instance, every Fp—point of the modular curve is hypersymmetric. One
consequence of this phenomenon is that one cannot simply substitute “special points”
by “hypersymmetric points” and expect to get a reasonable formulation of the André-
Oort conjecture in characteristic p; see [9, §7].

6. Action of stabilizer subgroups and rigidity

6.1. Stabilizer subgroups. Let M be a modular variety over k£ of PEL type as in 2.2.
Attached to a point x € M (k) corresponding to a quadruple (Ay, ty, Ay, Nyx) are two
compact p adic groups:

* Let Gx(Zp) = Autg, (Ax[p™], Ay [p™]). We call G,(Z)) the local p-adic
automorphism group at x, and

* Let Hy be the unitary group attached to the semisimple algebra with involution
(Endp, (Ax) ®z Q, *), where *, is the Rosati involution attached to 1. Let
H, (Z,) be the group of Z,-points of Hy with respect to the integral structure
given by End(A,). We call Hy (Z),) the local stabilizer subgroup at x. We have
a natural embedding H, (Z,) < Gy (Zp).

6.2. Action on deformation space. We have a natural action of G,(Z,) on MIX,
the formal completion of M/*. This action comes from the combination of
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(a) aclassical theorem of Serre and Tate, which states that the deformation functor
for the abelian variety A, is canonically isomorphic to the deformation functor
attached to the Barsotti—Tate group A,[p°°], and

(b) theaction of G (Z) on the deformation functor for the @ g-linear Barsotti—Tate
group (A,[p®], tx[p™]) by “change of marking”, or “transport of structure”.

The local stabilizer subgroup Hy(Z,) can be regarded as the p-adic completion
of the stabilizer subgroup at x in the set of all prime-to-p Hecke correspondences.
Consequently the local stabilizer principle holds:

Proposition 6.1 (Local stabilizer principle). If Z is a closed subvariety of M stable
under all prime-to-p Hecke correspondence and x € Z(k) is a closed point of Z, then
the formal completion Z!* C M/* of Z at x is stable under H, (Zp) for the action
described in 6.2.

The local stabilizer principle can be effectively deployed for studying Hecke-
invariant subvarieties when combined with the rigidity result below.

Theorem 6.2 (Local rigidity). Let X be a p-divisible formal group over k. Let H
be a connected reductive linear algebraic subgroup over Q, and let p: H(Q,) —
(Endg (X) ®z, Qp)* be a rational linear representation of H(Q,) such that the
composition of p with the left regular representation of Endi(X) ®z, Qp does not
contain the trivial representation of H(Q)) as a subquotient. Let Z be an irreducible
closed formal subscheme of X. Assume that Z is stable under the natural action of
an open subgroup U of H(Q)) on X. Then Z is a p-divisible formal subgroup of X.

The proof of 6.2 is elementary; see [6]. An instructive special case of 6.2 asserts
that any irreducible closed formal subvariety of a formal torus over k which is stable
under multiplication by 1 + p” for some n > 1 is a formal subtorus.

6.3. Linearization of the Hecke orbit problem. The combination of the local sta-
bilizer principle and local rigidity leads to an effective linearization of the Hecke
orbit problem: Consider the case when M is a Siegel modular variety 4 , and

x € Agyn(Fp) corresponds to a g-dimensional principally polarized abelian variety

A, defined over Fp with two slopes A < 1—A. Then the formal completion C (x)/* atx
of the leaf C(x) containing x has a natural structure as an isoclinic p-divisible formal
group of hight @ and slope 1 —2A. The local stabilizer principle and Theorem 6.2
imply that the formal completion at x of the Zariski closure of the prime-to-p Hecke
orbit of x is a p-divisible formal subgroup of C (x)/*; moreover this p-divisible formal
subgroup is stable under the natural action of the local stabilizer subgroup Hy (Z)).

Continuing the situation above, and assume that A is hypersymmetric in the sense
of 5.1. Then the Zariski closure of the prime-to- p Hecke orbit of x coincides with the
irreducible component of C(x) in an open neighborhood of x, because the action on
the local stabilizer subgroup Hy (Z;) on the Cartier module of the p-divisible formal
group C (x)/* underlies an absolutely irreducible representation of H, (Q,).
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6.4. Hypersymmetric points and the Hecke orbit conjecture. Let x € M (Fp) be

an Fp point of a modular variety M of PEL type, and let Z(x) be the Zariski closure
in the leaf C(x) of the prime-to-p Hecke orbit of x. The argument in 6.3 shows that
the continuous Hecke orbit conjecture HO; for Z(x) would follow if one can show
that there exists a hypersymmetric point y in Z(x).

The Hecke orbit conjecture HO for Hilbert modular varieties comes into the proof
of the continuous Hecke orbit conjecture HO; for Siegel modular varieties at this
juncture. After a possibly inseparable isogeny correspondence, one can assume that
the given point x € s , lies in a Hilbert modular subvariety in g ,. After another
application of the local stabilizer principle, one is reduced to the case when the abelian
variety A, has only two slopes. With the help of Theorem 3.5, one sees that Z(x)
contains the leaf through x in a Hilbert modular subvariety containing x, hence Z(x)
contains a hypersymmetric point in g ,. See [4] for a more detailed outline of the
argument.

Remark 6.3. (i) The proof of the Hecke orbit conjecture for Siegel modular varieties
outlined above relies on a special property of Siegel modular varieties: For every
point x € Ag,n(Fp), there exists a Hilbert modular variety Mg ,, a finite-to-one
correspondence f: Mg, — A, , equivariant with respect to the prime-to-p Hecke
correspondences, and a point y € Mg, (Fp) above x. See [4, §9], labeled as the
“Hilbert trick”. The point is that, every E,—point of #A, , lies in a subvariety which
is essentially the reduction of a “small” Shimura subvariety of positive dimension,
namely a Hilbert modular variety attached to a product E of totally real fields such that
dimg(E) = g. Here “small” means that every factor of the reductive group attached
to the Shimura subvariety has semisimple QQ-rank one.

(ii) The property that every rational point over a finite field lies in the image of
a small Shimura variety of positive dimension holds for modular varieties of PEL
type C, but fails for modular varieties of type A and D. Consequently, the Hecke orbit
conjecture for modular varieties of PEL type C is within reach by available methods,
while new ideas are needed for PEL types A and D, or the reduction of general Shimura
varieties.

7. Open questions and outlook

We discuss two approaches toward a proof of the Hecke orbit conjecture for Siegel
modular varieties without resorting to the Hilbert trick.

7.1. Tate-linear subvarieties in leaves. For simplicity, we consider the special case
of a leaf C in a Siegel modular variety +, ,, such that every point of C corresponds
to a g-dimensional principally polarized abelian variety with two slopes A < 1 — A.
This assumption implies that the formal completion C/* of € has a natural structure



308 Ching-Li Chai

as an isoclinic p-divisible formal group with slope 1 — 2A and height w, for any
closed point x € C.

An irreducible closed subvariety Z C C is said to be Tate linear at a closed point
x € Z if the formal completion Z/* is a p-divisible formal subgroup of G/*. It can be
shown that if Z is Tate-linear at one closed point of C, then it is Tate-linear at every
closed point of the smooth locus of Z

Remark. (i) The proof that the property of being Tate-linear propagates from one
point of Z to every point of Z depends on a global version of canonical coordinates.
The case when C is the ordinary locus of A, , has been documented in [7], where
several issues related to the notion of Tate-linear subvarieties are addressed.

(ii) The notion of Tate-linear subvarieties is inspired by the Hecke orbit problem:
Suppose that M is a modular variety of PEL type contained in a Siegel modular
variety g ,,and x € M (Fp) N @(Fp) is a point of M such that the abelian variety Ay
attached to x has two slopes A < 1 — A. Then the Zariski closure of the Hecke orbit
FP - x in the leaf C ¢ (x) is a Tate linear subvariety of C.

Question 7.1. The most intriguing question about the notion of Tate-linear subva-
rieties is whether every Tate-linear subvariety of a leaf C in A, , is (an irreducible
component of) the intersection of € with the reduction of a Shimura subvariety of
g, in characteristic 0.

It seems plausible that the answer is a qualified yes. This naive expectation will
be termed the global rigidity conjecture.

Remark. (i) If the global rigidity conjecture is true, then the notion of Tate-linear
subvarieties provides a geometric characterization for subvarieties of € which are
equal to (an irreducible component of) the intersection of € with the reduction of a
Shimura subvariety of g ;.

(i1) The global rigidity conjecture should be considered as being stronger than the
continuous Hecke orbit conjecture HO: Continuing the set-up as in §7.1. Let Z be
the Zariski closure in the leaf C 4 (x) in M containing x of the prime-to-p Hecke orbit
in M. Then Z is a Tate-linear subvariety, by Theorem 6.2. Moreover if the global
rigidity conjecture is true, then one can deduce without difficulty that Z is a union of
irreducible components of C(x).

7.2. p-adic monodromy. As we saw in 6.3, the combination of the local stabilizer
principle, canonical coordinates and the local rigidity theory achieves a certain level
of localization for the Hecke orbit problem. This linearization allows one to approach
the Hecke orbit problem through the p-adic monodromy: Let Z be the Zariski closure
of a given prime-to-p Hecke orbit #(x) in the leaf C containing #€(x). Consider
the restriction to Z of the universal Barsotti-Tate group A[p*>°] — M over the
modular variety M. Over the leaf C, the Barsotti-Tate group A[p*>°] — C admits a
slope filtration; the p-adic monodromy attached to the associated graded of the slope
filtration of A[ p®™°] — Z will be called the naive p-adic monodromy of A[p>*°] — Z.
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Conjecture 7.2. The naive p-adic monodromy of the family A[p*>°] — Z is “as large
as possible”, in the sense that the image of the naive p-adic monodromy representation
is an open subgroup of the group of Q,-points of a suitable Levi subgroup L of an
inner twist G’ of G attached to Z, where G is the reductive group attached to the PEL
data for M.

Remark. (i) Conjecture 7.2 for the Zariski closure Z of an Hecke orbit implies the
continuous Hecke orbit conjecture HOcqp,.

(i1) Conjecture 7.2 is a p-adic analogue of Proposition 3.3.

(iii) As a weak converse to Conjecture 7.2, the method of the proof of Proposi-
tion 7.4 below should enable one to show that the Hecke orbit conjecture HO implies
Conjecture7.2, using a hypersymmetric point as the base point.

Remark 7.3. Given an abelian scheme A — §, where § a scheme over F),, we
would like to show that the naive p-adic monodromy for A — S is “as large as
possible”, subject to obvious constraints, such as cycles on the family A — §. As
an intermediate step toward this goal, one would like to show that, when § is the
spectrum of a Noetherian local integral domain and the Newton polygon of the closed
fiber of A — S is different from the Newton polygon of the generic fiber, the naive
p-adic monodromy for the generic fiber of A — S is large in a suitable sense.
When dim(A/S) = 1, the above wish is a classical theorem of Igusa. The ar-
gument of Igusa was generalized in [3] to the case of a one-dimensional p-divisible
formal group with ordinary generic fiber. The same argument applies to the case of a
p-divisible formal group with ordinary generic fiber such that the dimension and the
codimension are coprime; details will appear in an article with D. U. Lee.

Proposition 7.4. Let Ay, be the ordinary locus of a Siegel modular variety Ag »
over k, where g > 1, n > 3, (n, p) = 1, and the base field k 2 ¥, is algebraically
closed. Let A — Aor be the universal abelian scheme over Aor Let A[p®™®let —
Ay, be the maxtmal etale quotient of A[p™®] — AY',; it is an etale Barsotti-Tate
group of height g. Let Eq be an ordinary elliptic curve defined over Fp, and let
xo = (Ao, Ag), where Ag is the product of g copies of Eg, and g is the product
principal polarization on Ag. Let T, = T,(Ao[p™1et) be the p-adic Tate module
of the étale p-divisible group Ag[p®let; it is naturally isomorphic to the direct sum
of g copies of T,,(Eo[p™let) = Zp, so GL(T)) is naturally isomorphic to GLg(Zp).
Let p: my (A, x0) — GL(T)) be the naive p-adic monodromy representation of

g n’
A[p™®] — ,A) an . Then the image of p is equal to GL(T,) = GLg(Z)).

Proof. Let 8B be the product of g copies of # ,, diagonally embedded in 4 ,. Let Eg

be an ordinary elliptic curve defined over a Fp, and let xg = (Ao, Ag), where Ag is
the product of g copies of Ey, and Ag is the product principal polarization on Ag. Let
O = End(Ey). Then O ®z Z, = Z, X Z,, corresponding to the natural splitting
of Eo[p°°] into the product of its toric part Eo[ p®lor and its étale part Eg[ p®©let.
So we have an isomorphism End(Ag) = Mg (), and a splitting End(Ag) ®z Z, =
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M, (O) x M, (O) corresponding to the splitting of Ag[p>°] into the product its toric
and étale parts. Denote by pr: (End(Ag) ®z Z,)* — GL(T,) = GLg(Z)) the
projection corresponding to the action of End(A¢) ®z Z, on the étale factor Ao[ p™]e
of Ag[p®>]. The Rosati involution * on End(Ag) interchanges the two factors of
End(Ao) ®z Zp. It follows that U(O(p) ®z Zp, *) is isomorphic to GL(T)) under the
projection map pr, therefore the image of U(O,), *) in GL(T),) is dense in GL(T}).
Here O () = O ®z Zp), and Z(,) = QNZ, is the localization of Z at the prime ideal
(p) = pZ.

By a classical theorem of Igusa, the p-adic monodromy group of the restriction
to B, i.e. o(Im(m1 (B, x0) — 71 (Ag,n, X0))), is naturally identified with the product
of g copies of Z; diagonally embedded in GL(T,) = GLg¢(Z),). Denote by D this
subgroup of GL(T),).

Let R(p) = End(Ao) ®z Z(p) = Mg(0) ®z Z(p). Every element u € R(p) such
that u*u = uu™* = 1 gives rise to a prime-to-p isogeny from Ay to itself respecting
the polarization Ag. Such an element u € R, gives rise to

* a prime-to-p Hecke correspondence / on #A, , having x¢ as a fixed point, and
* an irreducible component B’ of the image of B under A such that 8’ > xo.

By the functoriality of the fundamental group, the image of the fundamental group
71 (B, xp) of B’ in 7 (A, X0) is mapped under the p-adic monodromy represen-
tation p to the conjugation of D by the element pr(h) € GL(T,). In particular,
p(my (Agfn, x0)) is a closed subgroup of GL(T,) which contains all conjugates of D
by elements in the image of pr: U(E(y), x) — GL(T)).

Recall that the image of U(E(p), *) in GL(T),) is a dense subgroup. So the mon-
odromy group o (11 (Ag,x, Xo)) is a closed normal subgroup of GL(T,) = GL4(Z))
which contains the subgroup D of all diagonal elements. An easy exercise in group

theory shows that the only such closed normal subgroup is GLg(Z)) itself. O

Remark. (i) There are at least two published proofs of Proposition 7.4 in the literature,
in [15] and [16, chap. V §7] respectively.

(i) In the proof of 7.4, one can use as the base point any element [(A1, A)] of ,A)gfn
such that A is separably isogenous to a product of g copies of an ordinary elliptic
curve E| over Fp.

(iii) As already mentioned before, the argument of Proposition 7.4 applies to leaves
in modular varieties of PEL type. Since we used a hypersymmetric point as the base
point, a priori this argument applies only to those irreducible components of a given
leaf which contain hypersymmetric points.
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Heegner points, Stark—-Heegner points, and values
of L-series

Henri Darmon™

Abstract. Elliptic curves over Q are equipped with a systematic collection of Heegner points aris-
ing from the theory of complex multiplication and defined over abelian extensions of imaginary
quadratic fields. These points are the key to the most decisive progress in the last decades on the
Birch and Swinnerton-Dyer conjecture: an essentially complete proof for elliptic curves over Q of
analytic rank < 1, arising from the work of Gross—Zagier and Kolyvagin. In [Da2], itis suggested
that Heegner points admit a host of conjectural generalisations, referred to as Stark—Heegner
points because they occupy relative to their classical counterparts a position somewhat analo-
gous to Stark units relative to elliptic or circular units. A better understanding of Stark—Heegner
points would lead to progress on two related arithmetic questions: the explicit construction of
global points on elliptic curves (a key issue arising in the Birch and Swinnerton-Dyer conjecture)
and the analytic construction of class fields sought for in Kronecker’s Jugendtraum and Hilbert’s
twelfth problem. The goal of this article is to survey Heegner points, Stark—Heegner points, their
arithmetic applications and their relations (both proved, and conjectured) with special values of
L-series attached to modular forms.
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1. Introduction

Elliptic curves are distinguished among projective algebraic curves by the fact that they
alone are endowed with the structure of a (commutative) algebraic group. The affine
curves with this property are the additive group G, and the multiplicative group G,.
The integral points on G, (taken, say, over an algebraic number field F) is a finitely
generated Z-module. The same is true for the integral points on G,,: these are the
units of F, whose structure is well understood thanks to Dirichlet’s unit theorem.
The close parallel between units and rational points on elliptic curves is frequently
illuminating. In both cases, it is the natural group law on the underlying curve which
lends the associated Diophantine theory its structure and richness.

An elliptic curve E over F can be described concretely as a Weierstrass equation
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in Montreal for their support during the writing of this paper.
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in projective space
y2z =x3+axz2+bz3, a,b e F, where A := 4a> — 27b* # 0.

The group E(F) of F-rational (or equivalently: integral) solutions to this equation is
in bijection with the F-rational solutions of the corresponding affine equation

y2 =x>4ax +b,
together with an extra “point at infinity” corresponding to (x, y, z) = (0, 1, 0).

The most basic result on the structure of E (F) is the Mordell-Weil Theorem which
asserts that £ (F) is a finitely generated abelian group, so that there is an isomorphism
of abstract groups

E(F)~T&®7Z,

where T is the finite torsion subgroup of E(F). The integer r > 0 is called the rank
of E over F. Many questions about 7" are well-understood, for example:

1. There is an efficient algorithm for computing T, given E and F.

2. A deep result of Mazur [Ma] describes the possible structure of 7 when F = Q
and E is allowed to vary over all elliptic curves. The size of T is bounded
uniformly, by 14. Mazur’s result has been generalised by Kamienny and Merel
[Mer], yielding a uniform bound on the size of 7" when F is fixed — a bound
which depends only on the degree of F over Q.

In contrast, much about the rank remains mysterious. For example, can » become
arbitrarily large, when F is fixed but E is allowed to vary? The answer is believed to
be yes, but no proof is known for F' = Q or for any other number field F.

Aneven more fundamental problem resides in the absence of effectivity in the proof
of the Mordell-Weil theorem. Specifically, the answer to the following question is
not known.

Question 1.1. Is there an algorithm which, given E, calculates the rank r of E(F),
and a system Py, ..., P, of generators for this group modulo torsion?

A candidate for such an algorithm is Fermat’s method of infinite descent, but this
method is not guaranteed to terminate in a finite amount of time — it would, if the
so-called Shafarevich-Tate group LI (E/Q) of E is finite, as is predicted to be the
case.

Question 1.1 is also connected with the Birch and Swinnerton-Dyer conjecture.
This conjecture relates Diophantine invariants attached to E, such as r, to the Hasse—
Weil L-series L(E, s) of E, a function of the complex variable s which is defined in
terms of an Euler product taken over the non-archimedean places v of F. To describe
this Euler product precisely, let F,, = O f/v denote the residue field of F at v, and
write |v| := #IF,, for the norm of v. The elliptic curve E is said to have good reduction
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at v if it can be described by an equation which continues to describe a smooth curve
over IF,, after reducing its coefficients modulo v. Set §, = 1 if E has good reduction
at v, and 6, = O otherwise. Finally, define integers a, indexed by the places v of
good reduction for E by setting

ay ;= |v|+1—#E[,).

This definition is extended to the finite set of places of bad reduction for E, according
to a recipe in which a, € {0, 1, —1}, the precise value depending on the type of bad
reduction of E in an explicit way.

The L-series of E is given in terms of these invariants by

L(E,s) =[] —alv|™ +8,0/' )" = > apm)n| ",
n

v

where the product is taken over all the non-archimedean places v of F, and the sum over
the integral ideals n of F. The Euler product converges absolutely for Re(s) > 3/2,
but L(E, s) is expected to admit an analytic continuation to the entire complex plane.
Some reasons for this expectation, and a statement of the Birch and Swinnerton-Dyer
conjecture, are given in Section 2.6.

2. Elliptic curves over Q

It is useful to first discuss elliptic curves over Q, a setting in which a number of results
currently admit more definitive formulations.

Given an elliptic curve E/Q, let N denote its conductor. This positive integer,
which measures the arithmetic complexity of E, is divisible by exactly the same
primes as those dividing the minimal discriminant of £ (the minimum being taken
over all possible plane cubic equations describing E). Denote by a, the coefficient
of n™* in the Hasse—Weil L-series of E:

oo
LE.s)=]](—app™ +8,p" )" => am™.
p n=1

2.1. Modular parametrisations. Little can be asserted about the effective determi-
nation of E(Q), or about the analytic behaviour of L(E, s), without the knowledge
that E is modular. Wiles’s far-reaching program for proving the modularity of elliptic
curves (and more general Galois representations) has been completely carried out in
[BCDT] when F = Q. One way of formulating the modularity of E is to state that
the generating series

fE@) =) ape™™ ™ ()

n=1
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is a modular form of weight 2 for the Hecke congruence group

To(N) = {(‘Cl 2) € SL(Z) such thatN|c}.

This means that f(z) is a holomorphic function on the Poincaré upper half-plane
H:={z=x+1iy, y>0} CC,

satisfying

f (‘C’jiz) = (cz+d)*f(z) forall (‘C‘ Z) € To(N), )
together with suitable growth properties around the fixed points of parabolic elements
of I'g(N). These fixed points belong to P1(Q), and it is useful to replace # by the
completed upper half-plane #* := # U P{(Q). After suitably defining the topology
and complex structure on the quotient I'o(N)\F#*, thus making it into a compact
Riemann surface, the differential form wy := 27if(z)dz is required to extend to a
holomorphic differential on this surface.

The quotient ['g(N)\FH* can even be identified with the set of complex points of
an algebraic curve defined over Q, denoted by Xo (V). This algebraic curve structure
arises from the interpretation of I'g(N)\H as classifying isomorphism classes of
elliptic curves with a distinguished cyclic subgroup of order N, in which the orbit
[o(N)t € I'o(N)\H is identified with the pair (C/(l, T), (%» A (highly singular,
in general) equation for Xo(/N) as a plane curve over Q is given by the polynomial
Gn(x, y) of bidegree #P|(Z/NZ), where

Gn(x,y) € Qlx, y] satisfies Gy (j(r), j(N7)) =0, 3)

and j is the classical modular function of level 1.
An equivalent formulation of the modularity property is that there exists a non-
constant map of algebraic curves defined over Q,

Pr: Xo(N) — E, 4)

referred to as the modular parametrisation attached to E. One of the attractive features
of this modular parametrisation is that it can be computed by analytic means, without
the explicit knowledge of an equation for X((/N) as an algebraic curve over Q. (Such
an equation, as in (3), tends to be complicated and difficult to work with numerically
for all but very small values of N.)

To describe g analytically, i.e., as a map

PF: Xo(N)(C) = To(N)\#H —> E(C), (&)

let Ay C C be the set of complex numbers of the form

YT
/ wr, fory eT.
T
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It can be shown that A is a lattice, and that the quotient C/A s is isomorphic to an
elliptic curve Ey which is defined over Q and is Q-isogenous to E. (The curve Ey is
sometimes called the strong Weil curve attached to f.) The modular parametrisation
to Ey, denoted by @, is defined analytically by the rule

T o

Dr(r) = / 2rif(R)dz =) In2mint (mod Ay), (6)
ico n=1 n

for all T € To(N)\FH C Xo(N)(C). The resulting value is viewed as an element of

E¢(C) via the identification C/Ay = Ef(C).

After choosing an isogeny «: Ey — E defined over Q, the parametrisation ® g
is defined by setting ®7° = a®. In practice it is preferable to start with E = E, at
the cost of replacing E by a curve which is isogenous to it, so that o can be chosen to
be the identity. The map ®% is then given directly by (6).

2.2. Heegner points. Let K C C be a quadratic imaginary field, and denote by
K2 its maximal abelian extension, equipped with an embedding into C compatible
with the complex embedding of K. The following theorem, a consequence of the
theory of complex multiplication, is one of the important applications of the modular
parametrisation ® g of (5):

Theorem 2.1. If t belongs to K N H, then ®F (t) belongs to E(K®).

Theorem 2.1 also admits a more precise formulation which describes the field of
definition of ®%° (7). Let Mo(N) C M>(Z) denote the ring of 2 x 2 matrices with inte-
ger entries which are upper triangular modulo N. Given t € #, the associated order
of 7 is the set of matrices in My(N) which preserve T under Mobius transformations,
together with the zero matrix, i.e.,

O; = {y € Mo(N) such that y (i) =Xy (i) , for some A, € (C}.

The assignment y — A, identifies @, with a discrete subring of C. Such rings are
isomorphic either to Z, or to an order in a quadratic imaginary field, the latter case
occurring precisely when 7 generates a quadratic (imaginary) extension of Q. In that
case 9 is an order in the quadratic field K = Q(7).

Orders in quadratic fields have the peculiarity that they are completely determined
by their discriminants. Write D for the discriminant of the order @ = ., and let
G p := Pic(0O) denote the class group of this order, consisting of isomorphism classes
of projective modules of rank one over @ equipped with the group law arising from
the tensor product. A standard description identifies G p with a quotient of the ide¢le
class group of K:

Gp =g /(K sy [Tor). (7)
£
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Here Ay denotes the group of ideles of K, the product is taken over the rational
primes £, and O, := O ® Z;. The group G p also admits a more classical description
which is well adapted to explicit computations, as the set of equivalence classes
of primitive binary quadratic forms of discriminant D equipped with the classical
Gaussian composition law. (For more details on this classical point of view, see
Bhargava’s lecture in these proceedings.)

If D and N are relatively prime, and @, = Op, there is a primitive integral binary
quadratic form F;(x,y) = Ax? + Brxy + Cry? satisfying

F(t,1)=0, B?—4A,C, =D, Ndivides A,.

In particular,
all the primes £|N are splitin K /Q, (8)

and therefore the equation
x*=D (mod N)

has a solution (namely, B;). Fix a square root § of D modulo N, and define
HP = {t € # suchthat O; = Op and B, =§ (mod N)}.

The function which to T € T'o(N)\HP associates the SL,(Z)-equivalence class
of the binary quadratic form F; is a bijection. (Cf., for example, Section 1.1 of
[GKZ].) Through this bijection, ['g(N)\ # D inherits a natural action of G p via the
Gaussian composition law. Denote this action by (o, t) +— 77, for 0 € Gp and
T € To(N)\HP.

Class field theory identifies Gp with the Galois group of an abelian extension
of K, as is most readily apparent, to modern eyes, from (7). This abelian extension,
denoted by Hp, is called the ring class field attached to O, or to the discriminant D.
When D is afundamental discriminant, Hp is Hilbert class field of K, i.e., the maximal
unramified abelian extension of K. Let

rec: Gp — Gal(Hp/K) 9

denote the reciprocity law map of global class field theory.
A more precise form of Theorem 2.1 is given by

Theorem 2.2. If T belongs to FQ(N)\J{’D, then ®F (1) belongs to E(Hp), and
dX(1%) =rec(o) ' d¥(v), forallo € Gp.

The fact that ®¢ intertwines the explicit action of Gp on I'o(N)\FH D arising
from Gaussian composition with the natural action of Gal(Hp/K) on E(Hp) gives
a concrete realisation of the reciprocity map (9) of class field theory. It is a special
case of the Shimura reciprocity law.

The points ®%°(7), as T ranges over # N K are called Heegner points attached
to K. (Sometimes, this appellation is confined to the case where the discriminant
of @ isrelatively prime to N.) Theorems 2.1 and 2.2 are of interest for the following
reasons, which are discussed at greater length in Sections 2.3, 2.4, and 2.5 respectively.
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1. They provide a simple, computationally efficient construction of rational and
algebraic points on E.

2. They are a manifestation of the fact that we dispose of an explicit class field
theory for imaginary quadratic fields, allowing the construction of abelian ex-
tensions of such fields from values of modular functions evaluated at quadratic
imaginary arguments of the upper half-plane.

3. There are deep connections between the points ®3° (), for T € H D and the
first derivative at s = 1 of the Hasse—Weil L-series L(E /K, s) and of related
partial L-series associated to ideal classes of K. These connections lead to new
insights into the behaviour of these L-series and the Birch and Swinnerton-Dyer
conjecture.

2.3. The efficient calculation of global points. The fact that the theory of complex
multiplication, combined with modularity, can be used to construct rational and al-
gebraic points on E is of interest in its own right. This was noticed and exploited by
Heegner, and taken up systematically by Birch in the late 60s and early 70s [BS], [Bi].

Given any (not necessarily fundamental) discriminant D for which #P # ¢, let

K = Q(+/D) and set

Pp = traceHD/Q(QD%o(r)), forany t € 7P,
Pk = tracey k(¥ (v)), forany v € #P, D = Disc(K).

When are the points Pp and Pk of infinite order (in E(Q) and E (K) respectively)?
This question is part of the larger problem of efficiently constructing rational or
algebraic points of infinite order on elliptic curves. It is instructive to consider this
problem from the point of view of its computational complexity.

From the outset, one is stymied by the fact that an answer to Question 1.1 is
not known. Complexity issues are therefore better dealt with by focussing on the
following more special problem, which depends on the curve E and a positive real
parameter h. To state this problem precisely, define the height of a rational number
r = a/b (represented, of course, in lowest terms) to be

height(r) = log(jab| + 1).

Thus, the height of r is roughly proportional to the number of digits needed to write r
down. The height of an equation is the sum of the heights of its coefficients. The
height of a solution (x1, ..., x;) to such an equation is taken to be the sum of the
height of the x;. (In the case of an elliptic curve, one might prefer a coordinate-free
definition by taking the height of E to be the height of the minimal discriminant of E.)

It is expected that, for infinitely many E, the smallest height of a point of infinite
order in E(Q) can be at least as large as an exponential function of the height of E.
In this respect, the behaviour of elliptic curves is not unlike that of Pell’s equation,
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where a fundamental solution to x2 — Dy2 = 1 has height roughly O (VD) if Q(+/D)
has class number one. Of greatest relevance for complexity questions are the “worst-
case” elliptic curves E for which the point of infinite order Pp;, of smallest height in
E (Q) has height which is large relative to the height of E, i.e., for which

height(Ppin) >> exp(height(E)).

In order to focus on these curves, and avoid technical side-issues associated with
elliptic curves having non-torsion points of small height, we formulate the following
problem:

Problem 2.3. Given an elliptic curve E, and a real number
h > exp(height(E)), (10)

find a point P of infinite order on E with height(P) < h, if it exists, or assert that no
such point exists, otherwise.

Denote by P(E, h) the instance of this problem associated to E and the parame-
ter 4. In light of (10), this parameter can be chosen as a natural measure of the size
of the problem.

Note that P(E, h) continues to make sense for any Diophantine equation. Even
in such great generality, problem P (E, h) has the virtue of possessing an algorithmic
solution: a brute force search over all possible points (in the projective space in
which E is embedded) of height less than /4, say. Such an exhaustive search requires
O (exp(h)) operations to solve an instance of P(E, h). The exponential complexity
of the brute force approach provides a crude benchmark against which to measure
other approaches, and leads naturally to the following definition.

Definition 2.4. A class C of Diophantine equations is said to be solvable in polynomial
time if there exists n € N and an algorithm that solves P(E, h), with E € C, in at
most O (h") operations.

The property that C is solvable in polynomial time can be expressed informally
by stating that the time required to find a large solution to any E € C is not much
worse than the time is takes to write that solution down. Thus, an (infinite) class C
of equations being solvable in polynomial time indicates that there is a method for
“zeroing in” on a solution (xp, yo) to any equation in C in a way that is qualitatively
more efficient than running though all candidates of smaller height.

The prototype for a class of equations that possess a polynomial time solution in
the sense of Definition 2.4 is Pell’s equation. A polynomial time algorithm for finding
a fundamental solution to x> — Dy? = 1 is given by the continued fraction method
that was known to the Indian mathematicians of the 10th century (although Fermat
seems to be the first to have shown its effectivity.) See [Le] for a more thorough
discussion of Pell’s equation from the point of view of its computational complexity.
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The strong analogy that exists between Pell’s equation and elliptic curves suggests
that the class ELL of all elliptic curves over Q might also be solvable in polynomial
time. Indeed, Fermat’s method of infinite descent (applied, say, to a rational 2-iso-
geny 7, if it exists) reduces P (E, h) to dg instances of P(Cy, h/2), ..., P(Cqy, h/2)
where the C; are principal homogeneous spaces for E, and the number d is related
to the cardinality of the Selmer group attached to n. Applying this remark iteratively
suggests that the complexity for solving P(E, h) might be a polynomial of degree
related to dg. The analysis required to make this discussion precise does not appear in
the literature, and it would be interesting to determine whether the method of infinite
descent can be used to determine to what extent ELL is solvable in polynomial time
(assuming, eventually, the finiteness of the Shafarevich—Tate group of an elliptic
curve).

It should be stressed that the method of descent is often complicated in practice
because of the mounting complexity of the principal homogeneous spaces that arise
in the procedure. On the other hand, the Heegner point construction, when it produces
a point of infinite order in E(Q), can be used to solve P(E, h) by a method that is
also extremely efficient in practice. See [EI2] for a discussion of this application of
the Heegner point construction.

For example, let

E:y’4+y=x—x>—10x—20

be the strong Weil curve of conductor 11. (This is the elliptic curve over QQ of smallest
conductor.) The following table lists a few values of the x-coordinate of Px for some
more or less randomly chosen K. It takes a desktop computer a fraction of a second to
find these x-coordinates, far less than would be required to find points of comparable
height on the corresponding quadratic twist of E by a naive search.

Disc(K) x(Pg)
—139 —208838+/—139—3182352
1957201

-211 —11055756376+/—211—-36342577392
29444844025

—259 64238721198/ —259—2458030017103
992886694969

—1003 —24209041615561516569638+/—1003—1053181310754386354274847
219167070502034515453609

2.4. Explicit Class Field Theory. The Heegner point construction is a manifestation
of an explicit class field theory for imaginary quadratic fields. Normally, this is stated
in terms of the elliptic modular function j. The field

K'= |J K@ j@)

aeQ,teKNH
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obtained by adjoining to the imaginary quadratic field K all the roots of unity, as well
as the values j () for t € K N #, is almost equal to the maximal abelian extension
K2 of K. More precisely, K® /K’ is an extension whose Galois group, although
infinite, has exponent two. (See [Se].)

Given a negative (not necessarily fundamental) discriminant D, let 7y, ..., 7, be
representatives for # D (with N = 1) modulo the action of SL;(Z). Then the so-called
modular polynomial

h
Zp@ =[G~ j@) (11)
i=1
has rational coefficients and its splitting field is the ring class field attached to the
discriminant D. One might also fix an elliptic curve E and consider the function
jE(T) of T € To(N)\HP defined as the x-coordinate of the point ®7°(z), where the
x coordinate refers, say, to a minimal Weierstrass equation for E. Let Z g denote the
polynomial defined as in (11) with j replaced by jE.
For example, consider the discriminants D = —83, —47, and —71 of class num-
ber 3, 5 and 7 respectively. The polynomials Zp attached to the first two of these
discriminants are given by:

x® 4 2691907584000x2 — 41490055168000000x + 549755813888000000000

x> 4 2257834125x* — 9987963828125x> + 5115161850595703125x>
— 14982472850828613281250x + 16042929600623870849609375.

(The degree seven polynomial Z_7; has been omitted to save space, its coefficients
being integers of roughly 30 digits.) The following table gives the values of the
polynomials Z g (z) for a few elliptic curves (labelled according to the widely used
conventions of the tables of Cremona [Cr2]) whose conductor is a prime that splits in
Q(+/D), for these three discriminants.

E ZE83(X) ZE47(X)
37TA [ X3 +5x2+10x+4 | xX—xF+x3+x2—2x+1
61A | x3—2x24+2x+1 x4+ 2t —2x+1

79A X +4xt 33 —3x2 —x + 1
E ZE (x)
37A | 27 —2x0 +9x5 —10x% — x3 +8x2 —5x + 1
43A X+ 2x0 + 25 + 3 + 32+ x + 1
79A X ax0 4500 +xt =33 —2x2 41

This data illustrates the well-known fact that in computing class fields one is often
better off working with modular functions other than j (such as modular units for
instance). The above data suggests (at least anecdotally) that the functions jg can
be excellent choices in certain cases. For a systematic discussion of the heights of
Heegner points and of the polynomials Z g (x) as D varies, see [RV].
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2.5. Relation with L-series. The following result of Gross and Zagier [GZ] provides
a connection between Heegner points and the L-series of E over K.

Theorem 2.5. The height of Pk is equal to an explicit non-zero multiple of L' (E /K, 1).

In particular, the point Py is of infinite order if and only if L'(E/K, 1) # 0. This
result can be exploited in two ways.

Firstly, since Heegner points are so readily computable, specific instances where
the point Pk is of finite order yield non-trivial examples where L'(E/K,1) = 0.
The vanishing of the leading term in an L-series is notoriously difficult to prove
numerically. The Gross—Zagier theorem makes it possible to produce elliptic curves
for which, provably, L(E,1) = L’(E, 1) = 0. Considerations involving the sign
in the functional equation for L(E, s) may even force this function to vanish to odd
order, and therefore to order at least 3, at s = 1. (The smallest elliptic curve of prime
conductor with this property has conductor 5077.) The existence of elliptic curves
and modular forms whose L-series has a triple zero at s = 1 was exploited to great
effect by Goldfeld [Go] in his effective solution of the analytic class number problem
of Gauss.

Secondly, and more germane to the theme of this survey, the Gross—Zagier theorem
gives a criterion for the “Heegner point method” to produce a point of infinite order
on E(K) or on E(Q). This provides a neat characterization of the elliptic curves for
which Heegner points lead to an efficient solution of problem P (E, h).

When ords=1 (L(E, s)) > 2, constructing the Mordell-Weil group E (Q) is more
elusive. Itis an apparent paradox of the subject that we are the least well-equipped to
produce global points on elliptic curves in precisely those cases when these points are
expected to be more plentiful! (On the other hand, this reflects a common occurrence
in mathematics, where an object that is uniquely defined is easier to produce explicitly.)

2.6. The Birch and Swinnerton-Dyer conjecture. The Birch and Swinnerton-Dyer
conjecture relates the behaviour of L(E, s) at s = 1 to arithmetic invariants of E
over Q, such as its rank. To facilitate the subsequent exposition, we state it in a form
that involves an integer parameter r > 0.

Conjecture 2.6 (BSD,). If ords—; L(E, s) = r, then the rank of E(Q) is equal to r,
and the Shafarevich—Tate group LI (E/Q) of E is finite.

The Birch and Swinnerton-Dyer conjecture predicts that £(Q) should be infinite
precisely when L(E, 1) = 0. (The latter condition can be easily ascertained com-
putationally in examples, because L(E, 1) is known a priori to belong to a specific
sublattice of R.)

Remark 2.7. The Birch and Swinnerton-Dyer conjecture (suitably generalised) is
consistent with the presence of a systematic supply of algebraic points defined over
certain ring class fields of imaginary quadratic fields. To elucidate this remark, we
begin by noting that the Birch and Swinnerton-Dyer conjecture generalises to elliptic
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curves over number fields, where it predicts that the rank of E(F) is equal to the order
of vanishing of L(E/F,s) at s = 1. This L-series (and its twists L(E/F, x, s) by
abelian characters of Gal(F /F)) admits a functional equation relating L(E/F, x, s)
to L(E/F, x,2 — s). Suppose that E is defined over Q, that FF = K is a quadratic
extension of Q, and that x : Gal(H/K) —> C* factors through the Galois group of
a ring class field H of K. Then the definition of L(E/K, x, s) as an Euler product
shows that
L(E/K, x,s)=L(E/K, x,s).

The sign that appears in the functional equation of the L-series L(E /K, x, s), denoted
by sign(E/K, x) € {—1, 1}, therefore determines the parity of its order of vanishing
ords=1 (L(E/K, X, 5)).

When (E, K) satisfies the Heegner hypothesis of equation (8), it can be shown
that sign(E, K) = —1 so that L(E/K,1) = 0. Moreover, the same is true of
sign(E /K, x) when x is any ring class character of conductor prime to Ng, so that
L(E/K, x, 1) = 0 for such ring class characters. In particular, if H is a ring class
field of K of discriminant prime to Ng, we find

ordyoy L(E/H,s) =ordsmy (- []  LEE/K.x.9))z [H:K]  (12)
X €Gal(H/K)

so that the Birch and Swinnerton-Dyer conjecture predicts the inequality:

rank(E(H)) % [H:K]. (13)

The Gross—Zagier formula (Theorem 2.5), suitably generalised to the L-series
L(E/K, x,s) with character, as in the work of Zhang discussed in Section 3.4, makes
it possible to bound the rank of E(H) from below by establishing the non-triviality
of certain Heegner points, and yields

Corollary 2.8. If the inequality in (12) is an equality, then the inequality (13) holds.

A short time after the proof of the Gross—Zagier formula, Kolyvagin discovered a
general method for using Heegner points to bound the ranks of Mordell-Weil groups
from above.

Theorem 2.9 (Kolyvagin). If Pk is of infinite order, then E(K) has rank one and
LI (E/K) is finite.

Crucial to Kolyvagin’s proof is the fact that the Heegner point Pg does not come
alone, but is part of an infinite collection of algebraic points

(OF (D}renr

as D ranges over all discriminants of orders in K. These points are defined over
abelian extensions of K and obey precise compatibility relations under the norm
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maps. They are used to construct a supply of cohomology classes that can be used,
under the non-triviality assumption on Pg, to bound E(K) and 111 (E/K), showing
that the former has rank one and the latter is finite. See [Ko] (or the expositions given
in [Gr3] or Chapter X of [Da2]) for the details of the argument.

In relation with Corollary 2.8 we note the following consequence of Theorem 2.9
(suitably adapted to the problem of bounding Mordell-Weil groups over ring class
fields in terms of Heegner points, as in [BD1] for example)

Corollary 2.10. [f the inequality in (12) is an equality, then the inequality predicted
in (13) is an equality.

Theorem 2.9 completes Theorem 2.5 by relating the system of Heegner points
attached to E/K to the arithmetic of E over K. When combined with Theorem 2.5, it
yields the following striking evidence for the Birch and Swinnerton-Dyer conjecture.

Theorem 2.11. Conjectures BS Do and BS Dy are true for all elliptic curves over Q.

Sketch of proof. If ordg—1 L(E, s) < 1, one can choose an auxiliary quadratic imag-
inary field K in which all the primes dividing N are split, and for which

ordg—) L(E/K,s) = 1.

The existence of such a K is a consequence of non-vanishing results for special values
and derivatives of twisted L-series. (See the book [MM], for example, for an attractive
exposition of these results.) After choosing such a K, Theorem 2.5 implies that Pk is
of infinite order, since L'(E/K, 1) # 0. Theorem 2.9 then implies that Px generates
a finite index subgroup of E(K), and that III (E/K) is finite. Explicit complementary
information on the action of Gal(K /Q) on the point Pg implies that the rank of E(Q)
is at most one, with equality occurring precisely when L(E, 1) = 0. The finiteness
of LI (E/K) directly implies the finiteness of III (E/Q) since the restriction map
HI(E/Q) — LI (E/K) has finite kernel. O

Theorem 2.11 is the best evidence at present for Conjecture 2.6. We remark that
almost nothing is known about this conjecture when r > 1.

3. Elliptic curves over totally real fields

Summarising the discussion of the previous chapter, the Heegner point construction
(attached to an elliptic curve over Q, and a quadratic imaginary field K) is appealing
because it provides an elegant and efficient method for calculating global points on
elliptic curves as well as class fields of imaginary quadratic fields. It also leads to a
proof of Conjecture BSD, for r = 0 and 1.

It is therefore worthwhile to investigate whether elliptic curves defined over a
number field F other than QQ are equipped with a similar collection of algebraic
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points. The modularity property so crucial in defining Heegner points does have an
analogue for elliptic curves defined over F', which is most conveniently couched in the
language of automorphic representations: an elliptic curve E/F should correspond
to an automorphic representation 7 of GL, (A ), the correspondence being expressed
in terms of an equality of associated L-series:

L(E,s) = L(x, s).

(For an explanation of these concepts, see for example [Ge] or [BCdeSGKK].)

When F = Q, the automorphic form attached to E corresponds to a differential on
a modular curve, and leads to the modular parametrisation ®% of (4). Unfortunately,
such a geometric formulation of modularity is not always available; therefore the
Heegner point construction does not carry over to other number fields without further
ideas.

The number fields for which Heegner points are best understood are the torally
real fields. Let F be such a field, of degree v, and fix an ordering vy, ..., v, on the
real embeddings of F. For x € F, write x; := vj(x) (I < j < v). The v; determine
an embedding of F into RY and an embedding of SL,(OF) as a discrete subgroup
of SLy(R)” with finite covolume. Given any ideal N of O, denote by ['g(N') the
subgroup of SL» (O ) consisting of matrices which are upper-triangular modulo N .

Assume now for simplicity that F has narrow class number one. (The definitions
to be made below need to be modified in the general case, by adopting adelic notation
which is better suited to working in greater generality but might also obscure the
analogy with the classical case that we wish to draw.) A Hilbert modular form
of parallel weight 2 and level & is a holomorphic function f(zy,...,z,) on F"
satisfying the transformation rule analogous to (2), for all matrices (‘Z Z) € I'op(N):

(aIZI + by ayzy + by

e, = (c1z14+d)? .. . (cpzyp+dy)? 21, ..., 2p), (14
o121+ di chv+dv> (crzi+dD)”. .. (cvzutdy)” f(z1 v), (14)

together with suitable growth properties around the fixed points of parabolic elements
of ['g(V), which imply in particular that f admits a Fourier expansion “near infinity”

fGr ) =a0)+ Y ame@ 'n-2),

n>>0

in which the sum is taken over all totally positive n € Op, § is a totally positive
generator of the different ideal of F, and

e(n-z) :=expRmi(nizy + -+ +m2,)).

Let N € F be a totally positive generator of the conductor ideal of E over F, and let
ag (n) denote the coefficients in the Hasse—Weil L-series of this elliptic curve. The
following conjecture is a generalisation of the Shimura—Taniyama—Weil conjecture
for totally real fields (of narrow class number one)
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Conjecture 3.1. The generating series analogous to (1)

fE(Z1, - s 2p) = Z aE(n)e(S*In - 2)

n>>0

is a modular form of parallel weight 2 and level V.

The methods of Wiles have successfully been extended to prove many instances
of Conjecture 3.1, under a number of technical hypotheses. (See [SW] [Fu] for
example.) In the sequel, it will always be assumed that any elliptic curve E/F
satisfies the conclusion of Conjecture 3.1, to avoid having to worry about the precise
technical conditions under which this is known unconditionally. (These conditions are
fluid and ever-changing, and one might hope that they will eventually be completely
dispensed with. This hope is bolstered by the wealth of new ideas — which the reader
can appreciate, for instance, by consulting [BCDT], [SW], or [Ki], to cite just three
in a roster that is too long and rapidly evolving to give anything like a complete list —
emerging from the branch of number theory devoted to generalising and extending
the scope of Wiles’s methods.)

The differential form wy := f(z1,...,2y)dz; ...dz, defines a I'g(N)-invariant
holomorphic differential on ['g(N)\ H", but these objects do not give rise to a modular
parametrisation. (Indeed, the natural generalisation of modular curves are Hilbert
modular varieties, which are of dimension [F : Q] and probably do not admit any
non-constant maps to £ when F # Q.) To define Heegner points on E (F'), it becomes
crucial to consider Shimura curve parametrisations arising from automorphic forms
on certain quaternion algebras.

3.1. Shimura curve parametrisations. Let S be a set of places of odd cardinality,
containing all the archimedean places of F. Associated to S there is a Shimura curve
denoted by Xs. This curve has a canonical model over F arising from a connection
between it and the solution to a moduli problem classifying abelian varieties with
“quaternionic endomorphisms”. (Cf. Section 1.1 of [Zhl1], for example, where it is
called Mg.)

For each place v € §, the curve Xg also admits an explicit v-adic analytic de-
scription. Since this description is useful for doing concrete calculations with X5, we
now describe it in some detail, following a presentation that the author learned from
Gross. (Cf. [Gr4].)

Ifv € Sisanarchimedean (and hence, real) place, denote by #,, the Poincaré upper
half-plane. If v is non-archimedean, let C, denote the completion of the algebraic
closure of F,, and let #, := P1(C,)—P(F,) denote the v-adic upper half-plane. Itis
equipped with a natural structure as a v-adic analytic space which plays the role of the
complex structure on # in the non-archimedean case. (See for instance Chapter IV
of [Da2] for a description of this structure.)

Let B denote the quaternion algebra over F' which is ramified precisely at the
places of S — {v}. (Since this set of places has even cardinality, such a quaternion
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algebra exists; it is unique up to isomorphism.) Identifying v with the corresponding
embedding F — F,, of F into its completion at v, there is an F),-algebra isomorphism

ly: B®y Fy —> My (Fy).

Let R denote a maximal @ p-order of B if v is archimedean, and a maximal O ¢[1/v]-
order of B if v is non-archimedean, and write R;* for the group of elements of R
of reduced norm 1. Then I';, := LU(R1><) is a discrete and finite covolume (and co-
compact, if (F, S) # (Q, 00)) subgroup of SL2(Fy). The quotient I'\ #,, is naturally
equipped with the structure of a complex curve (if v is real) or of a rigid analytic curve
over C, (if v is non-archimedean).

Theorem 3.2. The quotient U\ H, is analytically isomorphic to X g(C,).

The complex uniformisation of Xg(C) at the real places of F follows directly
from the description of X in terms of the solution to a moduli problem. The non-
archimedean uniformisation follows from the theory of Cerednik and Drinfeld. For
more details on Drinfeld’s proof of Theorem 3.2 for v non-archimedean see [BC].

If & is any ideal (or totally positive element) of F prime to the places of S,
one can also define a Shimura curve Xg(4 ") by adding “auxiliary level structure”
of level N

Denote by Jg and Js (N T) the jacobian varieties of X g and X s(.V 1) respectively.
The relevance of these jacobians is that they are expected to parametrise certain elliptic
curves over F in the same way that jacobians of modular curves uniformise elliptic
curves over Q.

More precisely, a (modular, in the sense of Conjecture 3.1) elliptic curve E over F
is said to be arithmetically uniformisable if there exists a Shimura curve X g(-M) and
a non-constant map of abelian varieties over F, generalising (4)

@5 Js(M) — E. (15)

Conjecture 3.1 leads one to expect that many (but not all, in general!) elliptic curves
over F are arithmetically uniformisable. More precisely,

Theorem 3.3. A modular elliptic curve E over F is arithmetically uniformisable if
and only if at least one of the following conditions holds.

1. The degree of F over Q is odd;
2. There is a place v of F for which ord,(N) is odd.

When condition 1 is satisfied, a Shimura curve uniformising E can be taken to
be of the form Xg(NEg), where S = S is the set of archimedean places of F. If
condition 1 is not satisfied, but 2 is, one can consider a Shimura curve associated to
S = {v} U Ss with a suitable choice of level structure. See [Zh1] for more details on
Shimura curves and their associated modular parametrisations.
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3.2. Heegner points. From now on we assume that E/F is semistable, and that
there is a factorisation &/ = N TN~ of the conductor into a product of ideals with
the property that the set of places of F

S := {v divides co or N~}

has odd cardinality. (Placing oneself in this special situation facilitates the exposition,
and does not obscure any of the essential features we wish to discuss.) This assumption
implies that E is arithmetically uniformisable and occurs as a quotient of the Jacobian
Js(N ) of the Shimura curve X (N ") of the previous section. Let

oY p: DivY(Xs(NT) — E (16)

denote the Shimura curve parametrisation attached to this data.

Just like classical modular curves, the curve Xs(N 1) is also equipped with a
collection of CM points attached to certain CM extensions of F. More precisely,
let K be a quadratic extension of F satisfying:

1. For all places v € S, the F,-algebra K ®, F), is a field.
2. For all places v|N T, the F,-algebra K ®, F, is isomorphic to F, @ F,.

Note that condition 1 implies in particular that K is a CM extension of F, since S
contains all the archimedean places of F.

Fix an Op-order O of K, and let H denote the associated ring class field of K.
There is a canonical collection CM (@) C Xgs(N1)(H) associated, in essence, to
solutions to the moduli problem related to X s (&' 1) which have “extraendomorphisms
by @.” This fact allows an extension of the theory of Heegner points to the context
of totally real fields.

3.3. The efficient calculation of global points. Assume for notational simplicity
that N = 1. From a computational perspective, it would be useful to have efficient
numerical recipes for computing the points of CM (@) and their images in E(H)
under the parametrisation &5 g of (16). Difficulties arise in calculating Heegner
points arising from Shimura curve parametrisations, largely because the absence of
Fourier expansions for modular forms on I'\ #, prevents one from writing down an
explicit analytic formula for ®g g analogous to (6).

The article [El1] proposes to work with Shimura curves by computing algebraic
equations for them. This approach can be carried out when the group I' arising in
an archimedean uniformisation of X g(C) following Theorem 3.2 is contained with
small index in a Hecke triangle group. Adapting the ideas of [KM] to the context
of Shimura curves might also yield a more systematic approach to these types of
questions. Nonetheless, it appears that an approach relying on an explicit global
equation for the Shimura curve may become cumbersome, since such an algebraic
equation is expected to be quite complicated for even modest values of F and S.
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Alternately, one may try to exploit the non-archimedean uniformisations of X 5(C,)
given by Theorem 3.2. Given a non-archimedean place v € S, let B and R be the
quaternion algebra and Eichler order associated to S and v as in the statement of this
theorem. An F-algebra embedding

V: K — B

is said to be optimal relative to @ if ¥(K) N R = W (©). It can be shown that
the number of distinct optimal embeddings of K into B, up to conjugation by the
normaliser of R* in B*, is equal to the class number of @. Let i denote this class
number and let Wy, ..., W, be representatives for the distinct conjugacy classes of
optimal embeddings of @ into R. Let 7; and 7; denote the fixed points for W; (K )
acting on #¢,. Then the points in C M (O) are identified with the points z;, T; under
the identification of Theorem 3.2.

In his thesis [Gre], Matthew Greenberg exploits this explicit v-adic description of
the points in C M () and computes their images in E(C,) analytically. The absence
of cusps on X5 and of the attendant Fourier expansion of modular forms is remedied
in part by an alternate combinatorial structure on X g(C,) which allows explicit v-adic
analytic calculations with cusp forms on Xg. This combinatorial structure arises from
the reduction map

r: o, — T

on Jf,, where 7 is the Bruhat-Tits tree of PGL,(F),), a homogeneous tree with
valency |v| 4 1. Thanks to this structure, rigid analytic modular forms of weight two
on I'\ #, admit a simple description as functions on the edges of the quotient graph
['\T satisfying a suitable harmonicity property. (For a more detailed discussion of
the description of rigid analytic modular forms on I"\ #¢, in terms of an associated
Hecke eigenfunction on the edges of the Bruhat-Tits tree, see Chapters 5 and 6 of
[Da2] for example.)

Greenberg explains how the knowledge of the eigenfunction on I'\ 7" associated
to E can be parlayed into an efficient algorithm for computing the Shimura curve
parametrisation ®g g of (16), viewed as a v-adic analytic map

§ g1 DV(D\#,) —> E(C,).

The main ingredient in Greenberg’s approach is the theory of “overconvergent modular
symbols” developed in [PS], adapted to the context of automorphic forms on definite
quaternion algebras.

For example, setting w = 1+T‘6 Greenberg considers the elliptic curve
E y2 + xy 4+ wy =x+ (—w — 1)x2+ (=30w —45)x + (—111lw — 117)

defined over F = Q(+/5). This curve has conductor N = v = (3—5w), aprime ideal
above 31. Consider the CM extension K = F(+/—w — 5) of F. It has class number
two, and its Hilbert class field is equal to H = K (i) (where i = /—1) by genus
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theory. Letting T € J#, be an element of CM (O ), and 7’ its translate by the element
of order 2 in the class group of K, Greenberg computes the image of <I>§’ g(()— (")
in E(K,) to a v-adic accuracy of 31730

point

, obtaining a point that agrees with the global

b (ST8o—1 271780+ 9701 6680 1
=T 2700 180

to that degree of accuracy.

The calculations of [Gre] convincingly demonstrate that Heegner points arising
from Shimura curve parametrisations can be computed fairly systematically in sig-
nificant examples using the Cerednik—Drinfeld theory. It would be interesting to
understand whether the archimedean uniformisations described in Theorem 3.2 can
be similarly exploited.

3.4. Relation with L-series. Retaining the notations of the previous section, let P
be any point of CM(O) C Xs(H), and let x be a character of G = Gal(H/K).
Suppose for simplicity that this character is non-trivial, so that

Dy := > x(o)P° belongs to Div’(X,(H)) ® C.

oceG

Let P, denote the image of D,
PX = (DS,E(D)()-

The Heegner point P, enjoys the following property analogous to the formula of
Gross and Zagier.

Theorem 3.4 (Zhang). The height of Py is equal to an explicit non-zero multiple of
L'(E/K, x, 1).

The proof of Theorem 3.4, which is explained in [Zh1], [Zh2], and [Zh3], proceeds
along general lines that are similar to those of [GZ] needed to handle the case F = Q,
although significant new difficulties have to be overcome in handling Shimura curve
parametrisations. Note that, even when F = @Q, Zhang’s theorem asserts something
new since an elliptic curve over Q may possess, along with the usual modular curve
parametrisation, a number of Shimura curve parametrisations.

3.5. The Birch and Swinnerton-Dyer conjecture. Zhang’s formula has applica-
tions to the arithmetic of elliptic curves defined over totally real fields that are analo-
gous to those of the original Gross—Zagier formula.

Theorem 3.5. Suppose that E is arithmetically uniformisable. Then conjectures
BSDg and BS D are true for E.
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Sketch of proof. Since E is arithmetically uniformisable, there is a Shimura curve
X (M) parametrising E, for an appropriate M|Ng. If ords—1 L(E, s) < 1, one can
choose as in the proof of Theorem 2.11 an auxiliary quadratic CM extension K of F
in which all the primes of S are inert, those dividing .M are split, and for which

ordg—) L(E/K,s) = 1.

After choosing such a K, the Heegner point Pg attached to K and the parametri-
sation (15) is of infinite order by Theorem 3.4. A natural extension of Kolyvagin’s
Theorem 2.9 to the context of totally real fields has been proved by Kolyvagin and
Logachev [KL]. Their result implies that Px generates a subgroup of E(K) of finite
index, and that LIl (E/K) is finite. Theorem 3.5 now follows much as in the proof of
Theorem 2.11. O

The proof of Theorem 3.5 sketched above breaks down for elliptic curves that are
not arithmetically uniformisable in the sense of Theorem 3.3. This is the case for the
elliptic curve

54429
E:y2—|—xy+82y:x3, 8:%6

Or. 17)
defined over the real quadratic field F = Q(+/29) and having everywhere good
reduction over F.

Remark 3.6. It should be noted however that the curve E of (17) is isogenous to
a quotient of the modular Jacobian J;(29), this circumstance arising from the fact
that E is a Q-curve, i.e., is isogenous to its Galois conjugate. Hence a variant of
the Heegner point construction exploiting CM points on X1(29) might provide some
information on the arithmetic of E.

In light of this remark, an even more puzzling example is given by the following
elliptic curve discovered by R. Pinch,

Y2 —xy—wy = > +2+20)x* +(162+3w)x +(71+340), o = %@, (18)
which has everywhere good reduction over F = Q(+/509), and is not isogenous to
its Galois conjugate. The curve given by (18), and any of its quadratic twists over F,
are elliptic curves for which no variant of the Heegner point construction relying on
CM points is known. For such elliptic curves, the strategy of proof of Theorem 3.5
runs across a fundamental barrier.

In spite of this the following theorem has been proved independently in [Lol],
[Lo2] and [TZ].

Theorem 3.7 (Longo, Tian-Zhang). Suppose that E is any (modular) elliptic curve
over a totally real field F. Then conjecture BS Dy is true for E.
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Sketch of proof. We indicate the idea of the proof in the simplest case where E has
everywhere good reduction over a real quadratic field F. Let K be any CM extension
of F, and fix a rational prime p. The key fact is that, even though E is not arith-
metically uniformisable, it is still possible to produce a sequence X1, ..., X, ... of
Shimura curves in such a way that the Galois module given by the p”-torsion E[p”"]
of E appears as a Jordan—-Holder constituent of J,[p"], where J, denotes the Jaco-
bian of X,,. The Shimura curve X, is associated to the set S,, := {{,, 001, 00z} of
places of F, for a judiciously chosen (non-archimedean) place ¢, of F'. The existence
of X, follows from the theory of congruences between modular forms and the Jacquet—
Langlands correspondence. The Heegner point attached to K and X, can then be used
to produce, following a variant of Kolyvagin’s original recipe, a global cohomology
class in H'(K, J,[p"]), and, from this, a class ,, € H' (K, E[p"]). A key formula,
whose proof exploits the Cerednik—Drinfeld theory of ¢, -adic uniformisation of X,,,
relates the restriction of «, in the local cohomology group H'(Ky,, E[p"]) to the
special value of L(E /K, 1). (More precisely, to a suitable algebraic part, taken mod-
ulo p™.) In particular, if this special value is non-zero, then the class &, is non-trivial
for n sufficiently large. (In fact, this is even so locally at £,,.) This local control of the
classes ky, is enough to prove (following the lines of Kolyvagin’s original argument)
that the p”-Selmer group of E over K has cardinality bounded independently of r,
and therefore that £ (K) and the p-primary component of III (E/K) are both finite.
The same finiteness results hold a fortiori with K replaced by F. It is in ensuring
the existence of a suitable auxiliary CM field K for which L(E/K, 1) # O that the
non-vanishing hypothesis on L(E/F, 1) made in the statement of Conjecture BSDg
is used in a crucial way. O

A similar approach to bounding the Selmer group of E relying on congruences
between modular forms was first exploited in [BD3] where it was used to prove part
of the “main conjecture” of Iwasawa Theory attached to an elliptic curve E/Q and
the anticyclotomic Z,-extension of an imaginary quadratic field K.

Theorem 3.7 notwithstanding, the following question retains an alluring aura of
mystery.

Question 3.8. Prove Conjecture BSD for elliptic curves over totally real fields that
are not arithmetically uniformisable.

For example, let Eg be an elliptic curve with everywhere good reduction over a
real quadratic field F' such as the curve given in equations (17) and (18). Let K be a
quadratic extension of F which is neither totally real nor complex, i.e., an extension
with one complex and two real places. Let E denote the twist of Eg by K. It can
be shown that sign(E, F) = —1, so that L(E/F, s) vanishes to odd order. Can one
show that E(F) is infinite, if L'(E/F, 1) # 0? This would follow from a suitable
variant of Theorem 2.5 or 3.4, but it is unclear how such a variant could be proved — or
even formulated precisely! — in the absence of a known Heegner point construction
for E.
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4. Stark—-Heegner points

Question 3.8 points out one among many instances where Heegner points are not
sufficient to produce algebraic points on elliptic curves, even when the presence of
such points is predicted by the Birch and Swinnerton-Dyer conjecture.

The notion of Stark—Heegner point is meant to provide a conjectural remedy by
proposing constructions in a number of situations lying ostensibly outside the scope
of the theory of complex multiplication.

4.1. ATR extensions of totally real fields. Let F' be a totally real field of narrow
class number 1, as in Section 3. A quadratic extension K of F is said to be almost
totally real (or “ATR” for short) if it has exactly one complex place, so that the
remaining real places splitin K /F. The field K can be viewed as a subfield of C via
its unique complex embedding. A point in the complex upper half-plane is called an
ATR point if it generates an ATR extension of F. Let #’ denote the set of all ATR
points on F#, relative to a fixed real place v of F. Note that #’ is preserved under
the action of the Hecke congruence group I'g(N) C SL,2(OF), although, because
the action of this group is not discrete, the quotient I'o(.N)\H’ inherits no obvious
topology (other than the discrete one). Let fg denote the Hilbert modular form of
level N associated to E in Conjecture 3.1, and write

wf = fE(z1,...,z20)dz1 ... dzy

for the corresponding I'g(N)-invariant differential form on F#¢". The article [DL]
describes a kind of natural substitute of the modular parametrisation attached to E,
denoted

% To(NM\H' —> E(C). (19)

A precise description of this map is given in Chapter VIII of [Da2] as well as in [DL].
We will not recount the details of this construction here, mentioning only that ®;
is defined in terms of the periods of wy. It is in that sense that it can be viewed as
purely analytic, even though ®% does not extend to a holomorphic or even continuous
map on F (as is apparent from the fact that I'g(N') acts on H# with dense orbits).
We note that the definition of ®7; is quite concrete and lends itself well to computer
calculations. In fact, working with the Hilbert modular form attached to E has the
added computational advantage that the fourier expansion of wy is available as an aid
to computing its periods numerically.

The main conjecture that is spelled out precisely in [DL] is that the points
{®%(7)}resnk belong to ring class fields of the ATR extension K of F, and that
they enjoy all the properties (Shimura reciprocity law, norm compatibility relations)
of classical Heegner points. This conjecture is also tested numerically and used to
produce global points on the elliptic curve of equation (17) in terms of periods of the
associated Hilbert modular form over Q(+/29). A proof of the conjectures of [DL] (an
admittedly tall order, at present) would presumably lead to a solution to Question 3.8
proceeding along much the same lines as the proof of Theorems 2.11 and 3.5.
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4.2. Ring class fields of real quadratic fields. We return now to the setting where E
is an elliptic curve over Q. Little changes in the analysis of Remark 2.7 when the
imaginary quadratic field is replaced by a real quadratic field. Hence, if K is such
a field and sign(E, K) = —1, one expects the presence of a systematic collection of
points defined over various ring class fields of K. This is intriguing, since the theory
of complex multiplication gives no means of producing these points.

Suppose now that the conductor of E is the form N = pM, where p is a prime
that does not divide M, so that E has multiplicative reduction at p. Let K be a real
quadratic field satisfying the following “modified” Heegner hypothesis:

1. All the primes dividing M are splitin K;
2. The prime p is inert in K.

These conditions are analogous to the ones that are imposed in the setting of classical
Heegner points, with the prime p now playing the role of co. It can be shown that
sign(E, K) = —1, and the same holds for all twists of L(E/K, s) by ring class
characters of conductor prime to N. The analysis carried out in Remark 2.7 therefore
shows that if H is any ring class field of K of discriminant prime to N, one has the
same inequality as in (12):

ord,_(L(E/H,s) > [H : K]. (20)

The article [Dal] describes a conjectural recipe for constructing certain canonical
points in E(H), which is expected to yield a subgroup of finite index in £ (H) when-
ever (20) is an equality.

The idea behind the construction of [Dal] is to attach p-adic periods to f in
a way which formally suggests viewing f as a “mock Hilbert modular form” on
I\ (Fp x ), where I' C SL(Z[1/ p]) is the subgroup of matrices which are upper
triangular modulo M. The construction of these p-adic periods, which is described
in [Dal], is essentially elementary. The main ingredient that enters in their definition
is the theory of modular symbols associated to f, which states that the period integral

N

Ip{r—s} = %Re (/ 2mwif(z) dz> , rselPi(Q 201
r

takes integer values for a suitable choice of “real period” Q* € R, which is, up to a

non-zero rational multiple, the real period in the Néron lattice of E.

Further pursuing the analogy with the setting of Section 4.1, the counterpart of
the set #¢' of ATR points in J¢ (associated to the real quadratic base field F and a
choice of real embedding) is the collection J{’I/, of elements of #;, which generate a
real quadratic extension of Q. In particular, after fixing a p-adic embedding K C C,,,
the set Jfl’, N K is non-empty. Mimicking the formal aspects of the definition of the
map (19) of Section 4.1, with the complex periods attached to a Hilbert modular form
replaced by the (p-adic) periods on #,, x F attached to f, leads to the definition of
a “modular parametrisation” analogous to (19)

@} : D\H, — E(C)). (22)
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Let D be the discriminant of K, and choose a § € Z[1/ p] satisfying
8=D (mod M).

Let £ be the set of primitive binary quadratic forms Ax? + Bxy + Cy? with
coefficients in Z[1/ p], satisfying

B>—4AC =D, M|A, B=6§ (mod M).

(A quadratic form is said to be primitive in this context if the ideal of Z[1/ p] generated
by (A, B, C) is equal to Z[1/p].) The group I' acts naturally on F 2 by “change
of variables”, and the quotient '\ % ? is equipped with a natural simply transitive
action of the class group G p of K arising from the Gaussian composition law. (Or
rather, the Picard group of Ok[1/p], but these coincide since p is inert in K.) This
action is completely analogous to the action of G p on To(NO\H? (for D a negative
discriminant) that is described in Section 2.2. Choose an embedding of K into Cp,
and for each quadratic form F = [A, B,C] € ¥ D et

—B++D
T=—""7"7—§¢€

o 7, (23)

be the corresponding element of J), satisfying F'(z, 1) = 0. The set J(’;) of all T that
arise in this way is preserved under the action of I', and the natural assignment given
by (23) induces a bijection

NFP — m\ap.

Hence the target of this bijection inherits a simply transitive action of G p. Denote
this action by (o, 7) > 17, forallo € Gp and 7 € J(’[?. Conjectures 5.9 and 5.15
of [Dal] predict that

Conjecture 4.1. 1. For all t € #2, the point CIDZ-(r) is defined over H.
2. If x: Gp —> C* is a complex character, then the expression

> x(@)®h(°) € E(H)®C

O'EGD

is non-zero if and only if L'(E/K, x,1) # 0. In particular, the subgroup of E(H)
generated by the Stark—Heegner points dDIE(r), ast € M\#HP, hasrank h = [H : K]
if and only if ords—1 L(E/H, s) = h.

A proof of Conjecture 4.1 would not yield any new information about Conjec-
ture BSD, for » < 1, since this conjecture is already known for elliptic curves over Q.
It would, however, give a proof of some new cases of the Birch and Swinnerton-Dyer
conjecture for Mordell-Weil groups over ring class fields of real quadratic fields, fol-
lowing a simple extension of Kolyvagin’s arguments which is explained in [BD1] and
in Chapter X of [Da2]. See also [BDD] for other ways in which a strengthening of
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Conjecture 4.1 to modular forms with non-rational Fourier coefficients would imply
new cases of Conjecture BSDy, by adapting the ideas that are used in the proof of
Theorem 3.7.

Conjecture 4.1 has been extensively tested numerically in [DG]. A significant
improvement of the algorithms of [DG], based on ideas of Pollack and Stevens which
grew out of their theory of overconvergent modular symbols, as mentioned in Sec-
tion 3.3, is described in [DP1]. These improvements make it possible to find global
points of large height on E rather efficiently. For example, the Stark—Heegner point
on the elliptic curve E of conductor 11 given by the equation

y2—|—y=x3—x2—10x—20

attached to the field K = Q(+/101) can be computed to an 11-adic accuracy of 1 1100
in a few seconds on a standard computer. It can then be “recognized” as the global
point in E(Q(+/101)) with x-coordinate equal to

_ 1081624136644692539667084685116849
© 246846541822770321447579971520100

Of course, the calculation of Stark—Heegner points also has applications to explicit
class field theory for real quadratic fields analogous to those described in Section 2.4
for imaginary quadratic fields. For example, let E be the unique elliptic curve over Q
of conductor p = 79, defined by the Weierstrass equation

y2+xy+y=x3+x2—2x.

The prime p is inert in the real quadratic field K = Q(+/401), which has class number

five. The 5 distinct representatives in J(’;‘g ! can be chosen to be

—19 4+ 4/401 19 — V401  —15 4 /401 17— 4401  —17 + +/401
2 ’ 4 ' 8 ' 8 ' 4 ’

T =

The x-coordinates of the corresponding Stark—Heegner points <I>29(r) (computed
modulo 792%) appear to satisfy the polynomial

¥ —20x* +47x3 =312 +x +3

whose splitting field is indeed the Hilbert class field H of K. In fact this calculation
leads to the discovery of points in E(H). The analogous polynomial, for the real
quadratic field Q(+/577) of class number seven, is

x7 —22x0 + 74x° — 51x% — 40x3 +32x2 +2x — 1.

These examples are chosen at random among the hundreds of calculations that were
performed in [DP1] to test the conjectures of [Dal] numerically. (More such calcula-
tions could be performed by the interested reader using the publicly available software
[DP2] for calculating Stark—Heegner points, written in Magma, which is documented
in [DP1].)
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4.3. Beyond totally real fields?. The assumption that E is defined over a totally real
field F', although it arises naturally in considering automorphic forms and their associ-
ated Shimura varieties, is not a natural one from the point of view of the Diophantine
study of elliptic curves. It would be just as desirable to understand elliptic curves
defined over general number fields, and to have the means of tackling conjectures
BSDg and BSD; for such curves.

The simplest case arises when E is an elliptic curve defined over an imaginary
quadratic field, denoted by F' (and not K as in Section 2, since now it plays the role of
the “ground field” over which E is defined). Assume for simplicity that F has class
number one, and let A denote the conductor of E.

As in Section 3, the Shimura—Taniyama conjecture predicts that E corresponds to
an automorphic form f on GLy(F), which gives rise, following the description given
in [Crl], to a differential form wy on the hyperbolic upper half space

HP .= C x R*",

This three-dimensional real manifold is equipped with a hyperbolic metric and an
action of SL,(C) by isometries, and the differential wy is invariant under the re-
sulting action of the subgroup I'g(N) C SL,(OF) consisting of matrices which are
upper triangular modulo & . Congruence subgroups of SLy(OF) are examples of
so-called Bianchi groups; for information about their structure and properties and
further references, see [EGM] for example.

The modular form wy does not give rise to a modular parametrisation of E anal-
ogous to (4). In fact, the symmetric space #® is not even endowed with a natural
complex structure (since it has real dimension 3); therefore the quotient I'g (N )\ H &
cannot be viewed as the points of a complex analytic variety, much less an algebraic
one. The absence of a Shimura variety attached to f implies that one has less control
on the arithmetic of this modular form. For certain f, Taylor [Ta] has been able
to construct the Galois representations which the Langlands conjectures attach to f
by exploiting congruences with modular forms on GSp(4) whose associated Galois
representations can be found in the cohomology of the appropriate Shimura varieties.
Unfortunately, global points on elliptic curves or abelian varieties, unlike p-adic Ga-
lois representations (as in the work of Taylor) or Galois cohomology classes attached
to rational points (as in the proof of Theorem 3.7), do not readily lend themselves to
constructions based on congruences between modular forms.

Nonetheless, the differential form wy comes with an attendant notion of modular
symbol which enjoys the same integrality properties as in the classical case. (For a
discussion of modular symbols attached to forms on GL, (F), and their computational
applications, see [Cr1], [CW].) Trifkovic [Tr] exploits this modular symbol to trans-
pose to f the definition of the p-adic periods on #, x # alluded to in Section 4.2.
In this way he associates to wy a “modular form on '\ (#, x F 3y where

1. pisaprime of K dividing &N = Mp exactly;
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2. Hy, =P1(Cp) — Py (Fp) is the p-adic upper half plane (defined after choosing
an embedding F, C C));

3. I' € SL2(OFf[1/p]) is the subgroup consisting of matrices which are upper
triangular modulo M.

The set J(’,; is simply the set of t € #, which generate a quadratic extension of
F C F,. Trifkovic uses his p-adic periods to define an explicit, numerically com-
putable map

®f: T\JH, — E(C)).

and formulates an analogue of Conjecture 4.1 for this map, predicting that <I>'fE (1) is
defined over a specific ring class field of K = F(r) forall T € J{;.

Trifkovic has been able to gather extensive numerical evidence for his “Stark—
Heegner conjectures” in this setting. Here is just one example taken among the
many calculations that are reported on in [Tr]. Let E be the elliptic curve over
F = Q(+/—11) given by the Weierstrass equation

1-4-11
y2+y=x3+<T)x2—x.

Its conductor is the prime p = 6++/—11 of F of norm47. Note that E is notisogenous

to its Galois conjugate, since p # p. The quadratic extension K = F(+/29) has class
number 5. Trifkovic computes the five distinct Stark—Heegner points attached to the
maximal order of K, as elements of E(Q47) (using the isomorphism K, = Q47) with
an accuracy of 20 significant 47-adic digits. This allows him to “guess” that the x
coordinates of these Stark—Heegner points satisfy the degree 5 polynomial

5 80299 + 139763/ 11\ , —558203 + 71567/—11 3
X — X+ X

149058 149058
L (141709 +45575Y=TTY (83727727011 (=473 +35/=T1
74529 * 24843 * 2366

whose splitting field can then be checked to be the Hilbert class field of K.
For many more calculations of this type, and a precise statement of the conjecture
on which they rest, the reader is invited to consult [Tr].

4.4. Theoretical evidence. In spite of the convincing numerical evidence that has
been gathered in their support, the conjectures on Stark—Heegner points suffer from
the same paucity of theoretical evidence as in the setting of Stark’s original conjectures
on units. What little evidence there is at present can be grouped roughly under the
following two rubrics:
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4.4.1. Stark-Heegner points and Stark units. Many of the basic theorems and
applications of elliptic curves have counterparts for units of number fields. (For in-
stance, the Mordell-Weil theorem is analogous to Dirichlet’s Unit Theorem; Lenstra’s
factorisation algorithm based on elliptic curves, to the Pollard p — 1 method; to name
just two examples.) The very terminology “Stark—Heegner point” is intended to con-
vey the idea that these points are analogous to Stark units constructed from special
values of L-series.

To make this sentiment precise, one can replace the cusp forms that enter into the
constructions of Section 4.2 by modular units, or rather, their logarithmic derivatives
which are Eisenstein series of weight two. Pursuing this idea, the article [DD] as-
sociates to any modular unit & on I'g(N)\# and to T € ]61’7 N K where K is a real
quadratic field in which p is inert, an element u (o, 7) € K px , which is predicted to be-
have like an elliptic unit defined over a ring class field of an imaginary quadratic field.
More precisely, if O is the order associated to t, and H denotes the corresponding
ring class field of K, it is conjectured that u(c, T) belongs to @y [1/p]* and obeys a
Shimura reciprocity law formulated exactly as in Conjecture 4.1.

Section 3.1 [DD] attaches to « and to t a {-function ¢ (o, T, s) which is essentially
(up to a finite collection of Euler factors depending on «) the partial zeta-function
attached to K and the narrow ideal class corresponding to t. In particular, this zeta-
function has a meromorphic continuation to C with at worst a simple pole at s = 1.
Sections 4.1-4.3 of [DD] explain how a p-adic zeta function ¢, («, 7, 5) can be defined
by p-adically interpolating the special values of ¢ (o, t, k) at certain negative integers.

The main result of [DD], which is contained in Theorems 3.1 and 4.1 of [DD], is
then

Theorem 4.2. Forall T € }(’1’,

(o, 7,0) = 11—2 ord, (u(a, 7)); (24)
1
{I/,(a, 7,0) = - log, Normg, /q, (u(@, 7)). (25)

This theorem is consistent with Gross’s p-adic analogue of the Stark conjectures
[Grl], [Gr2], which expresses the left hand side of (25) in terms of p-adic logarithms
of the norm to QQ,, certain global p-units in abelian extensions of K. We note that
the conjecture of [DD] represents a genuine refinement of Gross’s conjecture in the
special case of ring class fields of real quadratic fields, since it gives a formula for the
Gross—Stark units as elements of K )*, and not just for their norms to Q;j.

Remark 4.3. A purely archimedean analogue of the setting of Theorem 4.2 is con-
sidered in [CD], leading to the conjectural construction of units in abelian extensions
of an ATR extension K of a totally real field F in terms of periods of weight two
Eisenstein series on the Hilbert modular group attached to F. This construction can
be viewed either as the archimedean analogue of the main construction of [DD], or
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as the analogue of the main construction of [DL] in which cusp forms on the Hilbert
modular group are replaced by Eisenstein series. This construction (in the setting of
abelian extensions of K') goes further than the original Stark conjectures by proposing
a formula for the Stark units as elements of C*, and not just for their lengths which
are expressed in terms of values of L-series at s = 0. In other words, the formulae of
[CD] capture the arguments as well as the absolute values of these Stark units (relative
to a complex embedding of the ring class field H of K extending the unique complex
embedding of K.)

Remark 4.4. The proof of Theorem 4.2 brings to light the role of the Eisenstein series
of weight k and their associated periods (with k a weight which can be taken to vary
p-adically) in relating the invariants u(«, T) to special values of L-functions. This
suggests that the Stark—Heegner points of Section 4.2 should be related to the periods
of a Hida family interpolating the cuspidal eigenform f in weight two.

4.4.2. The rationality of Stark—Heegner points over genus fields. Returning to
the setting of Section 4.2, let K be a real quadratic field of discriminant D satisfying
the auxiliary hypotheses relative to N that were mentioned in Section 4.2, and let H
be its Hilbert class field. Write Gp = Gal(H/K) as before.

To each factorisation D = D1 D; of D as a product of two fundamental discrim-
inants is associated the unramified quadratic extension L = Q(+/D1,/D2) C H
of K. This field corresponds to a quadratic character

x:Gp — =*£1,

called the genus character associated to the factorisation (D1, D). Let x1 and x»
denote the quadratic Dirichlet characters attached to Q(4/D1) and Q(+/D;) respec-
tively. Then yx, viewed as a character of the ideals of K, is characterised on ideals
prime to D by the rule

x (M) = x1(Normn) = y>(Normn).

The field L is also called the genus field of K attached to (D, Dy). Let E(L)*
denote the submodule of the Mordell-Weil group E(L) on which Gp acts via the
character x.

Recall the action of Gp on F\Jfl? arising from its identification with the class
group of K. Define the point

Py= )" x(@)®h(z?) € E(K)).

oeGp

Conjecture 4.1 predicts that this local point belongs to E (L)X (after fixing an embed-
ding L C K}), and that it is of infinite order if and only if

L(E/K, x,s) = L(E, x1,8)L(E, x2,s)

has a simple zero at s = 1.
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For each m|N with gcd(m, N/m) = 1, let w,, denote the sign of the Fricke
involution at m acting on f. Note that the modified Heegner hypothesis implies that
X1(=M) = x2(—M). The main result of [BD5] is

Theorem 4.5. Suppose that E has at least two primes of multiplicative reduction,
and that x1(—M) = —wy,.

1. There is a global point P, € E(L)X andt € Q* such that
P, =tP, inE(K,) ®Q. (26)
2. The point Py is of infinite order if and only if L'(E /K, x, 1) # 0.

The proof of Theorem 4.5 relies on the connection between Stark—Heegner points
and Shintani-type periods attached to Hida families alluded to in Remark 4.4, which
grew out of the calculations of [DD]. A second key ingredient is the relation, made
precise in [BD2] and [BD4], between classical Heegner points arising from certain
Shimura curve parametrisations and the derivatives of associated two-variable anti-
cyclotomic p-adic L-functions attached to Hida families. In a nutshell, these two
ingredients are combined to express the Stark—Heegner point P, as a classical Heeg-
ner point, following an idea whose origins (as is explained in the introduction of
[BD5]) can be traced back to Kronecker’s “solution of Pell’s equation” in terms of
special values of the Dedekind eta-function.

Remark 4.6. A result of Gross—Kohnen—Zagier [GKZ] suggests that the position of
the Stark—Heegner point P, in the Mordell-Weil group E(L)X is controlled by the
Fourier coefficients of a modular form of weight 3/2 associated to f via the Shimura
lift. See [DT] where results of this type are discussed.
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Galois deformations and arithmetic geometry of Shimura
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Abstract. Shimura varieties are arithmetic quotients of locally symmetric spaces which are
canonically defined over number fields. In this article, we discuss recent developments on
the reciprocity law realized on cohomology groups of Shimura varieties which relate Galois
representations and automorphic representations.

Focus is put on the control of ¢-adic families of Galois representations by £-adic families of
automorphic representations. Arithmetic geometrical ideas and methods on Shimura varieties
are used for this purpose. A geometrical realization of the Jacquet-Langlands correspondence
is discussed as an example.
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1. Introduction

For a reductive group G over Q and a homogeneous space X under G (R) (we assume
that the stabilizer K , is a maximal compact subgroup modulo center), the associated
modular variety is defined by

Mk (G, X) = GAQ\GAf) x X/K.

Here Ay = ]_[;7 prime Qp (the restricted product) is the ring of finite adeles of Q, and K
is a compact open subgroup of G(Ay).

Mk (G, X) has finitely many connected components, and any connected compo-
nent is an arithmetic quotient of a Riemannian symmetric space. It is very important
to view {Mk} KCG(Ap) @S a projective system as K varies, and hence as a tower of

varieties. The projective limit

MG, X) = lim Mg(G, X)
KCG(Ay)

admits a right G (A f)-action, which reveals a hidden symmetry of this tower. At each
finite level, the symmetry gives rise to Hecke correspondences. For two compact open
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during the writing of this paper.
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subgroups K, K" C G(Ay) and g € G(Ay), g defines a correspondence [K'gK ]: the
first projection Mg n,-1g, — Mk, and the second is the projection My o151, —>
Mg—lK/g ~ M[(/.

The Betti cohomology group Hz (Mg (G, X), Q) admits the action of the Hecke
algebra H(G(Ay), K)q, the convolution algebra formed by the compactly supported
Q-valued K -biinvariant functions on G (Ar). The characteristic function yggx of a
double coset KgK acts as correspondence [K g™ K.

When all connected components of X are hermitian symmetric spaces, we call
Mg (G, X) a Shimura variety and denote it by Shx (G, X). The arithmetic theory was
begun by Shimura, and developed in his series of articles (cf. [44], [45], [47], [48]).

Shimura varieties have the following special features':

* They are quasi-projective algebraic varieties over C (and smooth when K is
small enough).

* They are canonically defined over the number field E(G, X) (Shimura’s theory
of canonical models). E(G, X) is called the reflex field. For a field extension
E’ of E, Sh(G, X) g’ denotes this model as defined over E’.

Shimura established the existence of canonical models when they are moduli spaces
of abelian varieties with PEL structure [48], and even in some cases which are not
moduli spaces of motives (exotic models, see [47])%. The functoriality of the canonical
models is Shimura’s answer to Hilbert’s 12th problem (explicit construction of class
fields).

In the case of Shimura varieties, Sh(G, X)g = LancG(A_f) Shg (G, X) g is canoni-

cally defined over E = E(G, X), which yields more symmetries than other modular
varieties. The Galois group Gp = Gal(E/E) acts on the tower>, and hence the
symmetry group is enlarged to Gg x G(Ay). This symmetry acts on £-adic étale
cohomology groups H instead of the Betti cohomology Hy. The decomposition
of the cohomology groups as Galois—Hecke bimodules is the non-abelian reciprocity
law for Shimura varieties.

Aside from Shimura varieties, let us mention one more case which plays a very
important role in the p-adic study of automorphic forms. When G is Q-compact
and X is a point, Hida noticed the arithmetic importance of M (G, X) [21], though it
is not a Shimura variety in general. These are called Hida varieties. Hida varieties
are zero-dimensional, but the action of G(Ay) is quite non-trivial.

2. Non-abelian class field theory

We make the reciprocity law more explicit. Let ¢(G) be the complex dimension
of Sh(G, X). The ¢-adic intersection cohomology group I HZ (Shg (G, X)E) =

IWe assume that (G, X) satisfies Deligne’s axioms [11], [12] for non-connected Shimura varieties.
2The general solution is due to Borovoi and Milne.
3In the following, for a field F, the absolute Galois group Gal(F/F) of F is denoted by G .
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I HZ (Sh(G, X)min,E’ Qy) of the minimal compactification Sh(G, X)min, E 18 pure in
each degree, and the most interesting part lies in the middle degree / Hgt(G). In gen-
eral, the decomposition of / H* is understood by Arthur packets, by granting Arthur’s
celebrated conjectures on local and global representations of reductive groups*. See
[32] for a conjectural description in the general case.

Let us take a simple (but still deep) example. For a totally real number field F of
degree g, let Ir = {t: F — R} be the set of all real embeddings (regarded as the set
of infinite places of F'). One chooses a quaternion algebra D central over F* which is
split at one ¢y € Ir and ramifies at the other infinite places.

Gp = Resp/pD™ is the Weil restriction of the multiplicative group of D, and
Xp = IP’(%: \IP’]%g = C\Ris the Poincaré double half plane. The resulting Sh(Gp, Xp) is
a system of algebraic curves, namely the modular curve for D = M>(Q) and Shimura
curves for the other cases, which has a canonical model over F = E(Gp, Xp).

We fix a field isomorphism Q; ~ C. The decomposition of [ Hélt asa Gp x
H(G(Ay), K)-module is given by

IHélt(ShK(GDa Xp)5) = ®reappr ® 71’;(.

Here A p is the set of irreducible cuspidal representations 1 = ¢ ®7 o of G p(A) such
that the infinite part o, is cohomological for the trivial coefficient and the Jacquet—
Langlands correspondent J L(7r) on GL2(AF) is cuspidals. pr: G — GLy (@4) is
the ¢-adic Galois representation attached to w which has the same L-function as 7.
The identity

L(S, /O7T) = L(S,]T, St)

holds, where L(s, py) is the Artin—Hasse—Weil L-function of p;, and L(s, m, st) is
the standard Hecke L-function of 7. This identity (or rather identities between their
local factors) is the non-abelian reciprocity law realized on 1 Hé]t. The modular curve
case is due to Eichler and Shimura. The Shimura curve case is due to Shimura [47],
Ohta [35] and Carayol [5]. Itfits into the general representation theoretical framework
due to Langlands. The Langlands correspondence is a standard form of non-abelian
class field theory which predicts a correspondence between Galois and automorphic
representations.

In the following, we discuss the relationship between £-adic families of Galois
representations and £-adic families of automorphic representations (with applications
to the Langlands correspondence as Wiles did for elliptic curves over Q in his fun-
damental work [57]). We show how arithmetic geometrical ideas and methods on

Shimura varieties are effectively used for this purpose®.

It is more natural (and sometimes more convenient because of vanishing theorems known in harmonic
analysis) to introduce coefficient sheaves attached to representations of G.

5The finite part ¢ of 7 is defined over Qg via identification Qp ~ C.

6Though the viewpoint of motives is extremely important, an emphasis is put on Galois representations in
this article.
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3. Galois deformations and nearly ordinary Hecke algebras for GL,

In this section F denotes a totally real field, and I is as in §2. Fix an £-adic field E;,
with integer ring o, and the maximal ideal A.

By Ir ¢ we mean the set of all field embeddings F — Q. 1 F.¢ 18 canonically
identified with [ [,, 7F,, where Fy is the local field at v, and I, is the set of all
continuous embeddings F, — @[. IF ¢ is identified with /r by the isomorphism
Q¢ = C chosen in §2.

Let X be a set of finite places which contains all places dividing £. Let Gy denote
Gal(Fy/F), where Fy is the maximal Galois extension of F which is unramified
outside X.

For G = GL,, r, Hida has produced a very big Hecke algebra in [22] by the method
of cohomological £-adic interpolation’. Let .‘)C%Z] be the maximal pro-£ abelian quotient
of Gy and .')lec be the pro-¢ completion of va o). A pair ((k,)e1,, w) consisting
of an integer vector (k,),cs and an integer w is called discrete type if k, = w mod 2
and k, > 2 forall «t € Ir. A continuous character y : x§ X IXILOC — @; is algebraic
of type ((k,).e1,, w) if the quotient X/(Xc;(lﬁe Tloje [eers, th‘_z) is of finite order.
Here xcycle is the cyclotomic character, and y, is the £-adic character o} — @2(
defined via the embedding ¢.

Then a nearly ordinary Hecke algebra T is a finite local o), [[9(,’%1 X X}v,oc]]—algebra
having the following properties:

* Ty is generated by the standard Hecke operators at all finite places.

* Takean £-adic integerring 0} ,. Foran 0 -algebrahomomorphism f: Ts — of,
such that the induced 0, -homomorphism 0;‘[[96“;21 X XIZOC]] — 0;, defines an
algebraic character of discrete type ((k,),cs,, w), there is a cuspidal GL»(AF)
representation 7 which is defined by a holomorphic Hilbert cusp form of type

((kt)LGIF ,w).

* Any cuspidal representations obtained by specializations as above are nearly
ordinary, that is, the action of standard Hecke operators at v|{ are £-adic units.

» Ty is the biggest 0, -algebra with the above properties. Ty is the universal ring
which connects all nearly ordinary cuspidal representations.

Assume that for some 7 appearing from Ty by a specialization, the mod A-
reduction p, of p, is absolutely irreducible. Then there is a Galois representation
p1s : Gy — GL(Tx) which interpolates o ’s for various 7 £-adically (see [56] for
the ordinary Hecke algebra: the method of pseudo-representation of Wiles). The local
representation pry |G, for v|¢ is nearly ordinary, that is, it has an expression

~ [ X1, *
pTzlGFv — < OU X2 v)

"This method was found by Shimura in [46] in the late 1960s.
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for some local characters ; ,: GF,

v

— Ty (i = 1,2) which are made explicit by the

universal character of Xi,oc. Also detpry | el is the universal character of ngl twisted
1 b

by chcle’

Next we introduce the deformation-theoretical viewpoint due to Mazur. Let Ry, be
the universal nearly ordinary deformation ring of p. We put the nearly ordinary con-
dition at v|¢£ and no restrictions at other v € X. There is a canonical ring homorphism
Ry — Ty which is surjective (one recovers standard Hecke operators from o7y ).

Theorem 3.1. Assume the following conditions:
1. Lis odd, and p|F ) is absolutely irreducible®.

2. ,5|2F is either indecomposable, or is a sum of distinct characters for v|€
v
(G F,-distinguished).

Then the nearly ordinary Hecke algebra Ty, is a finite o), [[9(,“%21 X X%"C]]—ﬂat algebra of
complete intersection and is isomorphic to the universal nearly ordinary deformation
ring Ry.

When F = Q, this is a fundamental result of Wiles [57] supplemented by his
collaboration with Taylor [55]°. For general F, this result is due to the author and is
a special case of [18]. For a precise construction of Ty, at a finite level, see [18]. The
above version of the theorem follows easily from it.

So Hida’s theory of nearly ordinary Hecke algebras for GL;_ r is almost completed
when the residual representation is absolutely irreducible.

We discuss some applications of the theorem. The first application is to the mod-
ularity of Galois representations!C. The following theorem, which is a partial contri-
bution to the modularity of elliptic curves over F (the Taniyama—Shimura conjecture)
is an example:

Theorem 3.2. Let E be an elliptic curve over F, and let pg ¢ be the associated Galois
representation on the Tate module T;(E). Assume the following conditions:

1. 3 splits completely in F.

2. pg3 mod 3 remains absolutely irreducible over F({3).

3. E is semi-stable at all v|3 and ordinary if it admits a good reduction.
Then there is a cuspidal representation g of infinity type ((2, ..., 2), —2) such that

PE.¢ IS isomorphic to pr, over Qg for any €. In particular L(E,s) = L(s, g, st)
holds for the Hasse—Weil L-function L(E, s) of E.

8There is an exceptional case when £ = 5 and [F(¢5) : F] = 2 which is not treated in [18]. This case will be
discussed on another occasion.

9Also with a supplement by Diamond [13] to treat some exceptional local representations.

100pe may apply the solvable base change technique to know the modularity, so only a weaker form of
Theorem 3.1 is needed. Usually [F : Q] becomes even after a base change, so the Mazur principle in the even
degree case [17] is indispensable for this approach.
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One can use other division points (5-division points, for example) to establish
similar modularity results.

By the solvable base change technique, one can also deduce a quite interesting re-
sultfor GL @. See the work of Khare and Wintenberger [30], [28] for such directions.
In particular Khare proves Serre’s conjecture for mod ¢ level 1 forms of Q.

The second application is in Iwasawa theory, especially the Selmer group for
the symmetric square of GL,-representations [23]. Here we need the full form of
Theorem 3.1. This theorem is also effective in solving classical problems. See [24]
for such an example (Eichler’s integral basis problem).

To establish Theorem 3.1, what we shall do is something like proving Weber’s
theorem (all abelian extensions of Q are cyclotomic). In our case we already have
some tower of Galois extensions which is explicitly described by automorphic forms
via the reciprocity law, and we would like to know that it exhausts all extensions
which satisfy reasonable conditions.

Let us list the main ingredients in the proof of Theorem 3.1, which are now
standard. It consists of 4 steps:

 1st step. Level and weight optimization. Define some minimal Hecke algebra
Tmin- It is necessary to find a minimal ¥ with more restrictive minimality
conditions.

* 2nd step. Compatibility of local and global Langlands correspondences. De-
fine the Galois representation p7,,,: GF — GL2(Twin), and determine the

local behaviour of pr, , namely local restrictions o7, |G, -

* 3rd step. R = T in the minimal case. Define the minimal deformation ring
Ruin and show that Ryin =~ Tiin-

* 4th step. Reduction to the minimal case. Show Ry =~ Ty by reducing it to the
minimal case (raising the level).

The basic strategy for the third and fourth steps exists for general modular varieties
M (G, X), and will be discussed in the next two sections.

The first step applied to GL; g is Serre’s e-conjecture on the optimization of level
and weights for modular GL, (F¢)-representations. This is proved in a series of works.
See [40] for the related references. For general GL; r, outside £, the optimization
of the level is completely understood; see [26], [27], [17] for the ramified case and
the Mazur principle, [36] for the Ribet type theorem [39]. These results are enough
to prove Theorem 3.1 in the nearly ordinary case. However, optimization of level
and weight at v|¢ is still insufficient for further progress!'!. The solvable base change
technique in [50] is useful for modularity questions.

For the second step, one first constructs pry, by an £-adic interpolation from var-
ious p;’s which appear from Shimura curves by Wiles’ method of pseudo-represen-
tations [56].

YN very naive version of Serre’s e-conjecture is false for F # Q for trivial reasons (one can not attain a
conductor which is prime to £ in general). Diamond has formulated a refined conjecture and is making progress.
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For GLa, F, prlGp, for v 1 £ depends only on the v-component 7, of T = ®4,7y,
and is obtained by the local Langlands correspondence for GL; r, [5], [52]. For
v|¢, the Weil-Deligne representation attached to the potentially stable representation
pr |G, 1s compatible with 7, when p, comes from Shimura curves [41], [42]. How-
ever, this information is too weak to determine pr |G, - For example, information on
the Hodge filtration is lacking. Breuil has formulated a p-adic version of the local
Langlands correspondence [2].

For general Shimura varieties, this requires a detailed study of bad reductions.
For n-dimensional representations as defined by Clozel [9], compatibility outside ¢
is established. (See [20] for the semi-simplification case, and see Taylor and Yoshida
[54] for the general case).

For v|¢, p-adic Hodge theory is the basic tool at present, especially for general
Shimura varieties.

Remark 3.3. 1. One may allow finite flat deformations at v|¢ when F), is absolutely
unramified [18]. Kisin has developed a local theory for finite flat deformation which
allows ramification when the residue field at v is Fy, with an application to modularity
theorems [31].

2. In the case of QQ, Ramakrishna and Khare [29] have found an interesting
method without any reduction to the minimal case via use of special deformations,
that is, by adding Steinberg type conditions at several auxiliary primes'2. Moreover,
Ramakrishna has studied various Galois deformations over (Q, which may not be
modular a priori, .

When p is absolutely reducible, Ty is used to prove Iwasawa’s main conjecture
for class characters of totally real fields. Skinner and Wiles [49], [51] have obtained a
modularity result even in the absolutely reducible case, by showing partial results on
the relationship between the versal hull of Ry, and T, using many ideas and techniques
including Taylor—Wiles systems.

4. Taylor—Wiles systems: the formalism

In [55], Taylor and Wiles have invented a marvelous argument to show a nice ring
theoretical property of Tiin: Tmin 1S @ complete intersection in the case of modular
curves. This property may seem technical at first glance, but has the very deep
implication that Ry, is Tmin in the case they considered. The original argument
by Taylor and Wiles has been improved by now; Faltings suggested the direct use
of deformation rings rather than Hecke algebras, and the further refinement we now
describe is due to Diamond [14] and myself.

For a number field F, let |F|; be the set of finite places of F. g, denotes the
cardinality of the residue field k(v) for v € |F|y.

127 freeness assertion is necessary for this approach. Using this assertion, one can compute congruence
modules to come back to unrestricted deformations. Technical assumptions are made on p in [29].
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Let k; be the residue field of 0,.

Definition 4.1. Let H be a torus over F of relative dimension d, and let X be a
set of finite subsets of |F|; that contains ). Let R be a complete noetherian local
0,-algebra with the residue field k;, and M an R-module which is finitely generated
as an oy-module. A Taylor—Wiles system {Rg, Mgp}pex for (R, M) consists of the
following data:

e For Q € Xandv € Q, H is split at v, and g, = 1 mod ¢£. We denote
the £-Sylow subgroup of H (k(v)) by Ay, and Ay is defined as HUGQ A, for
0eX.

* For Q € X, Ry is acomplete noetherian local 0 [A g ]-algebra with the residue
field k;, and M is an Rp-module. For Q = 0, (Ryg, My) = (R, M).

» There is a surjection of local 0, -algebras
RQ / 1 0 R 0o — R

for each non-empty Q € X 13 Here Igp C 0;[Ag] denotes the augmentation
ideal of 0x[Ag].

* The homomorphism Rp/IgRgp — End,, Mo /IpM factors through R, and
Mg /IgMg is isomorphic to M as an R-module.

* Mg is free and of rank « as an 0, [A g]-module for a fixed o > 1.

In [55], the condition that Ry is Gorenstein and Mg is a free Rp-module is
required.

Taylor—Wiles systems are commutative ring theoretic versions of Kolyvagin’s
Euler systems. The following theorem is the most important consequence of the
existence of Taylor—Wiles systems.

Theorem 4.2 (Complete intersection and freeness criterion). For a Taylor—Wiles sys-
tem {Rg, Mo}oex for (R, M) and a torus H of dimension d, assume the following
conditions:

1. Foranym € N
veQ=qg,=1 mod "

holds for infinitely many Q € X.
2. The cardinality r of Q is independent of Q € X for non-empty Q.

3. Ry is generated by at most dr elements as a complete local oy-algebra for
non-empty Q € X.

3For deformation rings, Rg/IgRp =~ R usually holds. The condition here is relaxed so that it applies to
Hecke algebras directly.
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Then one has:

* (complete intersection property) R is o) -flat and of relative complete intersec-
tion of dimension zero;

* (freeness) M is a free R-module.

In particular, M is a faithful R-module. If we denote the image of R in End,, M
by T, we have R >~ T as a consequence of Theorem 4.2. So the complete inter-
section and the freeness criterion is also regarded as an isomorphism criterion. The
Auslander-Buchsbaum formula for regular local rings plays a very important role in
the proof of the theorem.

The reason why we have the complete intersection property is the following.
When Q and N vary, a well chosen limit of Rgp/ mgQ tends to be a power series

ring over o0;, in dr variables'*. This is implied by condition (3) of 4.2. Usually
R = Ry /IpRp holds, thus R is defined by d - 10 = dr equations in R, and hence
it is a complete intersection in the limit.

If the complete intersection property and freeness both hold, then this pair of
properties is inherited by descendants of (R, M). This is formulated in the following
way.

Definition 4.3. 1. An admissible quintet is a quintet (R, T, w, M, {, )), where Risa
complete local 0, -algebra, T is a finite flat 0, -algebra, m: R — T is a surjective 0, -
algebra homomorphism, M is a faithful finitely generated 7-module which is o, -free,
and (, ): M ®,, M — o0, is a perfect pairing which induces M >~ Hom,, (M, 0;)
as a T-module.

2. An admissible quintet (R, T, w, M, {, )) is distinguished if R is a complete
intersection and M is R-free (and hence 7 is an isomorphism).

3. By an admissible morphism from (R', T', 7/, M’, {, Y)to (R, T, 7, M, {, ))
we mean a triple (o, 8,£). Here a: R" — R, B: T’ — T are surjective o, -algebra
homomorphisms making the following diagram

R —% 5 R

4l

T —— T

commutative, and & : M < M’ is an injective 7’-homomorphism onto an o, -direct
summand. (Note that we do not assume the restriction of {, ) to E(M)is {, ).)

A Taylor—Wiles system gives rise to a distinguished admissible quintet for a suit-
ably chosen pairing on M under the conditions of Theorem 4.2.

141, applications, R is a deformation ring. This implies that the deformation functor which defines Rp
behaves as if it were unobstructed for a well-chosen limit of Q.
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Assume that (, 8, &) is an admissible morphism from (R', T', =, M’, {, )’) to
(R, T,7, M, {, )). There is an abstract criterion for (R’, T’, 7', M’, { , )') to be a
distinguished quintet if (R, T, w, M, {, )) is distinguished.

By duality we have

£: M' ~ Hom,, (M, 0;) — Hom,, (M, 0;) ~ M
such that .
((x), y) =(x, &(y)) forallx e M, y e M,
We fix an 0, -algebra homomorphism fr: T — o0,. We define fr (resp. f/) as
from (resp. fopBon’).

Theorem 4.4 (abstract level raising formalism). For an admissible morphism between
admissible quintets (R', T, 7', M',{, Y) — (R, T,n, M, {, )), we assume the
following conditions:

1. (R, T,m, M, (,)) is distinguished.

2. T and T' are reduced, M’ ®,, E) is T' ®,, Ej-free, and its rank is the same
as the rank of M over T.

3. § o &(M) = A - M holds for some non-zero divisor A in T.

4. An inequality

length,,, ker fg//(ker fR/)2
< length,, ker fr/(ker fg)* + length, 03/ fr(A)o;

holds.

Then (R',T',n’,M’, (, ) is also distinguished, that is, R' >~ T’, R is a complete
intersection, and M’ is T’ -free.

A generalization of Wiles’ isomorphism criterion in [57] by Lenstra is used in the
proof. Though the main two theorems in this section are a consequence of the general
commutative algebra machinery, they are extremely deep. In the next section, we will
see how modular varieties should yield the setup formulated in this section.

Remark 4.5. 1. The idea of an admissible quintet first appeared in the work of Ribet
in [38]. M/£ o £(M) is the congruence module.

2. The o, -direct summand property in Definition 4.3, (3) is an abstract form of
what is known as “lhara’s Lemma”.

3. ker fr/(ker fg)? is regarded as a Selmer group. When R is a complete inter-
section, its 0, -length is computed and equal to length,, 0 /nr. Here ng is the ideal

generated by the image of 1 under o;, f—R> Homy, (R, 0;) ~ R f—R> 0, as introduced
by Wiles in [57]. Note that the finiteness of the Selmer group is a consequence of the
reducedness of 7' (Taylor—Wiles systems do not give finiteness directly).
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5. Taylor—Wiles systems: a strategy for the construction

Take a pair (G, X) which defines a modular variety, and take a finite dimensional
representation v: G — Autg, Vg, defined over E;. For simplicity, we assume that G
is quasi-split over Q. v defines a G (A y)-equivariant local system ¥, on M (G, X) 15
which yields a family of local systems }‘VK on Mg (G, X) ateachlevel K. By choosing
an o0, -lattice in Vg, , FX has an o,-structure J—‘”fm. We limit ourselves to the adelic
action and the Hecke algebra action which respect the integral structure. Let X be a
finite set of primes containing ¢, and for a factorizable K = [ | ¢ Kq» Kz and K % are
defined by K5 = [, cx Kg K* =105 Kq-

For simplicity, we only consider Hecke operators outside 16 g (G(A?), K* Doy,
is the Hecke algebra formed by o,-valued functions on the adele group without
components in X. Let us begin with a remark on homological algebras:
RTp(Mk (G, X), }'fm) belongs to D+(H(G(Af2), K¥),,), the derived category of
H (G(A?), K 2),,A—complexes bounded from below. This is shown by taking the

canonical flasque resolution of ?VI;A.
Assume that K, is maximal and hyperspecial forg ¢ ¥. Then H(G (AJ?), K* o, =
Rqes H(G(Qy), Ky)o, is commutative. Let my denote a maximal ideal of

H (G(A}:), K E)0)\. Throughout this section we make the following assumption:

Assumption 5.1 (Vanishing of cohomology for F¢-coefficients). For any (sufficiently
small) K,
Hp(M(G, X)k, 75, ®, ki)my =0

fori # q(G).

This type of vanishing statement is known over E; when the weight of v is suf-
ficiently regular, but for torsion coefficients it is difficult to prove a vanishing state-
ment!”. Moreover, we need to have a vanishing claim which holds uniformly in K .

Let My = Hg(G) MG, X))k, ffox)mz be the localization of the middle dimen-
sional cohomology group at mx '8. By Assumption 5.1, it is o, -free.

Ts is defined as the image of H(G(A?), KE)O.A in My. We call it the ¢-adic
Hecke algebra.

When M (G, X) is a Shimura variety Sh(G, X) with reflex field E, we further
assume, by using the étale cohomology, that a reciprocity law of the following form
for (Sh(G, X), v) holds:

Ms ®o, @[ it EBT[EH,] Vo ® (ﬂ;()u(n)‘

I5For the center Z(G) of G, the image of Z(G)(Q) N K by v must be trivial for some K.

16We also need Hecke actions at X. At £, one should use a semi-subgroup G (Qy)+ of G(Qg) because the full
action of G(Qy) does not preserve the lattice structure in general.

17 fact, there are non-zero torsion classes in general unless one puts restrictive conditions on my;.

18 Further localizations by elements in H(G(Ay), Kx) are necessary.
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Here LG is the L-group of G, 1, is a packet which corresponds to p: Gg —
LG (Qy) and is cohomological for v 1°. V, is a G g-representation defined by a finite
dimensional representation of “G determined by v. We try to construct a Taylor-Wiles
system for (T, My).

As is suggested in the introduction, a modular variety for a given level K does
not admit a symmetry by a group. To have a group action, we must use an open
subgroup of G (Ay) which is smaller than K. Take a Q-parabolic subgroup P of G,
and a quotient torus H of P which is disjoint from the center Z(G), that is, the image
of Z(G) in H is trivial. It is very important to have a torus which is disjoint from the
center: this gives us a geometric direction, which, in the case of Shimura varieties,
cannot be obtained from abelian extensions of the reflex field. This feature is quite
different from Euler systems.

For a prime ¢, let Kp, = {g € G(Zy), gmodg € P(F,)} be a parahoric
subgroup at ¢ defined by P,andlet Kp 4 = {g € Kp 4, g mod g € ker(P(Fy) —
H (Fq)é)} be a subgroup depending on H. Here H (IE‘q)‘Z is the maximal subgroup
whose order is prime to £. Then Kp ,/Kp p 4 is isomorphic to A, the £-Sylow
subgroup of H (F,).

For a finite set of finite primes Q which is disjoint from X, one sets

Kp o= 1_[ Kpg-K2,

qeQ
Kp g o= 1_[ KpHyqg- K©,
q€Q
and Ap =] qe0 Dq- Since H is disjoint from the center, the natural covering

Q- ShKP,H,Q — Sth_Q
is an étale Galois covering with Galois group Ag if K € is small enough to make
group actions free. We view RI'p(Shk, , , }‘vli,};’H’Q) as an object in
by
DY (H(G(AFY?), K*99),,).
Then we make the following simple observation (perfect complex argument):

Lemma 5.2. Let m: X — Y be an étale Galois covering between finite dimen-
sional manifolds®® with Galois group G. Let ¥ be a smooth A-sheaf on Y. Then
RTUp(X, n*F) is represented by a perfect complex of A[Gl-modules, and

RT (X, 7*F) ®f ) AlG1/Ig ~ RTp(Y, F)

holds in Db(A[G]). Here I is the augmentation ideal of A[G], and the map is
induced by the trace map.

19We are ignoring the role of characters of centralizer groups, endoscopy, and so on. See [32] for a precise
conjectural description. Moreover, we only have information on the semi-simplification V;S.

20These manifolds must satisfy reasonable finiteness conditions on cohomology groups, which are true for the
algebraic varieties or modular varieties that we are interested in.
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By Lemma 5.2, we know that RT'g(Shg, ;; ,. FPHCY is in DP(0;[A)), a
perfect complex of 0,[Ag]-modules, that is, it is quasi-isomorphic to a bounded
complex of free 0, [A g]-modules. We assume 5.1 holds and localize at the maximal

ideal m g of H(G(Afz-UQ), KEUQ)U.A below my. Then

G ~Kp.H,
MQ = HZ’( )(Sth,H_Q7 fl),OI;HQ)mQ

is 0, [ A g]-free since itis the only non-zero cohomology of a perfect 0y [ A g ]-complex.
G ~Kp,
Then Mg ®o,(a,101[A01/In, = Mo,o. Here Mo g = Hi @ (Sh, oy For Omg-

We define Ty as the image of H(G(A?UQ), K*Y9), in End,, Mg. Then the
expectation is that My ¢ is a direct sum of M for a good choice of Q, and that
(To, M) forms a Taylor—Wiles system for (Ts, Myx) as Q varies. Hence, a system
for deformation rings will be obtained for appropriate choices of deformation functors.

To relate Mo ¢ to the original My, we already need information from the Ga-
lois parameter for the Langlands (or Arthur) packets for automorphic forms which
contributes to My, o, since we need to remove non-spherical components from Mg .
Some version of the compatibility of local and global parametrizations is needed.

This program for constructing a Taylor—Wiles system, and in particular for com-
bining the perfect complex argument and the vanishing assumption 5.1 to obtain a
system, was made explicit and carried out in two special cases in [18]. One case is
when (G, X) defines a Shimura curve, that is, G = G p as in §3. The Hecke actions
on Hg and H123 are easily determined for Shimura curves, and Assumption 5.1 is true
if we localize at the maximal ideals of Hecke algebras which correspond to absolutely
irreducible two dimensional representations. In another case, Hida varieties are used
to treat some situations which do not arise from Shimura curves.

In general, the program is very effective when G defines Hida varieties, since
the vanishing assumption is trivially true. To study non-abelian class field theory,
especially the question of modularity, or deformations of absolutely irreducible rep-
resentations, this case is quite useful, since one can apply the Jacquet—Langlands
correspondence for inner forms (assuming that it is already known) to convert the
problem to a compact inner form. For unitary groups, this approach was taken by
Harris and Taylor, showing the R = T theorem for the n-dimensional representations
of CM fields constructed by Clozel [9] under several restrictive assumptions. Arith-
metic geometrical difficulties are all encoded in the compatibility of local and global
Langlands correspondences outside £ and in the description of local monodromy at £.

Unfortunately, Hida varieties do not admit any natural Galois action. Since one
needs to have finer information coming from geometry, it is still an important problem
to construct Taylor—Wiles systems for higher dimensional Shimura varieties.

There are several possible solutions. One solution would be to establish Assump-
tion 5.1, that is, a vanishing theorem for Fy-coefficients. A partial solution will be
given in the sequel for unitary groups with signature (m, 1) by using a geometrical
realization of the Jacquet—Langlands correspondence. As far as the author knows,
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these unitary Shimura varieties are the only examples where the program is carried
out for the middle dimensional cohomology in arbitrary higher dimensions.

For other approaches in the case of Siegel modular varieties using p-adic Hodge
theory, see [34]. A Taylor—Wiles system for the Hilbert—Siegel case, especially
G Spy @, has been studied by Tilouine.

Another possible solution would be to avoid the use of vanishing theorems. We
have enough information about the alternating sum of cohomology groups, so in work-
ing with a suitable Ko-group of virtual Galois—Hecke bimodules instead of Galois—
Hecke bimodules, Taylor—Wiles systems might work for virtual representations.

Remark 5.3. The perfect complex argument is simple but very powerful in the coho-
mological study of congruences between automorphic forms. There are several other
uses of the perfect complex argument.

One example would be the construction of nearly ordinary Hecke algebra for GL,
with an exact control theorem.

In particular for the nearly ordinary Hecke algebra Ty, there is a faithful Tx-
module My with the following properties:

« My is free over A = 0, [[X2 x aclocy).

* Take an algebraic character y: A — O,N of discrete type ((k;).ecr,, w) such

- _ k=2, . .
that ¥ = X/(chg{e . Hvlé ]_[Leva x.* ) is of order prime to £. Ms ® x 0],
is a lattice in the space of nearly ordinary forms of type ((k,).cr,, w) with
“nebencharacter” ¥. Moreover, when the degree [F : Q] is even®!, it is exactly

the image of Hg (Mg, FX , ). Here Mk is a Hida variety associated
((kt)lE[st)so)L/
to a definite quaternion algebra, and F X , is a smooth of,-sheaf on

((kL)LEIF 5 w)vo)\/
Mg (Ef' [17]) which realizes the reciprocity law for forms of type ((k,).c1, w)
over Q.

Another example would be the level optimization for GL; in a special case, which
gives an interpretation of Carayol’s lemma [7], [17].

6. Geometric Jacquet—-Langlands correspondence

We use the strategy in Section 5 for some unitary Shimura varieties where the non-
abelian reciprocity is established by Kottwitz [33], and we construct a Taylor—Wiles
system for the middle dimensional cohomology group. To do this, we establish an
explicit Jacquet-Langlands correspondence which preserves o) -lattice structures by
arithmetic geometrical means, in particular by analyzing bad reductions of Shimura
varieties. This is called a geometric Jacquet—Langlands correspondence. This first

210ne uses Shimura curves when the degree is odd.
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appeared in the level optimization problem mentioned in §3 in the case of modular
curves. This also gives an arithmetic geometrical meaning of Hida varieties.

Let us give a simple example. Let Sp x = Sh(Gp, Xp)x be a Shimura curve as
in §2. For a finite place v of F, assume that D is split at v, and v t £. Let Dbea
quaternion algebra which is definite at all infinite places, non-split at v, but has the
same local invariants as D at the other finite places. D defines a Hida variety M p,
and we have an isomorphism D* (A'j,y f) ~ DX (A'jvy f) outside v.

Assume K = ]_[u K, is factorizable, and K, is an Iwahori subgroup of GL; r,.
We set K, = ogv for a maximal order op, of Dy, and we view K = K, - ]_[u#v K,

as a subgroup of D* (AF, f).

Then we have the following geometric realization of the Jacquet-Langlands [25],
and of the Shimizu [43] correspondencezz:
Proposition 6.1. For A = E), we have a (non-canonical) isomorphism as
H(D*(A3")), K)o, -modules

WoH&(Sp.x, N) =~ H' (M3 ¢, A)

K’
modulo Eisenstein modules. Wy is the weight 0 part of the weight filtration, and
the decomposition with respect to the Hecke action gives the Jacquet—Langlands
correspondence.

Here we view the Hida variety M ¢ as a variety over k(v), and we regard it as

the set of supersingular points>>, that is, the set of points which correspond to formal
oy-modules of height 2. Since the special fiber at v of the arithmetic model of Sp x
has two kinds of components which meet at supersingular points, the claim follows
from the standard calculation of the weight filtration using the dual graph of the special
fiber?*. There is also a variant for any finite 0, -algebra A, which preserves o; -lattice
structures.

So the Jacquet-Langlands correspondence is realized on the weight filtration of
local monodromy action where the Shimura variety admits a bad reduction. This is
our starting point?>.

6.1. Arithmetic model of unitary Shimura varieties. Asin §2, F' denotes a totally
real field and [F : Q] = g. IF is the set of the embeddings ¢(: F — R. Take an
imaginary quadratic field Eg over Q, and let E = Ej - F be the composite field. Let
Gal(E/F) = (o).

Let D be a central division algebra over E of dimension n?, and let x: D — D be
a positive involution of the second kind, that is, an involution which induces o on E.

22There is also a version when D is ramified at v, which plays an essential role in [39], [36].

23This identification is non-canonical.

24The Hecke action on the set of the irreducible components is Eisenstein, and we are ignoring this part.
251t will be desirable to have a motivic correspondence over a global field.
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We require the following condition on ¢ at infinity: At one infinite place (g € IF, * is

equivalent to g > J'gJ ! with J = (1”0_l 5

), and it is equivalent to the standard
involution g +>' g for the other ¢ # .

Let U(D) = {g € D°?*, g-g* = 1p} be the unitary group. Let GU (D) = {g €
DP* g.g* =v(g) - 1p, v(g) € Gy, r} be the group of unitary similitudes, seen
as a reductive group over F.

Let G’ = Resp,qU (D) be the Weil restriction of the unitary group, and let G be

the inverse image of G,,,g by Resp,oGU (D) — Resg/oGp, F -

1> G =G> Gpg— L

We fix an embedding Eg < C. This defines a CM-type on E, and for each
t: F — R, we have identifications

E ®F,t R~ Cs D ®F,z R~ Mn((c)

It follows that
Gp=U@m—1,1)x Umn)$™!

by our choice.
Define a group homomorphism

h(): ReSC/RGm@ —> G]R

e ho@ = (57 2) 2la o 2la).

Z

The associated symmetric space
X = GOO(R)/ K

(K is the centralizer of hg(x/—1)) is a complex ball of dimension n — 1.

For a compact open subgroup K C G(Ay), the corresponding Shimura variety
Shg (G, X) is compact by our assumption on D, and the reflex field E(G, X) is E.
We view Shg (G, X) as a generalization of Shimura curves. The determination of
the reciprocity law is due to Kottwitz [33], and the bad reductions have been studied
especially by Rapoport and Zink [37], Harris, and Taylor [20].

The moduli interpretation of these varieties is given by Shimura. We need arith-
metic models over the integers, so we consider it over og ®z, Zj, by fixing a prime p.
The details are found in [20]. To avoid technical problems which arise from obstruc-
tions to the Hasse principle for G, we assume that n is odd in this exposition.

We fix a finite place w of the reflex field E of residual characteristic p. Assume p
splits completely in Eg, and let ¢ be the place of Ey below w. Py, is the set of places
of E which divide .

Since p is split in Eg, the unitary group has a simpler form, and we have an
isomorphism

GQP ~ Gm,@,, X l_[ RCSEM/QPDEPX.

uePy
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In the following, we only consider compact open subgroups K, of G(Q,) which are
of the form Z; . HuePp K, for K, C D°°*(E,). We assume moreover that D is split

at w, and we identify the w-component with H,, = DY ~ GL, E,.

Take a maximal order op of D which is stable under *. op ®zZ,, is identified with
[Tc P, ODy X [ L. P, ODg(y- FOr u € Py, let e, denote the projector corresponding
toop,.

For an 0,,-scheme U, let A be an abelian scheme over U of relative dimension gn?>
with op-multiplication. We assume that the op-action on the relative Lie algebra
LieA/ U satisfies the following conditions:

1. Foru € P, different from w, ¢,LieA/U is zero.

2. eylieA/U is a locally free oy-module of rank n, and the oy-action on
eylieA/S is the multiplication through o, — I'(U, Op).

By condition (1), for the p-divisible group A[p*°], e, A[p°] is an étale o,-divisible
module for u € P, different from w. We denote the Tate module by 7}, (A).

We take a compact open subgroup K = K, - K” C G(Ay). We assume that
Ky, = GL,(0y) and that K7 is sufficiently small. We denote the product Z;; .
]_[uepp’u#w K, - KP by K". Then K = K,, - K" by the definition. We view D as a

left D°P-module and denote it by V 2. The integral structure is given by Vz = op.

Definition 6.2. Let U be an o,,-scheme, let A be an abelian scheme over U with
op-multiplication which satisfies the Lie algebra conditions described above, and let
p be a homogeneous polarization of A. Then (A, p) is of type (op, Vz; K) if the
following rigidification structures are attached:

1. For any point s € U, there is a polarization A € p of degree prime to p such
that A induces * on D as its Rosati involution.

2. For any geometric point s of characteristic p, a class k mod K™ of op-linear
symplectic